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I. Summary 

The DNA is the central cellular information carrier, but its stability is constantly challenged by DNA-

damaging incidents. As DNA lesions may elicit genomic instability – in mammalian cells the cause of 

cancer – DNA repair processes are indispensable for cellular integrity. DNA lesions during S-phase are 

a particular detriment as they interfere with replication fork progression and faithful chromosome 

duplication. Fork stalling at DNA damage sites is a common perturbation during replication, but may 

be bypassed by recombination-based mechanisms. These pathways involve the undamaged sister 

chromatid as a recombination template and as such formation of intermediate DNA structures, so-

called DNA joint molecules (JMs) between both chromatids. Such covalent DNA linkages need to be 

disentangled before chromatid separation in anaphase to avoid chromosome breakage. Two 

principle mechanisms have been described to disentangle DNA JMs: dissolution, comprising 

collaborative helicase-topoisomerase activity, and resolution, comprising cleavage by endonucleases 

such as Mus81-Mms4 or Yen1. Previous research has revealed that JM resolvase activity by Mus81-

Mms4 is under stringent cell cycle control, and up-regulated specifically in mitosis upon CDK- and 

Cdc5-dependent phosphorylation. Yet, we are only beginning to unravel the molecular mechanism of 

this temporal regulation.  

In this study, we identify distinct means how cell cycle signals can be integrated into the activity of 

the JM resolvase Mus81-Mms4 using Saccharomyces cerevisiae as a model organism. First, we 

discovered a third cell cycle kinase, which is crucial for Mus81 nuclease activation in mitosis: Cdc7-

Dbf4 (DDK, Dbf4-dependent kinase) targets Mus81-Mms4 together with Cdc5. Both kinases bind and 

phosphorylate Mus81-Mm4 inter-dependently in order to promote full Mus81 activation. A second 

layer of the temporal control of Mus81 is mediated by scaffold proteins. Cell cycle-dependent 

phosphorylation induces the formation of a multi-protein complex comprising the scaffold proteins 

Dpb11, Slx4, and Rtt107. Already in S-phase during the response to replication fork stalling, those 

proteins interact with each other upon evolutionary conserved CDK phosphorylation of Slx4 that 

mediates binding to Dpb11. This S-phase complex has been implicated in the regulation of the DNA 

damage checkpoint after replication fork stalling and may have a potential DNA repair function. In M-

phase, the scaffold complex associates with Mus81-Mms4 dependent on cell cycle kinase activity. 

We could show that the scaffold protein Rtt107 recruits the DDK-Cdc5 kinase complex to Mus81-

Mms4 via a direct interaction between Rtt107 and Cdc7, enabling Mus81-Mms4 hyper-

phosphorylation and Mus81 activation. Future research will need to identify additional regulation 

factors that may influence substrate specificity or targeting.  

Taken together, my PhD work described several regulatory mechanisms of mitotic DNA JM resolution 

by Mus81-Mms4 that involve the cell cycle kinases CDK, Cdc5 and DDK as well as the scaffold 

proteins Dpb11, Slx4, and Rtt107. These control mechanisms are highly inter-connected as 

association of the scaffold proteins depends on cell cycle kinase activity, but in turn stable multi-

protein complex formation is required for efficient interaction with the DDK-Cdc5 kinases, full 

phosphorylation of Mus81-Mms4 and timely JM resolution. 
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II. Introduction 

A. Homologous Recombination 

DNA repair mechanisms are indispensable to all organisms as DNA damage constantly challenges the 

integrity of a cell’s genome (Lindahl and Barnes, 2000; Hoeijmakers, 2009). DNA is the essential 

molecule to code genetic information. However, it is limited in its stability and prone to damage and 

degradation. Resulting lesions may interfere with DNA-related processes like replication and 

transcription evoking genomic instability (reviewed in Aguilera, 2002; Gottipati and Helleday, 2009; 

Lin and Pasero, 2012). Several intricate pathways to repair DNA damage have evolved, three of which 

were honoured with awarding the Nobel Prize in Chemistry in 2015 (T. Lindahl for base-excision 

repair, A. Sancar for nucleotide-excision repair, and P. Modrich for mismatch-repair).  

 

1. Formation of DSBs 

A DNA double-strand break (DSB) is a very severe threat to cell viability as it can lead to deletions, 

translocations or loss of whole chromosome arms. DSBs can arise from exogenous factors like -

irradiation (van Gent et al., 2001) or chemicals (e.g., the topoisomerase inhibitor camptothecin, CPT) 

(Nitiss and Wang, 1988; Kaiser et al., 2011), but may also happen endogenously as a consequence of 

replication perturbations or even purposely as part of normal cell physiology. Such deliberate 

breakage of chromosomes occurs in processes like meiotic recombination (reviewed in de Massy, 

2013), mating type switching in yeast (reviewed in Haber, 2012), or V(D)J recombination (reviewed in 

Soulas-Sprauel et al., 2007).  

Most endogenous DSBs occur in the context of DNA replication, for instance as a response to 

replication fork stalling, likely by nucleolytic processing of replication intermediates (Schwartz and 

Heyer, 2011; Rass, 2013; Syeda et al., 2014). Such fork slow-down or pausing may take place at sites 

of DNA lesions or arise upon collision of the replisome with DNA-binding proteins or with the 

transcription machinery loaded onto DNA (Dutta et al., 2011; Merrikh et al., 2011; Wahba et al., 

2011; Duch et al., 2013; Yan et al., 2016; reviewed in Lin and Pasero, 2012; Brambati et al., 2015). 

Extrinsically, replication fork stalling can be evoked genome-wide by inhibition of ribonucleotide 

reductase with hydroxyurea (HU) (Reichard, 1988; Galli and Schiestl, 1996; Lopes et al., 2001), by 

DNA-alkylating agents such as methyl methanesulfonate (MMS) (Groth et al., 2010), or site-

specifically by introduction of replication fork-blocking sequences (Horiuchi and Fujimura, 1995).  

Additionally, very common sources of DSBs are DNA nicks (Cowan et al., 1987). They might arise from 

oxidative stress or ionizing radiation, but are also intermediates of nicking endonuclease activity 

during regulation of super-helicity by topoisomerases or during DNA repair reactions (e.g., 

nucleotide-excision repair, base-excision repair, or mismatch repair) (Bradley and Kohn, 1979; 

Pogozelski and Tullius, 1998; Demple and DeMott, 2002; Wang, 2002; Pommier et al., 2003; 

reviewed in Caldecott, 2008). If left unrepaired, DNA replication can convert those nicks to ssDNA 

gaps or DSBs (Milligan et al., 1995). Independent of the source of a DSB – if exogenously introduced 

or endogenously occurred – its repair is indispensable for genome integrity. 
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2. Repair decision: NHEJ or HR 

After the occurrence of DNA damage, the decision for an appropriate repair pathway has to be 

reached. In the case of DSBs, direct ligation of the DNA ends by DNA ligases with little or no end 

processing is one potential repair pathway called non-homologous end-joining (NHEJ). As it may 

introduce deletions by rejoining two DSB ends, NHEJ is considered a low-fidelity repair pathway. In 

contrast, the most accurate pathway to repair DSBs is by exchange of genetic information between 

homologous DNA molecules (homologous recombination, HR). This homology-dependent transfer of 

genetic information is not only crucial for DNA repair and thereby for genome maintenance, but also 

assures faithful replication, chromosome segregation, and programmed cell developmental events.  

The preferred repair template is the sister chromatid. Therefore, homologous recombination is 

restricted to S-, G2-, and M-phases of the cell cycle when an unbroken sister chromatid is available 

that can be used as repair template. In G1-phase, i.e. in the absence of a sister chromatid, NHEJ is the 

preferred pathway for DSB repair to avoid error-prone recombination from homologous sequences 

at non-allelic positions (Karathanasis and Wilson, 2002). 

HR is also regulated by ploidy. In diploid budding yeast, NHEJ is down-regulated due to repression of 

its key factor Nej1 (Frank-Vaillant and Marcand, 2001; Kegel et al., 2001; Valencia et al., 2001), which 

makes HR the predominant DSB repair pathway. However, HR events in diploid cells come at the cost 

of loss of heterozygosity (LOH) if they take place with the homologous chromosome. Lastly, in 

meiotic cell cycles, recombination occurs in a programmed, highly regulated manner, and is essential 

for accurate chromosome segregation. During this process down-regulation of NHEJ is essential to 

avoid de novo mutations. 

Besides cell cycle stage and ploidy, also the chromatin environment of the DNA lesion is integrated 

into the repair pathway choice since histones, DNA modifications as well as the accessibility of the 

lesion can have an impact on the repair pathway and the proteins involved. 

 

3. Mechanism of recombination 

In 1964, Robin Holliday proposed a model to elucidate DNA strand exchange mechanisms of meiotic 

gene conversion events and chromosome crossovers (Holliday, 1964; 1965; 1966). Together with 

subsequent models of branch migration (e.g., Broker and Lehman, 1971; Meselson and Radding, 

1975; Orr-Weaver, Szostak and Rothstein, 1981; Szostak et al., 1983), this work had a profound 

impact on our understanding of the mechanism of recombination. Apart from some variations and 

sub-pathways, canonical HR coincides in five essential steps (Figure 1, middle box): 

 

1) Recognition of the damage 

2) DNA end resection 

3) Homologous pairing and strand invasion 

4) DNA synthesis 

5) Disentanglement of recombination intermediates 

 

With the mechanism of HR being highly conserved among eukaryotes, in the following, I will mainly 

refer to proteins and nomenclature from S. cerevisiae as it was the model system of this study.  
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Figure 1. Schematic mechanisms of DNA DSB repair and pathways of homologous recombination. Occurring DNA DSBs 

can be repaired by NHEJ – i.e. simple ligation of the DNA ends – or by HR, which comprises DNA end processing by 

resection. In case the DSBs are flanked by direct repeat sequences, they can be repaired by SSA involving deletion of the 

sequence in-between. During the canonical HR pathway (middle box) one free ssDNA strand invades a homologous duplex 

DNA sequence (D-loop formation). The exposed 3’ hydroxyl group primes for DNA synthesis to restore the genetic 

information. After second-end capture, the resulting dHJ needs to be disentangled by either dissolution or resolution. 

Alternative HR pathways are SDSA, which involves incipient DNA synthesis and gap filling, and BIR for one-ended DSBs 

(adapted from Mathiasen and Lisby, 2014). 

 

 

During the first step of HR, the recognition of the damage, the broken DNA ends are sensed. In the 

case of a DSB, the DNA ends are bound by the Ku complex (Yku70-Yku80) and the MRX complex 

(Mre11-Rad50-Xrs2) (Ivanov et al., 1994; Clerici et al., 2008; Wu et al., 2008). In G1-phase Ku-

mediated end protection promotes NHEJ and simultaneously suppresses HR (Barlow et al., 2008; 
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Zierhut and Diffley, 2008; Mimitou and Symington, 2010). The MRX complex is able to bridge two 

DNA ends by the zinc-hook of its subunit Rad50 (de Jager et al., 2001; Hopfner et al., 2002; Lobachev 

et al., 2004; Wiltzius et al., 2005; Hohl et al., 2011). In cell cycle phases with high CDK activity, Ku 

binding is inhibited and Mre11 endonuclease activity is stimulated. Subsequently, both DNA ends are 

processed by DNA end resection. Resection is initiated by endonucleolytic cleavage by Mre11 in the 

proximity of the break and subsequent exonucleolytic cleavage in 3’-5’ direction (towards the break) 

to reveal 3’ ssDNA ends (Garcia et al., 2011). This is followed by long-range resection (extension of 

the short 3’ overhangs) in 5’-3’ direction catalysed by Exo1 or the Sgs1-Top3-Rmi1/Dna2 complex 

(Mimitou and Symington, 2008; Zhu et al., 2008; Shim et al., 2010). The resulting 3’ ssDNA tails are 

bound by ssDNA-binding protein RPA, which is subsequently replaced by Rad51 to form Rad51 

nucleofilaments, the crucial intermediate of HR (Klapstein et al., 2004; Chen et al., 2008). This 

filament probes the genome for homologous DNA sequences (homology search) (Alani et al., 1992; 

Shinohara et al., 1992; Sugiyama et al., 1997). One free Rad51-coated ssDNA end invades a 

homologous duplex DNA sequence forming a displacement loop (D-loop). Upon strand annealing, 

Rad51 mediates the exposure of a 3’ hydroxyl group in order to prime for DNA synthesis templated 

by the donor DNA. In vitro, Rad51 alone is able to mediate strand exchange (Sung, 1994). However, 

efficient reaction in vivo – including Rad51 loading, filament stabilization, and strand exchange itself 

– involves mediator proteins such as Rad52, Rad54, Rad55 and Rad57 (Sung, 1997a; 1997b; New et 

al., 1998; Sugawara et al., 2003; Sung et al., 2003).  

In the classical DSB repair model by Jack Szostak the second 3’ end anneals to the donor DNA to 

prime for another DNA synthesis round in similar fashion (second end capture) (Szostak et al., 1983). 

The newly synthesized strands are ligated to the adjacent 5’ ends, resulting in a DNA joint molecule 

(JM), a double Holliday junction (dHJ). Recombinational repair is finished with the disentanglement 

of repair intermediates to segregate those covalent DNA linkages. Disentanglement can occur either 

by combined helicase-topoisomerase activity (dissolution), or by endonucleolytic cleavage 

(resolution) (in detail in chapter D) (Kaliraman et al., 2001; Wu and Hickson, 2003; Ip et al., 2008; 

Cejka et al., 2010a; 2010b). 

Beside the canonical pathway via a dHJ, several sub-pathways of HR have been described (Figure 1): 

synthesis-dependent strand annealing (SDSA), break-induced replication (BIR), or single-strand 

annealing (SSA).  

In the SDSA model, the 3’ ssDNA ends invade the homologous donor DNA, but are then displaced 

after incipient DNA synthesis (Nassif et al., 1994). Subsequent gap filling and ligation reactions 

complete the repair.  

For one-ended DSBs, repair is mediated via BIR by formation of a migrating D-loop and initiation of 

replication, which can continue until the chromosome end (Kraus et al., 2001; Llorente et al., 2008). 

As this reaction is highly error-prone and leads to extensive LOH, BIR is apparently suppressed when 

both ends of the DSB are present (Malkova et al., 1996, 2005; Bosco and Haber, 1998). 

Moreover, in case DSBs are flanked by direct repeats, they can be repaired by SSA. Here, DNA end 

resection exposes the complementary ssDNA sequences of the repeats, which subsequently anneal 

and form heterologous flaps. Nucleolytic cleavage removes the flaps, and gap filling and ligation 

complete the repair (Fishman-Lobell et al., 1992; Ivanov and Haber, 1995). SSA is counted among the 

HR pathways, even though it does not include a strand invasion event. 
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B. Regulation of Recombination 

The tight regulation of homologous recombination is of tremendous importance for genome integrity 

and cell viability. First, coordination of all DNA-associated processes, including replication, 

transcription and chromosome segregation, is crucial to avoid interference and maintain genomic 

stability (reviewed for example in Aguilera, 2002; Gottipatti and Helleday, 2009; Lin and Pasero, 

2012). Second, regulation of concentration, association and activity of HR proteins defines the choice 

of the repair pathway as well as the fidelity of the repair itself. Overall, HR regulation is complex and 

involves the interplay between antagonizing and promoting factors that will be addressed in the 

following. 

 

1. HR-antagonizing factors 

As mentioned earlier, HR is restricted to S-, G2-, and M-phases of the cell cycle. In G1-phase HR is 

inhibited, and DSBs will be repaired predominantly by NHEJ (Karathanasis and Wilson, 2002). In this 

case, DNA end binding by the Ku complex is the rate-limiting step as it represents a barrier for DNA 

end resection factors, and thereby blocks HR initiation (Clerici et al., 2008; Wasko et al., 2009; 

Mimitou and Symington, 2010; Shim et al., 2010). Accordingly, a YKU80 deletion causes an increased 

HR/NHEJ ratio (Palmbos et al., 2005). Prevention of recombinogenic events in G1-phase is central to 

impede repair from homologous sequences at non-allelic positions, which is error-prone and can 

lead to deletions and other mutagenic repair events (Karathanasis and Wilson, 2002). 

A second major type of HR-counteracting factors are DNA-dependent translocases/helicases that 

disrupt HR intermediates, such as the anti-recombinase Srs2. Srs2 is a direct antagonist of the strand 

exchange protein Rad51 and recruited to resected DNA ends by the NHEJ factor Nej1 (Carter et al., 

2009). By disrupting the Rad51 nucleoprotein filament, Srs2 is able to block recombination initiation. 

Srs2 also binds to the replication factor PCNA (proliferating cell nuclear antigen; encoded by POL30 in 

budding yeast), and was suggested to be crucial for inhibition of unwanted recombination in the 

context of DNA replication and stalled forks (Pfander et al., 2005; Burgess et al., 2009). A second 

helicase, Sgs1, is able to disrupt Rad51-mediated D-loops in a topoisomerase-dependent fashion in 

order to counteract HR (Bachrati et al., 2006; Bugreev et al., 2007; Fasching et al., 2015). 

Besides those direct means against recombination, also rather indirect cellular characteristics, such 

as the availability of a sister chromatid, play a role. In mammals for example, recombination is 

impaired not only in G1-phase, but also at a late stage of mitotic cell cycle when chromosomes are 

highly condensed. Concomitantly, Rad51 loading was shown to be blocked specifically in mammalian 

M-phase (Ayoub et al., 2009; Peterson et al., 2011).  
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2. HR-promoting factors and means to regulate HR 

HR can be promoted by two principle mechanisms: first, by directly stimulating recombination 

proteins – which is regulated by the level of transcription, by their recruitment to damage sites, or by 

post-translational activation, and second by mediating access to the DNA substrate – which is 

regulated by the cell cycle phase and by chromatin structure. The following chapter summarizes the 

different mechanisms, by which HR can be regulated. 

 

a) Transcriptional regulation of HR 

In bacteria, a rapid response to DNA damage is ensured by transcriptional activation of more than 20 

DNA repair genes (“SOS response”) (Radman, 1975). One of those genes encodes the protein RecA, 

which is the prokaryotic orthologue of Rad51. In contrast, transcriptional regulation of HR in 

eukaryotic cells is less wide-spread and less distinct.  

Both, DNA damage as well as the cell cycle, have an impact on the transcription of some 

recombination proteins. DNA damage-induced genes are for example RFA1-3, RAD50, SRS2, RAD54, 

RAD51 as well as the DNA damage checkpoint genes MEC1 and RAD53. The latter two establish a 

positive feedback loop enhancing their own expression, and Mec1 additionally stimulates the 

expression of HR genes. However, the overall induction of these genes on transcriptional level is mild 

(Cole et al., 1987; Elledge and Davis, 1989,1990; Basile et al., 1992; Kiser and Weinert, 1996; Vallen 

and Cross, 1999; Gasch et al., 2001; Mercier et al., 2001; Benton et al., 2006). 

Furthermore, transcriptional regulation contributes to the temporal regulation of NHEJ and HR 

during the cell cycle. At the G1-S boundary, levels of the NHEJ factor Yku70 decline and several HR 

genes get transcriptionally activated. In total, genome-wide transcriptional data sets identified 26 

HR-linked genes with a cell cycle-regulated expression in budding yeast such as EXO1, SGS1, TOP3, 

SAE2, RFA1-3, RAD51, RDH54, and SRS2 (Cho et al., 1998; Spellman et al., 1998; de Lichtenberg et al., 

2003; Jensen et al., 2006).  

 

b) Regulation by localization 

A more prevalent mode of HR regulation is via specific sub-cellular localization of recombination 

factors and in particular via an increase in their local concentration at the site of the DNA damage. 

Relocalization of different proteins occurs with distinct kinetics and can often be microscopically 

visualized as DNA damage focus. Foci detection has therefore been used to elucidate temporal order 

and inter-dependencies of recombination proteins during the damage response. After treatment 

with different DNA-damaging agents, for example, the formation of Rad51 foci can be detected 

whereupon other recombination proteins such as Rad52, Rad54 and RPA co-localize (Gasior et al., 

1998; Lisby et al., 2001; Miyazaki et al., 2004).  

Besides the localization of recombination proteins, also the localization of the DNA within the 

nucleus plays an important role during HR. DNA sequences prone to deleterious recombination – 

such as centromeres or telomeres harbouring repetitive sequences, but also highly transcribed rDNA 

and tRNA genes – need to be protected from untimely recombination. Compartmentalization of the 



Introduction 8 
   
 
 
 
 
 

nucleus therefore generates regions that are permissive to HR and others where HR is – at least in 

part – suppressed. Spontaneous recombination of rDNA is for example prevented by its localization 

to the nucleolus, from which HR and checkpoint proteins such as RPA, Rad52, Rad51, Rad55, Ddc1, 

Ddc2, and Rad9 are excluded (Torres-Rosell et al., 2007). Another HR-suppressive environment is the 

nuclear periphery, where for example telomeres are found to localize in clusters (Gotta et al., 1996; 

Antoniacci et al., 2007; Bupp et al., 2007; Schober et al., 2009). Nuclear pores, in contrast, seem to 

represent a compartment which stimulates HR. Possibly for this reason, persistent DSBs, collapsed 

replication forks, and damaged telomeres were found to re-localize and be tethered to NPCs (Nagai 

et al., 2008; Khadaroo et al., 2009). Several genes, including MEC1/TEL1, SWR1, and RAD9/RAD24, 

were found to be necessary for DSB localization to NPCs, probably by alteration of DNA mobility after 

damage induction (Dion et al., 2012; Mine-Hattab and Rothstein, 2012; Horigome et al., 2014).  

 

c) Regulation by post-translational modifications 

Regulation of HR, but also of the DNA damage response in general, is to a large extent achieved by 

post-translational modifications (PTMs) of the involved proteins. PTMs affect the recruitment of 

proteins to DNA damage sites, facilitate the interaction with other factors, elicit changes in activity 

(positively or negatively) or stability. Common PTMs are phosphorylation, ubiquitylation, 

SUMOylation, and acetylation. This type of control generally allows a precise and often switch-like 

regulation of repair pathways as well as the coupling to concurrent processes like DNA replication.  

Especially the cell cycle and the prevailing cell cycle phase highly influence PTMs, particularly 

phosphorylation, of recombination proteins. Cell cycle progression itself is established by the action 

of cyclin-dependent kinases (CDKs), and Cdc28 – the sole CDK of budding yeast – is regulated by 

association with one of nine specific co-factors, the cyclins Cln1-3 and Clb1-6, whose expression 

levels vary cyclically throughout the cell cycle (Richardson et al., 1992; Schwob and Nasmyth, 1993; 

Tyers et al., 1993). Notably, conditional alleles of Cdc28 result in chromosome instability (Devin et al., 

1990), defects in DSB resection and HR (Ira et al., 2004; Barlow et al., 2008; Huertas et al., 2008), 

increased sensitivity to radiation (Koltovaya et al., 1998) and accumulation of chronic DNA damage 

(Enserink et al., 2009). Previous research has identified several means by which CDK stimulate HR 

directly or indirectly. 

Following a DSB, the first choice to be made is between repair by HR and NHEJ. This repair pathway 

choice is made at the level of DNA end resection. It was shown that CDK-dependent phosphorylation 

is crucial for DNA end resection at several levels by stimulating resection enzymes on the one hand, 

and impeding negative regulators on the other hand. Accordingly, disruption of Cdc28 activity in 

budding yeast by an analogue-sensitive allele or by over-expression of the Cdc28 inhibitor SIC1 leads 

to reduced resection (Aylon et al., 2004; Ira et al., 2004). In budding yeast, Cdc28-dependent 

phosphorylation of Sae2 (homologue of human CtIP) in S-, G2-, and M-phases results in activation of 

the Mre11 endonuclease and promotes resection initiation (Huertas et al., 2008).  

Long-range resection of DSBs is performed by Exo1 and/or Sgs1-Dna2, and is again regulated by 

PTMs: Cdc28-dependent phosphorylation of Dna2 causes its transport from the cytoplasm to the 

nucleus and its recruitment to DSBs, positively regulating long-range DNA end resection (Kosugi et 

al., 2009; Chen et al., 2011). 
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Another CDK-regulated resection enzyme is Fun30 (Ubersax et al., 2003; Chen et al., 2012, 2016; 

Costelloe et al., 2012; Eapen et al., 2012; Bantele et al., 2017). Phosphorylation of Fun30 was 

described to stimulate its recruitment to damaged chromatin where it promotes long-range 

resection by antagonizing Rad9 (Chen et al., 2012; Bantele et al., 2017). Rad9 (orthologue of human 

53BP1) is recruited to damaged DNA via different pathways, and blocks resection at the break site 

(Lazzaro et al., 2008). Interestingly, both proteins, Rad9 and Fun30, bind the same interaction site of 

the scaffold protein Dpb11 (TopBP1 in humans) in a cell cycle-dependent manner (Pfander and 

Diffley, 2011; Bantele et al., 2017). Similar to a FUN30 deletion, mutation of the corresponding CDK 

sites on Fun30 (fun30-SS20,28AA) showed increased hyper-sensitivity to CPT that could be 

suppressed by additional RAD9 deletion. This rescue suggests that inhibition of Rad9, and thereby 

promotion of resection, is mediated by the Fun30-Dpb11 complex. However, the exact mechanism of 

this antagonism is still subject to future research.  

Following resection, the resulting 3’ ssDNA stretches are covered by RPA (Alani et al., 1992), 

whereupon Rad52 gets recruited. Both, Rad52 and RPA, are CDK targets, but the exact role in Rad52 

recruitment is still unknown (Plate et al., 2008; Barlow and Rothstein, 2009). 

 

Modification by ubiquitin and SUMO was also implicated in the regulation of HR and the response to 

DNA damage (particular in post-replication repair (see chapter C)). The connection between 

ubiquitination and the DNA damage response was first established when Rad6 – known to be 

involved in post-replication repair – was identified as ubiquitin-conjugating enzyme (Jentsch et al., 

1987).  

To date, two general functions of ubiquitin conjugation have been revealed: mediating proteasomal 

degradation and facilitating protein-protein interactions. Ubiquitination of RAD51 in fission yeast and 

human cells was suggested to regulate its cellular stability and subsequent degradation (Kovalenko et 

al., 1996; Tsutsui et al., 2014). However, many ubiquitin modifications influence their substrate by 

non-proteolytic mechanisms. A recent study in mammalian cells implicated RAD51 mono-

ubiquitination with its cellular localization, thereby preventing re-association with DNA and 

suppressing inappropriate recombination (Chu et al., 2015). Involvement of proteasomal degradation 

in DNA DSB repair is not well understood as deregulation of the proteasome was implicated in pro- 

as well as anti-recombinogenic mechanisms (Krogan et al., 2004; Karpov et al., 2013). 

Furthermore, many recombination proteins, such as RPA, Rad52, Rad59, or Srs2, have been 

identified to be targets for SUMO conjugation (Sacher et al., 2006; Burgess et al., 2007; Ohuchi et al., 

2008; Saponaro et al., 2010; Cremona et al., 2012; Psakhye and Jentsch, 2012). In budding yeast, 

SUMOylated RPA triggers SUMOylation of Rad52 and Rad59 by recruitment of the SUMO ligase Siz2 

(Chung and Zhao, 2015). Rad52 SUMOylation was shown to protect the protein from proteasomal 

degradation, as well as to inhibit recombination by interfering with its ssDNA binding capacity 

(Sacher et al., 2006; Altmannova et al., 2010). Interestingly, Psakhye and Jentsch established a model 

for SUMO conjugation during the response to DNA damage, in which SUMO does not target 

individual proteins, but rather a group of proteins involved in the same pathway. Proteins involved in 

HR where the first example for this type of modification (Psakhye and Jentsch, 2012).  
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A cooperative activity of SUMOylation and ubiquitination is demonstrated by so-called SUMO-

targeted ubiquitin ligases (STUbLs). Those enzymes harbour SUMO-interacting motifs (SIMs) that 

allow binding to SUMOylated target proteins and subsequent ubiquitination (Psakhye and Jentsch, 

2012). The Slx5-Slx8 STUbL localizes to replication forks and ensures the suppression of 

recombination during DNA replication (Burgess et al., 2007). Deletion of either SLX5 or SLX8 results in 

an increase in gross chromosomal rearrangements as well as in spontaneous mutation rates (Zhang 

et al., 2006). 

 

In summary, PTMs change protein properties, be it activity, interaction capability, stability or 

localization. These changes can be made fast, and their reversibility turns PTMs into very adaptive 

regulation measures. 

 

d) Regulation by histone modifications and nucleosome remodellers 

Various histone modifications (e.g., phosphorylation, acetylation, methylation, ubiquitination, 

SUMOylation, ADP ribosylation) were described to occur in response to different types of DNA 

damage (reviewed in House et al., 2014). These modifications show that chromatin is not just a 

simple barrier to DNA repair processes, but rather an important regulator, with modified histones 

representing interaction surfaces for associating proteins of the corresponding pathway. 

The first damage-associated histone modification identified was phosphorylation of serine 129 of 

histone H2A (-H2A), which occurs within minutes after the occurrence of a DSB in the surrounding 

chromatin (Rogakou et al., 1998; Downs et al., 2000). H2A-S129 phosphorylation was described to 

recruit several repair factors and chromatin-remodelling complexes to the damage site (Downs et al., 

2004; Morrison et al., 2004; van Attikum et al., 2004). However, recent studies found remodeller 

recruitment to be independent of -H2A during HR in G2 cells, and rather reliant upon the Rad51 

filament itself, linking chromatin remodelling to early stages of recombination (Bennett et al., 2013). 

Furthermore, chromatin structure and compactness play a central role in all DNA-related processes, 

such as gene regulation, replication, DNA repair and recombination, as involved factors need to 

access the DNA. Means to regulate the degree of condensation are, first, covalent histone 

modifications and, second, active deposition and removal of nucleosomal barriers by nucleosome 

remodellers. Nucleosome remodellers catalyse the alteration of nucleosome-DNA interactions in 

order to promote ATP-dependent sliding of nucleosomes, subunit exchange or eviction. 

Chromatin folding can further be stimulated or repressed by histone modifications, which may have 

a distinct impact on DNA structure or on the nucleosomes themselves. Acetylation of histone H4 (H4-

K16ac), for example, results in a reduced interaction between H4 and H2A, and thereby in a less 

condensed chromatin conformation (Shogren-Knaak et al., 2006; Robinson et al., 2008). Also 

modification of histone H2B by ubiquitin was shown to diminish chromatin compaction in yeast and 

human cells (Fierz et al., 2011; Moyal et al., 2011). Additionally, H2B ubiquitination was proposed to 

promote the assembly of repair factors, as well as to activate the checkpoint effector kinase Rad53 in 

S. cerevisiae (Giannattasio et al., 2005). These findings do not only associate histone modifications 

with regulation of chromatin structure, but also with regulation of repair pathways and the DNA 

damage checkpoint.  
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e) Regulation by the DNA damage checkpoint 

Checkpoint signalling regulates the response to replication stress and DNA damage in order to 

coordinate cell cycle progression to cellular processes, such as accurate replication and repair. DNA 

lesions are recognized by sensors that transduce the signal to effectors orchestrating a signal 

transduction cascade. Consequently, cell cycle progression and chromosome segregation are 

delayed, and the DNA damage response is initiated. 

In budding yeast, checkpoint activation is critically mediated by recruitment of the checkpoint 

kinases Mec1 and Tel1 (ATR and ATM in humans, respectively) to DNA lesions. Tel1 binds to break 

sites via the MRX complex (Lisby et al., 2004; Fukunaga et al., 2011), whereas Mec1 binds to RPA-

coated ssDNA via its co-factor Ddc2, e.g. to ssDNA exposed by DNA end resection or to ssDNA 

exposed at stalled replication forks (Rouse and Jackson, 2002; Zou and Elledge, 2003; Ball et al., 

2005; 2007; Jazayeri et al., 2006). In case of Mec1 signalling, the 9-1-1 complex (Rad17-Mec3-Ddc1 in 

S. cerevisiae) serves as a co-sensor, as it is loaded onto ssDNA-dsDNA junctions where the Ddc1 

subunit can activate Mec1 directly, as well as indirectly by binding a second activator of Mec1, Dpb11 

(Wang and Elledge, 2002; Majka et al., 2006; Mordes et al., 2008; Navadgi-Patil and Burgers 2008; 

2009; Puddu et al., 2008; Pfander and Diffley, 2011). 

In the context of HR, checkpoint kinases have several targets, such as the strand annealing proteins 

Rad51 – phosphorylation of which stimulates its ATP hydrolysis and DNA binding activity (Flott et al., 

2011) – and Rad55 (Bashkirov et al., 2000). Phosphorylation of histone H2A by Mec1 is involved in 

binding of the checkpoint mediator protein Rad9, which promotes the activation of the effector 

kinase Rad53 (CHK2 in humans) coordinating the downstream signalling cascade together with Chk1 

(Navas et al., 1996; Emili, 1998; Sun et al., 1998; Vialard et al., 1998; Gilbert et al., 2001; Sweeney et 

al., 2005). With the checkpoint coordinating cell cycle progression to recombinational repair, it is an 

essential part of HR regulation.  
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C. Recombination and Replication 

 

1. Replication-dependent repair 

DNA replication has to occur with high fidelity in order to allow stable inheritance of genetic 

information. Considering the comparatively low error rate in the context of constant challenges, such 

fidelity is remarkable. In addition, the replication machinery has to overcome impediments such as 

DNA-bound proteins, repetitive sequences, RNA-DNA hybrids or DNA secondary structures – 

obstacles that can hamper the progression of replication forks. On the other hand, DNA replication 

can also be viewed as an opportunity to completely scan the genome for DNA lesions. This principle 

has already been described for transcription where RNA polymerase-blocking DNA lesions induce 

DNA repair (Mellon et al., 1987; Selby and Sancar, 1993). Likewise, fork stalling induces the 

recruitment of repair factors and initiation of the DNA damage response (see below).  

Cells need efficient ways to deal with polymerase stalling in order to avoid that stalled forks collapse, 

resulting in chromosome breaks and genomic instability (Branzei and Foiani, 2010). Replication-

coupled repair therefore has three distinct tasks: to overcome DNA lesions such as base 

modifications in order to avoid fork stalling, to rescue stalled replication forks from collapsing and 

causing DNA ruptures, and to repair lesions and separate covalently linked DNA structures before cell 

division.  

Eukaryotes have evolved several mechanisms to bypass DNA lesions during replication, combined 

under the term DNA damage tolerance (DDT) or post-replication repair. DDT consists of two 

branching pathways: translesion synthesis (TLS) and template-switching. Both pathways are initiated 

upon the occurrence of RPA-bound ssDNA stretches at stalled replication forks. 

Translesion synthesis allows DNA to be replicated past lesions that affect the template strand. This 

occurs by replacing the replicative polymerase with specialized polymerases (“polymerase switch”). 

TLS polymerases possess an increased tolerance for distorted DNA in their active site, but in parallel 

also a reduced fidelity (Prakash et al., 2005). Due to this low fidelity, TLS is error-prone, i.e. 

mutagenic. However, it assures continuation of replication in order to avoid prolonged fork stalling 

and collapse. By this mechanism, the replisome can be released from the block and replication can 

be completed. 

In contrast, template-switching is error-free in principle as it utilizes the newly synthesized, 

undamaged DNA strand as replication template. As such, template-switching involves recombination, 

but the detailed molecular mechanism is not understood in full detail. In yeast, mutations in genes 

involved in the error-free pathway of DDT lead to an elevated sensitivity to DNA-damaging agents 

compared to mutations in TLS, suggesting that template-switching is the preferred pathway for 

lesion bypass (Xiao et al., 1999; Brusky et al., 2000). 
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2. Involvement of recombination in template-switching 

First experimental evidence for a connection between recombination and error-free DDT was shown 

in a plasmid-based assay, in which accurate plasmid replication over a lesion required the presence 

of proteins from both processes (Zhang and Lawrence, 2005). Recent studies have furthermore 

employed 2D gel electrophoresis to visualize the progression of replication forks as well as the 

formation of X-shaped molecules, such as HJs. Intriguingly, the establishment of X-shaped structures 

was dependent on proteins of the error-free DDT pathway (Rad18, Rad5, Ubc13-Mms2) and on the 

HR protein Rad51 (Branzei et al., 2008; Minca and Kowalski, 2010). Concomitantly, recombination-

deficient mutants were found to be sensitive to agents such as HU or MMS that induce replication 

fork stalling (Bjergbaek et al., 2005), further emphasizing the cooperation between the two 

processes.  

During replication-coupled repair, homologous recombination is thought to play two distinct roles: 

first, HR promotes template-switching by enabling strand invasion into the already replicated DNA 

molecule. Second, HR is crucial for the recovery of DNA sequences after stalled replication forks have 

collapsed into a DSB. Common to both scenarios is the formation of covalently linked JMs, mostly 

dHJs or pseudo-HJs containing ssDNA (Figure 2). 

 

 

 
 

Figure 2. Template-switching mechanisms after replication fork stalling. Parental DNA strands are shown in black and dark 

blue; newly synthesized DNA strands are shown in grey and light blue. After replication fork stalling by a DNA lesion 

(depicted as red triangle) different recombination-based mechanisms can be initialized to bypass the replication block: re-

priming downstream of the lesion site, fork reversal and DNA synthesis across the lesion, and cleavage resulting in a one-

ended DSB. Strand invasion events leads to the formation of JMs. (analogous to Princz et al., 2015). 
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Template-switch mechanisms after replication fork stalling can be mediated by re-priming or 

deliberate fork reversal. Re-priming downstream of the DNA lesion leaves a ssDNA gap behind, which 

then has to be filled employing TLS or template-switching mechanisms. As this mechanism allows 

continuation of DNA replication, it is unclear whether post-replication repair occurs in the context of 

replication forks.  

Besides, a stalled replication fork can be rescued by fork regression: Upon DNA damage in the 

leading strand, replication of the lagging (or even the leading) strand may continue resulting in a 

ssDNA stretch. Helicase activity leads to reversal of the replication fork and to the formation of a 

four-way DNA junction, also referred to as “chicken foot”. This moves the DNA lesion back into the 

duplex DNA where it can be removed in an excision repair reaction. Recently, evidence was provided 

that fork regression and restoration can be promoted in vitro by incubation with the human 

recombination proteins RAD51 and RAD54 (Bugreev et al., 2011). However, it is currently unclear 

whether the template-switch and fork regression models are mutually exclusive or act sequentially. 

 

3. Regulation of DNA damage tolerance 

The regulation of recombination-based tolerance pathways is pivotal for cell survival as unscheduled 

recombinational events during replication may lead to aberrant fork structures and unstable 

chromosomal rearrangements, and thus to potential genomic instability and loss of genetic 

information (Sogo et al., 2002; Branzei and Foiani, 2010; Ghosal and Chen, 2013; Branzei and Szakal, 

2016). 

During DNA damage tolerance, the alternation of covalent modifications of the replication factor 

PCNA, also known as “PCNA switch”, plays a central role (Figure 3). PCNA forms a homotrimeric 

structure around DNA, which travels as polymerase processivity factor with the replication fork 

(Moldovan et al., 2007). Its general function lies in providing a protein interaction surface at 

replicating DNA. During S-phase, PCNA is constitutively SUMOylated (Hoege et al., 2002). SUMO-

modified PCNA was shown to recruit the anti-recombinase Srs2 to the fork suppressing inappropriate 

recombination events during replication. In agreement with that, mitotic recombination rates are 

elevated in a background, in which the E3 SUMO ligase Siz1 is mutated (Papouli et al., 2005; Pfander 

et al., 2005).  

Ubiquitination of PCNA is triggered upon generation of ssDNA and association of the E3 ligase Rad18 

(Hoege et al., 2002). Importantly, this modification determines the pathway choice in DDT: Mono-

ubiquitination of PCNA promotes TLS by recruiting TLS polymerases (Bienko et al., 2005), whereas 

elongation to a poly-ubiquitin chain induces the error-free pathway of DDT (Ulrich and Jentsch, 

2000). Notably, ubiquitination of PCNA and its connected role in directing DDT is highly conserved 

among eukaryotes (Ulrich and Walden, 2010).  
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Figure 3. Regulation of DNA damage tolerance by PCNA modification. SUMO conjugation of PCNA leads to recruitment of 

the anti-recombinase Srs2, disruption of Rad51 nucleofilaments and inhibition of inappropriate recombination during 

replication. Ubiquitin conjugation of PCNA determines the pathway choice during DNA damage tolerance: Mono-

ubiquitination recruits TLS polymerases, and poly-ubiquitination via a K63-linked chain initiates the error-free pathway of 

DDT involving template-switch mechanisms (adapted from Xu et al., 2015) 

 

 

A second regulatory layer of the response to replication fork stalling is mediated by the checkpoint. 

After fork disturbance the checkpoint gets activated and interferes with cell cycle progression during 

S-phase by, for example, Rad53-mediated phosphorylation of the replicative primase Pol (Pellicioli 

et al., 1999). Rad53 also targets Dbf4, which is the regulatory subunit of DDK (Dbf4-dependent kinase 

with catalytic subunit Cdc7) and essential for replication fork progression and origin firing (Weinreich 

and Stillman, 1999; Lopez-Mosqueda et al., 2010; Zegerman and Diffley, 2010). Checkpoint-mediated 

delay of cell cycle progression allows repair and concurrently prevents segregation of damaged DNA 

strands. Additionally, the checkpoint kinase Mec1 targets various substrates resulting in preservation 

of fork stability (Tercero and Diffley, 2001; Boddy and Russell, 2001; Lopes et al. 2001; Sogo et al., 

2002) and stabilization of the association between fork and replisome (Cobb et al., 2003; Lucca et al., 

2004).  

Although recombination-based mechanisms are required for the rescue of stalled and collapsed 

replication forks, recombination is in parallel inhibited by the checkpoint after replication fork 

stalling. The checkpoint is thought to delay HR to G2-phase to prevent abnormal recombination-

dependent structures at stalled forks (Meister et al., 2005). How these HR-promoting and -

antagonizing means intertwine to mediate accurate damage signalling during DNA replication still 

has to be elucidated. 
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4. The Dpb11-Slx4-Rtt107 complex 

Scaffold proteins such as PCNA exhibit a crucial function during many cellular processes by displaying 

docking sites for additional factors. Other scaffold proteins are for example the checkpoint proteins 

Rad9, Mrc1, and the 9-1-1 complex.  

One complex to highlight in regard to the response to replication fork stalling is the Dpb11-Slx4-

Rtt107 complex consisting of three scaffold proteins with Slx4 bridging between Dpb11 and Rtt107 

(Ohouo et al., 2010). Extensive phosphorylation by Mec1 is crucial for complex formation as well as 

for the response to replication fork stalling by the DNA-alkylating drug MMS (Rouse, 2004; Flott and 

Rouse, 2005; Roberts et al., 2006). Interestingly, Dpb11 also forms a complex with the checkpoint 

proteins Rad9, Ddc1 and Mec1 (Mordes et al., 2008; Navadgi-Patil and Burgers, 2008; Puddu et al., 

2008; Pfander and Diffley, 2011). Probably due to competition between binding partners, it could be 

shown that the Dpb11-Slx4-Rtt107 complex counteracts the checkpoint complex upon fork stalling 

(Ohouo et al., 2013; Cussiol et al., 2015).  

Dpb11 as well as Rtt107 both harbour multiple BRCT (BRCA1 C-terminal homology) domains that are 

known to bind phosphorylated proteins (Yu et al., 2003; Garcia et al., 2005; Li et al., 2012). Scaffold 

proteins function by bringing together factors with catalytic activity or by recruiting enzymes to 

certain loci. For instance, Rtt107 binds to the ubiquitin ligase complex Rtt101-Mms1-Mms22 to 

mediate stabilization of stressed forks (Luke et al., 2006; Roberts et al., 2008; Vaisica et al., 2011). 

Moreover, Rtt107 interaction with phosphorylated histone H2A was proposed to be important for its 

DNA association and for cell survival in the presence of DNA damaging agents, such as MMS, CPT and 

HU (Williams et al., 2010; Li et al., 2012). The scaffold protein Slx4 interacts with structure-specific 

endonucleases such as Rad1-Rad10 or Slx1: In case of Rad1-Rad10, Slx4 was shown to stimulate the 

activity to remove 3’ ssDNA overhangs in the process of single-strand annealing (Toh et al., 2010). In 

case of Slx1, Slx4 was implicated in the stability of rDNA loci by cleaving branched DNA structures 

(Coulon et al., 2004; Fricke and Brill, 2003). In mammals, SLX1-SLX4 forms a complex with the 

resolution enzyme MUS81-EME1 suggesting a cooperative activity of the two nucleases in HJ 

resolution (Fekairi et al., 2009; Svendsen et al., 2009). So far, a similar cooperativity in yeast HJ 

resolution has not been identified. 
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D. Disentanglement of Recombination Intermediates 

In mitosis, sister chromatids are distributed to the cell poles to form two daughter nuclei. During that 

process, all covalent linkages between sister chromatids have to be cleared. As described in the 

previous chapters, DNA JMs are intermediates that can arise from recombination-based DSB repair, 

but also from replication stress or fork regression. Besides, also replication of certain loci late in the 

cell cycle or replication of common fragile sites (CFSs) entails DNA structures that often need to be 

processed before chromosome segregation (Lemoine et al., 2005; Azvolinsky et al., 2009; Fachinetti 

et al., 2010; Feng et al., 2011; Paeschke et al., 2011; Casper et al., 2012; Franchitto, 2013; Kim and 

Mirkin, 2013; Song et al., 2014). 

Indications of persistent JMs hampering segregation of chromosomes are anaphase bridges and 

lagging chromosomes (Garner et al., 2013; Wyatt et al., 2013; Sarbajna et al., 2014). To avoid these 

perturbations and imminent mitotic catastrophe, it is pivotal to untie any DNA linkages before 

chromosome separation. 

Disentanglement of DNA linkages that have arisen by HR can be mediated by two distinct 

mechanisms: dissolution, a helicase- and topoisomerase-based mechanism, or resolution, an 

endonuclease-based mechanism by so-called resolvases. While different in mechanism, both 

pathways exhibit functional overlap. 

 

1. Dissolution 

Dissolution is mediated by the Sgs1-Top3-Rmi1 complex in budding yeast (STR complex; BLM-

TopoIIIa-RMI1-RMI2, BTR complex in mammals), and involves the combined activity of a RecQ family 

DNA helicase (Sgs1) and a topoisomerase (Top3) to decatenate JMs (Wu and Hickson, 2003; Cejka et 

al., 2010a; b). Mechanistically, dHJs are first transformed to hemicatenanes, and are subsequently 

dissociated to give rise to non-crossover (NCO) products only (Wu and Hickson, 2003; Cejka et al., 

2010b). In this reaction, Sgs1 displays an ATP-dependent motor activity to mediate the convergent 

migration of the two HJs, whereas Top3 is a type1A topoisomerase that catalyses strand passage by a 

transesterification reaction in an ATPase-independent manner. The Rmi1 subunit stimulates Top3 

DNA binding and catalytic activity (Chen and Brill, 2007) (Figure 4).  
 

 

 
 

Figure 4. Model for Sgs1-Top3-Rmi1-catalyzed dissolution of dHJs. Two Holliday junctions are converted to a 

hemicatenane by Sgs1 helicase and Top3 topoisomerase activity. The Rmi1 subunit is dispensable during the initial reaction, 

but stimulates dissolution at the later stage. 
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The dissolution complex is associated with a rare human genetic disorder – Bloom’s syndrome – 

which is characterized by short stature, skin lesions, immunodeficiency as well as an increased risk of 

cancer development in the affected persons (summarized in Sanz et al., 2006, updated 2016). On the 

molecular level, mutations in the BLM protein cause increased occurrence of sister chromatid 

exchanges (Chaganti et al., 1974; Ray and German, 1984; Ellis et al., 1995; Hickson, 2003), indicative 

of increased crossovers (COs) between sister chromatids. Alongside, mutant backgrounds of sgs1∆ 

and top3∆ in yeast exhibit elevated levels of COs in the context of spontaneous and DSB-induced 

recombination (Wallis et al., 1989; Watt et al., 1996; Ira et al., 2003). Also, late-forming replication-

dependent JMs persist in an sgs1∆ background after MMS treatment (Liberi et al., 2005; Branzei et 

al., 2008). The fact that CO formation is increased in the absence of Sgs1/BLM is commonly 

interpreted by the fact that a second pathway to disentangle JMs – resolution – takes over, which 

involves the formation of CO products. 

 

2. Resolution 

An alternative mechanism to disentangle JMs is their cleavage by structure-selective endonucleases, 

termed resolution. This mechanism generates both, NCO and CO products (Figure 5). In S. cerevisiae, 

the endonucleases Slx1-Slx4, Mus81-Mms4, and Yen1 (SLX1-SLX4, MUS81-EME1, and GEN1 in 

mammals) have been implicated in resolution. However, these enzymes differ partially in their mode 

of action as well as in their respective DNA substrates (Boddy et al., 2001; Kaliraman et al., 2001; 

Fricke and Brill, 2003; Ip et al., 2008). Interestingly, both SLX1-SLX4 and MUS81-MMS4 mutants were 

discovered to be essential for cell survival in the absence of SGS1 (Mullen et al., 2001), suggesting 

functional overlap.  

 
 

 
 

Figure 5. Resolution of JMs by structure-selective endonucleases. JMs can be resolved by endonucleolytic cleavage 

resulting in non-crossover and crossover products (analogous to Princz et al., 2015). 

 

 

Slx1 contains a conserved UvrC-intron-endonuclease domain in the amino-terminal region of the 

protein as well as a carboxy-terminal RING/PHD-type zinc finger domain. Thereby, Slx1 belongs to the 

GIY-YIG superfamily of endonucleases (Dunin-Horkawicz et al., 2006). When bound to Slx4, it is a 

versatile 5’ flap endonuclease able to cleave a variety of branched DNA structures, such as 

replication forks or HJs (Fricke and Brill, 2003; Coulon et al., 2004; Wyatt et al., 2013).  
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Mus81-Mms4 cuts intact HJs with low efficiency, and prefers nicked HJs, 3’ flaps or replication forks 

as substrates (Kaliraman et al., 2001; Whitby et al., 2003; Ciccia et al., 2003; Gaillard et al., 2003; 

Fricke et al., 2005; Ehmsen and Heyer, 2008; Taylor and McGowan, 2008; Wyatt et al., 2013). 

Structurally, Mus81 belongs to the ERCC4/XPF family of structure-selective endonucleases 

harbouring a tandem helix-hairpin-helix motif for DNA binding and an endonuclease domain with a 

catalytic G-D-Xn-E-R-K-X3-D motif (Ciccia et al., 2008). 

Interestingly, in human cells, single deletion of SLX4, SLX1, or MUS81 genes in cells lacking BLM 

shows a comparable reduction of sister chromatid exchanges as the combined deletion of MUS81 

with SLX4 or SLX1, suggesting a collaborative activity of the nucleases (Wyatt et al., 2013; Castor et 

al., 2013). In agreement with those findings, it was shown that SLX1-SLX4 and MUS81-EME1 

endonuclease complexes cooperatively target HJs in human cells (SLX-MUS complex), and even 

physically interact with each other (Fekairi et al., 2009; Svendsen et al., 2009; Wyatt et al., 2013). 

Although the MUS81-binding SAP domain in SLX4 is conserved among eukaryotes (Fekairi et al., 

2009), a direct interaction of Mus81 and Slx4 in budding yeast has not been described. Within the 

human multi-protein complex, SLX1 catalyses the initial, rate-limiting cut introducing a nick, following 

a second cut by MUS81 on the opposing strand (Wyatt et al., 2013). Recently, interaction and 

functional cooperation with even a third endonuclease, XPF-ERCC1, (forming an SMX complex) was 

described (Wyatt et al., 2017). In this connection, SLX4 was described to harbour binding sites for all 

three nucleases, suggesting a function as common docking platform. XPF-ERCC1 is thought to further 

stimulate the resolution reaction of SLX1 and MUS81. Yet, an involvement of its catalytic activity is 

still unknown. Whether a comparable combination of enzymatic activities is evolutionary conserved 

in other organisms outside of the mammalian kingdom is still subject of ongoing research. 

In yeast, MUS81 or MMS4 deletion was associated with sensitivity to genotoxic agents (such as MMS 

or UV), the occurrence of persistent recombination intermediates and genomic instability (Boddy et 

al., 2000; 2001; Interthal and Heyer 2000; de los Santos et al., 2001; Kaliraman et al., 2001; Mullen et 

al., 2001; Doe et al., 2002; Smith et al., 2003; Ho et al., 2010; Dayani et al., 2011). Absence of Slx1 in 

budding yeast, on the other hand, does not have a defect in chromosome segregation, but cells are 

sensitive to MMS and display increased spontaneous recombination rates (Mullen et al., 2001; Fricke 

and Brill, 2003; Zhang et al., 2006). Intriguingly, slx4∆ but not slx1∆ displays a reduction in 

spontaneous mitotic crossovers (Ho et al., 2010; de Muyt et al., 2012; Zakharyevich et al., 2012). In 

contrast to mus81∆, the synthetic lethality of slx1∆ with sgs1∆ cannot be rescued in rad52∆ or 

rad51∆ recombination-deficient backgrounds suggesting diverging substrates or functions of Mus81 

and Slx1 endonucleases (Fabre et al., 2002; Bastin-Shanower et al., 2003; Fricke and Brill, 2003). 
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The third resolvase of S. cerevisiae is the Yen1 endonuclease (GEN1 in vertebrates; absent in S. 

pombe). As part of a subclass of the Rad2/XPG family of endonucleases Yen1 contains three 

characteristic motifs: An amino-terminal XPG-type domain, a conserved nuclease domain in the 

central region of the protein, and a flanking helix-hairpin-helix domain (Harrington and Lieber, 1994; 

Johnson et al., 1998). Yen1 preferably targets 5’ flap structures, replication forks and HJs (intact or 

nicked) (Ip et al., 2008; Rass et al., 2010).  

YEN1 deletion does neither affect resistance to DNA-damaging agents, nor viability or crossover 

formation, when SGS1 and MUS81-MMS4 are present (Blanco et al., 2010; Ho et al., 2010; Matos et 

al., 2011; de Muyt et al., 2012; Zakharyevich et al.; 2012). Additionally, lethality of the sgs1∆ mus81∆ 

double mutant indicates that Yen1 alone is not capable of clearing all DNA recombination 

intermediates. Suppression of the sgs1∆ mus81∆ lethality can only be evoked by constitutive 

activation of Yen1 (Blanco et al., 2010; Ho et al., 2010; Tay et al., 2010; Matos et al., 2013). 

Furthermore, a mus81∆ yen1∆ double mutant shows an additive effect on reduction of CO formation 

compared to a mus81∆ single mutant, suggesting that the two nucleases function in parallel 

resolution pathways, with Mus81-Mms4 displaying the primary resolvase (Blanco et al., 2010; Ho et 

al., 2010; Matos et al., 2011; 2013). 

 

Overall, the described enzymes to separate linked DNA molecules seem to operate partially 

redundantly and also hierarchically. 
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E. Regulation of Resolution 

With dissolution generating solely NCOs, it prevents sister chromatid exchanges and potential loss of 

heterozygosity (Ellis et al., 1995; Chaganti et al., 1974; Ray and German, 1984; Wallis et al., 1989; 

Watt et al., 1996; Hickson, 2003; Ira et al., 2003). Thereby, it is thought to be the preferred pathway 

to disperse DNA joint molecules in contrast to resolution, which will generate CO products. 

Furthermore, resolvases cleave branched DNA structures, which intrinsically occur during the process 

of DNA replication (Kaliraman et al., 2001; Ciccia et al., 2003; Fricke and Brill, 2003; Gaillard et al., 

2003; Whitby et al., 2003; Coulon et al., 2004; Fricke et al., 2005; Ehmsen and Heyer, 2008; Ip et al., 

2008; Taylor and McGowan, 2008; Rass et al., 2010; Wyatt et al., 2013). Cleavage of replication fork 

structures will interfere with S-phase, giving a second reason why resolution may have to be 

temporally restrained. Overall, it is therefore thought that resolution is temporally restricted from 

early stages of the cell cycle in order to prioritize dissolution over resolution and to safeguard 

replication forks from nucleases. 

 

1. Regulation by the cell cycle 

Dissolution is independent of the cell cycle, while temporal control of resolvases is mainly mediated 

by the action of cell cycle-dependent kinases and phosphatases. At the onset of mitosis, yeast 

Mus81-Mms4 is activated by phosphorylating events by Cdc28 and Cdc5 kinases, primarily on the 

non-catalytic subunit Mms4 (Matos et al., 2011, 2013; Gallo-Fernandez et al., 2012; Schwartz et al., 

2012; Szakal and Branzei, 2013). Cdc5 seems to be temporally limiting for Mus81-Mms4 activation as 

over-expression of CDC5 was shown to be sufficient for premature activation in earlier cell cycle 

phases (Matos et al., 2011; 2013). Phosphatase treatment of immuno-purified Mus81-Mms4 in an in 

vitro resolution assay with a model HJ showed that phosphorylation and stimulation of catalytic 

activity are directly linked, but so far it is unknown by which mechanism this stimulation occurs 

(Matos et al., 2011).  

Mammalian cells regulate resolution in a manner that is comparable to yeast: MUS81-MMS4 activity 

is enhanced at the G2/M-phase transition in dependence of CDK1 and, to a lesser extent, PLK1 (Cdc5 

homologue). Notably, a resolvase complex containing SLX1-SLX4 and MUS81-MMS4 forms in 

dependency of this phosphorylation (Wyatt et al., 2013).  

Also Yen1/GEN1 resolution activity is dependent on the cell cycle and on phosphorylation by cell 

cycle phase-specific kinases. However, in this case phosphorylation leads to inactivation of the 

enzyme. At the G1/S-phase transition, yeast Yen1 gets inhibited by Cdc28 phosphorylation, 

whereupon it stays inactive throughout S- and G2-phases until metaphase, and only gets activated 

upon dephosphorylation mediated by Cdc14 in anaphase (Matos et al., 2011; Blanco et al., 2014; 

Eissler et al., 2014). A constitutively active form of Yen1 was generated by mutating selected 

phosphorylation sites to non-phosphorylatable residues or by ectopically expressing Cdc14 

phosphatase. In this scenario, precocious activation of Yen1 nuclease activity results in increased 

DNA damage sensitivity to replication-perturbing agents (MMS, HU) as well as in increased CO 

formation. Mechanistically, phosphorylation controls Yen1 in two ways: first, extensive CDK-

mediated phosphorylation enhances negative charges on the surface of Yen1 and concurrently 

reduces its binding affinity to DNA (Blanco et al., 2014). Second, modification of amino acid S679 
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blocks its nuclear localization signal (NLS) restricting phosphorylated Yen1 locally to the cytoplasm 

(Kosugi et al. 2009; Blanco et al., 2014; Eissler et al., 2014). As yeast performs a closed mitosis where 

the nuclear envelope stays intact, Yen1 from S. cerevisiae requires active import to the nucleus. 

In contrast, its mammalian homologue GEN1 is specifically regulated by exclusion from the nucleus 

(Chan and West, 2014; Matos and West, 2014). Harboring a nuclear export signal (NES), GEN1 can 

target its DNA substrates not before the nuclear membrane has broken down during late prophase of 

mitosis. Mutant versions of GEN1, which contain an inactivated NES and several artificial NLS 

sequences, could be forced to constitutively localize in the nucleus and resolve DNA intermediates as 

indicated by an increased CO formation (Chan and West, 2014). 

Taken together, the temporal regulation of the disentanglement of DNA recombination 

intermediates establishes a hierarchy between dissolution and resolution, but also between the 

different resolution enzymes (Figure 6): The STR complex separates early DNA recombination 

intermediates that may have arisen in the context of replication. Upon mitotic entry, kinase activity 

stimulates Mus81-Mms4 to resolve remaining DNA joint molecules before anaphase, especially in 

the absence of Sgs1 (Ira et al., 2003; Dayani et al., 2011; Matos et al., 2011, 2013; Szakal and Branzei, 

2013). Consecutively, declining kinase activity and increasing phosphatase activity at the mitotic exit 

inactivates Mus81-Mms4 and concomitantly activates Yen1 to ensure resolution of any residual DNA 

linkages. 

 

2. Regulation by the DNA damage checkpoint 

Beside regulation by kinase-mediated phosphorylation, also the checkpoint has been implicated in 

influencing the resolution of DNA JMs. In the absence of a functional checkpoint, mitotic processing 

of recombination intermediates was found to occur as a conditional depletion of the checkpoint 

protein Ddc2 in an sgs1∆ background did not abolish late JM resolution (Szakal and Branzei, 2013). 

Notably, this checkpoint defect even triggered precocious resolution of X-shaped DNA molecules by 

Mus81-Mms4 (Szakal and Branzei, 2013). As mentioned in an earlier chapter, checkpoint activation 

during DNA damage bypass in S-phase ensures fork stability by counteracting recombination-

associated processes (Meister et al., 2005; Barlow and Rothstein, 2009). Above data therefore 

suggest that one purpose of fork protection by the checkpoint is to antagonize Mus81-Mms4 

endonuclease activation during DNA damage bypass processes. On a molecular level, it was 

proposed that effector checkpoint kinases inhibit Mus81 function, either indirectly by repressing 

Cdc5 phosphorylation (budding yeast, Rad53), or directly by Mus81 targeting (fission yeast, Cds1) 

(Szakal and Branzei, 2013; Cussiol et al., 2015; Kai et al., 2005). In fission yeast, checkpoint-

dependent phosphorylation of Mus81 leads to dissociation from chromatin (Kai et al., 2005).  

Taken together, checkpoint activation displays a second layer of resolution regulation and thereby 

preserves genomic stability during replication stress (Figure 6). 
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Figure 6. Regulation of JM disentanglement pathways by cell cycle kinases and the DNA damage checkpoint. Dissolution 

by Sgs1-Top3-Rmi1 (STR) is independent of the cell cycle, while resolution by Mus81-Mms4 or Yen1 is temporally regulated 

throughout the cell cycle. At a molecular level, cell cycle-dependent kinases specifically target resolvases to promote their 

activation (Mus81-Mms4) or inhibition (Yen1). In the presence of DNA damage, checkpoint kinases indirectly repress 

Mus81-Mms4 phosphorylation and resolution activity (analogous to Princz et al., 2015). 
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III. Aims of Study 

The starting point of this thesis work was a characterization of protein complexes with Dpb11 in 

Saccharomyces cerevisiae. Interestingly, Dpb11 – and in analogy its human homolog TopBP1 – is a 

scaffold protein that was found to regulate different processes, all related to genome integrity. 

Specifically, Dpb11 displays interaction surfaces for phosphorylated proteins via its tandem BRCT 

domains (Yu, 2003; Garcia et al., 2005), and has been described to bind several factors implicated in 

DNA replication, checkpoint, or repair. At the beginning of this work three Dpb11 complexes had 

been identified: When binding Sld3 and Sld2, Dpb11 regulates replication initiation (Tanaka et al., 

2007; Zegerman and Diffley, 2007); when binding Rad9, the 9-1-1 complex and Mec1-Ddc2, it 

coordinates the checkpoint signaling cascade (Mordes et al., 2008; Navadgi-Patil and Burger, 2008; 

Puddu et al., 2008; Pfander and Diffley, 2011); and when binding Slx4 together with Rtt107, Dpb11 

forms a complex that was suggested to counteract the DNA damage checkpoint complex (Ohouo et 

al., 2010; 2012). However, the complex with Slx4 had not been characterized in detail in its 

regulation and function.  

The first aim was therefore to elucidate the prerequisites of complex formation between Dpb11 and 

Slx4, i.e. cell cycle- or DNA damage-specific conditions as well as identifying the kinases mediating 

the phosphorylation events. As both, Dpb11 and Slx4, are known to bind several proteins of 

independent function, we furthermore aimed to generate an slx4 separation-of-function mutant that 

is specifically defective in binding to Dpb11 and thus could be used to analyze the function of the 

interaction.  

The second aim was to characterize a novel interaction between Dpb11 and the Mus81-Mms4 

nuclease, which was revealed in an initial two-hybrid screen. As both, Slx4 and Mus81-Mms4 were 

strongly implicated to function in the processing of recombination intermediates, we aimed to reveal 

whether Dpb11 may form a physical and functional link between these factors. In vivo binding assays 

and quantitative proteomics performed in the first two years of the thesis work not only confirmed 

the mitosis-specific interactions of Dpb11 with Mus81-Mms4, Slx4 and Rtt107, but also identified cell 

cycle kinases as partners in this interaction network.  

Therefore, the third aim became to analyze this multi-protein complex regarding its architecture and 

biochemical requirements such as target sites for phosphorylations. As the complex formation 

temporally coincides with Mus81 nuclease activation, our objective was to understand the interplay 

between kinases and scaffolds, and how they build up the described temporal regulation of Mus81-

Mms4 to efficiently resolve DNA JMs. 
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A cell cycle-regulated Slx4–Dpb11
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A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA
lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs)
between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process
is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by
the Mus81–Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins
Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the
Dpb11–Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the
additional association of Mus81–Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA
damage checkpoint counteracts Mus81–Mms4 binding to the Dpb11–Slx4 complex. Thus, Dpb11–Slx4 integrates
several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.

[Keywords: DNA damage response; cell cycle; post-replicative repair; homologous recombination; joint molecule
resolution]
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Intrinsically and extrinsically induced DNA lesions can
compromise the integrity of the genetic information and
threaten cell viability. DNA lesions are particularly dan-
gerous during S phase, when faithful DNA replication
relies on two intact DNA strands. DNA lesions hamper
the progression of replication forks and thereby the com-
plete duplication of chromosomes. Moreover, replication
forks that are stalled at DNA lesion sites can collapse and
cause chromosome breaks and genome instability (Branzei
and Foiani 2010).

Eukaryotes possess two fundamentally different mecha-
nisms to bypass DNA lesions that affect one of the parental
DNA strands: translesion synthesis (TLS) and template

switching. TLS employs specialized polymerases (trans-
lesion polymerases) that in many cases are able to replicate
the damaged strand but with a reduced fidelity (Prakash
et al. 2005). On the other hand, during template switching,
the genetic information is copied from the newly synthe-
sized, undamaged sister chromatid. This mechanism is
therefore error-free in principle, yet its precise mechanism
remains poorly understood. Template switching is a com-
plex process that can be initiated by different recombina-
tion-based mechanisms (homologous recombination [HR]
and error-free post-replicative repair [PRR]) (Branzei et al.
2008). The choice between the different bypass mecha-
nisms is regulated by ubiquitin and SUMO modifications
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of the replication protein PCNA at sites of stalled replica-
tion forks (Pfander et al. 2005).

Template switch mechanisms involve the formation of
DNA joint molecules (JMs; also referred to as sister
chromatid junctions [SCJs] or X molecules) as repair in-
termediates (Branzei et al. 2008). In order to allow com-
pletion of DNA replication and faithful chromosome
segregation, these X-shaped DNA structures need to be
disentangled before sister chromatids are separated during
mitosis. To date, three enzymatic activities—the topoisom-
erase-containing Sgs1–Top3–Rmi1 complex (STR) as well
as the Mus81–Mms4 and Yen1 structure-specific endonu-
cleases—were shown to process JMs in budding yeast
(Liberi et al. 2005; Blanco et al. 2010; Mankouri et al.
2011; Szakal and Branzei 2013). These three activities
can be distinguished by their mechanism (termed disso-
lution for STR and resolution for Mus81–Mms4 and Yen1)
(Gaillard et al. 2003; Ip et al. 2008; Cejka et al. 2010) but
show a partial functional overlap. Moreover, they are
differentially regulated during the cell cycle: Whereas the
STR activity appears to be cell cycle-independent, the
activity of Mus81–Mms4 is stimulated by CDK-mediated
and Cdc5 (budding yeast Polo-like kinase)-mediated phos-
phorylation and peaks in mitosis (Matos et al. 2011, 2013;
Gallo-Fernández et al. 2012; Szakal and Branzei 2013).
Accordingly, the Mus81 regulation is assumed to create
a hierarchy, with STR acting as a primary resolution
pathway and Mus81–Mms4 acting as a salvage pathway.
How Mus81–Mms4 phosphorylation by cell cycle kinases
facilitates this temporal regulation of JM resolution path-
ways remains hardly understood.

The bypass of DNA lesions during replication is addi-
tionally regulated by the DNA damage checkpoint, the
main cellular signaling pathway in response to DNA
damage (Harrison and Haber 2006). As the primary purpose
of the checkpoint is the stabilization of stalled replication
forks (Branzei and Foiani 2010), its activation is a funda-
mental requirement for all fork repair and reactivation
reactions. Notably, the checkpoint has been suggested to
be involved in the choice of the JM resolution pathway,
since precocious activation of the Mus81–Mms4 endonu-
clease is observed in checkpoint-deficient mutants (Szakal
and Branzei 2013). However, it remains to be clarified how
this second layer of regulation of JM resolution is achieved
on a molecular level and how it is linked to cell cycle
regulation.

Here, we identify an evolutionarily conserved protein
complex comprising two scaffold proteins, Slx4 and Dpb11/
TopBP1, as an important regulator of JM resolution by
Mus81–Mms4. We show that the formation of the Slx4–
Dpb11 complex is regulated by the cell cycle stage. An slx4
mutant, compromised specifically in Dpb11 binding, ex-
hibits hypersensitivity to the replication fork-stalling drug
MMS, a delay in the resolution of X-shaped DNA JMs, and
a reduced propensity to form crossovers (COs). The func-
tion of the Slx4–Dpb11 scaffold in JM resolution correlates
with the finding that Dpb11 binds to the Mus81–Mms4
endonuclease. This association is restricted to mitosis,
since it is dependent on the mitotic kinase Cdc5. Moreover,
the checkpoint acts antagonistically to the regulation of JM

resolution by Slx4 and Dpb11, as we found that partial
inactivation of the DNA damage checkpoint can compen-
sate for defects in formation of the Slx4–Dpb11 scaffold
complex.

Results

An evolutionarily conserved and phosphorylation-
dependent interaction between Slx4 and Dpb11/
TopBP1

Dpb11 and its human homolog, TopBP1, are critical re-
gulators of the cellular DNA damage response and interact
with several DNA replication, repair, and checkpoint
proteins (Garcia et al. 2005; Germann et al. 2011). In these
protein complexes, Dpb11/TopBP1 specifically binds to
phosphorylated proteins via its tandem BRCT domains (Yu
2003; Garcia et al. 2005). A key role of Dpb11/TopBP1 is to
function as a scaffold, bringing together specific sets of
proteins via several interaction surfaces. In budding yeast,
two Dpb11 complexes have been described in detail,
which regulate replication initiation (with Sld3 and Sld2)
(Tanaka et al. 2007; Zegerman and Diffley 2007) and the
DNA damage checkpoint (with Rad9, the 9-1-1 complex,
and Mec1–Ddc2) (Mordes et al. 2008; Navadgi-Patil and
Burgers 2008; Puddu et al. 2008; Pfander and Diffley 2011),
respectively (Fig. 1A). Recently, a third Dpb11 complex
with Slx4 and Rtt107 was identified (Ohouo et al. 2010,
2012). In this latter complex, Slx4 appears to inhibit the
formation of the Dpb11 DNA damage checkpoint complex
(Ohouo et al. 2012).

In the course of our studies of Dpb11 function, we
identified an interaction between a Dpb11 fragment that
includes the tandem BRCT repeats 3 and 4 (BRCT3+4) and
Slx4 using a two-hybrid screen. To confirm this finding, we
tested the binding of different Dpb11 constructs to Slx4
and known Dpb11 binders. As observed before (Puddu
et al. 2008; Pfander and Diffley 2011), we found that Rad9
binds to BRCT1+2 of Dpb11, whereas Ddc1 binds to
BRCT3+4 (Fig. 1B). For Slx4, we found an interaction with
full-length Dpb11 and the BRCT3+4 fragment but not with
the BRCT1+2 domain (Fig. 1B). When we tested binding of
Slx4 from cell extracts to recombinant, purified fragments
of Dpb11, Slx4 also bound to BRCT3+4, albeit weaker than
to the full-length protein (Supplemental Fig. S1A). More-
over, ablation of Dpb11 Thr451, which is predicted to be
part of the BRCT3+4 phospho-protein-binding surface
(Rappas et al. 2011), partially inhibited the Slx4–Dpb11
interaction (Supplemental Fig. S1B). A recent report sug-
gested that the Dpb11 BRCT1+2 domain is involved in
Slx4 binding (Ohouo et al. 2012). However, although our
data do not rule out a contribution of BRCT1+2 in overall
binding, our two independent lines of evidence clearly
demonstrate that BRCT3+4 of Dpb11 significantly con-
tributes to Slx4 binding.

Next, we mapped the Dpb11-binding site on Slx4 starting
from a fragment (amino acids 461–738) that was common
to all Slx4 clones identified in our initial Dpb11 two-hybrid
screen. Truncated variants that begin at amino acid 490
failed to interact with Dpb11 (Supplemental Fig. S1C),
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indicating that the region between amino acid 461 and
amino acid 490 is important for Dpb11 interaction. As
several examples indicate that Dpb11 binds phosphorylated
S/TP motifs, we tested all S/TP motifs within the C-
terminal part of Slx4 for their ability to mediate Dpb11
binding. Indeed, we found that alteration of Ser486 in Slx4
into a nonphosphorylatable alanine residue (slx4-S486A
mutant) reduced Dpb11 binding in a two-hybrid system
(Supplemental Fig. S1D). Moreover, whereas immunopre-
cipitation of wild-type Slx4 efficiently copurified endoge-
nous Dpb11 from cell extracts, in particular following MMS
treatment, the Slx4–Dpb11 interaction was strongly de-
creased in extracts from cells expressing the slx4-S486A
mutant, even after induction of DNA damage (Fig. 1C; see
also Ohouo et al. 2012). Furthermore, the phospho-S486-
containing peptide was specifically enriched (17-fold), when
Dpb11 immunoprecipitations were analyzed by quantita-
tive mass spectrometry (MS) (Supplemental Fig. S4A). We
therefore conclude that the Slx4–Dpb11 interaction in-
volves the BRCT3+4 region of Dpb11 and a region of Slx4
harboring the phosphorylated residue S486.

We further tested whether also the human homologs
TopBP1 and Slx4 are binding partners. Indeed, we detected
a specific interaction of TopBP1 and Slx4 or an N-termi-
nally truncated version of Slx4 after transient transfection
in human embryonic kidney (HEK) 293T cells (Fig. 1D). In
contrast to the yeast proteins, we did not observe a stimu-
lation of TopBP1 binding to Slx4 by DNA damage (Supple-
mental Fig. S1E). Human Slx4 is substantially larger than

yeast Slx4, with an overall sequence conservation of only
17.9%. Nonetheless, we identified a conserved short linear
motif present in Slx4 proteins from different eukaryotes
that comprises Ser486 in budding yeast and Thr1260 in
humans (Supplemental Fig. S2). Mutation of Thr1260 to
a nonphosphorylatable alanine (T1260A) in human Slx4
reduced the interaction with TopBP1 (Fig. 1D), suggesting
that this residue may function analogously to Ser486 in
budding yeast. These data suggest the presence of a novel,
evolutionarily conserved motif in Slx4 that functions in
Dpb11/TopBP1 binding.

Cdk1-dependent phosphorylation of Slx4 regulates
binding to Dpb11

In order to unravel the regulation of the Slx4–Dpb11-
binding surface, we quantified the relative amount of
Ser486 phosphorylation under different cellular conditions
using SILAC-based quantitative MS. We observed a specific
increase of Ser486 phosphorylation in G2/M-arrested cells
compared with G1-arrested cells, indicating that the ana-
lyzed Slx4 phosphorylation is cell cycle-regulated (Fig. 2A).
In agreement with Ser486 matching the consensus target
sequence for phosphorylation by cyclin-dependent kinase
Cdk1 (S/TPxK) (Holt et al. 2009), we observed a marked
reduction of Ser486 phosphorylation in G2/M-arrested
cells when Cdk1 activity was abrogated using the cdc28-
as1 allele (Bishop et al. 2000) in combination with 1NM-
PP1 inhibitor treatment (Fig. 2B). Notably, we also detected

Figure 1. An evolutionarily conserved, phos-
phorylation-dependent interaction between Slx4
and Dpb11/TopBP1. (A) Schematic diagram of
Dpb11 domain structure depicted with its in-
teraction partners in replication initiation and
DNA damage checkpoint. (B) Slx4 binds to the
BRCT3+4 domain of Dpb11. Two-hybrid analy-
sis of GAL4-BD fused to full-length Dpb11 or to
BRCT1+2 and BRCT3+4 fragments and of
GAL4-AD fusions with Slx4, Rad9, and Ddc1.
(C) The Slx4–Dpb11 interaction is reduced by
mutation of Slx4 Ser486 and is regulated by
DNA damage. Coimmunoprecipitation of en-
dogenous Dpb11 with Slx43Flag or phosphoryla-
tion-deficient Slx4-S486A3Flag from undamaged
cells or cells treated for 30 min with 0.033%
MMS. (D) Human TopBP1 and Slx4 interact
dependent on Thr1260 of Slx4. Coimmunopre-
cipitation of human mycTopBP1 with GFPSlx4 or
N-terminally truncated GFPSlx4DN after tran-
sient overexpression in HEK293T cells. Slx4 or
Slx4DN was expressed either as wild type (WT)
or a T1260A phosphorylation-deficient variant.
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Figure 2. The Slx4–Dpb11/TopBP1-binding interface is cell cycle-regulated by Cdk1 phosphorylation of Slx4. (A) Ser486 phosphorylation is
cell cycle-regulated. Relative abundance of the Slx4 480–489 phospho-peptide and six unmodified Slx4 peptides was measured by SILAC-based
quantitative MS using 15N2

13C6 lysine (Lys8) and compared between Slx4 isolated from G1- and G2/M-arrested cells. H/L ratios for individual
peptides were normalized to total Slx4 ratios. Error bars represent standard deviations from two independent experiments, including label
switch. (B) S486 phosphorylation depends on Cdk1. Analysis as in A but comparing Slx4 from G2/M-arrested cells with normal Cdk1 activity
with cells in which Cdk1 has been inactivated using the cdc28-as1 allele and 500 nM 1NM-PP1. (C) The Slx4–Dpb11 interaction is regulated
by CDK. Coimmunoprecipitation of Dpb11 and Slx43Flag from G2/M-arrested cells or G2/M-arrested cells in which Cdk1 has been inactivated
as in B. (D) The Slx4–Dpb11 interaction is regulated by cell cycle phase and DNA damage. Experiment as in C but with G1- and G2/M-arrested
cells, which were either damaged by 50 mg/mL phleomycin or left untreated. (E) Binding of human Slx4 and TopBP1 is regulated by CDK
phosphorylation. Coimmunoprecipitation of mycTopBP1 with GFPSlx4 and GFPSlx4DN after transient overexpression in HEK293T cells. Cells
were left untreated or treated with 10 mg/mL roscovitine for the indicated times to inhibit CDK activity.
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reduced Slx4 binding to Dpb11 when Cdk1 was inhibited
(Fig. 2C).

In addition to cell cycle-dependent regulation, we also
observed a stimulation of Slx4–Dpb11 binding by DNA
damage (Figs. 1C, 2D, Supplemental Fig. S1F). When Slx4
binding to recombinant GST-Dpb11 was tested, the DNA
damage-dependent stimulation was less pronounced (Sup-
plemental Fig. S1A), substantiating the notion that the
Slx4–Dpb11 interaction may be additionally regulated by a
damage-induced post-translational modification of Dpb11.
On the other hand, Slx4 harbors several sites that can be
targeted by kinases of the DNA damage checkpoint path-
way. Mutation of seven sites in Slx4 partially inhibits its
binding to Dpb11 (Ohouo et al. 2010), and the correspond-
ing mutant shows phenotypes similar to those of slx4-
S486A (Supplemental Fig. S3). As we cannot fully exclude
pleiotropic defects for this mutant, we focused our analysis
on slx4-S486A.

