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1 Introduction 

1.1 Expectations of the combination of electron microscopy and X-ray diffraction 

Compounds which structurally can only be pre-characterized, e.g. with powder X-ray diffraction, 

remain unpublished. Due to the absence of a structure model, they impede scientific considerations 

and assessments, which can be fundamental for solving problems or further research. Frequent 

problems that prevent complete structure refinement are either heterogeneous products or too 

small single crystals. Even structural features in small domains that elude characterization due to the 

relatively long coherence length of conventional X-rays with respect to crystallographic relevant 

dimensions, are among the challenges. Researchers of solid-state materials are seeking effective 

solutions to obtain crystal structures from structurally difficult-to-characterize samples. Thus, new 

approaches to enable unequivocal structural statements at state-of-the-art levels of precision are 

required. 

Present X-ray diffraction for structure determination is a relatively fully developed method at the 

edge of physical limits given by the nature of X-rays.1,2 The methods of electron microscopy are not 

that fully developed, partially because of the more complex interaction of electrons with matter. 

However, electron microscopy can fill gaps left open by X-ray structure determination. It is common 

for a combination of methods to deliver the scientific breakthrough, as has been shown by providing 

structure models by combined electron microscopy and X-ray powder diffraction on oxides or 

zeolites.3 Furthermore, different combinations of methods including both X-ray diffraction and 

electron microscopy will be presented in this thesis in order to obtain access to the structures of new 

(oxo)nitridosilicates, (oxo)nitridophosphates and tellurides. Challenges with respect to structure 

elucidation of the latter compounds can be as versatile as their compositional variations and have to 

be solved during their characterization.  

This thesis presents solutions for various problems of structure determination on different solids 

delivered by no less versatile contributions of electron microscopy. The main objectives of this thesis 

are the discovery and structural characterization of solids in cases where individual methods for 

structure determination are limited. The objective of direct observation and the explanation of 

structural features, like intergrown domains or superstructures, by imaging at atomic scale is 

pursued. Because of combined chemical and structural information on different length scales 

provided by electron microscopy, a better understanding of structure-property relations is expected.   
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1.2 Method diversity in transmission electron microscopy  

The understanding of matter and its properties, irrespective of whether it is inorganic, organic or 

biological, correlates with its macroscopic, microscopic or even atomic structure. For solid-state 

science, homogeneous samples as well as crystal-structure determinations are requirements to 

understand and explain structure-property relations as the first step towards the prediction of 

materials with application. As the structural diversity and complexity of modern materials 

continuously expand, their structural elucidation can often require different methods or 

combinations different methods. In ideal cases, this conceptual approach leads to the exploration of 

new materials by their targeted synthesis.  

Since Max Knoll and Ernst Ruska invented the transmission electron microscope4 in the 1930s, it was 

possible to beat the resolution limit in common light microscopy, which is approximately half the 

wavelength of the light used. The wavelength of fast electrons is much shorter than that of visible 

light exemplarily shown for an acceleration voltage of 1000 kV the wavelength of an electron is 

λelectron ≈ 0.00087 nm. The invention of the transmission electron microscope was awarded with the 

Nobel Prize for Physics in 1986.5 Due to its fast wide-ranging developments, electron microscopy in 

general became a crucial tool for fundamental research on a broad range of materials, not only hard 

matter. As one of the ongoing developments, cryo-electron microscopy was also awarded with the 

Nobel Prize in chemistry in 2017.6 A modern transmission electron microscope (TEM) can combine 

imaging methods, diffraction techniques and spectroscopy, all at possibly atomic resolution in just 

one instrument (Fig. 1).7,8  

Well established techniques like bright-field imaging (BF), high resolution transmission microscopy 

(HRTEM), selected area electron diffraction (SAED) and convergent beam electron diffraction (CBED) 

as well as scanning transmission electron microscopy (STEM) with different detectors, can be 

combined with energy dispersive X-ray spectroscopy (EDX) or electron energy loss spectroscopy 

(EELS).9-13 This synergism of methods made it possible to discover structure-property relations more 

easily in metals, ceramics, and more recently in biomolecules and semiconductors.14 The fast and 

intensive progression of TEM on the one hand indicates the interest and the demands for TEM and 

underlines on the second hand, its effectiveness of answering recent questions of natural scientists. 

Modern methods like electron crystallography,15 electron tomography,16 electron holography,17 

direct atom counting18 and electron microscopy under environmental conditions19,20 are pushing into 

the field of electron microscopy and become more common in the community of physicists, chemists 

and biologists. Further improvements like energy filters21,22 or spherical-aberration probe correctors 

and image correctors, respectively enhance the possible resolution limit in (S)TEM down to sub-

Angstrom range.23-26 These advantages have to be considered in regards to the relatively large effort 
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of operating a TEM and the special sample requirements like vacuum- and electron-beam stability as 

well as electron transparence.  

The broad range of experimental possibilities in TEM leads to popular applications in solid-state 

chemistry. Major issues in materials science like structure determination, real-structure elucidation 

and chemical analysis both on length scales from Å to mm can be discussed on the basis of data 

obtained from electron microscopes.  

 

Figure 1: Selected interactions of electrons with matter and their methodical applications for (scanning) TEM 

micro analytic, which are relevant for this thesis.  

1.3 TEM at atomic resolution 

The main setup of a TEM consists of an illumination, an image-formation and an image-recording 

system, both in a sealed unit held under ultra-high vacuum (Fig. 2 left). Moreover, the intermediate 

lenses allow the change between imaging and diffraction mode. In general, the theoretical point 

resolution (dtheo) is based on the Rayleigh criterion dtheo = 0.61λ/nsinα with λ as wavelength of 

electrons, n the refractive index and α as the half-opening angle of the objective. Lens imperfections, 

non-uniform magnetic fields and distortions have a strong impact on the experimental point 



1.3 TEM at atomic resolution 

4 

resolution (dreal = ds + dc). The resulting spherical (ds = Csα
3) and chromatic (dc = Ccα∆E/E0) aberrations, 

astigmatism or irregular magnification lower the point resolution significantly (spherical aberration 

coefficient Cs, chromatic aberration coefficient Cc and the energy spread of electron source ∆E/E0). A 

conventional TEM operating with e.g. 200 kV acceleration voltage yields a typical point resolution in 

imaging mode in the range of 2.4 Å. Under ideal conditions and with the additional use of spherical 

aberration correction the values of dreal can be improved to 1.4 Å.27 Since the interactions between 

electron beams and crystalline matter are very complex, approximations are needed to simplify the 

description of theoretical considerations (Fig. 2 right). The phase-object approximation defines that 

during passing through crystalline matter the plane electron wave function (Ψ0(xy), z is neglected due 

to ultra thin crystals) is undulated representing the potential distribution of the crystal projection by 

changed phases (Ψex(xy) = exp[-iσNzρ(xy)] with the electrostatic potential ρ(xy), the number of 

periods Nz and the interaction constant σ). Varied interaction of the electron wave with unmodified 

amplitude interacts differently with various atoms. The weak-phase-object approximation is valid for 

very thin crystals (|σNzρ(xy)| << 1) and can be written as Ψex(xy) = 1-iσNzρ(xy)]. The amplitude of the 

exiting wave Ψex after the objective lens is proportional to the amplitude of the structure factors F of 

the atoms while the phase of Ψex is shifted by -90° (Χ(hk)-½π) with respect to the phase of F (with F 

for each reflection: F hkl     i  
sin 

λ
  tome i in    e π   h i k i l i  with the atomic scattering factor fi). The 

propagating electron waves are conjoined by the objective lens to form an image onto the image 

plane. The Fourier transform (FT) of the image plane is located at the back focal plane. Without any 

shift the wave function in the image plane Ψim(xy) is the same as the exit wave Ψex(xy) after the 

sample. In an ideal case and in focus the intensity distribution would be Iim(xy) = Ψim(xy)∙Ψim*(xy) = 1 

thus, constant. However, an image with phase contrast can be recorded by defocusing the objective 

lens. Amplitude contrast is a mixture of amplitude and phase changes based on different absorption 

and can be described by Iim(xy) = Ψim(xy)∙Ψim*(xy) = exp[-2μ(xy)] with μ as absorption coefficient. In 

the image plane, all electron waves interfere with each other and are imaged on the screen by the 

intermediate and projection lenses. The recorded intensity in a HRTEM image is the square root of 

the amplitude Ψim. The phase of the electron wave is lost. However, the phase of the structure factor 

is preserved in the image and from its Fourier transformation it is possible to extract the phase 

information of the structure factors directly. To summarize it in easy words, for HRTEM imaging 

transmitted and scattered electrons are used to create an interference image.28,29 HRTEM can 

support a challenging crystal structure determination because features in sub-Å range are imaged 

directly.30,31 Local structural information obtained from HRTEM micrographs taken at Scherzer 

defocus are close to the projected potential of the atoms in a thin crystal. Doubly scattered electrons 

(FII) do not contribute significantly to the intensity (Iimage(hk)) of an image at Scherzer defocus since 

the cosine term becomes nearly zero when the phase shift (Χ(hk)) of the objective lens is close to 
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± 90°. The mathematical description is Iimage(hk) = D(hk)[2FI(hk)sin Χ(hk) - FII(hk)cos Χ(hk)] with D(hk) as 

the envelope function of the contrast transfer function. While in reality, the phase shifts due to the 

objective lens are not exactly ± 90° over the whole resolution range, the objective lens applies 

different influence on single and doubly scattered electrons. Thus, doubly scattered electrons cannot 

be separated perfectly. The contributions to the intensities in the recorded HRTEM image are 

described by the envelope function of the contrast transfer function, which is included in the Fourier 

transform of the HRTEM image.  

It is obvious that HRTEM achieves qualitative structural information at atomic resolution, e.g. lattice 

imperfections or the atomic structure at grain boundaries in ZnO or stacking faults in graphene 

layers.32,33 An image corrector improves the HRTEM data significantly. Further quantitative structural 

information from HRTEM micrographs not taken at Scherzer defocus can only be interpreted 

unambiguously with a defocus series matching corresponding simulations.34,35  

 

Figure 2: Simplified setup of a transmission electron microscope and corresponding terms and their relations 

(inspired by a similar representation in ref. 28 and 29). With h being Planck´s constant, m and e the relativistic 

mass and charge of one electron, U the accelerating voltage, σ the interaction constant, ρ(xy) electrostatic 

potential distribution, Nz the number of passed periods, F the structure factor and Χ(xy) the phase shift due to 

objective lens.  



1.3 TEM at atomic resolution 

6 

The understanding of the exit wave function and the development of image simulation software 

using the multislice algorithm are one basis of state-of-the-art software for HRTEM evaluation.36 The 

multislice algorithm converts the interaction of the electron waves with the sample into following 

interactions with each of the constructed thin slices. The Fast Fourier Transform (FFT) greatly im-

proves computing time used in the software (J)EMS.37,38 Such calculated HRTEM images and corres-

ponding experimental images are compared to evaluate the match with potential structure models. 

The power of HRTEM can be illustrated exemplarily by the characterization of ordering phenomena 

in silicates or chalcogenides, exemplarily shown for a new polymorph of luminescent SrSi2O2N2:Eu2+ 

or superstructures in A2In12Q19 (A = K, Tl, NH4; Q = Se, Te) and Ge3.25Sn1.10Sb1.10Te6.39-41 The latter 

compound classes will be of interest later on in this thesis. For investigations of real-structure effects 

different methods of conventional transmission electron microscopy (CTEM) are essential, e.g. when 

the influences of defect concentrations, detection of nanocrystalline precipitate, temperature 

depending structural changes or the characterization of metastabile phases is of interest.42,43 Further 

current examples are gallium tellurides, silver-rich Ag2Se or germanium antimony tellurides (GST).44-46 

HRTEM illustrate differently pronounced vacancy ordering affected by chemical variations in GST (Fig. 

3a) as well as the average structure of Ni3GeTe2 matches corresponding simulation (Fig. 3b). 

 

Figure 3: a) HRTM images of germanium antimony tellurides, showing the influences of various Te content on 

the characteristics of differently pronounced defect layers. Adapted from Rosenthal et. al.47 b) HRTEM defocus 

series viewed long [100] zone axis of Ni3GeTe2 and simulations of the average structure inserted. Adapted from 

Deiseroth et. al.48 
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Another frequently used method for reaching atomic resolution is scanning transmission electron 

microscopy (STEM). Such images obtained from STEM on modern microscopes provide direct 

interpretable Z-contrast. To achieve elemental contrast at sub-Å resolution field emission guns (FEG), 

an additional Cs corrector, and finally, high-angle annular dark field (HAADF) detectors are crucial.49 

Although the requirements for atomic resolved STEM to the microscope and the specimen (electron-

beam stability, drift) are higher than in CTEM, STEM data is easier to interpret because different 

contrast is directly interpretable. STEM-(HA)ADF imaging is close to perfect incoherent imaging and 

one is not confronted with the phase problem.50 During STEM, an image is formed by scanning the 

specimen and simultaneously detecting the intensity of scattered electrons which is a function of the 

scanned probe position (xy). The intensity IHAADF in Z-contrast images can be simply described as 

IHAADF(xy) = |P(xy)|2 ⊗ O(xy), where the square root of the point spread function P(xy) is convoluted 

(⊗) with the object function O(xy). The latter is proportional to the number of atoms in a column and 

to their atomic weight. Thus, the potential of the projected crystal structure is imaged.51 This offers 

structural and chemical information at the same time and different contrast can be directly assigned 

to different element columns (Fig. 4). Thus, real-structure effects can be correlated with possible 

structure models. Z-contrast and phase contrast images were used to exemplarily characterize 

SrTiO3/LaAlO3 interfaces or to directly observe the occupancy of interstitial sites in Ge crystals.52,53 

Annular bright field images of YH2 illustrate both Y2+ and H- ions with different contrast.54 In 

monolayers even the elements B, C and N could be differentiated directly by Z-contrast STEM using a 

cold field emission source operated at 60 kV accelerating voltage.55 Information at atomic resolution 

about the cations in silicate minerals like orthopyroxene, augite and cronstedtite were obtained by 

Cs-corrected STEM imaging.56  

In non-ideal cases spectroscopy like EDX line scans or mappings can help with the element 

assignment. In combination with STEM-HAADF, coordinates of (heavy) atoms can be obtained. EDX is 

based on fast electrons that excite core electrons of the atoms. Subsequently, electrons of upper 

shells close this gap and a specific amount of energy is released as X-rays, which can be detected as a 

function of their energy. Usually, EDX delivers information about the chemical composition with 

spatial resolution of a few nm57 while EELS has improved spatial resolution down to an atomic scale. 

The principle of EELS is a magnetic prism spreading out the energy distribution of inelastically 

scattered electrons detecting the local density of states. EEL spectrometers attached underneath the 

conventional detectors have an energy resolution of usually 1 eV and even 0.1 eV if a mono-

chromator is used. For instance, EELS combined with STEM images, taken at certain energy losses 

provides elemental maps of Bi0.5Sr0.5MnO3.58  
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Figure 4: Experimental high-resolution STEM-HAADF images: Ge[112] crystal with intensity profile for the 

dumbbells of Ge atoms resolving the peak-to-peak distance of 82 pm (a, colored). Complex MoVTeNbO catalyst 

material with structure projections overlaid showing sites in channels partially occupied with Te atoms (b). 

Pb1.2Sr0.8Fe2O5 crystal viewed along [100], element assignment based on different contrast intensities and 

crystal simulation (c). Adapted from Sawade et. al,59 Pyrz et. al60 and Martinez et. al.61 

EEL spectra can be divided into three different regions: First, the zero-loss peak, whose intensity in 

relation to the intensity of the whole spectrum gives the sample thickness. Second, the analysis of 

the low-loss region contains information about the general valence states by the onset of electron 

loss as well as mechanical properties like elastic, bulk and shear modulus that correlated with the 

square of the plasmon energy. Third, the high-loss region with its element-specific edges yields the 

chemical analysis as well as the oxidation state of certain elements judged from chemical shift and 

from near-edge fine structure of the edges as fingerprints. EELS gives further structural information 

of solids based on the fine structure of the edges. Structural analysis like the local environment or 

coordination can be determined with the help of the extended energy loss fine structure.62-64 The 

significance of both analytic methods EDX and EELS depend on the quality of microscope 

components and the sample thickness, which is the thinner the better. In ideal cases, detection of a 

few or even single atoms is possible. Radiation damage in relation to signal intensity is a crucial 

problem one has to deal with using scanning electron beams to probe the sample. The relation 

between accelerating voltage, beam damage, sample drift, signal intensity and illumination as well as 

collecting time has to be considered in order to get the best information out of a sample.   
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1.4 Electron diffraction compared to X-ray diffraction  

The kinematical scattering theory is the theoretical background of X-ray structure determination 

(XRD), which is the most important method for crystal-structure elucidation. Therefore, the majority 

of known crystal structures are based on X-ray data. However, XRD can hardly be used for structure 

determination if only nanocrystalline or heterogeneous samples are present. X-rays have one major 

disadvantage: Their interaction with matter is quite weak because they only interact with the 

electrons of the atoms and thus, X-rays detect the electron density distribution. In contrast, electrons 

detect the electrostatic potential distribution, which can be described as a three-dimensional 

function with its maxima in the atoms nuclei. The beam of charged electrons in a TEM interacts with 

both the electrons and the electric field of the nuclei, resulting in a very strong interaction with 

matter. Thus, crystals investigated with electrons can be several orders of magnitudes smaller than 

with X-rays. Few unit cells (about 20) can be theoretically enough for structural analysis with 

TEM.65,66 For example, coherent nano-area electron diffraction was applied to 4 nm Au particles and 

1 nm carbon nanotubes.67 Single crystals and domains with a size down to 20 nm were investigated 

with SAED or nanobeam-electron diffraction in order to determine crystallographic relations 

between intergrown domains (Fig. 5).68 

 

 

Figure 5: Top: BF image of a Li1.2Mn0.4Fe0.4O2 particle and corresponding electron diffraction pattern of the 

regions d and e, showing different metrics and thus different structure models. Adapted from Kikkawa et. al.68 

Bottom: Ewald construction for X-rays (grey) and electrons (blue) in comparison. 

Due to the short wavelengths of electrons, the Ewald sphere has a large radius and many reflections 

of the zero-order Laue zone are excited in electron diffraction patterns taken along a zone axis. 
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Because of the thin areas transmitted by electrons, the reflections show a “cigar-like” shape. With 

SAED, more information can be collected in one single orientated diffraction pattern than in a single 

X-ray diffraction pattern using monochromatic X-rays (Fig. 5 bottom).  

Since the kinematical approximation only applies to a maximum sample thickness of a few nm 

dynamic scattering occurs with thicker samples. Because of multiple scattering (Renninger effect) and 

inelastic scattering electrons undergo complicated interactions with matter and thus, electron 

diffraction data is not as easy to interpret as X-ray data.69-72 The reflection intensities I(hkl) of 

electron diffraction depend mostly on the structure factor for electrons F(hkl) and can be described 

by the following relations: Ikinematic(hkl) ~ |F(hkl)|2 and Idynamic(hkl) ~ |F(hkl)|.73 The phases are lost and 

a crystal structure cannot be determined directly from the diffraction intensities. The loss of the 

phase information in an electron diffraction experiments can be compensated by HRTEM, so that 

crystal structures can be refined with electron diffraction data (neglecting dynamic effects) reaching 

an accuracy of 0.02 Å as exemplarily reported for Ti11Se4.74,75  

To minimize dynamic scattering one has to use either ultra thin areas for SAED or precession electron 

diffraction (PED). The latter reduces dynamic diffraction effects as well as the influence of slight 

misorientation of the sample. Only a few reflections are excited simultaneously and the reflections 

are successively scanned by the off-axis beam. Thus, the possibility of multiple scattering is 

reduced.76,77 Recording a PED pattern involves scanning (above the sample) de-scanning (underneath 

the sample) of the tilted and diffracted beams, respectively. The final diffraction pattern is the sum of 

a set of continuous electron-diffraction patterns. Precession frequency and precession angle can be 

varied in order to obtain best results. PED data with large precession angles (≈ 4°) show more 

reflections at high diffraction angles than SAED as well as reflections of the zeroth and first Laue 

zone. Combined with the more kinematical nature of the reflections, this can be advantageous for 

structure determination using electron diffraction data.78,79 Beyond the qualitative analysis of 

electron diffraction, electron crystallography or CTEM combined with other methods of structure 

elucidation yield more quantitative structural analysis of electron-diffraction data, exemplarily shown 

for modulated Sr1.4Ta0.6O2.9.80,81  
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1.5 Efficient crystallographic approach to the determination of new crystal 

structures 

During explorative synthesis, single-phase samples are often missing and frequently only small 

quantities of the product can be obtained, especially using the high-pressure multianvil technique.82 

It is also conceivable that heterostructured products with precipitates at a length scale of only a few 

nm in a matrix with different composition can be obtained. In such cases, the structure 

determination using conventional X-ray methods is usually impossible. Here, the combination of TEM 

and microdiffraction with synchrotron radiation83 is an appropriate approach for the structure 

determination.84,85 Thus, crystallographic challenges on micro- to nanoscale crystallites from inhomo-

geneous samples can be remedied with reasonable effort and with the high precision and accuracy 

analogous to structure determination of macroscopic single crystals. Structure determination by 

means of powder diffraction requires homogeneous samples and often does not provide enough 

data to determine complex structures. Smallest sample quantities (a few mg) are sufficient for TEM 

pre-characterization on powder or grounded bulk samples. EDX is used to examine the chemical 

composition and SAED is used to determine the metrics and lattice parameters. Subsequently, the 

lattice parameters can be compared with databases, to check if the investigated crystals are new 

compounds. In favorable cases, additional HRTEM and STEM-HAADF images recorded on aberration 

corrected TEM yield direct structure information. The Single-Particle Diagnose Approach86 can be 

enhanced by electron microscopy. With the latter, new phases are easily identified and 

characterized. Due to modern X-ray optics, synchrotron beams with high intensity and brilliance can 

be focused. Hence, it was possible to develop a setup for the data collection of the pre-characterized 

microcrystals of the new phases located on the TEM grids. The collected datasets provide at least the 

accuracy of common X-ray structure determinations on large single crystals using laboratory 

difractometers.84 After structure solution and refinement with the synchrotron data, HRTEM 

simulations or STEM-HAADF images can confirm the obtained crystal structures, independently of 

the corresponding X-ray data. Compared to X-ray single-crystal structure determination, electron 

crystallography is limited in data quality because of dynamic scattering effects, detection of different 

crystal volume during tilting, beam damage or excitation error. In contrast to classical electron 

crystallography,87 however, modern electron diffraction tomography realizes diffraction-data 

acquisition of micro- or nanocrystals by tilting incrementally around an arbitrary axis automatically. 

Within kinematical approximations, the 3D electron data sets can be analyzed mostly similar to X-ray 

single-crystal data. To collect the correct reflection intensities between the tilting of the crystal in 

large steps of ~ 5°, different approaches of electron diffraction can improve data acquisition.  
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Automated diffraction tomography (ADT)88-91 uses the precession technique and stepwise data 

acquisition. In rotation electron diffraction (RED),92,93 the electron beam is tilted in very small steps (~ 

0.05°) for each diffraction pattern. Furthermore, electron diffraction data can be collected 

continuously during beam tilting (integration over ≈ 1° beam sweep).94,95 Both methods can yield the 

same quality of structure solution and refinement96 and can be enhanced by combination with other 

methods of structure determination like powder X-ray diffraction.97-99  
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2 New Oxonitridosilicate Structures Determined by a Combination of Electron 

Microscopy and Synchrotron X-ray Diffraction 

2.1 Overview  

Research on energy-saving materials is one of the key issues of modern solid-state chemistry. High 

energy-saving potential is required in the field of luminescence, because worldwide nearly ¼ of the 

energy consumption is due to lighting. Great advances have been achieved by further developing 

phosphors for state-of-the-art LEDs in order to efficiently convert electrical power into light.1-3 

Recently, narrow band red-emitting phosphors for warm-white emission of phosphor-converting 

LEDs or green phosphors for backlighting in screens are of particular interest.4-7 Prerequisites for 

applicable luminescent materials are chemical and thermal stability, transparency, rigid frameworks 

to suppress electron-phonon coupling, and for narrowband phosphors, high symmetry of the 

activator-ion (mainly Eu2+ or Ce3+) coordination. These properties are often realized in (oxo)nitrido-

silicates. They encompass a wide variety of structures related to the diversity of oxosilicate 

tetrahedra structures.8-10 The maximum degree of condensation (κ = centers of tetrahedra : anions of 

tetrahedra framework = n(Si) : n(O) = 0.5) represented by SiO2 in 3D oxosilicate networks can be 

exceeded with the introduction of N to extend the structural diversity.  

Stable (oxo)nitridosilicates are predominantly synthesized at temperatures > 1000 °C. Using reactive 

starting materials like “Si(NH)2“ combined with rare-earth hydrides, metal diimides and metal 

halogenides is a feasible route to obtain new luminescent phases.11,12 The advantage of this synthesis 

strategy is the easy accessibility of new phases. The disadvantage, however, is that the products are 

often heterogeneous and frequently microcrystalline, and consist of a variety of elements that are 

difficult to distinguish with X-ray and electron methods (e.g. N/O/F, Ba/La). In addition, 

crystallographic phenomena like coherently intergrown domains or twinning can render common 

structure determination challenging or make it even impossible. Complementary, the combination of 

TEM and X-ray methods often provided the breakthrough to a final structure model and to an 

interpretation of corresponding properties. Luminescent oxonitridosilicates are good examples for 

such relations. Thus, the existence of monoclinic stacking of SrSi2O2N2:Eu2+ was elucidated by TEM. 

