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Kurzfassung

Mit der wachsenden Verfügbarkeit von internen und externen Daten in der (Kran-
ken-)Versicherungsindustrie steigt die Nachfrage nach neuen Erkenntnissen gewon-
nen aus analytischen Verfahren. In dieser Dissertation werden vier Anwendungs-
beispiele für komplexe regressionsbasierte Vorhersagetechniken im Schaden- und
Netzwerkmanagement von Krankenversicherungen präsentiert: Patientensegmen-
tierung für und ökonomische Auswertung von Gesundheitsprogrammen, Betrugs-
und Missbrauchserkennung und Messung medizinischer Behandlungsqualität. Basie-
rend auf verschiedenen Krankenversicherungsdatensätzen wird gezeigt, dass maßge-
schneiderte Modelle und neu entwickelte Algorithmen, wie bayesianische latente
Variablenmodelle, die Geschäftsteuerung von Krankenversicherern optimieren kön-
nen. Durch das Einbringen und Strukturieren von medizinischem und versicherungs-
technischem Wissen können diese maßgeschneiderten Regressionsansätze mit Me-
thoden aus dem maschinellen Lernen und der künstlichen Intelligenz zumindest
mithalten. Gleichzeitig bieten diese Ansätze dem Businessanwender ein höheres Maß
an Transparenz und Interpretierbarkeit. In allen vier Beispielen werden Methodik
und Ergebnisse der angewandten Verfahren ausführlich aus einer akademischen Per-
spektive diskutiert. Verschiedene Vergleiche mit analytischen und marktüblichen
Best-Practice-Methoden erlauben es, den Mehrwert der angewendeten Ansätze auch
aus einer ökonomischen Perspektive zu bewerten.



Abstract

With the increasing availability of internal and external data in the (health) insur-
ance industry, the demand for new data insights from analytical methods is growing.
This dissertation presents four examples of the application of advanced regression-
based prediction techniques for claims and network management in health insur-
ance: patient segmentation for and economic evaluation of disease management
programs, fraud and abuse detection and medical quality assessment. Based on
different health insurance datasets, it is shown that tailored models and newly de-
veloped algorithms, like Bayesian latent variable models, can optimize the business
steering of health insurance companies. By incorporating and structuring medical
and insurance knowledge these tailored regression approaches can at least compete
with machine learning and artificial intelligence methods while being more trans-
parent and interpretable for the business users. In all four examples, methodology
and outcomes of the applied approaches are discussed extensively from an academic
perspective. Various comparisons to analytical and market best practice methods
allow to also judge the added value of the applied approaches from an economic
perspective.
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1 The Growing Importance of Statistics in Health Insurance

1 The Growing Importance of Statistics in Health

Insurance

Which Factors cause the Growing Importance of Statistical
Methods?

Basic statistical theory, like linear regression models [Legendre, 1805; Gauss, 1809]
or the Bayes theorem [Bayes, 1763], goes back until the late 18th century. Even
more advanced techniques, like generalized linear models [McCullagh and Nelder,
1989] have already been introduced in the 1970ies. However, the insurance industry,
especially health insurers, only started to use these methods in the last 5 to 15 years.
Many health insurers, especially in less developed markets, do not even nowadays
base their business steering on data and statistical evaluations. Reasons for the
hesitant approach of this field are – among others – regulatory restrictions, a lack of
captured data, a lack of statistical capabilities and a lack of belief in the economic
impact of analytical findings.

So, what has changed in the last decades that more and more insurance companies
address the topic, establish dedicated “Analytics” teams and rely on data-based
decisions? Figure 1 summarizes some of the most important promoting factors and
developments which lead to this change of directions.

Figure 1: Factors fostering the increasing importance of statistical methods in health
insurance.

A very important factor promoting the creation of statistical insights is the exploding
technological progress over the last two decades. This progress has caused a decrease
of prices for data storage, and thereby, an increase in data capturing and data quality.
Also, the immense increase in available computing power accelerates the generation
of statistical outcomes. While the calculation of simple regression models needed
hours and days before the year 2000, nowadays billions of lines can be processed in a
few seconds which allows real-time decision making and data-based process steering.

9



1 The Growing Importance of Statistics in Health Insurance

Of course, also the growing digitization and the hype around “Big Data” strengthen
the need for statistical methods. These developments lead to the fact that health
insurance datasets grow in two directions. First, insurance datasets get longer as
data are captured in a more granular way. Earlier, data were often only captured
on aggregated level, e.g. the number of claims in a certain age-band. Today, every
claim/invoice and even every invoice item is stored, ideally together with detailed
medical information. Due to this more granular data capturing health insurance data
can have hundreds millions of lines. With the growing availability of external data,
datasets also get wider, i.e. more (co)variates are available for statistical analyses.
For example, data from social media, health apps and trackers (“wearables”) lead to
an enormous amount of additional information. Statistics has the important function
to differentiate between relevant and irrelevant information in this vast amount of
data. Also, the combination of internal and external data requires statistical know-
how. For instance, if a one-to-one matching between internal and external data is
not possible from regulatory reasons statistical matching techniques are needed.

Also, regulators in many different countries encourage the application of statistical
methods to increase the transparency of the health (insurance) system. Important
applications in this regard are the data-based detection of fraud, waste and abuse
as well as the monitoring of medical outcome quality enabling pay-for-performance
systems. Also, the decisions of insurers in risk assessment, for example in medi-
cal underwriting, need to be transparent and comprehensible. In this context, the
combination of medical expert systems and data-based medical underwriting is im-
portant to increase the insurability of diseases and avoid discrimination of applicants.

The opportunity of competitive advantages is another important argument to in-
troduce statistical methods in health insurance. In developed markets, there often
exists a high cost pressure which causes the need to leverage saving potentials. As
outlined in this thesis, statistical methods can be used to identify both medical and
operational saving potentials. In emerging markets, the focus of health insurers is on
fast and sustainable growth. Also here, statistical applications, for example, intelli-
gent cross- and up-selling models, allow insurance companies to create competitive
advantages.

Finally, the information asymmetry present in every health insurance system is an
immanent argument for health insurers to create more data-based insights. Con-
sidering the information triangle displayed in Figure 2, medical providers are in
the strongest position as they usually know most about the health status of their
patients. Therefore, they can create so called supplier-induced demand [LaBelle
et al., 1994]), i.e. create revenues for unnecessary medical treatments. Insured per-
sons may also exploit the system in the knowledge that health insurers cover their
treatment (so-called moral hazard [Dembe and Boden, 2000]). Statistical insights
can help the insurer to make up the information edge of the other players in the
healthcare market and avoid increasing costs.

10



1 The Growing Importance of Statistics in Health Insurance

Figure 2: Information asymmetry in health insurance.

What are the Major Changes compared to Traditional Insur-
ance Reporting?

The main differences in analytical business steering based on modern statistical
approaches compared to classical (health) insurance reporting are the following:

• “From past to future”: Modern statistical approaches, also called “Predictive
Models”, are not only explaining the past, but also identify systematic patterns
which allow a prediction of future developments (e.g. prediction of burning
costs).

• “From descriptive to inductive/causal”: The goal of applying statistical tech-
niques, especially modern regression techniques, is to use all available and
relevant information contained in the data to not only receive an outcome,
but also to be able to explain the occurrence of the outcome (e.g. occurrence
of a premium loading for a specific disease in medical underwriting).

• “From portfolio to individual”: The incorporation of more (granular) data
information allows to not only analyze portfolio trends or trends in certain
subgroups of the portfolio, but also to make statements on individuals (e.g.
up-selling probability, likelihood of hospitalization).

The creation of these additional insights allows a pro-active, instead of a re-active,
steering of health insurance.

What are the Prerequisites to create Statistical Insights in
Health Insurance?

Of course, the creation of the described insights is also related to efforts and in-
vestments health insurers need to take. Figure 3 summarizes the most important
preconditions for efficiently creating quality assured statistical outcomes in health
insurance.

An indispensable asset for health insurers are their data. Focus of health insurers
should be to first exploit the full potential of their internal data before including
additional external data which can increase the efficiency of the analysis. Even for
small portfolios reliable statistical analyses are possible, as long as data quality is

11



1 The Growing Importance of Statistics in Health Insurance

Figure 3: Prerequisites for creating statistical insights in health insurance.

assured and policy and claims data are captured on granular level. Another im-
portant prerequisite for valuable statistical insights beside data completeness and
consistency is the capturing of detailed medical information. Ideally both diagnoses
and medical procedures are coded in procedure coding systems to establish compa-
rability of medical treatments. The usage of international standard coding systems,
like ICD coding for diagnoses, further increases the transferability of statistical so-
lutions between markets.

As many modern statistical approaches rely on computationally intensive algo-
rithms, powerful hardware is necessary to process also large data in adequate time.
This especially holds for applications in which time-critical decisions are based on
statistical outcomes, e.g. real-time scoring of claims. In this context, in-memory
technology plays an increasing role which allows to load huge amounts of data in
the working memory. Of course, statistical software, like R or SAS, is also needed
to implement standard approaches and new algorithms. Important in this regard is
a structured data storage in a data warehouse, which allows quick and easy access
of the data and acts as “single source of truth”.

Last but not least, a core requirement to create value out of Statistics are capable
analysts – nowadays called “data scientists” – who have enough time to work on
advanced statistical problems. Best results can be achieved if the statistical experts
work in multidisciplinary teams with subject-matter experts, like medical doctors,
actuaries or underwriters. Especially, for smaller (health) insurance companies the
recruiting of such highly sought-after resources can be a challenge, because they
compete with nearly all other industries. From an organizational perspective, it
is meaningful to build central Analytics units who serve all departments of the
insurance company instead of having separate resources for each department.

12
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Where can Statistical Methods be applied in Health Insur-
ance?

As illustrated by Figure 4, statistical methods can be applied along the whole value
chain of health insurance.

Figure 4: Fields of the health insurance value chain in which statistical methods
provide value.

In the actuarial sector, statistical methods can be used to increase the risk un-
derstanding and quantify the influence of different parameters on claims patterns.
For example, insights from GLMs or Random Forests support actuarial decisions in
pricing and reserving as well as group monitoring and underwriting. Besides, sta-
tistical cost driver analyses help to identify gaps in the existing product landscape
and design tailored new products.

In sales and marketing, internal and external data are combined to identify new sales
potentials and increase the responsiveness of campaigns by addressing the “right”
customers. Segmentation and selection models support the customer relationship
management from acquisition over up- and cross-selling offerings until churn preven-
tion and win-back contacts. Applied to a comprehensive database, even comparably
simple models can already increase the efficiency of sales and marketing activities.

Individual medical underwriting is strongly dominated by medical expert systems
translated into health questionnaires based on which a risk assessment of new appli-
cants is performed. Statistical models can complement these systems by increasing
the risk understanding of prevalent medical conditions and their interactions. In this
way, they contribute to a market- and product-specification of medical underwriting
decisions.

In the claims sector, statistical models based on medical input help to buffer ad-
verse cost trends arising from different reasons. A huge problem in many markets is
fraudulent and abusive behavior which leads to a strong increase in healthcare costs.
At the same time, poor medical quality and insufficient treatment cause immense
costs due to the occurrence of complications and related follow-up costs. Data-based

13
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provider profiling models help to pinpoint such deficits and increase the transparency
in health care. Based on statistical insights, health insurance companies can define
targeted countermeasures, e.g. a performance-oriented network management. Also,
the increasing (mainly lifestyle-driven) incidence of chronic diseases is a severe prob-
lem, especially in developed markets. Here, targeted disease management programs
are an important preventive measure to avoid uncontrolled courses of a disease and
costs. Statistical methods enable an efficient steering of these programs by targeted
candidate selection and monitoring of the economic efficiency.

What is the Goal of this Thesis?

The goal of this thesis is to demonstrate the value of bespoke statistical methods
and new algorithms using four practical examples from different health insurance
operations. The academic research presented in this thesis mainly focuses on the
question if statistical techniques which are tailored to make use of insurance-related
content knowledge provide an additional value compared to standard approaches.
The given examples are focusing on risk-related claims applications, because here
the interplay of data availability, medical and statistical knowledge contains a high
economic potential which is still relatively untapped in the health insurance industry
(see Figure 5).

Figure 5: The three core elements of applying statistical methods in claims man-
agement.

Section 2 compares various statistical techniques for individual loss prediction in
health insurance as foundation for candidate selection in disease management. Also,
regression techniques are benchmarked with different machine learning approaches.
Based on the outcomes of this analysis, Section 3 presents a comprehensive matched-
pair approach for a reliable measurement of the economic impact of disease manage-
ment programs. Statistical challenges here are to form appropriate control groups
based on all cost-relevant information and to adequately account for the uncertainty
of the measurement. Sections 4 and 5 introduce new Bayesian algorithms for fraud
and abuse detection and medical quality assessment. In both cases, latent variables
are used to structure medical and insurance knowledge and ensure – in combination
with shrinkage techniques – that all relevant information is used to optimally predict
the corresponding target variables.

14
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2 Candidate Selection for Disease Management

Programs

(refers to the publication Bayerstadler et al. [2014])

Section 2 illustrates a predictive modeling (PM) approach that enables the economic
potential of disease management programs (DMPs) to be fully exploited by opti-
mized candidate selection. The approach is based on a generalized linear model
(GLM) that is easy to apply for health insurance companies. By means of a small
portfolio from an emerging country, it is shown that the presented GLM approach is
stable compared to more sophisticated regression techniques in spite of the difficult
data environment. Additionally, it is demonstrated for this example of a setting
that the model can compete with the expensive solutions offered by professional
PM vendors and outperforms non-predictive standard approaches for DMP selec-
tion commonly used in the market.

2.1 Introduction

Chronic diseases are a major driver of rapidly rising health care costs both in devel-
oped and in emerging countries. For instance, in the U.S. the care of chronic illness
consumes approximately 75% of total healthcare expenditures which makes over 1
trillion U.S. dollars per year [Freeman et al., 2011]. Equally, chronic diseases were
responsible for 50% of the disease burden in 23 developing countries in 2005 and will
cost those countries 84 billion U.S. dollars by 2015 if nothing is done to slow their
growth [Nugent, 2008]. Disease management programs (DMPs) are usually offered
to chronic patients by public health initiatives or by specific vendors on behalf of
insurance companies. They are meant to improve the medical situation and the
quality of life of program participants as well as to reduce expenditure on benefits
in the long run. Common measures are regular phone calls to increase compliance
with medical plans and disease-specific consultancy (“tele-coaching”), and online
monitoring of disease-specific parameters, such as blood pressure, weight or insulin
level (“tele-monitoring”). The economic effect of disease management programs for
chronic patients is the subject of controversial debate in scientific literature. This
chapter describes a data-driven approach that enhances the economic benefit of
disease management programs through optimal selection of participants assuming
that the related program measures lead to a decrease of disease-related costs. The
question of how to measure and quantify this economic effect will be addressed in
Section 3.

In most cases it is neither possible nor economically viable to include all patients
with certain characteristics in a DMP. In order to exploit the full economic potential
of a DMP, it is necessary to choose the patients with the highest possible future
savings. It is assumed that the individual saving potential is mainly triggered by
two characteristics:

15



2 Candidate Selection for Disease Management Programs

a) the risk of the chronic disease moving on to an uncontrolled state in the near
future which usually results in expensive emergency treatment, hospitaliza-
tions and the development of co-morbidities,

b) the patient’s compliance with the program measures and their ability to man-
age the chronic disease by themselves.

Assumption a) is based on the finding of different researchers that disease man-
agement programs are most cost-effective if the focus is on severely ill patients
with continued high utilization and co-morbidities [Freeman et al., 2011; Meyer and
Smith, 2008]. Assumption b) is supported by different publications that prove the
cost-effectiveness of measures that enhance the self-management abilities of chronic
patients [Bodenheimer et al., 2002a; Lorig et al., 2001].

For an insurer, factor b) is hardly assessable in advance. Consequently, the focus is
on trigger point a) and it is further assumed that there is a high correlation between
the individual saving potential and the future costs of the patient. This implies
that optimal up-front identification of high-risk/high-cost patients (according to a))
and inclusion of these patients in the DMP will maximize the medical savings for
the insurer. This argumentation is in line with the results of several researchers,
such as Billings and Mijanovich [2007] or Meyer and Smith [2008]. Meyer and
Smith [2008] have analyzed a large number of peer-reviewed studies on clinical and
economic outcomes of DMPs in the U.S. and have identified key factors for the
cost-effectiveness of a DMP on this basis. As one of their major results they found
that cost-effective DMPs target the intervention to sicker patients who are likely to
generate high costs in the future. Billings and Mijanovich [2007] clearly stress the
importance of an ex-ante identification of those patients.

Hence, a method is needed that reliably predicts the future medical costs of chronic
patients. In the context of insurer-driven DMPs this prediction is usually based on
the clients’ claims history and policy data. Modern statistical prediction methods,
frequently summarized by the term “predictive modeling” (PM), promise to out-
perform the standard approaches used in the health insurance market. In order to
verify this claim and to arrive at an optimal solution for the DMP selection problem,

a) scientific literature has been studied extensively with regard to different PM
approaches for the prediction of claims costs at an individual level (see Sec-
tion 2.2.1).

b) an appropriate regression approach to predict annual claimed amounts at an
individual level has been developed (see Section 2.3).

c) the approach has been compared to other (more sophisticated) regression ap-
proaches mentioned in literature (see Section 2.3.4).

d) three professional vendors of PM solutions with different methodological back-
grounds were asked to participate in a forecasting competition and their solu-
tions were compared to the described regression approach and to two standard
selection methods frequently used in the market (see Section 2.4.1).

PM methods for cost prediction are acknowledged as state-of-the-art technology in

16



2 Candidate Selection for Disease Management Programs

the insurance industry for large portfolios and high data quality. By contrast, the
presented analyses are based upon a small dataset from a rapidly growing portfolio
in order to assess whether PM techniques also yield meaningful prediction results in
a difficult data environment (see Section 2.2.2).

Goal of this chapter is to present a model for DMP candidate selection which is

a) easy to implement for health insurers using standard statistics software,

b) stable in spite of the difficult data environment,

c) not prone to overfitting,

d) superior to standard (non-predictive) selection methods commonly used in the
market,

e) equivalent to expensive solutions of professional vendors.

The comparison of different cost prediction techniques is based on various measures
of predictive quality (see Appendix A) in order to highlight different aspects of the
DMP selection problem.

In order to show that the model is applicable for different chronic indications as well
as for general health programs, the analyses are based on a full health insurance
portfolio without pre-selection of specific chronic patients. However, some subgroup
analyses of chronic patients with different indications are presented that illustrate
the benefit of the approach with regard to indication-specific DMPs. In Section 2.4.2
the extent to which results can be generalized is discussed and the key factors for an
optimal prediction in the context of insurance data are illustrated. In addition, the
outcome of another vendor test which has been carried out based on a pre-selected
group of chronic patients is summarized.

2.2 Background

This chapter outlines the growing importance of PM methods for the (health) in-
surance industry and gives an overview of related literature with a special focus on
the underlying cost prediction problem (see Section 2.2.1). Furthermore, the test
dataset used for the comparison of methods is described and some of its character-
istic properties are illustrated (see Section 2.2.2).

2.2.1 Literature on Relevant Predictive Modeling Approaches

Statistical regression models are a well-known and frequently used tool in order to
analyze the influence of multiple covariates on an outcome variable and to predict
future realizations of this variable. An important advantage of these models is the
incorporation of the variability in the data which permits the testing of hypothe-
ses as well as the construction of confidence and prediction intervals. Such models
are also increasingly applied in the insurance industry [Haberman and Renshaw,
1998]. Especially in the U.S. market, predictive modeling techniques are used for
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2 Candidate Selection for Disease Management Programs

risk evaluation/pricing, the management of sales activities and medical manage-
ment, usually based on large high-quality datasets with long member history. There
exists hardly any scientific literature on the application of PM techniques to small
health insurance portfolios under difficult conditions. This chapter demonstrates
the benefit of classical PM techniques applied in such a situation. Goal of the model
is the prediction of annual claimed amounts per insured person for an optimal DMP
candidate selection. Of course, the same model can also be used for other purposes
like actuarial risk evaluation.

A challenge in predicting annual claimed amounts arises from the characteristic
distributional form of this attribute. Simple linear regression models assume that
the target variable (asymptotically) follows a normal distribution given all covariates
included in the model. The distribution of annual medical costs, however, has
several properties that conflict with this normality assumption (see the distribution
of individual claimed amounts in the test dataset, left plot of Figure 6):

• The range of possible values of annual claimed amounts is restricted to non-
negative numbers.

• A large proportion of annual claimed amounts is equal to zero.

• The distribution of annual claimed amounts is highly right-skewed and non-
symmetric.

• The right tail of the distribution is very long.

Figure 6: Histograms showing the distribution of individual annual claimed amounts
(left, truncated at 1,500 units of the national currency) and log-transformed annual
claimed amounts (right) in the test dataset (observation period 1995–2008).

A large number of different approaches have been proposed to account for these
properties of claims data. Diehr et al. [1999], Buntin and Zaslavsky [2004] and Pow-
ers et al. [2005] give an an overview of methods proposed in scientific literature. A
common approach to dealing with the distributional form of claims data is to nor-
malize the target variable y by an appropriate transformation and to subsequently
apply linear models. Especially the log-transformation log(y + 1) (log denotes the
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natural logarithm to the base e) is frequently used [Duan et al., 1983; Manning, 1998;
Manning and Mullahy, 2001]. Veazie et al. [2003] recommend using the square root
of y to account for the non-normality of the response variable.

Even though the log(y+ 1)-transformation widely normalizes the distribution of an-
nual claimed amounts, a large proportion of zeros in the target variable can still dis-
turb the assumption of normality (see the individual log-transformed annual claimed
amounts in the test dataset, right plot of Figure 6). In order to deal with this chal-
lenge, different authors apply two-stage models based on the law of total expectation
[Duan et al., 1983; Mullahy, 1998; Blough et al., 1999; Powers et al., 2005]. These
models separately predict

• the probability of having at least one health claim and

• the expected amount of health expenses given the fact that the member has
at least one claim.

Duan et al. [1983] extend this approach to a four-stage model differentiating between
inpatient and outpatient cases.

Generalized linear models (GLMs) [McCullagh and Nelder, 1989] are a more general
regression approach to explain and predict non-normally distributed outcome vari-
ables that frequently occur in claims data (see Section 2.3.2 for more details on the
structure of GLMs). De Jong and Heller [2008] give a broad overview of possible
applications of GLMs to insurance data in general. Frees and Valdez [2008] present
a hierarchical three-stage approach using different GLMs to reliably predict auto-
mobile claims. Blough et al. [1999] and Buntin and Zaslavsky [2004] apply GLMs
in the health insurance context to predict annual medical expenses. They also con-
sider the more flexible quasi-likelihood approach based on Wedderburn [1974] which
relaxes the distributional assumptions of GLMs.

An important assumption of GLMs is the independence of observations, which no
longer holds if claims data are observed over a longer period of time. More pre-
cisely, there may exist a serial correlation between the annual claimed amounts of
the same member. To account for this correlation, statistical theory basically offers
two approaches. The marginal or GEE approach (generalized estimating equation)
is based on the additional specification of a so-called working covariance that reflects
the intra-individual correlation structure [Liang and Zeger, 1986]. The idea of the
conditional or GLMM approach (generalized linear mixed model) is to incorporate
individual-specific random effect parameters in the linear predictor of a GLM [Mc-
Culloch and Searle, 2001]. Frees et al. [1999] and Antonio and Beirlant [2007] have
successfully applied the GLMM methodology to insurance/claims data. Yau et al.
[2002] propose a two-stage approach using, first, a binomial GLMM to estimate the
probability of observing an annual claimed amount greater than zero. A gamma
GLMM is then applied to estimate the expected annual claimed amount given that
it is positive.

Newhouse et al. [1989] focus on the right-hand side of the regression equation and
identify health measures (based on diagnoses) and other attributes having a high
predictive value for utilization data. Similarly, Lamers [1999] describes indicators for
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chronic conditions based on pharmacy claims and derives “pharmacy cost groups”
that can be used as covariates in a predictive model for medical expenses.

Beside regression models, further statistical techniques, like Neural Networks [Rip-
ley, 1996] and Random Forests [Breiman, 2001], are increasingly used by insurance
companies. These methods can be applied in many different fields of insurance
business, such as cost prediction, fraud detection, treatment management and cus-
tomer relationship management. Some publications have assessed the benefit of
these approaches for insurance companies [Viaene et al., 2002; Francis, 2001, 2003].
The main reasons for the increasing attractiveness of these approaches is that they
overcome some well-known shortcomings of traditional methods, like the automated
detection of interactions between covariates [Kolyshkina et al., 2004]. However, a
crucial drawback of these techniques is that, unlike regression models, they remain
a black box to the user. Moreover, such methods can tend to overfitting if they
are applied to small datasets [Freitag, 2002]. Additionally, regression techniques are
easy to implement in all kinds of standard statistics software, also by less experi-
enced users. For these reasons, the focus of the following methodology section (see
Section 2.3) is to develop an optimal solution for the DMP selection problem. The
chosen regression model is compared to various other, partly not regression-based
prediction techniques in the results section (see Section 2.4).

2.2.2 Overview of the Data Environment

The dataset used for model development and comparative analysis was provided by
a private insurance company in an emerging country. Due to electronic invoicing,
the data quality is excellent. The prediction of medical expenses is exacerbated by
a considerably small, but rapidly growing portfolio and by the high and unstable
medical inflation rates that are typical for an emerging market (see Figure 7).

The original dataset consists of insured members who were enrolled between 1 Jan-
uary 1995 and 31 December 2009. Out of this group, all members who were enrolled
on 1 January 2009 or later and all members who were no longer under risk on 31
December 2009 were excluded. As the provision of the full dataset to any external
vendor was not possible, a random sample of the remaining members was drawn.
All analyses presented in this chapter are based on this sample. The random sample
was generated by allocating uniformly distributed random numbers between 0 and 1
to all members (using SPSS random number generator) and excluding all members
with a value greater than 0.4. In this way, 39.76% of all members in the portfo-
lio have been selected into the random sample. In order to check whether random
sampling was successful, several tests comparing the distribution of important pa-
rameters (e.g. medical costs, age, diagnosis groups, . . .) between the random sample
and the full dataset were performed. The sample comprises 9,150 members who have
submitted 423,162 claims in the observation period (1995–2008). The development
of the model and the vendor test are exclusively based on claims and policy data
between 1995 and 2008 for the members in the random sample. The claims data for
the year 2009 were held back as a test sample for final evaluation of results.
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Figure 7 shows the average annual claimed amounts per member in the observation
period (1995–2008, solid line) and in the prediction year 2009 (dotted line) for
all members within the random sample. The alternating gradient of the graph
shows the unstable development of annual medical inflation, which was 10.31% on
average between 1995 and 2009. In total, the average medical costs per member
almost quadrupled between 1995 and 2009 (up by 394.86%). Figures need to be
handled with care until the year 2000 as they are based on less than 1,000 insured
members. Table 1 illustrates the strong increase in members under risk within the
observation period. Accordingly, there are many patients with a short data history,
which exacerbates the prediction. Only 20% of the patients were under risk for more
than 5 years and only 40% for more than 2 years.

Figure 7: Average annual claimed amounts per member in units of the national
currency (1995–2009).

Year Members under risk
1996 63
1997 255
1998 392
1999 717
2000 882
2001 1,139
2002 1,400
2003 1,797
2004 2,263
2005 2,685
2006 3,652
2007 4,629
2008 6,606
2009 9,150

Table 1: Number of members under risk in the random sample as at 1st January of
the corresponding year.

The distribution of age and gender within the random sample is illustrated by the
population pyramid in Figure 8. It shows that there is a slight preponderance of
male members throughout all age groups. Besides, the average age in the portfolio
is quite low compared to the portfolios of most European health insurers.
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Figure 8: Population pyramid of all members in the random sample.

The available dataset additionally includes the following information:

Information on member level:

• Age and gender

• Country of residence

• Type of employment

• Relation to insured person (e.g. co-insured spouse, child, . . .)

• Insurance plan (defining the individual cover for each member)

Information on invoice line/claim level:

• Type of procedure (e.g. CPT or service code)

• Diagnosis (using ICD-9 codes)

• Type of provider (e.g. pharmacy, general practitioner, hospital, . . .)

All these factors have a potential impact on the annual claimed amount to be pre-
dicted. In order to incorporate them in the predictive model for DMP selection,
various data transformations of raw data had to be performed which are described
in Section 2.3.3.

2.3 Methodology

In the following, the criteria used for model selection and calibration (Section 2.3.1)
in order to identify the best model for DMP participant selection among different
regression models are defined. Furthermore, a short introduction to the theory of
the selected model (see Section 2.3.2), a specific GLM, is given. In Section 2.3.3,
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the construction of model covariates out of the raw data information on potential
influence factors is described. In order to avoid overfitting caused by selecting too
many covariates, a variable selection approach that identifies relevant influencing
factors is illustrated. Finally, the selection of the GLM is constituted by comparing
it to several other (more complex) regression approaches with regard to the criteria
defined (see Section 2.3.4).

2.3.1 Criteria for Model Selection and Calibration

In order to find the optimal model/model calibration and to analyze the stability of
the model at the same time a re-sampling approach (see Figure 11 in Section 2.4)
according to the principal idea of predictive modeling has been used: detect system-
atic patterns in past data that explain the behavior of the target variable and apply
these patterns in order to predict future values of the target variable.

Following this principle, the original sample was split into a training sample for
model calibration and a test sample for model validation. This procedure is meant
to avoid overfitting to the training data, i.e. to filter out systematic patterns in
the data. Two re-sampling methods that are frequently used for the optimization
of predictive models are cross validation and bootstrapping [Good, 2005]. Cross
validation methods split the full sample into k equal parts in order to iteratively
train different models using k − 1 parts as a training sample and the missing k-
th part as a test sample. Similarly, bootstrapping methods iteratively construct
training samples by drawing with replacement out of the full sample and using the
non-selected elements (out-of-sample elements) as a validation sample.

The data information in 2009 has only been used for a comparison to the vendors’
solutions and the standard methods, but not for model selection or calibration.
Consequently, the training models are constructed based on the data information
from 1995 to 2007 of all members in the random sample who were enrolled before
1 January 2008 (n = 6,606). The real claimed amounts in 2008 were held back for
validation purposes. The models were optimized based on different predictive quality
measures (see Appendix A) comparing the actually observed claimed amounts in
2008 with the predicted values. In order to reduce the effect of single observations
with high leverage and to receive a model that can be transferred from the random
sample to the whole portfolio, a bootstrapping approach was applied: 100 bootstrap
samples at member-level were drawn from the remaining 6,606 members and used to
predict the claimed amounts in 2008 (out-of-bag-sample). As with the construction
of the original random sample, SPSS’s random selection algorithm was used for
re-sampling. Beside the control of overfitting, the re-sampling approach permits
analysis of the stability of prediction models by considering the variance of the
predictive measures between the re-samples.

23



2 Candidate Selection for Disease Management Programs

2.3.2 Basic Structure of the Selected Model

The starting point for the analysis was a classical linear model assuming a normal
distribution for the target variable y given the vector of covariates x. This model,
however, showed an insufficient adaptation to the training data (see Section 2.3.4)
due to the specific distributional form of annual claimed amounts (see Section 2.2.1).
Consequently, more complex structures including generalized linear models (GLMs),
different two-stage approaches, Generalized estimating equation models (GEEs) and
generalized linear mixed models (GLMMs) were assessed.

GLMs extend the concept of linear models by relaxing the assumption of normality
(y|x may follow any distribution from the exponential family) and by introducing a
link function g. The model equation is then defined by

g(y) = x′β (1)

where y is the target variable, x = (1, x1, . . . , xp)
′ a set of covariates or predictors and

β = (β0, β1, . . . , βp)
′ the vector of unknown regression parameters that is estimated

by an iterative numeric algorithm.

A prediction y∗ can be obtained by plugging in the estimation β̂ into the regression
equation where x is replaced by the corresponding covariate information x∗:

y∗ = g−1(x∗′β̂). (2)

To determine the optimal link function for the prediction model, different distri-
butional assumptions for y|x (normal and gamma distribution) and different link
functions g (identity, log and inverse) were tested using the re-sampling approach
described. In the process, it turned out that a GLM that assumes a normal distri-
bution for y|x and uses the logarithmic function g(y) = log(y) as a link function
yields the most accurate predictions for 2008 (see Section 2.3.4). In order to ac-
count for annual claimed amounts equal to zero in the observation period the link
function was slightly modified to g(y) = log(y + 1), which avoids the exclusion of
these observations.

The aim of the model is to predict the claimed amount yit for the individual i
(i = 1, . . . , n) in a future period t for which no covariate information xit is available.
For this purpose, all preceding claims information was aggregated at member-year
level assuming that the claimed amount in t depends on the average predictor values
from all previous years since the enrolment year of the member xi,tenrolled , . . . ,xi,t−1

(so-called mean-lag approach).