Taken together, our findings suggest that the Slx4–
Dpb11 complex integrates at least two cellular signals: (1)
cell cycle state through Cdk1 phosphorylation of Slx4 at
Ser486 and (2) the presence of DNA damage through
checkpoint kinase phosphorylation of several sites on
Slx4 and perhaps on Dpb11.

Interestingly, the CDK regulation of this interaction is
conserved between yeast and humans, since addition of
the CDK inhibitor roscovitine reduced binding of Slx4
and TopBP1 (Fig. 2E).

The Slx4–Dpb11 complex is required for the response
to replication fork stalling

Budding yeast Slx4 is known to bind to several DNA repair
proteins (Slx1, Rtt107, and Rad1–Rad10) (Mullen et al.
2001; Roberts et al. 2006; Flott et al. 2007; Ohouo et al.
2010). However, whether these interaction partners are part
of only one or several distinct complexes is unknown.
While Slx4 has several independent DNA repair functions
in budding yeast (Flott et al. 2007), until now, a detailed
phenotypic characterization has only been conducted for
slx4D deletion mutants. To test the specificity of the
Dpb11-binding-deficient slx4-S486A phosphorylation site
mutant, we compared its binding partners with those of
wild-type Slx4 using quantitative proteomics. Indeed, we
found that the mutant protein (Slx4-S486A3Flag) displayed
eightfold reduced binding to Dpb11 (Fig. 3A). This variant
still bound Slx1 and Rtt107 as efficiently as wild-type Slx4,
indicating that Ser486 phosphorylation is specifically rele-
vant for the Dpb11 interaction (Fig. 3A; see Supplemental
Fig. S4A for specific Slx4 interactors). We thus took
advantage of the slx4-S486A separation-of-function mutant
to reveal a specific role of the Slx4–Dpb11 complex.

Using different DNA-damaging agents, we observed that
the slx4-S486A mutant is particularly sensitive to MMS
and, to a lesser extent, 4-NQO (Fig. 3B; Supplemental Fig.
S4B), two reagents that create toxicity through replication
fork stalling. Notably, the mutant was not sensitive to
reagents that generate DNA strand breaks or interstrand
cross-links, consistent with a recombination rate that was
similar to wild type (Supplemental Fig. S4B,C). Remarkably,

expression of a fusion protein of the phospho-site mutant
variant of Slx4 with Dpb11 (Dpb11–Slx4-S486A) rescued
the MMS hypersensitivity phenotype almost to wild-type
levels (Fig. 3B), suggesting that binding of Slx4 to Dpb11 is
crucial for tolerance of replication fork-stalling lesions.

Next, we tested whether the response to stalled repli-
cation forks is aberrant in the slx4-S486A mutant. To this
end, we treated synchronized cells with a pulse of MMS
in early S phase. Under these conditions, the slx4-S486A
mutant completed DNA replication with slightly slower
kinetics compared with wild-type cells (Fig. 3C, 1-h time
point). Also, the appearance of fully replicated and re-
paired chromosomes, as visualized by pulsed-field gel
electrophoresis, was delayed (Fig. 3D, 1-h time point).
This finding indicates that stalled replication fork struc-
tures or repair intermediates persist longer in the absence
of the Slx4–Dpb11 complex. Additionally, the DNA
damage checkpoint activation was prolonged in slx4-
S486A cells (Fig. 3E), as determined by the phosphoryla-
tion status of the checkpoint kinase Rad53. This effect
was specific for MMS treatment and could not be ob-
served in cells in which double-strand breaks were in-
duced by zeocin or phleomycin inside or outside of S
phase (Supplemental Fig. S4D).

Defects in a checkpoint-antagonistic pathway (check-
point ‘‘dampening’’) (Ohouo et al. 2012) in slx4 mutants
could, in principle, lead to prolonged checkpoint activa-
tion and could thereby indirectly lead to slow S-phase
kinetics and DNA damage hypersensitivity. Alternatively,
persistence of unrepaired DNA lesions or DNA repair
intermediates could lead to very similar phenotypes. In
order to discriminate between the two possibilities, we
examined the DNA damage levels during recovery from an
MMS pulse in wild-type and slx4-S486A cells. To this end,
we investigated the appearance and disappearance of
nuclear foci formed by the ssDNA-binding protein RPA
after MMS treatment in S phase. Indeed, slx4-S486A cells
contained more RPA foci, which persisted longer than in
wild-type cells (Fig. 3F). Therefore, we conclude that
unrepaired DNA lesions or DNA repair intermediates that
contain ssDNA persist in slx4-S486A mutants. This find-
ing does not necessarily exclude a role of Slx4 as a regulator
of the DNA damage checkpoint yet strongly suggests an
additional direct function of the Slx4–Dpb11 complex in
the repair of replication fork structures.

The Slx4–Dpb11 complex promotes Mus81–Mms4-
dependent JM resolution

As our findings pointed to a function of the Slx4–Dpb11
complex in the response and repair of MMS-induced
lesions, we next investigated whether the complex is
involved in the DNA damage bypass. Therefore, we
tested possible functions in HR and error-prone or error-
free PRR. From several lines of genetic evidence, we
conclude that the Slx4–Dpb11 complex is not exclusively
involved in either PRR or HR (Supplemental Fig. S5).
First, the slx4-S486A mutation enhanced the MMS hy-
persensitivity of mutants defective in error-free PRR
(double mutant with either mms2D, rad5-KT538,539AA,
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Figure 3. Mutation of slx4-S486A results in a specific defect in binding to Dpb11 and the response to stalled replication forks. (A) The slx4-

S486A mutant leads to a specific defect in binding to Dpb11. Relative enrichment of Slx4 interactors (see Supplemental Fig. S4A) found in
purifications of wild-type (WT) Slx43Flag versus Slx4-S486A3Flag as determined by SILAC-based quantitative MS. Values >1 indicate a reduced
binding to the Slx4-S486A relative to wild-type Slx4. (B) The slx4-S486A mutant, but not a Dpb11–slx4-S486A-fusion, is hypersensitive to MMS.
Wild type or strains expressing slx4-S486A or the Dpb11–slx4-S486A-fusion from the SLX4 promoter as only a copy of SLX4 were spotted in
fivefold serial dilutions on MMS-containing medium and assayed for growth after 2 d. (C,D) Replication fork stalling is prolonged in the slx4-
S486A mutant. Cells were treated with a pulse of MMS during S phase, and recovery was analyzed by FACS (C; to measure cellular DNA
content) and pulsed-field gel electrophoresis (D; to measure intact, fully replicated chromosomes). (D) For quantification, the fluorescence signal of
chromosomes that migrated into the gel was divided by the total signal, including the pocket, and all signals were normalized to the G1 sample
from each strain. (E) The DNA damage checkpoint is inactivated with reduced kinetics in the slx4-S486A mutant. Cells were treated as in C, and
checkpoint activity was determined by anti-Rad53 Western blot. (F) The slx4-S486A mutant shows increased DNA damage foci and delayed
recovery after transient MMS treatment in S phase. DNA damage sites were visualized by the ssDNA-binding RFA13mCherry after transient MMS
treatment during S phase. Cells were sorted into three categories: multiple, dispersed RFA1 foci; one RFA1 focus; and no RFA1 foci. Values are
from two independent experiments, counting 100–150 cells per strain and time point. Error bars represent standard deviations.



or rad5-C914S), error-prone PRR (double mutant with
either rev1D, rev3D, or rad30D), or HR (double mutant
with rad51D) (Supplemental Fig. S5A). Second, spontane-
ous mutagenesis, a hallmark of error-prone PRR, was not
significantly altered in slx4-S486A mutants (Supplemental
Fig. S5B). Third, recombination rates, as determined by
a direct repeat recombination assay, were similar between
wild-type and slx4-S486A strains (Supplemental Fig. S4C).
Fourth, siz1D or srs2DC mutations, which cause an up-
regulation of HR at stalled replication forks (Pfander et al.
2005), did not alleviate the MMS hypersensitivity of slx4-
S486A mutants (Supplemental Fig. S5C).

The nonepistatic relationship of the slx4-S486A mutant
to PRR or HR pathways could be explained if Slx4 and
Dpb11 participated in a step common to both error-free
PRR and HR because, in such a scenario, both pathways
would be affected by the slx4-S486A mutation. Both HR
and error-free PRR operate via template switching in order
to bypass the replication fork-stalling lesion by copying
the undamaged information from the sister chromatid. A
critical step in template switching is the final removal of
X-shaped DNA intermediates (JMs) that link the two sister
chromatids (Mankouri et al. 2013). JM removal pathways
act, in principle, independently of the pathway by which
JMs have been created (Branzei et al. 2008; for mus81D

phenotypes, see Interthal and Heyer 2000; Li and Brill
2005). To test whether the Slx4–Dpb11 complex is in-
volved in this late step, we visualized these DNA in-
termediates in an sgs1D mutant (deficient in JM dissolu-
tion) by two-dimensional (2D) gel electrophoresis (Liberi
et al. 2005; Mankouri et al. 2011). In this mutant, MMS
treatment in S phase leads to enhanced levels of JMs,
which subsequently disappear during late S, G2, and M
phase (Szakal and Branzei 2013). The additional mutation
of slx4-S486A in the sgs1D background does not alter the
formation of JMs, indicating that the Slx4–Dpb11 complex
is not required at early steps (Supplemental Fig. S6A).
Interestingly, however, during the recovery from the MMS
treatment, JMs are more slowly resolved in the sgs1D slx4-
S486A double mutant compared with the sgs1D single
mutant (Fig. 4A). A similar effect can be observed using an
slx4D mutant and conditionally inactivated SGS1 in the
same experimental setup (Supplemental Fig. S6B). Consis-
tently, we observed an enhanced MMS sensitivity for the
sgs1D slx4-S486A double mutant compared with the re-
spective single mutants (Fig. 4B). From these experiments,
we conclude that the Slx4–Dpb11 complex is involved in
the resolution of JMs that are supposedly intermediates
arising from a template switch reaction and that this
complex functions in a pathway parallel to dissolution
by the STR complex.

To elucidate a potential role of the Slx4–Dpb11 complex
in a resolution mechanism, we investigated the genetic
interaction with Mus81–Mms4. Indeed, the MMS sensitiv-
ities of slx4-S486A mms4D or slx4-S486A mus81D double
mutants were identical to those of mms4D or mus81D

single mutants (Fig. 4C). This suggests that the Slx4–Dpb11
complex acts in the Mus81–Mms4 pathway. The same
epistatic relationship was seen between mms4D and slx4-
S486A when we investigated JM resolution by 2D gel

electrophoresis when the STR complex was inactivated
using the Tc-sgs1 allele (Supplemental Fig. S6C). We note
that the MMS hypersensitivity and the JM resolution
defect of the slx4-S486A mutant are less pronounced
compared with the deletion mutants that fully abolish
Mus81 function (Fig. 4C; Supplemental Fig. S6C), suggest-
ing that not all functions of the Mus81–Mms4 endonucle-
ase depend on the Slx4–Dpb11 complex.

We also tested the involvement of other structure-
specific endonucleases (Slx1, Rad1–Rad10, and Yen1)
(Tomkinson et al. 1993; Fricke and Brill 2003; Coulon
2006; Ip et al. 2008), specifically of Slx1, as it associates
with the Slx4–Dpb11 complex (Supplemental Fig. S4A).
We found that rad1D showed an additive phenotype with
slx4-S486A, while slx1D and yen1D mutants were not
hypersensitive to MMS (Supplemental Fig. S6D; Fricke
and Brill 2003; Coulon 2006; Blanco et al. 2010). We
therefore conclude that these factors either are not in-
volved in the resolution of template switch intermediates
by Mus81 and the Slx4–Dpb11 complex or (in case of Slx1
and Yen1) have a function that can be taken over by
a redundant pathway in the respective deletion mutant.
Interestingly, the yen1D mutation caused an increase of
MMS sensitivity specifically of the sgs1D slx4-S486A
double mutant (Supplemental Fig. S6E), suggesting that
Yen1 function becomes specifically important if the STR
complex is inactive and function of the Slx4–Dpb11
complex is reduced.

The balance between STR-dependent JM dissolution
and Mus81-dependent JM resolution is reflected in the
ratio of CO to non-CO (NCO) products (Ira et al. 2003; Ho
et al. 2010; Mankouri et al. 2013), since STR-mediated
dissolution will not yield COs, while Mus81-mediated
resolution can generate CO products. We therefore ana-
lyzed the rates of CO formation in the slx4-S486A mutant
with a recombination assay using interchromosomal arg4
heteroalleles (Robert et al. 2006; Szakal and Branzei 2013).
Despite a slight increase in overall recombination rates,
we measured a reduction in CO rates in the slx4-S486A
mutant compared with wild-type cells (Fig. 4D). We
therefore conclude that the Slx4–Dpb11 complex is an
important regulator of JM removal pathways and that it
acts by stimulating JM resolution, inhibiting JM dissolu-
tion, or both.

Persistent JMs interfere with the separation of sister
chromatids in mitosis. Under circumstances in which JMs
are not resolved before anaphase, these repair intermedi-
ates are thought to give rise to anaphase bridges between
the dividing DNA masses (Chan et al. 2007; Mankouri
et al. 2013). Consistent with a role in the resolution of JMs,
Dpb11 localizes to DNA bridges between the separated
chromosome masses in anaphase (Germann et al. 2014).
Dpb11-containing anaphase bridges can be observed with
a low frequency in undamaged cells (<5%) and are induced
upon MMS treatment, suggesting that they arise from
replication fork stalling (Germann et al. 2014). Interest-
ingly, the occurrence of Dpb11 bridges is increased in
sgs1D cells (Germann et al. 2014), indicating that the
localization of Dpb11 to chromatin bridges reflects its
action in a resolution mechanism. We observed a pro-
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Figure 4. The Dpb11 binding-deficient slx4-S486A mutant causes defects in the Mus81–Mms4-dependent JM resolution. (A) JM
structures are resolved slower in sgs1D slx4-S486A cells. X-shaped JMs were visualized as spike signal in 2D gels in sgs1D and sgs1D

slx4-S486A cells that have been treated with a pulse of MMS in S phase. (B) MMS sensitivity is enhanced in the sgs1D slx4-S486A

double mutant compared with each single mutant. Analysis of the MMS hypersensitivity phenotype as in Figure 3B. (C) The MMS
hypersensitivity of mms4D and mus81D mutants is not further enhanced by an additional slx4-S486A mutation. Experiment as in B. (D)
The slx4-S486A mutation leads to a reduced CO formation. COs and NCOs from an interchromosomal recombination assay using arg4

heteroalleles on chromosome V and VIII (Robert et al. 2006) were determined using a PCR-based strategy. (Top panel) Recombination
and CO rates were determined by fluctuation analysis using a maximum likelihood approach. (Bottom panel) CO ratio is quotient of
CO rate and overall recombination rate. Error bars represent standard deviations of two to 11 independent experiments. (E) Dpb11
anaphase bridge structures occur more frequently when JM dissolution and the Dpb11–Slx4 interaction are defective. (Right panel)
Quantification of Dpb11 ultrafine bridges (UFBs) or chromatin bridges in wild-type (WT), sgs1D, slx4D, slx4-S486A, and slx4-S486A

sgs1D strains. Cells express Dpb11-YFP, NLS-RFP as a marker of the nucleoplasm and Spc110-CFP as a marker of the spindle pole body.
DNA is stained with Hoechst. (Left panel) Images of representative anaphase cells are shown. Bar, 3 mm. Error bars indicate 95%
confidence intervals. Significance is as follows: (*) P < 0.01 (compared with wild type); (#) P < 0.01 (compared with the single mutants);
(ns) not significantly different from wild type.



nounced increase of cells containing Dpb11 bridges when
the sgs1D and slx4-S486A mutants were combined (Fig.
4E). The genetic requirements for Dpb11 bridges are
therefore highly similar to those for persistent JMs (Fig.
4A), supporting a role for Dpb11 and Slx4 in JM resolution.
In line with this model, we observed frequent colocaliza-
tion of either Slx4YFP or Mus81YFP with Dpb11CFP-positive
bridges that is further enhanced in sgs1D cells (Supple-
mental Fig. S7A). We also noticed a colocalization of Slx4,
Mus81, and Dpb11 in DNA damage foci yet to a lesser
extent (Supplemental Fig. S7B). Overall, the data in Figure
4 provide strong support for an involvement of the Slx4–
Dpb11 complex in JM resolution by Mus81–Mms4.

Mus81–Mms4 interacts with the Slx4–Dpb11 complex
during mitosis in a Cdc5-dependent fashion

To elucidate how the Slx4–Dpb11 complex regulates
Mus81 function, we investigated a possible physical in-
teraction. In previous studies using asynchronously grow-
ing yeast cells, no binding of Slx4 to Mus81–Mms4 was
detectable (Schwartz et al. 2012). However, we detected
Mms4 as a cell cycle-specific interactor if Slx43Flag immuno-
precipitations were investigated by SILAC MS (such as in
Fig. 2A). Moreover, when we arrested cells in G2/M by
nocodazole treatment, immunopurification of Mms43Flag

copurified Dpb11 and Slx4 (Fig. 5A). Notably, this interac-
tion is highly cell cycle-specific, as it could not be observed
in G1- or S-phase cells (Fig. 5A). We determined, using an
unbiased SILAC MS approach, that Dpb11, Slx4, and Rtt107
are among the best interactors of Mus81–Mms4 in G2/M-
arrested cells (Supplemental Fig. S8A).

Next, we tested whether Dpb11, Slx4, and Mus81–Mms4
form a single protein complex. Indeed, the three proteins
comigrated at a size of ;33 S (Supplemental Fig. S8B,
fractions 18–20, apparent molecular weight 1.1–1.2 MDa)
when the eluate of an Mms43Flag purification from G2/M
cells was subjected to a glycerol gradient centrifugation.
When we analyzed the complex architecture by a two-
hybrid approach, we detected a direct interaction of Dpb11
and Mms4 that is independent of Slx4 (Supplemental Fig.
S8C). Moreover, when we immunoprecipitated Mms43Flag

in the slx4-S486A background, we observed a reduction of
Slx4, but not Dpb11, binding to Mms43Flag (Fig. 5B). These
findings thus suggest that Dpb11, Slx4, and Mus81–Mms4
are part of a multiprotein complex in which Dpb11 acts as
a bridge between Slx4 and Mus81–Mms4.

We observed that Dpb11 and Slx4 could be partially
eluted from Mms4-containing beads using l-phosphatase
treatment (Supplemental Fig. S8D), suggesting that the
binding is at least in part dependent on protein phosphor-
ylation. Previous work has established that Mus81 activ-
ity is decisively up-regulated in mitosis in response to
a sequential phosphorylation of Mms4 by CDK and the
Polo-like kinase Cdc5 (Matos et al. 2011; Gallo-Fernández
et al. 2012; Saugar et al. 2013; Szakal and Branzei 2013).
We therefore used two systems to interfere with Cdc5
activity: the cdc5-as1 analog-sensitive allele, which we
inhibited using chloromethylketone (CMK) (Snead et al.
2007), and transcriptional shutoff of pGAL-CDC5 using

glucose repression. Both types of Cdc5 inactivation re-
sulted in a loss of the slower-migrating species of Mms4
in gels and at the same time diminished the binding of
Dpb11 and Slx4 to Mms43Flag (Fig. 5C; Supplemental Fig.
S9A). In order to rule out indirect effects, we tested
whether Cdk1 activity was uninfluenced under condi-
tions of Cdc5 inhibition/shutoff and saw that neither the
interaction between Slx4 and Dpb11 nor phosphorylation
of a CDK target site on Rad9 (T474) (Pfander and Diffley
2011) was influenced by Cdc5 inactivation (Supplemental
Fig. S9B,C). Together with our results on the architecture
of the Slx4–Dpb11–Mms4–Mus81 complex, these exper-
iments suggest that binding of Mms4 to Dpb11 is regu-
lated by Cdc5 phosphorylation.

We also tested whether the formation of the Slx4–
Dpb11–Mms4–Mus81 was regulated upon DNA damage.
We found that Mms43Flag bound similar amounts of Dpb11
and Slx4 after phleomycin or mock treatment of G2/M-
arrested cells (Supplemental Fig. S9D). Moreover, we could
also observe formation of the Slx4–Dpb11–Mms4–Mus81
complex during recovery from MMS pulse treatment
during S phase (Fig. 5D). However, this binding occurred
only once Cdc5 became active, as visualized by the slower-
migrating form of Mms4, indicating that even after DNA
damage, the Dpb11–Mms4 interaction is dependent on
Cdc5 (Fig. 5D).

Given that the cell cycle regulation of Mus81 activity
and the cell cycle regulation of the Slx4–Dpb11–Mms4–
Mus81 complex formation have the same requirements,
we tested whether the up-regulation of Mus81 nuclease
activity requires Slx4 and Dpb11. We analyzed in vitro
resolution of nicked Holliday junctions, Holliday junc-
tions, and model replication fork structures on immuno-
purified Mus81–Mms4 and found that the enhanced
activity of mitotic Mus81 is similar, independently of
whether Mus81 was purified from wild-type or slx4-
S486A cells (Fig. 5E; Supplemental Fig. S9E). Therefore,
we conclude that cell cycle kinases regulate Mus81 by at
least two mechanisms: direct up-regulation of the cata-
lytic activity, which can be reconstituted in vitro, and an
up-regulation through formation of an Slx4–Dpb11–
Mms4–Mus81 complex, which could be seen in vivo.

The DNA damage checkpoint regulates the Slx4–
Dpb11-dependent Mus81 function

The DNA damage checkpoint prevents collapse of stalled
replication forks and thereby is fundamentally required for
all aspects of the response to stalled replication forks
(Branzei and Foiani 2010). Moreover, the checkpoint was
also suggested to counteract Cdc5-dependent Mus81 acti-
vation, since premature Mms4 phosphorylation by Cdc5
was observed after MMS treatment of checkpoint-defi-
cient cells (Szakal and Branzei 2013). Possible explanations
for this phenomenon are a faster S-phase progression in the
checkpoint mutants or a direct inhibition of Cdc5 activity
by the checkpoint (Zhang et al. 2009).

To address these possibilities, we investigated the in-
fluence of the DNA damage checkpoint on Slx4–Dpb11–
Mms4–Mus81 complex function. Interestingly, we found
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that a partial defect in DNA damage checkpoint signaling
alleviated the phenotypes of the slx4-S486A mutant (Fig.
6A,B; Supplemental Fig. S10A,B; see also Ohouo et al.
2012). In these experiments, we used three distinct mu-
tants, which were partially impaired in checkpoint signal-
ing: ddc1-T602A (defective in Dpb11-dependent Rad9
recruitment (Puddu et al. 2008), dot1D (defective in
chromatin-dependent Rad9 recruitment) (Giannattasio
et al. 2005), and rad53-3HA (a hypomorphic Rad53 allele)
(Cordon-Preciado et al. 2006). All three mutants partially

suppressed the hypersensitivity of slx4-S486A to chronic
exposure of MMS (Fig. 6A; Supplemental Fig. S10A).
Furthermore, the recovery from MMS treatment as judged
by the reappearance of fully replicated chromosomes in
PFGE and reappearance of unphosphorylated Rad53 was
enhanced in slx4-S486A ddc1-T602A cells compared with
slx4-S486A cells (Fig. 6B; Supplemental Fig. S10B).

A plausible interpretation of these results is that a partial
inactivation of the checkpoint may compensate for a re-
duced or delayed formation of the Slx4–Dpb11–Mms4–

Figure 5. Slx4, Dpb11, and Mus81–Mms4 form a Cdc5-dependent complex at the G2/M cell cycle stage. (A) Mms4 binds to Dpb11 and
Slx4 specifically in G2/M. Coimmunoprecipitation samples of Mms43Flag from G1, S, or G2/M cells were tested for binding to Dpb11 and
Slx4. (B) Slx4-S486A is partially lost from the Slx4–Dpb11–Mms4–Mus81 complex, suggesting that Dpb11 bridges the interaction between
Mms4 and Slx4. Mms43Flag coimmunoprecipitation were carried out as in A but from G2/M-arrested wild-type (WT) or slx4-S486A

mutant cells. (C) The Dpb11–Mms4 interaction is dependent on the Polo-like kinase Cdc5. cdc5-as1 was inhibited by 2, 5, and 20 mM
CMK in G2/M-arrested cells. Mms43Flag coimmunoprecipitation was performed as in A. (D) Cdc5 hyperphosphorylated Mus81–Mms4
binds to Slx4 and Dpb11 during recovery from MMS damage. Cells were treated with a 30-min pulse of 0.03% MMS. Mms43Flag

coimmunoprecipitations were performed from samples after 0, 30, 60, 90, and 120 min of recovery in nocodazole-containing medium. (E)
Cell cycle regulation of Mus81–Mms4 nuclease activity remains intact in the slx4-S486A mutant. Mms43Flag and control immunopre-
cipitations (see the bottom panel for immunoprecipitation samples) from cells arrested in their cell cycle by a factor, HU, or nocodazole
were incubated with a fluorescence-labeled nicked Holliday junction substrate.

Slx4 and Dpb11 regulate joint molecule resolution
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Mus81 complex. Such compensation may occur by either
a direct up-regulation of the Slx4–Dpb11–Mms4–Mus81
complex or hyperactivation of a Mus81-independent sal-
vage pathway. We therefore tested whether the observed
rescue would depend on Mms4. Consistent with a direct
influence of the checkpoint on the Slx4–Dpb11–Mms4–
Mus81 complex, a partial inactivation of the checkpoint
did not rescue the MMS hypersensitivity of the mms4D or
mms4D slx4-S486A mutants (Fig. 6C). In contrast, the
sgs1D slx4-S486A or yen1D slx4-S486A double mutants
could be rescued by additional mutation of ddc1-T602A
(Supplemental Fig. S10C), suggesting that neither STR nor
Yen1 activity is required for the rescue. Furthermore,
mms4D ddc1-T602A mutants show a slow checkpoint
recovery after a pulse of MMS in S phase that is similar to
mms4D cells (Fig. 6D). These results suggest that the

rescue of slx4-S486A mutants upon partial checkpoint
inactivation is due to the action of Mms4–Mus81.

Furthermore, when we transiently exposed cells to MMS
during S phase and released them into a G2/M arrest, we
observed that the Cdc5-dependent phosphorylation shift of
Mms4, which in this experiment serves as a marker for the
interaction with Slx4–Dpb11, was slightly delayed in slx4-
S486A cells compared with wild-type cells (Fig. 6E), prob-
ably because of a slower S-phase progression (see Fig. 3C).
Importantly, the additional partial inactivation of the
checkpoint (slx4-S486A ddc1-T602A) (Fig. 6E,F) allowed
Cdc5-dependent Mms4 phosphorylation to occur earlier.
Concomitantly, the binding of Mms4 to Dpb11 and Slx4
was rescued by partial checkpoint inactivation when
immunoprecipitations were performed during the recovery
phase (Fig. 6F). The occurrence of Mms4 phosphorylation

Figure 6. Partial inactivation of the DNA
damage checkpoint rescues slx4-S486A pheno-
types in an MMS4-dependent manner. (A) The
DNA damage repsonse defect of slx4-S486A is
suppressed by partial inactivation of the DNA
damage checkpoint. Wild type (WT), slx4-

S486A, the partial checkpoint mutant ddc1-

T602A, and the slx4-S486A ddc1-T602A dou-
ble mutant were spotted in fivefold serial
dilutions on MMS-containing plates. (B) The
prolonged replication fork stalling of the slx4-

S486A mutant is rescued by the ddc1-T602A
mutation. Cells were cell cycle-synchronized
and treated with a 30-min pulse of 0.033%
MMS in S phase. Recovery of fully replicated
chromosomes was analyzed by pulsed-field gel
electrophoresis. Quantification as in Figure
3D. (C) A complete defect in Mus81 activity
(mms4D) cannot be rescued by checkpoint
inactivation. The MMS hypersensitivity phe-
notypes of slx4-S486A, mms4D, and ddc1-

T602A mutants and double and triple mutant
combinations were analyzed as in A. (D) The
checkpoint recovery defect of mms4D mutants
is not rescued by a partial checkpoint mutant.
Cells were treated as in B, and checkpoint
activity was measured by Rad53 phosphoryla-
tion. (E,F) Cdc5-dependent hyperphosphoryla-
tion of Mms4 and concomitant binding to
Dpb11 and Slx4 occur earlier during recovery
from replication fork stalling in slx4-S486A

ddc1-T602A double mutants compared with
slx4-S486A mutants. (E) Cells were treated
with a 40-min pulse of 0.033% MMS in S
phase. The Cdc5-dependent Mms43Flag phos-
phorylation shift was measured by anti-Flag
Western blot, checkpoint activity was mea-
sured by Rad53 phosphorylation, and cell cycle
progression was followed by anti-Clb2 and
anti-Cdc5 Westerns. (F) Wild-type, slx4-

S486A, and slx4-S486A ddc1-T602A cells that
contain MMS43Flag were harvested during the
recovery phase (2.5 h after MMS removal) and
subjected to anti-Flag immunoprecipitation.
Coimmunoprecipitation samples were tested
for binding to Dpb11 and Slx4.
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in the two mutants inversely correlated with DNA damage
checkpoint activation (Rad53 phosphorylation) (Fig. 6E). It
needs to be emphasized that Slx4–Dpb11 interaction is
reduced, but not abolished, in the slx4-S486A mutant (Figs.
1B, 3A). The results in Figure 6, E and F, therefore suggest
that the Slx4–Dpb11–Mms4–Mus81 complex can form
earlier and potentially to a larger extent in the slx4-S486A
ddc1-T602A mutant compared with the slx4-S486A single
mutant. This offers a straightforward explanation for the
rescue of the slx4-S486A mutant phenotypes by partial
inactivation of the DNA damage checkpoint.

Taken together, we therefore identified an intricate
regulatory mechanism of the Mus81 endonuclease, which
critically depends on the formation of an Slx4–Dpb11–
Mms4–Mus81 complex. The formation of this complex is
activated by cell cycle stage-specific signaling and antago-
nized by the DNA damage checkpoint. Remarkably, com-
plex formation and the direct control of Mus81 catalytic
activity occur with similar timing, at the G2/M transition
(Fig. 7).

Discussion

In this study, we describe a new facet of JM resolution
following the bypass of DNA damage via template switch
recombination. We describe a multiprotein complex con-
taining Slx4, Dpb11, and Mus81–Mms4. This complex is
cell cycle-controlled by at least two mechanisms: Cdk1-
dependent phosphorylation of Slx4 and Cdc5-dependent
phosphorylation of Mms4, and Dpb11 acts as a reader of
both modifications. The conservation of the Slx4–Dpb11/
TopBP1 interaction and its cell cycle regulation suggests
that a similar complex may be involved in JM resolution in
human cells. Importantly, the inhibition of Slx4 binding to
Dpb11 causes phenotypes that are indicative of JM reso-
lution defects, and we therefore infer that the association
with Slx4 and Dpb11 promotes Mus81 function.

Slx4–Dpb11 multiprotein complex formation
correlates with DNA JM resolution

The starting point of our analysis was a multiprotein
complex containing Slx4, Dpb11, Slx1, and Rtt107 (Ohouo
et al. 2010, 2012). In order to characterize a putative
function of this complex in DNA repair, we tested whether
the Slx4–Dpb11 complex would transiently interact with
DNA repair enzymes and found an interaction with the
Mus81–Mms4 structure-specific endonuclease specifically
in mitotic cells. Based on the findings that the slx4-S486A
mutant impairs complex formation and results in JM
resolution defects, we propose that the Slx4–Dpb11 com-
plex regulates Mus81–Mms4 activity. Our binding studies
furthermore indicate a direct Dpb11–Mms4 interaction.
Given the nature of Dpb11 as a scaffold protein, it appears
likely that Dpb11 operates by tethering Mus81 to other
activities that collaborate in the resolution reaction or
targeting Mus81 to JM structures.

An intricate feature of the Slx4–Dpb11 complex is its
complexity, as it involves four scaffold proteins: Dpb11,
Slx4, Rtt107, and Mms4. An obvious advantage of such
a multiscaffold complex is that its formation depends on
several interaction surfaces, which offer numerous possi-
bilities for regulation. The assembly of the complex
therefore allows the integration of different cellular signals
(for example, cell cycle and DNA damage), or one specific
signal may control complex assembly by several mecha-
nisms. Such a setup includes features of multisite phos-
phorylation systems, which have the ability to create
switch-like transitions (Nash et al. 2001). Moreover, a multi-
scaffold complex may allow the assembly and coordina-
tion of different enzymatic activities (see below).

Our work has identified Mus81 as one catalytically
active component of the Slx4–Dpb11 complex; a second
one could potentially be Slx1. Recently, the Mus81 and
Slx1 endonucleases from humans and mice have been
shown to cooperate in the resolution of Holliday junctions
in an Slx4-dependent manner (Wyatt et al. 2013). While
our results suggest that also in budding yeast, Mus81 and
Slx1 may be part of the same complex, we did not observe
any specific defects in the response to MMS-induced
replication fork stalling for slx1D cells (Supplemental Fig.
S6D). Therefore, we conclude that either Slx1 is not
involved in Mus81-dependent JM resolution in budding
yeast or a functionally redundant nuclease compensates
for the defects of the slx1D mutant.

Cell cycle regulation of the response to replication fork
stalling and JM resolution

The cellular response to replication fork-stalling DNA
lesions is intimately linked to the progression of the cell
cycle. First, the primary problem, fork stalling, arises
specifically in S phase. Moreover, the cells are required to
finish the repair/bypass process at the latest in mitosis,
when sister chromatids need to be accurately separated,
and any remaining links between the chromatids have to
be resolved.

In this study, we characterized two Dpb11 interactors:
Slx4 and Mms4. Both proteins are phosphorylation tar-

Figure 7. Model of the temporal response to replication fork
stalling and its regulation by Slx4–Dpb11 complexes.
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gets of CDKs; however, Mms4 is additionally phosphor-
ylated by the Polo-like kinase Cdc5 (Matos et al. 2011;
Gallo-Fernández et al. 2012; Szakal and Branzei 2013).
Interestingly, the Slx4–Dpb11 and Mms4–Dpb11 interac-
tions display distinct cell cycle specificities: We observed
a strong Slx4–Dpb11 interaction in asynchronous cul-
tures as well as in S-phase and mitotic cells (Figs. 1C, 2C),
while the Mms4–Dpb11 interaction was highly specific
for mitosis (Fig. 5A). Accordingly, we found that the
Mms4–Dpb11 interaction requires Cdc5, suggesting that
Dpb11 can act as a reader of phosphorylation events that
are initiated by different cell cycle kinases.

The cell cycle regulation of the Mus81–Mms4 associ-
ation with the Slx4–Dpb11 complex correlates exactly
with the known activity profile of Mus81 (Matos et al.
2011). Notably, the multiprotein complex is not the only
mechanism of cell cycle regulation: Our in vitro resolu-
tion assays suggest that Cdc5 phosphorylation of Mus81–
Mms4 directly stimulates Mus81 independently of com-
plex formation. Therefore, we conclude that at least two
parallel pathways of cell cycle regulation exist that pro-
mote appropriate Mus81 function in mitosis.

To date, it remains uncertain why cells restrict the
activity of Mus81 until mitosis. The temporal regulation
of Mus81 channels a large proportion of JMs into the Sgs1–
Top3–Rmi1 dissolution pathway (Matos et al. 2011; Szakal
and Branzei 2013). It has therefore been speculated that
Sgs1-dependent dissolution, which leads to a NCO out-
come (Ira et al. 2003), may be beneficial for cells dividing by
a mitotic cell cycle. A second reason for restricting Mus81
activity may be the necessity to achieve temporal separa-
tion of the lesion bypass reaction and the JM resolution
reaction (Saugar et al. 2013). Mus81 could impede the
bypass reaction, given its relatively broad substrate spec-
ificity to a range of DNA structures (e.g., replication forks,
D-loop structures, and Holliday junctions).

Intriguingly, the differences in the temporal regulation
of the Slx4–Dpb11 and Mms4–Dpb11 interactions suggest
that the composition of the Slx4–Dpb11 complex changes
from the replication-associated template switch to the
resolution reaction. Supporting the idea of several distinct
Slx4–Dpb11 complexes is the fact that not all features of
the Slx4–Dpb11 interaction (for example, enhanced bind-
ing after DNA damage) are seen in the Slx4–Dpb11–
Mms4–Mus81 complex. It therefore appears plausible that
Slx4–Dpb11 may associate with stalled replication forks
already in S phase, while Mus81–Mms4 joins the complex
in mitosis. It is tempting to speculate that the Slx4–Dpb11
complex may chaperone the DNA lesion site/repair in-
termediates until resolution (Fig. 7).

Regulation of JM resolution by the DNA damage
checkpoint

The DNA damage checkpoint antagonizes JM resolution
by Mus81 (Fig. 6; Szakal and Branzei 2013), and it has been
suggested that Slx4 may act as negative regulator (‘‘damp-
ener’’) of the checkpoint by competing with binding of the
checkpoint mediator Rad9 to Dpb11 (Ohouo et al. 2012).
The JM resolution phenotypes of the slx4-S486A mutant

could therefore, in principle, be explained by an indirect
effect arising from checkpoint hyperactivation. Given the
extensive ties between checkpoint and DNA repair path-
ways, the presented in vivo experiments cannot rule out
a contribution of checkpoint misregulation to the ob-
served JM resolution phenotypes.

We favor, however, a more direct role of Slx4 and Dpb11
in JM resolution for two reasons. First, the formation of the
Slx4–Dpb11–Mms4–Mus81 complex and its regulation
correlate with the temporal activation of Mus81. Second,
the ‘‘dampener’’ model cannot account for all observed
phenotypes. For example, the rescue of the MMS hyper-
sensitivity of the slx4-S486A mutant by a covalent fusion
with Dpb11 cannot be explained by competition, since in
the fusion mutant, cells express two copies of full-length
Dpb11 (one endogenous, one fused to Slx4), and therefore
even more Dpb11 molecules (not less) are able to engage in
checkpoint signaling complexes. Moreover, our analysis of
RPA foci suggests that DNA lesions or repair intermedi-
ates persist and accumulate in the absence of a functional
Slx4–Dpb11 complex, indicative of a role for Slx4 and
Dpb11 in DNA repair.

Importantly, we found that the checkpoint regulates the
formation of the Slx4–Dpb11–Mms4–Mus81 complex: Par-
tial inhibition of the checkpoint enables Cdc5-dependent
hyperphosphorylation of Mms4, which allows Dpb11 bind-
ing to occur earlier during the recovery from an MMS pulse
and thereby reverses the effect of the slx4 mutant. These
findings suggest that at least in the slx4-S486A mutant
background, the DNA damage checkpoint antagonizes the
Slx4–Dpb11–Mms4–Mus81 complex. Partial inactivation
of the checkpoint may therefore extend the temporal
window during which Mus81 is active, which we propose
to be beneficial in mutants with reduced JM resolution
activity such as slx4-S486A. Whether this inhibitory mech-
anism takes place on the level of Cdc5 regulation in general
(Zhang et al. 2009; Matos et al. 2013) or by specifically
regulating Mms4 phosphorylation by Cdc5 remains to be
determined. The important implication of this finding is
that the activation of Mus81 is temporally restricted by two
pathways: activation by cell cycle kinases and inhibition by
the DNA damage checkpoint.

The Slx4–Dpb11 complex is conserved among
eukaryotes

In addition to the mechanistic studies of the budding yeast
Slx4–Dpb11 complex, we also provide the first evidence that
at least parts of this complex may be found in human cells
as well, since Slx4 and TopBP1 interact in a manner that
depends on CDK phosphorylation of Slx4. It is worth noting
that not all aspects of the protein network that controls
resolution of JMs are conserved through evolution: While in
human cells, Slx4 binds directly to Mus81–Eme1, this
interaction appears to be absent in budding yeast (Fekairi
et al. 2009; Muñoz et al. 2009; Svendsen et al. 2009;
Schwartz et al. 2012). Given that both Slx4 and Mms4 bind
to Dpb11, our data suggest that Dpb11 may serve as a bridge
between the two proteins. Although a direct interaction
between Slx4 and Mus81–Mms4 cannot be definitively
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excluded, it appears as if the bridging interaction with
Dpb11 in yeast may replace the direct interaction of Slx4
and Mus81 in human cells. Importantly, similar to our
results in yeast, a stimulation of Slx4 binding to Mus81–
Eme1 after phosphorylation by CDK and Polo-like kinase
was observed in mitotic human cells as well (Wyatt et al.
2013). At this point, it seems therefore very likely that in
both systems, JM resolution is promoted by a cell cycle-
regulated complex containing several scaffold proteins.

Materials and methods

Yeast strains

All yeast strains are based on W303. Genotypes are listed in
Supplemental Material.

Interaction assays

Coimmunoprecipitations of yeast extracts were performed using
anti-Flag agarose resin (Sigma). Bound proteins were eluted with
33 Flag-peptide (Sigma).

For GST pull-downs, GST-Dpb11 or GST-tagged protein frag-
ments were recombinantly expressed and purified as described
(Pfander and Diffley 2011). Pull-downs were performed with am-
monium sulphate-precipitated (57%) yeast extracts on glutathione
sepharose 4B (GE Healthcare).

For coimmunoprecipitations from HEK293T, GFP-tagged pro-
teins were transiently overexpressed and precipitated using GFP-
Trap magnetic beads (Chromotek).

Nuclease activity assays

Nuclease assays on Mms43Flag immunoprecipitations were done
as described (Matos et al. 2011).

DNA gel electrophoresis

PFGE and 2D gel analysis of DNA intermediates were performed
as previously described (Karras and Jentsch 2010; Szakal and
Branzei 2013).

Mutation and recombination assays

Mutation rates were determined using a CAN1 forward mutation
assay. Interchromosomal recombination rates were determined
using a direct repeat system using leu2 heteroalleles (Aguilera and
Klein 1988). CO rates were determined using a system harboring
two arg4 alleles on chromosome V and VIII (Robert et al. 2006;
Szakal and Branzei 2013). In all, rates were determined by fluc-
tuation analysis using a maximum likelihood approximation
(Pfander et al. 2005).

Microscopy and immunofluorescence

Microscopy experiments were carried out as described (Germann
et al. 2014).

A detailed methods description is provided in the Supplemen-
tal Material.
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Abstract

DNA repair by homologous recombination is under stringent cell
cycle control. This includes the last step of the reaction, disentan-
glement of DNA joint molecules (JMs). Previous work has estab-
lished that JM resolving nucleases are activated specifically at the
onset of mitosis. In case of budding yeast Mus81-Mms4, this cell
cycle stage-specific activation is known to depend on phosphoryla-
tion by CDK and Cdc5 kinases. Here, we show that a third cell cycle
kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with
Cdc5—both kinases bind to as well as phosphorylate Mus81-Mms4
in an interdependent manner. Moreover, DDK-mediated phospho-
rylation of Mms4 is strictly required for Mus81 activation in mito-
sis, establishing DDK as a novel regulator of homologous
recombination. The scaffold protein Rtt107, which binds the
Mus81-Mms4 complex, interacts with Cdc7 and thereby targets
DDK and Cdc5 to the complex enabling full Mus81 activation.
Therefore, Mus81 activation in mitosis involves at least three cell
cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the
kinases in a stable complex with Mus81 is critical for efficient JM
resolution.
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Introduction

Many DNA transactions are under cell cycle control to adjust them

to cell cycle phase-specific features of chromosomes (Branzei &

Foiani, 2008). Homologous recombination (HR) is cell cycle-

regulated at several steps including the first, DNA end resection, and the

last, JM removal (Heyer et al, 2010; Ferretti et al, 2013; Mathiasen

& Lisby, 2014; Matos & West, 2014). Given that JMs provide stable

linkages between sister chromatids, they will interfere with chromo-

some segregation and therefore need to be disentangled before sister

chromatid separation during mitosis. Accordingly, JM resolvases,

such as budding yeast Mus81-Mms4 (Interthal & Heyer, 2000;

Schwartz et al, 2012) or Yen1 (Ip et al, 2008), become activated

during mitosis (Matos et al, 2011, 2013; Gallo-Fernández et al,

2012; Szakal & Branzei, 2013; Blanco et al, 2014; Eissler et al,

2014). In contrast, the alternative JM removal pathway, JM dissolu-

tion by the Sgs1-Top3-Rmi1 complex, is thought to be constantly

active throughout the cell cycle (Mankouri et al, 2013; Bizard &

Hickson, 2014). The activation of JM resolvases in mitosis therefore

leads to a shift in the balance between JM removal pathways, with

dissolution being preferred outside of mitosis, but JM resolution

becoming increasingly important in mitosis (Matos et al, 2011,

2013; Gallo-Fernández et al, 2012; Dehé et al, 2013; Saugar et al,

2013; Szakal & Branzei, 2013; Wyatt et al, 2013). It has been

hypothesized that JM resolvases are downregulated at cell cycle

stages other than mitosis in order to counteract crossover-induced

loss of heterozygosity or to prevent over-active resolvases from

interfering with S phase by, for example, cleaving stalled replication

forks (Gallo-Fernández et al, 2012; Szakal & Branzei, 2013; Blanco

et al, 2014).

Budding yeast Mus81-Mms4 has previously been shown to be

targeted by two cell cycle kinases, cyclin-dependent kinase Cdc28

(CDK) and the yeast polo-kinase Cdc5 (Matos et al, 2011, 2013;

Gallo-Fernández et al, 2012; Szakal & Branzei, 2013). The corre-

sponding Mms4 phosphorylation events were shown to correlate

with and to be required for activation of Mus81-Mms4 in mitosis. In

2014, we showed that in mitosis Mus81-Mms4 also forms a complex

with Slx4-Slx1 and the scaffold proteins Dpb11 and Rtt107

(Gritenaite et al, 2014). Interestingly, mass spectrometric analysis of

this complex (Gritenaite et al, 2014) revealed that Cdc5 and a third

cell cycle kinase Dbf4-Cdc7 (Dbf4-dependent kinase, DDK) are also

a stable part of this protein assembly (see Appendix Fig S1A). Here,
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we investigate the role of DDK in Mus81-Mms4 regulation and find

that DDK can phosphorylate Mms4 and that DDK and Cdc5 target

Mus81-Mms4 in an interdependent manner. Moreover, we show

that Rtt107 promotes the association of both kinases with the

Mus81-Mms4 complex. The DDK-dependent regulation of Mus81-

Mms4 is critical for Mus81 activity thus revealing DDK as a novel

regulator of homologous recombination.

Results

Mus81-Mms4 is a DDK phosphorylation target

The cell cycle regulation of JM resolution by Mus81-Mms4 is intri-

cate and involves phosphorylation by the cell cycle kinases CDK

and Cdc5 (Matos et al, 2011, 2013; Gallo-Fernández et al, 2012;

Szakal & Branzei, 2013) as well as complex formation with the scaf-

fold proteins Dpb11, Slx4 and Rtt107 (Gritenaite et al, 2014). To

study this protein complex, we performed an analysis of Mms43FLAG

interactors in mitosis by SILAC-based quantitative mass spectrome-

try (Gritenaite et al, 2014) and found in addition to Dpb11, Slx4,

Rtt107 and Cdc5, also Cdc7 and Dbf4 as specific interactors of

Mms4 (Appendix Fig S1A). We verified that Cdc7 binds to Mus81-

Mms4 in an Mms43FLAG pull down from mitotic cells analysed

by Western blots (Fig 1A). The fact that Mus81-Mms4 binds to

DDK suggested that it might be involved in the phosphorylation

cascade that occurs on Mms4 and controls Mus81 activity in

mitosis. Accordingly, we found that purified DDK was able to phos-

phorylate both subunits of purified Mus81-Mms4 in vitro (Fig 1B,

lane 3). When we furthermore compared the DDK-dependent
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Figure 1. Dbf4-dependent kinase (DDK) binds to the Mus81-Mms4 complex in mitosis and can phosphorylate Mms4 at (S/T)(S/T) motifs.

A Cdc7 and Cdc5 are specifically enriched in Mms43FLAG co-IPs from cells arrested in mitosis (with nocodazole). Under the same conditions, Mus81-Mms4 associates
with scaffold proteins such as Dpb11 and Slx4 (Appendix Fig S1A and Gritenaite et al, 2014).

B DDK can phosphorylate Mus81-Mms4 in vitro. Purified, immobilized Mus81-Mms4 is incubated in an in vitro kinase assay with purified CDK2/cycAN170 (a model CDK),
DDK or Cdc5 (lanes 1–4). Additionally, Mus81-Mms4 is incubated with respective kinases after a non-radioactive priming step with CDK (lanes 5–8).

C DDK phosphorylates Mms4 peptides at (S/T)(S/T) motifs and is enhanced by priming phosphorylation. Mms4 peptides including (S/T)(S/T) motifs (221/222; 133/134)
were synthesized in different phosphorylation states (depicted in left panel) and incubated in an in vitro kinase assay with either CDK or DDK. CDK targets
unphosphorylated Mms4 peptides 1 and (to a weaker extent) 4 consistent with its substrate specificity (Mok et al, 2010), while DDK primarily targets Mms4 peptides
2 and 5, which harbour a priming phosphorylation at the C-terminal (S/T) site (see Appendix Fig S1B for in-gel running behaviour of peptides).
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phosphorylation signal to Mms4 phosphorylation by CDK and Cdc5

(Fig 1B, lanes 2–4), we observed different degrees of phosphoryla-

tion shifts indicating that the three kinases phosphorylate Mms4 at

distinct sites and/or to different degrees. DDK target sites on other

proteins have been studied in detail, and in several cases, DDK was

found to target (S/T)(S/T) motifs, where phosphorylation was stim-

ulated by a priming phosphorylation usually on the second (S/T)

(Masai et al, 2006; Montagnoli et al, 2006; Randell et al, 2010;

Lyons et al, 2013). Intriguingly, Mms4 contains 15 of these motifs

and we therefore tested whether these could be targeted by DDK

and would depend on priming phosphorylation. We therefore

turned to a peptide-based assay where Mms4 phosphorylation states

are precisely defined. To this end, we synthesized peptides corre-

sponding to two (S/T)(S/T) motifs of Mms4. We chose two repre-

sentative motifs: S222, as it harbours a minimal CDK consensus

motif (S/T)P, and S134, as it contains a non-(S/T)P consensus for

CDK [(S/T)X(K/R)(K/R) (Suzuki et al, 2015)]. For each of these

motifs, we generated peptides in three different phosphorylation

states: non-phosphorylated, phosphorylated at the second serine

and doubly phosphorylated (Fig 1C and Appendix Fig S1B). When

using such peptides as substrates in in vitro kinase reactions, we

saw that CDK targeted specifically only the second serine in each

peptide, although much stronger for S222 than for S134, consistent

with these residues matching CDK consensus motifs (Fig 1C). In

contrast, DDK showed only little activity towards the non-

phosphorylated peptides, but was strongly stimulated when the

second residue in the (S/T)(S/T) motif was in a phosphorylated

state (Fig 1C). DDK may thus be stimulated by priming phosphory-

lation in order to efficiently phosphorylate Mms4 on (S/T)(S/T)

sites. However, using the full-length protein as a phosphorylation

substrate, we did not obtain evidence for a stimulatory effect on

DDK by prior CDK phosphorylation (Fig 1B and Appendix Fig S1C),

perhaps because over the whole 15 (S/T)(S/T) motifs CDK phospho-

rylation plays a minor role. We also did not reveal any priming

activity of either CDK or DDK for Mms4 phosphorylation by Cdc5

(Fig 1B and Appendix Fig S1D). Overall, the data in Fig 1 thus iden-

tify Mus81-Mms4 as an interaction partner and potential substrate

of DDK.

Mus81-Mms4 is phosphorylated by a mitotic Cdc5-DDK complex

DDK is present and active throughout S phase and mitosis until

anaphase when the Dbf4 subunit is degraded by APC/CCdc20 (Cheng

et al, 1999; Weinreich & Stillman, 1999; Ferreira et al, 2000). We

therefore tested at which cell cycle stage DDK would associate with

Mus81-Mms4 using cells synchronously progressing through the cell

cycle. Figure 2A shows that DDK did not associate with Mus81-

Mms4 in S phase, but only once cells had reached mitosis. Strik-

ingly, DDK binding therefore coincided with binding of Cdc5, Slx4

and Dpb11 and most notably the appearance of the hyperphospho-

rylated form of Mms43FLAG (Fig 2A).

Given this late timing of the association, we tested in co-

immunoprecipitation (co-IP) experiments whether DDK binding to

Mus81-Mms4 would depend on CDK or Cdc5 activity. Using analog-

sensitive mutant yeast strains for CDK [cdc28-as1 (Bishop et al,

2000)] and for Cdc5 [cdc5-as1 (Snead et al, 2007)], we observed that

inhibition of these kinases in mitotically arrested cells strongly

reduced the hyperphosphorylation shift of Mms4 (see also Matos

et al, 2013) and compromised the association with DDK (Fig 2B and

C, and Appendix Fig S2A–C). Notably, both conditions also inter-

fered with Cdc5 binding (Fig 2B and C, and Appendix Fig S2A),

suggesting that the association of DDK may follow a similar regula-

tion as Cdc5.

Next, we tested whether conversely DDK is involved in Mms4

phosphorylation. To bypass the essential function of DDK in DNA

replication, we used the mcm5bob1-1 allele (Hardy et al, 1997),

which allowed us to test a cdc7D mutant. Using Western blot and

SILAC-based mass spectrometry as a read-out of Mms43FLAG co-IPs

from cells arrested in mitosis, we found that Cdc5 association with

Mus81-Mms4 was strongly reduced in the cdc7D mutant strain

(Fig 2D and E). Moreover, we observed that Mms43FLAG phospho-

rylation as indicated by mobility shift was decreased in the

absence of DDK, although not to the same extent as upon CDK or

Cdc5 inhibition (Fig 2D and Appendix Fig S2C). Additionally, as

an alternative way to deregulate DDK, we used the cdc7-1 tempera-

ture-sensitive mutant. Even with WT cells, we observed that

elevated temperature (38°C) leads to a slight reduction in Cdc5

binding to Mus81-Mms4. However, in cdc7-1 mutant cells, incuba-

tion at 38°C leads to the complete disappearance of Cdc5 binding

to Mus81-Mms4 (Appendix Fig S2D). Therefore, we conclude from

these data that DDK and Cdc5 bind to Mus81-Mms4 in an inter-

dependent fashion.

Interestingly, Cdc5 was previously shown to interact with DDK

via a non-consensus polo-box binding site within Dbf4 (Miller et al,

2009; Chen & Weinreich, 2010). The proposed model based on

genetic experiments suggested that DDK binding antagonizes mitotic

functions of Cdc5. However, the catalytic activity of Cdc5 was not

inhibited in this complex (Miller et al, 2009) and we reason that

DDK may simply target Cdc5 to a specific set of substrates. Since the

Cdc5 binding site was mapped to the N-terminal portion of Dbf4

(Miller et al, 2009), we tested whether N-terminal truncations of

Dbf4 would affect DDK or Cdc5 association with Mus81-Mms4.

While the dbf4-DN66 truncation lacking the first 66 amino acids (in-

cluding a D-box motif) did not influence DDK or Cdc5 binding to

Mms43FLAG, the dbf4-DN109 truncation, which additionally lacks

the Cdc5 binding motif (Miller et al, 2009), showed strongly

decreased DDK and Cdc5 binding to Mus81-Mms4 (Fig 2F). Addi-

tionally, also mitotic hyperphosphorylation of Mms4 was dimin-

ished when DDK and Cdc5 could not interact with each other

(Fig 2F). Overall, these data strongly suggest that Cdc5 and DDK

interact with and target Mus81-Mms4 in an interdependent manner.

Furthermore, it is currently unclear whether collaboration of DDK

and Cdc5 is a widespread phenomenon that may affect other Cdc5

substrates as well, given that mitotic phosphorylation of two

candidate Cdc5 substrates, Ulp2 and Scc1 (Alexandru et al, 2001),

was affected to varying degree by the cdc7D mutation

(Appendix Fig S2E).

Given the known cell cycle regulation of Cdc5 and DDK

(Shirayama et al, 1998; Cheng et al, 1999; Weinreich & Stillman,

1999; Ferreira et al, 2000; Mortensen et al, 2005), the limiting

factor for the temporal regulation of this complex and its

restriction to mitosis is expected to be Cdc5 and not DDK, which

is present already throughout S phase. Consistently, we

observed that forced expression of Cdc5 (using the galactose-

inducible GAL promoter) in cells that were arrested in S phase by

hydroxyurea (HU) led to the premature occurrence of Mms4
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hyperphosphorylation (Fig EV1A; Matos et al, 2013), suggesting

that S-phase DDK is in principle competent for Cdc5 binding and

joint substrate phosphorylation.

Furthermore, we performed additional experiments that

addressed the regulation of Mus81-Mms4 by the DNA damage

response. In M-phase-arrested cells, association of DDK and
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Cdc5 with Mus81-Mms4 was reduced after induction of DNA

damage with phleomycin (Appendix Fig S2F), but this treatment

was not sufficient to induce a significant reduction in the Mms4

phosphorylation shift. Interestingly, when we forced Cdc5 expres-

sion in S-phase cells and compared normal S-phase cells to cells

treated with hydroxyurea (HU), we observed that the Mms4

phosphorylation shift was less pronounced in the presence of

hydroxyurea (HU) (Fig EV1B). These data are therefore

consistent with the current view that DNA damage, specifically

the DNA damage checkpoint, negatively influences Mus81 resolu-

tion activity (Szakal & Branzei, 2013; Gritenaite et al, 2014).

Since DDK is known to be targeted and inhibited by the DNA

damage checkpoint (Weinreich & Stillman, 1999; Lopez-

Mosqueda et al, 2010; Zegerman & Diffley, 2010), it could

become particularly critical to regulate Mms4 phosphorylation

after DNA damage.

Even though DDK and Cdc5 seem to target Mus81-Mms4 in

unison, we tested whether it was possible to resolve differences on

the level of individual phosphorylation sites. Therefore, we

analysed Mms4 phosphorylation sites in M-phase cells after Cdc5

inhibition (Fig 3A and C) or CDC7 deletion (Fig 3B and D) by

SILAC-based mass spectrometry. We also applied two different

experimental set-ups that used either endogenously expressed

Mus81-Mms4 (Fig 3A and B) or overexpressed Mus81-Mms4

(Fig 3C and D), as the latter set-up allowed much better coverage

of Mms4 phosphopeptides in higher order phosphorylation states

(peptides harbouring > 1 phosphorylated site). Cdc5 inhibition or

lack of DDK led to overlapping, but distinct changes in Mms4

phosphorylation sites, suggesting that each kinase phosphorylates

specific sites on Mms4. After Cdc5 inhibition, phosphorylation of

many sites was reduced and among those were sites that match to

a putative Cdc5 consensus [(D/E/N)X(S/T), blue, Fig 3A and C;

Mok et al, 2010]. Overall, CDC7 affected Mms4 phosphorylation

less than Cdc5 inhibition, but nonetheless, we found widespread

changes in the phosphorylation of (S/T)(S/T) motifs (Fig 3B and

D). (S/T)(S/T) motifs were found less abundantly in the doubly

phosphorylated state (Fig 3D, red), while conversely these motifs

were found more abundantly in the state where only the second

(S/T) was singly phosphorylated (Fig 3B and D, yellow), as

expected for a substrate–product relation. These data are thus

consistent with phosphorylation of the second (S/T) priming for

phosphorylation at the preceding (S/T) (Appendix Table S1 and

Appendix Fig S3).

DDK phosphorylation is required for activation of Mus81-Mms4
during mitosis

Phosphorylation of Mms4 by CDK and Cdc5 has previously been

shown to be required for the upregulation of Mus81-Mms4 activity

during mitosis (Matos et al, 2011, 2013; Gallo-Fernández et al,

2012; Szakal & Branzei, 2013). Based on our finding that hyper-

phosphorylation of Mms4 was impaired in the absence of DDK

(Fig 2D and Appendix Fig S2C), we predicted that also Mus81-

Mms4 activity would be influenced. Therefore, we tested the activ-

ity of endogenous Mus819myc-Mms43FLAG immunopurified from

G2/M arrested cells (approx. 5 fmol) on a nicked Holliday junction

(nHJ) substrate (500 fmol) using an assay related to those in

(Matos et al, 2011, 2013; Gritenaite et al, 2014). Notably, the

activity of the endogenous purified Mus81-Mms4 from G2/M cells

exceeded the activity of recombinant Mus81-Mms4 (subjected to a

dephosphorylation step during the purification), indicating that it

is the mitotically activated form (Appendix Fig S4A). Moreover,

the activity of endogenous purified Mus81-Mms4 was not influ-

enced by 350 mM NaCl salt washes. This indicates that the pres-

ence of accessory, salt-labile factors such as Rtt107 or Cdc5 in the

reaction is unlikely to contribute to Mus81 activity (Appendix Fig

S4B and C).

Importantly, when we used this assay to test immunopurified

Mus819myc-Mms43FLAG from mitotic cells lacking DDK (cdc7D or

dbf4D), we observed a reduced activity compared to Mus819myc-

Mms43FLAG from WT cells (Fig 4A and Appendix Fig S4D; also

observed with an RF substrate, Appendix Fig S4E). In order to

exclude that indirect effects of the CDC7 deletion may cause the

reduction in Mus81 activity, we furthermore created an Mms4

mutant that specifically lacks candidate DDK phosphorylation sites.

We chose to mutate (S/T)(S/T) motifs (SS motifs in particular)

and created an mms4-8A mutant that harboured eight S to A

exchanges at the N-terminal (S/T) of the motifs (see Appendix Fig

S3A). This mutant appeared less phosphorylated in mitosis as

judged by a less pronounced phosphorylation shift (Fig 4B).

Furthermore, we observed a reduction in the association of DDK

and Cdc5 with the Mus81-Mms4-8A complex in pull-down experi-

ments (Fig 4B), suggesting that phosphorylation of Mms4 also

plays a role in tethering these kinases. Notably, Mus819myc-

Mms43FLAG-8A from mitotic cells showed a moderate but repro-

ducible reduction in resolution activity on nHJ substrates

compared to WT Mus819myc-Mms43FLAG (Fig 4C and Appendix Fig

Figure 2. DDK and Cdc5 target Mus81-Mms4 in an interdependent manner.

A DDK stably associates with Mus81-Mms4 in mitosis, but not in S phase or G1. Mms43FLAG pull down experiment (left panel, as in Fig 1A) from cells arrested in G1
(with alpha-factor) or in cells progressing synchronously through S phase until mitosis (arrest with nocodazole) reveals that DDK binds specifically in mitosis
concomitant with the raise in Cdc5 levels and Cdc5 binding to Mus81-Mms4. A nocodazole-arrested untagged strain was used as a control. Right panel shows
measurements of DNA content by FACS from the respective samples.

B CDK activity is required for DDK and Cdc5 association with Mus81-Mms4. Mms43FLAG pull down as in (A), but in mitotic WT or cdc28-as1 mutant cells treated with
5 lM 1NM-PP1 for 1 h. Additional Western blots of this experiment are shown in Appendix Fig S5B, including as a control the identical anti-FLAG Western blot.

C Cdc5 activity is required for DDK association with Mus81-Mms4. Mms43FLAG pull down as in (A), but with mitotically arrested WT or cdc5-as1 mutant cells treated
with 10 lM CMK for 1 h.

D, E DDK is required for Cdc5 binding to Mus81-Mms4 in mitosis and the mitotic Mms4 phospho-shift. (D) Mms43FLAG pull down using mitotically arrested cells as in
(A), but using a bob1-1 background (all samples), where the DDK subunit Cdc7 could be deleted. (E) SILAC-based quantification of Mms43FLAG pull downs in
mitotically arrested bob1-1 vs. bob1-1 cdc7D cells. Plotted are the H/L ratios of two independent experiments including label switch.

F The Cdc5 binding region on Dbf4 is required for interaction of DDK and Cdc5 with Mus81-Mms4 and for efficient Mms4 phosphorylation. Mms43FLAG pull down as
in (A), but using mitotically arrested cells expressing N-terminal truncation mutants of Dbf4 lacking aa2–66 (including a D-box motif) or 2–109 [additionally
including the Cdc5 binding site (Miller et al, 2009)].
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A B 

D C 

Figure 3. Analysis of Mms4 phosphorylation sites reveals Cdc5 and DDK target sites, as well as the interdependence between the two.
Changes of the abundance of phosphorylated Mms4 peptides after Cdc5 inhibition (as in Fig 2C) (A, C) or in the absence of Cdc7 (B, D) in mitotically arrested cells.

A, B Depicted are SILAC-based intensity ratios of individual MS evidences for peptides of endogenously expressed Mms4. Evidences of non-phosphorylated Mms4
peptides are shown in grey; evidences of phosphorylated peptides are shown in black, yellow, orange or blue. Blue colour indicates putative Cdc5 phosphorylation
as defined by the (D/E/N)X(S/T) consensus (and additionally S268, which was also very strongly deregulated upon Cdc5 inhibition). Yellow or orange colours mark
singly phosphorylated (S/T)(S/T) motifs, with orange marking p(S/T)(S/T) and yellow marking (S/T)p(S/T). Numbers indicate the phosphorylated residue in the
depicted peptide. An asterisk marks peptide evidences that contained measured intensity values exclusively in the heavy or light sample. For doubly
phosphorylated peptides, the two phospho-sites are separated by a comma. For singly phosphorylated (S/T)(S/T) motifs, peptide ion fragmentation was in some
cases unable to unambiguously identify the phosphorylated residue. In these cases, possible phosphorylation sites are indicated as “a/b”. Note that doubly
phosphorylated (S/T)(S/T) sites were not reproducibly identified under conditions of endogenous Mus81-Mms4 expression.

C, D As in panels (A, B) but using Mus81-Mms4 expressed from a high-copy promoter. Depicted are SILAC-based H/L ratios of individual MS evidences for
phosphorylated peptides only. Peptides were sorted into categories according to their phosphorylation status: putative DDK target sites ((S/T)(S/T) motifs) were
differentiated into the categories p(S/T)p(S/T) (red), p(S/T)(S/T) (orange) or (S/T)p(S/T) (yellow). Phosphorylated peptides matching the Cdc5 consensus site are
coloured in blue. All other phosphorylated peptides are marked in grey. Bars depict the mean of the ratios of the respective category. Overall, Mms4 H/L ratio is
shown on top.
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S4F). These data thus indicate that DDK targets Mus81-Mms4 and

that (S/T)(S/T) phosphorylation events are essential for full

activation of Mus81 in mitosis.

Additionally, we investigated the relevance of the mms4-8A

mutation in vivo. In comparison with mus81D or mms4D mutants,

the mms4-8A mutant showed a hypomorphic phenotype. For
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example, it did neither significantly increase the MMS hypersensitiv-

ity of a yen1D mutant, nor did it confer synthetic lethality with

mutants defective in STR function, such as sgs1D, even though the

mms4-8A sgs1D double mutant displayed a slow growth phenotype

(Figs 4D and EV2A). Importantly, however, we did observe a

strongly increased hypersensitivity towards MMS, when we tested

an mms4-8A sgs1D double mutant and compared it to an sgs1D
single mutant (Fig 4D). The mms4-8A mutation thus leads to a

phenotype that is very similar to other activation-deficient MMS4

mutants in budding and fission yeast (Gallo-Fernández et al, 2012;

Dehé et al, 2013; Matos et al, 2013). Remarkably, the MMS hyper-

sensitivity phenotype of the mms4-8A mutant was highly similar to

that of the Cdc5 binding-deficient dbf4-DN109 mutant (Figs 4E and

EV2B), which also showed reduced survival when combined with

sgs1D (Fig 4E). These data are therefore consistent with DDK func-

tioning to stimulate JM resolution via Mms4 hyperphosphorylation.

It is likely that the mms4-8A mutant is only partially deficient in

DDK phosphorylation, since Mms4 contains overall 15 (S/T)(S/T)

sites and DDK may phosphorylate the protein on non-(S/T)(S/T)

sites as well. We therefore note that an mms4-12A mutant, harbour-

ing four additional S to A exchanges on (S/T)(S/T) motifs, showed

further increased MMS sensitivity in the mms4-12A sgs1D mutant,

when compared to the mms4-8A sgs1D mutant, even though there

were only minor additional effects on either the Mms4 mitotic phos-

phorylation shift or JM resolution activity (Fig EV2C–E).

In order to directly assess whether DDK phosphorylation was

required for Mus81 function during JM resolution, we tested the

influence of the mms4-8A mutant in a genetic crossover assay (Ho

et al, 2010). In this system, a site-specific DSB is induced in

diploid cells and repair products can be measured by the arrange-

ment of markers and colony sectoring (Fig 4F, upper panel). In

this assay, mus81D and mms4D mutants show a reduction in CO

products and a proportional increase in NCO products (Fig 4F; Ho

et al, 2010), as would be expected from a defect in JM resolution

and the accompanying shift of repair pathways towards JM disso-

lution. The mms4-8A mutant shows a similar, albeit weaker defect

in the formation of CO products (Fig 4F), suggesting that the

defect in Mus81 activation in mitosis results in an overall defect in

JM resolution. We therefore conclude that DDK—in conjunction

with Cdc5—acts directly on Mms4 and that these phosphorylation

events are required for efficient Mus81-dependent JM resolution in

mitosis.

The Dpb11-Mms4 interaction is not required for DDK-Cdc5-
dependent activation of Mus81-Mms4

It is noteworthy that the association of DDK and Cdc5 with Mus81-

Mms4 coincides with the formation of the Mus81-Mms4 complex

with scaffold proteins such as Slx4, Dpb11 and Rtt107, which come

together in mitosis (Fig 2A). Therefore, we asked whether the scaf-

fold proteins Dpb11, Slx4 or Rtt107 would be required to target DDK

and Cdc5 to Mus81-Mms4. In order to investigate the influence of

Dpb11, we searched for an MMS4 mutant that was deficient in the

interaction with Dpb11. When we used a two-hybrid approach to

map the Dpb11 interaction site on Mms4, we found that Mms4

constructs comprising aa 1–212 or 101–230 interacted with Dpb11,

while constructs comprising aa 1–195 or 176–230 showed no or

reduced interaction (Appendix Fig S5A). This suggested that the

Dpb11 binding site may be located between aa 101–212 of Mms4.

Consistently, we observed that the Mms4-S201A mutation abolished

binding to Dpb11 in yeast two-hybrid and co-IP (Fig 5A and B),

while the Mms4-S184A mutation reduced it (Fig 5A). Serine 201

and 184 are therefore likely candidates for phospho-sites bound and

read by Dpb11. Serine 201 matches the full CDK consensus motif

(S/T)PxK, while serine 184 matches the minimal CDK consensus

motif (S/T)P. Indeed, we find that CDK inhibition reduced the

Dpb11 interaction with Mus81-Mms4 (Appendix Fig S5B) consistent

with a requirement of CDK phosphorylation for a robust interaction

between Dpb11 and Mms4.

When we investigated the phenotype of the mms4-SS184,201AA

mutant, we found that it showed enhanced hypersensitivity to MMS

specifically in the sgs1D mutant background, consistent with a role

of Dpb11 in JM resolution after MMS damage (Fig 5C). We also

noted that the phenotype of this MMS4 variant differed from that

induced by Dpb11 binding-deficient version of Slx4 [slx4-S486A

(Gritenaite et al, 2014; Ohouo et al, 2012)]. This could suggest that

these mutants are able to separate different Dpb11 functions such as

a mitotic function in conjunction with Mus81-Mms4 and an S-phase

function, which Slx4 and Dpb11 might have independently of

Mus81-Mms4 (Ohouo et al, 2012; Gritenaite et al, 2014; Cussiol

et al, 2015; Princz et al, 2015). However, it also needs to be consid-

ered that Slx4 and Mus81-Mms4 may be connected by more than

one scaffold protein (see below).

Importantly, however, we did not observe a defect in the

association of DDK or Cdc5 with Mus81-Mms4, when we performed

Figure 4. DDK phosphorylation controls activation of Mus81-Mms4 resolvase activity in mitosis.

A DDK is required for mitotic activation of Mus81-Mms4. Resolution assay using a nicked Holliday junction (nHJ) substrate and Mus819myc-Mms43FLAG purified from
mitotically arrested bob1-1 (DDK-WT+), bob1-1 dbf4D and bob1-1 cdc7D strains or untagged control cells. Right panel: quantification of cleavage products. See
Appendix Fig S4D for Western blots samples of anti-myc IPs. Left panel: representative gel image.

B A defect in the phosphorylation of Mms4 (S/T)(S/T) sites causes reduced association of Cdc5 and DDK with Mus81-Mms4 and reduced phosphorylation of Mms4.
Mms43FLAG pull down as in Fig 1A, but using mitotically arrested WT and mms4-8A mutant cells, which harbour 8 serine to alanine exchanges at (S/T)(S/T) motifs
(detailed in Appendix Fig S3).

C Reduced (S/T)(S/T) phosphorylation of Mms4 generates a defect in Mus81-Mms4 activity. Resolution assay as in (A), but comparing mitotic Mus81-Mms4 from
untagged, WT and mms4-8A strains (see Appendix Fig S4F for Western blot samples of anti-myc IPs).

D, E The mms4-8A mutation and lack of the Cdc5-DDK interaction (dbf4-DN109) lead to hypersensitivity towards MMS specifically in the sgs1D background. Shown is
the growth of indicated strains in fivefold serial dilution on plates containing MMS at indicated concentrations after 2 days at 30°C.

F The mms4-8A mutant leads to a reduction in crossover formation. Recombination assay between heterologous ade2 alleles in diploid cells as described in Ho et al
(2010). The top panel indicates markers on both copies of chromosome XV that are used to determine genetic outcomes of DSB repair. Arrow indicates the I-SceI
cut site. Bottom panel indicates rates of crossover events (%) overall (grey) and in the individual classes (red, red/white, white) that differ in gene conversion tract
length. Error bars indicate standard deviation of two independent experiments, each scoring 400–600 colonies per strain.

Data information: (A, C) Depicted are means from three independent experiments, error bars correspond to standard deviation.

◀
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Mms4-S201A3FLAG pull downs and compared them to a WT

Mms43FLAG pull down (Fig 5B). Furthermore, we only observed a

very minor defect in the in vitro resolution of nHJ substrates, when

we purified Mus81-Mms4 from mitotically arrested mms4-S201A

cells (Appendix Fig S5C). We therefore reason that Dpb11 is most

likely not involved in promoting Mms4 phosphorylation or

DDK-Cdc5-dependent activation of Mus81-Mms4.

The Rtt107 scaffold recruits DDK and Cdc5 to Mus81-Mms4

Having excluded a role of Dpb11 in the recruitment of DDK and

Cdc5, we next tested a possible involvement of the Rtt107 scaffold

protein. Indeed, when we used an rtt107D mutant in IP and SILAC-

based IP-MS experiments, we observed that DDK and Cdc5 binding

to Mus81-Mms4 was strongly reduced (Fig 6A and Appendix Fig

S6A). Interestingly, Rtt107 bound to DDK and Cdc5 even under

conditions where Rtt107 binding to Mus81-Mms4 was abolished

(mus81D, Appendix Fig S6B). This suggests that Rtt107 may form a

subcomplex with DDK and Cdc5. Consistently, we found that Rtt107

bound to Cdc7 in a two-hybrid assay (Fig 6B). These data therefore

suggest that Rtt107 mediates binding of DDK and Cdc5 to the

Mus81-Mms4 complex, most likely via a Cdc7 interaction site on

Rtt107.

During our co-IP studies, we furthermore found that the location

of Rtt107 in the mitotic Mus81-Mms4 complex was different than

expected. Given that Slx4 was required to bridge between Rtt107

and Dpb11 (Ohouo et al, 2010) and that Mms4 and Dpb11 seem-

ingly interact directly (Gritenaite et al, 2014 and Fig 5A and B), we

initially expected that Slx4 and Dpb11 would be required to mediate

the interaction between Rtt107 and Mus81-Mms4. Surprisingly, we

found that an slx4D mutant did not influence DDK or Cdc5 binding

to Mus81-Mms4 and thereby differed from rtt107D (Fig 6A). There-

fore, we tested if Rtt107 could bind to Mus81-Mms4 independently

of Slx4 or Dpb11. Indeed, we found that the Mus81-Mms4 interac-

tion to Rtt107 was not influenced by the slx4D mutant (Fig 6C) or

the Dpb11 binding-deficient mms4-S201A allele (Fig 6D), indicating

that Rtt107 binding to the Mus81-Mms4 complex occurs indepen-

dently of the other scaffold proteins. In contrast, our data also show

that its binding is strongly dependent on kinases and Mms4 phos-

phorylation, since Rtt107 binding was strongly reduced in the

absence of DDK (Fig 2E), after Cdc5 inhibition (Appendix Fig S2A)

or in the mms4-8A phosphorylation site mutant (Fig EV3).

Therefore, these data provide novel insight into the role of

Rtt107 in Mus81-Mms4 regulation. First, it shows that Rtt107 medi-

ates the association of DDK and Cdc5 kinases with Mus81-Mms4.

Second, it also suggests that Rtt107 may bind directly to Mus81-

Mms4 and that this binding is dependent on Mms4 phosphorylation

and the cell cycle kinases DDK and Cdc5, although an alternative

model whereby Rtt107 indirectly promotes DDK and Cdc5 to tightly

associate with Mus81-Mms4 cannot be ruled out entirely. The fact

that Rtt107 promotes the interaction of Mus81-Mms4 with the

kinases, yet in turn requires the kinases and Mms4 phosphorylation

for interaction, suggests that Rtt107 may be acting after initial Mms4

phosphorylation has occurred and at this late stage tethers the

kinases, thus promoting phosphorylation of otherwise inefficiently

phosphorylated sites.

Rtt107 stimulates Mms4 hyperphosphorylation in order to
enhance Mus81-Mms4 activity in mitosis

Given Rtt107’s involvement in tethering DDK and Cdc5 to the

Mus81-Mms4 complex, we asked whether Rtt107 would mediate
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Figure 5. The interaction between Mms4 and Dpb11 is dispensable for binding of Cdc5 and DDK and mitotic Mus81-Mms4 activation.

A, B Serine 201 of Mms4 is required for Dpb11 binding, but not for interaction with DDK and Cdc5. (A) Two-hybrid interaction analysis using Gal4-BD-Dpb11 with Gal4-
AD-Mms4, Gal4-AD-Mms4-S184A and Gal4-AD-Mms4-S201A constructs. (B) Mms43FLAG pull downs from mitotically arrested cells as in Fig 1A, but using WT or
S201A variants of Mms43FLAG. Asterisks mark cross-reactive bands.

C The Dpb11 binding-deficient allele mms4-SS184,201AA leads to a MMS hypersensitivity specifically in the sgs1D background. Spotting assay as in Fig 4D.
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mitotic hyperphosphorylation of Mms4 and concomitant activation

of the Mus81 nuclease. We observed only a minor effect on the

mitotic phospho-shift of Mms4 when using rtt107D mutants (Fig 6A

and Appendix Fig S2C). However, as it is still unclear which phos-

phorylation sites contribute to the Mms4 phospho-shift, we investi-

gated the effect of rtt107D on individual phosphorylation sites

in our mass spectrometry data. Appendix Fig S7A and B shows

SILAC-based comparisons of Mms4 phosphorylation sites in WT

and rtt107D cells, expressing Mus81-Mms4 from endogenous

(Appendix Fig S7A) or high-copy promoters (Appendix Fig S7B).