The structural comparison with the triclinic polymorph referred to the different coordination of Eu2+, 

explain the shift between the two corresponding emission wavelengths of the two phases.13 In the 

case of Sr0.25Ba0.75Si2O2N2, HRTEM images showed the short-range ordering of cations proving 

different structure types in intergrown domains compared to pure BaSi2O2N2. Corrugated metal atom 

layers turned out to be relevant for the unexpected blue luminescence of Sr0.25Ba0.75Si2O2N2:Eu2+.14 
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Diffuse scattering in powder diffraction and SAED patterns of Sr0.5Ba0.5Si2O2N2 was explained by small 

antiphase domains coupled with twin domains.15 The real-structure effects, which are very 

pronounced in SrSi2O2N2:Eu2+ and BaSi2O2N2:Eu2+, can influence luminescence properties 

significantly.16,17 For further breakthroughs in the field of luminescence, new compounds and their 

exact structure analysis using TEM are important in order to be able to derive and, in ideal cases 

predict, structure-property relations. 
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Abstract 

Due to the relationship between structure and luminescence properties, detailed crystal structure 

determination for microcrystalline phosphors is necessary for a profound understanding of materials 

properties. The yellow phosphor La3BaSi5N9O2:Ce3+ (λmax = 578 nm; fwhm ∼4700 cm–1) was 

characterized by a combination of transmission electron microscopy (TEM) and synchrotron 

microfocus diffraction as only agglomerates of crystals with a maximum size of a few μm could be 

obtained yet. La3BaSi5N9O2:Ce3+ was synthesized from LaF3, La(NH2)3, BaH2, Si(NH)2, and CeF3 in a 

radio frequency furnace. It crystallizes in space group Pmn21 (no. 31) with a = 9.5505(8), b = 

19.0778(16), c = 12.1134(9) Å, and Z = 8. Its interrupted three-dimensional tetrahedra network 

contains zehner and dreier rings of vertex-sharing SiN4 and SiN2O2 tetrahedra. The crystal structure 

was confirmed by high-resolution TEM and Z-contrast scanning TEM. The element distribution was 

derived by bond-valence sum calculations. The infrared spectrum proves the absence of N–H bonds. 

2.2.1 Introduction 

In 2014, the Nobel Prize in Physics was awarded to Akasaki, Amano, and Nakamura “ or the invention 

of efficient blue light-emitting diodes which has enabled bright and energy-saving white light 

sources”.1 This emphasizes the importance of light-emitting diodes (LEDs) which are typically 

combined with luminescent materials to phosphor converted pc-LEDs that produce white light. 

Owing to their excellent properties such as long lifetime, energy efficiency, small volume, and 

environmental compatibility, they convince as light source now and in the future.2-5 Presently, most 

white-light pc-LEDs are produced by combining a blue primary (In,Ga)N LED chip with yellow-emitting 

(Y,Gd)3(Al,Ga)5O12:Ce3+ (YAG:Ce3+). This phosphor shows a broad yellow emission and excellent 

chemical and thermal stability. However, this combination yields only cool-white light.6,7 In order to 

achieve warm-white light for general lighting, a multiphosphor approach is necessary, which 
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combines at least two phosphors, e.g. a broadband green–yellow with an orange–red emitting one.8 

As nitridoaluminates and nitridosilicates can be thermally and chemically inert due to their highly 

condensed structures, they turned out to be excellent phosphors. Moreover, they have partially 

covalent bonds between the activator (dopant) and N, which leads to red-shifted photoluminescence 

(nephelauxetic effect). Thus, Eu2+-doped nitridoaluminates and nitridosilicates such as 

(Ba,Sr)2Si5N8:Eu2+ 9-12 or (Ca,Sr)SiAlN3:Eu2+ 13-16 are applied as red emitting component in commercially 

available warm-white pc-LEDs.8,17 Owing to the nephelauxetic effect, the luminescence of 

nitridosilicates is shifted to warmer color temperatures. Thus, Ce3+-doped nitridosilicates have great 

potential for application in warm-white pc-LEDs based on a single-phosphor approach (1pc-LEDs). An 

outstanding example for this is (La,Ca)3Si6N11:Ce3+.18 White 1pc-LEDs using this phosphor emit in the 

2600–3800 K color temperature range and show good thermal stability. 

The continuous development of new solid-state lighting technologies and devices and a growing 

demand motivate the search for new nitridosilicate phosphors. However, structure elucidation of 

such new phosphors often proved difficult and time-consuming, and either large single crystals or 

phase-pure samples were usually necessary. Commonly, a single-particle-diagnosis approach is used, 

which enables the determination of luminescence and crystal structures of rather small single 

crystals up to 10 μm.19 Yet, many explorative syntheses lead to inhomogeneous and microcrystalline 

products with crystal size below a few μm. Consequently, structure characterization with 

conventional single-crystal X-ray diffraction is no longer possible. Here, we apply an approach that 

combines transmission electron microscopy (TEM) and synchrotron microfocus diffraction. This 

method allows for the analysis of particles with a volume even smaller than 1 μm3 and furthermore 

provides the possibility of analyzing the same particle by TEM and X-ray diffraction.20 In contrast to 

structure determination by electron crystallography, e.g. with automated electron diffraction 

tomography (ADT) or rotation electron diffraction (RED),21-25 this method allows a much more 

accurate determination of bond lengths, mixed occupancies and displacement parameters. Data 

acquired with microfocused synchrotron radiation yielded the crystal structure of the novel yellow 

phosphor La3BaSi5N9O2:Ce3+ discussed in this contribution. 

2.2.2 Experimental 

Synthesis 

For the synthesis of La3BaSi5N9O2:Ce3+ (with 2 mol % Ce), 0.15 mmol (29.8 mg) of LaF3 (Sigma–Aldrich, 

99.99%), 0.17 mmol (31 mg) of La(NH2)3,26 0.48 mmol (66.8 mg) of BaH2 (Materion, 99.7%), 0.55 

mmol (32.2 mg) of Si(NH)2,27 and 0.006 mmol (1.2 mg) of CeF3 as dopant (Alfa Aesar, 99.99%) were 

mixed in an agate mortar and filled into a tungsten crucible. These steps were performed under 
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argon atmosphere in a glovebox (Unilab, MBraun, Garching; O2 < 1 ppm; H2O < 1 ppm). 

Subsequently, the crucible was placed in a water-cooled silica glass reactor of a radio frequency 

furnace (type AXIO 10/450, maximal electrical output 10 kW, Hüttinger Elektronik, Freiburg),28 

heated under N2-atmosphere to 1600 °C within 1 h, maintained at that temperature for 10 h, then 

cooled to 900 °C in 44 h, and finally quenched to room temperature by switching off the furnace. The 

reaction yielded an inhomogeneous sample with small aggregates of yellow crystals with a maximum 

size of a few μm (Figure S1), which show yellow luminescence after excitation with blue light. 

Moreover the crystals have high air and water stability. Contact with air and water over several hours 

does not lead to a decomposition of the crystals. 

Electron microscopy 

For scanning electron microscopy (SEM), a JSM 6500F instrument (JEOL) with a Si/Li energy-

dispersive X-ray (EDX) detector (Oxford Instruments, model 7418) was used. EDX spectra were 

collected with an accelerating voltage of 12 kV. In order to ensure electrical conductivity on the 

sample surface, it was coated with carbon by means of an electron beam evaporator (BAL-TEC MED 

020, Bal Tec AG). 

For TEM investigations, the crushed polycrystalline aggregates of La3BaSi5N9O2:Ce3+ were dispersed in 

absolute ethanol and drop-cast on copper finder grids coated with a holey carbon film (S166-2, Plano 

GmbH, Germany). The grids were fixed on double-tilt holders. Selected area electron diffraction 

(SAED), high resolution TEM (HRTEM), scanning TEM using a high-angle annular dark-field detector 

(STEM-HAADF), and EDX measurements were acquired on a Titan 80-300 (FEI, USA) with a field 

emission gun operated at 300 kV, equipped with a TEM TOPS 30 EDX spectrometer (EDAX, Germany). 

Images were recorded using an UltraScan 1000 camera (Gatan, USA, resolution: 2k × 2k). Further 

SAED and EDX measurements were done on a Jeol 2010 (Jeol, Germany) with a thermal emitter 

operated at 200 keV, equipped with an EDAX Apollo XLT EDX detector (EDAX Germany) and a 

TemCam F216 camera (TVIPS, Germany, resolution: 2k × 2k). HRTEM and SAED data were evaluated 

using the programs Digital Micrograph29 (including Fourier filtering of the HRTEM images) and 

JEMS.30 EDX data were processed with ES Vision31 and EDAX TEAM.32 

Single-crystal X-ray diffraction 

The X-ray diffraction data of La3BaSi5N9O2:Ce3+ were collected at beamline ID11 of the ESRF in 

Grenoble (Ge(111) double-crystal monochromator, Frelon CCD detector)33 with a wavelength of λ   

0.33510 Å. The beam was focused to 4.5 μm in horizontal direction and 0.5 μm in vertical direction 

with a beryllium lens system.34 A single-crystalline tip (ca. 1 μm ∙ 0.5 μm) of a crystallite was centered 

in the beam with the help of the fluorescence signal.  
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Diffraction data were indexed with SMART35 and integrated with SAINT.36 Scaling and absorption 

correction were done with SADABS.37 In addition, a correction for the incomplete absorption in the 

CCD phosphor was applied.38 The structure was solved by direct methods (SHELXS) and refined by full 

matrix least-squares methods (SHELXL).39 

Powder X-ray diffraction 

Powder diffraction data were collected with a STOE STADI P diffractometer (Mo-Kα1 radiation, λ   

0.70930 Å, Ge(111) monochromator, MYTHEN 1K detector) in Debye–Scherrer geometry. Simulated 

powder diffraction patterns were calculated using the WinXPOW program package40 on the basis of 

the single-crystal structure data. Rietveld refinement was performed by using TOPAS-Academic.41 

Luminescence 

The luminescence was analyzed with a luminescence microscope, consisting of a HORIBA Fluoromax4 

spectrofluorimeter system attached to an Olympus BX51 microscope via fiber optics. Using an 

excitation wavelength of 440 nm with a spectral width of 10 nm, the emission spectra were 

measured between 460 and 780 nm with 2 nm step size. This spectral range was also used for color 

point calculations. Excitation spectra were measured between 385 and 520 nm with 2 nm step size. 

FTIR spectroscopy 

The Fourier transform infrared spectrum (FTIR) spectrum of La3BaSi5N9O2:Ce3+ was recorded using a 

KBr pellet with a Spectrum BX II spectrometer (PerkinElmer, Waltham MA, USA). 

2.2.3 Results and discussion 

2.2.3.1 Synthesis and chemical analysis 

The synthesis is probably based on the decomposition of BaH2 (decomposition at 675 °C),42 and its 

reaction with LaF3 to BaF2, which resublimates at the reactor wall of the radio frequency furnace. 

Subsequently, the remaining Ba reacts with the dopant and the precursors La(NH2)3 and Si(NH)2 to 

La3BaSi5N9O2:Ce3+. The incorporated O supposedly originates from contamination of commercially 

acquired starting materials. La3BaSi5N9O2:Ce3+ forms small yellow crystals, whose size could not be 

increased so far by variation of synthesis conditions.  
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The sum formula obtained from single-crystal structure refinement and bond-valence sum 

calculations is corroborated by SEM-EDX analyses as the measurements result in an average 

composition of La3.00(17)Ba0.49(4)Si4.4(2)N12.0(4)O2.34(11) (sum formula normalized according to the La 

content; four measurements on different crystals; unusually large errors are due to La/Ba line 

overlap and the simultaneous presence of light and very heavy elements). Although Ce was not 

detected by EDX, its presence is proven unequivocally by luminescence measurements. 

2.2.3.2 Single-crystal structure analysis 

As only agglomerates with low scattering intensity of the crystals could be separated, their 

characterization was not possible with conventional single-crystal X-ray diffraction. As no phase-pure 

sample could be obtained and the powder pattern suggested a novel compound with a very complex 

structure, crystal-structure determination by means of powder X-ray diffraction was also not feasible. 

As the product shows interesting luminescence properties, it was investigated by a combination of 

TEM and synchrotron microfocus diffraction. Therefore, the agglomerates were crushed in order to 

obtain small single crystals which were then dispersed on a TEM grid. An appropriate tip of a 

crystallite of La3BaSi5N9O2:Ce3+ was selected by means of EDX and SAED (Figure 1). 

 

Fig 1: Bright-field image of the selected crystal (blue circle) and investigated areas of the microcrystal; green: 

for TEM, red: for microfocused synchrotron beam. 

Indexing of the SAED patterns (Figure 2) leads to orthorhombic metrics with so far unknown lattice 

parameters (a = 10.37, b = 19.1, c = 12.21 Å). Further electron diffraction patterns along [100], [010], 

and [001] confirm the orthorhombic metrics of La3BaSi5N9O2 and the reflection condition h0l: h + l = 

2n for a (010) n-glide plane is fulfilled. 

http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig2
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Fig. 2: (a) SAED tilt series (maximum deviation between experimental and simulated tilt angles 1.5°) of the 

La3BaSi5N9O2:Ce3+ microcrystal investigated by synchrotron radiation; experimental SAED pattern with some 

highlighted 1/d-values (top), simulated SAED patterns with selected reflections labeled with indices (bottom, 

selected reflections labeled with indices, kinematical intensities according to the final structure model), (b) 

experimental SAED patterns along [010] and [001] obtained from thin regions of different crystallites of 

La3BaSi5N9O2:Ce3+ (top) and corresponding, simulated SAED patterns (bottom, selected reflections are labeled 

with indices). 

Consequently, the selected crystal was investigated by microfocused radiation. The crystal structure 

was solved and refined in space group Pmn21. Inversion twinning had to be taken into account. The 

crystallographic data are summarized in Table 1, and the atomic parameters are given in the 

Supporting Information (Tables S1, S2).43 Due to its insignificant contribution to the scattering 

density, Ce3+ was neglected in the refinement of the crystal structure as well as for bond-valence sum 

calculations (BVS) (Tables S3, S4). The distribution of La and Ba as well as of N and O is based on BVS 

calculations and EDX measurements and is explained in detail in the chapter on BVS calculations 

below.  

http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#tbl1
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#notes-1
javascript:void(0);
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#notes-1


2.2 La₃BaSi₅N₉O₂:Ce³⁺ – A yellow phosphor with an unprecedented tetrahedra network; structure investigated 
by combination of electron microscopy and synchrotron X-ray diffraction 

24 

Tab. 1: Crystallographic data of the single–crystal structure determination of La3BaSi5N9O2. 

formula La3BaSi5N9O2 

crystal system orthorhombic 

space group Pmn21 (no. 31) 

lattice parameters / Å a = 9.5505(8),  

b = 19.0778(16),  

c = 12.1134(9) 

cell volume / Å3 2207.1(3)  

formula units per unit cell 8 

density / g·cm–3 5.132 

µ / mm–1 2.045 

T / K 298(2) 

radiation / Å synchrotron ( λ = 0.3351) 

F(000) 3008 

θ range / ° 1.4 ≤ θ ≤ 12.9 

independent reflections 5514 [Rint = 0.0518] 

refined parameters 296 

twin ratio 0.51(8)/ 0.49 

goodness of fit 1.036 

R1 (all data / for F2 > 2σ(F2)) 0.0357 / 0.0343 

wR2 (all data / for F2 > 2σ(F2)) 0.0859 / 0.0848 

Δρmax , Δρmin (e·Å–3) 1.841, –1.777 

 

La3BaSi5N9O2 is characterized by a three-dimensional network of vertex-sharing Q4- and Q2-type 

SiN4/SiN2O2 tetrahedra in the ratio of Q4/Q2 = 4/1 (Figure 3a). This leads to a degree of condensation 

κ   n(Si):n(N,O) = 0.45. In the network, there are singly bridging N[2] atoms and terminal O[1] atoms. 

The absence of N–H groups was confirmed by FTIR spectroscopy (Figure S3). The SiN4 tetrahedra 

form sechser rings, which are condensed to zehner rings. These zehner rings are interconnected by 

dreier rings, which are composed of two SiN4 and one SiN2O2 tetrahedra (Figure 3a, 3c, 3d).44,45 Thus, 

although nitridosilicates with κ < 0.5 usually tend to form layered or less-condensed structures,45 an 

interrupted three-dimensional network with zehner ring channels along [100] is formed (Figure 3b). 

An interrupted tetrahedra framework based on a degree of condensation smaller than 0.5 was also 

observed for M7Si6N15 (M = La, Ce, Pr).46 The unique topology of the network47,48 of La3BaSi5N9O2, 

keeping the 2-coordinated nodes forming the dreier rings, is represented by the point symbol 

{3.63.72}2{3}{66}2.  

http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig3
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#notes-1
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig3
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig3
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig3
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The Si–N [1.670(10)–1.773(8) Å] and Si–O [1.647(14)–1.709(14) Å] distances are in good agreement 

with comparable compounds, such as Sr2Si5N8 [1.653(9)–1.786(5) Å]49 and Pr2Si2O7.[1.519–1.712 Å]50 

as well as with the sum of the ionic radii.51 

 

Fig. 3: (a) Structure of La3BaSi5N9O2 in projection along [100] with SiN4/SiN2O2 tetrahedra (turquoise), N atoms 

(blue), O atoms (red), and La/Ba atoms (yellow), unit cell outlined in black; (b) topological representation of 

La3BaSi5N9O2, zehner rings are represented by blue and dreier rings by red lines. Each connecting line 

represents a Si–N–Si bond; (c,d) detailed representation of zehner rings (blue), which are condensed with 

sechser (d: green) and dreier (red) rings. 

The crystal structure contains 12 crystallographically independent heavy-atom sites. Bond-valence 

sum calculations (see below and Tables S3, S4) suggest that all positions are mixed occupied with La 

and Ba. The sites La3/Ba3, La5/Ba5, and La9/Ba9 were described with split positions (each containing 
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La and Ba) with site occupation factors of 0.755(17): 0.244(17), 0.213(17): 0.286(17), and 0.039(2): 

0.460(2), respectively. In order to maintain a charge neutral formula, the site occupation factors 

were fixed to ratios of 0.750:0.250, 0.215:0.285, and 0.040:0.460, respectively (see chapter on BVS 

calculations below). La1/Ba1–La4/Ba4, La5B/Ba5B, La7/Ba7, La10/Ba10, and La11/Ba11 are 8-fold 

coordinated by N3– and O2–. The sites La8/Ba8 and La9A/Ba9A are 8-fold coordinated by N3–. For the 

sites La5A/Ba5A, La6/Ba6, La9B/Ba9B, and La12/Ba12 a coordination with nine anions is observed, 

whereas La6/Ba6, La9B/Ba9B, and La12/Ba12 are exclusively surrounded by N3– and La5A/Ba5A is 

surrounded by N3– and O2–. All cations coordination spheres correspond to nonregular polyhedra 

(Figure 4). The bond lengths of La/Ba–N [2.419(12)–3.22(2) Å] and La/Ba–O [2.40(2)–2.908(19) Å] 

correspond to those in other lanthanum and barium compounds as well as to the sum of the ionic 

radii.51-54 A Rietveld refinement based on powder X-ray diffraction data (Figure S2) shows that the 

sample is composed of 93% La3BaSi5N9O2 and 7% LaSi3N5. In addition, there are a few weak 

reflections which cannot be ascribed to any known compound. The refinement also confirms the 

structure determined by single-crystal structure analysis.  

 

Fig. 4: Coordination spheres of the heavy-atom sites in La3BaSi5N9O2. 

http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#sec3.3
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#sec3.3
http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig4
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2.2.3.3 Bond-valence sum calculations 

Due to the very similar scattering factors of La and Ba, it is impossible to distinguish these atoms by 

X-ray diffraction. The same is true concerning the differentiation between N and O. Moreover, 

charge neutrality could be maintained by arbitrary exchange of LaO and BaN units. Thus, BVS 

calculations were performed to determine the cation site occupancies.55 The calculations were based 

on the fact that terminal anion positions would preferentially be occupied by O rather than by N 

(Pauling’s rules),56 whereas all other light-atom sites were assumed to be occupied by N. The validity 

of this assumption is corroborated by EDX measurements, which leads to a comparable ratio of N 

and O. On the basis of this assumption, the BVS of the cations were determined (Table S3, S4). 

Thereby, the BVS of each heavy atom site was determined for La as well as for Ba. Optimizing the 

weighted average BVS for each site so that it corresponds to the site valence55 yielded to the relative 

occupation of the heavy-atom sites. This calculation led to a sum formula with 0.14 negative excess 

charges. These were evenly distributed over all heavy atoms sites by adjusting the site occupancies in 

order to achieve a neutral formula. The negligible deviation between the refined and fixed site 

occupation factors as well as between the oxidation states and the BVS of the heavy atom sites that 

was achieved by this strategy confirms that the structure model is consistent (Table S4). Additionally, 

the La/Ba ratio is also corroborated by EDX measurements.  

2.2.3.4 Electron microscopy 

Simulations of HRTEM images along [001] based on the structure model of La3BaSi5N9O2 obtained by 

X-ray structure refinement are consistent with the experimental images (Figure 5). 

 

Fig. 5: Fourier filtered HRT M images along [001] with different defocus values Δf, insets: simulated images in 

the size of one unit cell (multislice method,30 Cs = 0.6 nm, spread of focus = 3.6 nm, beam semiconvergence = 

25 mrad, layer thickness ∼ 25 nm). 
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This is supported by STEM-HAADF images along [001]. Real structure effects were also observed, e.g. 

an antiphase boundary along ⟨010⟩ specified by an antiphase vector p = 1/4b (Figure 6). Due to the 

large difference of the atomic numbers in La3BaSi5N9O2, only the heavy atoms La and Ba are visible in 

STEM-HAADF images.  

 

Fig. 6: STEM-HAADF images along [001] at different magnifications with structure projections (unit cell 

contents) of La3BaSi5N9O2, antiphase boundary highlighted with green lines and domain positions visualized by 

red and blue lined. 

 

http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig6
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2.2.3.5 Luminescence 

Luminescence measurements were performed on isolated aggregates of La3BaSi5N9O2:Ce3+ (2 mol % 

Ce3+, nominal composition). All particles show comparable yellow emission under irradiation with 

blue light. Exemplary emission and excitation spectra are depicted in Figure 7. Excitation at 440 nm 

yields an emission spectrum with the characteristic broadband emission of the 5d–4f transition of 

Ce3+. The emission band peaks at 578 nm with a fwhm of ∼167.4 nm (∼4700 cm–1) and CIE 

(Commission Internationale de l’Éclairage) color coordinates of x = 0.464 and y = 0.493. The 

excitation spectrum shows a broad band with maximum intensity at approximately 385–455 nm, 

thus the material can be excited very well by blue light as originating from a (Ga,In) N-LED. 

 

Fig. 7: Excitation (blue) and emission (red) spectra of La3BaSi5N9O2:Ce3+ in comparison to the emission of a 

YAG:Ce3+ sample (gray). 

Emissions comparable to La3BaSi5N9O2:Ce3+ are also observed by other industrially applied LED 

phosphor materials such as (La,Ca)3Si6N11:Ce3+ (λem = 577–581 nm; fwhm ∼3800 cm–1),18 

CaAlSiN3:Ce3+ (λem = 580 nm; fwhm ∼3900 cm–1),57 and YAG:Ce3+ (λem = 550–570 nm; fwhm ∼3700 

cm–1).58 These compounds as well as La3BaSi5N9O2:Ce3+ show a relatively broad emission with double 

band shape as the 4f1 ground state configuration of Ce3+ yields two levels separated by 

approximately 2000 cm–1.59) Compared to the emission of YAG:Ce3+ (Figure 7, λem = 550 nm; fwhm 

∼2994 cm–1, x = 0.432 and y = 0.549) La3BaSi5N9O2:Ce3+ shows a red-shifted and a markedly broader 

emission, so that a broader color range can be covered. Both aspects lead to a warmer color 

temperature under excitation with blue light. The warmer color temperature is also proven by the 

CIE diagram (Figure 8). The color coordinates of La3BaSi5N9O2:Ce3+ and YAG:Ce3+ are positioned in the 

yellow spectral range. The combination with a 450 nm InGaN LED yields white 1pc-LEDs, whereas the 

http://pubs.acs.org/doi/full/10.1021/acs.chemmater.5b01702#fig7
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combination with La3BaSi5N9O2:Ce3+ leads to a crossing of the blackbody curve at a warmer 

correlated color temperature (∼4000 K) than that with YAG:Ce3+ (∼10000 K). The broad emission 

spectrum of La3BaSi5N9O2:Ce3+ most likely originates from the superposition of light emitted from 

multiple chemically different sites.60 Moreover the asymmetric coordination of the sites might 

increase the width of the emission, as asymmetric dopant site environment leads to stronger 

structural relaxation around the activator in its excited state and consequently to a broad, red-

shifted emission.60 Since La3BaSi5N9O2:Ce3+ shows a large number of different substitutable sites, 

which are additionally asymmetrically coordinated (Figure 4), its host lattice is especially suitable for 

broad band emission. 

