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Summary

1.Summary

Epigenetic gene regulation predominantly depends on proteins which modify histones, remodel
chromatin structure and set or remove DNA methylation marks. In this study, we investigated the
epigenetic protein landscape on different functional levels using mass spectrometry-based
approaches.

First, the local protein environment at a given DNA sequence can dramatically differ depending
on the chromatin type, e.g. at euchromatic or heterochromatic regions. We developed a new
strategy, termed CasID, to investigate such local chromatin environments. By combining the
programmable DNA binding of an inactive dCas9 protein with a promiscuous biotin ligase (BirA*),
the heterochromatic DNA sequences of telomeres, major satellites and minor satellites were
targeted and proteins binding to those regions were selectively labeled with biotin which enabled
enrichment and protein identification via mass spectrometry. Using this CasID strategy, we found
a novel candidate protein, ZNF512 (zinc finger protein 512), to be localized at heterochromatic
regions.

Second, we investigated epigenetic protein complex associations of the methylcytosine oxidase
TET1 in mouse embryonic stem cells as well as in /n vitro differentiated epiblast-like cells. For this
purpose, a novel genome engineering strategy, termed MIN-tag technique was used to insert
functional cassettes into the endogenous 7etI locus. We performed GFP-pulldown experiments
followed by mass spectrometry as well as proximity-dependent protein identification (BioIlD) and
found that in case of the big, presumably unstructured and tightly chromatin associated protein
TET1, BiolD is favourable over affinity purification approaches to capture novel interacting
proteins. The obtained dataset draws a complex picture of TET1l-containing complexes with
involvement in transcriptional regulation and chromatin remodeling. Importantly, we identified
several novel putative interactors of TET1, e.g. the glutamine and serine rich protein QSER1.

Finally, on the single protein level, post-translational modifications such as ubiquitination can
significantly affect protein function. Here, the ubiquitination activity of the E3-ligase proteins and
epigenetic regulators UHRF1 and UHRF2 was investigated. To this end, we performed a mass
spectrometry-based screen for potential UHRF ubiquitination targets in mouse embryonic stem
cells depleted for UHRF1 and UHRF2. Among numerous known and novel identified
ubiquitination targets, we found PCNA-associated factor 15 (PAF15) ubiquitination to be
dependent on UHRF1.






Zusammenfassung

2.Zusammenfassung

Epigenetische Genregulation wird vornehmlich durch Proteine sichergestellt, die entweder
Histone modifizieren, die Chromatinstruktur beeinflussen oder DNA-Methylierung regulieren. In
dieser Dissertation wurde die epigenetische “Proteinlandschaft” auf verschiedenen funktionellen
Ebenen mittels massenspektrometrischer Methoden untersucht.

Zum Ersten kann sich das lokale Proteinmilieu an bestimmten DNA-Sequenzen in Abhangigkeit
vom Chromatintyp dramatisch unterscheiden, z.B. in euchromatischen oder heterochromatischen
Regionen. Um diese lokale Proteinzusammensetzung zu untersuchen, haben wir eine neue
experimentelle Strategie namens ,CasID” entwickelt. Durch Kombination der programmierbaren
DNA-Bindefahigkeit des inaktiven dCas9-Proteins mit einer promiskuitiven Biotin-ligase (BirA*)
wurden die heterochromatischen DNA-Regionen der ,major satellites”, ,minor satellites” und
Telomere gezielt angesteuert und an diese Sequenzen gebundene Proteine selektiv mit Biotin
markiert, angereichert und anschlieBend durch Massenspektrometrie identifiziert. Mittels dieser
,CasID"-Strategie konnten wir die heterochromatische Lokalisation des Zinkfinger-Proteins
ZNF512 zeigen.

Zum Zweiten haben wir die Rolle der Methyl-cytosin Oxidase TET1 in epigenetischen
Proteinkomplexen in embryonalen Maus-Stammzellen und in /in vitro differenzierten “epiblast-
like” Zellen untersucht. Zu diesem Zweck wurde eine neue Genom-Manipulations Strategie, die
"MIN-tag”-Technik genutzt, um funktionelle Genkassetten in den endogenen T7etl-Lokus zu
integrieren. Wir fihrten sowohl "GFP-pulldown” als auch BioID Experimente durch und stellten
fest, dass im Falle des groBen, vermutlich unstrukturierten und stark chromatin-gebundenen
Proteins TET1 die BiolD Strategie der GFP-pulldown-Strategie zur Identifizierung sowohl
bekannter als auch neuer Interaktionspartner vorzuziehen ist. Hervorzuheben ist, dass wir
mehrere neue Interaktionspartner von TET1 gefunden haben, beispielsweise das Glutamin- und
Serin-reiche Protein QSERL.

Zum Letzten koénnen auf Einzelproteinebene posttranslationale Modifikationen wie
Ubiquitinierung die Proteinfunktion stark beeinflussen. In dieser Arbeit wurde die
Ubiquitinierungsaktivitat der E3-Ligasen und epigenetischen Regulatoren UHRF1 und UHRF2
untersucht. Hierfir wurden die UhrfI und Uhrf2-Gene in embryonalen Maus-Stammzellen
deletiert und ein massenspektrometrischer Screen nach ubiquitinierten Proteinen durchgefihrt.
Unter den so gefundenen zahlreichen bekannten und neuen Kandidaten-proteinen haben wir die
Ubiquitinerung von PAF15 (PCNA-assoziierter Faktor 15) durch UHRF1 mit weiteren Methoden
bestatigt.
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3.Introduction

3.1. Proteins are fundamental units of biological
processes and determine cellular identity

Proteins are the final readout of genetic information - as stated in the central dogma of biology:
DNA — RNA — protein — and constitute the majority of a cell’'s dry mass (Crick 1958; Milo 2013).
Thus, proteins are fundamental units of any cell with crucial biochemical and structural functions
in essentially all cellular processes. Since the first use of the term protein in 1838, much progress
has been made towards understanding the complexity of the cellular protein landscape, not least
because of the massive advancement in development of mass spectrometry techniques (Mulder
1838; Perrett 2007). Today, the entirety of all proteins present in a cell at a given time point is
defined as the proteome (Wasinger et al. 1995). Naturally, the proteome and consequently the
phenotype of a cell can dramatically differ dependent on its function within a multicellular
organism (Aebersold and Mann 2016).

The diversity of a cell's proteome is not only defined by the combination of expressed genes but
also by the abundance and processing of gene products resulting in differential isoforms, post-
translational modification, protein turnover, the organisation of proteins in functional complexes
and their localization in a specific subcellular compartment (Harper and Bennett 2016) (Figure 1).
All those factors contribute to the complexity of a cellular proteome, whose imbalance can lead
to cellular malfunction and disease (Harper and Bennett 2016).

protein . protein
turnover ; complexes
/ N S
QVA
= B
Proteome
Complexity subcellular
localization

‘?"
Post-translational u

modifications

—/“
—/-\—

protein isoforms

Figure 1: Factors contributing to proteome complexity are protein synthesis and degradation (protein
turnover), the engagement of proteins in multimeric complexes (protein complexes), subcellular
localization of proteins, protein isoforms generated by alternative splicing and post-translational
modification of proteins. Inspired by (Harper and Bennett 2016).
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Major technological advances in instrumentation together with bioinformatic data analysis
brought forward the field of proteomics research (Bantscheff et al. 2012; Mann et al. 2013). With
modern tandem mass spectrometry approaches, it is possible to not only identify but also
quantify 2,359 proteins from bacteria and around 10,000 proteins from human cell lines (Schmidt
et al. 2016; Wisniewski et al. 2014; Nagaraj et al. 2011). Most recently, single cell proteomics was
successfully performed for the first time quantifying ~750 proteins from a single human cell
(Budnik, Levy, and Slavov 2017).

3.2. Nuclear organisation and chromatin architecture

The basic information underlying the cellular proteome is encoded in the DNA. The human DNA
consists of long polymers with about 1,8 m total length, which needs to be compacted in a
human cell about 300,000 fold to fit into a 10 um nucleus (Sewitz, Fahmi, and Lipkow 2017). This
is achieved by a highly organized structure of DNA and proteins, the chromatin.

The smallest unit of chromatin is the nucleosome, which consists of 8 histone proteins and 146
bp of DNA (Kornberg 1974; Luger et al. 1997). The histone octamer is composed of two dimers
from the proteins H2A, H2B and one H3-H4 tetramer, respectively (Kelley 1973; Kornberg and
Thomas 1974; Roark, Geoghegan, and Keller 1974). Further folding of the nucleosomal chromatin
is achieved by linkage of the nucleosome core particles with H1 and assembly of nucleosomes to
a chromatin fiber of around 30 nm (Luger et al. 1997; Dorigo et al. 2004; Schalch et al. 2005). /n
vitro studies predicted the structure of the chromatin fiber to be either solenoid or of a zig-zag
type (Robinson et al. 2006; Bajpai et al. 2017). However, simulations including binding of
additional DNA-bending factors hint at a more dynamic, irregular higher order chromatin
structure (Bajpai et al. 2017).

The highest level of chromatin condensation is reached in mitosis and depends not only on
histones but also on other factors, e.g. condensin (Shintomi et al. 2017). Organization of
condensed chromatin was initially explored in 2D by staining of metaphase chromosomes and
analysis of the resulting band pattern in mosses (Heitz 1928). According to its staining pattern
throughout the cell cycle, chromatin was classified into densely stained heterochromatin and
weaker stained euchromatin (Heitz 1928). Euchromatin is easily accessible and associated with
gene rich regions while heterochromatin is more compacted, less accessible and rich in repetitive
elements (Huisinga, Brower-Toland, and Elgin 2006). Highly repetitive elements comprise ~45%
of the mammalian genome and often accumulate at specific sites on a chromosome (Lander et al.
2001; Jurka et al. 2005). In mouse genomes, repeat sequences constitute the heterochromatic
regions around centromeres involving major satellites and minor satellites es well as telomeric
repeats (Wong and Rattner 1988; Joseph, Mitchell, and Miller 1989; Guenatri et al. 2004) (Figure
2).
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Figure 2: Scheme of mouse metaphase chromosome. Red: minor satellite repeats, blue: major satellite
repeats, green: telomeric repeats.

In non-mitotic cells of higher eukaryotes, the DNA is highly organized in several 3D
subcompartments (Figure 3). First, euchromatic and heterochromatic regions differ not only in
their sequence properties but are also bound by distinct proteins which determine their
compaction and transcriptional status (Trojer and Reinberg 2007; Ho et al. 2014). In mouse,
constitutive heterochromatin is marked by H3K9me3, binding of HP1 proteins and DNA
methylation and accumulates in microscopically detectable chromocenters (Guenatri et al. 2004;
Déjardin 2015). Very recently, HPla (CBX5) was shown to critically influence local protein
environment by forming liquid-like droplets, thereby mediating phase separation of
heterochromatic regions from other areas of the nucleus (Strom et al. 2017; Larson et al. 2017).
Second, heterochromatic regions are often located at the nuclear periphery and referred to as
Lamina associated domains (LADs) (Guelen et al. 2008; Solovei, Thanisch, and Feodorova 2016).
Adherence of those genomic regions to the nuclear periphery is dependent on both lamin B
receptor (LBR) and Lamin A/C (Solovei et al. 2013). Third, two chromosomal regions with high
intra-regional contact frequencies were described as A and B compartments, which largely
correspond to eu- and heterochromatin, respectively (Rao et al. 2014; Solovei, Thanisch, and
Feodorova 2016; Lieberman-Aiden et al. 2009). Finally, microscopy techniques like FISH
(fluorescence in situ hybridization), electron microscopy and 3D-SIM (structured illumination
microscopy) uncovered that each chromosome occupies a certain area within the nucleus,
referred to as chromosome territories (Cremer et al. 2006; Cremer and Cremer 2010; Pueschel,
Coraggio, and Meister 2016).

Additionally, numerous other nuclear bodies can be distinguished by presence of specific
proteins, such as the nucleolus, nuclear speckles or transcription factories (Pederson 2011;
Spector and Lamond 2011; Hozak et al. 1993).
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chromosome territories
chromatin chromatin
nucleosome fiber loops TADs
N\ LADs

nucleus

Figure 3: Chromatin organization of an interphase nucleus. TADs: topologically associated domains, A:
A-compartment, B: B-compartment, LADs: lamina associated domains, E: euchromatin, C:
chromocenter, H: heterochromatin.

Genome-wide biochemical methods like chromosome conformation capture (3C) and its follow-
up techniques Hi-C which are now applicable to single cells confirmed the microscopically
discovered organisation of chromatin and allowed an even more resolved insight into global
chromatin structure (Dekker et al. 2002; Tolhuis et al. 2002; Lieberman-Aiden et al. 2009; Stevens
et al. 2017; Beagrie et al. 2017). Besides occupying its own territory and contributing to A and B
compartments, each chromosome contains areas with high contact frequencies which are based
on their size named Megadomains (1-10 Mb) or topologically associated domains (TADs) (< 1
Mb) (Pueschel, Coraggio, and Meister 2016; Dixon et al. 2012; Nora et al. 2012). TADs are
conserved between mouse and human, and often comprise several chromatin loops (Dixon et al.
2012; Rao et al. 2014; Tang et al. 2015). Formation of TADs is a subject of intense research and
proteins like cohesin and CTCF were implicated in chromatin loop formation and setting of TAD
boundaries (Nora et al. 2012; Dixon et al. 2012; Rao et al. 2014; Pueschel, Coraggio, and Meister
2016).

Taken together, chromatin is highly organized on several levels, ranging from its smallest unit,
the nucleosome, over higher ordered loops of chromatin fibers and specific characteristic
domains (TADs) to subcompartments in the nucleus defined by specific features of chromatin and
local protein composition (Figure 3).

3.3. Epigenetic protein networks

Chromatin organization crucially influences the identity of a cell since the accessibility of a gene
determines its transcription (Bernstein, Meissner, and Lander 2007). To obtain highly specialized
cell types in differentiated tissues of multicellular organisms, chromatin displays exceptional
plasticity in the pluripotent state and is reorganized during development (Jaenisch and Bird 2003;
Meshorer et al. 2006).
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Accessibility of certain DNA stretches for the transcription machinery is cell type-dependent and
thus can not be encoded in the DNA sequence itself, but in an additional layer of information
which has been termed “epigenetics” (Goldberg, Allis, and Bernstein 2007; Waddington HC 1942).
Epigenetic mechanisms act on several levels and directly influence chromatin structure, gene
accessibility, binding of proteins to chromatin and thereby govern gene expression profiles,
ultimately determining the identity of a cell (Jaenisch and Bird 2003).

Epigenetic gene regulation is achieved by modification of DNA - predominantly on cytosine
bases - post-translational modification of histone tails, implementation of histone variants in the
nucleosome, remodeling of whole nucleosomes and noncoding RNA (Rothbart and Strahl 2014;
Talbert and Henikoff 2010; Peschansky and Wahlestedt 2014) (Figure 4).

histone variants nucleosome remodeling 3
) kY )
DNA modifications N3 3‘4

| ———

histone tail modifications S\ noncoding RNA

Figure 4: Overview of epigenetic mechanisms.

3.3.1. Histone modifications

One well studied aspect of epigenetic gene regulation involves the amino acid sequences of
histones proteins and their interaction with other histones or epigenetic factors. Especially the
easily accessible histone tails are heavily modified post-translationally, e.g. by acetylation,
methylation, phosphorylation or ubiquitination, resulting in a plethora of combinatorial PTM
states (Kouzarides 2007; Andrew J. Bannister and Kouzarides 2011). Those “histone codes” have
distinct effects on chromatin organization and gene regulation through binding of “reader” and
"writer” proteins (Strahl and Allis 2000; Jenuwein and Allis 2001). Most functional units of the
mammalian genome are associated with a distinct set of histone marks (Jenuwein and Allis 2001).

a) Active promoters

Acetylation of histones removes a positive lysine charge which impacts the DNA-histone
interaction and results in decreased chromatin compaction promoting its accessibility and
transcription (Shogren-Knaak et al. 2006; Tse et al. 1998). Accordingly, actively transcribed genes
are marked by acetylation, e.g. H4K16ac (Shogren-Knaak et al. 2006). Another hallmark of active
promoters is the presence of H3K4me3 which is set by MLL and SET1 proteins in mammals
(Glaser et al. 2006; Bernstein, Meissner, and Lander 2007). Other histone marks found at active
promoters are H3S10 phosphorylation, H2BS112  GIcNAcylation and  H2BK120
monoubiquitination (Jenuwein and Allis 2001; Fujiki et al. 2011; Pavri et al. 2006).
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b) Repressed promoters

In contrast to active genes, silenced promoter regions are generally depleted of histone
acetylation (Ernst and Kellis 2010; Sequeira-Mendes and Gutierrez 2016). Several chromatin
modifier complexes harbor histone deacetylase activity and are thus considered repressive
complexes: Sin3A/HDAC, NuRD and COREST (Laherty et al. 1997; Silverstein and Ekwall 2005;
Kadamb et al. 2013). Further repression of regulatory elements is mediated by Polycomb group
protein complexes PRC2 and PRC1 by setting the repressive marks H3K27me3 and H2AK119ubi,
respectively (Margueron et al. 2008; Shen et al. 2008; Endoh et al. 2012; Di Croce and Helin 2013).

c) Bivalent promoters

Promoters marked by both “active” H3K4me3 and “repressive” H3K27me3 are found in
developmentally regulated promoters in embryonic stem cells (ESCs) (Voigt, Tee, and Reinberg
2013). Those bivalent domains are characteristic for genes with low expression level in ESCs which
are “poised” for rapid activation upon differentiation (Bernstein et al. 2006). Interestingly, PRC2-
dependent H3K27me3 and H3K4me3 set by MLL family proteins are located on separate tails of
adjacent histone dimers (Voigt et al. 2012; Denissov et al. 2014).

d) Enhancers

Cis-regulatory elements, such as enhancers or DNase sensitive regions are marked by H3K4mel
and histone acetylation, e.g. H3K27ac. (Ernst and Kellis 2010; Heintzman et al. 2009) Furthermore,
there is an enrichment of the histone variant H2A.Z and CTCF-binding at these sequences
(Sequeira-Mendes and Gutierrez 2016).

e) Repressed repetitive sequences

Repressed repetitive elements constitute a large fraction of the genome and are predominantly
enriched for H3K9me3 (Ernst and Kellis 2010; Lander et al. 2001). This histone residue is
methylated by Suv39hl in mice and bound by HP1 family proteins, namely CBX1, 3 and 5 (Rea et
al. 2000; A. J. Bannister et al. 2001). Additionally, H3K27me3, H4K20me3 as well as DNA
methylation are detectable at those sequences (Martens et al. 2005; A. Bird 2002).

3.3.2. DNA methylation

Besides modification of histones, the DNA molecule itself is modified to carry epigenetic
information. In the 1960s, methylation of cytosine at the carbon-5 position (mC) was initially
observed (Doskocil and Sorm 1962; Dosko¢il and Sormovéa 1965) and since then has been
correlated with gene repression, the most prevalent examples thereof being imprinted genes or
the inactivated X-chromosome in mammals (Beard, Li, and Jaenisch 1995; E. Li, Beard, and
Jaenisch 1993; Kaneda et al. 2004). The heritability of DNA methylation over cell divisions was first
shown in 1981 (Wigler, Levy, and Perucho 1981), which qualifies mC as a stable epigenetic mark.

10
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Today, cytosine methylation is known to be involved in essential mechanisms affecting gene
expression, genome stability and development, namely promoter accessibility, repression of
repetitive sequences elements, imprinting and X-chromosome inactivation (Edwards et al. 2017).
Global loss of methylation and aberrant methylation of regulatory genomic regions can result in
severe developmental defects or cancer (E. Li, Bestor, and Jaenisch 1992; Okano et al. 1999; Baylin
and Jones 2011).

3.3.3. DNA methylation and demethylation during mammalian
development

mC is a heritable yet dynamic epigenetic modification which can be either placed on sites de
novo or removed after oxidation to generate an unmethylated state (Ilurlaro, von Meyenn, and
Reik 2017). During mammalian development, two major stages of global DNA demethylation
followed by re-methylation are known (Monk, Boubelik, and Lehnert 1987; Clark 2015; Iurlaro,
von Meyenn, and Reik 2017) (Figure 5). In mouse zygotes, both the maternal and paternal
genome are rapidly demethylated creating the largely unmethylated landscape of the embryonic
day (E) 3.5-4.5 blastocyst inner cell mass which persists until implantation of the blastocyst on
embryonic day E5 (F. Guo et al. 2014; Iurlaro, von Meyenn, and Reik 2017). During transition from
the "naive” blastocyst to the “primed” epiblast stage (E4.5 - E6.5), there is a global increase in
methylation which is sustained in somatic cells (Z. D. Smith et al. 2012; Auclair et al. 2014). In
primordial germ cells (PGCs), a second wave of demethylation occurs, which primarily targets
imprinted regions, whose monoallelic silencing is newly established later in gametogenesis (D.
Bourc'his et al. 2001; Déborah Bourc’his and Bestor 2004).

4 Zygote Blastocyst Epiblast
gl o=
P somatic cells
5 ‘ ,
=] ¢ _ of the embryo
=
e ;
@
€
<
z -
(@) (@)
Primordial germ cells
E5
EO E3.5-E4.5 implantation E6.5 E7.25-E13.5

Figure 5: Global DNA methylation (mC) levels during mouse early embryonic development. E:
embryonic day.

In mammals, methylation of cytosines is observed mainly within a CG dinucleotide (CpG) context
across the whole genome, with exception of CpG island promoters and first exons (Edwards et al.
2017). The majority of methylated sequences are putatively non-regulatory, namely repetitive

11
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elements, old retrotransposons, introns and unannotated sequences (Edwards et al. 2017).
However, global dynamics of mC levels are not representative for local changes in DNA
methylation (Edwards et al. 2017). As mentioned above, imprinted regions evade the first wave of
DNA demethylation and are only erased in PGCs (D. Bourc'his et al. 2001; Déborah Bourc’his and
Bestor 2004). While CpG-island promoters remain unmethylated in general, young
retrotransposons stay methylated throughout development (Boulard, Edwards, and Bestor 2015;
Edwards et al. 2017).

3.4.  Methylation of cytosine by DNMTs

The S-adenosyl methionine (SAM)-dependent addition of a methyl-group to the carbon-5
position of cytosine is shared between DNA-methyltransferase enzymes from bacteria and
vertebrates and depends on a base flipping mechanism (Klimasauskas et al. 1994; Kumar et al.
1994; J. C. Wu and Santi 1985; X. Cheng and Blumenthal 2008). In mammals, the DNA
methyltransferase activity is conducted by the DNMT protein family (T. H. Bestor 2000; X. Cheng
and Blumenthal 2008) (Figure 6). Propagation of mC during replication is ensured by DNMTL in
concert with UHRF1 (ubiquitin-like PHD and RING finger domain-containing protein 1), while de
novo methylation of cytosines is established by DNMT3A, DNMT3B, the rodent-specific DNMT3C
and the regulatory factor DNMT3L (Goll and Bestor 2005; Barau et al. 2016). Although highly
similar in sequence, DNMT2 catalyses not DNA- but tRNA-specific methylation (Goll et al. 2006;
Rai et al. 2007).

1 PBD 1620
PO-PI T IO~ JBAHT )JBAH2 J Miase >  DNMTI
DMAP1
1 415
ase DNMT2
1 Q08
ase DNMT3A

—JPWWP)—JA0D J Wime - DNMT3B

! 79 DNMT3C

ase (in rodents)

1 421

9 ADD ] Waselnactvel )= DNMT3L

Figure 6: Scheme of mammalian DNMT family proteins. Numbers refer to amino acid sequences of

mouse proteins. MTase: SAM-dependent methyltransferase domain, DMAP1: DNA methyltransferase
associated protein 1 (DMAP1)-binding domain, PBD: proliferating cell nuclear antigen (PCNA)-binding
domain, TS: targeting sequence, CXXC: zinc finger, BAH1/2: bromo-adjacent homology domain,
PWWP: Pro-Trp-Trp-Pro domain and ADD: ATRX-DNMT3L-DNMT3A domain (including a GATA- and a
PHD-type zinc finger motif (UniProt Consortium 2015).
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3.4.1. De novo methylation by DNMT3 proteins

De novo methylation of cytosine residues is mediated by the DNMT3 proteins (Okano et al.
1999). DNMT3A and DNMT3B have a catalytically active C-terminal domain and further
encompass an N-terminal PWWP domain which recognizes H3K36me3, thereby ensuring gene
body methylation (Baubec et al. 2015; Dhayalan et al. 2010) (Figure 6). The ADD domain harbours
a PHD type zinc finger domain which mediates interaction of DNMT3A and DNMT3B with the
transcription factor Rp58a, histone deacetylases, the histone methyltransferase SUV39H1 and
HP1 (F. Fuks et al. 2001; Francois Fuks et al. 2003).

Dnmt3L is catalytically inactive but interacts with DNMT3A and DNMT3B and regulates their
catalytic activity by modulating their conformation (Suetake et al. 2004; Gowher et al. 2005).
Additionally, DNMT3L recognizes and binds unmodified H3K4 via the ADD domain and thus
promotes targeting of DNMT3A to chromatin for methylation in germ cells, while H3K4me3
marked loci are protected from de novo methylation activity (Ooi et al. 2007; Kaneda et al. 2004).
In rodents, DNMT3C is expressed exclusively in male germ cells and ensures the methylation of
evolutionary young retrotransposon promoters (Barau et al. 2016).

In mice, loss of each of the DNMT3 proteins results in lethality either before birth, as in case of
DNMT3B and 3L, or about 4 week postnatally in case of DNMT3A (Okano et al. 1999; Déborah
Bourc'his and Bestor 2004). DNMT3A and DNMT3L are crucial for maternal and paternal
imprinting (Kaneda et al. 2004), while DNMT3B functions in gene body methylation and
methylation of minor satellite repeats (Baubec et al. 2015; Okano et al. 1999). In humans, both
DNMT3A and DNMT3B malfunction is associated with disease, e.g. ICF syndrome for DNMT3B
(Ehrlich 2003) or AML for DNMT3A (Ley et al. 2010).

3.4.2. Maintenance methylation by DNMT1

Epigenetic heritability of mC over cell divisions is ensured by the maintenance methyltransferase
DNMTL (T. Bestor et al. 1988). DNMT1 prefers hemimethylated DNA as substrate and its
chromatin association at sites of replication is guided by UHRF1 (T. H. Bestor 1992; Leonhardt et
al. 1992; Bostick et al. 2007).

DNMTL is a multi-domain protein with autoinhibitory properties (J. Song et al. 2011). Analysis of
the crystal structures of mouse and human DNMT1 revealed that the N-terminal TS domain is
inserted in the catalytic pocket, and binding to its target substrate as well as interaction with the
SRA domain of UHRF1 induces a conformational change which is permissive to SAM and DNA-
binding (Takeshita et al. 2011; Berkyurek et al. 2014).

DNMTL subnuclear localization during the cell cycle is highly regulated by its various protein
domains and interacting proteins. During early S-phase, association with PCNA is first mediated
by the PBD domain while in late S-phase the TS domain mediates association with late-
replicating heterochromatin which persists until G2 (Spada et al. 2007; Schermelleh et al. 2007;
Schneider et al. 2013; Leonhardt et al. 1992). Additionally, the TS domain regulates a replication-
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independent chromatin association with constitutive heterochromatin during G2 and M phase
(Easwaran et al. 2004).

Numerous proteins are implicated in recruitment and catalytic activity of DNMTL, such as the
crucial cofactor UHRF1, USP7, hNaalOp or casein kinase CK1 delta/epsilon (Qin, Leonhardt, and
Spada 2011; C.-F. Lee et al. 2010; Sugiyama et al. 2010; Qin, Leonhardt, and Pichler 2011).
Furthermore, interaction with DNMT3A and DNMT3B was observed and proposed to enhance
mC-spreading following replication (G.-D. Kim et al. 2002).

Loss of DNMT1 is fatal for post-implantation embryonic development in mice beyond E11.5 (Lei
et al. 1996; E. Li, Bestor, and Jaenisch 1992), whereas self-renewal activity and chromosome
stability of ESCs remains intact even in absence of DNMT1/3A/3B (Tsumura et al. 2006). In
humans, DNMT1 mutations were connected to neurological disorders like autosomal dominant
DNMT1 complex disorder or HSANIE (hereditary sensory and autonomic neuropathy type IE)
(Baets et al. 2015; Smets et al. 2017). Additionally, aberrant DNMT1 expression has been
connected to various cancers such as leukemia, mammary tumors and T-cell lymphomas (Gaudet
et al. 2003; Peters et al. 2013; Pathania et al. 2015).

34.3. UHRF1 is an essential cofactor for DNA maintenance
methylation

Similarly to DNMT1 KO, depletion of UHRF1 in ESCs results in DNA hypomethylation due to
compromised chromatin binding of DNMT1 (Sharif et al. 2007; Bostick et al. 2007). UHRF1 recruits
DNMTL to sites of replication by both binding hemi-methylated DNA as well as recognizing
histone marks like H3K9me3 and thus mediates crosstalk between two important epigenetic
mechanisms (Bostick et al. 2007; Rottach et al. 2010; X. Liu et al. 2013).

The multidomain protein structure of UHRF1 (also termed NP95 or ICBP90) enables simultaneous
binding to its various targets (Arita et al. 2012) (Figure 7). First, UHRF1 binds to DNA via the SRA
domain and prefers hemimethylated sites over fully methylated DNA (Unoki, Nishidate, and
Nakamura 2004; Bostick et al. 2007). This specific binding of hemi-methylated DNA depends on a
base flipping mechanism (Avvakumov et al. 2008; Hashimoto et al. 2008; Arita et al. 2008; Qian et
al. 2008). Additionally, the interaction with DNMTL is dependent on the SRA domain (Bostick et
al. 2007; Achour et al. 2008).

Second, the histone binding capability to unmodified arginine at position two on histone H3
(H3R2) is encoded in the PHD domain (C. Wang et al. 2011; Hu et al. 2011; Rajakumara et al.
2011), while the TTD domain recognizes di- or trimethylated H3K9, respectively (Rottach et al.
2010; J. Cheng et al. 2013).

Third, the inherent catalytic activity of UHRF1 as ubiquitin E3-ligase is encoded in the RING
domain (Citterio et al. 2004). UHRF1 ubiquitinates histones, especially H3K18 which is in turn
bound by DNMT1 and contributes to targeting of DNMTL to chromatin for DNA methylation
maintenance (Qin et al. 2015). Furthermore, UHRF1 ubiquitinates DNMT1 and regulates its
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protein stability in concert with the deubiquitinase USP7 (Qin, Leonhardt, and Spada 2011; Felle
et al. 2011; Du et al. 2010).

Figure 7: Interactions and modifications set by mouse UHRF1. UbL: ubiquitin-like domain, TTD:
tandem tudor domain, PHD: plant homeodomain, SRA: SET and Ring associated domain, RING: really
interesting new gene domain, TS: targeting sequence of DNMTL, grey: interactions, red: E3-ligase
activity.

Additionally, UHRF1 interacts with the de novo methyltransferases DNMT3A and DNMT3B and
marks DNMT3A for proteasomal degradation (Meilinger et al. 2009; Jia et al. 2016).

3.4.4. UHRF1 is important for cell cycle progression

Apart from its DNMT1-related function, UHRF1 plays a role in cell cycle progression. One of the
initially described properties of UHRFL1 is its colocalization with proliferating cell nuclear antigen
(PCNA) during S-phase (Uemura et al. 2000; Miura et al. 2001). Additionally, UHRF1-deficient
embryonic stem cells show increased sensitivity towards treatment with the replication-inhibiting
reagent hydroxyurea and Uhrfl downregulation is incompatible with S-phase progression
(Bonapace et al. 2002; Muto et al. 2002).

3.4.5. UHRF1 is implicated in DNA damage repair and chromatin
stability

Lack of UHRF1 expression does not only sensitize cells towards hydroxyurea but also to DNA-
damaging agents such as UV-light, x-rays and MNNG (N-methyl-N'-nitro-N-nitrosoguanidine)
(Muto et al. 2002). UHRF1 specifically recognizes interstrand crosslinks (ICLs) /n vitro and in vivo
and recruits FANCD?2 for initiation of the Fanconi anemia pathway as well as the lesion processing
nucleases ERCC1 and MUS81 (Tian et al. 2015; C.-C. Liang et al. 2015). Furthermore, UHRFL1 is
recruited to DNA double-strand breaks (DSBs) by BRCAL in S-phase where it contributes to the
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dissociation of the BRCA1 antagonist RIF1 from DSBs and thereby promotes initiation of the
homologous recombination (HR) repair (Haoxing Zhang et al. 2016).

Other UHRF1 interacting proteins implicated in DNA damage repair are N-methylpurine DNA
glycosylase (MPG) and EME1 (C. Liang et al. 2013; Mistry et al. 2008).

Besides recognizing sites of DNA damage, UHRF1 influences genome stability through repression
of major satellite transcription, deacetylation of pericentric heterochromatin and regulation of
chromocenter size and number (Papait et al. 2007, 2008). Concordantly with its importance for
chromatin stability, DNA damage response and cell cycle progression, UHRF1 is considered a
promoter of tumorigenesis with persistent expression in numerous cancer types including colon
cancer and liver cancer (Mousli et al. 2003; Ashraf et al. 2017).

3.4.6. UHRF2 - the second UHRF family protein

UHRF2 (also termed Nirf) is the second UHRF-family protein with a domain structure highly
similar to UHRF1 (Bronner et al. 2007) (Figure 8). UHRF proteins have opposite expression
patterns during mouse development, with UHRF1 being predominantly present in ESCs while
UHRF?2 is expressed in differentiated tissues (Pichler et al. 2011).

1 782
PG O JPED)) SRA ) JRRG)  UHRF1
1 802
JENY) T O JPED)) SRA ) JRNG): UHRF2

62% 39% 58% 76% 83%

Figure 8: Mouse UHRF family proteins. UbL: Ubiquitin-like domain, TTD: tandem tudor domain, PHD:
plant homeodomain, SRA: SET and Ring associated domain, RING: really interesting new gene domain.
Percentages indicate the amino acid sequence conservation of the single domains.

Although UHRF?2 fails to recruit DNMTL to replication foci and can not complement the function
of UHRF1 in DNA methylation maintenance (Pichler et al. 2011; Jigin Zhang et al. 2011), several
conserved functions have been described. First, the UHRF2 TTD domain binds to methylated
histone H3K9 with a comparable mechanism as UHRF1 (Pichler et al. 2011). Second, both UHRF1
and UHRF2 interact with DNMT3A and DNMT3B (Meilinger et al. 2009; Pichler et al. 2011) and
both are capable of inhibiting de novo DNA methylation by functioning as E3 ligases promoting
DNMT3A degradation (Jia et al. 2016). Third, similarly to UHRF1, UHRF2 is implicated in DNA
damage response in aortic vascular smooth muscle cells and the BER pathway enzyme N-
methylpurine DNA glycosylase (MPG) interacts with both UHRF1 and UHRF2 (C. Liang et al. 2013;
Luo et al. 2013). Finally, UHRF2 is highly expressed in proliferating cells and interacts with various
cell cycle proteins (Mori et al. 2002, 2011).
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However, while UHRF1 preferentially binds mC, UHRF2 has been identified as specific hmC reader
(Spruijt et al. 2013). This hmC binding preference is caused by both differences in the binding
pocket of the SRA domain and the interaction of UHRF2 with the chromatin binding protein
ZFP618 (Zhou et al. 2014; Y. Liu et al. 2016).

In contrast to UHRF1 KO mice, UHRF2 depleted mice are viable and fertile with global reduction
of hmC and specific local loss of mC in brain tissues suggesting a role for UHRF2 in regulation of
DNA modifications and neuronal gene expression (R. Chen et al. 2017; Y. Liu et al. 2017). In
humans, defects in UHRF2 expression or localization have been observed in leukemia,
glioblastoma and various other cancers and UHRF2 has been proposed as tumor suppressor
(Mori et al. 2011; H. Lu et al. 2016). Additionally, UHRF2 acts as a transcriptional regulator
involved in epithelial-mesenchymal transition during differentiation thereby influencing tumor
metastasis (Lai et al. 2016). Furthermore, UHRF2 functions in nuclear protein quality control and
degradation of cellular polyglutamine aggregates in neurons, a mechanism affected in
Huntington’s disease (Iwata et al. 2009).