In this setting the independence of the observations yi,tenrolled,...,yi,t−1
for the same

member i is questionable and an approach which reflects the intra-individual cor-
relation (see Section 2.2.2) is preferable. Accordingly, different GEEs with various
assumptions on the structure of the intra-individual correlation (AR(1), exchange-
able and unstructured) as well as different GLMMs were tested. The GEEs yield
similar prediction results like the GLMs. The (small) differences arise from the fact
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that smaller standard errors lead to another linear predictor after the variable se-
lection process described in Section 2.3.3). Due to the fact that GLMs are easier
to apply (for example, there is no automated variable selection approach for GEEs
implemented in standard statistics software in comparison to GLMs) the simpler
model structure was chosen. In contrast to GEEs, GLMMs yielded a substantially
worse prediction result (see Section 2.3.4).

Though the GLM approach does not directly reflect the intra-individual correlation
included in the annual claimed amounts, this structure was indirectly accounted
for by including “mean-lags” for annual inpatient and outpatient costs in the linear
predictor. This means assuming that the claimed amount for an individual i in year
t yit directly depends on the previous claimed amounts yi,tenrolled , . . . , yi,t−1. This
approach also helps to control the strong medical inflation described in Section 2.2.2
and clearly improves the prediction results.

2.3.3 Definition of Covariates and Selection of Relevant Predictors

This section explains how the data information on potential influence factors de-
scribed in Section 2.2.2 is made available for the prediction model. Additionally, it
deals with the selection of relevant predictors using an appropriate variable selection
approach.

Basic member information was incorporated into the vector x of covariates by con-
structing categorical variables in the following way:

• Gender

• Age (16 categories representing age bands of 5 years)

• Country of residence (in 3 geographical categories)

• Type of employment (executive or manager, office staff in 5 categories, unde-
fined or other)

• Relation of co-insured to insured person (applicant, child, personnel, spouse,
undefined or other)

• Insurance plan for outpatient treatments (outpatient plan group 1, . . ., outpa-
tient plan group 4, other plans, undefined)

For all categorical variables dummy coding [Tutz, 2000] with the first category as
reference category was used. In order to reduce the number of categories, outpatient
plans have been clustered into 4 outpatient plan groups using a k-means clustering
algorithm [MacKay, 2003]. The algorithm allocates plans with similar cover and
co-payment conditions to the same group. No differentiation was made for inpatient
plans due to their similar cover structure. Time-dependent covariates xt were used
in order to account for changes in a member’s properties throughout the observation
period, such as a change in the outpatient plan. For member information, it was
assumed that the category observed in year t affects the claimed amount in the same
year. If the value of a covariate xit was unknown, like in the validation year 2008,
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the assumption was made that the category has not changed since the last year and
xit was set to xi,t−1.

To enrich the vector of predictors xi by incorporating historic claims information
(procedures, diagnoses, specialist consultations and claimed amounts), the following
strategy was applied: for the procedures a patient underwent within a year, count
variables that reflect the frequency of observed inpatient and outpatient procedures
within several procedure groups (surgery, anesthesia, consultation, . . .) were built.
In order to take account of the large variation in outpatient costs, outpatient count
variables were subdivided into four cost groups. Similarly, count variables for inpa-
tient and outpatient diagnoses were separately constructed for each of the 19 ICD-9
chapters. Further count variables indicating how often a patient visited a certain
provider type (dermatologist, cardiologist, pediatrist, . . .) were defined. Following
the assumption that the claimed amount yit in year t depends on preceding claims
information xi,tenrolled , . . . ,xi,t−1, the mean-lag approach described in Section 2.3.2
was applied to the annual count variables for diagnoses, procedures and visits of spe-
cific provider types. Accordingly, mean-lags were calculated for preceding inpatient
and outpatient costs.

For prediction purposes, however, it is not meaningful to use the large amount
of all available predictors because covariates that do not have an influence on the
target variable can disturb the prediction. By including more and more covariates
into the model, the adaptation to the training data can steadily be increased. The
predictive quality of the model, by contrast, starts to decrease after a certain break-
even point. The intention of variable selection approaches is to find this break-
even point in order to optimize the prediction. Additionally, they help to identify
important influence factors on the target variable. Another advantage of the GLM
approach is that automated variable selection approaches are already implemented
for this class of models in all kinds of standard statistics software. For example, in
the statistics software package R [R Development Core Team, 2009], the function
“stepAIC” (library “MASS”, Venables and Ripley [2002]) can be used for covariate
selection. For other regression models, like GEEs, variable selection techniques had
to be implemented manually.

To configure the GLM, a stepwise variable selection approach [Miller, 1990] was ap-
plied starting from the intercept model. As an inclusion, exclusion and stop criterion,
the Akaike information criterion (AIC [Akaike, 1974]) was used. The application of
the Schwarz Bayesian criterion (SBC [Schwarz, 1978]), often also denoted as BIC,
was also evaluated by means of the described re-sampling approach. Considering
several measures of predictive quality, the AIC models showed better prediction re-
sults than the BIC models that include fewer covariates and, correspondingly, seem
to underfit the training data. This is in line with previous results of other authors
who argue that the AIC is more appropriate for prediction purposes because it uses
prediction of future data as the key criterion for the quality of a model [Lamers,
2004].

In the AIC selection for all 100 re-samples, mean-lags of procedure and provider
counts have been selected less frequently than mean-lags of diagnosis counts. This
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means that procedure and provider information hardly improves the prediction re-
sult where diagnosis information is available. This is not surprising, since procedure,
diagnosis and provider specialty variables contain a lot of overlapping information.
Consequently, procedure and provider type covariates were completely excluded to
demonstrate that a good prediction result can also be reached without this infor-
mation. This result might be useful for many insurance companies, especially in
emerging countries and in countries where no electronic billing is used, as insurance
companies in those countries often do not capture provider type and procedures in
an appropriate way. Considering data storage in health insurance companies, all
other necessary variables should be available in most insurance companies, even in
emerging countries. In combination with the simple handling of the data aggregation
and modeling concept for which only basic statistics skills and standard software is
required, the implementation effort for health insurance companies is considerably
low.

Table 2 shows a list of those covariates that have most often been selected by AIC
selection in the re-sampling process. Consequently, this set of covariates was used
for the final model, which is compared to the vendors’ solutions and to two non-
predictive standard techniques in Section 2.4.1. According to the number of selec-
tions, the member-specific covariates, the mean lag of outpatient costs and the mean
lags of the frequencies of inpatient diagnoses belonging to ICD-9 chapter 7 (diseases
of the circulatory system) and to ICD-9 chapter 6 (diseases of the nervous system
and the sense organs) have the highest predictive value. It is not recommended
using exactly this set of covariates for application to other portfolios. Nevertheless,
a log-normal GLM in combination with an AIC selection can be used to determine
the best set of covariates for predicting individual annual claimed amounts.

2.3.4 Comparison to Other Regression Techniques

In the following, the model selection process based on the re-sampling approach
described in Section 2.3.1 is illustrated. Furthermore, the advantages of applying
the log-normal GLM presented in Section 2.3.2 for DMP selection compared to
many other (more complex) regression approaches are demonstrated. As already
mentioned in Section 2.2.2, the focus is on regression approaches due to their avail-
ability in all kinds of statistics software, the high level of interpretability, the various
possibilities for controlling overfitting and the high stability for small datasets. All
models, especially the log-normal GLM approach with AIC variable selection, can
be implemented with the open source statistics software R [R Development Core
Team, 2009], which requires basic programming skills. If the user prefers to work
with menu-based interfaces, commercial software packages, like SAS, Statistica or
SPSS, can equally be used. Only for the Bayesian GLMM approach described below
BayesX [Belitz et al., 2009], a specific software for Bayesian regression models, was
used due to computational advantages compared to the frequentist approaches im-
plemented in standard software. For those models for which no automated variable
selection algorithms were available, a forward AIC selection was manually imple-
mented in R.
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Covariate # selected

Age category 100
Country of residence 100
Relation to insured person 100
Type of employment 100
Insurance plan for outpatient treatments 100
Mean lag of outpatient costs 100
Mean lag of # inpatient diagnoses 98
within ICD-9 chapter 7 (diseases of the
circulatory system)
Mean lag of # inpatient diagnoses 97
within ICD-9 chapter 6 (diseases of the
nervous system and the sense organs)
Gender 91
Mean lag of # outpatient diagnoses 91
within ICD-9 chapter 7 (diseases of the
circulatory system) / first cost quartile
Mean lag of # outpatient diagnoses 87
within ICD-9 chapter 3 (endocrine,
nutritional and metabolic diseases, and
immunity disorders) / third cost quartile
Mean lag of # outpatient diagnoses 85
within ICD-9 chapter 10 (diseases of the
genitourinary system) / fourth cost quartile
Mean lag of # inpatient diagnoses 83
within ICD-9 chapter 8 (diseases of the
respiratory system)
Mean lag of # inpatient diagnoses 81
within ICD-9 chapter 10 (diseases of the
genitourinary system)

Table 2: Covariates most often chosen by AIC selection in the re-sampling process.

Four kinds of models in the model selection process were tested: GLMs, GEEs, two-
stage GLMs and GLMMs. For each model type, different distributional assumptions
and different link functions were compared. Table 3 summarizes all regression ap-
proaches assessed by re-sampling. Before the results are outlined, the structure of
the applied two-stage models is briefly described. Further methodological details on
GLMs, GEEs and (Bayesian) GLMMs can be found in Tutz and Fahrmeir [2001],
Liang and Zeger [1986] and Fahrmeir and Kneib [2010].

Abbr. Model
M1 Linear model =̂ GLM with identity link
M2 Normal GLM with log-link
M3 Normal GLM with inverse link
M4 Gamma GLM with inverse link
M5 Gamma GLM with log-link
M6 Normal GEE with log-link (correlation unstructured)
M7 Gamma GEE with inverse link (correlation unstructured)
M8 Two-stage model (Binomial GLM with logit-link &

Normal GLM with log-link)
M9 Two-stage model (Binomial GLM with logit-link &

Gamma GLM with inverse link)
M10 Normal GLMM with log-link (random intercept)
M11 Gamma GLMM with inverse link (random intercept)
M12 Normal GLMM with log-link (random intercept & slope)
M13 Gamma GLMM with inverse link (random intercept & slope)

Table 3: Overview of all regression approaches considered.

As mentioned above, many claimed amounts were zero, which is a challenge for
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parametric models that assume a specific distribution for the response variable y
given the vector of covariates x. Zero-inflation models [Cameron and Trivedi, 1998]
are a class of statistical models that is specifically designed for count data with
many values equal to zero. These models assume a discrete mixture distribution
for y|x. The two-step models described in Section 2.2.2 transfer this idea to a
continuous response variable y (like, in the existing situation, a monetary amount).
The underlying principle is to decompose the expectation E(y|x) into

• π := E(I(y > 0)|x) (where I is an indicator function that is equal to 1 if y > 0
and 0 else) and

• µ := E(y|y > 0,x).

Then, both components can be estimated separately. By way of example, two ap-
proaches (model M8 and M9) that assume a binomial distribution for estimating π
and a normal and a gamma distribution, respectively, for estimating µ are presented
here. Changing the link function of the binomial GLM hardly had an influence on the
results. The predictions y∗ were calculated by multiplying µ∗ and π∗ as described
in Blough et al. [1999]. AIC selection was applied separately for both models.

Figure 9 illustrates the predictive quality of all regression approaches by means of
the predictive R-squared R2∗ (see Appendix A) for all 100 bootstrap samples. As
already mentioned above, the log-linear GLM yields the highest predictive quality.
In addition, the small variance of the results based on different re-samples shows the
high stability of the GLM approach. The log-linear GEE is almost on the same level,
but does not improve the prediction results by accounting for the intra-individual
correlation. Consequently, it is preferable to use the less complex GLM that is easier
to apply for health insurers. All other models show significantly lower predictive
quality and, except for the linear model, a higher variation within the re-samples.
This indicates that they are more sensitive to outliers in the training data and
prone to overfitting. Throughout all model types, assuming a normal distribution
for the individual annual claimed amounts instead of a gamma distribution seems
to be the better choice for the underlying portfolio. Considering all of the aspects
mentioned, it turned out that a log-linear GLM with AIC variable selection is the
most appropriate regression approach for selecting DMP candidates in the existing
setting. The application of other predictive measures (see Appendix A), also of
those that directly measure the sorting capacity of the models, does not change the
overall picture and leads to the same conclusion.

If the adaptation of the model to the training data is also considered (for example
by looking at the model R-squared or related measures for generalized models), the
overfitting problem in the identification of an optimal prediction model becomes ap-
parent. Figure 10 illustrates the conclusion from the assessment of different models
based on the test dataset: With increasing model complexity, the adaptation to
the training data can be improved without limit. The predictive accuracy, however,
ascends up to a certain optimal level, in this case the selected GLM, and descends
after this point due to overfitting to the training data.
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Figure 9: Distribution of predictive R-squared values based on re-sampling for all
regression approaches considered.

Figure 10: Schematic illustration of the different development of data adaption and
predictive quality with increasing model complexity.

2.4 Results

In order to be able to provide the best possible solution for a cost effective selection
of DMP participants, three professional providers of PM solutions were asked to
participate in a forecasting competition. The vendors who are active in the German
and international markets applied different, partly not regression-based PM tech-
niques without revealing methodological details. All vendors (referred to below as
A, B or C) received the random sample described above including data from 1995
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to 2008 and were asked to predict the individual claimed amount in 2009. In the
following, the results of the providers’ approaches and the GLM approach described
in Section 2.3.2 (referred to as O below) are compared to each other. For this
comparison, the selected model was applied to all members in the random sample,
also incorporating the claims information from 2008. As a benchmark for the PM
solutions, also two non-predictive standard methods for selecting DMP participants
were included in the comparison. Neither method explicitly predicts future costs,
but both aim to put members in order according to their individual risk potential
based on historic data. The first method (referred to as S1 below) simply uses the
(order of) individual claimed amounts in 2008 to identify the DMP candidates with
the highest future saving potential. The second method (referred to as S2 below)
lists members in the order of a chronic score order that is based on the average
number of hospitalizations and outpatient visits due to chronic conditions in the
observation period. Figure 11 summarizes the sampling approach applied to the
underlying portfolio and all prediction methods described.

In Section 2.4.1, various comparisons based on all individuals within the random
sample are presented. All methods are compared on the basis of different predictive
measures with regard to their capability of selecting the best DMP participants (see
Appendix A for a detailed explanation of measures and their interpretation and
table 4 for a summary). For the same purpose, different subgroups in the random
sample are analyzed: high-cost cases and members with preceding chronic diagnoses.
Subsequently, the key factors that determine the predictive quality of a forecasting
approach (see Section 2.4.2) are summarized and the extent to which the presented
results are generally applicable is discussed. This summary also considers the results
of a second vendor performed on the basis of a group of chronic asthma patients.

Figure 11: Overview of the described sampling approach and all prediction methods
applied.
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Measures for accuracy of prediction
Abbr. Pred. measure Interpretation Range

MPSE Mean predictive Deviation of y∗ from yo [0; +∞]
squared error avoiding large errors

MPAE Mean predictive Deviation of y∗ from yo [0; +∞]
absolute error favoring small average error

R2∗ Predictive R-squared (Squared) linear correlation [0;1]
between y∗ and yo

Measures for sorting capacity
Abbr. Pred. measure Interpretation Range

RSp Spearman correlation Monotonic correlation [−1;1]
coefficient between y∗ and yo

AUCm Area under the Sorting capacity throughout [0;1]
AUCm matching curve the whole portfolio
m(i) identification or hit % of identified cases among [0;1]

ratio i most expensive members

Table 4: Overview of predictive measures used (optimal value within possible range
marked by boldface).

2.4.1 Comparison to Solutions of Vendors and Standard Approaches

Table 5 shows different predictive measures introduced in Appendix A for the pre-
diction results of all vendors, the GLM and the two standard methods for DMP risk
scoring. For all PM solutions, the measures compare the predicted and actually ob-
served claimed amounts in 2009 for all members in the random sample (n = 9,150).
The standard methods S1 and S2 are based on risk scores rather than an explicit
cost prediction. Therefore, MPSE and MPAE, which measure the deviation between
predicted and actual costs are not considered here. However, measures analyzing
the correlation of the risk scores with actual costs as well as direct sorting capacity
measures are applied. The prediction of vendor C included 21 missing values so that
the measures are only based on nC = 9,129 observations for vendor C. Vendor B
submitted two predictions B1 and B2, based on estimating respectively the mean
and the median of the distribution of annual claimed amounts.

Method MPSE MPAE R2∗ RSp AUCm

A 660,108 268.87 0.0671 0.3025 0.6202
B1 533,484 212.10 0.1709 0.6007 0.7065
B2 593,104 194.13 0.1329 0.6695 0.7285
C 618,994 226.62 0.0733 0.4133 0.6386
O 516,363 246.20 0.1932 0.3084 0.6166
S1 – – 0.0598 0.2531 0.5706
S2 – – 0.0432 0.2021 0.5525

Table 5: Predictive measures for the predictions of all vendors, the GLM and the
standard DMP selection methods based on the random sample from the portfolio
(best prediction according to the corresponding measure marked by boldface).

In general, the predictive quality of the vendor solutions is quite heterogeneous and
none of the professional vendors was able to clearly outperform the GLM approach.
As regards the MPSE and the predictive R-squared, the GLM shows the highest
predictive quality followed by the mean prediction of vendor B, i.e. it minimizes the
probability of large discrepancies between predicted and real data. This property
is crucial for DMP selection because not identifying members that are at high risk

32



2 Candidate Selection for Disease Management Programs

of developing an uncontrolled chronic disease means clearly decreasing the overall
saving potential related to the DMP. The predictions of vendor B, especially the
median prediction, yield the best results in terms of minimization of the MPAE
and in terms of sorting capacity (RSp and AUCm). In this context, the developed
model is on a similar level to the PM approaches of vendors A and C. Considering
all measures presented, the non-predictive standard methods cannot compete with
any of the PM solutions in terms of future risk assessment. This clearly shows that
modern statistical prediction techniques are preferable for an optimal selection of
DMP participants in small portfolios and a difficult data environment. It is assumed
that the benefit is greater if more training data (more members with longer history)
are available as long as overfitting is controlled. The experience with larger portfolios
in a more stable environment shows that predictive R-squared values up to 0.35 are
possible.

To illustrate the sorting capacity of the methods throughout the random sample,
figure 12 shows the matching curves (defined in Appendix A) for all approaches.
Here, the PM approach of vendor B clearly delivers the best results in every cost
region leading to an AUCm of 0.7285, which is remarkable bearing in mind the
difficult data environment.

Figure 12: Matching curves of all predictions for the annual claimed amounts in
2009 based on the random sample from the portfolio.

In addition, a closer look is taken at the high-cost region and different values of
the matching curve m(i) are compared. Also, the percentage of members that could
correctly be identified in advance as high-risk members in 2009 is determined. Based
on these figures and some experience-driven assumptions on program costs and
average individual saving potential (usually offered by DMP vendors) the economic
benefit of a DMP is directly calculable.
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The absolute number of members that are selected for a DMP basically depends on
two factors:

a) the investment budget of the health insurer and

b) the economic break even point until which the individual saving potential
exceeds the program costs.

Depending on the scope of the program, typically, up to 20% of all insured members
are included in a DMP. Indication-specific programs usually have fewer participants
than general health programs. In order to illustrate different scenarios, table 6 com-
pares the identification ratios m(i) of all methods for those members who actually
had the highest claimed amounts in 2009 (top 1%, 5% and 10% of all members in the
random sample, respectively). For the top 1% of members by expense, the models of
vendor B and the GLM deliver the best identification results. For example, method
B1 identifies more than twice the number of actual high-cost members (25%) as the
standard approach S2 (12%) based on the chronic score. For instance, assuming a
20% higher saving potential in this cost group than in the next-highest cost group,
the overall saving potential of a DMP increases by at least (25%−12%)·120% ≈ 17%
using method B1 instead of S2. The PM solutions of vendor A and C are on a sim-
ilar level to the standard approaches. For the top 5% and top 10% of members by
expense, the efficiency of the PM solutions of vendor B becomes more apparent. All
other PM solutions, including the GLM, are still at a good level compared to the
standard approaches, which perform significantly worse. This confirms the conclu-
sion that appropriate PM solutions achieve a better selection of DMP candidates
than non-predictive standard methods.

Method m(92) (1%) m(458) (5%) m(915) (10%)

A 15% 32% 33%
B1 25% 42% 47%
B2 21% 41% 47%
C 10% 29% 39%
O 22% 31% 35%
S1 15% 24% 27%
S2 12% 18% 21%

Table 6: Identification ratios for those members in the random sample with the
highest real costs in 2009 (best prediction among all methods according to the
identification ratio marked by boldface).

In addition, subgroups of the sample population are separately investigated in order
to detect the strengths and weaknesses of the different prediction tools in respect
of DMP selection. First, the predictive quality of the methods is compared with
a focus on the high-cost sector. Table 7 shows MPSEs, MPAEs and predictive R-
squared values for all members above the 99%, 95% and 90% quantile of annual
claimed amounts in 2009, respectively. Looking at the top 1% of members with the
highest actual costs in 2009, the GLM clearly yields the best results in terms of all
measures. Especially with regard to the predictive R-squared, the GLM is the only
approach with significant positive linear correlation between observed and predicted
values. The professional vendors are on a similar level to the standard approaches
here. For the members above the 95% and the 90% cost quantile, the overall picture
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is similar. In terms of MPSE, the developed model clearly permits the most precise
prediction of claimed amounts. The fact that large losses are avoided for high-cost
cases confirms that the GLM provides a reliable risk evaluation for DMP selection.
Vendor B delivers the most accurate prediction results “on average” indicated by
the smallest MPAEs for the top 5% and top 10% of members by expense in the
random sample.

Top 1% (n = 92) of members
with the highest actual costs in 2009

Method MPSE MPAE R2∗

A 47,067,518 4,885.47 0.0128
B1 45,014,918 4,573.25 0.0220
B2 50,106,040 5,031.31 0.0033
C 51,055,836 5,143.98 0.0157
O 38,614,019 4,531.84 0.2060
S1 – – 0.0103
S2 – – 0.0076

Top 5% (n = 458) of members
with the highest actual costs in 2009

Method MPSE MPAE R2∗

A 10,779,042 1,787.58 0.0240
B1 9,894,721 1,636.38 0.0195
B2 11,158,029 1,865.91 0.0015
C 11,609,443 2,000.01 0.0116
O 8,907,106 1,777.05 0.1625
S1 – – 0.0155
S2 – – 0.0112

Top 10% (n = 915) of members
with the highest actual costs in 2009

Method MPSE MPAE R2∗

A 5,607,409 1,153.29 0.0372
B1 5,084,827 1,044.67 0.0428
B2 5,767,319 1,212.10 0.0108
C 5,996,250 1,300.58 0.0182
O 4,632,960 1,161.31 0.1825
S1 – – 0.0208
S2 – – 0.0166

Table 7: Measures of predictive accuracy for those members in the random sample
with the highest real costs in 2009 (best prediction among all methods according to
the respective measure marked by boldface).

Finally, the ability of all approaches to accurately predict the claims costs of mem-
bers suffering from five of the most common chronic diseases (chronic heart failure,
diabetes, chronic respiratory disease, hypertension and chronic back pain) is exam-
ined. This group is especially relevant for health insurers because an already high
and still growing percentage of total health expenditures results from the treatment
of chronic diseases. For instance, healthcare expenditures on diabetes alone ac-
counted for 11.6% of the total healthcare expenditures in the world in 2010 (based
on figures of the World Health Organization (WHO) made available by the IDF
[2011]). In North Africa and the Middle East health expenditures for diabetes will
have approximately doubled by 2030. One reaction to this development is the es-
tablishment of indication-specific DMPs in order to attenuate the cost impact of
chronic diseases.
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In order to evaluate whether PM solutions can optimize the selection for indication-
specific programs, the predictive accuracy of all methods in the disease subgroups
mentioned were compared. Table 8 summarizes the MPSEs, MPAEs and predictive
R-squared values of patients having at least one diagnosis in the observation period
with an ICD9-code identifying the corresponding disease. High absolute values of
R2∗ must be handled with care as some of the chronic diseases rarely occur in the
random sample (e.g. n = 18 for chronic heart failure and n = 189 for diabetes). For
the existing dataset, the predictive R-squared of the developed model is particularly
high for chronic heart failure (0.7502), diabetes (0.6737), chronic respiratory disease
(0.4615) and hypertension (0.5027). In terms of predictive R-squared, the predictive
accuracy of the vendor solutions is considerably lower in most cases, but usually
higher than the predictive accuracy of the standard approaches. Among these,
the chronic score (S2) performs better than the risk evaluation based on costs in
the preceding year (S1). In terms of the MPSE, the GLM yields optimal prediction
results for all chronic diseases analyzed and is permanently among the best solutions
as regards the MPAE. Here, the predictions of vendor B show a similar predictive
quality. These findings are in line with the results for the high-cost sector, because
chronic patients, especially those with an uncontrolled chronic disease, are likely
to generate higher claims costs. In either case, appropriate PM solutions, such
as the model of vendor B and the GLM, can increase the economic efficiency of
indication-specific DMPs through an optimized selection. In order to validate this
finding, a second vendor test with three other international vendors has recently
been performed based on a portfolio comprising only chronic asthma patients. The
findings are summarized in Section 2.4.2.

Further analyses of subgroups (using simulation techniques) have shown that the
predictive quality of the GLM approach is especially high for members with as-
cending and stagnating (high) claims costs over time compared to members with
descending and highly unstable costs. This result confirms that future claimed
amounts for patients with both controlled and uncontrolled chronic diseases can be
predicted with a high degree of precision.

2.4.2 General Applicability of Results

Apart from the example dataset presented, a lot of other health insurance datasets of
various size and quality have been used in order to predict different target variables,
such as different cost types, utilization and likelihood of hospitalization. Based on
this experience, it can be concluded that the prediction of medical costs (like of all
other outcomes) is mainly driven by three factors: sample size, completeness of data
and length of individual claims history. Figure 13 schematically illustrates the inter-
active effect of these components on predictive quality and classifies the test dataset
applied in this context. By comparing their data situation to the test setting used,
health insurers can obtain a first rough estimation of the reliability of cost predic-
tion models and PM-based DMP selection if they are to be applied to their data.
Especially the small sample size and the short data history of many members in the
random sample lead to a comparably low absolute predictive quality. Nevertheless,
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Chronic heart failure (n = 18)

Method MPSE MPAE R2∗

A 68,766 3.56 0.8368
B1 86,632 3.90 0.4464
B2 105,337 4.17 0.2250
C 106,849 4.56 0.3380
O 48749 3.52 0.7502
S1 – – 0.1716
S2 – – 0.2733

Diabetes (n = 189)

Method MPSE MPAE R2∗

A 146,226 16.15 0.1756
B1 132,910 14.38 0.2285
B2 162,690 16.24 0.1188
C 173,834 19.77 0.1173
O 68,786 14.59 0.6737
S1 – – 0.1506
S2 – – 0.2188

Chronic respiratory disease (n = 697)

Method MPSE MPAE R2∗

A 193,524 30.89 0.1121
B1 164,494 25.00 0.2293
B2 192,087 26.37 0.1280
C 199,037 29.55 0.1396
O 127,777 26.33 0.4615
S1 – – 0.0837
S2 – – 0.1888

Hypertension (n = 426)

Method MPSE MPAE R2∗

A 194,463 30.30 0.1518
B1 170,644 26.80 0.2126
B2 204,897 28.31 0.1257
C 225,003 35.56 0.0954
O 112,487 29.03 0.5027
S1 – – 0.1076
S2 – – 0.2388

Chronic back pain (n = 1,180)

Method MPSE MPAE R2∗

A 190,901 50.55 0.0350
B1 131,506 40.38 0.1642
B2 145,848 40.28 0.1490
C 153,546 45.67 0.0925
O 139,764 44.70 0.1213
S1 – – 0.0226
S2 – – 0.0933

Table 8: Measures of predictive accuracy for members with 5 typical chronic diseases
(best prediction among all methods according to the respective measure marked by
boldface).

Section 2.4.1 demonstrates that predictive models are still more effective in detect-
ing high-cost patients in such a data environment than non-predictive approaches
common in the market.

As other studies have already shown, the (theoretically possible) predictive quality
of analytical approaches to forecasting health insurance claims is limited, even in
more stable markets [Mehmud and Winkelman, 2007]. This is mainly due to the
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Figure 13: Schematic illustration of the three data dimensions relevant for good
prediction results.

considerable influence of unpredictable/random events and the complexity of human
health. In order to obtain the best possible prediction result, it is necessary to fully
exploit the medical information included in claims data, especially if the aim of the
prediction is to identify participants for indication-specific DMPs. For example, it is
vital to account for the correlations of medical diagnoses. A further improvement in
predictive quality can be attained by incorporating additional member information
such as smoking status or clinical records if this information is available to the health
insurer.

In order to demonstrate that PM solutions can enhance the saving potential of
effective DMPs even under difficult data conditions, a small portfolio of insured
members with short claims history from an emerging market was chosen as a test
setting. Looking at the results from Section 2.4.1 and considering the stability of
the GLM approach illustrated in Section 2.3.4, appropriate PM solutions make a
significant contribution to increasing the economic benefit of general and indication-
specific DMPs for similar settings. As mentioned above, the absolute predictive
quality increases rapidly with the size of the portfolio (if overfitting is avoided).
Based on the experience of applying the described methodology to different larger
datasets, it is assumed that the advantage of PM solutions over standard selection
methods grows with the size of the portfolio. More advanced PM solutions are
assumed to perform better for larger portfolios with longer claims history.

In 2012 a second test of professional PM vendors was performed to confirm the
results of the first comparison. In order to analyze the economic benefit of PM
techniques, especially for indication-specific DMPs, a portfolio of approximately
10,000 asthma patients was chosen. The homogeneity of this group lead to a sig-
nificant increase in absolute predictive quality (R2∗ ≈ 0.30), even though the data
environment was similar (emerging market, strong medical inflation and short data
history). Certainly, the smaller percentage of annual claimed amounts equal to zero
for chronic patients, facilitated the prediction, too. It was possible to achieve an
improvement in predictive quality by incorporating more medical knowledge into the
GLM approach than for the generic approach of covariate construction presented in
this chapter. Detailed analyses have shown that the combination of medical knowl-
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edge (e.g. interactions of disease-related diagnoses or severity grouping based on
pharmaceuticals) and empirical methods (e.g. algorithms for procedure clustering)
can further improve the identification of future high-cost patients. Like in the first
test, none of the professional vendor solutions outperformed the developed model.
Furthermore, the advantage of DMP selection based on PM techniques over non-
predictive standard methods became even more apparent in this indication-specific
setting.

2.5 Summary and Outlook

The analyses on DMP selection show that, for small portfolios and a difficult data
environment, appropriate predictive modeling techniques clearly identify more fu-
ture high-cost patients in advance than non-predictive standard methods. For an
example of a setting, it is demonstrated that such solutions can increase the saving
potential of general or disease-specific DMPs. In addition, a generic regression-
based approach with low requirements regarding data quality and volume is illus-
trated. These requirements are met by most health insurance companies, even in
emerging countries. Hence, the GLM approach can easily be implemented following
the data aggregation and modeling strategy described above for which only basic
statistics skills and standard software is required. In spite of the difficult data sit-
uation, this approach delivers more stable prediction results than more complex
regression techniques which tend to overfitting. Furthermore, the approach can, at
least in this setting, compete with expensive professional solutions, which usually
remain a black box to the user. A further comparison of data-driven selection tech-
niques based on a portfolio of asthma patients confirms that the GLM approach
presented (enriched with medical knowledge) optimizes the selection of participants
for indication-specific DMPs.

Considering the results of the analyses, regression models that estimate the mean
of the response distribution cannot further improve the predictive quality of med-
ical cost forecasts. Instead the application of non- and semi-parametric regression
techniques, such as density regression or quantile regression, need to be analyzed in
the context of DMP selection. The quantile regression approach, which estimates a
certain quantile of the response distribution (for instance, the 95% quantile of the
distribution of annual claimed amounts) is especially interesting for the identification
of high-cost cases.