 

Fig. 8: CIE 1931 chromaticity diagram showing the color coordinates of La3BaSi5N9O2:Ce3+ and the YAG:Ce3+ 

sample. 

2.2.4 Conclusion 

The lanthanum barium nitridosilicate La3BaSi5N9O2:Ce3+ could be obtained from reactive starting 

materials. It exhibits a new type of interrupted tetrahedra network and shows intense yellow 

emission under irradiation of blue light. Compared to YAG:Ce3+, the emission yields a warmer color 

temperature. This synthesis approach might offer an intriguing way to new lanthanum 

nitridosilicates, which might have potential as phosphors for pc-LEDs. 

By combination of TEM and synchrotron microfocus diffraction, it was possible to analyze the small 

crystals of La3BaSi5N9O2:Ce3+, which occur as aggregates of crystals with a maximum size of only a few 

μm. Compared with other methods for micro- or nanocrystal analysis like ADT and RED, this 

approach allows for a precise structure refinement, which e.g. clearly reveals split positions and 

javascript:void(0);
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renders data suitable for BVS calculations. Consequently, this method is a powerful tool for the 

analysis of single particles of new promising phosphors, even with complicated structures not 

accessible by powder X-ray diffraction or conventional single-crystal measurements. With a detailed 

knowledge of their structures, it might be possible to draw conclusions about the relation between 

structures and properties which is necessary for a systematic tuning of the luminescence properties. 

Moreover, the information on the crystal structures could probably accelerate the development of 

syntheses to phase-pure samples. Both aspects could help to push forward the research of phosphor 

materials for LEDs. 
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2.2.6 Supporting Information 

 

Fig. S1: Characteristic section of the Rietveld profile fit for a sample of La3BaSi5N9O2: observed (black line) and 

calculated (red line) powder diffraction pattern as well as position of Bragg reflections (black: La3BaSi5N9O2 

(93%), blue: LaSi3N5(7%)) and difference profile (green line).  

 

Fig. S2: IR spectrum of the sample whose powder pattern is shown in Figure S1. 
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Table S3: Atomic coordinates, site occupancies and isotropic (for O/N) or equivalent isotropic atomic 

displacement parameters (for Si/La/Ba) of La3BaSi5N9O2 (in Å2) with standard deviations in parentheses. 

atom  x y z Uiso/Ueq s.o.f. 

La1   4b 0.22420(8) 0.03047(4)  0.92256(6)  0.00950(16)   0.9144 
Ba1   4b 0.22420(8) 0.03047(4)  0.92256(6)  0.00950(16)   0.0856 
La2   4b 0.22608(7) 0.28788(3)  0.59655(6)  0.00728(15)   0.9544 
Ba2   4b 0.22608(7) 0.28788(3)  0.59655(6)  0.00728(15)   0.0456 
La3A  4b 0.2717(2)  0.21079(9)   0.09552(13)   0.0113(3)     0.5433 
Ba3A  4b 0.2717(2)  0.21079(9)   0.09552(13)   0.0113(3)     0.2067 
La3B  4b 0.2725(8)  0.2223(4)   0.0692(5) 0.0113(3)     0.1936 
Ba3B  4b 0.2725(8)  0.2223(4)   0.0692(5)   0.0113(3)     0.0564 
La4   4b 0.27890(8) 0.48297(4)  0.48236(6)  0.00865(16)   0.9044 
Ba4   4b 0.27890(8) 0.48297(4)  0.48236(6)  0.00865(16)   0.0956 
La5A  2a 0  0.0542(6)   0.2231(14)  0.0071(10)    0.3459 
Ba5A  2a 0  0.0542(6)   0.2231(14)  0.0071(10)    0.0841 
La5B  2a 0  0.0402(4)   0.2316(10)  0.0071(10)    0.4585 
Ba5B  2a 0  0.0402(4)   0.2316(10)  0.0071(10)    0.1115 
La6 2a 0  0.09669(6)  0.63200(9) 0.0115(2)     0.2344 
Ba6   2a 0  0.09669(6)  0.63200(9) 0.0115(2)     0.7656 
La7   2a 0  0.27154(5)  0.30800(8)  0.0092(2)     0.8344 
Ba7   2a 0  0.27154(5)  0.30800(8)  0.0092(2)     0.1656 
La8   2a 0  0.34883(5)  0.88810(12) 0.0175(3)     0.4544 
Ba8   2a 0  0.34883(5)  0.88810(12) 0.0175(3)     0.5456 
La9A  2a 0  0.6070(7)   0.7095(16)    0.0141(3)     0.0403 
Ba9A  2a 0  0.6070(7)   0.7095(16)  0.0141(3)     0.0396 
La9B  2a 0  0.61423(6)  0.65333(12) 0.0141(3)     0.1788 
Ba9B  2a 0  0.61423(6)  0.65333(12) 0.0141(3)     0.7412 
La10  2a 0  0.77904(5)  0.28360(8)  0.0097(2)     0.8244 
Ba10  2a 0  0.77904(5)  0.28360(8)  0.0097(2)     0.1756 
La11  2a 0  0.51509(5)  0.26193(8)  0.00816(19)   0.9344 
Ba11  2a 0  0.51509(5)  0.26193(8)  0.00816(19)   0.0656 
La12  2a 0  0.85597(5)  0.91257(8)  0.00748(19)   0.6744 
Ba12  2a 0  0.85597(5)  0.91257(8)  0.00748(19)   0.3256 
Si1   4b 0.1636(3)  0.20837(14) 0.8093(2)   0.0050(5) 1 
Si2   4b 0.1757(3)  0.38100(15) 0.1514(2)   0.0051(5) 1 
Si3   4b 0.1769(3)  0.64476(14) 0.3985(3)   0.0053(5) 1 
Si4   4b 0.1808(3)  0.14229(14) 0.4051(3)   0.0053(5) 1 
Si5   4b 0.3227(3)  0.09717(15) 0.6405(3)   0.0050(5) 1 
Si6   4b 0.3359(3)  0.29008(15) 0.3446(3)   0.0058(5) 1 
Si7   4b 0.3368(3)  0.53404(14) 0.2322(3)   0.0047(5) 1 
Si8   4b 0.3377(3)  0.05057(15) 0.2084(2)   0.0054(5) 1 
Si9   2a 0 0.1457(2)   0.0003(4)   0.0073(8) 1 
Si10  2a 0  0.4030(2)   0.5446(3)   0.0049(8) 1 
Si11  2a 0  0.6385(2)   0.0144(3)   0.0056(8) 1 
Si12  2a 0  0.8995(2)   0.5091(4)   0.0088(8) 1 
N1    4b 0.1479(11) 0.1594(5)   0.9263(8)   0.0099(18)  1 
N2    4b 0.2275(10) 0.5678(5)   0.3317(8)   0.0080(17)  1 
N3    4b 0.2315(14) 0.3581(7)   0.0208(12)  0.025(3)  1 
N4    4b 0.2360(10) 0.3120(5)   0.2323(9)   0.0092(18)  1 
N5    4b 0.2401(12) 0.7167(5)   0.3283(10)  0.013(2) 1 
N6    4b 0.2425(14) 0.1089(7)   0.2843(11)  0.023(2)  1 
N7    4b 0.2472(11) 0.2257(5)   0.4161(9)   0.0106(18)  1 
N8    4b 0.2491(11) 0.4614(5)   0.1836(9)   0.012(2)  1 
N9    4b 0.2552(11) 0.0912(5)   0.5071(8)   0.0093(18)  1 
N10   4b 0.2583(11) 0.1707(5)   0.7051(9)   0.0098(18)  1 
N11   4b 0.2646(11) 0.0242(5)   0.7107(9)   0.0110(19)  1 
N12   4b 0.3496(11) 0.3583(5)   0.4388(8)   0.0094(18)  1 
N13   4b 0.3520(10) 0.0843(5)   0.0779(8)   0.0100(18)  1 
N14   4b 0.3537(10) 0.5900(5)   0.1222(8)   0.0088(17)  1 
N15   2a 0 0.1423(7)   0.4073(13)  0.013(3)  1 
N16   2a 0  0.2321(7)   0.7564(12)  0.013(3)  1 
N17   2a 0  0.3861(7)   0.1695(13)  0.014(3)  1 
N18   2a 0  0.4830(6)   0.7935(11)  0.007(2)  1 
N19   2a 0  0.6470(8)   0.4111(15)  0.020(3)  1 
N20   2a 0  0.7388(6)   0.7994(11)  0.006(2)  1 
N21   2a 0  0.8956(7)   0.1313(13)  0.014(3)  1 
N22   2a 0  0.9648(7)   0.7753(13)  0.013(3)  1 
O1    2a 0  0.0582(6)   0.0247(10)  0.012(2)  1 
O2    2a 0  0.1899(7)   0.1230(11)  0.021(3)  1 
O3    2a 0  0.3211(6)   0.4971(10)  0.011(2)  1 
O4    2a 0  0.4607(7)   0.4436(12)  0.019(3)  1 
O5    2a 0  0.5571(6)   0.0686(10)  0.011(2)  1 
O6    2a 0  0.6995(6)   0.1159(10)  0.015(2)  1 
O7    2a 0  0.8132(7)   0.4828(12)  0.019(3)  1 
O8    2a 0  0.9477(8)   0.3948(13)  0.027(3)  1 
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Table S4: Anisotropic displacement parameters (Uiy, in Å2) (for Si/La/Ba) of La3BaSi5N9O2. 

atom U11 U22 U33 U23 U13 U12 

La1   0.0085(4)  0.0110(3)  0.0089(3)  -0.0012(3)   -0.0003(3)  0.0007(2) 
Ba1   0.0085(4)  0.0110(3)  0.0089(3)  -0.0012(3)   -0.0003(3)  0.0007(2) 
La2   0.0081(3)  0.0089(3)  0.0049(3)  0.0015(2)    0.0010(3)   0.0014(2) 
Ba2   0.0081(3)  0.0089(3)  0.0049(3)  0.0015(2)    0.0010(3)   0.0014(2) 
La3A  0.0110(4)  0.0119(8)  0.0110(9)  -0.0043(5)   -0.0013(7)  0.0023(5) 
Ba3A  0.0110(4)  0.0119(8)  0.0110(9)  -0.0043(5)   -0.0013(7)  0.0023(5) 
La3B  0.0110(4)  0.0119(8)  0.0110(9)  -0.0043(5)   -0.0013(7)  0.0023(5) 
Ba3B  0.0110(4)  0.0119(8)  0.0110(9)  -0.0043(5)   -0.0013(7)  0.0023(5) 
La4   0.0089(3)  0.0099(3)  0.0072(3)  0.0033(2)    0.0002(3)   0.0005(2) 
Ba4   0.0089(3)  0.0099(3)  0.0072(3)  0.0033(2)    0.0002(3)   0.0005(2) 
La5A  0.0041(5)  0.011(3) 0 0.0068(18)  -0.001(2)    0  0 
Ba5A  0.0041(5)  0.011(3) 0 0.0068(18)  -0.001(2)    0   0 
La5B  0.0041(5)  0.011(3) 0 0.0068(18)  -0.001(2)    0  0 
Ba5B  0.0041(5)  0.011(3) 0 0.0068(18)  -0.001(2)    0  0 
La6 0.0071(5)  0.0163(5)  0.0110(4)  0.0022(4)    0  0 
Ba6   0.0071(5)  0.0163(5)  0.0110(4)  0.0022(4)    0  0 
La7   0.0047(5)  0.0133(4)  0.0095(4)  0.0048(4)    0  0 
Ba7   0.0047(5)  0.0133(4)  0.0095(4)  0.0048(4)    0  0 
La8   0.0064(5)  0.0105(4)  0.0356(7)  -0.0039(4)   0  0 
Ba8   0.0064(5)  0.0105(4)  0.0356(7)  -0.0039(4)   0  0 
La9A  0.0066(6)  0.0130(5)  0.0226(7)  -0.0018(5)   0  0 
Ba9A  0.0066(6)  0.0130(5)  0.0226(7)  -0.0018(5)   0  0 
La9B  0.0066(6)  0.0130(5)  0.0226(7)  -0.0018(5)   0  0 
Ba9B  0.0066(6)  0.0130(5)  0.0226(7)  -0.0018(5)   0  0 
La10  0.0039(5)  0.0160(4)  0.0091(4)  0.0001(3)    0  0 
Ba10  0.0039(5)  0.0160(4)  0.0091(4)  0.0001(3)    0  0 
La11  0.0049(4)  0.0131(4)  0.0065(4)  0.0024(3)    0  0 
Ba11  0.0049(4)  0.0131(4)  0.0065(4)  0.0024(3)    0  0 
La12  0.0050(5)  0.0098(4)  0.0076(4)  -0.0018(3)   0  0 
Ba12  0.0050(5)  0.0098(4)  0.0076(4)  -0.0018(3)   0  0 
Si1   0.0037(14) 0.0070(12) 0.0043(12) 0.0000(10)  -0.0004(11) -0.0009(9) 
Si2   0.0028(14) 0.0088(12) 0.0038(13) 0.0007(9)   -0.0004(10) -0.0001(10) 
Si3   0.0043(14) 0.0073(12) 0.0042(13) -0.0004(9)  -0.0007(11) 0.0009(10) 
Si4   0.0039(14) 0.0065(11) 0.0056(13) -0.0003(9)  -0.0001(11) 0.0004(10) 
Si5   0.0033(13) 0.0073(11) 0.0042(12) 0.0009(10)  0.0011(11)  -0.0006(9) 
Si6   0.0047(14) 0.0080(12) 0.0046(12) 0.0008(9)   -0.0007(11) -0.0010(10) 
Si7   0.0045(14) 0.0049(11) 0.0048(12) 0.0014(9)   0.0006(11)  -0.0001(9) 
Si8   0.0056(15) 0.0069(12) 0.0037(12) -0.0003(9)  0.0002(10)  -0.0001(10) 
Si9   0.006(2)   0.0115(18) 0.0047(18) 0.0014(14)  0 0 
Si10  0.002(2)   0.0092(18) 0.0033(17) -0.0009(14) 0  0. 
Si11  0.005(2) 0.0068(17) 0.0048(18) -0.0010(14) 0  0 
Si12  0.005(2) 0.017(2)   0.0044(18) -0.0017(15) 0 0 
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Table S5: Bond-valence sums for the anions and Si in La3BaSi5N9O2. 

atom 

 

BVS oxidation 

state 

atom BVS oxidation 

state 

atom BVS oxidation 

state 

Si1 4.05 4 N3 2.79 3 N17 2.85 3 

Si2 4.02 4 N4 2.99 3 N18 2.52 3 

Si3 4.03 4 N5 2.96 3 N19 2.62 3 

Si4 4.07 4 N6 2.68 3 N20 2.62 3 

Si5 4.02 4 N7 3.05 3 N21 2.72 3 

Si6 3.93 4 N8 2.94 3 N22 2.56 3 

Si7 3.95 4 N9 3.05 3 O1 1.87 2 

Si8 3.95 4 N10 3.05 3 O2 1.46 2 

Si9 3.80 4 N11 2.86 3 O3 2.10 2 

Si10 4.03 4 N12 2.98 3 O4 1.94 2 

Si11 3.78 4 N13 3.19 3 O5 2.24 2 

Si12 4.08 4 N14 3.27 3 O6 1.84 2 

N1 3.00 3 N15 2.72 3 O7 1.75 2 

N2 3.18 3 N16 2.71 3 O8 1.57 2 
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Table S6: Bond-valence sums for the heavy atom sites in La3BaSi5N9O2. 

atom BVS oxidation state s.o.f. weighted average 
BVS 

weighted average 
oxidation state 

La1 2.76 3 0.91 
2.92 2.91 

Ba1 4.60 2 0.09 
La2 2.86  3 0.95 

2.96 2.95 
Ba2 4.77  2 0.05 
La3A 2.30 3 0.54 

2.04 2.16 
Ba3A 3.81 2 0.21 
La3B 2.40 3 0.19 

0.69 0.69 
Ba3B 3.97 2 0.06 
La4 2.72 3 0.90 

2.90 2.90 
Ba4 4.52 2 0.10 
La5A 2.48 3 0.35 

1.20 1.21 
Ba5A 4.04 2 0.08 
La5B 2.47 3 0.46 

1.59 1.60 
Ba5B 4.06 2 0.11 
La6 1.41 3 0.23 

2.23 2.23 
Ba6 2.48 2 0.77 
La7 2.56 3 0.83 

2.84 2.83 
Ba7 4.23 2 0.17 
La8 1.73 3 0.45 

2.46 2.45 
Ba8 3.05 2 0.55 
La9A 1.79  3 0.04 

0.21 0.20 
Ba9A 3.16 2 0.04 
La9B 1.36 3 0.18 

2.02 2.02 
Ba9B 2.39 2 0.74 
La10 2.54 3 0.82 

2.83 2.82 
Ba10 4.15 2 0.18 
La11 2.82 3 0.93 

2.94 2.93 
Ba11 4.57 2 0.07 
La12 2.13 3 0.67 

2.66 2.67 
Ba12 3.75 2 0.33 
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Abstract 

La24Sr14–7x[Si36N72](O1–xFx)14 with x = 0.489 was obtained as a microcrystalline product by metathesis at 

1500 °C in a radio-frequency furnace starting from Si(NH)2, La(NH2)3, SrH2, LaF3, and CeF3. The 

structure of the new nitridosilicate oxide fluoride was determined by combining transmission 

electron microscopy (TEM) and single-crystal X-ray diffraction using a microfocused synchrotron 

beam. The structure model with pronounced disorder [P63/mmc, Z = 1, a = 16.2065(3), c = 9.4165(1) 

Å, R1(obs) = 0.0436] was confirmed by electron diffraction and aberration-corrected Z-contrast 

scanning TEM. The highly symmetric AB2 framework, which was theoretically predicted but not yet 

realized, consists of all-side vertex-sharing SiN4 tetrahedra that form channels along [001] filled with 

La, Sr, O, and F atoms. The connectivity pattern is related to that of tridymite. X-ray spectroscopy and 

bond-valence-sum calculations were further taken into account for assignment of the N, O, and F 

atoms. 

2.3.1 Introduction 

Starting from the great variety of oxosilicates found in nature, research on (oxo)nitridosilicates at the 

end of the last century was motivated by extending the fundamental knowledge of structural 

chemistry and possible applications.1-3 ariation of the atomic ratio N:O permits, in principle, greater 

structural variety than that for conventional metal oxosilicates. Using the elements Si, N, and O for 

the building of 3D structures, a nearly infinite number of unique frameworks is theoretically possible. 

Even with the constraint of forming only AB2 networks, i.e., such as with the number of O and N 

atoms being twice that of Si atoms or other tetrahedral centers, an enormous structural diversity has 

been predicted, although only a very small fraction of theoretically possible structures has been 

realized experimentally.4,5 Because most AB2 frameworks correspond to 3D networks of linked 

polyhedra with a 1:2 ratio of polyhedra centers and bridging atoms, the crystal chemistry of 

(nitrido)silicates is predestined to feature such structures. SiO2 as a prominent representative 
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crystallizes in many structure types as a function of the temperature or pressure. Among these, the 

tridymite structure type6 shows hexagonal channels. Related aluminosilicate networks such as that of 

megakalsilite (KAlSiO4)7,8 as well as isostructural compounds exhibit channels filled with different 

metal ions.9,10 Such frameworks can be characterized by formal decomposition into layers of sechser 

rings, which may differ with respect to the orientation of the tetrahedra in these layers. 

(Oxo)nitridosilicates often favor quite unique framework structures. Several of these exhibit 

promising properties like zeolite-like behavior (e.g., porosity, ion exchange, or absorption) and 

second harmonic generation or may serve as host lattices for Eu2+ and Ce3+ dopants in luminescence 

materials.11-16 Charge neutrality can be achieved by varying the atom types in the framework, e.g., 

O/N or Al/Si, or by varying the cations and anions in the structural cavities (e.g., Sr/La or O/F). This 

enables many options of improving the properties.17,18 Typical (oxo)nitridoslicates form rigid, highly 

condensed tetrahedral networks with a degree of condensation κ   n(Si):n(N/O) ≥ 0.5 and high 

symmetry; this leads to high physical and chemical resistance.19-23  

The synthesis of heterogeneous samples with a number of uncharacterized new compounds 

represents the starting point for the Single-Particle-Diagnosis Approach.24 This strategy is suitable for 

the discovery of new compounds, especially in complex systems such as the above-mentioned 

materials with intriguing properties. The precise elucidation of the crystal structures of the different 

phases is often the crucial step toward targeted synthesis and further property tuning of the 

corresponding pure compounds. (Oxo)nitridosilicates have frequently been synthesized by high-

temperature metathesis, which has the drawback that a high variety of elements are usually present 

in the starting materials as well as in the products. In the case of, e.g., N/O/F or Ba/La, it is difficult to 

exactly assign atom types by X-ray diffraction. This impedes targeted attempts to obtain certain 

compositions, and multiphase products are frequently obtained. Subsequent structural 

characterization of such inhomogeneous and often microcrystalline oxonitridosilicates is demanding 

or even impossible using conventional X-ray methods. It has been shown that in such cases the 

combination of transmission electron microscopy (TEM) and synchrotron microfocus diffraction can 

deliver accurate structure data.25-29 For example, Z-contrast scanning TEM (STEM) and selected-area 

electron diffraction (SAED) have enabled structure determination of zeolite-like networks.30-32 

Furthermore, complex crystallographic phenomena like diffuse scattering, the presence of 

intergrown domains, or pseudomerohedral twinning were observed for highly efficient luminescent 

(oxo)nitridosilicates and analyzed using a combination of TEM and X-ray methods.33-38 

Here we report on a highly symmetrical crystal structure derived from microfocus synchrotron and 

TEM data of the microcrystalline nitridosilicate oxide fluoride La24Sr14–7x[Si36N72](O1–xFx)14, which was 

obtained as part of a multiphase product. This approach may open an efficient pathway to 

compounds with potentially intriguing properties. 
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2.3.2 Results and Discussion 

2.3.2.1 Synthesis and sample characterization  

La24Sr14–7x[Si36N72](O1–xFx)14 was synthesized by high-temperature metathesis starting from reactive N-

rich materials Si(NH)2 and La(NH2)3 combined with LaF3 and an excess of SrH2. Decomposition of the 

hydrides and subsequent formation of SrF2 and H2 are the driving forces of this reaction type.25 

Colorless needle-shaped La24Sr14–7x[Si36N72](O1–xFx)14 crystals with maximum lengths of a few microns 

(Figure 1, right) were obtained as agglomerates in a multiphase sample (Figure 1, left) and are stable 

to air and moisture. With respect to the La content, ca. 1.4 atom % Ce3+ doping was applied, yet no 

luminescence was observed. The incorporated O may originate from commercially acquired starting 

materials. Further details of the synthesis are given in the Experimental Section.  

 

Figure 1. Representative crystals of La24Sr14–7x[Si36N72](O1–xFx)14: (left) SEM image with agglomerates highlighted 

by white arrows and (right) TEM bright-field image showing an individual needlelike crystal. 

TEM and scanning electron microscopy (SEM) EDX analyses of La24Sr14–7x[Si36N72](O1–xFx)14 show no 

elements other than Sr, La, Ce, Si, N, O, and F. With the exception of O, whose amount appears too 

high because of the typical surface oxidation in nitrides, the average EDX results for 

La20(2)Sr9(2)Si30(2)N69(8)O18(2)F9(2) (normalized for optimal comparability; for details, see Table S1) are in 

accordance with values calculated from the sum formula La24Sr10.58Si36N72O7.16F6.84 (as obtained by 

structure refinement based on synchrotron X-ray data) within experimental error. The Ce content 

was not quantified, but traces of Ce were detected in the EDX spectra (Figure S1). The very small 

needle-shaped crystals in an inhomogeneous sample preclude more precise chemical analysis. As 

expected from the synthesis conditions, the IR spectrum exhibits no valence modes between 2600 

and 3250 cm–1, indicating the absence of −OH and −NH groups (Figure S2). The presence of the 

element combinations La/Sr and N/O/F combined with vacancies on the cation sites may lead to solid 

solutions without compromising the charge neutrality. Taking into account the vacancies on the Sr 

sites, the crystal structure determination (see below) yields the sum formula La24Sr14–7x[Si36N72](O1–

xFx)14, where x was refined as 0.489 but may, in principle, vary between 0 and 1.  

http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#sec4
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
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Thus, the compound with x = 0.489, i.e., La24Sr10.58Si36N72O7.16F6.84, can be interpreted as one possible 

variant. Assuming mixed and/or vacancy-containing Sr and La sites would suggest the formula 

La24-ySr14–x[Si36N72](O1–x/7–y/14Fx/7+y/14)14 with x/7 + y/14 ≤ 1. Further degrees of freedom may result 

from variations of the N/O/F ratio. Several TEM investigations of many crystals suggest different 

N/O/F and La/Sr ratios; however, these were not investigated in detail. Hypothetical chemical 

variations without changing the framework and the metrics could inspire further substitution 

experiments. Powder X-ray diffraction (PXRD) reveals the presence of the title compound and 

probably one major side phase (Figure S3). The side phase is an unknown lanthanum–strontium 

oxonitridosilicate (TEM- DX; La:Sr:Si:N:O ≈ 14:8: 6:43:11) whose structure could not yet be solved. 

