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Abstract

Abstract

The majority of diagnostic decisions are made on results from blood-based tests, and
protein measurements are prominent among them. However, current assays are
restricted to individual proteins, whereas it would be much more desirable to measure
all of them in an unbiased, hypothesis-free manner. Therefore, characterization of the
plasma proteome by mass spectrometry holds great promise for clinical application.

Due to great technological challenges and study design issues, plasma proteomics has
not yet lived up to its promises: no new biomarkers have been discovered, plasma
proteomics has not entered clinical diagnostics and few biologically meaningful insights
have been gained. As a consequence, relatively few groups still continue to pursue
plasma proteomics, despite the undiminished clinical need.

The overall aim of my PhD thesis was to pave the way for biomarker discovery and
clinical applications of proteomics by precision characterization of the human blood
plasma proteome. First, we streamlined the standard, time consuming and labor-
intensive proteomic workflow, and replaced it by a rapid, robust and highly reproducible
robotic platform. After optimization of digestion conditions, peptide clean-up procedures
and LC-MS/MS procedures, we can now prepare 96 samples in a fully-automated way
within 3h and we routinely measure hundreds of plasma proteomes. Our workflow
decreases hands-on time and opens the field for a new concept in biomarker discovery,

which we termed ‘Plasma Proteome Profiling’.

It enables the highly reproducibility (CV<20% for most proteins), and quantitative
analysis of several hundred proteins from 1 pl of plasma, reflecting an individual’s
physiology. The quantified proteins include inflammatory markers, proteins belonging to
the lipid homeostasis system, gender-related proteins, sample quality markers and more
than 50 FDA-approved biomarkers. One of my major goals was to demonstrate that MS-
based proteomics can be applied to large cohorts and that it is possible to gain
biologically and medically relevant information from this. We achieved this aim with our
first large scale plasma proteomic study in which we analyzed by far the largest plasma
proteomics study with almost 1,300 proteomes, which allowed us to define inflammatory

and insulin resistance panels in a weight loss cohort.

In summary, this PhD thesis has developed the concept and practice of Plasma
Proteome Profiling as a fundamentally new approach in biomarker research and medical
diagnostics — the system-wide phenotyping of humans in health and disease.
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Zusammenfassung

Der GroBteil aller diagnostischen Entscheidungen basiert auf Bluttests, wobei Proteine
den gréBten Anteil der untersuchten Analyten einnehmen. Die klinisch eingesetzten
Assays sind jedoch auf einzelne Proteine beschrénkt und es ware erstrebenswert
moglichst alle Proteine in einer einzelnen Messung hypothesenfrei und objektiv zu
erfassen. Deshalb wéare die massenspektrometrische Charakterisierung des Plasma
Proteomes ein sehr vielversprechender Ansatz.

GroBe technologische Herausforderungen und schlecht konzipierte Studien flihrten
jedoch dazu, dass die Massenspektrometrie (MS)-basierende Proteomics die hohen
Erwartungen bis heute nicht erflllen konnte: kein einziger neuer Biomarker wurde
mittels Proteomics entdeckt, die Massenspektirometrie hat nicht den Sprung in die
klinische Anwendung geschafft und es war nicht mdglich bedeutende biologische
Erkenntnisse aus dem Plasma zu gewinnen. Dies flhrte dazu, dass heute nur noch
relativ wenige Forschungsgruppen das Plasma Proteom untersuchen, obwohl der
medizinische Bedarf noch immer genauso grof3 ist.

Das Ziel meiner Doktorarbeit war es den Weg fir die Entdeckung neuer Biomarker und
der klinischen Anwendung von Proteomics zu ebnen. Der typische Arbeitsablauf in der
Proteomics ist sehr zeitintensiv und aufwendig. Deshalb haben wir ihn zuerst
grundlegend vereinfacht und auf Schnelligkeit, Robustheit und Reproduzierbarkeit
optimiert. Nach der Verbesserung von Verdaubedingungen, der Peptid-Aufreinigung
und der Instrumentenparameter sind wir nun in der Lage 96 Proben vollautomatisiert
innerhalb von 3 Stunden vorzubereiten und hunderte von Plasma Proteomen am Stiick
zu messen. Dieser Arbeitsablauf vereinfacht nicht nur die proteomische Anwendung im
Allgemeinen, sondern erdffnet auch die Moglichkeit eines neuen Konzepts in der

Biomarkerforschung.

Dieses neue Konzept bezeichnen wir als ,Plasma Proteome Profiling“. Es erlaubt die
hochreproduzierbare (CV<20%) Quantifizierung von hunderten von Proteinen aus
einem Mikroliter Plasma und liefert damit eine Reflektion des Gesamtzustandes eines
Menschen. Unter andern messen wir Entzindungsmarker, Proteine des
Fettstoffwechselsystems, geschlechts-spezifische Proteine, Qualitdtsmarker und
zudem Uber 50 verschiedene bereits klinisch angewendete Biomarker. Eines meiner
zentralen Ziele war es die Messung groBBer Kohorten zu erméglichen. So haben wir die
bis heute gréBte Plasma Proteomics Studie mit anndhernd 1300 Plasma Proteomen
analysiert und dabei klinisch bedeutende Informationen Uber den Entziindungsstatus
und die Insulin-Resistenz-Neigung von Studienteilnehmern entdeckt.
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Das in dieser Doktorarbeit entwickelte Konzept von Plasma Proteom Profiling ist ein
grundsatzlich neuer Ansatz in der Biomarkerforschung und auch fur die medizinische
Diagnostik, die zum Phé&notypisieren von Menschen mittels minimaler Blutmengen
eingesetzt werden kann. Bereits heute setzen wir Plasma Proteomics Profiling auf
taglicher Basis zur Erforschung neuer krankheitsrelevanter Biomarker in verschiedenen
Studien ein. Auch weiterhin investieren wir viel Energie in die Erforschung neuer
Technologien um unsere Idee der proteomischen Phanotypisierung mittels Plasma
Proteom Profiling noch weiter auszubauen und sie schlieBlich in die klinische

Anwendung zu Ubertragen.
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1. Introduction

1. Introduction

1.1. Mass spectrometry-based exploration of the proteome

Proteins control and execute the vast majority of biological processes. Changes in their
expression levels, activity, localization or interaction characterize different states of
biological systems. The proteome is defined as the entirety of all proteins in a biological
system and proteomics is the technology and approach for its large-scale investigation.
The proteomics field has benefited from continuous development over the last 20 years.
Starting from gel electrophoresis-based to high technology mass spectrometry (MS)-
based methods, proteomics now allows the holistic investigation of diverse biological
conditions and processes (Aebersold and Mann, 2016; Larance and Lamond, 2015).

The initial breakthrough for MS-based proteomics was the development of soft ionization
techniques for large molecules in the late 1980s. Especially two technologies allowed
the ionization and vaporization of proteins and peptides: Matrix-assisted laser
desorption/ionization (MALDI) and electrospray ionization (ES) (Fenn et al., 1989; Karas
et al., 1985; Tanaka, 1988). ES became especially popular in research because it can
be easily coupled with a liquid chromatography system (LC). In ES, the analytes are
volatized and ionized directly out of a solution by dispersion of the liquid into very small,
charged droplets that rapidly evaporated, transferring charges to desolvated, labile
analytes (Kebarle and Tang, 1993). John Fenn was awarded a share of the chemistry
Nobel Prize for his invention of electrospray ionization for large molecules in 2002.
Further technological breakthroughs were the combination of peptide sequence tag
algorithms for the identification of peptides in DNA databases and the development of
highly sensitive nanoelectrospray (Mann and Wilm, 1994; Wilm and Mann, 1996).

In principle, purified intact proteins can directly be analyzed by MS-based proteomics, a
technology called ‘top-down’ proteomics (Catherman et al., 2014). However, ions with
lower mass are more sensitive in MS-based analysis and intact protein measurements
are not as informative, which has meant that top-down proteomics is confined to special
niches such as protein drug characterization. In contrast ‘bottom-up’ proteomics has
been broadly successful and is the mainstay of MS-based proteomics today. For a long
time and still today proteins have been analyzed by polyacrylamide gels but it was not
possible to continue from gels to MS analysis. The development of ‘in-gel digestion’
protocols enabled the efficient isolation of peptides from polyacrylamide gels and high
sensitivity analysis of biological systems (Saccharomyces cerevisiae) (Shevchenko et
al., 2006; Shevchenko et al., 1996). Combined with nanoelectrospray and peptide
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sequence tags, this for the first time made mass spectrometry applicable to low level
analysis of important proteins and MS has been the method of choice for their analysis
ever since (Mann, 2016; Wilm et al., 1996).
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Figure 1: Shotgun proteomics workflow. (A) In the sample preparation step, proteins are extracted from
cells or tissue and enzymatically digested to peptides. Fractionation can be applied at the protein or peptide
levels to increase proteome coverage. (B) Peptides are separated by a high-performance liquid
chromatography (HPLC) system and ionized by electrospray for subsequent mass spectrometry (MS)
analysis. The typical schema of a data dependent top N method for data acquisition is depicted (one MS'
scan followed by n MS? scans). (C) Bioinformatic spectra interpretation uses the information from the full
MS (MS') and MS? spectra for data searching. From (Hein et al., 2013).

Over the years, sample preparation has remained a key component of proteomics
(Figure 1 A). The aim of a typical sample preparation workflow is to harvest proteolytic
peptides suitable for bottom-up MS. The process usually starts with the lysis of cells or
tissue, followed by the reduction of intra- and inter-protein disulfide bonds. Alkylation is
necessary in order to prevent the reactive thiol groups of cysteine residues from forming

disulfide bridges again. The next step in generating peptides is digestion by sequence
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specific enzymes. These generate predictable terminal amino acids, supplying further
constraints for bioinformatics peptide identification. Trypsin and/or LysC are almost
always used because they generate particularly favorable peptides for MS
fragmentation and identification.

Past protocols often used strong detergents like sodium-dodecyl-sulfate (SDS) for cell
lysis, which also results in the denaturation of the digestion enzymes and is in any case
incompatible with ES. Protocols have been developed to remove the detergents e.g. by
protein precipitation or ‘Filter-Aided Sample Preparation’ (FASP) (Wisniewski et al.,
2009). However, apart from recurrent issues regarding reproducibility, these multi-step
protocols frequently suffered from remaining detergent contamination, negatively
affecting digestion efficiency. In 2014, Kulak et al. published the ‘in-StageTip’ digestion
protocol, an all-in-one reaction buffer system for cell lysis, reduction and alkylation of
cysteine residues and highly efficient digestion on the solid-phase extraction matrix
(Kulak et al., 2014). Solid phase extraction then delivers clean peptides, ready for MS
analysis. This protocol not only radically increased digestion efficiency but also virtually

eliminated hands on time.

In the next step of the proteomic workflow, peptides are separated according to
hydrophobic interactions with initially a mobile and later a stationary phase in a high-
pressure liquid chromatography (HPLC) system (Figure 1 B). Peptides elute from the
column in a sequential manner and are immediately ionized in the electrospray source.
HPLC systems operating in the nano-flow range have proven to be especially efficient
for peptide separation and the following ionization, resulting in high sensitivity.

Today’s mass spectrometers are highly complex systems. They consist of a large
number of components that focus the ion beam with lenses in the vacuum, effect the
ions flight path by dynamic electric fields, allow to filter for ions with distinct mass to
charge (m/z) ratios and break them into smaller fragments at selectable energies. The
fact that an ion behavior in the vacuum is strictly dependent on its m/z can be used for
identification and quantification. Many types of mass analyzers and detectors are used
for this purpose.

A typical MS-measurement uses two steps (MS' and MS?) to acquire the necessary
information for peptide identification. In the MS' step (full scan), a broad-range mass
spectrum (e.g. m/z=300-1,650 Th) is acquired, delivering m/z values for all intact peptide
masses at a distinct time point during the LC run. In the MS? scan a single ion species
is selected and fragmented according to an intensity-based priority list (top N method)
and the fragments masses are determined. The MS' and MS? measurements deliver
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the data that is used in the identification of the peptides (Figure 1 C). As peptides are
combinations of amino acids with distinct masses it is in principle possible to determine
their sequences. The MS' spectrum provides the intact peptide mass and thus
constrains the peptide’s amino acid composition. For all peptide sequences in the
database with a compatible mass that satisfies the enzyme specificity, the MS? spectra
are calculated. The number of matches to the measured fragments is converted to a
score that reflects the likelihood that these matches occurred by chance. False
Discovery Rates (FDRs) are then rigorously determined by comparison to the number
of peptide and protein matches in a sequence reversed database. In this thesis, peptide
and protein identification and quantification were all performed in the MaxQuant suite of
computational tools (Cox and Mann, 2008; Tyanova, 2016).

The last years have seen dramatic improvements in all areas of the MS-based
proteomics workflow, ranging from sample preparation to measurement and subsequent
bioinformatic analysis (Aebersold and Mann, 2016; Bantscheff et al., 2012; Cox and
Mann, 2011; Munoz and Heck, 2014). Together, these advances have enabled the
broad application of quantitative proteomics in biological research, resulting in
thousands of publications each year. Today, specialized proteomic laboratories identify
quasi-complete proteomes of more than 10,000 proteins in mammalian model
organisms (Bekker-densen et al., 2017; Geiger et al., 2012; Kulak et al., 2017; Richards
et al., 2015) and apply their workflows to a diverse array of cell biological, biochemical
and medical processes (Figure 2). This has also answered basic questions relating to
the regulation of the proteome, including mRNA translation efficiency — in this case
showing a highly protein specific regulation (Lahtvee et al., 2017; Nagaraj et al., 2011).
Moreover, temporal regulation of protein expression and modification during the cell
cycle (Ly et al., 2014; Olsen et al., 2010) and spatial distribution of proteins with
subcellular organelle maps haven been used to investigate protein dynamics on a global
scale (Andersen et al., 2005; ltzhak et al., 2016). Interaction partners of a protein of
interest can be revealed by ‘pull-down’ experiments. The global application of this
technology resulted in drafts of the human interactome, an extensive network analysis
of the connections of thousands of proteins (Hein et al., 2015; Huttlin et al., 2017). Even
symbiotic association can be disentangled at the proteome level, such as the one
between legumes and nitrogen-fixing bacteria (Marx et al., 2016). Finally, the analysis
of signaling pathways by enrichment of phosphorylated peptides allows researchers to
uncover complex signal transduction pathways in vitro and in vivo (Humphrey et al.,
2015).
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The integration of several types of human tissue proteomes combined with data
generated by the community resulted in two first ‘drafts of the human proteome’ (Kim et
al., 2014; Wilhelm et al., 2014). Although these maps were by no means complete and
their analysis methods are controversial, they illustrate the desire to determine the
complete proteome as are a first step towards an understanding of the complex protein
composition in the human body. More focused projects revealed cell type and region
specific maps of whole mammalian organs, providing insights into biological processes
in model animals and humans (Aye et al., 2010; Azimifar et al., 2014; Sharma et al.,
2015).
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Figure 2: Proteomics exploration of a cell. Proteins in their various forms and modifications can be
investigated by different proteomics techniques to explain diverse cellular processes on the molecular level.
From (Hein et al., 2013).

1.2. Clinical proteomics

Precision medicine is a key aim of modern medical science, directly connected to
individualized treatment and disease prevention (Collins and Varmus, 2015). It is driven
by the idea that inter-individual biological variances determines the differences in
disease presentation and subsequent response to treatment. Large scale technologies
that have the power to differentiate between individuals such as genomics,
transcriptomics and proteomics all have the promise to personalize medicine. The

proteome is the most direct molecular representation of the phenotype, levels of
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individual proteins are already widely applied as indicators of diseases in clinical practice
and most drugs influence the activities or concentrations of proteins. Therefore,
proteomics should in principle be an ideal technology to investigate disease
mechanisms. Clinical proteomics could be used in a multi-faceted manner to deliver on
the promises of personalized medicine: diagnosing diseases in early stages, correlating
protein patterns for disease sub-classification, predicting disease progression and

finding causal molecular targets for new treatment strategies.

Research groups around the globe strive to address the diverse medical needs of
society. Some clinical questions can be readily answered using cell line systems. In this
context, proteomics has been successfully applied to disentangle the respective
mechanisms of actions of drug treatments, see for example (Sacco et al., 2016), and it
has also been used to find off-target effects of therapeutics (Bantscheff et al., 2007;
Klaeger et al., 2016). Only a minority of diseases have obvious causal mechanisms such
as monogenetic disorders; rather pathogenicity usually depends on the accumulation of
multiple diverse epigenetic and environmental factors. Even in cancer, where the
underlying defect is gene mutation, there is complexity in the cumulative tumor
heterogeneity. Cells within a single tumor can exhibit diverse mutations due to clonal
evolution. Further heterogeneity comes from the immediate microenvironment level
(blood vessels, interaction with stroma, nutrients), while there is a nearly infinite
variability at the level of the host that may influence tumor progression (immune
response, microbial response, age of host, environment exposure). Thus model
organisms can only help in providing a generalized, simplified overview. Investigation of
diseased tissues or body fluids of individuals can shed light on protein-based molecular
mechanisms and proteomics has already been successfully applied to the investigation
of tumor samples. Disease specific patterns have been identified and further sub-
stratification of individuals within one disease has been achieved, see for example
(Deeb et al., 2015; Mertins et al., 2016; Tyanova et al., 2016; Zhang et al., 2014).

Tissues are generally only available for diseases where surgery is a necessary
treatment step. In other cases, they have to be obtained post mortem. In contrast, body
fluids like saliva, urine, stool and tears are sampled non-invasively or in the case of blood
by minimally invasive procedures. Evidently, they represent a unique opportunity in
terms of potential clinical utility and research potential. As a consequence, there are
clinically established tests for all of them. Blood and blood derived matrices like plasma
and serum (collectively referred to a ‘plasma in this thesis) are by far the most important
ones for diagnostic purposes and will be discussed separately below.
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In the past decades, the proteomics field has collectively endeavored to search for new
biomarkers in body fluid proteomes. For instance, in stool samples chemical and
immunological tests are used to detect blood in the context of colorectal cancer
screening (Rex et al., 2009). Stool mainly consists of bacteria and this has become the
focus of much current research. The microbiome has been investigated in a wide range
of conditions and diseases by next-generation sequencing (NGS) methods and these
analyses clearly reveal the profound influence of the microbiome in many diseases
(Lynch and Pedersen, 2016). A recent proteomic study in human and mice achieved
high proteome coverage of more than 30,000 microbial and host proteins in mice and
19,000 in humans (Zhang et al., 2016). In our group we investigated the microbial
community of human saliva by proteomics, quantifying 5,500 human and 2,000 microbial
proteins. We found drastic remodeling of the microbiome in response to food intake and
tooth brushing (Grassl et al., 2016). In the clinic, saliva samples are routinely tested for
a broad range of diseases like HIV or helicobacter pylori (Malamud, 2011). A broad
range of analytes, especially small molecules, are determined in urine, but total protein
levels are also tested to detect increased glomerulus permeability e.g. in infectious
diseases, diabetes, hypertension and general kidney malfunction. Human chorionic
gonadotropin (hCG) is the commonly detected substance in pregnancy tests, which is
also performed in urine. The proteomic community has investigated the urine proteome
extensively, achieving a depth of nearly 3,500 proteins (Santucci et al., 2015). Tear fluid
is also interesting for diagnosis and proteomic studies report more than 1,500 identified
proteins (Aass et al., 2015).

In the past and present, plasma forms the basis of standard clinical diagnosis and this
will in all likelihood continue in the future. In the realm of proteomics, plasma has also
emerged as a center of attention. This fact is clearly reflected in a comparison of the
collective number of publications regarding urine, stool, saliva and tears vs. those that
investigate either blood, plasma and serum. As of May 2017 this ratio stands at 1,500
to 7,700. In light of this, it is unfortunate that, due to a variety of technical and conceptual
shortcomings, the exploration of the human plasma proteome has proven to be
somewhat of a disappointment, with essentially no proteomics-derived biomarker having
been integrated into clinical practice.

1.3. The blood plasma proteome

Blood is considered the foremost bodily fluid and around 5 L are circulating in the human
body. It serves as the medium through which a vast array of functions is executed:
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oxygen and nutrients are provided, metabolites are carried and removed, signaling
molecules are transported for inter-organ communication, body temperature is regulated
and pathogens are fought by the immune system.

Blood is a suspension, consisting of a cellular (~40%) and a liquid component (~60%)
(Fischbach, 2009). Its cellular portion can be classified into erythrocytes, thrombocytes
and leucocytes. Erythrocytes are the most abundant ones (~5*108 cells/uL), responsible
for the transport of oxygen and for pH buffering. Thrombocytes (~1-4*10° cells/uL) are
the protagonists of haemostasis, initiating repair upon injuries. Leucocytes (5-10*103
cells/uL) constitute a broad class of immune cells of which granulocytes and monocytes
are responsible for the unspecific and lymphocytes (B cells, T cells, NK cells) for the

specific immune response.

The straw-coloured liquid portion of blood is called plasma, in which all components are
retained whereas serum remains after activation of the coagulation cascade. In our

experience, serum and plasma are equally suited to proteomic analysis.
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Figure 3: Functional annotation of the plasma proteome. (A) Plasma proteins are spread over a
dynamic range of at least ten orders of magnitude. Typical serum proteins are annotated in the abundance
plot. The three boxes reflect classification into functional, tissue leakage and signal proteins according to
the proteins and their keyword annotation from Anderson (Anderson and Anderson, 2002). (B) Keyword
annotation and one-dimensional enrichment analysis provide a functional reflection of the plasma proteome
based on bioinformatic analysis (Cox and Mann, 2012). Protein concentrations were derived from the
Plasma Proteome Database (Nanjappa et al., 2014). Adapted from (Geyer et al., 2017).

The plasma proteome — the entirety of all proteins present in plasma — can be
categorized into three general classes based on functionality (Anderson and Anderson,
2002; Surinova et al., 2011): highly abundant proteins with specific roles in plasma,
medium abundant tissue leakage proteins with no dedicated purpose in plasma, and low
abundant signalling proteins (Figure 3 A). The concentration difference between the
most abundant protein serum albumin (ALB) at around 50 mg/mL and the lowest
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concentrated cytokines e.g. interleukin 1 beta (IL-1B) with less than 5 pg/mL, results in
a dynamic range spanning more than ten orders of magnitude. Note that the
categorization into abundance and functional classes is only approximate; for instance,

there are very low abundance tissue leakage proteins with no functional role.

In the high abundant class, albumin maintains the osmotic pressure, the apolipoprotein
family transports insoluble molecules such as lipids, haptoglobin sequesters free
haemoglobin that would otherwise harm the kidneys, serotransferrin recycles free iron,
acute phase proteins defend the body against pathogens and the proteins of the
coagulation cascade initiate wound healing. Tissue leakage proteins may be released
by shedding into the circulation such as the apolipoprotein receptors SRB1, LRP1 and
LDLR from the liver or by tissue damage like prostate specific antigen (PSA) (Vihko et
al., 1978), which is elevated in prostate cancer patients. Likewise, increased levels of
the cardiac muscle troponin T (TNNT2) may indicate a myocardial infarction (Hamm et
al., 1992). The third class consists of messenger molecules like small protein or peptide
hormones (e.g. insulin or ghrelin) and cytokines, which typically have very low
abundances at steady state and are upregulated on demand.

The diverse functions of the plasma proteome, distributed over the entire concentration
range, are displayed in figure 3 B. Keyword annotations of a list of 1,176 proteins and a
subsequent ‘one-dimensional enrichment analysis’ (Cox and Mann, 2012) identified 67
significantly enriched terms. These cover only keywords that are connected to multiple
proteins and thus even underestimate the functional complexity of the plasma proteome.
For example, copper transport is executed by a single protein (ceruloplasmin), whose

function is not enriched in such an analysis.

1.4. Biomarkers and the clinical plasma proteome

According to the US National Institutes of Health (NIH) Biomarkers Definitions Working
Group, a biomarker is a defined characteristic that can be quantified as an indicator of
a normal biological process, pathogenic process, or a response to an exposure or
intervention (Biomarkers Definitions Working, 2001). The BEST resource (FDA-
NIH:Biomarker-Working-Group, 2016) of the American Food and Drug Administration
(FDA) classifies biomarkers into seven categories (Figure 4 A).
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Figure 4: Biomarkers and their clinical application. (A) Biomarkers are divided by the FDA into the seven
indicated categories according to the BEST resource (2016). (B) Proportion of clinical decisions that are
made based on laboratory testing. (C) Proportion of clinical tests that are based on different molecule types.
Adapted from (Geyer et al., 2017).

Biomarkers have a profound role in clinical decision making. According to a survey of
our collaborators at the Institute of Laboratory Medicine at the Klinikum GroBhadern —
one of the largest University Hospitals in Germany — 77% of all clinical decisions are
based on laboratory tests (Figure 4 B) (Geyer et al., 2017). The largest group of these
(42%) measures the concentrations or enzymatic activities of proteins (Figure 4 C). In
daily clinical practice, the quantitative analysis of individual plasma proteins is
overwhelmingly performed with immuno- or enzymatic-assays that target single
proteins. This is because these tests have inherent limitations regarding multiplexing
and antigen-antibody recognition. Such limitations include cross-reactivity, non-linear
responses (Hook effect) and interference by background molecules such as triglycerides
(Hoofnagle and Wener, 2009; Wild, 2013). Furthermore, there are a plethora of clinically
important protein variants that are difficult to detect by antibody-based assays. One
example is apolipoprotein(a), a marker for the assessment of cardiovascular disease
risk (Danesh et al., 2000). Apolipoprotein(a) contains a number of kringle IV domains
that is genetically determined. These affect the structure of the protein and the affinity
of the antibody towards it (McConnell et al., 2014). Another example is vitamin D binding
protein of which there are three common isoforms in humans, each reacting differently
in clinical immunoassays. A frequent polymorphism in African Americans has resulted

in the underestimation of vitamin D binding protein levels and in the mistaken notion that
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African Americans have lower concentrations of this proteins in general (Powe et al.,
2013).

To date, the concept of protein biomarker discovery and measurement is generally
synonymous with single protein tests, with the unstated implication that there should be
a biomarker for each disease. However, this notion suffers from an inherent conceptual
limitation: there are only about 20,000 human genes and the number of different human
diseases is nearly as large — 14,400 according to the International Classification of
Diseases (ICD). Biologically, it appears unlikely that a distinct protein-based biomarker
exists for each and every disease (and it would already be arithmetically impossible).
Even adding non-protein compounds such as metabolites, would not change the
situation appreciably. A more promising concept would be to combine proteins into
‘multi-biomarker panels’. This generates a very large number of degrees of freedom —
many more than the number of different disease. Even a small panel consisting of five
arbitrary proteins with binary states would result in about 20,000° = 3*10?" possible
combinations. Apart from potentially enabling many more potential patterns than single
protein assays, multi-biomarker panels could also more readily account for inter-
individual variability. For example, one of the studies described in this thesis defines a
multi-protein inflammation panel consisting of 10 proteins that reflects low level
inflammation in the body (Geyer et al., 2016a). Interestingly, in clinical practice there are
some examples of multi parameter diagnostic scores like the sFIt-1/PIGF ratio for the
diagnosis of preeclampsia (Levine et al, 2004) or the integration of albumin, bilirubin,
quick test, ascites and encephalopathy into the Child-Pugh-score for liver cirrhosis
(Pugh et al., 1973).

Currently, there are only about 100 FDA cleared or approved clinical plasma or serum
tests available. Furthermore, more than 80% of these have been implemented more
than 20 years ago. In the past two decades, the rate of discovery of new biomarkers has
remained constant or even declined, with less than two new biomarkers incorporated

into clinical practice per year (Anderson, 2010; Geyer et al., 2017).

Given the fundamental limitations of individual protein assays, MS-based methods are
in principle an attractive alternative for clinical applications as well as biomarker research
as they are inherently capable of discovering multi-protein panels. However, the
technological challenges are daunting and call for drastic improvements in robustness,
sensitivity and throughput compared to what is available at the moment.
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1.4.1. Challenges of plasma proteomics

1.4.1.1. Pitfalls of the past

Given the attractiveness of plasma proteomics, many research groups around the globe
have attempted to mine the human plasma proteome in search of new biomarkers over
the last decades. Unfortunately, despite these individual efforts and those of the Human
Proteome Organization’s Plasma Proteome Project (Omenn et al., 2005), this major goal
of our community has not fulfilled its initial promises. In retrospect, this is clearly due to
several intractable technological challenges, which were not sufficiently addressed at

the time.

On the biomarker side, the only case in which plasma proteomics was partially
successful was the OVAT1 test (Rai et al., 2002; Zhang et al., 2004). OVA1 consists of a
five protein panel used to distinguish between benign and malignant ovarian tumors in
very specific indications. Four of the proteins are the highly abundant plasma proteins
beta-2 macroglobulin, apolipoprotein A1, serotransferrin and pre-albumin. They were
identified by proteomics but are very unlikely to be specific to ovarian cancer status.
Their levels are combined with the already known biomarker CA125 and the patient’s

menopausal status into a risk score.

300+

[ Proteomics Publications (x10)

B Plasma Proteomics Publications

Publications / Year

012345678 910111213141516
Year [20XX]

Figure 5: Literature review of plasma proteomics. The total number of publications using MS-based
proteomics are more than 10-times higher than the plasma proteomics literature (search terms: [proteomics
AND mass spectrometry]; [plasma AND proteomics AND mass spectrometry]). The low level and
fluctuations in the number of publications per year for plasma proteomic are in stark contrast to the steadily
increase in MS-based proteomic publications in general.
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In reviewing the history of plasma proteomics, we found that there have been two
periods of particular activity towards the discovery of new biomarkers. This is reflected
in spikes of publication numbers in plasma proteomics compared to the total number of
publications in the field of proteomics (Figure 5). Disregarding an initial phase in which
two dimensional gel electrophoresis was employed, the first period started already 2000
with a publication peak in 2006. This included claims of early cancer detection on the
basis of very low resolution MALDI spectra using ‘serum patterns’, rather than actual
protein identifications (Petricoin et al., 2002). It was later shown that biases in the
experimental procedures were responsible for the claimed classification success and
this resulted in a severe setback for plasma proteomics (Baggerly et al., 2004). The next
period with increasing numbers of publications extends from 2009 to 2013, followed by
stagnation, presumably due to the fact that no new biomarkers had been discovered.
The number of publications remains low and even dropped to a minimum in 2016. This
becomes even more remarkable against the backdrop of an ever expanding community
of researchers using proteomics and their steadily increasing output of publications.
Today, relatively few groups continue to pursue plasma proteomics, despite the
undiminished medical need for new biomarkers and the success of MS-based
proteomics in other areas. This raises the question of what holds back the field of MS-
based plasma proteomics.

1.4.1.2. Technological limitations

Finding new biomarker requires high samples throughput to obtain statistically robust
results. However, in current MS-based proteomics, the preparation of peptides from a
biological sample typically requires more than 24h and long, 2-4h gradients are usually
employed. Furthermore, sample preparation workflows are not standardized, much less
over a period of years. Plasma contains lipids and other small molecules that act as
impurities or contaminants in proteomic workflows, if not removed. This can result in
clogging of the HPLC columns that are coupled online to the MS as well as in frequent
cleaning of the instruments. Together, this has made plasma proteomics very time
consuming and expensive. Clearly, proteomics based biomarker research requires a
robust, highly reproducible and ideally automatable workflow. Such a workflow should
allow the preparation of large numbers of samples in a short time and their highly

reproducible measurement, without down time of the instrumentation.

Plasma is generally considered to be the most complex of all body tissues for proteomic
analysis, due to its high dynamic range of at least ten orders of magnitude combined
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with the need for very high sensitivity. This restricts analysis of the plasma proteome to
about six to seven orders of magnitudes with current state of the art instruments. As LC-
MS/MS is based on peptides that are separated by a gradient and that elute in a time-
ordered manner from the column, co-elution and electrospray ionization of very highly
abundant and low abundant peptides decreases the probability to detect the low
abundant ones. In plasma, the 41 tryptic peptides of serum albumin or the 312 peptides
of apolipoprotein B (fully tryptic peptides with 7-30 amino acids) present particular
challenges because of their extreme abundances and high numbers. On Orbitrap
analyzers, in particular, the space charge limit of the ion trap can be almost completely
taken up by such abundant peptides in a very short time (< 1 ms), ‘crowding out’ the low

abundant ones.

1.4.1.3. Cohort intrinsic problems

Another problem for biomarker discovery is the fact that the levels of plasma proteins
can be individual-specific. This can be genetically determined, for instance the
concentration of the above-mentioned apolipoprotein(a) decreases with increasing
numbers of kringle IV domains and the levels of pregnancy zone protein (PZP) are
gender specific (Christensen et al., 1989; Utermann, 1989). Despite its potential impact,
this issue has rarely been recognized by the community before being recently addressed
by MS-based proteomics (Geyer et al., 2016a; Geyer et al., 2016b; Liu et al., 2015).
Another, often neglected issue in clinical studies is the sample quality (Hassis et al.,
2015; Kaisar et al., 2016). Samples may be collected by medical doctors that are under
constant time pressure and whose primary aim is to take care of patients. Quality cannot
always be guaranteed under such circumstances, calling for markers to identify
problematic samples.

The very design of proteomics based biomarker studies can also be an issue. Our
literature search revealed that only 47% of the studies had any kind of validation of the
results in the discovery phase (Figure 6 A). In half of the cases the follow up experiments
were simple western blots or immunoassays of candidate proteins performed with the
same sample rather than an independent cohort. Moreover, in 30% of all studies, cases
and controls were pooled (Figure 6 B). This is usually a consequence of the low
throughput of the workflow employed but is justified by the argument that it will reduce
individual specific differences (Weinkauf et al., 2006). However, proteins such as
pregnancy zone protein or the clinically important C-reactive protein (CRP) can be
10,000 fold increased in single individuals, skewing the levels in the entire pool. | found
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similar concentration differences for quality marker like carbonic anhydrase 1 (CA1),
indicating erythrocyte lysis (Geyer et al., 2016a). Even more problematic, several
studies in our literature search reported these quality markers as potential biomarkers.
Furthermore, pooling can remove subgroup specific effects in a cohort, which are by
definition the basis of personalized medicine. For example, the discovery that HER2/neu
was expressed in just 30% of women with breast cancer enabled the therapeutic
antibody Herceptin to pass all clinical phases, whereas a pooling strategy might have
denied patients this lifesaving therapy (Ullrich et al., 1984).

@ Discovery

@ Discovery + dependent Verification
O Discovery + independent Verification
O Verification only

@ No pooling
B Pooling

Figure 6: Literature review. (A) Pie chart of the proportion of studies, using discovery and validation
phases. (B) Percentage of studies investigating pooled samples.

1.4.1.4. Traditional plasma proteomic workflows

Proteomic researchers are accustomed to large numbers: in a standard preparation of
cancer cell lines like Hela, it is readily possible to identify more than 40,000 peptides,
corresponding to more than 4,000 proteins using 2h gradients on quadrupole-Orbitrap
instruments (Q Exactive HF). This can even be increased to more than 10,000 proteins
and 100,000 peptides with more elaborate workflows (Bekker-Jensen et al., 2017;
Geiger et al., 2012; Kulak et al., 2017). In stark contrast, we could only detect around
2,000 peptides and 200 proteins with very similar workflows and more elaborate
versions did not drastically improve those numbers. This was mainly due to the extreme

dynamic range in conjunction with sensitivity challenges as mentioned above.

To partially overcome this challenge, researchers have applied very extensive
fractionation and depletion of the most abundant plasma proteins. Sample pre-
fractionation can easily be implemented, but decreases throughput and reproducibility,
drawbacks that are especially problematic for biomarker studies. The aim of depletion
is to remove high abundance proteins from plasma and thereby to enrich the lower

abundant and potential more interesting ones. There are two common strategies: The
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first is based on ‘ProteoMiner hexa-peptides that are immobilized on beads
(Thulasiraman et al., 2005). Proteins bind to the hexa-peptides with different
probabilities, partially ‘randomizing’ the plasma proteome. The second strategy uses
bead-immobilized antibodies against the most abundant plasma proteins. Target
proteins bind to the antibodies and the unbound portion can be collected and analyzed.
Different vendors sell depletion kits for the highest 1, 2, 6, 12, 14 or even 20 proteins
(called top X depletion). Using a combination of immunodepletion and extensive
fractionation has led to the identification of more than 1,000 (Addona et al., 2011; Cao
et al.,, 2012; Paczesny et al., 2010) or even more than 5,000 proteins in plasma
(Keshishian et al., 2015). The latter number was achieved with so-called ‘supermix
depletion’, which pushes this technique to its extreme (Qian et al., 2008). The polyclonal
antibody mixtures used in chromatographic supermix depletion are generated by
immunizing hens with top 14 depleted human plasma and subsequently purifying IgY
antibodies from eggs.

Although attractive in principle, depletion suffers from unspecific removal of proteins
cross-reacting with the antibody targets or sticking to the chromatographic material. This
problem can be illustrated by comparing our deepest dataset from undepleted plasma
samples of a cohort of more than 40 individuals to a much used plasma dataset with
supermix depletion of four individuals (Keshishian et al., 2015). Notably, this resulted in
poor correlation over the entire abundance range with an R? value of only 0.23. Proteins
were separated into two clouds, the lower of which is presumably caused by unintended
‘off target’ depletion. There are even proteomic researchers who endeavor to identify
the hundreds of proteins bound to albumin — the ‘albuminome’ — and who also discuss
the effect of albumin depletion on the plasma proteome (Gundry et al., 2007; Gundry et
al., 2009; Holewinski et al., 2013; Lowenthal et al., 2005). Moreover, depletion columns
can be very expensive (2,000-31,000 €) and are only intended to be used for up to 200
depletions. Their efficiency will also change uncontrollable over time, making the
reproducible analysis of large cohorts very difficult. That said, applying depletion
strategies very carefully to a strictly controlled set of samples can be a suitable means
to reach a sufficient proteome coverage for biomarker discovery (Keshishian et al., 2015;
Li et al., 2013), however, results should be verified and validated in independent cohorts
(Rifai et al., 2006). In this thesis, depletion is used only for the generation for ‘plasma

peptide libraries’.
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Figure 7: Correlation of an undepleted to a depleted plasma proteome. Correlation of a dataset
resulting from supermix depletion of four individuals (Keshishian et al., 2015), to our deepest, quantitative
Plasma Proteome Profiling dataset of 47 study participants. This resulted in two populations of proteins, of
which the red population was decreased in the supermix depletion dataset, presumably due to unintended

de-enrichment.

A survey of the literature revealed that biomarker research has so far focused on areas
that reflect diagnostic interests of the medical community rather than current
technological possibilities of plasma proteomics: About one third of all publications deal
with cancer, followed by cardiovascular diseases, topics in human physiology,
inflammation, diabetes and Alzheimer’s disease. Even with a combination of a supermix
depletion strategy with extensive fractionation, it is still questionable if the very high
proteome coverage and sensitivity that would be required for some of these diseases

could be reached.

The decrease in throughput inherent in fractionation can partially be recovered by
multiplexing. After digestion, peptides can be chemically labeled with isobaric tags such
as iTRAQ or TMT (Bantscheff et al., 2008). The tags are constructed such that they add
to the same total mass but give rise to different low mass reporter ions. Generally,
between four and ten samples can be combined with such a strategy. Quantification is
achieved by fragmenting the peptides and quantifying the relative ratios of low mass
reporter ions. To date, a major disadvantage of these techniques is the ‘ratio
compression’, the distortion of the peptide ratios caused by co-isolated peptide species
that contribute to the same reporter ion. In principle this can be addressed by more
elaborate scan modes such as MS3 (Ting et al., 2011), but currently at the cost of speed

and sensitivity.
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Partly as a consequence of the demands on instrument time, rarely more than 30 plasma
samples have been analyzed at a time and only 5 studies exceeded more than 500.
Thus the number of proteins that are measured by proteomics results in a severe
challenge of multiple hypothesis testing, which becomes the more problematic that the
protein numbers exceed the sample numbers. As a consequence, most studies only
report ‘potential biomarkers’. Rigorous follow up experiments would be required to
confirm these potential biomarkers in independent cohorts. However, usually the only
verification has been the re-measurement of the same cohort by another technological
platform like MRMs or immuno-assays.

In summary, technological limitations, unawareness of potential pitfalls and issues in

study designs have all contributed to prevent the identification of true biomarkers so far.

1.4.2. The ‘triangular strategy’ for biomarker research

By its nature, MS-based discovery proteomics is a hypothesis free approach with no
assumptions regarding the origin or identity of possible biomarker candidates. This is in
contrast to the analysis of single proteins by immunoassays or targeted proteomics,
which are always hypothesis driven. Therefore, in principle MS-based proteomics
should be an ideal tool for the discovery of novel biomarkers. In reality, however, the
above-mentioned challenges have so far prevented the identification and validation of
biomarkers by proteomics.

As mentioned, the low sample throughput in relation to the number of quantified proteins
has resulted in a division of the biomarker research process into several steps. The
resulting ‘triangular strategy’ is generally accepted as the gold standard for biomarker
discovery (Rifai et al., 2006). In this strategy, the number of individuals increases over
three study phases from just a few to several hundreds, whereas the number of
investigated proteins decreases from up to several thousands to one or a few proteins.
This results in a triangular shape for the numbers of study participants and an inverted
triangle for the number of proteins (Figure 8).
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Figure 8: Triangular workflow for biomarker discovery. The triangular strategy is based on three phases
with increasing numbers of samples and decreasing numbers of investigated proteins over the different
stages. In the discovery phase, plasma of a small cohort is harvested and typically depleted of the highest
abundant proteins (blue). The remaining proteins (red) are digested to peptides, which are optionally labeled
with isobaric tags for multiplexing. Peptides of different individuals labeled with unique heavy isobaric tags
are combined and fractionated. Each fraction is separately measured by LC-MS/MS. Next, the raw data are
processed and analyzed to find new biomarker candidates. In the verification phase, targeted proteomics
is applied. Ideally, heavy labeled peptides of the targeted proteins are added as internal standards for
absolute quantification. Fractionation is applied to quantify low abundant proteins but multiplies the number
of required measurements. Triple quadrupole MS are the typical MS instruments for targeted analysis. In
the validation phase, one or a small number of biomarker candidates are screened by immuno-assays
against individual proteins in a large cohort. In enzyme-linked immunosorbent assays (ELISA), antibodies
bind the candidates (red) and non-bound proteins (blue) are removed. A secondary antibody linked to a
reporter-fluorophore is used in a sandwich configuration for specific quantification. Proteins that significantly
discriminate between cases and controls would be considered as true biomarkers.

In the first — discovery — phase, shotgun proteomics is applied using the above
mentioned strategies with low sample throughput and with a proteomic coverage that is
as high as possible. Typically, this stage results in a smaller number of proteins (~10s)
that are termed as ‘potential biomarker’ or ‘biomarker candidates’, which refers to the
need of further evaluation in the second — verification — phase, preferably in a larger and
independent cohort compared to the discovery phase. This stage can also be done by
MS, however, employing medium-throughput and targeted techniques such as multiple
reaction monitoring (MRM), (Carr et al., 2014; Ebhardt et al., 2015). In MRM, one or
more unique peptides for each biomarker candidate are selected and their
characteristics like retention time and optimal fragmentation energy are experimentally
determined to establish the MRM assay. In principle, as the MS is only focusing on a
small number of peptides, high sensitivity and accurate quantification can be achieved
with less extensive sample preparation steps, resulting in higher throughput. Even
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though inter-laboratory studies have achieved good reproducibility in proof-of-principle
studies (Abbatiello et al., 2015; Addona et al., 2009), the reported sensitivities do not
reach the low ng/mL concentration range and demonstrated multiplexing capabilities are
typically less than 50 peptides (Oberbach et al., 2014; Percy et al., 2013; Shi et al., 2013;
Wu et al., 2015). Absolute quantification of individual proteins is preferable to relative
quantification and this can be achieved in a highly accurate manner with internal
standards. For this purpose heavy isotopically labeled, synthesized peptides are
typically used. Even more accurate would be the addition of recombinant expressed
proteins (SILAC-PrESTs) to the sample before digestion to control for variations during
the complete workflow from adding the first buffers to the sample until the MS
measurement (Edfors et al., 2014; Geyer et al., 2016a; Zeiler et al., 2012). The last step
in the triangular strategy is the validation phase and its purpose is the further evaluation
of the biomarker candidates that have passed the previous stages. The great advantage
of immunoassay in this phase is their high throughput combined with high sensitivity,
which enables testing candidates in hundreds or even thousands of samples. However,
establishing specific immunoassays is time-consuming and far from trivial. Note that this
‘gold standard triangular strategy’, is quite demanding and that there are few if any
examples, where it has been applied in its entirety.