The overexpression set-up allowed us to quantify phosphorylation

at (S/T)(S/T) motifs, and we found that double phosphorylation of

several of these sites was reduced (Appendix Fig S7B), although the

change was much smaller compared to cells lacking DDK. On the

other hand, while we could not detect higher order phosphorylated

Mms4 peptides using endogenous Mus81-Mms4, we could detect an

effect of Rtt107 on several other sites (T209, S241 and S268, and to

a lesser extent S286; Appendix Fig S7A), which were also deregu-

lated after Cdc5 inhibition (Fig 3A and C). These data are thus

consistent with Rtt107 promoting efficient DDK and Cdc5 phospho-

rylation of Mms4.

Therefore, we tested whether Rtt107 would affect the mitotic

activation of Mus81-Mms4. We immunopurified Mus819myc-

Mms43FLAG from WT and rtt107D cells that were arrested in mitosis

and found that Mus81-Mms4 activity on a nHJ substrate was

reduced in the rtt107D background (Fig 7A and Appendix Fig S7C).

Furthermore, in the background of deficient DDK (cdc7D bob1-1),

additional mutation of rtt107D did not lead to a further defect in

A B GAL4-BD  GAL4-AD 
Cdc7 
Dbf4 

empty 
empty 

empty 
Cdc7 
Dbf4 

Rtt107 
Rtt107 
Rtt107 

empty Cdc5 
Cdc7 Cdc5 
Dbf4 Cdc5 

control -HIS 

Mms43FLAG 

IP: FLAG input 

MMS4-3FLAG
slx4
rtt107

anti-FLAG 

Cdc7 
anti-Cdc7 

Cdc5 

anti-Cdc5 

anti-FLAG 

anti-myc

Mms49myc 

Rtt1073FLAG 

RTT107-3FLAG
MMS4-9myc

IP: FLAG input 

slx4

anti-Cdc5 

Cdc5

Cdc7

Dbf4

anti-Cdc7 

anti-Dbf4 

C D 

Figure 6. The Rtt107 scaffold tethers DDK and Cdc5 to Mus81-Mms4 independently of Slx4 and Dpb11.

A Rtt107, but not Slx4, is required for DDK and Cdc5 interaction with Mus81-Mms4. Mms43FLAG pull downs from mitotically arrested cells as in Fig 1A, but specifically
comparing interactions of Mus81-Mms4 in WT, slx4D, rtt107D and slx4D rtt107D mutant backgrounds.

B Rtt107 interacts with Cdc7. Two-hybrid interaction was tested using Gal4-BD-Rtt107 constructs and Gal4-AD-Cdc7 or Gal4-AD-Dbf4 constructs. Interaction between
Gal4-BD-Cdc5 and Gal4-AD-Dbf4 serves as positive control.

C Rtt107 interacts with Mus81-Mms4, DDK and Cdc5 independently of Slx4. Rtt1073FLAG co-IPs from untagged control, WT or slx4D cells arrested in mitosis were
probed for indicated proteins.

D Rtt107 interacts with Mus81-Mms4 independently of the Mms4-Dpb11 interaction. SILAC-based Mms43FLAG pull down in WT and mms4-S201A cells reveals changes
in the Dpb11 association, but not in Rtt107, Slx4, Cdc5 or DDK binding. Plotted are the H/L ratios of two experiments including label switch.
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Mus81-mediated cleavage (Appendix Fig S7D). Therefore, we

conclude that Rtt107 is required for full mitotic activation of Mus81-

Mms4 and that it works at least in part through cell cycle kinases

such as DDK.

In order to test whether such a defect in Mus81-Mms4 activation

would translate into a shifted balance of JM removal pathways, we

measured rates of crossover and non-crossover formation in the

absence of Rtt107. We observed a reduction in crossover rates in

the rtt107D mutant indicating a shift in the balance of JM removal

pathways (Fig 7B). The decrease was mostly visible in one class of

recombinants (Fig 7B, “red”) and is smaller compared to the pheno-

type of a mus81D or a mms4-8A mutant (Ho et al, 2010; Fig 4F),

consistent with a stimulatory but non-essential role of the Rtt107

scaffold in Mus81-Mms4 function. These data thus provide the first

mechanistic insight of how the interaction of the mitotic Mus81-

Mms4 complex with the scaffold proteins influences Mus81

function, as Rtt107 facilitates DDK and Cdc5 tethering, full mitotic

phosphorylation of Mms4 and activation of Mus81-Mms4.

Discussion

Activation of Mus81-Mms4 during mitosis is critical for the response

to DNA damage, in particular to process repair intermediates that

may arise from DSBs and stalled replication forks (Matos et al,

2011, 2013; Gallo-Fernández et al, 2012; Saugar et al, 2013; Szakal
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Figure 7. Rtt107 is required for efficient Mus81-Mms4 activation in mitosis.

A Mus81-Mms4 purified from mitotic rtt107D cells is less active compared to Mus81-Mms4 from WT cells. In vitro resolution activity of Mus819myc-Mms43FLAG purified
from WT or rtt107D cells is tested on a nHJ substrate (see Appendix Fig S7C for control Western blot). Right panel: quantification of cleavage products from three
independent experiments (mean � SD). Left panel: representative gel picture.

B The rtt107D mutant leads to a reduction in crossover formation. Recombination assay as in Fig 4F. Note that the rtt107D mutant particularly affects crossover
formation in the red class (long conversion tracts), while no significant defect could be observed in the red/white and white class (mean � SD).

C Hypothetical model of Mus81-based JM resolution. Upper panel: cell cycle regulation of JM removal pathways, indicating Mus81 activation in mitosis. Lower panel:
physical interactions of Mus81-Mms4 and its regulatory complex in mitotic cells. Grey arrows indicate physical interactions; green arrows specifically indicate kinase–
substrate interactions. Genetic data indicate a hierarchy of molecular events leading to Mus81 activation. (1) DDK, Cdc5 and CDK (not shown) phosphorylate Mms4.
(2) Rtt107 binds to DDK and Cdc5 and—in a phosphorylation-dependent manner—associates with Mus81-Mms4. This interaction is either direct or could potentially
depend on bridging effects by DDK and Cdc5. Rtt107 promotes the stable interaction of DDK and Cdc5 with Mus81-Mms4 and thus full phosphorylation of Mms4 and
Mus81 activation. (3) Upon Mms4 phosphorylation, two scaffold proteins, Rtt107 and Dpb11, bind independently to Mus81-Mms4. Both proteins can also bind to Slx4
enabling two alternative connections of Slx4 with Mus81-Mms4.
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& Branzei, 2013). Previously, this regulation was shown to critically

depend on phosphorylation by the cell cycle kinases CDK and Cdc5

(Matos et al, 2011, 2013; Gallo-Fernández et al, 2012; Saugar et al,

2013; Szakal & Branzei, 2013), but also involve the formation

of a multi-protein complex comprising several scaffold proteins

(Gritenaite et al, 2014). Here, we not only identify a new cell cycle

kinase to be crucial for this regulation—DDK—but moreover show

that the two regulatory pathways—cell cycle kinase phosphorylation

and scaffold complex formation—are connected by Rtt107 (see

Fig 7C for a hypothetical model). Rtt107 association depends on

active cell cycle kinases and Mms4 phosphorylation, but in turn

Rtt107 is required for stable DDK and Cdc5 association with the

Mus81-Mms4 complex, as well as full phosphorylation of Mms4 and

mitotic activation of Mus81. This study thus extends our mechanistic

understanding of the regulatory framework that controls cell

cycle-regulated JM resolution.

Interestingly, our work shows that for its function as a regulator of

Mus81-Mms4 DDK must act interdependently and as a complex with

Cdc5. DDK and Cdc5 have been shown to interact physically (Miller

et al, 2009; Chen & Weinreich, 2010), but until now DDK was viewed

to antagonize mitotic functions of Cdc5 (Miller et al, 2009). In

contrast, in meiosis I DDK and Cdc5 are known to cooperate in order

to promote chromosome segregation and jointly phosphorylate the

monopolin and cohesin subunits Lrs4 and Rec8, respectively, as well

as the meiotic regulator Spo13 (Matos et al, 2008). We now provide

the first example for a joint DDK and Cdc5 substrate in the mitotic cell

cycle, suggesting that cooperation between DDK and Cdc5 could be a

more widespread phenomenon than previously anticipated. The

apparent antagonism between DDK and Cdc5 in the regulation of

mitotic exit (Miller et al, 2009), a canonical Cdc5 function, could be

explained if DDK targeted Cdc5 to a specialized subset of substrates

rather than to substrates involved in mitotic exit. It is also interesting

to note that we could detect significant DDK binding to Mus81-Mms4

only after cells finished S phase (Fig 2A). Therefore, the role of DDK

in Mms4 phosphorylation is clearly post-replicative and further

challenges a simplified view of DDK as an S-phase kinase (Matos

et al, 2008). It will therefore be interesting to see whether additional

DDK substrates during mitosis can be identified and whether DDK

collaborates with Cdc5 for their phosphorylation as well.

Mus81-Mms4 has previously been shown to be cell cycle-regulated

and Mms4 to be a critical CDK and Cdc5 phosphorylation

target (Matos et al, 2011; Gallo-Fernández et al, 2012). We add

DDK to this already complex regulation. Our data clearly show that

phosphorylation of (S/T)(S/T) motifs is critical for Mus81-Mms4

function. The hypomorphic phenotype of the mms4-8A mutant

(Fig 4C, D and F) is likely due to additional DDK phosphorylation

sites either on Mms4 or perhaps even on Mus81. Importantly, DDK

does not appear to establish the timing of Mms4 phosphorylation in

mitosis, as Cdc5 still seems to be the limiting factor for this temporal

control in undisturbed cell cycles (Fig EV1B). However, the fact that

activation of Mus81-Mms4 depends on the activity of several

kinases makes it a coincidence detector that integrates the activity

of several cell cycle regulators. Therefore, it can be envisioned that

there are specific cellular conditions under which DDK activity

becomes limiting for Mus81-Mms4 activation. Notably, DNA

damage checkpoint kinases are known to phosphorylate DDK and

counteract its function during S phase (Weinreich & Stillman, 1999;

Lopez-Mosqueda et al, 2010; Zegerman & Diffley, 2010). Therefore,

it can be speculated that the checkpoint acts as a negative regulator

of Mus81-Mms4 activation via inhibition of DDK. Such regulation

could therefore explain how the presence of DNA damage restricts

Mus81 activity towards replication intermediates (Matos et al, 2011,

2013; Saugar et al, 2013; Szakal & Branzei, 2013; Gritenaite et al,

2014), suggesting that cell cycle and checkpoint pathways converge

in the regulation of Mus81.

A second layer of Mus81 regulation relies on the formation of a

multi-protein complex, which assembles specifically in mitosis and

contains Mus81-Mms4, DDK, Cdc5 and Slx4 as well as the scaffold

proteins Dpb11 and Rtt107 (Gritenaite et al, 2014). We are only

beginning to understand the mechanism whereby this scaffold

complex influences Mus81 function. Here, we show that Rtt107, but

not Dpb11 or Slx4, promotes the stable association of DDK and

Cdc5 with Mus81-Mms4 (Fig 6), suggesting that one function of the

multi-protein complex is to promote efficient Mus81-Mms4 phos-

phorylation. Conversely, our new data as well as our previous work

(Gritenaite et al, 2014) show that phosphorylation by cell cycle

kinases also regulates the formation of the multi-protein complex.

In particular, Rtt107 association with Mus81-Mms4 depends

strongly on DDK and Cdc5 (Fig 2E and Appendix Fig S2A). A direct

interaction of Rtt107 with Mus81-Mms4 seems the most plausible

interpretation of our data, although we currently cannot exclude

that Rtt107 may facilitate the interaction of DDK and Cdc5 with

Mus81-Mms4 without a direct interaction. A possible phosphoryla-

tion dependence of Rtt107 binding to the complex could thus

originate from Mms4 phosphorylation generating a binding site for

Rtt107 [e.g. for Rtt107 BRCT domains (Li et al, 2012)].

Importantly, Rtt107 is in turn required for stable binding of DDK

and Cdc5 (Fig 6A and Appendix Fig S6A). Via tethering the kinases,

Rtt107 regulates the phosphorylation of specific Mms4 sites and is

required for full Mus81 activation (Fig 7A and Appendix Fig S7A

and B). The interdependence between Rtt107 and Cdc5/DDK

phosphorylation therefore suggests that Rtt107 may be part of a

signal amplification mechanism, which ensures efficient

Mus81-Mms4 phosphorylation and activation. Mechanistically,

Rtt107-dependent stimulation of Mms4 phosphorylation thus resem-

bles a kinase priming mechanism. It is entirely possible that other

kinase priming mechanisms for either Cdc5 or DDK are at work in

the Mms4 phosphorylation cascade, although the in vitro kinase

assays with full-length proteins did not provide support for such a

mechanism (Fig 1B, and Appendix Fig S1C and D). Altogether, it

seems plausible to speculate that Rtt107-dependent and Rtt107-

independent amplification mechanisms are involved in generating a

switch-like activation of Mus81 in mitosis.

Furthermore, Rtt107 can also bind to Slx4 (Ohouo et al, 2010).

There are thus two BRCT-containing scaffold proteins—Dpb11

(Gritenaite et al, 2014) and Rtt107—that could bridge between

Mus81-Mms4 and Slx4. Interestingly, our data with different mms4

mutants suggest that either one of these BRCT scaffold proteins is

sufficient to connect Slx4 and Mus81-Mms4 [Figs 6D and EV3; note

that the rtt107D mutant (Appendix Fig S6A) is difficult to interpret

in this regard as it also leads to defects in Slx4 phosphorylation and

the Slx4-Dpb11 interaction (Ohouo et al, 2010)]. This redundancy

may thus explain the modest phenotype of the mms4-S201A mutant

that is deficient in the Mms4-Dpb11 interaction (Fig 5C).

Several aspects of Mus81-Mms4 regulation are conserved

throughout eukaryotic evolution. The HJ resolution activity of
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Mus81-Eme1 in mammalian cells is cell cycle-regulated (Matos et al,

2011; Wyatt et al, 2013). Mus81-Eme1 furthermore binds to Slx4

and forms multi-protein complexes (Fekairi et al, 2009; Muñoz

et al, 2009; Svendsen et al, 2009; Castor et al, 2013; Wyatt et al,

2013), albeit these complexes may have a different organization to

that in yeast. Therefore, it will be interesting to explore in the future

if in human cells DDK is also required for activation of Mus81-Eme1

and if this mechanism may contribute to the anti-tumorigenic activ-

ity of DDK inhibitors (Montagnoli et al, 2008).

Materials and Methods

All yeast strains are based on W303 and were constructed using

standard methods. Plasmids were constructed using the In-Fusion

HD cloning kit (Clontech Laboratories), and mutations were intro-

duced by site-directed mutagenesis. A summary of all yeast strains

used in this study can be found in the Appendix Table S2.

Cell cycle synchronization was achieved using alpha-factor (G1),

hydroxyurea (S), or nocodazole (mitosis). DNA content was

measured by flow cytometry with a BD FACSCalibur system using

SYTOX green to stain DNA.

Co-immunoprecipitations of yeast extracts were performed on

anti-FLAG agarose resin (Sigma) for 2 h with head-over-tail rotation

at 4°C as previously described (Gritenaite et al, 2014). After bead

washing, proteins were eluted by 3X FLAG-peptide (Sigma), precipi-

tated and separated on 4–12% Bis-Tris gels. For SILAC-based mass

spectrometry, cells were labelled with heavy-isotope-labelled lysine

(Lys6 or Lys8), and proteins were digested with Lys-C. Mass spec-

trometry data were analysed using MaxQuant (Cox & Mann, 2008).

Yeast two-hybrid assays, genetic interaction assays, in vitro

kinase assays and peptide binding assays were performed as

described previously (Pfander & Diffley, 2011; Gritenaite et al, 2014).

Nuclease assays were done as described (Matos et al, 2011,

2013). Briefly, Mus819myc was immunopurified from mitotically

arrested cells and mixed with 50-Cy3-end-labelled nicked Holli-

day junctions. After incubation at 30°C for the indicated times, the

reaction was stopped by proteinase K and SDS for 1 h at 37°C. Prod-

ucts were separated by 10% PAGE, and cleavage efficiency was

normalized to the level of immunoprecipitated Mus819myc.

Unspecific nHJ cleavage in untagged controls was subtracted in the

quantifications.

DSB-induced recombination assays were performed as described

(Ho et al, 2010). Diploids harbouring I-SceI under the control of the

GAL promoter were grown in adenine-rich raffinose medium and

arrested in mitosis. Nuclease expression was induced by addition of

galactose for 2.5 h. Cells were plated on YPAD and replica plated on

YPAD + Hyg + Nat, YPAD + Hyg, YPAD + Nat, SC-Met, SC-Ura and

SCR-ADE + Gal media after 3–4 days to classify recombination events.

Detailed experimental procedures are available in the Appendix.

Data availability

Mass spectrometric datasets are available at EBI PRIDE. DDK and

the Rtt107 scaffold promote Mus81-Mms4 resolvase activation

during mitosis (2015). PXD005356.

Expanded View for this article is available online.
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Abstract Holliday junctions (HJs) are key DNA intermediates in homologous recombination.

They link homologous DNA strands and have to be faithfully removed for proper DNA segregation

and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1

complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases.

However, unlike other members of the superfamily, GEN1 contains a chromodomain as an

additional DNA interaction site. Chromodomains are known for their chromatin-targeting function

in chromatin remodelers and histone(de)acetylases but they have not previously been found in

nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers

GEN1’s catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our

mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights

how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA

repair and maintenance.

DOI: 10.7554/eLife.12256.001

Introduction
Homologous recombination (HR) is a fundamental pathway ensuring genome integrity and genetic

variability (Heyer, 2015). In mitotic cells, double-strand breaks (DSBs) can be repaired by HR using

the sister chromatid as a template to restore the information in the complementary double strand. In

meiosis, the repair of programmed DSBs by HR and the formation of crossovers are crucial to pro-

vide physical linkages between homologs and to segregate homologous chromosomes. Further-

more, HR during meiosis creates sequence diversity in the offspring through the exchange between

homologs (Petronczki et al., 2003; Sarbajna and West, 2014).

HR proceeds by pathways that may lead to the formation of DNA four-way junctions or Holliday

junctions (HJs) that physically link two homologous DNA duplexes (Heyer, 2015; Holliday, 1964;

Schwacha and Kleckner, 1995; Szostak et al., 1983). Faithful removal of HJs is critical to avoid

chromosome aberrations (Wechsler et al., 2011) and cells have evolved sophisticated measures to

disentangle joint molecules. One basic mechanism is resolution mediated by HJ resolvases that

introduce precise symmetrical nicks into the DNA at the branch point. Nicked DNA strands are then

rejoined by endogenous ligases leading to fully restored or recombined DNA strands. This mecha-

nism is well studied for bacterial and bacteriophage resolvases such as Escherichia coli RuvC, T7

endonuclease I, T4 endonuclease VII (Benson and West, 1994; Lilley and White, 2001). These

resolvases operate as dimers and show a large degree of conformational flexibility in substrate

Lee et al. eLife 2015;4:e12256. DOI: 10.7554/eLife.12256 1 of 24
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recognition and in aligning both active sites for coordinated cleavage. Interestingly, T4 endonucle-

ase VII and RuvC reach into and widen the DNA junction point whereas T7 endonuclease I binds

DNA by embracing HJs at the branch point (Biertümpfel et al., 2007; Górecka et al., 2013;

Hadden et al., 2007).

In eukaryotes, HR is more complex and tightly regulated. In somatic cells, HJ dissolution by a

combined action of a helicase and a topoisomerase (BLM-TOPIIIa-RMI1-RMI2 complex in humans) is

generally the favored pathway, possibly to restore the original (non-crossover) DNA arrangement

(Cejka et al., 2010, 2012; Ira et al., 2003; Putnam et al., 2009; Wu and Hickson, 2003). In con-

trast, HJ resolution generates crossover and non-crossover arrangements depending on cleavage

direction. Several endonucleases such as GEN1, MUS81-EME1, and SLX1-SLX4 have been implicated

as HJ resolvases in eukaryotes (Andersen et al., 2011; Castor et al., 2013; Fekairi et al., 2009;

Garner et al., 2013; Ip et al., 2008; Muñoz et al., 2009; Svendsen and Harper, 2010;

Svendsen et al., 2009; Wyatt et al., 2013). Interestingly, these resolvases are not structurally

related and have different domain architectures, giving rise to variable DNA recognition and regula-

tion mechanisms. The interplay between resolution and dissolution mechanisms is not fully under-

stood yet, however, cell cycle regulation of resolvases seems to play an important role

(Blanco et al., 2014; Chan and West, 2014; Eissler et al., 2014; Matos et al., 2011).

GEN1 belongs to the Rad2/XPG family of structure-selective nucleases that are conserved from

yeast to humans (Ip et al., 2008; Lieber, 1997; Yang, 2011). The Rad2/XPG family has four mem-

bers with different substrate preferences that function in DNA maintenance (Nishino et al., 2006;

Tsutakawa et al., 2014). They share a conserved N-terminal domain (XPG-N), an internal domain

(XPG-I) and a 5’->3’ exonuclease C-terminal domain containing a conserved helix-hairpin-helix motif.

eLife digest Factors like ultraviolet radiation and harmful chemicals can damage DNA inside

living cells, which can lead to breaks that form across both strands in the DNA double helix.

“Homologous recombination” is one of the major mechanisms by which cells repair these double-

strand breaks. During this process, the broken DNA interacts with another undamaged copy of the

DNA to form a special four-way structure called a “Holliday junction”. The intact DNA strands are

then used as templates to repair the broken strands. However, once this has occurred the Holliday

junction needs to be ‘resolved’ so that the DNA strands can disentangle.

One way in which Holliday junctions are resolved is through the introduction of precise

symmetrical cuts in the DNA at the junction by an enzyme that acts like a pair of molecular scissors.

Re-joining these cut strands then fully restores the DNA. Enzymes that generate the cuts in DNA are

called nucleases, and the nuclease GEN1 is crucial for resolving Holliday junctions in organisms such

as fungi, plants and animals. GEN1 belongs to a family of enzymes that act on various types of DNA

structures that are formed either during damage repair, DNA duplication or cell division. However,

GEN1 is the only enzyme in the family that can also recognize a Holliday junction and it was unclear

why this might be.

Lee et al. have now used a technique called X-ray crystallography to solve the three-dimensional

structure of the human version of GEN1 bound to a Holliday junction. This analysis revealed that

many features in GEN1 resemble those found in other members of the same nuclease family. These

features include two surfaces of the protein that bind to DNA and are separated by a wedge, which

introduces a sharp bend in the DNA. However, Lee et al. also found that GEN1 contains an

additional region known as a “chromodomain” that further anchors the enzyme to the DNA. The

chromodomain allows GEN1 to correctly position itself against DNA molecules, and without the

chromodomain, GEN1’s ability to cut DNA in a test tube was severely impaired. Further experiments

showed that the chromodomain was also important for GEN1’s activity in yeast cells growing under

stressed conditions.

The discovery of a chromodomain in this human nuclease may provide many new insights into

how GEN1 is regulated, and further work could investigate if this chromodomain is also involved in

binding to other proteins.

DOI: 10.7554/eLife.12256.002
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C-terminal to the nuclease core is a regulatory region that is diverse in sequence and predicted to

be largely unstructured. Although the catalytic cores are well conserved in the superfamily, substrate

recognition is highly diverse: XPG/Rad2/ERCC5 recognizes bubble/loop structures during nucleo-

tide-excision repair (NER), FEN1 cleaves flap substrates during Okazaki fragment processing in DNA

replication, EXO1 is a 5’->3’ exonuclease that is involved in HR and DNA mismatch repair (MMR)

and GEN1 recognizes Holliday junctions (Grasby et al., 2012; Ip et al., 2008; Nishino et al., 2006;

Tomlinson et al., 2010; Tsutakawa et al., 2014). A common feature of the superfamily is their inher-

ent ability to recognize flexible or bendable regions in the normally rather stiff DNA double helix.

Interestingly, GEN1 shows versatile substrate recognition accommodating 5’ flaps, gaps, replication

fork intermediates and Holliday junctions (Ip et al., 2008; Ishikawa et al., 2004; Kanai et al., 2007).

According to the current model, however, the primary function of GEN1 is HJ resolution

(Garner et al., 2013; Sarbajna and West, 2014; West et al., 2015) and it is suggested to be a last

resort for the removal of joint molecules before cytokinesis (Matos et al., 2011).

To date, structural information is available for all members of the family but GEN1 (Miętus et al.,

2014; Orans et al., 2011; Tsutakawa et al., 2011). A unified feature of these structures is the pres-

ence of two DNA-binding interfaces separated by a hydrophobic wedge. This wedge is composed

of two protruding helices that induce a sharp bend into flexible DNA substrates. Rad2/XPG family

members also share a helix-two-turn-helix (H2TH) motif that binds and stabilizes the uncleaved DNA

strand downstream of the catalytic center. However, the comparison of DNA recognition features

within the Rad2/XPG family has been hampered because of the lack of structural information on

GEN1.

To understand the molecular basis of GEN1’s substrate recognition, we determined the crystal

structure of human GEN1 in complex with HJ DNA. In combination with mutational and functional

analysis using in vitro DNA cleavage assays and in vivo survival assays with mutant yeast strains, we

highlight GEN1’s sophisticated DNA recognition mechanism. We found that GEN1 does not only

have the classical DNA recognition features of Rad2/XPG nucleases, but also contains an additional

DNA interaction site mediated by a chromodomain. In the absence of the chromodomain, GEN1’s

catalytic activity was severely impaired. This is the first example showing the direct involvement of a

chromodomain in a nuclease. Our structural analysis gives implications for a safety mechanism using

an adjustable hatch for substrate discrimination and to ensure coordinated and precise cleavage of

Holliday junctions.

Results

Structure determination and architecture of the GEN1-DNA complex
In order to structurally characterize human GEN1, we crystallized the catalytically inactive variant

GEN12-505 D30N, denoted GEN1 for simplicity, in complex with an immobile Holliday junction having

arm lengths of 10 bp (Figure 1). The structure was determined experimentally and refined up to

3.0 Å resolution with an Rfree of 0.25 (Table 1). The HJ crystallized bridging between two protein

monomers in the asymmetric unit (Figure 1—figure supplement 1). The overall structure of GEN1

resembles the shape of a downwards-pointing right hand with a ’thumb’ extending out from the

’palm’ and the DNA is packed against the ball of the thumb (Figure 1). The palm contains the cata-

lytic core, which is formed by intertwined XPG-N and XPG-I domains (Figure 1A/B, green). They

consist of a seven-stranded b-sheet in the center surrounded by nine helices harboring the con-

served active site (Figure 1B/D, orange). The catalytic residues form a cluster of negatively charged

residues (D30, E75, E134, E136, D155, D157, D208) that were originally identified by mutational

analysis (Ip et al., 2008; Lee et al., 2002; Wakasugi et al., 1997) and are conserved in other Rad2/

XPG family members (Figure 1B/C and Figure 2). The XPG-I domain is followed by a 5’->3’ exonu-

clease C-terminal domain (EXO; Figure 1B/D, blue). The EXO domain consists of a helix-two-turn-

helix (H2TH) motif (helices a10-a11) accompanied by several a-hairpins (a12-a13 and a14-a15). A

similar arrangement is also found in other proteins, which use a H2TH motif for non-sequence spe-

cific DNA recognition (Tomlinson et al., 2010). The EXO domain in GEN1 has a 78 amino acid inser-

tion (residues 245–322), of which only helix a12b (residues 308–322) is ordered in the structure

(Figure 1A, gray and Figure 2). Helix a12b packs loosely with the H2TH helices (a10-a11) and helix

a12 at the ’finger’ part of GEN1. Yeast Rad2, a homolog of human XPG, also contains helix a12b,
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Figure 1. Architecture of human GEN1. (A) Domain architecture of human GEN1. The structurally unknown

regulatory domain (residues 465–908) is shown with dotted lines. (B) Overview of the catalytic core of GEN1 in

complex with HJ DNA. The protein resembles the shape of a downwards-pointing right hand with helix a6 as the

thumb. The protein is depicted in half transparent surface representation with secondary structure elements

underneath. The DNA is shown in ladder representation with individual strands in different colors. The coloring of

GEN1 follows domain boundaries: intertwining XPG-N and XPG-I in green, 5’->3’ exonuclease C-terminal domain

(EXO) in blue, chromodomain in pink, unassigned regions in gray. Active site residues (E134, E136, D155, D157)

are highlighted in orange. (C) Electrostatic surface potential of GEN1. The coloring follows the potential from -5

(red) to +5 kT/e (blue). The DNA-binding interfaces and the position of the hydrophobic wedge are marked in

yellow. (D) Secondary structure elements of the catalytic core of GEN1 in cartoon representation with the same

Figure 1 continued on next page
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and it shows a similar arrangement as in GEN1 (Figure 1F). The EXO domain sandwiches the XPG-

N/I domains with a long linker reaching from the bottom ’fingers’ (a10-a13) along the backside of

GEN1 to the top of the XPG-N/I domains at the ’wrist’ (a14-a15). A structure-based sequence align-

ment of the nuclease core of human GEN1, FEN1, EXO1 and yeast Rad2 proteins with functional

annotations relates sequence conservation to features in the Rad2/XPG family (Figure 2). The com-

parison with members in the Rad2/XPG identified two DNA binding interfaces and a hydrophobic

wedge (ball of the thumb) that separates the upstream and the downstream interface (Figure 1C/D

and compare Figure 1F). GEN1 has two prominent grooves close to the hydrophobic wedge, which

we termed upper and lower gate or gateway for comparison (Figure 1D, orange and blue ellipses,

respectively).

Notably, a small globular domain (residues 390–464) was found extending the GEN1 nuclease

core at the wrist (Figure 1, pink). A DALI search (Holm and Rosenström, 2010) against the Protein

Data Bank (PDB) identified this domain as a chromodomain (chromatin organization modifier

domain). The domain has a chalice-shaped structure with three antiparallel b-strands packed against

a C-terminal a-helix and it forms a characteristic aromatic cage. The opening of the chalice abuts

helix a15 from the EXO domain.

GEN1 has a conserved chromodomain with a closed aromatic cage
Chromodomains are found in many chromatin-associated proteins that bind modified histone tails

for chromatin targeting (reviewed in Blus et al., 2011; Eissenberg, 2012; Yap and Zhou, 2011), but

it has not previously been associated with nucleases. To understand the significance of the chromo-

domain for the function of GEN1, we first examined if the chromodomain is conserved in GEN1

homologs using HMM-HMM (Hidden Markov Models) comparisons in HHPRED (Söding et al.,

2005). We found that the chromodomain in GEN1 is conserved from yeast (Yen1) to humans

(Figure 3A). The only exception is Caenorhabditis elegans GEN1, which has a much smaller protein

size of 443 amino acids compared to yeast Yen1 (759 aa) or human GEN1 (908 aa).

To further compare the structural arrangement of the aromatic cage in human GEN1 with other

chromodomains, we analyzed the best matches from the DALI search (Figure 3B). We found many

hits for different chromo- and chromo-shadow domains with root mean square deviations between

1.9 and 2.8 Å (compare Figure 3—source data 1). A superposition of the aromatic cage of the five

structurally most similar proteins with GEN1 (Figure 3C) showed that residues W418, T438, and

E440 are well conserved, whereas two residues at the rim of the canonical binding cleft are changed

from phenylalanine/tyrosine to a leucine (L397) in one case and a proline (P421) in another

(Figure 3C). Instead, Y424 occupies the space proximal to P421, which is about 1.5 Å outwards of

the canonical cage and widens the GEN1 cage slightly. The substitution of phenylalanine/tyrosine to

leucine is also found in CBX chromo-shadow domains (see below); however, the rest of the GEN1

aromatic cage resembles rather chromodomains.

Chromodomains often recognize modified lysines through their aromatic cage thus targeting pro-

teins to chromatin (reviewed in Blus et al., 2011; Eissenberg, 2012; Yap and Zhou, 2011). Given

the conserved aromatic cage in GEN1, we tested the binding to modified histone tail peptides

Figure 1 continued

colors as before. Dotted lines represent parts that are not resolved in the crystal structure. The numbering follows

a unified scheme for the Rad2/XPG family (compare Figure 2) for a-helices, b-sheets and 310-helices (h). (E)

Experimental electron density map (autoSHARP, solvent flattened, contoured at 1s) drawn around the HJ in the

GEN1 complex. The DNA model is shown in ball-stick representation with carbon atoms of individual strands in

different colors (yellow, light blue, magenta, green) and oxygen atoms in red, phosphor atoms in orange, nitrogen

atoms in dark blue. (F) Structural comparison of Rad2/XPG family nucleases. Proteins are shown in a simplified

surface representation with important structural elements in cartoon representation and DNA in ladder

representation. The color scheme is the same as in B. Figure 1—figure supplement 1 shows the content of the

asymmetric unit.

DOI: 10.7554/eLife.12256.003

The following figure supplement is available for figure 1:

Figure supplement 1. Content of the asymmetric unit of the GEN1-HJ crystal.

DOI: 10.7554/eLife.12256.004
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(Figure 3C/D). However, we did not detect any binding despite extensive efforts using various his-

tone tail peptides in pull-down assays, microscale-thermophoresis (MST) or fluorescence anisotropy

measurements (compare Figure 3—source data 2 and Figure 3—figure supplement 2). Our struc-

ture shows that the aromatic cage is closed by helix a15 (Figure 3E blue/pink), which has a hydro-

phobic interface towards the aromatic cage with residues L376, T380, and M384 reaching into it

(compare Figure 4F). This potentially hampers the binding of the tested peptides in this conforma-

tion under physiological conditions.

Table 1. Data collection and refinement statistics.

Data Set G505-4w006native G505-4w006Ta peak G505-4w006SeMet peak

Diffraction Data Statistics

Synchrotron Beamline SLS PXII SLS PXII SLS PXII

Wavelength 0.99995 1.25473 0.97894

Resolution (Å) 75-3.0 75.4-3.8 43.6-4.4

Space Group P 32 P 32 P 32

Cell dimensions

a (Å) 86.94 87.06 87.11

b (Å) 86.94 87.06 87.11

c (Å) 200.72 201.30 199.69

a (˚) 90 90 90

b (˚) 90 90 90

g (˚) 120 120 120

I/sI* 18.4 (1.9) 27.49 (5.83) 16.58 (3.82)

Completeness (%)* 99.8 (98.8) 99.6 (97.3) 97.3 (83.3)

Redundancy* 6.3 10.2 5.1

Rsym (%)* 6.2 (90.7) 7.7 (42.2) 6.9 (43.4)

Refinement Statistics

Resolution (Å) 75-3.0

Number of Reflections 33933

Rwork/Rfree 0.199/0.241

Number of Atoms

Protein 6298

DNA 1589

Water/Solutes 27

B-factors

Protein 123.4

DNA 150.2

Water/Solutes 92.6

R.M.S Deviations

Bond lengths (Å) 0.010

Bond Angles (˚) 0.623

Ramachandran Plot

Preferred 753 (97.9 %)

Allowed 16 (2.1%)

*Values for the highest resolution shell are shown in parenthesis

DOI: 10.7554/eLife.12256.005
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The GEN1 chromodomain is distantly related to CBX and CDY
chromodomains
To explore the functional role of the GEN1 chromodomain, we evaluated its similarity to other chro-

modomains by comparing all of the 46 known human chromodomains from 34 different proteins.

We made pairwise comparisons with HHPRED, PSIBLAST, combined the alignments and generated

a phylogenetic tree (Figure 3F and Figure 3—figure supplement 1). The analysis showed a tree

Figure 2. Alignment of the nuclease cores of Rad2/XPG-family proteins. The alignment is based on known crystal structures: human GEN1 (PDB 5t9j,

this study), yeast Rad2 (PDB 4q0w), human FEN1 (PDB 3q8k), human EXO1 (3qe9). Secondary structure elements are depicted on top of the sequence

with dark blue bars for a-helices, light blue bars for 310-helices and green arrows for b-sheets. The numbering follows a unified scheme for the

superfamily. Functional elements are labeled and described in the main text. Sequences are colored by similarity (BLOSUM62 score) and active site

residues are marked in red. Mutations analyzed in this study are marked with an orange triangle and DNA contacts found in the human GEN1–HJ

structure have a dark green dot. Disordered or missing parts in the structures are labeled in small letters or with x.

DOI: 10.7554/eLife.12256.006
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Figure 3. Chromodomain comparison. (A) Sequence alignment of GEN1 chromodomains from different organisms: hsGEN1 (Homo sapiens), clGEN1

(Canis lupus), mmGEN1 (Mus musculus), drGEN1 (Danio rerio), atGEN1/2 (Arabidopsis thaliana), cgGEN1 (Crassostrea gigas), scYEN1 (Saccharomyces

cerevisiae). The presence of a chromodomain is conserved from yeast to human with Caenorhabditis elegans as an exception. Secondary structure

elements of the GEN1 chromodomain are shown on top. The sequence coloring is based on a similarity matrix (BLOSUM62). The corresponding

positions of the DNA-interaction site in human GEN1 is marked with a red box and residues of the aromatic cage are highlighted with a yellow box. (B)

GEN1 has a canonical chromodomain fold of three antiparallel beta-sheets packed against an a-helix. (C) The arrangement of the aromatic cage in

GEN1 is comparable to other chromodomains but less aromatic and slightly larger. (D) The superposition of different chromodomains places cognate

binding peptides of hsMPP8 and mmCBX7 (and others) into the aromatic cage. (E) The aromatic cage of GEN1 is closed by helix a15. Panels B–D show

the chromodomains of hsGEN1 (pink, PDB 5t9j), hsCBX3 (gray, PDB 3kup) hsSUV39H1 (green, PDB 3mts), hsMPP8 (yellow, PDB 3lwe), dmHP1a (orange,

chromo shadow PDB 3p7j), dmRHINO (cyan, PDB 4quc/3r93), mmCBX7 (light blue, PDB 4x3s; compare Figure 3—source data 1). (F) Phylogenetic tree

of all known human chromodomains. GEN1 is distantly related to the CBX chromo-shadow domains and CDY chromodomains. The corresponding

alignment for calculating the phylogenetic tree is shown in Figure 3—figure supplement 1. GEN1 is colored in black, chromobox (CBX) proteins are

colored in red, interspersed by SUV39H histone acetylases (orange) and chromodomain Y-linked (CDY) proteins (yellow). Chromo-barrel domain

proteins are colored in green and chromodomain-helicase DNA-binding (CHD) proteins are in blue. Chromodomains and chromo-shadow domains

from the same protein are labeled with 1 and 2, respectively. Stable branches with boostrap values equal or higher than 0.8 are marked with a black

dot. The binding of the GEN1 chromodomain to a set of histone peptides was tested but no interaction was detected (Figure 3—source data 2 and

Figure 3—figure supplement 2).

DOI: 10.7554/eLife.12256.007

The following source data and figure supplements are available for figure 3:

Source data 1. Proteins found in a DALI search.

DOI: 10.7554/eLife.12256.008

Source data 2. N-terminally fluorescein-labeled peptides used for chromodomain binding assays.

DOI: 10.7554/eLife.12256.009

Figure supplement 1. Sequence alignment of all known human chromodomains.

DOI: 10.7554/eLife.12256.010

Figure supplement 2. Histone peptide pull-down assay.

DOI: 10.7554/eLife.12256.011
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branching into known subfamilies: chromobox proteins (CBX, red), chromodomain Y-linked proteins

(CDY, yellow), chromodomain-helicase DNA-binding proteins (blue) and chromo-barrel domain pro-

teins (green). The GEN1 chromodomain was found to be distantly related to the CDY chromodo-

mains and chromobox proteins, particularly to the chromo-shadow domains of CBX1, CBX3 and

CBX5. This agrees with the result from the DALI search, in which CBX chromo-shadow domains and

homologs thereof were among the closest structural matches. Together with the observed differen-

ces in residues forming the aromatic cage, it indicates that the GEN1 chromodomain forms a new

subgroup with features from chromo- and chromo-shadow domains that emerged from a common

ancestor within CBX/CDY proteins.

Figure 4. DNA interactions in the GEN1-DNA complex. (A) Schematic of the GEN1-DNA interactions at the upstream interface. The coloring is the

same as in Figure 1. The nuclease core (green and blue) interacts with the uncleaved strand and the chromodomain (pink) contacts the complementary

strand. Hydrogen bonds are shown with blue dashed lines and van-der-Waals contacts are in red dotted lines. (B) Interactions at the hydrophobic

wedge. The end of the DNA double helix docks onto the hydrophobic wedge formed by helices a2 and a3. (C/D) Interactions with the uncleaved

strand in two views. All key residues form sequence-independent contacts to the DNA backbone. R54 reaches into the minor groove of the DNA. The

complementary DNA strand has been removed for clarity (E/F) Interactions of the chromodomain with the complementary strand in two views. The

backbone of residues 406–410 (b-hairpin b8-b9) abuts the DNA backbone. R406 has a supporting role in the interaction and R408 forms a polar

interaction with Q65, which establishes a connection between the chromodomain and the nuclease core. Helix a15 makes hydrophobic interactions

with the aromatic cage and thus blocks it.

DOI: 10.7554/eLife.12256.012
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GEN1-DNA interactions
The GEN1-HJ structure revealed that the upstream DNA-binding interface acts as a docking site for

double-stranded DNA and that the chromodomain secures its position. The DNA is bound at the

upstream interface and the hydrophobic wedge but does not extend into the active site or to the

downstream interface (Figure 1B/C/D). Comparison of the structure of GEN1 to related structures

of FEN1, Rad2 and EXO1 (Miętus et al., 2014; Orans et al., 2011; Tsutakawa et al., 2011) sug-

gests that a DNA substrate has to extend to the downstream interface to position a DNA strand for

cleavage by the active site of GEN1 (Figure 1B/C and Figure 1F). In the GEN1 structure, the end of

the DNA arm attaches to the hydrophobic wedge provided by parts of helices a2-a3 and their con-

necting loop (Figure 4A/B), forming van-der-Waals contacts with the first base pair, which docks

perfectly onto the protruding curb of residues 41–51 (Figure 4B). The uncleaved DNA strand is fur-

ther stabilized and its geometrical arrangement is fixed by the upstream DNA-binding interface. Par-

ticularly, the DNA is contacted by a b-pin (strands b6-b7; Figure 4A/C) from one side and by R54

and F58 (Figure 4A/D) from helix a3 together with Y370 and K374 (helix a15) from the opposite

side (Figure 4A/C). The key residues in the b-pin are T171 that forms a hydrogen bridge to the

phosphate of the first base (Figure 4A, ’G1’) and M172 that makes a van-der-Waals contact to the

DNA backbone at the second base (Figure 4A, ’A2’). R54 reaches into the DNA minor groove and

forms a hydrogen bond with the ribose ring oxygen at the third base of the uncleaved strand and

F58 packs against the same ribose moiety (Figure 4C/D). Y370 and K374 in a15 form hydrogen

bonds to the backbone of the third base of the uncleaved DNA strand (Figure 4D, ’G3’).

An additional interaction point is provided by a b-hairpin from the chromodomain (strands b8-b9),

one DNA turn upstream of the hydrophobic wedge (Figure 4A/E/F). This b-hairpin interacts with the

complementary DNA strand by matching the protein backbone (residues 406–411) to the contour of

the DNA backbone in a sequence unspecific manner (Figure 4A/E). The side chains of K404 and

R406 project out, and they are in hydrogen bonding distance to the DNA (Figure 4E). Remarkably,

R408 forms a polar interaction with Q65, which establishes a connection between the DNA contact

point at the chromodomain and the nuclease core (Figure 4E). The interactions at the chromodo-

main extend the upstream DNA-binding interface to cover a full DNA turn, reinforcing the binding.

The downstream binding interface can be inferred from other Rad2/XPG structures (Figure 1C/F)

as the nuclease core is well conserved in GEN1, FEN1, Rad2 and EXO1 (root mean square deviations

of 0.9–1.1 Å for 161 Ca atoms, respectively). The residues corresponding to the tip of the thumb

(residues 79–92), which are disordered in the GEN1 structure, likely form helix a4 upon DNA binding

to the downstream interface as seen in human FEN1 and EXO1 (Orans et al., 2011;

Tsutakawa et al., 2011). The missing residues in GEN1 have 35.7% identity and 78.6% similarity

(BLOSUM62 matrix) to the corresponding residues in FEN1 (90–103), which form helix a4 in the

FEN1-DNA complex (compare Figure 2). The same region is disordered in FEN1 when no DNA is

bound (Sakurai et al., 2005). This indicates that also GEN1 undergoes such a disorder-to-order tran-

sition to form an arch with helices a4 and a6 upon substrate binding (Patel et al., 2012) and similar

to the arrangement in T5 FEN (Ceska et al., 1996).

The activity of GEN1 depends on correct DNA positioning
GEN1 has versatile substrate recognition features, ranging from gaps, flaps, replication fork inter-

mediates to HJs (Ip et al., 2008; Ishikawa et al., 2004; Kanai et al., 2007). To understand the func-

tional relevance of the GEN1 structure for DNA recognition we performed a series of mutagenesis

studies with single point mutations and truncated protein variants (Figure 5 and Figure 5—figure

supplement 1/2) to investigate the effect on the active site (D30N), upstream DNA binding (R54E),

downstream DNA binding (C36E), arch at the downstream interface (R89E, R93E, H109E, F110E),

and chromodomain (Dchromo, K404E, R406E). We performed nuclease assays by titrating different

amounts of GEN1 to a fixed DNA concentration of 40 nM for 15 min and DNA cleavage products

were analyzed by native electrophoresis (Figure 5A and Figure 5—figure supplement 1/2). We

used an immobile HJ and a 5’ flap substrate side-by-side to facilitate the comparison of the effects

on separate GEN1 functions. Notably, stoichiometric amounts of GEN1 were required to cleave HJ

substrates whereas 5’ flaps were readily processed with catalytic amounts (Figure 5A).

The active site modification D30N showed that the cleavage activity on both HJ and 5’ flap sub-

strates was lost in agreement with previously published data (Ip et al., 2008). According to our
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Figure 5. Functional analysis of GEN1. (A) Nuclease activity of GEN1 with HJ and 5’flap DNA. 40 nM 5’ 6FAM-

labeled substrates were mixed with indicated amounts of GEN1. Reactions were carried out at 37˚C for 15 min,

products were separated by native PAGE and analyzed with a phosphoimager. Figure 5—source data 1 gives the

sequences of DNA oligos used in biochemical assays and Figure 5—source data 3 shows activity measurements.

(B) Quantification of nuclease assays of wild type GEN1 and variants with mutated residues located at the protein-

DNA interfaces. Percentage of cleavage was plotted against the enzyme concentration. Error bars depict the

standard deviation calculated from at least three independent experiments. Figure 5—figure supplement 1

shows representative gels from the PAGE analysis. (C) Quantification of nuclease assays of wild type GEN1 and

Figure 5 continued on next page
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structure, R54 in helix a3 at the upstream interface fixes the substrate position by reaching into the

minor DNA groove and we observed that R54E had a strongly reduced cleavage activity (~50%;

Figure 5B), indicating a key role in substrate positioning.

Residue C36 in helix a2 points towards the downstream interface and likely contacts the DNA

upon binding (compare Figure 5D). The corresponding FEN1 Y40, is a key residue stacking with the

-1 base of the 5’ flap at the FEN1 active site (Tsutakawa et al., 2011). Therefore, we tested the

cleavage ability of a GEN1C36E and found that the mutant protein had completely lost its enzymatic

activity for both, HJ and 5’ flap cleavage, to the same degree as the active site modification D30N

(Figure 5B). This effect is stronger than for FEN1Y40A, which showed only a partial loss in activity

(Tsutakawa et al., 2011). Our results suggest that C36 provides a polar interface for orienting and

guiding the cleaved strand towards the active site and the lower gateway.

We further tested a glutamate modification of the superfamily-conserved R89 and R93 located in

the disordered part continuing to helix a6, presumably forming an arch (see above). The arch was

shown to facilitate cleavage by clamping flap substrates in FEN1 and the modification R100A

showed a strong decrease in the cleavage activity (Patel et al., 2012). The GEN1 R89E mutation,

corresponding to residue R100 in FEN1, showed that the activity of GEN1 with a HJ substrate was

not altered. In the case of a 5’ flap substrate, cleavage was slightly reduced and it reached to the full

level at enzyme concentrations higher than 10 nM. The effect of the R93E modification was even less

pronounced compared to R89E. In contrast, the cleavage of both 5’ flap and HJ substrates

depended strongly on F110 at helix a6 (thumb), which points towards the active site. An F110E

modification showed a reduction in cleavage by 25% for HJ substrates, and the effect was even

stronger for 5’ flap substrates, where the activity is reduced by 65%. The equivalent position in

FEN1 is V133 showing a critical involvement in stabilizing 5’ flap DNA by orienting the -1 nucleotide

for catalysis (Tsutakawa et al., 2011). We have also tested the effect of modifying H109, which

neighbors the critical F110. Even though it points away from the active site, a glutamate at this

Figure 5 continued

variants with mutated residues located at the chromodomain. Error bars depict the standard deviation calculated

from at least three independent experiments. Figure 5—figure supplement 2 shows representative gels from the

PAGE analysis. (D) GEN1 mutations used in this study. Locations of human GEN1 mutations used in biochemical

assays and corresponding residues in yeast MMS survival assays are highlighted in red. Active site residues E134,

E136, D155, D157 are marked in turquoise. (E) Schematic of the cruciform plasmid cleavage assay. A cruciform

structure can be formed in plasmid pIRbke8mut, which harbors an inverted-repeat sequence and is stabilized by

negative supercoiling. Introducing two cuts across the junction point within the lifetime of the resolvase-junction

complex yields linear products whereas sequential cleavage generates nicked products and the relaxed plasmid

cannot be a substrate for the next cleavage. (F) Cruciform plasmid cleavage assay with different GEN1 variants.

Plasmid pIRbke8mut was treated with 256 nM GEN1 each and reactions were carried out at 37˚C for 15 min.

Supercoiled, linear and nicked plasmids were separated by native agarose gel electrophoresis and visualized with

SYBR safe under UV light. (G) MMS survival assays with yeast yen1 variants. The survival of yen1 mutants was

tested under a yen1D mus81D background with indicated amounts of MMS. The top part shows mutations at

GEN1-DNA interfaces and the bottom part mutations at the chromodomain (compare Figure 5—figure

supplement 3 for all controls and expression tests). Figure 5—source data 2 gives a list of all yeast strains.

DOI: 10.7554/eLife.12256.013

The following source data and figure supplements are available for figure 5:

Source data 1. Oligonucleotides used in biochemical assays.

DOI: 10.7554/eLife.12256.014

Source data 2. Yeast strains used for MMS survival assays.

DOI: 10.7554/eLife.12256.015

Source data 3. In vitro activity measurements of different GEN12-505 variants.

DOI: 10.7554/eLife.12256.016

Figure supplement 1. DNA cleavage assays of different GEN1 mutations.

DOI: 10.7554/eLife.12256.017

Figure supplement 2. DNA cleavage assays of different GEN1 fragments.

DOI: 10.7554/eLife.12256.018

Figure supplement 3. MMS survival assays with yeast yen1 mutants.

DOI: 10.7554/eLife.12256.019
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position reduced 5’ flap cleavage to 83% and HJ cleavage recovered only at high substrate concen-

trations of 256 nM. Overall, the results suggest that F110 has a key position for DNA recognition

and processing.

Coordinated cleavage of HJs
Classical HJ resolvases introduce two symmetrical incisions across the junction point by coordinating

the action of two active sites. The first nick is rate-limiting and the second one takes place near-

simultaneously and within the lifetime of the resolvase-DNA complex. This mechanism has been well

studied for bacterial and bacteriophage HJ resolvases (Fogg and Lilley, 2000; Giraud-Panis and Lil-

ley, 1997; Pottmeyer and Kemper, 1992; Shah et al., 1997). Hence, it is thought that also GEN1

dimerizes upon binding to HJ substrates as indicated by coordinated cleavage and by an increase in

hydrodynamic radius compared to protein alone (Chan and West, 2015; Rass et al., 2010). In order

to further examine the effect of GEN1 modifications on HJ cleavage, we used a cruciform plasmid

cleavage assay to evaluate GEN1’s nicking function, as illustrated in Figure 5E. Here, the plasmid

pIRbke8mut served as a substrate that contains an inverted-repeat sequence extruding a cruciform

structure when supercoiled (Chan and West, 2015; Lilley, 1985; Rass et al., 2010). Coordinated

dual incision of the cruciform (by a dimer) leads to linear duplex products with slow migration,

whereas uncoordinated cleavage (by monomeric enzymes) results in nicked plasmids that migrate

even slower (Figure 5F). Cruciform structures are reabsorbed when the superhelical stress is

released upon single nicking and the DNA cannot serve as a substrate anymore.

We observed that wild type GEN1 resolved cruciform structures into linear products (Figure 5F)

in agreement with previous reports (Chan and West, 2015; Rass et al., 2010). GEN1C36E (down-

stream interface) and GEN1R54E (upstream interface) showed only residual activity confirming their

importance for HJ cleavage. The cruciform cleavage by F110E (thumb) was strongly reduced in line

with our nuclease assays using small DNA substrates (Figure 5B). GEN1R89E (disordered part of the

arch) did not show any appreciable effect, which suggests that this part of the arch is not directly

involved in HJ recognition. Taken together, our results suggest that the positioning of HJ junction

substrates both at the upper and the lower gateway is critical for productive cleavage. Furthermore,

none of the tested modifications at the different DNA interaction interfaces was able to uncouple

the coordinated HJ cleavage.

The chromodomain of GEN1 facilitates efficient substrate cleavage
Agreeing with the structural significance for DNA binding, the truncation of the chromodomain

(Dchromo, residues 2-389) showed a severe reduction (~3-fold) in HJ cleavage activity whereas all

longer GEN1 fragments containing the chromodomain (2-464, 2-505 and 2-551) showed full activity

(Figure 5—figure supplement 2). Interestingly, the effect of the chromodomain truncation is even

more pronounced for 5’ flap DNA cleavage than for HJs, showing a 7-fold reduction compared to

wild type (Figure 5C). The activity of GEN1 in the plasmid-based cruciform cleavage assay was also

severely hampered in the absence of the chromodomain (Figure 5F) showing only a weak band for

linear products and no increase for nicked plasmid, emphasizing the importance of the chromodo-

main for GEN1 activity.

Further, to test the influence of the positively charged side chains K404 and R406 on DNA bind-

ing, we introduced charge-reversal mutations to glutamates and assessed their nuclease activities.

Even though K404 and R406 are within hydrogen-bonding distance to the DNA, K404E, and R406E

showed no appreciable influence on GEN1’s nuclease activity. Only a slight reduction in cleavage of

5’ flap substrates was observed for GEN1R406E, whereas the processing of HJ substrates was not

altered significantly (Figure 5C). This reinforces the conclusion from our structural observations that

the chromodomain and the DNA interact through their backbones via van-der-Waals interactions.

Influence of phosphorylation-mimicking chromodomain modifications
PhosphoSitePlus (Hornbeck et al., 2014) lists two phosphorylation sites at residues T380 and T438

in GEN1 that were found in a T-cell leukemia and a glioblastoma cell line. These residues are located

in helix a15 and at the rim of the aromatic cage, respectively. Both phosphorylation sites are posi-

tioned to interrupt hydrophobic interactions between helix a15 and the chromodomain (Figure 5D

and Figure 4F). Therefore, we tested if the phosphorylation-mimicking modifications T380E and

Lee et al. eLife 2015;4:e12256. DOI: 10.7554/eLife.12256 13 of 24

Research article Biochemistry Biophysics and Structural Biology

http://dx.doi.org/10.7554/eLife.12256


T438E had an effect on GEN1’s activity. At low enzyme concentrations (<50 nM) HJ cleavage was

similar to that of wild-type protein but at high concentrations the activity declined to less than 80%

(Figure 5C). For a 5’ flap substrate, the assay showed consistently lower activity than wild type,

recovering to about 80% cleavage at the highest enzyme concentration (Figure 5C). These results

suggest that phosphorylation of GEN1 chromodomain residues may regulate DNA recognition and

cleavage.

Physiological relevance of GEN1 interactions
To test the physiological relevance of the identified GEN1-DNA interactions, we investigated the

survival of Saccharomyces cerevisiae mutant strains expressing variants of Yen1 (GEN1 homolog)

after treatment with the DNA-damaging agent MMS (Figure 5G and Figure 5—figure supplement

3/source data 2). All Yen1 variants were expressed to a similar degree as endogenous Yen1, which

was confirmed by Western Blot analysis (Figure 5—figure supplement 3). Because of the functional

overlap of Mus81 and Yen1 in HR (Blanco et al., 2010) a double knockout (yen1D mus81D) was used

and complemented with different variants of Yen1.

The control strain, complemented with wild type Yen1, survived MMS concentrations of up to

0.01%, consistent with the described hypersensitivity of mus81D mutants (Blanco et al., 2010;

Interthal and Heyer, 2000). In stark contrast, cells containing either the active site mutant Yen1-

D41N (corresponding to GEN1D30N) or the downstream interface mutant Yen1-F47E (corresponding

to GEN1C36E) did not grow even at an MMS concentration as low as 0.0025% (Figure 5G). After

the expression of the upstream interface mutant Yen1-I97E (corresponding to GEN1R54E) cells

showed a slight but significant growth defect at high MMS concentrations (see panels for 0.0075%

and 0.01% MMS in Figure 5G). These results are therefore consistent with the in vitro cleavage

results carried out with GEN1 mutants and showing a reduction in activity for R54E and no activity

for C36E (see Figure 5C). As a last mutant in the nuclease core, we tested the K298E mutation which

is located in helix a10 of the H2TH motif in the downstream DNA-binding interface, and for which

we were unable to obtain the corresponding GEN1K219E modification for cleavage assays (compare

Figure 5D). This mutant displayed a strong sensitivity towards MMS but lower than the one

observed for the catalytic mutant, indicating that the mutant was partially functional in yeast

(Figure 5G).

We next investigated the effect of mutations in the aromatic cage of Yen1’s chromodomain (com-

pare Figure 3) and found that their severity was strongly position dependent. Mutation of R486E

and Y487A in Yen1, both of which are located near the base of the cage, corresponding to the

W418 position in GEN1 (see Figure 3C), showed a strong effect on MMS sensitivity (see Figure 5G),

similar to the one observed for the catalytic mutant, presumably due to a dysfunctional chromodo-

main. In contrast, mutations located further outside of the core (F478A and K484E) led to a less pro-

nounced MMS sensitivity. The same was true for the K469E variant, which corresponds to position

R406 at the chromodomain-DNA interface in GEN1 (see Figure 3A and 5F), and for residues at the

rim of the chromodomain (yen1-N526A, yen1-L528D and yen1-W529A), consistent with our in

vitro observation for GEN1T438E (slightly reduced activity, Figure 5C). No effect on MMS sensitivity

was detected for yen1-L530A, which corresponds to a conserved glutamate in chromodomains

(E440 in GEN1). Lastly, we found that the deletion of the chromodomain (Yen1-D452–560) lead to a

severe phenotype comparable to the active site mutant Yen1-D41N (Figure 5G and Figure 5—

source data 2). The Yen1 variant lacking the chromodomain was expressed to levels similar to the

full-length protein and we therefore conclude that the chromodomain is crucial for the function of

Yen1. Taken together, the functional data of Yen1 mutants in vivo and GEN1 mutants in vitro point

towards an essential and evolutionary conserved role of the chromodomain in GEN1/Yen1 proteins.

Discussion

Implications of the chromodomain
The structure of the human GEN1 catalytic core provides the missing structural information in the

Rad2/XPG family. The GEN1 structure complements recent reports on the structures of Rad2, EXO1

and FEN1, (Miętus et al., 2014; Orans et al., 2011; Tsutakawa et al., 2011). Thereby, it gives

insights how relatively conserved nuclease domains recognize diverse substrates in a structure-
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selective manner and act in different DNA maintenance pathways. In comparison with other Rad2/

XPG nucleases, GEN1 shows many modifications on common structural themes that give the ability

to recognize a diverse set of substrates including replication fork intermediates and HJs. The

upstream DNA interface of GEN1 lacks the ’acid block’ found in FEN1, instead it has a prominent

groove at the same position (compare Figure 1, ’upper gate’) with a strategically positioned R54

nearby. Furthermore, the helical arch in GEN1 misses helix a5, which forms a cap structure in FEN1

and EXO1 that stabilizes 5’ overhangs for cleavage. These features have implications for the recogni-

tion and cleavage of HJ substrates (see below). The most striking difference to other Rad2/XPG fam-

ily members is that the GEN1 nuclease core is extended by a chromodomain, which provides an

additional DNA anchoring point for the upstream DNA-binding interface. The evolutionarily con-

served chromodomain is important for efficient substrate cleavage as we showed using truncation

and mutation analyses. This finding opens new perspectives for the regulation of GEN1 and for its

interactions with other proteins. Chromodomains serve as chromatin-targeting modules (reviewed in

Blus et al., 2011; Eissenberg, 2012; Yap and Zhou, 2011), general protein interaction elements

(Smothers and Henikoff, 2000) as well as dimerization sites (Canzio et al., 2011; Cowieson et al.,

2000; Li et al., 2011). These possibilities are particularly interesting, as chromatin targeting of pro-

teins via chromodomains has been implicated in the DNA damage response. The chromatin remod-

eler CHD4 is recruited in response to DNA damage to decondense chromatin (reviewed in

O’Shaughnessy and Hendrich, 2013; Stanley et al., 2013). The chromodomains in CHD4 distin-

guish the histone modifications H3K9me3 and H3K9ac and determine the way how downstream DSB

repair takes place (Ayrapetov et al., 2014; Price and D’Andrea, 2013). It is plausible that GEN1

uses its chromodomain not only as a structural module to securely bind DNA but also for targeting

or regulatory purposes. Even though it was not possible to find any binding partner with a series of

tested histone tail peptides, we cannot exclude that the chromodomain is used as an interaction

motif or chromatin reader. It will therefore be interesting to extend our interaction analysis to a

larger number of peptides and proteins. Interestingly, the modifications GEN1L397E and GEN1Y424A

at the rim of the chromodomain did not alter DNA cleavage activity (Figure 5—figure supplement

1), however, mutations of residues at the rim of Yen1’s chromodomain show a phenotype, suggest-

ing an additional role like binding to an endogenous factor.

Another intriguing aspect of the chromodomain is that the conserved T438 at the rim of the aro-

matic cage and T380 at the closing helix a15 are both part of a casein kinase II consensus sequence

for phosphorylation (Ser/Thr-X-X-Asp/Glu). Ayoub et al., 2008 showed that the analogous threonine

in the chromodomain of CBX1 is phosphorylated in response to DNA damage and phosphorylation

disrupts the binding to H3K9me. We observed a reduction in DNA cleavage activity for the phos-

phorylation mimicking mutations T380E and T438E, which may suggest a regulatory role. They might

function together and in combination with other modifications to provide a way of functional switch-

ing at the chromodomain. Furthermore, Blanco et al., 2014 and Eissler et al., 2014 recently identi-

fied several CDK phosphorylation sites in an insertion in the Yen1 chromodomain which affects HJ

cleavage and together with phosphorylation of a nuclear localization signal (NLS) in the regulatory

domain restricts Yen1’s activity to anaphase. The insertion is not found in other chromodomains and

it is extended in Yen1 compared to GEN1, which is lacking these phosphorylation sites (compare

Figure 3A/B). Notably, the activity of Yen1 is negatively regulated by CDK-dependent phosphoryla-

tion (Blanco et al., 2014; Chan and West, 2014; Eissler et al., 2014; Matos et al., 2011), suggest-

ing that the chromodomain is targeted by cell cycle kinases. It also provides a likely explanation for

the different regulatory mechanisms found in GEN1 and Yen1 (Blanco and Matos, 2015; Chan and

West, 2014; Matos and West, 2014). Exploration of the regulatory function of the GEN1 chromo-

domain will be an important topic to follow up, and this may lead to the understanding of the pre-

cise regulation mechanism of GEN1 as well as its substrate recognition under physiological

conditions.

It is noteworthy that our analysis also revealed that the human transcription modulator AEBP2,

which is associated with the polycomb repression complex 2 (PRC2), contains a chromo-barrel

domain, which, to our knowledge, has not been reported so far.

Recognition of DNA substrates
The GEN1-DNA structure showed a considerable similarity to the other members of the Rad2/XPG

family, and this facilitated the generation of a combined model to understand substrate recognition
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of GEN1 (Figure 6). This was done by superimposing the protein part of the FEN1-DNA complex

(PDB 3q8k) onto our GEN1 structure and extending the DNA accordingly (Figure 6A/B). Remark-

ably, the superimposition of the proteins aligns the DNA from the FEN1 structure in the same regis-

ter as the DNA in the GEN1 complex at the upstream interface (Figure 6A and 6B insert).

Furthermore, the free 5’ and 3’ ends of the double flap DNA from the FEN1 structure point towards

the lower and the upper gateway in GEN1, respectively (Figure 6B). We extended the GEN1 struc-

ture by homology modeling of the disordered residues 79-92 (helix a4) in GEN1 (Figure 6B). In addi-

tion to the similarity of this part to FEN1, the model readily showed the arrangement forming an

arch structure. This would explain why GEN1 recognizes 5’ flap substrates efficiently, analogous to

FEN1, as the arch can clamp a single-stranded DNA overhang for productive cleavage. This also

explains why the F110E modification in the arch at helix a6 hampered 5’ flap cleavage severely. The

Figure 6. Substrate recognition features of GEN1. (A) Superposition of the protein part of the FEN1-DNA complex (PDB 3q8k, protein in gray, DNA in

black) onto the GEN1-HJ complex (protein in green and the DNA strands in different colors). The FEN1-DNA aligns with the same register as the

GEN1-DNA at the upstream interface. (B) Model for the recognition of a 5’ flap substrate by GEN1. The DNA was extended using the superimposition

from A. Homology modeling suggests an additional helix a4 (disordered residues 79–92) forming an arch with helix a6. The protein is shown in a

simplified surface representation with the same colors as in Figure 1 and structural elements are highlighted. The insert shows a zoomed in view of the

hydrophobic wedge with the modeled FEN1-DNA in gray. (C) Model for the dimerization of GEN1 upon binding to a HJ substrate based on the 5’ flap

model in B. The monomers interlock via both arches (a4-a6) and the hydrophobic wedges (a2-a3) contact each other. (D) Structure of the Thermus

thermophilus RuvC-HJ complex (PDB 4ld0). (E) Structure of the T4 endonuclease VII-HJ complex (PDB 2qnc). (F) Structure of the T7 endonuclease I-HJ

complex (PDB 2pfj). Individual monomers are in surface representation, colored in light blue and beige, respectively. DNA strands are shown as ladders

in different colors.

DOI: 10.7554/eLife.12256.020
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side chain points directly towards the active site and likely disturbs the stabilization of a 5’ overhang

for catalysis by charge repulsion. However, there are two features in GEN1 that vary from the

arrangement in FEN1 and EXO1 considerably. Helix a6 is longer (24 instead of 15 residues) and helix

a5 is missing in GEN1. As a result the arch points away from the DNA rather than forming a ’cap’

structure as it is observed in FEN1 and EXO1 (Orans et al., 2011; Tsutakawa et al., 2011). Further-

more, the modified arch in GEN1 provides an opening, marked as ’lower gate’ in Figure 6B. These

differences are likely the basis for GEN1’s versatile DNA recognition features.

Implications of an adjustable hatch in GEN1 for substrate discrimination
The diverging orientation of the arch (helices a4 and a6) in GEN1 compared to the one in FEN1 and

EXO1 (helices a4, a5, and a6) may have thus significance for the recognition of HJ substrates. By

pointing away from the active site the arch provides an opening to accommodate unpaired, single-

stranded DNA to pass along the arch at the lower gate (groove between a2 and a4) (Figure 6B

’lower gate’) from one GEN1 monomer to the upper gate (groove between a2-a3 and a14)

(Figure 6B ’upper gate’) of the other within a GEN1 dimer (Figure 6B/C). R54 is perfectly positioned

at the minor groove to guide the second cleavage strand to pass through the upper gate (compare

Figure 4 and Figure 6B/C, marked with a asterisk). In FEN1, this position is occupied by the ’acid

block’, which stabilizes a single 3’ flap of the unpaired substrate (Tsutakawa et al., 2011) and it

would not accommodate longer 3’ DNA overhangs. In our model, two GEN1 monomers come

together crosswise upon HJ binding (Figure 6C). The helical arches of both proteins likely provide

additional protein-protein interactions as well as protein-DNA contacts by packing against the back-

bone of opposite DNA arms (Figure 6C). As a result, the GEN1 dimer orients both active sites sym-

metrically across the junction point resembling the situation in bacterial RuvC (Figure 6D;

Bennett and West, 1995a; Górecka et al., 2013). This arrangement would ensure that both inci-

sions are introduced within the lifetime of the GEN1-HJ complex as observed biochemically by us

and others (Chan and West, 2015; Rass et al., 2010). The mechanism likely works in a coordinated

nick-and-counter-nick fashion, as shown for bacterial or bacteriophage HJ resolvases (Fogg and Lil-

ley, 2000; Giraud-Panis and Lilley, 1997; Pottmeyer and Kemper, 1992; Shah et al., 1997) and

recently for GEN1 (Chan and West, 2015).

The distance between both gates is bridged by unpaired bases in our GEN1-HJ model. This view

is supported by the observation that FEN1 unpairs two bases near the active site through interac-

tions with the hydrophobic wedge leading to strongly bent DNA arms between the upstream and

downstream DNA interfaces. This mechanism seems to be a common feature of Rad2/XPG nucleases

(Finger et al., 2013; Grasby et al., 2012; Tsutakawa et al., 2011). Consistent with this view, the

bacterial RuvC resolvase (Figure 6D) has also been shown to unfold HJ junctions (Bennett and

West, 1995b; Górecka et al., 2013). In the case of GEN1, the critical step would be the assembly

of the dimer around the junction point in a highly restraint way and the introduction of the first nick.

This releases the tension on the complex like a spring leading to an immediate second cut and sub-

sequent disassembly of the GEN1-HJ complex. Furthermore, a HJ does not provide free DNA ends

and adopts a structure that intrinsically restrains its degrees of freedom, thus inhibiting cleavage by

a single GEN1 monomer. Altogether we speculate that the arch (helix a4-a6) acts like a lever or

hatch switching between flap and HJ recognition modes. When a free 5’ end is available it closes

and clamps the flap, thus positions the DNA for cleavage. For the case of a HJ substrate, the arch

adopts an open conformation, allowing unpaired, single-stranded DNA to pass, while preventing the

correct positioning of the DNA for catalysis at first. HJ cleavage is inhibited until a second GEN1

monomer binds. This mechanism differs from the one used by bacterial or bacteriophage HJ resol-

vases, which act as obligate dimers binding to DNA substrates in a concerted way (compare

Figure 6D–F). Our model for DNA cleavage by GEN1 describes a conformational switch provided

by a flexible arch that can discriminate between substrates containing free 5’ ends or those with a

restraint structure like HJs. This aspect may explain our observation that GEN1 cleaves 5’ flap DNA

catalytically while stoichiometric amounts are required for HJ substrates (Figure 5A–C). Using a

switchable hatch in a spring-loaded mechanism would be an efficient way of preventing a single cut

at a HJ junction while allowing GEN1 to adapt to recognize various DNA substrates and perform dif-

ferent functional roles. Thus, GEN1 may have an intrinsic safety mechanism that ensures symmetrical

dual incision across a branch point. Further studies have to address the exact engagement

mechanism.
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GEN1 in a biological context
GEN1’s biological role is not fully understood yet. Yeast cells are viable without the GEN1 homolog

Yen1 even in the presence of DNA damaging agents as the Mus81-Eme1 complex can complement

the defect (compare Figure 5—figure supplement 3; Blanco et al., 2010). Consistently, both pro-

teins can cleave 5’ flaps and HJ substrates in vitro. However, GEN1 can cleave intact HJs symmetri-

cally whereas MUS81-EME1 is much more efficient with nicked DNA four-way junctions

(Castor et al., 2013; Wyatt et al., 2013). Matos et al., 2011 suggested that Yen1/GEN1 might

serve as a backup enzyme to resolve persistent HJs that have eluded other mechanisms of joint mol-

ecule removal before cytokinesis.

Our analysis infers that HJ cleavage is slower than 5’ flap cleavage (Figure 5B/C), bringing inter-

esting implications for a safety control of GEN1’s activity. GEN1 may have to assemble in an accu-

rate way before it can cleave a HJ. Likewise, it increases GEN1’s persistence time on HJs and opens

a window for branch migration for extending the length of recombined stretches of DNA. Moreover,

GEN1 recognizes various DNA substrates, which may point towards a general role in processing sub-

strates in different DNA maintenance pathways. GEN1 has been shown to cleave replication fork

intermediates, and it is implicated in the resolution of replication-induced HJs (Garner et al., 2013;

Sarbajna et al., 2014). Like MUS81-EME1, it might also be important for the processing of fragile

sites to ensure proper chromosome segregation (Ying et al., 2013). These functions have to be

tested systematically to understand GEN1’s biological role. In this context, the regulation of GEN1 is

an important factor and needs to be explored. Our study identified a chromodomain extending the

GEN1 nuclease core that might have a role in regulating the enzyme. An open question is the func-

tion and architecture of the remaining 444 amino acids at the C-terminus of GEN1. They are thought

to regulate the nuclease activity and control subcellular localization (Blanco et al., 2014; Chan and

West, 2014; Garcı́a-Luis et al., 2014). It is very likely that new interaction sites and post-transla-

tional modifications in this region will be discovered in future. The presented structure together with

additional studies will help to unravel these questions and to obtain a comprehensive view of the

functions of the Rad2/XPG nucleases.

Materials and methods

Experimental procedures
Protein expression and purification
Wild type human GEN1 and truncations thereof (residues 2-551, 2-505, 2-464, 2-389) were amplified

by PCR from IMAGE clone 40125755 (Mammalian Gene collection, natural variant S92T, S310N, Uni-

ProtID Q17RS7) and cloned into a self-made ligation-independent cloning vector with various C-ter-

minal tags followed by His8. Truncated versions were designed based on limited proteolysis in

combination with domain prediction and functional assays to determine the smallest yet active frag-

ment. The N-terminal methionine was cleaved by cellular methionyl-aminopeptidase, which is an

essential requirement in the Rad2/XPG family as the N-terminus (conserved residue G2) folds

towards the active site. Mutations were introduced by site-directed mutagenesis using Phusion Poly-

merase (NEB, Frankfurt/Main, Germany). All recombinant proteins were expressed in the E. coli

BL21(DE3) pRIL strain (MerckMillipore, Darmstadt, Germany). Cells were grown at 37˚C until mid-log

phase and induced overnight with 0.2 mM IPTG at 16˚C. Cells were harvested by centrifugation and

resuspended in lysis buffer containing 1x phosphate buffered saline (PBS) with additional 500 mM

NaCl, 10% (v/v) glycerol, 2 mM DTT, 1 mM EDTA, 1 mM leupeptin, 1 mM pepstatin A, 0.1 mM AEBSF

and 2 mM aprotinin and lyzed by sonication. Cell debris was removed by centrifugation (75 600 g for

45 min), the clarified lysate was applied onto Complete HisTag Nickel resin (Roche Diagnostics,

Mannheim, Germany) and washed with buffer A consisting of 20 mM Tris-HCl pH 7.5, 500 mM NaCl,

10% (v/v) glycerol, 2 mM DTT and followed by a chaperone wash step with 20 mM Tris-HCl pH 7.5,

500 mM NaCl, 2 mM ATP, 5 mM MgCl2, 10% (v/v) glycerol and 2 mM DTT. The protein was eluted

with buffer A containing 300 mM imidazole. The tag was cleaved, followed by cation exchange chro-

matography using a HiTrap SP HP column (GE Healthcare, Freiburg, Germany) with a linear gradient

from 150 mM to 450 mM NaCl. Peak fractions were pooled and further purified by size-exclusion

chromatography on a HiLoad 16/60 Superdex 200 (GE Healthcare) equilibrated with 20 mM Tris-HCl
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pH 7.5, 100 mM NaCl, 5%(v/v) glycerol, 0.1 mM EDTA and 2 mM TCEP. Peak fractions were pooled,

concentrated, flash-frozen in liquid nitrogen and stored at -80˚C.

Crystallization and data collection
GEN12-505 D30N and DNA (4w1010-1 GAATTCCGGATTAGGGATGC, 4w1010-2 GCATCCCTAAGC

TCCATCGT, 4w1010-3 ACGATGGAGCCGCTAGGCTC, 4w1010-4 GAGCCTAGCGTCCGGAATTC)

were mixed at a molar ratio of 2:1.1 at a final protein concentration of 14 mg/ml including 1 mM

MgCl2 and co-crystallized by sitting drop vapor diffusion. Drops were set up by mixing sample with

mother liquor consisting of 100 mM MES-NaOH pH 6.5 and 200 mM NaCl at a 2:1 ratio at room

temperature. Crystals grew within 2 days, and several iterations of streak seeding were needed for

obtaining diffraction quality crystals. For data collection, crystals were stepwise soaked in 10%, 20%,

and 30% (v/v) glycerol in 100 mM MES-NaOH pH 6.5, 200 mM NaCl and 5% PEG 8000 and flash-fro-

zen in liquid nitrogen. Diffraction data were collected at beamline PXII of the Swiss Light Source

(SLS, Villigen, Switzerland) at 100 K with a Pilatus 6M detector. In order to obtain phase information,

crystals were soaked for 10–30 min in 1 mM [Ta6Br12]Br2, flash-frozen and data were collected at the

Ta L(III)-edge. In addition, seleno-methionine (SeMet)-substituted protein was expressed in M9

media supplemented with SeMet, purified, and crystallized according to the protocol above and

data were collected at the Se K-edge.

Structure determination and refinement
All data were processed with XDS (Table 1, Kabsch, 2010). HKL2MAP (Pape and Schneider, 2004)

found 12 tantalum and 8 selenium positions, which were used in a combined MIRAS strategy (multi-

ple isomorphous replacement with anomalous scattering) in autoSHARP (Vonrhein, et al., 2007) to

determine the structure of the GEN1-HJ complex. The obtained solvent-flattened experimental map

was used to build a model with PHENIX (Adams et al., 2010) combined with manual building. The

structure was then further refined by iterative rounds of manual building in COOT (Emsley and Cow-

tan, 2004), refinement with PHENIX and assisted by the PDB_REDO server (Joosten, et al., 2014).

The structure was visualized and analyzed in PYMOL (Delano, 2002). Electrostatic surface potentials

were calculated with PDB2PQR (Dolinsky et al., 2004) and APBS (Baker et al., 2001).

Nuclease assay
All DNA substrates (Figure 5—source data 1) were synthesized by Eurofins/MWG (Ebersberg, Ger-

many), resuspended in annealing buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 0.1 mM EDTA),

annealed by heating to 85˚C for 5 min and slow-cooling to room temperature. Different amounts of

GEN1 proteins (as indicated) were mixed with 40 nM 6FAM-labeled DNA substrates in 20 mM Tris-

HCl pH 8.0, 50 ng/ml bovine serum albumin (BSA) and 1 mM DTT. Reactions were initiated by adding

5 mM MgCl2, incubated at 37˚C for 15 min and terminated by adding 15 mM EDTA, 0.3% SDS and

further, DNA substrates were deproteinized using 1 mg/ml proteinase K at 37˚C for 15 min. Products

were separated by 8% 1x TBE native polyacrylamide gel electrophoresis, the fluorescence signal

detected with a Typhoon FLA 7000 phosphoimager (GE Healthcare), quantified with IMAGEJ (GE

Healthcare) and visualized by GNUPLOT (Williams et al., 2015).