3.5.  Oxidation of methyl cytosine by TET proteins

Recently, 5-hydroxymethyl cytosine (hmC), the oxidation product of mC has stepped into focus.
This modification is found predominantly in neuronal Purkinje cells, the brain and in mouse ESCs
(Kriaucionis and Heintz 2009; Tahiliani et al. 2009). Although DNA hydroxymethylation of
mammalian DNA was first observed in the 1970's (Penn et al. 1972), the enzymes mediating the
oxidation of mC were not identified until much later. In 2009, bioinformatic analysis suggested
the presence of Trypanosoma JBP orthologues in mammals, namely TET1, TET2 and TET3
dioxygenases (Iyer et al. 2009). All three TET proteins can convert mC to hmC and further oxidize
hmC to form 5-formyl-cytosine (fC) and 5-carboxy-cytosine (caC), which ultimately leads to DNA
demethylation by base excision repair pathways (S. Ito et al. 2010; Tahiliani et al. 2009; S. Ito et al.
2011; J. U. Guo et al. 2011; He et al. 2011; Weber et al. 2016).

Besides being an intermediate of DNA demethylation, hmC is proposed to serve as an epigenetic
mark itself, since it is bound by a subset of specific reader proteins (Spruijt et al. 2013; Rasmussen
and Helin 2016). Furthermore, hmC could also lead to disruption of the binding of chromatin
factors which would enrich at methylated sites (Rasmussen and Helin 2016).

3.5.1. TET protein domain structure and function

Catalytic activity of the TET protein family is encoded in a double-stranded beta helix (DSBH)
dioxygenase domain and a Cys-rich domain (Tahiliani et al. 2009; Hu et al. 2013) (Figure 9).

17



Introduction

1 2039

TET1e

1 1386

ys-rich TET1s

1 1921

TET2

1 1803

—JERRO)—— s i OSH )—— TET3

Figure 9: Scheme of TET protein family domain structure. TET1e: TET1 full length, TET1s: TET1 short
isoform, DSBH: double-stranded beta helix domain, Cys-rich: cysteine rich region, CXXC: CXXC zinc

finger domain.

Structural analysis of the TET2 C-terminus bound to methylated DNA revealed a globular shape
of the catalytic domain, where the DSBH is stabilized by loops from the Cys-rich domain and
coordinated zinc ion binding (Hu et al. 2013). The DSBH domain is intercepted by a low
complexity insert region with low sequence conservation across TET family proteins (Iyer et al.
2009; Tahiliani et al. 2009). This sequence of ~400 amino acids is predicted to be unstructured
and most likely located on the surface of the catalytic domain (Hu et al. 2013; Iyer et al. 2009;
Tahiliani et al. 2009). The human TET2 catalytic domain preferentially binds CpG sites but has no
sequence preference regarding flanking nucleotides (Hu et al. 2013, 2015). Despite equal binding
affinities towards the cytosine variants (C, mC, hmC, fC), TET proteins possess higher oxidation
activity towards mC than hmC or fC, due to the structural conformation of the hydroxyl- and
formyl-groups within the catalytic pocket (Hu et al. 2015; S. Ito et al. 2011; Hashimoto et al. 2015).
Mechanistically, the modified cytosine is flipped out of the DNA double helix for oxidation in
dependence of 2-oxoglutarate, Fe(Il) and oxygen (Hu et al. 2013; Loenarz and Schofield 2011).
Other factors enhancing TET catalytic activity are ATP and Vitamin C (He et al. 2011; Yin et al.
2013; Blaschke et al. 2013; J. Chen et al. 2013).

Apart from the C-terminus containing the catalytic domain and a low complexity insert, the N-
terminal region of TET1 and TET3 harbour a CXXC domain which also binds to CpG containing
DNA (Yufei Xu et al. 2011; N. Liu et al. 2013; Jin et al. 2016) (Figure 9). While the TET1 CXXC was
detected to bind C, mC and hmC, the CXXC domain of TET3 preferentially binds caC (Haikuo
Zhang et al. 2010; Yufei Xu et al. 2011; N. Liu et al. 2013; Jin et al. 2016). Although TET2 has no
own CXXC domain, it is regulated and interacts with a DNA binding protein encoded by the
Cxxc4/Idax gene (Ko et al. 2013; Delatte and Fuks 2013). In general, the N-terminus enhances
global chromatin binding of TET1 as shown by comparative ChIP-seq analysis of TET1 deletion
variants (W. Zhang et al. 2016).

Several isoforms are described for TET proteins, all of which have the catalytic domain but vary in
the N-terminal sequences. Mouse TET1 has two isoforms with differential expression patterns,
full-length Tetle and the CXXC-deficient short TET1ls (W. Zhang et al. 2016) (Figure 9).
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Accordingly, TET3 has multiple splice variants with or without the CXXC domain (N. Liu et al.
2013; Jin et al. 2016).

3.5.2. TET proteins mediate DNA demethylation

Subsequent oxidation of mC to hmC, fC and caC are intermediate steps for the active removal of
the methyl mark from cytosine (Xiaoji Wu and Zhang 2017) (Figure 10). Both fC and caC can be
recognized and removed by TDG, a thymine-DNA glycosylase (He et al. 2011; Maiti and Drohat
2011). The resulting abasic site is further processed by the base excision repair (BER) machinery
resulting in replacement by an unmodified cytosine and transcriptional reactivation (Weber et al.
2016; Mdller et al. 2014). This pathway of active replication-independent DNA demethylation has
been extensively experimentally supported (Kohli and Zhang 2013; Schuermann, Weber, and
Schar 2016). However, other potential pathways of active DNA demethylation have been
investigated, such as deamination of hmC by AID/APOBEC to 5-hydroxymethyluracil (5ShmU)
followed by BER-dependent cytosine removal (Kohli and Zhang 2013; J. U. Guo et al. 2011; Nabel
et al. 2012). Also, the existence of a putative caC-decarboxylase for direct removal of the
carboxyl-group to create unmodified cytosine was proposed (Schiesser et al. 2012).
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Figure 10: Scheme of cytosine modifications set by DNMTs and TET proteins.
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Since hmC is not recognized by the maintenance methyltransferase DNMTL, replication
dependent dilution of oxidized bases results in passive DNA demethylation (Valinluck and Sowers
2007; Ji et al. 2014; An, Rao, and Ko 2017).
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Apart from their role in active DNA demethylation, TET proteins were linked with Wnt signaling
(Iyer et al. 2009), genomic instability (F. Lu et al. 2014; J. Yang et al. 2016), DNA damage repair
(Xiaoji Wu and Zhang 2017; Kafer et al. 2016) and alternative splicing (Feng et al. 2015; Marina et
al. 2016).

3.5.3. Modulation of TET proteins

a) TET transcriptional regulation and protein turnover

Tetl and Tet? expression is regulated at the transcriptional level by the pluripotency factors
OCT3/4, SOX2, NANOG and MYC (Koh et al. 2011; Neri et al. 2015). For mouse T7etl, two
promoter regions and one enhancer region have been described whose usage is dependent on
the developmental stage, which ensures high expression of TETL in naive pluripotent stem cells
(Sohni et al. 2015). The shorter isoform TET1s lacking the CXXC domain is expressed in somatic
cells, while TET1 full length (TETle) is present in mESCs, PGCs and the mouse embryo,
respectively (W. Zhang et al. 2016). Additionally, TET mRNAs can be regulated post-
transcriptionally by various microRNAs (Xiaoji Wu and Zhang 2017; S. J. Song et al. 2013; H. Li et
al. 2017). On the post-translational level, TET protein stability is influenced by calpain- and
caspase-dependent cleavage (Y. Wang and Zhang 2014; Ko et al. 2013). Additionally, TET2 is
presumably regulated through the proteasome system (Y. W. Zhang et al. 2017).

b) TET post-translational modifications

TET proteins can be glycosylated, phosphorylated, ubiquitinated and acetylated. First, all three
TET family proteins are O-GIcNAcylated by O-linked b-N-acetylglucosamine transferase OGT
(Vella et al. 2013; Deplus et al. 2013; Shi et al. 2013; Q. Zhang et al. 2014; Bauer et al. 2015).
Interestingly, the N-terminal region as well as the low complexity insert in the DSBH domain are
particularly modified with phosphorylation and O-GlcNAcylation and TET phosphorylation is
impaired when O-GIcNAcylation is promoted by OGT co-expression (Bauer et al. 2015). Second,
TET monoubiquitination by CLR4/VPRBP was observed to influence their DNA binding and
catalytic activity (C. Yu et al. 2013; Nakagawa et al. 2015). Finally, TET2 is acetylated by p300 and
thereby catalytically activated and stabilized (Y. W. Zhang et al. 2017).

¢) Genomic distribution of TET1

TET proteins are nuclear proteins with a strong preference to associate with chromatin (Tahiliani
et al. 2009). TET1 binding is increasing with CpG content and observed at around 30% of all CpG
islands in the genome (Yufei Xu et al. 2011). Although TET1 predominantly binds CpG rich
euchromatic regions (H. Wu et al. 2011), binding of repetitive sequences was also detected (de la
Rica et al. 2016).
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Genome-wide ChIP-seq studies revealed TET1 binding in mESCs predominantly at gene bodies,
around transcription start sites and promoters (H. Wu et al. 2011; K. Williams et al. 2011). Within
gene bodies, TET1 is most prominently detected at TSS which are methylation-free (H. Wu et al.
2011; Fouse et al. 2008; Yufei Xu et al. 2011). TET1 binds to active CpG poor promoters in ESCs,
e.g. those of Nanog and Esrrb to maintain their expression and promote pluripotency (H. Wu et
al. 2011; Costa et al. 2013). Interestingly, TET1 binding is also observed at bivalent promoters
which are poised for rapid activation or deactivation upon differentiation (K. Williams et al. 2011,
H. Wu et al. 2011; Kong et al. 2016; Bernstein et al. 2006; Yufei Xu et al. 2011).

Depletion of TET1 both positively and negatively influences gene expression of its target genes,
suggesting multiple mechanisms by which TET1 can influence gene expression (Yufei Xu et al.
2011; K. Williams et al. 2011; H. Wu et al. 2011). In line with that, hmC levels do not necessarily
correspond to TET1 binding at certain genomic regions, indicating that TET1 can regulate
transcription independently of its catalytic activity (K. Williams et al. 2011; Yufei Xu et al. 2011).
Corresponding to hmC enrichment at enhancers and distal regulatory elements (Sun et al. 2015;
Stroud et al. 2011; M. Yu et al. 2012; Pastor et al. 2011), TET1 localizes to these regions (Pulakanti
et al. 2013; Xiong et al. 2016).

d) TET-containing protein complexes

The divergent transcriptional effects of TET1 in mESCs described above are likely caused by
engagement of TET1 in different chromatin modifying complexes with distinct localization to
certain genomic loci. Integrative ChIP-seq data analysis revealed TET1 co-occurrence with more
than ten other DNA binding proteins at promoter sequences in mESCs, e.g. NANOG and SIN3A
(Zhong et al. 2016).

The pluripotency factor NANOG interacts with the TET1 C-terminal domain in ESCs and recruits
TET1 to shared binding sites for regulation of pluripotency and lineage commitment gene
expression (Costa et al. 2013). Additionally, TET1 regulates the expression of NANOG by binding
and demethylating its promoter (S. Ito et al. 2010; H. Wu et al. 2011).

SIN3A is a scaffold protein which recruits HDAC1 and HDAC2 for histone deacetylation, thereby
inducing chromatin compaction and transcriptional repression (Laherty et al. 1997; Silverstein and
Ekwall 2005; Kadamb et al. 2013). TET1 was shown to interact with SIN3A (K. Williams et al. 2011;
McDonel et al. 2012; Saunders et al. 2017) and recruit the Sin3A/HDAC complex to a subset of
TET1 targeted promoters leading to their transcriptional silencing (K. Williams et al. 2011).

Additionally, the Polycomb-repressive complex 2 (PRC2) and TET1 share binding sites along the
genome and TET1 depletion leads to loss of PRC2 subunit EZH2 binding (H. Wu et al. 2011; K.
Williams et al. 2011). Specifically in mESC, an overlap of hmC, H3K27me3 marked histones and
binding sites of the PRC2 subunits SUZ12 and EZH2 was observed, the latter of which were
confirmed as direct interactors of TET1 (Neri et al. 2013).

Apart from being post-translationally modified by OGT, TET1 also forms a complex with OGT at
CpG island promoters and executes mC oxidation at these genomic sites (Vella et al. 2013).
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Moreover, TET2 was shown to recruit OGT to chromatin and facilitate histone glycosylation (Q.
Chen et al. 2013).

Furthermore, the TETL interacting proteins GADD45a, LIN28A and PRDM14 recruit TET1 for active
demethylation of target gene promoters (Kienhofer et al. 2015; Zeng et al. 2016; Okashita et al.
2014).

Finally, several described interaction partners of TET1 are related to the active demethylation
pathway such as TDG and NEIL family glycosylases and the BER pathway proteins PARP1, XRCC1
and LIG3 (Mdller et al. 2014).

3.5.4. Biological significance of TET proteins

Due to their expression pattern, TET family proteins have distinct roles during mammalian
development. Expression of TET3 occurs in the zygote, while TET1 and TET2 are present in
blastocysts, the epiblast stage and primordial germ cells (Szwagierczak et al. 2010; Sohni et al.
2015; S. Yamaguchi et al. 2012; S. Ito et al. 2010). Additionally, TET1 and TET3 oxidation activity is
observed in differentiated tissues of the brain, while TET2 is contributing to gene regulation and
hmC formation in the myeloid lineage (S. Ito et al. 2010; Xiaoji Wu and Zhang 2017).

a) Mouse preimplantation development

During mouse preimplantation development, both the maternal and paternal genomes are
widely demethylated (Monk, Boubelik, and Lehnert 1987) (see Figure 5). This is achieved through
passive dilution of mC through exclusion of the maintenance machinery and passive dilution of
oxidized mC, which is dependent on TET3 (Cardoso and Leonhardt 1999; Howell et al. 2001;
Wossidlo et al. 2011). Although both active demethylation and passive dilution of oxidized mC
was observed in the paternal and maternal genome, there is less TET3-mediated oxidation in
maternal genome possibly due to Stella (PGC7, DPPA3) which protects the maternal genome by
binding H3K9me2 and preventing mC oxidation (F. Guo et al. 2014; L. Wang et al. 2014;
Toshinobu Nakamura et al. 2012, 2007; Wossidlo et al. 2011).

b) Pluripotent stem cells

In mESCs, gene regulation by either mC oxidation or recruitment of chromatin modifying
complexes by TET1 and TET2 is crucial for maintaining pluripotency and implicated in early
lineage commitment (H. Wu et al. 2011; Koh et al. 2011; S. Ito et al. 2010). RNA sequencing and
hmC-mapping of 7et-depleted mESCs revealed that hmC generation by TET1 occurs mainly at
TSS and promoters, while TET2 mainly targets gene bodies and exon boundaries (Huang et al.
2014). While TET1, in concert with ZFP281, is important for transition to the primed epiblast state,
TET2 is essential for transition from primed to naive state during reprogramming (Fidalgo et al.
2016). TET2 affects reprogramming efficiency in general, while demethylation of imprinted
regions depends on TET1 (Piccolo et al. 2013).
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Tet triple knock-out ESCs maintain pluripotent but are completely depleted of hmC and fail to
develop normally beyond the gastrulation stage (E6.5) (Dawlaty et al. 2014; F. Lu et al. 2014; Dai
et al. 2016). Surprisingly, depletion of Tetl, Tet2 or both in mESCs resulted in embryogenesis and
viable offspring in inbred mouse strains, despite reduced hmC levels, transcriptional changes,
compromised imprinting and skewed differentiation (Dawlaty et al. 2011; Koh et al. 2011; Moran-
Crusio et al. 2011; Quivoron et al. 2011; Dawlaty et al. 2013). Single knock-out of TET1 in mESCs
derived from inbred mouse strains (Dawlaty et al. 2011) develop normally and show reduced
levels of hmC, transcriptional changes. In contrast, TET1 depletion in non-inbred mice is lethal at
late gastrulation stage (Khoueiry et al. 2017).

¢) Primordial germ cells

During maturation of primordial germ cells, where TET1 and TET2 are expressed, the genome
undergoes demethylation in two stages (Seisenberger et al. 2012; Hackett, Sengupta, et al. 2013).
First, the expression of DNMT3A, DNMT3B and UHRF1 is suppressed leading to passive dilution
of mC on a global level (Seisenberger et al. 2012; Ohno et al. 2013).

Subsequently, mC oxidation and passive dilution by TET1 and putatively TET2 promotes more
locus-specific removal of mC (S. Yamaguchi et al. 2012; Hackett, Sengupta, et al. 2013; S.
Yamaguchi et al. 2013).

d) Somatic tissues

In somatic tissues, high hmC levels are observed in the brain where also active DNA
demethylation was reported (Kriaucionis and Heintz 2009; J. U. Guo et al. 2011; Kaas et al. 2013).
In neurons, TET1 and TET3 influence gene expression and hmC distribution with implications for
neurogenesis, synaptic plasticity and memory formation (R.-R. Zhang et al. 2013; Rudenko et al.
2013; Kaas et al. 2013; Feng et al. 2015; X. Zhu et al. 2016). During adult neuronal differentiation,
TET2 regulates transcription related to adult neural stem cell differentiation (X. Li et al. 2017).
While TET3 KO mice die shortly after birth (Gu et al. 2011; Kang et al. 2015), TET2 KO mice are
viable but show defects in hematopoietic stem cell development and are highly susceptible for
myeloid malignancies (Moran-Crusio et al. 2011; Quivoron et al. 2011).

e) Cancer

TET1 was originally reported as MLL fusion protein in leukemia (Lorsbach et al. 2003). Since then,
all three TET proteins have been implicated in haematopoietic malignancy formation (Abdel-
Wahab et al. 2009). Especially TET2 loss-of-function mutations are often found in (myeloid)
cancers such as acute myeloid leukemia (AML), myelodysplastic syndrome (MDS),
myeloproliferative neoplasms (MPN) and chronic myelomonocytic leukemia (CMML), suggesting
a tumor suppressor role for TET2 (Ko et al. 2010, 2015; An, Rao, and Ko 2017). Additionally,
altered hmC levels and reduced TET protein expression was reported in solid tumors, e.g. skin,
brain, gastric, prostate, liver, lung and breast cancer (Kudo et al. 2012; Lian et al. 2012; Turcan et
al. 2012; H. Yang et al. 2013; C. Liu et al. 2013; Pei et al. 2016).
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Finally, mutations of IDH resulting in aberrant TET substrates levels or the oncogenic substrate
derivative 2-hydroxyglutarate (2-HG) were reported in cancer (Dang et al. 2010; Turcan et al.
2012; Chiang et al. 2016).

3.6. ESCs as a model system for investigation of
epigenetic protein networks

In early embryonic development, pluripotent cells are characterized by a unique DNA methylation
and chromatin modification environment which is very dynamic and uncommitted (Gaspar-Maia
et al. 2011; Tee and Reinberg 2014). Therefore, early development of ESCs towards epiblast cells
is an ideal system to study the dynamics and importance of chromatin modifying proteins.

Mouse embryonic stem cells can be extracted from the inner cell mass of the blastocyst and be
propagated /n vitro under specific cell culture conditions (Evans and Kaufman 1981; Brook and
Gardner 1997) (Figure 11). Feeder cell free culturing conditions traditionally involve fetal calf
serum and the leukemia inhibitory factor LIF, an activator of the JAK-STAT3 pathway (A. G. Smith
et al. 1988; R. L. Williams et al. 1988). Alternatively, serum-free conditions were described, using
LIF and two inhibitors of MEK and GSK3 (2i), targeting the Erk1/2 pathway and the Wnt signaling
pathway, respectively (Ying et al. 2008; Weinberger et al. 2016). While serum/LIF conditions likely
reflect an early epiblast state, 2i/LIF conditions are more comparable to the naive pluripotent
ground state (Ying et al. 2008; Weinberger et al. 2016; A. Smith 2017) (Figure 11).

In vitro, development of early blastocyst cells towards the epiblast state can be recapitulated by
culturing naive ESCs in ActivinA and bFGF to form epiblast-like cells (EpiLC) (Hayashi et al. 2011)
(Figure 11). The transcriptional features of those EpiLCs resembles cells of the post-implantation
epiblast but are not identical with EpiSC derived from the post-implantation embryos at E5.5-8
and are proposed to represent an intermediate state of “formative” pluripotency (Hayashi et al.
2011; A. Smith 2017).

As mentioned earlier, remethylation of the genome occurs during blastocyst to epiblast
transition. While mC levels are low in ICM cells and 2i/LIF-cultured ESCs (Leitch et al. 2013; Ficz et
al. 2013), transition to serum/LIF conditions as well as EpiLC differentiation causes an global
increase in mC (Hackett, Dietmann, et al. 2013; Habibi et al. 2013; Shirane et al. 2016). Similar to
mC, also global hmC levels increase with progression towards “primed” pluripotent states (Habibi
et al. 2013; Hackett, Dietmann, et al. 2013). Remethylation is achieved by upregulation of
DNMT3A and DNMT3B on the one hand and by discontinued degradation of UHRF1 by
PRAMEL7? on the other hand (Okano et al. 1999; Graf et al. 2017). Additionally, TET1 and TET2 are
expressed in ESCs where they are essential for maintenance of pluripotency and transition to the
primed state (H. Wu et al. 2011; Fidalgo et al. 2016; Sohni et al. 2015).
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Figure 11: Embryonic stem cell types derived from mouse blastocyst and epiblast cells. ESC:
embryonic stem cells derived from the inner cell mass of the blastocyst. EpiLC: epiblast-like cells
generated from /n vitro differentiation of ESCs, EpiSC: epiblast stem cells derived from the post-
implantation epiblast.

3.7. Techniques for investigation of epigenetic protein
networks

3.7.1. Genome engineering and chromatin manipulation using the
CRISPR/Cas system

Originally, the CRISPR/Cas system mediates detection and targeted destruction of foreign DNA
or RNA in bacteria (Wiedenheft, Sternberg, and Doudna 2012; Barrangou et al. 2007). The
mechanism of this adaptable immune response involves incorporation of foreign DNA into the
bacterial genome at clustered regularly interspaced short palindromic repeat (CRISPR) sequences
(Garneau et al. 2010; Barrangou et al. 2007). RNA derived from transcription of these loci (crRNA)
together with a trans-activating RNA (tracrRNA) forms complexes with CRISPR-associated protein
9 nuclease (Cas9) and facilitates specific recognition, binding and cleavage of non-host DNA
sequences (Deltcheva et al. 2011; M. Jinek et al. 2012).

With the adaption of the bacterial CRISPR/Cas system for genome manipulation, the field of
genome engineering was revolutionized (M. Jinek et al. 2012). This system is now extensively
used for genome editing in a wide variety of organisms, e.g. bacteria, mammals and plants (Mali
et al. 2013; Cong et al. 2013; Martin Jinek et al. 2013; J.-F. Li et al. 2013; Jiang et al. 2013; Sander
and Joung 2014). Custom design of guide RNAs (gRNA) enables targeting of virtually any
sequence upstream of a proto-spacer adjacent motif (PAM) motif of a given genome (M. Jinek et
al. 2012). Site-specific cleavage by the Cas9 nuclease results either in genomic deletions by NHEJ
repair or insertion of sequences from a donor template via homology directed repair (Sander and
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Joung 2014). The latter pathway allows for introduction of specific point mutations or insertion of
bigger sequence stretches encoding e.g. fluorescent proteins (Sander and Joung 2014).

The range of applications of the CRISPR/Cas system was further expanded by an engineered
enzymatically “dead” Cas9 (dCas9) protein which retains its programmable binding to DNA but
has no nuclease activity any more and thus the targeted DNA stretches remain intact (Qi et al.
2013; Bikard et al. 2013). dCas9 has been applied to recruit fluorescent proteins to specific DNA
sequences thereby visualizing genomic loci in living mammalian cells (Anton et al. 2014; B. Chen
et al. 2013). Furthermore, site specific recruitment of DNA or chromatin modifying enzymes like
TETs, DNMTs or HDACs by dCas9 was shown to locally influence gene expression (Kearns et al.
2013; Maeder et al. 2013; Kearns et al. 2015; X. S. Liu et al. 2016; Vojta et al. 2016). By using a
fusion of a GFP-binding nanobody (GBP) with dCas9, the recruitment of any GFP-fused effector
protein can be achieved (Anton and Bultmann 2017).

3.7.2. Protein complex investigation using mass spectrometry

Classical approaches to determine protein-protein interactions are affinity purification using
antibodies followed by Western Blot analysis or mass spectrometry (AP-MS) (Dunham, Mullin,
and Gingras 2012). Alternatively, proteins of interest can be fused to a fluorescent protein and
enriched using nanobodies (Rothbauer et al. 2008). Those methods usually identify direct
interactors or indirectly interacting factors e.g. from the same protein complex (Figure 12). Other
approaches than AP-MS are proximity-based methods such as BiolD which also detect transient
interactions or non-interacting but proximate proteins (Roux 2013; P. Li et al. 2017) (Figure 12).

proximity-based protein
labelling and enrichment

g o X

o2

\ | /

| mass spectrometry analysis

Figure 12: Strategies for investigation of protein-protein interactions. left: antibody-based affinity
purification, middle: enrichment of GFP-fusion proteins using GBP (GFP-binding protein), right:
proximity-based protein labeling with biotin (red) followed by enrichment using streptavidin (BiolD).

affinity purification GFP pulldown

]

AN
e

Enriched proteins are analyzed using mass spectrometry.
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The BiolD approach was inspired by DamID, were a DNA adenine methyltransferase is fused to a
protein of interest and used for mapping of DNA binding profiles after methylation specific DNA
pulldown and sequencing (van Steensel and Henikoff 2000). Similarly, in BiolD a biotin ligase
without sequence preference (BirA*) is fused to a target protein resulting in proximity-dependent
biotinylation of any lysine residue within approximately 10 nm distance (Roux et al. 2012; D. I. Kim
et al. 2014). Subsequently, the biotin-marked protein environment can be identified by pulldown
of biotinylated proteins followed by mass spectrometry analysis (Roux, Kim, and Burke 2013).
Further development of BiolD involves a smaller BirA* (BioID2) and a variable linker length for
refinement of the biotin labeling radius (D. I. Kim et al. 2016).
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3.8. Aims of this work

The goal of this thesis was to investigate the epigenetic protein landscape regulating DNA
methylation on different functional levels using mass spectrometry-based strategies.

First, on the nuclear organisation level, genomic subcompartments such as eu- and
heterochromatin are distinguishable based on the local structure, density and protein
composition of chromatin. To contribute to the further exploration of chromatin organization, we
developed a novel approach resembling a “reverse ChIP" strategy to determine the sequence-
specific chromatin composition at highly methylated repetitive sequences in the genome.

Second, the functional protein complex associations of the methylcytosine oxidase TET1 were
investigated. TET1 not only functions via its mC oxidation activity but also influences transcription
independently of its catalytic activity. To further explore the engagement of TET1 in epigenetic
complexes, we performed both GFP-pulldown experiments as well as BioID to identify novel
interaction partners of TET1 in mESCs and EpilLCs.

Third, UHRF1, which is an important epigenetic regulator of DNA methylation, harbours an E3-
ligase domain with ubiquitination activity. We examined the impact of UHRF-dependent
ubiquitination on the cellular proteome. To this end, we employed ubiquitin remnant motif
enrichment followed by mass spectrometry analysis to screen for novel ubiquitination targets of
UHRF1 and UHRF2 in ESCs.

28



Results

4. Results

4.1. Determination of local chromatin composition by
CasID

Schmidtmann and Anton et al.,, published on 27 September 2016
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ABSTRACT

Chromatin structure and function are determined by a plethora of proteins whose genome-wide
distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to
investigate the local chromatin environment at specific DNA sequences. We combined the
programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA* (CasID) to biotinylate
proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and
mass spectrometry identified both known and previously unknown chromatin factors associated
with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy,
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we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The elements
versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-

specific chromatin composition.

Introduction

Regulation of gene expression involves a yet undeter-
mined number of nuclear proteins ranging from tightly
bound histones to loosely attached or transiently inter-
acting factors that directly and indirectly bind DNA
sequences along the genome. Establishment, mainte-
nance and alteration of functional DNA states during
development and disease requires dynamic changes in
local enrichment and posttranslational modification of
chromatin proteins. The genome-wide distribution of a
given protein is traditionally determined by chromatin
immunoprecipitation (ChIP) and subsequent sequenc-
ing of co-precipitated DNA fragments. However, ChIP
experiments rely on the availability of suitable antibod-
ies and provide data on global antigen distribution
rather than local chromatin composition.

Previously described strategies to directly analyze
chromatin complexes such as HyCCaPP (Hybridiza-
tion Capture of Chromatin Associated Proteins for
Proteomics)' and PICh (Proteomic Isolation of Chro-
matin fragments)® were based on chemical crosslink-
ing and precipitation with complementary DNA

probes. Alternatively, DNA binding proteins were
used for chromatin precipitation and subsequent anal-
ysis by mass spectrometry.””

For visualization and manipulation, specific geno-
mic loci can be targeted by different recombinant
DNA binding proteins such as engineered polydactyl
zinc finger proteins (PZFs),’ designer transcription
activator-like effectors (dTALEs)”® or an enzymati-
cally dead Cas9 (dCas9).”'" Whereas target specific-
ity of PZFs and dTALEs is determined by their
amino acid sequence, DNA binding of dCas9 is pro-
grammed by an easily exchangeable single guide
RNA (sgRNA)."

Here, we exploited the RNA-programmable DNA
binding of dCas9 to direct a biotin ligase to specific
genomic sites and mark adjacent chromatin proteins
for subsequent identification by mass spectrometry.
Proximity-dependent biotin identification (BioID)
employs a promiscuous biotin ligase (BirA™) fused to
a target protein for biotinylation of proteins within a
10 nm range.'>'* Biotinylated proteins can then be
identified by robust streptavidin-mediated capture
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and subsequent mass spectrometry. Based on BirA™
and dCas9 we developed a hybrid approach (CasID)
to elucidate chromatin composition at specific DNA
sequences.

Results and discussion

Immunofluorescence microscopy reveals protein
biotinylation at targeted loci

To evaluate whether the CasID approach is suited to
biotinylate proteins at specific genomic loci we con-
structed a BirA*-dCas9-eGFP fusion (Fig. 1). We
co-transfected C2C12 myoblasts with this BirA*-
dCas9-eGFP construct and a sgRNA plasmid, target-
ing dCas9 to either telomeres, major or minor satellite
sequences. We previously showed that all sgRNAs
used in this study successfully target dCas9-eGFP to
the desired loci.'” Although here dCas9 is tagged on
both N- (BirA*) and C-terminus (eGFP), we observed
specific recruitment to the designated sequences (Sup-
plementary Fig. 1). In control cells without sgRNA
expression, BirA*-dCas9-eGFP shows a diffuse locali-
zation throughout the cell and a nucleolar enrichment
(Supplementary Fig. 1). Importantly, in the presence
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of functional sgRNAs, BirA*-dCas9-eGFP was tar-
geted to the respective loci and co-localized with a
strong biotin signal, when the growth medium was
supplemented with exogenous biotin (Fig. 2). These
results demonstrate that the promiscuous biotin ligase
BirA”™ can be directed to endogenous loci via dCas9.

Determination of local chromatin composition at
distinct genomic loci by mass spectrometry

To identify proteins associated with distinct genomic
regions, cells stably expressing BirA*-dCas9-eGFP tar-
geted to either telomeric regions, minor satellite
repeats or major satellite repeats were supplemented
with 50 uM biotin for 24 h, representing standard
BioID conditions."” We enriched for biotinylated pro-
teins from crude nuclear extract with streptavidin-
coated magnetic beads and analyzed them via tandem
mass spectrometry (LC-MS/MS, Fig. 1). With label
free quantification, we compared protein levels in
pulldowns from cells expressing both BirA*-dCas9-
eGFP and a sgRNA with control samples of cells stably
expressing untargeted BirA"-dCas9-eGFP (without
any sgRNA). Common BiolD contaminants,” like

TelgRNA

uroiq /m

unoiq o/m

LC-MS/MS
4>

>

Figure 1. Workflow for CasID. BirA*-dCas9-eGFP/sgRNA expressing cells are cultured in growth medium without exogenous biotin. The
BirA*-dCas9-eGFP fusion is directed to the desired target by sequence complementarity between sgRNA and the genomic locus. Upon
addition of biotin to the medium, BirA* ligates biotin to lysine residues of proteins in close proximity. Successful biotinylation of locus-
associated proteins can directly be visualized via immunofluorescence microscopy. For mass-spectrometric analysis, cells are harvested,
followed by isolation of crude nuclei. After a denaturing lysis, biotinylated proteins can be pulled from the lysate with streptavidin and
subjected to mass spectrometry. White dashed lines indicate the border between nucleus and cytoplasm. Scale bar: 10 pm.
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A GFP BirA*-dCas9-eGFP
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Figure 2. Targeted biotinylation of telomeres, major and minor satellites. Representative confocal images of C2C12 cells, co-
transfected with CAG-BirA*-dCas9-eGFP and a plasmid encoding either telomere- (A, TelgRNA), minor satellite- (B, MiSgQRNA) or
major satellite-specific sgRNA (C, MaSgRNA). Nuclear enrichment of biotin at targeted sequences is only detectable after addi-
tion of exogenous biotin. White dashed lines indicate the border between nucleus and cytoplasm. Scale bar: 10 pm.
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endogenously biotinylated mitochondrial carboxylases
were found in all pulldowns including the negative
control (Supplementary Table S1). Besides proteins
predicted to associate with DNA, we also detected
numerous unexpected proteins in our dataset (Supple-
mentary Table S1) providing a basis for the identifica-
tion of new chromatin factors and their future
comprehensive characterization. For statistical analy-
sis in a two-sided Student’s T-test, only proteins pres-
ent in at least 3 out of 4 biological replicates were
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First, we targeted telomeric regions and observed
a strong enrichment of several proteins when com-
pared to pulldowns from control cells (Fig. 3A).
Most prominent among these significantly enriched
proteins were TERF2, TINF2 and ACD which are
components of the shelterin complex known to
directly bind telomeric DNA.'® We did not identify
additional shelterin components which could be
explained by sterical hindrances leading to an selec-
tive labeling of complex subunits. Altogether, these

included. data show that CasID is suitable to investigate the
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Figure 3. Chromatin composition of distinct genomic loci determined by mass spectrometry. Volcano plots of proteins enriched at telo-
meric regions (A), major satellites (B) and minor satellites (C), respectively. Black: significantly enriched/de-enriched proteins relative to
BirA*-dCas9-eGFP control cells without sgRNA. FDR = 0.01, SO = 0.1, n = 4. (See Table S1.) (D) Overlap between proteins identified at
major satellites by CasID and candidates from PICh analysis."” (E) Overlap between proteins significantly enriched at minor and major
satellite repeats. (F) Localization of ZNF512-eGFP at major satellite repeats in transiently transfected C2C12 cells. Blow-ups depict DAPI
and eGFP signal of boxed regions. Conventional confocal microscopy (upper panel) shows a homogeneous and strong association of
ZNF512 at heterochromatin and high-resolution microscopy (3D-SIM, lower panel) reveals a network-like structure. Scale bars: 10 um
(confocal) and 5 wm (3D-SIM). Scale bars in blow-ups: 2 um (confocal) and 1 pwm (3D-SIM).
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native protein environment at specific genomic loci
in mammalian cells.

Second, we investigated the local protein environ-
ment at major satellite repeats. Here, we find not only
known heterochromatic proteins such as MECP2,
SMCHD1 and HP1BP3 but also previously uncharac-
terized proteins like ZNF512 (Fig. 3B). We validated
the localization of ZNF512 by recombinantly express-
ing a GFP fusion (ZNF512-eGFP) which showed a
distinct signal at heterochromatic loci in C2C12 cells
(Fig. 3F). ZNF512 strongly associates with the major
satellites also during mitosis (Supplementary Fig. 2),
hinting at a structural or regulatory role for this pro-
tein throughout the cell cycle. One third of the pro-
teins significantly enriched at major satellite repeats
were also found in a data set obtained by PICh in
mouse embryonic stem cells'’ (Fig. 3D). Proteins
found in both studies as well as those exclusively
detected by CasID are categorized as DNA and RNA
binding proteins or repressors (Supplementary
Fig. 3A). In contrast to PICh, CasID requires BirA*-
dCas9 to be introduced in target cells, yet it can be
performed with considerably smaller sample sizes
(~4 x 107 vs. ~8 x 10° cells per sample'’) rendering
CaslID feasible and cost-effective. In total, fewer pro-
teins were considered significant with CasID, which
may be caused by a stringent statistical cutoff (FDR =
0.01) as well as the proximity-dependent nature of the
CasID strategy. Collectively, these results validate
CasID as a novel method to study local chromatin
composition.