The lack of success in finding new biomarkers resulted in many recommendations for
proper study design, quality standards, workflows and evaluation of results (Hoofnagle
et al.,, 2016; Luque-Garcia and Neubert, 2007; Mischak et al., 2010; Parker and
Borchers, 2014; Paulovich et al., 2008; Skates et al., 2013; Surinova et al., 2011).
However, this just serves to underline the fact that there are still no validated plasma
biomarkers that had been discovered by proteomics.

1.4.3. Plasma Proteome Profiling

1.4.3.1. The Concept

The technological developments in our departments before and during this PhD thesis
enabled the development of a new concept, which we termed ‘Plasma Proteome
Profiling’, a novel way to attack the plasma proteome with a systems-wide view. Our
primarily aim is not necessarily to find new biomarker per se, but to establish a powerful
way for deep phenotyping of humans. With Plasma Proteome Profiling, we wish to obtain
a better understanding of human biology, starting from basic questions like how the

plasma proteome responds to different environmental influences such as simple life
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style changes and continuing on to more complex processes, for example disease
progression or the response to a treatment. Our principal strategy is to gather as much
information on as many proteins over as many conditions as possible. Apart from
reviving biomarker research, a knowledgebase that integrates all this information would
have very broad applications — ranging from the selection of optimal lifestyle changes to
monitoring the effectiveness of medical interventions. Storing information about protein
changes in response to widely different circumstances would also help to evaluate
biomarker candidates of any particular clinical study. Below we describe how some of
our proteomics quality panels could have helped to discard biomarker candidates
already in the discovery phase of other studies. This would have eliminated time
consuming and costly follow up. In my own work, | was able to combine the results from
two studies to differentiate between the effects of caloric restriction and bariatric surgery
induced weight loss and to address one of the major questions in the field of human

metabolism from a novel angle (Albrechtsen et al., 2017).
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Figure 9: A ‘rectangular strategy’ evolved from the Plasma Proteome Profiling concept. (A) In the
rectangular strategy, many individuals will be screened by Plasma Proteome Profiling, resulting in
quantitative information about a large number of proteins. Two independent cohorts are measured and
potential biomarkers must be significant in both of them. In the validation and implementation phase. The
biomarker candidates can then be validated in yet another cohort, and clinically implemented either in the
same form as in the discovery phase or with spike-in internal standards (SILAC-PrESTSs). (B) Plasma
Proteome Profiling aims at the high throughput screening of as many proteins and in as many conditions
as possible in large studies. This would result in a large ‘knowledge-base’ with quantitative information —
ideally about all proteins and conditions. Data mining can be used to interpret an individual’s Plasma
Proteome Profile and disentangle the possible influences that add up to his or her health and disease state
(a human phenotype). Adapted from (Geyer et al., 2017).

This concept of deep phenotyping humans is in stark contrast to the current gold
standard for biomarker discovery or plasma proteomics described above. One of the
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main requirements to asses many conditions is to create a high throughput plasma
proteomics pipeline. Such a pipeline must be very robust and reproducible to deliver
highly accurate and valuable information. The combination of very robust and accurate
measurements with a deep proteome coverage would make such a strategy very
interesting for biomarker discovery and could even result in a change of the current
paradigm for finding biomarkers.

There is a similarity to other technologies that evolved from low to high throughput
workflows such as genome-wide association studies (GWAS). Because of the high cost
of genotyping, which necessitates determination of thousands of potential genetic
markers in thousands of subjects, researchers traditinally followed a workflow similar to
the triangular one in proteomic biomarker studies (Satagopan et al., 2002; Thomas et
al., 2004). This involved genotyping a few samples on many markers at first, followed
by validation of a smaller number of candidate markers in a larger cohort in a second
phase to reach statitistically significant results. It was then demonstrated that jointly
analyzing data from both stages would nearly always increase statistical power
compared to the two step approach (Skol et al., 2006), and this strategy has been
adopted in subsequent GWAS studies. A high throughput plasma proteomics pipeline
would allow us to implement a similar strategy, where discovery and verification are

handed in parallel and are followed by a verification and implementation phase.

Even in the proposed rectangular strategy, a multi-phase approach will still be
indispensable to verify results in independent cohorts to control for study-specific effects
and biases. However, our high throughput plasma proteomics pipeline would allow us
to shift from the classical triangular to a rectangular workflow. In this new strategy a
large number of proteins would be quantified across a large number of samples, which
would result in much stronger candidates for the following validation phase(s) (Figure 9
A). Instead of a discovery study that is followed by a verification phase, Plasma
Proteomic Profiling is applied to two large and independent cohorts, neither of which is
privileged over the other. The set of overlapping, significant proteins then constitutes the
verified biomarkers. In addition to delivering more robust ‘first phase candidates’, this
approach offers the opportunity to verify several biomarkers at once. Repeating this
process in many studies for a large diversity of conditions will by itself build up the
‘knowledge base’ described above, that connects the plasma proteome to actionable

human phenotype information (Figure 9 B).
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1.4.3.2. Sample preparation

MS-based proteomic workflows consist of multiple steps, namely sample preparation,
on-line liquid chromatography, MS measurements, followed by computational data
analysis and bioinformatics interpretation. The extensive sample preparation procedure
begins with the extraction and solubilization of proteins, followed by denaturation,
reduction and alkylation of cysteine residues and enzymatic digestion. The peptides are
cleaned up and separated by long gradients (2-4h) where the HPLC is on-line coupled
to electrospray ionization and data acquisition by the mass spectrometer. In contrast to
such workflows, which usually aim to maximize protein identifications, we here focused
on quantitative accuracy and throughput to develop a rapid, robust and highly
reproducible workflow from sample preparation to data analysis that could be used for
clinical applications.

By optimizing the digestion buffer system, Kulak et al. simplified the sample preparation
protocol, removed bias prone precipitation steps and increased digestion rates (Kulak
et al., 2014). To obtain an even more rapid workflow, | further removed unnecessary
steps like repeated sample boiling, ultrasound-treatment and overnight digestion.
Further minimization of starting material allowed decreasing the amount of expensive
digestion enzymes and the combination these (trypsin and LysC) in the same digestion
mixture increased throughput and proteome coverage. Using this protocol we observed
that suitable digestion occurred already after 1h with low ‘missed cleavage rates’, similar
to the standard overnight digestion, and very low coefficients of variations (CVs) for the
majority of all proteins.

Contaminants that can result in clogged HPLC columns and frequent cleaning cycles of
the MS cause increased instrument down times and low sample throughput. Therefore,
one of our main objectives was to establish optimal washing conditions for peptide
cleanup. This was achieved by extensive testing of a large variety of solvents and
mixture conditions as well as different solid phase extraction matrices. The washing
procedure need to remove interfering buffer components, lipids and other contaminants,
yet retain the peptides. The final protocol combined one solvent condition with extensive
mixing of the digest with the washing buffer (100 pipetting cycles) and a particular solid
phase extraction matrix (polystyrene-divinyloenzene — reverse phase sulfonate, SDB-
RPS). Mixing dissolves all contaminants and makes it possible to separate them from
the peptides by a cleanup over the solid phase extraction matrix which retains peptides.

Next we wished to improve reproducibility and high throughput by automation. For this
purpose, we installed an Agilent Bravo liquid handling system with disposable pipet tips
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and transferred our protocol to this platform. The robotic protocol was optimized and
evaluated over several month, resulting in a reproducible, reliable and error-free system.
| developed several liquid handling schemes, starting with finding optimal lab-ware that
does not introduce polymers or absorbs peptides during processing. Pipetting strategies
like pre and post air aspiration and tip touch procedures for highly accurate handling of
small volumes were incorporated. Further adjustments of sample volumes as well as

the washing buffers were necessary to transfer the protocol to the robotic platform.

The following statistics illustrate the initial challenges that we were facing and the
progress that we have made: Prior to optimization, a single cleanup workflow needed
24-48h and we were only able to analyze 20-30 samples before contaminants led to
deterioration of our HPLC system. Today, we prepare 96 samples in a fully-automated
manner within 3h and we regularly measure hundreds of samples without any problems.
This decreases hands-on time, which can be spend on data analysis instead, improves
reproducibility, and makes optimal upkeep of expensive mass spectrometers much less
stressful.

We termed our concept of analyzing whole, undepleted plasma in a rapid manner with
a very robust and reproducible workflow, ‘Plasma Proteome Profiling” and described it
in a manuscript that became the featured article in the journal Cell Systems (Geyer et
al., 2016a).

1.4.3.3. LC-MS/MS optimization

The optimization of sample preparation described above was the first step necessary
for the analysis of large cohorts. It enables high throughput on the sample preparation
side by preparing purified peptides in a short time that are ready for MS-analysis.
However, typically MS-based proteomics is maximized for the number of proteins that
can be identified and this usually entails long HPLC gradients, which would impede
throughput. In highly complex samples with hundred thousands of peptides like cell lines
or tissues, long gradients provide the peptide fragmentation time necessary for high
proteome coverage. In plasma, in contrast, there are just thousands of peptides in a
sensitivity range that makes them accessible to MS' and MS? analysis. As a
consequence, we found that shorter gradients result in nearly the same number of
identified proteins. In particular, a 20 min gradient lost only 5% of protein identifications
compared to the standard 100 min gradient (Geyer et al., 2016a). We then investigated
increasing the flow rate, decreasing loading volumes, optimizing gradients and
shortening the HPLC column length to assure optimal usage of the short gradients. In
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this way we are now able to analyze almost 50 samples per day. Later we also
implemented DMSO as an additive to increase peptide ionization efficiency (Hahne et
al., 2013).

One disadvantage of short gradients is that they use the MS instruments inefficiently.
Even after optimization, loading and equilibration requires more than 10 minutes on
high-end HPLC systems, which for the 20 min gradients, would mean that the mass
spectrometer is unused a 1/3™ of the time. This could potentially be avoided by more
sophisticated LC set ups, but here we decided to increase utilization of the MS
instrument time with a somewhat longer gradient (45 min; about 24 samples/day) and

combine this with the ‘library matching’ approach, that will be explained below.

1.4.3.4. Library matching strategy

Data-dependent acquisition strategies use a combination of MS' and MS? scans.
Following their detection in the MS' spectra, peptide precursor ions are ranked by
intensity and the analytical quadrupole selects them in this order with a small isolation
window (typically 1.4 Th) centered on the measured m/z. The peptides are fragmented
in the collision cell and the masses of these fragments are recorded with high accuracy
in the Orbitrap analyzer. Precursor mass and fragment masses are then used in a
database search to determine the sequence and therefore the identity of the peptide.
Because relative peptide elution varies somewhat between runs, this strategy results in
a semi-stochastic selection of precursors depending on the intensity-based ranking (top
N). Furthermore, the fragmentation spectra may be of sufficient quality for identification

in one run but not another.

Our laboratory has developed the software package MaxQuant for peptide and protein
identification and quantitative analysis of MS data (Cox and Mann, 2008). MaxQuant
incorporates an optional feature termed ‘match between runs’ to transfer peptide
identification based on information about retention time and accurate m/z ratios from
one LC-MS run where the peptide was identified by an MS? scan to another HPLC run
where the required MS? data is not present (Geiger et al., 2012; Nagaraj et al., 2012).
In plasma we observed that the matching strategy was also advantageous. However,
because the numbers of identified peptides in the libraries was low, there were still few
matched peptides in the single runs. | therefore acquired successively deeper plasma
peptide libraries. The first consisted of single runs of plasma that was depleted for the
top 6 most abundant proteins, but we then realized that the combination with a top 14
depletion column produced superior results. Importantly, we use the libraries only for
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matching and therefore it is not required that depletion is quantitatively accurate. In this
way we were able to boost protein identifications by almost 40% (Geyer et al., 2016a).
Later we combined the double depletion with high pH reversed phase fractionation
(Kulak et al., 2017) to acquire very deep libraries of more than 1,500 proteins (see
below). Without any matching applied, identification was limited to around 200 proteins
in 45 min gradients. The ‘depleted library’ approach allowed us to cover more than 500

proteins within the same time.

To further boost the depth of the measured plasma proteome, we made use of a recent
development in our laboratory that dramatically increases the dynamic range of
detection in MS' scans, which are limited to about one million ions due to space charge
effects (Meier et al., 2017). In this ‘BoxCar’ acquisition method, the m/z range is broken
up into multiple narrow m/z windows, which are filled with much longer injection times
than the MS' scan. This results in ‘normalizing’ the full scan and in effect boosts the
intensity of low abundance ions ten-fold or more. BoxCar works particularly well in
proteomes with a high dynamic range such as plasma where a few very high abundant
peptides otherwise mask co-eluting, lower abundant peptides in the MS' scan (Meier et
al., 2017). Remarkably, combination of the above-mentioned improvements with BoxCar
scans allowed us to identify over 800 proteins in single and more than 1,000 proteins in

triplicate measurements.

1.4.3.5. Deep quantitative plasma proteomes

To achieve deep proteome coverage in complex biological samples, an additional step
of peptide fractionation is widely used. Splitting a tryptic peptide mixture into several
fractions, while loading the analytical column to capacity, will increase the detectability
of low abundance proteins, because the peptides are separated from each other and
more material can be injected into the MS in total. High pH reversed-phase fractionation
in combination with concatenation as a first dimensional separation step has proven to
be highly efficient (Delmotte et al., 2007; Gilar et al., 2005b; Manadas et al., 2009).

Because of the larger diameter columns used, such fractionation approaches typically
require rather large sample amounts (in the mg-range) and the concatenation procedure
can be error-prone and time consuming. To tackle this problem, we developed a high
pH reversed-phase fractionation and concatenation device — called ‘Spider Fractionator’
— for automated off-line chromatography separation of small peptide amounts (Kulak et
al., 2017). In cell lines this approach allowed us to identify more than 150,000 peptides
and almost 12,000 proteins with 24 fractions. In plasma, | used several depleted plasma
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samples and constructed a library of 2,000 proteins, reflected by 14,000 sequence
unique peptides.

For the physiological interpretation of protein levels in plasma, we also wished to
construct a deep quantitative plasma proteome. With eight ‘spider-fractionations’
measured as singlets in 45 gradients, | quantified nearly 1,500 proteins. As expected,
‘functional plasma proteins’ were generally of comparatively high abundance, ‘tissue
leakage proteins’ were scattered among the middle and low abundance range, whereas
most of the cytokines have exceedingly low levels in normal plasma and were therefore
not detected. To my knowledge, this is the first deep and quantitative plasma proteome
and it should be a useful resource to the community.

1.4.3.6. Throughput vs. deep measurements

In addition to the throughput required to realize the concept of Plasma Proteome
Profiling, it clearly also requires a certain depth of coverage, to combine highly accurate
MS acquired data with clinical data on a global scale. This mandates an optimal
combination of throughput and proteome coverage.
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Figure 10: Technological developments and strategic assessments of Plasma Proteome Profiling.
This PhD thesis started with a standard proteomic workflow in 2014. Optimizations on various stages
allowed us to develop the Plasma Proteome Profiling concept. Implementation of further technological
developments increased the number of identified proteins and the throughput as shown. Unless indicated
otherwise, 45 min gradients were used. The numbers of fractions are displayed for the fractionation strategy.

To visualize progress towards the goals of Plasma Proteome Profiling, one can plot the
total number of identified proteins against the number of samples that can be measured
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per day (Figure 10). In this plot the far right and top corner is the most desired region
and the figure illustrates successive improvements in throughput and proteomics
depths. With the technology developed in this thesis, we can now identify on average
800 proteins in plasma in 45 min gradients at a throughput of 24 samples per day and
per instrument (8 per day in case of triplicate measurements). Alternatively, collecting 4,
6 or 8 fractions, resulted in 1160, 1429 and 1487 identified proteins, respectively. An
optimum between measurement time and number of proteins seemed to be reached
with six fractions. Compared to existing literature, such numbers are exceptional for
plasma proteomics, especially taking into account that we obtain quantitative proteomes
from undepleted plasma. However, the throughput of only four samples per day with six
fractions is not yet compatible with our goal of analyzing large cohorts. This will require
either an even deeper coverage in single runs or a multiplexing strategy to increase

sample throughput after fractionation.

1.4.3.7. Quality marker panels

Samples for thousands of clinical studies are being collected at any given time
worldwide, adding to the countless clinical studies that are already stored in biobanks
with the aim to find biomarkers. There is a large variety of protocols for sample collection
and storage, potentially confounding subsequent analysis. The community is acutely
aware of these issues, but could not address them in a systematic manner so far
(Lombardi et al., 2012; Pickup et al., 2017; Zhao et al., 2012). Given the fact that it is a
basic requirement that the samples are of high quality and the potential for systematic
errors to affect study outcomes, we asked whether Plasma Proteome Profiling could

solve this issue.

Samples of poor quality contribute to the variation between individuals, one of the major
focus areas in biomarker research (Mischak et al., 2010; Surinova et al., 2011). The
small discovery cohorts in the triangular strategy of biomarker research are especially
prone to suffer from samples with poor quality. As pointed out above, it is a wide-spread
practice to pool clinical samples within case and control groups to decrease
measurement time and “equalize” individual-specific differences. The danger in such
practices lies in single contaminated samples that can result in a systematic bias. Our
literature search illustrated the dimension of the problem, and suggests that a sizable
proportion of the literature has reported potentially incorrect results because of this.

According to the same literature search, shotgun proteomic results are often ‘verified’ in
the same cohort just with a different technology. Importantly, proteins enriched in case
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or control solely due to quality issues, can still pass such experimental designs and may
be considered for further validation in larger, time and cost intensive cohorts.
Furthermore, genuine biomarkers may be obscured by protein variation introduced
through quality issues. In view of these issues, it is unfortunate that to date, there are
no protein-based markers available to monitor the quality of blood-based samples. This
is in contrast to the situation in metabolomics, which faces the same challenges. Here,
it is possible to assess some quality criteria with a metabolomics-based marker panel,
which take blood coagulation and storage time into account (MxP Quality Control
Plasma (Kamlage et al., 2014)). However, this test does not consider the blood sampling
procedure, erythrocyte contamination and is restricted to EDTA-plasma.

We reasoned that the unbiased coverage of Plasma Proteome Profiling and the robust
nature of the workflow would lend themselves to address the issue of sample quality.
We performed a wide variety of experiments to investigate this question and uncovered
three different kinds of sample quality marker classes: those for blood sampling
procedure, erythrocyte contamination and coagulation.

The first class includes all markers that originate from blood sampling. Blood taking with
different equipment, including needles with different diameters, collection tubes and the
use of products from different vendors can all influence results. In daily clinical practice,
blood is sampled by trained nurses, medical doctors, but also by rather untrained
medical personal like students, contributing to this class of quality issues. We reasoned
that smooth muscle and endothelial cell specific proteins would be candidates for this
class of markers. Each blood vessel consists of different layers. The outer ones consist
of smooth muscle cells and the inner one of endothelial cells. The above mentioned
issues can lead to the collection of different proportions of these cell types together with
the blood. To investigate this at the protein level, we looked for smooth muscle and
endothelial cell specific proteins (SMECs) in our datasets and confirmed them by
analyzing the proteomes of blood vessels from humans (Figure 11 A, B).

Erythrocytes are the dominant cell type in our blood stream. Blood is centrifuged to yield
plasma or serum, which are the preferred matrices for clinical tests. Delay in the time
until start of centrifugation, inappropriate centrifugation speed and time, handling,
transportation, harvesting of the separated plasma and recontamination after
centrifugation may all result in variable presence of highly abundant erythrocyte-specific
proteins (HAEP) in plasma. This is especially striking when plasma is repeatedly
harvested from the same person (Figure 11 C). We used spike-in experiments to identify
HAEP panels and were able to quantify HAEPs down to an erythrocyte to plasma ratio
of 1:10.000 (Figure 11 D) (Geyer et al., 2016a).
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Activation of the coagulation cascade is necessary to produce serum from blood. In
contrast, to obtain plasma, blood must be instantly mixed with an anti-coagulant,
otherwise partial coagulation will result. To find markers for unintended blood
coagulation, we compared serum to plasma from the same individuals. The levels of
fibrinogen alpha (FGA), beta (FGB) and gamma (FGG) chains were decreased and the
platelet-specific proteins platelet factor 4 variant (PF4V1) and platelet basic protein
(PPBP) were increased in serum compared to plasma (Figure 11 E, F) (Geyer et al.,
2016a). Using the coagulation influenced proteins (CIP) as a quality panel, we have so
far detected systematic bias in one out of 13 studies.
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Figure 11: Quality marker panels. (A) Smooth muscle and endothelial cell (SMECs) protein markers (red)
are among the highest abundant proteins in the blood vessel proteome. Proteins are ranked according to
their abundances. (B) Volcano plot comparing two time points (1 vs. 2) of a clinical study that had a bias,
indicated by increased levels of SMECs (red). (C) Scatterplot of repeated finger pricks of one individual
(replicate 2 vs. replicate 3) showing that erythrocyte-specific proteins were elevated as a group of four
proteins. HBA1, hemoglobin subunit alpha; HBB, hemoglobin subunit beta; HBD, hemoglobin subunit; CA1,
carbonic anhydrase 1. (D) Spike-in of erythrocytes into plasma resulted in an increase of these proteins as
a group. (E) In a comparison of plasma and serum of two individuals, the levels of FGA, FGB, and FGG
were decreased, and PPBP as well as PF4V1 were elevated in serum. FGA, FGB, FGG, fibrinogen chains
alpha, beta, gamma; PPBP, platelet basic protein; PF4V1, platelet factor 4 variant. (F) Blood was processed
from ten different fingers of one individual after finger pricking, and mass spectrometric (LFQ) intensities of
FGA, FGB, FGG, PPBP, and PF4V1 are plotted. In samples 1 and 2, fibrinogens were decreased, whereas
platelet-specific proteins are increased. (G) Sample quality assessment of a study consisting of 318
samples. One protein of each quality marker panel was chosen for this illustration. The reference range of
each marker is highlighted in the color of the quality marker class (green, yellow, red). Outliers of these
categories, like the three indicated samples, are of poor quality. CIP: Coagulation influenced proteins; RBC:
Red blood cell specific proteins. (C-F) were adapted from (Geyer et al., 2016a).
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Quality marker panels would be especially valuable in hospitals for assessment of
clinical samples and in the selection of cohorts to be used in biomarker studies. On the
basis of such tests, clinical samples of poor quality can be discarded to avoid reporting
incorrect clinical test results and in general as an internal quality check of the clinical
laboratory (Figure 11 G). Assessing the quality of existing studies should drastically
decrease the fruitless follow up of spurious biomarker candidates and conversely, it
would increase the probability of finding real biomarkers by certifying high quality of the
investigated clinical samples and cohorts.

1.4.3.8. SILAC-PrESTs as internal standards for absolute protein quantification

In clinical diagnostics, the quantification of the analyte of interest by immunoassays is
almost always uses standards of known concentration for calibration (external
reference). In contrast to immunoassays, MS-based methods can accommodate
internal standards, promising accurate and absolute quantification. Heavy isotopically
labeled analytes are added to the sample at the earliest possible time point of sample
processing. As the internal standard is exposed to the same influences as the analyte,
it automatically corrects for variations during the workflow, resulting in highly accurate
quantification. Such MS-based assays with internal standards are already applied in
clinical practice for small molecules, including several metabolites such as

phenylalanine in the phenylketonuria screen for newborns.

In a collaboration with the Uhlen group in Stockholm, our laboratory had developed
‘Stabile Isotope-Labeled Protein Epitope Signature Tags’ (SILAC-PrESTSs) for absolute
quantification of multiple proteins (Edfors et al., 2014; Zeiler et al., 2012). They are
constructed as fusion proteins consisting of a histidine-tag, the albumin binding protein
(ABP) and a unique sequence stretch of the protein of interest. First, the construct is
recombinantly expressed in E. coli in heavy labeled form, growing in media with stable
isotope labeled amino acids and purified by the histidine-tag (Figure 12). The ABP
enhances solubility of the recombinant proteins and is used for determination of the
concentration of the expressed SILAC-PrESTs. In this second step, the absolute
concentration of a ‘light version’ (not isotopically labeled) of the ABP can be determined
very accurately. This light ABP is digested and measured together with the heavy
labeled SILAC-PrEST and their ratio is used to calculate the concentration of the SILAC-
PrEST. The third step is the crucial one for absolute quantification. The SILAC-PrEST
is spiked into the sample and the SILAC ratios of the PrEST peptides to the peptides of
the target protein can be determined. Importantly, this approach is suitable for
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multiplexing, which has already been demonstrated for 40 SILAC-PrESTs quantifying
HeLa proteins. Multiplexed SILAC-PrEST assays could allow the absolute quantification

of many clinical interesting proteins in single measurement instead of multiple, separate
protein based immunoassays.
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Figure 12: Absolute protein quantification based on SILAC-PrESTs. (A) The albumin binding protein
(ABP) is recombinantly expressed in E. coli growing in light amino acid containing media. It is purified with
a His-tag and an OneStrep-tag and the concentration is determined. The SILAC-PrEST construct is
expressed in media with heavy amino acids. After purification the SILAC-PrEST and the light ABP are
combined and digested together. The peptides are measured in the MS and the ratios are used to calculate
the absolute concentration of the SILAC-PrEST. (B) The SILAC-PrEST is combined with the sample of
interest (e.g. cells or plasma) and they are digested together. The ratio of heavy to light peptides of the

endogenous protein and its SILAC-PrEST homologous sequence are used to calculate the absolute
concentration.
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2. Aims of the thesis

The overall aim of my PhD thesis was to pave the way for biomarker discovery and
clinical applications of proteomics by precision characterization of the human blood
plasma proteome, a major goal of mass spectrometry (MS)-based proteomics for
decades. Due to great technological challenges, misguided concepts and study designs,
the analysis of the plasma proteome by MS has not yet lived up to its promises: no new
biomarkers have been discovered, plasma proteomics has not entered clinical
diagnostics and new biologically meaningful insights have been gained. As a
consequence of these unsuccessful efforts, relatively few groups continue to pursue

plasma proteomics, despite its undiminished potential for research and medicine.

One requirement for a revival of plasma proteomics would be a rapid, robust and
reproducible workflow. Towards this aim had to tackle several challenges. First of all,
we had to find strategies that allowed us to efficiently measure many plasma samples.
We further had to develop sample preparation procedures and optimize them for
reproducibility. As proteomic workflows are generally very time consuming and labor-
intensive, we streamlined the process by shortening several steps and discarding of
others. MS-based workflows are usually also not automated, a requirement for a truly
robust and a high throughput sample preparation procedure. Furthermore, proteomic
LC-MS/MS systems are currently not optimized for high throughput and several
developments were necessary to streamline this part of the workflow.

Another major challenge of plasma is the high dynamic range of protein concentrations.
We addressed this obstacle by developing and implementing several strategies and
technologies like library matching, the ‘Spider Fractionator and ‘BoxCar’ scans,

dramatically increasing the number of quantified proteins.

A central aim of the thesis was to demonstrate that MS-based proteomics can be applied
to large cohorts and that it is possible to gain biologically and medically relevant
information. We achieved this aim with our first large scale plasma proteomic study in
which we analyzed more than 1,000 proteomes and defined inflammatory and insulin

resistance panels.

The plasma proteomics community implicitly subscribes to a particular strategy in
biomarker research, which we find to be problematic. In my PhD thesis we developed
new strategies and concepts that set proteomics-based biomarker discovery on a solid

foundation.

33



3. Publications

3. Publications

3.1. Article 1: Plasma Proteome Profiling to Assess Human
Health and Disease

Authors: Philipp E. Geyer'? Nils A. Kulak'!, Garwin Pichler', Lesca M. Holdt,
Daniel Teupser?, and Matthias Mann'2

"Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
2NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
3Institute of Laboratory Medicine, Ludwig-Maximilians-University Munich, 80539 Munich, Germany

In my manuscript ‘Plasma Proteome Profiling to Assess Human Health and Disease’, |
tackle directly many issues in the analysis of plasma proteomes like the labor-intensive
workflow, problematic contaminations, sample quality assessment and the analytical
variability. | streamlined the proteomic workflow, resulting in a rapid, robust and highly
reproducible pipeline, which was further automated by implementing it on a liquid
handling platform. Optimization of digestion conditions, peptide clean-up procedures
and LC-MS/MS settings enables us to prepare 96 samples in a fully-automated manner
within 3h. We now regularly measure hundreds of samples without any problems. The
high throughput of this technology opens up for new concepts in biomarker discovery,
which we describe more fully in our review article ‘Revisiting Biomarker Discovery by

Plasma Proteomics’ later in this thesis.

We call our technology for the analysis of blood and its derivatives ‘Plasma Proteome
Profiling’. This term is meant to imply that the information of the plasma proteome can
mirror human physiology. Our pipeline offers highly reproducible and quantitative
information for several hundred proteins (CV<20% for most proteins), including more
than 40 clinical applied biomarkers from a single fingerprick with a 30 minute
measurement. The quantified proteins include inflammatory markers, proteins belonging
to the lipid homeostasis system, gender-specific proteins, disease relevant allele

variations and quality markers.

Furthermore, we provide proof-of-principle to transfer Plasma Proteome Profiling into
clinical practice by introducing a SILAC-PrESTs panel of five proteins to plasma

samples. These were used as internal standards, controlling variations during the entire

34



3. Publications

sample preparation workflow and allowing accurate relative as well as absolute
quantification.

This manuscript was the featured article in the journal Cell Systems and it was described
as one of the journals highlights in the 2016 end-of-the-year review and it is also one of
three listened article on the homepage of the Human Plasma Proteome Project. In our
laboratory we are building on the developments described in this article to assess human
health and disease states with the aim to fundamentally alter biomarker research and
clinical diagnostics.
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SUMMARY

Proteins in the circulatory system mirror an individ-
ual’s physiology. In daily clinical practice, protein
levels are generally determined using single-protein
immunoassays. High-throughput, guantitative anal-
ysis using mass-spectrometry-based proteomics of
blood, plasma, and serum would be advantageous
but is challenging because of the high dynamic range
of protein abundances. Here, we introduce a rapid
and robust “plasma proteome profiling” pipeline.
This single-run shotgun proteomic workflow does
not require protein depletion and enables quantita-
tive analysis of hundreds of plasma proteomes
from 1 pl single finger pricks with 20 min gradients.
The apolipoprotein family, inflammatory markers
such as C-reactive protein, gender-related proteins,
and =40 FDA-approved biomarkers are reproduc-
ibly guantified (CV <20% with label-free quantifica-
tion). Furthermore, we functionally interpret a 1,000-
protein, guantitative plasma proteome obtained by
simple peptide pre-fractionation. Plasma proteome
profiling delivers an informative portrait of a person’s
health state, and we envision its large-scale use in
biomedicine.

INTRODUCTION

Blood, plasma, and serum are the predominant samples used for
diagnostic analyses in clinical practice and are available in bio-
banks from thousands of clinical studies (Végvarn et al., 2011).
The quantitative analysis of individual plasma proteins by immu-
noassays isused in daily clinical diagnostics. However, immuno-
assays have inherent lmitations with regard to multiplexing,
their specificity for protein iscforms, and their incompatibility
with hypothesis-free imvestigations. Mass spectrometry (MS)-
based proteomics is a technology that could address all of thesa
limitations and that should be capable of discowvering biomarkers
in this easily accessible body fluid (Anderson, 2014). However,
MS-based plasma proteomics is extremely challenging for a
number of reasons, most prominently the extremely large dy-
namic range of protein abundances (Anderson and Anderson,
2002 ; Omenn, 2005). There is also a lack of very reproducible,
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robust, and high-throughput proteomic workflows to identify
and verify potential biomarker in large cohorts. As a result,
only few novel biomarkers have been established—fewer than
1.5 per year in the 15 years before 2010 (Anderson, 2010)—
and this has generally been done by immunoassay-based tech-
nologies, such as prostate-specific antigen, one of the best
known biomarkers in medicine (Vihko et al., 1978).

Dramatic improwements inthe technology of MS-based prote-
omics over the last few years (Cox and Mann, 2011; Geiger etal.,
2010; Munoz and Heck, 2014) have rekindled an interest in
plasma proteomics. Using such technology and combining it
with immunodepletion of high- and medium-abundance proteins
as well as very extensive peptide fractionation methods, it has
now become possible to identify more than 1,000 (Addona
et al., 2011; Cao et al., 2012; Paczesny et al, 2010} or even
more than 5,000 proteins (Keshishian et al.,, 2015) in plasma.
However, immunodepletion may lead to biases because of
cross-reactions of the antibodies used or by proteins bound
to camier proteins such as albumin (Bellei etal., 2011; Tuetal .,
2010). Furthemnmore, extensive pre-fractionation decreases
throughput, which is undesirable in clinical practice. Accord-
ingly, the paradigm in biomarker discovery by M3 has been to
analyze a small number of samples in as much depth as
possible, whereas the verfication phase was to be done on
larger cohorts but with targeted methods and a small number
of candidate markers. The final clinical test for a biomarker
identified by MS was to be performed with classical immunoas-
says (Anderson et al., 2009; Surinova et al., 2011). Although this
scheme is practical with current technology, it is wery laborious
and loses much of the promise of systemwide and unbiased
investigation of the plasma proteome. Using another approach,
Liu et al. (2015) constructed a list of plasma peptide transitions,
which they used to interpret the signals in seguential window
acquisition of all theoretical MS (SWATH) runs of plasma
samples of twins. In this way, the contribution of hertable and
environmental changes to the plasma proteome could be
distinguished.

In contrast to previous approaches, we here focused on
developing a robust and highly streamlined shotgun plasma
proteomics workflow. For the MS readout, we used wery short
liguid chromatography (LC)-MS/MS gradients and recent ad-
vances in label-free quantification (Cox et al., 2014). We hy-
pothesized that the resulting "plasma proteome profile” would
hawve a high yield of information about the health state of an
indiwvidual and that it can be obtained for a large number of
clinical samples.
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RESULTS

Rapid, Robust, and Highly Reproducible Plasma
Proteomic Workflow

Past efforts in shotgun plasma proteomics endeavored to maxi-
mize protein identifications, whereas generally less emphasis
was placed on guantitative accuracy or throughput. Here we
wished to develop a convenient workflow, from sample prepara-
tion to data analysis, that can potentially be used in a clinical
context. We reasoned that such a workflow should be rapid,
optimal for high-throughput, robust, and highly reproducible.
Therefore, it should minimize all preparation and analysis steps,
while still guantifying clinically interesting proteins accurately.
With this in mind, we decided to omit any depletion steps of
high-abundance plasma proteins.

Building on the recently described in-StageTip (i5T) method
(Kulak et al., 2014), we further streamlined the procedure for
plasma (Experimental Procedures; Figure 1A4). Starting with 1 pl
of plasma from a single finger prick, all preparation steps wene
performed in a single reaction vial. Using ordinary amounts of
digestion enzymes, we found that adequate protein digestion
had already occurred after 1 hr (protein coefficients of varation
[CVs] and tryptic missed cleavage rates were similar to owvernight
digestion; Table 51). Peptides were then eluted and ready for
LC-MS/MS3 analysis. The entire up-front procedure took less
than 2 hr and can readily be performed in a 96-well format and
automated in a liquid handling platform, if desired.

Starting with single-run gradient times typical of proteomics
experiments, we successively reduced them to determine the
maximum information content per unit time. We found that
the number of identified proteins decreased very slowly with
decreasing time, down to 20 min (only 12 additional identified
protein groups in 100 min versus 20 min gradients; Table 51).
Below this time, loading and equilibration times become domi-
nant, and therefore we chose 20 min gradients as our standard
33 min between injections, about 50 samples/day). The combi-
nation of optimized sample pre paration and LC setup allowed for
hundreds of plasma proteome analyses, whereas previously
clogging of columns was a common occurrence with plasma
samples.

We used MaxOuant for quantitative label-free analysis of
the LC-MSMS data (Cox et al, 2014; Cox and Mann, 2008)
and for transfemring peptide identifications from one LC run to
other LC runs in which the peptide was not seguenced ("'match
between runs'). In combination with a matching library consist-
ing of undepleted plasma of ten different individuals as well
as plasma depleted of the 20 highest abundant proteins, this
boosted protein identification by 39% (Experimental Proce-
dures; Figures 514 and 31B). Of the 347 protein groups identi-
fied in total in the 20 min gradients, 285 weme detected in all
ten individuals (Figures S1C and S1D0). The entire workflow,
including the finger-prick procedure and the data analysis, takes
less than 3 hr (Figure 1A4).

Accuracy of Label-free Quantification of the Plazsma
Proteome

To investigate the quantitative reproducibility of our workflow
({intra-assay variability), we sampled blood by venous puncture
from one individual and harvested plasma after centrifugation.
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We performed the entire workflow 15 separate times on 1 pl ali-
quots of this stock and correlated protein abundances across
the whole measuring range of each of the replicates. The mean
R® correlation value of the quantified protein signals between
individual replicates was excellent at 0.980, with a range of
0.966-0.994 (Figure 1B, excluding keratins; Table 52). We per-
formed 96 blood plasma analyses using multiplexed preparmtion
on aliquid handling robot and short measurement times (5 hr and
51 hrintotal, respectively) and achieved a mean B2 value of 0.97
(Figure S2).

On average, 284 + 5 different proteins were guantified (total
313): the large majority in all 15 samples and only 3% uniguely
in single LC runs (Figure 1C). We picked six well-characterized
plasma proteins across a milion-fold abundance range and
found that quantification was highly reproducible (Figure 1D).
We compared different conditions by the proportion of proteins
with CV's less than 20%, because this is a commonly used cutoff
for in vitro diagnostic assays (U.S. Department of Health and
Human Services, Food and Drug Administration, Center for
Drug Evaluation and Research, Center for Veterinary Medicine,
2001). Notably, 67% of quantified proteins were within the
20% cutoff ange, and 30% had CVs below 10% (Figure 1E).

To determine the wariability caused by LC-M3/MS analysis
alone (anahtical variability), peptides from one sample prepara-
tion were injected and measured 15 times. This resulted in only
slightly better reproducibility (71% with a CV less than 20%
and 37% with a CV less than 10%), indicating that up-front
sample preparation confributed litte to owerall quantitative vari-
ability (Figure 1F). A notable exception to this trend were certain
keratin proteins, which had wvery small analytical variability
but sometimes had a large quantitative difference between
repeated analysis of the same sample. This is readily explained
by contamination with exogenous keratins during sample prep-
aration. Mewertheless, it is clinically relevant, because we found
that plasma proteomes of the same person clustered together
much better afier excluding keratins and other proteins intro-
duced by sample processing such as hemoglobins (see below).

Intra- and Inter-individual Variability of the Plasma
Proteome

The high-throughput of our workflow allowed us to extensively
characterize the quantitative variation within and between indi-
viduals. To determine inter-individual varability, we performed
finger pricks on one person four times a day over B consecutive
days and analyzed all 32 blood proteomes with less than 24 hr of
measuring time. This revealed stability of the plasma proteome
over time [(35% of proteins below 20% CV; Figure 2A). The pro-
teins with large CVs were the aforementioned keratine, as wellas
high-abundance erythrocyte-specific proteins. The latter are
caused by a slightly diferent extent of erythrocyte lysis during
plasma preparation or by contamination of plasma with erythro-
cytes during plasma harvesting.

To determine inter-individual variability, we harvested plasma
from five female and five male donors in triplicate by finger
pricks. The average R? value within the technical workflow tripli-
cates was 0976, excluding keratins and erythrocyte-specific
protein groups. For CVs of the techinical replicates of all individ-
uals, see Table 33. Of 345 proteins guantified, only a minority
was under the CV cutoff. This indicates that overall, the plasma
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Figure 1. Technological Aspects of Plasma Protein Profiling
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&) Schematic depiction of the workflow. Blood volumes of 5 ulare routinaly used to hanest 1 plof plzsma. Theworkfiowis based on the iIST protocol and consiats
of densturstion, reduction, alioylation of cysteines, short 1 hr enzymatic digestion, and purification of peptides. Automation for liquid handling pletforms is also
indicated . Peptides are separated with aptimized short 20 min HFLC gredients and messured anline by LC-MS/MMS. Data analyais is performed by MaxOusnt snd
Parseus, which deliver information about hundreds of plasma proteins that could refiect an individusl's state 53 symbolzed by the plasma proteome profies.
{B) Color-coded R® values for the binary comparison of 15 technical workflow replicates. R® values up to 0994 demonstrate high reproduc ibility.

{C) Frequency of protsin quantification, which was present in all 15 workfiow replicates, in 10-14, in2-9, or only in 1.

D) Reprod uchility of the LFQ intensitiesof s proteins covering nearty sbxor ders of magnitude for 15 workflowreplicstes. Theline represents the meanvalues for ALB
{gerum albumin), HP fhapioglobin), APOC3 (apolipo pratein G-I, PROST fritemin K-dependent protsin 5), F11 (cosgulation factor XI), and VMM1 {pantatheinass).
{E) To determine the intra-ga3ay variability, CV's of all quantified proteins were calculated for the 15 workflow replicates and are plotted according to their
abundance. Prokins with CWs < 30% are colored in blus and those with CWa = 20% in gray. HEE | hemoglobin aubunit beta. SHBG, sex hormaone- binding g kobuling

SAA1, serum amylold A-1 protsin,

{F) Fifte=n repeated injectons were used to determine the anahytical vanability, which includes vanisbility of the LCMM5/MS anatysis.

proteome has much higher inter- than intra-individual variabilty
{19% and 55% of proteins within a CV of 20%, respectively; Fig-
ure 2B). These general trends have been observed previously (for
arecentexample, see Liuetal., 2015). Here they suggest thatour

labe l-free workflow iz well suited to capture the natural or path-

ological variation of protein levels between individuals.
Todirectly test this notion, we asked if we could discern sys-

tematic differences between the plasma proteomes of women
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(&) Intra-individusl varisbility was ss3sessed by finger pricks fouwr times per day for 8 days, and CVs for all quantified proteine wers calculated. Proteins with

C\a < 20% are colored in blue and those with CVa = 20% in gray.
(B} Imter-ind nadual varistion of five women and five man.

{C) Female and male proteomes in one-dimenaionzl PCA.

{0 Proteing and their contribution 1o the gender ssparation.

{E) Darect comparison of femals subject 4 (Fd) and male subject 5 (M5) depict the extrems differancs of FZP betwesn womsen and men against the background of

sll othear quantified protsins.

{F) Volcano plot of female againat mals protecome i sxis, fold changs of females to males serving &3 1 teat difference; v axis, pvalee). Theblsck cunes show the
threshold for statistical significance, where we used a falss discovery rateof 5% and an 80 of 0.8.

{E) LFQ intensities for PZP in 2l ten individuats.

and mean, a question that to our knowledge has not been ad-
dressed by shotgun proteomics before. Indeed, one-dimen-
sional principal-component analysis (PCA) was already sufficient
for complete separation (Figure 2C). Inspection of the drivers of
the PCA separation revealed that sewveral of them are known to
be regulated by estrogen (Figure 20 (Christensen et al., 1968,
Citosson et al, 1981; Sand et al., 1985). Direct comparnison of
the plasma proteome profiles of a woman and a man shows
that pregnancy zone protein (PZP) and sex hormone-binding
globulin (SHBG) are of high absolute abundance in the plasma
proteome of women and can be as high as 1% of human serum
albumin (Figure 2E). This suggests a functional mle in plasma,
and indeed, SHEG binds estrogen, whemas PZP fraps prote-
ases (Figure 2F). On average, PZP levels were 33-fold higher in
women compared with men. Furthermaore, two women had 10-
to 100-fold higher levels than the other three, likely because of
highly elevated levels of estrogen (Figure 2G).

Rapid Assessment of Sample Quality by Plasma
Proteomes

A frequently discussed issue in plasma proteomics as well as in
clinical laboratory medicine is the potentially deleterious effects
of inconsistent sample handling, such as variable time between
blood taking and workup. We reasoned that our mpid and highly
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reproduc ible workflow might also allow the determination of pro-
tein markers of sample quality.

In clinical practice, a certain degree of hemaolysis is notuncom-
mon. Starting from our obsenation that high-abundance ensth-
rocyte-specific proteins often showed high variability (Figures
2A, 2B, and 3A), we deliberately spiked in increasing amounts
of erythrocyte ysates to pure plasma. We obtained a proportion -
ate increase of erythrocyte-specific proteins, specifically, hemo-
globin subunits alpha, beta, delta, and carbonic anhydrase 1.
Motably, these proteins increased linearly (R® = 0.99), and even
an admixture of 1 in 10,000 could easily be spotted (Figure 3B).
This demonstrates that plasma proteome profiling readily indi-
cates even small amounts of cellular contamination, in which
case the values of pertinent proteins could be disregarded or
comected. The importance of this analysis step is illustrated by
triplicate plasma proteome analysis, in which the samples from
individual donors clustered together much maore tightly in PCA
when keratins and prominent red blood cel proteins were
removed (Figure S3).