One important assumption made in order to prove the economic benefit of PM so-
lutions is the ability of the DMP to reduce the costs for patients with high saving
potential. However, as already mentioned in Section 2.1, the economic effect of
DMPs is subject to controversial discussion in scientific literature. For some indi-
cations, like chronic heart failure, the economic effect of DMPs has been confirmed
by medical studies [Inglis et al., 2010]. For other indications, such as diabetes, an
economic effect is questionable, at least in the short term. In practice, measuring
the economic effect through randomized controlled trials, which is the standard pro-
cedure for medical treatment evaluation, is difficult. Health insurers, who usually
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install such programs, compete for clients. Consequently, they do not want to of-
fer a program to clients and then deprive them of participation because they have
randomly been allocated to the control group. In order to still perform a valid cost
comparison, various (statistical) methods have been proposed in related literature.
However, the DMP effect depend seems to depend heavily on the method applied
and some techniques obviously produce biased results. In order to solve this un-
satisfactory situation, a fair and stable approach to measure the economic effect of
DMPs is needed. A solution proposed in statistical literature is the “matched-pair
method”, which allocates a “twin” from an external control group to every DMP
participant based on “similarity” in respect of all cost-relevant covariates. These
covariates can, for example, be determined and ranked by means of a cost predic-
tion model. For this purpose, the overall predictive quality of a model is relevant.
Due to the fact that the GLM approach yields good results in this regard, sev-
eral matched-pair approaches based on this model are introduced in the following
chapter. Furthermore, the stability of the results, especially the sensitivity to the
predictive quality of the model are evaluated.
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3 Economic Evaluation of Disease Management

Programs

Throughout the world, disease management programs (DMPs) are a popular way
of improving healthcare provision to chronic patients. The question whether such
programs are viable for reducing medical costs in the long run is the subject of
controversial debate in the healthcare literature. In Europe in particular, DMPs
are usually operated by or on behalf of health insurance companies. For opera-
tional reasons, the economic effect of these insurer-driven DMPs cannot normally
be measured using classic randomized controlled trials. Many different measure-
ment methods producing extremely heterogeneous and partly biased results have
therefore been proposed in the healthcare literature. Section 3 illustrates a stable
and consistent matched-pair approach based on modern statistical methods (predic-
tive regression analysis and dimension reduction) to quantify the financial impact
of DMPs, based on health insurance data. Using three different DMPs as examples,
it is demonstrated that the proposed matched-pair method is able to increase the
precision of the measurement compared with several benchmark methods. Also, the
relationship between the method’s uncertainty and the estimated risk of financial
loss is analyzed as a prerequisite for a reinsurance solution for future DMPs.

3.1 Introduction

Chronic diseases are a major driver of rapidly rising health care costs in both devel-
oped and in emerging countries. In the US, for example, the care of chronic illness
consumes approximately 75% of total healthcare expenditure and amounts to over
1 trillion US dollars per year [Freeman et al., 2011]. Chronic diseases were also
responsible for 50% of the disease burden in 23 developing countries in 2005 and
will cost those countries 84 billion US dollars by 2015 if nothing is done to slow
their growth [Nugent, 2008]. According to many studies [Okunade and Murthy,
2002; Smith et al., 2009; Manning, 1991; Leigh and Fries, 1992], the main reasons
for this development are an unhealthy lifestyle and a high medical inflation rate. As
insurance companies have little influence on the latter, the steering of the behavior
of insured persons is an important trigger. An example of such steering measure
is disease management. Disease management programs (DMPs) are usually offered
to chronic patients by public health initiatives or by specific vendors on behalf of
insurance companies. They are meant to improve the medical situation and the
quality of life of program participants, as well as reduce expenditure on benefits in
the long term. Common measures are, for example, regular phone calls to increase
compliance with medical plans and disease-specific consultancy (“telecoaching”) and
the online monitoring of disease-specific parameters such as blood pressure, weight
or insulin level (“telemonitoring”). Other programs include specific fitness classes
or regular consulting appointments with specialized doctors.

Section 2 demonstrates how modern statistical methods (predictive models) can
be applied to optimize the saving potential of DMPs by ex-ante identification of
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potential future high-cost patients. As a necessary prerequisite for this optimization,
the program needs to be viable for reducing medical costs in the long run. This
cost-reducing effect of DMPs is, however, subject to controversial discussion in the
scientific literature. For some indications, like chronic heart failure, the economic
effect of programs has been confirmed by various medical studies [Inglis et al., 2010;
Goetzel et al., 2005]. For other indications, such as diabetes, an economic effect is
questionable, at least in the short term [Goetzel et al., 2005]. Even for programs
with similar target groups and program measures scientific studies arrive at very
different results as regards the economic saving potential. For example, Sidorov
et al. [2002] report a significant short-term effect of a diabetes program, whereas
other authors like Leatherman et al. [2003] and Bodenheimer et al. [2002b] state
that medical savings for similar programs can only be realized after 10 program
years.

Figure 14: Usual operational process of a disease management program.

One of the main reasons for this strong variation in results lies in the usual op-
erational process of DMPs offered by insurance companies, which is illustrated in
Figure 14. In a situation in which the effect of a medical treatment procedure is
to be determined, randomized controlled trials are the acknowledged standard pro-
cedure for reducing the measurement bias to a minimum. Looking at the results
of different metastudies, like Goetzel et al. [2005], even the results of randomized
controlled trials as the standard proceeding can vary considerably. Randomized
controlled trials require everyone meeting the study’s inclusion criteria to first be
asked whether they want to take part. Those wishing to do so are randomized into
two study arms – the treatment arm and the control arm. As health insurers are
competing for clients, they do not want to offer a program and then deprive clients
of the chance to take part because they have randomly been allocated to the control
group. This is why the randomization is usually carried out first in insurer-driven
DMPs, followed by the insured’s decision to take part. This procedure though leads
to a serious measurement problem: in the control group there is no self-selection
process like the one observed in the treatment group. This means that any direct
comparison between actual participants and controls may be biased (so-called “self-
selection bias”). This bias cannot be neglected because many studies argue that a
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patient’s motivation to actively improve his or her health status is a decisive factor
for the success of a DMP [Kralik et al., 2004].

This measurement problem leads to various methods being used to determine the
(economic) effect of DMPs. Many of these methods have clear disadvantages and
produce biased results (see Section 3.2.1). The lack of a standard measurement
method for DMPs without adequate randomization also means that it is difficult to
reliably quantify the financial risk of loss for an insurer offering a DMP. In order
to estimate this risk of loss, it is necessary to have a precise estimate of the indi-
vidual saving potential per participant. Moreover, the risk of loss depends on the
uncertainty of the measurement method. In order to quantify this risk for future
programs, the relationship between the uncertainty of the measurement method and
the estimated financial risk of loss needs to be analyzed. The ex-ante quantification
of a program’s risk of loss can at the same time form the basis for a reinsurance
solution protecting the primary insurer from the potential financial loss caused by
the DMP.

In view of this situation, the main goals of this chapter are

a) to define a consistent and bias-minimizing standard measurement approach
for (insurer-driven) DMPs where classic randomized controlled trials do not
apply and

b) to quantify the relationship between the uncertainty of the defined measure-
ment approach and the estimated risk of financial loss as a basis for evaluating
the insurability of similar programs in the future.

For various reasons outlined in Section 3.2.1, the “matched-pair approach” (Sec-
tion 3.2.2) is considered as the theoretical basis of an adequate measurement ap-
proach in the sense of target a). The matched-pair approach has its origins in
observational medical and epidemiological studies [Rubin, 2006] where it reduces
the most severe drawbacks of alternative measurement methods. In particular, it
controls the previously mentioned self-selection bias by allocating so-called “twins”
or “matched pairs” from a control group to each DMP participant. The costs of par-
ticipants and their allocated twins can then be compared. Sections 3.3.1 and 3.3.2
present an intuitive way of combining this approach with a cost-prediction model
that can also be used for the selection of DMP candidates (see Section 2). The
allocation of twins based on model covariates with a significant impact on future
costs ensures that only patients with a similar medical situation and similar long-
term cost prognosis will be compared. In Section 3.3.3 the theoretical foundation
for estimating the risk of financial loss related to a DMP is established by deriving
the variance and the distribution of individual savings per participant.

In Section 3.4, three different DMPs are evaluated, in order to

a) demonstrate the stability and precision of the matched-pair approach pre-
sented compared with different benchmarks (see Section 3.4.1),

b) analyze its robustness to methodological variations and variations in the data
input (see Section 3.4.2) and
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c) assess the relationship between the uncertainty of the measurement method
and the estimated risk of financial loss (see Section 3.4.3).

3.2 Background

In this section, an extensive overview of the statistical methods that are applied,
especially in Central European markets and the US market, to measure the eco-
nomic effect of DMPs is given (see Section 3.2.1). Some of these methods are used
as a benchmark for the matched-pair approach introduced in Section 3.3. Also,
some theoretical background on the matched-pair method and some examples from
the literature on the use of matched-pair approaches in the evaluation of medical
treatment is provided (see Section 3.2.2).

3.2.1 Existing Approaches for DMP Measurement

Figure 15: Overview of frequently applied measurement schemes for the (economic)
effect of DMPs.

Extensive metastudies on the economic measurement of DMPs, like Goetzel et al.
[2005] or Dove and Duncan [2004], show that various measurement schemes are used,
especially in observational studies. Most of these schemes can be classified into the
clusters illustrated in Figure 15. The measurement of the economic effect of a DMP
is generally based either on the repeated measurement of costs for the same popula-
tion before and during intervention, or on a simultaneous cost comparison between
a group with intervention and a separate control group [Goetzel et al., 2005; Dove
and Duncan, 2004]. If a control group is used, either all individuals of this group
can be used for a cost comparison or only those individuals which are sufficiently
similar to the participants. The latter case means that different weights are as-
signed to the controls, according to their relevance for the cost comparison. In this
regard, some authors, like Abadie et al. [2004], distinguish between unweighted and
weighted control group design. Moreover, statistical theory offers different methods
for performing the cost comparison. One of the most common methods is to estimate
the average individual saving from the difference in mean or median costs between
both groups. Alternatively, the effect of a DMP can be assessed by including a
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treatment effect in a regression model and using the estimated regression parameter
as an estimate for the average individual saving. In the following, an overview of
different concrete approaches will be given without any claim to be exhaustive.

In quasi-experimental studies where no external control group is available some
authors (like Lorig et al. [2001]) use a pre-post comparison of participants’ costs
in order to measure the effect of the DMP. However, depending on the chronic
disease being evaluated, a patient’s risk and cost structure can change significantly
with increasing age, even if the DMP is successful in slowing down the progress of
the disease. Moreover, the healthcare situation (new drugs/therapies, better/worse
access to healthcare etc.) can change considerably over time. Different adjustments
to account for these distortions are therefore necessary [Villagra and Tamim, 2004].
As statistical adjustment methods can usually not fully offset the confounding effect
of changed conditions, most authors prefer other study designs [Dove and Duncan,
2004].

Controlled studies which compare different patients at the same point in time are
generally considered to be more reliable [Goetzel et al., 2005]. Some authors (e.g.
vanVonno et al. [2005] and Riegel et al. [2000]) use a controlled pre-post setting, i.e.
a mixture of a pre-post study and an unweighted control group study. They compare
the cost development in the group of participants within a certain timeframe with
the cost development in a control group. This method may also produce biased
results if there is no risk stratification to ensure comparability between participants
and controls with respect to the expected future cost development [Goetzel et al.,
2005].

As outlined in Section 3.1, controlled studies are hampered by the fact that the
randomization into participants and controls is usually carried out before the can-
didates are contacted and asked if they wish to take part. This leads to various
definitions of comparison groups (see Figure 16).

Figure 16: Different potential comparison groups for the (economic) evaluation of a
DMP.

A straightforward approach for determining the effect of the DMP intervention is
to compare the costs of potential participants (P1) – regardless of whether they
actually took part – with the costs of all controls (C1). This approach follows
the intention-to-treat principle which postulates that all patients who have been
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allocated to the treatment group need to be included in the analysis, even if the
treatment was not carried out in accordance with the study protocol. If the DMP has
a cost-saving effect on participants, this effect will be underestimated because more
“expensive” non-participants are included in the calculation (often the percentage of
non-participants is greater than 50%). Conversely, if no or even a negative treatment
effect exists, the intention-to-treat approach may spuriously suggest the existence of
a saving effect because more “cheap” non-participants are included in the calculation
[Porta et al., 2007]. If the evaluation is performed according to the complementary
per-protocol or as-treated principle, only the actual participants (P2) are compared
to the controls (C1). As no self selection takes place in the control group, patients
in the intervention group may – on average – be more motivated to improve their
health status. Because patient motivation plays a crucial role in the development of
future costs and the success of the DMP [Kralik et al., 2004], this proceeding can
also lead to a biased assessment of the treatment effect (self-selection bias). For the
same reason, the direct comparison of participants (P2) and non-participants (C2)
is even more inadequate. The intention-to-treat and the per-protocol approaches
are both unweighted control group approaches, as no members of the control group
are excluded or weighted higher than others (see Figure 15).

The so-called matched-pair approach aims to compensate for the self-selection bias
in the P2-C1 comparison by restricting the set of controls considered. To determine
the economic effect of the DMP, the costs of actual participants (P2) are compared
with the costs of so-called “twins” or matched pairs (C3). Twins are controls who
are sufficiently similar to the participants in terms of all (available) factors that are
relevant to the patients’ future cost development. In this way, the matched-pair
approach ensures a balanced distribution of cost-relevant parameters between the
intervention and control groups. An unbalanced distribution can occur if no stratifi-
cation is carried out in the randomization process, or if cost-relevant parameters are
not considered in the stratification. In the matched-pair approach, not all members
of the control group will be used as twins and other controls will be used more than
once. Consequently, the average costs of the allocated twins are a weighted average
of the individual costs of all members of the control group. The weights are equal to
zero for non-allocated persons and grow proportionally which each allocation. This
is why the matched-pair approach belongs to the weighted control group approaches
(see Figure 15).

A weighted control group approach closely related to the introduced matched-pair
approach is the so-called “propensity scoring” method [Guo and Fraser, 2010].
Propensity scoring has been applied successfully for many years in clinical and obser-
vational studies [Hirano and Imbens, 2001]. The propensity score is the probability
that an individual is allocated to the treatment group. This probability is modeled,
normally by a logistic regression model, depending on all potential confounding fac-
tors that can be observed. In case the estimated propensity scores are unbalanced
between participant and control group, a weighting of controls can be applied to
establish a balance in both groups with regard to the confounding factors. For
example, propensity score can be used as a criterion for matched-pair allocation
[Imbens and Abadie, 2002]. If the decision of participation is taken by the pa-
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tient, like in the DMP context, major confounding factors are the patients’ health
awareness and motivation. As important behavioral parameters such as smoking
status or physical activity are usually not contained in insurance data, it is un-
clear whether propensity scoring or the matching approach based on cost prediction
introduced in this chapter can control a potential self-selection bias. However, as
such behavioral parameters are usually correlated with observed socio-demographic
and medical covariates, the self-selection bias is indirectly controlled. In the ex-
isting practical situation, the matched-pair approach based on cost prediction has
been preferred to classical propensity matching, because the available test datasets
contain a large amount of categorical covariates (especially indicators for diagnosis
occurrence) which destabilized the binary propensity models.

Another weighted control group approach which is applied in the health insurance
market is illustrated in Figure 17. The approach seeks to control the self-selection
effect by virtually reproducing this effect in the control group. The economic effect
of the DMP is determined by comparing the costs cP of actual participants (P2)
to the costs cV P of virtual participants (C4). In order to calculate the costs of
virtual participants cV P , two assumptions are made: first that the ratio between
participants and non-participants rP (selection ratio) is the same and, second, that
the costs of non-participants cN and virtual non-participants cV N are the same.
Thus, the costs of virtual participants cV P can be calculated based on the observed
costs of controls cC and non-participants cN using the following formula:

cV P =
cC − cN · (1− rP )

rP
. (3)

The formula is based on the assumption that the costs of controls cC are a weighted
average of the costs of virtual participants cV P and virtual non-participants cV N .
The drawback of this approach is that actual participants have been asked to take
part, unlike virtual participants. Even if no program measures have been carried
out for non-participants, the act of simply contacting them can create awareness
of their current health status and cause a change in behavior [Fishbein and Yzer,
2003]. The assumption that costs of actual and virtual non-participants are equal is
therefore questionable. Assuming that the costs of the actual participants decrease
compared with the costs of virtual participants as a result of the psychological effect
of being contacted, the method underestimates the costs of virtual non-participants.
At the same time, the costs of virtual participants are overestimated under this
assumption, and so is the program effect. This theoretical drawback of the virtual
participant method has been confirmed in a practical test based on health insurance
data (compare the benchmarking analysis in Section 3.4.1).

Another (weighted or unweighted) control group approach is the so-called “postponed-
treatment” method, which avoids patients being deprived from taking part. Here,
one group of patients immediately receives program treatment, whereas another
group is contacted but receives treatment only after a certain period of time. Dur-
ing this period, the patients with postponed treatment serve as control group. As
with the virtual self-selection approach, the act of contacting the patients with post-
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Figure 17: Another possible method of economic evaluation is to compare partici-
pants with virtual participants from the control group.

poned treatment may already cause a change in behavior which is accompanied by
a cost reduction. In the case of the postponed-treatment approach, this leads to the
program effect being underestimated. Moreover, the treatment cannot be postponed
for a longer period of time, which means that only a short-term effect can be mea-
sured. Most chronic programs, however, are long-term measures that are designed
to sustainably reduce costs. For those programs, an appropriate measurement tech-
nique needs to be able to determine the economic effect over a longer period of
time.

Beside the various possibilities for defining comparison groups, different methods
for calculating the economic effect are also conceivable (see Figure 15). In the liter-
ature, two major approaches are proposed for this purpose. The first method uses
the difference in raw means or medians of observed costs (or of cost development)
between both groups as an estimate of the average individual saving, from which the
economic effect can be derived (see, for example, Berg and Wadhwa [2009], Esposito
et al. [2008] or Henderson et al. [2013]). A comparison based on raw means is very
sensitive to cost outliers in both groups, so the median or some kind of truncated
mean is usually applied to control these outliers. Statistical tests can also be used
to assess the significance of the cost effect. If raw means are used, a t-test for in-
dependent samples (and unknown sample variances) is the most appropriate way
to determine the significance of the effect. If a truncated mean or median is used,
the non-parametric Wilcoxon rank-sum test – also known as Mann-Whitney U test
– is preferable. The matched-pair approach proposed in Section 3.3 uses the mean
cost difference of participants and their twins to estimate the cost effect. As outliers
in the cost difference are excluded, the resulting estimate can be seen as truncated
mean.

The second method is based on a regression model that includes all cost-relevant
parameters, plus a treatment parameter which indicates if an observation stems
from the intervention or control group (see, for example, Conti [2011], Villagra and
Tamim [2004] or Ninot et al. [2011]). A cumulative cost difference over several years
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can be estimated by introducing a time-varying treatment effect and adding up the
corresponding regression parameters over several years. The regression approach has
the advantage that cost-relevant parameters are implicitly controlled which supports
a risk-adjusted comparison. Moreover, an assessment of the significance of the effect
is straightforward, because the standard tests (Wald test, score test, likelihood ratio
test) on the significance of regression parameters can be used. For the approach
proposed in Section 3.3, the mean comparison method is used to calculate the eco-
nomic effect, because the regression method lead to an unstable economic effect over
time (compare Section 3.4.1). However, the idea to control all cost-relevant param-
eters using a regression model in the matching process is applied. In this way, the
advantages of both approaches are combined.

3.2.2 Theory and Application of the Matched-Pair Method

Rubin [2006] defines the matching approach in the following way: “Matched sam-
pling is a method of data collection and organization designed to reduce bias and
increase precision in observational studies, i.e. in those studies in which the ran-
dom assignment of treatments to units (subjects) is absent. Rubin [2006] gives an
extensive overview of scientific literature on the topic and includes many important
articles on matching theory. Like many other statistical approaches, the match-
ing approach has a long history, but its importance only grew with the increase
in computing power in the last decade of the 20th century. At the start of the
1950s, Cochran [1953] was the first researcher to systematically study the match-
ing approach, although some isolated articles on the topic did already exist in the
1930s, like the contribution from Wilks [9]. Nowadays, matched-pair sampling is
a standard measurement approach for medical treatments in observational studies.
In the DMP context, matching is used for measuring clinical outcomes like survival
[Miksch et al., 2010], or economic outcomes like service utilization or costs [Berg
et al., 2004].

As described by Rubin [2006], the aim of matching is to reduce the bias that arises
from non-random allocation to treatment and control groups, like the described
self-selection bias in the economic evaluation of insurer-driven DMPs. The basic
assumption of all matching approaches is that this bias is caused by one or more in-
fluencing factors x = (x1, . . . , xp) on the response y which are differently distributed
in the treatment and control groups. The idea of all matching approaches is to bal-
ance the distribution of the influencing factors or matching variables x1, . . . , xp in
both groups to reduce the bias, i.e. to carry out a covariate adjustment. This is done
by allocating comparable/similar controls with regard to the matching variables to
the persons in the treatment group. This reduces the bias in the comparison of y
values between both groups. In a setting with only one matching variable, Rubin
[2006] defines the bias B in the following way:

B =
E(xC)− E(xP )√

Var(xC)+Var(xP )
2

. (4)
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This means that the bias grows if the expectation of x differs significantly between
participant (P) and control (C) groups, or if the variances in the groups are small.

Two types of matching approaches are generally differentiated [Rubin, 2006] – mean
matching or balancing and individual or pair matching. The first type aims at
minimizing the mean difference in matching variables between the treatment and
control group, i.e. to reduce |x̄C − x̄P |. Individual or pair matching searches for
a “twin” or matched pair for each participant that is as similar as possible with
regard to the matching variables, i.e. it minimizes

∑nP
i=1 |xC,i − xP,i| for all persons

(i = 1, . . . , nP ) in the treatment group. Mean matching is clearly simpler, but works
only if the treatment effect is constant over the complete range of x-values. However,
this assumption does not hold in most practical situations, especially if more than
one matching variable is considered. If the treatment effect varies with (one of)
the matching variables, Rubin [2006] recommends using the individual matching
approach in order to get a less biased estimate of the average treatment effect over
the whole treatment group.

Based on these considerations, many more or less complex matching algorithms have
been developed, like, for example, “nearest available neighbor matching”, “caliper
matching” or “radius matching” [Coca-Perraillon, 2007]. All matching algorithms
can be divided into matching with replacement and matching without replacement.
In the first case, each member of the control group can be assigned to different
members of the treatment group, whereas in the latter case the controls can only
be assigned to one member of the treatment group. Matching without replacement
usually only works in situations where the control group clearly has more members
than the treatment group. If the control group is too small, there will be no similar
controls left for some elements of the treatment group and the bias increases because
the numerator in Equation (4) grows. The drawback of matching with replacement
is that the variance in the control group Var(xC) decreases if the same control is
allocated to many members of the treatment group. Here too, the bias grows because
the denominator in Equation (4) decreases. Especially if the control group is smaller
than the treatment group (as the insurer does not want to deprive too many clients
from participation) matching without replacement is not meaningful.

Another differentiation can be made between 1:1 matching algorithms and 1:l match-
ing algorithms. Allocating more than one control to each member of the treatment
group (and averaging the controls’ response) increases the bias because also less
similar controls are allocated to members of the treatment group, especially if l is
large. The allocation of several controls, however, has a stabilizing effect on match-
ing and controls outliers in the response. In the literature on matching, the choice
of l is heterogeneous and depends on the size of the control group (usual choices are
l = 4, 5, 8, 10, 16, see Hollenbeck [2005], D’Agostino et al. [2001] and Blackman et al.
[2010]). Most authors, like D’Agostino et al. [2001], Grant et al. [2012] and Fairfax
et al. [1976], use l = 4 and argue that this matching ratio offers enough stability
and hardly increases the bias, especially for small control groups.

The quality of matching algorithms can be measured and compared using the per-
centage of bias reduction, which Rubin [2006] defines as
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100 ·
(

1− expected bias for matched sampling

expected bias for random sampling

)
. (5)

The aim of matching algorithms is to maximize this quality criterion. For multiple
matching variables (multivariate matching) Rubin [2006] postulates that optimal
matching needs to be equal percent bias reducing. This means that the percentage
of bias reduction is the same for each matching variable. In multivariate matching
problems with continuous matching variables x, the similarity between members
of the treatment group and members of the control group can be quantified using
a multivariate distance measure, like the Euclidean distance. For example, Ru-
bin [1979] proposes a multivariate matching algorithm based on the Mahalanobis
distance [Mahalanobis, 1936] which is equal percent bias reducing.

The regression-based matching approach for economic DMP evaluation introduced
in Section 3.3 also considers the relevance of the matching variables x which can
implicitly be derived from the underlying cost prediction model. The idea is to
focus on balancing the distribution of those covariates with highest relevance for
the outcome instead of equal percent bias-reduction. Consequently, the percentage
of explained variance in future costs (measured by the predictive R-squared of the
cost-prediction model, see Section 2) is used as a quality measure for the matching.
This quality measure also considers that there may be unknown influence factors on
y that are not considered and lead to a certain percentage of unexplained variance
or hidden bias. Linden et al. [2006] discuss the problem of such hidden bias in the
context of DMPs and propose a strategy to reduce it.

An extensive theoretical introduction to the very common propensity score matching
method (see Section 3.2.1), which is also regression-based, can be found in Guo
and Fraser [2010], Rubin [2006] and Dehejia and Wahba [2002]. Propensity score
matching is applied by different authors in the DMP context, like Linden et al.
[2005] and Stock et al. [2010].

A clear advantage of regression-based methods is that they can deal with covariates
on different scales. Methods which require a distance calculation in the space of
matching variables x, like Rubin’s Mahalanobis distance matching [Rubin, 1979],
are usually only defined for continuous covariates. Statistical theory offers some ap-
proaches for calculating distances with regard to nominal and ordinal scaled covari-
ates [Boriah et al., 2008]. However, it is difficult to aggregate distances of variables
on different scales [Fahrmeir et al., 1996].

A recent development in matching theory is “coarsened exact matching” (CEM)
[Iacus et al., 2012], the idea of which is to define the lower and upper bounds of
allowed deviation for each matching variable. A control is assigned to a member
of the treatment group if all x-values fall within the defined bounds. Members for
which no controls can be found who fulfill this condition are excluded from the
calculation of the treatment effect. The bounds can be estimated from the data
but can also be determined from medical knowledge or best practice. This can be
seen as a strength of the approach but can also be a weakness in situations where
medical experience is missing, because the data-driven definition of bounds is clearly
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less reliable. For example, Wells et al. [2013] have applied the CEM approach to
measure the treatment effect of DMPs.

3.3 Methodology

In the following, the methodology of the matched-pair approach suggested for mea-
suring the economic effect of disease management programs is presented. The gen-
eral idea of the approach is to reduce the self-selection effect that distorts any direct
cost comparison between participants (p1, . . . , pn) and controls (c1, . . . , cm), by allo-
cating matched pairs or twins (t1, . . . , tm′ with m′ ≤ m) to every participant. The
basis for the allocation of twins is the definition of a measure of similarity or distance
between individuals. Sections 3.3.1 and 3.3.2 describe several measures of similarity
in cost-relevant parameters based on cost-prediction models. Also, concrete allo-
cation functions to match controls and participants based on their similarity are
defined. In Section 3.3.3, it is described how the economic effect for programs that
have already been carried out can be calculated based on the selected twins. Then,
the (cumulative) average saving per participant based on the difference in average
costs between participants and allocated twins is defined. Section 4.4 outlines how
the financial risk of loss for programs that have already been carried out can be
estimated in a reliable way. For this end, the variance of the economic effect needs
to be estimated and an assumption about its distributional form is needed. Fi-
nally, conditions under which the financial risk of loss can be determined for future
programs too, are defined as the basis for a reinsurance solution for DMPs.

As in most programs not every participant is included at the same point in time,
the program time τ is defined. τ starts for every participant pi with the time of
the first contact or, if this date is not available, with the start of program measures
(tstart,pi), and ends with the time of dropout from the program (tend,pi). The program
period usually ends after a fixed number of years tmax. If this is not the case, for
the purpose of stable measurement the end of the program period tmax is defined as
the program year in which there are at least 100 participants under observation.

To assess the economic effect of a disease management program, the average annual
saving per participant added up over all program years is quantified. This cumulative
average saving up to program year τ (τ = 1, . . . , tmax) is defined by

D̄τ =
τ∑
θ=1

d̄θ (6)

where d̄τ is the average saving per participant in program year τ . d̄τ is defined by

d̄τ =
1

n

n∑
i=1

dpi,τ (7)

where dpi,τ is the individual saving for participant pi.
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The final economic effect D̄c
τ is obtained from subtracting the annual program costs

c (which is assumed to be constant over the program years) from the cumulative
average savings:

D̄c
τ = D̄τ − τ · c. (8)

To evaluate the risk of financial loss related to the DMP, some assumptions on the
distribution of the economic effect (see Section 4.4) are needed and an appropriate
probability measure P needs to be defined. The financial risk of loss can then be
written as

P(D̄c
τ < 0). (9)

3.3.1 Cost Prediction Models as Basis of Distance Measures

The allocation of matched pairs is based on maximizing the similarity or minimiz-
ing the distance between participants and controls. In Section 3.3.2, two different
ways of calculating distances are defined (see Figure 18). Both are based on a
cost-prediction model for annual claimed amounts (see Section 2). For matching
purposes, both a linear and a log-linear regression model are considered. Both mod-
els describe the relationship between future costs yt and p covariates x1,1, . . . , xt−1,1,
. . . , x1,p, . . . , xt−1,p captured from the start of the observation period up to t − 1.
More precisely, the linear model equation

E(ya,t|xa,1,1, . . . , xa,t−1,1︸ ︷︷ ︸
:=xa,t,1

, . . . , xa,1,p, . . . , xa,t−1,p︸ ︷︷ ︸
:=xa,t,p

) = (10)

(xa,t,1, . . . ,xa,t,p)︸ ︷︷ ︸
:=xa,t

βlin

is established where a = p1, . . . , pn, c1, . . . , cm and

t =

{
tfirstobs,a, . . . , tstart,a − 1 ∀a ∈ {p1, . . . , pn}
tfirstobs,a, . . . , tlastobs,a ∀a ∈ {c1, . . . , cm}

. (11)

tfirstobs,a and tlastobs,a are the first and last year of the observation period for individual
a and tstart,a is the year of the program start for participant a. This means that the
models are based on all participants before the start of the intervention and all
controls.

In parallel, the log-linear model equation

log(E(ya,t|xa,t) + 1) = xa,tβlog. (12)
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is established. The model with log costs as response usually delivers the better
predictive R-squared, whereas the linear model is more stable as regards outliers,
which is a desirable property for matching.

In order to avoid overfitting and to identify only the cost-relevant covariates for
matching, a stepwise variable selection approach [Miller, 1990] is applied. This leads
to a reduction in the covariate vector from (xa,t,1, . . . ,xa,t,p) to (x̃a,t,1, . . . , x̃a,t,p′) :=
x̃a,t with p′ < p. The covariates selected for the linear and the log-linear model may
differ, of course, so that x̃lin,a,t 6= x̃log,a,t.

3.3.2 Allocation of Matched Pairs to Participants

The matched-pair approach allocates li twins to participant i (i = 1, . . . , n) based
on similarity or distance. Mathematically, this allocation is a transformation s of
the following form:

s : {p1, . . . , pn} → {c1, . . . , cm}li (13)

pi 7→ s(pi) = {ti,1, . . . , ti,li |
ti,1, . . . , ti,li ∈ {c1, . . . , cm} ; i = 1, . . . , n} .

The strategy of allocating multiple twins to each participant increases the stability
of the approach and reduces the probability of a “wrong” allocation which distorts
the resulting cost comparison [Blackman et al., 2010].

The transformation s is based on a measure of distance δ(pi, cu) between a partici-
pant pi and a control cu (i = 1, . . . , n, u = 1, . . . ,m). As the matched-pair approach
is based on a cost-prediction model for annual claimed amounts, it is straightfor-
ward to calculate annual distance measures δt(pi, cu) with t = 1, . . . , ti,u and ti,u
the number of years in which participant pi and control cu have been under com-
mon observation. Consequently, the transformation s must include some kind of
aggregation of δt(pi, cu) over time t.

The concrete transformation function s is defined as

s1(pi) := {cu | rank(∆(pi, cu)) ≤ l = 4; (14)

i = 1, . . . , n;u = 1, . . . ,m}

with

∆(pi, cu) =

{
1
ti,u

∑ti,u
t=1 δt(pi, cu) ∀ti,u ≥ 2

∞ ∀ti,u < 2
(15)
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This means that the l = 4 controls that have the smallest average deviations over
time (based on at least two years of common observation) are allocated to a partic-
ipant pi.

Alternatively,

s2(pi) :=

{
cu

∣∣∣∣∣
ti,u∑
t=1

1(rank(δt(pi, cu)) ≤ k) ≥ 2; (16)

i = 1, . . . , n;u = 1, . . . ,m

}

is defined where 1(·) is an indicator function that is equal to one if the condition
in brackets is fulfilled and 0 if not. This means that a valid twin must be among
the k controls having the smallest annual deviations from the participant in at
least two years. k is a hyperparameter that directly steers the number of allocated
controls li for each participant. k depends on the number of controls. Based on
tests of the robustness of the approach (see Section 3.4.2), k should be chosen so
that approximately 80% of all participants have at least one twin allocated.