Third, we explored proteins in close proximity to
minor satellite repeats and obtained both enriched
and de-enriched proteins (Fig. 3C). To our knowledge,
this is the first data set describing the protein environ-
ment of this genomic element. Among the signifi-
cantly enriched proteins 12 annotated repressors or
chromatin regulators and 25 DNA binding- or zinc
finger motif containing-proteins were identified (Sup-
plementary Fig. 3B). Furthermore, we find the known
centromere-associated  proteins CENPC'®  and
PCM1,"” which may reflect the close proximity of
minor satellite repeats and centromeric regions or
functions of these factors outside centromeres. Nota-
bly, the overlap between minor satellites and major
satellite-associated proteins comprises only 9 out of 96
proteins (Fig. 3E), suggesting a distinct protein land-
scape of these two heterochromatic regions.

In summary, with CasID we developed a simple
and robust workflow for in vivo labeling and system-
atic elucidation of locus specific chromatin composi-
tion that does not require prior cell fixation or protein
cross-linking. We validated CasID for repetitive
sequences where multiple Cas9 molecules are
recruited to one target site. This approach could be
extended to single copy loci by either using multiple
sgRNAs, larger sample sizes and/or adapted pulldown
conditions. In general, CasID experiments could be
further fine-tuned by varying concentration and dura-
tion of biotin pulses and the use of a smaller biotin
ligase (BioID2)** with various linker lengths. While
traditional ChIP techniques produce data on genome-
wide distribution of specific antigens, CasID allows to
study local chromatin composition including the iden-
tification of new factors. Therefore, ChIP and CasID
are complementary approaches that bring together
global and local views of dynamic and functional
chromatin complexes and thus help to reveal how
these complexes control structure and function of the
genome and how they change during development
and disease.

Material and methods
Cell culture and transfection

C2C12 cells* were cultured at 37°C and 5 % CO, in
Dulbecco’s modified Eagle’s medium (DMEM,
Sigma), supplemented with 20 % fetal bovine serum
(FBS, Biochrom), 2 mM L-glutamine (Sigma), 100 U/
ml penicillin and 100 pg/ml streptomycin (Sigma).
For the CasID assay the culture medium was addition-
ally supplemented with 50 ;M biotin (Sigma) one day
prior to analysis. For transfections, ~5 x 10’ cells
were seeded in a p35 plate one day prior of transfec-
tion and transfections were performed with Lip-
ofectamine® 3000 (Thermo Fisher Scientific)
according to the manufacturer’s instructions.

Plasmid generation

All plasmid and primer sequences can be found in
Supplementary Tables S2 and S3, respectively. To gen-
erate the BirA*-dCas9-eGFP construct, BirA* was
amplified from pcDNA3.1-mycBioID" (Addgene
plasmid #35700) with primers BirA*-F and BirA*-R.
The resulting PCR product was ligated into the Xbal
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site of pCAG-dCas9-eGFP'’ via Gibson Assembly
(New England Biolabs). To generate the pEX-A-U6-
sgRNA-PuroR plasmid, the PGK-PuroR cassette was
amplified from pPthc-Oct3/4°* and ligated into the
Sacl site of pEX-A-sgRNA'® via Gibson Assembly.
sgRNA protospacer sequences were introduced into
PEX-A-U6-sgRNA-PuroR by circular amplification as
described previously."” The Znf512-sequence was
amplified from wt E14 cDNA with gene specific pri-
mers and cloned between the AsiSI/Notl sites of
pCAG-eGFP*’ via Gibson Assembly. The H2B-mRFP
expression plasmid was described previously.**

Generation of stable cell lines

C2C12 cells were transfected with pCAG-BirA*-
dCas9-eGFP using Lipofectamine® 3000 according to
the manufacturer’s instructions. Twenty-four h after
transfection, the culture medium was supplemented
with 10 pg/ml blasticidin S (Thermo Fisher Scientific).
After two weeks of selection, eGFP-positive cells were sin-
gle-cell sorted with a FACS Aria II (Becton Dickinson). A
clonal cell line, stably expressing BirA*-dCas9-eGFP was
used as entry cell line for transfections with sgRNA plas-
mids. Twenty-four h after transfection, the medium was
supplemented with 2 pg/ml puromycin (Applichem).
Two weeks after the start of selection, puromycin
resistant cells were single-cell sorted. Individual clones
(C2C12BIrA-dCas9-eGFPIsgRNAY - yare checked for correct
BirA*-dCas9-eGFP localization by epifluorescence
microscopy.

Immunofluorescence staining and image acquisition

Immunofluorescence staining was performed as
described previously.” Briefly, C2C12 cells transfected
with pCAG-BirA*-dCas9-eGFP and the respective
sgRNA were grown on coverslips (thickness 1.5H,
170 um =+ 5 pm; Marienfeld Superior), washed with
phosphate buffered saline (PBS) 24 h after addition of
50 uM biotin and fixed with 3.7 % formaldehyde for
10 min. After permeabilization with 0.5 % Triton X-
100 in PBS, cells were transferred into blocking buffer
(0.02 % Tween, 2 % bovine serum albumin and 0.5 %
fish skin gelatin in PBS) and incubated for 1 h. Anti-
bodies were diluted in blocking buffer and cells were
incubated with antibodies in a dark, humidified cham-
ber for 1 h at room temperature (RT). Nuclei were
counterstained with DAPI (200 ng/ml in PBS, 1 pg/ml
in PBS for 3D-SIM). Coverslips were mounted with
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antifade medium (Vectashield, Vector Laboratories)
and sealed with nail polish. Immuno-fluorescence in
situ hybridization (FISH) detection of telomeres was
performed as described previously.'® Primary antibod-
ies used in this study were: anti-GFP (1:400, Roche),
anti-H3K9me3 (1:500, Active Motif), anti-CENP-B
(1:500, Abcam), Streptavidin conjugated to Alexa 594
(1:800, Dianova) and GFP-booster conjugated to Atto
488 (1:200, Chromotek). Secondary antibodies used in
this study were: anti-rabbit IgG conjugated to Alexa
594 (1:400, Thermo Fisher Scientific) and anti-mouse
IgG conjugated to Alexa 488 (1:300, Invitrogen).

Single optical sections or stacks of optical sections
were acquired with a Leica TCS SP5 confocal micro-
scope using a Plan Apo 63x/1.4 NA oil immersion
objective. Super-resolution images were acquired with
a DeltaVision OMX V3 3D-SIM microscope (Applied
Precision Imaging, GE Healthcare), equipped with a
100x/1.4 Plan Apo oil immersion objective and Cas-
cade II EMCCD cameras (Photometrics). Optical sec-
tions were acquired with a z-step size of 125 nm using
405 and 488 nm laser lines and SI raw data were
reconstructed using the SoftWorX 4.0 software
(Applied Precision). For long-term imaging experi-
ments, C2C12 cells were seeded on 8-well chamber
slides (ibidi) and transfected with ZNF512-eGFP and
H2B-mRFP. Images were obtained with an Ultra-
VIEW VoX spinning disc microscope (PerkinElmer),
equipped with a 63x/1.4 NA Plan-Apochromat oil
immersion objective and a heated environmental
chamber set to 37°C and 5 % CO,. Confocal z-stacks
of 12 um with a step size of 2 um were recorded every
30 min for ~20 h. Image processing and assembly of
the figures was performed with FIJI*° and Photoshop
CS5.1 (Adobe), respectively.

Denaturing pulldown of biotinylated proteins and
sample preparation for mass spectrometry

Four x 107 C2C12PirA-dCas9-eGFPIsgRNA colls jncubated
for 24 h with 50 uM biotin were processed as
described previously.””** In brief, cells were washed
once in buffer A (10 mM HEPES/KOH pH 7.9,
10 mM KCl, 1.5 mM MgCl,, 0.15 % NP-40, 1 x prote-
ase inhibitor (SERVA)), then lysed in buffer A and
homogenized using a pellet pestle. After centrifugation
(15 min, 3200 rcf, 4°C), the pellet was washed once
with PBS. Crude nuclei were resuspended in BioID
lysis buffer (0.2 % SDS, 50 mM Tris/HCl pH 7.4,
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500 mM NaCl, 1 mM DTT, 1x protease inhibitor), 0.2
% Triton-X100 was added and proteins were solubi-
lized via sonication (Diagenode Bioruptor®, 200 W,
15 min, 30 s “on,” 1 min “off”). Lysates were 2-fold
diluted with 50 mM Tris/HCl pH 7.4, centrifuged
(10 min, 16000 rcf, 4°C) and the supernatant was
incubated with 50 ul M-280 Streptavidin Dynabeads
(Life Technologies) overnight at 4°C with rotation. A
total of 5 washing steps were performed: once with
wash buffer 1 (2 % SDS), wash buffer 2 (0.1 % desoxy-
cholic acid, 1 % Triton X-100, 1 mM EDTA, 500 mM
NaCl, 50 mM HEPES/KOH pH 7.5), wash buffer 3
(0.5 % desoxycholic acid, 0.5 % NP-40, 1 mM EDTA,
500 mM NaCl, 10 mM Tris/HCl pH 7.4) and twice
with 50 mM Tris/HCl pH 7.4. Proteins bound to the
streptavidin beads were digested as previously
described.”” Beads were resuspended in digestion
buffer (2 M Urea in Tris/HCI pH 7.5), reduced with
10 mM DTT and subsequently alkylated with 50 mM
chloroacetamide. A total of 0.35 ug trypsin (Pierce,
Thermo Scientific) was used for overnight digestion at
RT. Desalting of peptides prior to LC-MS/MS analysis
was performed via StageTips.”’

LC-MS/MS analysis

Tandem mass spectrometry analysis was performed as
described previously.”” In brief, reconstituted peptides
(20 ] mobile phase A: 2% v/v acetonitrile, 0.1% v/v
formic acid) were analyzed using a EASY-nLC 1000
nano-HPLC system connected to a LTQ Orbitrap Elite
mass spectrometer (Thermo Fisher Scientific). For
peptide separation, a PepMap RSLC column (75 pum
ID, 150 mm length, C18 stationary phase with 2 um
particle size and 100 A pore size, Thermo Fisher Sci-
entific) was used, running a gradient from 5% to 35%
mobile phase B (98% v/v acetonitrile, 0.1% v/v formic
acid) at a flow rate of 300 nl/min. For data-dependent
acquisition, up to 10 precursors from a MS1 scan (res-
olution = 60,000) in the range of m/z 250-1800 were
selected for collision-induced dissociation (CID:
10 ms, 35% normalized collision energy, activation q
of 0.25).

Computational analysis

Raw data files were searched against the UniprotKB
mouse proteome database (Swissprot)’' using Max-
Quant (Version 1.5.2.8)** with the MaxLFQ label free
quantification algorithm.”® Additionally to common

contaminants specified in the MaxQuant “contami-
nants.fasta” file, a custom-made file containing
sequences of BirA*-dCas9 and fluorescence proteins
was included in the database search. Trypsin/P
derived peptides with a maximum of 3 missed clea-
vages and a protein false discovery rate of 1 % were set
as analysis parameters. Carbamidomethylation of cys-
teine residues was considered a fixed modification,
while oxidation of methionine, protein N-terminal
acetylation and biotinylation were defined as variable
modifications.

For evaluation of the identified protein groups, Per-
seus (Version 1.5.2.6) was used.>” The data set was fil-
tered for common contaminants classified by the
MaxQuant algorithm and only proteins quantified in
at least 3 out of 4 replicates per cell line were subjected
to statistical analysis. For minor satellite repeats, the
dataset was further filtered to exclude proteins only
detected in the control sample. Missing values were
replaced by a constant value of 17 for significance test-
ing with a two-sided Student’s T-test and a permuta-
tion based FDR calculation. Venn diagrams were
obtained using the Webtool of the University of Gent
(http://bioinformatics.psb.ugent.be/webtools/Venn/).

Abbreviations

BiolD proximity dependent biotin
identification

ChIP chromatin immuno precipitation

dCas9 enzymatically dead Cas9

eGFP enhanced green fluorescent protein

FDR false discovery rate

LC-MS/MS liquid chromatography coupled to tan-
dem mass spectrometry

Ma$S major satellite repeats

MiS minor satellite repeats

PICh Proteomic Isolation of Chromatin
fragments

sgRNA single guide RNA

Tel telomere
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Supplementary Figure 1 | Sub-cellular localization of BirA*-dCas9-eGFP. (A) Without a
sgRNA, BirA*-dCas9-eGFP shows a disperse localization throughout the cell and an enrichment
at nucleoli. Cells were incubated with 50 uM biotin (Bio) for 24 hours. (B-C) When co-expressed
with a sequence-specific sgRNA, BirA*-dCas9-eGFP is recruited to distinct loci. Correct
localization is confirmed by either immunofluorescence of H3K9me3 (B), CENP-B (C) or
fluorescence in situ hybridization with a telomere-specific probe (D). Scale bar: 10 ym. Scale
bar in blow-ups: 2 ym.
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Fig. S2

H2B-mRFP
ZNF512-eGFP

Supplementary Figure 2 | Sub-nuclear localization of ZNF512-eGFP during the cell cycle.

Time lapse imaging of C2C12 cells, transfected with H2B-mRFP and ZNF512-eGFP. Images
were acquired every 30 min. Scale bar: 5 um.
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Fig. S3
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Supplementary Figure 3 | Uniprot (Keyword) annotations of proteins. (A) major satellite
associated proteins. bold: proteins exclusively identified in CaslID (B) minor satellite associated
proteins.
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Table S1 | Proteins identified in CasID pulldowns. Significantly enriched proteins (Student’s
T-test, FDR = 0.01) are highlighted in color. Common BiolD contaminants are marked in grey.
Table_S1.xlsx
Table S2 | Plasmid sequences of constructs used in this study.
Table S2.docx

Table S3 | Sequences of oligonucleotides used in this study.

Primer Sequence 5'-3"
BirA*-F GGCGTGTGACCGGCGGCTatggaacaaaaactcatc
BirA*-R GAGTACTTCTTGTCCATTCCgctaccgctgccgctaccGCGGTTTAAACTTAAGC
PuroR-F catatgggtaccgagcttaCCGGGTAGGGGAGGCG
PuroR-R gcttgcggccgcgagectgt tCCGCCTCAGAAGCCATAG
MaSgRNA-F GGCAAGAAAACTGAAAATCAgttttagagctagaaatagcaag
MaSgRNA-R TGATTTTCAGTTTTCTTGCCcggtgtttcgtecctttccac
MiSgRNA-F ACACTGAAAAACACATTCGTgttttagagctagaaatagcaag
MiSgRNA-R ACGAATGTGTTTTTCAGTGTcggtgtttcgtcctttccac
TelgRNA-F TAGGGTTAGGGTTAGGGTTAgttttagagctagaaatagcaag
TelgRNA-R TAACCCTAACCCTAACCCTAcggtgtttcgteccttteccac
Znf512-F CGCCACCATGGgcgatATGTCTTCCAGACTCGGTG
Znf512-R GGAATTCGTTAACTgcCTACTTCCTCCCTCGTTTGTG
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ABSTRACT

Any profound comprehension of gene function re-
quires detailed information about the subcellu-
lar localization, molecular interactions and spatio-
temporal dynamics of gene products. We developed
a multifunctional integrase (MIN) tag for rapid and
versatile genome engineering that serves not only
as a genetic entry site for the Bxb1 integrase but
also as a novel epitope tag for standardized detection
and precipitation. For the systematic study of epi-
genetic factors, including Dnmt1, Dnmt3a, Dnmt3b,
Tet1, Tet2, Tet3 and Uhrf1, we generated MIN-tagged
embryonic stem cell lines and created a toolbox of
prefabricated modules that can be integrated via
Bxb1-mediated recombination. We used these func-
tional modules to study protein interactions and their
spatio-temporal dynamics as well as gene expres-
sion and specific mutations during cellular differenti-
ation and in response to external stimuli. Our genome
engineering strategy provides a versatile open plat-
form for efficient generation of multiple isogenic cell
lines to study gene function under physiological con-
ditions.

INTRODUCTION

In the last decades targeted gene disruption has been a
widely used approach to gain first insights into gene func-
tion. However, gene disruption studies are often hampered
by high functional redundancy in mammalian systems and
yield little information about the subcellular localization,

interactions and spatio-temporal dynamics of gene prod-
ucts. In order to gain comprehensive understanding of
gene function these studies need to be complemented by
more complex genetic manipulations such as fluorophore
knockin, specific domain deletions or introduction of point
mutations. Additionally, a systematic analysis of gene func-
tion requires application of biochemical as well as imag-
ing techniques, which usually rely on the generation of
gene specific antibodies, a technically demanding and time-
consuming process.

Recently, RNA guided endonucleases (RGENs) derived
from the prokaryotic Type II CRISPR/Cas (clustered
regularly interspaced short palindromic repeats/CRISPR-
associated) system have emerged as promising tools for the
manipulation and modification of genetic sequences (1-4).

The specificity of RGENSs is mediated by small guide
RNAs (gRNAs) that bind to 20 bp within the target se-
quence and recruit the Cas9 nuclease to introduce a dou-
ble strand break. Although this two-component system
has greatly facilitated the generation of gene disruptions in
bacteria, plants and mammals, concerns have been raised
about considerable off-target effects (5-7). Furthermore,
the low frequency of homologous recombination in mam-
mals makes insertion of exogenous components such as flu-
orophore tags difficult and time-consuming.

In addition to RGENSs, phage-derived serine integrases
have received considerable attention as novel tools for
genome engineering. Recently, Bxb1 was shown to have the
highest accuracy and efficiency in a screen of fifteen candi-
date serine integrases tested in mammalian cells (8). Serine
integrases are unidirectional, site-specific recombinases that
promote the conservative recombination between phage at-
tachment sites (a¢tP) and bacterial attachment sites (attB)
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(9) with much higher recombination efficiencies (up to 80%)
than the commonly used bidirectional tyrosine integrases,
Cre or Flp (9-12).

In this study, we aim to combine the advantages of both
RGENS and unidirectional integrases into one fast, widely
applicable and flexible method. We developed a novel strat-
egy for genome engineering based on a CRISPR/Cas as-
sisted in-frame insertion of an attP site, which we refer to
as the multifunctional integrase (MIN) tag. At the genetic
level, the MIN-tag serves as an attachment site for the serine
integrase Bxb1 that can be used to introduce a broad range
of prefabricated functional cassettes into the genomic locus
with high specificity and efficiency. At the protein level, the
MIN-tag functions as a novel epitope tag that can be de-
tected with a highly specific monoclonal antibody and used
for immunoprecipitation as well as immunofluorescence ex-
periments. To demonstrate the versatility of the strategy, we
generated MIN-tagged murine embryonic stem cell (mESC)
lines for a variety of major epigenetic factors, including
Dnmtl, Dnmt3a, Dnmt3b, Tetl, Tet2, Tet3 and Uhrfl. We
created a toolbox of vectors for Bxbl-mediated recombina-
tion to generate isogenic cell lines harboring knockout cas-
settes, fluorescent protein fusions, enzymatic tags and spe-
cific mutations; all derived from a single entry cell line en-
suring maximal biological comparability. We demonstrate
the power of this strategy using proximity-dependent pro-
tein labeling to identify novel interactors of TET1 in mESCs
as well as to systematically study the subcellular localiza-
tion, binding kinetics and protein expression dynamics of
the de novo methyltransferase DNMT3B during epiblast
differentiation.

MATERIALS AND METHODS
Western blotting and immunoprecipitation

Western blot analysis was performed using the follow-
ing primary antibodies: anti-DNMTI, anti-DNMT3a (Im-
genex, 64B1446); anti-DNMT3b (Abcam, 52A1018); anti-
UHRF1 (13); anti-TET1, anti-TET2 and anti-TET3 (14);
anti-GFP antibody (Roche, 11814460001); anti-B-Actin
(Sigma, A5441); anti-SNF2H (Abcam, ab22012). Blots
were probed with anti-rat (Jackson ImmunoResearch,
112-035-068), anti-mouse (Sigma, A9044) and anti-rabbit
(Biorad, 170-6515) secondary antibodies conjugated to
horseradish peroxidase (HRP) and visualized using an ECL
detection kit (Pierce). An anti-mouse antibody conjugated
to Alexa 488 (Life Technologies, A21202) was used for fluo-
rescence detection of western blots using the Typhoon 9400
(GE Healthcare) imaging system.

For immunoprecipitation, ~1 x 10° Dnmt]@P/atP,
Dnmt3b“"P/aP or wt cells were harvested in ice cold phos-
phate buffered saline (PBS), washed twice and subsequently
homogenized in 200 pl lysis buffer (20 mM Tris/HCl pH
7.5, 150 mM NaCl, 0.5 mM EDTA, 1 mM PMSEF, 0.5%
NP40). After centrifugation (10 min, 14 000 g, 4°C) the
supernatant was adjusted with dilution buffer (20 mM
Tris/HCI pH 7.5, 150 mM NacCl, 0.5 mM EDTA, 1 mM
PMSF) to a final volume of 300 wl. A total of 50 ul were
mixed with sodium dodecyl sulphate (SDS)-containing
sample buffer (referred to as input (I)). For pull-downs,
100 pl (4 pg) of either SA10 DNMTI antibody (15) or
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the newly generated MIN-tag antibody 1E1 was added to
the cell lysates and incubated 2 h at 4°C. For pull-down
of immunocomplexes, 40 pl of protein G agarose beads
(GE Healthcare, Freiburg, Germany) equilibrated in dilu-
tion buffer were added and incubation continued for 2 h.
After centrifugation (2 min, 5000 x g, 4°C) 50 wl of the su-
pernatant was collected (referred to as flow-through (FT))
while the remaining supernatant was removed. The beads
were washed twice with 1 ml dilution buffer containing 300
mM NaCl. After the last washing step, the beads were re-
suspended in 50 pl Laemmli buffer and boiled for 10 min
at 95°C. For immunoblot analysis, 3% of the input and
the flow-through as well as 30% of the bound (B) frac-
tion were separated on a 10% sodium dodecyl sulphate-
polyacrylamide gel electrophoresis (SDS-PAGE) and sub-
jected to western blot analysis.

Immunofluorescence staining and microscopy

Immunostaining was performed as described previously
(16). Briefly, cells cultured on coverslips were fixed with
4% paraformaldehyde for 10 min, washed with PBST (PBS,
0.02% Tween20) and permeabilized with PBS supplemented
with 0.5% Triton X-100. Both primary and secondary an-
tibody were diluted in blocking solution (PBST, 2% BSA,
0.5% fish skin gelatin). Coverslips with cells were incubated
with primary and secondary antibody solutions in dark hu-
mid chambers for 1 h at RT; washings after primary and
secondary antibodies were done with PBST. Following sec-
ondary antibody incubations, cells were post-fixed with 4%
paraformaldehyde for 10 min. For DNA counterstaining,
coverslips were incubated in a solution of DAPI (2 wg/ml)
in PBS. Coverslips were mounted in antifade medium (Vec-
tashield, Vector Laboratories) and sealed with colorless nail
polish.

For immunolabeling, the following primary anti-
bodies were used: anti-DNMT1 (15); anti-DNMT3A
(Imgenex, 64B1446); anti-DNMT3B (Abcam, 52A1018);
anti-UHRF1 (13); anti-TET1, anti-TET2 (14); GFP-
Booster ATTO488 (Chromotek). The secondary antibod-
ies were anti-rabbit conjugated to DyLight fluorophore 594
(Jackson ImmunoResearch, 711-505-152), anti-mouse con-
jugated to Alexa 488 (Life Technologies, A21202), anti-rat
conjugated to Alexa 488 (Life Technologies, A21208) or
Alexa 594 (Life Technologies, A21209).

Single optical sections or stacks of optical sections were
collected using a Leica TCS SP5 confocal microscope
equipped with Plan Apo 63x/1.4 NA oil immersion objec-
tive and lasers with excitation lines 405, 488, 561 and 633
nm.

Live cell imaging experiments were performed on an
UltraVIEW VoX spinning disc microscope assembled to
an Axio Observer D1 inverted stand (Zeiss) and using a
63x /1.4 NA Plan-Apochromat oil immersion objective.
The microscope was equipped with a heated environmen-
tal chamber set to 37°C and 5% CO,. Fluorophores were
excited with 488 nm or 561 nm solid-state diode laser lines.
Confocal image series were typically recorded with 14-bit
image depth, a frame size of 1024 x 1024 pixels and a pixel
size of 110 nm. z-stacks of 12 wm with a step size of 1 um
were recorded every 30 min for about 24 h or for the live
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cell series of Dnmit3b“P/*P eyery hour for 60 h. To avoid
photodamage of the cells, the AOTF of the laser was set to
low transmission values of 6-10%. Binning was set to 2x.

Super-resolution microscopy

Super-resolution images were obtained with a DeltaVision
OMX V3 3D-SIM microscope (Applied Precision Imaging,
GE Healthcare), equipped with a 60x/1.42 NA PlanApo
oil objective and sCMOS cameras (Olympus). A z-step
size of 125 nm was used during acquisition. SI raw data
were reconstructed and deconvolved with the SoftWorX 4.0
software package (Applied Precision). FIJI and Photoshop
CS5.1 (Adobe) were used for image processing and assem-
bly.

Antigen preparation, immunization, generation of hybrido-
mas and ELISA screening

For the translated attP peptide, the MIN antigen (attP
peptide) was designed with the following sequence
SGQPPRSQWCTVQT-Cys. Peptides were synthesized,
HPLC purified and coupled to OVA (Peps4LifeSciences-
Anette Jacob; Heidelberg). Lou/c rats were immunized
subcutaneously and intraperitoneally with a mixture of
50 wg peptide-OVA, 5 nmol CPG oligonucleotide (Tib
Molbiol, Berlin), 500 wl PBS and 500 pl incomplete
Freund’s adjuvant. A boost without adjuvant was given
6 weeks after primary injection. Fusion of the myeloma
cell line P3 x 63-Ag8.653 with the rat immune spleen
cells was performed using polyethylene glycol 1500 (PEG
1500, Roche, Mannheim, Germany). After fusion, the
cells were plated in 96 well plates using RPMI11640 with
20% fetal calf serum, penicillin/streptomycin, pyruvate,
non-essential amino acids (Gibco) supplemented by
hypoxanthine-aminopterin-thymidine, (HAT) (Sigma, St
Louis, MO, USA). Hybridoma supernatants were tested
in a solid-phase immunoassay. Microliter plates were
coated with avidin (3 pg/ml, Sigma) over night. After
blocking with 2% FCS in PBS, plates were incubated with
biotinylated MIN peptide at a concentration of 0.2 pg/ml
in blocking buffer. After washing the plates, the hybridoma
supernatants were added. Bound rat mAbs were detected
with a cocktail of HRP-labeled mouse mAbs against the
rat IgG heavy chains, thus avoiding IgM mAbs (a-IgGl,
a-IgG2a, a-IgG2b (ATCC, Manassas, VA, USA), a-IgG2c
(Ascenion, Munich, Germany). HRP substrate conversion
was visualized with ready to use TMB (1-Step™ Ultra
TMB-ELISA, Thermo). MIN-tag clone 1E1 (rat IgGl)
was stably subcloned and further characterized.

A set of 25 rat derived hybridoma supernatants were
tested for specificity against an integrated attP peptide in
the Dnmtl locus using both western blot analysis and high
content microscopy. Western blots were prepared as men-
tioned previously. Each supernatant was used in a 1:10 dilu-
tion. Blots were probed with an anti-rat secondary antibody
conjugated to HRP.

Cells were prepared for immunofluorescence as described
above, with the exception that cells were fixed on a 96-well
Cell Carrier® plate (Greiner). Cells in individual wells were
incubated with the various hybridoma supernatants (1:100)
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for 1 h. As a secondary antibody, anti-rat conjugated to
Alexa 488 (Life Technologies, A21208) was used. Nuclei
were counterstained using DAPI. Images of stained cells
were acquired automatically with an Operetta high-content
imaging system using a 40x air objective (PerkinElmer).
DAPI and ATTO488 coupled antibodies were excited and
their emissions recorded using standard filter sets. Exposure
times were 10 and 400 ms for DAPI and ATTO488, respec-
tively. All monoclonal antibodies described in this study are
available upon request.

The MIN antibody are available via http://human.bio.
Imu.de/_webtools/MINtool/AB_info.html.

DNA methylation analysis

For the analysis of DNA methylation levels, genomic DNA
was isolated using the QIAamp DNA Mini Kit (QIAGEN).
Bisulfite treatment was performed using the EZ DNA
Methylation-Gold™ Kit (Zymo Research Corporation)
according to the manufacturer’s protocol. Subsequently,
the major satellite repeats sequence was amplified using
the primers described in (17). The biotinylated polymerase
chain reaction (PCR) products of the second PCR were an-
alyzed by pyrosequencing (Varionostic GmbH, Ulm, Ger-
many).

Targeting donor and plasmid construction

Plasmid sequences can be found in Supplementary Table
S6. Targeting donor constructs were either synthesized as
ssDNA oligonucleotides (Integrated DNA Technologies)
or produced by amplifying 300 to 200 bp long homology
arms with the respective external and internal primer sets
(Supplementary Table S2). These PCR products of the
5" and 3’ homology arms were pooled and an overlap
extension PCR with the external primers was performed
to yield the final targeting fragments. The gRNA vector
was synthesized at Eurofins MWG Operon based on
the sequences described (3). The subcloning of targeting
sequences was performed by circular amplification. The
surrogate reporter (pSR) was generated by inserting in vitro
annealed DNA oligos via AsiSI and Nrul into pPCAG-mCh
(18). eGFP was amplified using the primers eGFP-F and
eGFP-R and sequentially cloned into pCAG-mCh-Nrul
linker to generate the pSR construct. Reporters were
generated by subcloning in vitro annealed DNA oligos
containing CRISPR target sites into Kpnl and Nhel
digested pSR. The attB-GFP-knockin construct was
generated from R6K-NFLAP (19) by ligation free cloning
(20) rearranging the backbone sequences into the artificial
intron and introducing the attB site 5 of the GFP open
reading frame (ORF), removing its start codon. The
attB-GFP-Poly(A) and attB-mCh-Poly(A) constructs were
created by amplifying the GFP ORF including the stop
codon and SV40 Poly(A) signal from pCAG-eGFP-IB and
inserted into the attB-LAP-tag backbone by ligation free
cloning. The attB-mCh-Poly(A)-mPGK-PuroR construct
was generated by subcloning the mPGK-PuroR sequence
from pPthc-Oct3/4 (21) and ligating it into the EcoRV
site of the attB-mCh-Poly(A) construct. The attB-GFP-
Poly(A)-mPGK-NeoR was produced by first exchanging
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the PuroR in pPthc-Oct3/4 with NeoR from pEGFP-C1
(22) using HindIII. The combined mPGK-NeoR was
then subcloned into the attB-GFP-Poly(A) vector via the
same EcoRV site mentioned previously. The attB-GFP-
DnmtlcDNA-Poly(A), attB-GFP-Tet1cDNA-Poly(A)
and attB-GFP-Dnmt3blcDNA-Poly(A) constructs were
generated by inserting the appropriate ¢cDNAs from
constructs reported previously (17,23-24) via AsiSI/Notl
sites into the attB-GFP-Poly(A) and attB-mCh-Poly(A)
vectors respectively. The attB-GFP-Dnmt3b6-Poly(A),
attB-GFP-Tet1-d1-1363-Poly(A), attB-GFP-Tet1-d833—
1053-Poly(A), attB-GFP-Tetl1-d833-1363-Poly(A) vectors
were produced via circular amplification with overlap
extension primers using the above mentioned attB-GFP-
Dnmtl/Dnmt3bl/TetlcDNA-Poly(A)  constructs  as
templates.

The attB-GFP-Dnmt3b6-Poly(A)-mPGK-NeoR and
attB-mCh-Dnmt3b1-Poly(A)-mPGK-PuroR integration
constructs were created by inserting the Dnmt3b6 and
Dnmt3bl sequences (from attB-GFP-Dnmt3b6-Poly(A)
and attB-GFP-Dnmt3b1-Poly(A)) using AsiSI/Notl sites
into attB-GFP-Poly(A)-mPGK-NeoR and attB-mCh-
Poly(A)-mPGK-PuroR vectors, respectively.

All constructs described in this study are available via Ad-
dgene or via http://human.bio.Imu.de/_webtools/MINtool/.

Cell culture

J1 ESCs were maintained on gelatin-coated dishes in
Dulbecco’s modified Eagle’s medium supplemented with
16% fetal bovine serum (FBS, Biochrom), 0.1 mM 8-
mercaptoethanol (Invitrogen), 2 mM L-glutamine, 1x
MEM Non-essential amino acids, 100 U/ml penicillin,
100 pg/ml streptomycin (PAA Laboratories GmbH), 1000
U/ml recombinant mouse LIF (Millipore) and 2i (1
M PD032591 and 3 wM CHIR99021 (Axon Medchem,
Netherlands), referred to as ESC medium. Differentiation
of naive pluripotent stem cells to epiblast-like cells was
performed according to the protocol of (25). Briefly, J1
ESCs were maintained in the ground state in Geltrex (Life
Technologies) coated flasks and cultured in N2B27 (50%
neurobasal medium (Life Technologies), 50% DMEM/F12
(Life Technologies), 2 mM L-glutamine (Life Technolo-
gies), 0.1 mM B-mercaptoethanol, N2 supplement (Life
Technologies), B27 serum-free supplement (Life Technolo-
gies) containing 2i and 1000 U/ml LIF 100 U/ml Penicillin-
streptomycin) for at least three passages before differentia-
tion. To differentiate naive ESCs into epiblast-like cells, cells
were replated in N2B27 differentiation medium containing
10 ng/ml Fgf2 (R&D), 20 ng/ml Activin A (R6D) and 0.1 x
Knockout Serum Replacement (KSR)(Life Technologies).
Time point 0 h in differentiation time-course experiments
corresponds to the time N2B27 differentiation medium was
added to cells.

Generation of MIN-tagged and Bxb1-mediated knockin cell
lines

To produce MIN-tagged cell lines, 5 x 103 cells were disso-
ciated and seeded in 0.2% gelatin (Sigma-Aldrich) coated
p35 plates. After 3 h, cells were transfected with 2 pg of
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the MIN-tag donor/homology ssDNA oligo or PCR prod-
uct, 0.5 pg gRNA construct, 0.5 g surrogate reporter
construct and 1 g Cas9 using Lipofectamine 3000 (In-
vitrogen) according to the manufacturer’s instructions. For
Bxbl-mediated recombination of attB constructs, 5 x 10°
cells were transfected with 1 g pCAG-NLS-HA-Bxbl ex-
pression plasmid ((26) addgene 51271), 1 wg of the respec-
tive attB construct and 0.5 wg Bxbl surrogate reporter.
For both MIN-Tagging and Bxbl-mediated recombina-
tion, cells were dissociated, resuspended in ESC medium
48 h post transfection and then analyzed and sorted with
a FACS Aria II (Becton Dickinson). For MIN-tagging, en-
richment of cells with RGEN activity was accomplished
by single-cell sorting GFP and mCherry positive cells into
96-well plates (Falcon) containing 150 pl of ESC medium.
For Bxbl-mediated recombination, cells with Bxbl1 activity
were enriched for by single-cell sorting GFP positive cells
into 96-well plates. Alternatively for Bxbl-mediated inte-
gration using antibiotic selection, cells were replated into
p150 plates with ESC medium containing G418 (0.5 mg/ml,
AppliChem) and puromycin (1 pg/ml, AppliChem) 48 h
post transfection.