The blood coagulation system is primed for clotting in case of
injury and wound mepair. Although semum is hanested by
inducing coagulation, harwesting of plasma requires addition of
appropriate amounts of anticoagulants. Our plasma proteome
profile contained many proteins with a function in the coagula-
tion cascade, and we next evaluated the coordinate behavior
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of these proteins as a quality control for appropriate plasma
preparation. Plasma from each of the fingers of one individual
was processed (Experimental Procedures). The levels of fibrin-
ogen alpha (FGA), fibrinogen beta (FBA), and fibrinogen gamma
(FGG) were lower in two of the samples. In addition, platelet
basic protein (PPBP) and platelet factor 4 variant (PF4V1), which
are released from activated blood platelets, were increased only
in these same samples (Figure 3C), suggesting that partial coag-
ulation had occurred. To test this hypothesis, we collected
plasma and serum from two individuals and carried out sample
preparation in triplicates. Indeed, levels of FGA, FGB, and FGG
were much lower and levels of PPBP and PF4V1 much higher
in serum compared with plasma (Figure 30).

These observations prompted us to inwestigate coagulation
and erythrocyte status in optimally prepared plasma. Forthis pur-
pose, we obtained reference samples from a blood bank, which
had gone through an extremely rigorous sample collection proce-
dure (Experimental Procedures). They had very low and constant
levels of red blood cell-specific proteins, and none had evidence
of partial clotting. Although our plasma samples were also virtu-
ally coagulation free, this is in our experience not always the
case with samples obtained from clinical studies (Figure 34).

Quantific ation of Clinically Interesting Markers in Short
Gradients

Apolipoproteins are functional blood proteins imvolved in lipid
homeostasis. They therefore reflect an individual's metabolic
status, and some of them are classical markers of cardiovascular
risk and metabolic disorders such as diabetes (Jenkine et al,
2014; Jensen et al, 2014). We quantified 15 apolipoproteins at
each of 32 different time points in one individual. Apolipopro-
tein-a (LPA) had the strongest variation (CV = 20%), whereas
APOB had the lowest (CV = 6%). The distribution of LPA levels
in the population is skewed toward zemo, with most individuals
having low LPA levels but some (--20%) having higher levels.
The successful guantification of the apolipoproteins in32 plasma
proteomes demonsirates the feasibility of a longitudinal mea-
surement of risk factors known to be associated with an individ-
ual's propensity for certain diseases (Figure 3E).

Some of the apolipoproteins have allelic variants occurring with
high frequency in populations that can easily be detected by MS
(Krastins et al., 2013; Martinez-Maorillo et al,, 2014). The apolipo-
protein allele APOE4 in the homozygous fomn is the langest known
risk factor for late -onset Alzheimer's disease with a 10-fold higher
risk compared with the homozygous APOE3 form (Tanzi, 2012)
APOE4 has an arginine at position 112 instead of a cysteine resi-
due in APOEZ and APOE3. In the 20 min LC-MS/MS data, wewere
able to clearly distinguish between the peptides LGADMEDVR
(APOE4) and LGADMEDVCGR (APOEZ, APOE3). In our group of
ten individuals, two had one APOE4 allele (Figures 3F and 3G).
The second allele was either an APOE3 or the APOEZ allele.

Serum amyloid A-1 protein (3AA1) and C-reactive protein
(CRP) are acute phase proteins that are routinely measured in
the clinic. Both are cormelated with inflammatory states, and
chronic elevation is strongly associated with increased risk for
future cardiovascular events (Hua et al., 2009; Wison et al,
2008). We found that their expression levels vared up to 1,000-
fold among the ten individuals, and in a correlated manner (R =
0.6; Figures 3H and 3l). In the plasma proteome with the highest

levels of SAA1 and CRP, these are by far thelargest differencesto
the plasma proteomes of the other healthy individuals, and this is
presumably caused by recovery from a commaon cold (Figure 3J).
Mext, we asked if our rapid proteome profiles contained infor-
mation on any further known biomarkers. We scanned the maw
data of the 15 technical workflow replicates to calculate the
CVs for Food and Drug Administration (FDR)-cleared or FDA-
approved biomarkers, as listed Anderson (2010). In total, 49
FDA-approved biomarkers were present in this data set (46
quantified in all 15 workflow replicates); 41 of them had CVs of
less than 20%, and 28 had CV's even less than 10% (Figure 3K).
When dividing these FDA-approved biomarkers into different
classes (Anderson, 2010), 45 fell into “act in plasma,” 2 into "tis-
sue leakage, " and 1 into “receptor ligand,” and 1 was lysozyme,
which had not been assigned to any category. The 20 min gradi-
ents already covered 45 of atotal of 54 proteins amaong the "act
inplasma" biomarkers. Interestingly, 42 of them were amongthe
180 highest abundance proteins, whereas the next 133 proteins
contained only 7 known biomarkers (Figure 4A; Table 52).

Plasma Protein Epitope Signature Tags as Internal
Standards for Protein Quantification

In clinical applications, quantification is almost always performed
with intemal standards. To add this capability to our fast work-
flow, we investigated the use of stable isctope labeling of amino
acids in cell culture (SILAC)-protein epitope signature tags
{PrESTs), which are recombinant expressed stable isctope-
labeled protein fragments. This approach has the advantage
that it controls for digestion efficiency, alkylation rate, and other
workflow aspects and that a "master mix'" of dozens of proteins
of interest can be readily prepared and quantified (Edfors et al.,
2014, Zeiler et al., 2012). We used APOA1, APOA4, APOB,
APOE, and SHEBG to construct a master mix for guantification
of multiple plasma proteins in short gradients. Samples from
ten individuals were prepared in triplicate and measured (Fig-
ure 55, Table S4). This resulted in low CVs for these proteins
(APOAT =2 3%, APOAL =3 .8%, APOB = 5.3%, APOE = 3.8%,
and SHBG = 14.7%). Optimized targeted methods applied to
peptides resulting from the PrESTs could improve these CVs
even further.

A Quantitative Proteome of 1,000 Plasma Proteins
The above experments highlight the value of quantifying hun-
dreds of proteins in a very short analysis time. To obtain esti-
mates of abundances for a deeper plasma proteome, we usad
a combination of peptide pre-fractionation, a matching library
consisting of depleted plasma, and 100 min high-performance
LC (HPLC) gradients. With 16 hr of measurement time, we iden-
tified 1,040 proteins in non-depleted plasma, of which 965 had
label-free protein quantification (LFQ) values. Although MS sig-
nals for these proteins span more than six orders of magnitude,
the majority of them were confined to a 100-fold abundance
range (Figure 4B). The deep proteome data can be assessed
in Table 35 and in the Max(QB database (Schaab et al., 2013),
which also displays the mass spectrometric evidence and
M3/MS transitions for all identified peptides.

Unexpectedy, the deep plasma proteome contained onby
14 additional FDA-approved biomarkers compared with the
49 already found in the 20 min gradients. Nine of them were
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FRgure 3. Quantification of Clinically Interesting Proteins

(&) Scatterplot of repeated finger pricks of one individusl freplicate 2 versus replicate 3) showing that erythrocyte-aspecific proteins were slevated as & group.
HEA1, hemoglobin subunit slpha; HEBE, hemoglobin subunit beta; HBD, hemoglobin subunit; CA1, carbonic anhydrass 1.

{B} Spike-in of erythrocytes into plasma reaulting in &n incresse of thess protsins.

{C) Blood was processed from ten different fingers of one indnad usl after fingar pricking, and LFO intensities of FGA, FGE, FGG, FPEP, and PFR4V1 are plotted. In
zamples 1and 2, fibrinogens are decreased, wheress platelst-spnecific proteing are incresssd.

{0y FEA, FGE, and FGEG levels are decressed, and PPEF as well a3 PF4V1 levels are slevated in ssrum compared with plesma in two indadusls.

{E) Fifteen spolipoproteins were quantified without amy missing value after lon gitudinel collectionof 32 plzsma samples of ans indhidual four finger pricks per day
over B days).

{F) The peptide LGADMEDVH is specific for the APOE4 alisle and was present and quantified in two of ten individuals.

1G] Presence of at lesat one APOE2 or AFDES slisle in all ten individuals.

fegend continued on next page)
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classified as "tissue leakage,” only 4 as "act in plasma,” and 1
was not assigned to any category. A depth of 450 plasma pro-
teins would be sufficient to cover 87% of the FDA-approved bio-
markers present in our deep data set according to Anderson
(2010).

The fact that we did not use protein depletion allowed us to
investigate the quantitative nature of the plasma proteome. Bio-
informatics analysis revealed that 457 of all guantified proteins
had an extracellular annctation and 651 an intracellular one,
with 221 owerlapping proteins. Interestingly, the 430 proteins
with exclusive intracellular annotation, which also have an inde-
pendent abundance estimate in the Plasma Proteome Database
(Manjappa et al., 201 4), are aimost completely excluded from the
top three order of magnitudes of protein abundance (Figure 4C).
These proteins are likely of tissue origin and have been releazed
by nomnal tissue damage, without necessarily having a function
in blood. In confrast to the deep proteome, these intracellular
proteins were largely absent in the 20 min measurements (25
of 313 proteins; Table 52). Reassuringly, 91% of proteins identi-
fied in plasma by us had also been identified in at least one of the
studies collected in the PeptideAtlas repository (Farrah et al,
2014). In the absence of MS-derived quantitation of a deep,
non-depleted proteome, we turned to the Plasma Proteome
Database, which lists absolute concentrations of 597 of the
proteins that are also quantified in our data set. Although these
concentrations derive from the literature from a wide variety of in-

dividuals, health states, and guantification methods, we found a
reasonable correlation, with an R® value of 0.53. This analysis
also confimmed that we had quantified many proteins of clinical
interest in the lower abundance range, such as the plasma pro-
tein ferritin (FTL) (12 ng/ml, which is widely used to diagnose
dysregulation of iron homecstasis, or the cytokine macrophage
migration inhibitory factor (MIF) (10 ng/ml). A total of 183 proteins
in our data set have reported concentrations below 10 ng/mil.
To bicinformatically analyze the functional nature of the
plasma proteome, we used the "1D annctation” algorithm in
the MaxQuant software (Cox and Mann, 2008, 2012), to assign
UniProtKB keywords to distinct abundance ranges. This resulted
in 58 statistically significant features (Table 56). Classical char-
acteristics of the plasma proteome were typically located in
the high-abundance range. These include “glycation,” “immu-
noglobulin,™ and “chylomicrons,” which are expected because
functional plasma proteins are typically glycated, alarge propor-
tion of functional plasma proteins are antibodies, and apolipo-
proteins are the structural components of chylomicrons. In
the low-abundance tailof the distribution, we found highly abun-
dant intracellular complexes such as the proteasome as well as
RMNA-binding and processing proteins. "Phosphoprotein” was
situated close to the middle of the distribution, and above " mem-
brane,"” “cytoplasm,* and "nucleus," presumably because most
intracellular proteins have by now been shown to be phosphor-
ylatable, in addition to some of the extracellular ones. The

{H) Variaton of the acute phase protin SAAT inten indhddusla.
{1} Mariation of the inflammatory marksr CRP in the same &n individusls.

) Direct companson of two individuats tovisualize the magnitude of SAA1 and CRP in the background of the other quantified plasma proteins.
k) The CVa of 49 FDA-approved biomarkers from 15 workfiow replicates &3 a functon of protein sbundsn ce rank.
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mean of functionally important Gene Ontology annotated biolog-
ical processes, suchas “protein-lipid complex assembly," "ste-
mol and cholesterol ransport,” “acute phase response,” and
“regulation of coagulation” processes all scored in the upper
thid of the distribution, highlighting that these functions are
overnwhelmingly camied out by high-abundance plasma proteins.
The abowe analysis can also be used to infer the likely function
or lack thereof of a protein found at a certain concentration in
normal plasma. For instance, the hormone-binding protein
SHBG is in the upper range of the plasma proteome, which cor-
relates well with its carrier function for an abundant circulating
hormone (Ottosson et al., 1981) (Figure 4D).

DISCUSSION

Using state-of-the-art shotgun proteomics technology, in partic-
ular the recently described iST preparation (Kulak et al., 2014),
Orbitrap instrumentation with wery high seguencing speed
Kelstrup et al.,, 2014; Scheltema et al., 2014), and advances in
label-free quantification (Cox et al., 2014), we her developed
a streamlined and robust workflow for shotgun plasma prote-
omics. Sample preparation steps are minimized without loss of
performance, and the procedure can be performed in 96-well
format by a liguid handling platfiorm. In this way, hundreds of
plasma proteomes can be processed and sample preparation
is not a limiting step for plasma proteomics in our workflow.
We found that even extremely short measurements of 20 min still
allowed the identification of more than 200 proteins, which was
aided by a reference data set and the “match between runs"”
functionality. Accuracy and precision of the label-free workflow
were excellent with infra-assay cormelation of about R® = 0.98
and CVs smaller than 20% for the majority of guantified proteins.

Starting from only a finger prick of blood, the entire workflow,
including database search and label-free quantification, can be
performed in less than 3 hr. Previous plasma proteome studies
typically started from milliliter amounts of blood, used depletion,
and extensive pre-fractionation and therefore required days for
completion (Cao et al., 2012; Keshishian et al., 2015; Liu et al,,
2015; Such-Sanmartin et al., 2014). The ability to use small sam-
ple amounts makes blood testing much less invasive, improves
cost-efficiency, and is clinically attractive in many situations,
including the testing of infants as well as eldedy patients (Bai
et al., 2013). Likewise, fast response time is frequently important
such as inthe case of myocardial infarction. Our procedure uses
a wery short digestion time (60 min), which could be reduced by
further optimization, so that the entire procedure could conceiv-
ably be performed in less than 1 hr.

Our very short LC-MS/MS runs contain nearly 50 proteins that
are already subject to FDA-approved diagnostic tests, whereas
the deep proteome only added few additional ones. Furthemaore,
the proportion of functional plasma proteins was wery high, in
contrast to the lower abundance range, which was dominated
by tissue-derived “leakage proteins.” Nevertheless, the deeper
proteome still contained many proteins of known clinical signifi-
cance, and it is interesting to speculate whether the relative
paucity of approved biomarkers in thisrange is due to the greater
difficulties associated with studying these proteins. Even in the
short analysis runs, the lower half of the distribution has not yet
been associated with specific patient states. We suggest that
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mixtures of recombinant isotope-labeled protein fragments, so-
called SILAC-PrESTs (Edfors et al., 2014; Zeiler et al, 2013),
could routinely be added to plasma samples. This would enable
very high accuracy in absolute quantification for the discovery
and validation of such biomarkers at high-throughput.

Further throughput improvements can be achieved with
chemical labeling strategies, for instance with iscbaric chemical
tags such as TMT (Thompson etal., 2003). For 10-plex encoding,
this could increase throughput to hundreds of patients per day.
This compares favorably with metabolomics studies, which are
already performed at large scale in plasma cohorts (Suhre
et al., 2011), while providing equally useful and complementarny
information. Alternatively, TMT could be used to label patient
samples before peptide pre-fractionation. This should result in
deep proteome coverage, while keeping effective M3 measure -
ment time reasonably short at 1-2 hr per patient and compatible
with large-scale studies.

The proteins characterized in our short workflow already
contain a plethora of useful information. For example, it was
easy to distinguish the gender of the donor and to obtain some
rick-associated genotype information. The spectrum of apolipo-
proteins, as well as inflammatory markers, was exce llently guan-
tified, reflecting the cardiovascular and metabolic health state.
Unexpectedly, the global nature of shotgun proteomics supplies
us with valuable information about sample quality, which is not
tested in routine clinical practice but can influence test results
and medical decisions.

Asmentioned above, the current strategy in plasma biomarker
discovery by M3-based proteomics involves a narrowing down
and widening strategy: a small number of patients and controls
are analyzed in great depth with unbiased and relatively low-
throughput methods. Resulting potential biomarkers are then
envisioned to be validated with tangeted MS-based methods or
classical immunoassays in much larger cohorts (Anderson,
2014; Keshishian et al., 2015; Surinova et al., 2011).

Here we suggest an additional strategy, which we temn
“plasma proteome profiling.” It consists of the measurement of
lange numbers of plasma proteomes at the greatest possible
depth with streamlined and high-throughput technologies as
described in this paper. This allows us to retain one of the basic
attractions of unbiased, systemwide methodologies, namely,
that associations do not have to be predefined but emerge natu-
rally from “big data mining. " Although our current work is only a
first step in this direction, we believe that rapid development in
the underdying technology will make this strategy more and
more attractive. Given the low resource requirements, lange
cohorts could be investigated in the future, and one can
even envision individuals routinely and repeatedly hawve their
plazsma proteome profile recorded. These high-dimensional pro-
files could indicate current disease risk as well as efficacy oflife-
style changes or pharmacological interventions and thereby
contribute to individual and public health.

EXPERIMENTAL PROCEDURES

Tryptophan Auorescence Emission Assay for Protein Quantification

Protein concentrations were detsrmined sfter solubilizing of samples in & M
wrea by tryptophan fiuoresce noe emission at 350nmusing an sxcitation wave-
length of 285 nm. Tryptophen at & concentration of 0.1 pg/pl in & M urea was
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usad to esteblish & standard calibration cure (04 pl). From this, we estimated
that 0.1 pg'pl tryptophan is equivalent to the emission of T pgful of humsan pro-
tein extract, assuming that tryptophan on sverage accounts for 1.3% of e

Bood Collection from Finger Pricks and Venous Blood Sampling
Bilood was taken by lancets (Wirex Sterilance Lite ) to obtain small quantities
of capillary blood, and 5 pl of blood was transferred by a pipette into a pipette-
tip-based centrifugal devices contining 0.58 pl 108 mM trisodium citrate fend
concentration 10.6 mM trisodium citrate, a3 commonty wsed inblood collec-
tion tubes). The pipstte-tip-based centrifugal device was made by melting
the end of a pipettetip to seal t. When larger amounts of plasma were nesded,
blood was tsken by venipuncture waing a commer cially availsble wingsd infu-
sion &t into collection tubes contsining sodium citrate. The blood was centri-
fuged for 15 min &t 2,000 = g, and plasma was harvested. Blood was sampled
from healthy donors, who provided written informed consent, with prior
approval of the sthics committes of the Max Flanck Society.

Plasma taken by venipuncture was used to detEmine anshyticel and intra-
ssgay variahility, becsuse in this cass, lerger amounts of pleama (15 pl) were
nmeaded.

Plesma for intra-individusl varnisbility was taken from one person by four
finger pricks (at6 a.m., 9am., 12pm., and 3 p.m.) per day for Bdays. To deter-
mine the inter-individusl vanability, blood waa taken by finger pricking of &n
different indhidusts in triplicate {five women and five men), and samples
ware randomized within the gender groups. Furthermore, blood was taken
from &ll ten fimgers of one individual to ane indvidual plsame and Dy venipunc-
ture from two individusts for the companison of pleams and ssrm.

Highiy refisble pleama samples {Plzsma™ Panalg) were obtined from the
tdood bank Blutspendedisnst des Bayenschen Roten Kreuzss.

High-Abundance Protein Depletion for Bullding a Matching Library

A combination of two immunodepletion kits was used for optimal removal of
the 20 highsst sbundance plasma proteins with the purposs of establishing
a peptide library for matching betwesn runs (Megara) st &l, 2012). Fist we
usad the Agilent Multiple Affinity Remowal Spin Cartridge for removal of the
top six high-abundance proteins {albumin, 1gG, IgA, antitrypsin, transferin,
and haptoglobin), followed by ProtecPrep2d Plesma Immunodepletion Kit
for the 20 highest abundance proteins from human plasma (Aloumin, 1gG,
IgA, Ighd, igD, Transfemin, fibrinogen, «2-macr oglobulin, =1-antitrypain, hapto-
globin, z1-acid ghycoprotein, ceruloplsamin, apolipoprotein A, apolipopro-
tein A-1l, apolipoprotein B, complement C1q, complement C3, complement
C4, plesminogen, and prealoumin). Both deplstion steps wers camisd out ac-
cording to the manufacterer's instructiona. The depleted plasme was digested
and measwed 53 described below. Raw data of the depleted plasma of one
individuzl and undeplsted plzams of ten different indhvidusts served 53 8 “li-
trary" for matching between runs for the 20 min gradient.

Sample Preparation: Protein Digestion and 5T Purification
Sample prepa ation was performed as deacribed previoushy (Kulkk st al, 2014)
with optimization for blood plesma as follows: 24 pl of SDC reduction and alkod-
ation buffer (Kulak st a1, 2014) wersadded 1o 1 pl of blood plasma. The miciure
wizs boiled for 10 min to densture protsing. After cooling d own to room temiper-
shure, the protectytic enzymes Lyal and trypsin were sdded in 2 1:100 ratio
{micrograma of enzyme to micrograma of proten). Digestion was peformed
at 37°C for 1 he. Peptides ware acidified to & final concentration of 0.1% -
fluoro-acetic acid (TFA) for SDE-RPS binding, and 20 pg waa loaded on two
14-gauge StageTip plugs. Ethiscetste/1% TRA (125 pf) was added, and the
StageTips ware centrifuged uging an in-house-made StageTip centrfuges (a
centafuge with identical specifications iz svailable from Sonation) for up to
2,000 = g. After washing the StageTips using two wash staps of 100 pl sthyis-
cetate/1% TFAand oneof 100 wl ddH 00 2% TFA consecutietly, purfied pep-
tides were eluted by 60 i of elution buffer 0% acetonirile, 19% ddHD, 1%
ammonia) into auio sampler vials. The collected matenial was complstely dried
using a Spesdac centrifuge at 45°C (Eppendorf, Concentrator plus). Peptides
wers suspendsd in buffer A° (2% scetonitrile, 0.1% TFA) and afterward soni-
cated (Branson Ultrasonics, Ubrasonic Cleansr Model 2510).

For the deep plzama data ast 20 pg purified and digested plasma pepides
were fractionated wsing basic reverse d-phasse pre-fractionation. The peptides

were loaded onto & reversed-phase G158 column (1.9 pm Reprosil-Pur G18
basds; Dr. Maisch) and were eluied wusing an EASY-nLGC 1000 system (Thermo
Fizher Scientific). A gradientwas generated by using a dusl-buffer system with
buffer A {ddH.0) and buffer B (ddH0, B0% ACN) adjusted to pH 10 with
ammanium hydroxide. Peptides. were separated and sluted from 5% B to
40% B in 50 min followed by a linear increass o 60% B in 10 min. The gradient
was followed by & 12 min washout with 60 %-05% B. We concatensted the
46 collected fractions into 8 fractions jconcatenstion acheme: 1 + 9+ 17 +
25, 2+ 10 + 18 + 26, stc.). A total of 1 pg of esch concatenated fracton was
loaded and messured by LC-MSME a3 described below.

Raama samples from two indiiduats were dispensed into a 96-well plate
{48 samplea for each individual), and the complste sample preparation, with
the exception of the centrifugation stepa, was performed on an Agilent Bravo
liquid handling platform.

Design, recombinant expression, punfication and quantification of plasma
PrESTa was a3 deacribed in {Zeiler ot 2l, 2012). Plzama PrESTs of the proteing
APOAL, APOA4, APOB, APOE, and SHEG were combined in a8 masier mix,
which was added together with the SDC reduction and alkvation buffer to
the blood plasma The subsequent steps for sample preparation workfiow
are described above.

Ultra-High-Pressure LC and M5

Samples ware messured using LC-MS instrumentation consisting of an EASY-
nLG 1000 ultra- high-pressure system (Thesmo Fisher Scientific) coupled via a
nano-slectrogpray on source (Thermo Fisher Scientific) to & O Bxactive HF
Orbitrap (Thermo Fisher Scientific) (Scheltema et al., 2014). Purified peptides
were separsted on 40 cm HPLC-columng fintemsl dismeter 75 pm; in-houas
packsd into the tip with ReproSil-Pur C18-A0 1.9 pmreain; Dr. Maisch). For
sach LC-MS/MS analysis, about 1 pg peptides were used for 20 min runs
and for each fraction of the desp plsamas data sst.

Peptides were loaded in bufier A {0.1% wv formic acid) and eluted with a
lincar 15 min gradient of 10%—50% of buffer B {0.1% w'v formic acid, 60%
wiv acetonitrile), followsd by a5 min 98% wash ata flow rateof 450 nl'min. Col-
umn Emperature was kept at 80°C by a Peltier element-containing, in-houss-
developed oven, and parameters were monitorsd in real time by the SprayQd
goftwars (Schdtema and Mann, 2012). MS data were acquired with a Top5s
data-depsndent MS/MS scan method foph method). Targst values for the
full scan MS spectra wers 3 % 10° charges in the 300-1,650 mvz range, with
& maximum injection time of 25 ms and & resolution of 60,000 at m'z 400.
A 1.5 mvz isolaton window and a fied first mass of 100 mv'z was wsed for
MEME scana. Fragmentation of precursor lons was perfomed by higher en-
ergy C-rap dissociation with 2 normalized collision ensrgy of 27 V. MSMS
sgans were performed at & resolution of 15,000 at m'z 300 with an ion targst
value of 5 = 10* and a maximum injecion time of 25 me. Dynamic exclusion
was set 10 15 5 to svoid repeated sequencing of identical peptidea.

Data Analysis

ME raw files wers anstyzed by MaxOuant softwars version 1.5.2.10 {Cox and
hann, 2008), and pepide lists were searched against the human Uniprot
FAST A datsbass (version Juns 30 14) and & common contaminants dstabase
by the Andromeda search engine [Cox st a1, 2011) with cysteine carbamido-
methylation a5 & fixed modification and MN-tsrminzl acetylation and methionine
oMdations a3 vaniable modificetions. The felse discoverny rate was =t o 001
for both proteins and peptide s with 2 minimum length of ssven amino acids
and was determined by ssarching & reverse database. Enzyme specificity
wias 35t 85 C-termins] to anginine and hysine s expected using trypain 28 pro-
teass, and & mesdmum of two missed cleaveges wers sllowed in the dstahass
search. Peptide identification was performed with an sllowed inftisl precursor
mEss devistion up to T ppm and an sliowsd fegment mass dewdation of 20
ppm. Matching between runs wes performed with depleted plasma and unde-
pleted plesma of ten different individusts serving a3 a library. Proteins match-
ing to the reversed database wers filtered out. LFO was performed with 2 min-
imum ratio count of 1 {Cox et &, 2014).

Biolnformatics Analysis

All bioinformatics anshyses were performed with the Perssus software of
the hanDuant computation al platform (Cox and Mann, 2008). Absolute quan-
tification of protsin sbundances wes compuied using peptde label-fres
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quantification values, sequence length, and moleculsr weight (Cox st =l
2014). For enrichment snatysiz, a8 felse discoveny rate of <0.02 after Benja-
mini-Hochbeng comaction was used.

Statistical Analysis

Reproducibility wes analyzed by ealculating R values for direct comparison of
the LFD intensities of any two LC-AMESMS runa. OV values were calculsted on
the basis of LFO intensities. To determine the snalyticsl and intra-assay vari-
ability, we used 15 raw data fies, for intra-individual variation 32 files, and
for inter-individual varaton 30 files, and friplicates for sach indiidusl were
combined before determining the CV.

The accession number for the raw and processed data reporisd inthispaperis
PRIDE proteomeXchangs: FXDO02E54.

SUPPLEMENTAL INFORMATION

Supplementsl Information includes five figures and =six tables and can be found
with this article online at hitpdx dolong™ 01016/ cets_ 201602015,

AUTHOR CONTRIBUTIONS

Conceptuslization, M.M., PE.G., and NAK. Methodology, P.EG., NAK.,
GP., LMH., and D.T.; Validation, P.EG., NAK., and G.P.; Formal Analysis,
PEG.; Investigation, PE.G_; Writing — Oniginal Draft: MM, PEG., NAK,
and GP.; Supervision, M.M., L M.H., and D.T.; Project Administration, M.h.;
Funding Acquisition, k.M.

ACKNOWLEDGMENTS

W thank all members of the Proteomics and Signal Transduction Group for
help and discussions and in particular lgor Paron, Korbinian Mayr, Gaby
Sowa for MS technical sssistance, Jungen Cox for bloinformatic tools, and Mi-
das Grasal and Sesn Humphre y for fruitful discussions. Mils Kulsk and Garwin
Pichier received an m* award from the Bio™ Munich Biotech Clusier funded by
the Bavarian government. The work camied out in this study was partisity sup-
ported Dy the Max Planck Society for the Advancement of Science and bythe
Novo Nordisk Foundation fgrant NNFISCC0001).

Received: October 12, 2015
Rewvized: January 19, 2018

Aocepted: Februsry 24, 3016
Published: March 23, 2018

Addona, T.A., Shi, X., Keshishizn, H., Mani, D.R., Burgeas, M., Gillette, M.A.,
Clauzer, KR., Shen, D, Lewis, G.O., Famell, LA, et al (2011). A pipsline
that integrates the discovery and verfication of plesma protein biomerkers re-
vesls cendidste merkers for cardiovescular disease. Nat. Biotechnol. 20,
B3IE-E43,

Andergon, MWL {2010). The clinical plesms proteomse: & survey of clinical -
=ays for proteing in plesma and serum. Clin. Chem 56, 177-185.

Anderson, L. {2014). Six decades searching for meaning in the protecms.
J. Proteomics 107, 24-30.

Anderson, ML, and Anderson, NG, (2002). The human plesma proteome: his-
tory, cherecter, and disgnostic prospects. Mol Cell. Proleomics 1, BAS-86T.
Anderson, M.L., Anderson, N.G., Pearson, TW., Borchers, CH., Paulovich,
ALG., Patterson, 5.0, Gillette, M., Asbersold, R., and Camr, 5.A 2008). A hu-
man proteomse detection and guantitstion project. Mol Cell. Proteomics &,
BEI-HBE.

Bai, J P., Bamet, J.5., Burckart, G.J., Meibohm, B.. Sachs, H.C., and Yao, L.
{2013). Strategic biomerkers for drug development in treating rere diseases
and disesses in neonates and infants. AAPS J. 15, 447 454

194 Call Systems 2, 185-195, March 23, 2016 ©2016 The Authors

Belled, E., Bergamini, 5., Monar, E., Fantoni, L1, Cuoghi, A, Ozben, T., and
Tomsasi, A. (2011). High-abundance proteine depletion for serum protecmic
anahysis: concomitant removal of non-targeted proteins. Amino Acids 40,
145-156.

Can, Z_, Tang, H.Y., Wang, H., Liu, 3., and Speicher, D.W. 20 12). Systematic
comparnson of frectionation methods for in-depth anatysis of plesms pro-
teomes. J. Proteoms Res. 17, 3080-3100.

Christersen, U., Simonsen, M., Hamit, M., and Sottrup-Jlensen, L. {19893,
Pregnancy zone protein, & proteinsse-binding mecroglobulin. Intersctions
with proteinsses snd methylamine. Biochemistry 28, 93240331,

Caoe, J., and Mann, M. 2008). MexDusnt enables high paptide identification
rates, individualzed pop.b.range mass sccuracies and proteome-wide pro-
tein quantification. Mat. Biotechnol. 26, 1367-1372.

Caooe, J., and Mannm, M. [2011). Quentitative, high-resolution protecomics for
date-driven systems biclogy. Annu. Rev. Biochem. B0, 273200,

Cooe, J., and Mann, M. 2012). 10 and 20 annotation enrchment 8 statstcal
method integrating quantitstive protecmics with complementary high-throughiput
data. BMC Bicirfformatics 13 Supp! 16), S12.

Cax, J., Neuhsuser, M., Michalski, A., Scheltema, R.A, Olsen, JV., and Mann,
KA. 21011). Andromeda: a peptide search engine integrated into the MaseDusnt
environment. J. Proteoms Res. 10, 17841805,

Cut, ., Hein, M.Y., Luber, C.A., Paron, |, Nagaraj, N., and Mann, M. (2014).
Accurste proteome-wide label-free quantification by delayed normalzstion
=nd maximal peptide ratio extrection, termed Maed FO. Mol. Cell. Proteomica
13, 25132506,

Edfors, F., Bostrom, T., Forsstrom, B, Zeiler, M., Johansson, H., Lundbeng, E.,
Hober, 5., Lehtia, J., Mann, M., and Uhlen, M. (2014). Immunoproteomics ws-
ing polyclonal antibodies and stable sope-labeled affmity-purified recomibi-
nant proteins. Mol. Cell. Proteomics 13, 16811-1624.

Farrah, T., Deutach, EW., Omenn, G.8., Sun, Z., Watts, JD., Yamamoto, T,
Shteynberg, D., Hamizs, MM., and Maoritz, R.L. 201 4). State of the human pro-
teome in 2013 &3 viewed through PeptideAtizs: comparing the kidney, urine,
and plesma protsomes for the biology- and diseass-driven Human
Proteome Project. J. Proteome Rea. 1.3, 60-T5.

Geiger, T., Gox,J., and Mann, M. 2010). Proteomics onan Orbitrap benchtop
miEss spectrometer using alHonfragmentstion. hMaol. Cell. Proteomics 9, 2252
2261.

Hua, 5., Song, C., Geczy, CL., Freedman, SB., and Witting, P.K. (2009). A role
for scute-phese serum amyloid A and high-density lipoprotein in oodative
atreas, endothelial dysfuncton and atherosclercais. Redox Rep. 14, 187108,
Jenking, A, Toth, P.P., and Lyons, T.J., eds. (2014). Lipoproteins in Diabetes
Meliitus (Humana Press).

Jemsan, M.K, Bertoia, ML, Cahill, L E_, Agarwsl, |, Rimm, EB., and Mukamsal,
HLJ. {201 4). Novel metsbolic biomarkers of cerdiovescular disesse. Mat. Rewv.
Endocrinol. 10, 650672,

Ketatrup, C.0., Jersie-Christensen, R.R., Bath, T.S., Amey, TH., Kushn, A,
Kelimann, M., and Olsen, JV. 2014). Rapid and deep proteomes by fester
sequencing on & benchtop quedrupole ultra-high-field Orbitrap mass spec-
trometer. J. Proteome Res. 13, 61876195,

Keshishian, H., Burgess, M.W., Gilletie, M.A., Mertins, P., Clauser, KR, Mani,
DR. Kuhn, EW., Famell LA, Gerssten, RE., and Cam SA. (2015
Multtipleced, quantitative workflow for sensitie bomarkerdiscovery in plesma
yields novel candidates for earty myocardial injury. Mol Gell. Proteomics 14,
23TE-2303,

Krasting, B., Prakssh, A., Samacino, DA, Nedelkov, D., Niederkofier, EE.,
Kiemnan, LA, Melon, R. Vogelsang, MS., Vedsli, G, Gerces, A, et al
{2013). Rapid development of sensitive, high-throughput, quantitetive and
highly selective mass spectrometric targeted immunosssays for clinically
impaortant proteins in human plasma and serum. Glin. Biochem. 46, 308410,
Kulsk, N.A., Pichler, G., Paron, |, Megarsj, M., and Mann, M. 2014). Minimsal,
encapsulsted proteomic-sample processing applied o copy-number estima-
tion in eukaryotic cells. Mat. Methods 77, 319-324.

45



3. Publications

Liw, ¥., Buil, A, Colling, B.C., Gillet, LC., Blum, L.C., Cheng, L.Y., Vitek, O.,
Mouritzen, J., Lachance, G., Spector, T.0., etal. 2015). Quantiathive vaniability
of 342 plesma protsing in & humsan twin populstion. Mol. Syst. Biol. 17, TB&.
Martinez-Marilla, E., Mislsen, HM _, Batruch, |, Drabovich, AP., Begosvic, L,
Lopez, MF., Minthon, L, Bu, G, Msttsaon, N, Porelius, E, =t &l 2014).
Aszsesament of peptide chemical modifications on the development of an sc-
curate and precise multiplex: selected reaction monitoring assay for apolipo-
protEin & isoforma. J. Proteoms Res. 13, 1077-1067.

Mufoz, J., and Heck, A.. £2014). From the humen genome to the humsan pro-
teome. Angew. Chem. Int. Ed. Engl. 53, 10864— 108566,

Magarsj, N, Kulsk, hLA., Goe, J., Meuhsuser, M., Mayr, K Hosming, O., Viorm,
0., and Mann, M. (2012). System-wide perturbation snahysis with neerty com-
plete coversge of the yesst proteoms by single-shot uttra HPLC runs on a
bench top Orbitrap. Mol. Cell. Proteomics 117, M111.013722,

Manjappa, V., Thomas, J K., Marimutha, A, Muthusamy, B., Radhakrishnan,
A, Sharma, R, Ahmad Khan, A, Balskrshnen, L., Sshesrshoddhe, MNA,
Kumar, 5., st &l 201 4). Plzamsa Proteome Detshase 53 a resowce for prote-
omics research: 2014 updsate. Mucleic Acids Res. 42, D850 DOES.

Omenn, G.5. (2005). Exploring the Human Plasma Proteomsa, Volwre § (John
Wiley).

Ottosson, U.B., Dambes, J.E, Damber, M.G., Selstam G., Solheim, F.,
Stigtwand, T, Sddergdrd, R., and von Schoultz, B. [1881). Bffects of sex hor-
mone binding globulin capacity and pregnancy zone protein of trestment
with combinstionz of ethimd-oestrediol and norethisterone. Maturites 3,
205300,

Paczeany, 5., Braun, T.M., Levine, J.E, Hogan, J., Crawford, J., Coffing, B.,
Olsen, 5., Choi, W, Wang, H., Faca, V., et &l (2010). Elsfin is a bliomarier
of graft-versus-host disesse of the skin. Sci. Transl. Med. 2, 132

Sand, 0., Folkersen, J., Westergasrd, J.G., and Sottrup-lensen, L. (1885
Charsctenzation of human pregnancy zone protein. Comparntson with human
slpha 2-macroglobulin. J. Biol. Chem. 260, 157 2315735,

Schaah, C., Geiger, T., Stoshr, G., Cox, J., and Mann, M. (2012). Anatysis of
high accuracy, quantitative proteomics data in the MeOE database. Maol.
Cell. Proteomics 17, M111.014068.

Schettema, R A, and Mann, M. (2012). Spraylc: a real-time LC-MM5/MS qual-
ity monitoring syatem to meximize uptime using off the shelf components.
J. Proteomse Res. 11, 3458-3466.

Schettema, R.A., Heuschild, J.P, Lenge, O, Homburg, D., Denisov, E,
Damoc, E., Kushn, A, Makarow, A, and Mann, M. 2014). The O Boactive
HF , & Benchtop mass spectromster with & pre-fitter, high- performancs quad-

rupole and an ulra-high-field Orbitrap anahzer. Mol. Cell. Proteomics 13,
35983708,

Such-Sanmartin, G., Ventura-Espejo, E., and Jensen, O.N. 2014). Depletion of
sbundant plasma proteins by pobyM-isopropylecrylamide -scrylic scid) hydro-
gel particles. Anal. Chem. 88, 15431550,

Suhre, K., Shin, 5.Y., Petersen, A K, Mohney, RP., Meredith, D., Wagels, B.,
Attmaier, E, Deloukss, P., Erdmann, J., Grundberg, E., et al;; CARDIoGRAM
{2011). Human metbolic individusity in blomedicsl and phermaceutical
regesarch. Mature 477, 5460,

Surinova, 5., Schiess, R., Hittenhain, R., Cercielio, F., Wollscheid, B., and
Asbersold, R. £011). On the development of plasma protein biomarkers.
J. Proteoms Rea. 10, 516,

Tanzi, RE. 2012). The genstics of Alzheimer disesse. Cold Spring Harb.
Perapect. Med. 2, 2.

Thompaon, A, Schafer, J., Kuhn, K, Kienle, 5., Schwarz, J., Schmidt, G,
Meumann, T., Johnstone, R., Mohammed, AK., and Hamon, G (3003).
Tandem masa taga: & novel quantificaton stralegy for comparative analyais
of complex protein mixtures by MS/ME. Anal. Chem. 75, 18251904,

Tu, C., Rudnick, PA., Martinez, MY, Cheek, K.L., Stein, SE., Skebos, R.J.,
and Lisbler, D.C. 2010). Depletion of sbundant plesms proteins and limitations
of pleama proteomics. J. Proteome Res. 9, 49824001,

U.S Department of Health and Human Services, Food and Drug
Administretion, Center for Drug Ewalustion and Research, Center for
Weterinary Medicine (2001). Guidance for Industry, Bicsnshtical Method
‘Walidation (U.5. Department of Health and Humsan Sendces).

Végvar, A, Welindar, C., Lindberg, H., Fehniger, TE., and Marko-\iarga, G.
{2011). Biobank resources for future patisnt cerer developments, principles
and concepta. J. Clin. Bioinforma. 7, 24.

inko, P., Sajanti, E., Janne, 0., Pettonen, L., and Vinko, R. (19 78). Serum pros-
tate-apecific acid phosphatase: development and wvalidation of a specific
radicimmunoasssy. Clin. Chem. 24, 18151914,

Wilson, PW_, Pencina, M., Jacques, P., Sslhub, J., D'Agostino, R, Sr., and
O'Donnell, C.J. {3008). C-reactive protein and reclessificaton of cerdiovascu-
lar rizk in the Framingham Heart Study. Circ Cardiovasc Qusl Outcomes 17,
24y,

Failer, M., Straube, WL, Lundberg, E_, Uhilen, M., and Mann, M. (2012). A pro-
tein epitope signature tag (PrEST) liorary sllows SILAC-based sbsolute quan-
tification and muttiplesed determination of protein copy numbers in cell linea.
Maol. Cell. Proteomica MCP 17, 0111.009613.

Cell Systems 2, 185-185, March 23, 2016 ©2016 The Authors 185

46



3. Publications

3.2. Article 2: Proteomics Reveals the Effects of Sustained
Weight Loss on the Human Plasma Proteome

Authors: Philipp E. Geyer'?t, Nicolai J. Wewer Albrechtsen?*41, Stefka Tyanova’,
Niklas Grassl', Eva W. lepsen®4, Julie Lundgren®4, Sten Madsbad*®, Jens J.
Holst34, Signe S. Torekov®#, and Matthias Mann'?

"Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
2NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
3Institute of Laboratory Medicine, Ludwig-Maximilians University Munich, 80539 Munich, Germany

TThese authors contributed equally to this work.

The ‘weight loss study’ is our first clinical study, and it demonstrates that Plasma
Proteome Profiling can live up to its promises. Before it was neither possible to measure
large cohorts nor to find biological meaningful information in the plasma proteome. In
this study we analyzed the largest cohort in the field of plasma proteomics with almost
1,300 separately prepared and measured plasma samples.

Weight loss and sustained weight maintenance are of central concern in modern society,
research and medicine. Obesity and the metabolic syndrome are major public health
burdens, predisposing to several diseases, including type 2 diabetes and cardiovascular
diseases and increasing the overall likelihood of early death. However, not everyone
agrees on how universal the positive effects of weight loss on cardiovascular and
metabolic risk factors are. We investigated a longitudinal cohort of 52 obese study
participants by measuring their plasma proteomes over an initial weight loss period of 8
weeks, followed by one year of weight maintenance.

Applying a matching library strategy by using double depleted plasma, we were able to
quantify 437 proteins per individual. The obtained Plasma Proteome Profiles revealed
the comprehensive systemic effects of weight loss on individual plasma proteins: Of a
total of 737 investigated proteins, 63 were decreased and 30 were increased directly in
response to weight loss. The longitudinal study design allowed us to monitor long-term
regulation of proteins. We were able to follow the reduction of fat mass by the adipocyte
secreted protein SERPINF1 which — together with the apolipoprotein F (APOF) — was
the most significantly regulated protein in weight loss. Comprehensive quantification of
18 members of the apolipoprotein family — the main lipid homeostasis mediators —
delivered information on metabolic and cardiovascular risk factors that were strongly

influenced by weight loss.
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The meta-data available in the study supplied us with physiological and clinical
laboratory parameters, which we correlated with the plasma proteomes, establishing
novel dependencies. Remarkably, a panel of eight plasma proteins showed a higher
correlation with insulin resistance than the known biomarker adiponectin. Moreover, we
defined an inflammation panel consisting of proteins that was assessed for each study
participant. By combining these data on an individual-resolved level, we connected low-
grade inflammation and insulin resistance. Most of the individuals with high levels of
inflammation also had an unfavorable insulin resistance profile, but importantly,

individuals in all groups benefited from weight loss.