Cruciform plasmid cleavage assay
The cruciform plasmid pIRbke8mut was a gift from Stephen West’s lab (Rass et al., 2010), and it was

originally prepared by David Lilley’s lab (Lilley, 1985). 50 ng/ml plasmid were mixed with 20 mM

Tris-HCl pH 8.0, 50 mM potassium glutamate, 5 mM MgCl2, 50 ng/ml BSA and 1 mM DTT and pre-

warmed at 37˚C for 1 hr to induce the formation of a cruciform structure. Reactions were initiated by

adding indicated amounts of GEN1, incubated at 37˚C for 15 min and stopped as for DNA cleavage

assays. The products were separated by 1% 1xTBE native agarose gel electrophoresis, stained with

SYBR safe (Life Technologies, Darmstadt, Germany) and visualized under UV light.

Sequence alignments and phylogenetic analysis
Sequences of GEN1 proteins from different organisms as well as all human chromodomain proteins

were aligned to the human GEN1 sequence using the programs HHPRED (Söding et al., 2005), PSI-

BLAST and further by manual adjustments. Alignments were tested by back-searches against RefSeq
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or HMM databases. A phylogenetic tree was calculated by the program PHYML with 100 bootstraps

using the alignment in Figure 3—figure supplement 1 and a BLOSUM62 substitution model. The

tree was displayed with DENDROSCOPE (Huson and Scornavacca, 2012).

Histone peptide pull-down assay
The GEN1 chromodomain with a C-terminal His8-tag was immobilized on complete HisTag Nickel

resin and washed twice with binding buffer consisting of 20 mM Tris-HCl pH 7.5, 200 mM NaCl, 5%

glycerol, 0.1 mM EDTA, 0.05% (v/v) Tween-20 and 2 mM TCEP. Peptide mixtures containing 0.4 mM

fluorescein labeled histone peptides were incubated with beads at 4˚C for 1 hr and washed twice

with binding buffer. Immobilized proteins were eluted with binding buffer supplemented with 300

mM imidazole and separated on 20% SDS-PAGE. Fluorescein-labeled peptides were visualized by

detecting the fluorescence signal with a Typhoon FLA 7000 phosphoimager (GE Healthcare).

Yeast genetics and MMS survival assay in Saccharomyces cerevisiae
All yeast strains are based on W303 Rad5+ (see Figure 5—source data 2 for a complete list).

yen14 or yen14 mus814 strains were transformed with an integrative plasmid expressing mutant

versions of YEN1. Freshly grown over-night cultures were diluted to 1x107 cells/ml. 5-fold serial dilu-

tions were spotted on YPD plates with/without MMS (methyl methanesulphonate, concentrations as

indicated) and incubated for 2 days at 30˚C. The expression of 3FLAG-tagged Yen1 constructs was

verified by SDS-PAGE and Western Blot analysis. Proteins were detected using a mouse monoclonal

anti-FLAG M2-peroxidase (HRP) antibody (Sigma-Aldrich, München, Germany).

Database entry
The coordinates of the human GEN1-Holliday junction complex have been deposited in the Protein

Data Bank (PDB code 5t9j).
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V. Discussion 

A. Regulation of Mus81-Mms4 resolvase activation in mitosis 

Repair of DNA damage sites by homologous recombination comprises the formation of covalently 

linked DNA intermediates. Processing of those DNA JMs is pivotal for the response to DNA damage 

and segregation of chromosomes in mitosis. Disentanglement of DNA JMs can be catalysed either by 

dissolution, which includes helicase and topoisomerase activity, or by resolution, which includes the 

action of structure-selective endonucleases. Previous work has shown that resolvases, such as 

Mus81-Mms4 or Yen1, underlie a tight regulation throughout the cell cycle. This temporal program 

establishes a hierarchy between dissolution and resolution as well as between the different 

resolution pathways, and thereby guarantees efficient disentanglement of DNA repair intermediates 

coordinated with cell cycle progression. At a molecular level, cell cycle-dependent kinases specifically 

target resolution enzymes, which promotes their activation (Mus81-Mms4) or inhibition (Yen1) to a 

distinct time during cell cycle. 

Our study broadened the understanding regarding the different regulatory layers of resolution. We 

not only identified and characterized DDK (Dbf4-dependent kinase) as an additional cell cycle kinase 

besides CDK and Cdc5 to be decisive for Mus81 activation, but also connected the control by 

phosphorylation to a second layer of regulation, the formation of a multi-protein complex involving 

the scaffold proteins Dpb11, Slx4, and Rtt107 (Figure 7).  

 

 

 
 

Figure 7. Novel facets in the cell cycle regulation of JM resolution by Mus81-Mms4. Dissolution by Sgs1-Top3-Rmi1 (STR) is 

independent of the cell cycle, while resolution by Mus81-Mms4 or Yen1 is temporally regulated throughout the cell cycle. 

At a molecular level, cell cycle-dependent kinases specifically target resolvases to promote their activation (Mus81-Mms4) 

or inhibition (Yen1). Here, we identified DDK as a third cell cycle kinase – besides CDK and Cdc5 – to be crucial for Mus81 

nuclease activation in mitosis, and additionally linked kinase targeting to the formation of a multi-protein complex with the 

scaffold proteins Dpb11, Slx4, and Rtt107. Notably, DDK and Cdc5 target Mus81-Mms4 in conjunction, and Rtt107 likely 

mediates their recruitment to the nuclease complex. In the presence of DNA damage, checkpoint kinases indirectly repress 

Mus81-Mms4 phosphorylation and resolution activity, possibly by inhibiting the non-catalytic subunit of DDK, Dbf4 

(adapted from Princz et al., 2015). 
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1. Mus81 activity is regulated by cell cycle phase-dependent kinases  

Mus81 endonuclease activity is specifically up-regulated at the G2/M-phase transition, which has 

been associated with CDK- and Cdc5-dependent hyper-phosphorylation of its non-catalytic subunit 

Mms4 (Matos et al., 2011, 2013; Gallo-Fernandez et al., 2012; Szakal and Branzei, 2013; Matos and 

West, 2014). In vitro dephosphorylation and concomitant declining activity, as well as expression of 

phospho-mimetic Mms4 mutants and concomitant increased CO formation have linked 

phosphorylation directly to Mus81 nuclease activity (Matos et al., 2011; Szakal and Branzei, 2013). 

Here, our work revealed that a third cell cycle kinase – DDK – is crucial for Mus81 activation in 

mitosis. Consistent with its consensus sequence, DDK targets Mms4 on the N-terminal residue of 

(S/T)(S/T) sites (Fig. 1C, Princz et al., 2017). In line with this finding, mutation of 8 candidate sites to 

non-phosphorylatable alanines displayed a reduction in overall Mms4 phosphorylation, in survival in 

the sgs1∆ background of defective dissolution (especially upon DNA damage treatment), and in 

Mus81 resolution activity (Fig. 4B-D and EV2C-E, Princz et al., 2017). Activation-deficient mms4 

mutants from previous studies that interfered with CDK and/or Cdc5 targeting showed comparable 

(mms4-np, Gallo-Fernandez et al., 2012) or stronger phenotypes (mms4-14A, Matos et al., 2013; 

mms4-7A, Szakal and Branzei, 2013). These differences may be reasoned by diverging impact of 

individual phosphorylation sites on Mus81 activity as well as by the existence of additional (DDK) 

target sites on Mms4 or even on Mus81 influencing the activity. Notably, deletion of CDC7 or DBF4 

reduced resolution activity much more strongly than the mms4-8A mutant, consistent with the idea 

that more than 8 target sites exist on Mus81-Mms4 (Fig. 4A, C, Princz et al., 2017). 

With three kinases targeting Mus81-Mms4, elucidating the contribution of each of the kinases to 

Mus81 activation in mitosis was one of our main research interests. CDK as well as DDK are both 

activated at the onset of S-phase, where they regulate DNA replication and cell cycle progression. 

However, Cdc5 seems to be the kinase that establishes the temporal control of Mus81 activity as 

Cdc5 activation and targeting coincides with nuclease activation at the G2/M-phase transition. 

Consistently, ectopic expression of CDC5 in S-phase resulted in premature hyper-phosphorylation of 

Mms4 (Fig. EV1A, Princz et al., 2017; Matos et al., 2013), suggesting that the S-phase kinases are in 

principle competent to phosphorylate Mms4, but that Cdc5 activity is crucial for full Mms4 

phosphorylation. 

Interestingly, we could show that DDK does not bind to Mms4 in S-phase, but rather in conjunction 

with Cdc5 at the G2/M transition (Fig. 1A, 2A and Appendix Fig. S1A, Princz et al., 2017). This binding 

is strictly inter-dependent as, on the one hand, Cdc5 association with Mus81-Mms4 relies on the 

presence of DDK, and on the other hand, DDK association relies on Cdc5 activity (Fig. 2C-E and 

Appendix Fig. S2A, S2D, Princz et al., 2017). Cdc5 has been previously described to interact with DDK, 

specifically with an N-terminal non-consensus polo-box binding motif of Dbf4 (Miller et al., 2009; 

Chen and Weinreich, 2010). Notably, a truncation of Dbf4 lacking this Cdc5 binding motif (dbf4-

∆N109) displayed a strong reduction of DDK and Cdc5 binding to Mus81-Mms4, illustrating that 

binding of DDK-Cdc5 to the nuclease is dependent on their mutual interaction (Fig. 2F, Princz et al., 

2017). Overall, this suggests that two major cell cycle kinases – Cdc5 and DDK – form a functional 

unit.  
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So far, a cooperative action of DDK and Cdc5 has only been described in meiosis I, where they 

mediate accurate chromosome segregation (Matos et al., 2008). In mitosis in contrast, DDK was 

suggested to counteract Cdc5 function in releasing Cdc14 and promoting mitotic exit – however, not 

by inhibiting Cdc5 catalytic activity (Miller et al., 2009; Chen and Weinreich, 2010). To this, our 

findings now add a novel function for DDK in mitosis. With identifying a substrate of the DDK-Cdc5 

complex we propose that DDK may target Cdc5 to a specialized subset of mitotic substrates. In this 

regard, it could be reasoned that DDK recruits Cdc5 to Mus81-Mms4 in order to ensure efficient JM 

resolution before Cdc5 initiates mitotic exit. It will therefore be crucial to identify additional 

substrates of the DDK-Cdc5 complex and to categorize Cdc5 phosphorylation substrates into DDK-

dependent and -independent groups.  

Intriguingly, the DDK consensus sequence matches the Cdc5 binding site – a (S/T)(S/T) motif, in which 

the C-terminal residue is pre-phosphorylated (Elia et al., 2003a; b; Masai et al., 2006; Montagnoli et 

al., 2006; Randell et al., 2010; Lyons et al., 2013). This fact does not only explain the mms4-8A defect 

in kinase binding (Fig. 4B and EV2C, Princz et al., 2017), but also suggests that cooperation of the two 

kinases may be more widespread than previously anticipated. Additionally, it is striking that both 

kinases seem to require a priming phosphorylation event. CDK has previously been implicated in 

mediating the priming phosphorylation that stimulates DDK during DNA replication and meiotic 

recombination (Wan et al., 2008; Reußwig et al., 2016). The temporal succession of activity and 

association of the kinases involved in Mus81-Mms4 activation also qualified CDK as priming kinase 

for our purposes. Indeed, we detected such stimulation in vitro using Mms4 peptides (Fig. 1C, Princz 

et al., 2017), although we could not confirm this type of stimulation with the full-length protein (Fig. 

1B and Appendix Fig. S1C, D, Princz et al., 2017). Whether this is a technical limitation of the applied 

in vitro assay still needs to be elucidated. With CDK being furthermore involved in Cdc5 activation 

(Mortensen et al., 2005; Rodriguez-Rodriguez et al., 2016), overall, Mus81-Mms4 activation displays 

an example for an elaborate, highly inter-twined kinase network. 

This network becomes even more intricate in the context of DNA damage, when additionally 

checkpoint kinases are activated. Checkpoint effector kinases were proposed to counteract Mus81 

function, either indirectly by repressing kinase activity (budding yeast, Rad53), or directly by 

phosphorylating Mus81 (fission yeast, Cds1) (Kai et al., 2005; Szakal and Branzei, 2013; Cussiol et al., 

2015). Furthermore, the checkpoint effector kinase Rad53 is known to target Dbf4 and to inhibit DDK 

activity (Weinreich and Stillman, 1999; Lopez-Mosqueda et al., 2010; Zegerman and Diffley, 2010). 

On this basis, we overexpressed CDC5 in S-phase and compared untreated to HU-treated cells 

simulating a condition, in which DDK becomes limiting over Cdc5. In the presence of Cdc5, S-phase 

kinases were able to hyper-phosphorylate Mms4 (see above), but HU treatment resulted in 

checkpoint activation and in concurrent reduction of Mms4 phosphorylation (Fig. EV1B, Princz et al., 

2017). Therefore, cell cycle and DNA damage checkpoint kinases collaborate in regulating of Mus81-

mediated resolution. 

Mechanistically, it is not yet understood how hyper-phosphorylation of Mms4 facilitates activation of 

Mus81. Assumptions that phosphorylation might induce dimerization or multimerisation to 

accomplish the dual cleavage necessary for complete resolution of JMs (Gaskell et al., 2007) could 

not be confirmed (Schwartz et al., 2012). Also the interaction between the nuclease components 

Mus81 and Mms4 seems to be phosphorylation-independent as phosphorylation site mutants have 

no effect on the association (Matos et al., 2011). Alternatively, phosphorylation might result in 
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structural changes of the nuclease, which may enhance activity or substrate binding, or even trigger 

association with additional factors. Yeast as well as human Mus81-Mms4/MUS81-EME1 have been 

described to undergo substrate-induced conformational changes on DNA that are distinct from initial 

DNA binding and induce bending of the DNA substrate (Gwon et al., 2014; Mukherjee et al., 2014). 

However, a possible influence of phosphorylation on nuclease structure has not been assessed yet. 

 

Resolvase activity is not only dependent on post-translational modifications, but may be influenced 

also by other factors such as the binding to its DNA substrates. This particular question we addressed 

for another resolvase – Yen1/GEN1. In collaboration with the Biertümpfel group we investigated the 

DNA binding of the resolvase Yen1/GEN1, especially via its newly described chromo-domain, and 

tested how mutations in this domain may affect its activity (Lee et al., 2015). Notably, we identified 

specific residues in the chromo-domain of GEN1, which are crucial for chromatin contact and in vitro 

activity (Lee et al., 2015). Mutation of the respective sites in the yeast homologue Yen1 resulted in a 

sensitivity to the DNA-alkylating agent MMS in a mus81∆ background that was highly similar to a 

catalytically inactive mutant (Lee et al., 2015), suggesting that the chromo-domain mediates Yen1 

resolution function, likely by recognizing its DNA substrates. These findings hint towards a conserved 

involvement of the chromo-domain in Yen1/GEN1 activity, and indicate further that HJ resolvase 

activity is dependent on more than phosphorylation. 

 

2. The Dpb11-Slx4-Rtt107 complex promotes resolution by Mus81-Mms4 

Our studies also identified a mitosis-specific interaction of Mus81-Mms4 and the Dpb11-Slx4-Rtt107 

scaffold complex, mediated by a direct binding between Mms4 and Dpb11 (Fig. 5A and Appendix Fig. 

S8A-C, Gritenaite et al., 2014; Fig. 1A, 2A, 5A and Appendix Fig. S1A, S5A, Princz et al., 2017). This 

interaction coincided with activation of Mus81, revealing a second layer of Mus81 regulation. 

Notably, an slx4 separation-of-function mutant that specifically interferes with Dpb11-Slx4 binding 

causes defects that suggest an impairment in JM resolution. These defects include accumulation of X-

shaped structures, decreased CO formation, and interference with sister chromatid separation, all 

observed after DNA damage induction and in a dissolution-deficient background (Fig. 4A, D-E, 

Gritenaite et al., 2014). 

A central question of my PhD work was how association of the Dpb11-Slx4-Rtt107 complex would 

promote Mus81-Mms4-mediated resolution. Previous studies have already described the principal 

concept that physical interaction with other factors could promote Mus81 stimulation. For example, 

both the recombination protein Rad54 as well as the anti-recombinase Srs2 have been associated 

with Mus81-Mms4 recruitment via direct interaction to Mus81 (Matulova et al., 2009; Chavdarova et 

al., 2015). Rad54 binds to Mus81 specifically in the presence of dsDNA and enhances Mus81-Mms4 

nuclease activity in in vitro resolution assays (Mazina and Mazin, 2008; Matulova et al., 2009). 

Similarly, Srs2 was shown to co-localize with Mus81 in G2-phase upon DNA damage and to stimulate 

its activity in mitosis by suppressing the inhibitory function of Rad51 on Mus81-mediated resolution 

(Chavdarova et al., 2015; Keyamura et al., 2016). Both Srs2 and Rad54 display enzymatic activities as 

well as DNA contact sites on their own, which predestines them for a targeting function in JM 

resolution.  
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The scaffold proteins Dpb11, Slx4, and Rtt107, in contrast, do not possess catalytic activity. Within 

the known complexes they function by assembling and coordinating various proteins or enzymatic 

entities. Although Slx4 has already been associated with the stimulation of several structure-selective 

endonucleases in different species, so far, Mus81 is the only DNA-processing enzyme that we 

identified in the context of the mitotic Slx4-Dpb11-Mus81-Mms4 multi-protein complex. A potential 

candidate might be Slx1 – an endonuclease, which binds Slx4 directly, and which we also found to 

physically interact with Slx4 and Dpb11 upon MMS treatment and in mitosis (Fig. S4A, Gritenaite et 

al., 2014; Princz and Pfander, unpublished data). Whether Slx1 is part of the Mus81-Mms4 complex, 

or whether there are separate complexes with Dpb11-Slx4 could not be confirmed so far. 

Intriguingly, human SLX1 has even been implicated in HJ resolution together with MUS81 in an SLX4-

dependent manner in vertebrate cells (Wyatt et al., 2013). Recently, first evidence was given for a 

cooperative activity of Slx1 and Mus81 in yeast (Thu et al., 2015). Yet, the cooperativity of the two 

resolvases seems to be pathway- and substrate-specific as stimulation was detected on 3’ flaps, but 

not on HJs (Schwartz et al., 2012; Thu et al., 2015). Furthermore, an involvement in mammalian 

replication-related phenotypes could be detected for SLX4 and MUS81, but not for SLX1, suggesting 

divergent functions of SLX4 and SLX1 during replication fork recovery (Sarbajna et al., 2014). 

Consistently, we did not observe any defects in response to MMS-induced DNA damage in an slx1∆ 

background, in contrast to what was observed with the slx4 separation-of-function mutant. There-

fore, we reasoned that either Slx1 may not have an active role in Mus81-mediated resolution after 

replication fork stalling, or that a protein of redundant function takes over in the absence of Slx1.  

Next to Slx1, also the endonuclease Rad27/Fen1 was described to interact with Mus81 in budding 

yeast, whereupon they mutually stimulate their endonucleolytic activity (Kang et al., 2010; Thu et al., 

2015). Interestingly, Rad27 and Srs2 in yeast, as well as SLX4 in vertebrate cells all bind to the N-

terminus of Mus81/MUS81 (Nair et al., 2014; Chavdarova et al., 2015; Thu et al., 2015) – a region 

that has recently been implied in DNA binding (Wyatt et al., 2017). Although interaction sites were 

not mapped, the N-terminus of Mus81 was also crucial for Slx1-mediated stimulation in yeast (Thu et 

al., 2015). It would therefore be interesting to test in the future whether an N-terminal truncation of 

Mus81 affects protein interactions to Mus81-Mms4 within the Slx4-Dpb11-Mus81-Mms4 complex.  

Still open is the question how Dpb11 and Slx4 stimulate Mus81-Mms4 resolution activity. Although 

the interaction between Dpb11 and Slx4 is crucial for JM resolution, neither of the two proteins is 

important for efficient hyper-phosphorylation of Mms4 (Fig. 4A, D-E, Gritenaite et al., 2014; Fig. 5B, 

6A, Princz et al., 2017). Therefore, we envision two possibilities for the role of Dpb11-Slx4 in Mus81-

mediated resolution, both involving tethering to additional factors. First, interaction with DNA-

associated proteins could recruit Mus81-Mms4 specifically to repair intermediates that have arisen 

from DSBs or stalled replication forks. Such a recruitment function would be in agreement with 

unperturbed in vitro resolution in the absence of binding to Dpb11 or Slx4 (Fig. 5E, Gritenaite et al., 

2014; Appendix Fig. 5C, Princz et al., 2017), a setup where recruitment is likely dispensable. Second, 

interaction with an additional nuclease could stimulate Mus81 activity as was shown for Mus81-Slx1 

or Mus81-Fen1 (Kang et al., 2010; Thu et al., 2015). A coordinated action of two nucleases was 

described to be beneficial during resolution as two symmetrical incisions are needed to efficiently 

resolve a HJ (Pottmeyer and Kemper, 1992; Giraud-Panis and Lilley, 1997; Shah et al., 1997; Fogg and 

Lilley, 2000). As no direct binding between Mus81-Mms4 and Slx4 was detected, Dpb11 might 

function as mediator linking the enzymatic moieties. 
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Recently, we have specifically focused our attention towards the third scaffold protein within the 

Dpb11-Slx4-Rtt107 complex – Rtt107 (Ohouo et al., 2010). Like Dpb11, Rtt107 comprises phospho-

protein binding BRCT domains, and was shown to directly interact with Slx4 (Rouse et al., 2004; 

Roberts et al., 2006). Interestingly, despite Slx4 is known to bridge Rtt107 and Dpb11 (Ohouo et al., 

2010), association of Rtt107 (as well as Dpb11) to Mus81-Mms4 is unchanged in an SLX4 deletion 

background (Appendix Fig. S8C, Gritenaite et al., 2014; Fig. 6C, Princz et al., 2017; Princz and Pfander, 

unpublished data). Concomitantly, our analysis with two specific binding-deficient mutants (mms4-

8A, mms4-S201A) revealed that either of the two BRCT scaffold proteins is sufficient to link Slx4 to 

Mus81-Mms4 (Fig. 6D and EV3, Princz et al., 2017), suggesting that Rtt107 provides a second 

interaction site with Mus81-Mms4, likely by direct binding or perhaps via an additional component of 

the complex. 

In vitro resolution assays on a nHJ substrate revealed a striking result that suggested Rtt107 to be 

involved in Mus81-Mms4 activation by cell cycle kinase phosphorylation: While interference with 

Dpb11-Slx4 binding did not result in a defect in Mus81 activity, deletion of RTT107 did (Fig. 5E, 

Gritenaite et al., 2014; Fig. 7A, Princz et al., 2017). Additionally, we detected a reduction in Mms4 

hyper-phosphorylation as well as a decrease in CO rates in the rtt107∆ background (Fig. 6A, 7B and 

Appendix Fig. S2C, Princz et al., 2017). Intriguingly, we were able to show that Rtt107, but not Slx4 or 

Dpb11, was required for stable DDK-Cdc5 binding to the nuclease complex, linking Rtt107 directly to 

kinase recruitment and Mus81-Mms4 hyper-phosphorylation (Fig. 5B, 6A, C-D, Princz et al., 2017). In 

line with this, the Mus81 activation defect of a cdc7∆ mutant was not enhanced by additional 

deletion of RTT107 (Fig. 4A and Appendix Fig. S7D, Princz et al., 2017). Interestingly, Rtt107 directly 

binds to Cdc7 (Fig. 6B, Princz et al., 2017), and interaction of Rtt107 with DDK and Cdc5 is 

independent of the presence of Mus81-Mms4 (Appendix Fig. S6B, Princz et al., 2017), suggesting the 

formation of an Rtt107-DDK-Cdc5 sub-complex and a putative tethering function for Rtt107. 

Given that Dpb11 and Rtt107 contain phospho-protein-binding BRCT domains, it seems reasonable 

that phosphorylation will induce protein-protein interactions within the complex. Indeed, a direct, 

phosphorylation-dependent interaction of Mms4 to the BRCT domains 3+4 of Dpb11 was identified, 

whereas a direct interaction to Rtt107 could not be verified so far (Fig. 5C and Appendix Fig. S8C-D, 

Gritenaite et al., 2014; Appendix Fig. S5A, Princz et al., 2017; Princz and Pfander, unpublished data; 

Cussiol et al., 2015). However, it is conceivable that DDK- and Cdc5-dependent binding of Rtt107 to 

the nuclease is actually induced by newly generated binding sites on Mms4 or Mus81 (Fig. 2E and 

Appendix Fig. S2A, Princz et al., 2017). 

As Rtt107 can also bind several other enzymes (like Rtt101-Mms1-Mms22, Rtt109, or the Smc5/6 

complex (Ho et al., 2002; Baldwin et al., 2005; Roberts et al., 2008; Ohouo et al., 2010; Leung et al., 

2011; Hang et al., 2015)) or even mediate DNA contact via phosphorylated histone H2A (Leung et al., 

2011; Li et al., 2012), it will be interesting to address additional roles of Rtt107 during JM resolution 

in future studies. 

Taken together, these results indicate that two separate functional groups exist within the Dpb11-

Slx4-Rtt107 complex, which regulate Mus81-dependent JM resolution: Dpb11-Slx4 on the one side, 

which are dispensable for Mus81 activity (as measured by in vitro assays), but which are required for 

efficient JM resolution in cell-based assays, and Rtt107 on the other side that has a direct effect on 

Mus81 activity by tethering DDK and Cdc5 kinases into a stable complex with Mus81-Mms4. 
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3. Kinases and scaffolds form a multi-protein complex with Mus81-Mms4 

In this study, we describe a new facet of JM resolution by Mus81-Mms4, which is mediated by the 

formation of a multi-protein complex in mitosis. Notably, association of all involved proteins – i.e. the 

kinases DDK and Cdc5 as well as the scaffold proteins Dpb11, Slx4, and Rtt107 – coincides with hyper-

phosphorylation of Mms4 and activation of the resolvase Mus81 (Fig. 5A, D and Appendix Fig. S8A, C, 

Gritenaite et al., 2014; Fig. 1A, 2A and Appendix Fig. S1A, Princz et al., 2017).  

Importantly, we could show that formation of this multi-protein complex involves intricate inter-

dependencies as kinase activity mediates binding of the scaffold proteins, and the scaffold protein 

Rtt107 in turn promotes stable association of the kinases. Strikingly, Rtt107 is thereby part of both 

functional modules, and creates a positive feedback loop linking the control by cell cycle kinases and 

scaffold proteins (Figure 8). 

 

 
 

Figure 8. Hypothetical model of the regulatory multi-protein complex that controls Mus81-Mms4-mediated JM 

resolution. Grey arrows depict physical interactions; green arrows depict kinase-substrate connections. Genetic and 

biochemical data establish a hierarchy of events during Mus81 activation: (1) CDK (not shown), DDK and Cdc5 

phosphorylate Mms4. (2) Rtt107 binds to DDK and Cdc5 and associates – directly or indirectly – with Mus81-Mms4 in a 

phosphorylation-dependent manner. Thereby, Rtt107 promotes stable binding of the kinases to Mus81-Mms4, full Mms4 

phosphorylation, and Mus81 activation. (3) Upon Mms4 phosphorylation the BRCT domain-containing scaffold proteins 

Rtt107 and Dpb11 interact independently with Mus81-Mms4. Either of both proteins is sufficient to bind Slx4 to Mus81-

Mms4 (adapted from Princz et al., 2017). 

 

 

The formation of a multi-protein complex in dependence of several kinases and scaffold proteins 

implies the possibility to integrate distinct cellular signals – such as cell cycle phase or the presence 

of DNA damage – into the regulation of Mus81-Mms4-mediated JM resolution. Mms4 is able to read 

those cellular inputs and permits a directed, switch-like activation of Mus81 at a certain time of the 

cell cycle. Thereby, Mus81 activation occurs via multi-site phosphorylation of Mms4 as well as via an 

Rtt107-mediated positive feedback – features that are characteristic for a switch-like transition (Nash 

et al., 2001; Xiong and Ferrell, 2003; Liu et al., 2010). Such switch-like mechanisms have been 

described earlier for other phosphorylation substrates, especially at cell cycle phase transitions 

(Matos et al., 2008; Reußwig et al., 2016;), and ensure rapid adaptation to cellular changes and even 

functional restriction of enzymes to specific cell cycle phases as in the case of Mus81-Mms4. Taken 

together, Mms4 connects kinase and scaffold signals via phosphorylation events, and thereby 

constitutes the temporal program for timely activation of Mus81 at the G2/M transition. 
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4. Evolutionary conserved features of JM resolution by Mus81-Mms4 

Several, but not all features of Mus81 regulation have been found to be conserved among 

eukaryotes. In contrast to Mus81 in yeast, human MUS81 exists in a complex with two alternative 

interaction partners, EME1 and EME2 (Ciccia et al., 2003). Both complexes share the ability to resolve 

branched DNA structures in vitro, whereas they differ in substrate specificity (Ciccia et al., 2007; 

Amangyeld et al., 2014; Pepe and West, 2014). While MUS81-EME2 is thought to promote replication 

fork restart perhaps even in S-phase, MUS81-EME1 promotes resolution of recombination 

intermediates in G2- and M-phases (Pepe and West, 2014). Therefore, MUS81-EME1 represents the 

homologous counterpart of Mus81-Mms4 in budding yeast. 

EME1 becomes phosphorylated in a CDK1-dependent manner at the G2/M transition, which 

correlates with an enhancement of MUS81 resolvase activity (Matos et al., 2011; Wyatt et al., 2013; 

Duda et al., 2016). As MUS81 activity depends on CDK1, and to a lesser extent on PLK1 (Cdc5 

homologue) activity, JM resolution by MUS81-EME1 in mammalian cells appears to be regulated by a 

temporal program that shows close resemblance to the one in budding yeast. Given that DDK is 

involved in replication-associated repair in vertebrates, it would be interesting to test if also 

mammalian JM resolution is influenced by DDK (reviewed in Yamada et al., 2014). Additionally, the 

molecular mechanism of Mus81/MUS81-mediated resolution is highly similar among eukaryotes as 

both resolvases were described to cleave branched DNA structures by an initial bending step (Gwon 

et al., 2014; Mukherjee et al., 2014). 

Data from mammalian cells showed a physical interaction between SLX1-SLX4 and MUS81-EME1 

(SLX-MUS complex), as well as a cooperating function during resolution (Fekairi et al., 2009; 

Svendsen et al., 2009; Garner et al., 2013; Wyatt et al., 2013). Intriguingly, SLX4 is also targeted by 

CDK1-dependent phosphorylation and this modification mediates complex formation and 

cooperation (Wyatt et al., 2013). Whether association with other endonucleases, such as Slx1 or 

Fen1, to promote HJ resolution is a conserved mode-of-action of Mus81 is currently still unclear. So 

far, data does not hint towards a cooperative function of Mus81 and Slx1 in the resolution of HJs in 

yeast: While MUS81 or MMS4 deletion accumulate persistent recombination intermediates and 

therefore cause genomic instability in mitosis and meiosis (Boddy et al., 2001; Matos et al., 2011; 

Szakal and Branzei, 2013), deletion of SLX1 does not hamper chromosome segregation (Mullen et al., 

2001; Fricke and Brill, 2003; Zhang et al., 2006). Furthermore, the synthetic lethality of slx1∆ with 

sgs1∆ cannot be rescued in rad52∆ or rad51∆ recombination-deficient backgrounds as was shown 

for mus81∆ (Fabre et al., 2002; Bastin-Shanower et al., 2003; Fricke and Brill, 2003). However, the 

synthetic lethality of slx1∆ and sgs1∆ is likely caused by defects in rDNA replication rather than by 

defective resolution (Coulon et al., 2004; Fricke and Brill, 2003), which makes elucidating the 

involvement of Slx1 in JM resolution challenging. Therefore, construction of a specific Slx1 

separation-of-function, such as the slx4-S486A mutant to separate Slx4 functions, would be 

indispensable to gain more insight into how Slx1 may contribute to resolution. Nevertheless, Slx4 

evidently harbours Slx1-independent functions that are associated with resolution as slx4∆, but not 

slx1∆, reduces spontaneous mitotic crossovers (Ho et al., 2010; de Muyt et al., 2012; Zakharyevich et 

al., 2012). Taken together, these findings suggest that Mus81 and Slx1 endonucleases probably do 

not cooperate in JM resolution during recombination-based DNA repair pathways in yeast, or that a 

redundant factor is able to take over in the absence of Slx1.  
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In mammals, the link between MUS81 and SLX1 endonucleases is SLX4. It was hypothesized that SLX4 

displays a platform for several nucleases thereby coordinating their activities (Kim et al., 2013; Wyatt 

et al., 2017). However, despite conservation of the MUS81-binding SAP domain in SLX4 throughout 

eukaryotes (Fekairi et al., 2009), a direct interaction of Mus81 and Slx4 in budding yeast has not been 

described. In contrast, we discovered a conserved interaction in human cells between SLX4 and 

TopBP1, the homologue of Dpb11 (Fig. 1D, 2E and Appendix Fig. S2, Gritenaite et al., 2014). While it 

still has to be validated whether TopBP1 is part of the SLX-MUS complex, its role in yeast to bridge 

Mus81-Mms4 to Slx4 (and associated factors) may not be necessary in mammals due to the direct 

MUS81-SLX4 interface.  

Interestingly however, TopBP1 was associated with the induction of chromatin bridges, which largely 

depend on HR (Germann et al., 2014), as well as with SLX4 foci formation in mitosis in chicken DT40 

cells (Pederson et al., 2015). These findings let to the hypothesis that TopBP1 may restrain chromatin 

bridge formation by mediating SLX4-dependent resolution of HJ intermediates, and predestines 

TopBP1 as a potential regulator of resolution also in mammals. 

Besides its mitotic function, TopBP1 might also have an SLX4-dependent role in S-phase, equivalent 

to the Dpb11-Slx4 complex we characterized after replication fork stalling (see following chapter). 
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B. The Dpb11-Slx4-Rtt107 complex after replication fork stalling 

Consistent with previous studies our data revealed that the scaffold proteins Dpb11, Slx4, and Rtt107 

form a complex already in S-phase upon MMS-induced replication fork stalling (Ohouo et al., 2010; 

Appendix Fig. S4A, Gritenaite et al., 2014). Notably, deletion of RTT107 or SLX4 in S. cerevisiae results 

in genome instability and increased sensitivity to replication stress (Flott and Rouse, 2005; Flott et al., 

2007; Roberts et al., 2006; 2008). This led us to propose a working model, whereby two types of 

complexes exist throughout the cell cycle: one mitosis-specific complex that promotes efficient JM 

resolution by Mus81-Mms4 (see above), and one S-phase-specific complex that regulates the 

response to replication stress. So far, it has not been validated whether both complexes co-exist in 

M-phase, or whether the S-phase complex is in fact a precursor, which later on associates with 

Mus81-Mms4 in mitosis. 

 

1. Complex formation is regulated by CDK and checkpoint kinases 

The interaction between Dpb11, Slx4, and Rtt107 is mediated by several phosphorylation events that 

integrate two cellular signals: the cell cycle phase – by CDK-dependent phosphorylation of Slx4-S486 

(Fig. 1C, 2C, E, Gritenaite et al., 2014; Ohouo et al., 2013) – and the presence of DNA damage – by 

checkpoint kinase-dependent phosphorylation of Dpb11, Slx4, and Rtt107 (Rouse 2004; Flott and 

Rouse, 2005; Roberts et al., 2006; Ohouo et al., 2010; Balint et al. 2015; Fig. 2D, Gritenaite et al., 

2014). By characterizing specific phosphorylation-deficient slx4 mutants and their phenotypes after 

replication fork stalling we and others have elucidated potential functions of the Dpb11-Slx4-Rtt107 

complex in S-phase.  

An slx4-S486A mutant, which is particularly defective in Dpb11 binding, as well as an slx4-7A mutant, 

in which seven putative Mec1 sites are substituted by non-phosphorylatable alanines, are hyper-

sensitive specifically to DNA alkylation by MMS, and therefore to MMS-induced replication fork 

stalling (Ohouo et al., 2013; Appendix Fig. S3A, Gritenaite et al., 2014). Strikingly, slx4 hyper-

sensitivity can be rescued by a fusion of Dpb11 to Slx4-S486A (Fig. 3B, Gritenaite et al., 2014), and 

even by a fusion of Dpb11 to Rtt107 (Cussiol et al., 2015). These results therefore suggest that 

formation of a Dpb11-Slx4-Rtt107 complex after replication stress aims at connecting the two 

scaffold proteins Dpb11 and Rtt107, or their associated factors.  

A recent study linked complex assembly to efficient Mec1 signalling distal to stalled replication forks: 

Genome-wide ChIP enrichment data revealed that Rtt107 contacts DNA via Mec1-phosphorylated 

histone H2A, and recruits Slx4 and (subsequently) Dpb11 behind replication forks upon MMS 

treatment (Leung et al., 2011; Li et al., 2012; Balint et al., 2015). Dpb11 accumulation on chromatin 

enhances Mec1 activity (Puddu et al., 2008), which in turn amplifies Dpb11, Slx4, Rtt107 and H2A 

phosphorylation and therefore Dpb11-Slx4-Rtt107 binding (Balint et al., 2015). Consequently, Dpb11-

Slx4-Rtt107 complex formation launches a positive feedback loop to promote full Mec1 activation. 
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2. Dpb11-Slx4-Rtt107 dampen DNA damage checkpoint signalling  

DNA damage checkpoint signalling is initiated by formation of a multi-protein checkpoint complex, 

which triggers the activation of the effector kinase Rad53. Within this complex, Dpb11 engages three 

protein interaction surfaces to bind Rad9, Ddc1 and Mec1-Ddc2 (Wang and Elledge, 2002; Majka et 

al., 2006; Mordes et al., 2008; Navadgi-Patil and Burgers, 2008; 2009; Puddu et al., 2008; Pfander and 

Diffley, 2011). This signalling complex localizes to DNA damage sites via Ddc1 (i.e., the 9-1-1 

complex), and via Rad9 bound to -H2A and methylated histone H3 (Furuya et al., 2004; Giannattasio 

et al., 2005; Toh et al., 2006; Delacroix et al., 2007; Grenon et al., 2007; Hammet et al., 2007; Lee et 

al., 2007; Puddu et al., 2008). Upon Mec1-dependent phosphorylation, the checkpoint mediator 

protein Rad9 promotes activation of Rad53, thereby coordinating the downstream signalling cascade 

of the checkpoint response (Majka et al., 2006; Mordes et al., 2008; Navadgi-Patil and Burgers, 2008; 

2009; Puddu et al., 2008; Pfander and Diffley, 2011). 

Hyper-activation of the checkpoint (as indicated by increased phosphorylation of the effector kinase 

Rad53) in MMS-treated slx4-S486A or slx4-7A cells that lack the Slx4-Dpb11 interaction led to a 

model whereby the Dpb11-Slx4-Rtt107 complex may counteract checkpoint signalling during the 

response to replication stalling (Ohouo et al., 2013; Fig. 3E, Gritenaite et al., 2014; Cussiol et al., 

2015; Dibitetto et al., 2015). In agreement, checkpoint mutants (such as ddc1-T602A or rad53-3HA) 

can partially rescue the slx4 phenotypes associated with replication stress (Fig. 6A-B and Appendix 

Fig. S10A-B, Gritenaite et al., 2014; Ohouo et al., 2013; Dibitetto et al., 2015; Jablonowski et al., 

2015).  

Recent studies related this checkpoint dampening function to a direct competition between the 

binding partners of the two Dpb11 complexes (Ohouo et al., 2013; Balint et al., 2015; Cussiol et al., 

2015; Dibitetto et al., 2015): Slx4 and Rtt107 both counteract Rad9 binding to the N-terminal BRCT 

domains of Dpb11 as well as to phosphorylated histone H2A, respectively (Leung et al., 2011; Li et al., 

2012; Ohouo et al., 2013). Thereby, the Dpb11-Slx4-Rtt107 complex directly counteracts Rad9 in its 

binding to lesion sites as well as in its binding to both Mec1 activators, Dpb11 and Ddc1. This 

impedes Rad9 and Rad53 phosphorylation, and concurrently Rad53 activation. 

Notably, the Dpb11-Slx4-Rtt107 complex does not only counteract chromatin binding of Rad9, but 

also its function in inhibiting DNA end resection (Lazzaro et al., 2008). Alongside, checkpoint 

dampening by the Dpb11-Slx4-Rtt107 complex was associated with efficient long range resection as 

slx4∆, slx4-S486A and rtt107∆ mutants delay formation of long ssDNA tails (Dibitetto et al., 2015). 

Interestingly, binding of Ddc1 to Dpb11 is not impaired by the formation of the Dpb11-Slx4-Rtt107 

complex after replication fork stalling. In contrast, Dpb11 was shown to bridge between Slx4 and 

Ddc1 proteins (Cussiol et al., 2015). Thereby, the Dpb11-Slx4-Rtt107 complex and the checkpoint 

complex bear remarkable resemblance in their composition, with -H2A and Ddc1 mediating 

chromatin contact and Rtt107-Slx4 representing the counterpart to Rad9. Cussiol et al. proposed a 

spatio-temporal program, in which checkpoint complex formation occurs first upon replication stress 

activating Rad53 at proximal regions to stabilize stressed forks (Branzei and Foiani, 2010; Cussiol et 

al., 2015). After fork bypass Slx4 and Rtt107 displace Rad9, presumably due to a stronger interaction 

to Dpb11, and dampen the DNA damage checkpoint signalling. During the recovery from replication 

stress, however, Mms4 was described to outcompete Ddc1 in binding to the BRCT domains 3+4 of 

Dpb11 (Cussiol et al., 2015). This succession of interaction events would be consistent with our 
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hypothetical model for a transition from the S-phase-specific to the M-phase-specific Dpb11-Slx4-

Rtt107 complex. Interestingly, we found that slx4-S486A mutation delayed Mms4 phosphorylation, 

and that partial checkpoint inactivation was able to alleviate this phenotype (Fig. 6E-F, Gritenaite et 

al., 2014), consistent with an antagonizing function of the checkpoint on Mus81-Mms4 activity (see 

above). Additionally, the rescue of slx4 mutants by partial checkpoint inactivation is dependent on 

Mus81 activity, but not on Sgs1-Top3-Rmi1 or Yen1 activity (Fig. 6C-D and Appendix Fig. S10C, 

Gritenaite et al., 2014). Therefore, one function of the Dpb11-Slx4-Rtt107 complex might be to 

promote JM resolution indirectly by checkpoint dampening.  

 

3. Multiple functions of Dpb11-Slx4-Rtt107 after replication stress in S-phase 

Several recent studies implicated the Dpb11-Slx4-Rtt107 complex in counteracting the DNA damage 

checkpoint after replication fork stalling (Ohouo et al., 2013; Balint et al., 2015; Cussiol et al., 2015; 

Dibitetto et al., 2015). However, our data indicate that checkpoint dampening is not the only 

function of the scaffold complex in S-phase, but suggest an additional involvement in DNA repair.  

Experimental evidence for this hypothesis was obtained in the slx4-S486A mutant background, where 

we observed accumulation of RPA nuclear foci after MMS treatment (Fig. 3F, Gritenaite et al., 2014), 

which is consistent with the occurrence of persistent ssDNA structures such as stalled replication 

forks or perhaps repair intermediates thereof. Together with a delay in S-phase progression and in 

the reappearance of fully replicated, repaired chromosomes in MMS-treated slx4-S486A cells (Fig. 

3C-D and Appendix Fig. S3B, Gritenaite et al., 2014), these results hint towards a putative repair 

function of the Dpb11-Slx4-Rtt107 complex. Based on this model, Dpb11, Slx4, and Rtt107 are 

recruited to sites of stalled forks, where they display a platform for repair enzymes. However, so far, 

no repair enzymes have been associated with the complex during the response to replication fork 

stalling. 

Taken together, the Dpb11-Slx4-Rtt107 complex seems to have various roles during the response to 

replication fork stalling. It was implicated in full activation of Mec1 uncoupled from Rad53 activation 

by recruiting Dpb11 behind stressed replication forks (Balint et al., 2015), in a potential repair 

function (Gritenaite et al., 2014), and in checkpoint dampening by counteracting Rad9 (Ohouo et al., 

2013). Resolving those different functions is challenging since they all include binding of Slx4 to 

Dpb11 (and likely also to Rtt107). Furthermore, it may not even be possible to study those functions 

in isolation as they are highly inter-twined: For example, checkpoint dampening will influence a 

putative DNA repair function as Rad9 inhibition fosters DNA end resection, which displays the initial 

step in recombination-based repair pathways. Additionally, the checkpoint dampening function of 

Dpb11-Slx4-Rtt107 complex in S-phase highly correlates with its mitotic function to promote Mus81 

activation and JM resolution. 

Future research needs to identify additional factors, especially repair factors, as well as to further 

elucidate the contributions of the Dpb11-Slx4-Rtt107 complex during the response to replication 

stress, and also with regard to the correlation between S- and M-phase complexes. 
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C. Dpb11 as a regulator of the DNA damage response 

The cellular response to DNA damage involves an elaborate network of signalling cascades that 

coordinates repair processes with cell cycle progression to preserve genomic integrity. Within this 

network, signal transduction depends on specific, regulated protein-protein interactions. One way to 

achieve this specificity and regulation is by timed phosphorylation events – catalysed by cell cycle-

dependent kinases or checkpoint kinases. Several modular domains, such as 14-3-3, FHA or BRCT 

domains, have been described to specifically recognize phosphorylated proteins (Mohammad and 

Yaffe, 2009). With Dpb11, Rtt107, and Rad9 containing multiple BRCT domains, their characterization 

was of particular interest for our research.  

 

1. BRCT domains bind phosphorylated proteins  

Originally, BRCT (BRCA1 C-terminal homology) domains were identified to be 90-100 amino acid 

regions in the tumour suppressor protein BRCA1 as mutation of these regions causes increased 

occurrence of breast and ovarian cancers (Futreal et al., 1994; Miki et al., 1994). To date, additional 

BRCT domain-comprising proteins have been detected, most of which with functions during DNA-

associated processes (Leung et al., 2011; Gerloff et al., 2012). In those proteins the number of BRCT 

domains can range from single isolated domains to tandem repeats and multiple BRCT domains like 

in Dpb11/TopBP1 or Rtt107/PTIP (Lechner et al., 2000; Huo et al., 2010; Rappas et al., 2011). Tandem 

BRCT domains have been found to often allow binding to phosphorylated proteins. Besides, BRCT 

domains have been additionally linked to DNA binding and interaction with poly(ADP-ribose) 

(Pleschke et al., 2000; Yamane et al., 2000; Dhingra et al., 2015).  

Comparison of BRCT domains from different proteins revealed conserved residues in the target 

recognition site as well as in the hydrophobic core, whereas the connecting loops show more variety 

in sequence and structure (Glover et al., 2004; Rodriguez and Songyang, 2008). Especially for BRCA1 

binding partners, sequence alignments of target peptides identified a conserved pSXXF motif 

representing a bipartite interface to tandem BRCT repeats. Thereby, the phosphorylated residue 

interacts with the binding pocket of one BRCT domain (mostly the N-terminal), while the 

phenylalanine in position +3 interacts with the hydrophobic pocket of the second BRCT domain 

(Shiozaki et al., 2004; Schreyer and Blundell, 2013). Whether this bipartite interaction pattern 

displays a widespread mode to bind tandem BRCT domains is currently not known. Apart from the 

two main interaction sites, variation of the X residues at the positions +1 and +2 might be responsible 

for protein-specific affinities. Particularly, a proline residue at the +1 position is thought to augment 

the binding properties by modulating the peptide structure with the intent that the phosphorylated 

and the hydrophobic residue face the same site (Lokesh et al., 2007; Yuan et al., 2011). Additional 

interaction sites outside of the motif seem to have an impact on binding as well adding further 

complexity to the BRCT domain interactome (Wu et al., 2015).  

During our studies we characterized the BRCT domain target sites in Slx4 (S486), Mms4 (S201) and 

other Dpb11 interaction partners. For the Dpb11 BRCT 1+2 domains, in particular, a composite 

binding surface for two phosphorylated residues was described (Tanaka et al., 2007; Zegerman and 

Diffley, 2007; Zegerman and Diffley, 2010; Pfander and Diffley, 2011; Bantele et al., 2017).  
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Interestingly, we did not identify a phenylalanine residue in the +3 position of respective motifs in 

Slx4 and Mms4, but several hydrophobic amino acids in the vicinity of the phosphorylated target site 

to influence binding affinities (Princz, Rühmann and Pfander, unpublished data). Therefore, a 

cooperative binding of phosphorylated and hydrophobic residues to a tandem BRCT repeat would be 

consistent with the bipartite interaction pattern described for BRCA1.  

 

2. Dpb11 complexes regulate multiple cellular pathways 

Especially during the last four years, research on Dpb11 and its eukaryotic homologues (Cut5/Rad4 in 

S. pombe, TopBP1 in mammals) has made significant progress in elucidating novel functions as well 

as in unravelling the underlying molecular mechanisms. It has become clear that Dpb11 and 

homologues are able to read phosphorylations via their BRCT domains, and to scaffold the respective 

proteins into multi-protein complexes. Thereby, they can specifically integrate various cellular inputs 

like cell cycle and DNA damage signals, and contribute to the regulation and coordination of cellular 

pathways.  

Dpb11 is an essential protein and has been implicated in diverse DNA-associated processes, such as 

DNA replication (with Sld3 and Sld2), the DNA damage checkpoint (with Rad9, Ddc1 and Mec1) and 

DNA repair by recombination-based mechanisms (with Rtt107-Slx4 and Ddc1; with Rtt107-Slx4 and 

Mms4-Mus81; or with Fun30 and Ddc1). With many of Dpb11’s functions showing conservation in 

higher eukaryotes, yeast has become a fundamental model organism to study the function of TopBP1 

in multi-cellular organisms. Interestingly, TopBP1 harbours additional BRCT domains compared to 

Dpb11 and Cut5/Rad4, which may be connected to additional interaction partners and functions in 

higher eukaryotes (Garcia et al., 2005; Rappas et al., 2011). Alongside, TopBP1 has emerged as a 

potential regulator of transcription in recent studies (Wright et al., 2006; Sjottem et al., 2007), and 

was also described to bind additional factors such as BLM and the MRN complex (Duursma et al., 

2013; Wang et al., 2013; Blackford et al., 2015).  

A major aim of our research was to reveal coordination and potential crosstalk between the distinct 

Dpb11 complexes. Indeed, we performed profound characterization of a Dpb11 complex formed in S-

phase after replication fork stalling (Gritenaite et al., 2014), and functionally linked it to resolution of 

JMs in the subsequent mitosis, which is accompanied by further assembly into a multi-protein 

complex (Princz et al., 2017).  

In contrast to this kind of “handover” mechanism, other Dpb11 interactors seem to counteract each 

other. In line with this, Dpb11 has for example been associated with resection-promoting 

and -antagonizing factors (Fun30/Rtt107-Slx4 and Rad9, respectively) (Ohouo et al., 2013; Cussiol et 

al., 2015; Bantele et al., 2017). Intriguingly, several Dpb11 interactions were shown to be mutually 

exclusive. With Dpb11 being present only by some hundred molecules per cell (Ghaemmaghami et 

al., 2003; Kulak et al., 2014), competition between the binding partners displays a versatile mode of 

action to regulate the corresponding complex functions. This ensures temporal separation of cellular 

events, such as replication and DNA damage checkpoint signalling (by Sld3-Rad9 competition) (Boos 

et al., 2011), or checkpoint signalling and JM resolution (by competition of Ddc1 and Mms4) (Ohouo 

et al., 2013). In conclusion, Dpb11 coordinates protein interactions in order to build up a safeguard 

mechanism to spatio-temporally separate opposing processes.  
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A cell cycle-regulated Slx4–Dpb11
complex promotes the resolution of DNA
repair intermediates linked to stalled
replication
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A key function of the cellular DNA damage response is to facilitate the bypass of replication fork-stalling DNA
lesions. Template switch reactions allow such a bypass and involve the formation of DNA joint molecules (JMs)
between sister chromatids. These JMs need to be resolved before cell division; however, the regulation of this process
is only poorly understood. Here, we identify a regulatory mechanism in yeast that critically controls JM resolution by
the Mus81–Mms4 endonuclease. Central to this regulation is a conserved complex comprising the scaffold proteins
Dpb11 and Slx4 that is under stringent control. Cell cycle-dependent phosphorylation of Slx4 by Cdk1 promotes the
Dpb11–Slx4 interaction, while in mitosis, phosphorylation of Mms4 by Polo-like kinase Cdc5 promotes the
additional association of Mus81–Mms4 with the complex, thereby promoting JM resolution. Finally, the DNA
damage checkpoint counteracts Mus81–Mms4 binding to the Dpb11–Slx4 complex. Thus, Dpb11–Slx4 integrates
several cellular inputs and participates in the temporal program for activation of the JM-resolving nuclease Mus81.

[Keywords: DNA damage response; cell cycle; post-replicative repair; homologous recombination; joint molecule
resolution]
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Intrinsically and extrinsically induced DNA lesions can
compromise the integrity of the genetic information and
threaten cell viability. DNA lesions are particularly dan-
gerous during S phase, when faithful DNA replication
relies on two intact DNA strands. DNA lesions hamper
the progression of replication forks and thereby the com-
plete duplication of chromosomes. Moreover, replication
forks that are stalled at DNA lesion sites can collapse and
cause chromosome breaks and genome instability (Branzei
and Foiani 2010).
Eukaryotes possess two fundamentally different mecha-

nisms to bypass DNA lesions that affect one of the parental
DNA strands: translesion synthesis (TLS) and template

switching. TLS employs specialized polymerases (trans-
lesion polymerases) that inmany cases are able to replicate
the damaged strand but with a reduced fidelity (Prakash
et al. 2005). On the other hand, during template switching,
the genetic information is copied from the newly synthe-
sized, undamaged sister chromatid. This mechanism is
therefore error-free in principle, yet its precise mechanism
remains poorly understood. Template switching is a com-
plex process that can be initiated by different recombina-
tion-based mechanisms (homologous recombination [HR]
and error-free post-replicative repair [PRR]) (Branzei et al.
2008). The choice between the different bypass mecha-
nisms is regulated by ubiquitin and SUMO modifications
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of the replication protein PCNA at sites of stalled replica-
tion forks (Pfander et al. 2005).
Template switch mechanisms involve the formation of

DNA joint molecules (JMs; also referred to as sister
chromatid junctions [SCJs] or X molecules) as repair in-
termediates (Branzei et al. 2008). In order to allow com-
pletion of DNA replication and faithful chromosome
segregation, these X-shaped DNA structures need to be
disentangled before sister chromatids are separated during
mitosis. To date, three enzymatic activities—the topoisom-
erase-containing Sgs1–Top3–Rmi1 complex (STR) as well
as the Mus81–Mms4 and Yen1 structure-specific endonu-
cleases—were shown to process JMs in budding yeast
(Liberi et al. 2005; Blanco et al. 2010; Mankouri et al.
2011; Szakal and Branzei 2013). These three activities
can be distinguished by their mechanism (termed disso-
lution for STR and resolution forMus81–Mms4 and Yen1)
(Gaillard et al. 2003; Ip et al. 2008; Cejka et al. 2010) but
show a partial functional overlap. Moreover, they are
differentially regulated during the cell cycle: Whereas the
STR activity appears to be cell cycle-independent, the
activity of Mus81–Mms4 is stimulated by CDK-mediated
and Cdc5 (budding yeast Polo-like kinase)-mediated phos-
phorylation and peaks in mitosis (Matos et al. 2011, 2013;
Gallo-Fernández et al. 2012; Szakal and Branzei 2013).
Accordingly, the Mus81 regulation is assumed to create
a hierarchy, with STR acting as a primary resolution
pathway and Mus81–Mms4 acting as a salvage pathway.
How Mus81–Mms4 phosphorylation by cell cycle kinases
facilitates this temporal regulation of JM resolution path-
ways remains hardly understood.
The bypass of DNA lesions during replication is addi-

tionally regulated by the DNA damage checkpoint, the
main cellular signaling pathway in response to DNA
damage (Harrison andHaber 2006). As the primary purpose
of the checkpoint is the stabilization of stalled replication
forks (Branzei and Foiani 2010), its activation is a funda-
mental requirement for all fork repair and reactivation
reactions. Notably, the checkpoint has been suggested to
be involved in the choice of the JM resolution pathway,
since precocious activation of the Mus81–Mms4 endonu-
clease is observed in checkpoint-deficient mutants (Szakal
and Branzei 2013). However, it remains to be clarified how
this second layer of regulation of JM resolution is achieved
on a molecular level and how it is linked to cell cycle
regulation.
Here, we identify an evolutionarily conserved protein

complex comprising two scaffold proteins, Slx4 andDpb11/
TopBP1, as an important regulator of JM resolution by
Mus81–Mms4. We show that the formation of the Slx4–
Dpb11 complex is regulated by the cell cycle stage. An slx4
mutant, compromised specifically in Dpb11 binding, ex-
hibits hypersensitivity to the replication fork-stalling drug
MMS, a delay in the resolution of X-shaped DNA JMs, and
a reduced propensity to form crossovers (COs). The func-
tion of the Slx4–Dpb11 scaffold in JM resolution correlates
with the finding that Dpb11 binds to the Mus81–Mms4
endonuclease. This association is restricted to mitosis,
since it is dependent on themitotic kinase Cdc5.Moreover,
the checkpoint acts antagonistically to the regulation of JM

resolution by Slx4 and Dpb11, as we found that partial
inactivation of the DNA damage checkpoint can compen-
sate for defects in formation of the Slx4–Dpb11 scaffold
complex.

Results

An evolutionarily conserved and phosphorylation-
dependent interaction between Slx4 and Dpb11/
TopBP1

Dpb11 and its human homolog, TopBP1, are critical re-
gulators of the cellular DNA damage response and interact
with several DNA replication, repair, and checkpoint
proteins (Garcia et al. 2005; Germann et al. 2011). In these
protein complexes, Dpb11/TopBP1 specifically binds to
phosphorylated proteins via its tandemBRCTdomains (Yu
2003; Garcia et al. 2005). A key role of Dpb11/TopBP1 is to
function as a scaffold, bringing together specific sets of
proteins via several interaction surfaces. In budding yeast,
two Dpb11 complexes have been described in detail,
which regulate replication initiation (with Sld3 and Sld2)
(Tanaka et al. 2007; Zegerman and Diffley 2007) and the
DNA damage checkpoint (with Rad9, the 9-1-1 complex,
and Mec1–Ddc2) (Mordes et al. 2008; Navadgi-Patil and
Burgers 2008; Puddu et al. 2008; Pfander and Diffley 2011),
respectively (Fig. 1A). Recently, a third Dpb11 complex
with Slx4 and Rtt107 was identified (Ohouo et al. 2010,
2012). In this latter complex, Slx4 appears to inhibit the
formation of theDpb11DNA damage checkpoint complex
(Ohouo et al. 2012).
In the course of our studies of Dpb11 function, we

identified an interaction between a Dpb11 fragment that
includes the tandem BRCT repeats 3 and 4 (BRCT3+4) and
Slx4 using a two-hybrid screen. To confirm this finding, we
tested the binding of different Dpb11 constructs to Slx4
and known Dpb11 binders. As observed before (Puddu
et al. 2008; Pfander and Diffley 2011), we found that Rad9
binds to BRCT1+2 of Dpb11, whereas Ddc1 binds to
BRCT3+4 (Fig. 1B). For Slx4, we found an interaction with
full-lengthDpb11 and the BRCT3+4 fragment but not with
the BRCT1+2 domain (Fig. 1B). When we tested binding of
Slx4 from cell extracts to recombinant, purified fragments
of Dpb11, Slx4 also bound to BRCT3+4, albeit weaker than
to the full-length protein (Supplemental Fig. S1A). More-
over, ablation of Dpb11 Thr451, which is predicted to be
part of the BRCT3+4 phospho-protein-binding surface
(Rappas et al. 2011), partially inhibited the Slx4–Dpb11
interaction (Supplemental Fig. S1B). A recent report sug-
gested that the Dpb11 BRCT1+2 domain is involved in
Slx4 binding (Ohouo et al. 2012). However, although our
data do not rule out a contribution of BRCT1+2 in overall
binding, our two independent lines of evidence clearly
demonstrate that BRCT3+4 of Dpb11 significantly con-
tributes to Slx4 binding.
Next,wemapped theDpb11-binding site on Slx4 starting

from a fragment (amino acids 461–738) that was common
to all Slx4 clones identified in our initial Dpb11 two-hybrid
screen. Truncated variants that begin at amino acid 490
failed to interact with Dpb11 (Supplemental Fig. S1C),
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indicating that the region between amino acid 461 and
amino acid 490 is important for Dpb11 interaction. As
several examples indicate that Dpb11 binds phosphorylated
S/TP motifs, we tested all S/TP motifs within the C-
terminal part of Slx4 for their ability to mediate Dpb11
binding. Indeed, we found that alteration of Ser486 in Slx4
into a nonphosphorylatable alanine residue (slx4-S486A
mutant) reduced Dpb11 binding in a two-hybrid system
(Supplemental Fig. S1D). Moreover, whereas immunopre-
cipitation of wild-type Slx4 efficiently copurified endoge-
nousDpb11 from cell extracts, in particular followingMMS
treatment, the Slx4–Dpb11 interaction was strongly de-
creased in extracts from cells expressing the slx4-S486A
mutant, even after induction of DNA damage (Fig. 1C; see
also Ohouo et al. 2012). Furthermore, the phospho-S486-
containing peptide was specifically enriched (17-fold), when
Dpb11 immunoprecipitations were analyzed by quantita-
tive mass spectrometry (MS) (Supplemental Fig. S4A). We
therefore conclude that the Slx4–Dpb11 interaction in-
volves the BRCT3+4 region of Dpb11 and a region of Slx4
harboring the phosphorylated residue S486.
We further tested whether also the human homologs

TopBP1 and Slx4 are binding partners. Indeed, we detected
a specific interaction of TopBP1 and Slx4 or an N-termi-
nally truncated version of Slx4 after transient transfection
in human embryonic kidney (HEK) 293T cells (Fig. 1D). In
contrast to the yeast proteins, we did not observe a stimu-
lation of TopBP1 binding to Slx4 by DNA damage (Supple-
mental Fig. S1E). Human Slx4 is substantially larger than

yeast Slx4, with an overall sequence conservation of only
17.9%. Nonetheless, we identified a conserved short linear
motif present in Slx4 proteins from different eukaryotes
that comprises Ser486 in budding yeast and Thr1260 in
humans (Supplemental Fig. S2). Mutation of Thr1260 to
a nonphosphorylatable alanine (T1260A) in human Slx4
reduced the interaction with TopBP1 (Fig. 1D), suggesting
that this residue may function analogously to Ser486 in
budding yeast. These data suggest the presence of a novel,
evolutionarily conserved motif in Slx4 that functions in
Dpb11/TopBP1 binding.

Cdk1-dependent phosphorylation of Slx4 regulates
binding to Dpb11

In order to unravel the regulation of the Slx4–Dpb11-
binding surface, we quantified the relative amount of
Ser486 phosphorylation under different cellular conditions
using SILAC-based quantitativeMS.We observed a specific
increase of Ser486 phosphorylation in G2/M-arrested cells
compared with G1-arrested cells, indicating that the ana-
lyzed Slx4 phosphorylation is cell cycle-regulated (Fig. 2A).
In agreement with Ser486 matching the consensus target
sequence for phosphorylation by cyclin-dependent kinase
Cdk1 (S/TPxK) (Holt et al. 2009), we observed a marked
reduction of Ser486 phosphorylation in G2/M-arrested
cells when Cdk1 activity was abrogated using the cdc28-
as1 allele (Bishop et al. 2000) in combination with 1NM-
PP1 inhibitor treatment (Fig. 2B). Notably, we also detected

Figure 1. An evolutionarily conserved, phos-
phorylation-dependent interaction between Slx4
and Dpb11/TopBP1. (A) Schematic diagram of
Dpb11 domain structure depicted with its in-
teraction partners in replication initiation and
DNA damage checkpoint. (B) Slx4 binds to the
BRCT3+4 domain of Dpb11. Two-hybrid analy-
sis of GAL4-BD fused to full-length Dpb11 or to
BRCT1+2 and BRCT3+4 fragments and of
GAL4-AD fusions with Slx4, Rad9, and Ddc1.
(C) The Slx4–Dpb11 interaction is reduced by
mutation of Slx4 Ser486 and is regulated by
DNA damage. Coimmunoprecipitation of en-
dogenous Dpb11 with Slx43Flag or phosphoryla-
tion-deficient Slx4-S486A3Flag from undamaged
cells or cells treated for 30 min with 0.033%
MMS. (D) Human TopBP1 and Slx4 interact
dependent on Thr1260 of Slx4. Coimmunopre-
cipitation of human mycTopBP1 with GFPSlx4 or
N-terminally truncated GFPSlx4DN after tran-
sient overexpression in HEK293T cells. Slx4 or
Slx4DN was expressed either as wild type (WT)
or a T1260A phosphorylation-deficient variant.
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Figure 2. The Slx4–Dpb11/TopBP1-binding interface is cell cycle-regulated by Cdk1 phosphorylation of Slx4. (A) Ser486 phosphorylation is
cell cycle-regulated. Relative abundance of the Slx4 480–489 phospho-peptide and six unmodified Slx4 peptides was measured by SILAC-based
quantitative MS using 15N2

13C6 lysine (Lys8) and compared between Slx4 isolated from G1- and G2/M-arrested cells. H/L ratios for individual
peptides were normalized to total Slx4 ratios. Error bars represent standard deviations from two independent experiments, including label
switch. (B) S486 phosphorylation depends on Cdk1. Analysis as inA but comparing Slx4 from G2/M-arrested cells with normal Cdk1 activity
with cells in which Cdk1 has been inactivated using the cdc28-as1 allele and 500 nM 1NM-PP1. (C) The Slx4–Dpb11 interaction is regulated
by CDK. Coimmunoprecipitation of Dpb11 and Slx43Flag fromG2/M-arrested cells or G2/M-arrested cells in which Cdk1 has been inactivated
as in B. (D) The Slx4–Dpb11 interaction is regulated by cell cycle phase andDNA damage. Experiment as inC but with G1- andG2/M-arrested
cells, which were either damaged by 50 mg/mL phleomycin or left untreated. (E) Binding of human Slx4 and TopBP1 is regulated by CDK
phosphorylation. Coimmunoprecipitation of mycTopBP1 with GFPSlx4 and GFPSlx4DN after transient overexpression in HEK293T cells. Cells
were left untreated or treated with 10 mg/mL roscovitine for the indicated times to inhibit CDK activity.
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reduced Slx4 binding to Dpb11 when Cdk1 was inhibited
(Fig. 2C).
In addition to cell cycle-dependent regulation, we also

observed a stimulation of Slx4–Dpb11 binding by DNA
damage (Figs. 1C, 2D, Supplemental Fig. S1F). When Slx4
binding to recombinant GST-Dpb11 was tested, the DNA
damage-dependent stimulation was less pronounced (Sup-
plemental Fig. S1A), substantiating the notion that the
Slx4–Dpb11 interactionmay be additionally regulated by a
damage-induced post-translational modification of Dpb11.
On the other hand, Slx4 harbors several sites that can be
targeted by kinases of the DNA damage checkpoint path-
way. Mutation of seven sites in Slx4 partially inhibits its
binding to Dpb11 (Ohouo et al. 2010), and the correspond-
ing mutant shows phenotypes similar to those of slx4-
S486A (Supplemental Fig. S3). As we cannot fully exclude
pleiotropic defects for thismutant, we focused our analysis
on slx4-S486A.
Taken together, our findings suggest that the Slx4–

Dpb11 complex integrates at least two cellular signals: (1)
cell cycle state through Cdk1 phosphorylation of Slx4 at
Ser486 and (2) the presence of DNA damage through
checkpoint kinase phosphorylation of several sites on
Slx4 and perhaps on Dpb11.
Interestingly, the CDK regulation of this interaction is

conserved between yeast and humans, since addition of
the CDK inhibitor roscovitine reduced binding of Slx4
and TopBP1 (Fig. 2E).

The Slx4–Dpb11 complex is required for the response
to replication fork stalling

Budding yeast Slx4 is known to bind to several DNA repair
proteins (Slx1, Rtt107, and Rad1–Rad10) (Mullen et al.
2001; Roberts et al. 2006; Flott et al. 2007; Ohouo et al.
2010). However, whether these interaction partners are part
of only one or several distinct complexes is unknown.
While Slx4 has several independent DNA repair functions
in budding yeast (Flott et al. 2007), until now, a detailed
phenotypic characterization has only been conducted for
slx4D deletion mutants. To test the specificity of the
Dpb11-binding-deficient slx4-S486A phosphorylation site
mutant, we compared its binding partners with those of
wild-type Slx4 using quantitative proteomics. Indeed, we
found that the mutant protein (Slx4-S486A3Flag) displayed
eightfold reduced binding to Dpb11 (Fig. 3A). This variant
still bound Slx1 and Rtt107 as efficiently as wild-type Slx4,
indicating that Ser486 phosphorylation is specifically rele-
vant for the Dpb11 interaction (Fig. 3A; see Supplemental
Fig. S4A for specific Slx4 interactors). We thus took
advantage of the slx4-S486A separation-of-functionmutant
to reveal a specific role of the Slx4–Dpb11 complex.
Using different DNA-damaging agents, we observed that

the slx4-S486A mutant is particularly sensitive to MMS
and, to a lesser extent, 4-NQO (Fig. 3B; Supplemental Fig.
S4B), two reagents that create toxicity through replication
fork stalling. Notably, the mutant was not sensitive to
reagents that generate DNA strand breaks or interstrand
cross-links, consistent with a recombination rate that was
similar towild type (Supplemental Fig. S4B,C). Remarkably,

expression of a fusion protein of the phospho-site mutant
variant of Slx4 with Dpb11 (Dpb11–Slx4-S486A) rescued
the MMS hypersensitivity phenotype almost to wild-type
levels (Fig. 3B), suggesting that binding of Slx4 to Dpb11 is
crucial for tolerance of replication fork-stalling lesions.
Next, we tested whether the response to stalled repli-

cation forks is aberrant in the slx4-S486Amutant. To this
end, we treated synchronized cells with a pulse of MMS
in early S phase. Under these conditions, the slx4-S486A
mutant completed DNA replication with slightly slower
kinetics compared with wild-type cells (Fig. 3C, 1-h time
point). Also, the appearance of fully replicated and re-
paired chromosomes, as visualized by pulsed-field gel
electrophoresis, was delayed (Fig. 3D, 1-h time point).
This finding indicates that stalled replication fork struc-
tures or repair intermediates persist longer in the absence
of the Slx4–Dpb11 complex. Additionally, the DNA
damage checkpoint activation was prolonged in slx4-
S486A cells (Fig. 3E), as determined by the phosphoryla-
tion status of the checkpoint kinase Rad53. This effect
was specific for MMS treatment and could not be ob-
served in cells in which double-strand breaks were in-
duced by zeocin or phleomycin inside or outside of S
phase (Supplemental Fig. S4D).
Defects in a checkpoint-antagonistic pathway (check-

point ‘‘dampening’’) (Ohouo et al. 2012) in slx4 mutants
could, in principle, lead to prolonged checkpoint activa-
tion and could thereby indirectly lead to slow S-phase
kinetics and DNA damage hypersensitivity. Alternatively,
persistence of unrepaired DNA lesions or DNA repair
intermediates could lead to very similar phenotypes. In
order to discriminate between the two possibilities, we
examined the DNA damage levels during recovery from an
MMS pulse in wild-type and slx4-S486A cells. To this end,
we investigated the appearance and disappearance of
nuclear foci formed by the ssDNA-binding protein RPA
after MMS treatment in S phase. Indeed, slx4-S486A cells
contained more RPA foci, which persisted longer than in
wild-type cells (Fig. 3F). Therefore, we conclude that
unrepaired DNA lesions or DNA repair intermediates that
contain ssDNA persist in slx4-S486A mutants. This find-
ing does not necessarily exclude a role of Slx4 as a regulator
of the DNA damage checkpoint yet strongly suggests an
additional direct function of the Slx4–Dpb11 complex in
the repair of replication fork structures.

The Slx4–Dpb11 complex promotes Mus81–Mms4-
dependent JM resolution

As our findings pointed to a function of the Slx4–Dpb11
complex in the response and repair of MMS-induced
lesions, we next investigated whether the complex is
involved in the DNA damage bypass. Therefore, we
tested possible functions in HR and error-prone or error-
free PRR. From several lines of genetic evidence, we
conclude that the Slx4–Dpb11 complex is not exclusively
involved in either PRR or HR (Supplemental Fig. S5).
First, the slx4-S486A mutation enhanced the MMS hy-
persensitivity of mutants defective in error-free PRR
(double mutant with either mms2D, rad5-KT538,539AA,
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Figure 3. Mutation of slx4-S486A results in a specific defect in binding to Dpb11 and the response to stalled replication forks. (A) The slx4-

S486A mutant leads to a specific defect in binding to Dpb11. Relative enrichment of Slx4 interactors (see Supplemental Fig. S4A) found in
purifications of wild-type (WT) Slx43Flag versus Slx4-S486A3Flag as determined by SILAC-based quantitative MS. Values >1 indicate a reduced
binding to the Slx4-S486A relative to wild-type Slx4. (B) The slx4-S486Amutant, but not aDpb11–slx4-S486A-fusion, is hypersensitive toMMS.
Wild type or strains expressing slx4-S486A or the Dpb11–slx4-S486A-fusion from the SLX4 promoter as only a copy of SLX4 were spotted in
fivefold serial dilutions on MMS-containing medium and assayed for growth after 2 d. (C,D) Replication fork stalling is prolonged in the slx4-

S486A mutant. Cells were treated with a pulse of MMS during S phase, and recovery was analyzed by FACS (C; to measure cellular DNA
content) and pulsed-field gel electrophoresis (D; tomeasure intact, fully replicated chromosomes). (D) For quantification, the fluorescence signal of
chromosomes that migrated into the gel was divided by the total signal, including the pocket, and all signals were normalized to the G1 sample
from each strain. (E) The DNA damage checkpoint is inactivated with reduced kinetics in the slx4-S486Amutant. Cells were treated as inC, and
checkpoint activity was determined by anti-Rad53 Western blot. (F) The slx4-S486A mutant shows increased DNA damage foci and delayed
recovery after transientMMS treatment in S phase. DNA damage sites were visualized by the ssDNA-binding RFA13mCherry after transientMMS
treatment during S phase. Cells were sorted into three categories: multiple, dispersed RFA1 foci; one RFA1 focus; and no RFA1 foci. Values are
from two independent experiments, counting 100–150 cells per strain and time point. Error bars represent standard deviations.



or rad5-C914S), error-prone PRR (double mutant with
either rev1D, rev3D, or rad30D), or HR (double mutant
with rad51D) (Supplemental Fig. S5A). Second, spontane-
ous mutagenesis, a hallmark of error-prone PRR, was not
significantly altered in slx4-S486Amutants (Supplemental
Fig. S5B). Third, recombination rates, as determined by
a direct repeat recombination assay, were similar between
wild-type and slx4-S486A strains (Supplemental Fig. S4C).
Fourth, siz1D or srs2DC mutations, which cause an up-
regulation of HR at stalled replication forks (Pfander et al.
2005), did not alleviate the MMS hypersensitivity of slx4-
S486A mutants (Supplemental Fig. S5C).
The nonepistatic relationship of the slx4-S486A mutant

to PRR or HR pathways could be explained if Slx4 and
Dpb11 participated in a step common to both error-free
PRR and HR because, in such a scenario, both pathways
would be affected by the slx4-S486A mutation. Both HR
and error-free PRR operate via template switching in order
to bypass the replication fork-stalling lesion by copying
the undamaged information from the sister chromatid. A
critical step in template switching is the final removal of
X-shaped DNA intermediates (JMs) that link the two sister
chromatids (Mankouri et al. 2013). JM removal pathways
act, in principle, independently of the pathway by which
JMs have been created (Branzei et al. 2008; for mus81D
phenotypes, see Interthal and Heyer 2000; Li and Brill
2005). To test whether the Slx4–Dpb11 complex is in-
volved in this late step, we visualized these DNA in-
termediates in an sgs1D mutant (deficient in JM dissolu-
tion) by two-dimensional (2D) gel electrophoresis (Liberi
et al. 2005; Mankouri et al. 2011). In this mutant, MMS
treatment in S phase leads to enhanced levels of JMs,
which subsequently disappear during late S, G2, and M
phase (Szakal and Branzei 2013). The additional mutation
of slx4-S486A in the sgs1D background does not alter the
formation of JMs, indicating that the Slx4–Dpb11 complex
is not required at early steps (Supplemental Fig. S6A).
Interestingly, however, during the recovery from theMMS
treatment, JMs are more slowly resolved in the sgs1D slx4-
S486A double mutant compared with the sgs1D single
mutant (Fig. 4A). A similar effect can be observed using an
slx4D mutant and conditionally inactivated SGS1 in the
same experimental setup (Supplemental Fig. S6B). Consis-
tently, we observed an enhanced MMS sensitivity for the
sgs1D slx4-S486A double mutant compared with the re-
spective single mutants (Fig. 4B). From these experiments,
we conclude that the Slx4–Dpb11 complex is involved in
the resolution of JMs that are supposedly intermediates
arising from a template switch reaction and that this
complex functions in a pathway parallel to dissolution
by the STR complex.
To elucidate a potential role of the Slx4–Dpb11 complex

in a resolution mechanism, we investigated the genetic
interaction with Mus81–Mms4. Indeed, the MMS sensitiv-
ities of slx4-S486A mms4D or slx4-S486A mus81D double
mutants were identical to those of mms4D or mus81D
singlemutants (Fig. 4C). This suggests that the Slx4–Dpb11
complex acts in the Mus81–Mms4 pathway. The same
epistatic relationship was seen between mms4D and slx4-
S486A when we investigated JM resolution by 2D gel

electrophoresis when the STR complex was inactivated
using the Tc-sgs1 allele (Supplemental Fig. S6C). We note
that the MMS hypersensitivity and the JM resolution
defect of the slx4-S486A mutant are less pronounced
compared with the deletion mutants that fully abolish
Mus81 function (Fig. 4C; Supplemental Fig. S6C), suggest-
ing that not all functions of the Mus81–Mms4 endonucle-
ase depend on the Slx4–Dpb11 complex.
We also tested the involvement of other structure-

specific endonucleases (Slx1, Rad1–Rad10, and Yen1)
(Tomkinson et al. 1993; Fricke and Brill 2003; Coulon
2006; Ip et al. 2008), specifically of Slx1, as it associates
with the Slx4–Dpb11 complex (Supplemental Fig. S4A).
We found that rad1D showed an additive phenotype with
slx4-S486A, while slx1D and yen1D mutants were not
hypersensitive to MMS (Supplemental Fig. S6D; Fricke
and Brill 2003; Coulon 2006; Blanco et al. 2010). We
therefore conclude that these factors either are not in-
volved in the resolution of template switch intermediates
by Mus81 and the Slx4–Dpb11 complex or (in case of Slx1
and Yen1) have a function that can be taken over by
a redundant pathway in the respective deletion mutant.
Interestingly, the yen1D mutation caused an increase of
MMS sensitivity specifically of the sgs1D slx4-S486A
double mutant (Supplemental Fig. S6E), suggesting that
Yen1 function becomes specifically important if the STR
complex is inactive and function of the Slx4–Dpb11
complex is reduced.
The balance between STR-dependent JM dissolution

and Mus81-dependent JM resolution is reflected in the
ratio of CO to non-CO (NCO) products (Ira et al. 2003; Ho
et al. 2010; Mankouri et al. 2013), since STR-mediated
dissolution will not yield COs, while Mus81-mediated
resolution can generate CO products. We therefore ana-
lyzed the rates of CO formation in the slx4-S486Amutant
with a recombination assay using interchromosomal arg4
heteroalleles (Robert et al. 2006; Szakal and Branzei 2013).
Despite a slight increase in overall recombination rates,
we measured a reduction in CO rates in the slx4-S486A
mutant compared with wild-type cells (Fig. 4D). We
therefore conclude that the Slx4–Dpb11 complex is an
important regulator of JM removal pathways and that it
acts by stimulating JM resolution, inhibiting JM dissolu-
tion, or both.
Persistent JMs interfere with the separation of sister

chromatids in mitosis. Under circumstances in which JMs
are not resolved before anaphase, these repair intermedi-
ates are thought to give rise to anaphase bridges between
the dividing DNA masses (Chan et al. 2007; Mankouri
et al. 2013). Consistent with a role in the resolution of JMs,
Dpb11 localizes to DNA bridges between the separated
chromosome masses in anaphase (Germann et al. 2014).
Dpb11-containing anaphase bridges can be observed with
a low frequency in undamaged cells (<5%) and are induced
upon MMS treatment, suggesting that they arise from
replication fork stalling (Germann et al. 2014). Interest-
ingly, the occurrence of Dpb11 bridges is increased in
sgs1D cells (Germann et al. 2014), indicating that the
localization of Dpb11 to chromatin bridges reflects its
action in a resolution mechanism. We observed a pro-
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Figure 4. The Dpb11 binding-deficient slx4-S486A mutant causes defects in the Mus81–Mms4-dependent JM resolution. (A) JM
structures are resolved slower in sgs1D slx4-S486A cells. X-shaped JMs were visualized as spike signal in 2D gels in sgs1D and sgs1D

slx4-S486A cells that have been treated with a pulse of MMS in S phase. (B) MMS sensitivity is enhanced in the sgs1D slx4-S486A

double mutant compared with each single mutant. Analysis of the MMS hypersensitivity phenotype as in Figure 3B. (C) The MMS
hypersensitivity ofmms4D andmus81Dmutants is not further enhanced by an additional slx4-S486Amutation. Experiment as in B. (D)
The slx4-S486A mutation leads to a reduced CO formation. COs and NCOs from an interchromosomal recombination assay using arg4

heteroalleles on chromosome V and VIII (Robert et al. 2006) were determined using a PCR-based strategy. (Top panel) Recombination
and CO rates were determined by fluctuation analysis using a maximum likelihood approach. (Bottom panel) CO ratio is quotient of
CO rate and overall recombination rate. Error bars represent standard deviations of two to 11 independent experiments. (E) Dpb11
anaphase bridge structures occur more frequently when JM dissolution and the Dpb11–Slx4 interaction are defective. (Right panel)
Quantification of Dpb11 ultrafine bridges (UFBs) or chromatin bridges in wild-type (WT), sgs1D, slx4D, slx4-S486A, and slx4-S486A

sgs1D strains. Cells express Dpb11-YFP, NLS-RFP as a marker of the nucleoplasm and Spc110-CFP as a marker of the spindle pole body.
DNA is stained with Hoechst. (Left panel) Images of representative anaphase cells are shown. Bar, 3 mm. Error bars indicate 95%
confidence intervals. Significance is as follows: (*) P < 0.01 (compared with wild type); (#) P < 0.01 (compared with the single mutants);
(ns) not significantly different from wild type.



nounced increase of cells containing Dpb11 bridges when
the sgs1D and slx4-S486A mutants were combined (Fig.
4E). The genetic requirements for Dpb11 bridges are
therefore highly similar to those for persistent JMs (Fig.
4A), supporting a role for Dpb11 and Slx4 in JM resolution.
In line with this model, we observed frequent colocaliza-
tion of either Slx4YFP orMus81YFPwith Dpb11CFP-positive
bridges that is further enhanced in sgs1D cells (Supple-
mental Fig. S7A). We also noticed a colocalization of Slx4,
Mus81, and Dpb11 in DNA damage foci yet to a lesser
extent (Supplemental Fig. S7B). Overall, the data in Figure
4 provide strong support for an involvement of the Slx4–
Dpb11 complex in JM resolution by Mus81–Mms4.