This corresponds to the more isometric crystals in Figure 1. 

2.3.2.2 Structure determination  

Because the maximal volume of the La24Sr14–7x[Si36N72](O1–xFx)14 needles is only about 50 μm3 and 

structure solution with PXRD was impeded by side phases, data were collected using a microfocused 

synchrotron beam. The crystal structure was solved and refined in space group P63/mmc (Table 1), 

yielding an AB2 framework with channels filled with F and O. Because of the lack of scattering 

contrast between La and Ce, the latter was neglected in the refinement. Parts of the crystallographic 

data are shown in Tables S2 and S3. Further details on the structure analysis can be obtained from 

the Fachinformationszentrum Karlsruhe, Eggenstein-Leopoldshafen, Germany (fax +49-7247-808-

666; e-mail crysdata@fiz-karlsruhe.de) upon quoting the depository number CSD 432688. 

The structure refinement, especially with respect to the cation distribution, is characterized by the 

fact that the ratio of charge and electron count, i.e., scattering power, is the same for La3+ (3/54 = 

0.0556) and Sr2+ (2/36 = 0.0556). Taking possible cation vacancies into account, the refinement thus 

directly yields the total charge on the respective positions but gives no information on the atomic 

ratio La/Sr. As an initial step, the total scattering density on each of the six cation positions was 

determined assuming either La, Sr, or mixed occupancy; as expected, the results did not differ 

significantly. The scattering density on positions La1, La2, and La3 corresponds to full occupancy of 

La. Taking into account the chemical composition as determined by EDX, the remaining positions are 

likely to be occupied exclusively by Sr. Following this assumption, positions Sr4 and Sr5 turned out to 

be fully occupied, whereas the refined occupancy of the split position Sr6 is 14.6%. The resulting 

atomic ratio La:Sr of 2.26 is quite close to the value 2.27 determined by EDX. Complementary bond-

valence-sum (BVS) calculations approximately match this cation assignment (Table S4).39 Because 

La24Sr10.58[Si36N72]O7.16F6.84 is transparent, charge neutrality was assured by constraints. In accordance 

with chemical analysis (see the section on the synthesis and sample characterization), which shows 

significantly more N than O; the N atoms were assigned to the bridging atoms in the framework, 

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#tbl1
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#tbl1
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
mailto:crysdata@fiz-karlsruhe.de
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
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covering the majority of the required negative charge. The assignment of the anions was further 

based on Pauling’s rules and comparisons to other nitridosilicate oxides/fluorides.40-42For the 

remaining two independent anion sites in the channels, full occupancy was found. Matching the 

charge neutrality, a fixed mixed occupancy with O and F of ≈1:1 was assumed because O and F 

cannot be accurately distinguished by X-ray diffraction. The final structure model yields meaningful 

interatomic distances and displacement parameters, and the assignments of all atoms are 

approximately consistent with BVS calculations (Table S4). 

Table 2. Crystallographic Data and X-ray Structure Determination of La24Sr14–7x[Si36N72](O1–xFx)14 with x = 0.489. 

Formula La24Sr10.58Si36N72O7.16F6.84 

Molar weight (in g/mol) 6525.69 

Space group  P63/mmc (no. 194) 

Lattice parameters (in Å) a = 16.2065(3)   c = 9.4165(1) 

Cell volume (in Å3) 2141.90(8) 

Formula unit per unit cell 1 

X-ray density (in g·cm–3) 5.059 

F(000) 2897.0 

Absorption coefficient (in mm–1) 4.361 

Resolution dmin (in Å) 0.75 

Wavelength (in Å)  0.41300 (synchrotron, ID11, ESRF) 

Total no. of reflections / independent reflections 19029 / 1034 

Rint / Rσ 0.0439 / 0.0151 

Refined parameters / restraints 87 / 0  

R1 / wR2 (all data) 0.0443 / 0.1293 

R1 / wR2 (F2 > 2σ(F2)) 0.0436 / 0.1287 

Goodness of fit 1.663 

Δρmax / Δρmin (in e / Å-3) +4.74 / –1.68 

 

Because the structure determination was not straightforward, TEM was performed in order to rule 

out the occurrence of a superstructure or twinning and to confirm the final structure model. The 

SAED tilt series confirms the hexagonal metrics with a = 16.24 Å and c = 9.44 Å and no detectable 

superstructure reflections. In accordance with Laue class 6/mmm, the SAED pattern along zone axis 

[110] shows mm2 symmetry, and the reflection intensities approximately match those of the 

corresponding kinematical simulations (see Figure 2). 

http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig2
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig2
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Figure 2. SAED tilt series of a representative crystallite with experimental patterns (top) and tilt angles (blue) as 

well as simulated patterns (bottom) and tilt angles (red) based on the refined structure model from X-ray data. 

Selected reflections are labeled with indices. 

STEM using a high-angle annular dark field (HAADF) detector yielded the projected heavy-atom 

positions along the [100] and [101] zone axes (Figure 3 and enlarged and unfiltered in Figure S4), 

confirming the cation positions of the structure model. An additional weak diffuse scattering 

intensity was observed in various SAED patterns (Figure S5) along different zone axes. Because of the 

similar ionic radii of both La3+ and Sr2+, it seems likely that these diffuse intensities are associated 

with cation disorder. 

 

http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig3
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig3
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
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Figure 3. Fourier-filtered Z-contrast STEM-HAADF images along the [100] (top) and [101] (bottom) zone axes of 

La24Sr14–7x[Si36N72](O1–xFx)14. The unit cell is highlighted in red with a colored overlay of heavy atoms. 

2.3.2.3 Structure description  

La24Sr14–7x[Si36N72](O1–xFx)14 exhibits a highly condensed SiN4 tetrahedral framework with κ   n(Si):n(N) 

= 0.5 (Figure 4). All SiN4 tetrahedra are corner-sharing Q4-type ones so that the framework itself 

corresponds to an AB2 type. The crystal structure can be simplified to M38[Si36N72]X14 with M = La, Sr, 

and □ and X   O and F, highlighting the  B2-type framework more clearly. This framework has been 

experimentally realized for the first time. It matches type 194_3_3914 (Figure S6) of the over 2 

million theoretical unique frameworks deposited in the hypothetical zeolite database.4 The 

framework can be derived from the tridymite structure. The connectivity pattern is comparable; 

however, the tetrahedra within each layer perpendicular to [001] are differently oriented (Figure S7; 

various orientations of tetrahedra, pointing up or down). Another related pattern is known from the 

mineral megakalsilite.43 According to the nomenclature introduced by Liebau, the framework of the 

title compound consists of vierer and sechser rings (Figure 5a,b; light blue, green, and red).44,45 The 

vierer rings are oriented along all (110) face diagonals, and the sechser rings form channels parallel to 

[001], filled with Sr, La, O, and F. Similar to nitrides crystallizing in the UCr4C4 structure type,46 the 

framework of La24Sr14–7x[Si36N72](O1–xFx)14 can act as a starting point for further experiments realizing 

http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig4
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig4
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.inorgchem.7b01862/suppl_file/ic7b01862_si_001.pdf
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig5
http://pubs.acs.org/doi/full/10.1021/acs.inorgchem.7b01862#fig5
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a solid-solution series based on different substitutions. Finding a rigid and stable network is therefore 

fundamental for the targeted design of new materials.19 

 

Figure 4. Crystal structure of La24Sr14–7x[Si36N72](O1–xFx)14 along [100] (left) and [001] (right). SiN4 tetrahedra are 

in green, La in yellow, Sr in pink, and O/F in cyan. 

 

Figure 5. (a) Network topology of La24Sr14–7x[Si36N72](O1–xFx)14. Each line represents a Si–N–Si bond. (b) Different 

types of tiles with incorporated cations highlighted in green, blue, light blue, and red. (c) Whole tiling viewed 

along [001] represented by (d) different polyhedra in green, blue, light blue, and red. 
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The Si–Si connection pattern yielded the network topology and the related natural tiling with the 

point symbol (4.65)2.66 (Figure 5a).47-51 The Si–Si network consists of three vertices; Si1 with point 

symbol 66 and Si2 and Si3, both with point symbol 4.65. The tiles’ faces consist of locally strong rings 

(built up from Si–Si adjacencies), which are characterized in Table 2 and Figure 5c,d, representing the 

cavities in the structure. The tiles include rings of a distorted boat configuration (tile I), a regular boat 

configuration (tile II), and a chair conformation (tiles III–V). Although tiles III–V look similar, they 

differ in their orientation as well as in their centroids and volume. The cations La2, La3, and Sr4 form 

triangles at the level of 1/4c and 3/4c within tiles III–V (Figure 5b). Without reducing the symmetry, 

mixing the occupancy of the cations forming the triangles is theoretically possible. The split positions 

of Sr6 is oriented parallel to [001] at heights 001/2 and 000, respectively. The mixed occupied anion 

sites O9/F9 are arranged circularly at a level of 1/4c around tile IV, whereas O8/F8 is within tile IV 

linearly coordinated by Sr. Because La24Sr14–7x[Si36N72](O1–xFx)14 crystallizes in space group P63/mmc, 

the highest possible hexagonal symmetry is present in both the crystal structure and its natural tiling. 

This is also true for tridymite.  

Table 2. Characterization of Different Tiles in La24Sr14–7x[Si36N72](O1–xFx)14. 

tile (color code) face 

symbol 

centroid volume 

in Å3 

incorporated  

cations (occupancy) 

I (green) [42.68] (0.833, 0.167, 0.250) 245.243 La1(1) La2 (1) La3 (1) Sr4 (1) 

II (yellow) [63] (0.887, 0.443, 0.750) 25.404  - 

III (blue) [65] (0.333,0.667,0.750) 93.505  Sr5 (1) 

IV (red) [65] (0.000, 0.000, 0.750) 85.285  Sr6 (0.146) 

V (light blue) [65] (0.333, 0.667, 0.250) 86.788  Sr5 (1) 

 

As is typical for Sr-, Ba-, and Ln-containing (oxo)nitridosilicates, the cations show high coordination 

numbers (Figure 6, La1[8], La2[8], La3[9], Sr4[9], Sr5[10], and Sr6[9]). The Si–N bond lengths (see Table S12) 

range between 1.670(6) and 1.742(6) Å and correspond to typical values in (oxo)nitridosilicates.52-54 

he same applies for the La–N [2.496(6)–2.758(1) Å] and Sr–N [2.737(3)–3.050(2) Å] bond lengths 

(Table S5), corresponding to other lanthanum or strontium nitridosilicates like LaSi3N5, La3Si6N11, and 

La2Si3N4O3 or SrYbSi4N7, SrSi7N10, and SrSiN2.55-60 The Si–N–Si bond angles in La24Sr14-7x[Si36N72](O1-xFx)14 

with x = 0.489 also match typical values.61-63 
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Figure 6. Coordination spheres of La (yellow) and Sr (magenta) sites in La24Sr14–7x[Si36N72](O1–xFx)14, with N in 

blue and mixed O/F sites in cyan (ellipsoids with 90% probability). Because N5 is part of the SiN4 tetrahedra 

containing the split positions N6A/B, N5 has prolate displacement parameters within the coordination sphere 

of La1 and Sr4. 

2.3.3 Conclusion 

Challenges occurring during the phase characterization of nitridosilicates obtained from high-

temperature metathesis were overcome by the combination of TEM and single-crystal diffraction 

using a microfocused synchrotron beam. The latter is well suited to provide accurate X-ray data for 

the structure determination of single crystals with small scattering volume. Concerning its structural 

classification and tiling, the structure determination of La24Sr14–7x[Si36N72](O1–xFx)14 with x = 0.489 

revealed a predicted AB2 framework topology that is experimentally observed for the first time. It is 

related but not isostructural to that of tridymite. Electron diffraction and Z-contrast STEM images 

confirmed the structure model. The approach applied here enables an efficient pathway to the 

discovery of new compounds with promising structural features.  
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The highly symmetric structure of La24Sr14–7x[Si36N72](O1–xFx)14 shows channels filled with La, Sr, O, and 

F atoms, and because of the cavities, it might be suitable for ion exchange of La3+ or Sr2+ with other 

cations like Na+, Ca2+, or lanthanides, especially Eu2+, in combination with a changed O:F ratio. The 

recently described ion exchange in metal halide melts can be one possible strategy for realizing this 

issue, while retaining the framework.64 Further substitution experiments (e.g., with Si/Al) open 

structural and chemical variations, and the latter can have a positive influence for the discovery of 

prospective solid solutions. Thus, new SiAlON host lattices for activator ions with regard to 

luminescent materials can be obtained. Therefore, the presence of F is beneficial because of an 

enhanced tuning ability.17 In combination with different metal cations, it may be an appropriate 

approach to stimulate luminescence of the title compound or a corresponding SiAlON. 

2.3.4 Experimental Section 

Synthesis of La2.26xSrx[Si36N72]O0.675xF0.645x 

Si(NH)2 (53.4 mg, 0.919 mmol, synthesized according to Winter),65 SrH2 (64.1 mg, 0.7 mmol), LaF3 

(30.5 mg, 0.156 mmol), and CeF3 (0.9 mg, 4.566 μmol) were added to La(NH2)3 (30.2 mg, 0.162 mmol, 

synthesized according to Jacobs).66 The mixture was ground and filled in a tungsten crucible, which 

was placed in a radio-frequency furnace (Typ AXIO 10/450, Hüttinger Elektronik, Freiburg, 

Germany).67 Inert gas conditions prevented the presence of O2 and moisture. The following 

temperature program was used: heating to 1500 °C in 1 h, dwelling for 10 h, cooling to 900 °C in 2 

days, and finally quenching to room temperature by switching off the furnace. The reaction yielded 

an inhomogeneous air- and moisture-stable product. Small amounts of the title compound were also 

obtained in other reactions without CeF3, which proves that Ce is not necessary to stabilize it. 

Single-crystal X-ray diffraction 

Single-crystals were separated under a light microscope and mounted on Kapton foil holders ( 0 μm 

micromount, MiTeGen, Ithaca). X-ray diffraction data were obtained at the ID11 beamline (ESRF 

Grenoble) at a wavelength of 0.41300 Å (Si(111) double-crystal monochromator) using a Frelon2k 

CCD detector.68 Indexing, integration and scaling as well as semi-empirical absorption correction 

were done with Crysalis.69 Structure solution and refinement were done with SHELX.70 

Electron microscopy 

SEM was done with a Zeiss LEO 1530 microscope (Zeiss, Jena, Germany) and a JEOL JSM 6500F 

microscope (JEOL, Freising, Germany), both equipped with an energy-dispersive X-ray (EDX) INCA 

system (model 7418, Oxford Instruments, Oxford, U.K.) and with a Dualbeam Helios Nanolab G3UC 
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(FEI, USA, Hillsboro, OR) with a field-emission gun (operating at 20 kV) and an X-Max80 SDD EDX 

detector (Oxford Instruments). The product was fixed on a conductive adhesive film coated with C.  

For TEM, small amounts of the product were ground in absolute ethanol and drop-cast on Cu grids 

with a holey C film (S166-2, Plano GmbH, Wetzlar, Germany). The TEM experiments were performed 

on a Titan Themis 60-300 (FEI, USA) operated at a 300 kV acceleration voltage and equipped with an 

X-FEG monochromator, Cs corrector, and windowless four-quadrant Super-X EDX detector (acquisi-

tion time 45 s). The TEM images were recorded using a 4K × 4K Ceta CMOS camera (FEI, USA). The 

following software was used for data evaluation: Digital Micrograph and ProcessDiffraction7 

(geometric calculations for SAED), JEMS (SAED simulations), and ES Vision (evaluation of EDX 

spectra).71-74  

FTIR spectroscopy 

FTIR spectra were recorded on a PerkinElmer Spectrum BXII spectrometer using KBr pellets. 
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2.3.5 Supporting Information 

Table S1. EDX analyses of four different microcrystals (three measurements points each) of 

La24Sr14-7x[Si36N72](O1-xFx)14, variance in parentheses.  

 K1 K2 K3 K4 Ø 

N(K) 49(2) 38(2) 43.5(9) 46(1) 44(5) 

O(K) 11(3) 16(1) 10.9(6) 12(2) 12(2) 

F (K) 6.7(3) 5.7(2) 6.0(2) 6.1(1) 6(1) 

Si(K) 18(2) 20.2(2) 20.1(4) 18.1(6) 19(1) 

Sr(L) 4.6(2) 6.8(1) 6.0(3) 5.8(7) 6(1) 

La(L) 11.2(4) 13.7(3) 13.5(7) 12.0(5) 13(1) 

 

 

Figure S2. Representative EDX spectrum of La24Sr14-7x[Si36N72](O1-xFx)14 doped with Ce. The presence of elements 

including Ce is observed.  
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Figure S2. FTIR spectrum of La24Sr14-7x[Si36N72](O1-xFx)14. 

 

Figure S3. Experimental PXRD pattern of a typical reaction product (black) compared to one calculated from 

the single-crystal data of La24Sr14-7x[Si36N72](O1-xFx)14 (red). Misfits concerning reflection intensities may come 

from preferred orientation, which was not taken into account. Further unexplained reflections originate from 

an unknown phase.  
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Table S2. Atom coordinates, isotropic displacement parameters (in Å2) of La24Sr14-7x[Si36N72](O1-xFx)14 (x = 0.489) 

with estimated standard deviations in parentheses. 

atom 
Wyckoff 

site 
x y z Ueq s. o. f.  

La1 12i 0.32734(3) 0 0 0.0258(3) 1 

La2 6h 0.90248(3) 0.80496(6) ¼ 0.0252(3) 1 

La3 6h 0.76114(3) 0.52229(7) ¼ 0.0313(3) 1 

Sr4 6h 0.44259(4) 0.88519(8) ¼ 0.0205(3) 1 

Sr5 4f ⅓ ⅔ 0.03377(18) 0.0227(3) 1 

Sr6 4e 0 0 0.0339(10) 0.029(4) 0.146(6) 

Si1 12k 0.55493(8) 0.10987(15) 0.0737(2) 0.0178(5) 1 

Si2 12k 0.10638(8) 0.21277(15) 0.0858(2) 0.0159(5) 1 

Si3 12k 0.22639(8) 0.45278(16) 0.0864(2) 0.0167(4) 1 

N1 12k 0.1666(2) 0.3331(4) 0.0726(8) 0.0210(14) 1 

N2 6h 0.0806(3) 0.1613(7) ¼ 0.0186(17) 1 

N3 12i 0.1733(4) 0 0 0.0164(13) 1 

N4 24l 0.4956(4) 0.1638(4) 0.0054(5) 0.0207(12) 1 

N5 6g ½ 0 0 0.048(4) 1 

N6A 6h 0.5685(5) 0.1369(10) ¼ 0.009(2) 0.75(3) 

N6B 6h 0.5482(16) 0.096(3) ¼ 0.009(2) 0.25(3) 

N7A 6h 0.2553(4) 0.5106(8) ¼ 0.011(2) 0.76(2) 

N7B 6h 0.2301(14) 0.460(3) ¼ 0.011(2) 0.24(2) 

O8 / F8 2d ⅓ ⅔ ¾ 0.053(5) 0.5114 / 0.4885 

O9 / F9 12j 0.3319(4) 0.0636(5) ¼ 0.0322(13) 0.5114 / 0.4885 
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Table S3. Anisotropic displacement parameters (in Å2) of La24Sr14-7x[Si36N72](O1-xFx)14 (x = 0.489) with standard 

deviation in parentheses. 

Atom U11 U22 U33 U23 U13 U12 

La1 0.0184(3) 0.0192(3) 0.0400(4) 0.0064(2) 0.00321(10) 0.00962(17) 

La2 0.0239(3) 0.0357(5) 0.0201(4) 0 0 0.0178(2) 

La3 0.0320(4) 0.0487(6) 0.0186(4) 0 0 0.0243(3) 

Sr4 0.0205(4) 0.0292(5) 0.0147(5) 0 0 0.0146(3) 

Sr5 0.0154(4) 0.0154(4) 0.0373(7) 0 0 0.0077(2) 

Sr6 0.018(3) 0.018(3) 0.050(9) 0 0 0.0089(15) 

Si1 0.0169(8) 0.0180(10) 0.0188(10) 0.0009(7) 0.0005(4) 0.0090(5) 

Si2 0.0151(7) 0.0167(9) 0.0165(11) -0.0010(7) -0.0005(4) 0.0084(5) 

Si3 0.0164(7) 0.0168(10) 0.0171(10) 0.0001(7) 0.0000(4) 0.0084(5) 

N1 0.020(2) 0.017(3) 0.025(3) 0.003(2) 0.0016(11) 0.0086(16) 

N2 0.019(3) 0.016(4) 0.020(4) 0 0 0.008(2) 

N3 0.017(2) 0.014(3) 0.018(3) 0.006(2) 0.0029(11) 0.0068(16) 

N4 0.019(3) 0.020(3) 0.027(3) 0.0026(18) 0.0025(17) 0.012(2) 

N5 0.022(4) 0.022(6) 0.100(11) -0.024(7) -0.012(3) 0.011(3) 

O8/F8 0.046(7) 0.046(7) 0.067(13) 0 0 0.023(4) 

O9/F9 0.027(3) 0.037(3) 0.029(3) 0 0 0.013(3) 

 

Table S4. Bond-valence sums for La24Sr14-7x[Si36N72](O1-xFx)14. 

 La1 La2 La3 Sr4 Sr5 Sr6 Si1 Si2 Si3 

BVS 2.56 2.70 2.53 1.58 1.84 1.52 4.22 4.21 4.25 

occ. 1 1 1 1 1 0.145 1 1 1 

 N1 N2 N3 N4 N5 N6A/N6B N7A/N7B O8/F8 O9/F9 

BVS 2.81 3.13 3.18 3.06 3.02 2.78/2.78 2.68/3.57 1.30/0.99 1.39/1.11 

occ. 1 1 1 1 1 0.75/0.24 0.74/0.26 0.51/0.49 0.51/0.49 

 

The bond-valence sums (BVS) for La24Sr14-7x[Si36N72](O1-xFx)14 confirm the element assignment based 

on the X-ray data. The BVS of the cations sites 1-3 are significantly > 2 in contrast to the BVS of the 

sites 4-6, which are < 2, confirming the assignment of La and Sr, respectively. The deviations of the 

BVS to the oxidation numbers are < 8% for most atoms forming the AB2 framework. Due to the short 

Si1-N7B distance of 1.555 Å (affected by disorder) the BVS of N7B seems too large. The mixed 

occupancy of O and F on the anion sites between the tetrahedral network matches the BVS between 

1 and 2.  
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Figure S4. Enlarged STEM-HAADF micrographs (left) viewed along the zone axes [100] (top) and [101] (bottom) 

with corresponding Fourier transforms (right) of La24Sr14-7x[Si36N72](O1-xFx)14. Unit cell highlighted in red, colored 

overlay of La3+ (yellow) and Sr2+ (pink) ions.  
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Figure S5. SAED pattern of La24Sr14-7x[Si36N72](O1-xFx)14 showing weak diffuse intensities along [100] (red arrows) 

observed along zone axis [010] (left) and [011] (right).  

 

Figure S6. Calculated crystal structure of SiO2 in the theoretical prospective unique network type 194_3_3914, 

listed in the hypothetical zeolite database.1 

 

Figure S7. Orientation of the tetrahedra in La24Sr14-7x[Si36N72](O1-xFx)14 (a) and tridymite (b) viewed along [001]. 

Tetrahedra pointing down represented in green and pointing up represented in red. Unit cells are outlined in 

black. 
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Every individual six-membered ring consist of each three up-orientated (Figure S11: red) and down-

orientated (Figure S11: green) tetrahedra. Their arrangement generates sechser rings with either 

alternating up and down orientation of the tetrahedra, or one pair plus one lone tetrahedron point in 

the same direction within each ring.  