With this study we demonstrated that it is possible to measure large cohorts and to
extract biologically and medically meaningful information in the human plasma
proteome. Another aim of this study was to identify bottlenecks for further optimization.
In this regard, we found that most of the down time was caused by HPLC issues that
were not connected to the sample quality itself. Higher robustness in this area would
directly result in higher throughput and clinical applicability.
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Proteomics reveals the effects of sustained weight
loss on the human plasma proteome
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Abstract

Sustained weight loss is a preferred intervention in a wide range
of metabolic conditions, but the effects en an individual's health
state remain ill-defined. Here, we investigate the plasma
proteomes of a cohort of 43 obese individuals that had undergone
8 weeks of 12% body weight loss followed by a year of weight
maintenance. Using mass spectrometry-based plasma proteome
profiling, we measured 1,294 plasma proteomes. Longitudinal
monitoring of the cohort revealed individual-specific protein levels
with wide-ranging effects of losing weight on the plasma
proteome reflected in 93 significantly affected proteins. The adipo-
cyte-secreted SERPINF1 and apolipoprotein APOF1 were most
significantly regulated with fold changes of —16% and +37%,
respectively (P <10, and the entire apolipoprotein family
showed characteristic differential regulation. Clinical laboratory
parameters are reflected in the plasma proteome, and eight
plasma proteins correlated better with insulin resistance than the
known marker adiponectin, Nearly all study participants benefited
from weight loss regarding a ten-protein inflammation panel
defined from the proteomics data. We conclude that plasma
proteome profiling broadly evaluates and monitors intervention in
metabolic diseases.

Keywords diabetes; mass spectmometny; metabolic syndrome; obesity; plasma
protesme profiling

Subject Categories Metabolism: Post-translational Modifications, Proteobysis
& Proteomics; Systems Medicine
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Introduction

Obesity and the metabolic syndrome represent a major public health
burden, predisposing to several diseases including type 2 diabetes

™

and cardiovascular syndromes and increasing the overall likelihood
of early death (Eckel er al, 2005: Grundy, 2015). The chances of
developing the metabolic syndrome can be reduced considerably by
sustained weight loss in obese individuals, through its positive
effects on a broad range of metabolic risk factors (Hansen & Bray,
2008). However, it is not entirely clear how weight loss exerts these
beneficial effects and to what extent they may differ between indi-
viduals (Look et al, 2013). The metabolic state is reflected in the
lewels of lipid transport proteins in the blood, most prominently the
apolipoprotein family that is involved in lipid turnover. Several
apolipoproteins, for instance Al and B, correlate with cholesterol
and triglycerides (Dominiczak & Caslake, 2011). Obesity is also
associated with increased systemic low-grade inflammation, as indi-
cated by plasma levels of specific markers such as C-reactive protein
(Esser et al. 2014). These proteins are normally quantified individu-
ally by antibody-based assays, providing only a partial picture of
changes in the entirety of proteins in this body fluid, the plasma
proteome. In the case of weight loss, particular proteins like sex
hormone-binding globulin are known to change (Azrad et al, 2012],
but a glohal view of the dynamic changes in the plasma proteome is
currently lacking.

Human blood plasma and serum are the predominant matrices
for clinical analysis as they are easily accessible and clearly reflect
an individual's metabolism. Mass spectrometry (MS)-based proteo-
mics should be an optimal technology to investigate changes in
the human plasma proteome, because this holistic approach can in
principle yield specific and quantitative information on all proteins
in an unmbiased way. Due to several technological challenges,
including the large “dynamic range”™ (the difference between most
abundant and least abundant proteins), the proteomic analysis of
plasma has remained a very specialized endeavor, precluding
the analysis of large numbers of individual plasma proteomes
{Anderson, 2010, 2014). The technology of MS-based proteomics
has drastically improved over the last years (Manm ef al, 2013;
Zubarev & Makarov, 2013; Munoz & Heck, 2014; Aebersold &
Mann, 2016), and several groups have reinvestigated the plasma
proteome recently (Liu eral, 2015; Cominetti eral, 2016;
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Malmstrom ef al, 2006). OQur laboratory has developed an auto-
mated, rapid, and robust shotgun proteomics workflow that allows
the streamlined analysis of hundreds of plasma proteins from a
single drop of blood, a technology that we call "plasma proteoms
profiling™ (Geyer et al, 2016). These profiles provide quantitative
information on the majority of the classical, functional plasma
proteins (Surinova ef al, 2001), and we speculated that the meta-
bolic status of individuals during weight loss and maintenance
would be reflected by their plasma proteomes. We selected a
longitudinal prospective cohort (Iepsen et al, 2015) from which we
measured the plasma proteomes of 43 individuals at seven time
points over 14 months. This allowed us to analyze the global
changes related to lipid metabolism and inflammatory processes
resulting from a fundamental life style change in the plasma
proteome for the first time.

Results
Measurement of 1,294 plasma proteomes in a weight loss study

‘We recently described a highly sensitive proteomics sample prepara-
tion method that can be performed with a minimum number of
steps in a single reaction vial (Kulak er ai, 2014). On this hasis, we
subsequently developed am antomatable workflow for plasma,
which allows the robust measurement of this challenging body fuid
in < 1 h (Geyer et al, 2016). We reasoned that this technology mighit
enable analysis of relatively large studies, involving longitudinal
monitoring of a substantial cohort.

To investigate the biological impact of losing weight on the
human plasma proteome, we made use of a study in which 52
obese individuals were enrolled for an S-week-long, diet-induced
weight loss intervention of B0 keal/day during which they lost
on average 12% body mass. A total of 43 of these individuals
were followed for an additional wear of successful weight
maintenance (lepsen et al, 2015). We obtained plasma from
subjects that were fasted overnight, sampled before and after
weight loss as well as at five time points over the subsequent
year (Fig 1A).

For the purpose of constructing an MS proteome library, we
doubly depleted reference plasma samples from three healthy
women and three healthy men for the 20 most abundant plasma
proteins. The resulting data files were used to increase the depths of
analysis in the subsequent cohort measurements by transierring
peptide identifications between liquid chromatography tandem mass
spectrometry (LC-MS/MS5) runs (Geyer ef al, 2016). For accurate
label-free quantification, we measured quadruplicates of 319 plasma
samples of the cohort. The resulting 1,294 plasma proteoms
measurements (including 18 samples for library construction) repre-
sent to our knowledge by far the largest plasma proteomics study in
a clinical context (Fig 1B). Data acquisition could be accomplished
in a reasonable time (10 weeks), and interestingly, we found that
remaining challenging points in the LC-MS/MS measurements were
concentrated on the chromatographic rather than the MS side
(Fig EV1A).

Across the individuals, we identified 737 plasma proteins (sub-
tracting contaminants such as kerating] and an average of 437
(£ 23) per individual. Quantitative accuracy was high as reflected

2 Molecular Systems Biology 12 901 | 2006
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by a mean Pearson correlation coefficient of 0.97 for quadruplicate
measurements (Fig EVIE].

As shotgun proteomics is not limited to the analysis of a prede-
fimed set of proteins, our measurements contained additional infor-
mation, for imstance, on sample quality (Geyer et al. 2016).
Erythrocyte lysis, which is indicated by increased levels of highly
abundant erythrocyte-specific proteins (HBA1, HBB, HBD, CA1l]),
occurred only in one sample, and minor coagulation events during
blood taking were present in five of the 318 samples (Fig EVIC and
D). This suggests excellent sample handling procedures throughout
the study.

Plasma protein levels are individua l-specific

Study participants were followed longitudinally for 1 year afier
weight loss, which enabled us to identify individual-specific protein
levels as well as intra-individual variability of the plasma proteome
profiles. For this analysis, we removed the first two time points,
which covered the weight loss intervention (weeks —8 and 0) W
minimize weight loss-induced effects. For each of 448 proteins that
were guantified in all five time points of at least one individueal, we
calculated the average level per person and for the entire cohort.
Strikingly, 9% of proteins differed from the group average more
than twofold and 25% more than fivefold (Fig 2A and Table EV1]).
To investigate the individual variations across time points, we
additionally determined longitudinal protein-specific coefficients of
variation (CVs). Volcano plots visualize the proteins with a mini-
mum difference from the group average and a maximum variation
in the individual. For instance, in participant 4, pregnancy zone
protein (PZP) was 26-fold higher than the group average, but varied
less than 10% owver time, making it a highly individual-specific
protein by these criteria (Fig 2B). For the whole dataset. at a
mwofold difference and 30% CV cutoff, 46% of all proteins would be
individual-specific. This represents a lower limit because any
measurement errors would tend to decrease the apparent number of
individual-specific proteins. We also note that “individual-specific”
containsg “sub-group”-specific proteins, because each individual
could be a representative of a sub-group.

Owerall, protein levels tended to vary considerably between
participants, but w remain quite constant over time within each
individual, as exemplified by seven individual-specific proteins in
Fig 2C. Alpha-Z-macroglobulin (AZM)] is 10 times higher in some
individuals compared to others, but has a mean CV of 6% over
the 48 weeks for all of the individuals. The high inter-individual
variation in lipoprotein{a) (LPA) over three orders of magnitude
has a genetic reason: Individuals vary in the mumber of LPA
kringle domains and secretion into the circulation depends on the
size of the protein (Utermann, 1989). Some proteins were detected
in only a minority of individuals, for instance the imtracellular
protein Rab GDP dissociation inhibitor (GDI1/2). Tt was robustly
quantified but only in a single person and may therefore be
present in this individuals blood due to tissue leakage. A few
proteins including complement factor C3, serum albumin (ALB),
vitamin D-binding protein (GC), kininogen-1 (KNGI1), hemopexin
(HPX), complement factor H (CFH). and clusterin (CLU) show very
low wariation between individuals and owver time (fold difference
< 1.3; CV = 20%), indicating tight biological control of their levels
(Table EV2).

& 2016 The fasthors
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& The study cohort consisted of 52 obese individuals who lost on average 12% of their body mass during 8 weels of calorie restriction £00 kcaliday) The acute weight
loss was followed by a 52-week weight maintenance peried by 43 of the study participants with longitudinal blood sampling at the indicated time points.

B Quadruplicates of the samples and the establishment of a matching librarny resulted in 1.294 plasma proteomes, which wene separately prepared by an avtomated
liguid handling platform. The LC-MS/MS data, which we analyzed by MaxQuant and Perseus resulted in 319 individual plasma proteome profiles for 52 participants

Weight loss changes the plasma proteome profile

Focusing on the effect of weight loss, we analyzed the plasma
proteome changes of the study participants from before weight loss
to after weight loss (baseline to the B-week time point). We used a
one-sample ftest to take individual-specific protein levels into
account. Weight loss had a comprehensive systemic effect on the

& 2015 The Authors

blood plasma proteome profile with 63 decreased and 30 increased
protein levels; however, the magnitude of the changes was not large
(Fig 3A and Table EV3). For instance, apolipoprotein F (APOF) and
inter-alpha-trypsin-inhibitor heavy chain H3 (ITIH3) displayed
extremely significantly changing protein levels (both P < 107'%) and
they increased by 37 and 34%, respectively (Fig 3B). Pigment
epithelium-derived factor (SERFINF1) changed with a similar

Moleculor Systems Bidlogy 12 901 2016
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significance, and here, the average fold difference was only —16%.
SERFINF1 is known to be secreted by adipocytes (Wang er al,
2004), highlighting the ability of plasma proteomics to pinpoint
biologically meaningful bt very small changes. Albumin itself,
which constitutes about half of plasma proteome mass, increased
highly significantly (P < 107'"), but only by 8%. Sex hormone-
binding globulin (SHBG) changed most strongly due to weight loss
with an increase of 117%. A similar effect of weight loss on SHBEG
levels has been observed before by non-proteomic analysis, serving
as a further positive control of our results (Azrad er al, 2012).
Nevertheless, in all these cases, there are some individuals that
deviated from the rest of the cohort. For SHBG, this might be due to
its dependence on estrogen levels and thereby age and gender, illus-
trating the richness of information potentially encoded in the plasma
proteome (Geyer etal, 2016). Corticosteroid-binding globulin

Meolecular Systems Bislagy 12 901 | 2016

(SERPINAG]), which binds 80% of circulating cortisol, is increased
by 12% upon weight loss and together with greater albumin levels
may contribute to the decrease in freely circulating cortisol levels
upon weight loss (Lewis et al, 2005).

Long-term effect of weight loss due to weight maintenance

Having determined individual-specific and acute weight loss-
induced proteins, we next investigated the dynamics of the plasma
proteome profile over the I-year weight maintenance period. We
considered proteins that changed highly significantly (P =< 5 = 107%)
between baseline and at least one time point after weight loss.
Proteins that could have been introduced during the blood sampling
procedure, such as keratins, were excluded. In total, 84 proteins ful-
filled these criteria. According to their behavior, they clustered into

& 20116 The Authors
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seven groups, reflecting different aspects of functional adaption to
sustained weight loss (Fig 4).

Proteins in the first group decreased rapidly in response to acute
weight loss and steadily reverted toward their initial levels over the
weight maintenance period. These proteins change transiently in
response to the acute energy-deficient state and appear to be regu-
lated toward steady-state levels independent of body weight and fat
mass. They included APOA4, afamin (AFM)], an alternative trans-
porter for vitamin E, and serum paraoxonase (PON1). PONI, the
levels of which are normally determined by enzymatic activity
assays, is associated with HDL and is known to exhibit lower activity
in obese children and adults (Seres et al, 2010; Ceron et al, 2014).

Group 2 comprised proteins of special clinical interest as they
decreased concomitantly with weight loss and remained low during
weight maintenance. They are mainly apolipoproteing (APOAZ,
APOB, APOC3) and markers of inflammation {CRP, SAAL, SAAd,
and ORM2) and will be discussed below. Further members of these
two groups were present in a related cluster (group 4) and also
exhibited a long-term decrease, but their levels take many months
to reach equilibrium. Seven increased and 13 decreased proteins
had very significant long-term effects during weight loss (Fig EV2A
and B). Apart from the known upregulation of SHBG and downregu-
lation of CRF, novel findings include a near doubling over the entire
year of ollow-up of the levels of neurophilin-1 (NRFP1), whose
soluble isoform can bind vascular endothelial growth factor A
(VECFA] (Soker et al, 1998). Vitamin D-binding protein (GC) is
another protein that was significantly and persistently upregulated.

& 2(1& The Authors

Proteoglycan 4 (PRG4). normally associated with lubrication of
articulating joints, showed a significant long-term decrease upon
weight loss (median: —19%). as did heparin cofactor 2 (SERPIND1)
(median: —9%], a thromhbin inhibitor.

Ovwerall, groups 1, 2, 3 and 7 showed rapid changes in response
to lower body weight. In contrast, the adaption of the proteins in
groups 4 and 6 was much slower. Zinc-alpha-2-glycoprotein
(AZGP1) is an example of a protein that increased slowly over time.
It stimulates lipid degradation in adipocytes (Hirai ef al, 1998). and
its sustained elevation may reflect an improved lipid turnover. Like-
wise, the long-term decrease in the adipocyte-secreted protein
SERPINF1 very closely parallels the rapid loss of fat mass followed
by long-term maintenance (Fig EV2C).

Related proteins tended to be in the same or related clusters,
arguing for the technical reliability of the results and suggesting
common and biologically meaningful regulation. For instance, sub-
units of the same proteins clustered closely together such as CI10A,
B, and C. Examples of functionally related proteins include the two
serine protease inhibitors SERFINAL and SERPINA3Z (alpha-1-anti-
rypsin and alpha-1-antichymotrypsin) in group 3 and functionally
related members of the complement cascade in group 4 (C4A, C4B,
CFI, C8G, CEB, CFE).

The participants of the study had been randomized to treatment
with the incretin GLP-1, which showed a significant but small dif-
ference in weight loss (lepsen er al, 2015). However, this difference
did not correlate with statistically significant changes in our plasma
proteome measurements.

Molecular Systerts Bidlogy 12-901|2016 5
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Hierarchical clustering of Z-scored median LRQ intensities for highly significant proteins (P < 0.0005) resulted in seven longitudinal weight regulated protein clusters
Scale bar for Z-scored weight is displayed below the protein clusters. Insets show Z-scores for proteins in different clusters as a function of time, color<coded for
the distance from the center. The highlighted pratein names with the same color indicate functionally connectad proteins (red: inflammatory markers brown: serine

inhibi orange: ¢ |

system; blue:
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purple: anti-infl

ory-acting proteins; green: steroid transport proteins).
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The effect of weight loss on systemic inflammation factors

Our results show that weight loss changes multiple components of
the plasma protecme. Several acute phase proteins were downregu-
lated. CRF, 5AA1, SAA4, and ORM2 cluster closely together in group
2, indicating a fast response upon weight loss (Fig 4). Directly after
weight loss, SAAL and CRFP, two prominent risk markers for cardio-
vascular disease, showed median decreases of 43% and 35%.
respectively. ORM1, APCS and LEP decreased more gradually owver
time (16%,. 10% and 16%, respectively, at week 52) and are thus
part of group 4. SERFINAl and SERPINA3 (alpha-1-antitrypsin,
alpha-l-antichymotrypsin) are also categorized as acute phase
proteins and they are upregulated initially after weight loss (week 0]
and start to decline afterward. Altogether, the cluster of highly
significant proteins contained a group of 15 complement factors of
the classical and alternate complement pathways.

Consistent with decreasing systemic inflammation upon weight
logs, the soluble form of the anti-inflammatory protein. inter-
leukin-1 receptor accessory protein (ILIRAP), a known antagonist
of the major pro-inflammatory cytokine interleukin-1 {IL-1) (Smith
et al, 2003), rose upon acute weight loss by an average of 67%.
However, this decreased to 168% at the end of the weight mainte-
nance period. Soluble CDM4 has been reported to dampen
inflammation (Thompson et al, 2003), and its levels also increased
due to weight loss, but reverted nearly to baseline after 1 year of
weight maintenance.

MNext, we correlated the quantified plasma proteins with classical
laboratory parameters including EMI, HDL, LDL, cholesterol, triglyc-
eride levels, and insulin resistance [HOMA-IR] to investigate
whether they were mirrored in the plasma proteome (Fig SA-F and
Table EV4 and see below). Remarkably, of all proteins im our
dataset, the five proteins most significantly correlating with BMI
were inflammation factors (CFH, C3, APCS, ORM2?, and CFI;
Fig 5A). For each, the P-value was lower than 10~ and Pearson
correlation coe fficients ranged from 0.3 to 0.4, Five other inflamma-
tion-related proteins (CRP., 5AA4, ORMI1, ATREN, and CFE) also
correlated significantly with BMI (Table EVS). ATRN (attractin] is a
dipeptidase involved in inflammatory responses, but has also been
linked to obesity (Duke-Cohan er al, 1998; Landes er al, 2010).

Serum amyloid P component (APCS) correlated with HDL, as
reported previously (Li ef al. 1998). but otherwise we found no
significant dependency of the above-mentioned inflammatory
proteins to other clinical parameters, perhaps because these were
only available at three time points (Fig SB-F).

To calculate a longitudinal systemic inflammation profile for all
individuals, we filiered the highly significantly changing proteins
(Fig 4) for the keywords "acute phase”, "inflammatory response”,
and “immunity”, which resulted in 23 proteins (C10A/B/C counted
as one]. From this list, we removed the anti-inflaimmatory protein
CD14 and added two further non-annotated, but known acute phase
proteins (APCS and LBP), which were not keyword annotated for
the filiered terms. The median MS intensity of the resulting 24
inflammation-related proteins was Z-scored. and we calculated the
slope over time for each protein. Of these, 20 inflammation proteins
had a negative slope (decreased levels due to weight loss) and 10
further significantly correlated with BMI (Fig 54 and Table EVS).
We Zscored each protein of the ten-protein panel over the individ-
ual time series to make them comparable, followed by hierarchical
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clustering on the level of the study participants. The resulting heat
map i3 a longitedinal inflammation profile for each of the 42 indi-
viduals (Fig 5G).

High levels (red color] are clearly predominant before or directly
afier weight loss (left side of the heat map], whereas low values are
mainly found at the later time points. A group of seven participants
is clustered at the top of the heat map and is distinguished by
several red patches indicating raised inflammation levels at several
time points during weight maintenance. This was not connected o
regain of weight, suggesting infection as the cause. For instance, in
participant 31. levels of CRP were 28-fold and SAAl 54-fold
increased at week 13 compared to her average levels. Focusing on
the central 72% of the inflammatory profiles, we calculated the
median level of the ten-protein panel and plotted it over time. This
revealed that the inflammatory state decreased substantially from
before weight loss at week —8 until week 13 and stayed constant at
the lower level from then on (Fig 5H) .

In addition to these global trends, our proteomic dataset resolves
the trajectories of both the individual participants and the individual
proteins. For instance, some proteins such as CRP and SAA4 react
much faster than others to weight change (Figs 4 and 5G). More-
over, panel values tended to be uniformly high at the beginning and
uniformly low at the end, whereas they were more mixed at inter-
mediate time points. To answer the guestion of how many study
participants profited from weight loss regarding their inflammation
profile, we averaged Z-scores of the ten-protein panel for each time
point and calculated the slope over ime. In total, 39 of the 42 indi-
viduals had a negative slope, indicating a positive effect on the
inflammatory prefile of the overwhelming majority of individuals
(Table EVE). Investigation of the three individuals that had a posi-
tive slope revealed that two gained some weight and the third had
high inflaimmation profile levels at weeks 13 and 26. Moreover,
weight regain was present in two further individuals out of five that
showed very small positive effects in response to sustained weight
logs (Table EVE).

Proteomic inflammation markers and insulin resistance

MNearly 40 plasma proteins correlated significantly with HOMA-TR
(homeostasis model assessment—insulin resistance). This included
adiponectin (ADIPOQ], the protein with the highest known correla-
tion (Weyer ef al, 2001), but remarkably nine plasma proteins were
even more significant (Fig 5F and Table EV4). Excluding an IgG
chain, this allowed us to define a positively correlating panel of four
proteins (pro-IR] and a negatively correlating panel of five proteins
(including adiponectin] {anti-IR).

To compare levels of insulin resistance-related proteins within
the study population, we Z-scored each of these proteins along all
individuals for each time point. As expected. proteins in the two
panels were co-regulated, whereas the panels themselves were
anti-regulated (Fig 6A). Nearly all individuals that had high values
in the pro-IR panel showed low values in the anti-IR panel. The 24
participants that were in at least one of these groups were consid-
ered as individuals with high insulin resistance for the following
analyses.

To investigate the known connection between low-grade
inflammation and TR (van Greevenbroek et al, 2013) at the
proteome level, we wsed the inflammation panel and analyzed it
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together with the IR panel. We Z-scored the proteins alomg all indi-
viduals and time points, which clearly separated the cohort into
higher and lower inflammatory sub-groups. Remarkably, there was
an overlap of 14 individuals that were both in the 16-member group
with high inflammation and in the 24-member group with the high
IR panel values. Thus, a sub-group with high metabolic burden
(those with increased plasma levels of markers previously linked to
cardiovascular and metabelic diseases) can be determined entirely
from the plasma proteome profiling data.

To compare the effects of weight loss and weight maintenance of
these 14 individuals to the other 28 study participants, we Z-scored
the proteins of the anti-IR/pro-IR and inflammation panel for each
protein over the whole study peried and all individuals. Both the
high- and the comparatively low-risk groups were able to lower
their insulin resistance as well as their systemic inflammation levels,
as reflected by the panels. The benefit regarding HOMA-IR
was even higher for the high metabolic burden group (HOMA-IR:

Moalecular Systems Biokgy 12 901 | 2016

—19% wvs. —39%, Fig 6B). Nevertheless, the high metabolic burden
group was only able w adjust the IR and inflammation panels to
about the start levels of the low-risk group.

Levels of 80 plasma proteins correlated with leptin levels as
determined by ELISA. Inflammation factors like CRP, SAAL, SAA4,
C3. CFH, and APCS had highly positive correlations (Table EV4).
5ix leptin-correlating proteins are part of the ten-protein inflamma-
tion panel, which confirms the connection between insulin resis-
tance and inflammation. Leptin positively correlated with all four
proteins from the pro-HOMA-IR panel and two of the five proteins
of the anti-HOMA-IR panel (NREP1 and APOF) were also anti-
correlated with leptin levels.

Changes in the apolipoprotein family during weight loss

Levels of apolipoprotein family members are of central importance
in determining the risk of cardiovascular and metabolic diseases.

& 2016 The Austhors

56



3. Publications

Published online: December 22, 2016
Philipp E Geyer et al

Proteome profiling during sustained weight loss

Molecular Systems Biology

A HOMA Insulin Resistance Panel Inflammation Panel
Anti-IR
< g oy == -4.11{ IP ¥
3 n L4 i 4 |
7 2 1 ] )
16 ~ 40 3
3 a5 42 ‘ B
18 2 10
39 » g
% a i ]
35 P ):
3 3 2 i
41 4 ‘; I
4 3 3 ¥ -
15 2 ‘: 'v Il
# 2: :; 2 bl
= 3 # '
E zg " E ﬁg { :
g 23 3; = 12 *
40 ® 21 1
22 I 2
43 21 m
11 1% 17
s " 1
8 % 0
32 a3 L
27 n -
% A "
= Iéé £
$ 2) 14
12 b 1
1 “ 41
2 1 -
Bos
g3l
High Insulin Resistance: High Systemic Inflammation:
24 Individuals 16 Individuals
Total:
42 Individuals
B )
HOMA-IR BMI Anti-IR Panel Pro-IR Panel Inflammation Panel
1" 2L 1.0 12 10
08
E1o -39% E 12% 9 ° ., 22 2
g 2u ”3,00 B %:: Y 9,“
o A z $
° 15% 529 Nos. N3 ? No2
9% 11% a8 H
A-eoanz'asns'? 4 0 4 15 2% N K -”4041:33»52 on-snauna'ns:z I T T mawa
ks Weeks Weeks Weeks £3
* High Metabolic Burden = Low Metabolic Burden l
Figure 6. ulin resi and sy icinfl

A The five proteins with the highest positive and the four proteins with the highest negative correlation with IR were used to define a pro- and an anti-IR panel. These
panels separated the study cohort in a high and a low IR group and the 24 individuals that were present in at least one of the IR panels are highlighted (numbered in

red at the y-axes). Likewise, the ten-protein i

on pangl ep

Anridiiak

levelsand i

the cohort in individuals with high and low systemic infl

with high levels were highlighted (numbered in red). 0f16 study pamcspams with high inflammation levels, 14 were also present in the high IR group as illustrated

by a Venn diagram, indicating 3 high metabolic burden group as d

profiling

by pl
HOMA-IR levels and the BMI are compared between the high and the low metabohc burden group with indicated changes in percent at the study endpoint. These

changes are linked to longitudinal changes in the anti-IR, the pro-IR, and the inflammation profile. The means are plotted with SEM as emor bars over time.

® 2016 The Authors

Moalecular Systems Bidlogy 12:901|2016 9

57



3. Publications

Publizhed online: December 22, 2016
Molecular Systems Biology

but current immuno-based assays only measure one or a few of
them at a time. In contrast, shotgun proteomics should be able to
comprehensively profile the entire family, and indeed, we success-
fully recorded longitudinal profiles for 18 different apolipoproteins
(Fig 7A). Twelve of these changed significantly at least at one
point during weight loss or maintenance and six (APOA2, APOE,
APOC2, APOLL, 5AAl. and 5AA4) showed significant long-term
effects (Fig EVZA and B). Of the rapid responding apolipoproteins,
APOF increased by 37% anmd APOA4 decreased by 36% wupon
weight loss, but the levels of both reverted to baseline over the
course of a year. In contrast, levels of APOCL, APOC2, and
APOCY consistently decreased and stayed at about 70% of their
imitial levels. Apolipoprotein{a) (LPA) had the largest absolute
change on average as a response o weight loss (increase of
95%]).

Mext, we correlated the dynamics of the apolipoproteins with
EMI, cholesterol. triglyceride, glucose, HDL, and LDL levels. Of
these, APOF had a high negative correlation with triglyceride levels
{—0.50: P <6 = 100" and APOB, APOC2, APOC3, APOC4 a3 well
as APOE a strong positive correlation (0.33, 0.45, 0.52, 0.38, and
0.45, respectively; Fig 5E). APOB, APOC2, APOC3, APOE, and APOF
also correlated with total cholesterol (Fig 5D). APOB further
strongly correlated with LDL (Fig EV3) [0.72; P=<3 = 1072,
which is expected as each LDL particle contains one APOB molecule
(Dominiczak & Caslake, 2011). Similarly, APOAI1 is a constituent of
HDL amnd accordingly, it was highly correlated with HDL levels
{0.64; P =9 = 107'%). As mentioned above, APOA4 and PON1 are
im the rapid response cluster (group 1 of Fig 4) and both proteins
and APOD correlate with HDL measurements (Fig 5B). Several non-
apolipoproteins also showed a good correlation with LDL, for
instance the above-mentioned PRG4, which furthermore correlated
significantly with triglycerides (0.52, 0.48; P< 3 = 107", 1 = 107%;
Fig 5C).

Interestingly, the ratio of APOB to APOAL, which is used w
assess cardiovascular disease risk, decreased due to weight loss by
B% and remained lower over time (week 52: 7%) for 25 of the 42
study partici pants.

To investigate the general response of lipoprotein particles and
metabolic process during weight loss on the basis of the plasma
proteome, we used pene omtology (GO). This  assigned
apolipoproteins to five main lipoprotein particles: chylomicrons,
high-density lipoprotein (HOL), intermediate-density lipoprotein
(LDL), low-density lipoprotein (LDL), and very low-density
lipoprotein particle (vLDL) (Fig 7A and B). Of the 12 apolipopro-
teins that ooccur im high-density lipoprotein (HDL) or low-density
lipoprotein (LDL) particle. 11 changed significantly. Moreover, we
observed a fast response for seven significantly changed
apolipoproteins (belonging to clusters 1, 2, and 7 of Fig 4). Glob-
ally, the level of the different lipoprotein particles changed most
rapidly during weight loss and tended to remain at a lower level
during weight maintenance. Performing the same analysis at the
level of geme ontology defined “biology processes™ likewise
showed that most of these that were related to lipoproteins,
lipids, cholesterol, and fat decreased with body weight (Figs 7C
and EV4). Thus, plasma proteome profiling revealed the dymam-
ics of metabolic changes during weight loss both at the level of
individual proteins and at the global levels of lipoprotein parti-
cles and processes.
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Discussion

Losing weight and maintaining the weight loss are central topics in
modern society. research, and medicine. Although generally viewed
as desirable, their effects on cardiovascular and general metabolic
risk at the individwal level are far from universally agreed
(Goodpaster eral, 2010; Casazza er al, 2013; Look eral, 2013;
Kushner & Ryan, 2014). Here, we wished to contribute to this debate
by deciphering the plasma proteome at a global level. using state-of-
the-art MS-based proteomics technologies. We used an automated
and robust plasma proteome profiling workflow and successfully
measured 1,294 plasma proteomes from 52 obese individuals,
revealing dynamic changes in response to § weeks of diet-induced
weight loss followed by a year of weight maintenance. The depth of
proteome coverage obtained here—more than 400 proteins per indi-
vidual—was sufficient for covering all clinically relevant lipopro-
teims and markers of low-grade inflammation as well as many other
functional blood proteins. Quadruplicate measurements as well as
the measurement of time profiles of 43 participants allowed us to
pinpoint relatively small changes (< 20%] with very high statistical
significance. which compares favorably with standard. antibody-
hased laboratory tests. Further advantages of MS-based proteomics
are that large numbers of proteins can be analyzed simultaneously
and with wvery high specificity, as there is no "cross-reactivity™ in
M$S measurements. Furthermore, measurements are unbiased in the
sense that the identity of analytes does not have to be known
beforehand. We found that the global nature of plasma proteomics
also allows us to quickly assess the quality of individual samples
amd entire studies on the basis of erythrocyte lysis markers and
proteins involved in coagulation (Fig EV1).

Omics technologies have already been brought to bear on the
study of obesity. GWASs have linked specific loci with genetic
propensity for this trait, whereas transcriptome studies have investi-
gated tissues such as fat, muscle, or white blood cells. These studies
are by their nature not directly connected to changes in protein
levels im the plasma. In contrast, metabolomics has been performed
on plasma in the context of weight loss, which demonstrated that
several metabolic markers change after weight loss and similar to
what we have reported here that individual-specific levels seem to
predominate (Piccolo ef al, 2015; Wahl er al, 2015; Newgard, 2016).
At the protein level, individual regulators of lipid transport have
been studied in depth, but our study provides a first proteomic view
of changes in the plasma. Although not subject of this study, it
would be interesting im the future to connect the different omics
datasets to obtain a more comprehensive understanding of physio-
logical changes during weight loss and maintenanoce.

Cur study design allowed us to separate the influence of weight
loss and weight maintenance on the plasma proteome and also
provided a systematic view of the variations in the levels of
hundreds of plasma proteins in a human cohort. We defined “indi-
vidual-specific protein levels™ as those whose variation over time
in each individual was small compared to the difference berween
the individuvals. By these criteria. a surprisingly large part of the
plasma proteome was individual- or sub-group-specific as nearly
half of the proteins varied more than rwofold, while their longit-
dimal CV was less than 30%. Thus, levels of many proteins remain
essentially similar over long time periods, but vary between dif-
ferent individuals. Such observations have already been made

& 2016 The Authors
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which decreased due toweight loss.

before, but only with selected proteins and generally in smaller
longitudinal studies (Crawford & Elisens, 2006; Kamstrup ef al,
2008; Carlsson er al, 2010; Anderson, 2014). Our results suggest
that it would be beneficial 10 determine baseline levels and varia-
tions in proteins by MS-based proteomics in even larger popula-
tions and to determine the underlying causes. Furthermore, these
baselinge levels could be determined in each patient in the context
of precision medicine. This would enable patient-adjusted diagnos-
tic tests and cutoff levels that take an individuals protein expres-
sion values as a reference rather than population-based reference
intervals, which are used in clinical diagnostic tests today
(Anderson, 2010). In the context of plasma proteome profiling. this

& 2016 The Authors

ocould be crucial for a proper interpretation of the plasma proteome
in health and disease. Qur results suggest that longitudinal plasma
proteome profiles can circumvent problems associated with the
natural variability of protein levels within and between individuals
o a large degree.

Qur study establishes that weight loss has a wide effect on the
plasma proteome profile with a large proportion of guantified
proteins changing significantly (93 proteins]. Owverall, we observed a
sirong difference between before and after weight loss followed by
an adaption of the protein levels during the yearlong weight mainte-
nance period. Many of the changes in the plasma proteome profile
are readily explainable from the underlying biology and physiology.
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For instance, levels of SERPINF1, which is secreted by adipocytes
(Famulla et al, 2011). decrease with very high statistical signifi-
cance, mirroring the loss of fat mass. SERPINF1 has already been
associated with obesity before (Wang et al, 2008) but our study
quantitatively establishes its fast downregulation in response io
weight loss. This behavior and its consistency across the study
population (in contrast to the known weight loss marker SHEG)
could make SERFINF 1 of possible interest in a clinical context.

Weight maintenance is a key challenge of any weight loss inter-
vention. We therefore compared the initial plasma proteomes of
poor (19 individuals), intermediate (13 individuals), and good (nine
individuals) low-weight maintainers using body weight data from
2eyear follow-up. This generated some interesting trends in plasma
protein expression: however, these were not statistically significant
(Table EV7). Nevertheless, future plasma protecomic studies may
consider including such perspectives, potentially allowing identifi-
cation of markers of individuals with a high probability of weight
regain.

Monitoring the adaption of protein levels after weight loss vields
new insights into the regulation of the plasma proteome. We identi-
fied several groups of highly significantly changed and functionally
connected proteins with the same longitudinal behavior. Other
proteins also clustered closely, but had no known functional
connection. The tight cluster of four acute phase proteins, including
CRF and 5AAlL, appears to represent systemic low-grade inflamma-
tion status in response o weight loss. The connection between high
levels of CRP and obesity is well known (Yudkin et al, 1999; Selvin
et al. 2007). Additionally. both proteins are associated with
increased risk for cardiovascular diseases (CVD), where an increase
of 10% of CRP levels leads to a 5.5% increase in CVD risk and a
twofold increase of SAAL to a 17% increase (Ridker et al, 2002;
McEneny er al, 2015). In our study, weight loss induced a lowering
of the individual's median levels of CRP by 35% and SAAL by 44 %,
commonly accepted markers for CVD risk. The APOB/APOA]L ratio,
another CVD risk marker, likewise decreased due to weight loss. In
this way, plasma proteome profiling links previously established
risk markers to weight loss. Apart from the specific aims of this
study, plasma proteome profiling now provides the clinician with a
new toolbox to imvestigate potentially important risk markers of
CVD or other metabolic-related disease.

For the first time, MS-based plasma protecomics delivered a
comprehensive picture of the response of proteins involved in lipid
transport, including 18 apolipoproteins and other proteins that play
a role in lipid metabolism. We found the expected correlations
between LDL, HDL, total cholestercl, and wriglycerides with consti-
tuent apolipoproteins, and these correlations may be even higher if
the classical laboratory values would be reported more precisely. It
would be interesting to investigate whether combinations of some
of the top correlating proteins could be useful and robust risk mark-
ers. NRP1 and PRG4. which we identified by their longitudinal pro-
files and correlation with clinical parameters, are examples of
promising candidates for further imvestigation. NRP1 was signifi-
cantly increased at all time points after weight loss and the fact that
NEF1 binds VEGF (Pellet-Many er al, 2008) makes it interesting to
investigate a possible mechanism involving this interaction during
weight loss. PRG4 was downregulated in response to weight loss.
This protecglycan lubricates articulating joints, and its presence in
plasma may indicate tissue leakage. However, the strikingly strong

12 Molecular Systems Biolagy 12 901 | 2016

Proteome profiling during sustained weight loss  Philipp E Geyer et al

correlation with LDL, triglyceride, and cholesterol levels may impli-
cate PRG4 in lipid metabolism and in any case make it a potemtial
biomarker related to LDL levels.

The anti-inflammatory proteins ILIRAP and CD14 increased after
weight loss. This raises the possibility that the IL1 binding activity
of ILIRAP resulis in antagonism of IL1 action and could play a role
in lowering systemic inflammation (Smith er al, 2003). Levels of
soluble TLIRAP and CD14 are known to be lower in obese individu-
als compared to contrels (Bozaoglu er al, 2014; Laugerette et al,
2014). Our finding that ILIRAP and CD14 levels increased after
weight loss therefore provides a possible mechanism that contri-
butes to reduced low-grade inflammation .

We defined a panel of ten inflammation proteins and analyzed
their correlation with BMI, to evaluate which individuals would
benefit the most from weight loss based on a longitudinal inflapnma-
tion profile. In our dataset, 39 of 42 individuals showed a clear posi-
tive effect in response to weight loss, and the three “non-profiting™
individuals had increased inflammation levels apparently in part
because of regain of weight. This indicates that the vast majority of
obese individuals would profit from weight loss by improving their
inflammatory profiles including known CVD and metabolic risk
factors.

For further risk stratification of the cohort, we combined the
inflammation panel with an insulin resistance panel, which was also
defined by plasma proteome profiling. There was a high but not
complete overlap of individuals in the two panels, pinpointing indi-
viduals with a high metabolic burden. Clearly, both these “high-
risk” individuals and the other study participants greatly benefitied
from weight loss and these effects persisted or even continued to
improve over the 1-year weight maintenance period. Interestingly,
the initial average values of the high-risk group in the inflammation
and IR panel decreased to those of the other participants over the
observational period.

From a clinical perspective, one could speculate that MS-based
plasma proteomic may be used for patient stratification of obese
subjects in a low and high metabolic burden profile, thereby prowvid-
ing a new diagnostic tool to intensify and optimize both pharmaco-
logical and non-pharmacological treaiment of obese subjects with
an elevated risk of cardiovascular disease. On the other hand, a
global plasma proteomic analysis, as the one reported here, may
target potential unknown metabolic regulators, thereby [ostering
future experiment setups by using a knockowt approach of proteins
of interest in rodents or in cell lines.

Incorporating an additional step of peptide fractionation would
allow quantification of more than 1,000 proteins (Geyer ef al,
2016), and adding multiplexing would further increase throughput
and perhaps measurement precision. We envision such a capabil-
ity to be available soon, which would enable rowtine measure-
ments of studies such as this one in even greater depth and still in
a reasonable amount of time. In the future, it would be interesting
o use a workflow with even deeper coverage and higher through-
put om a wide variety of clinical studies related to weight loss and
other life style or pharmacological interventions. This would help
o define novel risk markers and to disentangle ocorrelations
between them and existing clinical parameters. The resulting
knowledge extracted from the plasma proteome could predict the
individual gains expected from different interventions on the
health or disease state.
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Materials and Methods
Study design

Details of the weight loss study design are published elsewhere
(Tepsen er al, 2015). In total, 56 obese study participants were
recruited with the following inclusion criteria: healthy individuals
with a BMI between 30 and 40 ls:g;'mz and an age between 18 and
65 years. Excluded were participants with any acute or chronic
illness other than obesity, any medical treatment with known
effects on glucose and lipid metabolism, appetite or food intake,
pregnancy or breast feeding and fasting plasma glucose levels of
=7 mmol/l.

Study participants followed a weekly supervised very low-calorie
powder diet (800 kcal per day; Cambridge Weight Plan, Corby,. UK)
for 8 weeks 0 achieve a weight loss of at least 7.5% of the initial
body weight after 8 weeks (Riecke et al, 2010).

During the weight maintenance phase, the calorie intake of the
study partici pants was restricted to the estimated daily energy needs
subtracted by 600 kcal. In the case of weight gain, up to two meals
a day during the weight maintenance peried were allowed to be
replaced by Cambridge Weight Plan products to ensure weight
maintenance. Half of the participants also received 1.2 mg of liraglu-
tide (daily) after weight loss. Both groups equally successfully main-
tained the weight loss with no significant change in weight from
after weight loss to 1 year of weight maimenance (lepsen er al,
2015). The difference in plasma proteomes between liraglutide-
treated and non-treated individuals was subtle at our depth and
accuracy of proteome measurement and was not further pursued in
our analysis.

Blood samples were taken before weight loss (week —8),
directly after (week 0] and at five time points during weight loss
(weeks 4, 13, 26, 39, 52). Weight was measured at each wisit, and
further data for each participant were acquired for ime points —8,
0, and 52.

The study was approved by the ethical committes in Copenhagen
(reference mumber: H-4-210-134) and was performed in accordance
with the Helsinki Declaration I and with ICH-GCP practice. Partici-
pation in the investigation was voluntary and the individuals could
at any time retract their consent to participate. CliniclTrials. gov
identifier: NCTO2094183.

Highly abundant protein depletion for building a
matching library

We built up a matching library and wsed a depletion of the top 20
most abundant plasma proteins by a combination of two immuno-
depletion kits (MNagaraj eral, 2012; Geyer eral, 2016). Plaama
samples of three women and three men were obtained from a highly
reliable reference blood bank {'Plasma“""f Panels) from the Blut-
spendedienst des Bayerischen Roten Kreuzes. The Agilent Multiple
Affinity Removal Spin Cartridge was used for the depletion of the
top six highly abundant proteins (albumin, IgG, IgA, antirypsin,
transferrin, and haptoglobin], followed by ProteoPrep20 Plasma
Immunodepletion Kit for the 20 highest abundant proteins (albu-
min, 1gG, IgA, IgM, IgD, ransferrin, fibrinogen, «2-macroglobulin,
al-antirypsin, haptoglobin, «l-acid glycoprotein, ceruloplasmin,
apolipoprotein - A-I.  apolipoprotein =~ A-Il.  apolipoprotein = B,
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complement Clg, complement C3, complement C4, plasminogen,
and prealbumin). Samples were depleted, digested, and measured in
riplicate in the same way as the non-depleted sample set of the
weight loss study.

Sample preparation: protein digestion and
in-5tageTip purification

Sample preparation was carried out as described in Geyer et al
{2016) and Kulak etal (2014) with the automated setup on an
Agilent Bravo liguid handling platform. Plasma samples were
diluted 1:10 with 44H0 and 10 pl of the sample was mixed with
10 pl twofold concentrated SDC buffer. Reduction and alkylation
were carried out at 95°C for 10 min. Trypsin and LysC (1:100 pg of
enzyme o micregrams of protein ratio]) were added to the mixture
after a 5min cooling step at room temperature. Digestion was
performed at 37°C for 1 h. The digest was acidified by adding 40 pl
of 1% trifluoroacetic acid (TFA) in isopropanol. An amount of 20 pg
of peptides was loaded on two 14-gauge StageTip plugs, followed by
the addition of 100 pl 1% triluoroacetic acid (TFA] in isopropanol
and strong mixing. The StageTips were centrifuged using a 3D-
printed in-house-made StageTip centrifugal device at 1.500 g. After
washing the StageTips two times using 100 pl 1% trifluorcacetic
acid (TFA) in isopropanol and one time using 100 pl 0.2% TFA in
a4tz 0. purified peptides were eluted by 60 pl of elution buffer into
autosampler vials. The collected material was completely dried
using a SpeedVac centrifuge at 60°C (Eppendorf, Concentrator plus).
Peptides were suspended in buffer A* (Kulak ef al, 2014) and after-
ward sonicated (Branson Ultrasonics, Ultrasonic Cleaner Model
2510). It was not possible to obtain any peptides from one of the
samples (# 44_1).