Identification of MIN-tagged and Bxbl-mediated knockin
cell lines with restriction fragment analysis and PCR screen-
ing

After ~7 days (until colonies were readily visible), plates
from single-cell sortings were screened for colony growth.
Surviving colonies were dissociated and individually re-
plated onto two 96-well plates. Genomic DNA was isolated
from one plate after 2-3 days, while the second plate re-
mained in culture. To identify MIN-tagged clones, the re-
gion surrounding the ATG (or stop codon in the case of
C-terminal tagging) was PCR amplified using the appro-
priate external and screening primers (Supplementary Ta-
ble S2). For restriction fragment analysis, 10 wl of these
PCR products were digested with either Hincll or Sacll
and then analyzed on 1.5% agarose gels. PCRs of positive
clones were confirmed by Sanger sequencing. To screen for
Bxbl-mediated recombiation, we employed a three-primer
PCR strategy using the respective external primers flank-
ing the MIN-tagged locus and an attL-specific primer (Sup-
plementary Figure S3A, Table S2). For Bxbl-mediated in-
tegrations using antibiotic selection, mESC colonies were
picked, dissociated using trypsin and plated into individual
wells on 96-well plates ~7 days after starting antibiotic se-
lection. Genomic DNA isolation and screening PCRs were
performed as described above. Clones harboring the desired
MIN-tag insertion or Bxbl-mediated integration were ex-
panded, frozen and stored in liquid nitrogen.

All cell lines are available at http://human.bio.Imu.de/
_webtools/MINtool/cell_lines.html.

Genomic DNA isolation for PCR

Cells were lysed in multi-well plates by the addition of 50 1
lysis buffer (10mM Tris/HCl pH 7.4, 10mM EDTA, 10mM
NaCl, 50pg/ml Proteinase K, 1.7 wM SDS) per well. The
Plates were subsequently incubated at —80°C for 15 min,
followed by 3 h at 56°C. Heat inactivation of Proteinase K
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was performed by incubation at 85°C for 20 min. The re-
sulting crude DNA lysates were directly subjected to PCR.

BiolD

BioID experiments were performed after (27) using ex-
tracted crude nuclei (adapted from (28)) as input material.
In brief, cells were cultured for 48 h with or without ad-
dition of 50 wM biotin. Cell pellets (~4 x107 cells) were
washed once in buffer A (10 mM HEPES/KOH pH 7.9, 10
mM KCl, 1.5 mM MgCl,) and resuspended in buffer A con-
taining 0.15% NP-40 and 1x protease inhibitor (SERVA).
Samples were homogenized using a pellet pestle. After cen-
trifugation, crude nuclei pellets were washed once with PBS.
Crude nuclei were resuspended in BioID-lysis buffer (0.2%
SDS, 50 mM Tris/HCI pH 7.4, 500 mM NaCl, 1 mM
DTT, 1 x protease inhibitor), supplemented with 2% Triton
X-100 and subjected to sonication twice using a Branson
Sonifier 450 (15% amplitude, 0.3 s pulse, 0.6 s pause, total
time 30 s). Samples were diluted 1:1 with 50 mM Tris/HCl
pH 7.4 after the first sonication step. Pulldown of biotiny-
lated proteins was performed overnight at 4°C with rotation
using M-280 Streptavidin Dynabeads (Life Technologies)
for subsequent mass spectrometry or Streptactin-Superflow
agarose beads (IBA) for SDS-PAGE analysis, respectively.
Beads were washed with wash buffer 1 (2% SDS), wash
buffer 2 (0.1% desoxycholic acid, 1% Triton X-100, 1 mM
EDTA, 500 mM NacCl, 50 mM HEPES/KOH pH 7.5) and
wash buffer 3 (0.5% desoxycholic acid, 0.5% NP-40, | mM
EDTA, 500 mM NacCl, 10 mM Tris/HCI pH 7.4) followed
by two washing steps with 50 mM Tris/HCIl pH 7.4. For
SDS-PAGE analysis, proteins were silverstained after (29).

Digest of proteins and sample preparation for LC-MS/MS

On-beads digest of proteins was performed as described in
(28). All steps were carried out at room temperature. Beads
were resuspended in 2 M Urea in Tris/HCIl pH 7.5, reduced
with 10 mM DTT for 20 min and subsequently alkylated
with 50 mM chloroacetamide for 20 min. A total of 0.25 pg
Pierce Trypsin Protease (Thermo Scientific) was added for 2
h. Beads were collected by centrifugation and the resulting
peptide supernatant was further incubated overnight with
addition of 0.1 wg trypsin. Peptides were desalted using
StageTips (30).

LC-MS/MS and data analysis

Peptides were reconstituted in 20 wl mobile phase A (2% v/v
acetonitrile, 0.1% v/v formic acid) and analyzed by tandem
mass spectrometry using a EASY-nLC 1000 nano-HPLC
system connected to a LTQ Orbitrap Elite mass spectrom-
eter (Thermo Fisher Scientific). About 2-4 ul of the pep-
tide mixture were separated onto a PepMap RSLC column
(75 pm ID, 150 mm length, C18 stationary phase with 2
wm particle size and 100 A pore size, Thermo Fisher Sci-
entific) and introduced into the mass spectrometer at a flow
rate of 300 nl/min running a gradient from 5 to 35% mo-
bile phase B (98% v/v acetonitrile, 0.1% v/v formic acid).
Ion source and transmission parameters of the mass spec-
trometer were set to spray voltage = 2 kV, capillary tem-
perature = 275°C. The mass spectrometer was operated in
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data-dependent mode, selecting up to 10 precursors from a
MSI1 scan (resolution = 60 000) in the range of m/z 250-
1800 for collision-induced dissociation (CID). Singly (+1)
charged precursor ions and precursors of unknown charge
states were rejected. CID was performed for 10 ms using
35% normalized collision energy and the activation q of
0.25. Dynamic exclusion was activated with a repeat count
of one, exclusion duration of 30 s, list size of 500 and the
mass window of =10 ppm. Ion target values were 1 000 000
(or maximum 10 ms fill time) for full scans and 10 000 (or
maximum 100 ms fill time) for MS/MS scans, respectively.
Raw data were analyzed using MaxQuant Version 1.5.2.8
(31) using the MaxLFQ label free quantification algorithm
(32) and the match-between-runs functionality. UniprotKB
MOUSE.fasta was used as a reference database (33). A
maximum of two missed cleavages and a false discovery rate
of 1% were set as parameters. Oxidation of methionine and
biotinylation were searched as variable modifications and
carbamidomethylation of cysteine residues as fixed modifi-
cation. For statistical analysis, the Perseus software version
1.5.1.6 was used (31). Significance was tested using a two
sided Student’s #-test and a permutation based FDR cal-
culation. GO enrichment analysis was performed with the
Gene Ontology enRIchment anaLysis and visuaLiz Ation tool
(GOrilla, (34)). A P-value < 0.01 was considered signifi-
cant.

FRAP

Live cell imaging and FRAP experiments were typically
performed on an UltraVIEW VoX spinning disc mi-
croscope with integrated FRAP PhotoKinesis accessory
(PerkinElmer) assembled to an Axio Observer D1 inverted
stand (Zeiss) and using a 63 x /1.4 NA Plan-Apochromat oil
immersion objective. The microscope was equipped with a
heated environmental chamber set to 37°C. Fluorophores
were excited with 488 nm (exposure time: 400 ms, laser
power: 15%) or 561 nm (exposure time: 450 ms, laser power:
30%) solid-state diode laser lines. Confocal image series
were typically recorded with 14-bit image depth, a frame
size of 256 x 256 pixels and a pixel size of 110 nm. For pho-
tobleaching experiments, the bleach regions, typically with
a diameter of 2 wm, were manually chosen to cover the chro-
mocenters. Photobleaching was performed using one itera-
tion with the acousto-optical tunable filter (AOTF) of the
488 nm laser line set to 100% transmission. Typically, 10
pre-bleach images were acquired at a rate of 1 s per time-
point and 60 post-bleach frames were recorded at a rate
of 10 s per timepoint. Data correction, normalization and
quantitative evaluations were performed by automated pro-
cessing with ImagelJ (http://rsb.info.nih.gov/ij/) using a set
of newly developed macros followed by calculations in Ex-
cel.

RESULTS

A fast and efficient strategy to generate MIN-tagged genomic
loci

Our novel genome engineering strategy relies on the
CRISPR /Cas-assisted insertion of the MIN-tag sequence
into the open reading frame of a target gene either directly
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downstream of the start codon or upstream of the stop
codon (Figure 1A and Supplementary Figure S2H). Nei-
ther regulatory regions nor gene structure are altered, lead-
ing to preservation of the endogenous expression pattern
and post-transcriptional processing of the gene of interest.

Since epigenetic processes undergo dramatic changes
during early embryonic development and are tightly regu-
lated, we tested the efficacy and versatility of our method
by targeting the DNA modifying enzymes Dnmtl, Dnmt3a,
Dnmt3b, Tetl, Tet2 and Tet3 as well as the chromatin bind-
ing protein Uhrfl in mESCs (Figure 1D). We generated
targeting donors containing the 48 bp MIN-tag sequence
flanked by short homology arms (200-300 bp for PCR-
based donors or 76 bp for single stranded DNA oligos).
We next designed specific gRNAs to target sequences lo-
cated either in close proximity to or overlapping the start
or stop codon of the respective genes. As scarless inte-
gration of the MIN-tag requires a resistance free selec-
tion strategy we used a surrogate reporter assay to enrich
for cells that express an active Cas9:gRNA complex by
fluorescence-activated cell sorting (FACS) (Figure 1B and
C). In this reporter assay, the target sequence is inserted be-
tween the ORF of mCherry (mCh) and GFP thereby dis-
rupting the reading frame of the fusion. GFP is expressed
only when the target sequence is cleaved by a specific and ac-
tive Cas9:gRNA complex, which causes small, frameshift-
ing insertions or deletions by non-homologous end joining
(NHEJ) restoring the reading frame of the fluorescent pro-
tein (35). For each targeting, we co-transfected mESCs with
a mixture of surrogate reporter construct, gRNA vector,
Cas9 expression plasmid and the specific targeting MIN-
tag donor fragment. After single cell sorting of GFP posi-
tive cells and expansion of the resulting colonies, we isolated
genomic DNA by a fast and simplified in-well lysis proto-
col to screen for positive clones by PCR and analytical re-
striction digest. This allows the identification of hetero- and
homozygous insertions already at this stage (Supplemen-
tary Figure S1D). Combined, all targeting yielded positive
clones with an average efficiency of 3% for homozygous and
1% for heterozygous insertions (Supplementary Table S1).
All targeted genes were expressed normally and subcellular
localization as well as enzymatic activity was not disrupted
in comparison to wild-type (wt) cells (Supplementary Fig-
ures S1 and S2). In addition, the possibility of C-terminal
tagging (see Uhrf1 (C); Figure 1D and Supplementary Fig-
ure S2H) allows the MIN-tag to be used in cases where N-
terminal targeting disturbs protein function.

Taken together, these results demonstrate that the MIN-
tag can efficiently be integrated at precise genomic locations
using a CRISPR /Cas assisted, fluorescence based selection
strategy.

Generation of a highly specific monoclonal antibody recog-
nizing the MIN epitope

Insertion of the MIN-tag into the ORF of target genes
leads to expression of a small peptide that does not occur
in the mammalian proteome (Figure 2A). This unique fea-
ture allowed us to generate a highly specific monoclonal an-
tibody against MIN-tagged proteins. Immunofluorescence
(IF) stainings of a mixed Dnmt1*P/'P and wt culture dis-
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tinguished single MIN-tagged cells and colonies from wt
cells, demonstrating the high specificity of the anti-MIN an-
tibody (Figure 2B). Pull-down experiments in Dnmt]4F/atP
cell extracts showed a quantitative enrichment of DNMT1
in the bound fraction (Figure 2C). Furthermore, pull-down
of DNMT3B using the anti-MIN antibody efficiently co-
precipitated SNF2H, a known interactor of DNMT3B, in
protein extracts of Dnmt3b“'*/4"P cells, but not in wt con-
trol extracts (Figure 2D) (36).

Collectively, these data show that the MIN-tag can be uti-
lized as a universal epitope tag for IF and immunoprecip-
itation (IP), thus allowing the investigation of localization
and molecular interactions of MIN-tagged proteins.

Functionalization of MIN-tagged genes by Bxbl-mediated
recombination

To demonstrate the versatility of the MIN-tag as a Bxbl
integration site, we constructed a toolbox of functional
cassettes, which we recombined into the MIN-tagged lo-
cus of the maintenance DNA methyltransferase Dnmtl
(Dnmt 1P/ First, we generated a knockout vector car-
rying the artB site directly in front of the ORF of GFP
followed by a stop codon and a polyadenylation signal
(attB-GFP-Poly(A), Figure 3A) that we transfected to-
gether with a codon-optimized Bxbl expression construct
in the Dnmt14"P/4F cell line. Successful recombination
events were identified by GFP expression and single cells
sorted by FACS (Figure 3B). We designed a multiplex PCR
strategy that takes advantage of the unique at¢L site gener-
ated by successful recombination to facilitate identification
of positive clones and their zygosity (Figure 3D and Supple-
mentary Figure S3A). PCR screening of sorted clones re-
vealed that the attB-GFP-Poly(A) construct had been suc-
cessfully integrated into both alleles in 13 (56.5%) clones
(Supplementary Table S3). Of those, we examined three
clonal cell lines all of which exhibited no residual expres-
sion of DNMT1 by western blot analysis and IF (Figure
3F; Supplementary Figure S3B and C). For functional char-
acterization, we analyzed DNA methylation levels at major
satellite repeats, one of the main substrates for DNA methy-
lation activity of DNMT1 during replication (37,38). Due
to the loss of the maintenance DNA methyltransferase in
the Dnmt1%9/K0 clones, a severe hypomethylation was ob-
served at this sequence (Figure 3E). Taken together, our
attB-GFP-Poly(A) vector proved to be a valuable tool to
generate genetically-defined gene knockouts in MIN-tagged
cell lines.

Second, we designed a GFP knockin construct that can
be used to generate in-frame GFP fusions of MIN-tagged
genes. To avoid disruption of the gene locus and preserve the
endogenous splicing sites, we placed the bacterial backbone
sequences into an artificial intron splitting the GFP ORF
into two exons (19) (Figure 3A). After recombination and
FACS sorting for GFP expressing cells, the GFP knockin
construct integrated in both alleles of the Dnmt/ locus in 13
clones (41.9%), without altering physiological DNMT1 ex-
pression levels (Figure 3G, Supplementary Figure S3D and
Table S3). Live cell imaging of Dnmt1%FF/GFP cells revealed
a normal localization of GFP-DNMT1 throughout the cell
cycle (15,24)(Supplementary Figure S3E), demonstrating
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Figure 1. Generation of MIN-tagged cell lines. (A) Schematic overview of MIN-tag insertion into the DnmtI locus via CRISPR /Cas assisted gene editing.
The MIN-tag donor harbors the a#zP site and homology to the genomic sequence 5’ and 3’ of the start codon. Integration is facilitated by double strand
breaks created by Cas9 directed to the target sequence by a specific gRNA. Restriction enzyme recognition sites used for screening in this study are indicated
above the attP sequence. (B) Schematic overview of the surrogate reporter used to enrich for cells expressing a functional Cas9 complex. The respective Cas9
target sequence (tSeq) is placed downstream of mRFP followed by a stop codon and an out-of-frame GFP ORF. This surrogate reporter is transfected
into the cells together with a vector expressing Cas9 and a U6 driven gRNA expression cassette. (C) Cells that express a functional Cas9 complex can
then be identified by expression of GFP and enriched via FACS. (D) Screening PCRs followed by restriction digest with HinclI or Sacll of all generated
MIN-tagged cell lines. (N) and (C) refer to N- and C-terminal tagging, respectively.

that DNMT1 regulation was not impaired. Albeit only at
low frequencies, Bxbl has been shown to damage recom-
bination sites (8). Therefore, we sought to confirm that the
Bxbl-mediated recombination of the GFP cassette at the
MIN-tagged locus occurred without error via site-specific
recombination. We sequenced the region flanking the artL
site in the Dnmt1SFP/SFP cell line (Supplementary Figure
S4) and determined that the GFP cassette was accurately
integrated in a scarless fashion. In summary, this attB-GFP
vector is suited to express GFP fusion proteins from the en-
dogenous promoter preserving physiological regulation and
splicing of the target gene.

Finally, we investigated whether the MIN-tag can be used
to generate cell lines expressing mutants of the target gene
for functional screenings or disease modeling. We cloned
the cDNA of Dnmtl into the attB-GFP-Poly( A) construct
in-frame with GFP and performed recombination as de-
scribed above. We identified 10 (66.6%) clones in which in-
tegration had occurred, of which 9 (60%) were homozygous
for the Dnmtl cDNA knockin (Supplementary Table S3).

Expression analysis by western blot and live cell imaging
revealed that the endogenous DNMT1 protein was com-
pletely replaced by the Dnmt] mini gene product and exhib-
ited normal localization (Figure 3H, Supplementary Figure
S3F).

All in all, we show that MIN-tagged entry cell lines can
be efficiently functionalized with a flexible toolbox of attB-
vectors to generate gene knockouts, N-terminal fusion con-
structs such as GFP and ¢cDNA knockins. In total, we
generated 15 derivatives of our MIN-tagged cell lines so
far. The efficiency of Bxbl-mediated recombination ranged
from 33 to 67%, with an average of 50% (Supplementary
Table S3, Figure S5). This demonstrates the efficacy of our
system as well as the simplicity with which MIN-tagged cell
lines can be modified and functionalized by prefabricated
cassettes. The error-prone step of CRISPR /Cas-mediated
insertion of the MIN-tag is necessary only once to generate
an entry cell line, which can then be specifically manipulated
with a variety of recombination vectors, allowing maximum
biological comparability.
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Figure 2. Application of the anti-MIN monoclonal antibody. (A) DNA sequence of the attP site and corresponding translated MIN peptide sequence
(orange). (B) Fluorescence micrographs of wt mESCs, Dnmtlattp/attp cells and of a mixed culture (1:10) of wt and DnmtlattP/attP cells stained with
the anti-MIN antibody. DAPI is used as DNA counterstain. Scale bars represent 5 pm. (C) IP experiments performed with anti-MIN and anti-DNMT1
antibody in DnmtlattP/attP cell extracts (input (I), flow through (FT), bound (B)). (D) Co-IP of DNMT?3B in wt and Dnmt3battP/attP cells using the
anti-MIN antibody. DNMT3B co-precipitated SNF2H in Dnmt3battP/attP cells as determined by western blot.

Using the MIN-tag strategy to study endogenous protein reg-
ulation

As elucidating the function of uncharacterized protein do-
mains requires systematic analysis, we generated a series
of deletion constructs covering the N-terminus of TETI,
which we aimed to recombine into our TetI¢P/4F cell line
(Figure 4A). However, we were unable to identify positive
recombination events by FACS due to low expression of
this target gene. To circumvent this problem, we developed
a surrogate reporter system for Bxb1 mediated recombina-
tion that can be used to enrich for positive recombination
events (Figure 3C). The Bxbl surrogate reporter construct
consists of a constitutive promoter followed by an attP site
and a Poly(A) sequence. Upon transfection, Bxbl mediates
the recombination of a fluorophore (e.g. GFP) containing
attB plasmid with the Bxbl surrogate reporter, which re-
sults in the expression of GFP. This allows enrichment of
positive recombination events, even when the MIN-tagged
gene is not expressed or only at low levels.

Using the Bxbl surrogate reporter for enrichment and the
above described PCR strategy for screening, we were able to
generate four Tet/ knockin cell lines expressing N-terminal
deletion constructs from the endogenous promoter. West-
ern blot analysis revealed complete replacement of wt TET1
expression by the knockin constructs (Figure 4B). These cell
lines can be used for future systematic studies of the regu-
latory function of the TET1 N-terminus that is largely un-
known so far.

Taking advantage of the MIN-tag strategy to express fu-
sion constructs at endogenous levels, we expanded our tool-
box to include a BirA* cassette which we knocked into the
Tet1 locus (Supplementary Figure S5G). In contrast to clas-
sical IP approaches, proximity-dependent protein labeling
by the promiscuous biotin ligase, BirA* (BioID) (27), al-
lows the characterization of the full microenvironment of a
protein of interest independent of physical protein—protein
interactions. This technique enabled us to pull down pro-
teins within close proximity (~10 nm radius, (39)) of TET1
that were subsequently identified by LC-MS/MS (Figure
4C). We found nine proteins to be significantly enriched (40)
upon addition of exogenous biotin to the culture medium of
our Tet]Br4*/Bird* mESC line, including SIN3A, a known
interactor of TET1 (41) (Figure 4D and E). Interestingly,
these proteins are associated with chromatin modification
and organization (Figure 4F). This marks the first time that
the BioID method has been used in mESCs and in a non-
overexpression context with the BirA* ligase fused to the
endogenous protein.

Using the MIN-tag strategy to study dynamic cellular pro-
cesses

During early embryonic development, the epigenome un-
dergoes massive rearrangements that are precisely regu-
lated. Knockout of the major epigenetic factors is often
embryonic lethal (38,42) and over-expression studies fre-
quently fail to reflect the tight regulation of these proteins.
Therefore, more flexible and delicate genetic manipulations
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Figure 3. Bxbl-mediated insertion of functional cassettes into the Dnmt1 locus. (A) Schematic outline of the strategy and vectors used to create knockout,
GFP knockin and cDNA knockin functionalizations of the Dnmt14F/@P ce]l line. cDNAs can be cloned into the attB-GFP-Stop-Poly(A) vector using the
8-cutters AsiSI and Notl. (B) FACS plot depicting the gating and sorting of mESCs to enrich for cells positive for integration of the knockout cassette (2.05%
of parent population) based on GFP expression. (C) The Bxbl surrogate reporter consists of a constitutive CMV promoter followed by an attP site. If Bxbl
and attB donor plasmid containing GFP is present in the cell, recombination of the donor into the reporter leads to expression of GFP. The Bxb1 surrogate
reporter can be used to enrich for successful recombination events by FACS. (D) Gel electrophoresis of the multiplex PCR for wt, Dnmt14/F/4'P (attP/attP),
Dnmt1X0/K0 (KO /KO), Dnmt1¢PNA/cPNA (cDNA /cDNA) and Dnmt19FP/GFP (GFP/GFP) as well as 1:1 mixtures with Dnmt14P/@tP genomic DNA, to
control for amplification biases. Blue arrows indicate expected sizes of the non-recombined (attP) and recombined allele (attL). (E) DNA methylation
levels at the major satellite repeats of Dnmt1X0/KO cells compared to wt and Dnmt14"P/@P cells. (F) Western blot analysis of DNMT1 expression levels
in wt, Dumt14P/4P and Dnmt150/KO cells generated by Bxbl-mediated insertion of a knockout cassette. (G) Western blot analysis of DNMT1 and GFP
expression in DnmzI“P/4P and homozygous GFP-knockin cells (Dnmt] 9FFP/GFPY generated by Bxbl-mediated insertion. (H) Western blot analysis of
DNMT1 and GFP expression in Dnmt19"P/4P and Dumt]1¢PNA/eDNA cells expressing a GFP-Dnmt1 minigene from the endogenous promoter.
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Figure 4. Study of TET1 regulation. (A) Schematic representation of the Ter/ cDNA constructs used for Bxbl-mediated recombination into Tet]¢//P/attP
cells. (B) Western blot analysis of TET1 expression in Tet14/P/P cell line and its derivatives expressing GFP-TET121-1393 (A1-1363), GFP-TET14833-1053
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Quantification algorithm (32). The x-axis reflects the difference in protein abundance in the BioID pull-down compared to the negative control while the
y-axis shows the logarithmized P-value of a student’s 7-test. Significantly enriched proteins are highlighted in pink (FDR = 0.01, SO = 3, indicated by black
line (40)). Experiments were performed in duplicates. (F) GO term enrichment of proteins identified as significant in BioID.
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are needed to study the function of epigenetic factors in vivo.
Here, we focus on the de novo DNA methyltransferase 3B
(DNMT?3B), one of the key factors during epiblast differen-
tiation. While it has been shown that DNMT3B, in concert
with DNMT3A and DNMT3L, is responsible for the global
wave of de novo DNA methylation occurring during epiblast
differentiation (42-44), little is known about its localization
and protein kinetics during this developmental time period.

To address this question in a systematic fashion,
we generated a homozygous GFP knockin cell line
(Dnmi3bCFPICFPY from the Dnmit3b¥*F/4P cell line by Bxbl-
mediated recombination (Figure SA and 6A). This allowed
us to follow expression of DNMT3B under native regu-
latory conditions and to monitor its localization during
the two-day transition from naive pluripotent ESCs to
Epiblast-like cells (EpiLCs, (25)) using live cell imaging with
high temporal resolution (1 image per hour).

At the naive pluripotent state, we observed very low ex-
pression levels of DNMT3B. Upon addition of differen-
tiation medium, protein expression was strongly and uni-
formly upregulated reaching its maximum at 48-52 h (Fig-
ure 5B, Supplementary video 1). Overall, these findings
were consistent with Dnmt3b mRNA levels in wt and
Dnmi3b®P/4P cells (Figure 5C). Interestingly, we observed
a highly dynamic subnuclear distribution of DNMT3B dur-
ing differentiation that can be classified into three patterns
(Figure 5B). (i) In the first 14 h of differentiation, DNMT3B
is expressed at low levels and no clear enrichment is visi-
ble. (ii) Between 1440 h after initiation of differentiation,
DNMT3B expression is upregulated and accumulates at
constitutive heterochromatin of chromocenters (CCs). (iii)
After 40 h of differentiation, DNMT3B is highly expressed
and localization to CCs is diminished. The above-described
patterns were not related to specific cell cycle stages, in-
dicating a differentiation stage dependent localization of
DNMT3B (Supplementary Figure S6A).

To investigate the specific chromatin distribution of
DNMT3B during differentiation in more detail, we per-
formed super-resolution 3D structured illumination mi-
croscopy (3D-SIM) with the anti-MIN antibody for protein
visualization. DAPI and trimethylated lysine 4 of histone 3
(H3K4me3) were used as markers of heterochromatin and
euchromatin (45), respectively. In agreement with the live
cell imaging experiments, DNMT3B localizes at CCs, clus-
ters of subcentromeric regions, at the 30 h time point and
shows a broader distribution at 60 h after differentiation
(Figure 5D). Interestingly, the higher resolution of 3D-SIM
revealed an accumulation of the signal in facultative hete-
rochromatin at perinuclear and perinucleolar regions at the
60 h time point (Figure 5D; right panel).

DNMT3B has been shown to be responsible for the
methylation of major satellite DNA, a main constituent
of CCs (42,46-47). As DNMTS3B is enriched at CCs be-
tween 14-40 h of differentiation, we investigated whether
DNMTS3B is actively methylating these sequences during
this period. Therefore, we performed fluorescence recov-
ery after photobleaching (FRAP) of GFP-DNMT3B lo-
calized at CCs. Using our Dnmt3b%FF/OFF cell line, we per-
formed FRAP experiments at 35 h of differentiation. Using
circular regions of interest (ROIs) that encompassed indi-
vidual CCs, we monitored signal recovery for 10 min after
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bleaching. We found that the signal exhibited a slow recov-
ery rate (t;,» = 42 s) and did not recover completely. As
DNA methylation has been shown to have a slow turnover
rate (48,49), this suggested the immobile fraction (~20%) of
DNMTS3B could be catalytically active at CCs (Figure 6B
and D, Supplementary Table S4). To test this hypothesis,
we performed FRAP experiments on cells treated with the
DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine
(5-azadC), which irreversibly traps DNMTs at their site of
action (50). We found that 5-azadC treated CCs exhibited a
large immobile fraction (~80%) suggesting that DNMT3B
is actively methylating CCs at this time point. However,
we were surprised to find that ~20% of DNMT3B enzyme
still remained mobile (Figure 6C). Considering the long 5-
azadC treatment time of 12 h this suggested that a fraction
of the enzyme never engaged in catalytic reactions. As our
GFP cassette preserves endogenous splicing patterns, the
GFP-DNMT?3B fusions used in this study represent a mix-
ture of different protein isoforms. This prompted us to in-
vestigate the contribution of Dnmt3b splicing isoforms to
the observed FRAP kinetics.

For Dnmt3b, nine splicing isoforms, all originating from
the same translational start site, have been described
(51). Besides the catalytically active isoform DNMT3BI,
DNMT3B6 has been shown to be highly expressed in ESCs.
This isoform is produced by alternative splicing, skipping
exons 23 and 24, resulting in a protein that lacks several
highly conserved motifs within the catalytic domain and has
therefore been suggested to be inactive (52).

To dissect the contributions of DNMT3B1 and
DNMT3B6 to the observed FRAP kinetics of
Dnmt3bTP/CFP cells, we generated a cell line express-
ing fluorescent fusions of each isoform. For this, we
produced cDNA knockin constructs in which DNMT3B1
was fused to a red fluorescent protein mCherry (mCh) and
DNMT3B6 was fused to GFP. To facilitate the generation
of knockin cell lines expressing each isoform from one allele
we equipped the Dnmt3b1 and Dnmt3b6 constructs with a
Neomycin and Puromycin resistance cassette, respectively.
We successfully established a cell line that simultaneously
expressed mCh-DNMT3B1 and GFP-DNMT3B6, both
under the control of the endogenous Dnmt3b promoter
(Figure 6A, Supplementary Figure S6B), allowing us to
directly compare the FRAP kinetics of DNMT3BI1 and
DNMT3B6 within the same cell. In the absence of 5-azadC,
GFP-DNMT3B6 exhibited a fast (1, = 5 s) and complete
recovery while mCh-DNMT?3BI recovered slower (#1,, =
95 s) (Figure 6B, Supplementary Table S4).

Intriguingly, FRAP kinetics of DNMT3B6 were not in-
fluenced by the presence of 5-azadC, supporting that it
is catalytically inactive. In contrast, DNMT3B1 was com-
pletely immobilized by addition of 5-azadC exhibiting vir-
tually no recovery after photobleaching (Figure 6C and E).

Taken together, our MIN-tag strategy enabled us to show
that DNMT?3B exhibits a dynamic localization to distinct
chromatin regions during epiblast differentiation. Super-
resolution micrographs of cells stained with anti-MIN an-
tibodies at different time points of epiblast differentiation
hint towards progression of de novo DNA methylation in
a hierarchical fashion starting at constitutive (CCs) and
progressing towards facultative (perinuclear/perinucleolar)
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Figure 5. Spatio-temporal dynamics of DNMT3B during epiblast differentiation. (A) Gel electrophoresis of the multiplex screening PCR for wt,
Dnmt3b@PatP and Dnme3bGFP/GFP Blue arrows indicate expected sizes of the non-recombined (attP) and recombined allele (attL). (B) Evaluation of
GFP signals during live cell imaging of Dnmt3b%FP/GFP cells. The graph depicts mean gray values of nuclear GFP signals. Error bars represent standard
deviations (n > 81). Lower panels show Z-projections of Dnmt3b%F/OFP cells representative of the indicated time frame. Scale bar represents 10 pm. (C)
Quantitative real-time PCR of Dnmt3b mRNA levels in wt and Dnmt3bF/@P cells during epiblast differentiation. (D) 3D-SIM nuclear mid-sections
of anti-MIN (green) and anti-H3K4me3 (red) antibody distributions 30 and 60 h after induction of EpiLC differentiation combined with DAPI coun-
terstaining (gray) in Dnmz3b4F/41P cells, Lower panels represent 7x magnifications of selected boxed regions. Scale bars represent 3 wm and 500 nm in
insets.

Downloaded from https://academic.oup.com/nar/article-abstract/43/17/e112/2414318/A-modular-open-platform-for-systematic-functional
by Universitaetsbibliothek Muenchen user
on 04 September 2017



PAGE 13 OF 17 Nucleic Acids Research, 2015, Vol. 43, No. 17 ell2

A

DnmtBbGFP/GFP

— T[]~ [ —

T . Y
1 A[[] e [ s

DRmt3mCh-3b1/GFP-36 mPGK
— | v Dnmt3b1 cDNA | PuroR H - —
mPGK
T ccre Jonmians oDNAI]II]—A-m—.—I: NeoR L -
B untreated C 5-azadC treated
N N
I I II I I [T ||
i | go |
B — 3 i i o —
c c 7l
o o i
£ o | o £ |
g © e ST i 8 e ‘
o T - S
S «© | o o S © | GFP-DNMT3B6
8 o i _ & TR 3 o GFP-DNMT3B
E -t | % mCh-DNMT3B1
= < F -?"“n = < |
.g e - i qu) <
© ! 4 & © et HENghah! 1] [ Ili-:ll = = . 1 “
[ORN] Al [CRY] P - -
= S ,é’ GFP-DNMT3B6 =3
I GFP-DNMT3B i
i % mCh- 1 o e % o i
g T T . . . . i :DNMTSBI g 1 i ﬁrﬁ.n ,...hS&Eaaazjfﬁ!!il!!,.Ezﬂ_‘isjzi:ﬂh.
0 100 200 300 400 500 600 0 100 200 300 400 500 600
time [s] time [s]
D E
© prebleach
o
(a9] .
'_
=
) &)
'_
=
= m
o ™
’_.
=
=
&)
(0]
o
[0}
=

Figure 6. Protein dynamics of DNMT3B and its isoforms during epiblast differentiation. (A) Schematic representation of the Dnmt3b genomic loci in
the Dnmt3bCFP/GFP and the Dnmit3b™C-3b1/GFP-3b6 ¢l lines. (B) Quantitative evaluation of FRAP experiments (average of 11-14 cells) comparing GFP-
DNMT3B with GFP-DNMT3B6 and mCh-DNMT3BI in Dnmt3b%F7/9FF and the Dnmi3b™"h-3b1/GFP-3b6 cel| lines differentiated for 35 h. Error bars
represent standard error of the mean. (C) Quantitative evaluation of FRAP experiments (average of 10-12 cells) as in (B) with cells treated with 5-azadC
12 h before imaging. (D and E) Representative images of FRAP experiments performed in (B) and (C), respectively. White circles indicate the bleach ROI
with a diameter of 2 pm.
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heterochromatin. Finally, FRAP experiments revealed that
the two isoforms DNMT3B1 and DNMT3B6 exhibit dra-
matically different DNA binding kinetics.

DISCUSSION

Recent advances in genome engineering technology, based
on TALEN and CRISPR/Cas systems, have greatly facili-
tated the process of manipulating genetic information. Plat-
forms have been established that allow genome-wide gene
disruption screenings for factors involved in any biologi-
cal process (20,53-54). While these methods provide valu-
able information about the genes and pathways involved,
in-depth analysis of target genes is needed to understand
their function. This, in turn, requires the implementation of
various genetic, cell biological and biochemical techniques.
To gain meaningful insights into gene function, these tech-
niques have to be applied under physiological conditions
requiring extensive and complex genetic manipulations. Al-
though modern genome engineering tools have made such
manipulations possible, a more efficient and universal ap-
proach would be highly desirable to implement the above-
mentioned techniques in a systematic manner.

The MIN-tag strategy offers a new means of rapid, ef-
ficient, yet flexible genetic manipulation of target loci. We
show that CRISPR /Cas assisted insertion of the MIN-tag
can be performed efficiently with short homology donors.
Several studies have shown that CRISPR/Cas mediated
gene targeting is associated with a significant risk of oft-
target cleavage, which can result in indel (insertions or
deletions) formation due to NHEJ (5-7,55-56). The MIN-
tag strategy requires a single nuclease assisted gene edit-
ing event, thereby keeping the likelihood of off-target ef-
fects at a minimum. Further modifications are then per-
formed using Bxbl-mediated recombination. In contrast to
the phiC31 integrase, Bxbl has been shown to be highly
specific with virtually no unwanted genomic insertions at
pseudo attP sites (8-9,57-58). Once a MIN-tagged cell line
is established, in-frame fusion of the MIN-tag to the target
gene also results in the expression of a novel epitope tag.
We show that this epitope tag can be detected by a highly
specific antibody, which can be used to screen for posi-
tive clones, perform co-immunoprecipitation (co-IP) exper-
iments, as well as conventional and super resolution mi-
Croscopy.

Using Bxbl and the MIN-tag toolbox, a MIN-tagged en-
try cell line can be used to generate multiple isogenic deriva-
tives within 2-3 weeks (Figure 7), without the risk of in-
troducing off-target effects. Our collection of vectors for
Bxbl mediated recombination currently contains over 80
different plasmids (Supplementary Table S5). These prefab-
ricated functional cassettes constitute an expandable tool-
box for the simple and flexible genetic alteration of any
tagged loci, without the need of locus-specific homology.