Table S5. Bond lengths in La24Sr14-7x[Si36N72](O1-xFx)14 (x = 0.489) with standard deviations in parentheses. The 

unrealistically short Si3-N7B distance (1.5445(65) Å) observed at the anion split position N7A/B is associated 

with disorder, which can be compared to the situations in Y2AlSiNO5, NaSi2N3 or Si3N4.2-5 

bond length (in Å) bond  length (in Å) 

La1-N3 2.496(6) Sr5-N4 2.785(8) 

La1-N4 2.692(5) Sr5-N7A 2.991(9) 

La1-N5 2.7982(6) Sr5-O8/F8 2.6721(17) 

La1-O9/F9 2.556(3) Sr6-N3 2.827(7) 

La2-N2 2.534(3) Si1-N4 1.716(5) 

La2-N3 2.7582(10) Si1-N5 1.691(2) 

La2-O9/F9 2.538(6) Si1-N6A 1.703(4) 

La3-N4 2.687(5) Si1-N6B 1.670 (6) 

La3-N6A 2.706(8) Si2-N1 1.694(6) 

La3-O8/F8 2.6520(10) Si2-N2 1.707 (5) 

La3-O9/F9 2.634(6) Si2-N3 1.7121(15) 

Sr4-N4 2.867(5) Si3-N1 1.685(7) 

Sr4-N5 2.8528(6) Si3-N4 1.720(5) 

Sr4-N6B 2.96(5) Si3-N7A 1.742 (6) 

Sr4-N7A 2.736(3) Si3-N7B 1.545(6) 

Sr4-N7B 2.986(18)   
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3 Complex crystal structures of (oxo)nitridophosphates elucidated by 

transmission electron microscopy 

3.1 Overview  

Phosphorus oxide nitride (PON) is isoelectronic to silica (SiO2) and because of this analogy, 

oxonitridophosphates are closely related to silicates. Due to threefold coordinated nitrogen atoms, 

the variable atomic ratio N:O and the possibility of forming tetrahedra networks with a degree of 

condensation (κ) larger 0.5, a structural diversity at least as great as for oxosilicates is expected for 

oxonitridophosphates.1-3 Moreover, further variability can be achieved by substitution of O2- by NH2-. 

However, relatively few (oxo)nitridophosphates and their crystal structures have been reported. 

Nevertheless, research on (oxo)nitridophosphates is a growing field of interest because they are 

discussed as innovative materials and for some (oxo)nitridophosphates promising properties have 

been already observed in analogy to (oxo)nitridesilicates. For instance with respect to energy saving, 

recently discovered (oxo)nitridophosphates have been tested as phosphors for LED lighting.4,5 

Interesting luminescence properties were observed for Eu2+-doped MP2N4 (M = Ca, Sr, Ba) and 

BaSr2P6N12.6 The nitridophosphate Ba3P5N10Br:Eu2+ has a zeolite-like structure and with its white 

luminescence, it is discussed as single emitter phosphor.7 Based on tetrahedra networks with large 

cavities, further features of (oxo)nitridophosphates are ion-exchange or ion-conductivity. Li7PN4 and 

Li18P6N16 as well as thin layers of Li2.88PO3.73N0.14 are discussed as Li-ion conductors and future 

applications as solid electrolytes are imaginable.8-12 

For the synthesis of (oxo)nitridophosphates predominantly extreme high-pressure and high-

temperature conditions are applied, which are achieved with multianvil press or in a diamond-anvil 

cell. The decomposition of azides, the reaction of nitrides or metathesis are promising routes. Using 

these synthetic approaches, only small amounts of microcrystalline products with occasional bad 

crystallinity are obtained. Mineralizers like NH4Cl or Li2O can facilitates the formation and 

crystallization of metal-(oxo)nitridophosphates.13 In addition to the structural and functional analogy 

between (oxo)nitridophosphates and oxonitridosilicates, a methodical analogy for approaches for 

their structure determination seems sensible. Thus, TEM, as a particularly sensitive method, is ideal 

to contribute significantly to the structure determination. For example, ADT was used to determine 

the crystal structure of nanocrystalline SrP3N5O and Ba6P12N17O9Br3.14,15 TEM, especially electron 

diffraction, was an important tool for the structural elucidation of the first two zeolite-type 

oxonitridophosphates (NPO-framework type, for nitridophosphate one: LixH12-x-y+z[P12OyN24-y]Clz and 

NPT-framework type: Ba19P36O6+xN66-xCl8+x with x = 4.54).16,17  
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The combination of X-ray diffraction and TEM enables the elucidation of complex 

oxonitridophosphate structures, exemplarily shown for the ortho-phosphate Ca2PO3N, which is an 

incommensurately modulated modification of the β-K2SO4 type.18  

The structural diversity of (oxo)nitridophosphates and the wide range of potential properties not 

only allows unusual insights into the basic relations between structures and properties, but can also 

pave the way towards applications.19  
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Abstract 

CaMg2P6O3N10 has been synthesized starting from stoichiometric amounts of Ca(N3)2, Mg3N2, P3N5, 

and PON in a high-pressure/high-temperature reaction at 8 GPa and 1100 °C. Adding small amounts 

of NH4Cl to the starting mixture afforded single crystals of CaMg2P6O3N10, which form transparent, 

colorless truncated octahedra. The crystal structure [space group I41/acd (no. 142), a = 12.494(1), c = 

23.797(2) Å, Z = 16] was solved and refined by single-crystal X-ray diffraction analysis and confirmed 

by electron diffraction and transmission electron microscopy, including HRTEM image simulations. 

Rietveld refinement proved the phase purity of the product. FTIR analysis confirmed the absence N–

H groups in the structure. Bond valence and lattice energy calculations (MAPLE) of the title 

compound are discussed. The crystal structure consists of polyhedral building units constructed from 

vertex-sharing P(O,N)4 tetrahedra with condensed dreier and sechser rings.  

3.2.1 Introduction 

Silicates form one of the most abundant, varied, and important classes of minerals, with more than 

1000 representatives. More than 90 % of the earth's crust consists of silicates.1 Their wide range of 

applications in the ceramics and glass industries as well as their great potential as functional 

materials in catalysis, microelectronics, and optical fibers make silicates nearly indispensable for 

everyday life.2,3 Their important role as luminescent materials for phosphor-converted light-emitting 

diodes (pc-LEDs) also emphasizes the significance of silicates in future technologies.4 

Accordingly, the great structural variety and associated properties make structures that are 

analogous to silicates an attractive research target. Because PON is isoelectronic with SiO2, the 

silicate-analogous compound class of oxonitridophosphates is expected to exhibit a structural 

diversity similar to that of silicates. The formal partial substitution of O by N in a tetrahedral network 

implies significant new structural possibilities. N in oxonitridophosphates may occur as N1, N2, N3, or 

even N4 atoms connecting up to four neighboring tetrahedral centers.5,6 Compared with 

oxonitridophosphates, the structural variety of silicates is limited to terminal O1 or singly bridging O2 

http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib1
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib2
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib3
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib4
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib5
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib6
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atoms. An excellent example of the additional structural possibilities arising from the substitution of 

O by N in a network structure analogous to silicates is the nitridic clathrate P4N4(NH)4(NH3), which has 

been discussed as a possible gas-storage material.7,8 This clathrate network structure had been 

predicted for silicates but has been observed only in this nitride compound so far. However, 

compared with oxosilicates or nitridophosphates, only a few oxonitridophosphates have been 

synthesized so far. This is due to fundamental difficulties concerning their synthesis and the often 

poor crystallinity of the reaction products. Thus, the structure determination of these compounds 

requires a combination of different analytical methods such as X-ray diffraction, solid-state NMR 

spectroscopy, or electron microscopy. Nevertheless, several important representatives of the class of 

oxonitridophosphates have already been described. In addition to the layer compounds MIIP6O6N8 

(MII = Sr, Ba),9,10 M2
IM2

IIP3O9N (MI = Na; MII = Mg, Mn, Fe, Co),11 M3
IMIIIP3O9N (MI = Na, K; MIII = Al, Ga, 

In, Ti, V, Cr, Mn, Fe),12 Cs3M2
IIP6O17N (MII = Mg, Fe, Co),13 and SrP3N5O,14 the compounds LixH12–x–

y+z[P12OyN24–y]Xz (X = Cl, Br)15 and Ba19P36O6+xN66–xCl8+x 
16 exhibit uncommon frameworks and represent 

the first nitridic zeolite-like network types NPO and NPT, respectively. This suggests that the 

structural chemistry of oxonitridophosphates has immense potential.  

In this contribution, we report on the synthesis and structural elucidation of the novel quinary 

oxonitridophosphate CaMg2P6O3N10 with an unprecedented tetrahedral network structure 

constructed from vertex-sharing P(O,N)4 tetrahedra. 

3.2.2 Results and Discussion 

3.2.2.1 Synthesis 

Almost all known oxonitridophoshates have been synthesized by conventional solid-state reactions.17 

In contrast, the synthesis of CaMg2P6O3N10 requires high-pressure conditions. So far, only two 

oxonitridophosphates, namely MIIP6O6N8 (MII = Sr, Ba), have been synthesized under such high-

pressure conditions.9,10 

CaMg2P6O3N10 was obtained by using a Walker-type multi-anvil assembly18 at 8 GPa and 1100 °C 

starting from stoichiometric amounts of Ca(N3)2, Mg3N2, P3N5, and PON [Eq. (1)]. A high N2 partial 

pressure, which is available by in situ thermolysis of Ca(N3)2, prevents P3N5 from dissociation into 

elements at reaction temperatures above 1000 °C;19 under ambient pressure, P3N5 already 

dissociates into elements at temperatures above 850 °C. By adding catalytic amounts of NH4Cl to the 

mixture of starting materials, colorless crystals in the form of morphologically well-developed 

truncated octahedra were obtained and isolated (see Figure 1). Thus, the addition of NH4Cl as a 

mineralizer helps to overcome the main problem of the poor crystallization of oxonitridophosphates 

mentioned above.  

http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib7
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib8
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib9
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib10
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib11
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib12
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib13
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib14
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib15
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib16
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib17
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib9
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib10
http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#bib18
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As discussed previously, HCl, formed as an intermediate, presumably enables reversible bond 

cleavage and re-formation, and thus facilitates the growth of single crystals.20 Detailed information 

on the synthesis of CaMg2P6O3N10 is given in the Exp. Sect. 

3Ca(N3)2+2Mg3N2+9PON+3P3N5   →   3CaMg2P6O3N10+8N2 

 

 

Figure 1. SEM images of crystals of CaMg2P6O3N10. 

3.2.2.2 Structure determination 

he crystal structure of CaMg2P6O3N10 was solved and refined from the single-crystal X-ray diffraction 

data in the tetragonal space group I41/acd. For crystal structure refinement the values of the lattice 

parameters obtained from the Rietveld refinement were used. It was possible to refine significant 

site occupancies for the mixed O/N positions. All atoms were refined anisotropically. The 

crystallographic data of CaMg2P6O3N10 are summarized in the Exp. Sect. and the atomic parameters 

are given in Table 1.  

Because some displacement parameters and interatomic distances appeared unusual (see below), 

TEM investigations were performed to verify the structure derived from the X-ray diffraction data. 

The reflection positions and intensities of the SAED (selected area electron diffraction) patterns 

(Figure 2) of different crystallites of CaMg2P6O3N10 matched the calculated ones, which proves the 

tetragonal metrics, the four-fold axis (Figure 2, a), and the reflection conditions (h + k + l = 2n) of the 

body-centered Bravais lattice. Systematic absences due to glide planes (a, c, d) are evident in the 

corresponding zone-axis patterns (Figure 2, a–d).  
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Table 1. Atomic coordinates, isotropic displacement parameters, and occupation of crystallographic positions 

of CaMg2P6O3N10.[a] 

Atom  x Y z  Ueq/ Å2 Occupancy 

Ca1 8a 1/2 1/4 1/8 0.0086(3) 1.0 

Ca2 8b 1 3/4 3/8 0.0590(9) 1.0 

Mg1 32g 0.34412(11) 0.06404(12) 0.04286(7) 0.0128(3) 1.0 

P1 32g 0.60101(8) 0.02018(8) 0.08042(5) 0.0052(2) 1.0 

P2 32g 0.74435(8) 0.19018(8) 0.08350(4) 0.0053(2) 1.0 

P3 32g 0.58898(7) 0.18157(8) -0.00049(5) 0.0053(2) 1.0 

N1 32g 0.6603(3) 0.2566(3) 0.04283(19) 0.0070(7) 1.0 

N2/O2 32g 0.7981(3) 0.2733(2) 0.12829(16) 0.0072(8) 0.86(3)/0.14(3) 

N3 32g 0.6724(3) 0.1035(3) 0.11819(15) 0.0069(7) 1.0 

N4 32g 0.5260(3) 0.0931(3) 0.03859(18) 0.0061(7) 1.0 

N5/O5 32g 0.8376(3) 0.1259(3) 0.04907(15) 0.0106(9) 0.76(4)/0.24(4) 

N6/O6 16d 1/2 1/4 -0.0330(2) 0.0103(13) 0.76(7)/0.24(7) 

O7 32g 0.6717(2) -0.0534(2) 0.04400(14) 0.0106(6) 1.0 

[a] Standard deviations are given in parentheses. 

 

   

Figure 2. Experimental (top) SAED patterns with corresponding simulations (bottom, based on the single-crystal 

X-ray diffraction data) for CaMg2P6O3N10 obtained from different crystallites; exemplary reflections in the 

selected zero plains are labeled with indices. 
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Significant features in the HRTEM image simulations match well the experimental data (Figure 3) and 

thus corroborate the structure model of CaMg2P6O3N10. In a structure projection along [713] the Ca 

atom positions appear as rows that strongly influence the image contrast. This is strongly affected by 

the Ca2 site (oblate displacement ellipsoid, see below). There are no indications of superstructures 

and there is no characteristic mismatch. Significant contrast changes (in simulations and 

experiments) occur when the defocus values are altered by more than around 3 nm or when the 

thickness changes by more than around 5 nm, but also when the Ca atom positions are shifted by 

more than around 0.05 Å.  

 

Figure 3. a) Projected potential and b–d) HRTEM images of CaMg2P6O3N10 along the <713> zone axis with image 

simulations (accelerating voltage: 300 keV, Cs = 0.6 mm, spread of focus: 3.6 nm, beam semiconvergence: 17 

mrad, layer thickness two unit cells). Insets: defocus values: b) –70, c) –43, and d) –28 nm. 

The Rietveld refinement of the powder X-ray data confirmed the presence of a single-phase product 

corresponding to the crystal structure of CaMg2P6O3N10, as determined from the single-crystal data 

(see Figure 4); traces of cubic boron nitride (c-BN, 6 %) correspond to residual amounts of the boron 

nitride capsule. Detailed information on the crystallographic data of the Rietveld refinement of 

CaMg2P6O3N10 can be found in Tables S1 and S2 in the Supporting Information. 

http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#fig3
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The absence of N–H groups in the title compound was confirmed by FTIR spectroscopy (see Figure S1 

in the Supporting Information). The chemical composition of the product was confirmed by energy-

dispersive X-ray (EDX) spectroscopy; no elements other than Ca, Mg, P, O, and N were detected. The 

determined atomic ratio of Ca/O/P is in good agreement with the stoichiometric formula 

CaMg2P6O3N10 (see Table S3), and although the determination of N and P is less reliable, it is in the 

correct range. 

 

Figure 4. Observed (black line) and calculated (light-gray line) X-ray powder diffraction pattern, positions of 

Bragg reflections (CaMg2P6O3N10: vertical gray bars; c-BN: vertical bold bars), and difference profile for the 

Rietveld refinement of CaMg2P6O3N10 (dark-gray line). 

3.2.2.3 Structure description 

The crystal structure of CaMg2P6O3N10 consists of a three-dimensional network of vertex-sharing Q4- 

and Q3-type P(O,N)4 tetrahedra in the ratio Q4/Q3 = 3:1, leading to a degree of condensation κ = 

n(P)/n(O,N) = 0.46 for the [P6O3N10]6– substructure. The Q3-type P(O,N)4 tetrahedra are composed of 

two singly bridging N2 atoms, one singly bridging (O,N)2 atom, and one terminal O1 atom. 

Figure 5 (a) shows the unit cell of CaMg2P6O3N10, one polyhedral building unit (PBU, light-gray 

tetrahedra) is highlighted. It contains all the P, N, and O positions and is thus well suited to describing 

the whole structure. The interconnected PBUs form a three-dimensional network (Figure 5, b). As 

shown in Figure 6, the PBU consists of vertex-sharing P(O,N)4 tetrahedra forming condensed dreier 

and sechser rings, each dreier ring unit containing one Q3-type P(O,N)4 tetrahedron with one terminal 

O1 atom. This condensation results, in turn, in a truncated tetrahedron, with the centers of the 

P(O,N)4 tetrahedra located at the vertices. 

http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#fig5
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Figure 5. a) Crystal structure of CaMg2P6O3N10 viewed along [–9,2,17]. Ca atoms are gray, Mg atoms are black, 

the P(O,N)4 tetrahedra are dark gray, and the characteristic building block is shown in light gray. b) Topological 

representation of the unit cell. Dark PBUs in unit cell, light gray PBUs partially outside unit cell along [100]. Each 

connecting line represents a P–N–P bond, cf. Figure 6. 

 

Figure 6. a) PBU of the structure of CaMg2P6O3N10 consisting of P(O,N)4 tetrahedra (gray: Ca atom; black: N 

atoms; dark gray: N/O atoms; white: O atoms). b) Topological representation of the characteristic building unit. 

Each connecting line represents a P–N–P bond. 

http://onlinelibrary.wiley.com/doi/10.1002/ejic.201402302/full#fig6
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The center of the PBU is occupied by a Ca1 atom. This PBU is connected to other PBUs through two 

singly bridging (N/O) atoms in each dreier ring to form a vierer ring (see Figure 7). Thus, a three-

dimensional network structure containing channels filled with Ca and Mg atoms is formed (see 

Figure 5). The topology of this network, determined by the TOPOS software,21 is represented by the 

point symbol {3.4.5.62.8}2{3.62} and has not been found in any other known compound so far.  

 

Figure 7. Topological representation of two interconnected characteristic building blocks. Each connecting line 

represents a P–N–P bond.  

The bond lengths P–(O,N) range between 1.541(3) and 1.652(4) Å, and are in the range of those 

usually observed in other oxonitridophosphates.9-14 As expected, the P–(O,N)2 bond lengths 

[1.601(3)–1.631(4) Å] within a Q4-type P(O,N)4 tetrahedron involving a singly bridging O2 are 

significantly longer than the P–O1 bond lengths [1.541(3) Å] in Q3-type P(O,N)4 tetrahedra. The (O,N)–

P–(O,N) angles vary between 106.1(2) and 114.1(2)°, and thus differ slightly from the regular 

tetrahedral angle. The range of P–(O,N)–P angles [114.9(2)–124.0(2)°] is typical of 

oxonitridophosphate networks. Selected bond lengths and angles are given in Table 2. 

The crystal structure contains two independent crystallographic Ca and one Mg position, the 

coordination spheres of which are shown in Figure 8. The two Ca positions exhibit remarkably 

different coordination polyhedra. The Ca1 position is coordinated by 12 N atoms that form a slightly 

distorted cuboctahedron (see Figure 8, left). Thus, CaMg2P6O3N10 is, to the best of our knowledge, 

the first compound with Ca atoms coordinated directly by such a large number of N atoms. The Ca–N 

distances in this cuboctahedron vary between 2.797(4) and 2.856(4) Å and are in good agreement 

with Ca–N distances in other known compounds as well as with the sum of the ionic radii.22-24 The 

Ca2 position is coordinated by six O/N atoms at distances of 2.184(5)–2.541(4) Å in a distorted 

octahedral arrangement. These distorted Ca(O,N)6 octahedra are not connected to any other metal-

atom-centered polyhedra. Figure 8 (right) shows that the displacement ellipsoid Ca2 is rather oblate. 

This follows from significantly different Ca–(O/N) distances in the Ca(O/N)6 octahedron. Although the 

Ca–(N6/O6) distances [2.184(5) Å] in the axial positions are very short, the Ca–(N2/O2) distances in 

the equatorial positions [2.541(3) Å] correspond to those in other known calcium compounds (2.365–

3.001 Å).22-25 Thus, the very short Ca2–N6/O6 distance [2.184(5) Å], based on the sum of the ionic 

radii (Ca–O: 2.35 Å; Ca–N: 2.46 Å),22 is not real, but results from the average position of a disordered 
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Ca2 atom that is randomly displaced from the center of the distorted octahedron. In the second 

coordination sphere, the Ca2 atom is coordinated by four N5/O5 atoms in a slightly distorted square-

planar arrangement with a distance of 3.126(4) Å. 

Table 2. Selected bond lengths and angles in the crystal structure of CaMg2P6O3N10.[a] 

P1− N2/O2 1.622(4) O7- P1- N2/O2 111.7(2) 

 N3 1.638(4) O7- P1- N3 112.0(2) 

 N4 1.642(4) N2/O2- P1- N3 109.2(2) 

 O7 1.541(3) O7- P1- N4 108.6(2) 

P2− N1 1.651(4) N2/O2- P1- N4 108.4(2) 

 N2/O2 1.631(4) N3- P1- N4 106.8(2) 

 N3 1.631(3) N2/O2- P2- N3 108.9(2) 

 N5/O5 1.634(4) N2/O2- P2- N5/O5 110.3(2) 

P3− N1 1.652(4) N3- P2- N5/O5 108.6(2) 

 N4 1.644(4) N2/O2- P2- N1 108.8(2) 

 N6/O6 1.601(3) N3- P2- N1 106.2(2) 

 N5/O5 1.630(4) N5/O5- P2- N1 114.1(2) 

   N6/O6- P3- N5/O5 106.1(2) 

   N6/O6- P3- N4 107.4(2) 

   N5/O5- P3- N4 112.5(2) 

   N6/O6- P3- N1 111.8(2) 

   N5/O5- P3- N1 112.3(2) 

   N4- P3- N1 106.7(2) 

[a] Standard deviations are given in parentheses. 

 

Figure 8. Coordination polyhedra and corresponding bond lengths [Å] of the Ca1 position (left), the Ca2 

position (right), and the Mg1 position (bottom); ellipsoids are drawn with a probability factor of 70 %. 
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The Mg1 position is hexacoordinated by one O5/N5 atom, two terminal O1 atoms, and three N atoms 

in a slightly distorted octahedron (see Figure 8, bottom). The Mg–(O,N) distances range between 

2.076(4) and 2.379(4) Å, and correspond to those in other magnesium compounds as well as to the 

sum of the ionic radii.22,23,26,27 Two Mg(O,N)6 octahedra are interconnected by two terminal O1 atoms 

through a common edge to form Mg2(O,N)10 octahedron pairs. These pairs, in turn, interconnect with 

the CaN12 cuboctahedra through half of the latter's triangular faces (see Figure 9).  

 

Figure 9. Representation of edge-sharing Mg(O,N)6 octahedra that share faces with CaN12 cuboctahedra.  

3.2.2.4 Bond-valence sum calculations 

The structure model of CaMg2P6O3N10 and, in particular, the local displacements of Ca2 can be 

confirmed by bond-valence sum (BVS) calculations (see Table 3).28 The deviations between the bond-

valence sum and the oxidation state are in the range of 5 %, with the exception of the average Ca  

position and N6/O6 (occupied by 86 % N and 14 % O), which is at a very short distance from it.  t this 

distance, Ca2 would have a BVS of 3.1, and the values calculated for both N6 (3.54) and O6 (2.64) are 

also higher than their formal charge. This unfavorable situation is avoided by a displacement of Ca2 

from the average position. This leads to longer interatomic distances and thus lower and more 

reasonable BVS values, and thus explains the oblate displacement ellipsoid (see Figure 8). 

Table 4: Bond-valence sums for CaMg2P6O3N10. 

Atom Ca1 Ca2 Mg P1 P2 P3 N1 N3 

BVS 1.9 3.1 1.95 4.84 4.73 4.78 2.81 2.89 

oxidation state 2 2 2 5 5 5 3 3 

Atom N4 N2 O2 N5 O5 N6 O6 O1 

BVS 2.83 2.83 2.18 2.74 2.12 3.54 2.64 1.86 

oxidation state 3 3 2 3 2 3 2 2 
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3.2.2.5 Lattice-energy calculations (MAPLE) 

Taking into account exclusively electrostatic interactions in an ionic crystal, which depend on the 

charge, distance, and coordination spheres of the constituting ions, the Madelung part of the lattice 

energy (MAPLE) was calculated (Table 4).22,29-31 The overall MAPLE value of CaMg2P6O3N10 (166621 

kJ mol–1) is in good agreement with the sum of those of the binary compounds that formally 

constitute the quinary compound (CaO 32 + 2MgO 33 + 2P3N5,34 overall M PL  value 166917 kJ mol–1). 

The negligible deviation of 0.  % confirms the electrostatic consistency of the refined crystal 

structure despite the expectedly rather different partial MAPLE values of the Ca1 and Ca2 positions. 

The difference between the partial MAPLE values of the Ca1 and Ca2 positions reflects the same 

discrepancy for Ca2 as its BVS value. The partial MAPLE values of the Mg, P, and O1 atoms are 

congruent with reference values, whereas those of the N2 atoms are slightly larger. As expected, the 

partial MAPLE values of the mixed O2/N2 positions range between those of the N2 and O1 sites. 

Table 5: Partial MAPLE values and MAPLE sums [kJ/mol] of CaMg2P6O3N10. 

CaMg2P6O3N10
[a] Model 

Ca1 1969 +1 CaO 32 

Ca2 2515 +2 MgO 33 

Mg1 2639 +2 P3N5 34 

P1 14708   

P2 14589   

P3 14571   

N1 6338   

N2/O2 5456   

N3 6339   

N4 6235   

N5/O5 5429   

N6/O6 5470   

O7 2572   

Σ = 166621 Σ = 166917 

 ∆ = 0.2 % 

[a] Typical partial M PL  values [kJ mol–1]: Ca: 1700–2200;3,24 Mg: 2263–2640;23,35 P: 14422–15580; N2: 4600–

6000; O1: 2000–2800.3,19,36 
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3.2.3 Conclusion 

CaMg2P6O3N10 represents a novel oxonitridophosphate with an unprecedented network of 

tetrahedra. It is the first known compound with a twelve-fold N coordination of Ca atoms. Single 

crystals of CaMg2P6O3N10 were obtained and isolated by adding catalytic amounts of NH4Cl to the 

starting mixture. The high-pressure/high-temperature synthesis appears to be a very promising route 

for the synthesis of new oxonitridophosphates with interesting structural properties. Moreover, 

single crystals of oxonitridophosphates, obtained by this route, may significantly accelerate structural 

investigations in the future. 