For the first transformation s1, li ≡ l = 4 is used (1:4-matching, see D’Agostino
et al. [2001], Grant et al. [2012] and Fairfax et al. [1976]), and for the second trans-
formation s2, li ∈ {0; . . . ;m} is used which is more flexible, especially if participants
have very few controls that are sufficiently similar. In an extreme case, no twins
are allocated to a participant, in which case the participant is excluded from the
cost comparison. The strategy of excluding participants from the cost comparison
for which no adequate matched pair can be found increases the stability of the ap-
proach. It is also in line with recent findings from authors like Iacus et al. [2012]
who deal with the matching approach.

Finally, two concrete methods δt(pi, cu) of annual distance calculation between pi
and cu are defined based on the regression models (12) and (10) introduced in
Section 3.3.1. Both methods use a transformation of the covariates that were iden-
tified as relevant for future costs through the applied variable selection approach.
Figure 18 gives a schematic overview of distance calculation based on transformed
covariates and on the ideas behind each transformation step.

The first method directly uses the distance in predicted costs between participant
pi and control cu in year t (t = 1, . . . , ti,u). These predicted costs y∗a,t are a linear or
log-linear function of all cost-relevant covariates, i.e.

δ1,lin
t (pi, cu) = |y∗,linpi,t − y

∗,lin
cu,t | = (17)

|x̃Tlin,pi,tβlin − x̃Tlin,cu,tβlin|
δ1,log
t (pi, cu) = |y∗,log

pi,t − y
∗,log
cu,t | = (18)

| exp(x̃Tlog,pi,t
βlog)− exp(x̃Tlog,cu,tβlog)|
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Figure 18: Schematic overview of both covariate-based distance calculation methods.

The idea of the second method is to directly calculate the distance between values
of the cost-relevant covariates. However, those covariates are not on the same scale
level. Especially for categorical covariates, it is difficult to measure the distance
between categories. This is why a common factor analysis is applied to reduce the
dimension of the covariate space and obtain a number q of continuous factors to
which classical distance measures, like the Euclidean distance, can be applied. The
reduction in dimension is, of course, always related to a loss of information. The
principle of factor analysis [Thompson, 2004] is to minimize this loss of informa-
tion by preserving as much as possible of the covariance included in the original
covariates. Considering a scree plot, and looking at the variance explained by the
factors, a reduction of the covariate space to q = 4 continuous factors is considered a
reasonable choice for the underlying datasets. In order to obtain orthogonal factors
varimax factor rotation [Thompson, 2004] is applied. In this way, four continuous
factor values (f̃a,t,1, . . . , f̃a,t,4) := f̃a,t are obtained for each individual and year.

As the factor analysis reduces the dimension without considering the covariates’
impact on annual costs ya,t, these four factors do not explain the same percentage of
the variance of future costs. Consequently, weighting the factors according to their
predictive power is suggested based on new regression models using the four factors
as covariates:

E(ya,t|f̃a,t) = f̃ lin,a,tγ lin (19)

log(E(ya,t|f̃a,t) + 1) = f̃ log,a,tγ log. (20)
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Where cost-relevant covariates have been determined by means of a linear regression
model, also a linear regression model (19) is used to weight the resulting factors
f̃ lin,a,t. Accordingly, if a log-linear model has been used to determine the cost-
relevant covariates, a log-linear model (20) is applied for weighting the resulting
factors f̃ log,a,t.

Finally, the standardized regression coefficients γstb = |γb/ se(γb)| (b = 1, . . . , 4, se(γb)
denotes the standard error of regression coefficient γb) from the regression models
(19) and (20) are used as weights for (Euclidean) distance calculation:

δ2,lin
t (pi, cu) =

√√√√ 4∑
b=1

γstlin,b(f̃pi,t,b − f̃cu,t,b)2 and (21)

δ2,log
t (pi, cu) =

√√√√ 4∑
b=1

γstlog,b(f̃pi,t,b − f̃cu,t,b)2. (22)

The two measures of distance calculation δ1
t and δ2

t are only based on covariates
xt := x1, . . . , xt−1 that have an impact on future costs yt (see the definition of the
prediction model (10)). This means that no matching by outcome, but a matching
by drivers of the future outcome takes place. This is a basic principle of the matching
theory [Rubin, 2006] which ensures that only individuals with similar expected future
cost development are matched.

This is especially important, as not indication-related claimed amounts are modeled
in the described setting but total claimed amounts. Consider, for example, two
insureds suffering from diabetes: insured A with a well-controlled status of disease
but a severe car-accident in year t, and insured B with an uncontrolled status of
disease and several co-morbidities in year t. Both insureds have similarly high claims
costs in year t. Insured A’s claims costs will very likely decrease in the next few years,
however, whereas patient B is expected to have at least constantly high costs over
the next few years. If current costs were used as a criterion for matching, patient
B would be allocated to patient A and the estimate of the program effect would
be distorted. The integration of a time component, i.e. predicting annual costs
and measuring similarity over time, ensures that participants are only compared to
controls with a similar progress of the chronic disease.

In practical tests of the methodology it turned out that the application of transfor-
mations s1 and s2 with defined distance measures that do not include actual costs yt
has some drawbacks. In particular, outliers cannot be controlled sufficiently without
considering actual costs before the start of intervention. This is why one exception
from the rule of covariate-based allocation is made. To ensure at least a similar
starting point, a criterion for outlier control is defined based on the cost difference
between participants and controls prior to the start of the intervention.

First, the set of all assignable controls Ci for participant pi is defined:
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Ci :=
{
cu

∣∣∣ max
t=1,...,ti,u

|ypi,t − ycu,t| < b; (23)

i = 1, . . . , n;u = 1, . . . ,m
}
.

This means that controls can only be allocated to a participant if the raw cost
difference prior to the start of the intervention has not exceeded the limit b. In
this way outliers can be controlled more efficiently and do not have to be excluded
completely. Different values of b have been tested. b = ȳt with ȳt the average annual
costs of all participants before the start of the intervention and all controls seems
to be a reasonable boundary (see Section 3.4.2).

The transformations s̃1 and s̃2 denote the modifications of s1 and s2 so that only
assignable controls from Ci are considered in the allocation process:

s̃1(pi) :=
{
cu ∈ Ci | rank(∆(pi, cu)) ≤ l = 4; (24)

i = 1, . . . , n
}

and

s̃2(pi) :=

{
cu ∈ Ci

∣∣∣∣∣
ti,u∑
t=1

1(rank(δt(pi, cu)) ≤ k) ≥ 2; (25)

i = 1, . . . , n

}
.

3.3.3 Cost Comparison – Participants vs. Matched Pairs

In order to obtain an estimate of the average cumulative savings, we estimate the
individual saving of participant pi in program year τ (τ = 1, . . . , tmax)

d̂pi,τ =
1

li

li∑
c=1

ysc(pi),τ︸ ︷︷ ︸
ȳsc(pi),τ

− ypi,τ (26)

where sc(pi) denotes the c-th element of the set of allocated controls for participant
pi based on the allocation s.

It is now straightforward to insert this estimate of the individual saving dpi,τ into
the definition of the average saving d̄τ (see Equation (7)). However, it has to be
considered that for the transformation s̃2 defined in (25) not every participant will
have allocated twins. Moreover, not every participant will stay in the program for
the same period of time, but could potentially drop out before program year τ . This
is why the index set

Rτ := {i|s(pi) 6= ∅ ∧ τ <= tend,pi ; i = 1, . . . , n} (27)
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is defined where tend,pi is the year in which participant pi leaves the program. |Rτ | is
the cardinality of the set Rτ or the number of participants in program year τ with
at least one allocated twin. Then, the estimate for d̄τ is defined in the following
way:

ˆ̄dτ =
1

|Rτ |
∑
r∈Rτ

d̂pr,τ (28)

=
1

|Rτ |
∑
r∈Rτ

(ȳs(pr),τ − ypr,τ )

=
1

|Rτ |
∑
r∈Rτ

ȳs(pr),τ︸ ︷︷ ︸
:=Sτ

− 1

|Rτ |
∑
r∈Rτ

ypr,τ︸ ︷︷ ︸
:=Pτ

.

This means that ˆ̄dτ can be written as the difference between the averages Pτ and
Sτ , where Pτ are the average costs of the participants in program year τ (with at
least one allocated twin) and Sτ are the average costs of the “virtual twins” that
result from averaging the costs of all allocated twins per participant.

At the same time, Sτ can be seen as a weighted average of the costs in the control
group. The weighting is meant to make the control group more comparable to
the participant group by imitating the participants’ risk structure. This works by
assigning a higher weight to the controls that are similar to many of the participants.
However, the weighting factor depends on the way the average costs of the assigned
controls are calculated.

In the following, two alternative ways of weighting the assigned controls are defined
which leads to two alternative estimates for d̄τ .

The first estimate ˆ̄d+
τ leads to a higher weighting of controls who are similar to many

participants. It is calculated by replacing Sτ in Equation (28) with S+
τ where

S+
τ :=

1∑
r∈Rτ lr

∑
r∈Rτ

lr∑
c=1

ysc(pr),τ . (29)

The second estimate ˆ̄d−τ leads to a lower weighting of controls who are similar to

many participants. ˆ̄d−τ is obtained by replacing Sτ in Equation (28) with S−τ where

S−τ :=
1

|S|
∑
v∈S

ycv ,τ . (30)

The index set S is defined as
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S :=

{
v | cv ∈

⋃
r∈R

s(pr); v = 1, . . . ,m

}
(31)

and |S| is the cardinality of S.

Both estimates ˆ̄d+
τ and ˆ̄d−τ yield similar results to ˆ̄dτ for all programs for which

the estimates were calculated (see Section 3.4.2). Considering these results and

the intuitive derivation given in Equation (28), it is recommended using ˆ̄dτ as an
estimate for the average saving per participant, which implies a “medium” weighting
for controls who are similar to many participants.

Finally, an estimate for the cumulative average saving per participant ˆ̄Dτ is calcu-
lated by summing up the estimates over all program years:

ˆ̄Dτ =
τ∑
θ=1

ˆ̄dθ. (32)

If the transformations s̃1 and s̃2 are combined with the four different distance mea-

sures δ1,lin
τ , δ1,log

τ , δ2,lin
τ and δ2,log

τ , eight different estimates ˆ̄d1
τ , . . . ,

ˆ̄d8
τ (see Figure 19

for an overview) are obtained which lead to broadly consistent saving curves (see
Section 3.4.1). Because there is no way of checking which of these eight estimates is
closest to the real underlying savings, it is suggested using the median of all eight

methods ˆ̄dmed
τ as the final estimate. This procedure clearly increases the stability of

the approach and reduces the probability of a substantially wrong estimate.

3.3.4 Distribution of Savings and Financial Risk of Loss

The results shown in Section 3.4 indicate that the defined estimate ˆ̄Dc
τ is a reliable

estimate for the economic effect of a DMP. For this reason, it is suggested measuring
this effect using the matched-pair approach described, at least in situations where
no randomized controlled trial is feasible. Accepting the proposed measurement
approach as a standard procedure implies that the defined estimate is equated with

the actual economic effect (D̄c
τ ≡ ˆ̄Dc

τ ) and that the only uncertainty included in
this effect is the uncertainty of the measurement method. This also means that
the question of the program’s profitability is answered by the question whether the

estimate ˆ̄Dc
τ is greater than zero. In this situation, the uncertainty of the approach

needs to be analyzed for two reasons:

1. For programs which have already been carried out, the uncertainty of the
measurement approach directly determines the financial risk of loss related to
the program. In this case, the financial risk of loss corresponds to the statistical
type I error, which is the probability of a DMP being rated as profitable though
it actually is not.
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Figure 19: Overview of all defined matched-pair methods.

2. For future programs that are similar to ones that have already been carried out,
the risk of financial loss can be predicted based on the relationship between
the uncertainty of the approach and the financial risk of loss. The form of this
relationship needs to be derived from programs that have already been carried
out.

In order to estimate the financial risk of loss of a DMP P( ˆ̄Dc
τ < 0), an estimate for

the variance of the (estimate for) the economic effect ˆ̄Dc
τ needs to be defined and an

assumption about its distributional form needs to be made.

ˆ̄Dτ is an average of n independent random variables with existing first and second
moments. Therefore it is assumed, based on the central limit theorem [Grimmett

and Stirzaker, 1982], that ˆ̄Dτ is asymptotically normal distributed. In other words, if
the number of participants is large enough, the assumption of a normal distribution
holds. This is why the normal distribution N can be used as an approximation of
the unknown probability measure P . In order to estimate the loss risk based on
the probability function of the normal distribution, the parameters of the normal

distribution µτ and σ2
τ need to be estimated which represent the expectation E( ˆ̄Dτ )

and the variance Var( ˆ̄Dτ ) of the distribution, respectively. Because the annual

program costs c and the program time τ are deterministic, the economic effect ˆ̄Dc
τ

is also (asymptotically) normal distributed with parameters µτ − τ · c and σ2
τ .

As the estimate for µτ , the median estimate described in Section 3.3.3 is used, i.e.
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µ̂τ = ˆ̄Dmed
τ =

τ∑
θ=1

ˆ̄dmed
θ . (33)

Estimating the variance σ2
τ is more complex. Starting point is again an estimate for

the variance of the average annual cost difference per participant ˆ̄dτ :

V̂ar( ˆ̄dτ ) = V̂ar(Sτ − Pτ ) (34)

= V̂ar(Sτ ) + V̂ar(Pτ )− 2 · Ĉov(Sτ , Pτ ).

The estimates for the single components of V̂ar( ˆ̄dτ ) are defined in the following way:

V̂ar(Sτ ) =
1

|Rτ |

(
1

|Rτ | − 1
(35)

∑
r∈R

(ȳs(pr),τ − ¯̄ys(pr),τ )
2

)
,

V̂ar(Pτ ) =
1

|Rτ |

(
1

|Rτ | − 1

∑
r∈R

(ypr,τ − ȳpr,τ )2

)
, (36)

Ĉov(Sτ , Pτ ) =
1

|Rτ |

(
1

|Rτ | − 1
(37)

∑
r∈R

(ȳs(pr),τ − ¯̄ys(pr),τ )(ypr,τ − ȳpr,τ )

)
.

where ȳpr,τ are the average costs of all participants and ¯̄ys(pr),τ are the average costs
of all “virtual twins” in year τ . In order to derive the estimates (35) and (36),
it is assumed that the costs of single participants and single “virtual twins” are
independent and have the same variance. In parallel, it is assumed for estimate (37)
that the costs of a participant and of a “virtual twin” allocated to another participant
are independent and that the covariance between participant and allocated “virtual
twin” is the same for all pairs. It has to be borne in mind that the assumptions of
independence may be questionable for the “virtual twins”, as the same control can
be part of different “virtual twins”. However, in the practical settings presented in
Section 3.4, only a few controls were allocated to multiple participants. For this
reason, the dependencies between “virtual twins” are not expected to significantly

influence the variance of the estimated average savings per participant V̂ar( ˆ̄dτ ) and
are ignored.

Based on the estimated variance of the annual average savings per participant, an
estimate of the cumulative average savings per participant is obtained by plug-in
estimation:
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σ̂2
τ = V̂ar( ˆ̄Dτ ) = V̂ar

(
τ∑
θ=1

ˆ̄dθ

)
(38)

=
τ∑
θ=1

V̂ar( ˆ̄dθ) + 2 ·
τ∑

θ,θ′=1
θ<θ′

Ĉov( ˆ̄dθ,
ˆ̄dθ′).

As the annual savings in the individual program years are obviously correlated, the

covariances Cov( ˆ̄dθ,
ˆ̄dθ′) are certainly not negligible. An estimate of these covariances

is defined in Appendix B.

Based on the eight different allocation functions of twins defined in Section 3.3.3,
eight different estimates for the variance are obtained. The stabilizing property of
the median leads to the fact that the variance of the median potential savings will
be smaller than the median of the single variances. Nevertheless it is proposed using
the median of the single variances as the estimate for σ2

τ , because, from an insurer’s
perspective, an underestimation of the variance – and thus of the risk of financial
loss – is clearly more disadvantageous than an overestimation.

With the estimates for µτ and σ2
τ , the financial risk of loss P( ˆ̄Dc

τ < 0) for programs
that have already been carried out can be calculated:

P̂( ˆ̄Dc
τ < 0) = N ( ˆ̄Dc

τ < 0) (39)

= N ( ˆ̄Dτ − τ · c < 0)

= N

(
ˆ̄Dτ − µ̂τ
σ̂τ

<
τ · c− µ̂τ

σ̂τ

)

= Φ

(
τ · c− µ̂τ

σ̂τ

)

where Φ is the probability function of the standard normal distribution and σ̂τ is

the square root of the defined estimate σ̂2
τ . As mentioned above, P̂( ˆ̄Dc

τ < 0) can be
interpreted as the probability of the type I error, i.e. the probability of assuming
the program to have a positive economic effect, even though it does not. The

distributional assumptions made for ˆ̄Dc
τ can also be used to derive the probability

of the type II error, i.e. wrongly assuming that the program results in a negative
financial outcome. In this context, however, the focus is on the type I error, because

a program with an expected negative economic effect ˆ̄Dc
τ would not be considered

for a reinsurance solution.

µτ and σ2
τ cannot directly be estimated for programs that have not yet been carried

out. For the prediction of the financial risk of loss for such new programs, the
economic effect and the relationship between the uncertainty of measurement and
the financial risk of loss need to be transferred from a known program. Such transfer

63



3 Economic Evaluation of Disease Management Programs

is only possible if the future program is sufficiently comparable in terms of program
design and underlying portfolio to the one already carried out and measured. In
addition, the uncertainty of the measurement that depends on several factors – like
data quality, length of claims history and portfolio size – needs to be quantifiable
for the new program.

All in all, the following three conditions need to be fulfilled to reliably predict the
financial risk of loss of a new program and determine its reinsurability:

i) The future program has the same design (same target indication, same inclu-
sion and exclusion criteria for participants and controls, and same program
measures) as one which has already been carried out and measured using the
described matched-pair approach.

ii) The group of potential participants (before self-selection) in the new program
is similar to that in the one already carried out and measured with regard to
all cost-relevant parameters (determined by the regression model).

iii) Historical member and claims data on potential participants are available over
a period of at least three years, which means that the predictive quality of a
cost-prediction model and thus the uncertainty of the measurement method
can be evaluated.

Condition i) and ii) justify the assumption that a similar outcome ˆ̄Dτ to that ob-
tained in the program already carried out will be realized in the future program,

which means that ˆ̄Dτ from the one already carried out can be used as an estimate
for µDτ .

Condition iii) makes it possible to quantify the uncertainty of the measurement for
the future program, which is, in the described setup, directly related to the predictive
quality of the underlying cost-prediction model. As a measure of predictive quality,
we use the predictive R-squared R2∗ , which is the squared correlation between the
values predicted and those actually observed in a back-testing scenario (see Section 2
for further details on measures of predictive quality). The predictive R-squared
ranges between 0 and 1 and describes the percentage variance of future costs that
can be explained by the model.

For future programs, Var( ˆ̄dτ ) cannot directly be estimated. Therefore, the rela-
tionship between the uncertainty of the measurement represented by R2∗ and the

financial risk of loss driven by the variance Var( ˆ̄dτ ) needs to be quantified based
on programs that have already been carried out. Then, only the predictive quality
R2∗ needs to be determined based on the new portfolio and the derived relationship
can be applied to predict the risk of loss for the new program. The connection
between the predictive R-squared and the variance of the estimated average savings

per participant becomes obvious looking at the derivation of Var( ˆ̄dτ ) in (38):

Var( ˆ̄dτ ) = Var(Sτ ) + Var(Pτ )− 2 · Cov(Sτ , Pτ ). (40)
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The higher the percentage of explained variance in future costs (i.e. the predictive
R-squared) or as better the matching, the higher is the covariance between the
average costs of participants Pτ and the average costs of “virtual twins” Sτ . The
variances of Sτ and Pτ are not directly influenced by R2∗ , however. This shows that
both Var(d̄τ ) and σ2

τ decrease with the increase in the predictive R-squared R2∗ .
Thus, σ2

τ can be written as a (monotonically decreasing) function f of predictive
R-squared:

σ2
τ = f(R2∗). (41)

As the functional form f of the relationship between σ2
τ and R2∗ is quite complex,

it cannot be derived analytically. Therefore, an estimate of the functional form f̂ is
needed for estimating the variance of the cumulative savings of future programs σ2

τ .
In Section 3.4.3 an estimate f̂ is simulated based on the results of three programs
which have already been carried out.

If all three preconditions i)-iii) are fulfilled, the approach described can be used to
reliably estimate the financial risk of loss P(D̄c

τ < 0) for future programs, and their

reinsurability can be determined based on P̂( ˆ̄Dc
τ < 0). A program can, of course,

only be reinsured if P̂( ˆ̄Dc
τ < 0) is sufficiently small.

In situations where the above conditions i) and ii) are only partially fulfilled – for
example where the inclusion criteria or the distribution of cost-relevant parameters
differ between old and new programs – the risk of financial loss can grow by these
additional uncertainties. It is then advisable to additionally increase the estimated
variance by a multiplicative factor v larger than 1 in order to take account of the
additional uncertainty:

σ̂2
τ,v = v · f̂(R2∗). (42)

A correction for additional uncertainty is only reasonable up to a certain point. For
example, it is not possible to apply conclusions from a known program to a new
program if the programs have different indications (compare the different results
for chronic heart failure and diabetes in Section 3.4). Also, the correction of the
financial risk of loss is only meaningful if the base risk is sufficiently small (above a
base risk of 50%, the correction has the opposite effect).

3.4 Results for Different DMPs

To test the measurement approach described in Section 3.3, datasets from two Cen-
tral European insurance companies are used. Those two companies provided claims
data on their insureds over a timeframe longer than five years and program data on
three different programs, two for diabetes and one for chronic heart failure (CHF).
In the following, several details on the programs are provided, especially inclusion
and exclusion criteria, as well as program measures.
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Number of participants
τ n (Diab. I) n (Diab. II) n (CHF)
0 1,358 8,738 600
1 1,100 8,620 548
2 944 7,953 479
3 770 3,231 386
4 665 – 305
5 574 – 273
6 368 – 219

Number of controls
mmin (Diab. I) mmin (Diab. II) mmin (CHF)

52,757 1,801 35,218

Table 9: Number of participants n for the analyzed programs per program year τ
and minimum number of available controls mmin within the program phase (without
deceased persons).

For the first insurance company (company A), a diabetes and a chronic heart failure
program was evaluated. Both programs are based on disease-specific telecoaching,
i.e. regular phone calls to check health status, and the telemonitoring of disease-
related parameters (like blood pressure or blood sugar). The inclusion criteria for
the programs were either a confirmed diagnosis of diabetes type II (ICD-10 codes:
E11 to E14) or of chronic heart failure (ICD-10 codes: I50 or I11.0). In addition,
only insured persons in certain tariffs were included. The most important exclusion
criteria for both programs were:

• age younger than 40 or older than 75 years (for diabetes) and age older than
85 years (for CHF),

• existence of other diseases (e.g. acute myocardial infarction within last 6
months, need for dialysis, AIDS, cancer, alcohol or drug dependency),

• inability to cooperate or communicate due to other diseases, disabilities or
care needs,

• simultaneous participation in another DMP,

• cancellation of contract during observation period and

• delay in payment.

For the second insurance company (company B), the economic effect of a diabetes
program was analyzed. The program aims at improving the insured persons’ health
status by optimizing the medical support and infrastructure of those persons. The
basic inclusion criteria were inpatient and/or outpatient diagnoses of diabetes and
the prescription of specific diabetes medication. Basic exclusion criteria were par-
ticipation in other healthcare programs, age under 19 or over 89 years, need for
care and need for dialysis. Out of all the insureds matching these basic criteria,
those with the highest likelihood of hospitalization (which is very cost-intensive)
were selected in order to determine all candidates for the DMP.

Table 9 gives an overview of the number of actual participants n per program year τ
and the total number of controls m who match all inclusion criteria. Company A’s
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diabetes program (denoted as Diabetes I) starts with n = 1,358 participants in the
year of the first program call (defined as τ = 0) and has more than 500 participants
after 5 program years. The chronic heart failure program (denoted as CHF) includes
n = 600 participants in the year of the first program call (defined as τ = 0), of which
more than 50% are still under observation in program year τ = 4. The last year
that can be reliably evaluated for both programs is program year τ = 6. For both
programs a large number of controls is available (at least mmin = 35,218 for diabetes
and at least mmin = 29,342 for CHF).

The selection process for company B’s diabetes program (denoted as Diabetes II)
leads to a participant group of n = 8,738 in the year of the first DMP-related contact
with the insured person (defined as τ = 0). The last year of evaluation is program
year τ = 3, in which there are still more than 3,000 participants under observation.
The minimum number of available controls within the program phase is mmin =
1,801.

The following information was used as an input for the cost-prediction models on
which the matched-pair allocation is based (see Section 2 for more information on
the construction of cost-prediction models):

• information on the insured person (like age and gender),

• contract information (like years since start of contract, deductibles and scope
of cover) and

• claims history (like previous diagnoses, procedures and claims costs).

For evaluating all three programs, people for whom substantial information, like gen-
der or age, was not available and for which the matching algorithm could therefore
not be applied were excluded (only a negligible number of individuals were affected).
Also, the programs were evaluated twice. First, people who died during the obser-
vation period, were included and then excluded to avoid distorting the economic
effect caused by strongly increased claims costs in the months before death.

It is important to note that the cost-prediction models used for allocating twins
are based on the claimed amount per individual instead of on the amount actually
paid by the insurer. The reason for this is that paid amounts are triggered in a
complex way by the feautures of the insured’s specific tariff and are therefore more
difficult to predict. In contrast, claimed amounts can usually be reliably predicted
based on the medical information available. However, the question as to whether
the cost difference between participants and allocated controls will be based on
claimed or paid amounts depends on the underlying perspective. From a health
economics perspective, the saving in terms of claimed amount, i.e. full medical costs,
is certainly more interesting. From an insurer’s perspective, however, the actual
paid amount is the deciding quantity, especially with regard to the risk of financial
loss related to the program. The average savings presented in the following are
nevertheless based on claimed amounts, because the paid amount was not available
in the data from insurance company B. For insurance company A, the final cost
difference has been calculated using both the paid and the claimed amount. As a
result, it turned out that the savings based on the paid amount are very similar to
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the savings based on the claimed amount. The risk of financial loss also barely differs
between the two approaches. This outcome can be explained by the fact that insured
persons in the portfolio analyzed have comprehensive health cover and comparable
tariffs. Therefore, paid and claimed amount do not differ strongly and are highly
correlated which is certainly not the case for portfolios with mainly supplementary
cover. Furthermore, tariff information is considered as a matching criterion in the
allocation model.

The three programs introduced are quite heterogeneous in terms of program mea-
sures, indication, number of participants and controls, as well as length of the pro-
gram phase. Also, available information and data quality differ between insurance
companies A and B. Accordingly, the different programs provide a comprehensive
test environment for various measurement techniques. Sections 3.4.1 and 3.4.2 com-
pare the described measurement approach to alternative methods and show its sta-
bility and consistency for all three scenarios. Finally, the programs described are
used to characterize the relationship between the uncertainty of the measurement
approach and the financial risk of loss for the insurer (see Section 3.4.3) based on
the assumptions outlined in Section 3.3.4.

3.4.1 Stability of Matched-Pair Approach

First, the average savings per participant resulting from the different matched-pair
options are illustrated (see Figure 19 for an overview of the distance calculations, ag-
gregation functions and target variables used). Figure 20 shows the average savings

per participant ˆ̄d1
τ , . . . ,

ˆ̄d8
τ in euros as well as the median ˆ̄dmed

τ of the saving curves
for all evaluated programs.

The parallelism of the curves indicates the consistency of the measurement approach.
Nevertheless, there is a considerable variation between the eight different curves in
the potential savings for the single points in program time. This variation is caused
by the uncertainty of the measurement approach, i.e. the part of the variation in fu-
ture costs that cannot be explained by the underlying cost-prediction models. This
inexplicable part of the variation arises from unavailable information, like disease-
related clinical parameters, or immeasurable information, like the patient’s degree
of motivation, and can hardly be reduced by applying statistical techniques. Conse-
quently, a single measurement method will not be able to produce a reliable estimate
for the economic effect of a DMP. Therefore, it is recommended using the median

estimate ˆ̄dmed
τ , which robustly represents different aspects of the measurement prob-

lem, and also considering a possible range of potential savings. Using the variance
estimation given in Section 3.3.4 it is also possible to estimate pointwise confidence
intervals for the saving curves (not shown here).

Comparing the saving curves in Figure 20, there is no clear trend that single meth-
ods tend to systematically produce higher or lower savings. For the two diabetes
programs, the median of all methods does not show a significant saving potential,
also bearing in mind that the curves do not include program costs. One possible
explanation for this is that the observation period of 3 or 6 program years, respec-
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Figure 20: Matched-pair estimates (green/blue lines) including the median (bold red
line) of all methods for the average saving per participant (in euros) of all DMPs
analyzed.

tively, may be too short to measure any financial effect of a diabetes program. Even
though there are only a few studies examining the long-term effect of diabetes DMPs,
some authors, like Dove and Duncan [2004], argue that positive effects might not be
visible within the first ten years because they require a long-term change in lifestyle.

For chronic heart failure, on the contrary, a clear saving potential was measured
that almost linearly increases with program time, apart from a small break in the
third program year. This break is visible in the curves of all calculated methods and
is related to reduced costs in the population of controls which cannot be explained
from the available data information. As the break is visible in all methods, including
ones which are not matched-pair-based (compare the benchmarking analysis below),
it is assumed that this inconsistency is mainly data-driven. Especially after τ = 4
years, considerable savings are observable for the CHF program (up to 2,900 euros
in the sixth program year). However, it has to be remembered that the number of
participants that have been in the program for more than 4 years is quite small (see
Table 9), so the uncertainty of the corresponding estimates is clearly larger than
for the first program years. The existence of a verifiable saving potential from CHF
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programs is generally in line with other authors, like Inglis et al. [2010].

Figure 21: Matched-pair estimate (bold red line) for the average saving per partici-
pant (in euros) compared to several other measurement methods (green/blue lines).

In order to assess the stability of the approach, the final estimate ˆ̄dmed
τ is compared

with different benchmark methods described in Section 3.2.1. The benchmarks
represent different measurement schemes (compare Figure 15) and, as described
in Section 3.2.1, some of them theoretically tend to under- or overestimate the
treatment effect. The various benchmarks thus give an idea of the range of results
possible. Figure 21 shows the matched-pair estimate for the average saving per
participant over program time τ compared with the benchmarks tested.

The estimates related to different measurement methods are evaluated based on two
quality criteria. The first criterion is the deviation from the real underlying savings,
i.e. the extent to which a method can reduce the measurement bias. Of course,
the real underlying savings are unknown and may depend on single observations,
even though outliers are controlled. They cannot therefore be determined exactly
by any statistical measurement approach. In this situation, it is assumed that a
“mixture” of all the methods tested yields the best estimate for the real underlying
savings. In order to reduce the influence of single individuals, a re-sampling approach
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based on 100 random re-samples from the original portfolio is applied (by drawing
n participants and m controls with replacement). As the final estimate for the

real underlying saving, the median ˆ̄dmed,all
τ of the estimates resulting from all tested

methods based on all re-samples is used (bold dotted red lines in Figure 21). Then,
the sum of absolute deviations from the estimated real savings is considered as
criterion Q1 for the precision of the method. The second criterion assesses the
stability of the method. This is a crucial property from an insurer’s perspective,
especially if the risk of loss and the reinsurability of the program are to be assessed
based on this estimate. One (measurable) aspect of stability is the smoothness
of the saving curve. In the theory of discrete time series, the “curvature” of the
time series at a certain point in time is measured by the second-order difference
∇2(τ) = (dτ−dτ−1)−(dτ−1−dτ−2) [Box et al., 2013]. Therefore, the sum of absolute
second-order differences over the whole observation period is used as criterion Q2

for the smoothness and stability of the saving curves. Table 10 summarizes the
defined quality criteria for bias reduction and stability for all the methods tested.
The optimal (smallest) values among the methods tested are marked in bold face.

Diabetes I
Method Q1 Q2

Raw cost difference 2,527 1,895
Virtual participant group 1,120 2,374
Time varying regression effect 1,849 1,999
MP by current costs 1,322 2,197
MP by future costs 1,139 1,316

Diabetes II
Method Q1 Q2

Raw cost difference 1,358 804
Virtual participant group 570 508
Time varying regression effect 1,223 581
MP by current costs 688 1,176
MP by future costs 462 490

CHF
Method Q1 Q2

Raw cost difference 5,095 7,754
Virtual participant group 3,459 8,697
Time varying regression effect 4,780 7,471
MP by current costs 5,726 15,231
MP by future costs 1,782 7,274

Table 10: Quality criteria for bias reduction and stability for all methods tested and
all programs analyzed (best method in terms of corresponding criterion marked in
bold face).