Using our stop cassette, we show that the MIN-tag strat-
egy can be used to reliably achieve genetically defined gene
disruption of MIN-tagged genes. Harboring a Poly(A) sig-
nal, insertion of this cassette efficiently eliminates target
gene expression with the added advantage of precluding un-
wanted downstream initiation. As fluorescent protein re-
porters are commonly used to study spatio-temporal dy-
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namics and protein kinetics in living cells, we generated a
GFP knockin construct (attB-GFP) for Bxbl-mediated in-
tegration. GFP knockin cell lines made with this construct
retain not only their endogenous expression levels but also
their endogenous splicing pattern. Similarly, a BirA* cas-
sette can be introduced at any MIN-tagged locus to allow
for proximity-dependent labeling of the microenvironment
of a given protein.

Understanding protein function often necessitates the
systematic alteration of individual domains through muta-
tions as well as deletions. Equipped with a fluorescent pro-
tein and strategic cloning sites, our cDNA knockin cassette
is especially tailored for simple and expedient insertion of
user-defined cDNAs. PCR-based approaches can be used
to easily alter the coding sequence and quickly produce a
library of gene specific cDNA mutants. These can then be
inserted into target loci by Bxbl-mediated recombination,
completely replacing expression of the wt gene while retain-
ing endogenous control. While this strategy does not di-
rectly introduce the mutations into the gene locus, it offers a
means of inserting and testing multiple mutant constructs in
a short time frame without the need to design and perform
additional nuclease-assisted targetings. This feature can be
used to gain insights into the functional implications of the
rapidly growing number of mutations found in cancer and
disease. Likewise, the generation of large deletion mutants is
easily accomplished facilitating the investigation of protein
domain function and interaction mapping. This eliminates
the need for excising large genomic regions or cloning long
site-specific homology donors.

Obviously, the above mentioned plasmids by no means
represent the extent of all possible functional cassettes. For
example, MIN-tag toolbox modules allowing inducible pro-
tein stabilization or localization (59,60) as well as enzymatic
labeling of DNA binding sites (DamID (61)) would greatly
assist the elucidation of protein function and protein-
chromatin interactions, respectively.

Employing our strategy in mESCs, we inserted the MIN-
tag into the genes coding for all mammalian DNA mod-
ifying enzymes and a cofactor (Dnmtl, Dnmt3a, Dnmt3b,
Tetl, Tet2, Tet3 and Uhrfl). These MIN-tagged cell lines
as well as their functional derivatives (Supplementary Ta-
ble S3) constitute a valuable resource to investigate the
role of these proteins during fundamental processes such as
pluripotency, cellular reprogramming, embryonic develop-
ment and disease.

One gold standard method to study protein—protein in-
teractions is co-IP. However, chromatin- or membrane-
bound proteins are often barely soluble and consequently
difficult to investigate by this approach. Making use of our
BirA* cassette, we investigated factors in the microenviron-
ment of TET1, a dioxygenase that oxidizes DNA at methy-
lated cytosines (62). Besides the known interactor SIN3A,
we identify eight other proteins in proximity to TET1 that
are involved in chromatin modification and organization,
including the closely related TET2. This is in accordance
with the findings by Costa et al. (63) that TET1 and TET2
have partially overlapping target sites. In conclusion, inte-
gration of the BirA* cassette into the endogenous locus is
a perfectly suited method to study dynamic protein—protein
interactions.
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Figure 7. The MIN-tag strategy. (A) Schematic outline of the genome engineering strategy. Small homology donors are used to insert serine integrase
(attP) sites in-frame after the ATG codon of target genes via CRISPR /Cas assisted HR. The atzP site is translated as a novel epitope tag suitable for IF
and IP with the specific monoclonal antibody. The artP site is also recognized by the serine integrase Bxb1 and used for specific and directional integration
of attB-carrying functional cassettes into the tagged gene locus. All derivatives are subjected to their endogenous gene regulation ensuring that subsequent
studies are performed at physiological expression levels. (B) Timeline for generation of MIN-tagged genes and subsequent modification by Bxbl-mediated

recombination. MIN-tagged cell lines can be generated within 2-3 weeks.

multiple isogenic cell lines with different functional modifications.

We also applied the MIN-tag strategy to study the de
novo DNA methyltransferase DNMT3B during the transi-
tion from naive pluripotent ESCs to primed EpiLCs, a pe-
riod of dramatic epigenetic change. While distinct patterns
have been described for ESCs and somatic cells (46,64), the
subnuclear distribution of DNMT3B during differentiation
remains largely unknown. We discovered that DNMT3B
exhibits a highly dynamic subnuclear distribution during
epiblast differentiation. Our observations suggest that the
global wave of de novo DNA methylation during epiblast
differentiation follows a distinct spatio-temporal order, ini-
tiating at constitutive pericentromeric heterochromatin fol-
lowed by transition to facultative heterochromatin.

Exploiting the unique possibilities of our MIN-tag
strategy, we furthermore generated a cell line simultane-
ously expressing differentially tagged splicing isoforms of
DNMT3B from different alleles. This approach revealed
that the major catalytically active isoform DNMT3BI1 was
completely immobilized at chromocenters after 5-azadC
treatment, while the FRAP kinetics of DNMT3B6 were not
affected. This, to our knowledge, is the first time that FRAP

These cell lines can then be modified within another 2-3 weeks to generate

has been performed on different isoforms of a protein at en-
dogenous expression levels in the same cell.

While this study was performed using mouse ESCs, our
strategy can be applied to any cell type as long as no Bxbl
attP site is present in the respective genomes. The human
genome is free of this entry site and introduction of the
MIN-tag into cell lines such as human induced pluripo-
tent stem cells should greatly facilitate the generation of
clinically relevant disease models. Moreover, MIN-tagged
mESCs could be used in blastocyst injections to gener-
ate MIN-tagged mice. Different tissues and cells could not
only be used for Bxbl-mediated genetic manipulation in
vitro, free of the limitation posed by inefficient endogenous
homologous recombination, but also to study tissue spe-
cific protein regulation with the MIN-tag antibody. Fur-
thermore, widely used cell biological model systems such as
HeLa and U20S cells as well as model organisms such as
Caenorhabditis elegans or Drosophila could benefit from the
versatility and efficiency of our approach.

In summary, with our combined genome engineering ap-
proach, a plethora of functional derivatives can be gener-
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Supplementary Figure 4
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Supplemental Figure and Video Legends

Supplemental Figure S1. Characterization of MIN-tagged DNA methyltransferase
cell lines.

(A) Western blot analysis of DNMT1 expression levels in the homozygous Dnmt 12/
and wild type J1 cells. Beta-actin is used as a loading control. (B) Immunofluorescence

1 attP/attP

stainings of Dnmt1 in wt and Dnmt cells. Scale bar represent 5 ym. (C) DNA

methylation analysis of the major satellite repeats in Dnmt12*7#""

and wild type cells.
(D) Example of the screening PCRs, with and without Hincll treatment, of clones found
to be heterozygous and homozygous for the MIN-tag at the Dnmt1 locus. Monoallelic
and biallelic insertions of the MIN-tag can be distinguished by complete and incomplete
digests, respectively. (E) Western blot analysis of DNMT3A expression levels in a
heterozygous (#2) and homozygous (#1, #3-4) Dnmt3a®""#" cell lines compared to wild
type cells. Beta-actin is used as a loading control. (F) DNA methylation analysis of major

satellite repeats in Dnmt3a®"™2""

compared to wt cells. (G) Immunofluorescence
stainings of DNMT3A together with the replication marker EdU in wt cells and the the
homozygous Dnmt3a®"#"" clone #1. Scale bar represents 10 pm. (H)
Immunofluorescence stainings of DNMT3B in Dnmt3b®"#" and wt cells after 35 hours
of EpiLC differentiation. Scale bar represents 5 ym. Error bar represent standard

deviation (n=2).

Supplemental Figure S2. Characterization of MIN-tagged Tet1, Tet2 and Uhrf1 cell
lines and C-terminal MIN-tag integration.

(A-C) Western blot analysis of TET1, TET2, and UHRF1 expression levels in the
homozygous Tet134F  Tet2F4F and N-terminal Uhrf12"™3" cell lines, respectively,
compared to the wt J1 control. B-Actin (ACTB) was used as loading control. (D)
Immunofluorescence stainings of TET1 in wt and Tet?®™" cells. (E)
1attP/attP

Immunofluorescence stainings of 5-hydroxymethylcytosine (5-hmC) in wt and Tet

cells. (F) Immunofluorescence stainings of TET2 in wt and Tet2*"™" cells. (G)



1 attP/attP

Immunofluorescence stainings of UHRF1 in wt and Uhrf cells. DAPI is used for

DNA counterstaining; scale bars represent 15 pym. (H) Schematic overview of
CRISPR/Cas-assisted C-terminal integration of the MIN-tag. MIN-tag donors contain the
attP site (depicted in orange) flanked by sequences (200-300 for PCR fragments or 76 for
ssDNA oligos) homologous to 5’ and 3’ of the target gene stop codon (depicted in red).
Restriction enzyme sites available for restriction fragment analysis based screening are

shown above the attP sequence.

Supplemental Figure S3. Evaluating functionality of Bxb1 mediated

1attP/attP ce "S-

recombination in Dnmt
(A) Schematic outline of the multiplex PCR strategy to identify positive recombination
events and their zygosity. (B) Immunofluorescence stainings of DNMT1 and GFP in wt

1KO/KO

cells and three Dnmt clones. Diffuse GFP indicates a successful integration of the

KO cassette into the locus. (C) Western blot analysis of DNMT1 expression levels in

three Dnmt1<9/K©

clonal cell lines generated by Bxb1-mediated insertion of a knock-out
cassette, compared to wt and Dnmt1%"72"" cells. (D) Western blot analysis of DNMT1
and GFP expression in Dnmt1?"# cells and two homozygous GFP-knock in cell lines
(Dnmt16F7GFP 4#1-2) generated by Bxb1 mediated insertion. (E-F) Live cell imaging of
Dnmt1°FPGFPand Dnmt1°PNePNA cells transiently expressing RFP-labeled PCNA, a

DNA replication marker, during cell-cycle progression. Scale bars represent 5 um

Supplemental Figure S4. Alignments of the expected sequence flanking the attL
site after recombination
Alignments of the expected sequence flanking the attL site after recombination of the

attB-GFP Kl at the Dnmt1, Dnmt3b, Tet1, and Tet2 locus (A-D) with the sequencing

GFP/GFP GFP/GFP GFP/GFP GFP/GFP
1 , Dnmt3b , Tett 2

results from the Dnmt ,and Te cell lines.
Supplemental Figure S5. Demonstration of Bxb1 mediated recombination in
multiple MIN-tagged genes.

(A-D) Gel electrophoresis of the multiplex PCR (using the attL primer and locus specific



external primers, see also Table S1) performed on cell lines generated by Bxb1-
mediated integration of various MIN-tag toolbox components (Table S5) into the loci of:
(A) Tet1, (B) Tet2, (C) Dnmt3b, and (D) Uhrf1. Equal mixtures of genomic DNA from
non-recombined cell lines and recombined cell lines are used to control for possible
amplification biases arising from the use of different locus specific external primers. (E)
PCR to confirm insertion of the BirA* cassette into the Tet1 genomic locus. I: multiplex
PCR, II: wt specific PCR, lll: attL (recombination) specific PCR

Supplemental Figure S6. Cell cycle analysis of DNMT3b localization during
differentiation.

(A) Immunofluorescence stainings of MIN-tagged DNMT3B and Histone 3 Serine 10
phosphorylation (H3S10P), a marker of G2/M phase (Ref Hendzel:1997wo) during
battP/attP

differentiation of naive pluripotent Dnmt3
were fixed directly after (0 h)35 h, or 60 hafter induction of differentiation. The H3S10P

stem cells into epiblast-like cells. Cells

mark was used to determine if cells were in G2 or G1 phase in order to assess whether
changes in DNMT3B localization during differentiation are cell-cycle dependent. Scale

meh-3b 1/GFP-3b6 ce "S

bar represents 5 ym. (B) Fluorescence microscopy images of Dnmt3
fixed after 35 h of differentiation. Both DNMT3B isoforms (GFP-DNMT3B1in green and
mCh-DNMT3B6 in red) localize at chromocenters (visible as bright DAPI spots). Scale
bar represents 5 ym

pGFP/GFP

Supplemental Video 1. Live cell imaging of Dnmi3 cells during

differentiation.

G PGFP cells from the

Long-term (60 h), live cell imaging tracking the transition of Dnmt3
naive pluripotency ground state into the primed, epiblast-like state. Images were
acquired once per hour and entailing at least 10 ym z-stacks. The left panel depicts the
projection of GFP signal, while the right panel shows that projection superimposed onto

the acquired brightfield images.



Supplemental Tables (S1-S5)

Table S1: CRISPR/Cas9-mediated MIN-tag insertion efficiencies

Gene Position MIN-tag Donor Heterozygotes Homozygotes TOTAL
: 2/67
Dnmt1 | N-terminal PCR Product 1/67 (1.5%) 1/67 (1.5%) (2.9%)
. 0
) 3/86
Dnmt3a | N-terminal PCR Product 0/86 (0%) 3/86 (3.5%) (3.5%)
. 0
: : 1/65
Dnmt3b | N-terminal ssDNA oligo 0/65(0%) 1/65(1.5%) (1.5%)
. 0
Uhrf1 N-terminal PCR Product 0/6 (0%) 1/6(16.7%) 1/6
' (16.7%)
: : 4/36
Uhrf1 C-terminal ssDNA oligo 2/36 (5.5%) 2/36 (5.6 %)
(11.1%)
) 1/70
Tetl N-terminal PCR Product 0/70(0%) 1/70 (1.4%)
(1.4%)
Tet2 N-terminal PCR Product 1/24 (4.2%) 2/24 (8.3%) 3/24
min 2% 3% (12.5%)
. 2/38
Tet3 N-terminal PCR Product 0/38 (0%) 2/38 (5.3%)

(5.3%)




Table S2: Oligonucleotide sequences used for CRISPR/Cas assisted targeting
and screening

Name Sequence
Dnmtl
gRNA_F TGTTCGCGCTGGCATCTTGCGTTTTAGAGCTAGAAATAGCAAG
gRNA_R GCAAGATGCCAGCGCGAACACGGTGTTTCGTCCTTTCCAC

surrogate_F CTAGCTGTTCGCGCTGGCATCTTGCAGGGGATTCC
surrogate_R CCGGAGGAATCCCCTGCAAGATGCCAGCGCGAACAG

internal_R CACTATAGCCAGGAGGTGTGGG

internal F TGTACCGTACACCACTGAGACCGCGGTGGTTGACCAGACAAACCCATCTTGCAGGTTGCA
- GACGACAG

external R GTCTGGTCAACCACCGCGGTCTCAGTGGTGTACGGTACAAACCCCAGCGCGAACAGCTCC
- AGC

external_F GCGCGACAGGAAGCACAGCC

screening_F GTCGCAGCACGGACGAG

Uhrfl (N)

gRNA_F CATCGGCATCATGTGGATCCGTTTTAGAGCTAGAAATAGCAAG

gRNA_R GGATCCACATGATGCCGATGCGGTGTTTCGTCCTTTCCAC

surrogate_F CTAGCCATCGGCATCATGTGGATCCAGGGGATTCCT
surrogate_R GGCCAGGAATCCCCTGGATCCACATGATGCCGATGG

internal_R CATCGGCATCATGTGGATCCGTTTTAGAGCTAGAAATAGCAAG
internal_F GGATCCACATGATGCCGATGCGGTGTTTCGTCCTTTCCAC

external R | ACCACCGCGGTCTCAGTGGTGTACGGTACAAACCTGGATCCAGGTTCGAACTATG
external_F CTATTGCTTGGTGGCTTTGAG

screening F | GGCAATTCACATTCAAGTGTCCC

Uhrf1 (C)

aRNA_F TGCCTGGGTCTCAGCATCACGTTTTAGAGCTAGAAATAGCAAG

gRNA_R GTGATGCTGAGACCCAGGCACGGTGTTTCGTCCTTTCCAC

surrogate_F CTAGCTGCCTGGGTCTCAGCATCACCGGGGATTCCT
surrogate_R CCGGAGGAATCCCCGGTGATGCTGAGACCCAGGCAG
CAGCTCCCCAACCCGGGTGAACCAGCCCTTGCAGACCATTCTCAACCAGCTCTTCCCTGG
CTATGGCAGCGGCCGGGGTTTGTCTGGTCAACCACCGCGGTCTCAGTGGTGTACGGTACA

ssDNAoligo | 4 5 CCTGATGCTGAGACCCAGGCAGAGGGCTCATGGTTCCAACTTCATAGTGTGTTTAGCT
TGAAGGTGTTGTCCTTCACG

external_R TTTCTAGGCAGCTGGTGTGG

external_F TGTACGTGAGAGGACGGAGT

screening_F TGTTGCCAGGAGCTACCAAG

Dnmt3a

gRNA_F GGGCCGCTGGAGGGCATTGCGTTTTAGAGCTAGAAATAGCAAG

gRNA_R GCAATGCCCTCCAGCGGCCCCGGTGTTTCGTCCTTTCCAC

surrogate_F CTAGCGGGCCGCTGGAGGGCATTGCTGGGGATTCCT
surrogate_R CCGGAGGAATCCCCAGCAATGCCCTCCAGCGGCCCG

internal_R CTTCTCTTCCCCACAGGCAG

internal_F ACCACTGAGACCGCGGTGGTTGACCAGACAAACCCATTGCTGGGCAGTAGGCG
external_R ACCACCGCGGTCTCAGTGGTGTACGGTACAAACCCCCTCCAGCGGCCCCG
external_F GTTCCCAGCCAAGCACCTAT

screening_F ATGGTCCTGCAACCAGAGTG

Dnmt3b

gRNA_F TTCCCCACAGGAAACAATGAGTTTTAGAGCTAGAAATAGCAAG

gRNA_R TCATTGTTTCCTGTGGGGAACGGTGTTTCGTCCTTTCCAC




surrogate_F
surrogate_R

ssDNA oligo

external_R
external_F
screening_F

CTAGCTTCCCCACAGGAAACAATGAAGGGGATTCCT
CCGGAGGAATCCCCTTCATTGTTTCCTGTGGGGAAG
GAACTGGTGGTGTAAACCTTGCAGTGTGCCCTGTCTGCCTCTTACATATCCTGATCTTTC
CCCACAGGAAACAATGGGTTTGTCTGGTCAACCACCGCGGTCTCAGTGGTGTACGGTACA
AACCAAGGGAGACAGCAGACATCTGAATGAAGAAGAGGGTGCCAGCGGGTATGAGGAGTG
CATTATCGTTAATGGGAACT
ACCACCGCGGTCTCAGTGGTGTACGGTACAAACCGGAGACAGCAGACATCTGAATG
ATCTGTCATGGAACCTGCCG

GAGCTGGCCAATTGCAGAAC

Tetl

gRNA_F
gRNA_R
surrogate_F
surrogate_R
internal_R
internal_F
external_R
external_F
screening__F

AGACATGGCTGCAGAGTAAGCGGTGTTTCGTCCTTTCCAC
CTTACTCTGCAGCCATGTCTAGCTTTCTTGTACAAAGTTGGCAT
CTAGCCTTACTCTGCAGCCATGTCTCGGGGATCCCT
CCGGAGGGATCCCCGAGACATGGCTGCAGAGTAAGG

ACTCAGTCTCCCAAATGCTGG
ACCACTGAGACCGCGGTGGTTGACCAGACAAACCAGACATGGCTGCAGAGTAAGTAAAG
ACCACCGCGGTCTCAGTGGTGTACGGTACAAACCCGGTCCCGCCCCGCAAAG
TCGGGGTTTTGTCTTCCGTT

GGGCAATGTTGTGACTCATGC

Tet2

gRNA_F
gRNA_R
surrogate_F
surrogate_R

CGAAGCAAGCCTGATGGAACGTTTTAGAGCTAGAAATAGCAAG
GTTCCATCAGGCTTGCTTCGCGGTGTTTCGTCCTTTCCAC
CTAGCCGAAGCAAGCCTGATGGAACAGGGGATTCCT
CCGGAGGAATCCCCTGTTCCATCAGGCTTGCTTCGG

internal_R ACCACTGAGACCGCGGTGGTTGACCAGACAAACCCATCAGGCTTGCTTCGGGG
internal_F ACCACCGCGGTCTCAGTGGTGTACGGTACAAACCGAACAGGACAGAACCACCCAT
external_R TGGTTCACTGACTGTGCGTT

external_F CCAGGATCACACAGGAAGCA

screening_F GGATGGAGCCCAGAGAGAGA

Tet3

gRNA_F GTTCCAGGTCAGATGGACTCGTTTTAGAGCTAGAAATAGCAAG

gRNA_R GAGTCCATCTGACCTGGAACCGGTGTTTCGTCCTTTCCAC

surrogate_F
surrogate_R
internal_R
internal_F
external_R
external_F
screening_F
attL_F

CTAGCGTTCCAGGTCAGATGGACTCAGGGGATTCCT
CCGGAGGAATCCCCTGAGTCCATCTGACCTGGAACG
ACCACTGAGACCGCGGTGGTTGACCAGACAAACCCATCTGACCTGGAACAGGTC
ACCACCGCGGTCTCAGTGGTGTACGGTACAAACCGACTCAGGGCCAGTGTACC
CAGTCGGGCTTCTGGTCTAC

GATCTGAGCTCTCACAGGGC

AGTAGACAGGGCCTTGGGAT

CCGGCTTGTCGACGACG




Table S3: Bxb1-mediated recombination efficiencies

Gene Integration Construct Heterozygotes Homozygotes TOTAL
13/31
Dnmt1 ttB-GFP N/A 13/31 (41.99
R / /BLUALI%) 41 904
Dnmt3b | attB-GFP 0/3 (0%) 1/3 (33.3%) 1/3 (33.3%)
Tetl attB-GFP 14/45 (31.1%) 13/45(28.9%) 27/45 (60%)
Tet2 attB-GFP 28/81 (34.6%) 15/81(18.5%) 43/81 (53%)
15/23
Dnmt1 | attB-GFP-STOP-Poly(A) 2/23 (8.7%) 13/23 (56.5%) /
(65.2%)
19/32
Uhrf1 attB-GFP-STOP-Poly(A) 5/32 (15.6%) 14/32 (43.8%)
(59.4%)
10/15
Dnmt1 | attB-GFP-cDNA-STOP-Poly(A) 1/15 (6.6%) 9/15 (60%)
(66.6%)
54/84
Dnmt3b | attB-GFP-cDNA-STOP-Poly(A) 28/84 (33.3%) 26/84 (31%) (64.3%)
. 0
19/58
Tetl attB-GFP-cDNA-STOP-Poly(A) 12/58 (20.7%) 7/58 (12.1%) (32.8%)
. 0
Dnmt3b attB-GFP/mCh-cDNA-STOP-Poly(A) 29/102 64/102 93/102
PuroR/neoR (28.4%) (62.7%) (91.2%)

Table S4: Evaluation of FRAP protein kinetics

GFP-DNMT3B mCh-DNMT3B1 GFP-DNMT3B6
Mobile fraction [A] 87 81 100
Diffusion coef. [um2/s] 4.2E-03 1.2E-03 4.1E-02
Half-time recovery [s] 42.2 94.8 5.1




Table S5: The MIN-tag toolbox

Fluorescent

Name protein Application
Universal constructs
attB-GFP GFP GFP Kl
attB-mCh mCherry mCherry KI
attB-GFP-T2A-BirA* GFP Protein interaction
attB-GFP-Poly(A) GFP KO
attB-mCh-Poly(A) mCherry KO
attB-GFP-Poly(A)-NeoR GFP KO /w selection
attB-GFP-Poly(A)-PuroR GFP KO /w selection
attB-mCh-Poly(A)-NeoR mCherry KO /w selection
attB-mCh-Poly(A)-PuroR mCherry KO /w selection
Gene specific cDNA Kl constructs
attB-GFP-Dnmt1-Poly(A) GFP cDNAKI
attB-GFP-Dnmt3b1-Poly(A) GFP cDNA KI
attB-GFP-Dnmt3b6-Poly(A) GFP cDNA KI
attB_eGFP_Dnmt3b_C656A Poly(A) GFP cDNA KI
attB_eGFP_Dnmt3b_D809G_Poly(A) GFP cDNAKI
attB_eGFP_Dnmt3b_dX_Poly(A) GFP cDNAKI
attB_eGFP_Dnmt3b_G655S_Poly(A) GFP cDNAKI
attB_eGFP_Dnmt3b_L656T Poly(A) GFP cDNAKI
attB_eGFP_Dnmt3b_V718G_Poly(A) GFP cDNA KI
attB_eGFP_Dnmt3b_V810M_Poly(A) GFP cDNA KI
attB_eGFP_Dnmt3b6_Poly(A) GFP cDNAKI
attB_eGFP_Dnmt3b1_dPWWP_Poly(A) GFP cDNAKI
attB_eGFP_Dnmt3b1_dPHD_Poly(A) GFP cDNAKI
attB_mCh_Dnmt3b_C656A Poly(A) mCherry cDNA KI
attB_ mCh _Dnmt3b_D809G_Poly(A) mCherry cDNAKI
attB_ mCh _Dnmt3b_dX_Poly(A) mCherry cDNAKI
attB_ mCh _Dnmt3b_G655S_Poly(A) mCherry cDNAKI
attB_ mCh _Dnmt3b_L656T_Poly(A) mCherry cDNAKI
attB_ mCh _Dnmt3b_V718G_Poly(A) mCherry cDNA KI
attB_ mCh _Dnmt3b_V810M_Poly(A) mCherry cDNA KI
attB_ mCh _Dnmt3b6_Poly(A) mCherry cDNAKI
attB-GFP-Dnmt3b1-Poly(A) -NeoR GFP cDNA KI /w selection
attB-GFP-Dnmt3b6-Poly(A) -NeoR GFP cDNA KI /w selection
attB_eGFP_Dnmt3b_C656A_Poly(A)-NeoR GFP cDNA KI /w selection
attB_eGFP_Dnmt3b_D809G_Poly(A)-NeoR GFP cDNA KI /w selection
attB_eGFP_Dnmt3b_dX_Poly(A)-NeoR GFP cDNA KI /w selection
attB_eGFP_Dnmt3b_G655S_Poly(A)-NeoR GFP cDNA Kl /w selection
attB_eGFP_Dnmt3b_L656T_Poly(A)-NeoR GFP cDNA KI /w selection

attB_eGFP_Dnmt3b_V718G_Poly(A)-NeoR GFP

cDNA Kl /w selection




attB_eGFP_Dnmt3b_V810M_Poly(A)-NeoR
attB_eGFP_Dnmt3b6_Poly(A)-NeoR

attB- mCh -Dnmt3b1-Poly(A) -NeoR

attB- mCh -Dnmt3b6-Poly(A) -NeoR

attB_ mCh _Dnmt3b_C656A_Poly(A)-NeoR
attB_ mCh _Dnmt3b_D809G_Poly(A)-NeoR
attB_ mCh _Dnmt3b_dX_Poly(A)-NeoR
attB_ mCh _Dnmt3b_G655S_Poly(A)-NeoR
attB_ mCh _Dnmt3b_L656T_Poly(A)-NeoR
attB_ mCh _Dnmt3b_V718G_Poly(A)-NeoR
attB_ mCh _Dnmt3b_V810M_Poly(A)-NeoR
attB_ mCh _Dnmt3b6_Poly(A)-PuroR

attB- mCh -Dnmt3b1-Poly(A)-PuroR

attB- mCh -Dnmt3b6-Poly(A)-PuroR

attB_ mCh _Dnmt3b_C656A_Poly(A)-PuroR
attB_ mCh _Dnmt3b_D809G_Poly(A)-PuroR
attB_ mCh _Dnmt3b_dX_Poly(A)- PuroR
attB_ mCh _Dnmt3b_G655S_Poly(A)-PuroR
attB_ mCh _Dnmt3b_L656T Poly(A)-PuroR
attB_ mCh _Dnmt3b_V718G_Poly(A)-PuroR
attB_ mCh _Dnmt3b_V810M_Poly(A)-PuroR
attB_ mCh _Dnmt3b6_Poly(A)-PuroR
attB-GFP-Tet1-Poly(A)
attB-GFP-Tet1d1-389-Poly(A)
attB-GFP-Tet1d390-565-Poly(A)
attB-GFP-Tet1d566-833-Poly(A)
attB-GFP-Tet1d834-1053-Poly(A)
attB-GFP-Tet1d1054-1363-Poly(A)
attB-GFP-Tet1d1-833-Poly(A)
attB-GFP-Tet1d834-1363-Poly(A)
attB-GFP-Tet2-Poly(A)
attB-GFP-Tet2d1-225-Poly(A)
attB-GFP-Tet2d226-398-Poly(A)
attB-GFP-Tet2d399-650-Poly(A)
attB-GFP-Tet2d651-848-Poly(A)
attB-GFP-Tet2d849-1038-Poly(A)
attB-GFP-Tet2d1-650-Poly(A)
attB-GFP-Tet2d651-1038-Poly(A)
attB-GFP-Uhrf1-Poly(A)
attB-GFP-Uhrf1dSRA-Poly(A)

GFP
GFP
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
mCherry
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP
GFP

cDNA KI /w selection
cDNA Kl /w selection
cDNA Kl /w selection
cDNA KI /w selection
cDNA KI /w selection
cDNA KI /w selection
cDNA Kl /w selection
cDNA KI /w selection
cDNA Kl /w selection
cDNA KI /w selection
cDNA KI /w selection
cDNA Kl /w selection
cDNA Kl /w selection
cDNA Kl /w selection
cDNA KI /w selection
cDNA KI /w selection
cDNA Kl /w selection
cDNA KI /w selection
cDNA Kl /w selection
cDNA KI /w selection
cDNA KI /w selection
cDNA Kl /w selection
cDNA KiI
cDNAKI
cDNA KI
cDNAKI
cDNA KiI
cDNA KI
cDNA Kl
cDNAKI
cDNA KiI
cDNAKI
cDNA KiI
cDNA KI
cDNA KI
cDNAKI
cDNA KiI
cDNA KI
cDNA Kl
cDNAKI




Supplemental Table Legends

Table S1: CRISPR/Cas9-mediated MIN-tag insertion efficiencies

For MIN-tag Insertion, J1 mESCs transfected with the appropriate MIN-tag donor
oligonucleotides or PCR products along with the Cas9, gRNA, and CRISPR surrogate
reporter vector were single cell sorted after enriching for cells with CRISPR/Cas activity.
The number of clones with either a monoallelic or biallelic insertion of the MIN-Tag is

shown in relation to the number of clones screened.

Table S2: Oligonucleotide sequences used for CRISPR/Cas assisted targeting

and screening

DNA oligonucleotides used for the generation of target specific gRNA expression

vectors, surrogate reporters, and homology donors for MIN-tag integration.

Table S3: Bxb1-mediated recombination efficiencies

For Bxb1-mediated recombination, J1 mESCs transfected with NLS-Bxb1, the Bxb1
surrogate reporter, and the respective attB-site containing integration construct were
single-cell sorted after enrichment for cells with Bxb1 activity. The number of clones with
either a monoallelic or biallelic integration of the listed construct is shown in relation to

the total number of clones screened.

Table S4: Evaluation of FRAP protein kinetics
Evaluation of FRAP kinetics (w/o 5-azadC treatment) performed in Dnmt3bGFP/GFP
and Dnmt3bmCh-3b1/GFP-3b6 cells

Table S5: The MIN-tag toolbox
Vectors generated for Bxb1 mediated recombination into MIN-tagged cell lines. KO:

knockout, Kl: knockin
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Abstract

TET proteins are crucial epigenetic factors mediating active DNA-demethylation and gene
reactivation by oxidizing 5-methylcytosine (mC) to 5-hydroxymethyl- (hmC), 5-formyl- (fC) and 5-
carboxylcytosine (caC). Additionally, TET proteins regulate transcription independently of their
catalytic activity through their employment in various epigenetic complexes. However, the role of
the non-catalytic protein domains of TET1 for its protein-protein interactions has not been
investigated so far. Here, we performed affinity purification mass spectrometry (AP-MS) as well as
proximity-based protein labelling (BiolD) of TET1 in mouse embryonic stem cells and discovered
both known interaction partners and novel factors to be associated with the TET1 N-terminus. We
confirmed direct interaction of TET1 and SALL4 with biochemical methods and high-throughput
microscopy. Furthermore, we identified the uncharacterized protein QSER1 as a novel TET1
interactor, with yet unknown implications for TET1 biological function. Our results shed light on
the TET1l protein interactome and its role within the epigenetic protein network during
pluripotency.
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Introduction

DNA methylation has long been considered a stable epigenetic mark which regulates
transcriptional silencing of imprinted alleles, the X-chromosome, retrotransposons and CpG
promoter genes (Smith and Meissner 2013; Edwards et al. 2017). Addition of a methyl-group to
the carbon-5 position of a cytosine base (mC) is mediated by DNA methyltransferases (DNMT)
family proteins (Bestor et al. 1988; Okano et al. 1999; Bourc'his et al. 2001). With the discovery of
the TET family of 2-OG and Fe(Il)-dependent dioxygenases and their oxidation activity towards
mC, hitherto unknown dynamics of this DNA modification were discovered (Iyer et al. 2009;
Tahiliani et al. 2009; Kriaucionis and Heintz 2009).

TET-mediated subsequent conversion of mC to 5-hydroxymethyl (hmC), 5-formyl- (fC) and 5-
carboxylcytosine (caC) leads to active or passive DNA demethylation (Tahiliani et al. 2009; Ito et
al. 2011; X. Wu and Zhang 2017). Impaired propagation of oxidized cytosines during replication
results in passive demethylation, while excision of fC or caC by TDG and base excision repair
(BER) repair represents an active DNA-demethylation pathway causing transcriptional gene
reactivation (Maiti and Drohat 2011; He et al. 2011; Mdller et al. 2014; Weber et al. 2016; Kohli
and Zhang 2013).

The TET protein family members TET1, 2 and 3, contribute to DNA-demethylation during
embryonic development (X. Wu and Zhang 2017). While TET3 has been implicated in global mC
erasure from the paternal and maternal genomes in the early zygote (Guo et al. 2014), TET1 is
important for demethylation of primordial germ cell genomes (Yamaguchi et al. 2012).
Additionally, TET1 and TET2 are expressed in pluripotent stem cells from the inner cell mass of
the blastocyst (Szwagierczak et al. 2010; Ito et al. 2010) where they are involved in maintenance
of pluripotency and lineage differentiation (Ficz et al. 2011; Williams et al. 2011).

TET1 both positively and negatively regulates transcription in mouse embryonic stem cells (ESCs)
and its depletion in mouse embryos was recently shown to be lethal at gastrulation stage in non-
inbred mice (Ito et al. 2010; H. Wu et al. 2011; Khoueiry et al. 2017). This dual function is caused
by engagement of TET1 in different chromatin-modifying complexes but not necessarily
dependent on the catalytic activity towards mC (H. Wu et al. 2011; W. Zhang et al. 2016). On the
one hand, TET1 is associated with the Sin3A/HDAC repressive complex, Polycomb group proteins
and NuRD complex members (H. Wu et al. 2011; Williams et al. 2011; Neri et al. 2013; Fidalgo et
al. 2016). On the other hand, TET1 interacts with multiple transcription factors e.g. NANOG or
GADDA4543, resulting in demethylation of promoter sequences and transcriptional activation (Costa
et al. 2013; Kienhofer et al. 2015).

Interestingly, the low complexity N-terminal region (Iyer et al. 2009) of TET1 which is heavily post-
translationally modified has neither been described to be essential for any of the published
interaction partners nor the catalytic function of TET1 (Bauer et al. 2015; Vella et al. 2013;
Nakagawa et al. 2015). However, the N-terminal domain enhances global chromatin binding
ability of TET1 in mESCs (W. Zhang et al. 2016). Thus, we aimed to further explore the N-terminal
TET1 interactome in ESCs to establish novel regulatory links for this important epigenetic player.
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Here, we employed classical GFP-pulldown approach followed by LC-MS/MS as well as proximity
based protein labelling (BiolD) to identify novel TET1 associations in both pluripotent and
epiblast-like differentiated mouse embryonic stem cells. We uncover both known and novel
interaction partners of TET1 and further broaden the picture of TET1 involvement in epigenetic
gene regulation.