3.2.4 Experimental section 

Preparations of starting materials 

Ca(N3)2 was synthesized by stirring a suspension of ammonium azide with Ca(OH)2 (Merck, p.a.). 

Caution: Special care is necessary when handling even dilute solutions of HN3 because it is potentially 

explosive and the vapor is highly poisonous upon inhalation. Precautions have to be made that no 

volatile pure (boiling point 60 °C) or highly concentrated HN3 can condense onto cool surfaces. After 

filtration, the solvent was evaporated under reduced pressure (90 mbar, 70 °C).37 Finally, the 

colorless solid of Ca(N3)2 was recrystallized from acetone and dried in vacuum over P4O10.38 The final 

product was stored under the exclusion of moisture and oxygen. NH4N3 was synthesized by treating 

equimolar amounts of NH4NO3 (Grössing, reinst) and NaN3 ( cros Organics, 99 %) in a Schlenk tube 

with one open end located outside the furnace and slowly heating (50 °C/h) the mixture to 200 °C.39 

P3N5 was prepared starting from (PNCl2)3 (Merck, p.s.) in a corundum boat in a continuous flow of 

dried NH3 (Messer, Griesheim, 3.8), as described in the literature.40-42 PON was synthesized by 

heating a mixture of one part PO(NH2)3 and three parts NH4Cl in a continuous flow of nitrogen at 680 

°C. The process is detailed in the literature.9 

Synthesis 

CaMg2P6O3N10 was synthesized by using a modified Walker-type multi-anvil apparatus18 starting from 

stoichiometric amounts of Ca(N3)2, Mg3N2, P3N5, and PON with catalytic amounts of NH4Cl (20.0 mg) 

as mineralizer. All manipulations were carried out under the exclusion of oxygen and moisture in an 

argon-filled glove-box (Unilab, Mbraun, Garching, O2 < 1 ppm, H2O < 0.1 ppm). The mixture of star-

ting materials was thoroughly ground and tightly packed into a cylindrical capsule made of hexagonal 

boron nitride (Henze, Kempten) and sealed with a hexagonal boron nitride cap.  
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By using two MgO spacers (TechniKer, Küps, Germany), the capsule was centered in the middle of a 

Cr2O3-doped MgO octahedron (edge length 18 mm, Ceramic Substrates & Components Ltd, Isle of 

Wight), which served as a pressure medium. This MgO octahedron was equipped with a ZrO2 tube 

(Cesima Ceramics, Wust-Fischbach, Germany) as thermal insulator as well as graphite tubes, which 

were used as electrical resistance furnaces. To achieve good electrical contact between the graphite 

tubes and tungsten carbide cubes, two plates of molybdenum were used. The octahedron was then 

placed at the center of an assembly of eight truncated tungsten carbide cubes (truncation edge 

lengths 11 mm, Hawedia, Marklkofen, Germany), which were separated with pyrophyllite gaskets. 

Detailed information on the construction of the described multi-anvil assembly can be found in 

literature.18 The sample was compressed up to 8 GPa at room temperature. Then it was heated up to 

1100 °C within 60 min. This temperature was held constant for 60 min and subsequently the sample 

was cooled to room temperature. After slow decompression (10 h), the sample was isolated as a 

light-gray solid, which was not sensitive to air and moisture. NH4Cl was removed from the product by 

washing it with water and ethanol. 

Single-crystal X-ray diffraction 

Single-crystal diffraction data were collected with a STOE IPDS I diffractometer (Mo-Kα radiation, 

graphite monochromator). A semi-empirical absorption correction was applied by using the XPREP 

program.43 The crystal structure was solved by direct methods with SHELXS.44 The structure was 

refined by the full-matrix least-squares method by using SHELXL.44 Crystal data for CaMg2P6O3N10 are 

presented in Table 5. Further details of the crystal structure investigations can be obtained from the 

Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (Fax: +49-7247-808-

666; E-Mail: crysdata@fiz-karlsruhe.de); Please quote the depository number CSD-427175. 
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Table 5. Crystallographic data for the single-crystal structure determination of CaMg2P6O3N10. 

Formula CaMg2P6O3N10 

Crystal system / space group tetragonal / I41/acd (no. 142) 

Lattice parameters / Å a = 12.494(1), c = 23.747(2) 

Cell volume / Å3 3707.0(5) 

Formula units per unit cell 16 

Density / g · cm-3 3.316 

µ / mm-1 1.888 

Radiation Mo-Kα (λ = 0.71073 Å) 

Temperature / K 295 

F(000) 3648.0 

 range  .87° ≤ θ ≤  7.50° 

Total no. of reflections 9483 

Independent reflections 1068 [R(int) =0.0674] 

Refined parameters 104 

Goodness of fit  0.904 

R1 (all data); R1 (F2 > 2σ(F2)) 0.0736, 0.0381 

wR2 (all data); wR2 (F2 > 2σ(F2)) 0.0727, 0.0659 

Δρmax, Δρmin (e · Å–3) 1.463, -1.126 

 

Transmission electron microscopy 

Ground samples were dispersed in absolute ethanol and drop-cast onto copper grids coated with a 

holey carbon film (S166–2, Plano GmbH, Germany). The grids were fixed on a double-tilt holder. 

SAED, HRTEM, and EDX measurements were taken with a Titan 80–300 (FEI, USA) with a field 

emission gun operated at 300 kV, equipped with a TEM TOPS 30 EDX spectrometer (EDAX, Germany). 

Images were recorded by using an UltraScan 1000 camera (Gatan, US , resolution:  k ×  k). In 

addition, SAED and EDX measurements were taken with a JEOL 2010 instrument (JEOL, Germany) 

with a thermal emitter operated at 200 keV, equipped with a EDAX Apollo XLT EDX detector (EDAX 

Germany). Images were recorded by using a TemCam F216 camera (TVIPS, Germany, resolution. 

 k ×  k. HRT M and S  D data were evaluated by using the Digital Micrograph,45 Process Diffraction 

746 and JEMS programs,47 and EDX data were processed with ES Vision48 and EDAX TEAM.49. 

Powder X-ray diffraction 

Powder diffraction data were collected with a HUBER G670 diffractometer [Cu-Kα1 radiation, Ge(111) 

monochromator] in Guinier geometry. Simulations of Bragg data were performed by using the 
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WINXPOW program package50 on the basis of the single-crystal structural data. Rietveld refinement 

was carried out by using the TOPAS-Academic package.51 

FTIR spectroscopy 

The FTIR spectrum of CaMg2P6O3N10 was recorded in a KBr pellet with a Spectrum BX II spectrometer 

(Perkin–Elmer, Waltham MA, USA). 

Scanning electron microscopy and energy-dispersive X-ray sectroscopy 

SEM images and EDX spectra were acquired by using a JEOL JSM-6500F field emission scanning 

electron microscope (SEM) operated at 15 kV, equipped with a Si/Li EDX detector 7418 (Oxford 

Instruments). To provide electrical conductivity on the sample surface, it was coated with carbon 

using an electron beam evaporator (BAL-TEC MED 020, Bal Tec AG). 
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3.2.6 Supporting Information 

A) Rietveld refinement of CaMg2P6O3N10 

Rietveld refinement was carried out using TOPAS Academic 4.1, employing the fundamental 

parameter approach (convolution of source emission profiles, axial instrument contributions and 

crystalline microstructure effects). Preferred orientation of the crystallites in the powder was 

described using a spherical harmonics function of fourth order. All atomic positions of CaMg2P6O3N10 

as well as isotropic thermal displacement parameters of Ca, Mg and P atom positions were refined 

freely. A common isotropic displacement parameter for the N, O and mixed occupied N/O atom 

positions was refined. The O/N ratio of all bridging atom positions, determined from the single-

crystal data, were held constant.  

 
Table S1. Crystallographic data of Rietveld refinement of CaMg2P6O3N10. 

Formula CaMg2P6O3N10 

Crystal system tetragonal 

Space group I41/acd (no. 142) 

Lattice parameters / Å a = 12.4939(1), c = 23.7468(3) 

Cell volume / Å3 3706.84(9) 

Formula units per unit 

cell 
16 

Density / g · cm-3 3.316 

Diffractometer Huber G670  

Radiation Cu-Kα1 (λ = 1.54056 Å) 

2θ range 5.5 ≤  θ ≤ 99.9 

Data points 9449 

Total number of 

reflections 
487 

Refined parameters 86 

Background function Shifted Chebyshev (18 

parameters) 

Goodness of fit 1.753 

Rp, Rwp 0.0171, 0.0229 
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Table S2. Atomic coordinates, isotropic displacement parameters (Å2) and occupation of crystallographic 

positions from the Rietveld refinement of CaMg2P6O3N10; standard deviations in parentheses. 

Atom Wyckoff  

position 

x y z  Ueq/ Å2 Occupancy 

Ca1 8a 1/2 1/4 1/8 0.0055(10) 1.0 

Ca2 8b 1 3/4 3/8 0.0773(16) 1.0 

Mg1 32g 0.3439(2) 0.0624(2) 0.0427(1) 0.0292(12) 1.0 

P1 32g 0.6012(2) 0.0204(2) 0.0796(1) 0.0152(8)  1.0 

P2 32g 0.7432(2) 0.1898(2) 0.0836(1) 0.0129(8)  1.0 

P3 32g 0.5884(2) 0.1817(2) 0.0001(1) 0.0202(9)  1.0 

N1 32g 0.6585(5) 0.2559(4) 0.0418(4) 0.0053(6)  1.0 

N2/O2 32g 0.7976(4) 0.2745(3) 0.1267(3) 0.0053(6)  0.86/0.14 

N3 32g 0.6736(4) 0.1021(5) 0.1188(2) 0.0053(6)  1.0 

N4 32g 0.5223(4) 0.0921(5) 0.0391(3) 0.0053(6)  1.0 

N5/O5 32g 0.8390(4) 0.1230(4) 0.0490(2) 0.0053(6)  0.76/0.24 

N6/O6 16d 1/2 1/4 -0.0308(3) 0.0053(6)  0.76/0.24 

O7 32g 0.6702(4) -0.0548(4) 0.0440(2) 0.0053(6)  1.0 

B) Energy dispersive X-ray (EDX) analysis of CaMg2P6O3N10 

Table S3. Results of EDX measurements (left part SEM, right part TEMs) for various crystals of CaMg2P6O3N10 in 

atom-%; the absolute values for light atoms depend on the systematic errors associated with different 

experimental setups (electron microscope, EDX detector, software, see Experimental section) was used, the 

average composition agrees with the compound CaMg2P6O3N10. 

Crystal 1  2  3  Ø SEM 1 2 3 Ø TEM1 calc. 

N 57.6 51.9 55.8 55.1(29) 47.1 42.1 43.9 44.4(21) 45.5 

O 14.5 14.5 11.4 13.5(18) 10.2 10.9 10.0 10.4(4) 13.6 

Mg 7.0 7.5 7.8 7.4(4) 8.2 7.6 8.3 8.0(3) 9.1 

P 18.4 22.6 21.8 20.9(23) 30.5 33.8 31.9 32.1(14) 27.3 

Ca 2.5 3.5 3.2 3.1(5) 4.0 5.6 5.9 5.2(8) 4.5 

Ca/P 0.14 0.15 0.15 0.15 0.13 0.17 0.18 0.16 0.16 

Crystal 1  2  3 4 5 6  Ø TEM2 calc. 

N 37.0 47.0 39.5 37.9 36.8 41.1  39.9(35) 45.5 

O 14.0 9.1 11.2 10.8 11.3 13.8  11.7(17) 13.6 

Mg 13.5 13.9 15.0 15.6 16.6 14.8  14.9(10) 9.1 

P 31.2 27.5 31.5 32.8 32.4 27.5  30.5(21) 27.3 

Ca 4.2 2.5 2.9 2.9 2.9 2.8  3.0(5) 4.5 

Ca/P 0.13 0.09 0.09 0.09 0.09 0.10  0.10 0.16 
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C) FTIR spectrum of CaMg2P6O3N10 

 

Figure S1. FTIR spectrum of CaMg2P6O3N10, measured using the KBr pellet method. 

D) Enlarged HRTEM defocus series  

 

Figure S2. Projected potential (a) with structure projection inserted (a left; the heavier the element the larger 

and brighter the spheres) and HRTEM images (b-d) of CaMg2P6O3N10 along the <713> zone axis with image 

simulations (accelerating voltage = 300 keV, Cs = 0.6 mm, spread of focus = 3.6 nm, beam semi-convergence = 

17 mrad, layer thickness two unit cells), inserted: defocus values -70 nm (b), -43 nm (c) and -28 nm (d). 
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Abstract 

Thorough investigation of nitridophosphates has rapidly accelerated through development of new 

synthesis strategies. Here we used the recently developed high-pressure metathesis to prepare the 

first rare-earth metal nitridophosphate, Ce4Li3P18N35, with a high degree of condensation > 1/2. 

Ce4Li3P18N35 consists of an unprecedented hexagonal framework of PN4 tetrahedra and exhibits blue 

luminescence peaking at 455 nm. Transmission electron microscopy (TEM) revealed two intergrown 

domains with slight structural and compositional variations. One domain type shows extremely weak 

superstructure phenomena revealed by atomic-resolution scanning TEM (STEM) and single-crystal 

diffraction using synchrotron radiation. The corresponding superstructure involves a modulated 

displacement of Ce atoms in channels of tetrahedra 6-rings. The displacement model was refined in a 

supercell as well as in an equivalent commensurate (3+2)-dimensional description in superspace 

group P63(α, β, 0)0(−α−β, α,0)0. In the second domain type, STEM revealed disordered vacancies of 

the same Ce atoms that were modulated in the first domain type, leading to sum formula 

Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) of the average structure. The examination of these structural 

intricacies may indicate the detection limit of synchrotron diffraction and TEM. We discuss the 

occurrence of either Ce displacements or Ce vacancies that induce the incorporation of O as 

necessary stabilization of the crystal structure. 

3.3.1 Introduction 

It is ambitious to challenge the structural and compositional diversity of oxosilicates with a purely 

synthetic class of materials. The exploration of oxosilicates engaged and still engages a multitude of 

geologists, mineralogists, chemists, and materials scientists. Versatile interconnection patterns of 

SiO4 tetrahedra combined with cations from almost all metals of the periodic table render 

oxosilicates one of the most diverse classes of materials.1−3  
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Their fields of application range from construction materials, that is, components of concrete and 

ceramics, to functional materials like ion-exchange zeolites, catalysts, molecular sieves, and optical 

materials.  

The yet little explored nitridophosphates, however, which are derived from silicates by isoelectronic 

substitution of Si-O by P-N bonds, have shown promising developments. Thorough investigation of 

first and second main group element nitridophosphates revealed several dozens of structures, some 

as straightforward as the single-chain comprising Ca2PN3, and some complex as zeolitic 

Ba3P5N10Br:Eu2+ and nitride imide clathrate P4N4(NH)4(NH3).4−6 The last two were discussed for their 

potential application as a warm-white emitting phosphor for solid-state lighting and as a gas storage 

material, respectively.5,7 Moreover, distinct structural building blocks such as triply bridging N atoms, 

edge-sharing tetrahedra, and pentacoordinated P prove that structural diversity is, in theory, no 

impediment in rivaling silicates.8−10 Still, a sincere competition for diversity necessitates a comparable 

number of structure types and size of composition space. Recently, the latter was extended by 

accessing rare-earth nitridophosphates through an adaptive high-pressure metathesis route.11 In 

high-pressure metathesis rare-earth halides are reacted with alkali-metal-containing 

nitridophosphates such as LiPN2 to yield the desired rare-earth nitridophosphate and an alkali metal 

halide under pressures of several gigapascal (GPa).11 It effectively circumvents the use of thermody-

namically stable and unreactive starting materials like rare-earth nitrides and prevents the formation 

of phosphides, which can result from the reductive environment created by nitride ions. LiNdP4N8, 

two Ln2P3N7 polymorphs, and the nitridophosphateoxide Ho3[PN4]O were already identified, all 

crystallizing in silicate-analogous structures.11−13 

Formal oxidation states limit the attainable degree of condensation, κ (ratio of tetrahedra centers to 

tetrahedra corners per sum formula), of a material family; while the minimum κ in all tetrahedra-

based structures is 1/4, oxosilicates have a maximum κ of 1/2 (SiO2) and nitridophosphates one of 

3/5 (P3N5).14 High-pressure metathesis reliably produced rare-earth metal nitridophosphates with κ = 

1/4−1/2, while higher condensed structures have remained unobserved.12,13 The latter also have 

never been realized in oxosilicates because they would lead to cationic SiO2 frameworks. In 

nitridophosphates higher condensed frameworks intrigue with structural motifs like triply bridging N 

and edge-sharing tetrahedra. Currently, the alkali metal nitridophosphates MP4N7 and M3P6N11 (M = 

Na−Cs) are the only reported cases of such frameworks comprising metal ions.15−18 Hence, closing the 

gap between κ = 1/2 and 3/5 in rare-earth nitridophosphates is likely to uncover unprecedented 

tetrahedra networks. Such compounds feature rigid frameworks of all-side vertex-sharing tetrahedra, 

making them, for example, promising candidates as host lattices for inorganic solid-state lighting.19 

The diversity of three-dimensional frameworks is, in theory, infinite,20 and a general task of modern 

synthetic chemistry is to combine new structural motifs and complex elemental compositions in 
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order to realize increasingly sophisticated materials. But as the materials become more numerous, 

structure elucidation frequently encounters various challenges including microcrystalline 

heterogeneous samples, pseudosymmetry, and weak superstructures.21−23 Through technological 

advances, methods for solving these latter problems like aberration-corrected transmission electron 

microscopy (TEM), application of third generation synchrotrons, and refractive X-ray lenses 

producing microfocused beams for X-ray diffraction became available.24−27 Atomic resolution Z-

contrast scanning TEM (STEM) now enables the direct observation of vacancies or superstructures to 

derive atom positions and first structure models.28−31  

Pushing TEM and synchrotron diffraction to their detection limits became necessary in the structure 

determination of here presented Ce4Li3P18N35, which is the first higher condensed (κ = 0.514) rare-

earth metal nitridophosphate. Ce4Li3P18N35, which consists of a framework of all-side vertex-sharing 

PN4 tetrahedra, was prepared following the high-pressure metathesis route. The microstructure of 

Ce4Li3P18N35 consists of two slightly different types of domains, one with randomly distributed Ce 

vacancies and one in which the Ce atoms enter a long-range ordered superstructure correlated to 

decreased O content. The elucidation of this superstructure was achieved by combined efforts of 

atomic-resolution STEM and synchrotron diffraction with a PILATUS pixel detector.32−34 Owing to the 

Ce vacancies, the average structure has the sum formula Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.72). Curiously, 

the compound encompasses blue Ce3+ luminescence and paramagnetism as determined with 

superconducting quantum interference device (SQUID) magnetometry. 

3.3.2 Experimental Details 

Preparation of P3N5  

The binary starting material P3N5 was prepared by an adapted synthesis route according to 

Grüneberg.35 Phosphorus pentasulfide, P4S10 (Sigma-Aldrich, 99.99 %), was reacted with constantly 

flowing NH3 gas (Air Liquide, 5.0). A tube furnace equipped with a fused silica tube was dried 

together with a fused silica boat at 1000 °C for 4 h under reduced pressure of 10−3 mbar to exclude 

moisture and O2. The fused silica boat was loaded in an Ar counter flow with a limited amount of 

P4S10 to prevent clogging of the tube by subliming byproducts. The tubing and the P4S10 were 

saturated by a constant flow of ammonia over the course of 4 h after which the material was fired at 

850 °C for additional 4 h. Temperature ramps for heat-up and cool-down were set to 5 °C/min. P3N5 

was obtained as an orange-brown powder, which was successively washed with 

water/ethanol/acetone and characterized with powder X-ray diffraction (PXRD) and Fourier 

transform infrared spectroscopy (FTIR). 
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Preparation of LiPN2 

Lithium nitridophosphate LiPN2, was prepared by solid state reaction of P3N5 with a 1.2-fold excess of 

Li3N (Rockwood Lithium, 94 %).36 Starting materials were mixed and thoroughly ground under the 

inert conditions of an Ar-filled glovebox (Unilab, MBraun, Garching, Germany) with partial pressures 

of O2/H2O < 1 ppm and then placed in a Ta crucible. The crucible was transferred to a dried fused 

silica tube under N2 atmosphere, and the ampoule was sealed and fired at 800 °C with 96 h dwell and 

5 °C/min ramp times. The obtained light-brown powder was successively washed with diluted 

hydrochloric acid/water/ethanol and characterized by means of PXRD and FTIR spectroscopy.  

Preparation of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.72) 

Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) was prepared by high-pressure metathesis, following Eq 1 (see 

below). CeF3 (Alfa Aesar, 99.99 %) and 4 equiv of LiPN2 were reacted for 5 h at 1300 °C under a 

pressure of 5 GPa achieved with a 1000 ton hydraulic press (Voggenreiter, Mainleus, Germany) using 

a Walker-type module  and the multianvil technique. A cylindrical and thick-walled hexagonal boron 

nitride (h-BN) crucible (Henze, Kempten, Germany) with outer diameter dLouter = 3.67 mm, inner 

diameter dLinner = 2.00 mm, outer length louter = 6 mm, inner length linner = 5, total volume Vall = 63 

mm3, and sample volume Vsample = 15 mm3 was used and closed with a 1.5 mm thick h-BN lid. The 

temperature ramps were set to 120 min heat-up and cool-down. Starting materials were mixed and 

thoroughly ground in the Ar-filled glovebox. The sample-filled crucible was placed inside a Cr2O3-

doped (6 %) MgO octahedron with 18 mm edge-length (Ceramic Substrates & Components, Isle of 

Wight, U.K.). Co-doped (7 %) tungsten carbide cubes (Hawedia, Marklkofen, Germany) with 

truncated edges (11 mm) were used as anvils to ensure quasi-hydrostatic pressure conditions. 

Additional information about the high-pressure multianvil technique can be found in literature.37–41 

The product was obtained in the form of small colorless and transparent crystals. The sample was 

washed with H2O to remove byproduct LiF.  

Spectroscopic Analysis 

Morphology and elemental composition were examined with a JEOL JSM 6500F scanning electron 

microscope (SEM) equipped with a field-emission electron source and an Oxford Instruments 7418 

Si/Li energy dispersive X-ray (EDX) detector. The sample was coated (BAL-TEC MED 020, BalTec AG) 

with carbon to reduce electrical charging of the insulating material. Details of the results of the 

analysis can be found in the article and the Supporting Information. FTIR spectra were recorded on a 

Spectrum BX II spectrometer (PerkinElmer, Waltham MA, USA) with ATR setup in the range of 600–

4000 cm–1
. Details of the results of the analysis can be found in the article.  
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Inductively coupled plasma optical emission spectroscopy (ICP-OES) was carried out with a Varian 

Vista RL instrument for Ce, P, and Li. Details of the results of the analysis can be found in the article. 

Magnetometry 

Magnetic measurements were performed with a MPM-XL SQUID magnetometer (Quantum Design, 

San Diego, USA). Magnetic susceptibility was measured at a constant magnetic field of M = 20 kOe, in 

the range of 1.8 to 300 K. The sample was placed inside gelatin capsules of known diamagnetic 

properties.  

Powder X-ray Diffraction 

PXRD was recorded on powdered Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) samples using a Stadi P 

diffractometer (Stoe & Cie GmbH, Darmstadt, Germany) in modified Debye-Scherrer geometry 

equipped with a MYTHEN 1K silicon strip detector (Dectris, Baden, Switzerland; angular range 2 = 

12.5°) and Mo-Kα1 radiation (λ   0.7093 Å, Ge(111) monochromator). The samples were filled into 

glass capillaries with 0.5 mm diameter and ~0.01 mm wall thickness. Data were collected in the range 

of 2° ≤ 2 ≤ 76° and the average structural model of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) obtained from 

single-crystal diffraction was used to fit the data with the Rietveld method.42 The peak shape was 

modeled using the fundamental parameters approach, which is a convolution of source emission 

profiles, axial instrument contributions, crystallite size, and microstrain effects. The background was 

modeled with a shifted Chebychev function and preferred orientation was treated with spherical 

harmonics of fourth order. Cylindrical absorption correction was performed taking into account 

capillary diameter and linear absorption coefficients of all phases present in the sample.  

A Stoe Stadi P diffractometer (Stoe & Cie GmbH, Darmstadt, Germany) equipped with a graphite 

furnace and image plate position sensitive detector was used for temperature dependent PXRD. 

Samples were filled into fused silica capillaries with 0.5 mm diameter. Data were collected at 

constant temperature with 20 °C/step intervals up to 1000 °C and a 20 min collection time per step. 