Mus81–Mms4 interacts with the Slx4–Dpb11 complex
during mitosis in a Cdc5-dependent fashion

To elucidate how the Slx4–Dpb11 complex regulates
Mus81 function, we investigated a possible physical in-
teraction. In previous studies using asynchronously grow-
ing yeast cells, no binding of Slx4 to Mus81–Mms4 was
detectable (Schwartz et al. 2012). However, we detected
Mms4 as a cell cycle-specific interactor if Slx43Flag immuno-
precipitations were investigated by SILAC MS (such as in
Fig. 2A). Moreover, when we arrested cells in G2/M by
nocodazole treatment, immunopurification of Mms43Flag

copurified Dpb11 and Slx4 (Fig. 5A). Notably, this interac-
tion is highly cell cycle-specific, as it could not be observed
in G1- or S-phase cells (Fig. 5A). We determined, using an
unbiased SILACMS approach, that Dpb11, Slx4, andRtt107
are among the best interactors of Mus81–Mms4 in G2/M-
arrested cells (Supplemental Fig. S8A).
Next, we testedwhetherDpb11, Slx4, andMus81–Mms4

form a single protein complex. Indeed, the three proteins
comigrated at a size of ;33 S (Supplemental Fig. S8B,
fractions 18–20, apparent molecular weight 1.1–1.2 MDa)
when the eluate of an Mms43Flag purification from G2/M
cells was subjected to a glycerol gradient centrifugation.
When we analyzed the complex architecture by a two-
hybrid approach, we detected a direct interaction of Dpb11
and Mms4 that is independent of Slx4 (Supplemental Fig.
S8C). Moreover, when we immunoprecipitated Mms43Flag

in the slx4-S486A background, we observed a reduction of
Slx4, but not Dpb11, binding to Mms43Flag (Fig. 5B). These
findings thus suggest that Dpb11, Slx4, and Mus81–Mms4
are part of a multiprotein complex in which Dpb11 acts as
a bridge between Slx4 and Mus81–Mms4.
We observed that Dpb11 and Slx4 could be partially

eluted from Mms4-containing beads using l-phosphatase
treatment (Supplemental Fig. S8D), suggesting that the
binding is at least in part dependent on protein phosphor-
ylation. Previous work has established that Mus81 activ-
ity is decisively up-regulated in mitosis in response to
a sequential phosphorylation of Mms4 by CDK and the
Polo-like kinase Cdc5 (Matos et al. 2011; Gallo-Fernández
et al. 2012; Saugar et al. 2013; Szakal and Branzei 2013).
We therefore used two systems to interfere with Cdc5
activity: the cdc5-as1 analog-sensitive allele, which we
inhibited using chloromethylketone (CMK) (Snead et al.
2007), and transcriptional shutoff of pGAL-CDC5 using

glucose repression. Both types of Cdc5 inactivation re-
sulted in a loss of the slower-migrating species of Mms4
in gels and at the same time diminished the binding of
Dpb11 and Slx4 to Mms43Flag (Fig. 5C; Supplemental Fig.
S9A). In order to rule out indirect effects, we tested
whether Cdk1 activity was uninfluenced under condi-
tions of Cdc5 inhibition/shutoff and saw that neither the
interaction between Slx4 and Dpb11 nor phosphorylation
of a CDK target site on Rad9 (T474) (Pfander and Diffley
2011) was influenced by Cdc5 inactivation (Supplemental
Fig. S9B,C). Together with our results on the architecture
of the Slx4–Dpb11–Mms4–Mus81 complex, these exper-
iments suggest that binding of Mms4 to Dpb11 is regu-
lated by Cdc5 phosphorylation.
We also tested whether the formation of the Slx4–

Dpb11–Mms4–Mus81 was regulated upon DNA damage.
We found thatMms43Flag bound similar amounts of Dpb11
and Slx4 after phleomycin or mock treatment of G2/M-
arrested cells (Supplemental Fig. S9D).Moreover, we could
also observe formation of the Slx4–Dpb11–Mms4–Mus81
complex during recovery from MMS pulse treatment
during S phase (Fig. 5D). However, this binding occurred
only once Cdc5 became active, as visualized by the slower-
migrating form of Mms4, indicating that even after DNA
damage, the Dpb11–Mms4 interaction is dependent on
Cdc5 (Fig. 5D).
Given that the cell cycle regulation of Mus81 activity

and the cell cycle regulation of the Slx4–Dpb11–Mms4–
Mus81 complex formation have the same requirements,
we tested whether the up-regulation of Mus81 nuclease
activity requires Slx4 and Dpb11. We analyzed in vitro
resolution of nicked Holliday junctions, Holliday junc-
tions, and model replication fork structures on immuno-
purified Mus81–Mms4 and found that the enhanced
activity of mitotic Mus81 is similar, independently of
whether Mus81 was purified from wild-type or slx4-
S486A cells (Fig. 5E; Supplemental Fig. S9E). Therefore,
we conclude that cell cycle kinases regulate Mus81 by at
least two mechanisms: direct up-regulation of the cata-
lytic activity, which can be reconstituted in vitro, and an
up-regulation through formation of an Slx4–Dpb11–
Mms4–Mus81 complex, which could be seen in vivo.

The DNA damage checkpoint regulates the Slx4–
Dpb11-dependent Mus81 function

The DNA damage checkpoint prevents collapse of stalled
replication forks and thereby is fundamentally required for
all aspects of the response to stalled replication forks
(Branzei and Foiani 2010). Moreover, the checkpoint was
also suggested to counteract Cdc5-dependent Mus81 acti-
vation, since premature Mms4 phosphorylation by Cdc5
was observed after MMS treatment of checkpoint-defi-
cient cells (Szakal and Branzei 2013). Possible explanations
for this phenomenon are a faster S-phase progression in the
checkpoint mutants or a direct inhibition of Cdc5 activity
by the checkpoint (Zhang et al. 2009).
To address these possibilities, we investigated the in-

fluence of the DNA damage checkpoint on Slx4–Dpb11–
Mms4–Mus81 complex function. Interestingly, we found
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that a partial defect in DNA damage checkpoint signaling
alleviated the phenotypes of the slx4-S486A mutant (Fig.
6A,B; Supplemental Fig. S10A,B; see also Ohouo et al.
2012). In these experiments, we used three distinct mu-
tants, which were partially impaired in checkpoint signal-
ing: ddc1-T602A (defective in Dpb11-dependent Rad9
recruitment (Puddu et al. 2008), dot1D (defective in
chromatin-dependent Rad9 recruitment) (Giannattasio
et al. 2005), and rad53-3HA (a hypomorphic Rad53 allele)
(Cordon-Preciado et al. 2006). All three mutants partially

suppressed the hypersensitivity of slx4-S486A to chronic
exposure of MMS (Fig. 6A; Supplemental Fig. S10A).
Furthermore, the recovery fromMMS treatment as judged
by the reappearance of fully replicated chromosomes in
PFGE and reappearance of unphosphorylated Rad53 was
enhanced in slx4-S486A ddc1-T602A cells compared with
slx4-S486A cells (Fig. 6B; Supplemental Fig. S10B).
A plausible interpretation of these results is that a partial

inactivation of the checkpoint may compensate for a re-
duced or delayed formation of the Slx4–Dpb11–Mms4–

Figure 5. Slx4, Dpb11, and Mus81–Mms4 form a Cdc5-dependent complex at the G2/M cell cycle stage. (A) Mms4 binds to Dpb11 and
Slx4 specifically in G2/M. Coimmunoprecipitation samples of Mms43Flag from G1, S, or G2/M cells were tested for binding to Dpb11 and
Slx4. (B) Slx4-S486A is partially lost from the Slx4–Dpb11–Mms4–Mus81 complex, suggesting that Dpb11 bridges the interaction between
Mms4 and Slx4. Mms43Flag coimmunoprecipitation were carried out as in A but from G2/M-arrested wild-type (WT) or slx4-S486A

mutant cells. (C) The Dpb11–Mms4 interaction is dependent on the Polo-like kinase Cdc5. cdc5-as1 was inhibited by 2, 5, and 20 mM
CMK in G2/M-arrested cells. Mms43Flag coimmunoprecipitation was performed as in A. (D) Cdc5 hyperphosphorylated Mus81–Mms4
binds to Slx4 and Dpb11 during recovery from MMS damage. Cells were treated with a 30-min pulse of 0.03% MMS. Mms43Flag

coimmunoprecipitations were performed from samples after 0, 30, 60, 90, and 120 min of recovery in nocodazole-containing medium. (E)
Cell cycle regulation of Mus81–Mms4 nuclease activity remains intact in the slx4-S486A mutant. Mms43Flag and control immunopre-
cipitations (see the bottom panel for immunoprecipitation samples) from cells arrested in their cell cycle by a factor, HU, or nocodazole
were incubated with a fluorescence-labeled nicked Holliday junction substrate.

Slx4 and Dpb11 regulate joint molecule resolution
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Mus81 complex. Such compensation may occur by either
a direct up-regulation of the Slx4–Dpb11–Mms4–Mus81
complex or hyperactivation of a Mus81-independent sal-
vage pathway. We therefore tested whether the observed
rescue would depend on Mms4. Consistent with a direct
influence of the checkpoint on the Slx4–Dpb11–Mms4–
Mus81 complex, a partial inactivation of the checkpoint
did not rescue the MMS hypersensitivity of themms4D or
mms4D slx4-S486A mutants (Fig. 6C). In contrast, the
sgs1D slx4-S486A or yen1D slx4-S486A double mutants
could be rescued by additional mutation of ddc1-T602A
(Supplemental Fig. S10C), suggesting that neither STR nor
Yen1 activity is required for the rescue. Furthermore,
mms4D ddc1-T602A mutants show a slow checkpoint
recovery after a pulse of MMS in S phase that is similar to
mms4D cells (Fig. 6D). These results suggest that the

rescue of slx4-S486A mutants upon partial checkpoint
inactivation is due to the action of Mms4–Mus81.
Furthermore, when we transiently exposed cells toMMS

during S phase and released them into a G2/M arrest, we
observed that the Cdc5-dependent phosphorylation shift of
Mms4, which in this experiment serves as a marker for the
interaction with Slx4–Dpb11, was slightly delayed in slx4-
S486A cells compared with wild-type cells (Fig. 6E), prob-
ably because of a slower S-phase progression (see Fig. 3C).
Importantly, the additional partial inactivation of the
checkpoint (slx4-S486A ddc1-T602A) (Fig. 6E,F) allowed
Cdc5-dependent Mms4 phosphorylation to occur earlier.
Concomitantly, the binding of Mms4 to Dpb11 and Slx4
was rescued by partial checkpoint inactivation when
immunoprecipitations were performed during the recovery
phase (Fig. 6F). The occurrence of Mms4 phosphorylation

Figure 6. Partial inactivation of the DNA
damage checkpoint rescues slx4-S486A pheno-
types in an MMS4-dependent manner. (A) The
DNA damage repsonse defect of slx4-S486A is
suppressed by partial inactivation of the DNA
damage checkpoint. Wild type (WT), slx4-

S486A, the partial checkpoint mutant ddc1-

T602A, and the slx4-S486A ddc1-T602A dou-
ble mutant were spotted in fivefold serial
dilutions on MMS-containing plates. (B) The
prolonged replication fork stalling of the slx4-

S486A mutant is rescued by the ddc1-T602A

mutation. Cells were cell cycle-synchronized
and treated with a 30-min pulse of 0.033%
MMS in S phase. Recovery of fully replicated
chromosomes was analyzed by pulsed-field gel
electrophoresis. Quantification as in Figure
3D. (C) A complete defect in Mus81 activity
(mms4D) cannot be rescued by checkpoint
inactivation. The MMS hypersensitivity phe-
notypes of slx4-S486A, mms4D, and ddc1-

T602A mutants and double and triple mutant
combinations were analyzed as in A. (D) The
checkpoint recovery defect ofmms4Dmutants
is not rescued by a partial checkpoint mutant.
Cells were treated as in B, and checkpoint
activity was measured by Rad53 phosphoryla-
tion. (E,F) Cdc5-dependent hyperphosphoryla-
tion of Mms4 and concomitant binding to
Dpb11 and Slx4 occur earlier during recovery
from replication fork stalling in slx4-S486A

ddc1-T602A double mutants compared with
slx4-S486A mutants. (E) Cells were treated
with a 40-min pulse of 0.033% MMS in S
phase. The Cdc5-dependent Mms43Flag phos-
phorylation shift was measured by anti-Flag
Western blot, checkpoint activity was mea-
sured by Rad53 phosphorylation, and cell cycle
progression was followed by anti-Clb2 and
anti-Cdc5 Westerns. (F) Wild-type, slx4-

S486A, and slx4-S486A ddc1-T602A cells that
contain MMS43Flag were harvested during the
recovery phase (2.5 h after MMS removal) and
subjected to anti-Flag immunoprecipitation.
Coimmunoprecipitation samples were tested
for binding to Dpb11 and Slx4.
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in the twomutants inversely correlated with DNA damage
checkpoint activation (Rad53 phosphorylation) (Fig. 6E). It
needs to be emphasized that Slx4–Dpb11 interaction is
reduced, but not abolished, in the slx4-S486Amutant (Figs.
1B, 3A). The results in Figure 6, E and F, therefore suggest
that the Slx4–Dpb11–Mms4–Mus81 complex can form
earlier and potentially to a larger extent in the slx4-S486A
ddc1-T602A mutant compared with the slx4-S486A single
mutant. This offers a straightforward explanation for the
rescue of the slx4-S486A mutant phenotypes by partial
inactivation of the DNA damage checkpoint.
Taken together, we therefore identified an intricate

regulatory mechanism of the Mus81 endonuclease, which
critically depends on the formation of an Slx4–Dpb11–
Mms4–Mus81 complex. The formation of this complex is
activated by cell cycle stage-specific signaling and antago-
nized by the DNA damage checkpoint. Remarkably, com-
plex formation and the direct control of Mus81 catalytic
activity occur with similar timing, at the G2/M transition
(Fig. 7).

Discussion

In this study, we describe a new facet of JM resolution
following the bypass of DNA damage via template switch
recombination. We describe a multiprotein complex con-
taining Slx4, Dpb11, and Mus81–Mms4. This complex is
cell cycle-controlled by at least two mechanisms: Cdk1-
dependent phosphorylation of Slx4 and Cdc5-dependent
phosphorylation of Mms4, and Dpb11 acts as a reader of
both modifications. The conservation of the Slx4–Dpb11/
TopBP1 interaction and its cell cycle regulation suggests
that a similar complexmay be involved in JM resolution in
human cells. Importantly, the inhibition of Slx4 binding to
Dpb11 causes phenotypes that are indicative of JM reso-
lution defects, and we therefore infer that the association
with Slx4 and Dpb11 promotes Mus81 function.

Slx4–Dpb11 multiprotein complex formation
correlates with DNA JM resolution

The starting point of our analysis was a multiprotein
complex containing Slx4, Dpb11, Slx1, and Rtt107 (Ohouo
et al. 2010, 2012). In order to characterize a putative
function of this complex inDNA repair, we testedwhether
the Slx4–Dpb11 complex would transiently interact with
DNA repair enzymes and found an interaction with the
Mus81–Mms4 structure-specific endonuclease specifically
in mitotic cells. Based on the findings that the slx4-S486A
mutant impairs complex formation and results in JM
resolution defects, we propose that the Slx4–Dpb11 com-
plex regulates Mus81–Mms4 activity. Our binding studies
furthermore indicate a direct Dpb11–Mms4 interaction.
Given the nature of Dpb11 as a scaffold protein, it appears
likely that Dpb11 operates by tethering Mus81 to other
activities that collaborate in the resolution reaction or
targeting Mus81 to JM structures.
An intricate feature of the Slx4–Dpb11 complex is its

complexity, as it involves four scaffold proteins: Dpb11,
Slx4, Rtt107, and Mms4. An obvious advantage of such
a multiscaffold complex is that its formation depends on
several interaction surfaces, which offer numerous possi-
bilities for regulation. The assembly of the complex
therefore allows the integration of different cellular signals
(for example, cell cycle and DNA damage), or one specific
signal may control complex assembly by several mecha-
nisms. Such a setup includes features of multisite phos-
phorylation systems, which have the ability to create
switch-like transitions (Nash et al. 2001).Moreover, amulti-
scaffold complex may allow the assembly and coordina-
tion of different enzymatic activities (see below).
Our work has identified Mus81 as one catalytically

active component of the Slx4–Dpb11 complex; a second
one could potentially be Slx1. Recently, the Mus81 and
Slx1 endonucleases from humans and mice have been
shown to cooperate in the resolution of Holliday junctions
in an Slx4-dependent manner (Wyatt et al. 2013). While
our results suggest that also in budding yeast, Mus81 and
Slx1 may be part of the same complex, we did not observe
any specific defects in the response to MMS-induced
replication fork stalling for slx1D cells (Supplemental Fig.
S6D). Therefore, we conclude that either Slx1 is not
involved in Mus81-dependent JM resolution in budding
yeast or a functionally redundant nuclease compensates
for the defects of the slx1D mutant.

Cell cycle regulation of the response to replication fork
stalling and JM resolution

The cellular response to replication fork-stalling DNA
lesions is intimately linked to the progression of the cell
cycle. First, the primary problem, fork stalling, arises
specifically in S phase. Moreover, the cells are required to
finish the repair/bypass process at the latest in mitosis,
when sister chromatids need to be accurately separated,
and any remaining links between the chromatids have to
be resolved.
In this study, we characterized two Dpb11 interactors:

Slx4 and Mms4. Both proteins are phosphorylation tar-
Figure 7. Model of the temporal response to replication fork
stalling and its regulation by Slx4–Dpb11 complexes.
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gets of CDKs; however, Mms4 is additionally phosphor-
ylated by the Polo-like kinase Cdc5 (Matos et al. 2011;
Gallo-Fernández et al. 2012; Szakal and Branzei 2013).
Interestingly, the Slx4–Dpb11 and Mms4–Dpb11 interac-
tions display distinct cell cycle specificities: We observed
a strong Slx4–Dpb11 interaction in asynchronous cul-
tures as well as in S-phase andmitotic cells (Figs. 1C, 2C),
while the Mms4–Dpb11 interaction was highly specific
for mitosis (Fig. 5A). Accordingly, we found that the
Mms4–Dpb11 interaction requires Cdc5, suggesting that
Dpb11 can act as a reader of phosphorylation events that
are initiated by different cell cycle kinases.
The cell cycle regulation of the Mus81–Mms4 associ-

ation with the Slx4–Dpb11 complex correlates exactly
with the known activity profile of Mus81 (Matos et al.
2011). Notably, the multiprotein complex is not the only
mechanism of cell cycle regulation: Our in vitro resolu-
tion assays suggest that Cdc5 phosphorylation of Mus81–
Mms4 directly stimulates Mus81 independently of com-
plex formation. Therefore, we conclude that at least two
parallel pathways of cell cycle regulation exist that pro-
mote appropriate Mus81 function in mitosis.
To date, it remains uncertain why cells restrict the

activity of Mus81 until mitosis. The temporal regulation
of Mus81 channels a large proportion of JMs into the Sgs1–
Top3–Rmi1 dissolution pathway (Matos et al. 2011; Szakal
and Branzei 2013). It has therefore been speculated that
Sgs1-dependent dissolution, which leads to a NCO out-
come (Ira et al. 2003), may be beneficial for cells dividing by
a mitotic cell cycle. A second reason for restricting Mus81
activity may be the necessity to achieve temporal separa-
tion of the lesion bypass reaction and the JM resolution
reaction (Saugar et al. 2013). Mus81 could impede the
bypass reaction, given its relatively broad substrate spec-
ificity to a range of DNA structures (e.g., replication forks,
D-loop structures, and Holliday junctions).
Intriguingly, the differences in the temporal regulation

of the Slx4–Dpb11 and Mms4–Dpb11 interactions suggest
that the composition of the Slx4–Dpb11 complex changes
from the replication-associated template switch to the
resolution reaction. Supporting the idea of several distinct
Slx4–Dpb11 complexes is the fact that not all features of
the Slx4–Dpb11 interaction (for example, enhanced bind-
ing after DNA damage) are seen in the Slx4–Dpb11–
Mms4–Mus81 complex. It therefore appears plausible that
Slx4–Dpb11 may associate with stalled replication forks
already in S phase, while Mus81–Mms4 joins the complex
in mitosis. It is tempting to speculate that the Slx4–Dpb11
complex may chaperone the DNA lesion site/repair in-
termediates until resolution (Fig. 7).

Regulation of JM resolution by the DNA damage
checkpoint

The DNA damage checkpoint antagonizes JM resolution
byMus81 (Fig. 6; Szakal and Branzei 2013), and it has been
suggested that Slx4 may act as negative regulator (‘‘damp-
ener’’) of the checkpoint by competing with binding of the
checkpoint mediator Rad9 to Dpb11 (Ohouo et al. 2012).
The JM resolution phenotypes of the slx4-S486A mutant

could therefore, in principle, be explained by an indirect
effect arising from checkpoint hyperactivation. Given the
extensive ties between checkpoint and DNA repair path-
ways, the presented in vivo experiments cannot rule out
a contribution of checkpoint misregulation to the ob-
served JM resolution phenotypes.
We favor, however, a more direct role of Slx4 and Dpb11

in JM resolution for two reasons. First, the formation of the
Slx4–Dpb11–Mms4–Mus81 complex and its regulation
correlate with the temporal activation of Mus81. Second,
the ‘‘dampener’’ model cannot account for all observed
phenotypes. For example, the rescue of the MMS hyper-
sensitivity of the slx4-S486A mutant by a covalent fusion
with Dpb11 cannot be explained by competition, since in
the fusion mutant, cells express two copies of full-length
Dpb11 (one endogenous, one fused to Slx4), and therefore
evenmore Dpb11molecules (not less) are able to engage in
checkpoint signaling complexes. Moreover, our analysis of
RPA foci suggests that DNA lesions or repair intermedi-
ates persist and accumulate in the absence of a functional
Slx4–Dpb11 complex, indicative of a role for Slx4 and
Dpb11 in DNA repair.
Importantly, we found that the checkpoint regulates the

formation of the Slx4–Dpb11–Mms4–Mus81 complex: Par-
tial inhibition of the checkpoint enables Cdc5-dependent
hyperphosphorylation of Mms4, which allows Dpb11 bind-
ing to occur earlier during the recovery from anMMS pulse
and thereby reverses the effect of the slx4 mutant. These
findings suggest that at least in the slx4-S486A mutant
background, the DNA damage checkpoint antagonizes the
Slx4–Dpb11–Mms4–Mus81 complex. Partial inactivation
of the checkpoint may therefore extend the temporal
window during which Mus81 is active, which we propose
to be beneficial in mutants with reduced JM resolution
activity such as slx4-S486A.Whether this inhibitorymech-
anism takes place on the level of Cdc5 regulation in general
(Zhang et al. 2009; Matos et al. 2013) or by specifically
regulating Mms4 phosphorylation by Cdc5 remains to be
determined. The important implication of this finding is
that the activation ofMus81 is temporally restricted by two
pathways: activation by cell cycle kinases and inhibition by
the DNA damage checkpoint.

The Slx4–Dpb11 complex is conserved among
eukaryotes

In addition to the mechanistic studies of the budding yeast
Slx4–Dpb11 complex,we also provide the first evidence that
at least parts of this complex may be found in human cells
as well, since Slx4 and TopBP1 interact in a manner that
depends on CDK phosphorylation of Slx4. It is worth noting
that not all aspects of the protein network that controls
resolution of JMs are conserved through evolution: While in
human cells, Slx4 binds directly to Mus81–Eme1, this
interaction appears to be absent in budding yeast (Fekairi
et al. 2009; Muñoz et al. 2009; Svendsen et al. 2009;
Schwartz et al. 2012). Given that both Slx4 and Mms4 bind
to Dpb11, our data suggest that Dpb11may serve as a bridge
between the two proteins. Although a direct interaction
between Slx4 and Mus81–Mms4 cannot be definitively
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excluded, it appears as if the bridging interaction with
Dpb11 in yeast may replace the direct interaction of Slx4
and Mus81 in human cells. Importantly, similar to our
results in yeast, a stimulation of Slx4 binding to Mus81–
Eme1 after phosphorylation by CDK and Polo-like kinase
was observed in mitotic human cells as well (Wyatt et al.
2013). At this point, it seems therefore very likely that in
both systems, JM resolution is promoted by a cell cycle-
regulated complex containing several scaffold proteins.

Materials and methods

Yeast strains

All yeast strains are based on W303. Genotypes are listed in
Supplemental Material.

Interaction assays

Coimmunoprecipitations of yeast extracts were performed using
anti-Flag agarose resin (Sigma). Bound proteins were eluted with
33 Flag-peptide (Sigma).

For GST pull-downs, GST-Dpb11 or GST-tagged protein frag-
ments were recombinantly expressed and purified as described
(Pfander and Diffley 2011). Pull-downs were performed with am-
monium sulphate-precipitated (57%) yeast extracts on glutathione
sepharose 4B (GE Healthcare).

For coimmunoprecipitations from HEK293T, GFP-tagged pro-
teins were transiently overexpressed and precipitated using GFP-
Trap magnetic beads (Chromotek).

Nuclease activity assays

Nuclease assays on Mms43Flag immunoprecipitations were done
as described (Matos et al. 2011).

DNA gel electrophoresis

PFGE and 2D gel analysis of DNA intermediates were performed
as previously described (Karras and Jentsch 2010; Szakal and
Branzei 2013).

Mutation and recombination assays

Mutation rates were determined using a CAN1 forward mutation
assay. Interchromosomal recombination rates were determined
using a direct repeat system using leu2 heteroalleles (Aguilera and
Klein 1988). CO rates were determined using a system harboring
two arg4 alleles on chromosome V and VIII (Robert et al. 2006;
Szakal and Branzei 2013). In all, rates were determined by fluc-
tuation analysis using a maximum likelihood approximation
(Pfander et al. 2005).

Microscopy and immunofluorescence

Microscopy experiments were carried out as described (Germann
et al. 2014).

A detailed methods description is provided in the Supplemen-
tal Material.
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MMS4-‐3FLAG	  

IP:	  FLAG	  input	   anF-‐Dpb11,	  anF-‐Slx4	  

signal	  intensity	  in	  gel/total	   slx4-‐S486A	  	  	  	  	  Slx4-‐7A	  	  WT	  



B	   C	  
D	  

A	  
3h	   2h	  1h	   Rad53	  Recovery	  G2/M	  	   	  	  	  	  	  WT	  	  	  +Phl	   2h	   4h	   5h	   G2/M	  	   +Phl	   4h	   5h	  1h	   3h	  Recovery	  	  slx4-‐S486A	  	  	  an>-‐Rad53	   3h	  1h	  2h	   4h	   G1	  	   Rad53	  G1	  	   	  	  	  	  	  WT	  	  	  +Zeo	   5h	  	  slx4-‐S486A	  	  	  1h	   3h	   5h	   +Zeo	   2h	   4h	  Recovery	   Recovery	  an>-‐Rad53	  

Log	  +Phl	  1h	  2h	  3h	  Recovery	   	  	  	  	  	  WT	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  4h	  5h	  G2/M	  FACS	  
	  	  	  	  	  slx4-‐S486A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Log	  G1	  +Zeo	  1h	  2h	  3h	  Recovery	   	  	  	  	  	  WT	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  4h	  5h	  
FACS	  

	  	  	  	  	  slx4-‐S486A	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
!"#$!!%'!(%'!(%'!(%'!(%'!(%'!(%

WT	   slx4-‐S486A	  1.E-‐05	  2.E-‐05	  3.E-‐05	  4.E-‐05	  5.E-‐05	  6.E-‐05	  Recombina>on	  rate	   Leu+	  Leu+Ura+	  leu2-‐112	   URA3	   leu2-‐k	  
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500	  μg/ml	  	  cispla>n	  	  WT	  slx4-‐S486A	   -‐	  Damage	   1	  μg/ml	  phleomycin	  200	  mM	  	  HU	  20	  μg/ml	  	  CPT	  0.15	  μg/ml	  	  4-‐NQO	  
+	  Damage	  WT	  slx4-‐S486A	  WT	  slx4-‐S486A	  WT	  slx4-‐S486A	  WT	  slx4-‐S486A	  

Best	  scoring	  MS-‐MS	  spectrum	  of	  SLX4	  	  phospho-‐S486	  pep9de	  from	  Dpb113FLAG	  CoIP	  :	  	  



WT	  slx4-‐S486A	  mms2Δ	  slx4-‐S486A	  mms2Δ	   -‐	  MMS	   0.0045%	  MMS	  rad5Δ	  slx4-‐S486A	  rad5Δ	  Rad5	  rad5Δ	  Rad5	  rad5-‐KT538,539AA	  	  slx4-‐S486A	  rad5-‐KT538,539AA	   -‐	  MMS	   0.001%	  MMS	  
WT	  slx4-‐S486A	  rev1Δ	  slx4-‐S486A	  rev1Δ	   -‐	  MMS	   0.006%	  MMS	  rad5Δ	  slx4-‐S486A	  rad5Δ	  Rad5	  rad5-‐C914S	  slx4-‐S486A	  rad5-‐C914S	  	  rad5Δ	  Rad5	   -‐	  MMS	   0.002%	  MMS	  
WT	  slx4-‐S486A	  rev3Δ	  slx4-‐S486A	  rev3Δ	   -‐	  MMS	   0.006%	  MMS	  WT	  slx4-‐S486A	  rad30Δ	  slx4-‐S486A	  rad30Δ	   0.009%	  MMS	  -‐	  MMS	  WT	  slx4-‐S486A	  rad51Δ	  slx4-‐S486A	  rad51Δ	   -‐	  MMS	   0.003%	  MMS	  

WT	   slx4-‐S486A	   srs2ΔC	   slx4-‐S486A	  srs2ΔC	  
0.025%	  MMS	  

-‐	  MMS	  0.02%	  MMS	  
slx4-‐S486A	  siz1Δ	  siz1Δ	  C	   0.E+00	  2.E-‐06	  4.E-‐06	  6.E-‐06	  8.E-‐06	  1.E-‐05	  1.E-‐05	  Spontaneous	  muta;on	  rate	   (CAN1)	  B	  

WT	   slx4-‐	  S486A	   rad5Δ	  
GritenaitePrincz_Figure	  S5	  A	  



C	  

GritenaitePrincz_Figure	  S6	  WT	  sgs1Δ	  slx4-‐S486A	  slx4-‐S486A	  sgs1Δ	  
90’	   150’	   210’	   WT	  slx4-‐S486A	  rad1Δ	  slx4-‐S486A	  rad1Δ	  WT	  slx4-‐S486A	  slx1Δ	  slx4-‐S486A	  slx1Δ	   -‐	  MMS	   0.006%	  MMS	   0.009%	  MMS	  -‐	  MMS	  WT	  slx4-‐S486A	  	  yen1Δ	  	  slx4-‐S486A	  yen1Δ	  	   0.03%	  MMS	  0.0075%	  MMS	  

D	  

E	  

B	  
Recovery	  +MMS	   4h	   FACS	  Tc-‐sgs1	  	  Tc-‐sgs1	  slx4Δ	  	   6h	  3h	  2h	   6h	  3h	  +MMS	  Log	  4h	  2h	   00.2	  0.4	  0.6	  0.8	  1	  FracNon	  of	  	   	  remaining	  X-‐molecules	  	  	   +MMS	   2h	   3h	   4h	   6h	  Recovery	  Tc-‐sgs1	  	  Tc-‐sgs1	  slx4Δ	  	  4h	  2h	  3h	  6h	  +MMS	  Log	  +MMS	  +MMS	  +MMS	  +MMS	  

Log	  G2	  2h	  3h	  4h	  5h	  Log	  G2	  2h	  3h	  4h	  5h	  Log	  G2	  2h	  3h	  4h	  5h	  Log	  G2	  2h	  3h	  4h	  5h	  Recovery	  +MMS	   4h	   5h	  3h	  2h	   FACS	  
Tc-‐sgs1	  	  Tc-‐sgs1	  	  mms4Δ	  	  Tc-‐sgs1	  slx4-‐S486A	  	  mms4Δ	  	  Tc-‐sgs1	  slx4-‐S486A	  	  	   Tc-‐sgs1	  slx4-‐S486A	  mms4Δ	  	  00.2	  0.4	  0.6	  0.8	  1	   +MMS	   2h	   3h	   4h	   5h	  FracNon	  of	  	   	  remaining	  X-‐molecules	  	  	   Tc-‐sgs1	  mms4Δ	  	   Tc-‐sgs1	  slx4-‐S486A	  	  Tc-‐sgs1	  

A	  

WT	  slx4-‐S486A	  yen1Δ	  slx4-‐S486A	  yen1Δ	  slx4-‐S486A	  sgs1Δ	  yen1Δ	  sgs1Δ	  slx4-‐S486A	  yen1Δ	  sgs1Δ	  sgs1Δ	   -‐	  MMS	   0.01%	  MMS	   0.015%	  MMS	  



A	  
Rela've	  colocaliza'on	  of	  Dpb

11	  bridges	  with	  Slx4	   or	  Mus81	  structures	  (bridges	  
or	  foci)	  

B	   0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
1 2 3 Slx4-‐YFP	   Mus81-‐YFP	  Slx4-‐S486A-‐YFP	  

SGS1+	  sgs1Δ	  GritenaitePrincz_Figure	  S7	  



A	   C	  
+(Dpb11)# 
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an4-‐FLAG	  an4-‐Dpb11,	  	  an4-‐Slx4	  input	   glycerol	  gradient	  10%	   30%	   Mms43FLAG	  Dpb11	  Slx4	  1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   18	   19	   20	   21	   22	  B	  
Dpb11	  slx4Δ	  

∅
	  WT	  

control	  -‐His	  Mms4	  Dpb11	   Mms4	  Mms4	  Mms4	   ∅
	  ∅

	  
∅
	  Dpb11	   Dpb11	  Gal4-‐AD	  Gal4-‐BD	  

an4-‐Dpb11,	  an4-‐Slx4	  an4-‐FLAG	  20	  min	  treatment	  mock	   PPase	  MMS4-‐3FLAG	  mock	   FLAG	  elu4on	  mock	   PPase	  MMS4-‐3FLAG	  mock	   Dpb11	  Slx4	  Mms43FLAG	  D	  



A	   an%-‐FLAG	  an%-‐Dpb11,	  an%-‐Slx4	  Dpb11	  Slx4	  Mms43FLAG	  
an%-‐FLAG	  an%-‐Dpb11,	  an%-‐Slx4	  Dpb11	  Slx4	  Mms43FLAG	  

pGAL1-‐CDC5	  CDC5	  shut-‐off	  IP:	  FLAG	  
input	   an%-‐Cdc5	   Cdc5	  

IP:	  FLAG	   MMS4-‐3Flag	  G2/M	  phleomycin	  Mms43FLAG	  
Dpb11	  Dpb11	  input	   Slx4	  an%-‐FLAG	  an%-‐Slx4	   Slx4	  an%-‐Dpb11	  an%-‐Slx4	  an%-‐Dpb11	  

D	  
an%-‐FLAG	  an%-‐Cdc5	   Cdc5	  Mms43FLAG	  an%-‐Rad9-‐T474-‐P	   Rad9-‐T474-‐P	  pGAL1-‐CDC5	  CDC5	  shut-‐off	  B	  

Mms43FLAG	  an%-‐FLAG	  an%-‐Rad9-‐T474-‐P	  MMS4-‐3FLAG	  cdc5-‐as1	  CMK	  [µM]	   0	   0	   0	   2	   5	   20	   Rad9-‐T474-‐P	  
*	  

*	  C	   E	  
Mms43FLAG	   Mms43FLAG	  

SLX4+	   slx4-‐S486A	   SLX4+	   slx4-‐S486A	   SLX4+	   slx4-‐S486A	  w/o	  tag	  Resolu%on	  assay	  on	  Mms43FLAG	  IPs	  	  from	  G2/M	  arrested	  cells	  
an%-‐FLAG	   an%-‐FLAG	  SLX4+	   slx4-‐S486A	   SLX4+	   slx4-‐S486A	  w/o	  tag	  

an%-‐Dpb11,	  an%-‐Slx4	  SLX4-‐3FLAG	  cdc5-‐as1	  +	  CMK	  Dpb11	  Slx43FLAG	  an%-‐Dpb11,	  an%-‐Slx4	  Dpb11	  Slx43FLAG	  Slx4	  IP:	  FLAG	  input	  
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WT	  slx4-‐S486A	  	  dot1Δ	  	  slx4-‐S486A	  dot1Δ	  	  ddc1-‐T602A	  	  slx4-‐S486A	  ddc1-‐T602A	  	  rad53-‐3HA	  	   -‐	  MMS	   0.025%	  MMS	  
slx4-‐S486A	  rad53-‐3HA	  

0.03%	  MMS	  

WT	  slx4-‐S486A	  	  sgs1Δ	  	  slx4-‐S486A	  sgs1Δ	  	  ddc1-‐T602A	  	  sgs1Δ	  ddc1-‐T602A	  	  slx4-‐S486A	  ddc1-‐T602A	  	  slx4-‐S486A	  sgs1Δ	  ddc1-‐T602A	  	  	  
0.01%	  MMS	   0.025%	  MMS	  -‐	  MMS	  

B	  
C	  

	  	  	  	  	  WT	  Log	  G1	  +MMS	  1h	  2h	  3h	  Recovery	   FACS	   slx4-‐S486A	  	   slx4-‐S486A	  ddc1-‐T602A	  
	  WT	  	   Rad53	  G1	  	   +MMS	   1h	   3h	  2h	   G1	  	   +MMS	   1h	   3h	  2h	   G1	  	   +MMS	   1h	   3h	  2h	  anA-‐Rad53	   Recovery	   Recovery	  Recovery	   slx4-‐S486A	   slx4-‐S486A	  ddc1-‐T602A	  

0.025%	  MMS	   0.03%	  MMS	  -‐	  MMS	  WT	  slx4-‐S486A	  	  yen1Δ	  	  slx4-‐S486A	  yen1Δ	  	  ddc1-‐T602A	  	  yen1Δ	  ddc1-‐T602A	  	  slx4-‐S486A	  ddc1-‐T602A	  	  slx4-‐S486A	  yen1Δ	  ddc1-‐T602A	  	  	  
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Supplemental Figure Legends Figure S1.  The binding surface of the evolutionary conserved Slx4 and Dpb11 complex contains BRCT3+4 of Dpb11 and S486 of Slx4 in S. cerevisiae. A Slx4 binds to Dpb11 fragments containing BRCT3+4. Pulldown of Slx4 from undamaged or phleomycin-treated G1 or G2/M cell extracts using GST-Dpb11 fragments (N: aa 1-275, M: aa 276-600, C: aa 556-764, ΔC: aa 1-600). B Mutation of the Dpb11 BRCT3+4 phospho-protein binding surface reduces Slx4 binding to Dpb11. Two-hybrid analysis of GAL4-BD fused to WT Dpb11 or to Dpb11-T451A, and GAL4-AD fusions with Slx4. C A region in Slx4 sequence between aa 461 and aa 490 is important for Dpb11 interaction. Two-hybrid analysis of GAL4-BD (left panel) fused to WT Dpb11 or to the BRCT3+4 fragment, and GAL4-AD fusions with Slx4 C-terminal fragments. Expression of the constructs was verified by western blot analysis (right panel). D Mutation of S486 in Slx4 to a non-phosphorylatable alanine residue reduces Dpb11 binding. Two-hybrid analysis of GAL4-BD (left panel) fused to WT Dpb11 or to the BRCT3+4 fragment, and GAL4-AD fusions with WT Slx4 or with Slx4-S486A. Expression of the constructs was verified by western blot analysis (right panel). E The presence of DNA damage does not stimulate TopBP1 binding to Slx4 in human cells. Co-immunoprecipitation of mycTopBP1 with GFPSlx4 and GFPSlx4ΔN after transient overexpression in HEK 293T cells. Cells were left untreated or treated with 0.001% or 0.003% (++) MMS or 100 µg/ml zeocin for 30 min to induce DNA damage. F The Slx4-Dpb11 interaction is regulated by cell cycle phase and DNA damage. Co-



immunoprecipitation of Slx4 and Dpb113FLAG from G1 or G2/M arrested cells, which were either damaged by 50 µg/ml phleomycin or left untreated.  Figure S2.  A phosphorylation-dependent Dpb11/TopBP1 binding motif in eukaryotic Slx4 proteins. Slx4 proteins from different eukaryotes comprise a conserved, short linear motif, which harbours serine 486 in budding yeast and threonine 1260 in humans. Multiple sequence alignment of the Dpb11/TopBP1 interaction motif. Conserved residues in more than one class are highlighted in yellow. Phosphorylation sites in Saccharomyces cerevisiae and Homo sapiens, as well as predicted sites as inferred from homology are indicated in red, alternative sites with unclear homology in light green. Species abbreviations, as well as accession numbers are listed in Supplementary Table 2.   Figure S3. Mutation of seven SQ/TQ motifs in the C-terminus of Slx4 leads to similar phenotypes as the slx4-S486A mutation. A The slx4-S486A and slx4-7A mutants are hyper-sensitive to MMS. WT or strains expressing slx4-S486A or the slx4-7A as only copy of Slx4 from the SLX4 promoter were spotted in 5-fold serial dilutions on MMS-containing media and assayed for growth after two days. B Replication fork stalling is prolonged in the slx4-S486A and slx4-7A mutant. Cells were treated with a pulse of MMS during S-phase and recovery was analysed by pulsed-field gel electrophoresis to measure intact, fully replicated chromosomes. For 



quantification, the fluorescence signal of chromosomes that migrated into the gel was divided by the total signal including the pocket and all signals normalized to the G1 sample from each strain. C The Slx4-7A and Slx4-S486A mutant proteins show reduced binding to Mms4 and Dpb11. Co-immunoprecipitation of endogenous Dpb11 and Slx4 with Mms43FLAG in combination with phosphorylation-deficient mutants of Slx4, S486A or 7A, or Slx4 deletion from G2/M arrested cells.  Figure S4. Analysis of composition and function of the Slx4-Dpb11 complex.  A Slx4 and Dpb11 are part of a multi-protein complex containing Rtt107 and Slx1. Co-immunoprecipitations of Dpb113FLAG (left panel) and Slx43FLAG (right panel) were compared to purifications from untagged control strains using a SILAC setup. Cells were treated with 0.033% MMS, whereby strains containing Dpb113FLAG/Slx43FLAG were grown in heavy (15N2 13C6 lysine (Lys8) and 15N4 13C6 arginine (Arg10)) medium, untagged control strains in light medium. Proteins shown in red are enriched in both purifications (Dpb11, Slx4, Rtt107, Slx1). The best scoring MS-MS spectra of the Slx4 peptide containing phosphorylated S486A from the Dpb113FLAG CoIP is shown. This peptide showed an H/L ratio of 17 in the Dpb113FLAG pulldown. B The slx4-S486A mutant is slightly sensitive to 4-NQO (in addition to MMS (Fig. 3B)), but not to other DNA damaging drugs. WT cells or the slx4-S486A mutant were spotted in 5-fold serial dilutions on media containing phleomycin, HU, CPT, cisplatin and 4-NQO and assayed for growth after two days. C The slx4-S486A mutant has a similar recombination rate compared to WT. 



Recombination rates were measured using an intrachromosomal direct-repeat system (leu2-112::URA3::leu2-k, Aguilera and Klein 1988). Fluctuation analysis was performed using 10 independent cultures and recombinants were determined by plating on plates lacking leucine or leucine and uracil. Single colonies were counted and recombination rates were calculated using a maximum-likelihood method. The shown values represent means of three independent experiments. Error bars represent standard deviations. D The checkpoint response after treatment with DSB-inducing agents is similar in WT and slx4-S486A cells. Cells were treated with a 30 min pulse of 50 µg/ml phleomycin or zeocin during G2/M- or S-phase (see samples +Phl/+Zeo) and recovery was analysed by checkpoint activity as determined by anti-Rad53 western blot (upper panel) and by cellular DNA content as determined by FACS (lower panel).  Figure S5. The Slx4-Dpb11 complex is not exclusively involved in either post-replicative repair (PRR) or homologous recombination (HR). A A defect in the Dpb11-Slx4 complex further enhances the hyper-sensitivity of PRR and HR mutants. Strains expressing slx4-S486A as endogenous copy of Slx4 alone or in combination with mutants defective in error-free PRR (mms2Δ, rad5-KT538,539AA and rad5-C914S), error-prone PRR (rev1Δ, rev3Δ and rad30Δ) or HR (rad51Δ) were spotted in 5-fold serial dilutions on MMS-containing media and assayed for growth after two days. B The spontaneous mutagenesis rate of the slx4-S486A mutant is similar to WT. A forward mutagenesis assay was performed using a CAN1 tester strain and 



resistance to canavanine. Fluctuation analysis was carried out with 10 independent cultures. Colonies on canavanine-containing plates were counted and mutation rates were determined using a maximum-likelihood approach. The mean from 2 independent experiments is shown. Error bars represent standard deviations. C Up-regulation of HR at replication forks does not rescue the MMS hyper-sensitivity of slx4-S486A mutants. Strains expressing WT Slx4 or slx4-S486A in combination with siz1Δ or srs2ΔC were spotted as in A.    Figure S6. The Slx4-Dpb11 complex is involved in JM resolution by Mus81-Mms4 and functions separately from Sgs1, Yen1 and Rad1-Rad10.  A DNA joint molecules form to a similar extent in sgs1Δ and sgs1Δ slx4-S486A. Cells were treated with 0.033% MMS in S-phase and after 90’, 150’ and 210’ X-shaped JMs were visualized as spike signals in 2D gels. B JM structures are resolved slower in slx4Δ tc-sgs1 cells. A conditional sgs1 (tc-sgs1) allele was used because of sgs1Δ slx4Δ lethality (Mullen et al. 2001). In the tc-sgs1 allele, Sgs1 translation is prevented upon addition of tetracycline (Gonzalez-Huici et al. 2014). Cells were treated with a pulse of MMS in S-phase and the profile of recombination intermediates was examined 0 h, 2 h, 3 h, 4 h and 6 h after release from MMS. X-shaped JMs were visualized as spike signal in 2D gels in tc-sgs1 and slx4Δ tc-sgs1 mutants. C The JM resolution defect in slx4-S486A mutants is weaker than in mms4Δ and both mutants show epistasis. Tc-sgs1 inactivation and experiment as in B, but 



samples were examined 0 h, 2 h, 3 h, 4 h and 5 h after release from MMS.  D The Slx4-Dpb11 complex function in response to MMS is not related to the structure-specific endonucleases Rad1-Rad10, Slx1 or Yen1. Strains expressing slx4-S486A as endogenous copy of Slx4 alone or in combination with rad1Δ, slx1Δ and yen1Δ were spotted in 5-fold serial dilutions on MMS-containing media and assayed for growth after two days. E The yen1Δ increases MMS sensitivity of the sgs1Δ slx4-S486A double mutant, but not of either single mutant. yen1Δ, sgs1Δ, slx4-S486A mutants alone and double and triple mutant combinations were spotted as in D.  Figure S7. Slx4 and Mus81 structures co-localize with Dpb11 anaphase bridge. A Quantification of Slx4 and Mus81 foci and bridges at Dpb11 anaphase bridges. WT or sgs1∆ cells expressing Dpb11CFP and Slx4YFP, Slx4-S486AYFP or Mus81YFP were subjected to live cell fluorescence microscopy. Representative examples of Slx4 and Mus81 foci and bridges co-localizing with Dpb11 anaphase bridges are shown. Scale bar, 3 µm. Yellow arrowhead marks foci. Error bars correspond to 95% confidence intervals. B Slx4YFP and Mus81YFP show a partial co-localization with Dpb11CFP in spontaneous and DNA damage induced foci. Cells were treated with 0.03% MMS or 200 µg/ml zeocin for 1 h and co-localization (green arrow) of Dpb11CFP with Slx4YFP (top panel) and Mus81YFP (lower panel) in foci was scored manually. Error bars correspond to 95% confidence intervals. Arrowheads mark foci.  



Figure S8.  Mus81-Mms4 forms a complex with Dpb11 and Slx4. A Mus81-Mms4 from mitotic cells binds specifically to Dpb11, Slx4 and Rtt107. A SILAC MS experiment comparing an Mms43FLAG IP to a control IP from an untagged strain using 15N2 13C6 lysine (Lys8) and Lys-C digestion is shown. All cells were arrested in mitosis by nocodazole. H/L ratios from two label-switch experiments without ratio count cut-off are plotted. #, as the only protein of the analysis Dpb11 displayed exclusively peptides, which were derived from the Mms43FLAG IP samples, but not the control samples, making Dpb11 a highly specific interactor of Mus81-Mms4. B Slx4, Dpb11 and Mus81-Mms4 are part of one multi-protein complex. Mms43FLAG immunoprecipitates (as in A) from G2/M arrested cells were subjected to glycerol gradient (10%-30%) centrifugation. Slx4, Dpb11 and Mms4 co-migrate in fractions 18-20 (marked by box), corresponding to a multi-protein complex with an apparent molecular weight of 1-1.5 MDa. Arrowheads indicate elution peaks of single proteins. C The Dpb11-Mms4 interaction is independent of Slx4. Two-hybrid analysis in WT and slx4Δ cells with Gal4-BD-Dpb11 and Gal4-AD-Mms4. D Dpb11 and Slx4 binding to Mms4 is partially phosphatase-sensitive. Mms43FLAG immunoprecipitates (as in A) from G2/M arrested cells were either mock treated or treated with 24,000 U/ml λ-phosphatase for 20 min at 4°C. Shown is the phosphatase eluate and a 3xFLAG peptide-eluate of the remaining bound material.     



Figure S9.  Mus81-Mms4 show a Cdc5-dependent association with Slx4-Dpb11 in mitosis. A Mms4 interaction with the Slx4-Dpb11 complex is dependent on Polo-like kinase Cdc5 activity. CDC5 was expressed from a pGAL1-10 promoter. Cells were grown in raffinose-containing medium, arrested in G1, then expression was either induced in G1 by switching cells to galactose-containing medium prior to G2/M arrest (lane 2) or shut-off in G1 by switching cells to glucose-containing medium (lane 3). Co-immunoprecipitations of Mms43FLAG were performed from the corresponding cell extracts and tested for binding to Dpb11 and Slx4. B CDK activity is not influenced by interfering with Cdc5 activity. TCA samples of experiments shown in Fig. 5C and Fig. S9A were tested for CDK-mediated phosphorylation of Rad9-T474 by using a phospho-specific antibody in western blot analysis. The asterisk denotes a cross-reactive band. C The Slx4-Dpb11 interaction is not dependent on the Polo-like kinase Cdc5. Co-immunoprecipitation of Dpb11 and Slx43FLAG from G2/M arrested cells or G2/M arrested cells, in which Cdc5 has been inactivated by using the cdc5-as1 allele and 10 µM CMK. D The formation of the Slx4-Dpb11-Mms4-Mus81 complex is not influenced by the presence of DNA damage. Co-immunoprecipitation samples of Mms43FLAG cell extracts from G2/M arrested cells, which were either damaged by 50 µg/ml phleomycin or left untreated, were tested for binding to Dpb11 and Slx4. E Cell cycle regulation of Mus81-Mms4 nuclease activity remains intact in the slx4-S486A mutant. Mms43FLAG and control IPs from cells arrested at G2/M with nocodazole (see lower panel for the inputs) were incubated with 



fluorescence-labelled Holliday junction, replication fork and nicked Holliday junction substrates.  Figure S10. Partial inactivation of the DNA damage checkpoint rescues the defects of the slx4-S486A mutant in response to MMS. A A partial defect in DNA damage checkpoint signalling suppresses the slx4-S486A mutant hyper-sensitivity to MMS. Strains expressing slx4-S486A in combination with mutants defective in DNA damage checkpoint signalling (dot1Δ, ddc1-T602A and rad53-3HA) were spotted in 5-fold serial dilutions on MMS-containing media and assayed for growth after two days. B The slx4-S486A mutant recovers faster after a partial inactivation of the DNA damage checkpoint. WT, slx4-S486A and slx4-S486A ddc1-T602A mutant cells were treated with a pulse of 0.033% MMS during S-phase, and recovery was analysed by cellular DNA content as determined by FACS (upper panel) and by checkpoint activity as determined by anti-Rad53 western blot (lower panel). C Yen1 and Sgs1 are not required for the rescue of the slx4-S486A MMS hyper-sensitivity by partial checkpoint inactivation. MMS hyper-sensitivity phenotypes of slx4-S486A, sgs1Δ, yen1Δ, ddc1-T602A mutants and double or triple mutant combinations were spotted in 5-fold serial dilutions on MMS-containing media and assayed for growth after two (lower panel) or three (upper panel) days.  



Supplemental Methods  Yeast strains  All yeast strains are based on W303 (Thomas and Rothstein 1989). Genotypes are listed below. All biochemical experiments were performed in a W303-1A pep4Δ background. The genetic studies in Fig. 3B-E, 4, 6A-E and Fig. S3A-B, S4B-D, S5, S6, S10 were performed in a W303 RAD5+ background to exclude any effect from a partial defect of the rad5-535 allele, but similar results were obtained using W303-1A. Two-hybrid analyses were performed in the strain PJ69-7A (James et al. 1996). S. cerevisiae strains were prepared by genetic crosses and transformation techniques. Deletion of particular genes and endogenous protein tagging were performed as described (Knop et al. 1999). Correct integrations were checked by genotyping PCR. Denaturing cell extracts were prepared by alkaline lysis and TCA precipitation (Knop et al. 1999). The slx4-S486A allele was generated using site-directed mutagenesis and integrated as a linear plasmid at the TRP1 locus.   List of strains used in this study.  Strain Full genotype Relevant genotype Source 1093-5A MATa ADE2+ RAD5+ CAN1+ ura3-1 his3-11,15 trp1-1 leu2-3,112 CAN1+ Klein lab  
FY1060 MATa RAD5+ ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 GAL PSI+ sgs1::HIS3 sgs1 Branzei lab  HY4021 MATa RAD5+ ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-1 can1-100 sgs1::pADH1-tc3-3xHA-Sgs1 Tc-SGS1 Branzei lab  



(NATMX) HY4072 MATa RAD5+ ade2-1 trp1-1 leu2-3,112 his3-11,15 ura3-1 can1-100 slx4::HIS3 sgs1::pADH1-tc3-3xHA-Sgs1 (HPHMX4) slx4 Tc-SGS1 Branzei lab  ML664-10A MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-YFP::KanMX NLS-yEmRFPrv::URA3 SPC110-CFP::KAN DPB11-YFP SPC110-CFP Lisby lab ML678-12B MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-YFP::KanMX NLS-yEmRFPrv::URA3 SPC110-CFP::KanMX sgs1::HIS3 DPB11-YFP SPC110-CFP sgs1 Lisby lab ML779-4A MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-YFP::KanMX NLS-yEmRFPrv::URA3 SPC110-CFP::KanMX slx4::KanMX DPB11-YFP SPC110-CFP slx4 Lisby lab ML781-8D MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-YFP::KanMX NLS-yEmRFPrv::URA3 SPC110-CFP::KanMX slx4::KanMX trp1-1::slx4-S486A::TRP1 DPB11-YFP SPC110-CFP slx4 slx4-S486A Lisby lab ML798-4C MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-YFP::KanMX NLS-yEmRFPrv::URA3 SPC110-CFP::KanMX slx4::KanMX trp1-1::slx4-S486A::TRP1 sgs1::HIS3 DPB11-YFP SPC110-CFP slx4 slx4-S486A sgs1 Lisby lab ML789-7D MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 tTA(tetR-VP16)-tetO2-DPB11-4ala-CFP::KanMX SLX4-4ala-YFP DPB11-CFP SLX4-YFP Lisby lab  ML799-2C MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-CFP::KanMX SLX4-YFP sgs1::HIS3 DPB11-CFP SLX4-YFP sgs1 Lisby lab ML806-3C MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-CFP::KanMX slx4-S486A-YFP DPB11-CFP slx4-S486A-YFP Lisby lab ML806-3A MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-CFP::KanMX slx4-S486A-YFP sgs1::HIS3 DPB11-CFP slx4-S486A-YFP sgs1 Lisby lab ML792-2D MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 DPB11-CFP MUS81-YFP Lisby lab  



tTA(tetR-VP16)-tetO2-DPB11-4ala-CFP::KanMX MUS81-4ala-YFP ML800-9A MATa tTA(tetR-VP16)-tetO2-DPB11-4ala-CFP::KanMX MUS81-YFP sgs1::HIS3 DPB11-CFP MUS81-YFP sgs1 Lisby lab Y2050 MATα ade2-1 trp1-1 his3-11 his3-15 can1-100 leu2-112::URA3::leu2-k leu2-112::URA3::leu2-k Jentsch lab  YBP388 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 leu2-3,112::pep4::LEU2 pep4 This study YBP392 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 bar1 pep4 This study YBP418-1 MATa ade2-1 ura3-1 his3-11,15 can1-100 lys1::NAT-NT2 arg4::hph-NT1 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 SLX4-3FLAG::KanMx4 lys1 SLX4-3FLAG This study YBP420 MATa ade2-1 ura3-1 his3-11,15 can1-100 arg4::hph-NT2 lys1::NAT-NT1 leu2-3,112::pep4::LEU2 trp1-1::bar1::TRP1 lys1 arg4  This study YBP422 MATa ade2-1 ura3-1 his3-11,15 can1-100 arg4::hph-NT2 lys1::NAT-NT1 leu2-3,112::pep4::LEU2 trp1-1::bar1::TRP1 DPB11-3FLAG::KanMx lys1 arg4 DPB11-3FLAG This study YDG40 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 slx4-S486A This study YDG66 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rad51::natNT2 rad51 This study YDG96 MATα ade2-1 trp1-1 his3-11 his3-15 can1-100 leu2-112::URA3::leu2-k slx4::kanMx slx4-S486A::TRP1 leu2-112::URA3::leu2-k slx4-S486A This study 



YDG126 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rad1::hphNTI rad1 This study YDG134 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 slx1::hphNTI slx1 This study YDG135 MATa ade2-1 ura3-1 his3-11,15  leu2-3,112 can1-100 slx4::KanMx trp1-1::slx4-S486A::TRP1 slx1::hphNTI slx4-S486A slx1 This study YDG150 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 mms2::hphNTI mms2 This study YDG151 MATα ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 mms2::hphNTI slx4-S486A mms2 This study YDG175 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rad5::hphNTI rad5 This study YDG182 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 rad51::hphNT1 slx4-S486A rad51 This study YDG183 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rev1::hphNT1 rev1 This study YDG184 MATa ade2-1 ura3-1 his3-11,15  leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 rev1::hphNT1 slx4-S486A rev1 This study YDG185 MATa ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rev3::hphNT1   rev3 This study YDG186 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 rev3::hphNT1 slx4-S486A rev3 This study YDG187 MATa ade2-1 ura3-1 his3-11,15  trp1-1 leu2-3,112 can1-100 rad30::hphNT1 rad30 This study YDG188 MATa ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx slx4-S486A rad30 This study 



trp1-1::slx4-S486A::TRP1 rad30Δ::hphNT1 YDG189 MATa RAD5+ ade2-1 ura3-1 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1  his3-11,15::sgs1::HIS3 slx4-S486A sgs1 This study YDG190 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 slx4-S486A This study YDG206 MATα RAD5+ CAN1+ ADE2+ ura3-1 his3-11,15 leu2-3,112 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 CAN1+ slx4-S486A This study YDG207 MATa CAN1+ ADE2+ ura3-1 his3-11,15 trp1-1 leu2-3,112 rad5::hphNT1 CAN1+ rad5 This study YDG209 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rad5::hphNT1 ura3-1::RAD5+::URA3 rad5 RAD5+ This study YDG211 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rad5::hphNT1 ura3-1::rad5+-C914S::URA3 rad5+-C914S This study YDG212 MATa ade2-1 his3-11,15  leu2-3,112 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 rad5::hphNT1 ura3-1::RAD5+::URA3 slx4-S486A rad5Δ RAD5+ This study YDG214 MATa ade2-1 his3-11,15  leu2-3,112 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 rad5::hphNT1 ura3-1::rad5+-C914S::URA3 slx4-S486A rad5+-C914S This study YDG217 MATa RAD5+ ade2-1 his3-11,15  trp1-1 ura3-1 leu2-3,112 can1-100 srs2ΔC::hphNT1 srs2ΔC This study YDG218 MATa RAD5+ ade2-1 his3-11,15 ura3-1 leu2-3,112 can1-100  slx4::kanMx4 trp1-1::slx4-S486A::TRP1 srs2ΔC::hphNT1 slx4-S486A srs2ΔC This study YDG219 MATa RAD5+ ade2-1 his3-11,15  siz1 This 



trp1-1 ura3-1 leu2-3,112 can1-100 siz1::hphNT1 study YDG220 MATa Rad5+ ade2-1 his3-11,15 ura3-1 leu2-3,112 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 siz1::hphNT1 slx4-S486A siz1 This study YDG240 MATa ade2-1 his3-11,15 trp1-1 leu2-3,112 can1-100 rad5::hphNT1 ura3-1::rad5+-KT538,539AA::URA3 rad5+-KT538,539AA This study YDG241 MATa ade2-1 his3-11,15 leu2-3,112 can1-100 rad5::hphNT1 ura3-1:rad5+-KT538,539AA::URA3 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 slx4-S486A rad5+-KT538,539AA This study YDG251 MATa RAD5+ ade2-1 leu2-3,112 ura3-1 trp1-1 can1-100 his3-11,15::rad53-3HA::HIS3 rad53-3HA This study YDG252 MATa RAD5+ ade2-1 leu2-3,112 ura3-1 can1-100 slx4Δ::kanMx4 trp1-1::slx4-S486A::TRP1 his3-11,15::rad53-3HA::HIS3 slx4-S486A rad53-3HA This study YDG287 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 dot1::natNT2 slx4-S486A dot1 This study YDG288 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 ddc1-T602A::natNT2 slx4-S486A ddc1-T602A This study YDG289 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 mms4::hphNT1 mms4 This study YDG290 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 mms4::hphNT1 slx4-S486A mms4 This study YDG291 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 yen1::hphNT1 yen1 This study YDG292 MATa RAD5+ ade2-1 his3-11,15 slx4-S486A yen1 This 



leu2-3,112 ura3-1 can1-100  slx4::kanMx4 trp1-1::slx4-S486A::TRP1 yen1::hphNT1 study YDG293 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100  slx4::kanMx trp1-1::DPB11-slx4-S486A::TRP1 DPB11-slx4-S486A This study YDG295 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 ddc1-T602A::natNT2 yen1::hphNT1 slx4-S486A ddc1-T602A yen1 This study YDG296 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 ddc1-T602A::natNT2 yen1::hphNT1 ddc1-T602A yen1 This study YDG329 MATa RAD5+ ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 sgs1::hphNT1 sgs1 This study YDG303 MATa Rad5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 ddc1-T602A::natNT2 ddc1-T602A This study YDG304 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 dot1::natNT2 dot1 This study YDG309 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 ddc1-T602A::natNT2 mms4::hphNT1 slx4-S486A ddc1-T602A mms4 This study YDG310 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 ddc1-T602A::natNT2 mms4::hphNT1 ddc1-T602A mms4 This study YDG313 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 ddc1-T602A::natNT2 sgs1::hphNT1 slx4-S486A ddc1-T602A sgs1 This study YDG314 MATa RAD5+ ade2-1 his3-11,15 leu2-3,112 trp1-1 ura3-1 can1-100 ddc1-T602A::natNT2 sgs1::hphNT1 ddc1-T602A sgs1 This study 



YDG335 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 mus81Δ::hphNT1 mus81 This study YDG336 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx4 trp1-1::slx4-S486A::TRP1 mus81::hphNT1 slx4-S486A mus81 This study YDG339 MATa RAD5+ ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 MMS4-3FLAG::hphNTI MMS4-3FLAG This study YDG340 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 MMS4-3FLAG::hphNTI slx4-S486A MMS4-3FLAG This study     YDG355 MATa RAD5+ ade2-1 his3-11, 15 trp1-1 ura3-1 can1-100 mms4::hphNTI leu2-3,112::mms4SS184,201AA::LEU2 mms4-SS184,201AA This study YDG356 MATa RAD5+ ade2-1 trp1-1 ura3-1 can1-100 mms4::hphNTI leu2-3,112::mms4SS184,201AA::LEU2 his3-11,15::sgs1::HIS3 mms4-SS184,201AA sgs1 This study YDG366 MATa RAD5+ ade2-1 his3-1,15 leu2-3,112 ura3-1 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 ddc1-T602A::natNT2 MMS4-3FLAG::hphNTI slx4-S486A ddc1-T602A MMS4-3FLAG This study YDG375 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::NAT trp1-1::slx4-7A::TRP1 slx4-T457A, T474A, S499A, T597A, S627A, S659A, S725A This study YDG376 MATa RAD5+ ade2-1 ura3-1 his3-11,15 trp1-1 leu2-3,112 can1-100 yen1::hphNT1 sgs1::natNT2 yen1 sgs1 This study YDG377 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 yen1Δ::hphNT1 sgs1::natNT2 slx4-S486A yen1 sgs1 This study 



YKR44 MATa ade2-1 ura3-1 his3-11 his3-15 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 DPB11-9myc:: KanMX4 DPB11-9myc This study YLP15 MATa ade2-1 ura3-1 his3-11 his3-15 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 lys1::nat-NT2 lys1 This study YLP18 MATa ade2-1 ura3-1 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 lys1::nat-NT2 his3-11,15::SLX4-3FLAG::HisMx lys1 SLX4-3FLAG This study YLP30 MATa ade2-1 ura3-1 trp1-1 leu2-3,112 can1-100 pep4::NAT slx4::KanMx his3-11,15::slx4-S486A-3FLAG::HISMx slx4-S486A-3FLAG This study YLP41 MATa ade2-1 ura3-1 trp1-1 leu2-3,112 can1-100 his3-11,15::slx4-S486A-3FLAG::HisMx pep4::NAT lys1::hph lys1 slx4-S486A-3FLAG  This study YLP42 MATa ade2-1 his3-11 his3-15 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 SLX4-3FLAG::KanMx4 ura3-1::cdc28as-1 F88G::URA3 SLX4-3FLAG cdc28-as1 This study YLP43 MATa ade2-1 his3-11,15 can1-100 lys1::hph trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 SLX4-3FLAG::KanMx4 ura3-1::cdc28as-1 F88G::URA lys1 SLX4-3FLAG cdc28-as1 This study YLP47 MATa ade2-1 ura3-1 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 his3-11,15::DPB11-3Flag::HIS3 DPB11-3FLAG This study YLP57 MATa RAD5+ ade2-1 ura3-1 trp1-1 leu2-3,112 can1-100 MMS4-3Flag::hphNTI his3-11,15::pep4::HIS3 MMS4-3FLAG This study YLP59 MATa ade2-1 ura3-1 trp1-1 leu2-3,112 can1-100 MMS4-3Flag::hph-NT1 his3-11,15::pep4::HIS3Mx4 pGAL1- MMS4-3FLAG pGal1-Cdc5 This study 



CDC5::KanMx YLP62 MATa ade2-1 ura3-1 leu2-3,112 can1-100 MMS4-3Flag::hph-NT1 his3-11,15::pep4::HIS3Mx4 slx4::KanMx trp1-1::slx4-S486A::TRP1 MMS4-3FLAG slx4-S486A This study YLP63 MATa RAD5+ ade2-1 ura3-1 trp1-1 leu2-3,112 can1-100 cdc5-as1 MMS4-3Flag::hph-NT1 his3-11,15::pep4::HIS3Mx4 MMS4-3FLAG cdc5-as1 This study YLP64 MATa RAD5+ ade2-1 leu2-3,112 ura3-1 can1-100 slx4::kanMx trp1-1::slx4-S486A::TRP1 ddc1T602A:: natNT2 MMS4-3Flag::hphNTI his3-11,15::pep4::HIS3Mx4 MMS4-3FLAG slx4-S486A ddc1-T602A This study YLP78 MATa ade2-1 leu2-3,112 trp1-1 ura3-1 can1-100 MMS4-3Flag::hph-NT1 his3-11,15::pep4::HIS3Mx4 slx4::KanMx MMS4-3FLAG slx4 This study YLP80 MATa RAD5+ ade2-1 leu2-3,112 ura3-1 can1-100 MMS4-3Flag::hph-NT1 his3-11,15::pep4::HIS3Mx4 slx4::KanMx trp1-1::Slx4 T457A, T474A, S499A, T597A, S627A, S659A, S725A::TRP1 MMS4-3FLAG slx4-T457A, T474A, S499A, T597A, S627A, S659A, S725A This study YLP83 MATa RAD5+ ade2-1 his3-1,15 trp1-1 ura3-1 can1-100 leu2-3,112::pep4::LEU2 SLX4-3Flag::KanMx4 cdc5-as1 SLX4-3FLAG cdc5-as1 This study YLP87 MATa RAD5+ ade2-1 leu2-3,112 trp1-1 ura3-1 can1-100 his3-11,15::pep4::HIS pep4 This study YLP88 MATa RAD5+ ade2-1 leu2-3,112 ura3-1 can1-100 slx4Δ::kanMx trp1-1::slx4-S486A::TRP1 MMS4-3Flag::hphNTI his3-11,15::pep4::HIS MMS4-3FLAG slx4-S486A This study YSB79 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 RFA1- RFA1-3xmCherry This study 



3xmCherry::hphNT1 YSB86 MATa RAD5+ ade2-1 ura3-1 his3-11,15 leu2-3,112 trp1-1 can1-100 RFA1-3xmCherry::hphNT1 slx4::kanMx4 trp1-1:Slx4-S486A::TRP1 RFA1-3xmCherry  slx4-S486A This study YSS3 MATa ade2-1 ura3-1 trp1-1 leu2-3,112 can1-100 MMS4-3Flag::hph-NT1 his3-11,15::pep4::HIS3Mx4 MMS4-3FLAG This study YSS5 MATa ade2-1 ura3-1 his3-11,15 can1-100 trp1-1::bar1::TRP1 leu2-3,112::pep4::LEU2 SLX4-3Flag::KanMx4 SLX4-3FLAG This study   Synchronization by α-factor and nocodazole Logarithmic growing cells were synchronized in G2/M-phase by nocodazole (5 µg/ml), or in G1-phase by α-factor (5-10 µg/ml, or 167 ng/ml for bar1 cells). The release from synchronization was performed by washing once in YPD, and suspending cells in YPD with 0.033% or 0.04% MMS. For recovery experiments, cells were washed after 30’ (45’ in Fig. 6E, S3B) of damage treatment, and suspended in drug free YPD media with (Fig. 5D, 6E-F) or without nocodazole.  Drug treatment DNA damage in liquid cultures was induced by MMS (final concentration 0.033%, or 0.04% (Fig. 3C-E, 6D)) or phleomycin/zeocin (final concentration 50 µg/ml). 