Results and Discussion

BiolD strategy applied to TET1

To characterize the nano-environment of TET1 we used BioID, a method based on proximity-
dependent labeling of proteins with biotin to first mark, then enrich and finally identify proteins
within approximately 10 nm distance of a target protein (Roux et al. 2012; Kim et al. 2014). To this
end, we cloned a N-terminal fusion of the promiscuous biotin ligase BirA* to TET1 for transient
expression in somatic cells (Fig. 1A). After addition of exogenous biotin for 24 h, immunostaining
of transfected HEK cells revealed a clear overlap of the nuclear TET1 signal and biotin signal (Fig.
1B). In untreated cells, endogenous biotin was mainly detected outside the nucleus where it
serves as cofactor of diverse carboxylase enzymes (Fig. 1B) (Zempleni, Wijeratne, and Hassan
2009). In vivo biotinylated proteins, including TET1 itself, can be enriched using the published
BioID pulldown procedure and detected on a Western Blot (Fig. 1C). Thus, BiolD is applicable to
TET1 both in somatic cells as well as in mouse embryonic stem cells, as we have shown before
(Mulholland et al. 2015).

Figure 1
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Figurel: The BiolD strategy applied to TET1. (A) TET1 protein domain structure. TET1 fused N-
terminally with a promiscuous biotin ligase (BirA*). CXXC: zinc finger domain. DSBH: double-stranded
beta helix domain. (B) Immunostaining of HEK cells transiently expressing the BirA*-TET1 fusion
construct. Cells incubated without biotin addition (w/0) or with 50 uM biotin for 24 h were stained
with an antibody against TET1 and streptavidin-594 (biotin), scalebar = 10 ym. (C) Western Blot of
BioID pulldown experiment. Protein lysates from HEK293T cells transiently expressing BirA*-TET1 were
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incubated with streptavidin beads and enriched proteins were visualized with fluorescently-labeled
streptavidin. I: Input, S: supernatant, B: Bound, w1,3: Wash.

TET1 protein associations in mESCs

Next, we used mESC lines with an endogenous insertion of GFP or BirA* at the Tetl genomic
locus, respectively, and performed a GFP-pulldown or BiolD followed by mass spectrometry
analysis (Fig. 2A, C). For enhanced statistical power, triplicate BiolD experiments were performed
and combined with a previously published BiolD duplicate sample set (Mulholland et al. 2015) for
analysis.

In triplicate GFP-pulldowns from nuclear extracts Tetl®"/¢ ESCs cultured in serum/2i/Lif
conditions, 936 protein groups were quantified. However, only four proteins showed significant
enrichment (FDR = 0.05) compared to the negative control, including TET1 itself (Fig. 2B). The
other significant hits were glutamine and serine-rich protein 1 (QSerl), Na(+)/K(+) ATPase alpha-
1 subunit (Atplal) and ATP synthase protein 8 (mt-Atp8). Two proteins were found de-enriched,
namely Oct-11 (Pou2f3) and Kctd18.

In contrast, BiolD pulldowns yielded around 30 significantly enriched proteins (FDR = 0.02), even
with fewer total protein groups identified (Fig. 2D, Supplementary Table S1). This discrepancy in
results could be explained by different experimental procedures applied in the two approaches.
In BiolD, proteins are biotin-labeled /n vivo followed by a denaturing pulldown of biotinylated
proteins, while GFP pulldown is performed with cellular protein extracts, where TET1-containing
complexes might have dissociated due to cell lysis conditions.

Thus, the BiolD strategy is more promising than a GFP-pulldown to obtain not only directly
interacting proteins but also proximate, indirect or transient interactors (Roux et al. 2012),
shedding light on the immediate protein environment of TET1.

Among the 32 candidate proteins identified in BiolD are several known TET1 interactors and
members of TET1-associated complexes as well as novel interaction candidates.

First, several members of the SIN3A/HDAC repressive complex were identified by BiolD, namely
SIN3A, SAP130, Arid3b and Arid4a (Fig. 3). SIN3A is a global transcriptional regulator involved in
numerous gene regulatory processes (Silverstein and Ekwall 2005). The SIN3A/HDAC core
complex has histone deacetylase activity towards histone 3 and 4 and mediates transcriptional
repression (Laherty et al. 1997; Kadamb et al. 2013). TET1 was shown to recruit SIN3A to
chromatin for transcriptional repression of a subset of TET1-targeted genes (Williams et al. 2011).
Furthermore, SIN3A acts as a scaffold protein to recruit numerous other chromatin modifying
complexes, such as nucleosome remodelers, histone and DNA methyltransferase complexes
(Silverstein and Ekwall 2005). Interestingly, nearly all chromatin remodeler complex proteins
found in BiolD are associated with Sin3A (Figure 3) such as Bptf, a member of the NURF complex
(Xiao et al. 2001).
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Figure 2
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Figure 2: Proteins identified in GFP-pulldown experiments and BiolD of TET1 in mESCs
(serum/2i/Lif). Scheme of GFP-pulldown (A) and BioIlD (B) workflows. (C) Volcano plot of proteins
identified in the GFP-pulldown. n=936 protein groups, black: significantly enriched/de-enriched
proteins (FDR=0.05, S0=0.1). (D) Volcano plot of proteins enriched by BioIlD. n=276 protein groups,
black: significantly enriched proteins (FDR=0.02, SO=0.1). See also Supplementary Table S1.

log, ratio (GFP-pulldown/control)

Second, MLL1/MLL2 histone methyltransferase complex subunits are represented in the BiolD
dataset with Mga, Hcfcl, Ruvbll and Kmt2b (Fig. 3). MLL histone methyltransferase complexes
methylate H3K4 on active genes and enhancer sequences (Shilatifard 2012), a chromatin mark
which is present at ~70% of TET1-bound DNA sequences (H. Wu et al. 2011).

Third, NuRD complex associated proteins are found in the BioID pulldown, namely Sall4, Zfp281
and Gatad2a (Fig. 3). Gatad2a is a core component of the NuRD complex, while Sall4 and Zfp281
were described as NuRD-associated proteins (Bode et al. 2016; Kloet et al. 2015; van den Berg et
al. 2010; Fidalgo et al. 2012). Zfp281 was recently shown to recruit TET1 to chromatin for
transcriptional regulation of primed pluripotency genes (Fidalgo et al. 2016).

Finally, several detected proteins, like Zfp281, Rifl and Sall4, are closely related to NANOG (Fig.
3)(Costa et al. 2013). NANOG was one of the first identified interaction partners of TET1 and
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functionally collaborates with the SIN3A/HDAC complex in ESCs to regulate pluripotency genes
(Costa et al. 2013; Saunders et al. 2017).

In summary, the TET1 nano-environment determined here shows strong overlap with a SIN3A-
centered supercomplex including MLL1, SIN3A/HDAC, Swi/Snf, NuRD, the TFIID pre-initiation
complex and pre-initiation RNA-processing factors (Nakamura et al. 2002). Apart from the
chromatin complexes represented in the BiolD pulldown mentioned above, we identified nine
other candidates whose involvement in TET1-dependent processes still needs to be determined
(Fig. 3).

Figure 3

e @
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Figure 3: Protein complex network of TET1 interactors in mESCs as identified with BiolD. Solid
lines: STRING database interaction score > 0.4. Dashed lines: NANOG-associated proteins. Grey:
proteins unassigned to an epigenetic complex. Color: epigenetic complex members.

TET1 protein associations in primed pluripotent cells

Early differentiation of pluripotent blastocyst cells towards “primed” epiblast cells in mouse
embryos can be recapitulated /n vitro by culturing of naive pluripotent stem cells in presence of
Activin and FGF2 to generate epiblast-like cells (EpiLC) (Hayashi et al. 2011). TET1 expression was
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reported in both naive cells as well as EpiLC (Szwagierczak et al. 2010; Sohni et al. 2015), thus we
investigated potential changes in the TET1 nano-environment during EpiLC differentiation. To this

1BIABIA calls in naive conditions (serum-free 2i/Lif, 0 h) and 64 h

end, we performed BiolD of Tet
after start of the differentiation (FGF2, Activin). The 0 h time-point yielded only few protein
groups, therefore no further statistical analysis of this sample subset was performed (Fig. 4A). In
EpiLCs, 18 significantly enriched protein groups were identified (Fig. 4B). 17 of those candidates
were also detected in the undifferentiated serum/2i/Lif state (Fig. 4C), suggesting no major
change of TET1 associations between the two states. TET1, together with Zfp281 is essential for
promoting the primed (EpiLC) pluripotency state by both repressing “naive” genes as well as
activating “primed"” pluripotency genes (Fidalgo et al. 2016). Our datasets confirm the association

of TET1 and Zfp281 and the engagement of TET1 in both activating and repressing epigenetic
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Figure 4: TET1 protein associations in epiblast-like cells (EpiLC). (A) Identified protein groups in
quadruplicate BioID pulldowns from naive (0 h) and EpilLC cells (64 h). (B) BioID of TET1 in EpiLC cells.
Cells were cultivated for 64 h in Activin and FGF2-containing medium. n=116 protein groups. Black:
significantly enriched protein groups (FDR=0.01, S0=0.1). Blue: BirA*-TET1. Cross: putative “false
positive” proteins identified in other BirA*-pulldown datasets as well (Schmidtmann et al. 2016). See
also Supplementary Table S2. (C) Overlap of proteins identified as significant enriched in EpiLC and
serum/2i/Lif ESCs (data from Fig. 2D).
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SALL4 is a direct interaction partner of TET1

A candidate protein identified in BioIlD from both serum/2i/Lif state as well as EpiLC state was the
zinc finger transcription factor SALL4. SALL4 is essential for maintenance of pluripotency by both
activating critical signaling pathways as well as transcriptional regulation of pluripotency factors
(Sakaki-Yumoto et al. 2006; J. Zhang et al. 2006; X. Zhang et al. 2015). By Western Blot analysis,
we confirmed interaction of immunoprecipitated endogenous TET1 with SALL4 in mESCs (Fig.
5A). SALL4 has three annotated isoforms (NCBI Resource Coordinators 2016) which are derived
from alternative splicing of exon 2 (Fig. 5B). Since it was proposed that SALL4 isoforms might
form divergent protein complexes in ESCs (Rao et al. 2010), we examined SALL4A and C,
respectively. In fluorescence-three-hybrid assays (F3H), a GFP-tagged target protein is enriched at
a lac-operator array using GBP-Lacl and co-localization of a mCherry-tagged candidate protein is
examined (Herce et al. 2013). Co-occurrence of GFP- and mCherry-signal at the lac-operator
confirmed the interaction of the GFP-tagged TET1 with mCherry-tagged SALL4 isoform A (Fig.
5C) and isoform C (Fig. 5D). Both SALL4 isoforms interacted with all tested TET1 deletion
constructs (Fig. 5C, D). Additionally, we assessed whether this interaction is influenced by
NANOG, a known interactor of both SALL4 and TET1 (Costa et al. 2013; Tan et al. 2013; Q. Wu et
al. 2006). Co-expression of NANOG did not alter the percentage of mCherry-positive GFP-spots
(Fig. 5C, D), suggesting that TET1 and SALL4 interact independently of NANOG.

In summary, we confirmed SALL4 isoforms A and C as direct interactors of TET1 which is
consistent with a recent study reporting SALL4A to bind hmC and to interact with TET1 at
enhancer sequences (Xiong et al. 2016).
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Figure 5
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Figure 5: SALL4 is a direct interaction partner of TET1l. (A) SALL4 detection after Co-IP of
endogenous TET1 from ESCs (serum/2i/Lif) using an a-TET1 antibody, L. Input, FT: Flow-through, W:
Wash, B: Bound, neg.: beads only control. (B) SALL4 protein isoforms SALL4A (113 kDa), SALL4B (66
kDa) and SALL4C (30 kDa). (C and D) F3H assay of Tetl with SALL4A (C) and SALL4C (D) either in
presence or absence of Nanog, y-axis: percent of GFP-lacl spots which are also positive for mCherry-
signal. Different TET1 deletion constructs were used: FL= full length TET1, d1-833 = N-terminal
deletion of aa 1 to 833, d834-1363 = N-terminal deletion of aa 833 to 1363, CD = catalytic domain
only (aa 1363-2039), n=3, error bars = standard deviation.

Uncharacterized protein QSER1 is a novel TET1 interactor

Unexpectedly, the overlap between GFP-pulldown derived interactors and BiolD candidates is
negligible (Figure 2). Notably, QSERL is the only candidate found as significant in both
experiments. Furthermore, QSER1 was detectable in the "Bound” fraction when endogenous TET1
is enriched from ESCs (Fig. 6A). QSER1 is a glutamine and serine-rich protein of 1700 amino acids
length conserved in rodents and monkeys (Boratyn et al. 2013) which is associated with NANOG
in ESC (Costa et al. 2013).

However, F3H analysis confirmed that the interaction of QSER1 with TET1 is not dependent on
NANOG (Fig. 6B). Interestingly, QSER1 specifically binds to the N-terminal domain of TET1, since
the percentage of mCh-positive spots was significantly reduced for the TET1 CD-only construct
(Fig. 6B). Confocal microscopy revealed nuclear localization of the endogenous QSER1 protein
comparable to TET1 localization pattern (Fig. 6C).
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Here, we for the first time documented the direct interaction of QSER1 and TET1 which is
dependent on the TET1 N-terminus. QSER1 with its sequence virtually free of known protein
domains has not been assigned to a function yet, thus the biological relevance of this interaction
remains to be determined. Disruption of QSER1 expression will provide insights into its biological
function for epigenetic regulation and pluripotency.

Figure 6
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Figure 6: QSER1 is a novel TET1-interacting protein. (A) Co-IP of endogenous TET1 when pulled on
QSER1 using a-QSER1 antibody. I = Input, FT = Flowthrough, W = Wash, B =Bound, neg. = beads only
control. (B) F3H assay of TETL and QSER1 in presence/absence of NANOG. Asterisks indicate
significant changes compared to TET1 full length (FL), FDR < 0.01, n = 3, error bars = standard
deviation. (C) Confocal microscopy of endogenous TET1 and QSERL, respectively. Scalebar = 5 um.

Conclusion

In summary, we report BiolD to be more fruitful for detection of TET1-protein interaction
candidates than classical GFP-pulldown approaches. With BiolID, we identified numerous proteins
either interacting directly or being engaged in TET1l-containing protein complexes, thereby
shedding light on functional associations of TET1 in ESCs. Notably, we also identified novel TET1-
interacting proteins, such as QSER1, with yet unknown implications for epigenetic regulation and
pluripotency. With the valuable ressource reported here, we provide a basis for functional studies
to elucidate the role of these interactions and to further expand the knowledge of TET1 in
epigenetics and pluripotency.
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Experimental Procedures

Cloning

For generation of the CAG-BirA*-Tetl overexpression construct (pc3119), the BirA* sequence was
amplified from pcDNA3.1_myc-BioID plasmid (Addgene plasmid #35700, (Roux et al. 2012)) and
inserted into a TET1 containing CAG promoter backbone (pc2271, (Frauer et al. 2011) using
restriction digest followed by religation using T4 DNA ligase (Thermo Fisher Scientific). For
amplification of QSER1 and SALL4 coding sequences, cDNA from mouse J1 ESCs prepared with
the High-Capacity cDNA Reverse Transcription Kit (Thermo Scientific) was used as template.
Respective sequences were inserted to plasmid backbones containing CAG-GFP or CAG-mCherry
resulting in pCAG-GFP-Qserl (pc3547), pCAG-mCh-Sall4 isoform a and c¢ (pc3544 and pc3546)
constructs. The CAG-GFP-Tetl FL (pc2271) and pGBP-Lacl constructs were described previously
(Frauer et al. 2011; Herce et al. 2013). TET1 deletion constructs CAG-GFP-TET1-CD (pc3156), CAG-
GFP-TET1d1-833 (pc3178) and CAG-GFP-TET1d834-1363 (pc3179) were generated by recloning
the sequences from the respective attB-containing plasmids (Mulholland et al. 2015) to a CAG-
GFP backbone by restriction enzyme digest and ligation. pPyCAG-Nanog-IP was a gift from
Shinya Yamanaka (Addgene plasmid #13838, (Mitsui et al. 2003)).

Cell culture

J1 mouse embryonic stem cells (ESCs) were cultured in gelatin-coated flasks in ESC medium
supplemented with 1000 U/ml recombinant leukemia inhibitory factor Lif (Millipore), 1 yM MEK
inhibitor PD0325901 and 3 uM GSK-3 inhibitor CHIR99021 (2i, Axon Medchem) as described in
(Mulholland et al. 2015). Differentiation of naive ESCs cultured in serum-free 2i/Lif-containing
medium to epiblast like cells (EpiLC) was performed for 64h as described before (Hayashi and
Saitou 2013; Mulholland et al. 2015). ESC lines used in this study were Tet1*®*/2" and Tet1®/BrA*
(Mulholland et al. 2015). TET1°"/SF cell line was generated from Tet1®™" entry cell line using
Bxb1-mediated recombination as described in (Mulholland et al. 2015).

Somatic baby hamster kidney (bhk) cells with a stably integrated lac Operator array (Tsukamoto
et al. 2000) were cultured in Dulbecco’s modified Eagle's medium (DMEM) supplemented with
1uM gentamycin and 10% fetal calf serum. All cell lines were tested for mycoplasma
contamination on a regular basis. Transient transfections were performed with Lipofectamine®
3000 reagent (Thermo Fisher Scientific) according to manufacturer’s instructions.

GFP-pulldown

TET1%7/SF cells were harvested from a T175 culture flask and nuclear extracts were prepared as
described in (Baymaz, Spruijt, and Vermeulen 2014). For each replicate, 600 ug - 1 mg of nuclear
protein extract was incubated with 30 pl GFP-Trap® agarose beads (Chromotek) in IP buffer (20
mM HEPES/KOH pH7.9, 210 mM NaCl, 2 mM MgCl,, 0.2 mM EDTA, 10% (v/v) Glycerol, 0.07% NP-
40, 1x Protease inhibitor) for 2h at 4°C. Beads were washed twice in IP wash buffer (20 mM
HEPES/KOH pH7.9, 250 mM NaCl, 2 mM MgCl,, 0.2 mM EDTA) and resuspended in 50 mM
Tris/HClI pH 7.5 for further processing.

BiolD
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Tet1B™7B™" cells were incubated with 50 uM biotin for 48 h and harvested from two T175 flasks
per replicate. Crude nuclei extraction and BiolD pulldown were performed as described before
(Mulholland et al. 2015; Roux, Kim, and Burke 2013). In brief, crude nuclei prepared as described
in (Baymaz, Spruijt, and Vermeulen 2014) were resuspended in BiolD-lysis buffer (0.2%SDS, 50
mM Tris/HCI pH 7.4, 500 mM NaCl, 1 mM DTT, 1x Protease inhibitor), supplemented with 2%
Triton X-100 and sonicated using a Diagenode Bioruptor® (15 min, 200 W, 30 s “on”, 1 min "off").
Enrichment of biotinylated proteins was achieved by overnight incubation with 50 pyl M-280
Streptavidin Dynabeads (Life Technologies) at 4°C. Beads were washed with wash buffer 1 (2%
SDS), wash buffer 2 (0.1% desoxycholic acid, 1% Triton X-100, 1 mM EDTA, 500 mM NaCl, 50 mM
HEPES/KOH pH 7.5), wash buffer 3 (0.5% desoxycholic acid, 0.5% NP-40, 1 mM EDTA, 500 mM
NaCl, 10 mM Tris/HCl pH 7.4) and twice with 50 mM Tris/HCl pH 7.4.

Tryptic digest and desalting of peptides for LC-MS/MS

Enriched protein fractions were denatured with 2 M Urea in 50 mM Tris/HCI pH 7.5, reduced
using 10 mM DTT, alkylated with 50 mM chloroacetamide and digested on-beads using 0.35 ug
trypsin (Pierce, Thermo Scientific) as described before (Baymaz, Spruijt, and Vermeulen 2014).
Peptide desalting was done using StageTips (Rappsilber, Mann, and Ishihama 2007).

Mass Spectrometry

Tandem mass spectrometry measurements were performed using a EASY-nLC 1000 nano-HPLC
system connected to a LTQ Orbitrap Elite mass spectrometer (Thermo Fisher Scientific) with the
settings described in (Mulholland et al. 2015). For downstream analysis of raw data, the
MaxQuant software suite (version 1.5.1.6 or higher) and associated Perseus software (versions
1.5.2.6 or 1.5.5.3) were used (Cox and Mann 2008). Peptide spectra were searched against the
UniprotKB mouse proteome database (Swissprot)(UniProt Consortium 2015) and common
contaminants as well as sequences of BirA* and GFP. Carbamidomethylation of cysteine was set
as fixed modification and oxidation of methionine, protein N-terminal acetylation and
biotinylation were defined as variable modifications. Trypsin/P derived peptides with a maximum
of 3 missed cleavages and a protein false discovery rate of 1% were quantified using the MaxLFQ
label free quantification algorithm (Cox et al. 2014). For BiolD of ESCs (serum/2i/Lif), raw files
from a duplicate measurement performed previously (Mulholland et al. 2015) analyzed together
with another three replicates to achieve more statistical power of a quintuplicate experiment. For
EpiLC state cells, BioID pulldowns were done in quadruplicates. GFP-pulldown experiments were
performed in triplicates and compared (to a total of four) control samples derived from
Tet1®™/#% and Tet1¥™/B™" cell lysates. From the identified protein groups, only those quantified
in at least two replicates per pulldown were subjected to statistical analysis in a two-sided
Student’s T-test with a permutation based FDR calculation. For further illustrations of protein
networks the following tools were used: Venn diagram Webtool of the University of Gent
(http://bioinformatics.psb.ugent.be/webtools/Venn/), STRING database (Szklarczyk et al. 2017)
and Cytoscape version 3.4.0 (www.cytoscape.org).

93



Results

Co-IP and Western Blot experiments

Co-immunoprecipitation of proteins from nuclear extracts was performed with antibody coupled
to protein G sepharose (GE Healthcare) for 60 min at 4°C. After two washing steps (20 mM
Tris/HCl pH 7.5, 150 mM NaCl, 0.5 mM EDTA) bound proteins were separated by SDS-PAGE and
analysed via Western Blot. Biotin signal was detected using fluorophore-coupled Streptavidin-
Alexa594 (Dianova, 1:1000). For specific protein enrichment and detection, rat a-TET1 2H9 (Bauer
et al. 2015), rabbit a-Sall4 (ab29112, abcam, 1:1000) and rabbit a-QSER1 (ab191504, abcam,
1:1000) with the respective HRP-conjugated secondary antibodies (Biorad, Jackson
ImmunoResearch, 1:5000) were used.

F3H assays

Fluorescent-three-hybrid assay were performed as described described before (Miiller et al. 2014;
Herce et al. 2013). In brief, bhk cells co-transfected with GBP-lacl, pPyCAG-Nanog-IP and
respective CAG-GFP- and CAG-mCherry-plasmids were fixed in 4% paraformaldehyde and DNA
was counterstained with DAPL Image acquisition and analysis was performed using an Operetta
High content Imaging system (Perkin Elmer) and corresponding software. Statistical analysis was
performed using GraphPad Prism version 7.

Immunofluorescence microscopy

Immunofluorescence staining was performed as described previously (Solovei and Cremer 2010)
with the following antibodies: a-QSER1 (ab191504, abcam, 1:100) and a-TET1 5D6 (Bauer et al.
2015), a-rat conjugated to Alexa488 (Invitrogen, 1:400) and a-rabbit conjugated to Alexa594
(Invitrogen, 1:400). For acquisition of single optical sections, a Leica TCS SP5 confocal microscope
equipped with a Plan Apo 63x/1.4 NA oil immersion objective was used.

Supplementary Material

Table S1: Volcano Plot data from GFP-pulldown and BiolD (serum/2i/Lif), corresponding
to Figure 2.
Table S2: Volcano Plot data from BiolD (EpiLC), corresponding to Figure 4.
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Supplementary Table S1: Volcano Plot data from GFP-pulldown and BioID (serum/2i/Lif),
corresponding to Figure 2.
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Results

Karg et al., unpublished manuscript

Suppementary Table S2: Volcano Plot data from BioID (EpiLC), corresponding to Figure 4.
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4.5. Ubiquitome analysis reveals PCNA-associated factor
15 (PAF15) as a specific ubiquitination target of UHRF1 in
embryonic stem cells
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Abbreviations

UHRF: Ubiquitin-like PHD and RING finger domain-containing protein, DNMT1: DNA
methyltransferase 1, PCNA: proliferating cell nuclear antigen, PAF15: PCNA-interacting factor 15,
ESC: mouse embryonic stem cells, TLS: translesion DNA synthesis, ICL: DNA interstrand crosslinks

Abstract

Ubiquitination is a multifunctional posttranslational modification controlling the activity,
subcellular localization and stability of proteins. The E3 ubiquitin ligase UHRFL is an essential
epigenetic factor that recognizes repressive histone marks as well as hemi-methylated DNA and
recruits DNMT1. To explore enzymatic functions of UHRF1 beyond epigenetic regulation we
conducted a comprehensive screen in mouse embryonic stem cells to identify novel
ubiquitination targets of UHRF1 and its paralogue UHRF2. We found differentially ubiquitinated
peptides associated with a variety of biological processes such as transcriptional regulation and
DNA damage response. Most prominently, we identified PCNA associated factor 15 (PAF15, also
known as Pclaf, Ns5atp9, KIAA0101 and OEATC-1) as a specific ubiquitination target of UHRF1.
Although the function of PAF15 ubiquitination in translesion DNA synthesis (TLS) is well
characterized, the respective E3 ligase had been unknown. We could show that UHRF1
ubiquitinates PAF15 at Lys 15 and Lys 24 and promotes its binding to PCNA during late S-phase.
In summary, we identified novel ubiquitination targets that link UHRF1 to transcriptional
regulation and DNA damage response.

Keywords
Epigenetics; cell cycle; mass spectrometry; E3-ligase; translesion synthesis (TLS)
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Introduction

Posttranslational modifications such as ubiquitination greatly affect protein function in a variety
of cellular processes. The reversible conjugation of ubiquitin molecules to a target protein has
distinct physiological effects such as destabilization of target proteins, altered protein trafficking
and functional modulation [1-4]. Ubiquitination of lysine residues is mediated in an E1-E2—E3 tri-

enzyme cascade, where ubiquitin transfer from a E2~Ub intermediate to a lysine on a substrate is
mediated by E3 ligase enzymes. E3 ligase activity is often endowed in a Really Interesting New
Gene (RING) domain [5], which is present in Ubiquitin-like PHD and RING finger domain-
containing protein 1 (UHRF1) and its paralogue UHRF2. UHRF1 (also known as NP95 or ICBP90) is
not only a well characterized factor in DNA methylation maintenance, rendering it essential for
early embryonic development, but also for cell cycle regulation and genome stability [6,7].

First, UHRF1 targets maintenance DNA methyltransferase 1 (DNMT1) to newly synthesized DNA
in heterochromatin after replication [8-10], by cooperative binding of repressive H3K9me3 marks
and hemimethylated DNA [11] and by ubiquitination of H3 tails on K18 (K23 in Xenopus), which is
specifically recognized (and bound) by the ubiquitin interacting motif (UIM) in the TS domain of
DNMT1 [12,13].

Second, UHRF1 plays a role in cell cycle progression as shown by its co-localization with
proliferating cell nuclear antigen (PCNA) during S phase [14] and the increased sensitivity of
UHRF1-deficient embryonic stem cells (ESCs) towards treatment with the replication-inhibiting
reagent hydroxyurea [6].

Finally, UHRF1 has a critical role in maintenance of genome stability [6,15] by recognizing and
binding DNA interstrand crosslinks (ICLs) and thereby inducing repair pathways such as the
Fanconi anemia pathway [16,17]. Further, UHRF1 is important for the repair of DNA double strand
breaks in a cell cycle dependent manner [18].

Although numerous reported functions of UHRFL involve ubiquitination activity of target
proteins, such as DNMT1 [19,20] and histone H3 [12,13,21], no comprehensive screen of
ubiquitination targets of UHRF1 has been performed so far.

Here, we screen for specific ubiquitination targets of UHRF1 by comparing the ubiquitome of wild
type (wt), UHRF1- and UHRF2-deficient mouse ESCs. With an antibody-dependent enrichment of
ubiquitin remnant motif-containing peptides followed by isobaric-labeling based quantitative
mass spectrometry, we find both known and novel E3 ligase substrates of UHRF1 involved in a
variety of biological processes such as RNA processing, DNA methylation and DNA damage
repair. Our results uncover that PCNA-interacting factor (PAF15) 15 [22] is a ubiquitination target
of UHRF1 but not UHRF2. Ubiquitination of PAF15 is well characterized to be important in
replication block bypass by regulating the recruitment of translesion DNA synthesis (TLS)
polymerases [23] but the respective E3-ligase was not identified until now. We demonstrate that
UHRF1-dependent ubiquitination promotes binding of PAF15 to PCNA, thereby unraveling a
novel function of UHRFL in regulating DNA damage response.
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Ubiquitome of mouse embryonic stem cells deficient for UHRF1

To identify specific ubiquitination targets of UHRF1 in ESCs, we compared the ubiquitome of
UHRF1- and UHRF2-deficient cells relative to wt. Enrichment of formally ubiquitinated tryptic
peptides was performed with a specific K-gly-gly antibody, which recognizes a remnant gly-gly
motif on the formerly ubiquitinated lysine residue [24]. For relative peptide quantification in mass
spectrometry, enriched peptide fractions were labeled with isobaric tandem mass tag (TMT)
reagents and pooled for subsequent LC-MS/MS analysis (Figure 1A). In total, we quantified 1248
K-gly-gly containing peptides across two measurements (_A, _B, Supplementary Table S1). 53
peptides show high abundance differences with an intensity change of 3 (log, = 1.58) or higher in
at least two replicates (Figure 1B). We detect both enriched and de-enriched ubiquitinated
peptides in UHRF1-depleted cells compared to wt. The abundance of K-gly-gly peptides is not
necessarily reflected by altered protein expression (Figure 1C), thus the observed differences are
due to posttranslational effects.

PAF15 as a ubiquitination target of UHRF1

For statistical analysis of UHRF1 ubiquitination targets, we compared peptides quantified across
all measured samples and found differentially ubiquitinated peptides in both UArf1”" and Uhrf2”
cells (Supplementary Table S2). Peptides with significant ubiquitination changes can be assigned
to GO terms such as transcriptional regulation, cell cycle regulation and DNA damage response
(Figure 2A and 2B), indicating that the UHRF family is involved in the regulation of a variety of
different proteins. We found 94 differentially regulated peptides in UArfl”" cells of which 62.8%
are not found to be differentially ubiquitinated in the UAr£2”" (Supplementary Figure S1). Notably,
in Uhrfl”" cells the highest loss of ubiquitination was observed for lysine 15 and 24 of PAF15
(Figure 3A), whereas the ubiquitination state of PAF15 in UArf2” cells remained unchanged
(Figure 2C, D), indicating that PAF15 is an ubiquitination target of UHRF1.

The RING domain of UHRF1 ubiquitinates PAF15 on Lys 15 and Lys 24

We confirmed UHRF1 as the E3-ligase of PAF15 by analysis of an UArfI”” ESC line with a different
genetic background (E14). Due to its low protein abundance, we performed immunoprecipitation
experiments to enrich PAF15. In wt ESCs, PAF15 is mono- and mainly di-ubiquitinated, whereas in
Uhrfl” cells PAF15 is unmodified. Ubiquitination of PAF15 is reestablished upon
expression/reintroduction of wt UHRF1-GFP but not UHRF1-GFP H730A, a mutation with reduced
E3 ligase activity [13] (Figure 3B). Thus, UHRF1 does not recruit a different E3 ligase but rather
directly ubiquitinates PAF15 using its RING domain.

Endogenous PAF15 localization throughout S-phase

PAF15 was originally found to be associated with PCNA in a yeast-two-hybrid screen [22], while
UHRF1 is mainly associated with replicating heterochromatin [14,25]. As the interaction with
PCNA is essential for PAF15 ubiquitination [23], we investigated the spatial distribution of UHRF1
and PAF15 at sites of replication. With super-resolution microscopy, we showed that PAF15 and
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PCNA co-localize predominantly in late S-phase in C2C12 myoblasts (median correlation
coefficient = 0.55; Figure 4A, 4C). Likewise, PAF15 and UHRF1 also display the closest proximity in
late S-phase (median correlation coefficient = 0.35; Fig. 4B, D, Supplementary Material, Fig. S2).
Taken together, UHRF1 co-localizes with PAF15 at sites of PCNA foci in late S-phase, where
heterochromatic regions are replicated and thereby could ubiquitinate PAF15 in a cell cycle
dependent manner.

PAF15-PCNA interaction is promoted by UHRFI1 dependent ubiquitination

To investigate the role of UHRF1 for PAF15 localization, we performed immunofluorescence
stainings and found PAF15 co-localizing with PCNA in wt and UHRFZ depleted ESCs, whereas in
Uhrfl1”" ESCs, PAF15 displays a diffuse pattern in late S-phase (Fig. 5A). Furthermore, the
subcellular localization of PAF15 in UArfI”" is restored by expressing UHRF1-GFP wt (Fig. 5B).

To test if PAF15 binding to PCNA is promoted by mono-ubiquitination on positions Lys 15 and
Lys 24, we performed a rescue experiment in PAFI5”" ESCs with GFP-PAF15 wt and double-
mutant GFP-PAF15 K15R.K24R (dm). Interestingly, GFP-PAF15 wt co-localizes with PCNA, whereas
GFP-PAF15 dm is diffusely distributed in the nucleus and only to a little extent associated with
PCNA in late S-phase (Supplementary Fig. S3A). Consistent results were obtained in a
fluorescence-three-hybrid (F3H) assay [26], where RFP-PCNA is recruited to GFP-PAF15 wt, but
not to GFP-PAF15 dm (Supplementary Fig. S3B) confirming that the ubiquitination mark
promotes PAF15-PCNA interaction.

Discussion

E3 ligase proteins mediate the final step of ubiquitin attachment to a target protein, thereby
influencing protein degradation, cell cycle progression, DNA repair and transcription [1-4].

In this study, we investigated specific ubiquitination targets of E3 ligase UHRF1 in mouse
embryonic stem cells. We used a proteomics approach to perform an unbiased, proteome-wide
and site-specific analysis of ubiquitination changes [27]. Since the paralogue UHRF2 is highly
similar to UHRF1 in both sequence and structure, we compared the ubiquitome of Uhrfl and
Uhrf2 knock-out cells to exclude redundancy.

We find numerous differentially ubiquitinated proteins that encompass biological processes such
as transcriptional regulation, RNA binding, DNA damage response and cell cycle regulation. We
find ubiquitination targets of/for both UHRF1 and UHRF2 such as HSP90, DNMT3b [28-30] as
well as UHRF1 specific targets such as UHRF1 itself, Trim28 and H3K18 [13,21,30]. (Further, we
find differentially ubiquitinated histones: H3, H2B, H2A, not different: H1, which is consistent with
studies of UHRF1 in vitro and in vivo ubiquitination [31].)

Most importantly, we find PAF15 as a protein undergoing highest loss of ubiquitination upon
UHRF1 depletion. Mono-ubiquitination of PAF15 at Lys 15 and 24 has been associated with TLS
inhibition by masking TLS polymerase binding sites on PCNA during undisturbed S-phase [23].
Stalled replication caused by DNA lesions leads to PAF15 ubiquitin chain elongation and
subsequent degradation, which is the basis for TLS polymerase recruitment to PCNA [23].
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However, the E3 ligase responsible for PAF15 mono-ubiquitination remained unknown until now
[32]. Here, we show that the RING domain of UHRF1 ubiquitinates PAF15 at Lys 15 and 24 and
influences its association with PCNA throughout S-phase.