Single-Crystal X-ray Diffraction 

High-intensity X-ray diffraction data of a Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) single-crystal were 

obtained at the Swiss-Norwegian Beamline (SNBL), ESRF, Grenoble on the multipurpose 

PILATUS@SNBL diffractometer (λ = 0.68010 Å) with a Dectris Pilatus 2M detector.32 Data of multiple 

runs were summed up and binned with the SNBL toolbox. Integration was done with CrysAlis Pro43 

and semiempirical absorption correction with SADABS.44 Solution and refinement of the average 

structure was done with SHELX-97.45,46 Further details on the crystal structure analysis can be 

obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany 
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(fax: +49-7247-808-666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-

433141. Refinements of the superstructure and the commensurately modulated model in (3+2)D 

superspace was carried out with JANA2006.47 Crystal structures were visualized with VESTA and 

Diamond.48,49 

Transmission Electron Microscopy 

For sample preparation, crystals of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) were ground in absolute ethanol 

and drop-cast on copper grids covered with holey carbon film (S166-2, Plano GmbH, Germany). For 

STEM and electron energy loss spectroscopy (EELS), the samples were plasma cleaned for 20 s. The 

grids were mounted on a double-tilt holder and transferred into a Cs DCOR probe corrected Titan 

Themis 300 (FEI, USA) TEM equipped with a X-FEG, a postcolumn filter (Enfinium ER-799), a 

US1000XP/FT camera system (Gatan, Germany) and a windowless, 4-quadrant Super-X energy 

dispersive X-ray (EDX) detector. TEM images were recorded using a 4k4k FEI Ceta CMOS camera. 

The microscope was operated at 300 kV accelerating voltage for selected area electron diffraction 

(SAED), STEM-HAADF (with a camera length between 60 and 100 mm) and EELS. For drift corrected 

EDX mapping with atomic resolution, the microscope was operated at 120 kV accelerating voltage. 

For the evaluation of the TEM data, the following software was used: Digital Micrograph (Fourier 

filtering of STEM images, EELS spectra), ProcessDiffraction7 (geometric calculations for SAED), JEMS 

(SAED simulations), and ES Vision (EDX spectra).50–54 

Optical Properties 

Images of luminescent single-crystals mounted in glass capillaries were obtained on a Horiba 

Fluorimax4 spectrofluorimeter system attached to an Olympus BX51 microscope via fiber optics. 

Photoluminsescence was determined on powdered samples with an in-house-built system based on 

a 5.3 in integrating sphere and a spectrofluorimeter equipped with a 150 W Xe lamp, two 500 mm 

Czerny-Turner monochromators, 1800 1/mm lattices and 250/500 nm lamps, with a spectral range 

from 230 to 820 nm. 

3.3.3 Results and Discussion 

3.3.3.1 Preparation and Chemical Analysis  

The reaction of a molar ratio 1:4.5 of CeF3 and LiPN2 aimed to synthesize Ce4Li3P18N35 (see 

Experimental section) as the ratio P/N in LiPN2 is close to the required atomic ratio of 18:35; 

following Eq. 1, Li3N could be eliminated for a stoichiometric reaction. 
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4 CeF3 + 18 LiPN2  Ce4Li3P18N35   1  LiF   “Li3N”   (Eq. 1) 

As will be shown later, the actual sum formula is Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) due to Ce 

vacancies. The presence of O probably stems from the crucible material since h-BN slowly 

decomposes in air to boric acid and B2O3.55 The crucible used in the experiment had a small sample to 

h-BN volume ratio (see Experimental section), allowing the diffusion of sufficient amounts of O into 

the sample. Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) crystallizes in block-like colorless and transparent 

crystals up to ≈ 100 μm in size. The latter emit blue light upon excitation with UV or near-UV 

radiation (Fig. 1a, see Optical Properties). Morphology and elemental composition were determined 

by means of SEM (Fig. 1b) and EDX. The EDX values are in accordance with the theoretical sum 

formula (Ce4.3P16.1N36.9O1.2 / Ce4P18N33.92O1.08, measured/calculated without taking Li into account). 

IR spectroscopy indicated the absence of N–H or O–H bonds; only the typical fingerprint region of 

nitridophosphates was observed (Figure S1). Temperature dependent powder diffraction showed 

that the phase is stable in air up to at least 1000 °C (Figure S2). Rietveld refinement (Figure 2, Table 

S1) carried out on powder X-ray diffraction data confirms the average-structure model. Residual 

LiPN2 is expected since the ratio 1:4 of the starting materials is nonstoichiometric with respect to 

sum formula Ce4Li3P18N35; h-BN stems from the crucible.36,56  

 

Figure 1. (a) Single-crystal of Ce4−0.5xLi3P18N35−1.5xO1.5x under excitation with 390 nm UV light, emitting blue light. 

(b) SEM micrograph of a Ce4−0.5xLi3P18N35−1.5xO1.5x single-crystal. 

In thin-walled crucibles, Ce4−0.5xLi3P18N35−1.5xO1.5x could be prepared as the major constituent of the 

sample after introducing an O source in the form of amorphous PON.57 Oxygen, therefore, seems to 

either to facilitate the formation of the compound or to stabilize it as it induces Ce vacancies. Such 

vacancy-stabilization is reminiscent of yttria-stabilized zirconia, in which the larger Y3+ cations 

stabilize the CaF2-type high-temperature phase.58 
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3.3.3.2 Determination of the Average Structure  

Ce4−0.5xLi3P18N35−1.5xO1.5x crystallizes in a hexagonal lattice with parameters a = 13.9318(1) and c = 

8.1355(1) Å. The unit cell metrics and the average structure model were confirmed by TEM as 

discussed in the corresponding section. Space group P63/m (no. 176) was assigned by analysis of 

systematically absent reflections in XPREP59 and with superiority over P63 (no. 173), as refinement 

revealed. The structure was solved by direct methods,46 yielding the positions of all heavy atoms. The 

positions of the light atoms Li and N were determined from difference Fourier maps. All atoms were 

refined anisotropically, taking into account dispersion correction terms for X-rays with λ = 0.6801 Å. 

Table 1 contains the crystallographic data and Table 2 the atom parameters. Anisotropic 

displacement parameters as well as bond lengths and angles can be found in Tables S2–S4. The site 

occupancy of position Ce2 is 0.635(2), and the atom has a prolate displacement ellipsoid elongated 

along [001]. At full occupation, the sum formula Ce4Li3P18N35 would be charge-balanced, but a Ce 

deficit necessitates O for N substitution, as inferred from EDX (see above), in order to maintain 

charge neutrality.  

 

Figure 2. Rietveld refinement for a sample with Ce4−0.5xLi3P18N35−1.5xO1.5x as the main component and LiPN2 and 

h-BN as side phases;36,56 observed pattern displayed with black circles, calculated pattern as a red line, 

difference plot as a gray line, positions of Bragg reflections above.  
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Table 1. Crystallographic data for the average structure of Ce4−0.5xLi3P18N35−1.5xO1.5x. 

Crystal Data 

formula Ce4-0.5xLi3P18N35-1.5xO1.5x (x ≈ 0.7 ) 

formula mass, gmol-1 1580.11 

cryst syst hexagonal 

space group P63/m (no. 176) 

cell param, Å a = 13.9318(1) 

c = 8.1355(1) 

cell vol, Å3 1367.51(3) 

formula units per unit cell, Z 2 

F(000) 1472 

cald density, ρ, g∙cm-3 

abs. coeff, µ, mm-1 

3.837 

6.235 

Data Collection 

radiation synchrotron, λ = 0.68010 Å 

temp, K  293(2) 

θ range, deg. 1.615 ≤ θ ≤ 31.971 

total no. of reflns 

independent reflns 

11325 

1795 

absorption correction semiempirical44 

Rint, Rsigma 0.019, 0.007 

Refinement 

extinction coeff 0.0053(5) 

refined params 101 

GOF 1.233 

R1 (all data). R1 [F2 > 2σ(F2)] 0.019, 0.019 

wR2 (all data), wR2 [F2 > 2σ(F2)] 0.047, 0.047 

Δρmax, Δρmin, e∙Å-3 1.008, -2.025 

 

Since X-rays cannot differentiate between N and O, the distribution of O atoms was derived from 

electrostatic calculations employing the Madelung part of lattice energy (MAPLE). Accordingly, the 

N4 position has the smallest partial MAPLE value, and bond valence sum (BVS) calculations also 

indicate an O share on the N4 position (Tables S5-7).60 As MAPLE and BVS depend strongly on the 

atomic positions and considering that N4 belongs to the first coordination sphere of Ce2 with its 

prolate displacement ellipsoid, this is only conjecture. O atoms in close proximity to Ce2, however, 

are reasonable as they are required for charge compensation. The N4 position was therefore mixed 

with a fixed amount of 0.36O, yielding the sum formula Ce4−0.5xLi3P18N35−1.5xO1.5x with x ≈ 0.7 .  

The atom sites N6, N7 and N8 (Figures 3 and 4) exhibit prolate displacement ellipsoids, which are 

likely a consequence of the Ce2 displacement discussed later in the section “Superstructure 

Determined from Synchrotron Data”.   possible lower symmetry, in which the afflicted N atoms are 

not mapped onto themselves by the horizontal mirror plane of space group P63/m, was ruled out by 

refinement in P63 (Figures S3 and S4 for more information), which did not yield any improvement. 
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Other models of twinning and associated symmetry reduction were ruled out by a refinement in P1 

including all appropriate twin laws that would lead to Laue symmetry 6/m.  

3.3.3.3 Description of the Average Structure 

The structure of Ce4−0.5xLi3P18N35−1.5xO1.5x consists of a framework built up from all-side vertex-sharing 

PN4 tetrahedra (Figure 3). Their interconnection pattern is a combination of stacks of 6-rings and 

triangular columns running along [001] (Figure 3, 4). This formal decomposition emerges from 

comparison with the oxonitridophosphates Ba6P12N17O9Br3 and SrP3N5O; both comprise similar 

triangular columns.61,62 While the columns in Ba6P12N17O9Br3 are not interconnected and therefore 

only periodic in one direction, they are interconnected via  /3 of the triangles’ vertices in SrP3N5O, 

forming layered anions with periodicity in two directions.63 

 

Figure 3. Crystal structure of Ce4−0.5xLi3P18N35−1.5xO1.5x in projection along [001]. The 6-ring-stacks and triangular 

columns are highlighted by red and blue tetrahedra, respectively. Atoms are displayed as their displacement 

ellipsoid at 90 % probability level, Ce in blue, Li in gray, P in black, and N in green. 

In Ce4−0.5xLi3P18N35−1.5xO1.5x, the triangular columns are interconnected via stacks of 6-rings and vice 

versa. Hence, an extended three-dimensional anionic framework with a molar ratio 1:2 of 6-ring 

stacks and triangular columns is formed. The triangular columns 1
[(P12

[4]N2
[3]N24

[2])18−], displayed in 

Figure 4a, comprise triply-bridging N[3] atoms, which are the reason for κ = 0.514. The 6-rings form 

stacks by sharing tetrahedra vertices, which alternately point up and down (Figure 4b). 

The P–P connection pattern represents the framework of the structure (Figure 5, top left) and is 

referred to as the net topology. The P–P net is subsumed by point symbol64 (3.65)(33.44.53)(66), which 
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enumerates the shortest cycles originating from P-vertex angles (calculated by TOPOS65). The analysis 

of point and vertex symbols (for the latter see Supporting Information) revealed that this net 

topology has been neither experimentally realized nor theoretically predicted.  

For an intuitive understanding of Ce4−0.5xLi3P18N35−1.5xO1.5x’s topology, the three-dimensional natural 

tiling in its maximum symmetry embedding was derived from the P–P connection pattern (Figure 5, 

top right and bottom).66,67 The 3D tiles’ faces consist of locally strong rings (built up from P–P 

adjacencies) so that the natural tiling retains the full symmetry of the net it carries and the tiles 

represent chemically meaningful cavities in the structure.67 The natural tiling consists of six tiles 

subsumed with signature 3[63]+[32.43]+3[32.4.62]+[65]+3[65.102]+[38.63] (face symbols) and transitivity 

symbol 3796 (number of symmetry inequivalent vertices, edges, faces, and tiles, in that order). The 

cations Ce1 and Li1 reside in the large [65.102] cage (V = 148 Å3, volume in crystal structure), and Ce2 

resides in the [65] cage (V = 62 Å3, volume in crystal structure). A detailed description and view of the 

tiles can be found in the Supporting Information. 

The maximum symmetry embedding of the tiling is in P63/mmc (no. 194), which is also the maximum 

symmetry of a theoretical archetype (Figure 5). In Ce4−0.5xLi3P18N35−1.5xO1.5x, the mirror plane 

perpendicular to <100> is absent due to a rotational twist of the 6-ring with respect to the triangular 

columns causing the interconnecting P–N–P angles to be 139.4° instead of 180°. Hence, the structure 

has symmetry P63/m, which is a subgroup of P63/mmc by t2 transition.  

 

Figure 4. (a) Side-view of the triangular columns running perpendicular to [001], tetrahedra bridged by N[3] 

highlighted in royal blue. (b) One repetition unit of the 6-ring stacks. Ellipsoids are displayed at 90 % probability 

level. 
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Figure 5. (top, left) P–P connection pattern; (top, right) natural tiling in projection along [001], consisting of six 

individual tiles. (bottom) Cross section through one unit cell of the tiling. Tiles are light blue [65], dark blue [63], 

yellow [38.63], pink [32.4.62], green [32.43], and red [65.102].66 

Table 2. Atom Sites of Ce4−0.5xLi3P18N35−1.5xO1.5x.  

 
Wyckoff 

position 
site symmetry x y z Ueq / A³ occupancy 

Ce1 6h m.. 0.44029(2) 0.04225(2) 1/4 0.00866(6) 1 

Ce2 2a 6 0 0 1/4 0.02020(17) 0.635(2) 

P1 12i 1 0.02032(4) 0.20721(4) 0.06775(6) 0.00775(9) 1 

P2 12i 1 0.33965(4) 0.54801(4) 0.07504(6) 0.00607(9) 1 

P3 12i 1 0.43947(4) 0.30795(4) 0.06620(6) 0.00643(9) 1 

N1 4f 3.. 1/3 2/3 0.0750(4) 0.0066(4) 1 

N2 6h m.. 0.2995(2) 0.48706(19) 1/4 0.0080(4) 1 

N3 12i 1 0.46921(14) 0.20913(13) 0.0692(2) 0.0095(3) 1 

N4 6h m.. 0.2080(2) 0.03965(19) 1/4 0.0113(4) 0.64 

O4 6h m.. 0.2080(2) 0.03965(19) 1/4 0.0113(4) 0.36 

N5 12i 1 0.11661(13) 0.53492(13) 0.0319(2) 0.0096(3) 1 

N6 6h m.. 0.4296(2) 0.3469(2) 1/4 0.0140(5) 1 

N7 12i 1 0.04775(19) 0.33260(16) 0.0406(3) 0.0185(4) 1 

N8 12i 1 0.1293(2) 0.1946(3) 0.0725(3) 0.0377(8) 1 

Li1 6h m.. 0.2540(5) 0.3193(5) 1/4 0.0208(12) 1 
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The coordination polyhedra surrounding the metal ions are displayed in Figure 6. Li1 is coordinated 

by six N atoms forming a distorted pentagonal pyramid (Johnson solid J2), Ce1 by nine N atoms in an 

irregular polyhedron, and Ce2 by nine N atoms arranged in a distorted triaugmented triangular prism 

(Johnson solid J51).68 To approximate the magnitude of distortion, the polyhedra were compared to 

their holohedral counterparts as described in the Supporting Information (section Coordination 

Polyhedra). The bond lengths in these polyhedra (Figure 6) are typical for N coordination. They are 

comparable to those found in NdLiP4N8 [d(Li–N) = 1.96 to 2.17 Å], LiCa4[BN2]3 [d(Li–N) = 2.22 Å)], and 

Ba2Cu[Si2O7]-type Ce2P3N7 [d(Ce–N) = 2.44–2.75 Å].11,13,69 

 

Figure 6. Coordination polyhedra around the sites of Li (a), Ce1 (b), and Ce2 (c); two coordination polyhedra are 

shown for Ce2, as they appear in stacks along [001] in the structure. Ce–N and Li–N distances are given for all 

independent N positions; the ellipsoids are displayed with 90 % probability.  

In the average structure model discussed above, vacancies are present on the Ce2 site and as can be 

seen from Figure 6, Ce2 and certain N displacement ellipsoids are elongated. A similar case was 

reported for Ba0.85Ca2.15In6O12 (P63/m, no. 176), in which Ba atoms residing in analogous 6-ring 

channels entered a long-range periodic order resulting in a (3+1)D incommensurate modulation.70 In 

the following sections, the causes and effects of the Ce2 vacancies and displacements are analyzed.  

3.3.3.4 Transmission Electron Microscopy  

Ce4−0.5xLi3P18N35−1.5xO1.5x was investigated by TEM to gain information about the Ce2 position. SAED 

patterns along zone axes [100] and [001] exhibit symmetry 2mm and 6, respectively, and correspond 

to reciprocal lattice sections reconstructed from single-crystal X-ray data, confirming hexagonal 

symmetry (Figures S6 and S7). Z-Contrast HAADF-STEM images and drift-corrected EDX mappings 

differentiate between Ce and P atoms; maxima coincide with the heavy-atom positions of the 
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average structure model (Figure 7, enlarged in Figure S8). In the Fourier filtered micrographs the 

intensities of the different Ce atom columns match the theoretical atom ratios along the different 

projections in consideration of the average structure model and the under-occupancy of Ce2.  

Further EDX and SAED combined with high resolution STEM-HAADF suggested two different types of 

domains in Ce4−0.5xLi3P18N35−1.5xO1.5x. The first revealed a lower O content, relative to the second, t and 

additionally showed diffraction spots suggesting a superstructure (Figure 8). Since the quantification 

of little amounts of O by TEM EDX is difficult, several different crystallites were analyzed 

corroborating the suggested trend (Table S9). In the unfiltered STEM images of the second domain 

type with increased O content, the contrast of the Ce2 atom columns viewed along [001] varies 

significantly. In a wedge-shaped edge of a crystal some Ce2 atom columns are missing completely 

(Figure 9, larger and thinner region represented in Figure S9). This direct observation of the Ce atom 

columns confirms a random distribution of Ce2 vacancies as suggested by the average structure 

model. 

 

Figure 7. (a-c) Aberration-corrected STEM-HAADF Fourier filtered images along zone axes [100], [001] and 

[120]. Brighter contrast corresponds to Ce1 (green) and Ce2 (light green) atom columns, darker contrast to P 

columns (orange). The unit cells of the average structure in corresponding projections were overlaid in red. (d) 

Drift corrected EDX mappings along [120] in juxtaposition to a HAADF image of the same section. An enlarged 

version of this figure is Figure S8. 

In the superstructure domains, the additional reflections hinted at hexagonal metrics with a = 24.08, 

c = 8.1 Å as later determined by synchrotron diffraction on single crystals (see below). Superstructure 

reflections are most pronounced in SAED patterns along zone axes [120] of the average structure 

(Figures 10a and S10). Z-Contrast STEM images along this direction revealed a displacement of Ce2 

atoms in [001] direction. Three different locked-in positions (nondynamic displacement) of the Ce2 

atoms are directly discernible; one atom resides below (A), one atom above (C), and one atom (B) 

roughly at the Ce2 position of the average structure model. The distance between atoms at height A 

and C was measured to be roughly 0.3(1) Å based on 10 measurement points (details in Supporting 

Information).The Fourier transform of the STEM image (Figure S10) shows small additional peaks 

indicating a periodicity of the Ce2 displacement within the boundaries of the obtained image.  
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As the displacement is repetitive, they are likely the cause for the superstructure reflections 

observed in the SAEDs. Since EDX and SAED showed that the superstructure domains with very low O 

content are only a fraction of the crystal volume (Figure 8), the superstructure reflections of 

macroscopic single crystals are expected to have extremely weak intensity. A model of the 

superstructure will therefore be derived in the next section from synchrotron diffraction data. The 

Ce2 positions appear less bright than other Ce1 positions, which might indicate the presence of 

vacancies in the superstructure domains. Though such vacancies cannot be ruled out based on O 

contents due to the lacking accuracy of TEM EDX (Table S9), they appear to be less frequent than in 

domains without superstructure. The [120] zone-axis images of domains without superstructure even 

indicate completely missing Ce2 atom columns (Figure S10). The Fourier transform of those images 

do not suggest the presence of a further periodic ordering of Ce2 in accordance with the above -

mentioned SAEDs. In order to balance the charge difference caused by the Ce2 vacancies, the 

presence of Ce4+ is conceivable. Therefore, EELS was performed to gain information about the formal 

oxidation states of the Ce atoms. EELS quantification of domains with a lower O content determined 

an atomic ratio Ce/P/N of 1:3.2:8.8 close to the ratio of 1:4.5:8.8 based on the sum formula of the 

average structure. In the examined domains no Li and O could be quantified with EELS. Off-axis EELS 

spectra do not indicate the presence of Ce4+ (Figure S11). They show the Ce-M5 and Ce-M4 edges at 

882.0 and 899.5 eV energy loss, respectively, very close to typical values for Ce3+ (M5 at 882.0 eV, M4 

at 899.7 eV) in Ce2Zr2O8 or CeO2 doped with lanthanides.71,72 A M5 to M4 ratio near to one and more 

asymmetrically shaped M4 edge compared to the M5 edge are characteristic for Ce3+.73 

 

Figure 8. (a) Dark-field STEM micrograph of a representative crystallite of ground powder of 

Ce4−0.5xLi3P18N35−1.5xO1.5x. The area in which the superstructure was observed is highlighted in green, the area 

without superstructure highlighted in red. (b, c) SAED along the along [120] zone axis and EDX for the 

highlighted regions in panel a. EDX element ratios shown here were obtained from highlighted regions. The 

dark area is a hole in the crystal. 
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Figure 9. (a) Experimental STEM-HAADF image along [001] of a domain with increased O content showing Ce 

atom columns. Region of intensity line scan (b) highlighted in red in panel a and c. (c) Intensity map of panel a 

enhanced by interpolation of brightness over 4 pixels followed by augmenting the bright areas for 9 pixels. The 

intensity contrast represents the number of Ce atoms in the columns, highlighting a random distribution of Ce2 

vacancies in accordance with the average structure.  
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3.3.3.5 Superstructure Determined from Synchrotron Data  

Synchrotron diffraction data were collected in sufficient quality for analysis of the superstructure 

suggested by SAED (for a detailed description of X-ray data analysis, the reader is referred to the 

Supporting Information). From the reciprocal lattice section hk0 shown schematically in Figure 11 

(experimental patterns are shown in Figure S12), it is apparent that the superstructure is 

commensurate. The reciprocal lattice of the supercell as defined by vectors a’*    /3 a* − 1/3 b*, b’* 

  1/3 a*   1/3 b* and c’*   c* allows indexing of the whole diffraction pattern. These vectors span a 

hexagonal (√3 x √3)R30° supercell (a’ = 24.1306(1), c’ = 8.1335(1) Å) with three times the volume of 

the basic cell. 

An initial supercell model for tentative structure refinement was obtained by i3 subgroup 

transformation of the basic structure model according to  

 
  
  
  
   

 
 
 
   

    
   
   

   

Due to pronounced parameter correlation, a conventional refinement of the superstructure in space 

groups P63/m and its subgroup P63 failed, no significant deviation from the average model could be 

obtained. This failure is due to the extreme difference in intensity and counting statistics between 

basic and superstructure reflection (intensity to sigma ratio of the basic structure reflections and the 

ratio of the superstructure reflections: Ib/σ = 23.7 to Is/σ = 1.8, Figure S12). Moreover, the space 

group of the superstructure could not be determined unequivocally from the diffraction pattern 

since the satellite reflections are only observed in hkl planes with l = 2n and n ≠ 0 (Figure S13). 

Note that SAED patterns (Figure 10a) show superstructure reflections in all planes, most likely due to 

multiple diffraction. Assuming that mainly Ce2 atoms contribute to the superstructure, the 

reflections in the hkl with l = odd planes are expected to be weak or absent since the Ce2 atoms in 

the average structure can be described by a smaller unit cell with 1/2 c translation. The unobserved 

reflections in the hk0 plane indicate that the Ce2 atoms are displaced solely along [001], which is 

reasonable considering their coordination in a triaugmented triangular prism (Figure 6c). To resolve 

these issues, only the z coordinates of the Ce2 atoms in the supercell were refined47 in P1 using the 

superstructure reflections, while all other atom parameters, which were already well-established by 

the average structure, remained fixed. Ce2 displaced from its average position (Figure S14) and 

hence corroborated the STEM findings. However, the z coordinates and thus the amplitude of the 

displacement cannot be determined since they are strongly correlated with the scale factor of the 

superstructure reflections, whose true value is unknown since the superstructure exists only in 

domains that correspond to an unknown fraction of the crystal.  
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Figure 10. (a) SAED pattern of a superstructure domain along the [120] zone axis of the average structure (red 

indices and cell outlines); this corresponds to the [110] zone axis of the supercell (green, note the 30° rotation). 