For solid media, concentrations of methyl methanesulfonate (MMS), hydroxyurea (HU), phleomycin, cisplatin, camptothecin (CPT) or 4-nitroquinoline 1-oxide (4-NQO) were as indicated in the figures.  FACS analysis 1x107 - 2x107 cells were harvested by centrifugation and resuspended in 70% ethanol + 50 mM Tris pH 7.8. After centrifugation cells were washed with 1 ml 50 mM Tris pH 7.8 (Tris buffer) followed by resuspending in 520 µl RNase solution (500 µl 50 mM Tris pH 7.8 + 20 µl RNase A (10 mg/ml in 10 mM Tris pH 7.5, 10 mM MgCl2) and incubation for 4 h at 37 °C. Next, cells were treated with proteinase K (200 µl Tris buffer + 20 µl proteinase K (10 mg/ml in 50% glycerol, 10 mM Tris pH 7.5, 25 mM CaCl2) and incubated for 30' at 50 °C. After centrifugation cells were resuspended in 500 µl Tris buffer. Before measuring the DNA content, samples were sonified (5''; 50% CYCLE) and stained by SYTOX solution (999 µl Tris buffer + 1 µl SYTOX). Measurement was performed using FL1 channel 520 for SYTOX-DNA on a BD FACSCalibur system.  Interaction assays  After cell growth under the indicated conditions, yeast extracts were obtained by freezer mill lysis in lysis buffer (100 mM Hepes, 200 mM KOAc, 0.1 % NP-40, 10 % glycerol, 2 mM b-ME, protease inhibitors, 100 mM ocadaic acid, 10 mM NaF, 20 mM b-glycerophosphate). Co-IP was performed for 2 hours by head-over-tail rotation at 4 °C using anti-FLAG agarose resin (Sigma). Non-specific background was removed by six washes and bound proteins were 



eluted by incubation with 0.5 mg/ml 3X FLAG-peptide (Sigma). The TCA precipitated eluates were resolved on 4-12% NuPAGE gradient gels (Invitrogen), and analyzed by standard Western blotting techniques. For GST pulldowns (Fig. S1A), GST-Dpb11 or GST-tagged protein fragments were recombinantly expressed and purified as described (Pfander and Diffley 2011). Proteins were immobilizied on glutathione sepharose 4B (GE Healthcare) and incubated with ammonium sulphate-precipitated (57%) yeast extracts (lysis buffer as described above). Non-specific background was removed by five washes and bound proteins were eluted by Laemmli buffer. For Co-IP from HEK 293T cells were lysed in lysis buffer (see yeast lysates) for 30’ on ice. Protein concentrations were determined by Bradford. GFP-tagged proteins were precipitated using GFP-Trap magnetic beads (Chromotek) and incubated for 1.5 h with head-over-tail rotation. Non-specifically bound proteins were removed by 6 washes with lysis buffer using a magnetic rack, and specifically bound proteins were eluted by Laemmli buffer.    Analysis of interacting proteins by SILAC For Co-IP experiments followed by mass spectrometry analysis, cells deficient in lysine biosynthesis were grown in synthetic complete (SC) medium supplemented with normal lysine (“light” medium) or heavy-isotope-labeled lysine (Lys8; “heavy” medium) from Cambridge Isotope Laboratories.  For SILAC Co-IP experiments shown in Fig. S4A, cells deficient in lysine and arginine biosynthesis were grown in synthetic complete (SC) medium supplemented with normal lysine and arginine (“light” medium) or heavy-



isotope-labeled lysine and arginine (Lys8, Arg10; “heavy” medium) from Cambridge Isotope Laboratories. All other SILAC experiments were done using lysine-only labeling. Lysates were prepared by harvesting cells in equal amounts after growth under the indicated conditions. After co-IP, eluted proteins from light and heavy cultures were pooled, TCA precipitated and separated on 4-12% NuPAGE Bis-Tris gel (Invitrogen). The gel was stained with GelCode Blue (Thermo Scientific). The gel lane was excided into ten slices and peptides were analyzed by LC-MS/MS after in-gel Lys-C or trypsin digestion. Samples were measured on an LTQ-Orbitrap and analyzed using MaxQuant (Cox and Mann 2008).  Antibodies Proteins were detected using specific antibodies: rabbit-anti-Rad53 (JD147, J. Diffley), rabbit-anti-Dpb11 (BPF19; Pfander and Diffley 2011), rabbit-anti-Rad9-T474-P (BPF25, Pfander and Diffley 2011), rabbit-anti-Slx4 (2057, Pfander lab), goat-anti-Cdc5 (sc-6733, Santa Cruz), rabbit-anti-Clb2 (sc-9071, Santa Cruz), rabbit-anti-FLAG (Sigma), rabbit-HRP-coupled-anti-GST (Z-5; sc-459, Santa Cruz), mouse-anti-myc (clone 4A6; Millipore), mouse-anti-GFP (B2; Santa Cruz), mouse-anti-Gal4-AD (TA-C10; Santa Cruz), mouse-anti-Gal4-BD (RK5C1; Santa Cruz).  Pulsed-field gel electrophoresis In the recovery experiments (Fig. 3D, 6B, S3B) 8x107 of cells were taken for every time point and centrifuged at 5,000 x g 10 min at 4 °C. Cells were 



resuspended in 1 ml cold 0.1% sodium azide and centrifuged at 3,000 rpm for 3 min. Remaining pellets were resuspended in 50 µl zymolyase buffer (50 mM EDTA, 10 mM Tris pH 8.0, 20 mM NaCl, 1 mg/ml zymolyase (T100)) and mixed with equal amount of 2% agarose. The samples were transferred to the plug mold. The plugs were incubated in zymolyase buffer at 37 °C for 1 h, followed by treatment with proteinase K (0.5 M EDTA pH 8.0, 1 mg/ml proteinase K, 10 mg/ml sodium lauryl sarcosine) at 50 °C for 24-48 h. Next, the plugs were washed 3 times with 50 mM EDTA and loaded. Electrophoresis was performed using the CHEF-DRIII pulsed-field electrophoresis system (Bio-Rad) according to the manufacturer’s instructions. The gel was stained with 1 µg/ml ethidium bromide and scanned under UV light. Quantification of PFGE signals was performed using ImageJ. For every time point the signal from the bands that have entered the gel was normalized to the total signal in the lane including that from the well, and the values from every time point were normalized relative to the G1 signal.  2D gel analysis and quantification of replication/recombination intermediates The experiments were conducted as described previously (Szakal and Branzei, 2013). The DNA samples were digested with HindIII and EcoRV and analysed with probes for ARS305. In all, 200 ml cultures (2-4x109 cells) were arrested by addition of sodium azide (final concentration 0.1%) and cooled down in ice. Cells were harvested by centrifugation, washed in cold water, and incubated in spheroplasting buffer (1 M sorbitol, 100 mM EDTA pH 8.0, 0.1% b-ME, and 50 U zymolase/ml) for 1.5 h at 30 °C. In all, 2 ml water, 200 



µl RNase A (10 mg/ml), and 2.5 ml Solution I (2% w/v cetyl-trimethyl-ammonium-bromide (CTAB), 1.4 M NaCl, 100 mM Tris-HCl pH 7.6, and 25 mM EDTA pH 8.0) were sequentially added to the spheroplast pellets and samples were incubated for 30 min at 50 °C. In all, 200 µl proteinase K (20 mg/ml) was then added and the incubation was prolonged at 50 °C for 1 h 30 min, and at 30 °C overnight. The sample was then centrifuged at 4,000 rpm for 10 min: the cellular debris pellet was kept for further extraction, while the supernatant was extracted with 2.5 ml chloroform/isoamylalcohol (24/1) and the DNA in the upper phase was precipitated by addition of 2 volumes Solution II (1% w/v CTAB, 50 mM Tris-HCl pH 7.6, and 10 mM EDTA) and centrifugation at 8,500 rpm for 10 min. The pellet was resuspended in 2 ml Solution III (1.4 M NaCl, 10 mM Tris-HCl pH 7.6, and 1 mM EDTA). Residual DNA in the cellular debris pellet was also extracted by resuspension in 2 ml Solution III and incubation at 50 °C for 30 min, followed by extraction in 1 ml chloroform/isoamylalcohol (24/1). The upper phase was pooled together with the main DNA preparation. Total DNA was then precipitated with 1 volume isopropanol, washed with 70% ethanol, air dried, and finally resuspended in TE 1X. Quantification of X-shaped intermediate signals was performed using the Image Quant software as previously described (Liberi et al. 2005; Branzei et al. 2008; Vanoli et al. 2010). For each time point, areas corresponding to the monomer spot (M), the X-spike signal and a region without any replication intermediates as background reference were selected and the signal intensities (SIs) in percentage of each signal were obtained. The values for the X and monomer were corrected by subtracting from the SI value the background value after the latter was multiplied for the ratio between the 



dimension of the area for the intermediate of interest and for background. Thus, the values for X and M were calculated in the following way: Value for X=SI (Xs)-(SI (background) (area (Xs)/area (background)); Value for M=SI (M)-(SI (background) (area (M)/area (background)). The relative SI for the X was then determined by dividing the value for X with the sum of the total signals (the sum of the X and monomer values). The resulting values for X signals were then normalized. For instance, for recovery experiments the relative value of X obtained after MMS treatment was considered as 100% and the other X values were normalized to it.  Mutation and recombination assays Mutation rates were determined using a CAN1 forward mutation assay (Klein 2001). Interchromosomal recombination rates were determined using a direct-repeat system using leu2 heteroalleles (Aquilera and Klein 1988) and crossover rates were determined using a system harbouring two arg4 alleles on chromosome V and VIII (Robert et al. 2006, Szakal and Branzei 2013). In all cases mutation/recombination rates were determined using fluctuation analysis and a maximum-likelihood approach. Therefore, for each strain ten independent cultures originated from the single cell were analyzed. To get single colonies 100 cells were plated or streaked out for single colonies on YPD media plates and incubated for 2 days at 30 °C. The frequency of mutants/recombinants in all cultures was determined by plating on selective media. The total cell number was determined by plating an appropriate dilution on non-selective media. For determination of CO rates, for each culture ten ARG+ colonies were picked, analyzed by PCR for CO or NCO 



events (Szakal and Branzei 2013) and the overall number of crossover recombinants was extrapolated. From the number of mutants/recombinants/crossover recombinants the number of mutational/recombinational/crossover events was determined using a maximum-likelihood approach and rates were determined by dividing by the number of cell divisions (Pfander et al. 2005). For each strain 2-10 independent experiments were performed to determine mean and standard deviation.    Microscopy and immunofluorescence Yeast cells were grown in synthetic complete (SC) medium supplemented with 100 µg/ml adenine (SC+Ade) and processed for fluorescence microscopy as described (Eckert-Boulet et al. 2011). For staining of DNA in live yeast cells, 5 µg/ml of Hoechst 33258 (B2883, Sigma-Aldrich) were added to the culture 10-15 min prior to microscopy and washed out with fresh medium immediately prior to microscopy and imaged at 25 °C. Fluorophores used in yeast were cyan fluorescent protein (CFP, clone W7) (Heim and Tsien 1996) and yellow fluorescent protein (YFP, clone 10C) (Ormo et al. 1996). Microscopy was performed using an AxioImager Z1 (Carl Zeiss MicroImaging, Inc) equipped with a 100x objective lens (Zeiss PLAN-APO, NA 1.4), a cooled Orca-ER CCD camera (Hamamatsu, Japan), differential interference contrast (DIC), and a Zeiss HXP120C illumination source, or on a Deltavision Elite microscope (Applied Precision, Inc) equipped with a 100x objective lens (Olympus U-PLAN S-APO, NA 1.4), a cooled Evolve 512 EMCCD camera (Photometrics, Japan), and a Insight solid state illumination source (Applied 



Precision, Inc). Images were acquired using Volocity (PerkinElmer) or softWoRx (Applied Precision, Inc) software. Images were acquired and processed using Volocity (PerkinElmer) software. Images were pseudocoloured according to the approximate emission wavelength of the fluorophores. For analysis of RPA foci (Fig. 3F) cells were grown in SC media, arrested with 
α-factor and treated in S-phase with 0.033% MMS for 120 min, then released into the fresh SC media for recovery. For microscopy cells were fixed in FA for 30 min and quenched in 2.5 M glycine for 30 min. Cells were washed twice and resuspended in 50 mM Tris, pH 7.5. Images of cells were obtained using a fully automated Zeiss inverted microscope (AxioObserver Z1) equipped with a MS-2000 stage (Applied Scientific Instrumentation, USA), a CSU-X1 spinning disk confocal head (Yokogawa, Herrsching), LaserStack Launch with selectable laser lines (Intelligent Imaging Innovations, USA) and an X-CITE Fluorescent Illumination System. Images were captured using a CoolSnap HQ camera (Roper Scientific, Canada) under the control of the Slidebook software (Intelligent Imaging Innovations, USA). All fluorescence signals were imaged with a 63x oil objective.    Cell culture and transfection techniques HEK 293T cells were cultured at 37 °C at 7.5% CO2 in DMEM (GIBCO-BRL) supplemented with 10% FCS. Transient transfections were performed in 6-well plates (HeLa) using the calcium phosphate method. In general 5x105 293T cells per well were seeded and transfected the next day using 20 µg 



total DNA. After 4-6 h incubation the TF medium was replaced with fresh growth medium, and cells were cultured for another 18-20 h.   Nuclease assays  5’-end-Cy3-labeled oligonucletides were used to prepare synthetic DNA substrates as described (Rass & West 2006). Nuclease assays were carried out with immobilized Mms4-FLAG. The Anti-FLAG immunoprecipitates were extensively washed and mixed with 10 µl reaction buffer (50 mM Tris-HCl pH 7.5, 3 mM MgCl2) containing ~2.5 nM 5’-Cy3-end-labeled substrate (Matos et al 2011). Reactions were incubated for 15-45 min with gentle rotation at 30 °C and stopped by addition of 4 µl 10 mg/ml proteinase K and 2% SDS, and further incubation at 37 ºC for 1 h. Loading buffer was added and radiolabeled products were separated by 10% PAGE, and analyzed using a Typhoon scanner.  Sequence analysis Close orthologues of budding yeast and human Slx4 were found by NCBI-BLAST (Altschul et al. 1997) and verified by reciprocal BLAST searches. Individual multiple sequence alignments of fungal and mammalian Slx4 were done using ClustalX (Chenna et al. 2003). The Profile Alignment feature was used in ClustalX to align the two profiles from mammalian and fungal Slx4 proteins. This identified the potential Dpb11/TopBP1 interaction motif in human Slx4. Slx4 proteins from further classes were identified by BLAST and first aligned with members of their individual class using ClustalX. Resulting multiple sequence alignments were manually analyzed for the occurrence of 



the Dpb11/TopBP1 motif and subsequently manually aligned to the yeast and mammalian motif.  Species abbreviations and accession numbers for Figure S2. Sp Schizosaccharomyces pombe NP_594064 Sc Saccharomyces cerevisiae NP_013236 Kl Kluyveromyces lactis XP_453790 Ec Eremothecium cymbalariae XP_003646141 Nc Naumovozyma castellii XP_003928518 Ka Kazachstania naganashii CCK71307 (emb) Td Toluraspora delbrueckii XP_003682477 Zr Zygosaccharomyces rouxii XP_002497655 Vp Vanderwaltozyma polyspora XP_001647185 Lt Lachancea thermotolerans  XP_002555561 Hs Homo sapiens NP_115820 Sb Samiri b. boliviensis  XP_003928518 Mm Mus musculus NP_803423 Rn Rattus norvegicus XP_001079342 Sh Sacrophilus harrisii XP_003761955 Tm Trichechus manatus latirostris XP_004373478 Oo Orcinus orca XP_004270504 Xt Xenopus tropicalis XP_002932505 Dr Danio rerio XP_003201146 Dm Drosophila melanogaster NP_648104 Dg Drosophila grimshawi XP_001983575 Dw Drosophila willistoni XP_002062409 Cc Ceratitis capitata XP_004526156 Ag Anopheles gambiae XP_001687887     
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promote Mus81-Mms4 resolvase activation
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Abstract

DNA repair by homologous recombination is under stringent cell

cycle control. This includes the last step of the reaction, disentan-

glement of DNA joint molecules (JMs). Previous work has estab-

lished that JM resolving nucleases are activated specifically at the

onset of mitosis. In case of budding yeast Mus81-Mms4, this cell

cycle stage-specific activation is known to depend on phosphoryla-

tion by CDK and Cdc5 kinases. Here, we show that a third cell cycle

kinase, Cdc7-Dbf4 (DDK), targets Mus81-Mms4 in conjunction with

Cdc5—both kinases bind to as well as phosphorylate Mus81-Mms4

in an interdependent manner. Moreover, DDK-mediated phospho-

rylation of Mms4 is strictly required for Mus81 activation in mito-

sis, establishing DDK as a novel regulator of homologous

recombination. The scaffold protein Rtt107, which binds the

Mus81-Mms4 complex, interacts with Cdc7 and thereby targets

DDK and Cdc5 to the complex enabling full Mus81 activation.

Therefore, Mus81 activation in mitosis involves at least three cell

cycle kinases, CDK, Cdc5 and DDK. Furthermore, tethering of the

kinases in a stable complex with Mus81 is critical for efficient JM

resolution.
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Introduction

Many DNA transactions are under cell cycle control to adjust them

to cell cycle phase-specific features of chromosomes (Branzei &

Foiani, 2008). Homologous recombination (HR) is cell cycle-

regulated at several steps including the first, DNA end resection, and the

last, JM removal (Heyer et al, 2010; Ferretti et al, 2013; Mathiasen

& Lisby, 2014; Matos & West, 2014). Given that JMs provide stable

linkages between sister chromatids, they will interfere with chromo-

some segregation and therefore need to be disentangled before sister

chromatid separation during mitosis. Accordingly, JM resolvases,

such as budding yeast Mus81-Mms4 (Interthal & Heyer, 2000;

Schwartz et al, 2012) or Yen1 (Ip et al, 2008), become activated

during mitosis (Matos et al, 2011, 2013; Gallo-Fernández et al,

2012; Szakal & Branzei, 2013; Blanco et al, 2014; Eissler et al,

2014). In contrast, the alternative JM removal pathway, JM dissolu-

tion by the Sgs1-Top3-Rmi1 complex, is thought to be constantly

active throughout the cell cycle (Mankouri et al, 2013; Bizard &

Hickson, 2014). The activation of JM resolvases in mitosis therefore

leads to a shift in the balance between JM removal pathways, with

dissolution being preferred outside of mitosis, but JM resolution

becoming increasingly important in mitosis (Matos et al, 2011,

2013; Gallo-Fernández et al, 2012; Dehé et al, 2013; Saugar et al,

2013; Szakal & Branzei, 2013; Wyatt et al, 2013). It has been

hypothesized that JM resolvases are downregulated at cell cycle

stages other than mitosis in order to counteract crossover-induced

loss of heterozygosity or to prevent over-active resolvases from

interfering with S phase by, for example, cleaving stalled replication

forks (Gallo-Fernández et al, 2012; Szakal & Branzei, 2013; Blanco

et al, 2014).

Budding yeast Mus81-Mms4 has previously been shown to be

targeted by two cell cycle kinases, cyclin-dependent kinase Cdc28

(CDK) and the yeast polo-kinase Cdc5 (Matos et al, 2011, 2013;

Gallo-Fernández et al, 2012; Szakal & Branzei, 2013). The corre-

sponding Mms4 phosphorylation events were shown to correlate

with and to be required for activation of Mus81-Mms4 in mitosis. In

2014, we showed that in mitosis Mus81-Mms4 also forms a complex

with Slx4-Slx1 and the scaffold proteins Dpb11 and Rtt107

(Gritenaite et al, 2014). Interestingly, mass spectrometric analysis of

this complex (Gritenaite et al, 2014) revealed that Cdc5 and a third

cell cycle kinase Dbf4-Cdc7 (Dbf4-dependent kinase, DDK) are also

a stable part of this protein assembly (see Appendix Fig S1A). Here,
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we investigate the role of DDK in Mus81-Mms4 regulation and find

that DDK can phosphorylate Mms4 and that DDK and Cdc5 target

Mus81-Mms4 in an interdependent manner. Moreover, we show

that Rtt107 promotes the association of both kinases with the

Mus81-Mms4 complex. The DDK-dependent regulation of Mus81-

Mms4 is critical for Mus81 activity thus revealing DDK as a novel

regulator of homologous recombination.

Results

Mus81-Mms4 is a DDK phosphorylation target

The cell cycle regulation of JM resolution by Mus81-Mms4 is intri-

cate and involves phosphorylation by the cell cycle kinases CDK

and Cdc5 (Matos et al, 2011, 2013; Gallo-Fernández et al, 2012;

Szakal & Branzei, 2013) as well as complex formation with the scaf-

fold proteins Dpb11, Slx4 and Rtt107 (Gritenaite et al, 2014). To

study this protein complex, we performed an analysis of Mms43FLAG

interactors in mitosis by SILAC-based quantitative mass spectrome-

try (Gritenaite et al, 2014) and found in addition to Dpb11, Slx4,

Rtt107 and Cdc5, also Cdc7 and Dbf4 as specific interactors of

Mms4 (Appendix Fig S1A). We verified that Cdc7 binds to Mus81-

Mms4 in an Mms43FLAG pull down from mitotic cells analysed

by Western blots (Fig 1A). The fact that Mus81-Mms4 binds to

DDK suggested that it might be involved in the phosphorylation

cascade that occurs on Mms4 and controls Mus81 activity in

mitosis. Accordingly, we found that purified DDK was able to phos-

phorylate both subunits of purified Mus81-Mms4 in vitro (Fig 1B,

lane 3). When we furthermore compared the DDK-dependent
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Figure 1. Dbf4-dependent kinase (DDK) binds to the Mus81-Mms4 complex in mitosis and can phosphorylate Mms4 at (S/T)(S/T) motifs.

A Cdc7 and Cdc5 are specifically enriched in Mms43FLAG co-IPs from cells arrested in mitosis (with nocodazole). Under the same conditions, Mus81-Mms4 associates
with scaffold proteins such as Dpb11 and Slx4 (Appendix Fig S1A and Gritenaite et al, 2014).

B DDK can phosphorylate Mus81-Mms4 in vitro. Purified, immobilized Mus81-Mms4 is incubated in an in vitro kinase assay with purified CDK2/cycAN170 (a model CDK),
DDK or Cdc5 (lanes 1–4). Additionally, Mus81-Mms4 is incubated with respective kinases after a non-radioactive priming step with CDK (lanes 5–8).

C DDK phosphorylates Mms4 peptides at (S/T)(S/T) motifs and is enhanced by priming phosphorylation. Mms4 peptides including (S/T)(S/T) motifs (221/222; 133/134)
were synthesized in different phosphorylation states (depicted in left panel) and incubated in an in vitro kinase assay with either CDK or DDK. CDK targets
unphosphorylated Mms4 peptides 1 and (to a weaker extent) 4 consistent with its substrate specificity (Mok et al, 2010), while DDK primarily targets Mms4 peptides
2 and 5, which harbour a priming phosphorylation at the C-terminal (S/T) site (see Appendix Fig S1B for in-gel running behaviour of peptides).
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phosphorylation signal to Mms4 phosphorylation by CDK and Cdc5

(Fig 1B, lanes 2–4), we observed different degrees of phosphoryla-

tion shifts indicating that the three kinases phosphorylate Mms4 at

distinct sites and/or to different degrees. DDK target sites on other

proteins have been studied in detail, and in several cases, DDK was

found to target (S/T)(S/T) motifs, where phosphorylation was stim-

ulated by a priming phosphorylation usually on the second (S/T)

(Masai et al, 2006; Montagnoli et al, 2006; Randell et al, 2010;

Lyons et al, 2013). Intriguingly, Mms4 contains 15 of these motifs

and we therefore tested whether these could be targeted by DDK

and would depend on priming phosphorylation. We therefore

turned to a peptide-based assay where Mms4 phosphorylation states

are precisely defined. To this end, we synthesized peptides corre-

sponding to two (S/T)(S/T) motifs of Mms4. We chose two repre-

sentative motifs: S222, as it harbours a minimal CDK consensus

motif (S/T)P, and S134, as it contains a non-(S/T)P consensus for

CDK [(S/T)X(K/R)(K/R) (Suzuki et al, 2015)]. For each of these

motifs, we generated peptides in three different phosphorylation

states: non-phosphorylated, phosphorylated at the second serine

and doubly phosphorylated (Fig 1C and Appendix Fig S1B). When

using such peptides as substrates in in vitro kinase reactions, we

saw that CDK targeted specifically only the second serine in each

peptide, although much stronger for S222 than for S134, consistent

with these residues matching CDK consensus motifs (Fig 1C). In

contrast, DDK showed only little activity towards the non-

phosphorylated peptides, but was strongly stimulated when the

second residue in the (S/T)(S/T) motif was in a phosphorylated

state (Fig 1C). DDK may thus be stimulated by priming phosphory-

lation in order to efficiently phosphorylate Mms4 on (S/T)(S/T)

sites. However, using the full-length protein as a phosphorylation

substrate, we did not obtain evidence for a stimulatory effect on

DDK by prior CDK phosphorylation (Fig 1B and Appendix Fig S1C),

perhaps because over the whole 15 (S/T)(S/T) motifs CDK phospho-

rylation plays a minor role. We also did not reveal any priming

activity of either CDK or DDK for Mms4 phosphorylation by Cdc5

(Fig 1B and Appendix Fig S1D). Overall, the data in Fig 1 thus iden-

tify Mus81-Mms4 as an interaction partner and potential substrate

of DDK.

Mus81-Mms4 is phosphorylated by a mitotic Cdc5-DDK complex

DDK is present and active throughout S phase and mitosis until

anaphase when the Dbf4 subunit is degraded by APC/CCdc20 (Cheng

et al, 1999; Weinreich & Stillman, 1999; Ferreira et al, 2000). We

therefore tested at which cell cycle stage DDK would associate with

Mus81-Mms4 using cells synchronously progressing through the cell

cycle. Figure 2A shows that DDK did not associate with Mus81-

Mms4 in S phase, but only once cells had reached mitosis. Strik-

ingly, DDK binding therefore coincided with binding of Cdc5, Slx4

and Dpb11 and most notably the appearance of the hyperphospho-

rylated form of Mms43FLAG (Fig 2A).

Given this late timing of the association, we tested in co-

immunoprecipitation (co-IP) experiments whether DDK binding to

Mus81-Mms4 would depend on CDK or Cdc5 activity. Using analog-

sensitive mutant yeast strains for CDK [cdc28-as1 (Bishop et al,

2000)] and for Cdc5 [cdc5-as1 (Snead et al, 2007)], we observed that

inhibition of these kinases in mitotically arrested cells strongly

reduced the hyperphosphorylation shift of Mms4 (see also Matos

et al, 2013) and compromised the association with DDK (Fig 2B and

C, and Appendix Fig S2A–C). Notably, both conditions also inter-

fered with Cdc5 binding (Fig 2B and C, and Appendix Fig S2A),

suggesting that the association of DDK may follow a similar regula-

tion as Cdc5.

Next, we tested whether conversely DDK is involved in Mms4

phosphorylation. To bypass the essential function of DDK in DNA

replication, we used the mcm5bob1-1 allele (Hardy et al, 1997),

which allowed us to test a cdc7D mutant. Using Western blot and

SILAC-based mass spectrometry as a read-out of Mms43FLAG co-IPs

from cells arrested in mitosis, we found that Cdc5 association with

Mus81-Mms4 was strongly reduced in the cdc7D mutant strain

(Fig 2D and E). Moreover, we observed that Mms43FLAG phospho-

rylation as indicated by mobility shift was decreased in the

absence of DDK, although not to the same extent as upon CDK or

Cdc5 inhibition (Fig 2D and Appendix Fig S2C). Additionally, as

an alternative way to deregulate DDK, we used the cdc7-1 tempera-

ture-sensitive mutant. Even with WT cells, we observed that

elevated temperature (38°C) leads to a slight reduction in Cdc5

binding to Mus81-Mms4. However, in cdc7-1 mutant cells, incuba-

tion at 38°C leads to the complete disappearance of Cdc5 binding

to Mus81-Mms4 (Appendix Fig S2D). Therefore, we conclude from

these data that DDK and Cdc5 bind to Mus81-Mms4 in an inter-

dependent fashion.

Interestingly, Cdc5 was previously shown to interact with DDK

via a non-consensus polo-box binding site within Dbf4 (Miller et al,

2009; Chen & Weinreich, 2010). The proposed model based on

genetic experiments suggested that DDK binding antagonizes mitotic

functions of Cdc5. However, the catalytic activity of Cdc5 was not

inhibited in this complex (Miller et al, 2009) and we reason that

DDK may simply target Cdc5 to a specific set of substrates. Since the

Cdc5 binding site was mapped to the N-terminal portion of Dbf4

(Miller et al, 2009), we tested whether N-terminal truncations of

Dbf4 would affect DDK or Cdc5 association with Mus81-Mms4.

While the dbf4-DN66 truncation lacking the first 66 amino acids (in-

cluding a D-box motif) did not influence DDK or Cdc5 binding to

Mms43FLAG, the dbf4-DN109 truncation, which additionally lacks

the Cdc5 binding motif (Miller et al, 2009), showed strongly

decreased DDK and Cdc5 binding to Mus81-Mms4 (Fig 2F). Addi-

tionally, also mitotic hyperphosphorylation of Mms4 was dimin-

ished when DDK and Cdc5 could not interact with each other

(Fig 2F). Overall, these data strongly suggest that Cdc5 and DDK

interact with and target Mus81-Mms4 in an interdependent manner.

Furthermore, it is currently unclear whether collaboration of DDK

and Cdc5 is a widespread phenomenon that may affect other Cdc5

substrates as well, given that mitotic phosphorylation of two

candidate Cdc5 substrates, Ulp2 and Scc1 (Alexandru et al, 2001),

was affected to varying degree by the cdc7D mutation

(Appendix Fig S2E).

Given the known cell cycle regulation of Cdc5 and DDK

(Shirayama et al, 1998; Cheng et al, 1999; Weinreich & Stillman,

1999; Ferreira et al, 2000; Mortensen et al, 2005), the limiting

factor for the temporal regulation of this complex and its

restriction to mitosis is expected to be Cdc5 and not DDK, which

is present already throughout S phase. Consistently, we

observed that forced expression of Cdc5 (using the galactose-

inducible GAL promoter) in cells that were arrested in S phase by

hydroxyurea (HU) led to the premature occurrence of Mms4
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hyperphosphorylation (Fig EV1A; Matos et al, 2013), suggesting

that S-phase DDK is in principle competent for Cdc5 binding and

joint substrate phosphorylation.

Furthermore, we performed additional experiments that

addressed the regulation of Mus81-Mms4 by the DNA damage

response. In M-phase-arrested cells, association of DDK and
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Cdc5 with Mus81-Mms4 was reduced after induction of DNA

damage with phleomycin (Appendix Fig S2F), but this treatment

was not sufficient to induce a significant reduction in the Mms4

phosphorylation shift. Interestingly, when we forced Cdc5 expres-

sion in S-phase cells and compared normal S-phase cells to cells

treated with hydroxyurea (HU), we observed that the Mms4

phosphorylation shift was less pronounced in the presence of

hydroxyurea (HU) (Fig EV1B). These data are therefore

consistent with the current view that DNA damage, specifically

the DNA damage checkpoint, negatively influences Mus81 resolu-

tion activity (Szakal & Branzei, 2013; Gritenaite et al, 2014).

Since DDK is known to be targeted and inhibited by the DNA

damage checkpoint (Weinreich & Stillman, 1999; Lopez-

Mosqueda et al, 2010; Zegerman & Diffley, 2010), it could

become particularly critical to regulate Mms4 phosphorylation

after DNA damage.

Even though DDK and Cdc5 seem to target Mus81-Mms4 in

unison, we tested whether it was possible to resolve differences on

the level of individual phosphorylation sites. Therefore, we

analysed Mms4 phosphorylation sites in M-phase cells after Cdc5

inhibition (Fig 3A and C) or CDC7 deletion (Fig 3B and D) by

SILAC-based mass spectrometry. We also applied two different

experimental set-ups that used either endogenously expressed

Mus81-Mms4 (Fig 3A and B) or overexpressed Mus81-Mms4

(Fig 3C and D), as the latter set-up allowed much better coverage

of Mms4 phosphopeptides in higher order phosphorylation states

(peptides harbouring > 1 phosphorylated site). Cdc5 inhibition or

lack of DDK led to overlapping, but distinct changes in Mms4

phosphorylation sites, suggesting that each kinase phosphorylates

specific sites on Mms4. After Cdc5 inhibition, phosphorylation of

many sites was reduced and among those were sites that match to

a putative Cdc5 consensus [(D/E/N)X(S/T), blue, Fig 3A and C;

Mok et al, 2010]. Overall, CDC7 affected Mms4 phosphorylation

less than Cdc5 inhibition, but nonetheless, we found widespread

changes in the phosphorylation of (S/T)(S/T) motifs (Fig 3B and

D). (S/T)(S/T) motifs were found less abundantly in the doubly

phosphorylated state (Fig 3D, red), while conversely these motifs

were found more abundantly in the state where only the second

(S/T) was singly phosphorylated (Fig 3B and D, yellow), as

expected for a substrate–product relation. These data are thus

consistent with phosphorylation of the second (S/T) priming for

phosphorylation at the preceding (S/T) (Appendix Table S1 and

Appendix Fig S3).

DDK phosphorylation is required for activation of Mus81-Mms4

during mitosis

Phosphorylation of Mms4 by CDK and Cdc5 has previously been

shown to be required for the upregulation of Mus81-Mms4 activity

during mitosis (Matos et al, 2011, 2013; Gallo-Fernández et al,

2012; Szakal & Branzei, 2013). Based on our finding that hyper-

phosphorylation of Mms4 was impaired in the absence of DDK

(Fig 2D and Appendix Fig S2C), we predicted that also Mus81-

Mms4 activity would be influenced. Therefore, we tested the activ-

ity of endogenous Mus819myc-Mms43FLAG immunopurified from

G2/M arrested cells (approx. 5 fmol) on a nicked Holliday junction

(nHJ) substrate (500 fmol) using an assay related to those in

(Matos et al, 2011, 2013; Gritenaite et al, 2014). Notably, the

activity of the endogenous purified Mus81-Mms4 from G2/M cells

exceeded the activity of recombinant Mus81-Mms4 (subjected to a

dephosphorylation step during the purification), indicating that it

is the mitotically activated form (Appendix Fig S4A). Moreover,

the activity of endogenous purified Mus81-Mms4 was not influ-

enced by 350 mM NaCl salt washes. This indicates that the pres-

ence of accessory, salt-labile factors such as Rtt107 or Cdc5 in the

reaction is unlikely to contribute to Mus81 activity (Appendix Fig

S4B and C).

Importantly, when we used this assay to test immunopurified

Mus819myc-Mms43FLAG from mitotic cells lacking DDK (cdc7D or

dbf4D), we observed a reduced activity compared to Mus819myc-

Mms43FLAG from WT cells (Fig 4A and Appendix Fig S4D; also

observed with an RF substrate, Appendix Fig S4E). In order to

exclude that indirect effects of the CDC7 deletion may cause the

reduction in Mus81 activity, we furthermore created an Mms4

mutant that specifically lacks candidate DDK phosphorylation sites.

We chose to mutate (S/T)(S/T) motifs (SS motifs in particular)

and created an mms4-8A mutant that harboured eight S to A

exchanges at the N-terminal (S/T) of the motifs (see Appendix Fig

S3A). This mutant appeared less phosphorylated in mitosis as

judged by a less pronounced phosphorylation shift (Fig 4B).

Furthermore, we observed a reduction in the association of DDK

and Cdc5 with the Mus81-Mms4-8A complex in pull-down experi-

ments (Fig 4B), suggesting that phosphorylation of Mms4 also

plays a role in tethering these kinases. Notably, Mus819myc-

Mms43FLAG-8A from mitotic cells showed a moderate but repro-

ducible reduction in resolution activity on nHJ substrates

compared to WT Mus819myc-Mms43FLAG (Fig 4C and Appendix Fig

Figure 2. DDK and Cdc5 target Mus81-Mms4 in an interdependent manner.

A DDK stably associates with Mus81-Mms4 in mitosis, but not in S phase or G1. Mms43FLAG pull down experiment (left panel, as in Fig 1A) from cells arrested in G1
(with alpha-factor) or in cells progressing synchronously through S phase until mitosis (arrest with nocodazole) reveals that DDK binds specifically in mitosis
concomitant with the raise in Cdc5 levels and Cdc5 binding to Mus81-Mms4. A nocodazole-arrested untagged strain was used as a control. Right panel shows
measurements of DNA content by FACS from the respective samples.

B CDK activity is required for DDK and Cdc5 association with Mus81-Mms4. Mms43FLAG pull down as in (A), but in mitotic WT or cdc28-as1 mutant cells treated with
5 lM 1NM-PP1 for 1 h. Additional Western blots of this experiment are shown in Appendix Fig S5B, including as a control the identical anti-FLAG Western blot.

C Cdc5 activity is required for DDK association with Mus81-Mms4. Mms43FLAG pull down as in (A), but with mitotically arrested WT or cdc5-as1 mutant cells treated
with 10 lM CMK for 1 h.

D, E DDK is required for Cdc5 binding to Mus81-Mms4 in mitosis and the mitotic Mms4 phospho-shift. (D) Mms43FLAG pull down using mitotically arrested cells as in
(A), but using a bob1-1 background (all samples), where the DDK subunit Cdc7 could be deleted. (E) SILAC-based quantification of Mms43FLAG pull downs in
mitotically arrested bob1-1 vs. bob1-1 cdc7D cells. Plotted are the H/L ratios of two independent experiments including label switch.

F The Cdc5 binding region on Dbf4 is required for interaction of DDK and Cdc5 with Mus81-Mms4 and for efficient Mms4 phosphorylation. Mms43FLAG pull down as
in (A), but using mitotically arrested cells expressing N-terminal truncation mutants of Dbf4 lacking aa2–66 (including a D-box motif) or 2–109 [additionally
including the Cdc5 binding site (Miller et al, 2009)].

◀
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A B 

D C 

Figure 3. Analysis of Mms4 phosphorylation sites reveals Cdc5 and DDK target sites, as well as the interdependence between the two.

Changes of the abundance of phosphorylated Mms4 peptides after Cdc5 inhibition (as in Fig 2C) (A, C) or in the absence of Cdc7 (B, D) in mitotically arrested cells.

A, B Depicted are SILAC-based intensity ratios of individual MS evidences for peptides of endogenously expressed Mms4. Evidences of non-phosphorylated Mms4
peptides are shown in grey; evidences of phosphorylated peptides are shown in black, yellow, orange or blue. Blue colour indicates putative Cdc5 phosphorylation
as defined by the (D/E/N)X(S/T) consensus (and additionally S268, which was also very strongly deregulated upon Cdc5 inhibition). Yellow or orange colours mark
singly phosphorylated (S/T)(S/T) motifs, with orange marking p(S/T)(S/T) and yellow marking (S/T)p(S/T). Numbers indicate the phosphorylated residue in the
depicted peptide. An asterisk marks peptide evidences that contained measured intensity values exclusively in the heavy or light sample. For doubly
phosphorylated peptides, the two phospho-sites are separated by a comma. For singly phosphorylated (S/T)(S/T) motifs, peptide ion fragmentation was in some
cases unable to unambiguously identify the phosphorylated residue. In these cases, possible phosphorylation sites are indicated as “a/b”. Note that doubly
phosphorylated (S/T)(S/T) sites were not reproducibly identified under conditions of endogenous Mus81-Mms4 expression.

C, D As in panels (A, B) but using Mus81-Mms4 expressed from a high-copy promoter. Depicted are SILAC-based H/L ratios of individual MS evidences for
phosphorylated peptides only. Peptides were sorted into categories according to their phosphorylation status: putative DDK target sites ((S/T)(S/T) motifs) were
differentiated into the categories p(S/T)p(S/T) (red), p(S/T)(S/T) (orange) or (S/T)p(S/T) (yellow). Phosphorylated peptides matching the Cdc5 consensus site are
coloured in blue. All other phosphorylated peptides are marked in grey. Bars depict the mean of the ratios of the respective category. Overall, Mms4 H/L ratio is
shown on top.
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S4F). These data thus indicate that DDK targets Mus81-Mms4 and

that (S/T)(S/T) phosphorylation events are essential for full

activation of Mus81 in mitosis.

Additionally, we investigated the relevance of the mms4-8A

mutation in vivo. In comparison with mus81D or mms4D mutants,

the mms4-8A mutant showed a hypomorphic phenotype. For
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example, it did neither significantly increase the MMS hypersensitiv-

ity of a yen1D mutant, nor did it confer synthetic lethality with

mutants defective in STR function, such as sgs1D, even though the

mms4-8A sgs1D double mutant displayed a slow growth phenotype

(Figs 4D and EV2A). Importantly, however, we did observe a

strongly increased hypersensitivity towards MMS, when we tested

an mms4-8A sgs1D double mutant and compared it to an sgs1D

single mutant (Fig 4D). The mms4-8A mutation thus leads to a

phenotype that is very similar to other activation-deficient MMS4

mutants in budding and fission yeast (Gallo-Fernández et al, 2012;

Dehé et al, 2013; Matos et al, 2013). Remarkably, the MMS hyper-

sensitivity phenotype of the mms4-8A mutant was highly similar to

that of the Cdc5 binding-deficient dbf4-DN109 mutant (Figs 4E and

EV2B), which also showed reduced survival when combined with

sgs1D (Fig 4E). These data are therefore consistent with DDK func-

tioning to stimulate JM resolution via Mms4 hyperphosphorylation.

It is likely that the mms4-8A mutant is only partially deficient in

DDK phosphorylation, since Mms4 contains overall 15 (S/T)(S/T)

sites and DDK may phosphorylate the protein on non-(S/T)(S/T)

sites as well. We therefore note that an mms4-12A mutant, harbour-

ing four additional S to A exchanges on (S/T)(S/T) motifs, showed

further increased MMS sensitivity in the mms4-12A sgs1D mutant,

when compared to the mms4-8A sgs1D mutant, even though there

were only minor additional effects on either the Mms4 mitotic phos-

phorylation shift or JM resolution activity (Fig EV2C–E).

In order to directly assess whether DDK phosphorylation was

required for Mus81 function during JM resolution, we tested the

influence of the mms4-8A mutant in a genetic crossover assay (Ho

et al, 2010). In this system, a site-specific DSB is induced in

diploid cells and repair products can be measured by the arrange-

ment of markers and colony sectoring (Fig 4F, upper panel). In

this assay, mus81D and mms4D mutants show a reduction in CO

products and a proportional increase in NCO products (Fig 4F; Ho

et al, 2010), as would be expected from a defect in JM resolution

and the accompanying shift of repair pathways towards JM disso-

lution. The mms4-8A mutant shows a similar, albeit weaker defect

in the formation of CO products (Fig 4F), suggesting that the

defect in Mus81 activation in mitosis results in an overall defect in

JM resolution. We therefore conclude that DDK—in conjunction

with Cdc5—acts directly on Mms4 and that these phosphorylation

events are required for efficient Mus81-dependent JM resolution in

mitosis.

The Dpb11-Mms4 interaction is not required for DDK-Cdc5-

dependent activation of Mus81-Mms4

It is noteworthy that the association of DDK and Cdc5 with Mus81-

Mms4 coincides with the formation of the Mus81-Mms4 complex

with scaffold proteins such as Slx4, Dpb11 and Rtt107, which come

together in mitosis (Fig 2A). Therefore, we asked whether the scaf-

fold proteins Dpb11, Slx4 or Rtt107 would be required to target DDK

and Cdc5 to Mus81-Mms4. In order to investigate the influence of

Dpb11, we searched for an MMS4 mutant that was deficient in the

interaction with Dpb11. When we used a two-hybrid approach to

map the Dpb11 interaction site on Mms4, we found that Mms4

constructs comprising aa 1–212 or 101–230 interacted with Dpb11,

while constructs comprising aa 1–195 or 176–230 showed no or

reduced interaction (Appendix Fig S5A). This suggested that the

Dpb11 binding site may be located between aa 101–212 of Mms4.

Consistently, we observed that the Mms4-S201A mutation abolished

binding to Dpb11 in yeast two-hybrid and co-IP (Fig 5A and B),

while the Mms4-S184A mutation reduced it (Fig 5A). Serine 201

and 184 are therefore likely candidates for phospho-sites bound and

read by Dpb11. Serine 201 matches the full CDK consensus motif

(S/T)PxK, while serine 184 matches the minimal CDK consensus

motif (S/T)P. Indeed, we find that CDK inhibition reduced the

Dpb11 interaction with Mus81-Mms4 (Appendix Fig S5B) consistent

with a requirement of CDK phosphorylation for a robust interaction

between Dpb11 and Mms4.

When we investigated the phenotype of the mms4-SS184,201AA

mutant, we found that it showed enhanced hypersensitivity to MMS

specifically in the sgs1D mutant background, consistent with a role

of Dpb11 in JM resolution after MMS damage (Fig 5C). We also

noted that the phenotype of this MMS4 variant differed from that

induced by Dpb11 binding-deficient version of Slx4 [slx4-S486A

(Gritenaite et al, 2014; Ohouo et al, 2012)]. This could suggest that

these mutants are able to separate different Dpb11 functions such as

a mitotic function in conjunction with Mus81-Mms4 and an S-phase

function, which Slx4 and Dpb11 might have independently of

Mus81-Mms4 (Ohouo et al, 2012; Gritenaite et al, 2014; Cussiol

et al, 2015; Princz et al, 2015). However, it also needs to be consid-

ered that Slx4 and Mus81-Mms4 may be connected by more than

one scaffold protein (see below).

Importantly, however, we did not observe a defect in the

association of DDK or Cdc5 with Mus81-Mms4, when we performed

Figure 4. DDK phosphorylation controls activation of Mus81-Mms4 resolvase activity in mitosis.

A DDK is required for mitotic activation of Mus81-Mms4. Resolution assay using a nicked Holliday junction (nHJ) substrate and Mus819myc-Mms43FLAG purified from
mitotically arrested bob1-1 (DDK-WT+), bob1-1 dbf4D and bob1-1 cdc7D strains or untagged control cells. Right panel: quantification of cleavage products. See
Appendix Fig S4D for Western blots samples of anti-myc IPs. Left panel: representative gel image.

B A defect in the phosphorylation of Mms4 (S/T)(S/T) sites causes reduced association of Cdc5 and DDK with Mus81-Mms4 and reduced phosphorylation of Mms4.
Mms43FLAG pull down as in Fig 1A, but using mitotically arrested WT and mms4-8A mutant cells, which harbour 8 serine to alanine exchanges at (S/T)(S/T) motifs
(detailed in Appendix Fig S3).

C Reduced (S/T)(S/T) phosphorylation of Mms4 generates a defect in Mus81-Mms4 activity. Resolution assay as in (A), but comparing mitotic Mus81-Mms4 from
untagged, WT and mms4-8A strains (see Appendix Fig S4F for Western blot samples of anti-myc IPs).

D, E The mms4-8A mutation and lack of the Cdc5-DDK interaction (dbf4-DN109) lead to hypersensitivity towards MMS specifically in the sgs1D background. Shown is
the growth of indicated strains in fivefold serial dilution on plates containing MMS at indicated concentrations after 2 days at 30°C.

F The mms4-8A mutant leads to a reduction in crossover formation. Recombination assay between heterologous ade2 alleles in diploid cells as described in Ho et al

(2010). The top panel indicates markers on both copies of chromosome XV that are used to determine genetic outcomes of DSB repair. Arrow indicates the I-SceI
cut site. Bottom panel indicates rates of crossover events (%) overall (grey) and in the individual classes (red, red/white, white) that differ in gene conversion tract
length. Error bars indicate standard deviation of two independent experiments, each scoring 400–600 colonies per strain.

Data information: (A, C) Depicted are means from three independent experiments, error bars correspond to standard deviation.

◀
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Mms4-S201A3FLAG pull downs and compared them to a WT

Mms43FLAG pull down (Fig 5B). Furthermore, we only observed a

very minor defect in the in vitro resolution of nHJ substrates, when

we purified Mus81-Mms4 from mitotically arrested mms4-S201A

cells (Appendix Fig S5C). We therefore reason that Dpb11 is most

likely not involved in promoting Mms4 phosphorylation or

DDK-Cdc5-dependent activation of Mus81-Mms4.

The Rtt107 scaffold recruits DDK and Cdc5 to Mus81-Mms4

Having excluded a role of Dpb11 in the recruitment of DDK and

Cdc5, we next tested a possible involvement of the Rtt107 scaffold

protein. Indeed, when we used an rtt107D mutant in IP and SILAC-

based IP-MS experiments, we observed that DDK and Cdc5 binding

to Mus81-Mms4 was strongly reduced (Fig 6A and Appendix Fig

S6A). Interestingly, Rtt107 bound to DDK and Cdc5 even under

conditions where Rtt107 binding to Mus81-Mms4 was abolished

(mus81D, Appendix Fig S6B). This suggests that Rtt107 may form a

subcomplex with DDK and Cdc5. Consistently, we found that Rtt107

bound to Cdc7 in a two-hybrid assay (Fig 6B). These data therefore

suggest that Rtt107 mediates binding of DDK and Cdc5 to the

Mus81-Mms4 complex, most likely via a Cdc7 interaction site on

Rtt107.

During our co-IP studies, we furthermore found that the location

of Rtt107 in the mitotic Mus81-Mms4 complex was different than

expected. Given that Slx4 was required to bridge between Rtt107

and Dpb11 (Ohouo et al, 2010) and that Mms4 and Dpb11 seem-

ingly interact directly (Gritenaite et al, 2014 and Fig 5A and B), we

initially expected that Slx4 and Dpb11 would be required to mediate

the interaction between Rtt107 and Mus81-Mms4. Surprisingly, we

found that an slx4D mutant did not influence DDK or Cdc5 binding

to Mus81-Mms4 and thereby differed from rtt107D (Fig 6A). There-

fore, we tested if Rtt107 could bind to Mus81-Mms4 independently

of Slx4 or Dpb11. Indeed, we found that the Mus81-Mms4 interac-

tion to Rtt107 was not influenced by the slx4D mutant (Fig 6C) or

the Dpb11 binding-deficient mms4-S201A allele (Fig 6D), indicating

that Rtt107 binding to the Mus81-Mms4 complex occurs indepen-

dently of the other scaffold proteins. In contrast, our data also show

that its binding is strongly dependent on kinases and Mms4 phos-

phorylation, since Rtt107 binding was strongly reduced in the

absence of DDK (Fig 2E), after Cdc5 inhibition (Appendix Fig S2A)

or in the mms4-8A phosphorylation site mutant (Fig EV3).

Therefore, these data provide novel insight into the role of

Rtt107 in Mus81-Mms4 regulation. First, it shows that Rtt107 medi-

ates the association of DDK and Cdc5 kinases with Mus81-Mms4.

Second, it also suggests that Rtt107 may bind directly to Mus81-

Mms4 and that this binding is dependent on Mms4 phosphorylation

and the cell cycle kinases DDK and Cdc5, although an alternative

model whereby Rtt107 indirectly promotes DDK and Cdc5 to tightly

associate with Mus81-Mms4 cannot be ruled out entirely. The fact

that Rtt107 promotes the interaction of Mus81-Mms4 with the

kinases, yet in turn requires the kinases and Mms4 phosphorylation

for interaction, suggests that Rtt107 may be acting after initial Mms4

phosphorylation has occurred and at this late stage tethers the

kinases, thus promoting phosphorylation of otherwise inefficiently

phosphorylated sites.

Rtt107 stimulates Mms4 hyperphosphorylation in order to

enhance Mus81-Mms4 activity in mitosis

Given Rtt107’s involvement in tethering DDK and Cdc5 to the

Mus81-Mms4 complex, we asked whether Rtt107 would mediate
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Figure 5. The interaction between Mms4 and Dpb11 is dispensable for binding of Cdc5 and DDK and mitotic Mus81-Mms4 activation.

A, B Serine 201 of Mms4 is required for Dpb11 binding, but not for interaction with DDK and Cdc5. (A) Two-hybrid interaction analysis using Gal4-BD-Dpb11 with Gal4-
AD-Mms4, Gal4-AD-Mms4-S184A and Gal4-AD-Mms4-S201A constructs. (B) Mms43FLAG pull downs from mitotically arrested cells as in Fig 1A, but using WT or
S201A variants of Mms43FLAG. Asterisks mark cross-reactive bands.

C The Dpb11 binding-deficient allele mms4-SS184,201AA leads to a MMS hypersensitivity specifically in the sgs1D background. Spotting assay as in Fig 4D.
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mitotic hyperphosphorylation of Mms4 and concomitant activation

of the Mus81 nuclease. We observed only a minor effect on the

mitotic phospho-shift of Mms4 when using rtt107D mutants (Fig 6A

and Appendix Fig S2C). However, as it is still unclear which phos-

phorylation sites contribute to the Mms4 phospho-shift, we investi-

gated the effect of rtt107D on individual phosphorylation sites

in our mass spectrometry data. Appendix Fig S7A and B shows

SILAC-based comparisons of Mms4 phosphorylation sites in WT

and rtt107D cells, expressing Mus81-Mms4 from endogenous

(Appendix Fig S7A) or high-copy promoters (Appendix Fig S7B).

The overexpression set-up allowed us to quantify phosphorylation

at (S/T)(S/T) motifs, and we found that double phosphorylation of

several of these sites was reduced (Appendix Fig S7B), although the

change was much smaller compared to cells lacking DDK. On the

other hand, while we could not detect higher order phosphorylated

Mms4 peptides using endogenous Mus81-Mms4, we could detect an

effect of Rtt107 on several other sites (T209, S241 and S268, and to

a lesser extent S286; Appendix Fig S7A), which were also deregu-

lated after Cdc5 inhibition (Fig 3A and C). These data are thus

consistent with Rtt107 promoting efficient DDK and Cdc5 phospho-

rylation of Mms4.

Therefore, we tested whether Rtt107 would affect the mitotic

activation of Mus81-Mms4. We immunopurified Mus819myc-

Mms43FLAG from WT and rtt107D cells that were arrested in mitosis

and found that Mus81-Mms4 activity on a nHJ substrate was

reduced in the rtt107D background (Fig 7A and Appendix Fig S7C).

Furthermore, in the background of deficient DDK (cdc7D bob1-1),

additional mutation of rtt107D did not lead to a further defect in
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Figure 6. The Rtt107 scaffold tethers DDK and Cdc5 to Mus81-Mms4 independently of Slx4 and Dpb11.

A Rtt107, but not Slx4, is required for DDK and Cdc5 interaction with Mus81-Mms4. Mms43FLAG pull downs from mitotically arrested cells as in Fig 1A, but specifically
comparing interactions of Mus81-Mms4 in WT, slx4D, rtt107D and slx4D rtt107D mutant backgrounds.

B Rtt107 interacts with Cdc7. Two-hybrid interaction was tested using Gal4-BD-Rtt107 constructs and Gal4-AD-Cdc7 or Gal4-AD-Dbf4 constructs. Interaction between
Gal4-BD-Cdc5 and Gal4-AD-Dbf4 serves as positive control.

C Rtt107 interacts with Mus81-Mms4, DDK and Cdc5 independently of Slx4. Rtt1073FLAG co-IPs from untagged control, WT or slx4D cells arrested in mitosis were
probed for indicated proteins.

D Rtt107 interacts with Mus81-Mms4 independently of the Mms4-Dpb11 interaction. SILAC-based Mms43FLAG pull down in WT and mms4-S201A cells reveals changes
in the Dpb11 association, but not in Rtt107, Slx4, Cdc5 or DDK binding. Plotted are the H/L ratios of two experiments including label switch.
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Mus81-mediated cleavage (Appendix Fig S7D). Therefore, we

conclude that Rtt107 is required for full mitotic activation of Mus81-

Mms4 and that it works at least in part through cell cycle kinases

such as DDK.

In order to test whether such a defect in Mus81-Mms4 activation

would translate into a shifted balance of JM removal pathways, we

measured rates of crossover and non-crossover formation in the

absence of Rtt107. We observed a reduction in crossover rates in

the rtt107D mutant indicating a shift in the balance of JM removal

pathways (Fig 7B). The decrease was mostly visible in one class of

recombinants (Fig 7B, “red”) and is smaller compared to the pheno-

type of a mus81D or a mms4-8A mutant (Ho et al, 2010; Fig 4F),

consistent with a stimulatory but non-essential role of the Rtt107

scaffold in Mus81-Mms4 function. These data thus provide the first

mechanistic insight of how the interaction of the mitotic Mus81-

Mms4 complex with the scaffold proteins influences Mus81

function, as Rtt107 facilitates DDK and Cdc5 tethering, full mitotic

phosphorylation of Mms4 and activation of Mus81-Mms4.

Discussion

Activation of Mus81-Mms4 during mitosis is critical for the response

to DNA damage, in particular to process repair intermediates that

may arise from DSBs and stalled replication forks (Matos et al,

2011, 2013; Gallo-Fernández et al, 2012; Saugar et al, 2013; Szakal
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Figure 7. Rtt107 is required for efficient Mus81-Mms4 activation in mitosis.

A Mus81-Mms4 purified from mitotic rtt107D cells is less active compared to Mus81-Mms4 from WT cells. In vitro resolution activity of Mus819myc-Mms43FLAG purified
from WT or rtt107D cells is tested on a nHJ substrate (see Appendix Fig S7C for control Western blot). Right panel: quantification of cleavage products from three
independent experiments (mean � SD). Left panel: representative gel picture.

B The rtt107D mutant leads to a reduction in crossover formation. Recombination assay as in Fig 4F. Note that the rtt107D mutant particularly affects crossover
formation in the red class (long conversion tracts), while no significant defect could be observed in the red/white and white class (mean � SD).

C Hypothetical model of Mus81-based JM resolution. Upper panel: cell cycle regulation of JM removal pathways, indicating Mus81 activation in mitosis. Lower panel:
physical interactions of Mus81-Mms4 and its regulatory complex in mitotic cells. Grey arrows indicate physical interactions; green arrows specifically indicate kinase–
substrate interactions. Genetic data indicate a hierarchy of molecular events leading to Mus81 activation. (1) DDK, Cdc5 and CDK (not shown) phosphorylate Mms4.
(2) Rtt107 binds to DDK and Cdc5 and—in a phosphorylation-dependent manner—associates with Mus81-Mms4. This interaction is either direct or could potentially
depend on bridging effects by DDK and Cdc5. Rtt107 promotes the stable interaction of DDK and Cdc5 with Mus81-Mms4 and thus full phosphorylation of Mms4 and
Mus81 activation. (3) Upon Mms4 phosphorylation, two scaffold proteins, Rtt107 and Dpb11, bind independently to Mus81-Mms4. Both proteins can also bind to Slx4
enabling two alternative connections of Slx4 with Mus81-Mms4.
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& Branzei, 2013). Previously, this regulation was shown to critically

depend on phosphorylation by the cell cycle kinases CDK and Cdc5

(Matos et al, 2011, 2013; Gallo-Fernández et al, 2012; Saugar et al,

2013; Szakal & Branzei, 2013), but also involve the formation

of a multi-protein complex comprising several scaffold proteins

(Gritenaite et al, 2014). Here, we not only identify a new cell cycle

kinase to be crucial for this regulation—DDK—but moreover show

that the two regulatory pathways—cell cycle kinase phosphorylation

and scaffold complex formation—are connected by Rtt107 (see

Fig 7C for a hypothetical model). Rtt107 association depends on

active cell cycle kinases and Mms4 phosphorylation, but in turn

Rtt107 is required for stable DDK and Cdc5 association with the

Mus81-Mms4 complex, as well as full phosphorylation of Mms4 and

mitotic activation of Mus81. This study thus extends our mechanistic

understanding of the regulatory framework that controls cell

cycle-regulated JM resolution.

Interestingly, our work shows that for its function as a regulator of

Mus81-Mms4 DDK must act interdependently and as a complex with

Cdc5. DDK and Cdc5 have been shown to interact physically (Miller

et al, 2009; Chen & Weinreich, 2010), but until now DDK was viewed

to antagonize mitotic functions of Cdc5 (Miller et al, 2009). In

contrast, in meiosis I DDK and Cdc5 are known to cooperate in order

to promote chromosome segregation and jointly phosphorylate the

monopolin and cohesin subunits Lrs4 and Rec8, respectively, as well

as the meiotic regulator Spo13 (Matos et al, 2008). We now provide

the first example for a joint DDK and Cdc5 substrate in the mitotic cell

cycle, suggesting that cooperation between DDK and Cdc5 could be a

more widespread phenomenon than previously anticipated. The

apparent antagonism between DDK and Cdc5 in the regulation of

mitotic exit (Miller et al, 2009), a canonical Cdc5 function, could be

explained if DDK targeted Cdc5 to a specialized subset of substrates

rather than to substrates involved in mitotic exit. It is also interesting

to note that we could detect significant DDK binding to Mus81-Mms4

only after cells finished S phase (Fig 2A). Therefore, the role of DDK

in Mms4 phosphorylation is clearly post-replicative and further

challenges a simplified view of DDK as an S-phase kinase (Matos

et al, 2008). It will therefore be interesting to see whether additional

DDK substrates during mitosis can be identified and whether DDK

collaborates with Cdc5 for their phosphorylation as well.

Mus81-Mms4 has previously been shown to be cell cycle-regulated

and Mms4 to be a critical CDK and Cdc5 phosphorylation

target (Matos et al, 2011; Gallo-Fernández et al, 2012). We add

DDK to this already complex regulation. Our data clearly show that

phosphorylation of (S/T)(S/T) motifs is critical for Mus81-Mms4

function. The hypomorphic phenotype of the mms4-8A mutant

(Fig 4C, D and F) is likely due to additional DDK phosphorylation

sites either on Mms4 or perhaps even on Mus81. Importantly, DDK

does not appear to establish the timing of Mms4 phosphorylation in

mitosis, as Cdc5 still seems to be the limiting factor for this temporal

control in undisturbed cell cycles (Fig EV1B). However, the fact that

activation of Mus81-Mms4 depends on the activity of several

kinases makes it a coincidence detector that integrates the activity

of several cell cycle regulators. Therefore, it can be envisioned that

there are specific cellular conditions under which DDK activity

becomes limiting for Mus81-Mms4 activation. Notably, DNA

damage checkpoint kinases are known to phosphorylate DDK and

counteract its function during S phase (Weinreich & Stillman, 1999;

Lopez-Mosqueda et al, 2010; Zegerman & Diffley, 2010). Therefore,

it can be speculated that the checkpoint acts as a negative regulator

of Mus81-Mms4 activation via inhibition of DDK. Such regulation

could therefore explain how the presence of DNA damage restricts

Mus81 activity towards replication intermediates (Matos et al, 2011,

2013; Saugar et al, 2013; Szakal & Branzei, 2013; Gritenaite et al,

2014), suggesting that cell cycle and checkpoint pathways converge

in the regulation of Mus81.

A second layer of Mus81 regulation relies on the formation of a

multi-protein complex, which assembles specifically in mitosis and

contains Mus81-Mms4, DDK, Cdc5 and Slx4 as well as the scaffold

proteins Dpb11 and Rtt107 (Gritenaite et al, 2014). We are only

beginning to understand the mechanism whereby this scaffold

complex influences Mus81 function. Here, we show that Rtt107, but

not Dpb11 or Slx4, promotes the stable association of DDK and

Cdc5 with Mus81-Mms4 (Fig 6), suggesting that one function of the

multi-protein complex is to promote efficient Mus81-Mms4 phos-

phorylation. Conversely, our new data as well as our previous work

(Gritenaite et al, 2014) show that phosphorylation by cell cycle

kinases also regulates the formation of the multi-protein complex.

In particular, Rtt107 association with Mus81-Mms4 depends

strongly on DDK and Cdc5 (Fig 2E and Appendix Fig S2A). A direct

interaction of Rtt107 with Mus81-Mms4 seems the most plausible

interpretation of our data, although we currently cannot exclude

that Rtt107 may facilitate the interaction of DDK and Cdc5 with

Mus81-Mms4 without a direct interaction. A possible phosphoryla-

tion dependence of Rtt107 binding to the complex could thus

originate from Mms4 phosphorylation generating a binding site for

Rtt107 [e.g. for Rtt107 BRCT domains (Li et al, 2012)].

Importantly, Rtt107 is in turn required for stable binding of DDK

and Cdc5 (Fig 6A and Appendix Fig S6A). Via tethering the kinases,

Rtt107 regulates the phosphorylation of specific Mms4 sites and is

required for full Mus81 activation (Fig 7A and Appendix Fig S7A

and B). The interdependence between Rtt107 and Cdc5/DDK

phosphorylation therefore suggests that Rtt107 may be part of a

signal amplification mechanism, which ensures efficient

Mus81-Mms4 phosphorylation and activation. Mechanistically,

Rtt107-dependent stimulation of Mms4 phosphorylation thus resem-

bles a kinase priming mechanism. It is entirely possible that other

kinase priming mechanisms for either Cdc5 or DDK are at work in

the Mms4 phosphorylation cascade, although the in vitro kinase

assays with full-length proteins did not provide support for such a

mechanism (Fig 1B, and Appendix Fig S1C and D). Altogether, it

seems plausible to speculate that Rtt107-dependent and Rtt107-

independent amplification mechanisms are involved in generating a

switch-like activation of Mus81 in mitosis.

Furthermore, Rtt107 can also bind to Slx4 (Ohouo et al, 2010).

There are thus two BRCT-containing scaffold proteins—Dpb11

(Gritenaite et al, 2014) and Rtt107—that could bridge between

Mus81-Mms4 and Slx4. Interestingly, our data with different mms4

mutants suggest that either one of these BRCT scaffold proteins is

sufficient to connect Slx4 and Mus81-Mms4 [Figs 6D and EV3; note

that the rtt107D mutant (Appendix Fig S6A) is difficult to interpret

in this regard as it also leads to defects in Slx4 phosphorylation and

the Slx4-Dpb11 interaction (Ohouo et al, 2010)]. This redundancy

may thus explain the modest phenotype of the mms4-S201A mutant

that is deficient in the Mms4-Dpb11 interaction (Fig 5C).

Several aspects of Mus81-Mms4 regulation are conserved

throughout eukaryotic evolution. The HJ resolution activity of
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Mus81-Eme1 in mammalian cells is cell cycle-regulated (Matos et al,

2011; Wyatt et al, 2013). Mus81-Eme1 furthermore binds to Slx4

and forms multi-protein complexes (Fekairi et al, 2009; Muñoz

et al, 2009; Svendsen et al, 2009; Castor et al, 2013; Wyatt et al,

2013), albeit these complexes may have a different organization to

that in yeast. Therefore, it will be interesting to explore in the future

if in human cells DDK is also required for activation of Mus81-Eme1

and if this mechanism may contribute to the anti-tumorigenic activ-

ity of DDK inhibitors (Montagnoli et al, 2008).

Materials and Methods

All yeast strains are based on W303 and were constructed using

standard methods. Plasmids were constructed using the In-Fusion

HD cloning kit (Clontech Laboratories), and mutations were intro-

duced by site-directed mutagenesis. A summary of all yeast strains

used in this study can be found in the Appendix Table S2.

Cell cycle synchronization was achieved using alpha-factor (G1),

hydroxyurea (S), or nocodazole (mitosis). DNA content was

measured by flow cytometry with a BD FACSCalibur system using

SYTOX green to stain DNA.

Co-immunoprecipitations of yeast extracts were performed on

anti-FLAG agarose resin (Sigma) for 2 h with head-over-tail rotation

at 4°C as previously described (Gritenaite et al, 2014). After bead

washing, proteins were eluted by 3X FLAG-peptide (Sigma), precipi-

tated and separated on 4–12% Bis-Tris gels. For SILAC-based mass

spectrometry, cells were labelled with heavy-isotope-labelled lysine

(Lys6 or Lys8), and proteins were digested with Lys-C. Mass spec-

trometry data were analysed using MaxQuant (Cox & Mann, 2008).

Yeast two-hybrid assays, genetic interaction assays, in vitro

kinase assays and peptide binding assays were performed as

described previously (Pfander & Diffley, 2011; Gritenaite et al, 2014).

Nuclease assays were done as described (Matos et al, 2011,

2013). Briefly, Mus819myc was immunopurified from mitotically

arrested cells and mixed with 50-Cy3-end-labelled nicked Holli-

day junctions. After incubation at 30°C for the indicated times, the

reaction was stopped by proteinase K and SDS for 1 h at 37°C. Prod-

ucts were separated by 10% PAGE, and cleavage efficiency was

normalized to the level of immunoprecipitated Mus819myc.

Unspecific nHJ cleavage in untagged controls was subtracted in the

quantifications.

DSB-induced recombination assays were performed as described

(Ho et al, 2010). Diploids harbouring I-SceI under the control of the

GAL promoter were grown in adenine-rich raffinose medium and

arrested in mitosis. Nuclease expression was induced by addition of

galactose for 2.5 h. Cells were plated on YPAD and replica plated on

YPAD + Hyg + Nat, YPAD + Hyg, YPAD + Nat, SC-Met, SC-Ura and

SCR-ADE + Gal media after 3–4 days to classify recombination events.

Detailed experimental procedures are available in the Appendix.

Data availability

Mass spectrometric datasets are available at EBI PRIDE. DDK and

the Rtt107 scaffold promote Mus81-Mms4 resolvase activation

during mitosis (2015). PXD005356.

Expanded View for this article is available online.
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Expanded View Figures
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Figure EV1. Cdc5 restricts Mms4 hyperphosphorylation to mitosis.

A Overexpression of CDC5 in S phase results in premature Mms4 hyperphosphorylation. Western blot analysis of Mms49myc, Cdc5 and Dbf4 from whole-cell extracts

(upper panel) and FACS data (lower panel). Cells were arrested in G1 (with alpha-factor), S phase (with HU) or G2/M phase (with nocodazole). After arrest, CDC5GFP

overexpression was induced by addition of 2% galactose for the indicated time to cells harbouring an additional copy of GFP-tagged CDC5 under the GAL1 promoter.

Samples were run in 7% Tris-acetate gels.

B Mms4 hyperphosphorylation by CDC5 overexpression in S phase is reduced in HU-treated cells. Western blot analysis of Mms49myc and Cdc5 from precipitated whole-

cell extracts (upper panel) and FACS data (lower panel) of cells arrested in G1 (with alpha factor) or G2/M phase (with nocodazole), or released to S phase (with or

without HU). CDC5GFP overexpression was induced for 30 min by addition of 2% galactose to cells harbouring an additional copy of GFP-tagged CDC5 under the GAL1

promoter. Note that upon CDC5 overexpression cells are partially defective in bulk replication. Samples were run in 7% Tris-acetate gels.
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Figure EV2. Phenotypic analysis of Mms4 variants deficient in (S/T)(S/T) phosphorylation sites.

A, B The mms4-8A mutation or lack of Cdc5-DDK interaction does not lead to a synthetic hypersensitivity towards MMS in the yen1D background. Spotting assay as in

Fig 4D and E.

C–E Additional mutation of 4 additional (S/T)(S/T) motifs in the background of the mms4-8A mutant (mms4-12A) leads to a reduction in the Mms4 phosphorylation

shift (C), increases the hypersensitivity to MMS in the sgs1∆ background (D) and shows a slightly but not significantly decreased activity of Mus81-Mms4 (E). (C)

Mms43FLAG pull down as in Fig 1A, but in G2/M-arrested cells in untagged, WT, mms4-12A and mms4-8A backgrounds. Asterisk marks a cross-reactive band. (D)

Spotting assay as in Fig 4D and E. (E) Resolution assay using a nHJ substrate and Mus819myc-Mms43FLAG purified from mitotically arrested WT, mms4-8A or mms4-

12A cells. Lower panel: Western blot samples of anti-myc IPs.
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Figure EV3. A defect in the phosphorylation of Mms4 (S/T)(S/T) sites

(mms4-8A) causes reduced association of Cdc5, DDK and Rtt107 with

Mus81-Mms4.

SILAC-based quantification of Mms43FLAG pull downs in WT vs. mms4-8A cells.

Plotted are the H/L ratios against peptide intensity
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Appendix(Figure(Legends:(!Figure(S1:(Mus81'Mms4! forms! a! complex! in!mitosis!with! kinases! and! scaffold! proteins,! and! is! a!target!to!phosphorylation!by!these!kinases.!!(A)(SILAC'based!quantification!of!Mms43FLAG!pulldowns! in!untagged!vs!MMS43FLAG!cells!after! G2/M! arrest! with! nocodazole.! H/L! ratios! from! two! label'switch! experiments!without! ratio! count! cut'off! are! plotted.! #,! as! the! only! protein! of! the! analysis! Dpb11!displayed!exclusively!peptides!that!were!derived!from!the!Mms43FLAG!IP!samples,!but!not!the! control! samples.! This! experiment! is! already! shown!as! Fig.! S8A! in!Gritenaite!et!al.,!2014.!!(B)!Coomassie!staining!to!show!running!behaviour!of!peptides!used!in!Fig.!1C.!Peptides!1'3! shift!down!upon! increasing!phosphorylation,!whereas!peptides!4'6!display!an!up'shift.!!(C)! Kinetic! in! vitro! kinase! assay.! Purified,! immobilized! Mus81'Mms4! is! either! mock!treated! or! treated! with! CDK! in! a! non'radioactive! priming! step,! and! incubated! with!purified!DDK!(upper!panel)!or!Cdc5!(lower!panel).!Samples!were!taken!after! indicated!time!points.!!(D)( Mus81'Mms4! in! vitro! phosphorylation! is! independent! of! DKK! and/or! CDK! pre'phosphorylation.!Purified,! immobilized!Mus81'Mms4! is! incubated! in!an! in!vitro!kinase!assay! with! purified! CDK2/cycAN170! (a! model! CDK),! DDK! or! Cdc5! (lanes! 1'4).!Additionally,!Mus81'Mms4!is!incubated!with!respective!kinases!after!a!non'radioactive!priming!step!with!DDK!(lanes!5'8)!or!CDK!and!DDK!(lanes!9'12).(!Figure(S2:(DDK!and!Cdc5!target!Mus81'Mms4!in!an!interdependent!manner.!!(A)! Formation! of! the! Mus81'Mms4! complex! depends! on! Cdc5! activity.! SILAC'based!quantification!of!Mms43FLAG!pulldowns!in!WT!vs!cdc59as1!cells!after!mitotic!arrest!with!nocodazole!and!additional!treatment!with!15!µM!CMK!for!1!h.!Plotted!are!the!H/L!ratios!of!two!label'switch!experiments.!!(B)(CDK!activity!is!required!for!Mms4!hyperphosphorylation.!Whole'cell!extracts!of!WT!and!cdc289as1!cells!arrested!in!mitosis,!titrated!with!1NM'PP1!as!indicated.!!(C)!Phosphorylation!shift!of!Mms4!in!whole'cell!extracts!of!mitotically!arrested!WT!and!mutant!cells.!!(D)( Cdc5! association! with! Mus81'Mms4! is! dependent! on! DDK! activity.! Mms43FLAG!pulldown!as!in!Fig.!1A.!Cells!were!cultivated!and!arrested!in!mitosis!at!RT.!Inhibition!of!



DDK! was! achieved! by! using! the! cdc791! allele! and! shifting! cells! to! permissive!temperature!(38!°C)!for!the!indicated!time.!!(E)! Effect! of! DDK! and! Cdc5! mutants! on! Cdc5! substrates.! Phosphorylation! of! Cdc5!substrates! Ulp2! and! Scc1! (and! as! control! Mms4)! was! tested,! indicated! by! their!phosphorylation! shift! in! 7%! Tris'Acetate! gels! in! untagged,!WT,! cdc59as1! and! cdc7∆!backgrounds.!Western! blot! analysis! of! Ulp29myc! and! Scc19myc! whole'cell! extracts! from!alpha'factor'! (G1)! or! nocodazole'arrested! (G2/M)! cells.! Cdc5! was! inhibited! by!treatment!with!15!µM!CMK!for!1!h.!!(F)! DDK! and! Cdc5! association! to! Mus81'Mms4! is! reduced! when! the! DNA! damage!checkpoint!is!triggered!by!DNA!damage!induction.!Mms43FLAG!pulldown!as!in!Fig.!1A,!but!in!G2/M'arrested!cells!that!were!untreated!or!treated!with!50!µg/ml!phleomycin.!!Figure(S3:(Summary! of! Mms4! phosphorylation! sites.! Shown! is! the! Mms4! primary! amino! acid!sequence.! Colours! indicate! phosphorylation! sites! on! endogenous! Mms4! that! were!affected!in!SILAC'based!mass!spectrometry!experiments!(Fig.!3A'B)!by!Cdc5!inhibition!(blue),!CDC7!deletion!(red)!or!in!both!backgrounds!(green).!Serine!to!alanine!exchanges!in!the!mms498A!mutant!are!boxed.!Additional!serine!to!alanine!exchanges!in!the!mms4912A!mutant!are!boxed!with!a!dashed!line.!!Figure(S4:(DDK!phosphorylation!controls!activation!of!Mus81'Mms4!resolvase!activity!in!mitosis.!!(A)! Endogenous! Mus813FLAG'Mms4! purified! from! mitotically! arrested! cells! shows!increased!activity! compared! to!non'phosphorylated! recombinant!protein!expressed! in!yeast.!Left!panel:!Western!blot!analysis! for!quantification!of!bead'bound!protein! levels!of!Mus81! (endogenous! and! recombinant)! compared! to! increasing! amounts! of! soluble!recombinant!Mus81.!Approx.!5! fmol!Mus813FLAG! 'Mms4!are!used! in!the!assay!to!cleave!500! fmol!nHJ!substrate.!Right!panel:!Resolution!assay!using!a!nicked!HJ!substrate!and!comparing!Mus813FLAG'Mms4!purified!from!mitotically!arrested!cells!with!recombinant,!dephosphorylated!Mus813FLAG'Mms4!in!similar!protein!concentration.!!(B,C)!Interaction!of!Mus81'Mms4!with!other!complex!factors!such!as!Rtt107!and!Cdc5!is!salt'labile,!but!their!absence!does!not!influence!Mus81'Mms4!activity.!!(B)!Mms43FLAG!pulldown!as!in!Fig.!1A!from!mitotically!arrested!cells,!but!proteins!were!washed!on!beads!with!either!low!salt!(150!mM!NaCl)!or!high!salt!buffer!(350!mM!NaCl).!!



(C)!Left!panel:!Resolution!assay!using!a!nHJ!substrate!and!Mus819myc'Mms43FLAG!purified!from!mitotically!arrested!cells!under!low!salt!(150!mM!NaCl)!or!high!salt!(350!mM!NaCl)!conditions.!Right!panel:!Western!blots!samples!of!anti'myc!IPs.!!(D,F)!Western!blot!analysis!of!Mus819myc!IP!samples!that!were!used!as!inputs!for!the!in!vitro!resolution!assays!of!Fig.!4A!and!C,!respectively.!!(E)( DDK! is! required! for! mitotic! activation! of! Mus81'Mms4.! Resolution! assay! using! a!replication! fork! (RF)! substrate! and! Mus819myc'Mms43FLAG! purified! from! mitotically!arrested! bob191! (DDK+)! and! bob191! cdc7Δ! strains! or! untagged! control! cells.! Lower!panel:!Western!blots!samples!of!anti'myc!IPs.!!!Figure(S5:(Dpb11! interacts!with! the!N'terminal! region! of!Mms4! and! its! binding! is! dependent! on!CDK!activity.!!(A)! Dpb11! binds! to! a!minimal! interacting! fragment! of!Mms4! comprising! the! residues!101'230.! Two'hybrid! analysis! of! GAL4'BD! fused! to!Dpb11! and!GAL4'AD! fusions!with!Mms4!or!Mms4!fragment!constructs!(left!panel).!Expression!of!constructs!was!verified!by!western!blot!analysis!(right!panel).!!(B)( CDK! activity! is! required! for! Dpb11! and! Slx4! association! with! Mus81'Mms4.!Mms43FLAG!pulldown!as!in!Fig.!1A,!but!in!G2/M'arrested!WT!and!cdc289as1!mutant!cells!treated!with!5!µM!1NM'PP1!for!1!h.!This!figure!is!from!the!same!experiment!as!Fig.!2B!and!therefore!as!control!includes!the!identical!anti'Flag!western.!!(C)(A!defect! in! the!Dpb11'Mms4! interaction! introduces!only! a!minor!defect! in!Mus81!activation.! Resolution! assay! using! a! nicked! HJ! substrate! and! Mus819myc'Mms43FLAG!purified!from!mitotically!arrested!WT!or!mms49S201A!cells.!Right!panel:!Western!blots!samples!of!anti'myc!IPs.!!Figure(S6:(The!Rtt107!scaffold!tethers!DDK!and!Cdc5!to!Mus81'Mms4.(((A)( Formation! of! the! Mus81'Mms4! complex! depends! on! Rtt107.! SILAC'based!quantification!of!Mms43FLAG!pulldowns!in!WT!vs!rtt107∆!cells.!Plotted!are!the!H/L!ratios!of!two!experiments!including!label'switch.!!(B)! Rtt107!binding! to!Cdc5!and!DDK! is!not! affected!by! the!presence!of!Mus81'Mms4.!Rtt1073FLAG!pulldown!as!in!Fig.!1A,!but!in!G2/M'arrested!WT!and!mus81∆!cells.(!Figure(S7:(Rtt107!is!required!for!efficient!Mus81'Mms4!activation!in!mitosis.!!



(A,B)! Rtt107! influences! the! phosphorylation! of! specific! Cdc5'dependent!phosphorylation! sites.! SILAC'based! MS! analysis! of! Mms4! phosphorylation! after!purification! of! endogenously! expressed! Mus81'Mms43FLAG! (A)! or! of! Mus813FLAG'Mms4His10'Strep2!expressed!from!the!pGAL1910!promoter!(B).!!(C)!Western!blot! analysis!of!Mus819myc! IP! samples! that!were!used!as! inputs! for! the! in!vitro!for!resolution!assay!of!Fig.!7A.!!(D)(RTT107!deletion!does!not!lead!to!a!further!reduction!in!Mus81!activity!in!the!cdc7∆!background.( Resolution! assay! using! a! nicked! HJ! substrate! and! Mus819myc'Mms43FLAG!purified! from!mitotically! arrested! bob191! cdc7Δ! or! bob191! cdc7Δ! rtt107∆! cells.! Lower!panel:!Western!blots!samples!of!anti'myc!IPs.(!!
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Appendix	Figure	S1	Legend	

B 
Mus81 Mus81 Cdc7 Dbf4 Cdc5 autorad Mms4 DDK Cdc5 CDK no kinase DDK Cdc5 CDK no kinase DDK Cdc5 CDK no kinase mock pre-phosph. DDK pre-phosph. 1 3 4 5 6 7 Mus81-Mms4 on beads 8 9 10 11 12 

Coomassie Mms4 
CDK+DDK pre-phosph. 