1. The first benchmark is the raw cost difference between participants and all
controls (light green lines in Figure 21) following the per-protocol measurement
approach described in Section 3.2.1 (unweighted control group approach). For
the controls, a weighted cost average of the calendar years corresponding to
the participants’ program years is used. As mentioned in Section 3.2.1, this
approach (P2-C1) does not consider any potential self-selection effect in the
treatment group. It tends to underestimate the treatment effect because the
participants may have a higher level of motivation to improve their health
status. This theoretical drawback is confirmed by the analysis performed.
Compared with all the other measurement approaches shown in Figure 21,
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the raw cost difference yields clearly lower average savings and the values of
the bias reduction criterion Q1 are worse than for most other methods. In
particular, the large negative difference in τ = 0 already shows that such
unweighted approaches may lead to incomparable groups being compared. In
the three programs analyzed, the participant group is clearly more expensive
at the start of the intervention, which might indicate a more serious status of
the chronic disease. The values of Q2 for the programs analyzed also indicate
a lack of stability.

2. The second benchmark is the weighted control group approach simulating a
virtual participant group within the control group (compare Section 3.2.1).
The method’s estimated economic effect of the programs analyzed (dark green
lines in Figure 21) is mostly higher than the estimated real effect. This is in line
with the hypothesis that the method tends to overestimate the treatment effect
because of the questionable assumption that the costs of actual and virtual
non-participants are equal (compare Section 3.2.1). However, the absolute
deviation from the real effect (criterion Q1) is considerably lower than for all
other benchmark methods. Considering the smoothness of the saving curves
based on quality criterion Q2, the approach seems to be less stable than the
proposed matched-pair method.

3. For the third benchmark, no mean or median comparison is used, but the treat-
ment effect is directly estimated from a regression model. The cost-prediction
model (linear model) also used for matched-pair allocation is extended with a
time-varying coefficient of the treatment effect. To allow maximum flexibility
reference coding [Tutz, 2000] of the program time τ is used and an interac-
tion with the treatment effect is included in the model. In this way, another
benchmarking curve is obtained (light blue lines in Figure 21) which is sim-
ilar to the other estimates in the first program phase, but clearly rises more
sharply than all other estimates for a longer program duration. If a linear or
quadratic time trend is used, and especially if a log-linear model is applied,
the increasing trend is even stronger. Q1 reflects the strong deviation from
the estimated real treatment effect at the end of the observation period, which
may cause an overestimation of the overall treatment effect. Even though the
strongly increasing trend is quite linear, with Q2-values being lower than for
other benchmarks, the stability of this measurement approach is questionable.

4. The fourth benchmark is also a matched-pair estimate. Compared with the
approach proposed, it is not the relevant covariates for future costs that are
used as matching variables here, but actual costs. More precisely, the final
estimate is based on the same distance aggregation methods over time (s̃1 and
s̃2) as the proposed estimate, but distances are calculated with actual costs
instead of predicted costs or weighted factors. The resulting curves (dark blue
lines in Figure 21) are rather volatile for all three programs and, in part, do
not follow the trend of the other methods tested (compare the high Q1- and
Q2-values in Table 10). This demonstrates that it is very important to use
the drivers of future costs instead of actual costs for matched-pair allocation.
In doing so, it is ensured that only individuals with a similar progress of the
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chronic disease and a similar expected cost development are compared.

5. The proposed matched-pair estimate produces a quite smooth saving curve
over time (bold red lines in Figure 21) for all the programs analyzed, compared
with the benchmarks tested. This observation is supported by the lowest
values of the stability criterion Q2 in Table 10. These results indicate the
relative stability of the approach compared with the alternative methods, at
least for the programs considered. Furthermore, the method’s saving curves
lie close to the estimated real saving curves, which is an indicator that the
proposed matched-pair approach avoids both under- and overfitting of the
program effect. The method’s Q1-values are accordingly almost always lower
than the Q1-values of the benchmarks. The extent to which the methods
actually reduce the self-selection bias arising from the study design cannot
ultimately be assessed. However, assuming that the programs’ real savings
can be reasonably approximated using the re-sampling approach described,
the matched-pair method yields the most precise estimation and the smallest
bias of all the benchmark methods calculated.

3.4.2 Robustness of Matched-Pair Approach

In the following, it is evaluated how the proposed estimate responds to changes
in the data input, especially its robustness to extreme observations. Also, the ef-
fect of modifying the defined proceeding is analyzed and reasons for the choice of
hyperparameters are given.

An important question is how the estimate for the average savings per participant
changes if persons who have died during the observation phase are included or
excluded, because medical costs usually increase sharply in the last month of life
[Emanuel and Emanuel, 1994]. It is important to note that those individuals are
not automatically excluded by the outlier criterion defined in Section 3.3.2 because
outlying observations are only controlled prior to the start of the intervention. It
must also be taken into consideration that the question of excluding deceased persons
is closely related to the question of whether the DMP has an impact on mortality
in the intervention group (which is not a focus of this work). For the estimates
shown in Section 3.4.1 the deceased persons were excluded in order to avoid the
economic comparison being skewed by an unequal distribution of deceased persons
in the participant and control groups. In order to assess the sensitivity of the method

to the inclusion of deceased people, the estimates ˆ̄dmed
τ with deceased persons (light

green lines in Figure 22) and without deceased persons (bold red lines in Figure 22)
are compared.

For the DMPs of company A (Diabetes I and CHF) the general trends do not change,
although there are variations of up to 500 euros for the single program years. These
variations can broadly be explained by individuals who cause very high medical costs
for a short period before their death. The mortality rates are quite stable between
2% and 5% for both the intervention and control group. For company B’s diabetes
program (Diabetes II) the curves differ considerably, especially in the first program
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Figure 22: Matched-pair estimate for the average saving per participant (in euros)
with exclusion (bold red line) and inclusion (green line) of deceased persons.

year. Here, the average saving per participant is approximately 750 euros higher
if deceased people are included. Further analyses showed that this observation can
broadly be explained by an increased mortality rate in the control group that leads
to increase in costs. In addition, the average costs per deceased person are lower in
the intervention group. Overall, the values of the quality criterion Q2 (values not
shown) strongly increase and the stability of the saving curves decreases if deceased
people are included.

Irrespective of the question of improved survival due to the DMP, it is recommended
excluding deceased persons from the measurement in order to avoid any distortion
caused by non-observable factors influencing mortality. Another option for dealing
with the question of including deceased people in a retrospective analysis is to use
a person’s survival as a matching variable in the allocation process.

For the defined criterion to control outliers in the allocation process, the maximum
cost difference b between participants and controls prior to the start of the interven-
tion needs to be defined. For greater transferability to other measurement problems,
b is determined depending on the average annual claimed amounts by participants
and controls prior to the start of the intervention ŷt. Figure 23 shows the proposed
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Figure 23: Matched-pair estimate for the average saving per participant (in euros)
with lower (green line), higher (blue line) and medium cost boundary b (bold red
line) for outlier control.

estimate ˆ̄dmed
τ for all three DMPs analyzed with different cost boundaries b. For the

analyses shown in Section 3.4.1, b = ŷt is used (bold red lines in Figure 23). For
all three programs analyzed, larger values of b, like b = 2ŷt (blue lines in Figure 23)
lead to higher average savings, whereas smaller values of b, like b = ŷt/2 (green
lines in Figure 23) reduce the average individual savings. In this regard it must me
remembered that if the value of b is chosen smaller, the number of participants for
which an adequate twin can be found decreases. More participants consequently
need to be excluded, which means that the uncertainty of the measurement grows.
Conversely, if b is chosen too large, outliers may not be controlled sufficiently. Based
on the analyses performed, it is suggested using b = ŷt.

As outlined in Section 3.2.1, the matched-pair technique can be seen as a weighted
control group method. The weights correspond to how often a control is used as a
matched-pair for the participants. In Section 3.3.3, three alternative ways of weight-
ing are defined using different ways of calculating the average costs of the allocated
controls (S+

τ , S−τ and Sτ , defined in Equations (29), (30) and (28), respectively).

Figure 24 shows the resulting estimates ˆ̄dmed,+
τ (green lines), ˆ̄dmed,−

τ (blue lines) and
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Figure 24: Matched-pair estimate for the average saving per participant (in euros)
with stronger (green line), lower (blue line) and medium weighting (bold red line)
of assigned controls.

ˆ̄dmed
τ (bold red lines) which imply a high, low or medium weighting, respectively, of

controls who are similar to many participants. For all three programs, the higher
weighting leads to slightly increased average savings per participant, whereas the
lower weighting reduces them to a similar extent. For most points in program time,
however, the deviations are rather small and the overall trend remains the same.
Overall, the final estimate is not heavily dependent on the weighting applied, and
it is suggested using the medium approach.

Finally, the robustness of the estimates towards hyperparameters l and k of the
matching approach is examined, which control the number of allocated matches
to every participant and justify the choice made. In allocation function s̃1 (see
Equation (24)) the hyperparameter l determines how many of the controls with the
smallest distance to the participant are allocated. Similarly, hyperparameter k in
allocation function s̃2 (see Equation (25)) defines the maximum rank that a con-
trol must not exceed in at least two years in order to be an adequate twin for a
participant. Figure 25 shows the cumulative average saving per participant after
τ = 6 program years depending on the choice of hyperparameters k and l using
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Figure 25: Choice of hyperparameters k and l (bold vertical line) steering the number
of allocated matches in transformations s̃2 and s̃1, respectively, using the example
of the CHF program.

the example of the CHF program. As not all participants necessarily receive a twin
with allocation function s̃2, the percentage of participants with at least one twin
depending on k is also displayed (upper x-axis of the left plot). The cumulative sav-
ings generally decrease with increasing k. The volatility of the cumulative average
savings also strongly decreases with growing k. k = 30 (bold red line) is chosen in
order to obtain a stable estimate that is still based on a reasonable number of allo-
cated controls per participant. Also, the number of excluded participants without
allocable twins, at 20% for k = 30, is still manageable. For allocation function s̃1,
the cumulative average savings per participant and their volatility similarly decrease
as l grows. Based on the same criteria as for the choice of k, l = 4 (bold red line)
seems to be a reasonable choice here. Though the saving curves are robust to slight
modifications in k (between 25 and 40) and l (between 3 and 8), the analyses show
that it is crucial to control these parameters for a stable measurement.

Overall, the analyses carried out suggest that the proposed matched-pair approach
is widely robust towards outlying observations. Nevertheless, it is recommended
excluding deceased persons in order to ensure the stability of the approach. It
is also vital to choose the right hyperparameters for the matched-pair approach
proposed, even though slight changes to the procedure suggested do not change the
overall trend.

3.4.3 Uncertainty of the Measurement and Risk of Loss

Next, the relationship between the uncertainty of the measurement approach pre-
sented and the estimated risk of loss of a DMP is evaluated. Based on the three
programs carried out, this relationship is quantified in order to be able to predict the
risk of loss of similar programs that will be applied to new portfolios with different
data volumes and quality in the future. If the new program and the portfolio to
which it is applied meet the pre-conditions defined in Section 3.3.4, the methodology
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presented makes it possible to reliably predict the insurer’s risk of loss and decide
on the program’s reinsurability.

As outlined in Section 3.3.4, the uncertainty of the described measurement approach
is directly related to the predictive quality of the regression model on which matched-
pair allocation is based. This predictive quality is measured using the predictive R-
squared R2∗ (see Section 2). Section 3.3.4 also shows that the predictive R-squared
drives the variance of the matched-pair estimate and therefore the estimated risk of
loss of the program. The functional form f (see Equation (41)) of the relationship
of R2∗ and the variance of the cumulative average savings per participant σ2

τ is
estimated based on the three programs carried out.

Figure 26: Estimated variance of cumulative average savings after 3 program years
σ̂2

3 (black dots) and estimated quadratic function f(R2∗) (bold red line) for all pro-
grams analyzed.

For analyzing the financial risk of loss, the cumulative average saving after τ = 3
program years is considered, because a reliable number of observations for this time-
frame is available for all three DMPs. Analyses for different timeframes, however,
lead to similar results. As f needs to be transferred to new portfolios of different
size and data quality, allocation models with different data input were calculated.
To simulate portfolios with worse data quality or a smaller volume of data, several
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variables with high predictive value were removed, which leads to a decrease in the
predictive R-squared. Conversely, different simulated variables with a high correla-
tion to the target variable were added in order to artificially increase the predictive
quality of the allocation models. Figure 26 shows the R-squared values R2∗ of the
calculated allocation models and the resulting variances σ̂2

3 of the corresponding
matched-pair estimates. The covariate configuration of the models is chosen in such
a way that the R2∗ values range between 10% and 45%. According to previous
studies (see Section 2) this is a realistic range for the predictive quality of individ-
ual cost-prediction models applied to groups of chronic patients in health insurance
portfolios. The red dots mark the models with the maximum possible predictive
quality that could be achieved, based on the respective population. The black dots
mark the models with covariates removed or added as described above.

As expected and justified in Section 3.3.4, the variance of the cumulative average
savings per participant clearly decreases with increasing predictive quality. The
plots also indicate that the variance reduction decreases with growing R2∗ . For the
two diabetes programs especially, the variance σ̂2

3 even seems to converge towards
a certain minimum variance level. This means that it is necessary to construct a
cost-prediction model with a high degree of predictive quality in order to control
the variance of the measurement. From a cost-benefit perspective, however, it is not
necessary to squeeze out the last percent of improvement in terms of R2∗ which, in
practice, usually requires the most effort.

In order to formalize the relationship f between the predictive quality of the alloca-
tion model and the variance considered, the following candidate functions for f are
defined which follow the properties suggested by the observed data from the three
DMPs described (see Figure 26):

flin(R2∗) = ω + (R2∗ − 0.45) · ξ (43)

fsqu(R2∗) = ω + (R2∗ − 0.45)2 · ξ
fcub(R2∗) = ω + (R2∗ − 0.45)3 · ξ

flog(R2∗) = ω + log

(
1

R2∗ − 0.45

)
· ξ

The candidate functions flin, fsqu, fcub and flog are all monotonically decreasing and
convex on a definition range from 0 to 0.45. The parameter ω corresponds to the
minimum variance level that is reached for the maximum possible predictive quality
of R2∗ = 0.45. The second parameter ξ of the candidate functions steers the speed
of the variance decrease with growing R2∗ .

Next, the candidate function f is determined by analyzing the data observed from
the three DMPs considered. Therefore, the residual errors of four linear regression
models with target variable σ̂2

3 and a transformation of R2∗ according to the defini-
tion of the candidate functions (see Equations (43)) as only covariate are calculated.
The parameters ω and ξ can be interpreted as the intercept and slope of these mod-
els, respectively. Table 11 shows the residual errors for the three DMPs observed
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indicating that a quadratic function best describes the relationship between R2∗ and
the variance σ̂2

3. The bold red curves in Figure 26 illustrate the quadratic function
f̂ with minimum residual error. Also, the cubic function seems to be an adequate
choice.

Estimation of f
Candidates for f RE (Diab. I) RE (Diab. II) RE (CHF)
flin 12,178 3,851 51,135
fqua 9,238 2,054 32,746
fcub 10,460 2,103 39,382
flog 18,073 6,442 89,472

Table 11: Residual errors of candidate models to determine the form of the functional
relationship between σ2

3 and R2∗ for all analyzed programs after 3 program years
(best candidate function f marked in bold face).

Now, the estimated function f̂ can be used to predict the variance of the matched-
pair estimate for similar programs applied to new portfolios. For this purpose, a
prediction model needs to be calculated based on the new portfolio the predictive
quality in terms of R2∗ needs to be determined. Together with the assumption that
the cumulative average savings per participant are reproducible for a sufficiently
similar portfolio, the financial risk of loss can then be predicted for the new program
by applying the probability function of the suggested normal distribution.

According to the developed measurement approach, the Diabetes I program has
a negative cumulative saving after τ = 3 program years even without considering
program costs. The type I error probability (see Equation (39)) of this program is
therefore greater than 50% due to the symmetry of the assumed normal distribution
around the mean. The Diabetes II program yields a cumulative saving of 420 euros
after τ = 3 program years. Even though the annual program costs only amount to
100 euros per participant, the type I error probability of the measurement for the best
allocation model (R2∗ = 21.6%) is still above 30%. Consequently, similar programs
like the two diabetes programs analyzed cannot be considered for a reinsurance
solution because the predicted risk of financial loss is too high. In contrast, the
CHF program yields cumulative average savings per participant of 2,420 euros after
τ = 3 program years. As the exact annual program costs are unknown, an annual
expenditure of 180 euros per participant is assumed, based on studies of similar
programs (like Giordano et al. [2009]). Assuming a normal distribution for the
economic effect parametrized by the estimates µ̂3 and σ̂3 (see Equations (33) and
(38)), a type I error probability of 1.4% for the best allocation model (R2∗ = 29.6%)
is obtained. This probability corresponds to the predicted financial risk of loss if
the same program was applied to a comparable portfolio in terms of cost-relevant
covariates as well as same data quality and volume.

Finally, Figure 27 illustrates how the predicted risk of financial loss for future pro-
grams changes under different conditions, provided the prerequisites i)-iii) defined
in Section 3.3.4 are fulfilled. First, it is assumed that exactly the same program is
applied to a comparable portfolio in terms of cost-relevant covariates, but with lower
data quality and/or volume leading to an R2∗ of 20%. In this case, the predicted
risk of financial loss increases to 2.9% (green area under the curve in Figure 27).
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Figure 27: Estimated risk of loss after 3 program years P̂(D̄c
3 < 0) (upper plot:

shaded area under the density function of P̂ , lower plot: value in the y-axis) for
different values of R2∗ and v using the example of the CHF program.

Conversely, the predicted risk of loss decreases to 0.7%, if the predictive quality for a
new portfolio reaches R2∗ = 40% (red area under the curve in Figure 27). If there is
an additional source of uncertainty due to a changed program setting (like different
inclusion and exclusion criteria), the multiplicative factor v is used to adapt the
variance of the measurement (see Equation (42)). Based on a variance correction of
v = 1.5 and assuming a predictive quality of R2∗ = 20%, the predicted risk of finan-
cial loss grows to 6.2% (blue area under the curve in Figure 27). For this result, it is
implicitly assumed that the changed setting does not affect the cumulative average
saving itself, but only its variance. Based on these outcomes, the CHF program can
be considered for a reinsurance solution. The methodology presented for predicting
the financial risk of loss can be used to define the conditions of such solution.

3.5 Summary and Outlook

This chapter presents a matched-pair approach based on predictive regression anal-
ysis for a reliable measurement of the economic effect of DMPs. The approach can
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be applied in situations where no randomized control trial is feasible, especially for
insurer-driven DMPs. Due to the operational setup of these programs, an adequate
measurement technique must deal with the self-selection bias disturbing the com-
parison between treatment and control groups. The results of the analyses for three
programs carried out (two diabetes programs and one chronic heart failure program)
suggest that the matched-pair approach presented delivers a consistent measure-
ment of the financial impact of insurer-driven DMPs over time. Compared with the
benchmarks tested, it increases the stability of the measurement for the programs
analyzed. Due to the fact that the real underlying economic effect is unknown, a
final evaluation of the method’s ability to reduce the existing self-selection bias is
not possible. In this situation, a re-sampling approach is applied to approximate
the real underlying savings based on all methods tested using different method-
ological approaches. Under the assumption that this approximation is correct, the
matched-pair approach avoids an under- and overestimation of the treatment effect.
It also minimizes the existing self-selection bias among all methods tested through
matched-pair risk adjustment based on all available information. Even though there
may be other approaches which fulfill these requirements, no superior measurement
technique for insurer-driven DMPs could be identified.

Also, a method for determining the probability of a wrong measurement is presented,
especially the type I error probability which corresponds to the financial risk of loss
related to the DMP. Based on an estimate of the variance of the average saving
potential and an assumption on its distributional form, first, the risk of financial
loss for programs that have already been carried out is determined. Second, the
relationship between the uncertainty of the measurement method and the financial
risk of loss related to these programs is characterized. These results can then be
used to predict the risk of financial loss for similar programs which have not yet been
carried out, as long as certain defined conditions on the similarity of the programs
are fulfilled. Based on this prediction, it is possible to assess a program’s suitability
for a reinsurance solution protecting the insurance company against financial loss.
The evaluation of three observed DMPs shows that not all programs are appropriate
for such a solution because the estimated saving potential is partly not high enough.

Further research effort needs to be spent on testing the measurement technique
for additional programs and indications to which the methodology can easily be
transferred. Equally, the economic evaluation of case management programs with a
sufficient number of participants is an interesting field of application. The method-
ology presented can also be used to compare other outcomes – like mortality or the
frequency of claims – between treatment and control groups. For every new scope, it
is vital to spend some effort on appropriately calibrating the underlying models and
hyperparameters of the approach, in order to control its stability and efficiency. The
analyses performed also show that the underlying measurement problem does not
have just one correct solution, but a range of possible values which represents the
uncertainty included in the measurement needs to be considered. This uncertainty
can be reflected by specifying a confidence interval for the average savings or by
varying the methodology as proposed in Section 3.3.

Another vital conclusion from the analysis of the economic saving potential of DMPs
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is the growing importance of appropriate data capturing and appropriate analytical
techniques in the healthcare management sector. In Section 2, it is shown that high
predictive quality depends on the right statistical methods being applied to data of
adequate quality and size. In the economic evaluation of DMPs, high predictive qual-
ity is particularly important because for all three programs analyzed the accuracy
of the measurement strongly decreases with the predictive quality of the underlying
models. Higher data quality will therefore allow a more precise measurement in the
future.

The optimization of DMPs and their economic evaluation is only one example of the
successful application of modern predictive techniques in healthcare management.
Another promising field of application is efficient data-driven fraud and abuse de-
tection for cost control in health insurance which will be treated in Section 4.
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4 Fraud and Abuse Detection
(refers to the publication Bayerstadler et al. [2016])

Healthcare fraud and abuse are a serious challenge to healthcare payers and to the
entire society. Section 4 presents a predictive model for fraud and abuse detection in
health insurance based on a training dataset of manually reviewed claims. The goal
of the analysis is to predict different fraud and abuse probabilities for new claims.
The prediction is based on a wide framework of fraud and abuse reports which exam-
ine the behavior of medical providers and insured members by measuring systematic
deviation from usual patterns in medical claims data. In this chapter, it is shown
that models which directly use the results of the reports as model covariates do
not exploit the full potential in terms of predictive quality. Therefore, a multino-
mial Bayesian latent variable model which summarizes behavioral patterns in latent
variables, and calculates different fraud and abuse probabilities is proposed. The
estimation of model parameters is based on a Markov Chain Monte Carlo (MCMC)
algorithm using Bayesian shrinkage techniques. The improved prediction results of
the developed model are illustrated, compared to alternative approaches, and its
transferability to other markets by specification of adequate prior distributions is
discussed.

4.1 Introduction

Fraud, abuse and waste in healthcare strongly contribute to the increase in total
healthcare expenditure. Therefore, they are serious issues for public and private
payers of healthcare and, as costs are usually transferred to the collective of insured
persons, also to the insured persons themselves and to the entire society. According
to a global study including 92 separate loss measurement exercises in 33 organiza-
tions from 6 countries (the UK, USA, France, Belgium, the Netherlands and New
Zealand), the average loss due to fraud and abuse is 7% (range of 3% to 15%) of total
healthcare expenditure [Gee and Button, 2014]. In the US, loss estimations from
fraud and abuse range from 9% to 19% of total healthcare expenditure [Berwick and
Hackbarth, 2012]. Assuming an average of 14% this means a total loss of 369 billion
US dollars in 2011, or more than 1,000 US dollars per US citizen. In Europe sim-
ilar rates are assumed [European Union Commission, 2013]. It is self-evident that
this additional burden leads to increased taxes and higher health insurance premi-
ums for individuals. Possible consequences are an eroding social solidarity and an
individualization in health insurance.

It is important to note that the definitions of fraud and abuse are quite heterogeneous
in the literature, and depend on market and regulatory environments. In most
articles, the terms waste, abuse, and fraud are used, with distinctions being fluid
(see Figure 28).

In this chapter, the focus will be on fraud and abuse, i.e. intentional behavior by
patients and/or medical providers to create unjustified benefits for themselves or
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Figure 28: Definition of fraud and abuse in healthcare.

related persons. However, as a clear differentiation between waste and abuse is not
possible, also some aspects of unintentional behavior are covered by the analytical
modeling approach. Overall, three behavioral categories are used:

• Unperformed services (fraud): Medical services which are documented and
charged, but not performed (e.g. consultation fees for a doctor’s visit that did
not take place, insured members’ faking prescriptions).

• Unjustified services (abuse): Medical services performed without medical ne-
cessity/justification, and which deviate from medical best practice, in US lit-
erature often denoted as overutilization (e.g. x-ray examinations regardless of
symptoms, prescription of antibiotics for mild respiratory diseases).

• Other billing issues (fraud/abuse): All other kinds of intentional misbehavior
by medical providers and/or insured members (e.g. concealment of pre-existing
conditions in medical underwriting, masking of uncovered services, unbundling
of procedure codes, etc.).

In healthcare, fraud and abuse are not only committed by medical providers. Insured
patients, approvers of services and other healthcare players are also involved in
fraudulent and abusive actions [Busch, 2008]. It is also important to note that
fraud and abuse are often based on the cooperation or at least complicity between
different players in the health market (e.g. doctor and pharmacist, provider and
insured, etc.). Nevertheless, many publications on fraud and abuse, and related
analytical detection methods, focus on medical providers [Busch, 2008]. Reasons for
this are the assumption of a higher recovery potential and a broader data basis than
for single insured persons.

As major contributors of healthcare funding, private and public insurers have a
strong motivation to prevent losses arising from fraud and abuse. However, there
is often no systematic approach in place to deal with this issue. In many insurance
companies, fraud and abuse detection is limited to opportunistic checks of single pat-
terns within the standard claims handling process. In addition, the claims handler
usually only has an invoice-by-invoice perspective which does not take into account
the (common) claims history of members and providers. The main focus is usually
on historic provider behavior as well as diagnoses and procedures frequently related
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to fraud and abuse cases, whereas member behavior and the interaction of different
players play a minor role. In this setup, new and more complex patterns can only be
detected by coincidence. Another difficulty is the lack of data experience on fraud
and abuse cases, i.e. a small sample size of reviewed cases, especially in smaller
insurance companies, due to a lack of resources for the topic. Other challenges are
the lack of defined actions if a suspicious case is identified, and regulatory conditions
that impede the recovery of money once claims are paid.

Therefore, a systematic analytical approach for the identification of fraudulent and
abusive behavior is proposed which is based on

a) a vast data basis of reviewed fraud and abuse cases in the target market to be
used as quality assured response,

b) comprehensive knowledge of fraud and abuse patterns in different markets
(generating new input for the target market),

c) a “reporting factory” which provides a 360-degree view on invoices, including
reports on provider and member behavior, reports on network behavior (i.e.
the interaction between different players) and reports on invoice properties
(e.g. diagnoses, procedures, number of invoice lines, ...), and translates the
knowledge of fraud and abuse patterns into quantitative measures,

d) a predictive scoring model which allocates fraud and abuse probabilities (in
the three categories described above) to incoming invoices (if necessary, in real
time) and outputs reasons for high probabilities as a starting point for further
investigation.

This chapter focuses on the methodology of the predictive scoring model (item d)).
More precisely, a Bayesian multinomial latent variable model is presented which was
specifically developed to make optimal use of the knowledge described in items a) to
c) (see Section 4.3). The idea behind the latent variable approach is to summarize
different observations from the reporting factory in behavioral scores for providers,
members and networks which stabilize the model. The target of the scoring model
is to reach high predictive power and transferability by avoiding overfitting to the
training data, which is a challenge due to the underlying data situation (see Sec-
tion 4.2). For the insurance company, higher predictive power means a more efficient
claims adjudication process by a more targeted investigation of invoices. Section 4.4
presents the prediction results of the model based on two different test datasets and
compares them to alternative scoring techniques. Moreover, some thoughts are pre-
sented on how the scoring model can be transferred to other markets with different
regulatory and data conditions, especially if no or little data knowledge is available
in the target market.
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4.2 Literature and Background

4.2.1 Literature

Analytical fraud detection methods are being successfully applied in many areas of
the financial industry. Bolton and Hand [2002] as well as Ngai et al. [2011] pro-
vide a comprehensive overview of applications and statistical techniques. Statistical
techniques gain importance where mass data (“Big Data”) need to be analyzed,
such as in credit card fraud detection. Bhattacharyya et al. [2011] summarize and
compare different fraud detection techniques in this field. Other important areas
of application in the financial industry are money laundering, telecommunications
fraud, computer intrusion, medical/healthcare fraud and scientific fraud.

In general, the approaches applied can be divided into supervised techniques, like
classification and regression, where a learning dataset of identified fraud cases is
available, and unsupervised techniques, like clustering and outlier detection, where
the focus is on detecting abnormal patterns [Bolton and Hand, 2002; Phua et al.,
2005]. Concrete techniques are, for example, Neural Networks, (logistic) regression,
Naive Bayes, Decision Trees, Fuzzy Logic, CART, Genetic Algorithm, k-Nearest
Neighbors and Bayesian Belief Networks [Ngai et al., 2011]. Moreover, increasing
digitization and “Big Data” generation require the usage of text [Holton, 2009] and
image mining [Brown et al., 2005] techniques. Bayesian methods are gaining impor-
tance because they offer the opportunity to involve expert knowledge by adequate
prior specification [Kirkos et al., 2007], and are computationally stable [Phua et al.,
2005].

Within the insurance industry, analytical fraud and abuse detection is most wide-
spread in motor and health insurance, but there are also examples from other lines
of business, like crop insurance [Jin et al., 2005] or individual disability income
insurance [Peng et al., 2007]. An extensive overview of statistical fraud detection
methods in motor insurance, together with a comparative case study, can be found
in [Viaene et al., 2002]. Bayesian learning is, for instance, applied by Viaene et al.
[2004a,b, 2005] and Bermúdez et al. [2008]. Similar to health insurance, relations
between different players are very important for motor insurance. This is why recent
research in this area is often focused on the analysis of (social) networks [Šubelj et al.,
2011].

In health insurance, various classification techniques to identify fraudulent and abu-
sive behavior are applied. Joudaki et al. [2014] and Li et al. [2008] give a general
overview of data mining techniques supporting fraud identification in health insur-
ance, Dua and Bais [2014] focus on supervised classifications methods. For instance,
Thornton et al. [2013] propose a multidimensional classification model for different
kinds of healthcare fraud and abuse in the US Medicaid system. As medical knowl-
edge and experience is very important in setting up fraud and abuse measures, which
are the input to analytical prediction/classification models, most authors base their
approaches on some kind of expert system, like Major and Riedinger [2002] or Musal
[2010]. In addition, machine learning techniques, like Neural Networks or Feature
Selection, are applied to identify new patterns and increase automation [He et al.,
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1997; Yang and Hwang, 2006; Aral et al., 2012]. Some approaches focus purely on
provider behavior [Shin et al., 2012] whereas others also involve patient behavior and
interactions of players [Thornton et al., 2013; Parente et al., 2012]. Also in the field
of health insurance, some researchers have started to make use of the advantages of
Bayesian techniques. For example, Ekina et al. [2013] use Bayesian co-clustering to
identify fraudulent providers and beneficiaries.

Latent variable approaches have already been used in different research areas. An
overview can be found in Skrondal and Rabe-Hesketh [2004]. Bayesian latent vari-
able approaches, similar to the one introduced in this chapter, have been applied in
AIDS prevention [Adebayo et al., 2011], in the examination of human birth defects
[Sammel et al., 1997] and in social science [Fahrmeir and Raach, 2007; Fahrmeir and
Steinert, 2006]. So far, Bayesian latent variable models have not yet been applied
to detect fraud and abuse in health insurance. Bayesian latent variable models with
multinomial response as well as the combination with Bayesian shrinkage techniques
are new fields of statistical research.

4.2.2 Background

As already mentioned in the introduction, one key element of an efficient analytical
fraud and abuse detection method is the availability of a sufficient number of cases
with quality assured response that can be used for supervised learning. As basis of
the analyses, a fraud and abuse dataset from an insurance company in the Middle
East is used. This dataset includes more than 100,000 manually reviewed cases
(collected over a period of four years), which have been assigned to one of the three
response categories “unperformed services”, “unjustified services”, “other billing
issues”, or the reference category “no irregularities”.

Depending on the type of invoice (outpatient, inpatient, pharmaceuticals or dental),
fraud and abuse patterns strongly vary and other reports and measures need to be
applied. Therefore, separate models for each invoice type with different covariates
need to be fitted. However, the model structure described in Section 4.3 can be
applied to all kinds of invoices, as long as a sufficient number of reports for mem-
bers, providers and interactions of players is available. In the following, the model
development will be described using the example of outpatient invoices, of which n
= 36,796 are in the training dataset.

Even though the analyses performed are based on a comparably large training
dataset, there are some obstacles in the development of a prediction model that
can be applied to new invoices of the same company and also be transferred to
other markets.