Ultra- high-pressure liquid chromatography and
mass spectrometry

Samples were measured using LC-MS instrumentation consisting of
an EASY-nl.C 1000 ultra-high-pressure system (Thermo Fisher Scien-
tific). which was combined with a Q Exactive HF Orbitrap (Thermo
Fisher Scientific) and a nano-electrospray ion source (Thermo Fisher
Scientific) (Scheltema et al, 2014). Purified peptides were separated
on 40-cm HPLC columns [ID: 75 pm: in-house packed into the tip
with ReproSil-Pur C18-AQ 1.9 pm resin (Dr. Maisch GmbH]]. For
each LC-MS/MS analysis, around 1 pg peptides was used for 45-min
runs and for each fraction of the deep plasma dataset.

Peptides were loaded in buffer A (0.1% (v/v) formic acid) and
eluted with a linear 18-min gradient of 5-20% of buffer B (0.1%
(v/v) formic acid, 60% (v,/v) acetonitrile], followed stepwise by a
12-min increase to 35% of buffer B, a 6 min to 50% of buffer B,
5.5-min increase to 98% of buffer B, followed by a 3. 5-min wash of
98% buffer B at a flow rate of 350 nl/min. Column temperature was
kept at 60°C by a Peltier element containing in-house-developed
oven, and parameters were monitored in real time by the SprayQC
software (Scheltemna & Mann, 2012). MS data were acquired with a
Topls data-dependent MS/MS scan method (topN method). Target
values for the full-scan MS spectra were 3 » 10° charges in the 300—
1,650 m/z range with a maximum injection time of 55 ms and a
resolution of 60,000 at m/z 200. Fragmentation of precursor ions
was performed by higherenergy C-trap dissociation (HCD) with a
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normalized collision energy of 27 eV. MS/MS5 scans were performed
at a resolution of 30,000 at m/z 200 with an ion target value of
1 = 10F and a maximum injection time of 120 ms. Dynamic exclu-
sion was set to 30 s to avoid repeated sequencing of identical

peptides.
Data analysis

Mass spectrometry raw files were analyzed by MaxQuant software
version 1.5.3.23 (Cox & Mann, 2008], and peptide lists were
searched against the human Uniprot FASTA database (version June
2015). A contaminants database by the Andromeda search engine
{Cox eral, 2011) with cysteine carbamidomethylation as a fixed
maodification and N-terminal acetylation and methionine oxidations
as variable modifications was used. We set the false discovery rate
(FDR) to 0.01 for protein and peptide levels with a minimum length
of seven amino acids for peptides, and the FDR was determined by
searching a reverse database. Enzyme specificity was set as C-term-
imal to arginine and lysine as expected using trypsin and LysC as
proteases, and a maximum of two missed cleavages were allowed.
Peptide identification was performed with an initial precursor mass
deviation up to 7 ppm and a fragment mass deviation of 20 ppm.
The "match between run algorithm” in the MaxQuant quanti fication
(Nagaraj ef al, 2012) was performed afier constructing a maiching
library consistent of depleted and all the undepleted plasma samples
from the weight loss study. All proteins and peptides matching to
the reversed database were filtered out. Label-free protein quantita-
tion (LFQ) was performed with a minimum ratio count of 1 ({Cox
et al, 2014).

Bioi nformatics analysis

All bioinformatics analyses were done with the Perseus sofiware of
the MaxQuant computational platform (Cox & Mann, 2008; Tyanova
et al, 2016). For statistical analysis of significantly changed proteins
before (week —8) and directly after weight loss (week 0), a one
sample t-test was used with a false discovery rate of < 0.05 after
Benjamini-Hochberg correction. We only considered highly signifi-
cant proteins with a P-value of P < 0.0005 for the hierarchical clus-
tering in Fig 4. For all correlation analyses, a false discovery rate of
< 0,05 after Benjamini-Hochberg correction was applied.

All data needed for correlation analysis of classical clinical
parameters like BMI, weight, levels of cholesterol, leptin, HDL, LDL,
and triglycerides as well as HOMAIR w MS-based proteomic
acquired LFQ intensities are available for all study participants and
time points (Table EVE).

Data and materials availability

The M5-based proteomics data have been deposited o the Proteo-
meXchange Consortinm via the PRIDE partner repository and are
available via ProteomeXchange with the identifier PXDO04242.
Expanded View for this article is awailable online
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Pre-fractionation of peptides is a key enabler for the very deep and large-scale proteome
characterization. In this manuscript we build upon the popular combination of high pH
pre-separation in a first dimension and online low pH separation in the second
dimension. We developed and characterized an automated rotor-valve based nano-flow

fractionation and concatenation device, which we called ‘Spider Fractionator’.

In existing approaches, samples are separately collected after high flow fractionation
and afterwards combined. In contrast, the rotor valve of the Spider Fractionator
automatically splits the flow of separated peptides after the column into time dependent
packages, directed to a number of tubes corresponding to the number of desired fraction
to be analyzed. The system allows the researcher many degrees of freedom for the
experiments, e.g. the amount of fractionated material can range from just 1 ug up to
more than 100 ug, collection of 2-96 fractions is possible and any desired time interval
of eluting peptides can be collected.

Instead of the typical setup for high pH fractionation, we used columns with smaller inner
diameter, much lower flow-rates and no intermediate collection points. This makes our
system much less prone to sample loss, which we proved by a comparison to two
commercially available high pH fractionation systems. This analysis showed that our
device has little if any detectable sample loss, whereas the commercial systems lost
substantial amounts of sample during fractionation. We demonstrated that the Spider
Fractionator enables extraordinary sensitivity: As little as one pug of peptides allowed the
identification of more than 10,000 protein in HelLa cells after fractionation. We further
used different fractionation strategies to obtain a deep proteome in as little time as
possible. We applied our optimized conditions to quantify the proteomes of twelve
human cell lines to a median depth of more than 11,000 different proteins while
fractionating only 20 pg of starting material — by far the deepest proteome
measurements yet achieved with such low sample amounts. This experiment also
revealed molecular differences that recapitulated the developmental origin of the cell

lines.
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The ability to efficiently fractionate low sample amounts is also beneficial because a
decrease in the starting amounts will also result in a reduction in reagent costs, which is
especially important for samples that have been derivatized with expensive mass tags
like iTRAQ or TMT. In our laboratory the device is now routinely used for any project
involving pre-fractionation and it has already proven to be robust in dozens of projects.
Together, the many advantages of using small sample amounts should make the Spider
Fractionator attractive to the proteomics community as indicated by the fact that the
manuscript has been downloaded more than 600 times within the first month.

For Plasma Proteomic Profiling, the Spider Fractionator is one of the key elements as it
enables very deep proteomes from depleted plasma samples for the library matching
strategy and it allows us to obtain very deep quantitative proteomes by fractionation of
undepleted samples.
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Recent advances in mass spectrometry (MS)-based pro-
teomics now allow very deep cowverage of cellular pro-
teomes. To achieve near-comprehensive identification
and quantification, the combination of a first HPLC-based
peptide fractionation orthogonal to the on-line LC-MS/MS
step has proven to be particularly powerful. This first
dimension is typically performed with milliliter/min flow
and relatively large column inner diameters, which allow
efficient pre-fractionation but typically require peptide
amounts in the milligram range. Here, we describe a novel
approach termed “spider fractionator” in which the post-
column flow of a nanobore chromatography system en-
ters an eight-port flow-selector rotor valve. The valve
switches the flow into different flow channels at constant
time intervals, such as every 90 s. Each flow channel
collects the fractions into autosampler vials of the LC-
MS/MS system. Employing a freely configurable collec-
tion mechanism, samples are concatenated in a loss-less
manner into 2-96 fractions, with efficient peak separation.
The combination of eight fractions with 100 min gradients
yields very deep coverage at reasonable measurement
time, and other parameters can be chosen for even more
rapid or for extremely deep measurements. We de-
monstrate excellent sensitivity by decreasing sample
amounts from 100 ug into the sub-microgram range,
without losses attributable to the spider fractionator and
while quantifying close to 10,000 proteins. Finally, we
apply the system to the rapid automated and in-depth
characterization of 12 different human cell lines to a
median depth of 11,472 different proteins, which re-
vealed differences recapitulating their developmental
origin and differentiation status. The fractionation tech-
nology described here is flexible, easy to use, and facil-
itates comprehensive proteome characterization with
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Mass spectrometry (MS)-based bottom-up proteomic work-
flows consist of multiple steps, namely sample preparation,
an-line liquid chromatography (LC) coupled with MS meas-
urements, followed by computational data analysis, and in-
terpretation. LC-MS/MS technologies have improved drasti-
cally from the initial identification of one or a few proteins
using manual, complex, and time-consuming protocols to
essentially complete proteomic coverage of microorganisms
in a rapid and streamlined manner (1—4). These advances are
based on multiple breakthroughs in the analytical and com-
putaticnal sides of the proteomic workflow over the last dec-
ade and now make MS-based proteomics a powerful player in
systems biology (5). However, for complex proteomes, such
as human cell lines, organs, and body fluids, very deep char-
acterization still involves great effort, sample amounts, and
costs. Therefore, there is a continuing need for more pow-
erful workflows, and here we contribute to these efforts in
the important area of peptide pre-separation before the
LC-MS/MS analysis.

Tovield in-depth proteomes of complex biclogical samples,
two-dimensional separation approaches at the peptide level
are attractive because they are more universally applicable
than protein level fractionation. First dimension separation
technigues range from isoelectric focusing (6—2) and pipette-
based approaches such as StageTip fractionation (10-12) to
off-line HPLC systems (13—17). High pH reversed-phase frac-
tionation, alternatively termed basic reversed-phase, as a first
off-line chromatography separation in combination with the
low pH reversed-phase fractionation in the second on-line
dimension was first demonstrated more than 10 years ago. In
comparison with other methodologies, it benefits from the
uniform first dimensional peptide elution profiles achievable
with high pH reversed-phase separation and the high pep-
tide separation efficiency in both dimensions (18, 19). Be-
cause the two separation dimensions are not completely
orthogonal {meaning that peptide retention times are still cor-
related), direct application of high pH fractionation would lead
to non-uniform filling of the gradient in the second dimension.
The key advance that solved this problem was the combina-
tion of fractions that elute at substantially different times in the
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first dimension (13). This “concatenation” tends to uniformiy
fill the gradients, leading to deeper proteomes independent of
the nature of the sample, while maintaining throughput (20-
22). This two-dimensional separation technique, combining
high pH fractionation with concatenation, compares favorably
with other approaches and is increasingly being applied by
the proteomics community (20, 23-27).

Despite the success of high pH reversed-phase fraction-
ation in the deep characterization of complex proteomic sam-
ples, a current limitation is the requirement for rather large
amounts of starting material. This is due to the large column
diameters, flow rates, and number of fractions that are col-
lected before concatenation to preserve peak separation from
the first dimension and to maintain collection volumes that
can easily be handied. Therefore, instead of the nanoflow
systems typical of on-line separation, much larger columns
and flow rates are almost amways employed. This in tum
requires large sample sizes, and milligram amounts of starting
material are typical for high pH reversed-phase fractionation.
Unfortunately, this implies high reagent costs, for instance for
proteolytic enzymes or for the chemical labeling reagents
used in multiplexing. Furthermore, it restricts deep proteomes
preliminary to cases where comparatively large protein
amounts are available and excludes the investigation of rare
cellular subpopulation or laser micro-dissected cells in tumaor
tissues, for instance. High pH fractionation with higher flow
rates and larger sample amounts is also used to investigate
post-fransiational modifications in great depth by the combi-
nation of isobaric mass tag labeling of peptides after diges-
tion, followed by high pH fractionation and consecutive en-
richments (28). In such cases, large sample amounts and high
volumes are necessary because of the subsequent enrich-
ment. However, post-translational modification analysis could
benefit from a drastic scale-down in high pH fractionation, if
already enriched peptides are fractionated. This would neces-
sitate high sensitivity of the fractionation step and be eco-
nomically attractive in terms of labeling reagents.

Here, we describe a novel approach that allows efficient
sample concatenation without using large volumes. Instead,
nanoflow systems are employed, and the intermediate sample
collection step is eliminated. We demonstrate the operating
principle of our spider fractionator, show that fractionation
efficiency remains very high, and establish that the flexibility
of the system allows choosing an optimum balance between
measurement time and desired depth of proteome coverage.
Very low sample amounts can be separated without apparent
fractionation-induced sample losses. We demonstrate the
sensitivity of the system by the analysis of 12 human cell lines
to a depth of about 10,000 proteins with only 1 g of sample.

MATERIALS AND METHODS

Call Culture— Hela calls ware culiured in high glucose DMEM with
10%: fetal bovine serum and 1% penicillin/streptomycin (all from Lifa
Technologies, Inc.). Cell lines were culturaed in Dulbecco's modified

Eagle’s medium (Invitrogen) containing 10% dialyzed fetal bovine
sarum and penicillin/streptomycin. Cells were counted using a court-
ass call counter (Invitrogen), and aliquots of 10® cells were snap-
frozen and stored at —B80 “C.

Tryptophan Fluorescenca Emission Assay for Protein Quantifica-
fion— Protein concentrations were determined after solubilizing the
samples in 8 M urea by tryptophan fluorascenca emission at 350 nm
using an excitation wavelangth of 295 nm. Tryptophan at a concen-
tration of 0.1 pg/pl in 8 » urea was used to establish a standard
calibration curve {0—4 wl). From this, we estimated that 0.1 pgiul
tryptophan are equivalent to the emission of 7 pg/el of human protein
aniract, assuming that tryptophan on average accounts for 1.3% of
human protein amino acid composition.

Sample Preparafion, Protein Digestion, and in-StageTip Purnfica-
fion— Sample preparation was performed as described praviously (3)
with the following adaptations. 300 pqg of cells wera suspended in 50
wl of SDC reduction and alkylation buffer (3). We used 2-chloro-MN,N-
diethylacetamide as alkylating reagent for the comparison of the 13
call lines and 2-chioro-acetamide for all other experimeants. The cells
were kept at 95 °C for 5 min to denature proteins and afterward
sonicated to shear DNA and enhance cell disruption with a water bath
sonicator (Bioruptor, model UCD-200, Diagenode) for 15 min at the
maximum level. The proteclytic enzymes LysC and frypsin wera
added in a 1:100 ratic (micrograms of enzyme to micrograms of
protein), and the solution was incubated for 4 h at 37 *C.

Peptides ware acidified by adding 100 ul of ethyl acetata, 1% TFA
and extensive mixing for 2 min, and 20 pg were transfered into
StageTips containing two 14-gauge SDB-BPS (polyistyrena-divinyl-
benzene) reversed phase sulfonate) plugs. Afterward, the StageTips
were washed with 100 wl of athyl acetate, 1% TFA to strip SDC and
lipids from the digested cells. This was followed by a wash step with
100 wl of ddH,0", 0.2% TFA. The purified paptides wers eluted with
60 pl of 80% acetonitrile, 19% ddH,0, 1% ammonia in autosampler
vials. For all steps, the StageTips were centrifuged at 2,000 = g until
the solutions were rinsed through completaly. The collected material
was dried using a SpeedVac centrifuge at 60 “C (Eppendorf, Concen-
trator Plus). Peplides were suspended in 2% acetonitrile, 0.1% TFAIN
ddH,O and sonicated for 15 min in a water bath sonicator (Branson
Ultrasonics, Ultrasonic Cleaner Model 2510). Moraover, 6,600 Hela
calis, the equivalent to 1 wg of stariing material (20), were saparately
digested using the in-StageTip protocol (3) with the above mentioned
adaptations.

Pre-fractionation—We constructed a software-controlied, fully au-
tomated, rotor-valve-based fraction collector system coupled on line
to a nanoflow HPLC (EASY-nLC 1000 system, Thermo Fisher Scien-
tific), and we used this for all high pH reversed-phase pre-fraction-
ations. The fraction collector system was named Spider Fractionator
and is under commercial development by PreOmics GmbH, Martin-
sried, Garmany. We provide a list of components used in constructing
the fractionator {(supplemental Table 1). For the work reported here,
we standardized on a first dimension column of 250 pm inner diam-
eter and a length of 30 cm, which was packed with 1.0 um C18
particles (ReproSil-Pur C18-A0 1.9 pm resin by Dr. Maisch GmbH)
and has an estimated loading capacity of at least 100 pg. The column
is available from Pralmics GmbH (Aricle No. P.O. 00007). All col-
umns {first dimension and on-line dimension) wers passivated by a
single run of BSA to saturate irreversibie binding sites. For separation
into eight pooled fractions, we loaded 20 wg (or other amounts where
indicated) of purified and digested peptides onto a reversed-phase
Cya column. A gradient was generated by using a dual buffer system
(buffers A and B) also from Pre0Omics GmbH (Article MNo. P.O. 00004).

! The abbreviations used are: ddH,O, double distilled H,O; SMC,
smooth muscle cell; EC, embryonic carcinoma.
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Tame |
Concatenation schems
Mo. pooled fractions 4 a 16 24
Peptide amount (wa) 20 20 40 60
No. of non-pooled fractions 54 54 54 54
Pooling scheme 1:5:9;13,17,21;25;20;33;37;41;45;40;53 1;9;17;25;33;44;40 1;17;33:40 1;25:48

2:8.10,14,18;22;26,30,34;38,42,46;50;54,; etc.  2;10;18.28,34;42;50; etc. 2;18;34,50; etc. 2;26;50; etc.

Peptides weare eluiad from 3% B to 30% B in 45 min followed by a
linear increase to 60% B in 17 min. This gradient was followed by a
further linear increase to 85% B in 5 min and a 3 min wash at 95% B,
followed by a 10 min decreass to 3% B. The last segments ensure
that the output lines (volume about 800 nl) are emptied, and nona of
the remaining peptides are lost. The flow rate was kept at a con-
stant 2 pl'min. The 96-well plate was moved by a stepper motor-
driven linear actuator. Software was implemented on a Raspberry
microcontrolier.

We separated peptides into 4, B, 16, and 24 fractions using rotor
valve shifts of 90 s. Fractions were collected into 0.2-mi thin-walled
B-tube strips (Thermo Fisher Scientific). We loaded 20 pg of starting
matarial for 4 and 8 fractions, 40 g for 16 fractions, and 60 wg for 24
fractions.

The concatenation scheme of table | was used for pooling. For a
miore detailed version of the fractionation schemes see supplemental
Fig. 1.

The pooled fractions were dried using a SpeedVac centrifuge at
B0 “C (Eppendorf, Concentrator Plus). Peptides were suspended in
2% acetonitrile, 0.1% TFA in ddHO and sonicated for 15 min in a
water bath sonicator (Branson Ulirasonics, Ulirasonic Cleaner Model
2510). A total of 2 pg of each concatenated fraction was loaded and
measured by LC-MS/MS as described bolow.

Comparison of the Spider Fractionator to Othar High pH Fraction-
ation Systems—=We used the same buffers, gradients, and pooling
scheme as for the spider fractionator system in comparison with a
higher flow system and to a recently introduced spin column system.
For all threa systams, the same Hela digest was usad to fractionate
1 or 20 pg of peptides. The higher flow system consisted of an
XBridge peptide BEH C18 column (2.5 pm particle size, 21 = 250
mm, Waters) with a Shimadzu HPLC system at a 60 “C run at a flow
rate of 150 wl'min. The fractions were manually pooled. For the 1 pug
sample, all fractions were re-pooled into a single vial to determine
sample loss. For the 20 pg sample, we manually concatenated sam-
ples according to the same scheme as automatically done by the
spider fractionator. On the spin system (high pH reversed-phase
peptide fractionation kit, Pierce catalog number 84868), separation
was done according to the manufacturer’s instructions resulting in
eight fractions but no concatenation.

Ultra-high Pressure Liquid Chromatography and Mass Spectrome-
try— Samples were measured using LC-MS instrumantation consist-
ing of an EASY-nLC 1000 ulira-high pressure system (Thermmo Fisher
Scientific) coupled via a nanoslacirospray ion sourca (Thermo Fishar
Scientific) to a hybrid quadrupole Orbitrap mass spectrometer (O
Exactive HF Orbitrap from Tharmo Fisher Scientific) (30, 31). Purified
peptides were separated on 40 cm HPLC columns (75 pm inner
diametar; in-house packed into the tip) at 60 “C with ReproSil-Pur
C18-A0Q 1.9 pm resin by Dr. Maisch GmbH]).

For all measurements, peptides were loaded in buffer A (0.1%
formic acid, 5% DMS30 (32)) and eluted with a linear 55 min gradiant
of 2-20% of buffer B (0.1% formic acid, 5% DMS0, B0% acetonitrile),
followed by an increase 1o 40% buffer B within 40 min and afterward
within 2 min to 98% buffer B and a 2 min wash at 98% buffer B. The
flow rate was kept at 350 nl/min.

Column temperatura was kept at 80 “C by an in-housa-developad
owven containing a Peltier element, and parameters were monitored in
raal time by the SprayQC softwars (33).

MS data was acquired with the Thermo Xcalibur software version
3.0.63, a topN method where N could be up to 100. This method in
principle allows a very large number of precursor peaks to be picked
for fragmentation but is in practice limited by the number of precur-
sors with sufficient ion intensity. In the entire data set. W was 15 on
average. Target values for the full scan MS spectra were 3 = 10°
charges in the 300-1,650 m/z range with a maximum injection time of
15 ms. Transient times corresponding to a resolution of 60,000 at mz
200 wera chosan. A 1.5 miz isolation window and a fwed first mass of
100 miz were used for M3/MS scans. Fragmentation of precursor
ions was parformed by higher energy C-trap dissociation (34) with a
normalized collision energy of 27 aV. MS/MS scans wara performead
at a resolution of 15,000 at mz 200 with an ion target value of 5 = 10*
and a maximum injection time of 25 ms. Dynamic exclusion was sot
to 30 s to avoid repeated sequencing of identical peptides.

Dafa Analysis—MS raw data files were analyzed by MaxCuant
software version 1.5.3.31 (35), and peptide lists were searched by the
Andromeda search engine (36} against the human Uniprot FASTA
database to which common contaminant proteins had been added
(86,746 entries) with cysteine disthylcarbamidomethylation as a fiwed
madification for the comparison of the 13 cell lines and cystaine
carbamidomethylation as a fixed modification for all other experi-
ments. N-terminal acetylation and methionine oxidations were usad
as variable modifications in all experiments. The false discovery rate
was set to 0.01 for both proteins and peptides with a minimum length
of 7 amino acids and was determined by searching a reverse data-
base. Enzyme specificity was set to trypsin and a maximum of two
missed cleavages were allowed in the database search. Paptide
identification were performed with an allowed initial precursor mass
deviation up to 7 ppm and an allowed fragment mass deviation of 20
ppm. The MaxOuant feature "match between runs™ was enabled
within the dataset of the pooled eight fractions and the single shot
samples for all call line samples. Proteins matching the reversad
database were filtered out. Label-free protein guantification was done
with a minimum ratio count of 1 (37). All bicinformatics analyses were
performed within the Perseus software of the MaxQuant computa-
tional platform (35, 37).

RESULTS

Spider Fractionator—The principle of the fractionator is de-
picted in Fig. 1. The post-column flow from the first dimension
separation enters the input port of an eight-port flow-salector
rotor valve. At pre-determined time intervals, the valve
switches to a new output port. Each of the outputs is con-
nected via a narrow bore capillary to different output lines in a
sample collection device, distributing the sample flow into
consecutive tubes for the pooled fractions. Once one cycle
has been completed, the valves switches back to the first
output port and the next fluid volume is added to the already
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Fiz. 1. Spider fractionation principle and practical implementation. A, switch mechanism of the rotor valve, illustrating how the flow from
the first dimension separation is divided to eight cutput lines. B, schematic of the implementation of the spider fractionator. The first dimension
saparation is realzed as a 250 pm inner diameter column, connected upstream through a zero dead volume connector to a nano-HPLC pump
{an ulira high prassure unit is depicted but not required). The zoom-in is a cut-away symbolizing different peptide bands being separated in
the column by different colors. Downstraam, the column is connected 1o the rotor valve from A. The output lines feed into tubes that are filled
in tum, according to the concatenation schema. The spider-like appearance of the output lines give the name to the device. The armows indicate
that the cutput lines can be moved 1o a new set of tubes for a new separation process. After separation, the tubes are inserted into the
autosampler of an UHPLC for LC-MS/MS analysis of the fractions. C, photo of the prototype spider fractionator used in this work.

collected first fraction. In this way, the device automatically
concatenates and pools the samples, without requiring differ-
ent collection tubes or the combination of separately col-
lected effluent volumes. Therefore, the volumes are not con-
strained to a minimum size, which would otherwise be
necessary to handle them in separate tubes. We routinely
employ a 250 wm inner diameter column in the first dimension
at 2 pl/min and switch the valve every 90 s, thus concatena-
tion volumes are only 3 ul. The system is fully programmabile,
allowing collection not only into multiples of the sight output
channels (A—H) but also into as few as two or as many frac-
tions as there are collection tubes in the device (96 in our
setup). Furthermore, an arbitrary number of samples can be
fractionated, and the rotor valve shifts can be defined by the
user. For example, 12 samples could be scheduled for con-
catenation into eight fractions each in a total of 24 h using 80
min gradients.

When operating in a high pH reversed-phase mode, we use
the first column with a buffer at pH 10, which is devoid of
non-volatile constituents. The column inner diameter and con-
sequently the flow rate are chosen such that the desired
peptide amounts are present in the sample tubes after con-
catenation. For instance, using second dimension columns
with a loading capacity of 2 wg, which is typical of the ¥5 um
inner diameter columns used in many proteomics laborato-
ries, would call for a sample amount of at least 16 wg to be
loaded on the first dimension column. Therefore, the first
column should have a capacity of at least the second column
multiplied by the number of desired fractions. In principle, the
entire system can be scaled up or down as required. Within
the constraints mentioned above, different size columns and
separation principles can be combined as long as they are at
least partially orthogonal. For the work reported here, we
standardized on a first dimension column of 250 wm inner
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diameter and a length of 30 cm, which is packed with 1.9 pwm
G, particles and has an estimated loading capacity of at least
100 pg (see “Materialz and Methods").

For the subsequent on-line LC separation, no alterations
compared with standard laboratory procedures are neces-
sary. In the work reported here, the columns were 40 cm long,
75 wm inner diameter, and packed with 1.9 wm G, particles.
The 0.1% formic acid in our buffers ensured low pH com-
pared with the first dimension.

The overall fractionation systems was realized by coupling
an EasyLC nanobore HPLC to the first dimension column (see
“Materials and Methods”). Mote that back-pressure was only
250 bar. Because no high pressure capability is required, a
wide range of nanoflow pumps used in proteomics would
therefore be suitable. The fractionator principle itself is em-
bodied in an apparatus containing a column oven to maintain
60 °C, the flow-selector valve for fractionation, the required
column, two-dimensional axes for automated multi-collection
plate position selection, a cooling unit to retain fractions at
about 6 *C, a microprocessor control unit for automated con-
tact closure and HPLC interaction, and a driver software to
control, log, and monitor all the parameters (Fig. 1C). The
control unit maintains communications to the upfront HPLC
system, to the rotor valve, and to the downstream fraction
collection system. The collection system is designed to be
fully flexible. Peptides eluting from the column are separated
into packages defined by a time interval by rotor valve shifts.
The =hift in valve position directs each package into one of the
eight output lines. Each of these are placed into ane of the
eight “rows" (4—H) of a 9&6-well layout. Output ling A elutes into
row A, line B into row B, and so forth. Eight shifts of the rotor
valve will deposit peptides from the column into each tube of
the first column, and the next shift will enter the next output
line and therefare again fill the first row A. In this way, for eight
or less fractions, the output ling holder stays at column 1 of
the 12 possible positions of a 96-well plate. In case separation
into more than eight fractions is desired, the output line holder
will move from column 1 fo column 2 after eight packages (HA1
is followed by A2, supplemental Fig. 1). For 16 fractions, the
output holder will move back to column 1 after eight rotations
(H2 is followed by A1). Likewise, 24, 32, 40, 48, 56, and 96
fractions can be realized. Fractionation into less than eight
fractions or any other desired number between 1 and 96 is
also possible as the rotation valve can be programmed to
direct packages to arbitrary output lines. For instance, in the
case of four fractions, the rotation valve switches directly from
D1 to Al. The collection tubes are maintained cooled and can
be placed in a SpeedVac and subsequently into the auto
sampler of the on-line LG-MS/MS system.

Separation Performance—With the column connected to
the Spider fractionator, we first collected each of 54 fractions
(90 = duration) in their own tubes. Starting from fraction three,
we chose every 6th fraction and analyzed these fractions
separately in 100 min gradients on the 40 cm analytical col-

umn. The 20 s elution windows from the first dimension eluted
roughly in the same region as expected if they had been
separated on a low pH analytical column except that their
elution range was expanded considerably due to the different
pH values (Fig. 24). However, generally the bulk of the pep-
tides was still concentrated within only about 20-50% of the
total gradient.

Mext, we specified an eight fraction concatenation scheme,
meaning that the rotor valve combined the 54 fractions into
eight equally filled gradients. Fractions 3, 11, 19, 27, 35, 43,
and 51, which were measured separately above, were auto-
matically combined by the rotor valve. Analyzing this concat-
enated fraction on the 100 min gradient of the analytical
column resulted in a peptide elution profile that was filled over
the entire range, resembling the super position of the sepa-
rately measured fractions (Fig. 28). Repeating this experiment
in triplicate yielded essentially identical elution profiles, dem-
anstrating reproducibility of the spider fractionator {supple-
mental Fig. 2).

A desirable feature of a pre-fractionation apparatus is that it
concentrates each individual peptide into as few fractions as
possible. Mote that in a two-dimensional separation scheme
there will always be peptlides that will be collected into differ-
ent tubes because the fractionation will occur during peak
elution for a certain percentage of them (“peak cutting”).
Furthermore, peptides may or may not be sequenced and
identified in different fractions, depending on the complexity
of the sample and the sequencing spead and sensitivity of the
mass spectrometer. Therefore, it is necessary to quantify
peptide abundance across all fractions. To evaluate the sep-
aration efficiency of the fractionator and poocling scheme, we
therefore employed the “match between runs” option in the
MaxQuant software (11, 38), which allowed the transfer of
identifications between the fractions. Note that the label-free
algorithms in MaxQuant in any case normalize the contribu-
tions of the fractions and add the contributions for peptides
found in more than one (37).

For the majority of peptides (68%), their total intensities
were concentrated in one fraction to more than 75% (Fig. 2C
and =supplemental Fig. 3). This is roughly in line with a model
in which the peptide distribution in the analytical dimension is
largely a function of the cutting of peaks in the first dimension.
(In our case, a peak width of 15 s in the first dimension and a
a0 s collection window would result in about 15/90 = 16.6%
of “cut peaks”).

Evaluating the Opfimal Number of Fractions—For any sam-
ple, the spider fractionator allows choosing the desired num-
ber of fractions. A large number of fractions will increase
proteome coverage in two ways. First, at any chosen gradient
length, the time available for sequencing peptides will in-
crease with the number of fractions. In complex samples, this
will lead to more identified peptides and proteins. Second, as
there is a maximal loading capacity of the analytic column, a
larger number of total fractions increases the total material
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that can be used in a proteomic analysis and therefore its
sensitivity. Conversely, many fractions imply long measure-
ment times per sample and may be less beneficial if sample
size is limited. In practice, a good compromise, maximizing
the effort/gain balance, needs to be found according to the
parameters and the goals of the experiment at hand.

To investigate this, we employed Hela digest as a typical
complex proteome and determined the number of identified
peptides and proteins as a function of fraction number. We
separated peptides into 4, 8, 16, and 24 fractions. We loaded
20 pg of starting material for 4 and 8 fractions, 40 for 16
fractions, and 60 for 24 fractions, s0 as not to be sample
limited for the individual LC MS/MS runs, in which an esti-
mated 2 pg were injected in each case. As expected, sepa-
ration into 24 fractions, followed by 48 h of total MS meas-
urement time, yielded the largest number of different peptides
and proteins groups. In total, 126,966 sequence unique pep-
tides and 10,769 different protein groups were identified by
MaxQuant in the Hela cells with 1% false discovery rate at
the protein and peptide levels. Match between runs to all files
acquired in this project increased these numbers to 159,024
sequence unique peptides and 11,887 protein groups (sup-
plemental Table 2).

0 _ -
Tirme [fmin]

Fiz. 2. Comparison of pooled and non-pooled peptide mixtures and separation efficiency. A, total ion current of saparately collacted,
00-s elution cuts from the 1st dimension column. B, total ion curment of automatically pooled fractions corresponding to the ones in A. C,
histogram of peptidas containing at least 75% of their total mass over all fractions in the indicated number of fractions.

Fraction Distribution

Strikingly, using 16 fractions (32 h measuring time) and &
fractions (16 h) still resulted in 98 and 95% of those protein
identifications, respectively. Even the four fraction expen-
ments identified 20% of the proteins in 8 h, comesponding to
only 1/6th of the measuring time of the 24 fractions. However,
although the loss of protein identifications was very moderate
with decreasing fraction number, this was not as pronounced
at the peptide level, where only 91, 78, and 62% of peptides
were still found (supplemental Table 2). This observation is
explained by the fact that increasing depth of measurement
will result in a saturating number of identified proteins,
whereas the number of peptides and the sequence coverage
of the proteins still increase. Accordingly, Fig. 3A shows a
rapid rise of identified peptides when accumulating the resuits
of subsequent fractions within one experiment. The first frac-
tions of each experiment add newly identified peptides at an
almost linsar rate. Here, the four-fraction experiment has a
clear advantage as it identifies 28,000 peptides (47,000 with
matching) in the first fraction, whereas the first fraction of
the 24-fraction experiment only results in 19,000 peptides
(32,000 with matching). This reflects the fact that in the
four-fraction experiment each of the fractions contains a
quarter of total peptides, whereas the 24-fraction experi-
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Fiz. 3. Effect of differant numbers of pooled fractionations on proteome coverage. A cumulative number of sequance unique pepiides
as a function of fraction number for a 4, 8, 16, and 24 fractionation scheme. The upper curves (circles) are obtained with match between runs
enabled in MaxCuant and the lower curves (diamonds) without match between runs. The last fraction of the experiment is labeled in each casa.
B, same as A but for protein numbers. C, number of peptides identified per min in 100 min gradient runs as a function of total number of
peptides dentified. Values enclosed in the upper elipse are those employing match between runs and in the lowsr ellipse without match
between runs. High values on the x and on the y axis are desirable {large number of identifications per min as well as high number of identified

peptidas). D, same as C but for protein numbers.

ment leads a smaller number of indefinable peptides de-
spite the higher amount per peptide. The total number of
peptides identified in the four-fraction experiment is already
matched between 6 and 7 fractions for the 24-fraction ex-
periment, which goes on to yield almost twice the total
number of peptides. At the protein level, the identification
numbers are essentially only a function of the number of
fractions, and that is to say the cumulative number of pro-
ieins per fraction are almost identical. The saturation of the
curve has largely occurred by fraction 8, especially when
using match between runs (Fig. 38).

For the decision of how many fractions the experimenter
should choose, the total number of proteins or peptides as
well as the effort/gain balance need to be considered, as
already mentionad above. For this purpose, we plotted the
total number of proteins and peptides against the peptide-
or protein-to-time ratio (Fig. 3, C and D). Again, it appears
that eight fractions result in an optimum regarding both
factors.

Comparison of the Spider Fractionafor to Other High pH
Fractionation Systems—The spider fractionator setup was
compared with a high flow system (150 wl/min) coupled to a
2.1 mm > 250 mm C18 column and to a recently released
spin column-based high pH reversed-phase peptide fraction-
ation kit (see under “Materials and Methods™).

To analyze potential sample losses, we fractionated 1 wg of
peptides from the same Hela digest on all three systems,
combined the total eluted volume, and compared the median
peptide intensity to a measurement of 1 wg of the same
unfractionated peptides. For such low sample amounts, the
high flow and the spin column system resulted in much less
recovered peptides than the spider fractionator (recoveries
were 15, 24, and 81% of the unfractionated sample) (supple-
mental Fig. 44). Moreover, we fractionated 20 ug of the same
Hela digest with all three systems and compared the median
peptide intensities, numbers of identified peptides, and pro-
tein groups. The spin column setup allowed only fractionation
into eight samples without any concatenation, and for the high
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flow system the samples were concatenated manually. The
spider setup resulted in the highest median peptide intensity,
identified peptides, and protein groups, followed by the high
flow and the spin column system (supplemental Fig. 4, B—F).

The experiments for 1 and 20 wg fractionation amounts
point in the direction that the spider fractionator had by far the
lowest sample loss. Major sample losses could have occurred
due to the interaction surfaces in the high flow and the spin
column systems.

Moreover, the fully automated concatenation of the spider
fractionator saved a lot of hands-on time compared with the
two other systems. The major bottlenecks of the high flow
system were losses by handling the high volumes and several
pipetting and concatenation steps as well as the very long
SpeedVac times of up to 6 h for the 12 ml of fractionated
volume.

Spider Fractionator Allows Loss Less Fractionation— Be-
cause of sample losses associated with high flow rate HPLC
systems, fractionation is generally only employed when
large sample amounts are available. However, due to its
operating principle, the spider fractionator should not have
these limitations. To investigate this potential advantage in
detail, we fractionated different amounts of digested HelLa
peptides (0.5, 1, 2, 5, 10, 20, 50, and 100 wpg) into eight
pooled fractions each. To minimize potential issues associ-

ated with carry-over, we measured the lowest amounts first
and on a new column.

First, we analyzed the behavior at the higher sample
amounts. For the three highest sample loadings and assum-
ing an equal distribution of peptides in all fractions, more than
2 g were available per LG MS/MS run, but only this amount
was injected. This yielded the same number of identified
peptides and proteins (around 11,000 proteins and neary
110,000 peptides), demonstrating that the spider fractionator
equipped with the 250 wm inner diameter column can handle
these amounts of sample or more (Fig. 4, A and B). The
average sequence coverage of the proteome was 26% for
fractionation of more 10 g, decreasing gradually to 20% for
1 pg (Fig. 4C).

As expected from the smaller amount of peptide material
injected into the analytical column, the total number of pep-
tides identified decreased from 10 to 1 pg of starting material
(maximum of 1.25 to 0.125 g per injection). However, the
lo=s of identification was much less than linear, decreasing to
about half with 10-fold lower peptide amount. Remarkably,
there was very little loss of protein identifications in the same
range. In particular, when using matching, the 1 wg total
loading still resulted in more than 10,000 different protein
groups (7,800 without matching). Loading less than 1 wg did
result in a considerable reduction of proteins and peptides.
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However, 5,724 proteins were still identified by MS/MS from
23,765 peptides even in this case. Mote that this may still not
reflect a limitation of the fractionator but instead simply be
due to the nanogram amounts of peplide loaded onto the
analytical column.

To further investigate the apparent absence of sample
losses of the spider fractionator, we next plotted the median
intensities of all individual proteins against the amount of
injected material up to the 20 pg value (Fig. 40). This resulted
in a linear relationship down to the lowest amounts tested,
demonstrating that any potential sample losses incurmred by
the spider fractionator, if they occur at all, are so small that
they are not detectable in the setup used here.

To show the applicability of our workflow for a limited
amount of starting material, we prepared peptides directly
from 6,600 Hela cells (about 1 pg (29)) by using the in-
StageTip protocol (3). The complete material of digested and
purified peptides was fractionated using the spider fractiona-
tor resulting in 5,869 protein groups and 37,000 peptides
without and 10,165 protein groups and 72,110 peptides with
matching (Fig. 4, A and B).

In-depth Measurement of Human Cell Lines—Having estab-
lished optimal fractionation parameters and sample require-
ments, we next employed the spider fractionator for the in-
depth measurement of 12 different human cell line proteomes.
Specifically, we used the B-fraction, 100 min gradient scheme,
resulting in a total measuring time of 16 h, including column
loading and equilibration and the 20 pg loading, which was
the minimum amount that saturates the number of identifiable
peptides. Thus, the entire experiment consumed only 8 days
of measurement time and much less than a small cell culture
dish for each cell line {(corresponding to about 100,000 Hela
cells).

Combined with the one replicate HEK283 cell line (see
below), the experiment yielded a fotal of 199,882 sequence
unique tryptic peptides corresponding to 12,444 different pro-
tein groups (supplemental Table 3). The median sequence
coverage of these protein groups for this cell line dataset was
a remarkable 41.3%. In the 13 cell line experiment the
median number of identified peptides was 87,769, and this
number ranged from 72,471 in the Hela sample to 105,487
in the GAMG cell line. Applying the match between run
algorithm boosted median peptide identifications by a fur-
ther 47% (Fig. bA).

The median number of proteins identified in each of the
singlet experiments was 11,472, and this was very consistent
between cell lines (minimum 11,340 in HelLa and maximum
11,634 in GAMG). These are among the deepest proteome
results reporied for cell lines so far, which is particularly
remarkable given the small sample consumption and meas-
urement time. The proteome of the 13 cell lines (12,444 pro-
tein groups; 199,882 peptides) mapped to 11,442 protein-
coding genes, which made up more than 57% of the 20,154
entries listened in SwissProt at the time of wrting.

The large majority of total identified proteins (78%) was also
identified in each singlet experiment and almost 90% of them
in at least 10 of the 13 experiments (Fig. 5C). This implies that
the proteomes of these different cell lines are quite similar in
terms of expressed and identifiable proteins. it further implies
that our data set, acquired with a data-dependent acquisition
strategy, is substantially complete and can only have a very
small percentage of missing values, despite the use of data
driven shotgun proteomics.

Cell lines, including the ones used here, have often been in
culture for years or decades and even those that are nominally
the same can develop differences over time. Here we had
obtained the human embryonic kidney cell line HEKZ293 from
two institutes and treated them as separate entities for the
purpose of comparison with different cell lines. Mearly the
same number of proteins as well as peptides was identified
after fractionation in both cases, and the overlap of each of
the fractionated, matched datasets to all identified proteins
was 87.1%, with the unigue proteins at the lower levels of
expression in proteome. The Pearson coefficient for the abun-
dance rank order of the proteomes calculated from the scatter
plot in Fig. 50 was 0.96, implying that they were very similar
at the quantitative level as well. Thus, a simple fractionation
experiment establishes that in this case the same cell lines
with different origins are very similar at the proteome level.

We calculated the Pearson correlation between all combi-
nations of the 13 cell lines and plotted the result as a heat map
(Fig. SE). As expected, the two instances of the HEK293 cells
had the highest cormrelation, whereas the median correlation
was 0.83. Against this very high median correlation, a few cell
types show a considerably divergent behavior. One of these is
EC. an embryonic carcinoma cell line, whose proteome had a
correlation to other cell lines down to 0.77. This observation
can be readily explained by the fact that EC is the sole
undifferentiated cell line in our s&t. Interestingly, the only cell
line to which EC has a high comelation is SMC, another outlier
cell line. The proteome of SMC likewise showed a lower overall
correlation to the other cell lines (down to 0.73), and in this case
the biological explanation is that muscle is developmentally
derived from the mesenchyme, whereas the other cell lines are
primarily of epithelial origin. Finally, HepG2 likewise comelates
less well than an average cell type, presumably reflecting the
specialized organismal role of this model of liver function.

To illustrate how readily acquired deep proteomes can shed
light on cellular function, we quantitatively compared SMC
against a cell line whose proteome had typical correlation
values to the other cell lines. For this, we chose LNCaP, a
widely used cell model of prostate cancer. The correaltion
between SMC and LNCaP was comparatively poor (R=0.78),
and the scatter plot reveals a large number of proteins that
were expressed at drastically different levels (Fig. 5F). Among
these, we found the epithelial cell adhesion molecule, which is
the classical positive marker used in immunohistochemistry to
stain cells of an epithelial origin, to be strongly increased in
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LMCaP. Conversely, the classical mesenchymal marker vi-
mentin was strongly expressed in SMC. It is known that
vimentin, together with LARPG, stabilizes type | collagen
mRMAs, which in tum leads to up-regulation of the collagens
CO1A1 and CO1A2 (39). Our data show that several other
collagen isoforms are also strongly expressed in this mesen-
chymal cell line, suggesting that they may be up-regulated by
similar mechanisms (Fig. 5F).