γ[32P]-ATP cold ATP 2 C D 20 Mms4 Mms4 mock pre-phosph. CDK pre-phosph. 0 0.5 5 10 15 20 DDK phosphorylation Cdc5 phosphorylation 0 0.5 5 10 15 autorad time points [min] Mus81-Mms4 on beads 
1 2 3 4 5 6 Peptide # 

Coomassie 
S221S S133S 
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Appendix	Figure	S2	Legend	
anti-FLAG anti-Cdc5 anti-Cdc5 

Mms43FLAG Cdc5 Cdc5 IP: FLAG input 

MMS4-3FLAG cdc7-1 0.5 0.5 0.5 0.5 1 1 2 2 24 38 time at temp. [h] 0.5 temp. [°C] 24 38 24 
anti-Flag Mms43FLAG 

C 
E *	IP: FLAG input MMS4-3FLAG 50 µg/ml phleomycin Mms43FLAG anti-FLAG Cdc5 anti-Cdc5 anti-Cdc7 Cdc7 

F 
anti-myc Ulp29myc G1 G2/M Scc19myc anti-FLAG Mms43FLAG 

WT rtt107∆ cdc28-as1 cdc5-as1 cdc7∆ anti-FLAG Mms43FLAG D 
anti-FLAG Mms43FLAG WT 0 µM 0.5 µM 2 µM 5 µM 10 µM cdc28-as1 1NM-PP1, 1 h 
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Appendix	Figure	S3	Legend	
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Appendix	Figure	S4	Legend	

C 
D E F 

’     end. Mus81 rec. Mus81 A min 0 12 24 48 0 12 24 48 rec. Mus81 B 0 12 24 48 0 31 34 61 0 2 4 4 0 2 4 7 % nHJ resolution 150 mM NaCl 350 mM NaCl min 0 12 24 48 0 12 24 48 0 7 10 20 0 10 13 23 % nHJ resolution 
min     0’    12’    24’   48’    0’    12’   24’  48’     0’    12’    24’   48’     untagged MUS81-9myc min 0 12 24 48 0 12 24 48 MUS81-9myc cdc7∆ 0 12 24 48 0 0 0 0 0 17 30 42 0 3 6 10 % RF resolution 

100   75 150 mM NaCl Mus819myc 100 75 350 mM NaCl 150 mM NaCl 350 mM NaCl lysate IP: myc anti-myc 
100   75 IP: FLAG end. Mus81 Mus813FLAG 100 75 rec. Mus81 rec. Mus81 soluble 0.48 1.2 2.4 [ng] A B anti-FLAG 

100 lysate IP: myc untagged WT cdc7∆ Mus819myc 75 dbf4∆ untagged WT cdc7∆ dbf4∆ 100   75 anti-myc lysate IP: myc untagged MMS4 untagged MMS4 Mus819myc 100 75 mms4-8A mms4-8A anti-myc 100 lysate                 IP: α-myc 

Mus81-myc9 

lysate IP: myc untagged WT untagged WT Mus819myc 100 75 cdc7∆ cdc7∆ anti-myc 

Mms43FLAG IP: FLAG input anti-FLAG Cdc5 anti-Cdc5 Rtt1079myc * anti-myc MMS4-3FLAG 



A 
B 

Appendix	Figure	S5	Legend	

Mms4 FL Mms4 1-230 Mms4 1-212 Mms4 1-195 Mms4 101-230 Mms4 131-230 Mms4 160-230 Mms4 176-230 
GAL4-BD  

GAL4-BD Dpb11  -HIS control 
GAL4-AD Mms4 FL Mms4 1-230 Mms4 1-212 Mms4 1-195 Mms4 101-230 Mms4 131-230 Mms4 160-230 Mms4 176-230 anti-BD anti-AD 

BD-Dpb11 GAl4-BD Dpb11 GAl4-BD Ø GAl4-AD Mms4 FL Mms4 1-230 Mms4 1-212 Mms4 1-195 Mms4 101-230 Mms4 131-230 Mms4 160-230 Mms4 176-230 
AD-Mms4 FL AD-Mms4 1-230 AD-Mms4 1-212 AD-Mms4 1-195 AD-Mms4 101-230 AD-Mms4 131-230 AD-Mms4 160-230 AD-Mms4 176-230 

Mms4 FL Mms4 1-230 Mms4 1-212 Mms4 1-195 Mms4 101-230 Mms4 131-230 Mms4 160-230 Mms4 176-230 
C Mms43FLAG IP: FLAG input MMS4-3FLAG cdc28-as1 + 5 µM 1NM-PP1 anti-FLAG anti-Dbp11, anti-Slx4 Slx4  Dpb11 * *      MUS81-9myc MMS4 WT MUS81-9myc mms4-S201A min 0 12 24 48 0 12 24 48 0 24 25 39 0 10 22 29 % nHJ resolution 100   75 lysate                  IP: α-myc 

Mus81-myc9 

lysate IP: myc WT S201A WT S201A Mus819myc 100 75 anti-myc 
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Appendix	Figure	S6	Legend	

B Rtt1073FLAG anti-FLAG Cdc5 anti-Cdc5 anti-Dpb11, anti-Slx4 Cdc7 anti-Cdc7 Slx4 Dpb11 
IP: FLAG input RTT107-3FLAG mus81∆ MMS4-9myc 

Mms49ymc anti-myc 



A B 

Appendix	Figure	S7	Legend	
100   75 Mus81-myc9 

lysate IP: myc cdc7∆ cdc7∆ rtt107∆ cdc7∆ cdc7∆ rtt107∆ Mus819myc 75 100 
cdc7∆ cdc7∆ rtt107∆ min 0 12 24 48 0 12 24 48 0 8 9 15 0 6 13 13 % nHJ resolution 

u
n
ta
g
g
e
d

lysate IP: myc untagged WT untagged WT Mus819myc 100 75 rtt107∆ rtt107∆ C D 
anti-myc anti-myc 



Appendix	Table	S1.	Mms4	phosphorylation	sites	and	their	regulation	by	DDK	or	Cdc5	as	detected	by	SILAC-based	quantitative	mass	spectrometry	(Fig.	3)	Mus81-Mms4	endogenous	 Mus81-Mms4	overexpressed	2	48	49	55	56	61	63	74	86	88*	94**	96	99	103	104	124**	128**	133**	134**	141**	156**	184*	187	201	209**	221*	222*	240**	241**	268**	286	291	292	294	296**	297**	301	302	314**	330**	349	366**	396**	532	

2	48	49	55	56	61	63	74	78**	86	88**	94	95	96	99	103	104	124	128	133	134	141	156	187	201	222*	264	268	274*	280*	286	291	292	294	297	301	302	314	330**	349	366	396**	532	542		*	not	measured	in	cdc5-as1	**	not	measured	in	cdc7∆	phosphorylation	sites	affected	in	cdc5-as1	phosphorylation	sites	affected	in	cdc7∆	phosphorylation	sites	affected	in	cdc5-as1	and	cdc7∆	backgrounds	



Appendix	Supplementary	Materials	and	Methods	 Yeast	strains	and	construction	All	yeast	strains	are	based	on	W303	(Thomas	&	Rothstein,	1989).	Genotypes	are	listed	below.	All	biochemical	experiments	were	performed	in	a	W303-1A	pep4Δ	background.	The	 genetic	 experiments	 in	 Fig.	 4D-E,	 5C,	 and	 EV2A,B,D	 were	 performed	 in	 a	 W303	RAD5+	 background	 to	 exclude	 any	 effect	 from	 a	 partial	 defect	 of	 the	 rad5-535	 allele.	Two-hybrid	analyses	were	performed	in	the	strain	PJ69-7A	(James	et	al.,	1996).	S.	 cerevisiae	 strains	were	 prepared	 by	 genetic	 crosses	 and	 transformation	 techniques.	Deletion	 of	 particular	 genes	 and	 endogenous	 protein	 tagging	 were	 performed	 as	described	 (Knop	 et	 al.,	 1999).	 Correct	 integrations	 were	 checked	 by	 genotyping	 PCR.	Denaturing	 cell	 extracts	 were	 prepared	 by	 alkaline	 lysis	 and	 TCA	 precipitation.	 The	mms4	 alleles	were	 generated	using	 site-directed	mutagenesis	 and	 integrated	 as	 linear	plasmids	at	the	TRP1	locus.			Appendix	Table	S2.	Yeast	strains	used	in	this	study	Strain	 Full	genotype	 Relevant	genotype	 Source	MGBY3294	 MATa	ade2-1	his3-11	leu2-3,112	trp1Δ2	can1-100	pep4::KanMX	bar1::hph-NT1	ura3-52::GAL1,10p-FLAG3-MUS81/GST-His10-Strep2-MMS4::URA3		 pGAL-FLAG3-MUS81-GST-His10-Strep2-MMS4	 This	study	(Blanco	lab)	YBP388	 MATa	ade2-1	ura3-1	his3-11,15	trp1-1	can1-100	leu2-3,112::pep4::LEU2	 pep4	 Klein	lab		YDG208	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	 	 This	study	YDG291	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	yen1::hph-NT1	 yen1	 Gritenaite	et	al.,	2014	YDG329	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	sgs1::hph-NT1	 sgs1	 Gritenaite	et	al.,	2014	YDG355	 MATa	RAD5+	ade2-1	ura3-1	his3-11,15	trp1-1	can1-100	mms4::hph-NT1	leu2-3,112::mms4-SS184,201AA::LEU2	 mms4-SS184,201AA	 Gritenaite	et	al.,	2014	YDG356	 MATa	RAD5+	ade2-1	ura3-1	trp1-1	can1-100	mms4::hph-NT1	leu2-3,112::mms4-SS184,201AA::LEU2	his3-11,15::sgs1::HIS3Mx4	 mms4-SS184,201AA	sgs1	 Gritenaite	et	al.,	2014	YDG376	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	yen1::hph-NT1	sgs1::nat-NT2	 yen1	sgs1	 Gritenaite	et	al.,	2014	 



YJB82	 Mata/Matalpha	ade2-1/ade2-1	ura3-1/ura3-1	leu2-3,112/leu2-3,112	his3-11,15/his3-11,15	trp1-1/trp1-1	can1-100/can1-100	ade2-n/ade2-I	LYS2/lys2::Gal-ISceI	his3::NATMX/his3::HPHMX4	met22::kIURA3/MET22	 diploid	 This	study	YJB84	 Mata/Matalpha	ade2-1/ade2-1	ura3-1/ura3-1	leu2-3,112/leu2-3,112	his3-11,15/his3-11,15	trp1-1/trp1-1	can1-100/can1-100	ade2-n/ade2-I	LYS2/lys2::Gal-ISceI	his3::NATMX/his3::HPHMX4	met22::kIURA3/MET22	rtt107::KanMX/rtt107::KanMX	 diploid	rtt107	 This	study	YJB86	 Mata/Matalpha	ade2-1/ade2-1	ura3-1/ura3-1	leu2-3,112/leu2-3,112	his3-11,15/his3-11,15	trp1-1/trp1-1	can1-100/can1-100	ade2-n/ade2-I	LYS2/lys2::Gal-ISceI	his3::NATMX/his3::HPHMX4	met22::::kIURA3/MET22	mms4::KanMX/mms4::KanMX	trp1-1:pRS304-Mms4-SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA:TRP1/trp1-1:pRS304-Mms4-SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA:TRP1	
diploid	mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA	 This	study	

YLP015	 MATa	ade2-1	ura3-1	his3-11,15	can1-100	trp1-1::bar1::TRP1	leu2-3,112::pep4::LEU2	lys1::nat-NT2	 lys1	 Gritenaite	et	al.,	2014	YLP063	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	cdc5-as1	his3-11,15::pep4::HIS3Mx4	MMS4-3FLAG::hph-NT1		 MMS4-3FLAG	cdc5-as1	 Gritenaite	et	al.,	2014	YLP065	 MATa	ade2-1	ura3-1	his3-11,15	can1-100	trp1-1::bar1::TRP1	leu2-3,112::pep4::LEU2	lys1::nat-NT2	MMS4-3FLAG::hph-NT1	 lys1	MMS4-3FLAG	 This	study	YLP070	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	his3-11,15::pep4::HIS3Mx4	lys1::nat-NT2	mms4::KanMx	trp1-1::mms4-S184A::TRP1	MMS4-3FLAG::hph-NT1	 lys1	mms4-S184A-3FLAG	 This	study	YLP074	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	his3-11,15::pep4::HIS3Mx4	lys1::nat-NT2	mms4::KanMx	trp1-1::mms4-S201A::TRP1	MMS4-3FLAG::hph-NT1	 lys1	mms4-S201A-3FLAG	 This	study	YLP078	 MATa	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	his3-11,15::pep4::HIS3Mx4	MMS4-3FLAG::hph-NT1	slx4::KanMx	 MMS4-3FLAG	slx4	 Gritenaite	et	al.,	2014	



YLP092	 MATa	ade2-1	ura3-1	his3-11,15	trp1-1	can1-100	leu2-3,112::pep4::LEU2	RTT107-9myc::hph-NT1	 RTT107-9myc	 This	study	YLP100	 MATa	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	 bob1-1	 This	study	YLP111	 MATa	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	MMS4-3FLAG::KanMx4	 bob1-1	MMS4-3FLAG	 This	study	YLP113	 MATa	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	cdc7::nat-NT2	MMS4-3FLAG::KanMx4	 bob1-1	cdc7	MMS4-3FLAG	 This	study	YLP121	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	cdc5-as1	his3-11,15::pep4::HIS3Mx4	lys1::nat-NT2	MMS4-3FLAG::hph-NT1		 lys1	MMS4-3FLAG	cdc5-as1	 This	study	YLP126	 MATa	ade2-1	leu2-3,112	trp1-1	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	cdc7::nat-NT2	MMS4-3FLAG::KanMx4	ura3-1::lys1::URA3	 lys1	bob1-1	cdc7	MMS4-3FLAG	 This	study	YLP128	 MATa	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	his3-11,15::pep4::HIS3Mx4	cdc7-1		 cdc7-1	 This	study	YLP132	 MATa	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	his3-11,15::pep4::HIS3Mx4	cdc7-1	MMS4-3FLAG::KanMx	 cdc7-1	MMS4-3FLAG	 This	study	YLP156	 MATa	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	his3-11,15::pep4::HIS3Mx4	MMS4-3FLAG::hph-NT1	RTT107-9myc::nat-NT2	 MMS4-3FLAG	RTT107-9myc	 This	study	YLP164	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3Mx4	rtt107::KanMx	trp1-1::lys1::TRP1	 lys1	MMS4-3FLAG	rtt107	 This	study	YLP277	 MATa	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3Mx4	SCC1-9myc	 MMS4-3FLAG	SCC1-9myc	 This	study	YLP279	 MATa	RAD5+	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	cdc5-as1	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3	SCC1-9myc::KanMx	 MMS4-3FLAG	SCC1-9myc	cdc5-as1	 This	study	YLP287	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	his3-11,15::pep4::HIS3Mx4	mms4::KanMx	trp1-1::mms4-S201A::TRP1	MMS4-3FLAG::hph-NT1	RTT107-9myc::nat-NT2	 mms4-S201A-3FLAG	RTT107-9myc	 This	study	  



YLP339	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	can1-100	mms4::hph-NT1	trp1-1::mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	 mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA	 This	study	YLP341	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	can1-100	mms4::hph-NT1	trp1-1::mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	sgs1::nat-NT2	 mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA	sgs1	 This	study	YLP350	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	can1-100	mms4::hph-NT1	trp1-1::mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	yen1::KanMx	 mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA	yen1	 This	study	YLP351	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	can1-100	mms4::hph-NT1	trp1-1::mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	sgs1::nat-NT2	yen1::KanMx	 mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA	sgs1	yen1	 This	study	YLP344	 MATa	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3Mx4	dbf4-∆N66::KanMx	 MMS4-3FLAG	dbf4-∆N66	 This	study	YLP345	 MATa	ade2-1	ura3-1	leu2-3,112	trp1-1	can1-100	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3Mx4	dbf4-∆N109::KanMx	 MMS4-3FLAG	dbf4-∆N109	 This	study	YLP356	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3	trp1-1::mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	MMS4-3FLAG::hph-NT1	 mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA-3FLAG	 This	study	YLP360	 MATa	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	MMS4-3FLAG::hph-NT1	cdc28-as1	 MMS4-3FLAG	cdc28-as1	 This	study	YLP367	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3Mx4	trp1-1::	MMS4::TRP1	MMS4-3FLAG::hph-NT1	MUS81-9myc::nat-NT2	 MMS4-3FLAG	MUS81-9myc	 This	study	  



YLP368	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3Mx4	trp1-1::mms4-SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	MMS4-3FLAG::hph-NT1	MUS81-9myc::nat-NT2	 mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA-3FLAG	MUS81-9myc	 This	study	YLP369	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	dbf4-∆N66::KanMx	 dbf4-∆N66	 This	study	YLP370	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	dbf4-∆N109::KanMx	 dbf4-∆N109	 This	study	YLP371	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	dbf4-∆N66::KanMx	sgs1::hph-NT1	 dbf4-∆N66	sgs1	 This	study	YLP372	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	dbf4-∆N109::KanMx	sgs1::hph-NT1	 dbf4-∆N109	sgs1	 This	study	YLP374	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	trp1-1	can1-100	dbf4-∆N66::KanMx	yen1::hph-NT1	 dbf4-∆N66	yen1	 This	study	YLP375	 MATa	RAD5+	ade2-1	ura3-1	his3-11,15	trp1-1	leu2-3,112	can1-100	dbf4-∆N109::KanMx	yen1::hph-NT1	 dbf4-∆N109	yen1	 This	study	YLP438	 MATa	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3	ULP2-9myc::KanMx	 MMS4-3FLAG	ULP2-9myc	 This	study	YLP439	 MATa	RAD5+	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	cdc5-as1	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3	ULP2-9myc::KanMx	 MMS4-3FLAG	ULP2-9myc	cdc5-as1	 This	study	YLP442	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3	trp1-1::mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA::TRP1	MMS4-3FLAG::hph-NT1	lys1::nat-NT2	 lys1	mms4-	SSSSSSSS48,55,103,133,221,291,301,428AAAAAAAA-3FLAG	 This	study	YLP444	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3	trp1-1::mms4-	S201A::TRP1	MMS4-3FLAG::hph-NT1	MUS81-9myc::nat-NT2	 mms4-S201A-3FLAG	MUS81-9myc	 This	study	YLP445	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	trp1-1::MUS81-9myc::TRP1	his3-11,15::bob1-1::HIS3	pep4::hph-NT1	MMS4-3FLAG::KanMx	cdc7::nat-NT2	rtt107::kIURA	 bob1-1	MUS81-9myc	cdc7	rtt107	 This	study	YLP458	 MATa	ade2-1	his3-11,15	can1-100	trp1-1::bar1::TRP1	leu2-3,112::pep4::LEU2	lys1::nat-NT2	ura3-1::pRS306-pGAL1,10-FLAG3-MUS81-His-Strep-MMS4::URA3	 lys1	pGAL-FLAG3-MUS81-His10-Strep2-MMS4	 This	study	 



YLP459	 MATa	ade2-1	trp1-1	leu2-3,112	can1-100	his3-11,15::bob1-1::HIS3	pep4::hph-NT1	lys1::nat-NT2	ura3-1::pRS306-pGAL1,10-FLAG3-MUS81-His-Strep-MMS4::URA3	 lys1	pGAL-FLAG3-MUS81-His10-Strep2-MMS4	 This	study	YLP461	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3	trp1-1::mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA::TRP1	MMS4-3FLAG::hph-NT1	 mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA-3FLAG	 This	study	YLP462	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	can1-100	mms4::hph-NT1	trp1-1::mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA::TRP1	 mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA	 This	study	YLP463	 MATa	RAD5+	ade2-1	ura3-1	leu2-3,112	his3-11,15	can1-100	mms4::hph-NT1	trp1-1::mms4-	SSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAA::TRP1	sgs1::nat-NT2	 mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA	sgs1	 This	study	YLP465	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	cdc7::nat-NT2	MMS4-3FLAG::KanMx4	trp1-1::ULP2-9myc::TRP1	 bob1-1	cdc7	MMS4-3FLAG	ULP2-9myc	 This	study	YLP466	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	cdc7::nat-NT2	MMS4-3FLAG::KanMx4	trp1-1::SCC1-9myc::TRP1	 bob1-1	cdc7	MMS4-3FLAG	SCC1-9myc	 This	study	YLP468	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	mms4::KanMx	his3-11,15::pep4::HIS3	trp1-1::mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA::TRP1	MMS4-3FLAG::hph-NT1	MUS81-9myc::nat-NT2	 mms4-	SSSSSSSSSSSS48,55,94,103,133,221,274,291,301,428,545,618AAAAAAAAAAAA-3FLAG	MUS81-9myc	 This	study	YLP469	 MATa	RAD5+	ade2-1	leu2-3,112	trp1-1	can1-100	cdc5-as1	his3-11,15::pep4::HIS3Mx4	lys1::nat-NT2	ura3-1::GAL1,10p-FLAG3-MUS81/His10-Strep2-MMS4::URA3	 lys1	cdc5-as1	pGAL-FLAG3-MUS81-His10-Strep2-MMS4	 This	study	YLP470	 MATa	ade2-1	leu2-3,112	trp1-1	can1-100	his3-11,15::bob1-1::HIS3Mx4	pep4::hph-NT1	cdc7::KanMx	lys1::nat-NT2	ura3-1::GAL1,10p-FLAG3-MUS81/His10-Strep2-MMS4::URA3	 lys1	bob1-1	cdc7	pGAL-FLAG3-MUS81-His10-Strep2-MMS4	 This	study	



YLP471	 MATa	ade2-1	his3-11,15	trp1-1	can1-100	leu2-3,112::pep4::LEU2	rtt107::KanMx	lys1::nat-NT2	ura3-1::GAL1,10p-FLAG3-MUS81/His10-Strep2-MMS4::URA3	 lys1	rtt107	pGAL-FLAG3-MUS81-His10-Strep2-MMS4	 This	study	YML1601	 MATa	his3∆1	leu2∆0	met15∆0	ura3∆0	ADE2	MMS4-9myc::KanMx	trp1-1::pGAL1-CDC5-GFP::TRP1	 MMS4-9myc	pGAL-CDC5-GFP	 Matos	et	al.,	2013	YML3304	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	trp1-1::MUS81-9myc::TRP1	his3-11,15::bob1-1::HIS3	pep4::hph-NT1	MMS4-3FLAG::KanMx	dbf4::nat-NT2		 bob1-1	MUS81-9myc	dbf4	 This	study	(Matos	lab)		YML3306	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	trp1-1::MUS81-9myc::TRP1	his3-11,15::bob1-1::HIS3	pep4::hph-NT1	MMS4-3FLAG::KanMx	cdc7::nat-NT2	 bob1-1	MUS81-9myc	cdc7	 This	study	(Matos	lab)		YML3447	 MATa	ade2-1	ura3-1	leu2-3,112	can1-100	trp1-1::MUS81-9myc::TRP1	his3-11,15::bob1-1::HIS3	pep4::hph-NT1	MMS4-3FLAG::nat-NT2	rtt107::KanMx	 bob1-1	MUS81-9myc	rtt107	 This	study	(Matos	lab)		YSS3	 MATa	ade2-1	ura3-1	trp1-1	leu2-3,112	can1-100	MMS4-3FLAG::hph-NT1	his3-11,15::pep4::HIS3Mx4	 MMS4-3FLAG	 Gritenaite	et	al.,	2014	YFZ020	 MATa	ade2-1	ura3-1	trp1-1	can1-100	his3-11,15::pRS303-CDC5-3FLAG-pGAL1-GAL4::HIS3Mx4	leu2-3,112::pep4::LEU2	 pGAL-CDC5-3FLAG	 This	study	YFZ021	 MATa	ade2-1	ura3-1	trp1-1	can1-100	his3-11,15::pRS303-DBF4-CDC7-pGAL1-GAL4::HIS3Mx4	pep4::hph-NT1	DBF4-3FLAG::KanMx	leu2-3,112::CDC7-9myc::LEU2	 pGAL-DBF4-3FLAG-CDC7-9myc	 This	study		Antibodies	Proteins	 were	 detected	 using	 specific	 antibodies:	 rabbit-anti-Dpb11	 (BPF19,	 Pfander	lab),	rabbit-anti-Slx4	(2057,	Pfander	 lab),	goat-anti-Cdc5	(sc-6733,	Santa	Cruz),	rabbit-anti-Cdc7	(Diffley	lab),	rabbit-anti-Clb2	(sc-9071,	Santa	Cruz),	goat-anti-Dbf4	(sc-5705;	Santa	 Cruz),	 rabbit-anti-FLAG	 (F7425,	 Sigma),	 mouse-anti-myc	 (05-724,	 clone	 4A6;	Millipore),	 mouse-anti-Gal4-AD	 (TA-C10;	 Santa	 Cruz),	 mouse-anti-Gal4-BD	 (RK5C1;	Santa	Cruz).		FACS	analysis	1x107	-	2x107	cells	were	harvested	by	centrifugation	and	resuspended	in	70%	ethanol	+	50	mM	Tris	pH	7.8.	After	centrifugation	cells	were	washed	with	1	ml	50	mM	Tris	pH	7.8	(Tris	buffer)	followed	by	resuspending	in	520	µl	RNase	solution	(500	µl	50	mM	Tris	pH	7.8	+	20	µl	RNase	A	(10	mg/ml	in	10	mM	Tris	pH	7.5,	10	mM	MgCl2)	and	incubation	for	4	



h	 at	 37	 °C.	 Next,	 cells	 were	 treated	 with	 proteinase	 K	 (200	 µl	 Tris	 buffer	 +	 20	 µl	proteinase	 K	 (10	 mg/ml	 in	 50%	 glycerol,	 10	 mM	 Tris	 pH	 7.5,	 25	 mM	 CaCl2)	 and	incubated	 for	 30'	 at	 50	°C.	 After	 centrifugation	 cells	were	 resuspended	 in	 500	 µl	 Tris	buffer.	 Before	 measuring	 the	 DNA	 content,	 samples	 were	 sonified	 (5'';	 50%	 CYCLE;	minimum	POWER)	 and	 stained	 by	 SYTOX	 solution	 (999	 µl	 Tris	 buffer	 +	 1	 µl	 SYTOX).	Measurement	was	performed	using	FL1	channel	520	for	SYTOX-DNA	by	BD	FACSCalibur	system.		Acrylamide	gel	electrophoresis	and	western	blot	analysis	Protein	samples	were	separated	by	standard	SDS-polyacrylamide	gel	electrophoresis	in	4-12%	Novex	NuPAGE	Bis-Tris	precast	gels	(ThermoFisher)	with	MOPS	buffer	(50	mM	MOPS,	 50	mM	 Tris-base,	 1.025	mM	 EDTA,	 0.1%	 SDS,	 adjusted	 to	 pH	 7.7).	 To	 resolve	phosphorylation	 shifts	 of	 Mms4	 in	 Fig.	 EV1,	 and	 of	 Ulp29myc	 or	 Scc19myc	 (Fig.	 S2E),	protein	 samples	 were	 separated	 in	 7%	 Novex	 NuPAGE	 Tris-Acetate	 precast	 gel	(ThermoFisher)	with	Tris-Acetate	buffer	 (50	mM	Tris-base,	50	mM	Tricine,	0.1%	SDS,	adjusted	to	pH	8.24).	After	 electrophoresis,	 proteins	 were	 transferred	 to	 a	 nitrocellulose	 membrane	(Amersham	 Protran	 Premium	 0.45	 µM	 NC)	 using	 a	 tank	 blotting	 system.	Membranes	were	incubated	with	primary	antibodies	at	4	°C	overnight.	Incubation	with	appropriate	secondary	antibodies	coupled	to	horseradish	peroxidase	(HRP)	was	performed	at	room	temperature	for	3	h.	Membranes	were	washed	five	times	for	5	min	with	western	wash	buffer	(50	mM	Tris	pH	7.5,	137	mM	NaCl,	3	mM	KCl,	0.2	%	NP-40)	and	incubated	with	Pierce	ECL	western	blotting	substrate	 (ThermoFisher)	according	 to	 the	 instructions	of	the	 manufacturer.	 Chemiluminescence	 was	 detected	 with	 a	 tabletop	 film	 processor	(OPTMAX,	Protec).		Yeast	Two-Hybrid	analysis	The	plasmids	used	for	yeast	two-hybrid	analysis	 in	this	study	were	based	on	pGAD-C1	and	 pGBD-C1.	 To	 assay	 for	 an	 interaction	 between	 the	 proteins,	 respective	 plasmids	were	 transformed	 into	 competent	PJ69-7A	cells.	Transformants	were	 spotted	 in	 serial	dilution	 (1:5)	 either	 on	 SC-Leu-Trp	 plates	 (control)	 or	 on	 SC-Leu-Trp-His	 plates	(selection)	and	incubated	at	30	°C	for	2-3	days.	Cells	from	the	control	plates	were	then	grown	 in	 SC-Leu-Trp	 to	 log-phase	 to	 take	 samples	 for	 subsequent	 analysis	 of	 the	expression	of	the	AD-/BD-fusion	proteins	by	western	blot.		



Preparation	of	whole-cell	extracts	(alkaline	lysis/TCA)	Cell	 pellets	 were	 re-suspended	 in	 1	ml	 pre-cooled	 H2O	 and	 incubated	 with	 150	 µl	 of	freshly	prepared	lysis	solution	(1.85	M	NaOH,	7.5%	beta-mercaptoethanol)	at	4	°C	for	15	min.	 Then,	 the	 lysate	 was	 admixed	 with	 150	 µl	 55%	 trichloroacetic	 acid	 (TCA)	 and	incubated	 at	 4	 °C	 for	 10	 min.	 After	 centrifugation	 and	 careful	 aspiration	 of	 the	supernatant,	the	precipitated	proteins	were	re-suspended	in	50	µl	HU-buffer	(8	M	urea,	5%	 SDS,	 200	 mM	 Tris	 pH	 6.8,	 1.5%	 dithiothreitol,	 traces	 of	 bromophenol	 blue)	 and	incubated	at	65	°C	for	10	min.		Synchronization	of	cells		Logarithmic	growing	cells	were	synchronized	in	mitosis	by	nocodazole	(5	μg/ml),	 in	S-phase	 by	 HU	 (200	 mM),	 or	 in	 G1-phase	 by	 α-factor	 (5-10	μg/ml).	 Release	 from	 G1	synchronization	into	S-phase	was	performed	by	washing	twice	in	pre-warmed	YPD,	and	suspending	cells	in	pre-warmed	YPD	with	nocodazole,	with	HU	or	without	chemical.		Drug	treatment	DNA	 damage	 in	 liquid	 cultures	 was	 induced	 by	 addition	 of	 phleomycin	 to	 a	 final	concentration	of	50	μg/ml.		For	solid	media,	concentrations	of	methyl	methanesulfonate	(MMS)	were	as	indicated	in	the	figures.	Cells	from	stationary	grown	ON	cultures	were	spotted	in	serial	dilution	(1:5)	and	incubated	at	30	°C	for	2-3	days.		Interaction	assays		After	cell	growth	under	the	indicated	conditions,	yeast	extracts	were	obtained	by	freezer	mill	lysis	(Spex	Sample	Prep)	in	lysis	buffer	(100	mM	Hepes	pH	7.6,	200	mM	KOAc,	0.1%	NP-40,	 10%	 glycerol,	 2	 mM	 b-ME,	 100	 mM	 ocadaic	 acid,	 10	 mM	 NaF,	 20	 mM	 b-glycerophosphate,	400	µM	PMSF,	4	µM	aprotinin,	4	mM	benzamidin,	400	µM	leupeptin,	300	µM	pepstatin	A).	Co-IP	was	performed	for	2	hours	with	head-over-tail	rotation	at	4	°C	using	anti-FLAG	agarose	resin	(Sigma).	Non-specific	background	was	removed	by	six	washes	and	bound	proteins	were	eluted	by	incubation	with	0.5	mg/ml	3X	FLAG-peptide	(Sigma).	The	TCA-precipitated	 eluates	were	 resolved	on	4-12%	NuPAGE	gradient	 gels	(Invitrogen),	and	analyzed	by	standard	Western	blotting	techniques.		SILAC-based	quantitative	mass-spectrometry	For	Co-IP	experiments	followed	by	mass	spectrometry	analysis,	cells	deficient	in	lysine	biosynthesis	were	grown	in	synthetic	complete	(SC)	medium	supplemented	with	normal	



lysine	(“light”	medium)	or	heavy-isotope-labeled	lysine	(Lys6	or	Lys8;	“heavy”	medium)	from	Cambridge	Isotope	Laboratories	and	arrested	in	G2/M	phase	with	nocodazole.	 In	SILAC	 experiments	 with	 high-copy	 expression	 of	 MUS81-MMS4,	 overexpression	 was	induced	by	addition	of	2%	galactose	for	2	h	after	nocodazole	arrest.	Lysates	 were	 prepared	 by	 harvesting	 cells	 in	 equal	 amounts	 after	 growth	 under	 the	indicated	 conditions.	 After	 co-IP,	 eluted	 proteins	 from	 light	 and	 heavy	 cultures	 were	pooled,	TCA	precipitated	and	separated	on	a	4-12%	NuPAGE	Bis-Tris	gel	 (Invitrogen).	The	 gel	was	 stained	with	 GelCode	 Blue	 (Thermo	 Scientific).	 The	 gel	 lane	was	 excided	into	 ten	 slices	 and	 peptides	were	 analyzed	 by	 LC-MS/MS	 after	 in-gel	 Lys-C	 digestion.	Samples	 were	 measured	 on	 an	 LTQ-Orbitrap	 and	 analyzed	 using	 MaxQuant	 (Cox	 &	Mann,	2008).		For	 analysis	 of	 proteins	 (Fig.	 S1A,	 2E,	 S2A,	 EV3A,	 6D,	 S6A),	 log2	 values	 of	 H/L	 ratios	from	two	label-switch	experiments	without	ratio	count	cut-off	were	plotted	against	each	other.		For	analysis	of	phosphorylation	sites	 from	endogenous	protein	 levels	 (Fig.	3A-B,	S7A),	H/L	 ratios	 for	 Mms4	 peptides	 were	 calculated	 from	 the	 corresponding	 H	 and	 L	intensities	of	MS	evidences	and	plotted	in	their	 log2	values	against	the	 log10	values	of	the	 peptide’s	 overall	 intensity.	 Evidences	 of	 non-phosphorylated	 Mms4	 peptides	 are	shown	 in	 grey,	 evidences	 of	 phosphorylated	 peptides	 are	 shown	 in	 black.	Phosphorylated	peptides	were	sorted	into	categories	according	to	their	phosphorylation	status.	Putative	DDK	target	sites	were	differentiated	into	the	categories	pSpS	(red),	pSS	(orange)	or	SpS	(yellow),	in	which	the	respective	residues	of	the	(S/T)(S/T)	motif	were	phosphorylated	 (detected	 phosphorylation	 probability	 >0.7).	 Phosphorylated	 peptides	matching	 the	 Cdc5	 consensus	 site	 are	 coloured	 in	 blue.	 Numbers	 indicate	 the	phosphorylated	 residue	 in	 the	 depicted	 peptide.	 An	 asterisk	marks	 peptide	 evidences	that	 contained	measured	 intensity	values	exclusively	 in	 the	H	or	L	 sample.	Their	 ratio	value	was	set	to	a	fixed	value.	For	analysis	of	phosphorylation	sites	from	overexpressed	MUS81-MMS4	(Fig.	3C-D,	S7B),	log2	values	of	H/L	ratios	of	Mms4	peptides	were	plotted	against	the	log10	values	of	the	peptide’s	 intensity.	 Depicted	 are	 phosphorylated	 peptides	 only.	 Peptides	 were	 sorted	into	categories	according	to	their	phosphorylation	status.	Putative	DDK	target	sites	were	differentiated	into	the	categories	pSpS	(red),	pSS	(orange)	or	SpS	(yellow),	in	which	the	respective	 residues	 of	 the	 (S/T)(S/T)	 motif	 were	 phosphorylated	 (detected	phosphorylation	 probability	 >0.7).	 Phosphorylated	 peptides	 matching	 the	 Cdc5	consensus	 site	 are	 coloured	 in	 blue.	 All	 other	 phosphorylated	 peptides	 are	marked	 in	grey.	Bars	depict	the	mean	of	the	ratios	of	the	respective	category.	



Protein	purification	CDK	was	 expressed	 in	E.	 coli	 BL21	 pRIL	 cells	 (Agilent).	Mus81-Mms4,	 DDK	 and	 Cdc5	were	 overexpressed	 in	 S.	 cerevisiae	 from	 a	 galactose-inducible	 GAL1-10	 promoter.	 All	purification	steps	were	performed	on	ice	or	at	4	°C.		Purification	of	Mus81-Mms4	from	S.	cerevisiae	FLAG3MUS81	 and	 GST-HIS10-STREP2MMS4	 were	 cloned	 under	 the	 control	 of	 the	 GAL1,10	bidirectional	 promoter	 in	 a	 pRS306	 derivative	 plasmid.	 The	 resulting	 vector	 was	linearized	with	StuI	and	integrated	at	the	ura3-1	locus	of	a	W303	pep4∆	strain.		The	resulting	MGBY3294	strain	was	grown	in	YP+2%	raffinose	to	mid-log	phase	at	25	°C	and	protein	expression	was	induced	by	addition	of	2%	galactose.	Cells	(10	liters	at	~2-4x107	 cells/ml)	were	 harvested,	washed	 and	 resuspended	 in	 a	 small	 volume	 of	 A500	buffer	 (40	mM	Tris-HCl	pH	7.5,	500	mM	NaCl,	20%	glycerol,	0.1%	NP-40,	1	mM	DTT)	containing	phosphatase	and	protease	inhibitors	and	mechanically	disrupted.	The	frozen	lysate	 was	 resuspended	 in	 2	 volumes	 of	 A500,	 cleared	 by	 ultracentrifugation	 and	incubated	 with	 anti-FLAG	 M2	 agarose	 beads	 (Sigma)	 for	 1	 h	 at	 4	 °C.	 After	 extensive	washing	of	 the	beads	 in	A500,	Mus81-Mms4	was	dephosphorylated	by	treatment	with	10,000	 units	 of	 lambda	 phosphatase	 (New	 England	 Biolabs)	 for	 30	 min	 at	 room	temperature.	Beads	were	washed	in	A500	buffer	and	Mus81-Mms4	was	then	eluted	with	3	volumes	of	A500	supplemented	with	0.5	mg/ml	3X	FLAG-peptide	(Sigma).	The	eluate	was	then	adjusted	to	5	mM	imidazole	and	proteins	were	loaded	onto	a	Ni-NTA	column	(Qiagen).	 The	 column	 was	 washed	 with	 A500	 buffer	 containing	 increasing	concentrations	 of	 imidazole	 up	 to	 50	 mM,	 and	 finally	 Mus81-Mms4	 was	 eluted	 with	A500	containing	300	mM	imidazole.	The	eluate	was	dialyzed	extensively	against	A500,	and	 stored	 in	 aliquots	 at	 -80	 °C.	 Protein	 concentrations	 were	 determined	 using	 the	Bradford	 assay	 (BioRad)	 and	 on	 Coomassie-stained	 PAGE	 gels	 using	 BSA	 as	 the	standard,	which	also	confirmed	absence	of	phosphorylation-dependent	electrophoretic	migration	 shifts.	 Control	 experiments	 confirmed	 the	 absence	 of	 non-specific	 endo-	 or	exonuclease	activities.		Purification	of	bacterially	expressed	CDK2/cycA∆N170	To	 generate	 CDK2/cycA∆N170	 complex,	 GSTCDK2	 and	 His6cycA∆N170	 were	 expressed	separately.	 Bacteria	 with	 either	 expression	 plasmids	 were	 grown	 in	 1	l	LB	 medium	supplemented	with	antibiotics	to	mid-log	phase.	Both	cultures	were	cooled	down	on	ice	for	 5	 min	 to	 increase	 chaperone	 expression	 followed	 by	 addition	 of	 1	 mM	 IPTG	 and	incubation	for	20	h	at	20	°C.	Cells	were	pelleted	and	resuspended	in	40	ml	lysis	buffer	



(300	mM	NaCl,	20	mM	HEPES	pH	7.6,	5	mM	β-mercaptoethanol,	0.01%	NP-40,	100	µM	AEBSF,	 1x	 complete	 protease	 inhibitor	 cocktail	 EDTA-free)	 followed	 by	 lysis	 with	 an	EmulsiFlex-C3	 system	 for	 three	 rounds	 at	 1,000	 bar.	 Cell	 debris	 was	 spun	 down	 at	140,000	g	for	45	min.	To	allow	complex	formation	between	both	subunits,	extracts	were	pooled	 and	 incubated	 for	 45	 min.	 For	 glutathione	 affinity	 chromatography,	 1	 ml	 bed	volume	 of	 equilibrated	 Glutathione	 Sepharose	 beads	 were	 added	 to	 the	 extract	 and	incubated	for	2	h.	Beads	were	then	washed	four	times	with	25	CV	Wash	Buffer	B2	(300	mM	NaCl,	20	mM	HEPES	pH	7.6,	5	mM	β-mercaptoethanol,	0.01%	NP-40)	before	elution	was	achieved	by	protease	cleavage.	For	this	purpose,	beads	were	resuspended	in	1	CV	wash	buffer	(150	mM	NaCl,	20	mM	HEPES	pH	7.6,	5	mM	β-mercaptoethanol,	0.01%	NP-40)	and	 incubated	 together	with	250	U	GST-PreScission	protease	 (MPIB	Core	Facility)	for	 18	 h.	 The	 eluate	 was	 then	 adjusted	 to	 300	 mM	 NaCl	 and	 6	 mM	 imidazole	 for	subsequent	Ni-NTA	affinity	chromatography.	Here,	a	bed	volume	of	1	ml	equilibrated	Ni-NTA	 Agarose	 (Qiagen)	 was	 added	 to	 the	 eluate	 and	 incubated	 for	 1	 h.	 Beads	 were	subsequently	 washed	 four	 times	 with	 15	 CV	 wash	 buffer	 (300	 mM	 NaCl)	 +	 6	 mM	imidazole	 and	 five	 times	with	 2	 CV	wash	buffer	 (300	mM	NaCl)	 	 +	 6	mM	 imidazole	 +	5%	glycerol.	Elution	was	then	performed	with	wash	buffer	(300	mM	NaCl)	 	+	250	mM	imidazole.	 Fractions	 containing	 CDK	 were	 pooled	 and	 dialyzed	 by	 stirring	 two	 times	against	300	volumes	of	dialysis	buffer	(150	mM	NaCl,	50	mM	HEPES	pH	7.6,	0.1%	NP-40,	2	mM	β-mercaptoethanol,	10%	glycerol)	 for	4	h	 in	a	Slide-A-Lyzer	Dialysis	Casette	(Thermo	Scientific).	Dialysed	material	was	recovered,	aliquoted,	snap-frozen	and	stored	at	-80	°C.		Purification	of	Cdc5	from	S.	cerevisiae	YFZ020	was	grown	in	10	l	YP	medium	+	2%	raffinose	at	30	°C	until	mid-log	phase	before	expression	was	 induced	by	addition	of	2%	galactose.	After	4	h	of	 induction,	yeast	cells	were	harvested	and	washed	twice	with	250	ml	1	M	Sorbitol	+	25	mM	HEPES	pH	7.6.	The	pellet	was	 resuspended	 in	1	volume	of	 lysis	buffer	 (500	mM	NaCl,	100	mM	HEPES	pH	7.6,	0.1%	NP-40,	10%	glycerol,	2	mM	β-mercaptoethanol,	400	µM	PMSF,	4	µM	aprotinin,	4	 mM	 benzamidin,	 400	 µM	 leupeptin,	 300	 µM	 pepstatin	 A,	 4x	 complete	 protease	inhibitor	cocktail,	EDTA-free)	and	frozen	drop-wise	in	liquid	nitrogen.	Frozen	cell	drops	were	crushed	using	a	freezer/mill	system	(Spex	Sample	Prep).	Cell	powder	was	thawed	on	 ice	 and	 centrifuged	 at	 >185,000	 g	 for	 1	 h.	 The	 clear	 phase	 was	 recovered	 and	incubated	 with	 1	 ml	 bed	 volume	 of	 anti-FLAG	M2	 resin	 (Sigma)	 equilibrated	 in	 lysis	buffer.	 After	 2	 h	 of	 incubation,	 the	 resin	 was	 washed	 five	 times	 with	 10	 CV	 of	 wash	buffer	 (500	 mM	 NaCl,	 100	 mM	 HEPES	 pH	 7.6,	 0.1%	 NP-40,	 10%	 glycerol,	 2	 mM	 β-



mercaptoethanol).	Two	elution	steps	were	performed	by	adding	1	CV	0.5	mg/mL	3FLAG	peptide	 in	 wash	 buffer	 and	 incubation	 for	 30	 min.	 Obtained	 fractions	 were	 pooled,	brought	to	a	conductivity	of	10	mS/cm	(100	mM	salt)	and	subjected	to	anion	exchange	chromatography	using	 a	MonoQ	5/50	GL	 column	with	 a	 salt	 gradient	 of	 0.1-1	M	NaCl	over	20	CV.	Cdc53FLAG	eluted	at	a	conductivity	of	~15	mS/cm.	Kinase	containing	fractions	were	aliquoted,	snap-frozen	and	stored	at	-80	°C.		Purification	of	DDK	from	S.	cerevisiae	DDK	 was	 purified	 as	 described	 by	 Gros	 et	 al.	 with	 modifications	 (Gros	 et	 al.	 2014).	YFZ021	cells	were	grown	in	10	l	YP	medium	+	2%	raffinose	at	30	°C	until	mid-log	phase	before	 expression	 was	 induced	 by	 addition	 of	 2%	 galactose.	 After	 4	 h	 of	 incubation,	yeast	cells	were	harvested	and	washed	twice	with	250	ml	1	M	Sorbitol	+	25	mM	HEPES	pH	7.6.	The	pellet	was	resuspended	in	1	volume	of	lysis	buffer	(400	mM	NaCl,	100	mM	HEPES	pH	7.6,	0.1%	NP-40,	10%	glycerol,	2	mM	β-mercaptoethanol,	400	µM	PMSF,	4	µM	aprotinin,	 4	 mM	 benzamidin,	 400	 µM	 leupeptin,	 300	 µM	 pepstatin	 A,	 4x	 complete	protease	 inhibitor	cocktail	EDTA-free)	and	 frozen	drop-wise	 in	 liquid	nitrogen.	Frozen	cell	drops	were	crushed	using	a	freezer/mill	system.	Cell	powder	was	thawed	on	ice	and	centrifuged	at	>185,000	g	for	1	h.	The	clear	phase	was	recovered	and	incubated	with	1	ml	bed	volume	of	anti-FLAG	M2	resin	(equilibrated	in	lysis	buffer).	After	incubation	for	2	h	at	4	°C,	 the	resin	was	washed	six	 times	with	2	CV	wash	buffer	(400	mM	NaCl,	100	mM	 HEPES	 pH	 7.6,	 0.1%	 NP-40,	 10%	 glycerol,	 2	 mM	 β-mercaptoethanol).	 For	 λ-phosphatase	treatment,	beads	were	resuspended	 in	1	CV	wash	buffer	+	2	mM	MnCl2	+	900	U	λ-phosphatase	(New	England	Biolabs)	and	incubated	for	1	h	at	30	°C	in	a	tabletop	thermoshaker.	Beads	were	 recovered	and	bound	DDK	was	 eluted	 twice	with	1	CV	0.5	mg/ml	 3FLAG	 peptide	 in	wash	 buffer	 for	 30	min.	 Elutions	were	 pooled,	 concentrated	using	a	Vivaspin	500	MWCO	50.000	(GE	healthcare)	and	fractionated	by	size	exclusion	chromatography	using	a	Superdex	200	GL	10/300	column	(GE	healthare,	equilibrated	in	wash	 buffer)	 over	 1.2	 CV.	 DDK	 containing	 fractions	 were	 pooled,	 brought	 to	 a	conductivity	 of	 10	 mS/cm	 (100	 mM	 salt)	 and	 fractionated	 by	 anion	 exchange	chromatography	using	 a	MonoQ	5/50	GL	 column	with	 a	 salt	 gradient	 of	 0.1-1	M	NaCl	over	20	CV.	DDK	containing	fractions	eluted	at	~24-26	mS/cm	and	were	aliquoted,	snap	frozen	and	stored	at	-80	°C.		



In	vitro	kinase	assays	Sequential	kinase	assays	with	purified	Mus81-Mms4	Kinase	assays	were	performed	as	described	previously	(Pfander	&	Diffley,	2011;	Mordes	et	al.,	2008)	with	minor	modifications.		Per	 reaction	 20	 pmol	 Mus81-Mms4	 were	 used	 as	 substrate	 for	 10	 pmol	 kinase	(CDK2/cyclinA∆N170,	DDK	and/or	Cdc5)	in	a	50	μL	reaction	volume	containing	5	μg	BSA.	For	sequential	phosphorylation	reactions	Mus81-Mms4	was	immobilized	to	Glutathione	Sepharose	4B	resin	(GE	Healthcare)	 for	1	h	at	4	 °C	shaking.	Beads	were	washed	twice	with	 binding	 buffer-100	 (100	mM	Hepes	 pH	7.6,	 100	mM	KOAc,	 10%	glycerol,	 0.02%	NP-40,	2	mM	β-mercaptoethanol)	and	once	with	kinase	buffer	 (10	mM	HEPES	pH	7.6,	100	mM	KOAc,	 50	mM	β-glycerophosphate,	 10	mM	MgCl2,	 2	mM	β-mercaptoethanol),	and	aliquoted.	Residual	buffer	was	removed.		Priming	 phosphorylation	 reactions	were	 performed	 by	 addition	 of	 10	 pmol	 (of	 each)	kinase	and	started	by	addition	of	2	or	10	mM	(Fig.	1B,	S1C)	ATP.	For	samples	without	priming	 reaction	 the	 equivalent	 volume	 of	 added	 kinase	 was	 substituted	 by	 kinase	buffer.	After	30	min	at	30	°C	in	a	tabletop	shaker	beads	were	washed	twice	with	binding	buffer-200	(100	mM	Hepes	pH	7.6,	200	mM	KOAc,	10%	glycerol,	0.02%	NP-40,	2	mM	β-mercaptoethanol),	once	with	binding	buffer-100	and	once	with	kinase	buffer.	The	 consecutive	 kinase	 reaction	 was	 performed	 by	 addition	 of	 10	 pmol	 kinase	 and	started	by	addition	of	1	mM	ATP	+	5	μCi	γ[32P]-ATP	(PerkinElmer).	After	incubation	for	30	min	shaking	at	30	°C	reactions	were	stopped	by	addition	of	Laemmli	sample	buffer	followed	by	boiling	at	95	°C.		For	 kinetic	 analysis	 of	 the	 phosphorylation	 reactions	 (Fig.	 S1C),	 the	 second	 kinase	reaction	was	upscaled	to	100	µl	and	20	µl	samples	were	taken	at	indicated	time	points.		Proteins	 were	 separated	 on	 NuPAGE	 Novex	 12%	 Bis-Tris	 gels	 (ThermoFisher)	 and	analyzed	by	autoradiography	using	a	Typhoon	FLA	9500	imager	(GE	healthcare).			Kinase	assays	using	synthetic	Mms4	peptides	Kinase	reactions	were	performed	with	25	µg	desthiobiotin-labelled	Mms4	peptide	and	10	pmol	kinase	in	kinase	buffer	(10	mM	HEPES	pH	7.6,	10	mM	β-glycerophosphate,	10	mM	MgCl2,	5	mM	Mg(OAc)2,	2	mM	β-mercaptoethanol)	with	100	mM	KOAc	 in	a	50	μL	reaction	volume	containing	5	μg	BSA.	Reactions	were	started	by	addition	of	1	mM	ATP	+	5	μCi	γ[32P]-ATP.	After	incubation	for	30	min	shaking	at	30	°C	reactions	were	stopped	by	addition	of	Laemmli	sample	buffer	followed	by	boiling	at	95	°C.	Proteins	were	separated	on	 NuPAGE	 Novex	 12%	 Bis-Tris	 gels	 (ThermoFisher)	 in	 MES	 buffer	 and	 analyzed	 by	autoradiography	using	a	Typhoon	FLA	9500	imager	(GE	healthcare).			



	Nuclease	assays		5’-Cy3-end-labelled	 oligonucleotides	 were	 used	 to	 prepare	 synthetic	 nicked	 Holliday	Junctions	(nHJ)	as	described	(Rass	&	West,	2008).	Nuclease	assays	were	carried	out	with	immunopurified	Mus819myc	of	Mus813FLAG	(Fig.	S4A)	from	cells	arrested	in	mitosis	with	nocodazole.	The	anti-myc/anti-FLAG	immunoprecipitates	were	extensively	washed	and	mixed	with	10	µl	reaction	buffer	(50	mM	Tris-HCl	pH	7.5,	3	mM	MgCl2)	containing	30	ng	5’-Cy3-end-labelled	 nHJs	 or	 RFs	 11.	 Reactions	 were	 incubated	 for	 the	 indicated	 times	with	gentle	rotation	at	30	°C	and	stopped	by	addition	of	5	µl	10	mg/ml	proteinase	K	and	2%	 SDS,	 and	 further	 incubation	 at	 37	 °C	 for	 1	 h.	 Loading	 buffer	 was	 added	 and	fluorophore-labelled	 products	 were	 separated	 by	 10%	 PAGE,	 and	 analyzed	 using	 a	Typhoon	 scanner.	 Substrate	 cleavage	 was	 normalized	 using	 the	 level	 of	immunoprecipitated	Mus819myc	as	reference.		DSB-induced	recombination	assay	The	DSB-induced	recombination	assay	was	performed	as	described	previously	(Ho	et	al.,	2010).	In	brief,	diploids	were	grown	in	liquid	YPAR	(YPR	+	40	mg/l	Adenine)	until	the	cultures	 reached	 an	 OD600	 of	 0.5.	 Cells	 were	 arrested	 with	 nocodazole	 and	 I-SceI	expression	was	induced	by	adding	galactose	to	a	final	concentration	of	2%.	After	2.5	h	cells	were	plated	onto	YPAD	(YPD	+	10	mg/l	Adenine),	incubated	for	3-4	days	and	then	replica	 plated	 onto	 YPAD+Hyg+Nat,	 YPAD+Hyg,	 YPAD+Nat,	 SC-Met,	 SC-Ura,	 and	 SCR-ADE+Gal	 media	 to	 classify	 recombination	 events.	 The	 different	 classes	 depicted	 arise	from	repair	of	DSBs	by	either	short	tract	or	long	tract	gene	conversion	which	produces	ade2-n	 or	 ADE+	 recombinants,	 respectively	 (white	 class:	 two	 short	 tract	 conversions;	red	 class:	 two	 long	 tract	 conversions;	 red/white	 class:	 one	 short	 and	 one	 long	 tract	conversion).	 Within	 the	 distinct	 classes	 CO	 events	 are	 measured	 by	 the	 number	 of	colonies	 that	 have	 rendered	 both	 daughter	 cells	 homozygous	 for	 the	 HPH	 and	 NAT	marker.				
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1Department of Structural Cell Biology, Molecular Mechanisms of DNA Repair, Max
Planck Institute of Biochemistry, Martinsried, Germany; 2Department of Molecular
Cell Biology, DNA Replication and Genome Integrity, Max Planck Institute of
Biochemistry, Martinsried, Germany; 3Computational Biology, Max Planck Institute
of Biochemistry, Martinsried, Germany

Abstract Holliday junctions (HJs) are key DNA intermediates in homologous recombination.

They link homologous DNA strands and have to be faithfully removed for proper DNA segregation

and genome integrity. Here, we present the crystal structure of human HJ resolvase GEN1

complexed with DNA at 3.0 Å resolution. The GEN1 core is similar to other Rad2/XPG nucleases.

However, unlike other members of the superfamily, GEN1 contains a chromodomain as an

additional DNA interaction site. Chromodomains are known for their chromatin-targeting function

in chromatin remodelers and histone(de)acetylases but they have not previously been found in

nucleases. The GEN1 chromodomain directly contacts DNA and its truncation severely hampers

GEN1’s catalytic activity. Structure-guided mutations in vitro and in vivo in yeast validated our

mechanistic findings. Our study provides the missing structure in the Rad2/XPG family and insights

how a well-conserved nuclease core acquires versatility in recognizing diverse substrates for DNA

repair and maintenance.

DOI: 10.7554/eLife.12256.001

Introduction
Homologous recombination (HR) is a fundamental pathway ensuring genome integrity and genetic

variability (Heyer, 2015). In mitotic cells, double-strand breaks (DSBs) can be repaired by HR using

the sister chromatid as a template to restore the information in the complementary double strand. In

meiosis, the repair of programmed DSBs by HR and the formation of crossovers are crucial to pro-

vide physical linkages between homologs and to segregate homologous chromosomes. Further-

more, HR during meiosis creates sequence diversity in the offspring through the exchange between

homologs (Petronczki et al., 2003; Sarbajna and West, 2014).

HR proceeds by pathways that may lead to the formation of DNA four-way junctions or Holliday

junctions (HJs) that physically link two homologous DNA duplexes (Heyer, 2015; Holliday, 1964;

Schwacha and Kleckner, 1995; Szostak et al., 1983). Faithful removal of HJs is critical to avoid

chromosome aberrations (Wechsler et al., 2011) and cells have evolved sophisticated measures to

disentangle joint molecules. One basic mechanism is resolution mediated by HJ resolvases that

introduce precise symmetrical nicks into the DNA at the branch point. Nicked DNA strands are then

rejoined by endogenous ligases leading to fully restored or recombined DNA strands. This mecha-

nism is well studied for bacterial and bacteriophage resolvases such as Escherichia coli RuvC, T7

endonuclease I, T4 endonuclease VII (Benson and West, 1994; Lilley and White, 2001). These

resolvases operate as dimers and show a large degree of conformational flexibility in substrate
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recognition and in aligning both active sites for coordinated cleavage. Interestingly, T4 endonucle-

ase VII and RuvC reach into and widen the DNA junction point whereas T7 endonuclease I binds

DNA by embracing HJs at the branch point (Biertümpfel et al., 2007; Górecka et al., 2013;

Hadden et al., 2007).

In eukaryotes, HR is more complex and tightly regulated. In somatic cells, HJ dissolution by a

combined action of a helicase and a topoisomerase (BLM-TOPIIIa-RMI1-RMI2 complex in humans) is

generally the favored pathway, possibly to restore the original (non-crossover) DNA arrangement

(Cejka et al., 2010, 2012; Ira et al., 2003; Putnam et al., 2009; Wu and Hickson, 2003). In con-

trast, HJ resolution generates crossover and non-crossover arrangements depending on cleavage

direction. Several endonucleases such as GEN1, MUS81-EME1, and SLX1-SLX4 have been implicated

as HJ resolvases in eukaryotes (Andersen et al., 2011; Castor et al., 2013; Fekairi et al., 2009;

Garner et al., 2013; Ip et al., 2008; Muñoz et al., 2009; Svendsen and Harper, 2010;

Svendsen et al., 2009; Wyatt et al., 2013). Interestingly, these resolvases are not structurally

related and have different domain architectures, giving rise to variable DNA recognition and regula-

tion mechanisms. The interplay between resolution and dissolution mechanisms is not fully under-

stood yet, however, cell cycle regulation of resolvases seems to play an important role

(Blanco et al., 2014; Chan and West, 2014; Eissler et al., 2014; Matos et al., 2011).

GEN1 belongs to the Rad2/XPG family of structure-selective nucleases that are conserved from

yeast to humans (Ip et al., 2008; Lieber, 1997; Yang, 2011). The Rad2/XPG family has four mem-

bers with different substrate preferences that function in DNA maintenance (Nishino et al., 2006;

Tsutakawa et al., 2014). They share a conserved N-terminal domain (XPG-N), an internal domain

(XPG-I) and a 5’->3’ exonuclease C-terminal domain containing a conserved helix-hairpin-helix motif.

eLife digest Factors like ultraviolet radiation and harmful chemicals can damage DNA inside

living cells, which can lead to breaks that form across both strands in the DNA double helix.

“Homologous recombination” is one of the major mechanisms by which cells repair these double-

strand breaks. During this process, the broken DNA interacts with another undamaged copy of the

DNA to form a special four-way structure called a “Holliday junction”. The intact DNA strands are

then used as templates to repair the broken strands. However, once this has occurred the Holliday

junction needs to be ‘resolved’ so that the DNA strands can disentangle.

One way in which Holliday junctions are resolved is through the introduction of precise

symmetrical cuts in the DNA at the junction by an enzyme that acts like a pair of molecular scissors.

Re-joining these cut strands then fully restores the DNA. Enzymes that generate the cuts in DNA are

called nucleases, and the nuclease GEN1 is crucial for resolving Holliday junctions in organisms such

as fungi, plants and animals. GEN1 belongs to a family of enzymes that act on various types of DNA

structures that are formed either during damage repair, DNA duplication or cell division. However,

GEN1 is the only enzyme in the family that can also recognize a Holliday junction and it was unclear

why this might be.

Lee et al. have now used a technique called X-ray crystallography to solve the three-dimensional

structure of the human version of GEN1 bound to a Holliday junction. This analysis revealed that

many features in GEN1 resemble those found in other members of the same nuclease family. These

features include two surfaces of the protein that bind to DNA and are separated by a wedge, which

introduces a sharp bend in the DNA. However, Lee et al. also found that GEN1 contains an

additional region known as a “chromodomain” that further anchors the enzyme to the DNA. The

chromodomain allows GEN1 to correctly position itself against DNA molecules, and without the

chromodomain, GEN1’s ability to cut DNA in a test tube was severely impaired. Further experiments

showed that the chromodomain was also important for GEN1’s activity in yeast cells growing under

stressed conditions.

The discovery of a chromodomain in this human nuclease may provide many new insights into

how GEN1 is regulated, and further work could investigate if this chromodomain is also involved in

binding to other proteins.

DOI: 10.7554/eLife.12256.002
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C-terminal to the nuclease core is a regulatory region that is diverse in sequence and predicted to

be largely unstructured. Although the catalytic cores are well conserved in the superfamily, substrate

recognition is highly diverse: XPG/Rad2/ERCC5 recognizes bubble/loop structures during nucleo-

tide-excision repair (NER), FEN1 cleaves flap substrates during Okazaki fragment processing in DNA

replication, EXO1 is a 5’->3’ exonuclease that is involved in HR and DNA mismatch repair (MMR)

and GEN1 recognizes Holliday junctions (Grasby et al., 2012; Ip et al., 2008; Nishino et al., 2006;

Tomlinson et al., 2010; Tsutakawa et al., 2014). A common feature of the superfamily is their inher-

ent ability to recognize flexible or bendable regions in the normally rather stiff DNA double helix.

Interestingly, GEN1 shows versatile substrate recognition accommodating 5’ flaps, gaps, replication

fork intermediates and Holliday junctions (Ip et al., 2008; Ishikawa et al., 2004; Kanai et al., 2007).

According to the current model, however, the primary function of GEN1 is HJ resolution

(Garner et al., 2013; Sarbajna and West, 2014; West et al., 2015) and it is suggested to be a last

resort for the removal of joint molecules before cytokinesis (Matos et al., 2011).

To date, structural information is available for all members of the family but GEN1 (Miętus et al.,

2014; Orans et al., 2011; Tsutakawa et al., 2011). A unified feature of these structures is the pres-

ence of two DNA-binding interfaces separated by a hydrophobic wedge. This wedge is composed

of two protruding helices that induce a sharp bend into flexible DNA substrates. Rad2/XPG family

members also share a helix-two-turn-helix (H2TH) motif that binds and stabilizes the uncleaved DNA

strand downstream of the catalytic center. However, the comparison of DNA recognition features

within the Rad2/XPG family has been hampered because of the lack of structural information on

GEN1.

To understand the molecular basis of GEN1’s substrate recognition, we determined the crystal

structure of human GEN1 in complex with HJ DNA. In combination with mutational and functional

analysis using in vitro DNA cleavage assays and in vivo survival assays with mutant yeast strains, we

highlight GEN1’s sophisticated DNA recognition mechanism. We found that GEN1 does not only

have the classical DNA recognition features of Rad2/XPG nucleases, but also contains an additional

DNA interaction site mediated by a chromodomain. In the absence of the chromodomain, GEN1’s

catalytic activity was severely impaired. This is the first example showing the direct involvement of a

chromodomain in a nuclease. Our structural analysis gives implications for a safety mechanism using

an adjustable hatch for substrate discrimination and to ensure coordinated and precise cleavage of

Holliday junctions.

Results

Structure determination and architecture of the GEN1-DNA complex
In order to structurally characterize human GEN1, we crystallized the catalytically inactive variant

GEN12-505 D30N, denoted GEN1 for simplicity, in complex with an immobile Holliday junction having

arm lengths of 10 bp (Figure 1). The structure was determined experimentally and refined up to

3.0 Å resolution with an Rfree of 0.25 (Table 1). The HJ crystallized bridging between two protein

monomers in the asymmetric unit (Figure 1—figure supplement 1). The overall structure of GEN1

resembles the shape of a downwards-pointing right hand with a ’thumb’ extending out from the

’palm’ and the DNA is packed against the ball of the thumb (Figure 1). The palm contains the cata-

lytic core, which is formed by intertwined XPG-N and XPG-I domains (Figure 1A/B, green). They

consist of a seven-stranded b-sheet in the center surrounded by nine helices harboring the con-

served active site (Figure 1B/D, orange). The catalytic residues form a cluster of negatively charged

residues (D30, E75, E134, E136, D155, D157, D208) that were originally identified by mutational

analysis (Ip et al., 2008; Lee et al., 2002; Wakasugi et al., 1997) and are conserved in other Rad2/

XPG family members (Figure 1B/C and Figure 2). The XPG-I domain is followed by a 5’->3’ exonu-

clease C-terminal domain (EXO; Figure 1B/D, blue). The EXO domain consists of a helix-two-turn-

helix (H2TH) motif (helices a10-a11) accompanied by several a-hairpins (a12-a13 and a14-a15). A

similar arrangement is also found in other proteins, which use a H2TH motif for non-sequence spe-

cific DNA recognition (Tomlinson et al., 2010). The EXO domain in GEN1 has a 78 amino acid inser-

tion (residues 245–322), of which only helix a12b (residues 308–322) is ordered in the structure

(Figure 1A, gray and Figure 2). Helix a12b packs loosely with the H2TH helices (a10-a11) and helix

a12 at the ’finger’ part of GEN1. Yeast Rad2, a homolog of human XPG, also contains helix a12b,
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Figure 1. Architecture of human GEN1. (A) Domain architecture of human GEN1. The structurally unknown

regulatory domain (residues 465–908) is shown with dotted lines. (B) Overview of the catalytic core of GEN1 in

complex with HJ DNA. The protein resembles the shape of a downwards-pointing right hand with helix a6 as the

thumb. The protein is depicted in half transparent surface representation with secondary structure elements

underneath. The DNA is shown in ladder representation with individual strands in different colors. The coloring of

GEN1 follows domain boundaries: intertwining XPG-N and XPG-I in green, 5’->3’ exonuclease C-terminal domain

(EXO) in blue, chromodomain in pink, unassigned regions in gray. Active site residues (E134, E136, D155, D157)

are highlighted in orange. (C) Electrostatic surface potential of GEN1. The coloring follows the potential from -5

(red) to +5 kT/e (blue). The DNA-binding interfaces and the position of the hydrophobic wedge are marked in

yellow. (D) Secondary structure elements of the catalytic core of GEN1 in cartoon representation with the same

Figure 1 continued on next page
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and it shows a similar arrangement as in GEN1 (Figure 1F). The EXO domain sandwiches the XPG-

N/I domains with a long linker reaching from the bottom ’fingers’ (a10-a13) along the backside of

GEN1 to the top of the XPG-N/I domains at the ’wrist’ (a14-a15). A structure-based sequence align-

ment of the nuclease core of human GEN1, FEN1, EXO1 and yeast Rad2 proteins with functional

annotations relates sequence conservation to features in the Rad2/XPG family (Figure 2). The com-

parison with members in the Rad2/XPG identified two DNA binding interfaces and a hydrophobic

wedge (ball of the thumb) that separates the upstream and the downstream interface (Figure 1C/D

and compare Figure 1F). GEN1 has two prominent grooves close to the hydrophobic wedge, which

we termed upper and lower gate or gateway for comparison (Figure 1D, orange and blue ellipses,

respectively).

Notably, a small globular domain (residues 390–464) was found extending the GEN1 nuclease

core at the wrist (Figure 1, pink). A DALI search (Holm and Rosenström, 2010) against the Protein

Data Bank (PDB) identified this domain as a chromodomain (chromatin organization modifier

domain). The domain has a chalice-shaped structure with three antiparallel b-strands packed against

a C-terminal a-helix and it forms a characteristic aromatic cage. The opening of the chalice abuts

helix a15 from the EXO domain.

GEN1 has a conserved chromodomain with a closed aromatic cage
Chromodomains are found in many chromatin-associated proteins that bind modified histone tails

for chromatin targeting (reviewed in Blus et al., 2011; Eissenberg, 2012; Yap and Zhou, 2011), but

it has not previously been associated with nucleases. To understand the significance of the chromo-

domain for the function of GEN1, we first examined if the chromodomain is conserved in GEN1

homologs using HMM-HMM (Hidden Markov Models) comparisons in HHPRED (Söding et al.,

2005). We found that the chromodomain in GEN1 is conserved from yeast (Yen1) to humans

(Figure 3A). The only exception is Caenorhabditis elegans GEN1, which has a much smaller protein

size of 443 amino acids compared to yeast Yen1 (759 aa) or human GEN1 (908 aa).

To further compare the structural arrangement of the aromatic cage in human GEN1 with other

chromodomains, we analyzed the best matches from the DALI search (Figure 3B). We found many

hits for different chromo- and chromo-shadow domains with root mean square deviations between

1.9 and 2.8 Å (compare Figure 3—source data 1). A superposition of the aromatic cage of the five

structurally most similar proteins with GEN1 (Figure 3C) showed that residues W418, T438, and

E440 are well conserved, whereas two residues at the rim of the canonical binding cleft are changed

from phenylalanine/tyrosine to a leucine (L397) in one case and a proline (P421) in another

(Figure 3C). Instead, Y424 occupies the space proximal to P421, which is about 1.5 Å outwards of

the canonical cage and widens the GEN1 cage slightly. The substitution of phenylalanine/tyrosine to

leucine is also found in CBX chromo-shadow domains (see below); however, the rest of the GEN1

aromatic cage resembles rather chromodomains.

Chromodomains often recognize modified lysines through their aromatic cage thus targeting pro-

teins to chromatin (reviewed in Blus et al., 2011; Eissenberg, 2012; Yap and Zhou, 2011). Given

the conserved aromatic cage in GEN1, we tested the binding to modified histone tail peptides

Figure 1 continued

colors as before. Dotted lines represent parts that are not resolved in the crystal structure. The numbering follows

a unified scheme for the Rad2/XPG family (compare Figure 2) for a-helices, b-sheets and 310-helices (h). (E)

Experimental electron density map (autoSHARP, solvent flattened, contoured at 1s) drawn around the HJ in the

GEN1 complex. The DNA model is shown in ball-stick representation with carbon atoms of individual strands in

different colors (yellow, light blue, magenta, green) and oxygen atoms in red, phosphor atoms in orange, nitrogen

atoms in dark blue. (F) Structural comparison of Rad2/XPG family nucleases. Proteins are shown in a simplified

surface representation with important structural elements in cartoon representation and DNA in ladder

representation. The color scheme is the same as in B. Figure 1—figure supplement 1 shows the content of the

asymmetric unit.

DOI: 10.7554/eLife.12256.003

The following figure supplement is available for figure 1:

Figure supplement 1. Content of the asymmetric unit of the GEN1-HJ crystal.

DOI: 10.7554/eLife.12256.004
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(Figure 3C/D). However, we did not detect any binding despite extensive efforts using various his-

tone tail peptides in pull-down assays, microscale-thermophoresis (MST) or fluorescence anisotropy

measurements (compare Figure 3—source data 2 and Figure 3—figure supplement 2). Our struc-

ture shows that the aromatic cage is closed by helix a15 (Figure 3E blue/pink), which has a hydro-

phobic interface towards the aromatic cage with residues L376, T380, and M384 reaching into it

(compare Figure 4F). This potentially hampers the binding of the tested peptides in this conforma-

tion under physiological conditions.

Table 1. Data collection and refinement statistics.

Data Set G505-4w006native G505-4w006Ta peak G505-4w006SeMet peak

Diffraction Data Statistics

Synchrotron Beamline SLS PXII SLS PXII SLS PXII

Wavelength 0.99995 1.25473 0.97894

Resolution (Å) 75-3.0 75.4-3.8 43.6-4.4

Space Group P 32 P 32 P 32

Cell dimensions

a (Å) 86.94 87.06 87.11

b (Å) 86.94 87.06 87.11

c (Å) 200.72 201.30 199.69

a (˚) 90 90 90

b (˚) 90 90 90

g (˚) 120 120 120

I/sI* 18.4 (1.9) 27.49 (5.83) 16.58 (3.82)

Completeness (%)* 99.8 (98.8) 99.6 (97.3) 97.3 (83.3)

Redundancy* 6.3 10.2 5.1

Rsym (%)* 6.2 (90.7) 7.7 (42.2) 6.9 (43.4)

Refinement Statistics

Resolution (Å) 75-3.0

Number of Reflections 33933

Rwork/Rfree 0.199/0.241

Number of Atoms

Protein 6298

DNA 1589

Water/Solutes 27

B-factors

Protein 123.4

DNA 150.2

Water/Solutes 92.6

R.M.S Deviations

Bond lengths (Å) 0.010

Bond Angles (˚) 0.623

Ramachandran Plot

Preferred 753 (97.9 %)

Allowed 16 (2.1%)

*Values for the highest resolution shell are shown in parenthesis

DOI: 10.7554/eLife.12256.005
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The GEN1 chromodomain is distantly related to CBX and CDY
chromodomains
To explore the functional role of the GEN1 chromodomain, we evaluated its similarity to other chro-

modomains by comparing all of the 46 known human chromodomains from 34 different proteins.

We made pairwise comparisons with HHPRED, PSIBLAST, combined the alignments and generated

a phylogenetic tree (Figure 3F and Figure 3—figure supplement 1). The analysis showed a tree

Figure 2. Alignment of the nuclease cores of Rad2/XPG-family proteins. The alignment is based on known crystal structures: human GEN1 (PDB 5t9j,

this study), yeast Rad2 (PDB 4q0w), human FEN1 (PDB 3q8k), human EXO1 (3qe9). Secondary structure elements are depicted on top of the sequence

with dark blue bars for a-helices, light blue bars for 310-helices and green arrows for b-sheets. The numbering follows a unified scheme for the

superfamily. Functional elements are labeled and described in the main text. Sequences are colored by similarity (BLOSUM62 score) and active site

residues are marked in red. Mutations analyzed in this study are marked with an orange triangle and DNA contacts found in the human GEN1–HJ

structure have a dark green dot. Disordered or missing parts in the structures are labeled in small letters or with x.

DOI: 10.7554/eLife.12256.006
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Figure 3. Chromodomain comparison. (A) Sequence alignment of GEN1 chromodomains from different organisms: hsGEN1 (Homo sapiens), clGEN1

(Canis lupus), mmGEN1 (Mus musculus), drGEN1 (Danio rerio), atGEN1/2 (Arabidopsis thaliana), cgGEN1 (Crassostrea gigas), scYEN1 (Saccharomyces

cerevisiae). The presence of a chromodomain is conserved from yeast to human with Caenorhabditis elegans as an exception. Secondary structure

elements of the GEN1 chromodomain are shown on top. The sequence coloring is based on a similarity matrix (BLOSUM62). The corresponding

positions of the DNA-interaction site in human GEN1 is marked with a red box and residues of the aromatic cage are highlighted with a yellow box. (B)

GEN1 has a canonical chromodomain fold of three antiparallel beta-sheets packed against an a-helix. (C) The arrangement of the aromatic cage in

GEN1 is comparable to other chromodomains but less aromatic and slightly larger. (D) The superposition of different chromodomains places cognate

binding peptides of hsMPP8 and mmCBX7 (and others) into the aromatic cage. (E) The aromatic cage of GEN1 is closed by helix a15. Panels B–D show

the chromodomains of hsGEN1 (pink, PDB 5t9j), hsCBX3 (gray, PDB 3kup) hsSUV39H1 (green, PDB 3mts), hsMPP8 (yellow, PDB 3lwe), dmHP1a (orange,

chromo shadow PDB 3p7j), dmRHINO (cyan, PDB 4quc/3r93), mmCBX7 (light blue, PDB 4x3s; compare Figure 3—source data 1). (F) Phylogenetic tree

of all known human chromodomains. GEN1 is distantly related to the CBX chromo-shadow domains and CDY chromodomains. The corresponding

alignment for calculating the phylogenetic tree is shown in Figure 3—figure supplement 1. GEN1 is colored in black, chromobox (CBX) proteins are

colored in red, interspersed by SUV39H histone acetylases (orange) and chromodomain Y-linked (CDY) proteins (yellow). Chromo-barrel domain

proteins are colored in green and chromodomain-helicase DNA-binding (CHD) proteins are in blue. Chromodomains and chromo-shadow domains

from the same protein are labeled with 1 and 2, respectively. Stable branches with boostrap values equal or higher than 0.8 are marked with a black

dot. The binding of the GEN1 chromodomain to a set of histone peptides was tested but no interaction was detected (Figure 3—source data 2 and

Figure 3—figure supplement 2).

DOI: 10.7554/eLife.12256.007

The following source data and figure supplements are available for figure 3:

Source data 1. Proteins found in a DALI search.

DOI: 10.7554/eLife.12256.008

Source data 2. N-terminally fluorescein-labeled peptides used for chromodomain binding assays.

DOI: 10.7554/eLife.12256.009

Figure supplement 1. Sequence alignment of all known human chromodomains.

DOI: 10.7554/eLife.12256.010

Figure supplement 2. Histone peptide pull-down assay.

DOI: 10.7554/eLife.12256.011
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branching into known subfamilies: chromobox proteins (CBX, red), chromodomain Y-linked proteins

(CDY, yellow), chromodomain-helicase DNA-binding proteins (blue) and chromo-barrel domain pro-

teins (green). The GEN1 chromodomain was found to be distantly related to the CDY chromodo-

mains and chromobox proteins, particularly to the chromo-shadow domains of CBX1, CBX3 and

CBX5. This agrees with the result from the DALI search, in which CBX chromo-shadow domains and

homologs thereof were among the closest structural matches. Together with the observed differen-

ces in residues forming the aromatic cage, it indicates that the GEN1 chromodomain forms a new

subgroup with features from chromo- and chromo-shadow domains that emerged from a common

ancestor within CBX/CDY proteins.

Figure 4. DNA interactions in the GEN1-DNA complex. (A) Schematic of the GEN1-DNA interactions at the upstream interface. The coloring is the

same as in Figure 1. The nuclease core (green and blue) interacts with the uncleaved strand and the chromodomain (pink) contacts the complementary

strand. Hydrogen bonds are shown with blue dashed lines and van-der-Waals contacts are in red dotted lines. (B) Interactions at the hydrophobic

wedge. The end of the DNA double helix docks onto the hydrophobic wedge formed by helices a2 and a3. (C/D) Interactions with the uncleaved

strand in two views. All key residues form sequence-independent contacts to the DNA backbone. R54 reaches into the minor groove of the DNA. The

complementary DNA strand has been removed for clarity (E/F) Interactions of the chromodomain with the complementary strand in two views. The

backbone of residues 406–410 (b-hairpin b8-b9) abuts the DNA backbone. R406 has a supporting role in the interaction and R408 forms a polar

interaction with Q65, which establishes a connection between the chromodomain and the nuclease core. Helix a15 makes hydrophobic interactions

with the aromatic cage and thus blocks it.

DOI: 10.7554/eLife.12256.012
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GEN1-DNA interactions
The GEN1-HJ structure revealed that the upstream DNA-binding interface acts as a docking site for

double-stranded DNA and that the chromodomain secures its position. The DNA is bound at the

upstream interface and the hydrophobic wedge but does not extend into the active site or to the

downstream interface (Figure 1B/C/D). Comparison of the structure of GEN1 to related structures

of FEN1, Rad2 and EXO1 (Miętus et al., 2014; Orans et al., 2011; Tsutakawa et al., 2011) sug-

gests that a DNA substrate has to extend to the downstream interface to position a DNA strand for

cleavage by the active site of GEN1 (Figure 1B/C and Figure 1F). In the GEN1 structure, the end of

the DNA arm attaches to the hydrophobic wedge provided by parts of helices a2-a3 and their con-

necting loop (Figure 4A/B), forming van-der-Waals contacts with the first base pair, which docks

perfectly onto the protruding curb of residues 41–51 (Figure 4B). The uncleaved DNA strand is fur-

ther stabilized and its geometrical arrangement is fixed by the upstream DNA-binding interface. Par-

ticularly, the DNA is contacted by a b-pin (strands b6-b7; Figure 4A/C) from one side and by R54

and F58 (Figure 4A/D) from helix a3 together with Y370 and K374 (helix a15) from the opposite

side (Figure 4A/C). The key residues in the b-pin are T171 that forms a hydrogen bridge to the

phosphate of the first base (Figure 4A, ’G1’) and M172 that makes a van-der-Waals contact to the

DNA backbone at the second base (Figure 4A, ’A2’). R54 reaches into the DNA minor groove and

forms a hydrogen bond with the ribose ring oxygen at the third base of the uncleaved strand and

F58 packs against the same ribose moiety (Figure 4C/D). Y370 and K374 in a15 form hydrogen

bonds to the backbone of the third base of the uncleaved DNA strand (Figure 4D, ’G3’).