The PIP domain dependent PCNA interaction of PAF15 is necessary for its ubiquitination [23] and
our high resolution microscopy analyses revealed PAF15 co-localization with PCNA and UHRF1
exclusively during late S-phase. Thus, we suggest that the ubiquitination takes place in a cell cycle
dependent manner. Furthermore, both UHRF1 depletion and mutation of the lysine residues
result in loss of PAF15 association with PCNA, which hints towards a role for PAF15 ubiquitination
in stabilizing the PAF15-PCNA complex during replication.

In summary, this study identifies a novel role of UHRF1 in regulating replication block bypass via
PAF15 ubiquitination. The comprehensive list of novel ubiquitination targets links UHRF1 to
transcription regulation and DNA damage response suggesting functions beyond epigenetic
regulation and thus provides starting points for futures studies.

Materials and Methods

Cell culture and transfection
Mouse J1 and E14 ESCs were cultured without feeder cells in gelatinized flasks as described

before [29]. Culture medium was either supplemented with 1000 U/ml recombinant leukemia
inhibitory factor LIF (Millipore) or additionally with 1 uM MEK inhibitor PD0325901, 3 pM GSK-3
inhibitor CHIR99021 (2i, Axon Medchem) to keep ESCs in unprimed state. E14 ESCs and E14 Uhrf1
knockout cells stably rescued with either UHRF1-GFP (wt) or RING domain point mutant UHRF1-
GFP H730A were described previously [13].

Somatic cell lines used in this study were BHK cells containing multiple lac operator repeats [33]
and C2C12 mouse myoblast cells [34]. All cell lines were grown in a humidified atmosphere at
37°C and 5% CO,, in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 1 uM
gentamycin and 10% (BHK) or 20% (C2C12) fetal calf serum. All cell lines were tested for
mycoplasma on a regular basis.

ESCs were transfected with Lipofectamine® 3000 reagent (Thermo Fisher Scientific) according to

the manufacturer’s instructions. BHK cells were transfected using polyethylenimine (Sigma)
according to the manufacturer’s instructions.

Generation of UArfl”", UhrfZ”” and PAF15” ESC lines

To generate PAF15, Uhrfl and Uhrf2 knock-out ESC lines (J1), we used the MIN tag strategy [35].
In brief, we used a genome engineering strategy based on a CRISPR/Cas assisted in-frame
insertion of an attP site, which we refer to as the multifunctional integrase (MIN) tag. At the
genetic level, the MIN-tag serves as an attachment site for the serine integrase Bxb1l that can be
used to recombine a knockout cassette into the genomic locus.
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Mammalian expression constructs

Fusion constructs were generated using enhanced green fluorescent protein (GFP) or monomeric
red monomeric cherry (Ch). The PAF15 wt sequence was amplified from E14 cDNA. GFP-PAF15
K15R.K24R double mutant (dm) expression construct was derived from the corresponding wt
constructs by overlap extension PCR [36]. Other constructs used in this study were UHRF1-GFP
[37], RFP-PCNA [38] and pGBP-LacI [26].

Protein extraction and sample preparation for mass spectrometry

J1 wt, Uhrfl”" and Uhrf2”" mouse embryonic stem cells were cultured under serum/LIF
conditions. For whole cell proteome analysis, 10° cells were harvested in biological quadruplicates
and further processed using the iST Sample Preparation Kit (PreOmics).

Enrichment of K-gly-gly peptides

Proteins were extracted from 2 x 10’ cells per sample and digested to peptides resulting in a K-
gly-gly motif at former sites of ubiquitination, which was then used for antibody dependent
enrichment as described in [27]. In brief, cell were lysed in urea lysis buffer (8 M urea, 50 mM Tris-
HCl pH 80, 150 mM NaCl, 1 mM EDTA, 1 x Protease inhibitor, 50 yM PR-619, 1 mM
chloroacetamide, 1 mM PMSF) and protein concentration was determined using a 660 nm
Protein Assay (Pierce™). Proteins were reduced using 5 mM DTT, alkylated with 10 mM
chloroacetamide and digested overnight using Lys-C (Wako Chemicals, 1:250 enzyme/protein
ratio) and Trypsin (TPCK-treated, Worthington Biochem, 1:50 enzyme/protein ratio). Peptides
were desalted using 200 mg tC18 Sep Pak Cartridges (Waters) and eluates were dried completely
by vacuum centrifugation. For enrichment of K-gly-gly peptides, peptides were reconstituted in
IAP buffer (50 mM MOPS pH 7.2, 10 mM sodium phosphate, 50 mM NaCl) and incubated for 1 h
at 4°C with 120 pg a-K-gly-gly antibody (Cell Signaling Technology) crosslinked to protein G
sepharose beads (Roche) with dimethyl pimelimidate dihydrochloride (DMP, Sigma). Beads were
washed twice with IAP buffer and twice with phosphate buffered saline (Sigma) and peptides
were eluted in 0.15% trifluoroacetic acid (TFA).

Enriched peptide fractions were labeled using isobaric Tandem Mass Tag™ (TMTsixplex™, Thermo
Fisher Scientific) reagents according to the manufacturer’s instructions and pooled into one
sample. Subsequently, the sample complexity was reduced by high pH reversed-phase
chromatography (High pH Reversed-Phase Peptide Fractionation Kit, Pierce™). Peptides were
separated to five fractions based on their hydrophobicity with buffers containing 17.5%, 20%,
22.5%, 25% or 30% acetonitrile in 0.1% triethylamine, respectively.

Liquid Chromatography Coupled to Tandem Mass Spectrometry

For mass spectrometry analysis, desalted peptide fractions were injected in an Ultimate 3000
RSLCnano system (Thermo) and separated in a 15-cm analytical column (75 pm ID packed in-
house with ReproSil-Pur C18-AQ 2.4 ym from Dr. Maisch) with a 60 min gradient from 5 to 40%
acetonitrile in 0.1% formic acid. The effluent from the HPLC was directly electrosprayed into a
Qexactive HF (Thermo) operated in data dependent mode to automatically switch between full
scan MS and MS/MS acquisition. Survey full scan MS spectra (from m/z 350-1400) were acquired
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with resolution R=120,000 at m/z 400 (AGC target of 3 x 10°). The 10 most intense peptide ions
with charge states between 3 and 6 were sequentially isolated (window 0.7 m/z) to a target value
of 1 x 10°, with resolution R=30,000, fragmented at 32% normalized collision energy and fixed
first mass 100 m/z. Typical mass spectrometric conditions were: spray voltage, 1.5 kV; no sheath
and auxiliary gas flow; heated capillary temperature, 250°C; ion selection threshold, 33.000
counts.

Computational data analysis

The mass spectrometry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE [39] partner repository with the dataset identifier PXD006593. Raw data
analysis was performed using the MaxQuant software suite version 1.5.2.8 [40]. Peptide
sequences were searched against the UniprotKB mouse proteome database (Swissprot) [41].
Trypsin/P and Lys-C derived peptides with a maximum of three missed cleavages and a protein
false discovery rate of 1% were set as analysis parameters. Carbamidomethylation of cysteine
residues was considered a fixed modification, while oxidation of methionine, protein N-terminal
acetylation and Gly-Gly modification of lysines were defined as variable modifications. For whole
cell extract analysis, peptide/protein intensities were quantified based on MS1 intensities with the
MaxLFQ algorithm [42]. Reporter ions derived from the fragmented tandem mass tag were
quantified on MS2 level with a minimum precursor intensity fraction of 75% and a reporter mass
tolerance of 0.01 Da. Lot-specific reporter ion isotopic distributions of the TMT label reagents
were used as isotopic correction factor.

Quantified K-gly-gly peptides were further evaluated using R [43] and Perseus version 1.5.4.1 or
1.5.5.1 [44]. The dataset was filtered for common contaminants classified by the MaxQuant
algorithm and only proteins quantified across both biological replicates were subjected to
statistical analysis. Differentially ubiquitinated peptides were identified using the Limma software
package [45,46] after variance stabilization normalization (vsn) of peptides intensities [47].

For protein network analysis, the STRING database [48] and Cytoscape software version 3.4.0
(www.cytoscape.org) were used.

Co-immunoprecipitation and Western Blot

For Western Blot analysis, 10’ ESCs cultured in serum/LIF conditions were lysed in standard lysis
buffer (20 mM Tris pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 2 mM MgCl,, 0.5% NP40, 2 mM PMSF)
supplemented with 1x Protease inhibitor, 1 U/ul benzonase, 50 uM PR-619 and 2.5 mM NEM.
PAF15 was enriched from whole cell lysate using an anti-PAF15 antibody (Santa Cruz, sc-390515).
Enriched proteins were separated on a SDS-PAGE (15% PAA) and transferred to a PVDF
membrane (Millipore). PAF15 was detected using anti-PAF15 (1:500), a horseradish peroxidase
conjugated anti-mouse secondary antibody (Dianova, 1:5,000) and Pierce ECL substrate (Fisher
Scientific).
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Immunofluorescence staining and confocal microscopy

Immunostaining was performed as described previously [49]. Cells cultured on coverslips were
fixed with 4% paraformaldehyde for 10 min, washed with PBS-T (PBS, 0.02% Tween20) and
permeabilized with 100% methanol. Both primary and secondary antibody were diluted in
blocking solution (PBS-T, 2% BSA). Coverslips with cells were incubated with primary and
secondary antibody solutions in dark humid chambers for 1 h at RT; washing steps after primary
and secondary antibodies were done with PBS-T. For DNA counterstaining, coverslips were
incubated in a solution of DAPI (1 pug/ml) in PBS. Coverslips were mounted in antifade medium
(Vectashield, Vector Laboratories) and sealed with nail polish. For immunolabeling, the following
primary antibodies were used: anti-PCNA [50], anti-PAF15 (Santa Cruz, sc-390515) and anti-
UHRF1 [21]. Secondary antibodies were anti-mouse conjugated to fluorophore 594 (Invitrogen),
anti-rat conjugated to Alexa647 (Invitrogen). Single optical sections were collected using a Leica
TCS SP5 confocal microscope equipped with Plan Apo 63x/1.4 NA oil immersion objective and
lasers with excitation lines 405, 488, 561 and 633 nm.

Super-resolution microscopy

Cells were initially found and staged in S-phase based on their distribution of PCNA signal on a
DeltaVision Elite system, equipped a 62x/1.42 PlanApo objective an interline CCD camera. To
perform super-resolution structured illumination microscopy, stage coordinates of selected cells
were then transferred to a DeltaVision OMX V3 3D-SIM system (Applied Precision Imaging, GE
Healthcare), equipped with a 100x/1.40 NA PlanApo oil objective, three Cascade II EMCCD
cameras (Photometrics), and 405-, 488-, and 594-nm laser lines. Structured Illumination (SI)
images stacks consisting of 15 images per plane (five phases, at three different angles) were
acquired with a z-step size of 125 nm. SI raw data were reconstructed and deconvolved with the
SoftWorX 4.0 software package (Applied Precision). Registration of the three different channels
was performed with the Multiview Reconstruction plugin in Fiji, using images of the nuclear pore
complex stained with CF405-, Alexa488-, and Alexa594-conjugated secondary antibodies.
Registered images were manually cropped to include one cell per image, background subtracted,
scaled to 8-bit based on minimum and maximum pixel intensities, and colocalization analysis was
performed in Fiji using the Coloc2 plugin on 5 central slices of the image stacks, taking the
Pearson’s Correlation coefficient without threshold as a readout of colocalization.
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FIGURE 1. Ubiquitome characterization of mouse embryonic stem cells (ESCs) deficient for
UHRF1 and UHRF2. (A) Experimental workflow. UhrfI”", UhrfZ”" and wt mouse ESCs were
digested to peptides and ubiquitin remnant motif (K-gly-gly) -containing peptides were enriched
using an antibody. Peptides were labelled using TMT sixplex reagents, pooled for fractionation
and subsequent mass spectrometry analysis. (B) Heatmap of differentially ubiquitinated K-gly-gly
peptides (Gene name _ amino acid position of ubiquitination) identified in wt, UArfI”" and UhrfZ
/" ESCs. Only peptides with at least a three-fold intensity change (log, > 1.58) in at least two
replicates are shown (53 peptides out of total 1248). Experiments were carried out in biological
(rl, r2) and technical duplicates (_A, _B). (C) Total protein abundance (log, LFQ intensity fold
change) of the respective peptides in Uhrf1”” (U1) and UArf2”" (U2) relative to wt cells.
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FIGURE 2. UHRF1 and UHRF2 dependent changes in the ubiquitome of ESC. (A) Protein
associations of differentially ubiquitinated peptides (Limma adjusted p-value < 0.05) in Uhrfl”"
cells and (B) UArf2”" cells. Proteins networks were derived from the STRING database. Only
protein associations with an interaction score of 0.7 or higher are shown. (C) Volcano Plot of

ubiquitinated PAF15 peptides (red) in Uhrf1”” cells and (D) Uhrf2”" cells (blue =
p-value < 0.05).
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FIGURE 3. PAF15 ubiquitination by UHRF1. (A) Schematic outline of the PAF15 protein. (B) Co-
immunoprecipitation and Western Blot analysis of endogenous PAF15 from wt (E14), Uhrf1”" and
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ubiquitinated PAF15, respectively.
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FIGURE 4. PAF15 localization with PCNA and UHRF1 throughout cell cycle. (A+B) 3D-SIM nuclear
mid-sections of anti-PAF15 (red) antibody distributions with (A) anti-PCNA (green) and (B) anti-
UHRF1 (green) with DAPI counterstaining (gray) in C2C12 cells. Scale bar = 5 ym and 2 x
magnifications of selected boxed regions. Scale bars = 2,5 um. (C) Pearson correlation coefficient
of PAF15 and PCNA (C) and PAF15 and UHRF1 (D) in non S-phase, early/mid and late S-phase
C2C12 cells depicted as scatter plots with median and 95% confidence interval.
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Figure 5. PAF15 localization in dependence of UHRF1. (A) Confocal mid sections of wt, UArfl”"
and Uhrf2”” ESC were stained with antibodies anti-PAF15 (green) and PCNA (magenta). DNA was
counterstained with DAPL (B) Confocal mid-sections of UArfI”” ESCs expressing UHRF1-GFP. ESCs
were stained with antibodies anti-PAF15 (green) and PCNA (magenta). DNA was counterstained
with DAPIL Scale bars = 5 um. Line intensity profiles of PAF15 and PCNA are shown next to the
image.
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Supplementary Figure $S2:
PAF co-localization with
PCNA and UHRF1 is cell
cycle dependent. 3D-SIM
nuclear mid-sections of
antibody-stained C2C12 cells in
different stages of S-phase with
DAPI counterstaining (gray).
(A) red: anti-PCNA, green:
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selected regions. Scale bar =
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Supplementary Figure $3: Di-ubiquitinated PAF is recruited to PCNA. (A) Immunostaining of Paf15™
mouse ESCs rescued with transiently transfected GFP-PAF wild type (wt, upper panel) or GFP-PAF
K15R/K24R mutant (dm, lower panel). Line intensity profiles of PAF and PCNA are shown next to the
image. (B) Analysis of ubiquitination-mediated recruitment of PCNA to PAF in a cell-based F3H assay
with mCherry-PCNA (red), GFP-PAF wild-type and double mutant GFP-PAF K15R/K24R (green). Line
intensity profiles of the GFP-PAF constructs and mCherry-PCNA are shown next to the images. Scale bar

=5um.
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5. Discussion

5.1. CasID as a technique to explore sequence-specific
chromatin composition

A classical approach to determine the genomic localization of a given protein is chromatin
immunoprecipitation (ChIP) (Solomon, Larsen, and Varshavsky 1988). To this end, a target protein
crosslinked with DNA is immunoprecipitated with an antibody and subsequent sequencing of the
enriched DNA fragments (ChIP-seq) results in a genome wide enrichment profile (Barski et al.
2007; Mikkelsen et al. 2007; D. S. Johnson et al. 2007). However, ChIP-seq relies on the quality of
the used antibody and only one protein at a time can be examined. In order to generate a more
comprehensive picture of all proteins at a specific genomic locus, we inverted the ChIP strategy.
Instead of sequencing the genomic sequences bound by one protein, all proteins bound to a
given sequence during at a given time were identified by mass spectrometry. To achieve this, we
used the proximity-based labeling activity of the promiscuous biotin ligase BirA* and combined it
with the precise targeting of a given DNA sequence by dCas9 (CasID) (Schmidtmann et al. 2016).

Other methods which can be considered “reverse ChIP” strategies are PICh (Déjardin and
Kingston 2009), HyCCaPP (Kennedy-Darling et al. 2014), enChIP (Fujita et al. 2013), CRISPR-CHAP-
MS (Waldrip et al. 2014) and QTIP (Grolimund et al. 2013). While the first two rely on
hybridization of DNA probes with crosslinked chromatin, the latter methods employ DNA binding
proteins such as TALEs, Cas9 or TRF1/2, respectively, to enrich specific chromatin fragments for
mass spectrometry analysis. However, all those methods rely on chromatin crosslinking followed
by DNA shearing, which is not the case for our newly developed CasID strategy. Here, /in vivo
biotin labeling captures also transient interactions and generates a “footprint” rather than a
snapshot of chromatin associated proteins over time, which represents an advantage of BirA*
over traditional enrichment methods (P. Li et al. 2017; D. I. Kim and Roux 2016). Using well
established gRNAs targeting repetitive sequences (Anton et al. 2014), we characterized the
protein milieu of major satellites, minor satellites and telomeres in mouse myoblast cells.

To date, several strategies have been used to investigate telomeric protein composition in various
organisms (Déjardin and Kingston 2009; Antdo et al. 2012; Fujita et al. 2013; Grolimund et al.
2013). By employing CasID to telomeres and identification of the telomeric shelterin subunits
ACD, TINF2 and TERF2, we proved the functionality of CasID to identify proteins binding to
specific DNA sequences.

Next, we expanded the CasID approach to major satellite sequences and compared our results to
the only other available dataset on major satellites which was obtained using Proteomics of
Isolated Chromatin segments (PICh) (Saksouk et al. 2014). PICh relies on crosslinking and
chromatin shearing followed by hybridization of LNA-oligonucleotides with the targeted
sequences and subsequent enrichment of the desthio-biotin-tagged LNA-probes for mass
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spectrometry analysis (Déjardin and Kingston 2009). In total, fewer proteins were identified by
CasID than by PICh which can be mainly attributed to the lower amount of input material used
than in the PICh approach (Saksouk et al. 2014). Detection of proteins exclusively by either CasID
or PICh could be either caused by the divergence of the experimental workflow or by the used
cell type (mouse myoblasts versus embryonic stem cells). Nevertheless, the overlap of proteins
identified by both CasID and PICh confirms that both methods are indeed applicable to
characterize the local chromatin composition of major satellite repeats.

Characteristic signature proteins localizing to the constitutive heterochromatin of major satellite
sequences are the HP1 proteins CBX1, CBX3 and CBX5 (Guenatri et al. 2004; Saksouk, Simboeck,
and Déjardin 2015). With the CasID approach, we identified heterochromatin protein 1-binding
protein 3 (HP1BP3), an interactor of CBX5 (HPla) (Le Douarin et al. 1996). Furthermore,
pericentromeric repetitive sequences are known to be highly methylated (Déjardin 2015).
Consequently, we identified factors binding methylated DNA, namely methyl CpG binding protein
2 (MECP2) (Agarwal et al. 2007), the transcriptional regulator Kaiso (ZBTB33) (Buck-Koehntop et
al. 2012) and the structural maintenance of chromosomes flexible hinge domain-containing
protein 1 (SMCHD1) (Blewitt et al. 2008).

Importantly, among the proteins associated with major satellite repeat sequences we found
ZNF512, a zinc finger protein conserved in humans and mouse which has not been characterized
so far (Boratyn et al. 2013). Protein database searches revealed only two known protein
interaction partners of mouse ZNF512, namely the transcription factor FOXP3 (Rudra et al. 2012)
and the homeodomain transcription factor OTX2 (Fant et al. 2015; Chatr-Aryamontri et al. 2017).
Human ZNF512 was found as a putative protection factor in lung adenocarcinoma (Bao et al.
2016). We could show that ZNF512 is associated with chromatin in C2C12 cells throughout the
cell cycle and that it displays a characteristic sub-chromocenter pattern.

In a third experiment, we used CasID to determine the local chromatin environment of the
pericentromeric minor satellite repeat sequences. We found CENP-C, a known kinetochore
proteins in mouse (Guenatri et al. 2004), which highlights the spatial proximity of minor satellite
sequences to the centromeric region. Moreover, CENP-C is known to interact with DNMT3B and
thereby promotes DNA methylation at centromeric and pericentromeric sequences
(Gopalakrishnan et al. 2009). Additionally, we identified the pericentriolar material protein 1
(PCM1) (Balczon, Bao, and Zimmer 1994) which is required for the assembly of centrosomal
proteins and microtubule organization (Dammermann and Merdes 2002). Finally, the
heterochromatic nature of minor satellites is emphasized by detection of CBX3 (HP1ly), the
transcriptional regulator ATRX and tripartite motif containing 28 (TRIM28). ATRX, also named HP1
alpha-interacting protein, is known to localize at pericentromeric heterochromatin (McDowell et
al. 1999). Similarly, the transcriptional corepressor TRIM28 (also KAP1 or TIF1B) binds to HP1 and
additionally recruits histone modifying complexes, e.g the repressive NuRD/HDAC complex and
histone methyltransferase complexes to chromatin for transcriptional silencing (C.-T. Cheng, Kuo,
and Ann 2014).

Independently of the targeted genomic region, several nucleolar proteins were identified in CasID
pulldowns such as the nucleolar GTP-binding protein 1 (GTPBP4) or 60s ribosomal proteins.
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Although those proteins could be indeed localizing to the investigated chromatin regions, their
detection is more likely caused by the observed accumulation of non-targeted dCas9 at nucleolar
regions (Schmidtmann et al. 2016). This highlights the importance to ensure specific and
complete targeting of BirA*-dCas9-eGFP in each cell line used. Ideally, most BirA*-dCas9 protein
should be complexed with gRNA and be targeted to the desired genomic locus to achieve a high
signal-to-noise ratio when adding exogenous biotin. Specific targeting depends on the quality of
the gRNAs with a minimum of off-target sequences (Xuebing Wu et al. 2014), while minimization
of background biotin signal derived from untargeted BirA*-dCas9 depends on the expression
levels of gRNA and the BirA*-dCas9 fusion protein.

Several approaches could be taken to optimize the signal-to-noise ratio and to increase specific
biotin labeling at the desired locus (Figure 13). First, inducible dCas9 expression, e.g. via a TET-On
system (Das, Tenenbaum, and Berkhout 2016), could help to fine-tune the protein levels of dCas9
and to minimize the contribution of untargeted Cas9 to nonspecific biotin labeling (Figure 13A).
Second, to both increase specificity and to avoid background signal one could consider using the
Split BioID system (Schopp et al. 2017; De Munter et al. 2017) in combination with a split dCas9
(Zetsche, Volz, and Zhang 2015) or orthogonal dCas9 molecules (Esvelt et al. 2013). In the latter
case, two orthologs of dCas9 each fused to a split version of BirA* would be equally expressed
and targeted to the same locus using two adjacent gRNAs (Figure 13B). Third, especially for
application of CasID to single genomic loci, the use of multiple gRNAs or a gRNA library instead
of a single gRNA might be preferable (Mali et al. 2013; Arakawa 2016). This would lead to
increased coverage of a given locus with BirA*-dCas9-molecules which would on the one hand
increase biotin ligase activity at this locus but also might result in displacement of endogenous
bound factors from chromatin in favor of dCas9 binding (Figure 13C). Finally, a smaller BirA*-
protein derived from the bacterium A.aeolicus (BiolD2) requiring less biotin in combination with
variable linker lengths might enhance the efficiency of CasID (D. L. Kim et al. 2016) (Figure 13D).

In contrast to PICh, CasID does not depend on chromatin crosslinking and shearing of DNA,
however it requires manipulation of the used cells for stable expression of BirA*-dCas9 and
gRNA. Transformation and genome engineering is widely applicable to cultured cells but more
challenging and sometimes not possible in case of primary cells or tissues. Thus, PICh might be
the favorable strategy in some cases.

Taken together, CasID represents a novel tool for “reverse ChIP” which has high potential to
further elucidate chromatin organization on a nanometer scale. Investigation of the chromatin
environment at heterochromatic sequences in cells treated with epigenetic inhibitors could serve
as tool to investigate their influence on chromatin organization.
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Figure 13: Experimental strategies for further development of CasID. A: inducible expression of the
BirA*-dCas9-eGFP construct. B: Split BirA* fused to orthologous dCas9-eGFP molecules. C: Use of
multiple gRNAs. D: BioID2 with a smaller BirA* biotin ligase and variable linker lengths.

5.2.  Investigation of functional epigenetic complexes
using BioID

5.2.1. Using the MIN-tag strategy for an adapted BioID approach

Genetic manipulation is a valuable tool to facilitate exploration of gene and protein function and
therefore also essential for investigation of functional epigenetic complexes. We developed an
efficient genome engineering approach using CRISPR-based gene targeting in combination with
phage derived serine integrase Bxbl mediated recombination (Mulholland et al. 2015). In a first
step, an attP site is integrated to a given locus via homologous recombination using the
CRISPR/Cas system. In a second step, the serine integrase (Bxbl) is used to recombine a attB
flanked sequence from a donor plasmid into the attP site resulting in endogenous insertion of
functional cassettes.

We used this genome engineering strategy to target and functionalize the main epigenetic
factors influencing DNA methylation: DNMT1, DNMT3A, DNMT3B, TET1, TET2, TET3 and UHRF1
(Mulholland et al. 2015). Functionalization of a targeted gene resulting in endogenous expression
of a GFP-fusion protein facilitates bioimaging and furthermore enables enrichment of the protein
of interest either by nanobody-based GFP-pulldowns or AP-MS using a MIN-tag specific
antibody. Alternatively, recombination of BirA* into the targeted locus allows application of the
BioID strategy. Compared to the expression of the BirA*-fusion protein under the control of a
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heterologous promoter in previous BiolD studies (Varnaité and MacNeill 2016), expression on
endogenous levels has considerable advantages. Since physiological protein levels are
maintained, aberrant localization of the targeted protein and excessive biotin mislabeling of
proteins is avoided, thereby enhancing the probability of capturing physiological relevant protein
associations.

5.2.2. Investigation of the TET1 protein interactome using BiolD

After successful development and testing of the MIN-tag approach we used this technology to
characterize the protein interactions of TET1 by using both a nanobody-based GFP-pulldown
approach and BiolD. In earlier studies from our group, GFP-pulldown of transiently expressed
GFP-TET1 from HEK cells yielded interactors as well as post-translational modification sites
(Miller et al. 2014; Bauer et al. 2015). In contrast, GFP-pulldown from endogenously expressed
GFP-TET1 did not result in many specifically enriched proteins (Karg et al, unpublished
manuscript). This could be due to suboptimal solubilization or dissociation of TET1-containing
complexes during cell lysis and pulldown. Further fine tuning of the cell lysis protocol or the
protein digestion method could enhance the identification of interaction partners by GFP-
pulldown in the future (Lambert et al. 2014; Yueqing Zhang et al. 2017). In contrast, BiolD of TET1
yielded 30 putatively interacting proteins, highlighting the fact that BiolD is a valuable technique
to complement classical AP-MS derived data (Lambert et al. 2015).

5.2.3. TET1 protein environment in pluripotent stem cells

TET1 has emerged as an essential factor in pluripotency and early mammalian development by
epigenetically regulating genes through hmC generation but also through its involvement in
transcriptional chromatin complexes (Xiaoji Wu and Zhang 2017). In mESCs, TET1 contributes to
both transcriptional activation and repression of targeted genes and emerging evidence suggests
that those functions are partially independent of its catalytic activity (H. Wu et al. 2011; K.
Williams et al. 2011). In line with that, many of the proteins identified by BioID of TET1 from ESCs
are involved in histone modification and transcriptional regulation.

5.2.3.1. TET1 in transcriptional regulation

Central proteins identified in the BioIlD dataset are SIN3A, SAP130, ARID3B and ARID4A, which
are core subunits of the SIN3A/HDAC repressive complex (Laherty et al. 1997; Kadamb et al.
2013). The SIN3A/HDAC complex governs core transcriptional networks and is crucial for
embryonic development by ensuring genome integrity and protecting from DNA damage
(McDonel et al. 2012; Silverstein and Ekwall 2005). SIN3A was one of the first reported TET1-
interacting proteins and mediates TET1-dependent transcriptional repression of overlapping
target genes (K. Williams et al. 2011). The scaffold protein SIN3A serves not only as binding
platform for the core subunits HDAC1 or HDAC2 (Laherty et al. 1997), but also recruits numerous
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other proteins, leading to additional functionalities like nucleosome remodeling (Sif et al. 2001),
histone acetylation (Zhong et al. 2016), protein O-GIcNAcylation (X. Yang, Zhang, and Kudlow
2002) or histone methylation (Tatsuya Nakamura et al. 2002).

One SIN3A-associated histone-methyltransferase found here is KMT2B, which potentially links
TET1 to MLL complexes in mESCs. KMT2B (or MLL2) is a SET domain containing protein and part
of the mammalian COMPASS H3K4 methyltransferase complexes (Shilatifard 2012; van Nuland et
al. 2013). Another member of the SET/COMPASS complex protein family present in our dataset is
Host cell factor 1 (HCFC1) which physically links MLL1 and SIN3A complexes (Wysocka et al.
2003). HCFC1 is a known interactor of OGT and was co-purified in pulldowns of TET2 and TET3
(Deplus et al. 2013). In case of TET1, only a weak association with HCFC1 was detected which
points towards an indirect interaction of the two proteins via OGT (Vella et al. 2013). Although
OGT itself was not significantly enriched in our dataset, we detected HCFC1 and SIN3A which are
both known interactors of OGT (Deplus et al. 2013; X. Yang, Zhang, and Kudlow 2002) (Figure
14B).

Additionally, TET2 was detected in the BioID pulldown of TET1, which can be readily explained by
either its interaction with OGT or by its genomic binding sites overlapping with TET1 (Q. Chen et
al. 2013; de la Rica et al. 2016; Xiong et al. 2016). A putative direct interaction of TET1 and TET2
was not investigated until now.

Another well described interaction partner of TET1 is NANOG (Costa et al. 2013). In this study, we
did not detect NANOG neither in BiolD nor in GFP-pulldown experiments (Karg et al.,
unpublished manuscript). A possible explanation for that can be the N-terminal bias of our BiolD
experiment, since the BirA* fusion protein labeled proteins proximate to the TET1 N-terminus.
Given the large size of TET1 and the predicted unstructured nature of the N-terminal region, it is
likely that some interactions are not captured, since the proteins are outside of the approximately
10 nm labeling radius of BirA* (D. I. Kim et al. 2014). The NANOG-TET1 interaction could be one
of those, since NANOG is reported to interact with the TET1 C-terminal region (Costa et al. 2013).
This result highlights the spatial nature of the BiolD approach.

However, several NANOG-associated proteins were found, including the SIN3A and NuRD
complex associated proteins ARID3B, GATAD2A, ZFP281, BPTF and SALL4 (Figure 14B). Sal-like
protein 4 (SALL4) is a transcription factor which associates with NANOG, OCT4 and SOX2 in ESCs
and mouse embryos (Tanimura et al. 2013; Tan et al. 2013). It is important for maintenance of
pluripotency in mESCs and plays a role in primordial germ cell development (Sakaki-Yumoto et
al. 2006; Jingiu Zhang et al. 2006; Y. L. Yamaguchi et al. 2015). Genomic binding sites of SALL4 at
enhancer sequences overlap with those of NANOG and TET1 (Pulakanti et al. 2013), which
prompted us to further investigate a putative direct interaction of SALL4 and TET1. We found that
TET1 and SALL4 associate independently of NANOG (Karg et al., unpublished manuscript). This is
in line with a recent report which describes SALL4 as a hmC binder which is recruited to
enhancers by TET1 and promotes further oxidation of hmC by TET2 (Xiong et al. 2016).
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Figure 14: Gene names of proteins identified by TET1 BiolD in mESCs. A: STRING database network
(solid lines) and further known protein-protein interactions (dashed lines) of proteins identified in
BioID. B: Categorization of all 30 proteins identified in BioID to functional protein complexes. Asterisks
indicate published direct TET1 interacting proteins.
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In summary, in our BiolD dataset we found TET1 to be associated with histone modifying
complexes and transcription factors, which emphasizes the previously described involvement of
TET1 in transcriptional regulation (Figure 14). In particular, there is an overrepresentation of
SIN3A/HDAC and associated complexes, which is in accordance with the proposed existence of a
transcriptional regulator “supercomplex” centered around SIN3A/HDAC (Tatsuya Nakamura et al.
2002).

5.2.3.2. TET1 and chromatin remodelling complexes

Besides its engagement in transcriptional regulator complexes, we found TET1 to be associated
with various chromatin remodeling complexes, which mostly can be related to SIN3A, such as the
NuRD complex (Figure 14).

First, the nucleosome remodeling and deacetylase (NURD) complex is an important chromatin
associated complex essential for embryonic lineage commitment (Kaji et al. 2006). Similarly to
SIN3A, the NuRD complex contains the histone deacetylases HDACl or 2 leading to
transcriptional repression (Y. Zhang et al. 1999). Moreover, the NuRD subunits CHD3 and CHD4
are ATPases mediating nucleosome remodeling activity of this complex (Torchy, Hamiche, and
Klaholz 2015). Association with the methyl-binding proteins MBD2 or MBD3 recruits the NuRD
complex to DNA (Torchy, Hamiche, and Klaholz 2015), where NuRD deacetylates H3K27ac and
recruits the PRC2 complex for epigenetic silencing at bivalent gene promoters (Reynolds et al.
2012). In mESCs, pulldown of TET1 lead to identification of NuRD complex members along with
OGT and Sin3A (Shi et al. 2013). Vice versa, when the Mbd3/NuRD complex was purified from
mESCs, TET1 was co-enriched (Yildirim et al. 2011). In our dataset, we find the NuRD core
component GATAD2A (Figure 14). Furthermore we identify NuRD associated protein ZFP281, a
transcriptional repressor (Fidalgo et al. 2012) and SALL4, whose interaction with the NuRD
complex was reported by several groups (Kloet et al. 2015; van den Berg et al. 2010; Bode et al.
2016).

Second, other chromatin remodelers were detected in the TET1 BiolD dataset (Figure 14). The
tyrosine protein kinase BAZ1B is a subunit of the WICH chromatin remodeler complex with roles
in DNA repair (A. Xiao et al. 2009). The nuclear mitotic apparatus protein 1 (NUMAL1) is involved
in mitotic spindle assembly (Silk, Holland, and Cleveland 2009). E1A-binding protein p400 (EP400)
is a SWI2/SNF2-related protein employed in a NuA4 histone acetyltransferase complex that
catalyzes deposition of histone variants H3.3 and H2A.Z at the nucleosome (Ye Xu et al. 2012;
Pradhan et al. 2016). YEATS domain-containing protein 2 (YEATS2) is a scaffolding subunit of the
acetyl-transferase ATAC complex in humans (Y.-L. Wang et al. 2008). RNA-binding protein 10
(RBM10) is part of a chromatin remodeler complex with H2A deubiquitinase activity involved in
depositioning of H1 and histone acetylation (P. Zhu et al. 2007). In humans, RBM10 was shown to
associate with the spliceosome (Zhao et al. 2017; Inoue et al. 2008)

Finally, we detect Bromodomain PHD finger transcription factor (BPTF) in the BiolD dataset. BPTF
is a member of the mammalian NURF complex and Bptf deficient mouse embryos fail to develop
beyond embryonic day 8.5 (Landry et al. 2008). The human NURF complex binds to H3K4me3 on
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active genes and regulates transcription by ATP-dependent chromosome sliding (H. Xiao et al.
2001; Alkhatib and Landry 2011; Wysocka et al. 2006). There, BPTF recognizes nucleosomes which
are combinatorial marked by H3K4me3 combined with H4K1l6ac (Ruthenburg et al. 2011).
Acetylation of H4K16 is catalyzed by hMOF in mammals (Taipale et al. 2005) and TET1 was
recently reported to form a complex with hMOF in mESCs to facilitate H4K16ac (Zhong et al.
2016). Thus, BPTF and TET1 can be connected through their binding to the same DNA sequences.

All in all, BioID identified proteins either directly or indirectly linked to TET1-containing protein
complexes as well as factors binding to the same chromatin marks as TET1. This reflects a TET1
nano-environment in close relation to chromatin and transcriptionally regulator complexes,
highlighting the role of TET1 as an epigenetic regulator.