The n = 36,796 outpatient invoices have already been pre-selected by claims experts
based on a simple rule model (focus on providers who have already been involved in
fraud and abuse, as well as on certain diagnoses and procedures). Thereby, the share
of invoices in the training dataset with detected irregularities is, at 36.9%, very high
and not realistic compared to the assumptions in literature on fraud and abuse rates
(about 10% according to Gee and Button [2014], Berwick and Hackbarth [2012] and
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European Union Commission [2013]). In addition, the pre-selection leads to a high
danger of overfitting to training data if the model is to be applied to non-preselected
claims in the same market, or to data from other markets.

Moreover, the pre-selection of invoices leads to the fact that the distribution of
response categories in the sample is not representative for the full set of invoices of
the same company and for other markets. In the training dataset, 33.3% of invoices
belong to the category “unperformed services”, 1.1% to the category “unjustified
services” and 2.4% to the category “other billing issues”. The reason for the high
percentage of found cases of unperformed services is that the reviewers focused on
this kind of misbehavior because it usually leads to a direct recovery of payments.
The other fraud and abuse categories are usually harder to prove and need a different,
more extensive investigation process. However, many authors, like Ezekiel and Fuchs
[2008], assume that in most markets the major part of the loss is related to abusive
behavior or overutilization. Even if the loss is not directly proportional to the saving
potential for the insurer, as investigation effort may be higher and direct recovery is
difficult for abuse, it is necessary to get a grip on the topic. Therefore, some kind of
weighting is needed in the development of a scoring model to give more importance
to the categories “unjustified services” and “other billing issues”.

From these reasons, a sampling strategy was applied that helps to control overfitting
and to increase the transferability of the model to the full set of invoices of the same
company and to other companies and markets (see Figure 29).

Figure 29: Sampling strategy to control overfitting and to increase model transfer-
ability.

As a first step, a 10% test sample (test1) was randomly branched off from the
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original dataset of outpatient invoices which is only used to measure the predictive
performance of the models. As the test dataset also has an unrealistically high
proportion of fraud and abuse cases, also a second test dataset (test2) was used.
This second test dataset results from combining the original test dataset with a
sample from a pool of approximately 60,000 comparable, but not manually reviewed
outpatient invoices. For these invoices, it is assumed that they are not fraudulent
or abusive, as there have been no findings in previous reviews of related providers
and members. Even if this assumption may be incorrect for some cases, the relative
frequency of fraud and abuse cases fFA,test2 is clearly more realistic than for the
original test sample. The number of non-reviewed, presumably clean invoices added
to test1 is chosen, so that fFA,test2 ≈ 10%, which is in line with scientific literature
[Gee and Button, 2014; Berwick and Hackbarth, 2012; European Union Commission,
2013].

The remaining 90% of the training sample (ntrain = 33,116) is used for model build-
ing. To avoid overfitting and increase the transferability of the model, a subsampling
approach (bagging, see Breiman [1996]) is applied based on repeated undersampling
of the training sample. More precisely, several stratified subsamples are drawn
from the training sample so that the relative frequencies for the response categories
“unperformed services” (fUP,strain), “unjustified services” (fUJ,strain), “other billing
issues” (fBI,strain) and “no irregularities” (fNI,strain) are approximately equal, by ran-
domly excluding cases from more frequent response categories (exact sampling ratios
are given in Figure 29). This balancing approach is proposed by several authors,
e.g. Wallace et al. [2011], and has already been applied in (credit card) fraud detec-
tion based on highly unbalanced samples [Sahin and Duman, 2011a,b]. In this way,
the predictive performance is improved for rarer response categories and especially
abusive behavior can better be examined.

The number of subsamples B is chosen so that not too much data information,
especially from the more frequent categories “unperformed services” and “no irreg-
ularities” is lost. With B = 50 more than 75% of all fraud and abuse cases in
the training sample occur in at least one of the subsamples. Final parameter esti-
mates and predicted probabilities are calculated by averaging over all 50 subsamples
[Breiman, 1996] (see more details in Section 4.3.2). In order to monitor performance,
the non-selected invoices from each subsample are used as a validation sample. An
additional measure to avoid overfitting is the shrinkage approach integrated in the
Bayesian latent variable model introduced in Section 4.3.

In the sampling process, the balancing of response categories is only applied to the
training and validation subsamples, but not to the test samples. This proceeding
may lead to a model calibration bias and a lower predictive performance on the
defined test samples. This decrease in performance is accepted because it is assumed
that the balanced subsampling approach reduces overfitting to the training data
biased through the pre-selection of invoices and increases the generalizability of the
model.

The choice of the described sampling approach is based on different tests of the
predictive quality of resulting models and their stability. First, the number of
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subsamples (B = 50) and the non-category-specific sampling ratio of 80% have
been varied which has not lead to a major change of model outcomes. Second, the
category-specific balancing weights (1/60, 1/30, 1, 1/2) have been increased (anti-
proportionally) to decrease the degree of undersampling. In the extreme case of
no undersampling (i.e. weights of 1, 1, 1, 1) the overall predictive results slightly
improved, due to a better model fit in the over-represented categories. As the model
fit in the under-represented categories, however, dropped drastically, the original
balancing weights were used to get a more transferable model with equal attention
to all response categories. Third, an oversampling approach of under-represented
response categories was applied, i.e. drawing with replacement was performed for
these categories. While increasing the degree of oversampling, a decrease in predic-
tive quality could be observed due to an over-adaptation to the training data.

As the measure used to evaluate overall predictive performance weights all response
categories equally and independently from the occurrence in the test sample (see
Section 4.3.3), it is further assumed that the models which perform best on the de-
fined test samples also have the highest predictive quality for the full set of invoices
of the same company and the highest transferability to datasets from other compa-
nies and markets. Nevertheless, it must be considered that the absolute predictive
quality reached on the test samples is clearly not realistic for the full set of invoices
from the same company and for other datasets because the existing pre-selection
bias cannot fully be compensated by any sampling technique.

4.3 Methodology

4.3.1 Model structure

The basic idea of the modeling approach is to predict the probabilities πUP, πUJ,
πBI and πNI that a new invoice belongs to one of the response categories “unper-
formed services”, “unjustified services”, “other billing issues” or “no irregularities”,
respectively. In theory, an invoice could of course belong to more than one response
category, for example if a non-covered person uses the insurance card of a relative
and a physician performs a medically not necessary x-ray examination. For the sake
of simplicity, however, it is assumed that response categories are disjoint and the
response probabilities πUP, πUJ, πBI and πNI add up to one. This implies that the
class affiliation yi of invoice i follows a multinomial distribution.

Further, it is assumed that the parameters πUP, πUJ, πBI and πNI of this multinomial
distribution depend on historic provider behavior vP , member behavior vM and
interaction of players/network behavior vN , as well as several invoice parameters
c1, . . . , crC , i.e.

yi|c1, . . . , crC , vP , vM , vN ∼ Mult((πUPi, πUJi, πBIi, πNIi)) (44)

with πNIi = 1− (πUPi + πUJi + πBIi).
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Examples for invoice parameters are the fraud and abuse potential of diagnoses
gathered from several markets, or the number of invoice lines. Following the theory
of generalized linear models [McCullagh and Nelder, 1989], a multinomial logistic
model is used to link the response parameters to the covariates which yields the
model equations

log

(
πij
πNIi

)
= αj0 + αj1ci1 + . . .+ αjrCcirC +∑

j

vPijβPj +
∑
j

vMijβMj +
∑
j

vNijβNj

with j ∈ {UP,UJ,BI} . (45)

In this first stage model, the αs are the regression coefficients belonging to the
invoice parameters, and the βs the regression coefficients belonging to the historic
behavior of players related to invoice i.

As provider behavior, member behavior and network behavior are latent and not
directly measurable, analyses are based on a reporting factory indirectly measur-
ing fraudulent and abusive behavior. The reporting factory incorporates both de-
tailed medical knowledge and sound experience on fraudulent and abusive patterns
from different markets. In total, 150 reports with focus on provider, member or
interaction of players can be used as far as data availability allows it. The pre-
diction results which are presented in Section 4.4 are based on approximately 100
reports/parameters (rP = 50 provider reports, rM = 30 member reports, rN = 10
network reports and rC = 10 reports on invoice properties). Examples are the num-
ber of prescriptions per provider, compared to the average of all providers with the
same specialty in the same region, the number of doctors an insured member vis-
its relative to the severity of the diagnosis, and the distance between member and
provider.

Regarding the goal of the model to reach high predictive quality for new invoices, it
is dangerous to directly incorporate the large amount of measures from the reporting
factory into the linear predictor of the regression model. Even with variable selection
techniques, overfitting can hardly be controlled, especially due to the fact that the
learning sample is not representative (see Section 4.2). This assumption is confirmed
by the prediction results of corresponding benchmark models applied in the existing
data situation (see Sections 4.3.3 and 4.4).

Therefore, provider, member and network behavior are specified as latent variables.
Similar to the idea of structural equation models [Goldberger, 1972], the latent
variables are estimated in second stage models using observable provider measures
p1, . . . , prP , member measures m1, . . . ,mrM and network measures n1, . . . , nrN as
covariates:
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vPij = γPj0 + γPj1pi1 + . . .+ γPjrP pirP + εPij

vMij = γMj0 + γMj1mi1 + . . .+ γMjrMmirM + εMij

vNij = γNj0 + γNj1ni1 + . . .+ γNjrNnirN + εNij

with j ∈ {UP,UJ,BI} . (46)

The γs denote the regression coefficients of the second stage models and the εs the
error terms of the models. As target variables of these models, binary indicators
are used which determine whether invoice i falls into the category j or not. This
means that behavior of players is interpreted as their fraud and abuse potential,
which is measurable as a continuous score. Furthermore, it is assumed that this
potential is proportional to the probability that the binary indicators equal 1. As
class affiliation yi is already used as response of the first stage model, overfitting is
avoided by a) reducing yi from four categories to a binary indicator and b) assuming a
linear relationship between yi and the report outcomes. Even though linear models
are usually not the right choice to predict a probability, the linear setup is used
here, because the focus is more on a score with high predictive value for the first
stage model than on an interpretable final result. In addition, the linear setup with
the assumption of normally distributed εs on the second stage has proven to be
numerically more stable than a logistic model. The estimated score values can also
be used to rank provider and members by fraud and abuse potential, which is a
beneficial side effect.

The model fitting process introduced in Section 4.3.2 is based on an iterative update
of first and second stage model parameters. It includes an additional mechanism to
control overfitting based on parameter shrinkage in the second stage models.

In summary, these assumptions lead us to the model structure summarized in Fig-
ure 30.

Figure 30: Structure of the proposed latent variable model.

The developed model can be seen as a onedimensional special case of the multidi-
mensional latent variable model proposed by Sammel et al. [1997]. Compared to
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other authors who have addressed this class of models, it is here applied to model
a multinomial outcome instead of continuous, binary, ordinal or Poisson distributed
outcomes [Fahrmeir and Steinert, 2006; Fahrmeir and Raach, 2007; Adebayo et al.,
2011].

4.3.2 Model fitting

In order to fit the model parameters α = (αj0, . . . , αjrC ), β = (βPUP, . . . , βNBI) and
γ = (γPUP0, . . . , γNBIrN ), a joint fitting algorithm for both stages is applied based
on Metropolis-Hastings sampling for each of the subsamples. Final estimates are
derived from the bagging approach already mentioned in Section 4.2 by calculating
median values over all subsamples. The MCMC sampling approach is a straight-
forward choice for parameter estimation because it intuitively allows an alternating
update of first and second stage model parameters. The algorithm uses the following
(simplified) reformulation of the posterior distribution of α, β and γ:

p(α,β,γ|y,v)︸ ︷︷ ︸
posterior

∝ p(y,v|α,β,γ)︸ ︷︷ ︸
likelihood

· p(α,β,γ)︸ ︷︷ ︸
prior

(47)

= p(y|α,β,γ) · p(v|α,β,γ) · p(α,β|γ) · p(γ)

= p(y|α,β,γ) · p(α,β|γ)︸ ︷︷ ︸
first stage model

· p(v|γ) · p(γ)︸ ︷︷ ︸
second stage models

The likelihood in the first line is split into two parts based on the assumption of
conditional independence between v = (vPUP, . . . , vNBI) and y given α, β and γ.

As an additional instrument to control overfitting to the training data, a parameter
shrinkage option is included in the algorithm. With the setting described in the
following, sampling took on average about 2.2 minutes per subsample without pa-
rameter shrinkage and 2.5 minutes per subsample with shrinkage (on a 64 GB RAM
working station).

The fitting algorithm starts by drawing the second stage parameters γ using the
Metropolis-Hastings algorithm [Robert and Casella, 2004]. For the linear models, a
hierarchical decomposition model is applied to draw from the posterior distribution
of γ and the error variance σ2:

p(γ, σ2|v)︸ ︷︷ ︸
posterior

∝ p(v|γ, σ2)︸ ︷︷ ︸
likelihood

· p(γ|σ2) · p(σ2)︸ ︷︷ ︸
prior

(48)

For the version without parameter shrinkage, Gibbs sampling is used as a special
case of the Metropolis-Hastings algorithm (acceptance probability of proposed pa-
rameters always equal to one) implemented in the function MCMCregress in the R
package MCMCpack [Martin et al., 2011]. Here, a semi-conjugate prior to the nor-
mal likelihood p(v|γ, σ2) is used. More precisely, a weakly informative multivariate
normal prior distribution is used for γ:
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γ ∼ N(0, 0.1I) (49)

and an inverse Gamma prior for the error variance σ2 (with mean 5 and variance
25) which is assumed to be independent from γ.

For the version with parameter shrinkage, a lasso regression model [Park and Casella,
2008] with reversible jump mechanism [Green, 1995; Troughton and Godsill, 1997]
implemented in the blasso function in the R package monomvn [Gramacy et al.,
2007] is applied. The reversible jump algorithm modifies the acceptance proba-
bility of the applied Metropolis-Hastings algorithm by introducing moves between
parameter spaces of different dimensionality [Troughton and Godsill, 1997].

The lasso penalization is implemented by including the shrinkage parameter λ which
controls the degree of parameter shrinkage in the hierarchical model representation.
Then, an exponential power distribution is assumed as prior for γ which is no longer
independent from the error variance σ2:

p(γ|σ2) ∝
r∏
l=1

e−λ(|γl|/
√
σ2) . (50)

For λ (more precisely, λ2), a non-informative Jeffrey’s hyperprior [Gramacy et al.,
2007] is used.

After having updated the second stage models for the first time, the updated pa-
rameter vector γ(1) is used to calculate first estimations of the latent variable scores
v

(1)
PUP, . . . , v

(1)
NBI for all observations in the subsample. Based on these estimations,

an update of the first stage model can be performed.

For updating the first stage model, the MCMCmnl function in the R package MCMCpack
[Martin et al., 2011] is used. A multivariate normal distribution with expectation
equal to zero and infinite variance for (αT ,βT )T is assumed, i.e. an improper non-
informative prior distribution. First updates α(1) and β(1) are received by inde-
pendent Metropolis-Hastings sampling [Chib et al., 1998]. The Metropolis proposal
distribution is centered at the current value of (αT ,βT )T and has the covariance
matrix TCT . T is a diagonal positive definite matrix depending on the tuning
parameter that controls the acceptance rate and C is the large sample covariance
matrix of the maximum likelihood estimate of (αT ,βT )T .

In each further iteration s (s = 1, . . . , S = 250) of the fitting process, γ(s−1) is used
on the second stage and α(s−1) and β(s−1) on the first stage as initial parameter
vectors of the sampling functions. In order to achieve stable convergence of the
algorithm, the first 50 draws from each subsample are discarded and the median
parameter estimates from iterations 51 to 250 are used as overall estimate for the
subsample. Thinning of draws (with thinning parameter 5) was tested, but did not
change the parameter estimates significantly. Sampling traces and autocorrelation
plots for all parameters show that the sampling algorithm already produces stable
estimates in this configuration despite the relatively short burn-in phase and the
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relatively small number of draws. As an example, Figure 31 displays sampling trace
and autocorrelation plots for γPUP25 (effect of frequency of prescriptions relative to
provider specialty and region on score for abusive behavior of providers) based on
one subsample.

Figure 31: Sampling trace and autocorrelation function of γPUP25 (effect of frequency
of prescriptions relative to provider specialty and region on score for abusive behavior
of providers) for unshrinked (left-hand side) and shrinked version (right-hand side)
of the fitting algorithm.

The prediction result are stabilized by calculating the median of all α(s), β(s) and
γ(s) after burn-in (i.e. s = 51, . . . , 250) over all subsamples denoted by αmed, βmed

and γmed. By plugging in these final estimates as well as the observed reporting
results and invoice parameters related to a new invoice k into the model equations
(45) and (46), a prediction π∗k = (π∗kUP, π

∗
kUJ, π

∗
kBI, π

∗
kNI) of the fraud and abuse

probabilities for this invoice is obtained.

Now, for instance, the maximum of π∗k can be used to determine the predicted class
y∗k and compare it with the real class yk of invoice k in the test sample. Based
on this comparison, a misclassification matrix and further measures of predictive
performance (see Section 4.4) can be calculated. Of course, Bayesian modeling
also allows deriving credibility intervals for the parameter estimates and predicted
probabilities. Even though such intervals are a beneficial side result of the fitting
algorithm, the focus is rather on the evaluation of median prediction results in this
chapter.
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An important requirement to the fitting algorithm is that it leads to a reasonable
number of reports which have measurable influence on the final predictions. If there
are only very few parameters influencing the predictions, the model may be too close
to the rule-based system which was applied for pre-selecting the invoices for review.
This means that certain patterns will not be recognized by the model, especially if it
will be applied to other datasets. If there are too many parameters in the selection
model, prediction results may also be poor because multiple correlations will disturb
the detection of systematic patterns. From a content perspective, both versions of
the algorithm, with shrinkage and without shrinkage, lead to a reasonable number
of reports which have measurable influence on the final predictions, where of course,
the shrunk version produces sparser models, with some parameters even shrunk to 0.
Prediction results for the two test samples introduced in Section 4.2.2 are illustrated
in Section 4.4.

In general, the methodology described yields consistent parameter estimates and
prediction results, not sensitive to changes in the data input, which is indicated
by a relatively small variation of parameter estimates across the subsamples. This
stability is a very beneficial property that allows applying the model in other data
and market environments (see Section 4.3.4).

4.3.3 Benchmarking

In order to benchmark the predictive performance of the developed Bayesian latent
variable model in the existing data situation, it is compared to several other state-of-
the-art prediction techniques. As explained, the Bayesian approach uses two stages
to predict class probabilities for all response categories. In both steps, the covariates
are related to the real response category using different distributional assumptions
for the response of both model parts (normal and multinomial). An alternative
strategy is to first reduce the dimension of the covariate space without consideration
of the target variable and use the resulting factors or principle components as input
for the class prediction model. A third possible strategy is to combine variable
selection/weighting and class prediction in one step.

Table 12 summarizes the applied approaches together with concrete prediction tech-
niques used for benchmarking. All benchmark models have been calculated based
on the subsampling approach described in Section 4.2.

Approach Technique Shortcut
One-stage model with Multinomial model with AIC variable selection A1
variable selection/weighting Random Forest A2
One-stage model Multinomial model based on factor analysis B1
with dimension reduction Polyclass model based on factor analysis B2
Two-stage model Bayesian latent variable model without shrinkage C1

Bayesian latent variable model with shrinkage C2

Table 12: Prediction approaches and techniques applied to the underlying classifi-
cation problem).

Models A1 and A2 assume a direct relationship between the reporting results and
class affiliation of corresponding invoices without any latent variables or factors
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in between. Model A1 is a multinomial logit model fitted via Neural Networks as
implemented in the function multinom of the R package nnet [Venables and Ripley,
2002]. To ensure model convergence and avoid overfitting in view of the high number
of covariates, this technique is combined with a stepwise (forward) variable selection
algorithm based on the AIC criterion. As an alternative direct prediction method, a
Random Forest is used which is a standard method for class prediction. The forest
is calculated with the R function randomForest in the R package of the same name
[Breiman, 2001]. In order to give each report the chance to show its predictive value,
15 covariates are randomly chosen for the construction of each of the 100 trees per
subsample. Variable importance measures show a good mixture of relevant reports.

Like the Bayesian approach, models B1 and B2 reduce the dimension of the covariate
space before performing the final classification. However, no regression models con-
sidering the target variable are used here, but a dimension reduction technique for all
reporting categories instead. More precisely, a factor analysis is used to conserve as
much as possible of the covariance between the reports when reducing the dimension
of the covariate space. Considering the underlying number of reports and the form
of scree plots, 5 factors are used for provider behavior, 3 factors for member behavior
and 2 factors for network behavior. Based on these factors, either a multinomial
logit model (like for model A1) or a polyclass model as described by Kooperberg
et al. [1997] and Stone et al. [1997] are applied. Polyclass models are related to the
MARS (multivariate adaptive regression splines) approach first described by Fried-
man [1991]. They include a stepwise variable selection approach that also takes into
account the potential non-linear impact of continuous influence factors, as well as
potential interactions between model covariates. As the preliminary factor analysis
reduces the covariate space to a limited number of continuous factors, these proper-
ties are supposed to lead to a better prediction compared to model B1. Regarding
the results, the MARS algorithm indeed detects both non-linearities and interac-
tions between the calculated factors that improve the classification in the described
situation. The polyclass models are implemented in the function polyclass of the
R package polspline.

Models C1 and C2 correspond to the Bayesian approach described in Sections 4.3.1
and 4.3.2. Model C1 represents the fitting algorithm without parameter shrink-
age (inverse gamma distribution for γ) and model C2 represents the version with
parameter shrinkage (exponential power distribution for γ).

The results of these six classification techniques will be compared based on the
original test sample test1 and the potentially more realistic test sample test2 (see
Figure 29 in Section 4.2). As a measure for comparing the overall predictive quality
of the model, the average area under the ROC curves is used for all four response
categories AUC (see the definition in Appendix C). This criterion is applied, as
it considers both type I and type II error for each of the response categories and
gives equal importance to all response categories. The latter property is especially
important to ensure that the distribution of detected cases will be more balanced
in the future. Furthermore, it is assumed that models which perform well with
regard to the AUC criterion are more likely to deliver reasonable results in other
markets, where there is, for example, a stronger focus on abusive behavior. A
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simple adaptation of the criterion to markets with unequal importance of response
categories can be carried out by using a weighted average of category-specific AUCs
instead of a raw average. A more comprehensive approach based on a business-case
logic (i.e. the assignment of costs to each right and wrong decision) can be found in
Viaene et al. [2004a]. In addition, the different prediction techniques are compared
with regard to some content-specific criteria (see Appendix C) which may be of
interest to healthcare payers.

4.3.4 Transferability

Based on the analyses described in this chapter, it is – in general – difficult to
draw conclusions for other datasets in the same or other markets due to the pre-
selection bias described in Section 4.2.2. Especially, the absolute predictive quality
of models (see Section 4.4) is not realistic for other datasets. Based on the applied
subsampling approach and the extended test sample (see Section 4.2.2), however,
it is assumed that a comparison of models provides an indication with regard to
predictive quality for the full set of invoices from the same company and for datasets
of other companies. In the following, the focus will be on the transferability of the
model to other insurance companies and markets and on a strategy to make use of
the insights obtained.

The transferability of fraud and abuse detection systems strongly depends on the
health system, the regulatory situation, the business model of the insurance com-
pany, the insurance product, the competitive situation in the market, the devel-
opment status of the market, the cost pressure on providers, data quality and
availability, and many other factors. However, the motivation for fraudulent and
abusive behavior as well as certain behavioral patterns are often comparable across
market boundaries. Therefore, it is assumed that the set of reports, which was de-
veloped based on experience from different markets, already provides a significant
stand-alone value to most insurance companies worldwide. Of course, the feasibility
of reports and the validity of statements strongly depends on the availability and
quality of data, especially of diagnoses and procedures in an international standard
coding system.

The question whether it is reasonable to also transfer the scoring model and esti-
mated parameters is more difficult. Here, it mainly depends whether a significant
number of reviewed cases is available as a learning dataset in the new market. In
markets where a large number of own reviewed cases is available, it may be more
reasonable to fit an own scoring model, for which the proposed methodology can of
course be used. However, in most – even developed – markets, no databases with a
significant amount of reviewed cases are available. In this situation, it may still be
more efficient to transfer the developed model with the same or modified parameter
estimates than to rely on an unsupervised classification technique that is purely
focused on outlier detection. To reach the predictive quality that is observed for the
dataset on which the model has been developed is certainly unrealistic in this case
(see the results in Section 4.4). However, the described Bayesian approach offers
some intuitive features which facilitate the transfer in different ways.
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In the following, an approach how to transfer the model between datasets of different
insurance companies from the same or other markets is presented. The approach
is based on the methodology described in Section 4.3.1 and a decomposition of the
model input in market-/company-specific and general reports. Even within the same
market, it is highly unlikely that the original full set of reports can be calculated,
as the feasibility of suggested reports depends on availability of information and the
validity of reports on data quality and other company-specific conditions. Therefore,
a strategy is needed on how to deal with reports that cannot be calculated or are not
reasonable in the new data situation and, vice versa, how to deal with additional
reports that can only be calculated in the new data environment. Especially for
the transfer to other markets, it is also conceivable that certain reports may have a
different impact on provider, member and network score as well as on final proba-
bilities due to different regulatory, product or market conditions, e.g. incentives for
providers to perform more outpatient treatments to avoid hospitalizations.

As a general rule of thumb, the transfer of regression coefficients from the original
dataset to a new dataset can be considered reasonable if at least 60% of the original
set of reports can also be calculated in the new data environment. In any case, it is
recommended re-fitting the model on the original dataset based on the intersect of
reports that are feasible (and reasonable) in both the original and the new market.
This proceeding helps to find surrogate reports for non-available reports in the new
data environment.

Reports which are only available in the new market environment can be added to the
regression framework as offset in the corresponding model equation. For example, a
great distance between provider and member is known to increase the probability of
fraud. However, this report cannot be calculated in the original data environment
due to the non-availability of member address data. If most other reports can be
transferred between the markets, a simple improvement of the scoring model is to use
the regression parameters from the original market and add a standardized version
of provider-member distance as an offset in the network model when scoring cases in
the new market. The increased network score will then directly lead to an increase
of the fraud probability in the new data environment.

Reports which exist in both the original and the new market, but are expected
to have another impact on final fraud and abuse probabilities based on experience
from the target market, can be modified by using alternative (informative) prior
distributions for the regression parameters. For example, the expectation of the
prior distribution for the corresponding element of α, β or γ can be increased
from 0 to a positive value to weight the report more heavily. Of course, the risk
that probability estimation will be dominated by those new reports needs to be
controlled in this case. As soon as new cases from the target market are available,
the modified prior assumptions will be revised by the Bayesian updating process. As
the impact of the prior distribution decreases with increasing number of updates, it
is recommended reconsidering the burn-in phase and the number of draws in order
to control the impact of the adaptation. In any case, several calibration loops may
be necessary.
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In general, it is reasonable to re-fit the model on a regular basis (e.g. once per
quarter) to identify new trends and adapt the model to behavioral changes. Of
course, it is also important to add new reports whenever a new fraudulent or abusive
pattern is detected. In this way, the scoring approach can be extended to a self-
learning system. If the regulatory conditions allow it, the database of reviewed
cases can, of course, also be extended with cases from other insurance companies in
the same market or across market boundaries. This is especially helpful in markets
where no sufficient number of reviewed cases is available to construct an own scoring
model. Here, it is interesting to monitor how the regression coefficients change over
time, while the reviewed cases from the own market gain more and more weight.

4.4 Results

In the following, the results of different prediction techniques (see Section 4.3.3) are
presented based on the original dataset from the Middle East using the test samples
described in Section 4.2.2. As already mentioned in Section 4.2.2, it needs to be
considered that both training and test datasets are based on a biased pre-selection
of invoices. For this reason, the relative frequency of fraud and abuse cases is very
high and the relative frequency of abuse cases compared to fraud cases is comparably
low. Also, several other characteristics of the dataset (e.g. age distribution) and the
market background are not comparable to most other, especially US and European,
markets. Consequently, no generalization of results in terms of absolute predictive
quality is possible. The target of the benchmarking is to provide an indication
of relative predictive quality for the full set of invoices of the same company and
datasets of other insurance companies based on the subsampling approach and the
extended test sample described in Section 4.2.2.

First, the overall predictive quality of all applied techniques measured by AUC
(see Section 4.3.3 and Appendix C) are compared based on both test samples test1
and test2 (see Section 4.2.2). Table 13 shows both the category-specific AUCs and
the (unweighted) average over all categories. In order to also visualize the results
of the analysis, Figure 32 summarizes all ROC curves of the applied classification
techniques using the example of test sample test1.

In general, the one-stage approaches with variable selection/weighting (A1 and A2)
perform worst in terms of overall predictive quality. The best results in the existing
data environment are obtained from the Bayesian latent variable model (C1 and C2),
shortly followed by the regression approaches with preliminary dimension reduction
(B1 and B2), which confirms the assumption of a latent behavioral effect. In addi-
tion, the two-stage approach with both stages relating the covariates to the target
variable does not seem to cause an overfitting issue. It also seems to be a reasonable
choice here, because AUCs are relatively high across all response categories for both
test datasets. This indicates that the efficiency of the future investigation process
can also be increased with regard to abuse and other billing issues. The dimension
reduction approach also yields stable and good results and can be considered for the
application in other markets.
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test1

Technique AUCNI AUCUP AUCUJ AUCBI AUC
A1 0.90 0.74 0.70 0.75 0.77
A2 0.67 0.60 0.75 0.76 0.70
B1 0.78 0.81 0.77 0.79 0.79
B2 0.74 0.81 0.84 0.90 0.82
C1 0.80 0.83 0.92 0.86 0.85
C2 0.80 0.83 0.91 0.86 0.85

test2

Technique AUCNI AUCUP AUCUJ AUCBI AUC
A1 0.88 0.56 0.60 0.80 0.71
A2 0.64 0.56 0.81 0.86 0.72
B1 0.68 0.79 0.80 0.68 0.74
B2 0.72 0.81 0.83 0.78 0.79
C1 0.74 0.87 0.91 0.76 0.82
C2 0.76 0.88 0.91 0.75 0.83

Table 13: Category specific and average AUCs for both test samples test1 and test2
(overall best results marked in boldface).

The one-stage AIC selection model (A1) performs best in terms of NI cases, but
clearly worse than most other techniques in the identification of fraud and abuse
cases. The Random Forest (A2) is the only technique which performs better on the
sample with more realistic total fraud and abuse frequency. However, it needs to
be considered that compared to all other techniques, the results from the Random
Forest strongly depend on tuning parameters and, therefore, are rather unstable.
Regarding the techniques with preliminary factor analysis (B1 and B2), it is notice-
able that the non-linear polyclass model (B2) performs better in the categories UJ
and BI compared to the standard multinomial model (B1). Here, some non-linear
effects are observed as well as interactions which clearly improve the predictive qual-
ity. On the other hand, it needs to be considered that those non-linear effects may
be very market-specific, so that the standard multinomial model may be more stable
when the model is applied to another market. The Bayesian latent variable models
without and with shrinkage (C1 and C2) deliver very similar results. It is assumed
that the effect of variable shrinkage may be more significant for smaller sample sizes
and more input parameters.

Beside the overall predictive quality, also some specific performance indicators rel-
evant from the perspective of insurance companies and other healthcare payers are
evaluated. For this purpose, the additional category “fraudulent or abusive” (FA) is
introduced by summarizing the categories UP, UJ or BI. Table 14 gives an overview
of all content-related measures based on the test sample test2 (an explicit definition
and explanation of measures can be found in Appendix C).

Technique TPRFA RCRFA PPVNI AARNI PPVFA n95%

A1 0.69 0.46 0.99 0.26 0.13 22
A2 0.76 0.55 0.95 0.27 0.12 24
B1 0.78 0.54 0.84 0.34 0.15 18
B2 0.81 0.57 0.84 0.43 0.17 16
C1 0.81 0.61 0.96 0.50 0.16 17
C2 0.81 0.63 0.96 0.53 0.17 16

Table 14: Content-specific performance measures of all applied classification tech-
niques based on test sample test2 (overall best results marked in boldface).
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Figure 32: ROC curves for all applied classification techniques based on test sample
test1.
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The first measure TPRFA gives an indication of the percentage of real fraud and
abuse cases that can be identified as such. Also here, it must be considered that the
figures are assumed to be substantially lower for the full set of invoices of the same
insurance company and for datasets of other insurance companies (from the same or
other markets) due to the mentioned pre-selection bias. Regarding the true positive
rate based on the test dataset test2, the Bayesian latent variable models perform
best together with the non-linear polyclass model based on dimension reduction
with an identification rate of 81%.

Also in terms of correct class allocation within the real cases, the Bayesian models
deliver the best results with a correct class allocation rate of above 60%. Regarding
the precision with which “clean” cases are identified correctly, the AIC selection
model (A1) performs best with a precision of 99% (see also the high AUC value
for the category NI). However, only about one-fourth of all invoices can be auto-
adjudicated based on this classification approach. Here, the Bayesian models are
clearly preferable with a similar precision (96%), but the double auto-adjudication
potential of about 50%.