DISCUSSION

In the quest for very deep and large scale proteome char-
acterization, pre-fractionation of peplides occcupies a pivotal
role. We build upon the success of high pH pre-separation as
a first dimension coupled to concatenated fractionation sam-

ple pooling for the second dimension of analysis. Samples
have been separately collected and then combined in these
approaches, whereas in the spider fractionator introduced
here, concatenation is implemented by a rotating valve. This
valve automatically directs sections of the eluent of the first
column into a number of tubes cormesponding to the number
of desired fractions to be analyzed. In this way, any number of
pooled fractions with any concatenation volume can in prin-
ciple be realized. First dimension column diameters and flow
rates are much smaller than those typically used in high
pH-based proteomics workflows, and the absence of inter-
mediate collection points means that there are no obvious
points of sample loss. We implemented the spider fractionator
as an assembly of the first dimension column and its acces-
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sories, an automated wvalve, temperature controls, and an
automatic fraction collection systemn for unattended multi-
sample fractionation. The device is now routinely used in our
laboratory for any project involving pre-fractionation and has
proven robust in dozens of projects already.

Here, we characterized the spider fractionator in different
dimensions of performance. Comparison of individually com-
bined and pooled samples gave very similar results at high
sample amounts, demonstrating the automated pooling
scheme commectly implements the concatenated high pH strat-
egy. We obtained guantitative intensity profiles over the
pooled fractions for tens of thousands of peptides, which
showed that the bulk of each individual peptide mass is
localized to a single fraction. The fractionator can be operated
in a parameter space defined by the number of fractions and
the width of the volume that is concatenated. Likewise, the
diameter, flow rate, and stationary phase of its column can be
chosen to fit the desired objectives, within at least the range
of up to 100 pg, above which a standard high pH setup may
be just as effective. Using the same G,y material as in our
standard LC MS/MS setup, we investigated the influence of
the number of fractions on the depth of proteome coverage.
Four fractions already led to a very good proteome coverage,
and adding additional fractions up to 24 fractions resulted in
asymptotic gain at the protein level, while peptide coverage
still improved. Considering the tradeoffs in measuring time
and available sample quantity in terms of proteins identified
per min, we conclude that an eight-fraction scheme is a good
compromise in many situations.

Using these parameters, we then demonstrated that the
spider fractionator enables extraordinary profiling sensitivity
and depth in high pH fractionation experiments. As little as 1
g of peptide sample, when fractionated, enabled the identi-
fication of more than 10,000 proteins. Analysis of protein
signal as a function of increased loading of the first dimension
column demonstrated that the device has little if any detect-
able sample loss. We then applied the spider fractionator to
the rapid analysis of small amounts of cell line material, a
typical challenge for proteomics. In only 16 h we reached a
proteome coverage of a median of 11,472 different protein
groups (a total of 12,444 different protein goups for all cell
lines). In the past, our group employed much longer meas-
urement times and larger sample amounts and still only
reached smaller total numbers in cell line systems (11, 40). To
our knowledge, these results are also larger than those cur-
rently described in any given cell line system in the literature,
in any case when considering the amount of protein used and
the total measuring time. Furthermore, coverage was ex-
tremely consistent between singlet measurements of different
cell lines, due to the fact that cell lines tend to have qualita-
tively similar proteomes (11, 41) and because the depth of
proteome coverage reached by our workflow makes our
results very robust against ‘missing values’ that can occurin
shotgun proteomics. Although we used a “match between

run” strategy in the experiments described here, which re-
sulted in substantial gains, the identification numbers with-
out matching are also very high. Indeed, because of the near
absence of sample loss, the maximum amount of peptide
material is available for fragmentation and identification. The
increased measuring time due to fractionation implies more
sequencing events, and thus the nano-fractionator is arguably
less reliant on the transfer of peptide identifications.

Various developments can be envisioned to further improve
on the results shown here. For instance, the depth of the
matching library could be increased, which could be used fo
reduce the number of fractions without compromising cover-
age. Although not shown here, the spider fractionator would
work equally well with pepiide samples that have been de-
nvatized with isotopically labeled mass tags such as iTRAQ or
TMT. In this case, a 10-fold decrease in initial sample amount,
for instance, would directly translate into a 10-fold reduction
in reagent costs. Furthermore, the first dimension column
could be further scaled down to enable even smaller sample
amounts to be efficiently fractionated and ulira-narrow bore
columns and/or ultralow flow rates could also be used in
the on-line dimension. Apart from total proteome measure-
ments, the spider fractionator could also be applied to the
analysis of post-translational modifications, an area where
sensitivity is especially desired. Finally, the scheme pre-
sented here is agnostic in regards to acquisition strategies
(data-dependent acquisition, data-independent acquisition,
or targeted acquisition).
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deposited in PRIDE proteomeXchange (project accession
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Despite its longstanding allure, plasma proteomics has not lived up to its promise of
revolutionizing biomarker research and clinical diagnostics. In this review we investigate
the reasons that have held plasma proteomics back over the years. We perform a
systematic literature research of 381 plasma proteomics publications that aimed to
discover new biomarkers. We classify the publications by the approaches that they
applied, such as depletion of high abundance proteins, extensive fractionation and
chemical labeling. We evaluate problems in the design of the investigated studies, for

example small numbers of cases and controls or sample pooling.

This review also discusses current paradigms of biomarker research and develops
alternative concepts. Briefly, technological progress and our high throughput plasma
proteomics workflow enable us to pursue biomarker research with a ‘rectangular
shaped process. Here, many individuals are investigated in each of the phases of the
study by shotgun proteomics. Exploring a large cohort already at the discovery stage
will result in much more likely biomarker candidates. The further testing of these
candidates in a verification and a validation cohort with shotgun proteomics then
proceeds with the testing of biomarker panels instead of individual proteins.
Investigating as many conditions as possible for as many people and proteins as
possible will over time generate a ‘big data’ matrix. This knowledge base itself will be an
incomparable resource that can be mined for connections between different diseases or
condition by advanced machine learning algorithms. It can also form the background for
the deep phenotyping of humans.

Moreover, we give an overview about the modern clinical laboratory, in which single
biomarker are tested. This serves as a basis to discuss how proteomics and multi-
protein panels could be translated into clinical practice and we describe first steps in this
direction.
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Abstract

Clinical analysis of blood is the most widespread diagnostic proce-
dure in medicine, and blood blomarkers are used to categorize
patients and to support treatment decislons. However, existing
biomarkers are far from comprehensive and often lack specificity
and new ones are being developed at a very slow rate. As described
in this review, mass spectrometry (MS)-based proteomics has
become a powerful technology in biological research and it is now
poised to allow the characterization of the plasma proteome in
great depth. Previous “triangular strategies” aimed at discovering
singlke biomarker candidates in small cohorts, followed by classical
immunoassays in much larger validation cohorts. We propose a
“rectangular” plasma proteome profiling strategy, in which the
proteome patterns of large cohorts are correlated with their
phenotypes in health and disease. Translating such concepts into
clinical practice will require restructuring several aspects of diag-
nostic decision-making, and we discuss some first steps in this
direction.

Keywords biomarkers; diagnostic; mass spectrometry; plasma proteomics;
systems medicine
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Introduction

The central amnd integrating role of blood in human physiology
implies that it should be a universal reflection of an individual's
state or phenotype. Its cellular components are erythrocytes, throm-
bocytes, amnd lymphocytes. The liquid porton s called plasma,
when all components are retained, and serum, when the coagula-
tion cascade has been activated (blood clotting) . For simplicity, we
will use the term “plasma” rather than “serum”, since most conclu-
sions apply 10 both.

Concentrations of various plasma components are routinely
determined in clinical practice. These include electrolytes, small
molecules, drugs, and proteins. The proteins constituting the plasma
proteome can be categorized into three different classes (Fig 1A and

B]. The first contains abundant proteing with a functional role in
blood. These include human serum albumin (HSA, roughly half of
total protein mass); apolipoproteins, which have crucial roles in
lipid transport and homeostasis; acute phase proteins of the innate
immune response; and proteins of the coagulation cascade. The
secomd class are tissue leakage proteins without a dedicated func-
tion in the circulation. Examples are enzymes such as aspartate
aminotransierase (ASAT) amd alanine aminotransferase [ALAT),
which are used for the diagnosis of liver diseases, as well as low-
lewvel, tissue-specific isoforms of proteins such as cardiac troponins.
The third class are signaling molecules like small protein hormones
(for instance, insulin] and cytokines, which typically have very low
abundances at steady state and are upregulated when needed.
Baseline levels of the cytokine interleuking (IL-6) are 5 pg/ml,
establishing a minimum 10"-fold dynamic range of the plasma
proteome when compared to the concentration of the most
aburdant protein, HSA, with about 50 mg/ml.

In accepted use, “a blomarker is a defined characteristic that is
measured as an indicator of normal biological processes, patho-
genic processes, OF a response o an exposure of intervention”
(FDA-NIH: Biomarker-Working-Group, 2016). For the purpose of
this review, we focus specifically on protein or protein modifi-
cation-based biomarkers. In this sense, there are more than 100
FDA-cleared or FDA-approved clinical plasma or serum lests,
mainly in the abundant, functional class (S0% ), followed by tissue
leakage markers (25%), and the rest include receptor ligands,
immunoglobuling, and aberrant secretions (Anderson, 20010). Most
of these are decades old, and the current introduction rate of
novel markers Is less than two per year [(Anderson et al, 2013). A
typical test consists of an enzymatic assay or immunoassay against
a single target. Clinicians interpret the results in conjunction with
other patient information, based on their expert knowledge. Ratios
of abundances are only employed in specific cases. Examples are
the &0-year-old De Ritis rato of ASAT/ALAT to differentiate
between causes of liver disease (De-Ritis ef al, 1957) or the more
recent sFlt-1/PIGF ratio for diagnosis of preeclampsia (Levine ef al,
2004).

In contrast to enzymatic and antibody-based methods, mass
spectrometry (MS)-based proteomics measures the highly accurate
mass and fragmentation spectra of peptides derived from sequence-
specific digestion of proteins. Because the masses and sequences of
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these peptides are unique, proteomics is inherently specific, a
constant problem with colorimetric enzyme tests and immuno-
assays (Wild, 2013). In principle, MSbased proteomics can analyze
all the proteins In a system—Iils proteome—and is in this sense
unblased and hypothesis-iree (Aebersold & Mann, 2016). Further-
more, M5 methods are ideally suited 1o discover and quantify post-
rranslational modifications (PTMs) on proteins. These PTMs can
also be the basis of diagnostic tests, such as HbAlc levels thal serve
as a readout of long-term glucose exposure in the context of

2 MoalecularSystems Biolagy  13:942 | 2007

diabetes. Nevertheless, none of the routinely performed laboratory
tests in plasma is based on proteins that were identified by mass-
spectrometric approaches, and in routine analysis, MS is so far only
employed for measuring small molecules such as drugs and metabo-
lites (Vogeser & Seger. 2016].

Over the past years, the technology of MS-based proteomics
has dramatically improved, and it is now a mainstay of all biolog-
ical research that involves proteins (Cox & Mann, 2011; Altelaar
& Heck, 2012; Richards of al, 2015; Zhang et al, 2016). In
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particular, its performance has robustly matured into a sensitivity
and dynamic range that makes it interesting for biomarker stud-
ies. This review will focus on the prospects of determining
proteins in blood by mass spectrometry. We start by empirically
assessing the role of proteins in clinical diagnostic today and
exhaustively review the literature on previous attempts at finding
blomarkers in plasma by MS-based proteomics. So far, proteomics
strategies have involved extensive investigations of few samples,
i be followed up by targeted approaches in larger cohorts. We
discuss how recent advances in technology now enable a new
strategy in which deep proteomes are measured for many time
points and participants with the prospect to find new biomarkers
and biomarker panels. We believe that proteomics will become
part of the instrumental routine in the clinical laboratory within
the next decade and may even eliminate current technologies in
the far future.

The current extent of dinical protein-based diagnostics

Laboratory tests of blood and body fluids aim at disease diagnosis
or confirmation, risk prediction, prognosis monitoring, and evalual-
ing treatment effectiveness. [t is commonly assumed that 70% of
diagnoses are informed by blood testing, even though this number
has not been well substantiated. At the Institute of Laboratory
Medicine of the University Hospital Munich, laboratory testing s
ordered for the vast majority of inpatients at some point during
hospitalization (77%; Fig 1C). This fraction is much smaller in
patients seen in one of the Hosplial’s outpatient clinics (31%;
Fig 1D]. These numbers indicate that hospitalized patients, who are
usually sicker, are more likely to receive laboratory tests than
ambulatory patients. Based on numbers of requested analyses, clini-
cal routine is dominated by proteins (42 % of analyses), followed by
small molecules (35%) and cells (17%) (Fig 1E). Thus, already
today proteins are the most frequently assayed class of laboratory
analytes in clinical practice. We also note that methods suitable for
determining plasma proteins have the largest share of the world-
wide i vitro dizgnostics.

Laboratory assays for plasma proteins are based either on clas
sical clinical chemistry, utilizing enzymatic activities of certain
plasma proteins, or on antibody-based immunoassays. The cosis
of enzymatic assays are only in the cent-range, and they run on
high-throughput automated analyzers, delivering up to 10,000 test
results per hour. In contrast, immumnoassays are more expensive
(usually several euros/dollars per sample] and throughput of the
respective automated analyzers is about 1000 tests/hour. Large
clinical chemistry as well as immunoassay-based analyzers may
carry reagents for more than 100 different analytical parameters.
Main advantages of immunoassays are a greater degree of flexibil-
ity due to the accessibility to plasma proteins devold of encymatic
activity and a significantly higher sensitivity. Another, clinically
relevant issue is the tme required per laboratory test. Due o the
necessity of immediate decision-making, the majority of enzy-
matic assays amd several Immunoassays have to be scaled down
1o analysis times of < 10 min. In general, immunoassays tend to
take longer than enzymatic assays: nevertheless, the vast majority
of current automated immunoassays require no more than
30 min.

207 The swthors
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Systematic review of M5-based plasma proteomics in
biomarker research

Plasma proteins had already been investigated by two-dimensional
gel electrophaoresis in the 1990s, sometimes in combination with M5
identification of excised spots. However, these generally identified
only a few dozen proteins, amd as they preceded MS based proteo-
mics, they are not discussed in this review. Claims of early cancer
detection based on very low-resolution MALDI spectra of plasma
that produced patterns but no protein ldentifications (Petricoln ef al,
2002) have not been substantiated (Baggerly et al, 2004), and these
technologies have largely been abandoned today.

To obtain a comprebensive collection of publications dealing
with plasma biomarker research and employing MS-based proteo-
mics, we performed an unrestricted PubMed search specifying co-
occurrence of the terms “biomarker®, “plasma OR serum”,
“proteome”, “proteomics”, and “mass spectrometry”. This yielded
an initial lst of 947 publicatons of which 103 were reviews. We
further subtracted studies that did not deal with human subjects or
did not involve plasma or serum, leaving 381 original publications
[Dataset EV1).

Publications started w appear in 2002 and reached a maximum
of 33 per year in 2005, when the special issue on the plasma
proteome was released by the Human Proteome Organization
(HUPO] (Omenn et al, 2005). Two further maxima appeared in
2011 and 2014 with 39 and 43 publications per year, followed by
drops in 2013 to 24 and in 2016 to only 2 publications per year
(Fig 2A). The observed dynamics contrasts with an ever-expanding
community of researchers using proteomics, which is reflected in
thousarnd s of publications per year, with a clear upward trend. The
ratio of plasma proteome publications to total proteome publications
is now = 1% and continues to drop. Given the clear medical need
for plasma biomarkers and the success of MS-based proteomics in
other areas, this raises the question as to what holds back the field
of plasma proteomics.

Of the 381 primary publications, about hall dealt with the analyt-
lcal descriptions of the worldlow employed in plasma analysis,
whereas the remaimnder investigated a physiological or pathophysio-
logical question (Fig 2B). About a third of the latter focused on
cancer, followed by cardiovascular disease (CVD), topics in human
hiology, inflammation, diabetes, and infectious diseases (Fig 2B).
Clearly, this ordering reflects the interest in the diseases rather than
the likelihood of finding relevant changes with the available tech-
nology. Only 47% of the studies had any kind of validation of the
primary findings (Fig 2C). In halfl of the cases (24%), these were
simple Western blois or ELISAs of candidate proteins performed
with the same samples rather than an independent cohort as is
usual practice in clinical studies. Only 36 papers used MS5-based
proteomics to validate potential biomarkers that were proposed
independently (Dataset EV1]).

The extremely high dynamic range of plasma still makes it diffi-
cult to identify more than a few hundred of the most abundant
proteins by LC-MS/MS. To partially overcome this challenge, highly
abundant plasma proteins are often depleted, generally through
columns with immobilized antibodies directed against the top 1 to
20 proteins (Fig 2D). However, these antibodies are never entirely
specific and bound proteins—such as HSA—themselves have an
affinity for several other proteins (Tu af al, 2010; Bellel ef al, 2011).

Malecular Systems Biolagy 13:-942|2007 3
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Thus, the depleted plasma sample Is not a quantitative representa-
tion of the original proteome. This is especially true when using
“super-depletion” [(Qlan & al, 2008)—a broad mixture of polyclonal
antibodies raised against whole plasma—or beads with hexameric
peptide mixtures that pon-specifically “pormalize” the plasma
proteome (Thulasiraman ef al. 2005). Furthermore, these proce-
dures introduce variability and additional expense into the work-
flow, generally precluding accurate quantification of plasma
proteins, Therefore, thelr use is currently restricted to small discow-
ery projects.

A second strategy to deal with the dynamic range and sensitivity
challenge is extensive plasma fractionation, which can be done in
various ways at the protein or peptide level. Several studies aiming
at in-depth coverage of the plasma proteome by combined depletion
and extensive separation (up to hundreds of fractions) identified
from several hundred to several thousand proteins (Lin et al, 2006;
Pan et al, 2011; Cao et al, X012; Cole et al, 2013; Keshishian et al,

Malecular Systems Biology  13:942 | 2017

2015; Lee et al, 2015). Note that many plasma proteome studles
continue to use much less stringent statistical identification criteria
than the 1% peptide and protein false discovery rates (FDR) that
have become standard in MS-based proteomics.

The decrease in throughput implicit in fractionation can partially
be recovered by multiplexing. For example. between four and ten
samples have been analyzed together using the ITRAQ or TMT
strategies, in which samples are labeled with mass neutral tags that
give rise to different low mass reporter ions (Kolla et al, 2000; Zhou
et al, 2012; Cominett et al, 2016). Quantification is achieved by
fragmenting peptides and quantifying the relative ratios of the
reporter jons (Bantschefl ef al, 2008). Although attractive in princi-
ple, these techniques generally suffer from ratio distortion caused
by co-isolated peptide species that all contribute o the same
reporter fon pattern (“ratio compression”). Regulation of very
low-level proteins or those with small but disease-relevant changes
may be completely obscured. In shotgun proteomics, eluting
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peptides are fragmented in order of intensity (data<lependent
acquisition], a semi-stochastic process thal may lead to missing
values across LC-MS/MS runs. Recently introduced data-independent
anquisition strategies more consistently identify peptides across runs
(Picott & Aebersold, 2012; Sajic ef al, 2015). However, they are
incompatible with reporter-ion-based multiplexing because one
would quantify the average of groups of peptides.

In about 30% of the studies, plasma samples were pooled to
reach a desired plasma proteome coverage within the available
measuring time. This approach sacrifices within-group variances
and outlier or contaminant proteins in individual samples can skew
the whole group, making it all but impossible to assess whether
proteins that are different between groups are actually significant on
a person-by-person basis,

Partly as a consequence of the demamds on instrument time,
generally no more than 20-30 samples were analyzed and only few
exceeded 500 (Garcia-Bailo & al, 2012; Cominetti ot al, 2016; Lee
et al, 2017). Considering the large number of measurement points
within samples, these are small sample numbers. Acoordingly, most
studies proposed a few “potential biomarkers™, defined as proteins
that differ between cases and controls. Furthermore, many of these
candidates are unlikely o be specific indicators of the disease in
question, because they belong to biological categories that are at
best indirectly related to the disease or are likely artifacts of sample
preparation (such as keratins and red blood cell proteins). In
summary, limitations in proteomics technology and experimental
design have prevented the identification of true biomarkers in the
published literature to date. To our knowledge, the only possible
exception is the OVA1 test, in which the levels of the highly abun-
dant plasma proteins beta-2 macroglobulin, apolipoprotein 1, serum
transferrin, and pre-albumin were combined with the previously
established ovarian cancer marker CAl25 in a narrow, FDA-
approved indication (Rai et al, 2002; Zhang et al, 2004].

Triangular M5-based biomarker discovery and
validation strategy

The principal advantage of hypothesis-free M5 based proteomics is
that no assumptions need to be made regarding the possible nature
and number of potential biomarkers, in stark contrast to single
protein measurements in classical biomarker research. Conceplu-
ally, M5-based proteomics combines all possible hypothesis-driven
biomarker studies for each disease into one and furthermore defines
the relation of potential blomarkers to each other. In practice, the
challenges of plasma proteomics have so far prevented in-depth and
quantitative studies on large cohorts. Instead, a stepwise or “trian-
gular” strategy for hiomarker discovery has been advocated, with
several phases in which the number of individuals increases from a
few to many, whereas the number of proteins decreases from
hundreds or thousands to just a few (Rifal et al, 2006; Fig 3A) .

The typical workflow for hypothesis-free discovery proteomics in
plasma is similar to that used in other areas of botlom-up protec-
mics (Aebersold & Mann, 2016; Altelaar & Heck, 2012; Fig 3B).
Briefly. proteins are enzymatically digested into peptides, which are
separated by high-pressure liquid chromatography (HPLC) coupled
o electrospray jonization. Peptide masses and abumdances are
measured in the mass spectrometer in full MS scans, whereas a
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further step of peptide fragmentation produces MS/MS spectra for
peptide identification. Well-established proteomics software plat-
forms automatically amd statistically rigorously identify peptides in
database searches and quantlfy them (Cox & Mann, 2008; MacLean
et o, 2010; Rost et al, 2014). Furthermore, plasma contains blood
components such as lipids that can easily clog HPLC columns,
which necessitates dedicated peptide cleanup procedures (Geyer
et al, 2016a).

Targeted proteomics for candidate verification is a second phase
of the triangular strategy (Fig 3C). A relatively small number of
proteins (typically < 10) with differential expression in the discov-
ery phase are tested in a larger and ideally indepemdent cohort.
Since immunoassays are often not available, targeted MS methods
can be employed. The most widespread of these is “multple reac-
tion monitoring” (MEM—sometimes also called single or selected
reaction monitoring—SEM) (Picotti & Aebersold, 2012; Carr et al,
2014; Ebhardt et al, 2015). For each protein, a set of suitable
peptides is selected and their elution and fragmentation behavior is
assessed o define an MRM assay. During analysis, the mass spec-
trometer is programmed to continuously fragment only these
peptides as they elute. By monitoring several fragments per peptide,
sensitive and specific quantification can be achieved even with
low-resolution mass spectrometers. The advantage of MRM over
shotgun proteomics for verification is its higher sensitivity and
throughput. Inter-laboratory studies have achieved good repro-
ducibility {Addona et al, 2009; Abbatiello & al, 2015), but reported
sensitivities typically do not reach the low ng/fml concentration
range and practically achieved multiplexing capabilities are limited
to dozens of peptides (Percy et al, 2013; Shi et al, 2013; Oberbach
et al, 2014; Wu et al, 2015). Nevertheless, two recent siudies have
reported the targeting of 82 and 192 proteins, respectively (Ozcan
et al, 2017; Percy et al, 2017). The sensitivity of MRM can be
improved to the low ng/ml or even high pg/ml ranges by more
extensive sample preprocessing with depletion or fractionation
(Burgess & al, 2014; Kim & al, 2015; Nie et al, 2017).

Absolute and accurate quantification requires internal standards
—egenerally heavy isotope versions of the monitored peptides.
Synthesized heavy peptides are added after digestion, creating a
source of quantitative Inaccuracy since the varlability of protein
digestion is not taken into account. This can be addressed by
embedding the peptide in its original sequence context, for instance,
in the SILAC-PrEST strategy, in which a 150- to 250-amino acid
stretch of each protein of interest, fused to a quantification tag, is
recombinant expressed in a heavy form (Zeiler et al, 2012; Edfors
et al, 2014; Gevyer et al, 2016a).

Targeted methods can also be combined with  immuno-
enrichment of proteins or peptides. For instance, in “stable isotope
standards and capture by anti-peptide antibodies™ (SISCAPA) specific
peptides are immunoprecipitated together with their heavy-labeled
counterparts, followed by rapld MS-based readout (Anderson et al,
2004; Razavi ef al, 2016). This combines the enrichment capabilities
of antibodies with the specificity of MS detection; however, develop-
ment of assays can be difficult and time-consuming—narrowing the
advantage compared to purely antibody-based methods.

The final phase in the triangular strategy is the validation with
immunoassays, a field that has matured over decades. For maxi-
mum specificity, sandwich assays are typically preferred (Fig 3D).
While they are costly amd laborious to develop, they can achieve
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Flgure 3. Current paradigms in plasma biomarker research (“triangular approach™).
() & relatively small number of cases and controks are analyzed by hypothesis-free discovery protesmics in great depch, ideally leading to the quantification of
thousands of proteins fiop lagerin the panel] This may yield tens of candidates with differential expression that are screened by targeted proteomics methads in cohorts of
maderate size (middle layer). Finally, for ane or a few of the remaining candidates, immuencassays are developed, which are then validates in large cohorts and applied

im the clinic (bottom layer) (B) Workflow for hypot hesis-free discovery proteomics (C) Targeted proteomics for candidate verification. (D) Development of immunoassays for

clinical validation and application

high sensitivity and high throughput. Even cohorts with thousands
of participants can be tested with this technology. but only for one
or a few candidate biomarkers. Such large numbers may be neces-
sary to establish specificity not only against controls but also with
respect 1o other diseases. Standard requirements include insuring
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adequate statistical power and replication in an independent popula-

tion. Today,

such clinical studies can be expensive mulli-year

emndeavors, partly explaining the paucity of new biomarkers.
Immunoassays have some inherent limitations, mostly related
to antigen-antibody recogniton. These include cross-reactivity,
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interference by background molecules such as triglycerides, and
non-linear response (“hook effect”) (Hoofhagle & Wener, 2009;
Wild, 2013). Furthermore, not all clinically important protein vari-
ants are easily recognizable by antibody-based assays. Given these
limitations, MS-based methods would be attractive alternatives in at
least some large-scale clinical trials, but this requires much more
robust, sensitive, amd higher throughput technologies than those
available today.

Ower the last decade, the proteomics community has developed
guidelines for proper development of biomarkers that discuss qual-
ity standards and emphasize the importance of selecting adequate
cohorts that ensure statistical significance of the findings as well as
specificity of potential blomarkers and thelr potential clinical appli-
cation (Luque-Garcla & MNeubert, 2007; Paulovich et al, 2008;
Mischak et al, 2010; Surinova et al, 2011; Skates & al, 2013; Parker
& Borchers, 2014; Hoofnagle ef al, 2016).

Mot surprisingly in view of the rigorous requirements of the
triangular strategy, there are few, if any. reports in which it has
been applied completely and successfully. This may also partly be
due to the fact that theee different technologies—shotgun protec
mics, targeted proteomics, and immunoassay development—are
involved. Many publications just describe the first phase or only
combine it with immunoassay verification in the same cohort
(Dataset EV1].

Among the studies with more than a few participants and with
some verification, the majority selected candidates of interest amd
performed Western blotting, ELISA, or MRM assays. A representa-
tive example is the study by Zhang & al (2012) in which depleted
plasma of 10 colorectal cancer patients versus controls was labeled
with ITRAQ and [ractionated, leading to the identification of 72
proteins. Among several up- or downregulated proteins, ORM2 was
followed up by ELISAS in 419 individuals. Since this protein is a par
of the innate immune system (like the other two upregulated candi-
dates], it is unlikely 1o be a specific cancer marker. In another study,
super-depletion, iTRAQ labeling, and fractionation identiied 830
proteins in a discovery cohort of 751 patients with cardiovascular
events and controls that had been reduced to 50 pooled samples
(Juhasz et al, 2011). The known markers CRP and fibronectin were
selected from the list of candidates and found to be significantly
upregulated in the original cohort by immunoassays against these
proteins. In a heart transplantation study, analysis of depleted and
ITRAQ-labeled plasma from 26 patients at five tme points before
and after surgery identified a total of more than 900 proteins (273
per individual; Cohen et al, 2013). MRM assays and ELISAS apainst
five medinm-abundant proteins in a partially independent follow-up
cohort of 43 individuals served o develop a computational pipeline
fior risk markers for organ rejection. In an approach of potential clin-
ical utility, depleted plasma from a mouse model of breast cancer
allowed the identification of more than 1,000 plasma proteins from
which 88 were selected for MBM assays in an Independent verifl-
cation cohort of 80 animals (Whiteaker ef al, 2011].

Rectangular biomarker strategy and plasma
proteome profiling

In the last few years, the community has substantially improved all
aspects of the workilow of MS5-based proteomics. In sample
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preparation, laborious, multi-stage preparation workilows have
been replaced by robust, single-vial processing with a minimum of
manipulation steps. This also helps with automation and increases
throughput. The sensitivity and sequencing speed of MS instru-
ments have improved severalfold. The entire LC-MS/MS system has
become much more robust, although this is still far from what will
be needed for routine clinical application. Finally, bioinformatic
analysis of the results is now statistically sound and straightforward
Lo use amd increasingly enables correlation of MS results with a wide
range of other classical clinical and additional “omics™ data.
Mustrating the power of cutting edge MSbased proteomics, cell
lines can now routinely be quantfied to a depth of more than
10,000 different proteins in a relatively short time, sometimes even
without any fractionation (Mann & al, 2013; Richards et al, 2015;
Sharma & al, 2015; Bekker-Jensen & al, 2017).

Given this technological progress of proteomics in cell line amd
Lissue samples, we asked whether one could also develop a fast and
automated workilow that would quantlfy the plasma proteome in
depth in a large number of samples (Geyer et al, 2010a). We
reasoned that this would then enable a “rectangular strategy™ in
which as many proteins as possible are measured for as many indi-
viduals and conditions as possible. In contrast to the triangular
workflow, the initial discovery cohort would be much larger, ideally
encompassing hundreds or thousands of participants, resulting in a
greater likelihood to reveal any patterns that might differentiate the
investigated groups or conditions. These larger initial numbers of
plasma proteomes would allow the discovery of statistically signifi-
cant, but small differences and changes associated with a group
of proteins. In the proposed rectangular strategy, discovery amd
validation cohorts would both be measured by sholgun proleomics
in great depth. This removes the dependency of validaton on
discovery, meaning that both cohorts can be analyzed together
(Fig 4A). Moreover, having separate cohorts allows unmasking
study-specific confounders. A further advantage of the rectangular
strategy is its ability to discover and validate protein patterns that
are characteristic of particular health or disease states, in addition 1o
single biomarker candidates, something that is unattainable with
the triangular approach.

Interestingly, an analogous change of concept has already
happened a number of years ago for genome-wide association stud-
les (GWAS). Researchers in this fleld found that joint analysis of as
many samples as possible was superior 1o a sequential pipeline
(Skol et al, 2006). In proteomics, the obvious challenge is achieving
sufficient proteomics depth in a short time, ideally without depletion
amd in a robust workilow. This goal has not been achieved at the
time of writing, but the current rate of technological improvements
promises to make it feasible in the near future. Below, we discuss
four examples of this emerging approach.

The first of these investigated a cohort of 36 monozygotic and 22
dizygotic twin pairs to determine the influence of genetic back-
ground on the levels of plasma proteins (Liu et al, 2015). The
authors established a spectral library using depleted, fractionated,
amd pooled samples amd measured their samples with data-
independent acquisiton (DIA). A total of 232 plasma samples were
then measured with 35-min gradients in a data<d ndependent mode,
leading to the consistent quantification of 1,904 peptides and 342
proteins. Interestingly, protein levels were often relatively stable
within individuals as compared to between individuoals.
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Furthermore, there were clear indications for the levels of some
proteing o be under genetic control. For instance, processes
connected to “immune response” and “blood coagulation™ tended to
be heritable, whereas those associated with "hormone response”™
did not. Although a pioneering study, the number of plasma
proteomes analysed was relatively small in view of the generality of
the research question posed. Generally, genetics studies routinely
investigate thousamds of participants o tease out subtle heritable
effects, illustrating the need for much higher throughput in clinical
proteomics.

Malmstrom o al (2016) induced sepsis in mice by injecting
5 pyogates and followed their plasma proteomes through three time
points on non-depleted, non-fractionated samples. A library of diverse
mouse tssues was emploved to support data-independent identifi
cations as well as to determine the origin of tissue damage proteins.
In this way, 2-h runs quantified an average of 786 mouse proteins,
although it should be noted that proper FDR criteria for inferring
peptide identities in the complex DIA MS/MS spedra are still being
discussed (Nesvizhskii ef al, 2007; Bruderer et al, 2017; Rosenberger
etal, 2017). Several expected categories of plasma proteins increased
during sepsis, as well as some markers associated with damage to the
vascular system. Some of the changes were related to mobi Eation of
the immune system against the pathogen, and others appeared to be
correlated with necrosis in severely affected animals.

B Molecular Systems Biolagy  13-9432 | 2017

In a workflow termed “plasma proteome profiling”, we focused
on the rapid and robust analysis of only 1 pl of undepleted plasma
from a single fingerpick (Geyer ef al, 2016a). Total gradient time
was only 20 min, enabling extensive investigation of analytical,
intra-assay, Intra-individual, and interindividual varation of the
plasma proteome. Based on the quantification of 300 plasma
protelns, about 50 FDA-approved biomarkers were covered with
label-free quantification (CV = 20%). Rapid analysis of a wide range
of samples also revealed different sets of quality markers that clearly
classified samples with evidence of red blood cell lysis, those with
partial activation of the coagulation cascade due to inappropriate
sample handling, and those with exogenous contaminations such as
kerating. Even though this study provided a useful overview of the
information content of the plasma proteome. the depth of coverage
was not yel sufficient to address low-level, regulatory plasma
proteins. A single step of fractionation yielded a quantitative plasma
proteome of about 1,000 proteins, including 183 proteins with a
reported concentration of < 10 ng/ml, however at the cost of longer
measure ment times per sample.

An improved version of the plasma proteoms profiling workilow
allowed the robotic preparation and measurement of nearly 1,300
plasma proteome samples in a weight loss study (Geyer et al,
2016b). Quadruplicate analysis of individuals captured the dynamics
of an average of 437 proteins upon losing weight and over a year of
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weight maintenance. Weight loss itsell had a broad effect on the
human plasma proteome with 93 significantly changed proteins.
Quantitative differences were often small but physiologically mean-
ingful, such as a 16% reduction of the adipocyte-secreted factor
SERFINF1. The longitudinal study design in which the individuals
sustained an average 12% weight loss for 1 year allowed capturing
the long-term dynamics of the plasma proteome and categorizing it
into proteins stable within versus between individuals. Mult -proteln
patterns reflected the lipid homeostasis system  (apolipoprotein
family), low-level inflammation, and insulin resistance. These
patterns quantified the benefits of weight loss at the level of the
individual, potentially opening up for individualized treatment and
lifestyle recommendations.

Together, these studies also highlight the advantages of longitu-
dinal over cross-sectional study designs, because the plasma
protecme tends 1o be much more constant within an individual over
time than between different ind ividuals. Furthermore, they are simi-
lar in that they use less biasprone undepleted plasma, and identify
many proteins in a given analysis time (up to 20 protei ns/min).

Regarding the question of how many proteins should be covered,
we found that a proteomic depth of more than 1,500 proteins in
undepleted plasma allows the coverage of tissue leakage proteins
such as liver-based lipoprotein recepiors and is within reach of tech-
nological capabiities that are currently being developed. Among the
first 300 highest abundant poteins, every fourth potein is a
biomarker, whereas in the next 1,200 proteins, it is only every 25™
protein (Fig 51. As there & no a priod reason that biomarkers should
have a skewed abundance distribution, this suggests thal many
biomarkers are stil to be found We believe that the real promise of
plasma proteome profiling using the rectangular strategy is that it can
discover proteins and protein patterns that have not been considered
a5 biomarkers yet. The exponential increase in the underlying LC-
MS/MS technology will stimulate a matching inorease in the number
of plasma pmoteome datasets recorded in laboratories around the
world. This will create an extensive database of plasma proteomes
and their dynamics, involving many clinical studies and individuals.
Such data could then be aggregated to build up a knowlkedge base
that connects proteome states 1o a wide diversity of “pertur bations™,
including diseases. risks. treatments, and lifestyles. At a minimum,
this appmach will reveal all the different conditions in which a given
sel of biomarkers is involved, in addition to the spedfiic context
where they were discovered. Proteome overlap between disease
conditions could reveal commonalities between them (Fig 48, upper
panel). An individual's plasma proteome profile and its dynamics
could then be nterpreted by compadng it to the global knowledge
base. This could be used to deconvolute co-morbidities and to gulde
treatment and monitor effectiveness (Fig 4B, lower panel).

standardization of the proteomic biomarker
discovery pipeline

It has been suggested that the current lack of biomarkers making
their way Into the market may be the result of varlous technical,
scientific, and political aspects including undervaluation, resulting
from inconsistent regulatory standards, and lack of evidence for
analytical validity and clinical utility (Hayes et al, 2013). To over-
come these challenges, systematic pipelines for  bhiomarker
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development have been advocated (Pavlou et al, 2013; Duffy ef al,
2015). In the context of moving from a triangular o a rectangular
strategy of biomarker discovery, it will be particularly important to
consider the following principles.

(1] Analytcal performance characteristics: Analytical validity is
the capacity of a test to provide an accurate and rellable measure-
ment of a biomarker. Establishment of analytical validity of the
plasma proteomics methodology will be key, because the same
method will ofien be carried on from discovery to application.
Detailed standards to determine analytical validity have been devel-
oped by the Clinical and Laboratory Standards Institute (CLSI)
(www.clsl.org). An overview can be found in Grant and Hoofnagle
(2014) and Jennings et al (2009). Some of these standards have
been recognized by the U.S. Food and Drug Administration (FDA)
and are accepted for bringing in vitro diagnostic test to the market
(https:/fwww accessdata fda_gov/scripts fodrh fefdocs/cistandards f
search.cim). Even though starting off with a full analytical valida-
tion conforming to FDA standards might be prohibitive in biomarker
discovery, at least some of the key criterla, such as carryover, accu-
racy, precision, analytical sensitivity, analytical specificity, and limit
of quantfication, should be tested early on. This is in line with what
we advocate in the context of the rectangular strategy and is also
in the interest of saving resources, because the step following
biomarker discovery is blomarker wvalidation, where analytical
validity will be mandatory.
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(2) Clinical performance characteristics: Clinical validity relates
o the associated diseases and clinical conditions of patlents and s
different from analytical wvalidity, which focuses on the correct
measurement of analytes targeted by the assay. According to Inter-
national Standard Organization (150) 15189 and 150 17025, valida-
tion is the “confirmation, through the provision of objective
evidence, that the requirements for a specific intended use or appli-
cation have been fulfilled”. Therefore, establishing clinical perfor-
mance Is the main goal in the validation phase of a biomarker.
Clinical performance characteristics include (i) defining normal
reference ranges by measuring cohorts of apparently healthy indi-
viduals, (i) determining clinical sensitivity, which is defined as the
proportion of individuals who have the disease and are tested posi-
tive, and (iii) determining clinical specificity, which is defined as the
proportion of disease-free individuals who are tested negative.
Derived statistics such as receiver operating characteristic (ROC)
plots are particularly helpful in assessing the clinical performance of
biomarkers (Zweig & Campbell, 1993; Obuchowski et al, 2004).

(3) Study design and pre-analytics: Careful study design amd
wellcontrolled pre-analytical conditions are key requirements at
any time during a biomarker study. With respect to study design, it
is mandatory to clearly define the clinical question and the medical
need that should be addressed by the biomarker. A common prob-
lem in blomarker studies is that samples from cases and controls
have been collected independently and are mismatched for age,
ethnicity, sex, and other factors that may or may not lead to unin-
lentional bias (Duffy et al, 2015). Methods against bias include
proper study design as well as precise and deep clinical phenotyping
of participants, using systematic classifications such as the Interna-
tonal Statistical Classificaton of Diseases (hitp: //apps who.int /clas
sifications fled10/browse/2016/en) or the human phenome ontology
(Kohler et al, 2017). In this way, if a person has multiple disease
conditions, this can be properly accounted for. Sample collection is
important as well, and it is imperative that all samples (including
cases and controls] are treated equally from blood drawing to the
analytical phase. Another critical step in many biomarker studies is
hiobanking. When employing ELISAs, we have found that storage of
protein-based biomarkers for 3 months requires temperatures of
—B0°C or below (Zander & al, 2014). Sample stability for longer
periods is only poorly investigated. However, in our experience,
shotgun proteomics has a high tolerance for variation in sample
history., because there are no protein epitopes that need to be
preserved and even partial protein degradation may be tolerable as
long as the majority of subsequently generated proteolytic peptides
remain unaltered.

The road to clinical ap plication

The current progress in plasma protecmics opens exciting novel
avenues for research and the clinic. How likely is it, given all the
aflorementioned precautions that the outlined approaches will lead
o the discovery of novel protein-based biomarkers! Amd what will
the proteomic biomarker of the future look like? A key theme in this
context is the discriminative power of a biomarker to distinguish
between the presence and absence of a particular disease state or
risk, in other words its clinical performance. Examples of currenily
used biomarkers with high specificity and high sensitivity are
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cardiac troponins, which are structural proteins  specifically
expressed in cardiomyocytes and therefore highly specific for
myocardial damage. For this reason, cardiac troponins have even
been incorporated into the universal definition of myocardial infarc-
tion (Roffl et al, 2016).

It is likely that proteomics approaches will succeed in the identifi-
cation of additional biomarkers with similar performance, at least
for certain diseases. In fact, we need to be aware that most biomark-
ers used today are either highly abundant or originate frorm a known
pathophysiological context. As a thought experiment, we have
extrapolated the ratio of the number of biomarkers relative to the
number of proteing in the high abundance range tolower abundance
protein range, which indicates the potential for several hundred
novel biomarkers, which might be accessible with appropriate tech-
nology (Fig 5). In analogy to GWAS, where a significant number of
hits turned out to be related to previously unknown pathophysiol-
ogy of the investigated disease (Holdt & Teupser. 2013; Manolio,
2013], it is guite likely that new markers, which have hidden below
the radar of previous strateges, will be identified by novel system-
atic proteomics approaches. These biomarkers may also have the
potential to improve our understamding of disease pathophysiology
not only in diagnostics but also for therapy. Note, however, that the
identified biomarkers might not always be directly involved in the
disease pathophysiology but may only be associated with it

The human genome encodes for about 20,000 protein coding
genes, which is opposed to more than 14,500 diseases classified by
an ICD code. This makes it even conceptually difficult to imagine that
one gene of protein is associated with each disease condition, as is
often implied in current efforts to find biomarkers. In contrast, the
rectangular strategy, allowing to screen large cohorts for multiple
markers, holds great promise to discover and validate protein
patterns that are characteristic of particular health or disease states.
Indeed, multi-marker combinations may achieve higher specificity
amd sensitivity compared to single markers and first tools for select-
ing accurate marker combinations out of omics data have been devel-
oped (Mazzara ef al, 2017). However, a common problem with new
biomarkers combined with existing ones is that they frequently only
lead to minor classification improvements, in particular when added
to well-performing ones (Pencina et al, 2010). Contrary to comrmon
and Intuitive assumptions, it has been shown that correlation (espe-
clally negative correlation) between predictors can be beneficial for
discrimination (Demler & al 2013). More research in this ama is
clearly warranted, and new proteomics technologies will provide the
data required for the validation of appropriate statistical methods.

Finally, how will these markers be applicable in a clinical
setting? We favor in-depth measurement of the entire plasma
proteome regardless of the cccasion, as this provides the most
complete information. Owver time, it adds to the longitudinal plasma
proteome profile that could usefully be oblained even of healthy
subjects. As mentioned above, plasma protein levels tend to gener-
ally be stable but person-specific, allowing individual-specific inter-
pretation Instead of populaton-based cutofl values. Furthermore,
co-morbidities are the rule rather than the exception in many patient
groups. These are much more easily and economically addressed by
a peneric diagnostic test such as plasma proteomic profiling rather
than a succession of individual ELISA tests. MNevertheless, there
would clearly be many situations in which a universal test will not
be appropriate because it may inadvertently uncover other
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conditions. Similar issues arise with other technologies such as
genome sequencing or imagining techniques, where individuals
may not wanl to learn about predispositions that they can do litle
about. In these cases and generally to avoid the risk of overdiagno-
sis (Hofmann & Welch, 2017), cliniclans may prefer plasma proteo-
mics tests of a more directed nature that focuses on a particular
disease context. This could be accomplished by the above-
mentioned MS techniques targeting a panel of proteins, rather than
the entire proteome.