An additional interaction point is provided by a b-hairpin from the chromodomain (strands b8-b9),

one DNA turn upstream of the hydrophobic wedge (Figure 4A/E/F). This b-hairpin interacts with the

complementary DNA strand by matching the protein backbone (residues 406–411) to the contour of

the DNA backbone in a sequence unspecific manner (Figure 4A/E). The side chains of K404 and

R406 project out, and they are in hydrogen bonding distance to the DNA (Figure 4E). Remarkably,

R408 forms a polar interaction with Q65, which establishes a connection between the DNA contact

point at the chromodomain and the nuclease core (Figure 4E). The interactions at the chromodo-

main extend the upstream DNA-binding interface to cover a full DNA turn, reinforcing the binding.

The downstream binding interface can be inferred from other Rad2/XPG structures (Figure 1C/F)

as the nuclease core is well conserved in GEN1, FEN1, Rad2 and EXO1 (root mean square deviations

of 0.9–1.1 Å for 161 Ca atoms, respectively). The residues corresponding to the tip of the thumb

(residues 79–92), which are disordered in the GEN1 structure, likely form helix a4 upon DNA binding

to the downstream interface as seen in human FEN1 and EXO1 (Orans et al., 2011;

Tsutakawa et al., 2011). The missing residues in GEN1 have 35.7% identity and 78.6% similarity

(BLOSUM62 matrix) to the corresponding residues in FEN1 (90–103), which form helix a4 in the

FEN1-DNA complex (compare Figure 2). The same region is disordered in FEN1 when no DNA is

bound (Sakurai et al., 2005). This indicates that also GEN1 undergoes such a disorder-to-order tran-

sition to form an arch with helices a4 and a6 upon substrate binding (Patel et al., 2012) and similar

to the arrangement in T5 FEN (Ceska et al., 1996).

The activity of GEN1 depends on correct DNA positioning
GEN1 has versatile substrate recognition features, ranging from gaps, flaps, replication fork inter-

mediates to HJs (Ip et al., 2008; Ishikawa et al., 2004; Kanai et al., 2007). To understand the func-

tional relevance of the GEN1 structure for DNA recognition we performed a series of mutagenesis

studies with single point mutations and truncated protein variants (Figure 5 and Figure 5—figure

supplement 1/2) to investigate the effect on the active site (D30N), upstream DNA binding (R54E),

downstream DNA binding (C36E), arch at the downstream interface (R89E, R93E, H109E, F110E),

and chromodomain (Dchromo, K404E, R406E). We performed nuclease assays by titrating different

amounts of GEN1 to a fixed DNA concentration of 40 nM for 15 min and DNA cleavage products

were analyzed by native electrophoresis (Figure 5A and Figure 5—figure supplement 1/2). We

used an immobile HJ and a 5’ flap substrate side-by-side to facilitate the comparison of the effects

on separate GEN1 functions. Notably, stoichiometric amounts of GEN1 were required to cleave HJ

substrates whereas 5’ flaps were readily processed with catalytic amounts (Figure 5A).

The active site modification D30N showed that the cleavage activity on both HJ and 5’ flap sub-

strates was lost in agreement with previously published data (Ip et al., 2008). According to our
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Figure 5. Functional analysis of GEN1. (A) Nuclease activity of GEN1 with HJ and 5’flap DNA. 40 nM 5’ 6FAM-

labeled substrates were mixed with indicated amounts of GEN1. Reactions were carried out at 37˚C for 15 min,

products were separated by native PAGE and analyzed with a phosphoimager. Figure 5—source data 1 gives the

sequences of DNA oligos used in biochemical assays and Figure 5—source data 3 shows activity measurements.

(B) Quantification of nuclease assays of wild type GEN1 and variants with mutated residues located at the protein-

DNA interfaces. Percentage of cleavage was plotted against the enzyme concentration. Error bars depict the

standard deviation calculated from at least three independent experiments. Figure 5—figure supplement 1

shows representative gels from the PAGE analysis. (C) Quantification of nuclease assays of wild type GEN1 and

Figure 5 continued on next page
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structure, R54 in helix a3 at the upstream interface fixes the substrate position by reaching into the

minor DNA groove and we observed that R54E had a strongly reduced cleavage activity (~50%;

Figure 5B), indicating a key role in substrate positioning.

Residue C36 in helix a2 points towards the downstream interface and likely contacts the DNA

upon binding (compare Figure 5D). The corresponding FEN1 Y40, is a key residue stacking with the

-1 base of the 5’ flap at the FEN1 active site (Tsutakawa et al., 2011). Therefore, we tested the

cleavage ability of a GEN1C36E and found that the mutant protein had completely lost its enzymatic

activity for both, HJ and 5’ flap cleavage, to the same degree as the active site modification D30N

(Figure 5B). This effect is stronger than for FEN1Y40A, which showed only a partial loss in activity

(Tsutakawa et al., 2011). Our results suggest that C36 provides a polar interface for orienting and

guiding the cleaved strand towards the active site and the lower gateway.

We further tested a glutamate modification of the superfamily-conserved R89 and R93 located in

the disordered part continuing to helix a6, presumably forming an arch (see above). The arch was

shown to facilitate cleavage by clamping flap substrates in FEN1 and the modification R100A

showed a strong decrease in the cleavage activity (Patel et al., 2012). The GEN1 R89E mutation,

corresponding to residue R100 in FEN1, showed that the activity of GEN1 with a HJ substrate was

not altered. In the case of a 5’ flap substrate, cleavage was slightly reduced and it reached to the full

level at enzyme concentrations higher than 10 nM. The effect of the R93E modification was even less

pronounced compared to R89E. In contrast, the cleavage of both 5’ flap and HJ substrates

depended strongly on F110 at helix a6 (thumb), which points towards the active site. An F110E

modification showed a reduction in cleavage by 25% for HJ substrates, and the effect was even

stronger for 5’ flap substrates, where the activity is reduced by 65%. The equivalent position in

FEN1 is V133 showing a critical involvement in stabilizing 5’ flap DNA by orienting the -1 nucleotide

for catalysis (Tsutakawa et al., 2011). We have also tested the effect of modifying H109, which

neighbors the critical F110. Even though it points away from the active site, a glutamate at this

Figure 5 continued

variants with mutated residues located at the chromodomain. Error bars depict the standard deviation calculated

from at least three independent experiments. Figure 5—figure supplement 2 shows representative gels from the

PAGE analysis. (D) GEN1 mutations used in this study. Locations of human GEN1 mutations used in biochemical

assays and corresponding residues in yeast MMS survival assays are highlighted in red. Active site residues E134,

E136, D155, D157 are marked in turquoise. (E) Schematic of the cruciform plasmid cleavage assay. A cruciform

structure can be formed in plasmid pIRbke8mut, which harbors an inverted-repeat sequence and is stabilized by

negative supercoiling. Introducing two cuts across the junction point within the lifetime of the resolvase-junction

complex yields linear products whereas sequential cleavage generates nicked products and the relaxed plasmid

cannot be a substrate for the next cleavage. (F) Cruciform plasmid cleavage assay with different GEN1 variants.

Plasmid pIRbke8mut was treated with 256 nM GEN1 each and reactions were carried out at 37˚C for 15 min.

Supercoiled, linear and nicked plasmids were separated by native agarose gel electrophoresis and visualized with

SYBR safe under UV light. (G) MMS survival assays with yeast yen1 variants. The survival of yen1 mutants was

tested under a yen1D mus81D background with indicated amounts of MMS. The top part shows mutations at

GEN1-DNA interfaces and the bottom part mutations at the chromodomain (compare Figure 5—figure

supplement 3 for all controls and expression tests). Figure 5—source data 2 gives a list of all yeast strains.

DOI: 10.7554/eLife.12256.013

The following source data and figure supplements are available for figure 5:

Source data 1. Oligonucleotides used in biochemical assays.

DOI: 10.7554/eLife.12256.014

Source data 2. Yeast strains used for MMS survival assays.

DOI: 10.7554/eLife.12256.015

Source data 3. In vitro activity measurements of different GEN12-505 variants.

DOI: 10.7554/eLife.12256.016

Figure supplement 1. DNA cleavage assays of different GEN1 mutations.

DOI: 10.7554/eLife.12256.017

Figure supplement 2. DNA cleavage assays of different GEN1 fragments.

DOI: 10.7554/eLife.12256.018

Figure supplement 3. MMS survival assays with yeast yen1 mutants.

DOI: 10.7554/eLife.12256.019
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position reduced 5’ flap cleavage to 83% and HJ cleavage recovered only at high substrate concen-

trations of 256 nM. Overall, the results suggest that F110 has a key position for DNA recognition

and processing.

Coordinated cleavage of HJs
Classical HJ resolvases introduce two symmetrical incisions across the junction point by coordinating

the action of two active sites. The first nick is rate-limiting and the second one takes place near-

simultaneously and within the lifetime of the resolvase-DNA complex. This mechanism has been well

studied for bacterial and bacteriophage HJ resolvases (Fogg and Lilley, 2000; Giraud-Panis and Lil-

ley, 1997; Pottmeyer and Kemper, 1992; Shah et al., 1997). Hence, it is thought that also GEN1

dimerizes upon binding to HJ substrates as indicated by coordinated cleavage and by an increase in

hydrodynamic radius compared to protein alone (Chan and West, 2015; Rass et al., 2010). In order

to further examine the effect of GEN1 modifications on HJ cleavage, we used a cruciform plasmid

cleavage assay to evaluate GEN1’s nicking function, as illustrated in Figure 5E. Here, the plasmid

pIRbke8mut served as a substrate that contains an inverted-repeat sequence extruding a cruciform

structure when supercoiled (Chan and West, 2015; Lilley, 1985; Rass et al., 2010). Coordinated

dual incision of the cruciform (by a dimer) leads to linear duplex products with slow migration,

whereas uncoordinated cleavage (by monomeric enzymes) results in nicked plasmids that migrate

even slower (Figure 5F). Cruciform structures are reabsorbed when the superhelical stress is

released upon single nicking and the DNA cannot serve as a substrate anymore.

We observed that wild type GEN1 resolved cruciform structures into linear products (Figure 5F)

in agreement with previous reports (Chan and West, 2015; Rass et al., 2010). GEN1C36E (down-

stream interface) and GEN1R54E (upstream interface) showed only residual activity confirming their

importance for HJ cleavage. The cruciform cleavage by F110E (thumb) was strongly reduced in line

with our nuclease assays using small DNA substrates (Figure 5B). GEN1R89E (disordered part of the

arch) did not show any appreciable effect, which suggests that this part of the arch is not directly

involved in HJ recognition. Taken together, our results suggest that the positioning of HJ junction

substrates both at the upper and the lower gateway is critical for productive cleavage. Furthermore,

none of the tested modifications at the different DNA interaction interfaces was able to uncouple

the coordinated HJ cleavage.

The chromodomain of GEN1 facilitates efficient substrate cleavage
Agreeing with the structural significance for DNA binding, the truncation of the chromodomain

(Dchromo, residues 2-389) showed a severe reduction (~3-fold) in HJ cleavage activity whereas all

longer GEN1 fragments containing the chromodomain (2-464, 2-505 and 2-551) showed full activity

(Figure 5—figure supplement 2). Interestingly, the effect of the chromodomain truncation is even

more pronounced for 5’ flap DNA cleavage than for HJs, showing a 7-fold reduction compared to

wild type (Figure 5C). The activity of GEN1 in the plasmid-based cruciform cleavage assay was also

severely hampered in the absence of the chromodomain (Figure 5F) showing only a weak band for

linear products and no increase for nicked plasmid, emphasizing the importance of the chromodo-

main for GEN1 activity.

Further, to test the influence of the positively charged side chains K404 and R406 on DNA bind-

ing, we introduced charge-reversal mutations to glutamates and assessed their nuclease activities.

Even though K404 and R406 are within hydrogen-bonding distance to the DNA, K404E, and R406E

showed no appreciable influence on GEN1’s nuclease activity. Only a slight reduction in cleavage of

5’ flap substrates was observed for GEN1R406E, whereas the processing of HJ substrates was not

altered significantly (Figure 5C). This reinforces the conclusion from our structural observations that

the chromodomain and the DNA interact through their backbones via van-der-Waals interactions.

Influence of phosphorylation-mimicking chromodomain modifications
PhosphoSitePlus (Hornbeck et al., 2014) lists two phosphorylation sites at residues T380 and T438

in GEN1 that were found in a T-cell leukemia and a glioblastoma cell line. These residues are located

in helix a15 and at the rim of the aromatic cage, respectively. Both phosphorylation sites are posi-

tioned to interrupt hydrophobic interactions between helix a15 and the chromodomain (Figure 5D

and Figure 4F). Therefore, we tested if the phosphorylation-mimicking modifications T380E and
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T438E had an effect on GEN1’s activity. At low enzyme concentrations (<50 nM) HJ cleavage was

similar to that of wild-type protein but at high concentrations the activity declined to less than 80%

(Figure 5C). For a 5’ flap substrate, the assay showed consistently lower activity than wild type,

recovering to about 80% cleavage at the highest enzyme concentration (Figure 5C). These results

suggest that phosphorylation of GEN1 chromodomain residues may regulate DNA recognition and

cleavage.

Physiological relevance of GEN1 interactions
To test the physiological relevance of the identified GEN1-DNA interactions, we investigated the

survival of Saccharomyces cerevisiae mutant strains expressing variants of Yen1 (GEN1 homolog)

after treatment with the DNA-damaging agent MMS (Figure 5G and Figure 5—figure supplement

3/source data 2). All Yen1 variants were expressed to a similar degree as endogenous Yen1, which

was confirmed by Western Blot analysis (Figure 5—figure supplement 3). Because of the functional

overlap of Mus81 and Yen1 in HR (Blanco et al., 2010) a double knockout (yen1D mus81D) was used

and complemented with different variants of Yen1.

The control strain, complemented with wild type Yen1, survived MMS concentrations of up to

0.01%, consistent with the described hypersensitivity of mus81D mutants (Blanco et al., 2010;

Interthal and Heyer, 2000). In stark contrast, cells containing either the active site mutant Yen1-

D41N (corresponding to GEN1D30N) or the downstream interface mutant Yen1-F47E (corresponding

to GEN1C36E) did not grow even at an MMS concentration as low as 0.0025% (Figure 5G). After

the expression of the upstream interface mutant Yen1-I97E (corresponding to GEN1R54E) cells

showed a slight but significant growth defect at high MMS concentrations (see panels for 0.0075%

and 0.01% MMS in Figure 5G). These results are therefore consistent with the in vitro cleavage

results carried out with GEN1 mutants and showing a reduction in activity for R54E and no activity

for C36E (see Figure 5C). As a last mutant in the nuclease core, we tested the K298E mutation which

is located in helix a10 of the H2TH motif in the downstream DNA-binding interface, and for which

we were unable to obtain the corresponding GEN1K219E modification for cleavage assays (compare

Figure 5D). This mutant displayed a strong sensitivity towards MMS but lower than the one

observed for the catalytic mutant, indicating that the mutant was partially functional in yeast

(Figure 5G).

We next investigated the effect of mutations in the aromatic cage of Yen1’s chromodomain (com-

pare Figure 3) and found that their severity was strongly position dependent. Mutation of R486E

and Y487A in Yen1, both of which are located near the base of the cage, corresponding to the

W418 position in GEN1 (see Figure 3C), showed a strong effect on MMS sensitivity (see Figure 5G),

similar to the one observed for the catalytic mutant, presumably due to a dysfunctional chromodo-

main. In contrast, mutations located further outside of the core (F478A and K484E) led to a less pro-

nounced MMS sensitivity. The same was true for the K469E variant, which corresponds to position

R406 at the chromodomain-DNA interface in GEN1 (see Figure 3A and 5F), and for residues at the

rim of the chromodomain (yen1-N526A, yen1-L528D and yen1-W529A), consistent with our in

vitro observation for GEN1T438E (slightly reduced activity, Figure 5C). No effect on MMS sensitivity

was detected for yen1-L530A, which corresponds to a conserved glutamate in chromodomains

(E440 in GEN1). Lastly, we found that the deletion of the chromodomain (Yen1-D452–560) lead to a

severe phenotype comparable to the active site mutant Yen1-D41N (Figure 5G and Figure 5—

source data 2). The Yen1 variant lacking the chromodomain was expressed to levels similar to the

full-length protein and we therefore conclude that the chromodomain is crucial for the function of

Yen1. Taken together, the functional data of Yen1 mutants in vivo and GEN1 mutants in vitro point

towards an essential and evolutionary conserved role of the chromodomain in GEN1/Yen1 proteins.

Discussion

Implications of the chromodomain
The structure of the human GEN1 catalytic core provides the missing structural information in the

Rad2/XPG family. The GEN1 structure complements recent reports on the structures of Rad2, EXO1

and FEN1, (Miętus et al., 2014; Orans et al., 2011; Tsutakawa et al., 2011). Thereby, it gives

insights how relatively conserved nuclease domains recognize diverse substrates in a structure-
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selective manner and act in different DNA maintenance pathways. In comparison with other Rad2/

XPG nucleases, GEN1 shows many modifications on common structural themes that give the ability

to recognize a diverse set of substrates including replication fork intermediates and HJs. The

upstream DNA interface of GEN1 lacks the ’acid block’ found in FEN1, instead it has a prominent

groove at the same position (compare Figure 1, ’upper gate’) with a strategically positioned R54

nearby. Furthermore, the helical arch in GEN1 misses helix a5, which forms a cap structure in FEN1

and EXO1 that stabilizes 5’ overhangs for cleavage. These features have implications for the recogni-

tion and cleavage of HJ substrates (see below). The most striking difference to other Rad2/XPG fam-

ily members is that the GEN1 nuclease core is extended by a chromodomain, which provides an

additional DNA anchoring point for the upstream DNA-binding interface. The evolutionarily con-

served chromodomain is important for efficient substrate cleavage as we showed using truncation

and mutation analyses. This finding opens new perspectives for the regulation of GEN1 and for its

interactions with other proteins. Chromodomains serve as chromatin-targeting modules (reviewed in

Blus et al., 2011; Eissenberg, 2012; Yap and Zhou, 2011), general protein interaction elements

(Smothers and Henikoff, 2000) as well as dimerization sites (Canzio et al., 2011; Cowieson et al.,

2000; Li et al., 2011). These possibilities are particularly interesting, as chromatin targeting of pro-

teins via chromodomains has been implicated in the DNA damage response. The chromatin remod-

eler CHD4 is recruited in response to DNA damage to decondense chromatin (reviewed in

O’Shaughnessy and Hendrich, 2013; Stanley et al., 2013). The chromodomains in CHD4 distin-

guish the histone modifications H3K9me3 and H3K9ac and determine the way how downstream DSB

repair takes place (Ayrapetov et al., 2014; Price and D’Andrea, 2013). It is plausible that GEN1

uses its chromodomain not only as a structural module to securely bind DNA but also for targeting

or regulatory purposes. Even though it was not possible to find any binding partner with a series of

tested histone tail peptides, we cannot exclude that the chromodomain is used as an interaction

motif or chromatin reader. It will therefore be interesting to extend our interaction analysis to a

larger number of peptides and proteins. Interestingly, the modifications GEN1L397E and GEN1Y424A

at the rim of the chromodomain did not alter DNA cleavage activity (Figure 5—figure supplement

1), however, mutations of residues at the rim of Yen1’s chromodomain show a phenotype, suggest-

ing an additional role like binding to an endogenous factor.

Another intriguing aspect of the chromodomain is that the conserved T438 at the rim of the aro-

matic cage and T380 at the closing helix a15 are both part of a casein kinase II consensus sequence

for phosphorylation (Ser/Thr-X-X-Asp/Glu). Ayoub et al., 2008 showed that the analogous threonine

in the chromodomain of CBX1 is phosphorylated in response to DNA damage and phosphorylation

disrupts the binding to H3K9me. We observed a reduction in DNA cleavage activity for the phos-

phorylation mimicking mutations T380E and T438E, which may suggest a regulatory role. They might

function together and in combination with other modifications to provide a way of functional switch-

ing at the chromodomain. Furthermore, Blanco et al., 2014 and Eissler et al., 2014 recently identi-

fied several CDK phosphorylation sites in an insertion in the Yen1 chromodomain which affects HJ

cleavage and together with phosphorylation of a nuclear localization signal (NLS) in the regulatory

domain restricts Yen1’s activity to anaphase. The insertion is not found in other chromodomains and

it is extended in Yen1 compared to GEN1, which is lacking these phosphorylation sites (compare

Figure 3A/B). Notably, the activity of Yen1 is negatively regulated by CDK-dependent phosphoryla-

tion (Blanco et al., 2014; Chan and West, 2014; Eissler et al., 2014; Matos et al., 2011), suggest-

ing that the chromodomain is targeted by cell cycle kinases. It also provides a likely explanation for

the different regulatory mechanisms found in GEN1 and Yen1 (Blanco and Matos, 2015; Chan and

West, 2014; Matos and West, 2014). Exploration of the regulatory function of the GEN1 chromo-

domain will be an important topic to follow up, and this may lead to the understanding of the pre-

cise regulation mechanism of GEN1 as well as its substrate recognition under physiological

conditions.

It is noteworthy that our analysis also revealed that the human transcription modulator AEBP2,

which is associated with the polycomb repression complex 2 (PRC2), contains a chromo-barrel

domain, which, to our knowledge, has not been reported so far.

Recognition of DNA substrates
The GEN1-DNA structure showed a considerable similarity to the other members of the Rad2/XPG

family, and this facilitated the generation of a combined model to understand substrate recognition
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of GEN1 (Figure 6). This was done by superimposing the protein part of the FEN1-DNA complex

(PDB 3q8k) onto our GEN1 structure and extending the DNA accordingly (Figure 6A/B). Remark-

ably, the superimposition of the proteins aligns the DNA from the FEN1 structure in the same regis-

ter as the DNA in the GEN1 complex at the upstream interface (Figure 6A and 6B insert).

Furthermore, the free 5’ and 3’ ends of the double flap DNA from the FEN1 structure point towards

the lower and the upper gateway in GEN1, respectively (Figure 6B). We extended the GEN1 struc-

ture by homology modeling of the disordered residues 79-92 (helix a4) in GEN1 (Figure 6B). In addi-

tion to the similarity of this part to FEN1, the model readily showed the arrangement forming an

arch structure. This would explain why GEN1 recognizes 5’ flap substrates efficiently, analogous to

FEN1, as the arch can clamp a single-stranded DNA overhang for productive cleavage. This also

explains why the F110E modification in the arch at helix a6 hampered 5’ flap cleavage severely. The

Figure 6. Substrate recognition features of GEN1. (A) Superposition of the protein part of the FEN1-DNA complex (PDB 3q8k, protein in gray, DNA in

black) onto the GEN1-HJ complex (protein in green and the DNA strands in different colors). The FEN1-DNA aligns with the same register as the

GEN1-DNA at the upstream interface. (B) Model for the recognition of a 5’ flap substrate by GEN1. The DNA was extended using the superimposition

from A. Homology modeling suggests an additional helix a4 (disordered residues 79–92) forming an arch with helix a6. The protein is shown in a

simplified surface representation with the same colors as in Figure 1 and structural elements are highlighted. The insert shows a zoomed in view of the

hydrophobic wedge with the modeled FEN1-DNA in gray. (C) Model for the dimerization of GEN1 upon binding to a HJ substrate based on the 5’ flap

model in B. The monomers interlock via both arches (a4-a6) and the hydrophobic wedges (a2-a3) contact each other. (D) Structure of the Thermus

thermophilus RuvC-HJ complex (PDB 4ld0). (E) Structure of the T4 endonuclease VII-HJ complex (PDB 2qnc). (F) Structure of the T7 endonuclease I-HJ

complex (PDB 2pfj). Individual monomers are in surface representation, colored in light blue and beige, respectively. DNA strands are shown as ladders

in different colors.

DOI: 10.7554/eLife.12256.020
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side chain points directly towards the active site and likely disturbs the stabilization of a 5’ overhang

for catalysis by charge repulsion. However, there are two features in GEN1 that vary from the

arrangement in FEN1 and EXO1 considerably. Helix a6 is longer (24 instead of 15 residues) and helix

a5 is missing in GEN1. As a result the arch points away from the DNA rather than forming a ’cap’

structure as it is observed in FEN1 and EXO1 (Orans et al., 2011; Tsutakawa et al., 2011). Further-

more, the modified arch in GEN1 provides an opening, marked as ’lower gate’ in Figure 6B. These

differences are likely the basis for GEN1’s versatile DNA recognition features.

Implications of an adjustable hatch in GEN1 for substrate discrimination
The diverging orientation of the arch (helices a4 and a6) in GEN1 compared to the one in FEN1 and

EXO1 (helices a4, a5, and a6) may have thus significance for the recognition of HJ substrates. By

pointing away from the active site the arch provides an opening to accommodate unpaired, single-

stranded DNA to pass along the arch at the lower gate (groove between a2 and a4) (Figure 6B

’lower gate’) from one GEN1 monomer to the upper gate (groove between a2-a3 and a14)

(Figure 6B ’upper gate’) of the other within a GEN1 dimer (Figure 6B/C). R54 is perfectly positioned

at the minor groove to guide the second cleavage strand to pass through the upper gate (compare

Figure 4 and Figure 6B/C, marked with a asterisk). In FEN1, this position is occupied by the ’acid

block’, which stabilizes a single 3’ flap of the unpaired substrate (Tsutakawa et al., 2011) and it

would not accommodate longer 3’ DNA overhangs. In our model, two GEN1 monomers come

together crosswise upon HJ binding (Figure 6C). The helical arches of both proteins likely provide

additional protein-protein interactions as well as protein-DNA contacts by packing against the back-

bone of opposite DNA arms (Figure 6C). As a result, the GEN1 dimer orients both active sites sym-

metrically across the junction point resembling the situation in bacterial RuvC (Figure 6D;

Bennett and West, 1995a; Górecka et al., 2013). This arrangement would ensure that both inci-

sions are introduced within the lifetime of the GEN1-HJ complex as observed biochemically by us

and others (Chan and West, 2015; Rass et al., 2010). The mechanism likely works in a coordinated

nick-and-counter-nick fashion, as shown for bacterial or bacteriophage HJ resolvases (Fogg and Lil-

ley, 2000; Giraud-Panis and Lilley, 1997; Pottmeyer and Kemper, 1992; Shah et al., 1997) and

recently for GEN1 (Chan and West, 2015).

The distance between both gates is bridged by unpaired bases in our GEN1-HJ model. This view

is supported by the observation that FEN1 unpairs two bases near the active site through interac-

tions with the hydrophobic wedge leading to strongly bent DNA arms between the upstream and

downstream DNA interfaces. This mechanism seems to be a common feature of Rad2/XPG nucleases

(Finger et al., 2013; Grasby et al., 2012; Tsutakawa et al., 2011). Consistent with this view, the

bacterial RuvC resolvase (Figure 6D) has also been shown to unfold HJ junctions (Bennett and

West, 1995b; Górecka et al., 2013). In the case of GEN1, the critical step would be the assembly

of the dimer around the junction point in a highly restraint way and the introduction of the first nick.

This releases the tension on the complex like a spring leading to an immediate second cut and sub-

sequent disassembly of the GEN1-HJ complex. Furthermore, a HJ does not provide free DNA ends

and adopts a structure that intrinsically restrains its degrees of freedom, thus inhibiting cleavage by

a single GEN1 monomer. Altogether we speculate that the arch (helix a4-a6) acts like a lever or

hatch switching between flap and HJ recognition modes. When a free 5’ end is available it closes

and clamps the flap, thus positions the DNA for cleavage. For the case of a HJ substrate, the arch

adopts an open conformation, allowing unpaired, single-stranded DNA to pass, while preventing the

correct positioning of the DNA for catalysis at first. HJ cleavage is inhibited until a second GEN1

monomer binds. This mechanism differs from the one used by bacterial or bacteriophage HJ resol-

vases, which act as obligate dimers binding to DNA substrates in a concerted way (compare

Figure 6D–F). Our model for DNA cleavage by GEN1 describes a conformational switch provided

by a flexible arch that can discriminate between substrates containing free 5’ ends or those with a

restraint structure like HJs. This aspect may explain our observation that GEN1 cleaves 5’ flap DNA

catalytically while stoichiometric amounts are required for HJ substrates (Figure 5A–C). Using a

switchable hatch in a spring-loaded mechanism would be an efficient way of preventing a single cut

at a HJ junction while allowing GEN1 to adapt to recognize various DNA substrates and perform dif-

ferent functional roles. Thus, GEN1 may have an intrinsic safety mechanism that ensures symmetrical

dual incision across a branch point. Further studies have to address the exact engagement

mechanism.
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GEN1 in a biological context
GEN1’s biological role is not fully understood yet. Yeast cells are viable without the GEN1 homolog

Yen1 even in the presence of DNA damaging agents as the Mus81-Eme1 complex can complement

the defect (compare Figure 5—figure supplement 3; Blanco et al., 2010). Consistently, both pro-

teins can cleave 5’ flaps and HJ substrates in vitro. However, GEN1 can cleave intact HJs symmetri-

cally whereas MUS81-EME1 is much more efficient with nicked DNA four-way junctions

(Castor et al., 2013; Wyatt et al., 2013). Matos et al., 2011 suggested that Yen1/GEN1 might

serve as a backup enzyme to resolve persistent HJs that have eluded other mechanisms of joint mol-

ecule removal before cytokinesis.

Our analysis infers that HJ cleavage is slower than 5’ flap cleavage (Figure 5B/C), bringing inter-

esting implications for a safety control of GEN1’s activity. GEN1 may have to assemble in an accu-

rate way before it can cleave a HJ. Likewise, it increases GEN1’s persistence time on HJs and opens

a window for branch migration for extending the length of recombined stretches of DNA. Moreover,

GEN1 recognizes various DNA substrates, which may point towards a general role in processing sub-

strates in different DNA maintenance pathways. GEN1 has been shown to cleave replication fork

intermediates, and it is implicated in the resolution of replication-induced HJs (Garner et al., 2013;

Sarbajna et al., 2014). Like MUS81-EME1, it might also be important for the processing of fragile

sites to ensure proper chromosome segregation (Ying et al., 2013). These functions have to be

tested systematically to understand GEN1’s biological role. In this context, the regulation of GEN1 is

an important factor and needs to be explored. Our study identified a chromodomain extending the

GEN1 nuclease core that might have a role in regulating the enzyme. An open question is the func-

tion and architecture of the remaining 444 amino acids at the C-terminus of GEN1. They are thought

to regulate the nuclease activity and control subcellular localization (Blanco et al., 2014; Chan and

West, 2014; Garcı́a-Luis et al., 2014). It is very likely that new interaction sites and post-transla-

tional modifications in this region will be discovered in future. The presented structure together with

additional studies will help to unravel these questions and to obtain a comprehensive view of the

functions of the Rad2/XPG nucleases.

Materials and methods

Experimental procedures
Protein expression and purification
Wild type human GEN1 and truncations thereof (residues 2-551, 2-505, 2-464, 2-389) were amplified

by PCR from IMAGE clone 40125755 (Mammalian Gene collection, natural variant S92T, S310N, Uni-

ProtID Q17RS7) and cloned into a self-made ligation-independent cloning vector with various C-ter-

minal tags followed by His8. Truncated versions were designed based on limited proteolysis in

combination with domain prediction and functional assays to determine the smallest yet active frag-

ment. The N-terminal methionine was cleaved by cellular methionyl-aminopeptidase, which is an

essential requirement in the Rad2/XPG family as the N-terminus (conserved residue G2) folds

towards the active site. Mutations were introduced by site-directed mutagenesis using Phusion Poly-

merase (NEB, Frankfurt/Main, Germany). All recombinant proteins were expressed in the E. coli

BL21(DE3) pRIL strain (MerckMillipore, Darmstadt, Germany). Cells were grown at 37˚C until mid-log

phase and induced overnight with 0.2 mM IPTG at 16˚C. Cells were harvested by centrifugation and

resuspended in lysis buffer containing 1x phosphate buffered saline (PBS) with additional 500 mM

NaCl, 10% (v/v) glycerol, 2 mM DTT, 1 mM EDTA, 1 mM leupeptin, 1 mM pepstatin A, 0.1 mM AEBSF

and 2 mM aprotinin and lyzed by sonication. Cell debris was removed by centrifugation (75 600 g for

45 min), the clarified lysate was applied onto Complete HisTag Nickel resin (Roche Diagnostics,

Mannheim, Germany) and washed with buffer A consisting of 20 mM Tris-HCl pH 7.5, 500 mM NaCl,

10% (v/v) glycerol, 2 mM DTT and followed by a chaperone wash step with 20 mM Tris-HCl pH 7.5,

500 mM NaCl, 2 mM ATP, 5 mM MgCl2, 10% (v/v) glycerol and 2 mM DTT. The protein was eluted

with buffer A containing 300 mM imidazole. The tag was cleaved, followed by cation exchange chro-

matography using a HiTrap SP HP column (GE Healthcare, Freiburg, Germany) with a linear gradient

from 150 mM to 450 mM NaCl. Peak fractions were pooled and further purified by size-exclusion

chromatography on a HiLoad 16/60 Superdex 200 (GE Healthcare) equilibrated with 20 mM Tris-HCl
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pH 7.5, 100 mM NaCl, 5%(v/v) glycerol, 0.1 mM EDTA and 2 mM TCEP. Peak fractions were pooled,

concentrated, flash-frozen in liquid nitrogen and stored at -80˚C.

Crystallization and data collection
GEN12-505 D30N and DNA (4w1010-1 GAATTCCGGATTAGGGATGC, 4w1010-2 GCATCCCTAAGC

TCCATCGT, 4w1010-3 ACGATGGAGCCGCTAGGCTC, 4w1010-4 GAGCCTAGCGTCCGGAATTC)

were mixed at a molar ratio of 2:1.1 at a final protein concentration of 14 mg/ml including 1 mM

MgCl2 and co-crystallized by sitting drop vapor diffusion. Drops were set up by mixing sample with

mother liquor consisting of 100 mM MES-NaOH pH 6.5 and 200 mM NaCl at a 2:1 ratio at room

temperature. Crystals grew within 2 days, and several iterations of streak seeding were needed for

obtaining diffraction quality crystals. For data collection, crystals were stepwise soaked in 10%, 20%,

and 30% (v/v) glycerol in 100 mM MES-NaOH pH 6.5, 200 mM NaCl and 5% PEG 8000 and flash-fro-

zen in liquid nitrogen. Diffraction data were collected at beamline PXII of the Swiss Light Source

(SLS, Villigen, Switzerland) at 100 K with a Pilatus 6M detector. In order to obtain phase information,

crystals were soaked for 10–30 min in 1 mM [Ta6Br12]Br2, flash-frozen and data were collected at the

Ta L(III)-edge. In addition, seleno-methionine (SeMet)-substituted protein was expressed in M9

media supplemented with SeMet, purified, and crystallized according to the protocol above and

data were collected at the Se K-edge.

Structure determination and refinement
All data were processed with XDS (Table 1, Kabsch, 2010). HKL2MAP (Pape and Schneider, 2004)

found 12 tantalum and 8 selenium positions, which were used in a combined MIRAS strategy (multi-

ple isomorphous replacement with anomalous scattering) in autoSHARP (Vonrhein, et al., 2007) to

determine the structure of the GEN1-HJ complex. The obtained solvent-flattened experimental map

was used to build a model with PHENIX (Adams et al., 2010) combined with manual building. The

structure was then further refined by iterative rounds of manual building in COOT (Emsley and Cow-

tan, 2004), refinement with PHENIX and assisted by the PDB_REDO server (Joosten, et al., 2014).

The structure was visualized and analyzed in PYMOL (Delano, 2002). Electrostatic surface potentials

were calculated with PDB2PQR (Dolinsky et al., 2004) and APBS (Baker et al., 2001).

Nuclease assay
All DNA substrates (Figure 5—source data 1) were synthesized by Eurofins/MWG (Ebersberg, Ger-

many), resuspended in annealing buffer (20 mM Tris-HCl pH 8.0, 50 mM NaCl, 0.1 mM EDTA),

annealed by heating to 85˚C for 5 min and slow-cooling to room temperature. Different amounts of

GEN1 proteins (as indicated) were mixed with 40 nM 6FAM-labeled DNA substrates in 20 mM Tris-

HCl pH 8.0, 50 ng/ml bovine serum albumin (BSA) and 1 mM DTT. Reactions were initiated by adding

5 mM MgCl2, incubated at 37˚C for 15 min and terminated by adding 15 mM EDTA, 0.3% SDS and

further, DNA substrates were deproteinized using 1 mg/ml proteinase K at 37˚C for 15 min. Products

were separated by 8% 1x TBE native polyacrylamide gel electrophoresis, the fluorescence signal

detected with a Typhoon FLA 7000 phosphoimager (GE Healthcare), quantified with IMAGEJ (GE

Healthcare) and visualized by GNUPLOT (Williams et al., 2015).

Cruciform plasmid cleavage assay
The cruciform plasmid pIRbke8mut was a gift from Stephen West’s lab (Rass et al., 2010), and it was

originally prepared by David Lilley’s lab (Lilley, 1985). 50 ng/ml plasmid were mixed with 20 mM

Tris-HCl pH 8.0, 50 mM potassium glutamate, 5 mM MgCl2, 50 ng/ml BSA and 1 mM DTT and pre-

warmed at 37˚C for 1 hr to induce the formation of a cruciform structure. Reactions were initiated by

adding indicated amounts of GEN1, incubated at 37˚C for 15 min and stopped as for DNA cleavage

assays. The products were separated by 1% 1xTBE native agarose gel electrophoresis, stained with

SYBR safe (Life Technologies, Darmstadt, Germany) and visualized under UV light.

Sequence alignments and phylogenetic analysis
Sequences of GEN1 proteins from different organisms as well as all human chromodomain proteins

were aligned to the human GEN1 sequence using the programs HHPRED (Söding et al., 2005), PSI-

BLAST and further by manual adjustments. Alignments were tested by back-searches against RefSeq
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or HMM databases. A phylogenetic tree was calculated by the program PHYML with 100 bootstraps

using the alignment in Figure 3—figure supplement 1 and a BLOSUM62 substitution model. The

tree was displayed with DENDROSCOPE (Huson and Scornavacca, 2012).

Histone peptide pull-down assay
The GEN1 chromodomain with a C-terminal His8-tag was immobilized on complete HisTag Nickel

resin and washed twice with binding buffer consisting of 20 mM Tris-HCl pH 7.5, 200 mM NaCl, 5%

glycerol, 0.1 mM EDTA, 0.05% (v/v) Tween-20 and 2 mM TCEP. Peptide mixtures containing 0.4 mM

fluorescein labeled histone peptides were incubated with beads at 4˚C for 1 hr and washed twice

with binding buffer. Immobilized proteins were eluted with binding buffer supplemented with 300

mM imidazole and separated on 20% SDS-PAGE. Fluorescein-labeled peptides were visualized by

detecting the fluorescence signal with a Typhoon FLA 7000 phosphoimager (GE Healthcare).

Yeast genetics and MMS survival assay in Saccharomyces cerevisiae
All yeast strains are based on W303 Rad5+ (see Figure 5—source data 2 for a complete list).

yen14 or yen14 mus814 strains were transformed with an integrative plasmid expressing mutant

versions of YEN1. Freshly grown over-night cultures were diluted to 1x107 cells/ml. 5-fold serial dilu-

tions were spotted on YPD plates with/without MMS (methyl methanesulphonate, concentrations as

indicated) and incubated for 2 days at 30˚C. The expression of 3FLAG-tagged Yen1 constructs was

verified by SDS-PAGE and Western Blot analysis. Proteins were detected using a mouse monoclonal

anti-FLAG M2-peroxidase (HRP) antibody (Sigma-Aldrich, München, Germany).

Database entry
The coordinates of the human GEN1-Holliday junction complex have been deposited in the Protein

Data Bank (PDB code 5t9j).
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Figure 1. Architecture of human GEN1. (A) Domain architecture of human GEN1. The structurally unknown

regulatory domain (residues 465–908) is shown with dotted lines. (B) Overview of the catalytic core of GEN1 in

complex with HJ DNA. The protein resembles the shape of a downwards-pointing right hand with helix a6 as the

thumb. The protein is depicted in half transparent surface representation with secondary structure elements

underneath. The DNA is shown in ladder representation with individual strands in different colors. The coloring of

GEN1 follows domain boundaries: intertwining XPG-N and XPG-I in green, 5’->3’ exonuclease C-terminal domain

(EXO) in blue, chromodomain in pink, unassigned regions in gray. Active site residues (E134, E136, D155, D157)

are highlighted in orange. (C) Electrostatic surface potential of GEN1. The coloring follows the potential from -5

(red) to +5 kT/e (blue). The DNA-binding interfaces and the position of the hydrophobic wedge are marked in

Figure 1 continued on next page
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Figure 1 continued

yellow. (D) Secondary structure elements of the catalytic core of GEN1 in cartoon representation with the same

colors as before. Dotted lines represent parts that are not resolved in the crystal structure. The numbering follows

a unified scheme for the Rad2/XPG family (compare Figure 2) for a-helices, b-sheets and 310-helices (h). (E)

Experimental electron density map (autoSHARP, solvent flattened, contoured at 1s) drawn around the HJ in the

GEN1 complex. The DNA model is shown in ball-stick representation with carbon atoms of individual strands in

different colors (yellow, light blue, magenta, green) and oxygen atoms in red, phosphor atoms in orange, nitrogen

atoms in dark blue. (F) Structural comparison of Rad2/XPG family nucleases. Proteins are shown in a simplified

surface representation with important structural elements in cartoon representation and DNA in ladder

representation. The color scheme is the same as in B. Figure 1—figure supplement 1 shows the content of the

asymmetric unit.

DOI: 10.7554/eLife.12256.003
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Figure 1—figure supplement 1. Content of the asymmetric unit of the GEN1-HJ crystal. One protein monomer is

shown in surface representation with secondary structure cartoons underneath, the other one only in cartoon

representation with a-helices as cylinders and b-strands as arrows. The HJ DNA bridges between two protein

monomers in the asymmetric unit. The active sites are labeled with a turquoise ball each.

DOI: 10.7554/eLife.12256.004
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Figure 2. Alignment of the nuclease cores of Rad2/XPG-family proteins. The alignment is based on known crystal structures: human GEN1 (PDB 5t9j,

this study), yeast Rad2 (PDB 4q0w), human FEN1 (PDB 3q8k), human EXO1 (3qe9). Secondary structure elements are depicted on top of the sequence

with dark blue bars for a-helices, light blue bars for 310-helices and green arrows for b-sheets. The numbering follows a unified scheme for the

superfamily. Functional elements are labeled and described in the main text. Sequences are colored by similarity (BLOSUM62 score) and active site

residues are marked in red. Mutations analyzed in this study are marked with an orange triangle and DNA contacts found in the human GEN1–HJ

structure have a dark green dot. Disordered or missing parts in the structures are labeled in small letters or with x.

DOI: 10.7554/eLife.12256.006
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Figure 3. Chromodomain comparison. (A) Sequence alignment of GEN1 chromodomains from different organisms: hsGEN1 (Homo sapiens), clGEN1

(Canis lupus), mmGEN1 (Mus musculus), drGEN1 (Danio rerio), atGEN1/2 (Arabidopsis thaliana), cgGEN1 (Crassostrea gigas), scYEN1 (Saccharomyces

cerevisiae). The presence of a chromodomain is conserved from yeast to human with Caenorhabditis elegans as an exception. Secondary structure

elements of the GEN1 chromodomain are shown on top. The sequence coloring is based on a similarity matrix (BLOSUM62). The corresponding

positions of the DNA-interaction site in human GEN1 is marked with a red box and residues of the aromatic cage are highlighted with a yellow box. (B)

GEN1 has a canonical chromodomain fold of three antiparallel beta-sheets packed against an a-helix. (C) The arrangement of the aromatic cage in

GEN1 is comparable to other chromodomains but less aromatic and slightly larger. (D) The superposition of different chromodomains places cognate

binding peptides of hsMPP8 and mmCBX7 (and others) into the aromatic cage. (E) The aromatic cage of GEN1 is closed by helix a15. Panels B–D show

the chromodomains of hsGEN1 (pink, PDB 5t9j), hsCBX3 (gray, PDB 3kup) hsSUV39H1 (green, PDB 3mts), hsMPP8 (yellow, PDB 3lwe), dmHP1a (orange,

chromo shadow PDB 3p7j), dmRHINO (cyan, PDB 4quc/3r93), mmCBX7 (light blue, PDB 4x3s; compare Figure 3—source data 1). (F) Phylogenetic tree

of all known human chromodomains. GEN1 is distantly related to the CBX chromo-shadow domains and CDY chromodomains. The corresponding

alignment for calculating the phylogenetic tree is shown in Figure 3—figure supplement 1. GEN1 is colored in black, chromobox (CBX) proteins are

colored in red, interspersed by SUV39H histone acetylases (orange) and chromodomain Y-linked (CDY) proteins (yellow). Chromo-barrel domain

proteins are colored in green and chromodomain-helicase DNA-binding (CHD) proteins are in blue. Chromodomains and chromo-shadow domains

from the same protein are labeled with 1 and 2, respectively. Stable branches with boostrap values equal or higher than 0.8 are marked with a black

dot. The binding of the GEN1 chromodomain to a set of histone peptides was tested but no interaction was detected (Figure 3—source data 2 and

Figure 3—figure supplement 2).

DOI: 10.7554/eLife.12256.007

The following source data is available for figure 3:

Source data 1. Proteins found in a DALI search.

DOI: 10.7554/eLife.12256.008

Source data 2. N-terminally fluorescein-labeled peptides used for chromodomain binding assays.

DOI: 10.7554/eLife.12256.009
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Figure 3—figure supplement 1. Sequence alignment of all known human chromodomains. The alignment was used to calculate the phylogenetic tree

in Figure 3F. Colors follow the CLUSTAL X coloring scheme.

DOI: 10.7554/eLife.12256.010
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Figure 3—figure supplement 2. Histone peptide pull-

down assay. Nickel resin-immobilized GEN1

chromodomain was incubated with the mixtures of

fluorescein-labeled histone peptides, washed, bound

peptides eluted and separated by 20% SDS-PAGE. Mix

1 and 2 did not show any binding, and non-specific

binding to the resin was found with Mix 3. The

smearing of the bands is due to the small size of the

peptides ( ~ 1.5 kDa). I, C and E represent input, resin

control and elution, respectively. Mix 1: H3K9,

H3K9me1, H3K9me2, and H3K9me3. Mix 2: H3K27,

H3K27me1, H3K27me2, and H3K27me3. Mix 3:

H3K36me1, H3K36me2, H3K36me3, and H3K36Ac.

DOI: 10.7554/eLife.12256.011
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Figure 4. DNA interactions in the GEN1-DNA complex. (A) Schematic of the GEN1-DNA interactions at the upstream interface. The coloring is the

same as in Figure 1. The nuclease core (green and blue) interacts with the uncleaved strand and the chromodomain (pink) contacts the complementary

strand. Hydrogen bonds are shown with blue dashed lines and van-der-Waals contacts are in red dotted lines. (B) Interactions at the hydrophobic

wedge. The end of the DNA double helix docks onto the hydrophobic wedge formed by helices a2 and a3. (C/D) Interactions with the uncleaved

strand in two views. All key residues form sequence-independent contacts to the DNA backbone. R54 reaches into the minor groove of the DNA. The

complementary DNA strand has been removed for clarity (E/F) Interactions of the chromodomain with the complementary strand in two views. The

backbone of residues 406–410 (b-hairpin b8-b9) abuts the DNA backbone. R406 has a supporting role in the interaction and R408 forms a polar

interaction with Q65, which establishes a connection between the chromodomain and the nuclease core. Helix a15 makes hydrophobic interactions

with the aromatic cage and thus blocks it.

DOI: 10.7554/eLife.12256.012
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Figure 5. Functional analysis of GEN1. (A) Nuclease activity of GEN1 with HJ and 5’flap DNA. 40 nM 5’ 6FAM-

labeled substrates were mixed with indicated amounts of GEN1. Reactions were carried out at 37˚C for 15 min,

products were separated by native PAGE and analyzed with a phosphoimager. Figure 5—source data 1 gives the

sequences of DNA oligos used in biochemical assays and Figure 5—source data 3 shows activity measurements.

(B) Quantification of nuclease assays of wild type GEN1 and variants with mutated residues located at the protein-

DNA interfaces. Percentage of cleavage was plotted against the enzyme concentration. Error bars depict the

standard deviation calculated from at least three independent experiments. Figure 5—figure supplement 1

Figure 5 continued on next page
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Figure 5 continued

shows representative gels from the PAGE analysis. (C) Quantification of nuclease assays of wild type GEN1 and

variants with mutated residues located at the chromodomain. Error bars depict the standard deviation calculated

from at least three independent experiments. Figure 5—figure supplement 2 shows representative gels from the

PAGE analysis. (D) GEN1 mutations used in this study. Locations of human GEN1 mutations used in biochemical

assays and corresponding residues in yeast MMS survival assays are highlighted in red. Active site residues E134,

E136, D155, D157 are marked in turquoise. (E) Schematic of the cruciform plasmid cleavage assay. A cruciform

structure can be formed in plasmid pIRbke8mut, which harbors an inverted-repeat sequence and is stabilized by

negative supercoiling. Introducing two cuts across the junction point within the lifetime of the resolvase-junction

complex yields linear products whereas sequential cleavage generates nicked products and the relaxed plasmid

cannot be a substrate for the next cleavage. (F) Cruciform plasmid cleavage assay with different GEN1 variants.

Plasmid pIRbke8mut was treated with 256 nM GEN1 each and reactions were carried out at 37˚C for 15 min.

Supercoiled, linear and nicked plasmids were separated by native agarose gel electrophoresis and visualized with

SYBR safe under UV light. (G) MMS survival assays with yeast yen1 variants. The survival of yen1 mutants was

tested under a yen1D mus81D background with indicated amounts of MMS. The top part shows mutations at

GEN1-DNA interfaces and the bottom part mutations at the chromodomain (compare Figure 5—figure

supplement 3 for all controls and expression tests). Figure 5—source data 2 gives a list of all yeast strains.

DOI: 10.7554/eLife.12256.013

The following source data is available for figure 5:

Source data 1. Oligonucleotides used in biochemical assays.

DOI: 10.7554/eLife.12256.014

Source data 2. Yeast strains used for MMS survival assays.

DOI: 10.7554/eLife.12256.015

Source data 3. In vitro activity measurements of different GEN12-505 variants.

DOI: 10.7554/eLife.12256.016
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Figure 5—figure supplement 1. DNA cleavage assays of different GEN1 mutations. All GEN12-505 mutations were generated by site-directed

mutagenesis and purified with the same procedure. Experiments were repeated three times and a representative gel picture is shown for each protein

variant in Figure 5.

DOI: 10.7554/eLife.12256.017
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Figure 5—figure supplement 2. DNA cleavage assays of different GEN1 fragments. (A) 5’ 6FAM labeled four-way junction or 5’flap DNA (40 nM) were

mixed with varying concentrations of GEN1 truncations (0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256 nM, respectively). (B) Quantification of activity assays.
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Figure 5—figure supplement 3. MMS survival assays with yeast yen1 mutants. The survival of yen1 mutants was

tested in a yen1D or yen1D mus81D background with indicated amounts of MMS (compare Figure 5 and

Figure 5—source data 2). Mus81 overlaps with Yen1 functionally, therefore yen1D knock-out strains are fully

viable even in the presence of MMS, and hypersensitivity is only seen in the double knock-out. (A) Mutations in the

chromodomain. (B) Mutations at protein-DNA interfaces. (C) Yen1 truncations and chromodomain deletion. (D)

Protein expression test (Western Blot analysis) of 3FLAG tagged Yen1 variants. Asterisk denotes a cross-reactive

band.
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Figure 6. Substrate recognition features of GEN1. (A) Superposition of the protein part of the FEN1-DNA complex (PDB 3q8k, protein in gray, DNA in

black) onto the GEN1-HJ complex (protein in green and the DNA strands in different colors). The FEN1-DNA aligns with the same register as the

GEN1-DNA at the upstream interface. (B) Model for the recognition of a 5’ flap substrate by GEN1. The DNA was extended using the superimposition

from A. Homology modeling suggests an additional helix a4 (disordered residues 79–92) forming an arch with helix a6. The protein is shown in a

simplified surface representation with the same colors as in Figure 1 and structural elements are highlighted. The insert shows a zoomed in view of the

hydrophobic wedge with the modeled FEN1-DNA in gray. (C) Model for the dimerization of GEN1 upon binding to a HJ substrate based on the 5’ flap

model in B. The monomers interlock via both arches (a4-a6) and the hydrophobic wedges (a2-a3) contact each other. (D) Structure of the Thermus

thermophilus RuvC-HJ complex (PDB 4ld0). (E) Structure of the T4 endonuclease VII-HJ complex (PDB 2qnc). (F) Structure of the T7 endonuclease I-HJ

complex (PDB 2pfj). Individual monomers are in surface representation, colored in light blue and beige, respectively. DNA strands are shown as ladders

in different colors.
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The Slx4-Dpb11 scaffold complex: coordinating the response
to replication fork stalling in S-phase and the subsequent mitosis

Lissa N Princzy, Dalia Gritenaitey, and Boris Pfander*
Max-Planck Institute of Biochemistry; DNA Replication and Genome Integrity; Martinsried, Germany
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Replication fork stalling at DNA
lesions is a common problem during

the process of DNA replication. One way
to allow the bypass of these lesions is via
specific recombination-based mechanisms
that involve switching of the replication
template to the sister chromatid. Inherent
to these mechanisms is the formation of
DNA joint molecules (JMs) between sister
chromatids. Such JMs need to be disen-
tangled before chromatid separation in
mitosis and the activity of JM resolution
enzymes, which is under stringent cell cycle
control, is therefore up-regulated inmitosis.
An additional layer of control is facilitated
by scaffold proteins. In budding yeast, spe-
cifically during mitosis, Slx4 and Dpb11
form a cell cycle kinase-dependent complex
with the Mus81-Mms4 structure-selective
endonuclease, which allows efficient JM res-
olution by Mus81. Furthermore, Slx4 and
Dpb11 interact even prior to joining
Mus81 and respond to replication fork
stalling in S-phase. This S-phase complex is
involved in the regulation of theDNAdam-
age checkpoint as well as in early steps of
template switch recombination. Similar
interactions and regulatory principles are
found in human cells suggesting that Slx4
and Dpb11 may have an evolutionary con-
served role organizing the cellular response
to replication fork stalling.

Template Switch Recombination
– from Initiation to

Disentanglement of DNA Joint
Molecules

Accurate inheritance of the genetic
information is a fundamental requirement
of life. DNA replication accuracy is

critically dependent on the integrity of the
DNA template, which is, however, con-
stantly compromised by DNA lesions aris-
ing from intrinsic and extrinsic sources. It
has been estimated that a human cell
acquires between 15.000 and 100.000
DNA lesions per day.1,2 A large fraction
of DNA lesions are modifications of indi-
vidual bases, which affect only one DNA
strand. To detect these lesions in the vast
genomic landscape is challenging for cel-
lular DNA repair pathways. Hence, the
number of such base damages is estimated
to be high at steady-state. Importantly,
these base damages may present obstacles
for replicative polymerases during DNA
replication and eukaryotic cells are fre-
quently confronted with polymerase stall-
ing. This block needs to be overcome in
order to complete replication and to avoid
replication fork collapse, which causes
chromosome breaks and genome
instability.3

In order to bypass polymerase-stalling
DNA lesions, two fundamentally different
mechanisms can be utilized: translesion
synthesis (TLS) and template switching
(TS). In TLS, the stalled replicative poly-
merase is exchanged by one of several spe-
cialized translesion polymerases. These
polymerases are characterized by a higher
tolerance for structurally distorted DNA
in their active site. This attribute allows
translesion polymerases to read and syn-
thesize across certain DNA lesions, but
because of their reduced fidelity this path-
way is also potentially mutagenic (see4 for
a recent summary about TLS). Alterna-
tively, cells can avoid the damaged DNA
template, but utilize the already replicated
sister chromatid as a template instead.
Several recombination-based mechanisms
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have been suggested to mediate TS
(Fig. 1). These include: (A) repriming and
strand invasion by a gapped DNA sub-
strate behind the replication fork, (B) con-
trolled fork reversal and (C) fork
breakdown and recombination-dependent
restart. Whether all 3 mechanisms univer-
sally operate in eukaryotic cells and what
the molecular determinants are is a matter
of active research (see Refs.5,6 for recent
summaries about TS).

Common to all TS mechanisms is the
formation of covalent linkages between
sister chromatids termed joint molecules
(JMs, Fig. 1). Importantly, JMs need to
be disentangled before sister chromatid
separation in mitosis in order to avoid
chromosome breakage. Two mechanisti-
cally distinct pathways—termed dissolu-
tion and resolution—allow JM processing
(Fig. 1, Refs.7-9).

Dissolution is mediated by the yeast
Sgs1-Top3-Rmi1 complex (STR complex;
BLM-TopoIIIa-RMI1-RMI2 (BTR com-
plex) in vertebrates). Here, JMs (most
likely having the form of double-Holliday
junctions or pseudo double-Holliday
junctions) are first converted to hemicate-
nanes by the action of the Sgs1/BLM heli-
case and the Top3 topoisomerase.10-12

The hemicatenanes are subsequently dis-
sociated by the action of the Top3 topo-
isomerase and possibly other type IA
topoisomerases.10,11,13

Resolution occurs through the action
of structure-selective endonucleases. So far
Slx4-Slx1, Mus81-Mms4 and Yen1 in
budding yeast (SLX4-SLX1, MUS81-
EME1, GEN1 in vertebrates) have been
implicated in this process.8,9,14 These
nucleases belong to different families and
are thought to resolve Holliday junctions
by different mechanisms. The XPG family
nuclease Yen1 cleaves HJs by introducing
two symmetrical cuts.15 In contrast, the
XPF family nuclease Mus81 has a broad
substrate specificity and cleaves HJs rela-
tively poorly.16,17 Specifically in mamma-
lian cells, it has been shown that MUS81-
EME1 and SLX1-SLX4 functionally
cooperate in HJ resolution.17-19 The four
proteins can form a complex (SLX-MUS),
which displays enhanced activity, enabling
HJ resolution via a nick and counter-nick
mechanism.17 Until recently however, it
remained questionable whether a complex
similar to SLX-MUS existed outside of
the vertebrate system.20,21 It is further-
more still unclear, whether Slx1 has a gen-
eral, evolutionary conserved role in

processing JMs arising from stalled
replication.

The last years have brought significant
progress in our understanding of the regu-
lation of dissolution and resolution mech-
anisms. In budding yeast, JM resolution
by both Mus81 and Yen1 is tightly regu-
lated by the cell cycle and restricted up
until mitosis,22-26 while JM dissolution by
the STR complex is cell cycle-independent
(Fig. 2). Mus81-Mms4 is targeted by the
cell cycle kinases Cdk1 and Cdc5 (Polo-
like kinase) and these phosphorylation
events strongly up-regulate the catalytic
activity upon entry into mitosis
(Fig. 2,24,25). Yen1 activation occurs even
later in the cell cycle as it is inhibited by
Cdk1 phosphorylation, and only becomes
active once these phosphorylation marks
are removed by the Cdc14 phosphatase in
anaphase (Fig. 2,22). One reason for
restriction of the resolution enzymes to
mitosis may be that these nucleases need
to be restrained from acting on stalled rep-
lication forks or other S-phase intermedi-
ates in order to avoid interference with the
template switch reaction.27 Additionally,
this cell cycle regulation creates a hierar-
chy in the dissolution-resolution system,
enabling the STR complex to dissolve JMs

Figure 1. Overview of recombination-based pathways to replication fork stalling. Parental DNA strands are shown in black and dark blue; newly synthe-

sized DNA strands are shown in gray and light blue. In order to facilitate the bypass of a fork stalling DNA lesion (red triangle) template switch recombi-

nation can be initialized by different mechanisms. First, after replication fork stalling is circumvented by a re-priming event downstream of the DNA

lesion, the gapped DNA may engage in a strand invasion (arrow) with the fully replicated sister chromatid behind the replication fork (post-replicative).

Second, fork reversal and synthesis across the lesion (dotted arrow) may lead to the formation of JMs. Third, stalled replication fork structures may be

cleaved leading to a one-ended DSBs, which may initialize strand invasion. Bypass synthesis and a second strand invasion leads to the formation of a JM,

most likely in the shape of a double Holliday-Junction or pseudo Holliday-Junction (containing single-stranded DNA). These JMs can be disentangled by

dissolution mechanisms yielding Non-Crossover products or by resolution mechanisms yielding a mixture of Non-Crossover and Crossover products.

Alternative bypass mechanisms such as recombination-dependent restart of reversed forks/stalled replication forks leading to single Holliday junctions

and requiring processing specifically by resolution enzymes are not shown.
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before the resolution enzymes
are activated. This hierarchy
favors dissolution, which
exclusively generates Non-
Crossover products, and dis-
favours resolution, which
results in a mixture of Cross-
over and Non-Crossover
products. Therefore, this hier-
archy may be a mechanism to
protect mitotically dividing
diploid cells from loss-of-
heterozygosity.

Recently, we described an
additional layer of control in
the response to stalled replica-
tion forks and in JM resolu-
tion.28 This regulation
depends on the formation of
a protein complex containing
several scaffold proteins (Slx4,
Dpb11 and Rtt107), which is
exquisitely regulated by cell cycle- and
DNA damage-dependent kinases. This
complex can first be observed in S-phase
cells and an slx4 mutation, which impairs
the formation of this complex, causes
defects in the response to replication fork
stalling drugs, persistent DNA lesions/
repair intermediates and a misregulated
DNA damage checkpoint. Importantly,
later in the cell cycle, in mitosis, Mus81-
Mms4 joins the Slx4-Dpb11 complex
thereby promoting its ability to resolve
JMs.

The Slx4 and Dpb11 Scaffold
Proteins Organize the Response

to Replication Fork Stalling

Scaffold proteins, even though devoid
of catalytic activity, have important regu-
latory functions in almost every cellular
process. Prominent examples are Rad9
(53BP1), a mediator of the DNA damage
checkpoint, and the sliding clamp PCNA,
which serves as a docking site for many
proteins at replication forks.29,30 In both
cases, protein-protein interactions are
dependent on post-translational modifica-
tions enabling a fine-tuned regulation.

The Slx4 scaffold protein has impor-
tant functions in response to replication
fork stalling, but also in the repair of
DSBs and inter-strand crosslinks, as well

as in the regulation of the DNA damage
checkpoint.31-35 Accordingly, studies in
mammalian cells and yeasts have identi-
fied several Slx4 binding partners and
phosphorylation of Slx4 was found to be
crucial for the differential regulation of
the different Slx4 functions.33,35-37 How-
ever, many important questions regarding
Slx4 remain unanswered. Are there dis-
tinct Slx4 complexes? How do these com-
plexes influence each other? How similar
are Slx4 functions between different
organisms?

Our recent work provides new insights
into the formation and the function of
one Slx4-containing complex in budding
yeast. This complex consists of at least
three scaffold proteins—Slx4, Dpb11 and
Rtt107 (Fig. 3A, Refs.28,37). In agreement
with previous work37 we noticed that the
formation of this complex is stimulated by
replication fork stalling. The formation of
the Slx4-Dpb11 complex is heavily regu-
lated by post-translational modifications
and the scaffold complex integrates at least
two cellular signals: the cell cycle phase
through Cdk1-dependent phosphoryla-
tion of Slx4 serine 486 and the presence of
DNA lesions or repair intermediates in a
DNA damage checkpoint-dependent
manner.28,34,37

Importantly, we additionally observed
that the structure-selective endonuclease
Mus81-Mms4 interacts with the Slx4-

Dpb11 complex (Fig. 3A). While the
other core subunits (Slx4, Dpb11,
Rtt107, Slx1) interact during S, G2 and
M-phases of the cell cycle (ref.28 and
LNP and BP, unpublished), Mus81-
Mms4 joins the complex specifically in
M-phase.28 The association with Mus81-
Mms4 is restricted to mitosis, because it is
dependent on the mitotic kinase Cdc5
(Polo-like kinase). These findings imme-
diately suggest that the composition of the
Slx4-Dpb11 complex changes throughout
the cell cycle and that at least two different
types of complexes exist—one specific for
mitosis, one found already in S/G2-phases
(Fig. 3B and see below). Given the
dynamic nature of the two Slx4-Dpb11
containing complexes, we cannot assess
currently, whether in mitosis the S-phase
complex is completely converted into the
Mus81-containing M-phase complex or
whether both complexes may coexist in
mitotic cells.

To investigate the function of these
complexes we have used a phosphoryla-
tion-site mutant in Slx4 (slx4-S486A),
which shows reduced binding to Dpb11,
both in the context of the S-phase Slx4-
Dpb11 complex as well as in the context
of the M-phase Slx4-Dpb11-Mms4-
Mus81 complex.28,34 Importantly, this
mutant is specifically defective in binding
to Dpb11 and does not influence binding
to other proteins (for example Slx1 or

Figure 2. Activity profiles of JM processing protein complexes in S. cerevisiae throughout the cell cycle. While the

Sgs1-Top3-Rmi1 complex (STR) is active at all cell cycle stages, the resolution activities of Mus81-Mms4 and Yen1

are cell cycle-regulated. Mus81-Mms4 is stimulated at the G2/M transition by M-Cdk1 and Cdc5-dependent phos-

phorylation. Concurrently, Cdk1 targets Yen1 by phosphorylation to inhibit its action. Upon metaphase to ana-

phase transition, Yen1 dephosphorylation by Cdc14 relieves this inhibition.

490 Volume 14 Issue 4Cell Cycle



Rtt107). The slx4-S486A mutant pheno-
types are also highly specific: mutant cells
are specifically hypersensitive to the DNA
alkylating agent MMS and the cellular
response to MMS-induced replication
fork stalling appears to be particularly
affected.28 The observed phenotypes can
be subdivided into two categories. The
first defects manifest already in S-phase:
upon MMS treatment this mutant accu-
mulates Replication Protein A (RPA)
nuclear foci compared to WT cells. These
foci also dissolve more slowly compared to
RPA foci of WT cells, suggesting that sin-
gle-stranded DNA containing structures,
potentially stalled replication forks or their
repair intermediates, persist in slx4-S486A
cells. Accordingly, S-phase progression is
slower in MMS-treated slx4-S486A than
in WT cells and the reappearance of
fully replicated chromosomes is delayed,
as is the switching off of the DNA
damage checkpoint. Currently, the only
proposed function of the S-phase Slx4-
Dpb11 complex is to regulate the DNA

damage checkpoint34 (and see below),
but an additional repair function is pos-
sible as well.

The second class of defects can be
attributed to inefficient JM resolution by
the structure-selective endonuclease
Mus81-Mms4 and these are therefore
likely to arise from defects in the
M-phase-specific Slx4-Dpb11-Mms4-
Mus81 complex.28 These phenotypes
become apparent in the JM dissolution-
defective sgs1D mutant, where cells are
exclusively dependent on JM resolution
mechanisms in order to cope with MMS-
induced replication fork stalling. Indeed,
mutation of slx4-S486A causes a delay to
the disappearance of JM structures in the
sgs1D background as judged by 2D gel
electrophoresis. Such persistent JMs are
expected to interfere with sister chromatid
separation in mitosis. Consistently, an
increase in the occurrence of chromosome
bridges38 is apparent in mitotic sgs1D slx4-
S486A cells. Moreover, the slx4-S486A
mutant shows reduced rates of Crossover

formation in an ectopic (direct repeat)
recombination assay. This finding sup-
ports the idea that the Slx4-Dpb11 com-
plex is specifically important for JM
resolution mechanisms and that slx4-
S486A mutant cells rely strongly on JM
dissolution by the STR complex. Notably,
the JM resolution defect can be pin-
pointed to a defect in Mus81 function,
since the slx4-S486A mutant and mus81D
or mms4D show epistasis with regard to
MMS hypersensitivity and turnover of JM
structures. Collectively, these findings
therefore suggest that the Slx4-Dpb11
complex is a regulator of Mus81-Mms4-
dependent JM resolution.28

Cell Cycle Regulation of Slx4-
Dpb11 Complex Formation and

JM Resolution

Dpb11, and its human homolog
TopBP1, specifically recognize phosphor-
ylated proteins.39 The phosphorylation

Figure 3. Schematic model of the S-phase- and M-phase-specific Slx4-Dpb11 complexes and their regulation throughout the cell cycle (adapted from28).

(A) Interactions and regulations. Upon Cdk1 phosphorylation of Slx4, interaction with Dpb11 is established. Slx4 also binds to Rtt107 and Slx1. Phosphor-

ylation of Mms4 by Cdc5 facilitates binding of Mus81-Mms4 to Dpb11. (B) The Slx4-Dpb11 complex functions during the cell cycle. Different proteins are

found in the Slx4-Dpb11 complex at different cell cycle stages suggesting distinct cell cycle phase-specific functions. The S-phase-specific complex con-

sisting of Slx4, Dpb11, Slx1 and Rtt107 has a role in dampening the DNA damage checkpoint, but possibly also a role in repairing stalled replication forks.

The M-phase-specific complex consisting of Slx4, Dpb11, Slx1, Rtt107, Mus81 and Mms4 promotes the resolution of DNA joint molecules.
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marks that are “read” by Dpb11 have
been shown in several cases to depend
on cell cycle kinases, in particular Cdk1.
Also in the case of Slx4, phosphorylation
of the critical serine 486 (a putative
Cdk1 target site) is cell cycle-regulated
and dependent on Cdk1 (Fig. 3A,28). In
contrast, binding of Mms4 to Dpb11
(in context of the Slx4-Dpb11 complex)
additionally requires phosphorylation by
the mitotic kinase Cdc5, thereby
restricting the formation of the Slx4-
Dpb11-Mms4-Mus81 complex to mito-
sis (Fig. 3A).

Interestingly, Slx4-Dpb11-Mms4-Mus81
complex formation thereby underlies the
same temporal regulation as the catalytic
activity of Mus8123-26,28). This finding thus
substantiates current models of the temporal
regulation of JM resolution/dissolution
(Fig. 2) providing further support for mitotic
restriction of JM resolution pathways.
Formation of the Slx4-Dpb11-Mms4-
Mus81 complex is not responsible for the
previously demonstrated enhanced catalytic
activity of mitotic Mus81 in in vitro resolu-
tion assays.28 The current data therefore sug-
gests that at least two mechanisms exist, by
which cell cycle kinases control Mus81
action upon entry into mitosis: direct up-reg-
ulation of the catalytic activity and stimula-
tion of complex formation with Slx4 and
Dpb11.

It remains an open question by which
mechanism the Slx4-Dpb11-Mms4-
Mus81 complex enhances JM resolution
by Mus81. The finding that Mus81-
Mms4 is physically coupled to the Slx4-
Dpb11 complex opens up the possibility
that Slx4 and Dpb11 are involved in tar-
geting to damaged chromosomes. Inter-
estingly, the formation of the S-phase
Slx4-Dpb11 complex directly responds to
replication stalling. Together, these find-
ings may suggest a speculative model,
whereby the Slx4-Dpb11 complex is first
recruited to sites of replication fork stall-
ing and may subsequently escort these
sites through different steps of repair.
The Slx4-Dpb11 complex may thus act
as a platform at sites of replication fork
stalling, potentially by targeting specific
repair enzymes, such as Mus81, which
would catalyze the final step in the
reaction.

Evolutionary Conserved Features
of JM Resolution and its

Regulation by Multiprotein
Complexes

Mammalian cells have a temporal pro-
gram of JM dissolution/resolution that is
highly similar to the one found in bud-
ding yeast. JM resolution is commonly
investigated in cells from Bloom’s syn-
drome patients that are deficient in BLM-
TopoIIIa-RMI1-RMI2 (BTR)-mediated
JM dissolution and therefore show an
increased number of crossover events/sis-
ter chromatid exchanges (SCEs,40). Mam-
malian JM resolution can be executed by
one of three structure-selective endonu-
cleases: MUS81-EME1, GEN1 or SLX1-
SLX4. Interestingly, depletion of SLX4,
SLX1 or MUS81 in cells lacking BTR
exhibits a comparable reduction of SCEs
as the combination of MUS81 with SLX4
or SLX1, whereas additional depletion of
GEN1 leads to a more severe pheno-
type.17,18 These data suggest a cooperative
activity of the SLX1-SLX4 and MUS81-
EME1 nucleases and intriguingly, the two
nucleases also physically interact with each
other (SLX-MUS complex,17). The reso-
lution of a Holliday Junction requires two
cuts in order to disentangle the DNA
strands and it has been suggested that
SLX1 and MUS81 may cooperate as two
nicking endonucleases.17

Despite conservation of the MUS81-
binding SAP domain in eukaryotic Slx4
proteins,32 so far, a direct association of
budding yeast Slx4 and Mus81 has not
been described.21 However, both proteins
are part of the Slx4-Dpb11-Mms4-Mus81
complex. Moreover, the formation of the
two complexes from yeast and human is
subject to a similar regulation: also the
interaction between SLX1-SLX4 and
MUS81-EME1 nucleases is only estab-
lished at the G2/M transition involving
phosphorylation by CDK1 and, to a lesser
extent, PLK1.17

It is currently unclear whether the yeast
Slx4-Dpb11-Mms4-Mus81 complex acts
by bringing together the Mus81 and Slx1
nucleases. In fact it remains to be deter-
mined if Slx1 has an active role in this
complex. A physical interaction of Slx1
with the Slx4-Dpb11 complex was

detected after MMS treatment as well as
in mitosis28 (L.N.P. and B.P., unpub-
lished data), but no defects were observed
in response to MMS treatment of slx1D
deletion mutants.28,36 This suggests that
either Slx1 does not play any role in JM
resolution after MMS-induced replication
fork stalling, or that a redundant factor
may take over in the absence of Slx1.

Interestingly, also the mammalian
homolog of Dpb11, TopBP1, interacts
with SLX4 in a CDK phosphorylation-
dependent manner.28 Whether TopBP1
also binds to MUS81-EME1, and whether
SLX4-TopBP1 has a role in JM resolution
in mammals needs further investigation.
Intuitively, Dpb11’s bridging function in
yeast seems to be unnecessary in the con-
text of the mammalian SLX-MUS com-
plex as MUS81 directly binds to SLX4.
Nevertheless, TopBP1 could be important
for stabilization of the complex or for the
recruitment of additional factors. On the
other hand, following the observation of
two cell cycle-regulated Slx4-Dpb11 com-
plexes in yeast (S-phase- and M-phase-
specific), it appears possible that TopBP1
could be involved in a function of SLX4,
which is independent of MUS81, presum-
ably in S-phase, while it may be dispens-
able for the mitotic function in JM
resolution carried out by SLX-MUS. In
other words, mammalian SLX4-TopBP1
may represent the S-phase-specific SLX4
complex, while SLX-MUS may represent
the M-phase-specific SLX4 complex.

The Slx4-Dpb11 Complex and the
DNA Damage Checkpoint
Counteract Each Other

At least in budding yeast the Slx4-
Dpb11 complex forms already in response
to replication fork stalling in S-phase.
One function of this S-phase complex is
connected to the DNA damage check-
point.34 The central finding of the study
by Ohouo et al. is that the Slx4-Dpb11
complex regulates DNA damage check-
point signaling. Interestingly, they found
that after MMS damage the DNA damage
checkpoint is hyperactivated in the slx4D
deletion mutant. This hyperactivation can
be suppressed by mutations in the
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checkpoint proteins Rad9 or Rad53.
Importantly, also cellular viability of
slx4D deletion mutants after MMS treat-
ment can be improved by partially inhibit-
ing checkpoint signaling suggesting that
Slx4 acts as dampener of the DNA dam-
age checkpoint.34

Mechanistically, checkpoint dampen-
ing may likely involve the competition
between checkpoint proteins and Slx4 for
Dpb11 binding. Dpb11 itself is an agonist
of checkpoint signaling as it binds several
checkpoint proteins, such as Rad9, the
Ddc1 subunit of the 9–1–1 complex and
Mec1-Ddc2.41 Here, Dpb11 functions as
an activator of Mec1 and as adaptor that
brings together the different checkpoint
factors. Given that Dpb11 expression lev-
els are low, it is therefore possible that by
competing with checkpoint proteins Slx4
may be limiting the amounts of how
much Dpb11 checkpoint complex can
form. Indeed, it was shown that more
Rad9 binds to Dpb11 in the absence of
Slx4, suggesting that Slx4 might be a com-
petitive inhibitor of Rad9.34

On the other hand, persistent DNA
lesions/repair intermediates can be
observed in MMS-treated cells deficient in
Slx4-Dpb11 complex formation (see
above,28). These DNA structures could be
visualized as persistent RPA foci, which
are expected to trigger an enhanced check-
point activation. Indeed, checkpoint
hyperactivation has been shown for other
mutants with defects in the response to
replication fork stalling.42,43 Thus, an
underlying repair defect could be in part
responsible for the checkpoint hyperacti-
vation of slx4 mutant cells.

Is checkpoint dampening the sole func-
tion of the Slx4-Dpb11 complex in the
response to replication fork stalling? Cur-
rently, we favor the idea that the Slx4-
Dpb11 complex has an additional repair
function in response to replication fork
stalling. First, the slx4-S486A mutant is
specifically sensitive to MMS but not to
other kinds of DNA damaging agents,
while the checkpoint responds universally
to different kinds of DNA damage.28,34

Second, this sensitivity is rescued by
expression of an artificial covalent fusion
of Dpb11 and Slx4.28 In these experi-
ments the Dpb11-Slx4 fusion is expressed
as a second copy of Dpb11. Due to the

high levels of Dpb11 this mutant should
be deficient in checkpoint dampening, but
the hypersensitivity to MMS is rescued
nonetheless. Until today, however, no
repair enzyme was found to interact with
the S-phase Slx4-Dpb11 complex and it
therefore remains to be determined what
this additional repair function of the Slx4-
Dpb11 complex may be.

Interestingly, not only does the S-phase
Slx4-Dpb11 complex counteract the
DNA damage checkpoint, but the DNA
damage checkpoint also counteracts the
M-phase Slx4-Dpb11 complex. After its
activation by MMS damage the check-
point appears to delay Mms4 phosphory-
lation by Cdc5 and thereby Mus81-
Mms4 activation thereby creating a sec-
ond layer of temporal regulation that is in
addition to the cell cycle control26,28

(Fig. 3B).
Do the early functions of the Slx4-

Dpb11 complex in S-phase therefore have
an influence on the later stages of the cell
cycle? Strikingly, in addition to directly
promoting Mus81 function in JM resolu-
tion, the Slx4-Dpb11 complex may pro-
mote Mus81 activity indirectly by
checkpoint regulation. Notably, the par-
tial inactivation of the checkpoint by the
ddc1-T602A mutant promotes earlier
Mms4 phosphorylation by Cdc5 in cells
that have an impaired Dpb11-Slx4 inter-
action.28 Moreover, also the rescue of slx4
mutant sensitivity by partial checkpoint
inactivation strictly depends on Mus81-
Mms4. This suggests that the checkpoint
dampening function in S-phase may be
connected to the later JM resolution func-
tion of the Slx4-Dpb11 complex in M-
phase.

Conclusion

The response to replication fork stall-
ing is strictly regulated during the cell
cycle. A means of integrating these cell
cycle signals appears to be the formation
of multiprotein complexes containing
scaffold proteins. At least two Slx4-
Dpb11 complexes act during the response
to stalled replication forks: an S-phase
complex, which regulates the DNA dam-
age checkpoint and possibly has a DNA
repair function as well, and an M-phase

complex, which additionally contains
Mus81-Mms4 and promotes JM resolu-
tion. Future research will need to identify
additional repair factors in the S-phase
complex and to investigate the crosstalk
between the two complexes in order to
shed light on the rather enigmatic cellular
response to replication fork stalling.
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