Finally, the reliability of a decision to filter out an invoice is analyzed. Here, the
one-stage models with preliminary dimension reduction are on the same level as
the Bayesian latent variable models with a positive predictive value of fraud and
abuse above 15%. This means – at least for the existing data situation – that less
than 20 invoices need to be analyzed to uncover one fraud or abuse case with a
probability of 95%. Even though these figures only hold for the biased test datasets,
the comparison of techniques indicates that the Bayesian models yield the highest
savings potential for insurers in terms of operational costs.

Looking at the overall picture, the results are quite similar to the AUC evaluation:
the Bayesian models perform best, shortly followed by the dimension reduction
models. The content-related measures give a rough indication of the saving potential
for insurers and healthcare payers in the existing data situation. Due to the stability
of results, it is recommended applying the Bayesian latent variable model and the
dimension reduction techniques in similar situations, even though it is assumed that
the high absolute predictive quality cannot be generalized. Especially, the results
in the abuse category require further validation based on other datasets, due to the
small number of underlying cases in the existing situation. The Bayesian approach
offers the additional advantages of high stability (see Section 4.3.2) and adaptability
based on flexible prior specifications (see Section 4.3.4), which are helpful when
transferring the model to other data situations.

4.5 Summary and Outlook

This chapter transfers the idea of Bayesian latent variable modeling known from
other contexts, such as social science [Fahrmeir and Raach, 2007; Fahrmeir and
Steinert, 2006], to the problem of fraud and abuse detection. To handle the chal-
lenges of this specific problem, a Bayesian latent variable model for multinomial
response variables was developed. The idea behind the approach is that the report
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results do not directly affect the class affiliation of an invoice, but indirectly via
latent variables which summarize behavioral aspects of each reporting perspective.
In this way, the full information potential of the underlying expert system shall be
exploited. The developed fitting algorithm involves a lasso parameter shrinkage op-
tion intended to control overfitting to the training sample. To further increase the
transferability of the model, a subsampling approach is used to balance the skewed
class distribution in training data.

The prediction results indicate that the introduced Bayesian approach improves the
relative predictive quality compared to several benchmarking techniques. There-
fore, it is assumed that the methodology can successfully be applied to the full
set of invoices of the same insurance company and to datasets of other insurance
companies. However, the observed absolute predictive quality is not realistic due
to a pre-selection bias affecting training and test data. Especially those approaches
which directly use the report results as input do not exploit the full potential of the
data in terms of predictive quality. Regression techniques with preliminary dimen-
sion reduction (factor analysis) yield a predictive quality similar to the Bayesian
approach. As these techniques are computationally faster and based on standard
routines of analytical software packages, they may be preferred in practical situa-
tions, especially in the case of very large datasets.

A general advantage of the Bayesian approach is its adaptability to other data and
market environments. The expected influence of new and already existing reports
can be adjusted by corresponding (informative) prior specification. In situations
where no or only few reviewed cases are available as learning data, the transfer of
the model including (modified) parameter estimates is assumed to be more efficient
than the application of an unsupervised system only focused on outlier detection.
Prerequisite for such transfers are comparable data availability and quality in the
original and the new market. On the other hand, specification of wrong informative
prior distributions may decrease the predictive quality in case of small training
datasets which is a drawback compared to frequentist approaches.

The developed model can be applied in real time based on a score card approach.
This means that the model does not need to be re-fitted for every new invoice, but
only on a monthly or quarterly basis. This frequency is assumed to be sufficient
to keep pace with the dynamic adaptation of behavior of providers and insured
persons. The high stability of the described modeling approach and the prediction
results (i.e. low dependency on data input) ensures the validity of the scoring for
this period. Another quality of the Bayesian approach is its high interpretability. In
particular, it allows backtracking of a high probability to those reports which caused
it. This gives the investigator a starting point for further evaluation and allows a
more targeted investigation process.

The efficiency of the claims adjudication process can further be increased by es-
tablishing specific investigation units which are trained to take appropriate action
based on the scoring results. It is also important to note that usually only a small
percentage of the saving potential with regard to fraudulent and abusive behavior
is related to direct recovery. The larger part is assumed to arise from a measurable
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deterrent effect as well as a better position of the insurance company in provider
network negotiations.

Statements and conclusions presented in this chapter mainly refer to the existing
data situation. Therefore, the subject of further research will be to test the (ab-
solute) predictive performance and stability of the model based on other insurance
or healthcare datasets. Based on validated results, it further needs to be assessed
from an economic perspective if the increase in predictive quality can be translated
into cost savings which justify the implementation effort. Especially interesting is
whether the shrinkage option will lead to a stronger differentiation of predictive qual-
ity in other datasets. Also, further benchmarking techniques, like a recent boosting
approach for multi-class problems with high dimensional covariate space suggested
by Zahid and Tutz [2013], may be considered. A potential extension of the model is
the inclusion of a spatial term in the linear predictors of first stage models [Adebayo
et al., 2011], as fraudulent and abusive behavior is known to be strongly dependent
on geographic location. Besides, it would be interesting to evaluate whether more
latent variables can improve the predictive quality, e.g. the allocation of provider
reports to several behavioral aspects represented by own latent variables/first-stage
models.

Bayesian latent variable models may have many other applications in the health
insurance industry. For instance, Section 5 proposes a similar Bayesian latent vari-
able approach to optimize the risk adjustment in the related context of analyzing
medical outcome quality.
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5 Provider Quality Measurement

Beside the financial behavior of medical providers, insufficient medical treatment
quality is a major cost factor for healthcare payers and may lead to serious con-
sequences for patients. Section 5 illustrates a model-based approach that allows a
fair scoring of medical providers based on historic performance in specific medical
treatments, especially surgeries. Goal of the statistical approach that estimates a
complication score is to perform a risk adjustment considering the medical risks of
the providers’ patients. In order to account for the fact that different complications
of a surgery may have different related risk factors, a latent variable model fitted
by Bayesian inference techniques is applied and benchmarked with other statistical
approaches. Based on the statistical scoring approach, an objective and transpar-
ent provider quality ranking is derived that can be used by patients to choose the
best doctor for planned surgeries, by insurance companies to improve their steering
of provider networks and by regulators to impose fair pay-for-performance systems
controlling healthcare costs.

5.1 Introduction

The treatment quality in medical surgeries is a factor strongly influencing total treat-
ment costs and patients quality of life. The costs of treating occurring complications
can easily exceed the costs of the original surgery and cause long-term health issues
[Dimick et al., 2003, 2006]. Therefore, it is beneficial for patients and health insurers
to identify those treating doctors which reduce the risk of complications as far as
possible. For this purpose, some health insurers already offer their insureds rankings
of top experts/hospitals for specific (predictable) surgeries based on a retrospective
quality score. At the same time, a risk-adjusted and, therefore, fair performance
scoring forms the foundation of regulatory pay-for-performance systems which en-
courage high outcome quality and lead to a cost control in healthcare [Porter and
Teisberg, 2006].

An important challenge to create such quality score is to define an adequate risk
adjustment which does not discriminate treating doctors with more severe cases and
vice versa [Powell et al., 2003]. This means that the score needs to be based on a
comprehensive risk analysis of historic cases. Also, the ideal treating doctor for
one patient might not be the right choice for another patient with different clinical
history. So, an individualization of a doctor ranking to the individual (medical)
situation of the patient is preferable.

In principle, the methodology described in this chapter can be applied to every
kind of medical treatment with measurable risk factors on patient side (like age or
comorbidities) and measurable complications. From an insurance perspective, it is
preferable to concentrate on prevalent and cost-intensive surgeries. Besides, steering
possibilities are limited for emergency treatments. Therefore, it is recommended to
focus on predictable treatments, like cataract removal, keratomileusis (eye lasering),
(planned) ceasarian section, cruciate ligament surgery, knee/hip replacement and
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lithotripsy. In the following, the example of cataract surgery is used to illustrate
the suggested analytical approach. Section 5.2 gives an overview of the underlying
dataset and relevant literature on medical outcome quality research.

The modeling approach yields a risk-adequate and individualized quality scoring of
treating doctors (or hospitals) with regard to specific surgeries. This scoring shall
both support patients in their doctor’s/hospital’s choice as well as allow insurance
companies to partner with best performing doctors/hospitals and improve their
steering of provider networks. Therefore, the main focus lies on the reduction of
medical risks for future patients and of follow-up costs for the insurer.

To ensure the focus on medical risk adjustment, the modeling approach only con-
siders patient related risk factors (like sociodemographic factors, clinical history or
comorbidities). Other factors (like service quality or geographical proximity to the
patient) which may also influence the choice of the medical provider could – from a
technical perspective – easily be integrated in the modeling. However, such criteria
may bias the medical risk adjustment and not lead to best medical and financial
outcomes. It is therefore recommended that these criteria are considered separately
(e.g. by applying filters in the final ranking).

Foundation of the statistical modeling is a comprehensive medical analysis of po-
tential complications, their reasons, consequences and related risk factors. As the
resulting provider ranking shall not only consider one aspect of medical treatment
quality, but cover the risks of all important potential complications of the surgery,
a comprehensive complication score is used as target variable of the model. To ac-
count for the fact that the risk for each potential complication might be driven by
different risk factors (and interactions of risk factors), a Bayesian latent variable
model is used which allows for more flexibility than traditional regression models
(see Section 5.3.1).

Beside the risk adjustment/modeling approach itself, Section 5.3 also describes an
intuitive way to translate the model outcomes in a risk-adjusted provider ranking.
Based on a simple clustering approach, this ranking can be individualized for single
patients who can determine the best treating doctor according to their individual risk
parameters. Another side result of the modeling approach is the possibility to predict
expected costs of complications which can be used as input for pre-authorization
decisions or case reserving in health insurance. To increase the predictive power and,
therefore, the transferability of the model re-sampling and shrinkage techniques are
applied.

Finally, several risk adjustment techniques are compared with regard to different
measures of predictive quality to identify the best approach (see Sections 5.3.4 and
5.4). Predictive quality is particularly important, if an individualized provider scor-
ing for a new patient shall be provided. Section 5.4 also analyzes the stability of the
approach and provides further side results.
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5.2 Background

In the following, further background information on the statistical assessment of
medical treatment quality is provided. Section 5.2.1 gives an overview of related
literature and carves out the innovative aspect of the developed risk adjustment
approach described in Section 5.3. Additionally, Section 5.2.2 summarizes the most
important aspects on the data foundation that is required to perform a meaningful
analysis of medical quality in surgical procedures.

5.2.1 Literature

Many, especially US authors address the topic of medical quality assessment from
a pay-for-performance perspective. They often report controlled trials analyzing if
pay-for-performance providers deliver better outcomes than control providers (see
for example Lindenauer et al. [2007]; Bardach et al. [2013]; Kirschner et al. [2013];
Shih et al. [2014]). Often, the main focus of these articles is on the efficacy of the
pay-for-performance system, less on the performance of single doctors or hospitals,
like in the analyses described in this chapter. Therefore, the following literature
overview will mainly concentrate on articles addressing the application of statistical
methods for quality assessment and risk adjustment of single medical providers.

Statistical approaches are applied in medical quality assessment to quantify differ-
ences in medical outcomes, perform risk adjustment with regard to the providers’
case-mix and predict (costs of) adverse outcomes. Depending on the underly-
ing question, methods range from simple t-tests/ANOVAs comparing two or more
groups of providers in terms of a defined outcome measure [Bardach et al., 2013]
until (advanced) regression models [Cohen et al., 2013] and machine learning ap-
proaches [Zheng et al., 2015]. For example, Zheng et al. [2015] predict the risk
of re-admissions using different machine learning techniques (e.g. random forests,
neural networks and support vector machines).

Typical outcome measures are risk-adjusted mortality (within a defined timeframe),
re-operation, re-admission, occurrence of (specific) complications, costs of surgery
(incl. follow-up costs) and length of stay [Thomas and Hofer, 1999; Elmallah et al.,
2015; Cohen et al., 2013; Hobson et al., 2015; Lukasiewicz et al., 2016]. Some authors
also describe (weighted) composite measures which summarize different endpoints
[Shwartz et al., 2008]. Other authors discuss the question, if single endpoints can be
used as surrogate measure for overall quality. For example, Press et al. [2013] found
that (risk-adjusted) re-admission rates alone are not sufficient to measure overall
hospital quality.

Another differentiation in medical quality studies is the question, if quality scores
are allocated to single treating doctors or institutions (e.g. practices/hospitals).
Especially in the analysis of hospital quality, analyses are often not only focused on
one specific procedure, but consider the performance in groups of procedures related
to a provider specialty or even in all procedures offered by the provider [Cohen et al.,
2013]. As in the case of surgical procedures medical outcomes strongly depend on
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the (experience of) the surgeon [Birkmeyer et al., 2013], it is preferable to derive a
clinician specific score in this case. For example, Birkmeyer et al. [2013] analyze the
impact of the surgeon on medical outcome quality in bariatric surgery and report
significant differences with regard to post-operative complications, re-operation and
re-admission rates. An aggregation of single clinicians’ scores to a hospital score is,
of course, always possible.

Cohen et al. [2013] describe a statistical risk adjustment approach based on logistic
regression models similar to the approach described in Section 5.3. They also de-
rive a quality score based on a ratio between observed and expected complications.
Difference to the modeling approach described in this chapter is that they build
separate models for each potential complication. Other interesting components of
their work are also the introduction of a random effect for the hospital, a shrinkage
concept that allows to also evaluate providers with small number of observations
and the calculation of confidence intervals for the quality score. Such confidence in-
tervals allow to judge if a provider is significantly better (or worse) than the market
also considering the number of underlying cases.

Also Bayesian techniques have already been applied in medical quality assessment.
For example, Shwartz et al. [2008] use a Bayesian latent variable model to calculate
a composite measure of hospital quality based on different quality indicators.

For the specific example of cataract surgery which is used to illustrate the mentioned
risk adjustment approach, there exists a lot of literature on potential complications
and risk-factors Chan et al. [2010]; Patalano [2016]; Powe et al. [1994]. Statistical
analyses are mainly applied to identify risk factors for specific complications, like
endophthalmitis [Li et al., 2004] and retinal detachment [Tielsch et al., 1996].

In a targeted research of scientific literature, no articles could be found that measure
medical outcome quality in cataract surgery based on a comprehensive complication
score. Also, no latent variable approach for risk adjustment that allows for different
impacts of risk factors per complication has yet been applied in the context of
cataract surgery and other surgical procedures. Other application examples for
Bayesian latent variable models can be found in Section 4 where a similar model is
applied in the context of fraud and abuse detection.

5.2.2 Data Environment

Like the described statistical analyses in all previous chapters, the analysis of med-
ical provider quality is also based on insurance (policy and claims) data. Both for
the analysis of disease management programs and fraud and abuse detection the
availability of high-quality medical information is a plus. In the context of medical
quality assessment, however, meaningful results are only possible based on a signif-
icant amount of data with high medical coding quality (diagnoses and procedures)
[Powell et al., 2003]. Also, the number of observed surgeries meeting the inclusion
criteria drives the reliability of resulting provider scores. Additional medical infor-
mation/clinical data, like results of lab tests or diagnostic tests, of course, improve
the risk adjustment capability of statistical models.
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In the case described in this chapter, the analysis is based on more than 20,000
cataract surgeries (CPT codes 66982, 66983, 66984) and more than 60 surgeons
which have performed at least 25 surgeries captured in the database. For model
fitting all observations have been used, the resulting provider rankings only include
those providers with more than 25 surgeries to reduce the influence of single outliers.
Even though, some authors provide approaches to also rank providers with less ob-
servations, like the shrinkage approach described by Cohen et al. [2013], conclusions
based on a small number of cases bear the danger of a ranking driven by single
(outlying) events.

In the data used for the analysis, medical coding quality with regard to diagnosis
and procedure (incl. drug) coding is high and the information is available over a
period of about 6 years. In total, 17 measurable complications, like re-operation,
retinal detachment and endophthalmitis, are considered and summarized in different
complication scores (see Section 5.3.1). For risk adjustment, socio-demographic (age,
gender) and non-cataract related risk factors (general health score) as well as 20
indication-related risk factors/co-morbidities (e.g. presence of glaucoma, diabetes,
cardiovascular disease, strong short-/long-sightedness) are included in the model.

5.3 Methodology

In this methodology section, a detailed description of the Bayesian latent variable
model used for risk adjustment in provider scoring for cataract surgery will be given.
Section 5.3.1 illustrates the model assumptions and structure of the developed la-
tent variable model. In Section 5.3.2, the iterative fitting algorithm using param-
eter shrinkage and re-sampling techniques to increase the predictive power of the
model are outlined. The question how to translate model estimates into a provider
scoring/ranking is addressed in Section 5.3.3. Here, also a concept for the indi-
vidualization of the ranking to the specific medical situation of a patient is intro-
duced. Furthermore, the capability of the model to provide individual predictions
of complication costs is discussed. Finally, Section 5.3.4 summarizes the applied
benchmarking concept in preparation of the results overview given in Section 5.4.

5.3.1 Model structure

As mentioned in the introduction, goal of the analysis is not to score providers based
on a single aspect or a surrogate measure for performance (like the re-admission
rate [Press et al., 2013]). Instead, the scoring shall be based on a comprehensive
complication score which summarizes the most relevant potential complications of
a specific surgery. Therefore, we use the complication score R as target variable of
our modeling approach. The realizations ri (i = 1, . . . , n, n = 20,666) are defined
as weighted sum of q (q = 17) different complications indicators yij

ri =

q∑
j=1

yij · wj (i = 1, . . . , n; j = 1, . . . , q) (51)
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where yij is equal to one if the jth complication occurs in surgery i and else equal to
zero. The complication-specific weights wj are defined from different perspectives:

• From a cost perspective (i.e. the perspective of a healthcare payer), it is
straightforward to directly use the costs of the complication as weight wj. In
theory, one could use the costs cij of complication j in case i as weight wij.
However, it is difficult based on insurance claims data to exactly determine the
costs for a complication, especially if complications are defined as occurrence
of a specific diagnoses, as costs are related to procedures and not diagnosis. To
balance this uncertainty, it is suggested to use the average costs c̄j of compli-
cation j which are determined by the difference of the average claims costs of
surgeries where complication j occurs (as only complication) and the average
claims costs of surgeries without complications. The weight wj can then be
defined as absolute average complication costs wj = c̄j or as relative average
complication costs wj = c̄j/

∑p
j=1 c̄j. Even though the relative version may

have some numerical advantages, the absolute version is used in the following
due to its better interpretability (see Section 5.3.4). The target variable based
on wj = c̄j is denoted in the following as R1.

• As the first complication score has a multi-modal distribution (see Figure 33)
which is an undesirable property for the target variable of (standard) regression
models, a second cost-based complication score is defined. For this second
complication score (denoted as R2), a discrete weight function is used: wj = 1
for low-cost complications, wj = 2 for medium-cost complications and wj =
3 for high-cost complications. Allocation to the cost categories is based on
scientific literature (as far as available) and medical expert judgement.

• The third complication score (denoted as R3) represents the patients’ perspec-
tive and accounts for severity of the complication, i.e. the impairment of the
patient’s quality of life. Like for the second complication score, a discrete
weight function is used: wj = 1 for mild/short-term complications, wj = 2 for
medium/mid-term complications and wj = 3 for severe/long-term complica-
tions. It is suggested to use the related models for all applications scenarios
where future patients are offered a provider ranking to support their doctor’s
choice. As the similar shape of the histograms of R2 and R3 indicates (see
Figure 33), both complication scores are highly correlated (correlation greater
0.9). Therefore, also the cost perspective is reflected by the severity-based
score.

An intuitive way to perform risk adjustment based on the defined target variables is
to fit a multiple (linear) regression model using the risk factors X1, . . . , Xp (p = 23)
described in Section 5.2.2 as covariates which yields the regression equation:

E(ri|xi1, . . . , xip) = γ0 + γ1xi1 + . . .+ γpxip. (52)

In order to account for the non-negative values of the complication scores a loga-
rithmic transformation of the target variable has been tested (log(ri + 1) to account
for the large number of zeros). However, the related model yields worse results in
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Figure 33: Histograms of the three defined complication scores.

terms of prediction and is not considered further. The linear model approach is
used as a baseline benchmark (see Section 5.3.4) for the performance of the more
sophisticated models described in the following. The major disadvantage of this
approach is, that it implicitly assumes the same impact of each risk factor for each
complication. Also, there might be different interaction effects of risk factors on
different complications which cannot be accounted for.

Therefore, it is proposed to use a more complex model structure involving the latent
variables V1, . . . , Vq that can be interpreted as risk for the occurrence of complication
j. The underlying assumption is that the complication score R does not directly de-
pend on the risk factors X1, . . . , Xp, but indirectly via the latent variables V1, . . . , Vq
(see Figure 34).

Figure 34: Model structure of latent variable model for risk adjustment.

Similar as for the multinomial latent variable model for fraud and abuse detection
presented in Section 4, the indirect impact of covariates on the target variable is
reflected in a two-stage model setup.
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The first stage model involves the latent variables in the linear predictor:

E(ri|vi1, . . . , viq) = α0 + α1vi1 + . . .+ αqviq. (53)

The realizations of the latent variables are estimated in second stage models of the
form

g(E(vi1|xi1, . . . , xip)) = β01 + β11xi1 + . . .+ βp1xip (54)
...

g(E(viq|xi1, . . . , xip)) = β0q + β1qxi1 + . . .+ βpqxip.

As target variables of the second stage models the binary complication indicators
yij are used instead of the unknown latent variables vij. Therefore, it is an intuitive
choice to assume a binomial distribution for Y1, . . . , Yq and use a logistic link function
to model the probability P(Yj = 1) of complication j as latent risk score (i.e. g(·) =
logit(·)). As a second option, one can also argue that the latent variables represent
a continuous risk score which does not necessarily need to range between zero and
one. In this case, the second stage models are again linear models with binary target
variables (i.e. g(·) = id). The latter approach has the advantage that it is clearly
more stable, as no separability problems can occur due to a large number of binary
covariates (occurrence of risk factors: yes/no). Another theoretical advantage is
that the regression estimates for the latent variables which are used as covariates of
the first stage model rather follow a normal distribution than in the binomial setup.

To account for the most important medical correlations between the risk factors,
manually selected (based on medical expert judgement) interaction terms are ad-
ditionally considered in the second stage models. Similarly, a moderate number of
interaction terms between different latent variables are included in the first stage
models to respect the correlation of different complications. Finally, an iterative
estimation algorithm is applied which alternatingly updates parameters of first and
second stage models (see 5.3.2) to take into account the dependency of first and
second stage target variables.

This latent variable approach strongly increases the flexibility of the risk adjustment.
However, it is quite complex and requires many parameters. In order to anyway re-
ceive a model that allows extrapolation to new observations and has adequate pre-
dictive power, re-sampling and shrinkage techniques are applied (see Section 5.3.2).
In addition, it was tested if a simpler model which summarizes complications with
similar risk factors and uses a smaller number of latent variables can improve the
predictive power. However, the measured predictive quality of the related models is
(slightly) worse, so that this approach is not described in more detail. This finding
also underlines the need to separately model the impact of the risk factors on each
complication.

With the choice of a GLM-based approach, it is implicitly assumed that all surgi-
cal cases are independent. Of course, this does not hold in general, because some
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surgeries are performed by the same doctors and in the same hospitals. Therefore,
an intuitive approach to determine a risk-adjusted hospital or clinician score is the
fitting of mixed models with clinician- and/or hospital-specific random effects. The
estimates of the related random parameters can directly be interpreted as quality in-
dicators for hospitals or clinicians. The scoring approach described in Section 5.3.3,
however, is based on the determination of the clinician (or hospital) effect by calcu-
lating an observed-to-expected ratio. The applied GLMs purely focus on eliminating
the effects of medical risk factors. As the presence of provider-specific random effects
naturally leads to a decrease of the effect size of medical risk factors and, therefore,
less risk adjustment, we consciously neglect the dependency of single observations
in the modeling. Also, the mixed models tested lead to a significantly worse predic-
tion of defined complication scores than the corresponding models without random
effects.

5.3.2 Model fitting

The model parameters α = (α0, . . . , αq) and β = (β01, . . . , βpq) are calculated by
iterative sampling from first and second stage models using different Metropolis-
Hastings techniques (see also the fitting algorithm for the fraud and abuse detection
model in Section 4.2.2). The implemented algorithm uses the following (simplified)
reformulation of the joint posterior distribution of α and β:

p(α,β|r,v)︸ ︷︷ ︸
posterior

∝ p(r,v|α,β)︸ ︷︷ ︸
likelihood

· p(α,β)︸ ︷︷ ︸
prior

(55)

= p(r|α,β) · p(v|α,β) · p(α|β) · p(β)

= p(r|α,β) · p(α|β)︸ ︷︷ ︸
first stage model

· p(v|β) · p(β)︸ ︷︷ ︸
second stage models

For the decomposition of the likelihood, conditional independence between v =
(v1, . . . , vq) and r given the parameters α and β is assumed.

Each iteration s (s = 1, . . . , S) of the fitting algorithm starts with drawing one re-
alization of β(s) from all q second stage models. Depending on the distributional
assumption for the latent variables (normal or binomial likelihood) and the activa-
tion of parameter shrinkage, different prior distributions are used for p(β).

For the version without parameter shrinkage, the functions MCMClogit (for a bi-
nomial likelihood) and MCMCregress (for a normal likelihood) in the R package
MCMCpack are applied [Martin et al., 2011]. In both cases, a weakly-informative
multivariate normal prior distribution is used for the corresponding subvector βj =
(β0j, . . . , βpj) of β, i.e. p(βj) ∼ N(0, 0.1I). If a normal distribution is assumed for
the latent variables, inverse Gamma distributions (with mean 5 and variance 25) are
used for the additional parameters σ2

j and Gibbs-sampling (acceptance probability
of proposed parameters always equal to one) is applied. In the binomial case, the
Metropolis proposal distribution is centered at the current value of βj and has the
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variance-covariance matrix V = T (10I+C−1)−1T . T is a diagonal positive definite
matrix depending on the tuning parameter that controls the acceptance rate and C
is the large sample covariance matrix of the maximum likelihood estimate of βj.

For the version with parameter shrinkage and a binomial distribution assumption,
the function logit.spike in the R package BoomSpikeSlab is used [Chipman et al.,
2001]. Idea of the related “spike-and-slab” shrinkage approach [George and McCul-
loch, 1997] is that the spike prior p(γj) controls the number of non-zero regression
coefficients and, therefore, the degree of the shrinkage. γj = (γ1j, . . . γpj) is a vector
of inclusion indicators for each of which a Bernoulli distribution with parameter
π = 0.2 is assumed as spike prior. This means, that each second stage model is re-
duced to approximately p/5 (most relevant) risk factors. The slab prior is the prior
distribution of the regression coefficients p(βj|γj). The slab prior is assumed to
follow a multivariate normal distribution with mean vector 0 and covariance matrix
V which depends on the Fisher information available in the data and further hyper-
parameters [Chipman et al., 2001]. The dimensions of mean vector and covariance
matrix are determined by the number of inclusion indicators equal to one.

Finally, the version with parameter shrinkage and a normal distribution assumption
is implemented based on the function blasso in the R package monomvn [Gramacy
et al., 2007]. Here, we apply the same lasso shrinkage approach with reversible jump
mechanism [Green, 1995; Troughton and Godsill, 1997] which has already been used
for the second stage models in the fraud and abuse context (see Section 4.2.2).
According to (50), an exponential power distribution is assumed for p(βj|σ2

j ) with
a non-informative Jeffrey’s hyperprior for the shrinkage parameters λj [Gramacy
et al., 2007].

After having updated β, the resulting estimates of the latent variables v̂1, . . . , v̂q
are plugged in the first stage model. For the update of the parameters α of the first
stage model, the same Gibbs-sampling approach is used like for the second stage
model with normal distribution assumption and no shrinkage.

In total, this alternating update of α and β is repeated S = 250 times. Based on the
analysis of different sampling traces, a burn-in phase of 50 iterations and thinning
ratio of 1 (i.e. no thinning) are applied. Consequently, estimates r̂ of the three com-
plication scores defined in Section 5.3.1 are received by averaging over the sampling
results r̂(51), . . . , r̂(250). In addition to the described shrinkage options, a bagging
[Breiman, 1996] approach is applied to increase predictive power and transferability
of the model. This means that 50 bootstrap samples are drawn from the full dataset
on each of which the different fitting algorithms are applied. By averaging over the
results of all 50 bootstrap samples final estimates of the complication scores r̂1, r̂2

and r̂3 are calculated. The following Section 5.3.4 illustrates how the estimates of
the complication scores are translated into risk-adjusted provider scores. A com-
parison of the different latent variable models and additional benchmarking models
with regard to predictive quality can be found in Section 5.4.

The execution of the described fitting algorithm is relatively time-consuming and
strongly depends on the underlying computing power and the distributional assump-
tion for the second stage models. On a working station with 8 GB RAM, estimation
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time for all 50 bootstrap samples ranged between 2.5 and 5 hours. Naturally, the
Gibbs sampler for the Gaussian option without shrinkage is faster than the three
other options. From an application perspective, the performance of the algorithm
is not that crucial as the provider ranking is quite stable and does not drastically
change with each new case. So, if the model is used by a health insurer, a monthly
or quarterly update appears to be sufficient. The prediction of complication costs
and the provisioning of an individualized provider ranking for future patients can
be realized by a scorecard approach which does not require a new run of the fitting
algorithm.

5.3.3 Model outcomes

The idea behind the calculation of a provider-specific quality score is to compare the
actual performance of the provider with the expected performance under considera-
tion of the medical risk of the providers’ case-mix. The medical quality score (QS) is
calculated as provider-specific expected to observed ratio of the defined complication
scores, e.g. for a provider A:

QSA =

∑
i∈A r̂i∑
i∈A ri

. (56)

Here, A is an index set, identifying all cases of provider A from the full set of n
cases.

The scores QS can be interpreted in the way that a provider with QS > 1 performs
better than the average of all providers on a comparable case-mix. Vice versa,
a QS < 1 indicates below average quality. The mean (or median) QS based on
all bootstrap samples can be used as ranking criterion for a risk-adjusted provider
ranking. Based on the Bayesian fitting algorithm described in Section 5.3.2, it
is also possible to evaluate the credibility of the calculated QS. A Bayesian 95%-
credibility interval can be formed by calculating the 2.5%- and 97.5%-quantile based
on all bootstrap samples. If the lower bound of the interval is greater than 1, the
provider performs significantly better than the average provider. If the upper bound
is smaller than 1, the provider performs significantly worse. These results can be
used by insurance companies for a transparent network management incentivizing
or penalizing providers.

Even though the model is calculated based on all available cases in the data, it can be
very misleading to include providers with a very small number of cases in a ranking
based on the described quality score. Due to the high proportion of uncertainty in
the prediction and the influence of single outliers, it is recommended to exclude all
providers with less than 25 cases from the ranking. Approaches which correct for the
small number of cases of single providers, like the shrinkage approach of Cohen et al.
[2013], can certainly not fully prevent the risk of wrong conclusions. If insurance
companies provide such quality ranking as a service to their insured persons, the
exclusion of providers below the defined threshold is of course a disadvantage for
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these providers. On the other hand, this may be a wanted effect, as the experience
of surgeons is an important quality criterion, especially for more complex surgeries,
like cataract surgery [Chan et al., 2010].

If the number of observed cases is large enough, an individualization of the ranking
considering individual risk factors of the patient is possible. For example, an unsu-
pervised K-means clustering could be applied to split all patients that underwent
the treatment in the past into K clusters based on all observed risk factors. The
quality score for provider A and cluster k (k = 1, . . . , K) is then calculated as

QSA,k =

∑
i∈A∩k r̂i∑
i∈A∩k ri

. (57)

Based on all scores QSk an individualized provider ranking for all patients belonging
to cluster k is possible. Future patients can be allocated to one of the K clusters
based on known risk factors and will receive an individualized recommendation of
best surgeons/providers. Of course, also for an individualized ranking a lower limit
of performed treatments (in the corresponding cluster) should be applied to avoid
biased results by single outliers. In order not to exclude too many providers K
should be chosen relatively small and depending on the number of observed cases.
In the data used for developing the described approach with about 20,000 underlying
cataract surgeries, K = 3 and a lower boundary of 25 cases per provider and cluster
turned out to be a reasonable choice.

The described scoring approach can be applied on clinician or on institution/hospital
level. Based on the assumption that the treating physician has the larger influence
on the medical outcome than the hospital where the treatment is performed, it is
recommended to calculate the score on clinician-level if underlying insurance claims
data contain this information. In countries with very heterogeneous hospital quality
standards and hygiene conditions a hospital based score may be more meaningful.

It is important to note that this approach makes the simplifying assumption that
all uncertainty in the medical outcome is related to the provider/clinician includ-
ing the unexplained medical risk (see also Section 5.3.4). Therefore, the fairness
of the scoring strongly depends on the quality of risk adjustment and the explana-
tory/predictive power of the underlying model. In this regard, each analytical scor-
ing approach has clear limits. If the score is calculated on clinician level, there are
a lot of exogenous factors that can not or not directly be influenced by the treating
physician, like the performance of assisting staff or the hygiene conditions in the
operation theater. A random effect for the hospital may correct this potential bias.
On the other hand, it is the duty of the treating physician to ensure an optimal envi-
ronment for the treatment. From a patient and also from an insurance perspective,
it is therefore meaningful to also link this exogenous risk factors to the clinician.