For either whole-proteome diagnostic tests or panel-based tests,
the question arises how doctors would deal with the resulting multi-
dimensional data. Figure 6A shows the current  singlefoligo
biomarker diagnostics, which is integrated into decision-making

Molecular Systems Biology

largely based on clinical knowledge and intuition. New biomarkers
clearly hold the promise of better informed clinical decisions, but
alsp imply the risk of generating patterns exceeding the human
cognitive capacity of interpretation (Fig 68). A solution to this prob-
lerm might be the algorithmic combination of multiple biomarkers
into a quantitative panel, possibly combined with clinical metadata,
which might substantially aid clinical decision-making (Fig 6C).
Given rapid developments in “deep learning™ and “big data”, it will
be very interesting to see whether this combination can provide
powerful and unprecedented assoclations. We note that there are
already multi-parameter scores in clinical practice today. For
instance, the Child-Pugh score and the Framingham Risk Score
have each combined several blood values with patient data, to aid
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clinician’s decision in treating liver disease and cardiovascular treat-
ment, respectively, for decades. This also suggests a way how
plasma proteomics could be accepted into evidence-based medical
practice, a huge challenge given the many pararmeters and parame-
ter combinations involved, which clearly cannot all be validated
with separate clinical trials. A pragmatic alternative might be to
devise trials in which doctors randomly obtain the proteomic infor-
mation amnd associated decision support. It would then be straight-
forward to determine whether there is a significant benefit in patient
OULCOMmes.

Conclusions

Staking stock of the current practice in laboratory medicine shows
that the majority of treatment decisions are made on the basis of
blood tests amd that protein measurements are even today the most
prominent among them. Despite successfully being carried out by
the milllons every year, these assays are almost always directed
against individual proteins and the pace of imroduction of new
protein tests has slowed to a trickle.

MS5-based proteomics clearly has the potential for multiplexed
and highly specific measurements, in which protein patterns rather
than single biomarkers could be the relevant readout. Our review of
the literature revealed that past efforts were held back by the great
analytical challenges of the plasma proteome, something that is only
now giving way to exciting technological developments. We argue
that the analysis of large numbers of conditions and participants in
all stages of the discovery and validation process has the potential
to produce biomarker panels that are likely to be of clinical value.
When coupled to large knowledge bases of changes in protein
patterns in defined conditions, such a plasma proteomse profiling
strategy could in principle exploit the entire information contents of
this body fluid.

To make this vision a reality, further improvements in through-
put, depth of proteome coverage, robustness, and accessibility of
the underlying workflow are crucial. Furthermore, plasma proteo-
mics can also be externded 1o the analysis of post-translation modifi-
cations. Likewise, plasma metabolomics also uses MS-based
workilows and could routinely be integrated with plasma proteo-
mics in the future. We are confident that the required technological
developments can amd will all be achieved over time. Al least as
much of a challenge will be conceptual and “political”, as the
protecomic information deluge needs to be turned into actionable
data for the physician and the healthcare system. This will require a
dedicated and untiring commitment from all partners involved. We
believe that the promise of much more precise and specific diagnos-
tics will amply reward such effors.

Expanded View for this article is aveilable online
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The concepts and much of the workflow of Plasma Proteomics Profiling can be applied
to many other body fluids. In our laboratory we have already done this for cerebrospinal
fluid, urine, tears and saliva. In this publication, we investigate saliva, an easily
accessible body fluid with potential for clinical diagnostics. The oral cavity contains a
rich community of microorganisms, which is of great current interest as the microbiome

has a pivotal role for health and disease states.

We describe the application of our workflow, which we optimized and streamlined for
saliva, starting with a simple cotton swab for sample collection. In single run analysis,
this yielded a remarkable depth of 3,700 human proteins. Moreover, we used high pH
reversed phase fractionation for in depth characterization. This resulted in more than
5,500 identified human proteins, which is the largest body fluid proteome so far. We
further searched this data against a database of microbial organisms and found more
than 2,000 bacterial proteins, originating from more than 50 genera, with a similar
distribution between different individuals.

Next, we applied the streamlined workflow for a first ‘clinical study’ in which eight study
participants collected saliva in the morning before and after teeth brushing. This
revealed drastic quantitative changes of the oral microbiome in the different individuals.
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Abstract

Background: The oral cavity is home to one of the most diverse microbial communities of the human body and a
major entry portal for pathogens. Its homeostasis s maintained by saliva, which fulfills key functions including
lubrication of food, pre-digestion, and bacterial defense. Conseguently, disruptions in saliva secretion and changes
in the oral microbiome contribute to conditions such as tooth decay and respiratory tract infections. Here we set
out to guantitatively map the saliva proteome in great depth with a rapid and in-depth mass spectrometry-based
prateormics workflow,

Methods: We used recent improvements in mass spectrometry (M5)-based proteomics to develop a rapid
workflow for mapping the saliva proteome guantitatively and at great depth. Standard clinical cotton swabs were
used to collect saliva form eight healthy individuals at two different time points, allowing us to study inter-
individual differences and interday changes of the saliva proteome. To accurately identify microbial proteins, we
developed a method called “split by taxonomy id” that prevents peptides shared by humans and bacteria or
between different bacterial phyla to contribute to protein identification.

Results: Microgram protein amounts retrieved from cotton swabs resulted in more than 3700 guantified human
prateins in 100-min gradients or 5500 proteins after simple fractionation. Remarkably, our measurements also
quantified more than 2000 microbial proteins from 50 bacterial genera. Co-analysis of the proteomics results with
next-generation sequencing data from the Human Microbiome Projed as well as a comparison to MALDI-TOF mass
spectrometry on microbial cultures revealed strong agreement. The oral microbiome differs between individ uals
and changes drastically upon eating and tooth brushing.

Conclusion: Rapid shotgun and robust technelogy can now simultanecusly characterize the human and
microbiome contributions to the proteome of a body fluid and is therefore a valuable complement to
genomic studies. This opens new frontiers for the study of host—pathogen interactions and clinical saliva
diagnostics.
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Background

Using saliva for the diagnosis of medical conditions would
be particulady attractive because it can be collected non-
invasively and economically [1], but the complexity of the
oral cavity and the nmltiple entities contributing to its
homeostasis make this challenging. In addition to the secre-
tions of oral grands, saliva contains cells shed from the
epithelium of the oral cavity and harbors the oral micro-
biome. Promising steps towards the establishment of saliva
protein biomarkers have already been undertaken [2, 3]
However, these studies either only considered around 100
proteins with antibody-based assays or employed relatively
low throughput mass spectrometry (MS)-based proteomics
with extensive fractionation, which generally preduded
quantification [4].

Further interest in saliva has recently been fueled by the
discovery that the oral microbiome and the gut microbiome
are the most diverse ones of the human body and that they
correlate well with each other [5]. There is now compelling
evidence for a link between the human microbiome and
conditions such as obesity, allergies, and even autoimmune
diseases like multiple sclerosis [6-8]. In addition, tooth
decay and other diseases of the oral cavity are known to be
caused by bacteria but turn out to be insufficiently
explained by one spedes alone [9, 10]. Therefore, first
metagenomics and then metaproteomics studies have
already aimed to relate bacterial composition to cares inci-
dence [10, 11]. However, reprodudble identification and
oonsistent quantification of bacteria remain challenging.
Dynamic, quantitative studies would be of great help to un-
cover the functional connections between microbial com-
munities and the prevalent pathologies of the oral cavity.

During the past few vears, our laboratory has focused
on simplifying and streamlining the proteomics work-
flow, with the aim of bringing the technology closer to
clinical applications. Here we set out to characterize the
saliva proteome at the greatest depth possible while still
minimizing steps that could compromise quantification.
We also developed a rapid single-run analysis workflow,
starting from standard clinical cotton swabs and deliver-
ing results in a few hours, while retaining a quantifica-
tion depth of thousands of proteins. This allowed us to
investigate changes in the saliva proteome upon perturb-
ation in a healthy cohort. We also analyzed inter-
individual differences in the saliva proteome and quanti-
tatively addressed the long-standing question of the
degree to which the plasma and saliva proteomes are
correlated. Finally, we asked if our in-depth workflow
can characterize the oral microbiome and its dynamics
and confirmed detected species by the established
method of culturing followed by Matrix-assisted laser
desorption/ionization time of flight mass spectrometry
(MALDI-TOF MS) as well as data from next-generation
sequencing projects.
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Methods

Experimental design

We collected saliva at two different time points from
four female and four male, healthy, non-smoking indi-
viduals aged 24 to 40 vears with Caucasian backgrounds.
All subjects were asymptomatic, did not take any drugs
or antiseptics, visited the dentist regularly, and showed
no signs of inflaimmation, bleeding, or infection as
judged by a medical student (N.G.). The study was
approved by the ethics committee of the Max Planck
Society and all donors provided their written informed
consent to participate in this study and to publish the
acquired results. The first collection was immediately
after waking, before eating, drinking, or tooth brushing,
The second collection took place at 10 am., at least
30 min after the donors had eaten breakfast and brushed
their teeth. In addition, we collected three samples
immediately after one another from the same donor,
processed them in parallel, and determined the reprodu-
cibility of our workflow. Because this showed very high
reproducibility (mean B* =0.92, Additional file 1: Figure
S3b), we did not perform technical replicates in this
study but decided to use our measurement time for the
analysis of several donors and proteome states.

Protein digestion and peptide purification

Following collection, the swabs were transferred to an
Eppendorf tube containing 200 pl of lysis buffer (1 % so-
dium dodecyl carbonate (v/v), 10 mM tris (2-carbox-
vethyl) phosphine, 40 mM 2-chloroacetamide, 100 mM
Tris buffer pH 8.5), thoroughly squeezed against the
inner wall of the Eppendorf tube, and removed. We re-
producibly recovered more than 100 pg of protein in this
way as estimated by the Bradford protein assay. Sample
preparation followed essentially the in-StageTip protocol
[12]. Briefly, a total of 20 pg of protein was digested by
adding 0.4 pg trypsin and LysC to our lysis buffer and incu-
bating for 60 min at 37 *C while shaking. Following this
short digestion, we acidified the peptides to a final concen-
tration of 1 % trifluomacetic acid (TFA) and loaded them
on an SDB-RPS StageTip [13]. The filter was then washed
and peptides were finally eluted with 60 pl 80 % acetonitrile
(ACN) (viv) and 1 % ammonium (v/v), dried in a SpeedVac
concentrator, and resuspended in A* buffer (2 % ACN (v/
v), 0.1 % TFA (v/v), pH 2) to a concentration of 1 g/l

Single run and prefractionated liquid chromatography-M5S
measurement

To obtain a deep saliva proteome, we used basic re-
versed phase chromatography to fractionate our eight
waking samples prior to liquid chromatography (LC)-
MS measurement. Approximately 15 pg of peptides were
separated in an 80-min gradient on a 20-cm, 75-pm
inner diameter column that was in-house packed with
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ReproSil-Pur C,; beads (Dr. Maisch GmbH, Germany).
Concatenated fractions [14, 15] were dried in the
SpeedVac concentrator and resuspended in A* buffer to a
concentration of 1 g/l. Both the fractionated and the single
run samples were subjected to a 100-min chromatography
gradient using an EASY-nLC 1000 ultra-high pressure
system (Thermo Fisher Scientific) and an in-house-made
40-am column of the type described above. The chroma-
tography was on-line coupled to a Q Exactive HF mass
spectrometer (Thermo Fisher Sdentific) by applyving a spray
voltage of 22 kV. The MS scan resolution was set to
120,000 at m/z 200, the scan mnge to 300 to 1650 m/z, and
the maximum injection time to 55 ms. The 15 most intense
ions per MS scan were selected for higher-energy collisional
dissociation (HCD) fragmentation with an isolation width
of 1.5 m/z and were measured at a resolution of 30,000.
Dynamic exdusion was used with an exclusion time of 30 s.

Raw data processing of human proteins

The raw files were analyzed in MaxQuant [16] (version
1.5.3.15). We analyzed the single runs and the fraction-
ated samples together in order to exploit the match
between runs algorithm, which enables the identification
of peptides that were not selected for fragmentation in
one run by checking whether these peptides were se-
quenced in another run (the maximum time deviation
was 30 s of the recalibrated retention times) [17]. We
used the Andromeda search engine [18] to search the
detected features against the human reference proteome
from Uniprot (downloaded on 24 June 2015; 905 K
sequences, 3.2 million unique peptides of which 0.64
million were seven amino acids or more in length) and a
list of 247 potential contaminants [16]. Only tryptic pep-
tides that were at least seven amino acids in length with
up to two missed cleavages were considered. The initial
allowed mass tolerance was set to 4.5 ppm at the MS level
and 0.5 Da at the MS/MS level. We set N-acetylation of
proteins’ N-termini (42.010565 Da) and oxidation of me-
thionine (15.994915 Da) as variable modifications and car-
bamidomethylation of cysteine as a fixed modification
(57.021464 Da). A false discovery rate (FDR) of 1 % was
imposed for peptide-spectrum matches (PSMs) and pro-
tein identification using a target—decoy approach. Relative
quantification was performed using the default parameters
of the MaxLF(Q algorithm [19] with the minimum ratio
count set to 1.

Data analysis of human proteins

The “proteinGroups.bt” file produced by MaxQuant
was further analyzed in Perseus [version 15.2.12). Pro-
teins from the reverse database, proteins only identified
by site, and contaminants were removed. We decided to
consider all keratin type I and II proteins contaminants
because we could not exdude the possibility that their

Page 3 of 13

presence in our samples was due to skin desquamation.
Proteins were ranked according to the mean label-free
quantification (LF(Q) intensities of the fractionated wak-
ing and the postprandial samples of all donors. We per-
formed one-dimensional (1D) annotation enrichment of
the resulting logarithmized LFQ distribution for Gene
Ontology (GO) terms and Uniprot keywords with a
Benjamini- Hochberg FDR cutoff of 2 % as described
[20]. For the comparison of plasma and saliva pro-
teomes, we used triplicate plasma proteomes of two of
our saliva donors measured with 45-min HPLC gradi-
ents [21]. These six raw files were processed together
with the single run saliva files from the two donors using
the Max(Quant settings from above. Principal component
analysis (PCA) was done on the logarithmized LFQ) inten-
sities of all 16 single shot runs. The differences between
the waking and postprandial proteomes were analyzed by
filtering the list of guantified proteins for 100 % wvalid
values in all 16 single run analyses and performing a two
sided ¢-test on the logarithmized LF() intensities with a
Benjamini-Hochberg FDR cutoff of 5 % and the s0 par-
ameter set to 0.1. We determined whether the significantly
upregulated proteins at waking were enriched for certain
Uniprot keywords compared with the entire proteome
using a Fisher exact test with 2 % permutation-based FDR.
The analogous analysis was performed for the significantly
upregulated postprandial proteins.

Raw data processing of human and bacterial proteins

For the analysis of human and bacterial proteins, we
downloaded the fasta files of all named species of the
human oral microbiome database [22] with more than
five protein sequences (downloaded 24 June 2015;
1118.9 K bacterial protein sequences in total). Together
with the human sequences the resulting database con-
tained 1209.4 K protein sequences which correspond to
58.6 million unique peptides after in silico digestion and
5.9 million peptides seven amino acids or more in
length, which we considered in our MaxQuant settings.
Search parameters were essentially identical to the raw
file processing of human proteins alone, except that we
applied the split by taxonomy feature on the phylum
level and only used unique peptides for quantification.
Due to the split by taxonomy on the phylum level, pep-
tides that are part of human and bacterial proteins or
peptides that occur in proteins from two different phyla
are neglected for protein identification. This, as well as
using only unique peptides rather than razor peptides
for quantification, guarantees that peptides shared by
different phyla are not attributed to the wrong organism.

Data analysis of the oral microbiome
For creating the taxonomic tree in Fig. 4, we determined
the number of peptides that uniquely belonged to one
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species of our database and wrote this number above the
respective edge of the genus. Peptides shared by certain
genera were added to the number of the lowest taxonomy
edge shared by these genera (Operating Taxonomy Unit).
For Fig. 4 we excluded all genera that did not have at
least one unique peptide. We extended the analysis
for streptococci down to the species level. Bacterial
genus abundance was estimated by adding the ten
peptides of highest intensity per genus in analogy to
the protein quantification in [23, 24]. Genera with less
than ten peptides were exduded from quantification.

Co-analysis with whole genome sequencing data from

the human microbiome project

To compare our data with results obtained from whole
genome sequencing (WGES), protein multifasta (PEP)
was downloaded from the Human Microbiome Project
(HMP) [25]. Fractionated and single un raw files were
analyzed with the MaxQuant settings described above
apainst the human reference proteome from Uniprot
and the fasta file from HMP (3.8 million protein se-
quences, 127.3 million unique peptides). From the gen-
omic side we downloaded 764 fastq files from the HMP
(release of 2012) and trimmed them using Trimmomatic
[26] (we removed adapter as well as leading and trailing
sequences with quality lower than 10 Phred quality score;
we also did not accept reads for further analysis with
lengths less than 36 nudectides) and aligned using BWA
with default parameters [27]. A PCA of the reads per
genus of the WiGS dataset together with the top ten
peptide intensities per genus across the median of all sam-
ples from MaxQuant was performed after Z-score scaling
within each sample (Fig. 5d). We combined the body sites
“saliva”, “tongue dorsum”, “attached keratinized gingiva",
“palatine tonsils” and “throat” from the HMP for our def-
inition of mouth because these sites dustered tightly in a
PCA. Furthermore, we performed hierarchical clustering
(Euclidean distance coupled with Ward's agglomeration
method was used) on the resulting dataset and visualized
the genus abundance per sample in a heatmap (using the
R package hieatmap. 2) ( Additional file 1: Figure 51).

Microbiological processing of the samples

Together with the cotton swab collection after wak-
ing, all donors also collected whole saliva by passive
drooling into a sterile tube. Samples were processed
immediately after collection as follows. One Columbia
and one chocolate blood agar plate for the aerobic
and two Schaedler agar plates for the anaerobic culture
were plated out with 50 pl saliva each. Aerobic cultures
were incubated for 3 days at 37 °C and 5.8 % CO4,. Anaer-
obic cultures were grown under anaerobic conditions at
37 °C for a minimum of 5 days. Plates were evaluated
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visually and all morphologically different colonies were
subcultured for identification by MALDI-TOF MS.

Identification by MALDI-TOF M5

Samples were measured in duplicates according to the
standard protocol recommended by the manufacturer.
In brief, a thin layer of bacteria taken from a single col-
ony was smeared onto a polished steel target and over-
laid with 1 pl of matrix solution containing 10 mg/ml of
a-cyano-4-hydroxy-cinnamic acid in 50 % acetonitrile/
2.5 % TFA (a-HCCA portioned matrix, Bruker Daltonik
GmbH, Bremen, Germany). For measurements, a
Microflex LT benchtop instrument operated by flex-
Control 3.3 software (Bruker Daltonik GmbH, Germany)
was used. Spectra were acquired in the linear positive ion
mode at a laser frequency of 60 Hz within a mass range of
2 to 20 kDa The acceleration voltage was 20 kV, the [52
voltage was maintained at 186 kV, and the extraction
delay time was 200 ns For data analysis, spectra were
matched with the Bruker Taxonomy database version
4.0.0.1.

Results and discussion
In-depth quantification of the saliva proteome
We obtained saliva from four male and four female healthy
individuals using sterile cotton swabs as is done in routine
clinical practice (Fig. 1, "Methods”). Donors were required
to abstain from eating and drinking for at least 30 min prior
to the collection to avoid food-based contamination or dilu-
tion effects. They were instructed to wipe the vestibule of
the oral cavity, followed by the teeth and the sublingual
compartment. Around 200 pg of total protein was recov-
ered from each swab, an ample amount for repeated meas-
urement using our recently deweloped in-StageTip
digestion procedure [12]. Following an immediate digestion
for one hour and purifimtion, the resulting peptides were
separated into eight fractions with basic reversed-phase
chromatography [14, 15]. Each fraction as well as unfradio-
nated smmple was measured with a 100-min LC gradient
on a () Exactive HF mass spectrometer [28, 29]. Data were
analyzed using the MaxQuant environment [16, 19].
Across our eight donors we identified more than
54,000 sequence-unique peptides and more than 5500
proteins, both at a false discovery rate (FDR) of 1 %. A
total of 78 % of these proteins were detected in each
donor, 90 % in at least six of eight donors, and only
1.3 % were unique to single donors (Fig. 2a). Thus,
our sample collection protocol is robust and allows
comparison of thousands of saliva proteins across individ-
uals. For an individual donor, we identified a remarkable
5213 human proteins in the eight fractions—to our know-
ledge the deepest body fluid proteome recorded from an
individual to date { Additional file 1: Figure 52a). To inves-
tigate the reasons for this extensive coverage, we inspected

99



3. Publications

Grassl er al Genome Medidne (2016) 8:44

Page 5 of 13

)
1. Protein retrieval 2. IST protocol 3a. Fractionation 4. LC-MS/MS 5. Data analysis
= :
e HPLC
% F'.\"J' h'l‘ e MaxTuant
» =
Trypsin P 5
aiesion ¥ R — \
",4";'}3'\ ! _'gll:am:zmru:m_ R LY
S 80 minutes 4'
e it v
3b. Singe shot <
2 l I\ 20
= Rk I .
MS full scan '
l =4 | 2
Lysis and fl T
denaturation v E| Perseus
Mo fractionation MS/MS scan
5 minutes 75 minutes 0 minutes 100 + 20 minutes 30 minutes
Total workflow time for single run: 4 hours
Fig. 1 Workflow for ultra-deep and quantitative saliva proteamics. (1, 2} Saliva is collected with a sterile cotton swab and its proteins are denaturned,
digeded, and purified acconding to the iST pratocol [12]. (3} Depending on the desined proteome depth, samples ane either separated into eight
fractiors or directly measured in single runs. (4) Peptides are measured by liquid chromatography-tandem mass spedrometry [LC-MS/MS)
(5} MaxQuant identifies and quantifies the proteins and enables statistical analysis in the Perseus software environment The requited time
for each of the steps i indicated below each panel

the MS signal of the most abundant proteins. Unlike other
body fluids, the 15 most abundant proteins in saliva make
up only 32 % of the total proteome mass (Fig. 2b), whereas
in plasma and urine they already account for more than
90 % and 58 % of the total, respectively [30, 31].

The abundance ranked plot of the entire measured sal-
iva proteome spans a dynamic range of six orders of
magnitude of estimated absolute abundance (Fig. 2c). To
bioinformatically investigate the saliva proteome as a
function of abundance, we used 1D annotation enrich-
ment in the Perseus environment for GO terms and
Uniprot keywords [20]. “Antibacterial humoral response”
and “defense response to bacterinm” scored in the upper
part of the abundance distribution (Fig. 2c). “Extracellu-
lar space” and “Extracellular exosome” were significant
near the median, indicating that proteins making up this
category are somewhat less abundant than most of the
functional saliva proteins. The terms in the lowest abun-
dance range included typical intracellular terms such as
“gytoplasm” and “mitochondrial translation”.

There is an ongoing debate as to the extend that easily
obtainable saliva could be used to measure plasma
biomarkers by proxy [32]. We measured the plasma pro-
teomes of two of our saliva donors in singe-run triplicate
measurements [21] and compared them with the single-
run saliva proteomes of the same donors. Due to the dy-
namic range challenges, fewer proteins were identified in
plasma but more than 50 % of these were also identified

in saliva. A scatter plot of the label-free quantification
(LFQ)) intensities of the proteins [19] that were identified
in both body fluids reveals little correlation between
these values (Rzn 0.11; Fig. 2d). Over the two individuals
and all replicates, it was never higher than B = 0.20. We
also considered the possibility that particular saliva com-
ponents might show a higher correlation with the
plasma proteome and collected one saliva sample from
the opening of the duct of the parotid gland, one from
the opening of the sublingual and submandibular gland,
and one from gingiva. All these saliva proteomes re-
vealed R values below 0.1 {Additional file 1: Figure $3).
Thus, we conclude that the plasma and saliva proteomes
show little overall correlation and that saliva cannot dir-
ectly be used as a substitute for the determination of
plasma protein levels.

To make our saliva results available to the community
in a user-friendly format, we uploaded them to the
Max(QB database [33]. For each protein of interest, a
query will reveal whether it is present in our saliva
proteome, its abundance rank, estimated absolute abun-
dance, and other protein level information (Additional
file 1: Figure 52b). Additionally, peptide evidence leading
to protein identification as well as high-resolution
precursor—fragment relationships are available for
constructing targeted assays. The protein illustrated in
Additional file 1: Figure 52b is transcobalamin-1
(TCMN1), which is known to be secreted by the salivary
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glands and to protect cobalamin or vitamin B12 against
acidity of the stomach. In addition, TCN1 functions as a
transport protein in the blood, carrying excess cobala-
min to the liver for storage. Cobalamin deficiency occurs
in 20 % of individuals over the age of 60 vears [34] and
causes anemia, demyelinating disease, or both [35]. Due
to cobalamin's clinical significance, the physiological
levels of TCN1 in blood have been characterized exten-
sively in dedicated studies [36, 37], whereas here its
levels are determined in the context of our system-wide
investigation of thousands of other saliva proteins.

A deep single-run workflow

The high proteome coverage achieved using fraction-
ation motivated us to determine how much of the saliva
proteome could be retrieved in a single-run or “single-
shot” experiment [17]. We used the same 100-min gradi-
ents as before and measured saliva proteomes from the
eight individuals mentioned above, each at two different

time points, once immediately after waking before tooth
brushing and once post-prandial after tooth brushing,
Remarkably, an average of 3835 proteins could be identi-
fied and almost all of them (94 %) were also quantifiable
(Additional file 1: Fgure S4a). The results from three
swabs taken at nearly the same time and processed inde-
pendently but equally were highly similar with a mean
coeffident of determination R of 092 (Additional file 1:
Figure S54b). The difference between individuals was
somewhat higher, with an R* of 0.89, indicating that bio-
logical differences between individuals can also be
captured by single-run measurements. Plotting the CVs
for saliva proteome variation between the individuals
showed that they did not primarily depend on protein
abundance (Additional file 1: Figure S4c). This suggests
that single-run analysis should be able to determine bio-
logical differences across a wide abundance range. As
the single-shot proteome still quantifies more than
3700 proteins, which include nearly all the functional
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categories described above, very rapid and medium
throughput characterization of saliva may be possible in
the clinic.

Dynamics of the saliva proteome in a cohort

The oral cavity is subject to a variety of conditions in
daily life. Despite several studies investigating, for in-
stance, changing cortisol levels [38], to our knowledge
intraday changes in the saliva proteome have not yet
been investigated in depth.

To uncover dynamic changes, we first performed a
prindpal component analysis (PCA) on all 16 single-run
proteomes. Component 1 of the PCA separated weakly
by sex (Additional file 1: Figure 55), whereas component
2 separated the two proteome states (waking wversus
post-prandial after tooth brushing) and this difference was
even more pronounced when inspected on a person-by-
person basis (Fig. 3a). To determine the proteins respon-
sible for the PCA clustering, we filtered for 100 % wvalid
LF() values and plotted significance (5 % FDR) versus fold
change (Fig. 3b). The proteins that were significantly
upregulated at waking were enriched in the keywords
“antibiotic” (p=7.7 % 107%, enrichment factor (ef) =33)
and “antimicrobial” (p=6.63x107% ef =24). The proteins
with significantly higher abundance in the postprandial
state were enriched for the terms “thiol protease inhibitor”
and “secreted” (p=33x 107 ef =42, and p=87 = 1077,

Page 7 of 13

ef = 6, respectively). Serving as a positive control, levels of
alpha amylase (AMY1A), a protein that initiates the break-
down of complex oligosaccharides, were consistently
upregulated after the meal. Thus, the shifts in protein
abundance between our two measurement time points
demonstrate that M5-based proteomics can now robustly
capture biologically meaningfiul dynamic changes in body
fluid proteomes.

Identification of bacterial proteomes in human saliva

Due to the prominent role of the oral microbiome in
health and disease, we investigated whether we could de-
tect bacterial species in the deep saliva proteomes. For
this purpose, we downloaded the complete Uniprot pro-
tein sequences of all named oral bacterial species that
had been identified by 165 rRNA sequencing in a recent
study [22]. The resulting database was about 11 times
larger than the human one alone.

In metaproteomics it is not straightforward to assign
peptides to bacterial phyla because some amino acid se-
quences are part of proteins from different phyla. We
addressed this issue by applving the “split by taxonomy”
feature in MaxQuant, which avoids the formation of
protein groups between different phyla. Together with
the exclusive use of unique peptides for protein guantifi-
cation, this functionality prevents the same peptide from
contributing to the identification and quantification of
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proteins in different phyla (“Methods”). Split by taxonomy
id is, therefore, relevant only for protein identification but
not for peptide identification or quantification. However,
bacteria in the oral cavity can have substantial sequence
identity (Additional file 1: Figure S6a, b) [39]. As closely
related bacteria share many sequences, one therefore
needs to find the most appropriate taxonomy rank for ap-
plving the split by taxonomy id. To address this question,
we placed identified bacterial peptides on a taxonomic
tree such that the number of shared peptides is noted on
each branch (Fig. 4). These shared peptides do not allow
discrimination of the branches below. Split by taxonomy
at a certain taxonomic rank prevents peptides shared at
the ranks above from contributing to the identification of
proteins. As in the case of human and microbial proteins
above, this prevents the misssignment of peptides to
phvla from which they do not necessarily originate Pla-
cing the split at the phylum level turned out to be a good
compromise between use of peptides for identification
and quantification on the one hand and stringency
of identification of bacteria on the other hand
(Additional file 1: Figure 56) and we used this setting
for all following analyses.

The presence of bacteria in the oral cavity also raises
the question of whether proteins from them might con-
siderably impair the human pmotein gquantification
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presented above. To address this question we deter-
mined the nonredundant tryptic peptides that were
seven or more amino acids long in our human and our
oral bacteria database, which is the minimum length
considered in our analysis. Among these tryptic pep-
tides, the percentage of peptides with identical se-
quences between humans and bacteria was only 0.043 %
(Fig. 5a). Hence, the quantification bias of human pro-
teins due to bacteria is marginal. This analysis also indi-
cates that bacterial contamination of mammalian
proteome samples does not impair protein quantification
considerably as long as only peptides of seven amino
acids or more in length are considered.

Similarly, ingested proteins from food could, in
principle, be erronecusly assigned to human or bacterial
proteins. To estimate the magnitude of these effects, we
performed an analogous analysis on bovine and wheat as
representative parts of a Western breakfast diet and
determined the number of sequence identical peptides
to humans and bacteria {Additional file 1: Figure S7).
Except for bovine and human the percentage of overlap-
ping peptide sequences is far below 1 %. Due to an over-
lap of 207 % among the considered human and bovine
peptides, our in silico analysis does not exclude the pos-
sibility of quantification bias. However, proteins that
substantially differ between waking and the postprandial
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state in Fig. 3 do not include proteins from human milk
or human muscle, as would be expected if these differ-
ences were due to a bovine diet.

Remarkably, a search of our deep saliva proteome data
sets using our standard, stringent search criteria (1 % FDR

at the peptide and protein levels) resulted in the identifica-
tion of 2234 different bacterial proteins. In total, we found
evidence for 50 different bacterial genera from nine
different phyla. This represents 50 % of the named
genera identified by next-generation sequencing with
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corresponding, annotated UniProt proteomes and
therefore present in our database. The proteomic
coverage of bacterial genera is remarkably high given
the restricted database and the modest measuring
time. The distribution of peptides specific for particu-
lar genera was highly unequal, ranging from only 1 to
1069 for the genus Strepfococcus, for which Fig. 4
shows a detailed taxonomic tree down to the species
level. At least 12 different such Strepfococcus species
were present in our deep saliva proteome. The most
abundant species was Strepfococcus mitis, but we also
detected peptides unique to Streptococcus mutans, a
main contributor to dental caries formation.

Standard MALDI-TOF MS as now routinely used in
clinical microbiology found evidence of 14 different
genera in our saliva samples, with an average of six
genera per donor (“Methods”). In each case, shotgun
proteomics had also identified the genus in the same
sample without the need to cultivate the bacteria
prior to processing. A rough comparison with the
number of MS-identified peptides for genera identi-
fied by MALDI-TOF MS suggests that they were
generally the more abundant ones (Fig. 4). While the
goal in clinical microbiology is to identify the pres-
ence of one or a few pathogens responsible for an
infection, rather than a total inventory of the micro-
biome, it is nevertheless notable that unbiased and
relatively straightforward shotgun proteomics of saliva
identified these bacteria without intervening cultiva-
tion directly from a cotton swab. This identification
would presumably have been much easier still in the
case of a dominating pathogen.

The quantitative oral metaproteome
To further investigate the unexpectedly large number of
bacterial protein identifications, we plotted their cumu-
lative percentage as a function of abundance rank
(Additional file 1: Figure 58). Among the first 1000 pro-
teins only 5 % were bacterial proteins. This proportion
increased steadily until it reached 35 % for the total set
of about 6000 proteins. Expressed as the percentage of
bacterial proteins per 100 proteins, the chance to iden-
tify bacterial proteins reached more than 50 % towards
the limit of detection. This suggests that increasing the
depth of proteomic analysis would preferentially uncover
further bacterial proteins and that our coverage of the
oral metaproteome is far from saturation. As the
depth of our bacterial detection increases in the fu-
ture, it may also be possible to analyze bacterial path-
ways and how they change across different conditions
of the oral cavity.

The simultanecus detection of bacterial and human
proteomes in our samples allowed us to directly
compare them gquantitatively (Fig. 5b). The most
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abundant bacterial protein was FIWNZ3, the Moraxella
catarriialis homolog of chaperone protein HscA, which
is involved in maturation of iron-sulfur-containing
proteins. Its abundance was only 100-fold lower than
the top human protein, alpha-amylase 1. Further highly
abundant proteins of the bacterial metaproteome in-
cluded proteins with household functions, such as
ADAD9BHY1, which is a glyceraldehyde-3-phosphate
dehydrogenase, or E0Q906, a subunit of DNA polymer-
ase III. Sequence alignment in Perseus showed that
many of the very abundant bacterial proteins were highly
conserved. Therefore, peptides from different spedes
likely contribute to their abundance.

The number of significantly identified human proteins
decreased to about 4000 in the combined search space
(Fig. 5b). Thus, almost a third of the overall protein
count of 6197 is due to the microbiome. The bacterial
proteins originated from four main phyla, with 300 to
800 uniquely assigned proteins, each of which spanned
the entire abundance range (Additional file 1: Figure 59).
In analogy to the top-three-peptide method commonly
used in label-free abundance estimation of proteins
[23, 24], we defined an approximate guantitative
measure of the abundance of a bacterial genus as the
summed MS intensity of the top ten most abundant
peptides across all samples. These data were available
for nearly all genera and, as in the protein case, com-
paring just the ten highest peptide intensities should
be a better measure than summing all peptides, which
would tend to overestimate abundance differences.
The top ten peptides were determined among all peptides
of a genus, not just unigue peptides. This comes at
the disadvantage that peptides shared by two genera
could lead to an overestimation of the taxon's abundance.
Consddering only unique peptides would have put genera
with large sequence identity at a great disadvantage com-
pared with genera with relatively distinct peptide se-
guences. However, this shows that adequate quantification
of bacterial genera by their proteomes is challenging
and at the present coverage our quantitative readouts
should be considered as approximations rather than exact
guantifications.

We applied our bacterial quantification measure to
all detected genera and plotted the abundance of the
top 20 (Fig. 5c). As expected from gquantification per-
formed by 165 RNA sequencing [40, 41], Streptococcus
was the most abundant genus. The top ten genera did
not show drastic differences in abundance (the inte-
grated MS peptide signal of the top ten peptides was
4.0 % 10" for Streptococcus and 14 = 10" for Lactococ-
cus). While we believe that the gquantitative trends
between bacteria are correct, more accurate quantifi-
cation would require deeper sequence coverage of the
bacterial proteomes.
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The Human Microbiome Project (HMP) has generated
large datasets of human microbiomes using next-
generation sequencing [25]. We compared our quantita-
tive bacterial proteomes with the whole genome sequen-

cing data of the HMP in a PCA (Fig. 5d) and a heatmap of

genera against samples {Additional file 1: Figure 51). The
different body sites clustered separately in the genome
data, with our proteomic data strikingly co-localizing with
the oral microbiome. We did not expect such close co-
localization given that both datasets originate from differ-
ent samples and individuals. However, these results are in
agreement with previous findings showing that the
oral microbiome has relatively low diversity among
individuals (beta diversity) [25]. The human micro-
biome study had collected samples from different lo-
cations in the mouth, but these data cluster together
in the PCA, suggesting that the microbiome is similar
throughout the oral cavity.

Variation and dynamics of the metaproteome

Apart from estimating bacterial abundances, our data
allow a gquantitative comparison of the same genus upon
perturbation or adoss individuals. Owverall, individuals
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varied little in their bacterial diversity in accordance with
the HMP [25]. A scatterplot of two typical donors
reveals that bacterial abundances are similar for many of
them, with a strong mean R of 0.82 (Fig. 6a shows a
typical scatter plot). However, there are also genera that
varied up to tenfold.

The cumulative abundances of the top eight bacterial
genera across all donors indicate differences in total bac-
terial mass of up to threefold (Fig. 6b). Variation in the
relative abundance of genera is much smaller (Fig. 6c)
and the same analysis at the level of the five most abun-
dant phyla showed similar variation.

When aggregating males and females separately, the
two groups exhibited very compamble bacterial abun-
dances that were highly correlated (B =0.9% Fig. 6d).
Thus, proteomics indicates that sex differences in the
oral microbiome are minor. In contrast, bacterial abun-
dance changed drastically after eating breakfast and
tooth brushing. The high abundance bacterial genera
were reduced 2.5-fold on average, while the lower abun-
dant ones generally showed even stronger reduction
(Fig. 6e, f). The Strepfoceccus genus, which contains
5. mutans, was reduced by almost threefold after
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tooth brushing (Fig. 6f). It has been established that
the 5. mutans species is not the only one involved in
cavity formation [42] and it would now be interesting
to study the effects of different oml hygiene regimes on
the oral bacterial community at the proteome level.

Our deep saliva proteomes also allow combined ana-
lysis of the human and bacterial proteome changes in
response to the same perturbations. For instance, at
waking, when bacterial abundance is high, the human
saliva proteome was primed towards bacterial defense
with substantial enrichment of proteins annotated with
the Uniprot keywords “antibiotic” and “anti-microbioal”.
Given the higher abundance of the microbiome at
waking, this likely reflects the body's effort to limit
bacterial proliferation during the night when these popu-
lations are relatively undisturbed. This example illus-
trates the utility of the simultaneous detection of the
human and bacterial proteomes for the study of the
interplay of the host and microbiome.

Conclusions

Here we employed shotgun proteomics with a state of
the art workflow and identified more than 5500 proteins,
the largest number of human proteins in a body fluid to
date. Comparison with the plasma proteome established
that the quantitative protein levels do not correlate.

We showed that shotgun proteomics can now readily
determine 50 bacterial genera in saliva but the sequence
coverage of bacterial proteins and organisms suggests
that we have only scratched the surface of the oral
bacterial proteome. (Quantitative comparison to next-
generation sequencing data from the HMP [25] revealed
excellent agreement, suggesting that proteomics could
provide a wvaluable complement to sequencing-based
measurements of the human microbiome. Furthermore,
proteomics appears uniquely positioned to study the
interplay of the human immune system with commen-
surate and pathogenic bacteria on the protein level
With improving technology, our workflow might even
become attractive for clinical microbiology since bacteria
do not need to be grown and rapid bacterial resistance
testing could become possible by directly measuring pro-
teins that confer resistance to antibiotics. An important
task for the future is to better characterize and annotate
bacterial sequences in order to provide comprehensive,
non-redundant databases for bacterial proteomics.

In conclusion, the depth and relatively straightforward
nature of our worldflow should make it a powerful new
tool in the detection of biomarkers of diseases of the
oral cavity as well as facilitate complementary studies of
the microbiome in different contexts. In particular, pro-
teomics appears uniquely positioned to study the inter-
play of the human immune system with commensurate
and pathogenic bacteria at the systems level. We hope
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that such approaches will help to open new avenues in
clinical application and for micobiology in the future.
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High glucose level is the main symptom and diagnostic criterion of diabetes, an ever
growing disease that affects more than 400 million humans around the globe. Today the
gold standard for its diagnosis is to calculate the percentage of hemoglobin that has a
distinct glycation, the so called HbA1c value.

Glycation is a non-enzymatic reaction of glucose with amino groups of proteins, and its
products reflect the glucose concentration in the blood stream. Because of the known
mass that is added by the glycation reaction to lysine or arginine residues, it is possible
to detect and quantify these products by MS-based proteomics. In the past, extensive
sample preparation with affinity enrichment strategies have been used to identify
glycated peptides in plasma samples. Typically, researchers employ a dedicated
workflow to obtain the glycation information. This makes the measurement of glycation
sites very time consuming and incompatible with high throughput measurements in the
context of clinical or biomarker research. Furthermore, in the past specialized
fragmentation methods, including electron transfer dissociation (ETD) were applied,

which are only available on some MS instruments.

In this publication we show that the standard fragmentation method ‘higher-energy
collisional dissociation’ (HCD) alone can efficiently identify glycated peptides. We
establish optimal fragmentation parameters and identify early glycation products on in
vitro glycated proteins. Furthermore, we apply this workflow to plasma samples and
detect more than 100 glycation sites in single run analysis of undepleted and unenriched
plasma samples. We have now incorporated the identification of glycated peptides in
our Plasma Proteome Profiling pipeline, which gives us additional information for
biomarker research. Future research will focus on accurate quantification of glycation,

which would allow the diagnosis of uncontrolled glucose levels in all plasma samples.
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ABSTRACT: Protein glycation is a concentration-dependent
nonenzymatic reaction of reducing sugars with amine groups of
proteins to form early as well as advanced glycation (end-)
products (AGEs). Glycation is a highly disease-relevant
modification but is typically only studied on a few blood
proteins. To complement our blood proteomics studies in
diabetics, we here investigate protein glycation by higher energy
collisional dissociation (HCD) fragmentation on Orbitrap mass
spectrometers. We established parameters t© most efficiently
fragment and identify early glycation products on i vitro
glycated model proteins. Retaining standard collision energies
does not performance if the most dominant neutral loss

Glycated
proteins

101 glycation sites
an 53 profaing

Human
blood @
Single-shat

analysis
.. i

Lysis,
digestian

Q2 Exactive

Meutral loss of Hsﬂ;

of HgO; is included into the database search strategy. Glycation analysis of the entire Hela proteome revealed an unexpected
intracellnlar preponderance for arginine over lysine modification in early and advanced glycation (end-) products. Single-run
analysis from 1 uL of undepleted and unenriched blood plasma identified 101 early glycation sites as well as numerous AGE sites
on diverse plasma proteins. We conclude that HCD fragmentation is well-suited for analyzing glycated peptides and that the
diabetic status of patients can be directly diagnosed from single-nun plasma proteomics measurements.