5.2.3.3. Novel functional interactions of TET1

Besides the identification of known protein interactions of TET1 by BiolD, about a third of the
detected proteins have no previously reported association with TET1 or shared protein complexes
(Figure 14B). Those candidates could either be novel direct interactors or be proximate without
interacting, e.g. due to binding to adjacent DNA sequences.

For instance, we find the Telomere-associated protein RIF1, which is highly expressed in mESCs
and binds aberrant telomeres and double strand breaks, thereby promoting NHEJ in concert with
53BP1 (Adams and Mclaren 2004; Chapman et al. 2013). Interestingly, TET1 has been implicated
in telomere maintenance as well (J. Yang et al. 2016).

Other proteins important for chromatin integrity found here are the mitotic spindle assembly
factor TPX2 (Targeting protein for Xklp2) (A. W. Bird and Hyman 2008) and TOX4 (TOX high
mobility group box family member 4), a member of the PTW/PP1 phosphatase complex in
humans (J.-H. Lee et al. 2010).

Furthermore, we identified the Activity-dependent neuroprotector homeobox protein (ADNP), a
potential transcription factor interacting with SWI/SNF complexes, which is essential for mouse
brain development and is mutated in patients with autism (Mandel and Gozes 2007; Pinhasov et
al. 2003; Vandeweyer et al. 2014). Recently, ADNP was shown to act as a tumor suppressor
repressing Wnt signaling in colon cancer (Blaj et al. 2017). Another factor potentially influencing
expression of Wnt target genes found here is MLLT6 (Myeloid/lymphoid or mixed-lineage
leukemia; translocated to, 6), which in humans is a part of the H3K79 methyltransferase complex
DotCOM (Mohan et al. 2010).

Moreover, we detect the PSPC1l (paraspeckle component 1) protein from the Drosophila
behavior/human splicing (DBHS) protein family, which can be connected to TETL via its SIN3A
interaction and is implicated in transcriptional regulation, DNA damage response and the
formation of nuclear paraspeckles (McDonel et al. 2012; Knott, Bond, and Fox 2016). Nuclear
receptor-binding SET domain-containing protein 1 NSD1 (=KMT3B) is a H3K36 and H4K20-
specific histone methyltransferase essential for postimplantation development (Rayasam et al.
2003). The Max-binding protein MNT forms heterodimers with MAX at DNA for transcriptional
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repression and acts as an antagonist to MYC in regulation of cell cycle entry (Walker et al. 2005).
Moreover, the zinc finger protein ZNF62 is potentially involved in myogenic differentiation
(Polimeni et al. 1996).

Notably, JMJD1C, EMSY and QSER1 can be indirectly connected to TET1 since they also interact
with NANOG (Costa et al. 2013) (Figure 14B). JMJD1C is a H3K9 demethylase implicated in
transcriptional regulation, AML cell survival, male fertility in mice and regulation of
spermatogenesis (M. Chen et al. 2015; Kuroki et al. 2013; Nakajima, Okano, and Noce 2016). The
BRCA2-interacting transcriptional repressor EMSY is part of an EMSY/KDM5A/SIN3B
methyltransferase complex which binds to H3K4me3 and is interacting with SIN3A and ZFP281
(Varier et al. 2016).

Importantly, Glutamine and serine-rich 1 (QSERL) is of special interest since it has not been
characterized until now. The mammalian QSER1 protein harbours a nuclear localization sequence
(NLS) and is 80% conserved between mouse and human (Boratyn et al. 2013). Interestingly,
human QSERL interacts with RNA-Polll and promotes transcription activity (Méller et al. 2012).
The murine QSER1 protein harbors serine and glutamine-rich sequence stretches and a C-
terminal DUF4211-domain, which has no reported function (UniProt Consortium 2015; Marchler-
Bauer et al. 2017) (Figure 15).

1 1698

QSER1

88-493 595-759 1486-1620

Figure 15: Protein domains of murine QSER1. Serine rich (aa 88-493) and glutamine rich (aa 595-759)
sequence stretches are indicated as well as a DUF4211: domain of unknown function (aa 1486-1620).

We confirmed the nuclear localization of murine QSER1 by confocal and super resolution
microscopy, which is consistent with the localization of human QSER1 in Hela cells (Méller et al.
2012). Although the TET C-terminus is sufficient for catalytic activity and nuclear localization
(Tahiliani et al. 2009; S. Ito et al. 2010; Haikuo Zhang et al. 2010) the N-terminus, especially the
first amino acid containing the CXXC domain, further enhances its global chromatin binding (W.
Zhang et al. 2016). We show for the first time the direct interaction of QSER1 with the mouse
TET1 N-terminus, which leads to the hypothesis that chromatin recruitment of TET1 might be
influenced by QSER1.

Further localization studies using both QSER1 and TET1 deletion mutants as well as
determination of the QSER1 genome binding profile by ChIP-seq would enhance the knowledge
about TET1 chromatin binding in dependence of QSER1. Furthermore, use of the MIN-tag
strategy to target QSER1 yielded heterozygous clones (unpublished result), which could be used
to enrich endogenous QSER1 and detect further interaction partners. Finally, depletion of QSER1
either by using the MIN-tag strategy or RNAi will give more insights into the function of QSER1 in
transcription and epigenetic regulation.
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5.2.4. TET1 protein associations in the epiblast state

Besides their importance for maintenance of pluripotency, TET proteins play a crucial role in
mouse peri-implantation development, where the blastocyst develops towards the epiblast (H.
Wu et al. 2011; Sohni et al. 2015; Fidalgo et al. 2016). During /n vitro EpiLC differentiation, DNA
methylation drastically increases through activity of the de novo methyltransferases DNMT3A and
DNMT3B (Auclair et al. 2014). In parallel, also hmC levels increase and dramatic changes of the
transcriptional landscape lead to the onset of primed genes and silencing of pluripotency genes,
which is orchestrated by the zinc finger protein ZFP281 through regulation of TET1 and TET2
(Hackett, Dietmann, et al. 2013; Fidalgo et al. 2016).

In order to investigate potential changes in the TET1 interactome during this developmental
timeframe, we performed BiolD in /n wvitro differentiated EpiLC cells. Notably, all proteins
identified in BioID from EpilLC cells are also present in the dataset from pluripotent cells discussed
above, with the only exception being the Protein RRP5 homolog (Pdcdll) (Karg et al.,
unpublished manuscript). This indicates that, although TET1 is important in the transition from
naive to primed pluripotent cells (Fidalgo et al. 2016), there seems to be no major change in the
protein nano-environment of TET1 during this developmental process.

However, it needs to be noted that the culture conditions of ESCs using serum and 2i/LIF are
likely not representing the most naive state of pluripotency (Ying et al. 2008; Marks et al. 2012).
Since BioID-pulldown from cells cultured in serum-free conditions did not yield a sufficiently
large dataset for statistical analysis (Karg et al., unpublished), those experiments would need to
be repeated.

ZFP281 expression is crucial for the transition from naive pluripotency towards the primed
epiblast-like state and ZFP281 was reported to interact with TET1 to target it to chromatin for
transcriptional repression of naive gene targets and activation of primed gene targets (Fidalgo et
al. 2016). Interestingly, TET1 mediated gene repression in epiblast-like cells seems to occur
independently of its catalytic activity (Khoueiry et al. 2017). We identify ZFP281 by BioID in both
mESCs and EpiLCs and thus confirm its association with TET1 in pluripotent cells. When
comparing the interactome of ZFP281 (Fidalgo et al. 2016) to the BiolD datasets, the overlapping
candidates Gatad2a, Sap130 and Sin3a further illustrate the close association of TET1 and ZFP281
with the SIN3A and NuRD HDAC complexes (Figure 16).
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Figure 16: Overlap of proteins identified by endogenous pulldown of ZFP281 (serum/LIF) (Fidalgo et
al. 2016), and BioID of TET1 from ESC (serum/2i/LIF) and EpilLC.

5.2.5. Enzymes involved in setting and removing TET1 PTMs

Several post-translational modifications of TET proteins are implicated in their enzymatic activity,
protein stability and influence their association with protein complexes and chromatin.

First, all three TET proteins interact with and are post-translationally modified by the O-GlcNAc-
transferase OGT (Bauer et al. 2015; Vella et al. 2013; Q. Chen et al. 2013; Shi et al. 2013; Deplus et
al. 2013). Although OGT was present in the BiolD dataset, it was not significantly enriched.
Previous studies suggest that the interaction of OGT and TET1 in particular might be indirect
(Deplus et al. 2013; Q. Chen et al. 2013), which would be in accordance with the result obtained
here. Alternatively, the interaction domain on the TET1 protein could be distant from the N-
terminus and consequently OGT could be outside of the BirA*-dependent labeling radius. The
protein region responsible for the interaction of TET1 with OGT has not been investigated so far,
but two studies report OGT to specifically associate with the C-terminus of TET3 (Q. Zhang et al.
2014; R. Ito et al. 2014).

Second, TET proteins are heavily phosphorylated (Bauer et al. 2015), but no kinase responsible for
this modification was reported so far. In this work, two potential kinases were identified in the
BioID experiment, namely BAZ1B and TRIM28. Although both proteins show enrichment in the
BioID-pulldown, only BAZ1B is among the significantly enriched proteins. BAZ1B is a tyrosine
kinase employed in the WICH chromatin remodeler complex and mediates phosphorylation of
H2A.X during DNA damage response (A. Xiao et al. 2009).

Third, acetylation of human TET2 by p300 regulates its enzymatic activity, protein stability and
DNMT-interaction, however the modified lysine residue is not conserved in TET1 or TET3 (Y. W.
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Zhang et al. 2017). While TETL is likely to be also acetylated (Y. W. Zhang et al. 2017), the
respective enzymes remain to be determined. Since TET1 is strongly associated with the
Sin3A/HDAC complex, modification by HDAC1 or HDAC2 as reported for TET2 is a favourable
hypothesis. While the TET2 deacetylase HDAC2 is not present in either datasets described here,
P300 and HDAC1 were found in the GFP-pulldown dataset, although not significantly enriched.
Additionally, three proteins with acetyltransferase activity are among the TET1-interacting or
proximate proteins determined by BioID, namely EP400, HCFC1 and SAP130 (UniProt Consortium
2015; Gene Ontology Consortium 2015), whose acetylation activity towards TET1 remains to be
tested in future studies.

Finally, TET proteins get monoubiquitinated by the VpRBP/CLR4 ubiquitin ligase complex on a
conserved lysine residue, which promotes their DNA binding and mC oxidation activity (C. Yu et
al. 2013; Nakagawa et al. 2015). To date, no deubiquitinase was reported and no potential
candidate was identified in the BiolD pulldown. However, among the 32 deubiquitinating
enzymes expressed in ESC in general, seven were present in the GFP-pulldown dataset (Figure
16A). Notably, USP10 is the most enriched compared to the negative control, thus being a
potential candidate for deubiquitinating TET1 (Figure 16B).
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Figure 17: Deubiquitinases detected in GFP-pulldown of TET1. A: Overlap of proteins identified in the
BioID dataset (BioID from serum/2i/LIF ESCs), the GFP-pulldown and deubiquitinases (DUBs) present in
mMESCs nuclear extract (Expressed DUBs, unpublished data). B: Volcano Plot of proteins detected in
GFP-pulldowns of TET1. Blue: GFP-TET1, Pink: DUBs. Data from (Karg et al., manuscript in preparation).
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5.2.6. Considerations for future studies

In this work, we established BiolD as a tool to identify the protein nano-environment of TET1 in
pluripotent cells. While our dataset represents a valuable resource leading to interesting
hypotheses, several aspects could be addressed in future studies.

First, variation of the BirA*-TET1 fusion protein would further expand the knowledge about the
TET1 protein interactome. The generation of a C-terminal BirA*-fusion would alter the action
radius of BirA* and lead to capture of proteins interacting with the TET1 C-terminus, e.g. NANOG
and OGT. To this end, the recently published smaller biotin ligase from the bacterium A.aeolicus
in combination with variable linker lengths would allow for further optimization of the BiolD
approach (D. I. Kim et al. 2016). Additionally, the use of TET1 deletion constructs (Mulholland et
al. 2015) or catalytic mutants might lead to identification of domain specific interactions by BiolD
and help mapping interaction sites and functional domains on the TET1 protein sequence.

Second, we determined the global protein nano-environment of TET1 across the whole nucleus.
Therefore, one cannot dissect whether the observed interactions occur globally or to what extent
TET1 is employed in divergent protein complexes dependent on its genomic localization. In
future experiments, one could use the split BioID system for fusion of a C-BirA*-protein with TET1
and N-BirA* with e.g. NANOG to get an impression of the protein environment at more distinct
genomic loci (Schopp et al. 2017; De Munter et al. 2017).

Third, the MIN-tag strategy is a powerful technique to rapidly and easily implement BioID for any
protein. Determination of the interaction landscape of TET2 by BioID will give insights to the
overlapping and diverging functions of TET1 and TET2, especially during the transition from naive
to primed pluripotency (Fidalgo et al. 2016).

5.3. Ubiquitome analysis of UHRF1 and UHRF2-depleted
cells

5.3.1. Detection of ubiquitinated proteins by mass spectrometry

Post-translational modifications can contribute to either targeting or removal of protein subunits
from larger complexes and thereby regulate epigenetic complex composition. In this respect,
ubiquitination is a versatile PTM since it exists either as monoubiquitination or in several forms of
polyubiquitination which differ in their linkage type, the majority thereof being connected via
Metl, K11, K48 or K63 residues (Peng et al. 2003; P. Xu et al. 2009). Modification of target
proteins with ubiquitin can lead to their proteasomal degradation in case of K48-linked
polyubiquitination, or influence their enzymatic activity, subcellular localization and protein-
protein interactions (Hershko and Ciechanover 1998; Komander and Rape 2012). Ubiquitination is
mediated by an enzyme cascade involving an E1, E2 and E3 ubiquitin ligase which act in concert
to mediate attachment of the 8.5 kDa ubiquitin protein (Schulman and Harper 2009; Ye and Rape
2009; Deshaies and Joazeiro 2009).
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Since ubiquitin is a protein itself, it is also fragmented during enzymatic digest prior to mass
spectrometry, usually leaving a characteristic Gly-Gly residual motif on lysine residues (Peng et al.
2003). This ubiquitin remnant motif can be targeted and enriched with an K-Gly-Gly-specific
antibody leading to enhanced identification of ubiquitinated peptides in tandem mass
spectrometry approaches (G. Xu, Paige, and Jaffrey 2010; Wagner et al. 2011; W. Kim et al. 2011).
To date, around 20,000 ubiquitination sites were identified in human cells, which emphasizes the
significance of ubiquitination for the proteome (W. Kim et al. 2011; Udeshi et al. 2013).

We used K-Gly-Gly antibody enrichment followed by TMT isobaric labeling and peptide
quantification in tandem mass spectrometry to assess the ubiquitome of mESCs depleted for
UHRF1 and UHRF2. We identified 1248 K-Gly-Gly peptides out of which around 500 were
repeatedly quantified across replicates and thus statistically analyzed (Karg and Smets et al., in
review). This is less than in previous studies employing SILAC-based quantification and peptide
pre-fractionation which were aiming for comprehensive ubiquitome coverage (Udeshi et al. 2012,
2013) but more than reported for the original published K-Gly-Gly antibody protocol (G. Xu,
Paige, and Jaffrey 2010).

5.3.2. Ubiquitination targets of UHRF1 in ESCs

UHRF1 is an epigenetic regulator with a RING-type E3-ligase and its ubiquitination activity
substantially contributes to its biological function. By investigating the ubiquitome of UHRF1-
depleted cells, we aimed to conduct a comprehensive screen for novel ubiquitination targets of
UHRF1. In our dataset, we find 41 K-Gly-Gly peptides as significantly enriched, and 53
significantly de-enriched upon depletion of UHRF1 (Figure 18).

Since the K-Gly-Gly site is a remnant motif, no conclusion about the type of ubiquitination can be
drawn from this dataset. RING type E3-ligases can function both in mono- and in
polyubiquitination (Deshaies and Joazeiro 2009), therefore the detected peptides could be
derived from both PTM variants. Additionally, the remnant motif can also originate from proteins
previously modified by the ubiquitin-like (Ubl) molecules NEDD8 and ISG15 (Wagner et al. 2011).
Thus, the observed enrichment or de-enrichment of K-Gly-Gly peptides can have multiple
reasons. De-enrichment of ubiquitinated peptides could be explained directly by the missing E3-
ligase activity of UHRF1. Enriched peptides upon UHRF1 KO could originate from
monoubiquitinated proteins which are usually polyubiquitinated by UHRF1 and degraded.
Alternatively, enriched peptides could be more abundant and thus more ubiquitinated in general
suggesting an indirect effect of UHRF1 independently of its E3-ligase activity. Validation of the
total protein abundance in whole cell extracts and additional experiments will help to investigate
the type of ubiquitination for each candidate protein.

We identified several known UHRF1 targets in our dataset. UHRF1 polyubiquitinates DNMT1 (Qin,
Leonhardt, and Spada 2011; Du et al. 2010) and DNMT3A (Jia et al. 2016), thereby regulating their
protein stability. While DNMT1 was not detected in the K-Gly-Gly pulldowns, ubiquitinated sites
of DNMT3A and DNMT3B were found (Figure 18). Two modified peptides were found for
DNMT3A (K669 and K779), however they did not significantly change upon UHRF1 depletion. For
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DNMT3B, one out of four detected peptides, harbouring the K-Gly-Gly motif at position 406 was
significantly de-enriched in UHRF1 KO cells, suggesting that UHRF1 also possesses E3-ligase
activity towards DNMT3B (Figure 18).

UHRF1 is known to generally ubiquitinate histones /n vitro (Citterio et al. 2004; Rottach et al.
2010; Harrison et al. 2016), and particularly H3K23 in Xenopus (Nishiyama et al. 2013) and H3K18
in mouse (Qin et al. 2015) /n vivo. Here, many histone peptides were detected including histone
H3 (Figure 18, peptide labels: H3f3a and Histlh3b). However, the K-Gly-Gly motif was not
detected on lysine 18 as described previously, but on the K27 residue on the same peptide. This
site was shown to be ubiquitinated by UHRF1 /n vitro (Harrison et al. 2016).

Additionally, USP7, the deubiquitinase of UHRF1 and DNMT1 (Qin, Leonhardt, and Spada 2011;
Felle et al. 2011), was detected but showed no differential ubiquitination. Furthermore, several
other reported ubiquitination targets of UHRF1 were not detected in our dataset; those include
p53 (Ma et al. 2015), promyelocytic leukemia (PML) protein (Guan et al. 2015) and RIF1 (Haoxing
Zhang et al. 2016).
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Figure 18: Volcano plot of K-Gly-Gly peptides detected in UArfI” cells compared to wildtype cells.
blue = Limma adjusted p-value < 0.05, pink = peptides mentioned in text. (Graph modified from Karg

and Smets et al., in review)
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Besides known UHRF1 ubiquitination targets, we identify numerous novel proteins to be
regulated by UHRF1.

Among them is TRIM28 (tripartite motif containing 28), a known interactor of UHRF1
(Quenneville et al. 2011) and a transcriptional regulator implicated in multiple epigenetic
pathways (C.-T. Cheng, Kuo, and Ann 2014). TRIM28 acts as cofactor of KRAP-Zinc finger proteins
to silence retrotransposable elements in the genome (Ryan et al. 1999; Turelli et al. 2014) and has
been linked to DNA methylation of imprinted regions (Quenneville et al. 2011; Alexander et al.
2015). TRIM28 harbours an E3-ligase domain, which mediates its auto-sumoylation and
ubiquitination of target proteins such as p53 (Ivanov et al. 2007; Doyle et al. 2010). However,
TRIM28 itself was not reported to be ubiquitinated until now. Here, we found TRIM28 to be
ubiquitinated on four residues including site K273, which was significantly de-enriched in UHRF1
KO cells (Figure 18).

Another transcriptional regulator putatively modulated by UHRF1 is the Lymphocyte-specific
helicase HELLS, a chromatin remodeler with roles for de novo or maintenance DNA methylation
(W. Yu et al. 2014; Termanis et al. 2016; Myant et al. 2011; Ren et al. 2015). HELLS interacts with
DNMTL (Jung et al. 2017) and is upregulated in retinoblastoma tumors in a similar manner as
UHRF1 (Benavente et al. 2014). We find a K-Gly-Gly peptide derived from HELLS significantly
enriched in UHRF1 KO cells.

Besides histones, two other proteins involved in DNA binding were found as differentially
enriched upon UHRF1 depletion. The RING finger protein 10 (RNF10) is a transcription factor
(Hoshikawa et al. 2008) involved in cell cycle exit and differentiation of embryonic carcinoma cells
(Malik et al. 2013). The zinc finger protein 42 (ZFP42) is important for reprogramming of X-
inactivation and pluripotency in ESCs (Navarro et al. 2010) and ubiquitination by RNF12 targets it
for proteasomal degradation (Gontan et al. 2012).

Furthermore, we found PEG3 (Paternally-expressed gene 3 protein, isoform 2) as one of the most
enriched peptides in the UHRF1 TMT dataset. PEG3 expression is induced by p53 during
apoptosis or upon DNA damage and it interacts with the E3 ubiquitin-protein ligase SIAH1A to
cooperatively induce apoptosis in a p53-dependent manner (Relaix et al. 2000; M. D. Johnson et
al. 2002).

5.3.3. PAF15 as a novel ubiquitination target of UHRF1

Three proteins involved in DNA damage response were detected among the significantly
regulated K-Gly-Gly peptides, namely SPRTN, PCNA and PAF15 (Paf) (Karg and Smets et al,, in
review), which are all involved in translesion DNA synthesis (TLS).

Translesion DNA synthesis is a mechanism for ensuring replication during S-phase despite bulky
DNA damages such as DNA interstrand crosslinks to avoid stalling of replication forks and
putative DNA double strand breaks (Sale 2013). TLS involves switching from high fidelity
polymerases & or & to polymerase n which is achieved by Poln interaction with K164-
ubiquitinated PCNA (Kannouche, Wing, and Lehmann 2004; Bienko et al. 2005). Following DNA
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damage, PCNA is monoubiquitinated at K164 by the RAD6 and RAD18 E2- and E3 ligases,
respectively (Hoege et al. 2002; Kannouche, Wing, and Lehmann 2004).

SprT-like domain-containing protein Spartan (SPRTN) interacts with both ubiquitinated PCNA
and RAD18 and mediates the recruitment of RAD18 to chromatin, thereby regulating PCNA
ubiquitination (Centore et al. 2012). Furthermore, human SPRTN accumulates at sites of DNA
damage where it both facilitates TLS polymerase switch and regulates displacement of Poln from
ubiquitinated PCNA by recruitment of the ubiquitin-selective chaperone p97 (Mosbech et al.
2012; Juhasz et al. 2012; Ghosal et al. 2012). In our dataset, we find SPRTN ubiquitination at
amino acid 432 upregulated upon UHRF1 depletion.

In contrast, we find two peptides of PCNA-associated factor 15 (PAF15) as the most de-enriched
peptides in Uhrfl KO cells. PAF15 interacts with PCNA via a PIP domain (P. Yu et al. 2001;
Emanuele et al. 2011) and its monoubiquitination at K15 and K24 was detected previously in a
mass spectrometry screen using SILAC labeling and K-Gly-Gly enrichment (Povisen et al. 2012).
This double monoubiquitination of PAF15 occurs during S-phase in dependence of PCNA-
binding and is lost upon UV induced DNA damage (Povlsen et al. 2012). Povisen et al. proposed
that PAF15 regulates TLS polymerase switch on the one hand by masking the binding site for TLS
polymerase on the PCNA protein during normal replication and on the other hand by competing
with TLS polymerases and displacing them again from PCNA (Povlsen et al. 2012).

Although the role of PAF15 ubiquitination was extensively investigated, the respective E3-ligase
remained unknown. In this study, we found that UHRF1 is the E3-ligase modifying PAF15 at K15
and K24 and thereby close a gap in the literature (Karg and Smets et al., in review). In spite of
having a PCNA interacting domain, PAF only stably localizes to PCNA when the ubiquitinated
lysine residues are present as shown by immunofluorescence imaging using an ectopically
expressed PAF-mutant construct. Thus we propose that ubiquitination promotes the stability of
the PAF15-PCNA interaction and thereby links UHRF1 function to TLS polymerase switch and the
DNA damage response (Figure 19).

Additionally, structural studies of PAF15 bound to PCNA revealed that the low complexity N-
terminus of PAF15 interacts with DNA and thereby might reduce the speed of PCNA-clamp
sliding (De Biasio et al. 2015; Cordeiro et al. 2016). Ubiquitination of the N-terminus would
interfere with the PAF15-DNA interaction and could potentially result in enhanced clamp sliding
velocity (De Biasio et al. 2015) (Figure 19). Such a mechanism could be reasonable during late S-
phase where we observe the most prominent PAF-PCNA interaction, since rapid replication of
heterochromatic gene-poor regions might potentially be priorized over immediate DNA damage
repair at this specific timepoint.

Taken together, ubiquitination of PAF15 by UHRF1 adds an additional aspect to the role of
UHRF1 in repair of DNA ICLs beyond its reported function in the Fanconi anemia pathway (Tian et
al. 2015; C.-C. Liang et al. 2015). Thus, our results further strengthen the role of UHRF1 in DNA
damage response.
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Figure 19: Model for ubiquitination of PAF15 by UHRF1 at chromatin. PAF ubiquitination functions in

TLS polymerase switch and possibly influences the speed of the replication fork by abolishing the
interaction of the PAF15 N-terminus with DNA.

5.3.4. Ubiquitination targets of UHRF2 in ESCs

Although UHRF2 is barely expressed in mESCs (Pichler et al. 2011) we found 29 K-Gly-Gly
peptides significantly enriched, and 39 significantly de-enriched upon UHRF2 depletion (Figure
20). Of those peptides, 35 overlap with K-Gly-Gly peptides regulated by UHRF1 (Karg and Smets
et al, in review). Similarly to UHRF1 KO cells, RNF10, SPRTN and PEG3 were also found
significantly regulated in UHRF2 KO cells (Figure 20), indicating overlapping functions of their E3-
ligase ubiquitination activity. However, neither PAF15 nor PCNA peptides showed significant
changes in case of UHRF2 depletion, suggesting an exclusive function of UHRF1 in TLS synthesis.

A conserved function of both UHRF1 and UHRF2 is the inhibition of de novo DNA methylation by
functioning as E3-ligases promoting DNMT3A degradation (Jia et al. 2016). As observed for
UHRF1 before, K-Gly-Gly peptides derived from DNMT3A were present in the UHRF2 dataset, but
not significantly regulated. Furthermore, three out of four DNMT3B peptides were significantly
de-enriched in UHRF2 KO cells, raising the question whether DNMT3B ubiquitination is also
regulated by UHRF1 and UHRF2.
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Figure 20: Volcano plot of K-Gly-Gly peptides detected in UArfZ” cells compared to wildtype cells.
blue = Limma adjusted p-value < 0.05, pink = peptides mentioned in text. (Graph modified from Karg
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Despite its activity towards polyglutamine aggregated huntingtin (Iwata et al. 2009), no specific
ubiquitination targets of UHRF2 have been identified to date. In our dataset, three peptides
showed specifically high significant enrichment upon UHRF2 KO (Figure 20).

First, ZSCAN4B (Zinc finger and SCAN domain-containing 4B) was found, an uncharacterized
homologue of the protein ZSCAN4C. ZSCAN4 family proteins are expressed in 2-cell embryos
and ESCs (Falco et al. 2007). In particular, ZSCAN4C was shown to be important in ESC
pluripotency by binding telomeres and regulating their elongation, thereby ensuring genomic
stability (Storm et al. 2009; Zalzman et al. 2010). Interestingly, TET protein depletion in ESCs leads
to upregulation of ZSCAN4 and thereby increases telomere length (F. Lu et al. 2014).

Second, PDZD4 (PDZ domain-containing protein 4) was detected, whose expression is
upregulated in human synovial sarcomas affecting joint capsules and tendon sheaths (Nagayama
et al. 2004) but its cellular function was not investigated until now.

Finally, among the most enriched peptides we found site 46 of the Adenosylhomocysteinase
(Ahcy), which is also named S-adenosyl-L-homocysteine hydrolase (SAHH). This ubiquitination
site was also found significantly enriched in UHRF1 depleted cells (Figure 18). SAHH mediates the
hydrolysis of S-adenosylhomocysteine (SAH), a by-product generated in SAM-dependent
methylation reactions and a competitive inhibitor of methyltransferase proteins such as DNMTs
(Tehlivets et al. 2013; Kusakabe et al. 2015). Since the SAHH reaction product homocysteine is in
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turn recycled and reused for SAM synthesis, this enzyme critically influences both SAM and SAH
levels in the cell (Tehlivets et al. 2013). Thus, regulation of SAHH by ubiquitination could provide
a further mechanism for UHRF-dependent regulation of DNMT enzymatic activity.

In summary, our ubiquitome analysis resulted in numerous K-Gly-Gly sites influenced by
depletion of UHRF1 and UHRF2. Among the candidates found for UHRF1, PAF15, a factor
essential for TLS polymerase switch upon replication stalling due to DNA interstrand crosslinks,
was most prominent. We validated UHRF1 as the previously unknown E3-ligase of PAF15 and
thereby further emphasize the importance of UHRF1 in DNA damage response pathways.
Additionally, we provided the first dataset investigating putative proteins ubiquitinated by
UHRF2, revealing promising candidates such as SAHH, whose functional relevance will be a
subject of future studies.
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7. Annex

7.1.

Abbreviation

2-HG

2i

3C
3D-SIM
AML
AP-MS
ATP
BER
BiolD
BirA*
bp
BRCA1/2
Bxb1l
caC
Cas9

CasID

ChIP
ChIP-seq
CMML
CpG
CRISPR
CRISPR-
CHAP-MS
crRNA
dCas9
DNA
DSB
DSBH
DUB

enChIP

EpilLC
EpiSC

Abbreviations

Meaning

2-hydroxyglutarate

two MEK and GSK3 inhibitors

chromosome conformation capture

3D structured illumination microscopy

acute myeloid leukemia

affinity purification followed by mass spectrometry
adenosine triphosphate

base excision repair

proximity-dependent protein identification
promiscuous biotin ligase

base pairs

Breast cancer type 1/2 susceptibility protein homolog
phage derived serine integrase

5-carboxy cytosine

CRISPR-associated protein 9 nuclease

DNA binding of dCas9 combined with the promiscuous biotin ligase
BirA*

chromatin immunoprecipitation

ChIP sequencing

chronic myelomonocytic leukemia

CG dinucleotide

clustered regularly interspaced short palindromic repeat

CRISPR-based Chromatin Affinity Purification with Mass Spectrometry

CRISPR RNA

enzymatically inactive Cas9

desoxyribonucleic acid

DNA double strand break

double stranded beta helix

deubiquitinases

engineered DNA-binding molecule-mediated chromatin
immunoprecipitation

epiblast-like cells

epiblast-derived stem cells
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ESCs embryonic stem cells

fC 5-formyl cytosine

FISH fluorescence in situ hybridization

GBP GFP-binding protein

GFP green fluorescent protein

gRNA guide RNA

HDAC histone deacetylase

HEK human embryonic kidney cells

hmC 5-hydroxy-methyl cytosine

HP1 heterochromatin protein 1

HR homologous recombination

HyCCaPP Hybridization Capture of Chromatin Associated Proteins for Proteomics
ICF syndrome Centromeric Instability and Facial Anomalies syndrome
ICL DNA interstrand crosslink

K lysine

kb kilobases

kDa kilo Dalton

K-Gly-Gly di-glycine ubiquitin remnant motif

KO knock-out

LAD lamina associated domain

LBR lamin B receptor

LIF leukemia inhibitory factor

Limma Linear Models for Microarray and RNA-Seq Data
LNA locked nucleic acid

Mb Megabases

mC 5-methyl cytosine

MDS myelodysplastic syndrome

mESCs mouse embryonic stem cells

Met methionine

MIN-tag multifunctional integrase tag

MLL mixed-lineage leukemia/histone-lysine N-methyltransferase
MNNG N-methyl-N"-nitro-N-nitrosoguanidine

MPN myeloproliferative neoplasm

MYC Myc proto-oncogene protein

NHEJ non homologous end joining

NLS nuclear localization sequence

NuRD nucleosome remodeling and deacetylase complex
NURF Nucleosome Remodeling Factor

OGT O-linked b-N-acetylglucosamine transferase
PAF15 PCNA-associated factor 15

PAM proto-spacer adjacent motif
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PCNA
PGC
PHD
PiCh

PIP domain
PML
PRC1/2
PTM
PWWP
QSER1
QTIP
RING
RNA
RNAi
SAH
SAHH
SALL4
SAM
SILAC
SIN3A
S-phase
SRA
SWI/SNF
TAD
TALEs
TDG

TET

TLS

T™MT
tracRNA
tracrRNA
TRF1/2
tRNA
TSS

TTD

Ubl
UHRF
ZFP/ZNF

proliferating cell nuclear antigen

primordial germ cell

plant homeodomain

Proteomics of Isolated Chromatin segments
PCNA-interacting protein domain
promyelocytic leukemia

Polycomb group protein complexes 1/2
posttranslational modification
Pro-Trp-Trp-Pro domain

glutamine and serine-rich protein 1
quantitative telomeric chromatin isolation protocol
really interesting new gene

ribonucleic acid

RNA interference

S-adenosylhomocysteine
S-adenosyl-L-homocysteine hydrolase
Spalt-like transcription factor 4
S-adenosylmethionine

stable isotope labeling with amino acids in cell culture
Paired amphipathic helix protein Sin3a
synthesis phase

SET and Ring associated domain
SWitch/Sucrose Non-Fermentable
topologically associated domain
Transcription activator-like effector nucleases
thymine-DNA glycosylase

ten eleven translocation protein

translesion DNA synthesis

tandem mass tag

trans-activating RNA

trans-activating RNA

Telomeric repeat-binding factor 1/2

transfer RNA

transcription start sites

tandem tudor domain

ubiquitin-like

Ubiquitin-like PHD and RING finger domain-containing protein
zinc finger protein
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7.2. Publications

Karg, Elisabeth*, Martha Smets*, Ignasi Forné, Weihua Qin, Christopher B Mulholland, Joel Ryan,
Axel Imhof, Sebastian Bultmann and Heinrich Leonhardt. 2017. "Ubiquitome analysis reveals
PCNA-associated factor 15 (PAF15) as a specific ubiquitination target of UHRF1 in embryonic
stem cells." under review at the Journal of Molecular Biology. *shared first author.

Schmidtmann, Elisabeth*, Tobias Anton* Pascaline Rombaut, Franz Herzog, and Heinrich
Leonhardt. 2016. "Determination of Local Chromatin Composition by CasID." Nucleus 7 (5): 476-
84. *shared first author.

Mulholland, Christopher B. Martha Smets, Elisabeth Schmidtmann, Susanne Leidescher,
Yolanda Markaki, Mario Hofweber, Weihua Qin, et al. 2015. “A Modular Open Platform for
Systematic Functional Studies under Physiological Conditions.” Nucleic Acids Research 43 (17):
ell2.
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7.3. Declaration of contributions

Contributions to “Determination of local chromatin composition using CasID”
This study was conceived by Heinrich Leonhardt, Tobias Anton and me. For this project, I
performed all pulldown experiments including sample preparation for mass spectrometry
depicted in Figure 3. Furthermore, I analyzed and interpreted all data derived from those
experiments. Together with Tobias Anton, I wrote the first draft of the manuscript.

Contributions to “A modular open platform for systematic functional studies under
physiological conditions”

For this manuscript, I generated and validated the Tet1®™*/B™" cell line, performed BioID
pulldown experiments and analyzed the resulting data. I prepared Figure 4C-F, wrote the

respective methods part of the manuscript and proofread the manuscript.

Contributions to “Exploring the TET1-nano environment in mouse embryonic stem cells”
This study was conceived by Heinrich Leonhardt and me. I performed all GFP-pulldown and BiolD
experiments depicted in Figures 1 to 4. Furthermore, I performed the fluorescence-three-hybrid
assays depicted in Figure 5 and 6. I prepared all figures and wrote the manuscript.
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