A useful side result of the modeling approach (using complication score R1) is that
it yields a prediction r∗1,i′ for the complication costs of a future patient i′ based on
the known risk factors. Considering the absolute predictive power of all prediction
models (see Section 5.4) which indicates a large percentage of unexplained future

118



5 Provider Quality Measurement

risk, a reliable prediction on individual level seems difficult. However, the results
may still give a better indication of expected complication costs than just assuming
an average over all cases independent of the underlying risk. From an insurance
perspective, this indication can be used for pre-authorization decisions and more
reliable case reserving. For example, the insurability can be increased by covering
previously uncovered surgeries with good cost prognosis. On the actuarial side,
case reserves can be adjusted, especially in the case of surgeries with high predicted
complication risk, to avoid under-reserving.

5.3.4 Benchmarking

The complication scores described in Section 5.3.1 quantify the unobservable risk of
the treatment. As illustrated in Figure 35, it is assumed that this treatment risk
consists of the provider related risk (which is measured by the quality score) and the
medical/patient related risk. Therefore, a fair provider scoring requires a risk adjust-
ment approach which eliminates the underlying medical risk as far as possible, as the
described provider quality score is otherwise biased by the unexplained medical risk.
Only in the (theoretical) optimal case that the statistical model explains/predicts
the complete medical risk, the described quality score exactly measures the provider
related risk. Therefore, the provider scoring and ranking is as more precise as higher
the predictive power of the risk adjustment model (see Figure 35). In addition, the
predictive power of the model also measures the transferability of the model to new
observations needed for pre-authorization and case reserving purposes as described
in Section 5.3.3.

Figure 35: Schematic visualization of uncertainty in medical quality assessment.

From these reasons, the described latent variable approaches are compared to other
risk adjustment techniques based on different measures of predictive power for con-
tinuous outcomes (like the described complications scores): the mean predictive
squared error (MPSE), the mean absolute error (MPAE) and the predictive R-
Squared (R2∗ , based on the correlation measures of Pearson and Spearman) as
defined in Appendix A. To control overfitting to the training data, we calculate
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these measures based on the out-of-bag-samples resulting from the bootstrapping
approach described in Section 5.3.2.

As benchmarks to the four described latent variable models, we use

• a (one-stage) linear model which does not allow for covariate effects that vary
between different complications and

• a Random Forest which naturally accounts for interactions between different
risk factors and is known to deliver optimal prediction results in similar situ-
ations.

Table 15 summarizes all applied risk adjustment models at a glance.

Shortcut Model Type Distribution assumption Shrinkage
for second stage

lm Linear model – no
lvmb Latent variable model binomial no
lvmg Latent variable model gaussian no
lvmsb Latent variable model binomial yes
lvmsg Latent variable model gaussian yes
rf Random forest – –

Table 15: Overview of applied risk adjustment approaches.

5.4 Results

The results tables and figures shown in the following are referring to complication
score R1, i.e. the complication risk is represented directly by the sum of average
complication costs (see Section 5.3.1). Due to the high correlations between the
scores R1, R2 and R3 described in Section 5.3.1, the results based on the scores
R2 and R3 hardly deviate from the shown results and do not change the derived
conclusions.

The results given in Figure 36 show the measures of predictive quality defined in
Section 5.3.4 based on the 50 out-of-bag-samples resulting from the described boot-
strapping approach. The measures show quite consistent results with regards to the
risk adjustment capability of the displayed approaches (see Table 15).

If the predictive R-Squared is assumed to represent the share of explained variance
in future complication risk, the results given in Figure 36 show that the best pre-
diction models explain about 20% of future complication risks. As probably not all
remaining 80% are related to the provider, the influence of medical risks can obvi-
ously not fully be eliminated. However, there are clear differences with regards to
the predictive power of the different risk adjustment approaches. The developed la-
tent variable models perform better than the Random Forest and clearly better than
the simple linear model across all applied measures of predictive power. Therefore,
it is recommended to base a provider scoring and ranking on the developed latent
variable approach.

Within the latent variable models the models with Gaussian distribution assumption
for the second stage models perform slightly better than the binomial models. The
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shrinkage approach minimally increases the predictive power. The best model is
the latent variable model with Gaussian distribution assumption for the second
stage models and activated shrinkage option. Considering the clearly longer run-
time of the shrinkage models to the Gaussian model without shrinkage, the simpler
algorithm may be preferred in practice.

Figure 36: Comparison of different risk adjustment approaches based on different
predictive quality measures for complication score R1 (model shortcuts explained in
Table 15).

Figure 37 compares the provider ranking based on the best model (lvmsg) in terms
of predictive power

• to a raw complication ranking without risk adjustment ordering providers
directly based on observed complication scores (raw),

• to the provider rankings based on the benchmark models (lm and rf) and
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• to the provider rankings based on the other latent variable models (lvmb, lvmg
and lvmsb).

The graphs show that no or insufficient risk adjustment may lead to completely
different provider rankings. For example, there is one provider on rank 11 in the
raw ranking and only on rank 60 (out of 63 providers with more than 25 cases)
in the risk-adjusted ranking. Recommending this provider to patients can lead to
serious consequences for the patient and unnecessary high complication costs for
the insurance company. Also, using a simple linear model for risk adjustment leads
to rank differences of up to 22 in the analyzed cataract data. Accounting for the
fact that the best model explains about twice the amount of complication risk,
the simple linear model approach does not yield optimal results. The other risk-
adjusted rankings including the Random Forest approach lead to comparably similar
rankings, especially among the best and worst providers. Therefore, the results show
that it is beneficial to use more complex risk adjustment models for assessment of
medical outcomes, the concrete approach does not change the outcome significantly.

Compared to the Random Forest, the latent variable models offer more transparency
as single effects (high values of single latent variables) can easily be interpreted
and explained to providers, e.g. in network negotiations. In this way, insurance
companies can demonstrate concrete deficits to providers based on model outcomes
which enables a targeted quality improvement process on provider side.

Finally, the individualized provider rankings based on the K-means clustering ap-
proach described in Section 5.3.3 are considered. Table 16 shows the correlation
matrix of the provider rankings in the K = 3 clusters built based on all 20 risk
factors. Only those providers which had more than 25 cases in each of the clusters
(21 providers) have been considered for the analysis. The rankings in cluster 1 and
3 are nearly identical (and could be merged in this specific situation), however, the
lower correlations between cluster 2 and 3 as well as 1 and 3 reveal that an individ-
ualized ranking makes sense for the existing data set. Compared to cluster 1 and
3, cluster 2 represents mainly age-related complications and co-morbidities which
indicates that elderly patients (with affected risk factors) should rather rely on the
corresponding ranking.

Correlation Cluster 1 Cluster 2 Cluster 3
Cluster 1 1.00 0.75 0.98
Cluster 2 0.75 1.00 0.76
Cluster 3 0.98 0.76 1.00

Table 16: Correlations of provider rankings in different medical risk clusters (based
on complication score R1).

5.5 Summary and Outlook

Section 5 introduces a Bayesian latent variable model for risk adjustment in the
evaluation of medical outcome quality. The results summarized in Section 5.4 show
that more complex risk adjustment approaches are required to receive a provider
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Figure 37: Rank correlations between different provider quality scores (raw, lm,
lvmb, lvmg, lvmsb and rf) and best approach (lvmsg) in terms of predictive quality
for complication score R1 (model shortcuts explained in Table 15).
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scoring which eliminates as much as possible of the patient-related medical risk. The
developed Bayesian latent variable models yield high predictive power and outper-
form different benchmarking techniques including a Random Forest. In addition,
they provide transparency towards providers by easily interpretable effects which
may reveal concrete quality deficits. The described individualization approach al-
lows to tailor the provider ranking to the individual medical situation of patients
and, therefore, enables the choice of the best doctor for each patient. In this way,
severe and expensive complications can be avoided.

From an insurance perspective, the provided results can be used for the optimiza-
tion of patient steering. The publication of (individualized) medical quality rankings
enriches the service offering of the insurance company and can be combined with
further information, like geographical proximity between provider and patient. Fur-
ther, the individual prediction of complication costs supports pre-authorization and
case reserving decisions. Similarly like the results of the fraud and abuse analysis
in Section 4, insufficient medical quality outcomes can be used in network manage-
ment, e.g. for negotiations on discounts or exclusions from preferred networks. The
introduced risk-adjusted quality scores can – applied on a wider scale – also form
the basis for a transparent regulatory pay-for-performance system encouraging an
overall improvement of medical treatment quality.

The described latent variable approach can be applied for the assessment of ev-
ery medical treatment in which the performance of the provider strongly influences
the occurrence of complications, like cataract surgery. Prerequisite for the imple-
mentation of an informative provider scoring/ranking is a large enough database of
observed cases which contains detailed medical information on the patients’ history
before and after the treatment. Usually, insurance claims data with high quality
medical coding (diagnoses and procedures) observed over a period of at least 5 years
meet these requirements in the case of prevalent surgeries. The described individ-
ualization of results to the medical situation of (future) patients requires a large
number of providers who frequently perform the corresponding treatment.

Transferring the methodology to other (predictable) surgical treatments and con-
firming the results of this study will be subject to future research. Other possible
applications scenarios are, for example, ceasarian section, cruciate ligament surgery
or (total) knee and hip replacement. From a statistical perspective, it will be inter-
esting to evaluate if the shrinkage option will improve the predictive power of the
models more strongly if more potential risk-factors (and interactions) are available
as model input.

Considering the absolute predictive power of the best risk adjustment models (see
Section 5.4), analytical models can naturally not fully explain/predict the treatment
related risk. These results may improve with the enrichment of (insurance) data by
additional information like clinical data (e.g. results of lab tests) or data from health
trackers (e.g. activity levels of patients). Also, this information will not lead to a
complete predictability of medical outcomes, but it will be interesting to observe
the extent of improvement related to these upcoming trends.
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What are the Main Conclusions from this Thesis?

The creation of statistical outcomes which provide value to health insurance com-
panies is a challenging task and can go terribly wrong if important principles are
not respected. Wrong results or wrong interpretations of results can lead to the
disqualification of the whole subject and, therefore, analysts and researchers have
a strong responsibility in this regard. In the following, the major observations and
conclusions from the academic research carried out in relation with this thesis are
summarized.

Using all relevant information is key!

In general, it is a clear advantage in statistical modeling to have more covariates
available. Models which incorporate all relevant information, especially medical
information in the claims sector, nearly always outperform traditional insurance
approaches only based on age and gender. However, the inclusion of hundreds of
parameters without controlling correlations does not improve statistical outcomes,
in particular not predictions. Especially, when working with large portfolios, not
all significant parameters are also relevant. Therefore, targeted methods of variable
selection (as described in Section 2 and 3) or parameter shrinkage (as described in
Section 4 and 5) are required to control model complexity and avoid overfitting.
In times of increasing “Big Data”, techniques which are able to filter the relevant
information are more important than ever.

Subject-matter expertise matters!

The blind application of statistical techniques does usually not lead to optimal
outcomes. Many analyses described in the previous chapters show that only the
combination of insurance knowledge and statistical know-how leads to optimal out-
comes. Especially medical information needs to be structured and clustered in an
adequate way to reach the best predictions. For example, diagnoses codes require
some context specific categorization to efficiently use this information for statistical
models. Also, the ex-ante definition of known causal correlations and incorpora-
tion of this knowledge clearly improves model results. Such prior knowledge is less
relevant in machine learning models, because they are supposed to automatically
identify this information from training data. This proceeding, however, bears the
danger of overfitting as, for example, the comparison of regression techniques and
machine learning models in Section 2 shows.

One size does not fit all!

Standard prediction techniques, like Random Forests, deliver meaningful results in
many situations. However, both Sections 4 and 5 show that tailored algorithms
which are designed to reflect certain known data characteristics can still improve
the results. For example in Section 5, the medical hypothesis that different compli-
cations depend on different risk factors (and the resulting introduction of separate
latent variables) clearly improves the outcomes in medical quality assessment. This
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is interesting from an academic perspective, but especially if statistical techniques
are applied to large portfolios, even small improvements of predictive power can
also cause a significant difference in financial impact. On the other hand, the de-
velopment of such tailored algorithms is, of course, also related to efforts and costs
which carefully have to be weighed against the benefits. In terms of cost-efficiency
the transferability of solutions plays an important role. Sections 3 and 4 demon-
strate how statistical techniques can also support health insurance companies in this
regard. In particular, the Bayesian approach to specify prior knowledge on fraud
and abuse patterns allows insurance companies from other markets to use existing
results, but still to benefit from a highly customizable solution.

More complex is not always better!

In large insurance companies who have stable portfolios and capture data in a high
quality for many years, more sophisticated statistical techniques have a clear value.
As especially the study of disease management candidate selection shows (see Sec-
tion 2), for small and strongly growing portfolios, also comparably simple (regres-
sion) techniques provide stable and reliable results. Additional complexity can make
sense, but requires careful analysis and understanding if the additional features also
provide sustainable value. Especially for prediction purposes, sparser models have
proven in many situations to be at least equivalent with more complex alterna-
tives. Combining this statement with the previous one on tailored solutions, it can
be noticed that usually those models with “targeted complexity” deliver the best
outcomes.

How to tap the Economic Potential of Statistical Insights?

Even if all those statistical best practice rules – which certainly not only hold for the
analysis of health insurance data – are considered and optimal statistical outcomes
are generated, the realization of savings or upsides is not guaranteed. In order to
tap the full economic potential of statistical insights, several other prerequisites need
to be fulfilled. Two of these prerequisites to successfully apply Statistics in health
insurance are adequate processes around the statistical analysis and an analytical
mindset across the company.

The business loop illustrated in Figure 38 shows what additional measures are re-
quired before and after analyzing data. In economy like in academic research, every-
thing starts with a business/research question which needs to be defined involving
all relevant stakeholders. In the examples provided in this thesis, claims and network
managers, but also IT managers have been involved, and an initial strategy to reach
a defined (financial) goal has commonly been defined. Based on this starting point,
all relevant data (internal and eventually external) need to be collected and made
available for the analysis. After comprehensive statistical analyses, the important
business integration process starts. This involves technical integration, but espe-
cially the common definition of targeted business interactions as consequence of the
statistical results. For example in fraud and abuse detection, claims investigators
need to understand the meaning of a high fraud probability and require explanations
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from which data patterns this high probability arises. Only if this understanding
is given an efficient follow-up investigation or targeted network negotiations can be
carried out. In this regard, transparent statistical models (“white-box” approaches)
have the clear advantage that the results can be interpreted more easily, also by
non-experts. After a certain test period, it needs to be evaluated if the defined
interactions lead to the achievement of the initially defined (financial) goal. Usu-
ally, multiple adaptations of models and processes – again involving all parties – are
needed to fully exploit the potential of statistical analyses.

Figure 38: Business loop ensuring the transformation of statistical insights into
business value.

Beside optimized processes, another requirement for leveraging the value of Statistics
in health insurance is a company-wide analytical mindset. This mindset starts from
the top management, but affects all employees of the company. For example, in
reporting, a democratization of data, i.e. access for all staff to understandable
self-service reports, is required. The implementation of new statistical applications
needs a sponsor on top-management level who can make financial decisions on a
sound decision basis. As the creation of insights is a try-and-error-process which
not always (directly) leads to measurable impacts, also a certain belief in data-based
steering is required which does not stop with the first failure. Finally, data analysts
need to have a support function for other departments and must not be perceived
as control body to ensure a close cooperation with various specialist departments.

If all (or most of these) conditions are fulfilled, the implementation of statistical
models can lead to significant financial impacts. Already today, there are companies
which cut about 3% of their claims costs based on efficient statistical fraud and abuse
reporting or create upsides of 7% in premium revenues by targeted churn prevention
models. Together with the growing awareness and the promoting factors described
in the introduction (see Section 1), statistical methods have best opportunities to
further gain importance in health insurance.
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How will the Creation of Statistical Insights change in the
Future?

As outlined in this thesis, the (time-consuming) tailoring of statistical methods,
especially the process of structuring covariate information and incorporating subject-
matter knowledge, optimizes statistical outcomes. But will this conclusion also hold
in the future? Many prestigious scientists and futurologists predict that the process
of statistical insight generation will drastically change in the next years. There are
many examples from other industries where artificial intelligence and deep learning
techniques lead to an automation of data analysis already today. The principle
is simple: as long as enough data information is available as an input, self-learning
algorithms are able to decrypt even most complex patterns in the data on their own.
Therefore, it is a valid question, if the automation of statistical insight generation
will become a game changer and lead to a loss of importance of content knowledge.

Indeed, machine learning techniques, like neural networks, which form the founda-
tion of artificial intelligence, already provide solid results as shown in this thesis.
Even though, human intervention is still needed here, for example in the tuning of
Random Forests, an automation of this optimization process is thinkable. Intelli-
gent grid search algorithms for parameter tuning have already been developed. As
described in the introduction also more data will certainly be available in health
insurance and the relevance of external data will grow. Figure 39 illustrates this as-
sumption and stresses the particular importance of structured external data which
are generated from dedicated information extraction algorithms, like text, image or
voice mining. Especially in developed markets, the shift from an internal focus to a
combination of internal and external data has already begun.

Figure 39: Expected shift in relevant data in health insurance.

On the other hand, a lot of health insurance companies are still struggling with the
handling of their internal data. Other companies who have already addressed the
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topic, have stopped “Big Data” initiatives due to disappointing business outcomes or
invincible regulatory hurdles, in particular the special protection of health insurance
data. For example, the European Union strongly tightens its data protection rules
in a basic ordinance valid from 2018. Other international standards are likely to
follow. Also, the complexity of health insurance systems as well as the high influence
of chance on human health impose high demands to automated data analysis and
artificial intelligence.

On the long run, it is assumed that these hurdles will definitely delay the process of
automated insight generation in health insurance. However, it is highly questionable
if they will prevent that these technologies are entering also the health insurance
industry. Until then, it’s definitely still worth investing time and resources in intel-
ligent statistical methods and algorithms.
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A Predictive Measures in DMP Candidate Selec-

tion

In this appendix, two kinds of predictive measures are introduced that permit a
comparison of cost prediction techniques with regard to an efficient DMP selection:

a) measures for the accuracy of a prediction model that indirectly assess how
many of the patients with the highest saving potential can be identified,

b) measures for the sorting capacity of a prediction model that directly examine
the same question.

The latter group of measures may be more suitable to measure the financial benefit
of DMP selection methods. For comparing the general ability of an approach to
optimize the selection of DMP participants by predicting claimed amounts, the
measures in group a) are equally important.

a) Accuracy measures

Two predictive measures quantifying the prediction error are the mean predictive
squared error (MPSE) and the mean predictive absolute error (MPAE) defined as

MPSE :=
1

n

n∑
i=1

(y∗i − yo,i)2 and (58)

MPAE :=
1

n

n∑
i=1

|y∗i − yo,i| .

Both measures analyze the differences between predicted costs y∗ = (y∗1, . . . , y
∗
n)′ and

actually observed costs yo = (yo,1, . . . , yo,n)′. The MPSE is based on a quadratic
loss function. This means that predictions that avoid extreme discrepancies between
y∗ and yo are rated best. By contrast, the MPAE that is based on an absolute loss
function favors predictions that are good “on average”. The MPSE assures precise
predictions for high-cost members. This is very relevant for DMP selection, because
not recognizing a member who will – without preventive interaction – produce ex-
ploding medical costs in the near future means that there is no possibility to realize
the individual saving potential related to the DMP.

A disadvantage of both MPSE and MPAE is that these measures are not normed
like, for example, the coefficient of determination or model R-squared that measures
goodness-of-fit in linear models and ranges between 0 and 1. Hence, it is desirable
to define a normed measure that is bound to a limited interval of possible values and
measures the predictive quality of a model. For this purpose, the so-called predictive
R-squared R2∗ is defined according to the formulation of the model R-squared (that
assesses the squared linear correlation between ŷ and y) in order to measure the
squared linear correlation between y∗ and yo:
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R2∗ :=

∑n
i=1(y∗i − ȳ∗)(yo,i − ȳo)√∑n

i=1(y∗i − ȳ∗)2
√∑n

i=1(yo,i − ȳo)2
. (59)

ȳ∗ and ȳo denote the arithmetic means of y∗ and yo, respectively. Unlike the model
R-squared, the predictive R-squared does not measure goodness-of-fit and cannot
be interpreted as percentage of explained variance or deviance in the classical sense,
since the decomposition of variance or deviance [Davison, 2003; Tutz and Fahrmeir,
2001] that holds for estimated values ŷ does not hold for predicted values ŷ∗. How-
ever, R2∗ is also bound to the interval [0; 1] with values closer to one indicating a
higher predictive quality. Therefore, it gives an indication of which percentage of
future costs can be explained by the model.

b) Sorting capacity measures

Two measures directly characterizing the sorting capacity of a prediction model are
the Spearman rank correlation coefficient RSp and the area under the “matching
curve” AUCm.

The Spearman or rank correlation coefficient RSp measures the monotonic correla-
tion between y∗ and yo:

RSp =

∑n
i=1(rank(y∗i )− rank(y∗))(rank(yo,i)− rank(yo))√∑n

i=1(rank(y∗i )− rank(y∗))2

√∑n
i=1(rank(yo,i)− rank(yo))

2

. (60)

where rank(·) denotes the average rank of the respective cost vector. RSp ranges
between −1 and +1 where values close to +1 indicate a high positive monotonic
correlation meaning that predicted and observed claimed amounts are similarly or-
dered. For DMP selection, this is a desirable property.

The idea of the matching curve m is derived from the concept of the ROC (receiver
operating characteristic) curve that is used to assess the predictive quality of binary
regression models [Pearce and Ferrier, 2000]. m(i) is defined as the percentage of
those i members with the highest observed values who can also be found among the
i members with the highest predicted values where i ranges between 1 and n:

m(i) :=
1

i

i∑
j=1

1(co,(j) ∈ c∗(1), . . . , c
∗
(i)), i = 1, . . . , n. (61)

In this definition, co,(1), . . . , co,(n) represents the vector of member IDs sorted in
descending order by the corresponding observed claimed amounts yo. In parallel,
c∗(1), . . . , c

∗
(n) denotes the vector of member codes sorted in descending order by the

corresponding predicted claimed amounts y∗. 1(·) is an indicator function that is
equal to 1 if the condition in brackets is fulfilled and 0 if not. Thus, m(i) indicates
the percentage of matching member IDs among the first i elements of the vectors
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co,(1), . . . , co,(n) and c∗(1), . . . , c
∗
(n). The area under the matching curve AUCm is ob-

tained by calculating 1
n

∑n
i=1m(i). The maximum AUCm is 1, which occurs if the

members have the same order in respect of observed and predicted values.

Figure 40 shows an example of a matching curve m(i) for the developed predictive
model (evaluated on the grid i= 50, 100, . . ., 9,150) and the expected matching curve
of a randomly ordered sample. In the context of DMP selection, it is particularly
interesting to compare values of different matching curves in the high-cost region
in order to measure which percentage of members who actually have the highest
claimed amounts can be identified by the prediction approach. This is why m(i)
is also called the identification or hit ratio. Based on the identification ratio and
some experience-driven assumptions on the average saving potential per cost group,
a health insurer can easily compare the potential overall savings of different selection
methods.

Figure 40: Matching curve m of the developed GLM (solid line) with area under
curve AUCm (gray) and expected matching curve of a randomly ordered sample
(dashed line).
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B Estimation of Covariances in DMP Evaluation

In this appendix, an estimate for the covariances Cov( ˆ̄dθ,
ˆ̄dθ′) with θ < θ′ is defined

that can be plugged into Equation (38) defined in Section 4.4:

Ĉov( ˆ̄dθ,
ˆ̄dθ′) = Ĉov(Sθ − Pθ, Sθ′ − Pθ′) (62)

= Ĉov(Sθ, Sθ′)︸ ︷︷ ︸
σS

− Ĉov(Sθ, Pθ′)︸ ︷︷ ︸
σSP

−

Ĉov(Pθ, Sθ′)︸ ︷︷ ︸
σPS

+ Ĉov(Pθ, Pθ′)︸ ︷︷ ︸
σP

.

The components σS, σSP , σPS and σP are estimated by empirical covariance es-
timates using pairwise complete observations. This means, for example, that for
estimating the covariance between participants in program year θ = 1 and partic-
ipants in program year θ′ = 2 only those |R′θ| participants that have been in the
program for at least 2 years are used. This results in

σ̂S =
1

|Rθ′ |

(
1

|Rθ′ | − 1
(63)

∑
r∈Rθ′

(ys(pr),θ − ȳs(pr),θ)(ys(pr),θ′ − ȳs(pr),θ′)

)
,

σ̂SP =
1

|Rθ′ |

(
1

|Rθ′ | − 1∑
r∈Rθ′

(ys(pr),θ − ȳs(pr),θ)(ypr,θ′ − ȳpr,θ′)

)
,

σ̂PS =
1

|Rθ′ |

(
1

|Rθ′ | − 1∑
r∈Rθ′

(ypr,θ − ȳpr,θ)(ys(pr),θ′ − ȳs(pr),θ′)

)
,

σ̂P =
1

|Rθ′ |

(
1

|Rθ′ | − 1∑
r∈Rθ′

(ypr,θ − ȳpr,θ)(ypr,θ′ − ȳpr,θ′)

)
.

(64)

For these estimates, the same assumptions as for estimates (35), (36) and (37) are
made, i.e. the dependencies between the “virtual twins” are neglected as outlined
in Section 4.4.
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C Predictive Measures in Fraud and Abuse De-

tection

As described in Section 4.3, the average of all category-specific AUCs is applied
as criterion for the predictive quality of the different classification techniques. In
the following, this and different other criteria frequently used in the classification
context will be defined and explained. On this basis, some additional measures for
the predictive quality of fraud and abuse detection models are introduced which
may be relevant for insurance companies and healthcare payers.

A simple criterion for predictive quality is the misclassification rate m calculated
based on the misclassification matrix M :

M = (fij)ij, i, j ∈ {NI,UP,UJ,BI} , with fij :=
1

ntest

ntest∑
k=1

1(yk = i∧y∗k = j) (65)

where yk is the real class affiliation of invoice k and y∗k the predicted class affiliation
(k = 1, . . . , ntest). The misclassification rate is defined as:

m = 1−
∑
i

fii with i ∈ {NI,UP,UJ,BI} . (66)

The raw misclassification rate assigns a higher weight to more frequent response
categories in the test dataset. This is an undesirable property, as a model is needed
that performs equally well in all response categories and can also be applied in other
markets.

Based on the misclassification matrix, several other prediction criteria can be derived
for each response category i (i ∈ {NI,UP,UJ,BI}). In the following, those criteria
which we consider the most relevant in the fraud and abuse context are listed:

a) The sensitivity or true positive rate

TPRi =

∑ntest

k=1 1(yk = i ∧ y∗k = i)∑ntest

k=1 1(yk = i)
(67)

=
fii∑
j fij

with j ∈ {NI,UP,UJ,BI}

describes the relative frequency of allocating an invoice to the right category
given the real category is i.

b) The specificity or true negative rate

TNRi =

∑ntest

k=1 1(yk 6= i ∧ y∗k = i)∑ntest

k=1 1(yk 6= i)
(68)

=

∑
r 6=i fri∑

r 6=i
∑

j frj
with j ∈ {NI,UP,UJ,BI}
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describes the relative frequency of allocating an invoice to another category
than i given the real category is not i.

c) The precision or positive predictive value

PPVi =

∑ntest

k=1 1(yk = i ∧ y∗k = i)∑ntest

k=1 1(y∗k = i)
(69)

=
fii∑
r fri

with r ∈ {NI,UP,UJ,BI}

describes the relative frequency that an invoice really belongs to category i if
the predicted category is i.

Criterion b) measures the type I error of the classification technique, i.e. the proba-
bility that an invoice will be allocated to one of the fraud and abuse categories even
if it is not fraudulent or abusive. Criterion a) measures the type II error, i.e. the
probability of allocating an invoice to category NI even though it is fraudulent or
abusive. Adequate quality criteria for classification techniques need to control both
type I and II errors, i.e. consider both criteria a) and b).

An intuitive combination of criteria a) and b) in binary classification problems is the
ROC (receiver operating characteristic) curve [Pearce and Ferrier, 2000]. It relates
the false positive rate (1–true negative rate) on the x-axis to the true positive rate on
the y-axis, depending on the cut-point in terms of predicted probability from which
an invoice is allocated to category i (see Figure 41). An optimal classifier would
reach a sensitivity of 1 and at the same the time a specificity of 1 independent of
the chosen cut-point. Hence, the area under the curve (AUC) is 1 in this case. A
random classifier which randomly allocates invoices to one of the response categories
reaches an expected AUC of 0.5.

Figure 41: Concept of ROC curve for binary classifiers.

In this way, the AUC can be used to compare different classifiers. Since there
exist more than two response categories in the described classification problem, the
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ROC curves are separately visualized for each response category based on binary
variables, indicating whether the real category was correctly predicted or not. In this
way, an AUC is obtained for each response category and an average AUC over all
categories can be calculated to receive an overall quality criterion. Hence, a measure
is obtained which assigns equal weights to all response categories regardless of the
occurrence in the test sample, and considers both type I and type II errors for each
response category. Of course, a weighted average of AUCs can be used if sensitivity
and specificity for one response category seem more important than for others in a
specific context.

For the definition of some additional context-related measures, the misclassification
matrix is broken down to the categories “no irregularities” (NI) and “fraudulent or
abusive” (FA, i.e. one of the categories UP, UJ or BI).

One relevant measure may be how many of the real fraud and abuse cases can be
identified as such. Based on the definitions above, this corresponds to the true
positive rate of all fraud and abuse cases TPRFA:

TPRFA =

∑ntest

k=1 1(yk = FA ∧ y∗k = FA)∑ntest

k=1 1(yk = FA)
. (70)

For the further investigation process, the percentage of all real cases which were
allocated to the right subcategory (right category rate, RCRFA) is also interesting:

RCRFA =
fUP,UP + fUJ,UJ + fBI,BI∑

j fUP,j + fUJ,j + fBI,j
with j ∈ {NI,UP,UJ,BI} . (71)

Another important quantity may be the reliability of a decision that an invoice is
“clean” represented by the positive predictive value of category NI:

PPVNI =

∑ntest

k=1 1(yk = NI ∧ y∗k = NI)∑ntest

k=1 1(y∗k = NI)
. (72)

If this figure is sufficiently high, it may make sense to automate the adjudication
of all invoices with predicted category NI (and to only perform a small number of
random checks of these invoices). The auto-adjudication rate AARNI is then equal
to the amount of invoices which are allocated to the category NI by the classification
technique:

AARNI =
∑
i

fi,NI with i ∈ {NI,UP,UJ,BI} . (73)

Finally, an interesting quantity in terms of efficiency of the fraud and abuse detection
algorithm is the probability that a filtered case is really a fraud and abuse case. This
probability corresponds to the positive predictive value of category FA PPVFA:
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PPVFA =

∑ntest

k=1 1(yk = FA ∧ y∗k = FA)∑ntest

k=1 1(y∗k = FA)
. (74)

From a business perspective, this quantity can be used to derive the number of
invoices that need to be reviewed to find at least one fraud and abuse case (e.g.
with a probability of 95%, n95%):

n95% =
log(1− 0.95)

log(1− PPVFA)
. (75)
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dichotomous model with asymmetric link for fraud in insurance. Insurance: Math-
ematics and Economics, 42(2):779–786, 2008.

D. M. Berwick and A. D. Hackbarth. Eliminating Waste in US Health Care. Journal
of the American Medical Association, 307:1513–1516, 2012.

S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C. Westland. Data mining for
credit card fraud: A comparative study. Decision Support Systems, 50:602–613,
2011.

J. Billings and T. Mijanovich. Improving the Management of Care for High-Cost
Medicaid Patients. Health Affairs, 26(6):1643–1655, 2007.

J. D. Birkmeyer, J. F. Finks, A. O’Reilly, M. Oerline, A. M. Carlin, A. R. Nunn,
J. Dimick, M. Banerjee, and N. J. O. Birkmeyer. Surgical skill and complication
rates after bariatric surgery. New England Journal of Medicine, 369(15):1434–
1442, 2013.

A. Blackman, B. Lahiri, W. Pizer, M. Rivera Planter, and C. Muñoz Piña. Vol-
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and M. Lüngen. German Diabetes Management Programs Improve Quality Of
Care And Curb Costs. Health Affairs, 29(12):2197–2205, 2010.

C. J. Stone, M. Hansen, C. Kooperberg, and Y. K. Truong. The use of polynomial
splines and their tensor products in extended linear modeling (with discussion).
Annals of Statistics, 25:1371–1470, 1997.
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