KEYWORDS: protein 35’:&11’0}1, hfghcr-emrm' collisional dissociation, diabetes, blood plasma AGEs

B INTRODUCTION

Protein glycation, in contrast with enzyme-mediated glyco-
sylation, is produced by the nonenzymatic reaction of ghicose
molecules or other reducing sugars with amine groups of
proteins and is also known as Maillard reaction.’ Glucose first
attaches to form a Schiff base, which then rearranges into the
relatively stable Amadori 1:+:|nrrlpc:ﬂ.uu:l.,3 to which we refer here as
“early glycation product”. Glycated proteins can further react to
form advanced glycation endproducts (AGEs), or proteins can
directly react with glucose-derived reactive dicarbonyls like
methylglyoxal to form AGEs” Glucose & an essential and
omnipresent energy source in humans and is tightly regnlated
in a narrow concentration band in healthy individuals.
Drysregulation of glucmiz levels is the principal feature of
diabetes, a growing health epidemic, currently afﬁ:d:ing an
estimated 415 million individuals worldwide according to the
International Diabetes Federation (IDF) Diabetes Atlas (7th
edition). The extent of protein glycation and AGEs is increased
in proportion to the glucose ccmcentratmn, and the gl}uﬁn‘n
level of cne particular blood protein, hemoglobin, is routinely
assessed in the diagnosis of diabetes as well as for long-term
monitoring of blood glucose levels of diabetes patients. More
specifically, glycation of the N-terminal wvaline of the
hemoglobin beta-chain & assessed, a clinical parameter lmown
as HbAlc™ Because the lifespan of erythrocytes and hence
hemoglobin is around 120 days, the HbAlc value reflects the
average blood ghicose concentration of the last 6 to 8 weeks, ™
Hence the HbAlc-test is often more robust than oral ghicose

< ACS Publications @ 2016 Amescan Chemical Sacety
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tolerance tests that can be influenced by various factors such as
recent food ntke, exercise, and blood sampling time. If the
HbAlc value can be stabilized close to normal levels, patients
have a much better prognosis and less diabetic complications
than those with poorly controlled HbAlc values” Glycation
and AGEs are central to the development of typical diabetic
complications and also play a role in aging and neurc-
degenerative and cardiovascular diseases pr

The current and stn:rng focus on glycated hemoglobin and a
few more proteins is presumably due to a lack of appropriate
methods to robustly detect, characterize, and guantify other
glyc,at{:d proteins. Owing to its extreme curnpl{:xﬂ:} and
extraordinary dynamic range, blood plasma is the most
challenging proteome; 7 however, investigation of other
gljﬂ:ated proteins could help to better diagnose, monitor, and
understand metabolic conditions such as diabetes. For example,
MEASUTing several glycated proteins with different lifespans
might yield a more detailed picture of blood glucose levels of
patients over the kst days to weeks, "7 71¥

Mass spectrometry (MS) is the method of choice to
investigate post-translational proten modifications (PTMs) in
an unbiased manner.”™” Analysis of glycation in body fluids has
been challenging because of its low stoichiometry and
enrichment strategies such as boronate affinity chromatography

21,22

{BAC) are typically employed. Sample complexity is often
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additionally reduced by dzplztmg the most abundant plasma
proteins or fractionating the plasma on the peptide level. In this
way, and by pooling and fractionating a large number of diverse
samples, the most comprehensive study to date found evidence
of around 1100 glycated proteins from human phsma™ Such
elaborate protocols are useful for generating glycation site
resources; however, they are not practical for clinical tests. We
have recently reported a method called “plasma proteome
profiling”, which allows measuring bundreds of plasma proteins
from only 1 yL of plasma in a single-run format without
depletion or fractionation.”® We therefore wondered if we
could complement the patient information gained from plasma
proteome profilng with the diabetic status by determining
gljﬂ:atbn of plasma proteins.

Glyated peptides have been studied by MS/MS using
wvarious fragmentation techniques 5 Collision-induced dissocia-
tion (CID)*® in ion traps suffers from dominant neutral losses
of the labile Amadori compound, often leading to insufficient
fragmentation of the peptide backbone for identification of the
peptide sequence and the glycation site **7 Neutral loss-
triggered MS® scans partly alleviate this problem but at the cost
of lower throughput and sensitivity.™ Electron-transfer
dissociation (ETD)," a technology generally known to be
well-suited for investigating labile modifications, is very effective
for glycated peptides. Using ETD, no neutral losses and almost
complete series of c- and z-ions were observed;™ however,
ETD is only implemented on specialized mass spectrometers
and not on the benchtop Orbitrap instruments that are
routinely used in many laboratories. Initial promising results
have also been obtained for higher energy collisional
dissociation (HCD)," however, so far always in combination
with other ti:&miqur_f..ﬂ' As the benchtop Orbitrap instruments
(Q Exactive) exclusively feamre HCD fragmentation, we
therefore set out to systematically evaluate how wrll—glyutﬂd
peptides can be fragmented and analyzed with HCD-MS2 scans

alone.

B EXPERIMENTAL SECTION

In Vitro Glycation of BSA and HSA

Both bowine serum albumin (BSA) and buman serum albumin
(HSA) (human fraction 5 powder) were purchased from
Sigma-Aldrich. BSA (100 mg/mL) was incubated with 1 M
glucose in 50 mM Tris HCl buffer pH 7.5 at room temperature
for the indicated times. HSA (10 mg/mL) was incubated with 1
M glucose in the same buffer for 48 h. Both BSA and HSA were
digested with trypsin (Promega) with an enzyme to protein
ratio of around 1:20 to 1:50 in digestion buffer (2 M urea and 1
mM dithiothreitol (DTT) in 50 mM TrisHC1 pH 7.5). After 20
min, 5 mM chloroacetamide {CAA) was added to the samples;
then, they were incubated overnight to ensure a complete
digest. On the next day, the digestion was stopped by the
addition of 1 wL of trifluoroacetic acid (TFA) per sample. The
peptides were desalted and purified on StageTips (selfmade
pipet tips containing two layers of C,; material) according to
the standard protocol.™ The StageTips were stored at 4 °C
until the sample was measored. BSA and HSA samples were
eluted from the C,g StageTips with 2 % 20 uL of buffer B (80%
acetonitrile (ACN), 0.5% acetic acid). The organic solvent was
removed in 2 SpeedVac concentrator for 20 min; then, the
peptide mixture was acidified with buffer A* (2% ACN, 0.1%
TFA) to a final sample size of 5 yL.

Preparation of HelLa Digests

HeLa cells were cultured in high glucose DMEM with 10% fetal
bovine serum and 1% penicillin—streptomycin {all from Life
Technologies ). Around 5 x 107 cells were harvested and lysed
in 6 M urea/2 M thiourea. Proteins were reduced with 1 mM
DTT for 30 min at room temperatore, then alkylated with 5
mM iodoacetamide (IAA) for 20 min in the dark. Protens were
digested overnight with LysC and trypsin. The digest was
stopped by adding TFA; then, peptides were
StageTips as described above.

Preparation of Whole Blood and Blood Plasma Samples:
Protein Digestion and in-5tageTip Purification

ified on

Sample preparation for plasma was donme as previously
described™ In brief, 1 pL of plasma was mixed with 24 uL
of SDC reduction and alkylation buffer®® After protem
denaturation by boiling for 10 min, LysC and trypsin were
added in a 1:100 ratio (gg enzyme to gg protein ), and digestion
was performed for 1 h at 37 “C. Peptides were acidified by
adding 125 ul. of ethyl acetate/1% TFA, and 20 pg was
transferred to StageTips, contining two l4gauge SDB-RPS
plugs. Washing steps included two times 100 gl of ethyl
acetate/ 1% TFA and one time 100 gL of ddH.0 /0.2% TFA
The purified peptides were eluted with 60 uL of elution buffer
(80% ACN, 19% ddH,0, 1% ammonia) nto auto sampler vials.
The collected material was dried to completion using a
SpeedVac centrifuge at 45 “C (Eppendorf, Concentrator plus).
Peptides were suspended in 2% ACN, 0.1% TFA and sonicated
{Branson Ultrasonics, Ulrasonic Cleaner Model 2510) prior to
analysis.

The sample preparation procedure for whole blood included
an addiional sonication step of 15 min by a Diagenode
Bioruptor prior to digestion.

LC-MS/MS Measurement of HSA and B5SA

Samples were analyzed by nanoflow liguid chromatography
(LC—MS/MS) on an EASYnLC HPLC spstem (Thermo
Fisher Scientific) that was online coupled to either a Q) Exactive
plus or a (@ Exactive HF mass spectrometer (all Thermo Fisher
Scientific) through a nancelectrospray ion source (Thermo
Fisher Scientific). A 50 cm column with 2 75 gm inner diameter
in-house packed with 1.9 pm reversedphase silica beads
(ReproSil-Pur C,-AQ, Dr. Maisch) was uwsed for the
chromatography. Peptides were separated using a linear
gradient from 5.6 to 256% ACN in 0.1% formic acid at a
comstant flow of 250 nL/min, then directly electrosprayed into
the mass spectrometer. Overall gradient length was 1 h. The
column oven (Sonaton) was heated to 55 “C. The spray
voltage was set to 24 kV and the heated capillary temperature
was set to 250 “C.

BSA/HSA samples were measured using a data-dependent
topl0 method, and the BSA glycation time course was
measured in a topl method. Instuments were controlled by
Tune Plus 20 and Xcalibur 2.0. On the Q@ Exactive plus, full
scans (m/z 300—1650) were acquired with a resolution of
70000 at 200 m/z and an AGC trget of 3E06 ions and
fragmentation scans with a resolution of 17 500 at 200 m/z and
an AGC target of 1E0S ions. Maximum ion accumulation times
were 20 ms for the full scans and 120 ms for the fragmentation
scans. On the () Exactive HF, full scans (m/z 300—1650) were
acquired with a resclution of 60000 at 200 m/z and an AGC
target of 3E06 ions and fragmentation scans with a resolution of
16 000 at 200 m/z and an AGC target of 1E0S ions. Maxirmmm
ion accumulation tmes were 120 ms for both full scans and
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fragmentation scans. The most intense ions from the full scans
were isolated with an isolation width of 1.4 m/z and
fragmented using HCD, with 2 normalized collision energy
(NCE) of 25% (Q Exactive plus) or 2% (Q Exactive HF)
unless otherwise specified in the text. Dynamic exclusion was
enabled for a duration of 20 s

LC-MS/MS Measurement of HeLa Digests

Samples were measured on a () Exactive HF essentially as
described for BSA and HSA with the following alterations:
Gradient 11:113;!'11 was 2h, HeLa 5a.rnp1£s were measured in topls
mode, and the maximum ion accumulation time for
fragmentation scans was 25 ms.

LC—-M5/MS Measurement of Blood Plasma/Whole Blood

Samples were measured on a () Exactive HF essentially as
described for BSA and HSA with the following alterations:
Column length was 40 cm and the column oven temperature
was set to 60 “C. Gradient length was 100 min and samples
were measured using a data-dependent topl$ method Ful
scans (m/z 300-1650) were acquired with a resolution of
120000 at 200 m/z, an AGC target of 3ED6 ions and a
maximum injection time of 35 ms. An solation window of 1.5
m/z and a fived first mass of 100 m/z were used for MS/MS
scans. HCD fragmentation was performed with an NCE of 27.
MS/MS scans were acquirﬂd with a resolntion of 30000 at 200
m/z with an AGC target of 1E05 ions and a maximum injection
time of 55 ms. Diynamic exclusion was enabled for a duration of
30 s

Data Analysis

All raw data were analyzed using the MaxQuant™ software
environment (version 153.0). The software searched the
derived peak list using the builtin Andromeda search engine™
against either a bovine reference proteome downloaded from
Uniprot (http:/ /www.uniprotorg/) on February 2016 (24 481
sequences) or a human reference proteome downloaded from
Uniprot in May 2013 (88 847 sequences). In all cases, a file
containing 247 frequently observed contaminants such as
human keratins and proteases was included n the search
Trypsin was chosen as the protease with strict specificity for
cleavage C-terminal to K or R required. Up to two missed
cleavages per peptide were allowed. The minimum peptide
length was set to seven amino acids. Because of the sample
preparation, carbamidomethylation of cysteine was set as a fixed
modification (57021464 Da). N-acetylation of protem N-
termini (42010565 Da) and oxidation of methionine
(15994915 Da) were set as wvariable modifications. For
glycation/AGE analysis, the corresponding modification with /
without different neutral losses was defined in Andromeda
configuration and added to the variable modifications, as stated
in the text (Glycation: 162052823 Da, CML: 58.005479 Da,
CEL: 72.021129 Da, MG-H1:54.010565 Da, Argpyr:
80026215 Da, 3DG-H1: 144042259 Da). Al other parameters
were left at standard settings. Peptide and protein identi-
fications were filtered at a false discovery rate (FDR) of 1%.
The “match between runs” option was used where specified in
the text with a match time window of 0.7 min and an aJig;nmEnt
time window of 20 min.

Further analysis of the MaxQuant output tables was
performed using the Perseus software (version 1.5.3.0), which
is part of the MaxQuant environment Plots were produced in
R (version 2.15.3).

Data Availability

Raw data and MaxQuant output files are accessible wia
ProteomeNchange™ with identifier PXDO04182,

B RESULTS AND DISCUSSION

HCD Fragmentation of Glycated Peptides

Orbitrap mass spectrometers have proven to be powerful
instruments for protecmics in general and clinical proteomics
in particular and today are standard in many laboratories. The
widespread benchtop guadrupole Orbitrap instruments (0
Exactive family) feature only HCD as fragmentation method.
Because previous work on glycated peptides had employed
ETD or a combination of other fragmentation methods with
HCD, we here set out to investigate whether glycated peptides
can be identified solely on the basis of HCD—MS/MS scans. As
glycation is typically studied in blood plasma, we chose HSA as
a model protein, We glycated HSA in vitro, digested it with
trypsin, and measured the resulting peptides on a Q) Exactive
HF without optimizing the instument in any way. In the
MaxOuant data analysis software™ we included protein
glycation (CsHyoOy; 1620528 Dia) as a variable modification
on lysine, which is the major target for glycation by ghicose,
and on arginine. The “matching een runs” algoril was
enabled between the three technical replicates, which transfers
peptide identifications to LC—MS/MS mmns where the same
peptide was present but was not sequenced. 5u.1‘1;r1‘j.~:i:|gly, in
view of the complex experimental setup previously employed in
the analysis of glycation, already this first experiment identified
45 unique glycation sites on HSA. Most sites (42) were located
on lysine, consistent with the fact that this residue is the
primary target for this type of glycation, and only three sites
were found on arginine. Thus, the large majority of the 59
lysines in mature HSA can be glycated in vitro by incubation
with high glucose concentrations. Interestingly, UniProt lists
only 20 of the 42 lysine sites as glycated in vitro or in vivo,
while 22 of them were incrrectly annotated as “not glycated”
in UniProt (See Table 1). Of the eight reported in vivo
glycation sites, we found six in our in vitro setting, namely, K36,
K257, K341, K375, K549, and K558, and interestingly, we
tound no evidence of the two other in vive sites K305 and
K463. Instead, we did find good evidence of glycation on K460,
which has not been reported to be glycated before. In general,
the fact that we identified such a high number of sites on this
widely used model protein suggests that standard HCD-MS5/
MS scans are remarkably well-suited for the characterization of
glycated peptides.

Optimizing the Collision Energy for Glycated Peptides

In addition to backbone fragmentation, glycated peptides can
ako fragment by losing all or part of the Amadori product
ing CID and HCD frag;rm:1'|1:,.'11i1:|rr|.zu‘"I Therefore, collision
energies for HCD might be different for the identification of
glycated peptides compared with unmodified peptides, which
was suggested by the relitively low identification scores of the
glycated HSA peptides described above. Using in vitro glycated
BSA as a2 model protein, we performed LC—MS/MS runs with
six different normalized collision energies (NCEs) centered
around the standard NCE that we use in our s
proteomics experiments. Plotting the number of un ified
BSA peptides identified at each collision energy confirmed that
an NCE of 25% on the mstrument employed (Q Exactive Plas)
was indeed optimal for these peptides (Figure 1A). The same

o0z 10T 03T e it st SEO0EY
A Frogevens Bex 3016, 15, Z581 3850

112



3. Publications

Journal of Proteome Research

Tedchrical Mote

Table 1. Detected Glycation Sites on HSA®

Aming acid | Position | Status SlAcRtot:. | Maen (o= sit
SCONE inten

[ 28 nat glycated 60,398
K 36 glycated 95045
K 44 nat gycated 158.13
[ 75 in vitra ghycatad AT ES2
[3 88 ot ghycated 107.3
K a7 ot ghycated 121.13
[ 130 nat ghycated 61253
[ 160 plycated” 0475
[ 161 | inwitra glycatad BIERE
K 183 rat ghycated 58246
[ 1B6 | in witre ghycated 93371
K 158 nat gycated B4.E53
[ 205 nat ghycated 61444
[ 214 nat ghycated 47774
[ 223 | invira glycated 73.26
K 236 rat glycated 61546
[3 249 | in vitro ghycated 86014
K 257 glycated B4.T58
[3 264 nat ghycated 86440
[3 286 mat ghycated 15339
[ 00 | invitro glycated 105 65
[ 337 | in witro ghycated 7013
[ 31 Elyeated 50067
[ 347 | in witro glycated 13874
K a7s glycated 76.332 - 315972
[ 383 nat glycated 12425 27.0238
[ ECT nat ghycated 9016 272544
K 402 | in witro ghycated 0453
[ 413 Rlycated® 11193 289697
[ 436 nat ghycated 147.4 8.7922
K 437 | in wvitro ghycated 66,022 27.5527
[ 438 mat glycated 102 64
K 460 nat ghycated 60,255
K 400 nat glycated 40550 280705
[3 499 nat ghycated 11486 29.1763
K 543 nat ghycated 59,227 30,3852
3 5449 hycaned 107 &7 W
[ 558 Blycated G061 TR
K 565 nat gycated 56112 257802
K 569 | in vitre glycated 103.13 20,3973
K 557 | in witra ghyated 57054 260855
[3 580 nat ghycated 87667 266658
R 141 - 49,66 284491
R 10 glycated® 104,22
B 361 - 12234 261596

“Glycation sites ordered by position with additional information about
the amino add, the status in UniProt and/or in a recent review™ if
marked by an asterisk, the mean identification score, and the mean
log2-transformed intensity.

analysis revealed a broad optimum NCE for the number of
identified glycated peptides, centered between 20 (43 sites) and
25% (42 sites) (Figure 1B). An NCE of 40%, n contrast,
dramatically reduced identification success. Next we inves-
tigated for each identified glycation site in which of the
measurements at the different NCEs it was best localized to a
particular amino acid (localization probability) and where it
obtained the maximum database identification score. By these
measures, an NCE of 20% appeared to be optimal for both
localzation and identificaion (Figure 1C,D).

When we examined the fragmentation spectra of the glycated
peptides more closely, we found that at higher NCEs there
were typically no fragments carrying the full modificaion of
162.053 Da. Furthermore, bdons were mostly absent from the
spectra, and often a number of intense peaks in the higher mass
range were unexplained by standard backbone fragmentation
(for an example, see spectrum in Figure 2A). The Amadori
compound can lose several water molecules and formaldehyde
during CID and HCD tation, ™ resulting in residual
maodification masses of 1440423, 126.0317, 108.0211, 96.0211,
and 78.0106 Da (Figure 2B). Addiionally, we also observed
loss of the entire glucose moiety from the fragments and the
intact peptide. After annotating the spectrum in Figure 2A with
these reduced forms of glycation using the expert system for
fragment annotation,™ we were able to explain basically all of
the peaks in the spectrum (Figure 2C). Essentially the complete
series of backbone fragments was represented in at least one of
the possible modification states, with the exception of cleavage
between the N-terminal phenylabnine and the glycated lysine.
In general, while the loss of only one water molecule leading to
the 1440423 Da modification seemed to occur rarely, other
pathways appeared to be more dommant: the loss of three
water molecules lza.cli.ng to the 1080211 Da modification and
the loss of three water and one formaldehyde molecules leading
to the 780106 Da modification.

We reasoned that by taking the neutral losses into account
we might be able to use our standard collision energy of 25%
{or 27% on the ) Exactive HF) to both obtain efficient
backbone fragmentation as well as confidently identify glycation
sites. Becanse the Max(Cuant software supports only one
neutral loss per modification to avoid combinatorial explosion,
we next determined the most common neutral loss in a
systematic way. We defined seven different versions of glycation
for the search engine: without any neutral loss and with a
neutral loss of Hy0, H,0, HeDy, CHO, CHyO, and Enally
CgHyoO; corresponding to the entire modification. Inter-
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rogating the data file obtained at the MCE of 25% with the
seven different versions of glj.uﬁcm on lysine, we found that a
neutral loss of three water molecules (HgO3) leading to a
residual mass of 108.0211 Da yielded most glycation sites in
total (47 sites, see Figure 3A). This search mode also produced
most high confidence sites, for example, 44 sites with an
identification score owver 75 CHg0, with a residual
modification mass of 780106 Da, was the next most common
neutral loss, followed by loss of the entire glucose moiety. With

these optimized collision and search settings, we now found an
additional 17 high confidence glycation sites on BSA compared
with the search without neutral loss (Figure 3A). Figure 3B
illustrates that the neutral loss of three water molecules explains
the majority of peaks in the MS/MS spectra. Having established
the dominant neutral loss in HCD fragmentation at the
standard (and optimal) collision energy of 25% to be the loss of
three water molecules, we subsequently routinely included this
neutral loss in the search for glycated peptides.
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J’hppl}"mg the three water neutral loss a.nal}ﬁis to our previous residues, meaning that a remarkable 85% of all I}Eim: residues
analysis of in vitro ﬂycat-zd HSA increased the number of in the matnre HSA sequence can be ﬂ}uta:l in vitro. This can
unigue glycation sites from 45 to 54. Among those are 50 lysine be exphined by the fact that lysine as a charged amino acid is
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samples. (D) Barplot depicting the number of proteins, ghrcation sites and some major AGE sites identified in the blood plasma samples.

typically surface exposed. The number of glycated arginines
went up from three to four, and the additional site at R184 has
been reported before (see Supplementary Table 5-1).
R{:garding the previously reported in vivo gi}w:.aﬁn‘n sites, we
now additionally identify K303; however, we still find no
evidence of glycated K463

Assessing the effect of including the dominant neutral loss on
the collision energy evaluation, we found that an NCE of 25%
now resulted in the most BSA glycation sites, and the toial
number of sites ncreased from 43 to 60 (Supplementary Figure
5-1A). The best localization was now obtained with an NCE of
30%, while the highest score was clearly obtained with an NCE
of 25% (Supplementary Figure 5-1B,C). Thus, the owverall
optimal collision energy should be between 25 and 30%.
Considering that 25% is the optimal setting for unmodified
peptides and hence peptide backbone fragmentation and that
localization of the glycation site is generally not problematic, we
recommend an MCE of 25%, as also optimal for fragmenting
glycated peptides, provided the neutral loss of HgO; is taken
into account (Optimal MCEs depend slightly on the specific
model, and we find an NCE of 27% to be optimal for glycated
and nonglycated peptides on the Q. Exactive HF ref 41.)
Time Dependency of Protein Glycation
To investigate the increase in protein glycation over time in
vitro, we incubated BSA with 1 M glucose for 0-30 days
because after 30 days the equilbrium of the reaction forming
the Amadori product should have been rea * Samples
were analyzed in triplicate for gl}t.aﬁn‘n on K and R, a.ﬂnw'ing
for a neutral loss of HdD; and without matching between runs.
Interestingly, our results revealed some glycation events already
on the purchased BSA before in vitro incubation with glucose.
These are presumably in vive glycations that have remained
stably associated with the protein after purificaion from bovine
blood, processing, and storage. We identified 11 such sites in all
three replicates: K28, K36, K88, K256, K263, K266, K299,
K401, K498, K548, and K561. (Note that if comparing BSA to
HSA sites there is a plus one difference in amino acid position
starting from position 140.) Two of these (K36 and K256)
correspond to known HSA in vive sites. With longer incubation

the number of detected glycation sites increased substantially
(Figure 4A). The Figure shows a near-doubling of detected
sites already after 1 day. This means we are initially detecting
the Schiff base adduct becanse several days are needed to
convert the Schiff base to the more stable Amadoriproduct®® &
clear quantitative increase in glycation over time becomes
apparent (Figure 4B). The time course analysis reveak an
important challenge for quantification of protein glyation:
Several sites soddenly drop in intensity on day 30 after
gradually increasing before, due to the appearance of doubly
Eljﬂ:.atad species. For EX.'III'IPIE_, the sites K256 and K263 are
detected as singly glycated peptides until day 5, but at day 30
the doubly glycated peptide AEFVEVTE(gl)LVTDLTE(gl)-
VHEK that contzins both sites appears. Because the intensity of
the doubly modified peptide is reported separately, the intensity
of the two individual sites goes down (see Figure 4B).
Consistent with this, we detected a substantial number of
doubly glycated peptides on day 30 (Figure 4C), while none
had been detected on day 0. The increase in doubly glycated
peptides stems from the fact that glycation inhibits tryptic
cleavage. On day 30, almost all sites were still found on lysine,
so longer incubation times do not influence the amino acid
preferences (Figure 4C).

Analyzing Protein Glycation in Cell Lysate and Blood
Plasma

To evaluate the feasibility of detecting glycated peptides in a
complex matrix without applying any enrichment step, we
chose Hela lysate as a first test matrix. Because glucose
concentrations under standard cell alure condiions are
already around five times higher than the physiological
concentrations in the body (45 mg/ml ghcose vs 075 to
115 mg/mL in normal human bload**), we chose to not
further expose the cells to glucose. Hela lysates were trypsin-
digested in four workflow replicates, measured in single-shot 2
h measurements on a () Exactive HF and analyzed for glycation
as described before with rnatd'ling between runs. Even in the
absence of any enrichment, we identified 155 glycation sites on
94 different proteins, with a mean localization probability of
095, Surprisingly, and in stark contrast with our model plasma
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proteins, the most frequently modified amino acid was arginine
(83 sites) and not lysine (72 sites) (Figure 3A). This indicates
that in an intracellular system arginine and lysine are about
equaly reactive as targets for ﬂymtlcm by giucnsc:. Mean
identification scores of the two classes of modification were
nearly identical and manual inspection of the spectra likewise
did not reveal marked differences.

We next investigated the possible formation of AGEs in the
Hela proteome. Intracellularly, AGEs may not form by
reaction with ghicose and via the Amadori product but instead
by direct reactions with g{ucust: metabolites.* Therefore, we
additionally included some major in vive AGEs derived from
glyoxal, methylglyoxal, or 3-decxyglucosone into the analysis:
carboxymethyllysine (CML), carboxyethyllysine (CEL), meth-
¥lglyoxal-derived hydroimidazolone (MG-H, on arginine ],
argpyrimidine (on arginine), and 3-decxyglucosone-derived
hydroimidazolone (3DG-H, on arginine). We indeed found
many sites for all of those AGEs and interestingly detected
about 5 times more arginine AGEs than lysine AGEs (see
Figure 5B). This is consistent with what we found for early
glycation and with the fact that methylglyoxal is more reactive
toward arginine than lysine. ™ Unexpectedly, argpyrimidine was
the most common AGE, even though its halflife under
physiological conditions has been reported to be shorter than
that of MG-H1 (2—9 days vs 2—6 weeks).” All HeLa glycation
and AGE sites are listed in Supplementary Table 5-2. For
peptide-centric tables on the Hela and also the plasma and
whole blood data set, see Supplementary Table 5-5.

We next went on to test our method on human blood
plasma. Exploiting the high scan speed of the () Exactive HF,
we set out to detect glycation sites directly from less than a
single drop of human plasma, without depletion of high
abundance proteins, peptide fracHonation, or enrichment of
glycated peptides. We performed the plasma analysis in three
technical replicates and analyzed the purified peptides in 100
min gradients using a Topl$ method. This yielded 101
glycation sites located on 53 proteins. Similbr numbers were
obtained in a 2008 study using immunodepletion and boronate
affinity enrichment, however, with 5000 times the input
material and substantially longer sample processing times. ™"
The protein carrying the most glycation sites was albumin with
16 sites, 11 of which were identified with very high localization
scores (>099): K35, K44, K161, K214, K223, K249, K257,
K375, K402, K549, and K598, Although identified n a direct
and relatively straightforward analysis in normal human blood,
three of these sites have not been reported to be gl}w:ati:d
before according to UniProt (see Table 1). Many other typical
plasma proteins were found to be glycated, among them
apolipoprotein Al (8 sites), alpha-l-antitrypsin (4 sites),
serotransferrin (3 sites), fibrinogen alpha and beta chain (1
site each), and interestingly, many antibody chains. Overdl, the
plasma glycation sites had a mean localization probabiity of
0.95 and 2 mean absolute mass error of cnly 012 ppm
{Supplementary Table $-3). The vast majority of glycations in
plasma was found to be located on lysine (90 vs 11 sites; Figure
5C). This was similar to what we observed on the model
proteins before but very different from the glycated Hela
proteins (see Figure 5A). Furthermore, while in the cell lysate
the majority of the peptides were glycated twice, in plasma the
majority of the peptides carried only one glycation. We also
searched the plasma samples for the five AGEs mentioned
above and found at least 20 sites for each of them, with CML
and 3DG-HI being the most abundant AGEs at 34 sites cach

(see Supplementary Table 5-3). In contrast with HeLla cells,
lysine and arginine AGEs were simibrly abundant in plasma
(Figure 5D).

In a final experiment, we measured whole human blood with
all cellular components. Thus, it includes the hemoglobin beta-
chain (HBB) and its glycation site on the N-terminal valine,
which is clinically used to determine the HbAlc value from
which diabetes can be diagnosed We digested and measured
whole blood as described before for plasma and analyzed the
resulting samples for glycation on valine as well as on lysine and
arginine (always indudi.ng the nentral loss of HyO4 ). We indeed
clearly identified the modified valine in position two of HBB
(M-terminal position when considering the loss of the initiating
methionine) on the easily detectable peptide VYHLTPEEK
Additionally, we found four of the five known lysine glycaton
sites on HBB as well as two additional sites that have not been
reported before. We also detected all four known lysine
glycation sites on the hemoglobin alpha chain (HBA) plus two
additional ones (see Supplementary Table 5-4 for all
hemoglobin sites).

B COMCLUSIONS AND OUTLOOK

Blood plasma & one of the most challenging proteomes,
spanning more than 10 orders of magnitude in abundance from
the highest to the lowest known plasma protein. Furthermore,
PTMs on plasma proteins add another layer of complexity to
the inherently intricate plasma proteome. Previous investiga-
tions of glycated phsma proteins had relied on extensive sample
fractionation, enrichment of glycated peptides, and different
peptide fragmentation methods.

In the context of our interest in diabetes, we here asked if
modemn benchtop Orbitrap platforms are capable of the analysis
of glyc,at-zd peptides in plasma. This would be particularly
attractive if it could be incorporated into a routine and robust
workflow for plasma proteomics.™

We evaluated the fragmentation behavior of glycated
peptides and found that HCD-MS/MS scans with the
standard collision energy alse used by us in proteome
measurements are very welbsuited for identifying and localizing
glycation sites. This requires that the prevailing neutral loss of
H,0, is taken into account In this way, we developed a
straightforward workflow to detect glycated peptides directly
from blood plasma without applying time-consuming depletion,
fractionation, or enrichment steps. We additionally screened for
several well-lmown AGEs and found that they can also be
efficiently detected from phsma. Our study demonstrates that
straightforward plasma proteome analysis can identify early and
advanced protein glycation in this challenging body fluid as part
of the routine plasma proteome profiling workflow. Together,
this successfully establishes HCD fragmentation for the
investigation of protein glycation in general and early glycation
in particular.

It may be interesting to determine the reasons for the
marked differences in the glycation behavior of intracellular
proteomes and the plasma proteome, in particular, the
overwhelming preference for lysine over arginine glycation in
plasma in contrast with equal occwrrence in the cellular
protecme,

In the future, we phn to implement a quantification strategy
for glycated peptides from patient material because this would
allow us to directly assess the level of blood sugar control in any
individual in a proteomic study. Clearly, this would be very
challenging with label-free methods because of the required
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accuracy: Normal HbAlc values of below 57% need to be
robustly distinguished from the prediabetic range (5.7 to 6.4%)
and diabetic values of >6.5% (values according to the World
Health Organization report on the use of HbAlc in the
diagnosis of diabetes, 2011). We envision the use of isotopic
labels that can be introduced into patient material via chemical-
labeling strategies, such as iTRAQ or TMT; however, ratio
compression, which can occur with these techniques, would not
be clinically acceptable, and additional challenges connected to
the fact that trypsin or LysC do not cleave at glycated lysine
residues will have to be overcome.
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H ABEREVIATIONS

3DG-H, 3-deoxyglucosone-derived hydroimidazolone; ACH,
acetonitrile; AGE, advanced glycation end-product BAC,
boronate affinity chromatography; BSA, bovine serum albumin;
CAA, chloroacetamide; CEL, carboxyethyllysine; CID, colli-
sionvinduced dissociaton; CML, carboxymethyllysine; DTT,
dithiothreitol; ETD, electron-transter dissociation; FDR, false
discovery rate; HBA, hemoglobin alpha chain; HbAlc, clinical
parameter, glycation on the N-terminal valine of the
hemoglobin beta chain; HBEB, hemoglobin beta chain; HCD,
higher-energy collisional dissociation; HPLC, high-pressure
liquid chromatography; HSA, human serum albumin; IAA,
indoacetamide; TDF, International Diabetes Federaton; LC—
MS/MS, liquid chromatography tandem mass spectrometry;
MG-H, methylglyoxal-derived hydroimidazolone; MS, mass
spectrometry; NCE, normalized collision energy; PTM, post-
translational modifcation; SDB-RPS, poly-
(styrenedivinylbenzene) reversed-phase sulfonate; SDC, so-
divmdeoxycholate; TFA, tifluorcacetic acid
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The majority of diagnostic decisions are made on the basis of blood-based tests, and
protein measurements are prominent among them. However, current assays are
restricted to individual proteins, whereas it would be much more desirable to measure
all of them in an unbiased, hypothesis-free manner. Therefore, characterization of the
plasma proteome by mass spectrometry holds great promise for a new era of biomarker
research. However, MS-based proteomics has fallen short of the great expectations that
were initially placed in it.

This is mainly due to the tremendous technological challenges in the analysis of the
plasma proteome, in which abundance differences between different proteins are more
than ten orders of magnitude. In the past, researchers have followed a ‘triangular
workflow’ in which a small cohort is measured in the discovery phase in great depth and
differentially expressed proteins are followed up by targeted techniques in a verification
and a validation phase (Rifai et al., 2006). The depth of proteome coverage aimed for in
the first phase necessitated extensive fractionation and depletion, severely
compromising throughput and quantitative fidelity and consequently no biomarkers have
yet emerged from these approaches (Bellei et al., 2011; Keshishian et al., 2015; Li et
al., 2013; Tu et al., 2010).

In my PhD thesis | questioned the dogmas of current plasma proteomics and biomarker
research. First, we set out to radically redesign proteomic workflows with a view to make
them truly applicable to the analysis of the plasma proteome. We reduced analysis steps
to a minimum by eliminating many of them entirely and streamlining others. This resulted
in a rapid, reproducible and very robust pipeline, allowing the automated preparation

and measurement of hundreds of plasma samples.

On the basis of this new workflow, we break with previous concepts and introduce a
‘rectangular strategy’ in which large cohorts are already explored in the first phase in as
great a proteomics depths as is compatible with uncompromised throughput. An
independent cohort should be analyzed at the same time and the set of proteins that are
concordant in both sets qualify as ‘verified biomarkers’, ready for the validation stage.
Using large cohorts already in this discovery phase should have a much higher
probability to report true biomarker candidates for further investigation. We call our
concept ‘Plasma Proteome Profiling’ and believe that it has the potential to transform
the discovery of new disease indicators.
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A basis of Plasma Proteome Profiling is that we aim for the lowest possible variation in
our workflow, so as to identify even small fold changes between different study
conditions. For this purpose, our group developed and combined several concepts and
technological breakthroughs for the highly reproducible quantification of as many
proteins in as many samples as possible. The major challenge of Plasma Proteomic
Profiling lies in reaching an adequate depth of proteome coverage. As detailed below,
we started with only a few hundred proteins but have now broken through the 1,000

protein barrier in single-run, triplicate analyses.

In our first publication, we described our concept by phenotyping a small cohort (Geyer
et al., 2016a). We demonstrate that undepleted plasma from a single finger prick (5 pL
of blood) provides ample material for Plasma Proteome Profiling. | also developed
‘quality marker panels’ that allow the assessment of any cohort as well as individual
samples. Subsequently, | demonstrated the broad applicability of Plasma Proteome
Profiling by analyzing the largest number of plasma samples so far. The investigated
study was concerned with the effects of weight loss but also provided us a treasure-
trove of new knowledge about the plasma proteome in general (Geyer et al., 2016b).
Recently, we implemented novel approaches such as deep peptide libraries and BoxCar
scans (patterned fill scans with high dynamic range), which resulted in unprecedented
proteomic depth of undepleted plasma in a bariatric surgery study (Albrechtsen et al.,
2017; Kulak et al., 2017; Meier et al., 2017). In total, the bariatric surgery study quantified
1,438 proteins in a cohort of 47 individuals, with signal intensities ranging across seven
orders of magnitude. Our throughput is now reasonable for medium sized studies and
results are quantitatively accurate with around 1,000 plasma proteins per sample.

To illustrate the potential of such a proteome depth, | matched this dataset with a list of
169 approved biomarkers with known concentrations. This revealed a highly unequal
distribution of biomarkers across the abundance range: 21% of the proteins within the
300 most abundant proteins were biomarkers and only 4% of the next 1,100 proteins
(Figure 13 A). As there should be no physiological reason that biomarkers must be of
high abundance, this observation raises the hope that there may be many yet
undiscovered biomarkers that are accessible to our technology.

Repeated application of Plasma Proteomics Profiling in many projects and cohorts will
generate an extensive amount of information that can be used to construct a universal
knowledge base of the plasma proteome. In a new departure for biomarker research,
such a knowledge could be data-mined to reveal connections between proteins, to
evaluate the value of a biomarker candidate and even to phenotype humans. Apart from
the required throughput, one bottleneck of this concept is the availability of high quality,
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large-scale studies. In general, it is already difficult to obtain access to one cohort for
one disease. Finding a second or third cohort with a suitable design is possible, but in
our experience requires time and effort and also involves reconciliation of the interests
of the different partners and stakeholders.
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Figure 13: Biomarker coverage and potential for biomarker discovery of MS-based proteomics. (A)
The average MS-intensities of nearly 1,500 proteins, which were quantified in one of our Plasma Proteome
Profiling projects. Biomarkers (red dots) were annotated using information from our collaboration partners
at the Institute of Laboratory Medicine of the Ludwig-Maximilians-University and a list from (Anderson,
2010). The percentage of biomarkers in the indicated abundance rank is provided. (B) Pie chart of the
percentage of biomarkers in different abundance regions. The data for the Top 300 and Top 1,438 proteins
were generated from the above mentioned dataset and the percentage of biomarkers in the Top 5,300
proteins was determined using the data from (Keshishian et al., 2015).

Of all biomarkers, 37% are within the first 300 proteins, 25% in the next 1,100 and only
22% in the following 4,100 proteins (Figure 13 B). A total of 16% of all approved
biomarkers were not within the 5,300 plasma proteins reported by proteomics,
presumably because they are only increased in specific diseases or because they are
exceedingly low abundant.

In the future, we aim to further develop our workflow to reach greater proteomic depth
and even higher throughput. For instance, we can now target eluting peptides in real
time and at a large scale, an ability that is further helped by applying BoxCar windows.
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In a plasma proteome of 2,000 proteins, targeting of three peptides for each protein
would result in having to track 6,000 peptides. This appears to be within the
technological possibilities of our instruments and software, especially when fractionation
is employed. A main advantage of this strategy would be the guaranteed acquisition of
MS? spectra for multiple peptides per proteins, allowing very high confidence in protein
identification. ‘Global targeting’ could also be useful to individually adjust ion fill times
and optimized collision energies on a peptide by peptide basis. Several additional
strategies — for instance the combination of targeting from BoxCar windows of depleted
and fractionated plasma — could result in even deeper libraries and more targetable
peptides.

We are also considering to use isobaric mass tagging. Multiplexing could increase our
throughput dramatically in single run measurements or alternatively enable fractionation
while maintaining high throughput. Currently, we measure ftriplicates to ensure high
accuracy. In a multiplexing approach, samples are directly compared to each other in
the same spectrum, potentially obviating the need for these technical replicates. The
throughput would be increased by the product of the multiplexing factor and this factor
of three, resulting in up to 18-fold to 30-fold higher capacity (6-plex and 10-plex,
respectively). With separation into six fractions, the increase would still be 3-fold to 5-
fold, with the advantage of much greater proteome depth.

Moreover, we plan to implement a novel, highly robust and reproducible
chromatographic set up. This builds on a rapid elution concept (Falkenby et al., 2014),
extended to the formation of pre-formed gradients that already contain the sample. This
system has very short overhead times as loading and equilibration are done in parallel
and therefore has the potential to increase throughput, especially in short LC-runs. The
increased utilization rate of our MS instruments would make it attractive to revert to very
short gradients with injection-to-injection times of around 30 min. With fractionation, it
may become possible to reach a depth of 1,500 plasma proteins by using the
combination of the above mentioned developments: separation into 6 fractions and 6-
plex labeling would then result in a throughput of up to 50 plasma proteomes per day
and instrument (Figure 14). This combination of throughput and depth would surely
provide the basis to elevate plasma proteomics to the next level.
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Figure 14: Potential future technological developments in Plasma Proteome Profiling. Throughput
and depth of coverage would benefit from fractionation into an optimum of 6 fractions and further 6-plex
multiplexing and incorporation of a novel LC concept. This would be one possible path to reach an area
where effective biomarker discovery is possible (shaded in blue).

This PhD thesis has paved the way for high throughput screening of clinical cohorts and
already delivered the first large-scale proof-of-principle studies. The next step will be to
implement the above mentioned technologies, which should make it possible to tackle
clinical studies of many disease in high throughput. For this purpose, we have already
established contacts to clinicians and researchers to create a pipeline of existing studies
that can be analyzed. One of our aims is to measure the first population-based cohorts
by plasma proteomics in search of predictive biomarkers and biomarker panels. In the
past, such studies could only be assessed for the levels of candidate proteins, but
nevertheless have delivered established risk marker like the C-reactive protein (CRP)
or low density lipoprotein particle (LDL) (Ridker et al., 2002).

Application of MS-based proteomics directly to patients in the clinic would be the next
step for Plasma Proteome Profiling. In this regard, our plan is to initially use SILAC-
PrESTs for already established biomarkers for absolute and highly accurate
quantification. SILAC-PrESTs can be easily incorporated in our workflow. It is even
possible to store them on the StageTip matrix together with the digestion buffer. In a
clinical setting, the plasma would be added and the mixture would be automatically
processed to peptides.

For some clinical tests time plays a crucial role, which means that samples have to be
processed in a sequential manner rather than in batches like in our 96 sample set up.
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For this purpose, processing workflows such as those implemented in clinical high
throughput platforms can be adapted. In some case, samples have to be analyzed faster
than the 3h from sample to result that we have already demonstrated (Geyer et al.,
2016a). However, even clinical assays that have to be performed in minutes, such as
the troponin tests for myocardial infarction, are not necessarily beyond the reach of
proteomics. Immobilized trypsin can in principle digest proteins in a flow-through system
and the novel HPLC system alluded to above could start measurements within a few
minutes. It is clear that many developments would be necessary to implement
proteomics in the clinical laboratory and a complete automatized pipeline would call for

partners in industry.

A principal advantage of MS-based proteomics over immunoassays is its ability to
multiplex without interference. Immunoassays are constrained by cross-reactions of the
antibodies and their interactions with other molecules, which can result in compromised
accuracy and severely limits the number of simultaneous assays (Ellington et al., 2010).
In contrast, MS-based proteomics allows the simultaneous analysis of as many proteins
as desired for biomarker panels. Such panels could be designed to cover markers for
differential diagnosis of diseases with similar symptoms as well as quality marker panels
to exclude samples of poor quality.

Even proteins that are not included in the SILAC-PrEST mixtures are not entirely lost
because they can still be quantified in a label-free manner at lower accuracy. Such data
could be blinded and stored together with anonymized patient metadata. Alternatively,
if participants have given consent, it would be possible to use a wide range of patient
data, including treatment history amongst others, via patient unique IDs. This is already
the practice in Denmark where every person has a Civil Personal Registration (CPR)
number, which is linked to all their data. This allows ‘big data’ mining for cross-
correlations, subclassifications of diseases and identification of potential predictive
external factors like drug prescription or life style factors. Such data mining approaches
from available clinical data have already been investigated in other contexts (Beck et
al., 2016; Ellesoe et al., 2016; Jensen et al., 2014).

A seemingly minor feature of our Plasma Proteome Profiling approach is that it only uses
microliter amounts from fingerpricks instead of the large volumes of venous blood that
are routinely taken. We already demonstrated that fingerpricks result in highly
reproducible quantification and we have identified the few proteins prone to variation
due to the finger pricking process (Geyer et al., 2016a). Fingerpicks can be obtained
with much higher frequency from adults and are even appropriate for infants. Even dried
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blood spots could be analyzed. This would dramatically expand the application of
Plasma Proteome Profiling in health and disease.

In summary, this PhD thesis has developed the concept and practice of Plasma
Proteome Profiling as a fundamentally new approach in biomarker research and medical
diagnostics, leading to a system-wide phenotyping of humans in health and disease.
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