(b) STEM-HAADF image along this direction showing a displacement of certain Ce2 atoms. Three different 

locked-in positions of Ce2 atoms along [001] are highlighted with arrows: A (displaced downwards), B (roughly 

in the middle), C (displaced upward(; maximum distance between   and C ≈ 0.3(1) Å. 
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Setting the superstructure scale factor equal to that of the average structure (corresponding to a 

superstructure encompassing the whole crystal) yielded the minimal displacement of the Ce2 atoms 

of 0.1 Å whereas STEM suggested approximately 0.3(1) Å. From the refined Ce2 atom positions and 

their correlation matrix, space group symmetry P63 was determined for the superstructure; the 

mirror symmetry is broken by displacement from the special position on the horizontal mirror plane, 

and the inversion symmetry is broken by unidirectional displacement of the Ce2 atoms on unit cell 

edges (Figure S14). A subsequent refinement, with symmetry restrictions and additional translational 

symmetry applied, included the other atoms as well, yielding the same Ce2 displacement.  

 

Figure 11. General reciprocal hkn (n = 2, 4, ect.) lattice plane, in which the basic cell (red), supercell (green), and 

modulation vectors q1 and q2 (blue) are marked (q1 and b’* are equal  and thus highlighted by a dashed blue 

green vector). Several reflections (dark gray and light gray) carry indices for orientation, for one satellite; its 

three superspace indices are given. 

3.3.3.6 (3+2)D Superspace Description 

A (3+2)D superspace model may be a more elegant description of the superstructure and can better 

illustrate the long-range order of the Ce2 displacements. Moreover, it can corroborate the supercell 

refinement. As (3+d) superspace groups are supergroups of the 3D space groups, the corresponding 

structure models often require fewer parameters, which is especially favorable when refining a weak 

superstructure. Since the modulation is refined in the basic cell, no artificial centering has to be 

introduced by manual parameter constraints as was done in the supercell refinement. A more 

detailed derivation of the superspace description can be found in the Supporting Information. 

Since the displaced, that is, modulated Ce2 atoms have P63 symmetry, the superspace group P63(α, 

β, 0)0(−α−β, α,0)0 was chosen for the (3+2)D modulation description.  
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The diffraction pattern was indexed based on the basic cell with two modulation vectors q1 = (1/3, 

1/3, 0) and q2   (− /3, 1/3, 0) (Figure 11) resulting in diffraction vectors h = ha* + kb*+ lc*+ mq1 + 

nq2. Since the superstructure is commensurate, the indexing is ambiguous as one satellite is shared 

by three basic structure reflections. This might be regarded as merohedry in 5D but does not impede 

structure refinement as the reflections were treated as overlapped.74 We are aware that an 

equivalent description in (3+1)D superspace could be possible due to the commensurate modulation 

vectors, which allow a description in the higher symmetric commensurate Bravais class 

P6/mmm(1/3, 1/3, 0).75 Because this is more difficult to implement in the refinement and because a 

commensurate description would not be applicable to possible related structures with 

incommensurate modulations, we favor the (3+2)D description. The (3+1)D case, however, is 

discussed in the Supporting Information and a commensurate (3+1)D superspace group is deduced 

there. 

A displacive modulation in superspace is an arbitrarily shaped wave running parallel to the higher 

dimensional basis vectors, which projected onto physical space are the modulation vectors. 

Transferred to the superstructure domains of Ce4Li3P18N35, the modulation vectors q1, q2 and their 

linear combination q1+q2 give direction and wavelength of the modulation waves (Figure 11). Since 

Ce2 was shown to displace along [001], the modulated description necessitates a set of three purely 

z-polarized plane waves. Those modulation waves are expanded in sine and cosine functions, whose 

amplitudes are determined in the refinement. Since the waves are related by symmetry and the 

satellite order is one, only two amplitudes of one wave had to be determined. The refinement 

(Supporting Information for details) yielded the qualitative displacements of Ce2 atoms, 

corroborating the supercell description. The superstructure can be conceived as the superposition of 

three z-polarized plane waves with directions q1d, q2d, and q1d+q2d, wavelength λm = 3a and mutual 

origin (Figure 12a). Ce2 atoms occur in three unique positions, one below, one above, and one 

approximately at the average z-coordinate (Figure 12b). Since the q-vectors are commensurate, the 

supercell contains all structural variations but the long-range order of a domain can intuitively be 

grasped with the modulation-description.  
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Figure 12. (a) Projection of the (3+2)D superstructure model onto 3D space along [001] direction in a section 

corresponding to a 3 x 3 x 1 multiple (black) of the basic cell (red). The (√3 x √3)R30° supercell is given in green, 

and the modulation waves are indicated by dashed blue vectors. Atoms of equivalent displacement are marked 

with color (red, green, blue). (b) Ce2 displacement along [001] and along the additional direction of (3+2)D 

superspace x 4, atoms related by symmetry are marked with color.  

3.3.3.7 Superstructure Discussion  

Presumably, the Ce2 displacement causes the elongated N6, N7, and N8 ellipsoids observed in the 

basic structure (Figures 3, 4, and 6). The N8 atoms evade the nearing Ce2 atoms by rotating further 

from the 6-ring center; a displacement that in turn induced a twisting of N6 and N7, which are in 

close proximity to the 6-rings (Fig. 4a, b). However, the P atoms are unaffected by the Ce2 

disposition, as indicated by regular displacement ellipsoids, and can be interpreted as centers of 

rotation for the N atoms. Since the P atoms are indifferent to the 6-ring conformation and no 

intratetrahedra N–P–N angles distort, this N-induced distortion seems to have a low energetic 

barrier. A displacive modulation of the N atoms, however, cannot be refined from the synchrotron 

data because the reflections in the hk0 plane that would carry such information are not observed 

even with the combination of PILATUS detector and third generation synchrotron. Displacement of 

heavy atoms in channel-like coordination environments has been reported before; a stabilization of 

Ba through modulation was suggested as the driving force in Ba0.85Ca2.15In6O12.70 Similarly, the Ce2 
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displacement might be driven by electrostatics. By moving up and down the channels, Ce2 leaves the 

Ce2N9 coordination sphere and enters a distorted octahedral coordination (Figure 6c), also evading 

the trigonal planar surrounding of N4 atoms. The octahedral coordination mimics the bonding 

situation in CeN and thus might be the driving force for the displacement.76 A long-range modulation 

can arise since the framework is condensed with all-side vertex-sharing tetrahedra, conducting the 

displacement information from one 6-ring channel to the other via the bridging triangular columns.  

The strength of this long-range ordering, however, is small as can be inferred from the small 

displacement ellipsoids of all atoms except N6, N7, N8, and Ce2. Thus, an accumulation of Ce2 

vacancies might interrupt the transfer of information on the modulation and create the 

nonmodulated domains.  

3.3.3.8 Optical Properties  

The emission spectrum of Ce4−0.5xLi3P18N35−1.5xO1.5x (Figure 13) reveals optical emission in the range of 

410 nm (detector start) to 526 nm with a maximum at 455 nm corresponding to a full width at half-

maximum of 71 nm (3520 cm−1). The peak shape is anisotropic and cannot be modeled by one 

Gaussian function. Owing to Ce3+’s electron configuration of [Xe]4f1, the electronic ground state is 

split in two states of similar energy, 2Fo
5/2 and 2Fo

7/2, which usually results in a broadening of the Ce3+ 

emission. Moreover, in the near-UV region, re-excitation might occur due to the small Stokes shift, 

explaining the anisotropy. As the Ce2 position is modulated, so is the coordination environment 

around the corresponding atom. This could also take effect on peal broadening. Usually, 

luminescence is observed from Ce3+-doped inorganic host frameworks since pure Ce-containing 

compounds tend to exhibit concentration quenching (although exceptions like the UV or blue 

luminescence of several Ce salts are known).77 The suggested mechanism for concentration 

quenching involves a transfer of excitation energy between active ions in close spatial proximity, 

which increases the chance of a nonradiative decay of the excited state.78,79 The Ce-Ce distances 

might be too large for concentration quenching (d(Ce1-Ce1) = 4.760, d(Ce2-Ce2) = 4.068, d(Ce1-Ce2) 

= 5.862 Å) as the Ce atoms are separated by a rigid tetrahedra framework. Moreover, the Ce2 

vacancies increase the interatomic distance between adjacent Ce2 atoms, which might facilitate 

luminescence. The UV-vis reflectance spectrum (Figure 13, black line) follows the inverse trend of the 

excitation spectrum, low reflectivity at high excitation and vice versa.  
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Figure 13. Ce4−0.5xLi3P18N35−1.5xO1.5x emission spectrum (blue) in the range 410–700 nm, excitation spectrum 

(red) in the range 240–400 nm, and reflectance (black) in the range of 240–700 nm.  

3.3.3.9 Magnetic Properties 

The predicted effective magnetic moment, μeff, of Ce3+ in electronic ground state 2Fo
5/2 is μeff =  .54 μB 

according to Hund’s laws and Russel-Saunders’ spin-orbit-coupling approximation. The effective 

magnetic moment of Ce4−0.5xLi3P18N35−1.5xO1.5x was determined with SQUID magnetometry by 

measuring the temperature dependent susceptibility at a constant magnetic field of 20 kOe (1 kOe = 

7.96 × 104 A·m−1). Because of the nonstoichiometric reaction of Ce4−0.5xLi3P18N35−1.5xO1.5x, the total Ce 

content of the sample (0.5495 mmol/g) was determined with ICP-OES. A linear regression fit to the 

χm
−1 data in the range of 50 to 200 K (Figure 14) yielded a μeff,exp =  .71(1) μB, which is slightly larger 

than the theoretical value, and a Curie temperature of  = −2.9(2) K. The 7 % deviation in theoretical 

and experimental μeff might be due to a slight under-determination of the sample’s Ce content, which 

was solved with aqua regia at 200 °C. The electronic state of Ce4−0.5xLi3P18N35−1.5xO1.5x is paramagnetic.  
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Figure 14. Molar magnetic susceptibility of Ce4−0.5xLi3P18N35−1.5xO1.5x determined at 20 kOe in the range of 1.85–

300 K. Green circles χm vs. T, blue circles χm
−1 vs. T, and a Curie-Weiss fit displayed as a red line.  

3.3.4 Conclusion 

Nitridophosphates with a degree of condensation larger than 1/2 are scarcely known. 

Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) is the first nonalkali earth nitridophosphate comprising a 

framework with  > 1/2; an example showing that high-pressure metathesis gives access to a large 

unexplored structure space. In retrospect to the here observed blue light emission, these expectedly 

rigid structures could lead to a new class of host frameworks for inorganic solid state lighting. 

The joint venture of aberration-corrected STEM and synchrotron diffraction showed that 

Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) contains two different domains, one with a higher and one with a 

lower O content, which we correlated to the amount of Ce2 vacancies. In the domains of low O 

content, the Ce2 atoms enter a long-range periodic order. Due to this Ce2 deficiency, the average 

structure has the sum formula Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ). In the superstructure domains T M 

EDX revealed only negligible amounts of O, which could also stem from surface hydrolysis. Therefore, 

Ce2 vacancies cannot be ruled out but to our conjecture some domains exhibit full Ce2 occupation 

and sum formula Ce4Li3P18N35. Seemingly, the structure is stabilized either by forming a 

superstructure or by introducing vacancies on the Ce2 position.  

Both supercell and superspace refinements yielded the same, due to the domains qualitative, 

superstructure model. With STEM we directly observed the Ce2 displacement and measured a 

distance of ca. 0.3(1) Å between lowest and highest atom. The small variation between the two 

domains necessitated an investigation at the detection limit of state of the art analysis methods that 

may indicate the frontier of structure analysis.  
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3.3.6 Supporting Information 

IR 

 

Figure S1: FTIR spectrum of Ce4−0.5xLi3P18N35−1.5xO1.5x. 

High-Temperature Powder XRD 

 

Figure S2: Top view of high-temperature powder X-ray diffraction patterns of Ce4−0.5xLi3P18N35−xO1.5x. LiPN2 was 

present as a side phase (main reflection at 2 = 10.5° marked by an arrow), which decomposed at around 

800 °C.  
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Details of Rietveld Refinement 

Table S1: Crystallographic data for the Rietveld refinement of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ). 

Crystal Data  

Formula Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) 

Crystal system, space group hexagonal, P63/m (no. 173) 

Lattice parameters / Å 
a = 13.92153(9) 
c = 8.12855(6) 

Cell volume / Å3 1364.32(2) 

Formula units per cell Z 2 

  

Data Collection  

Radiation Mo-Kα1 (λ = 0.7093 Å) 

Monochromator Ge(111) 

Diffractometer Stoe StadiP 

Detector MYTHEN 1K 

2-range / ° 2–76 

Temperature / K 297(2) 

Data points 4958 

Number of observed reflections 2706 

  

Refinement  

Number of parameters 108 

Constraints 0 

Program used TOPAS Academic V4.1 

Structure refinement Rietveld-Method 

Profile function fundamental parameters model 

Background function shifted Chebychev polynomial with 14 terms 

Rwp 0.041 

Rexp 0.008 

Rp 0.028 

RBragg 0.015 
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Additional Crystallographic data for Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.72). 

Table S2: Anisotropic displacement parameters of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ), standard deviations in 

parentheses, based on single crystal analysis. 

Atom U11 / Å2 U22 / Å2 U33 / Å2 U12 / Å2 U13 / Å2 U23 / Å2 

Ce1 0.01017(8) 0.00809(8) 0.00726(8) 0 0 0.00421(5) 

Ce2 0.00781(16) 0.00781(16) 0.0450(4) 0 0 0.00391(8) 

P1 0.00742(18) 0.00627(18) 0.0091(2) 0.00069(15) 0.00075(15) 0.00311(15) 

P2 0.00599(18) 0.00650(18) 0.00609(19) -0.00031(14) -0.00003(14) 0.00339(15) 

P3 0.00678(18) 0.00669(18) 0.00579(19) 0.00005(14) 0.00007(14) 0.00334(15) 

N1 0.0053(6) 0.0053(6) 0.0092(11) 0 0 0.0026(3) 

N2 0.0095(9) 0.0074(9) 0.0066(9) 0 0 0.0038(7) 

N3 0.0120(7) 0.0087(6) 0.0084(7) 0.0012(5) 0.0036(5) 0.0058(5) 

N4 0.0129(10) 0.0092(9) 0.0107(9) 0 0 0.0048(8) 

O4 0.0129(10) 0.0092(9) 0.0107(9) 0 0 0.0048(8) 

N5 0.0076(6) 0.0073(6) 0.0132(7) -0.0026(5) 0.0003(5) 0.0032(5) 

N6 0.0259(13) 0.0160(11) 0.0069(10) 0 0 0.0157(10) 

N7 0.0283(10) 0.0102(7) 0.0204(9) 0.0072(7) 0.0141(8) 0.0120(7) 

N8 0.0403(14) 0.084(2) 0.0196(10) 0.0256(13) 0.0169(10) 0.0546(16) 

Li1 0.020(3) 0.011(2) 0.033(3) 0 0 0.008(2) 

 

Table S3: Bond lengths (Å) in Ce4−0.5xLi3P18N35−1.5xO1.5x, standard deviations in parentheses. 

Ce1 

 

P1 

 Ce1–N7 2.5394(19) P1–N7 1.6059(19) 

Ce1–N3 2.6069(17) P1–N8 1.614(2) 

Ce1–N6 2.727(3) P1–N8 1.615(2) 

Ce1–N5 2.7315(17) P1–N4 1.6544(12) 

Ce1–N5 2.8592(18) P2 

 Ce1–P2 3.3358(5) P2–N5 1.6053(17) 

Ce1–P3 3.3784(5) P2–N2 1.6078(12) 

Ce2 

 

P2–N3 1.6103(18) 

Ce2–N4 2.665(2) P2–N1 1.6988(5) 

Ce2–N8 2.792(3) P3 

 Li1 

 

P3–N7 1.611(2) 

Li1–N2 2.093(6) P3–N6 1.6197(11) 

Li1–N6 2.279(7) P3–N3 1.6243(17) 

Li1–N8 2.260(6) P3–N5 1.6509(17) 
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Table S4: Selected bond angles (in °) in Ce4−0.5xLi3P18N35−1.5xO1.5x, standard deviations in parentheses. 

N–P1–N N–P2–N N–P3–N P–N–P 

N7–P1–N8 109.15(16) N5–P2–N2 112.84(11) N7–P3–N6 109.89(13) P2–N1–P2 120 

N7–P1–N8 113.38(15) N5–P2–N3 108.54(9) N7–P3–N3 116.14(10) P2–N2–P2 124.58(15) 

N8–P1–N8 111.2(2) N2–P2–N3 110.23(10) N6–P3–N3 111.74(11) P2–N3–P3 117.30(10) 

N7–P1–N4 106.59(11) N5–P2–N1 107.09(7) N7–P3–N5 99.14(9) P1–N4–P1 127.33(15) 

N8–P1–N4 109.34(11) N2–P2–N1 109.91(12) N6–P3–N5 107.36(12) P2–N5–P3 129.06(11) 

N8–P1–N4 106.96(12) N3–P2–N1 108.07(10) N3–P3–N5 111.62(9) P3–N6–P3 134.80(17) 

    
  P1–N7–P3 138.41(13) 

    
  P1–N8–P1 133.67(16) 

 

 

MAPLE and BVS 

Madelung part of the lattice energy (MAPLE) calculations were carried out with MAPLE based on an 

idealized structure model of Ce4Li3P18N35, as not fully occupied atom positions cannot be taken into 

account. To evaluate the calculated values, Ce4Li3P18N35 was formally decomposed into 4 CeN, 3 

LiPN2, and 5 γ-P3N5.1–3 

 

Table S5: MAPLE calculations for Ce4Li3P18N35. 

 

Compound Multiplicator MAPLE / kJ·mol−1 MAPLE ·Multiplicator/ kJ·mol−1 

CeN 4 8686.1263 34744.5052 

LiPN2 3 28084.5637 84253.6911 

P3N5 5 76829.8841 384149.421 

   503147.617 

Ce4Li3P18N35 1 508459.308 508840.538 

Deviation / %   1.13 % 
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Table S6: Partial MAPLE values for Ce4Li3P18N35. Typical values: N3− 5000–6000 kJ/mol−1, O − 2000–

2800 kJ/mol−1.4 

Atom Partial MAPLE / kJ·mol−1 

Ce1 4473 

Ce2 3318 

P1 15533 

P2 14458 

P3 15434 

N1 7674 

N2 6384 

N3 6227 

N4 5851 

N5 6151 

N6 5948 

N7 5931 

N8 6206 

Li1 881 

 

 

Table S7. Bond-valence sums for Ce4−0.5xLi3P18N35−1.5xO1.5x. 

Atom Ce1 Ce2 Li1 P1 P2 P3 N1 

BVS 2.44 1.93 0.86 5.0 4.93 4.94 3.09 

Occupancy 1 0.64 1 1 1 1 1 

        

Atom N2 N3 N4 O4 N5 N6 N7 

BVS 2.83 2.86 2.57 2.13 2.87 2.88 3.01 

Occupancy 1 1 0.44 0.56 1 1 1 

 

Difference Fourier Maps 

Atom sites N6, N7 and N8 have strongly (Figure 3, 4 and 6) prolate displacement parameters, 

potentially caused by symmetry elements of the space group P63/m, which do not apply for the local 

structure. The ellipsoids might be explained by two independent N atoms that have slightly different 

x and y coordinates and are mapped onto each other by the mirror plane perpendicular to c. To 

falsify this suggested lower symmetry for the average long-range ordered structure, the structure 

refinement was repeated by systematically removing symmetry elements down to space group P1 

under consideration of all relevant twin laws.  



3.3 Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected 
Scanning Transmission Electron Microscopy and Synchrotron Diffraction 

114 

Omission of the inversion center and the mirror plane perpendicular to [001] (in the t2 subgroup P63, 

no. 173) theoretically suffices for crystallographic splitting of the N8 site. Difference Fourier maps 

calculated in P63 revealed a mirror- and centrosymmetric electron density (Figure S3, S4), indicating 

that the N8 position is best described with P63/m symmetry. 

Difference Fourier maps in P63 

 

 

Figure S3: Difference Fourier maps (Fobs−Fcalc) calculated for a structure model in space group P63, in which the 

atom positions of the 6-ring inter-tetrahedra bridging N were deleted. The top image shows the Fobs−Fcalc map 

of the unit cell, positive electron density in yellow, negative in blue.   plane (−1.5 1 0) is highlighted in blue. The 

2D contour Fobs−Fcalc plot through this plane is presented in the bottom part. It runs through the N8 atom 

positions. Fobs−Fcalc maps were calculated with VESTA.5 
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Difference Fourier maps in P63/m 

 

Figure S4: Difference Fourier maps (Fobs−Fcalc) calculated for a structure model in space group P63/m, in which 

the atom positions of the 6-ring inter-tetrahedra bridging N were deleted. The top image shows the Fobs−Fcalc 

map of the unit cell, positive electron density in yellow, negative in blue. A plane (−1.5 1 0) is highlighted in 

blue. The 2D contour Fobs−Fcalc plot through this plane is presented in the bottom part. It runs through the N8 

atom positions. Fobs−Fcalc maps were calculated with VESTA.5 
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Network Topology 

Vertex Symbol 

The vertex symbol of the PN net of Ce4−0.5xLi3P18N35−1.5xO1.5x was calculated with TOPOS with ring sizes 

up to 12, larger ring sizes were neglected and the corresponding angle marked with an asterisk.5 

P1: (6.62.6.62.62.62) 

P2: (3.3.3.4.4.6.6.6.*.*) 

P3: (3.62.6.6.6.6) 

The framework’s fundamental building units are essential rings of size 3 to 6, and no 10-ring are 

listed in the point as might contrarily be suggested by the structure’s projection along [001] (Figure 

3); vertex symbols only list the shortest rings and their number contained in the respective angle.6  

 

Tiling 

All six tiles occurring in the maximum symmetry embedding of the PN net of Ce4−0.5xLi3P18N35−1.5xO1.5x 

are presented along with their wireframe representation and face symbol as well as their volume 

occupation in the real crystal structure. Data calculated with TOPOS, tiles drawn with 3dt.6,7 

Table S8: Face symbols and volume of the tiles shown in Figure S5. 

 

Tile Face Symbol Volume /Å3 

a [65.102] 147.9 

b [32.43] 10.6 

c [63] 17.0 

d [65] 62.1 

e [32.4.62] 17.8 

f [38.63] 59.6 
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Figure S5: Tiles occurring in Ce4−0.5xLi3P18N35−1.5xO1.5x, face symbols and volume given in Table S8. 
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Coordination Polyhedra 

Li2 coordination 

The pentagonal pyramid belongs to the class of Johnson solids, polyhedra that are not transitive on 

its faces, edges and vertices but constitute regular polygons.8 It is classified as Johnson solid J2 with 

vertex symbol (32.5)5(35) and C5v symmetry in Schönflies notation. According to site symmetry m.. of 

the Li1 position, distortions in the LiN6 polyhedron removed the five-fold rotation axis, which is in any 

case non-crystallographic, but maintained one vertical mirror plane. Common Li–N bond lengths 

range from 2.0 to 2.4 Å (e. g. NdLiP4N8 d(Li–N) = 1.96 to 2.17 Å, B3Ca4LiN6 d(Li–N) = 2.22 Å).9,10 The 

values found here reveal a large distance variation (d(Li–N) = 2.09–2.80, d(Li–N) = 2.41 Å) leading to 

an effective coordination number of 3.6. Hence, the coordination might better be represented by a 

tetrahedron. However, the prolate Li atom displacement, which shows a displacement towards the 

remote N7 (d(Li1–N7) = 2.747(4)), is illustrated by the distortion of the pentagonal pyramid.  

Ce1 coordination 

Ce1 resides inside the 10-ring channels and is coordinated in an irregular CeN9 polyhedron, which is 

not one of the Johnson solids. A mathematically devised holohedral polygon with regular polygon 

faces, therefore, cannot be constructed. Through determination of faces based on shortest N–N 

distances, the face symbol could be [37.42.5], describing the polyhedron as an arrangement of 4 N 

below and 5 N above Ce1 (depicted in Figure 6b). The corresponding vertex symbol is 

(33.4)2(32.42)2(3.4.5)2(33.5)3. The Ce1–N distances in the range of d(Ce1–N) = 2.54–2.93 Å coincide 

well with values of Ba2Cu[Si2O7]-type Ce2P3N7 with d(Ce–N) = 2.44–2.75 Å.11 The coordination number 

in Ce2P3N7 is CN = 8, hence the bond lengths are slightly shorter.  

Ce2 coordination 

Ce2, which is not fully occupied (s.o.f. = 0.635), resides in the 6-ring channels and is coordinated by 

nine N atoms arranged after Johnson solid J51, a triaugmented triangular prism (Figure 6c).8 J51 

belongs to the class of deltahedra, polyhedra constructed solely by equilateral triangles. Its vertex 

symbol is therefore (34)3(35)6 and its holohedral symmetry group is D3h, which is a crystallographic 

point group denoted6m2 in Hermann-Mauguin notation. While space group P63/mmc, the maximal 

symmetry group of the net, features a6m2 Wyckoff position, its t2 subgroup P63/m does not and 

Ce2 is located on a6m2 -fold symmetry axis in P63/m. Hence, symmetry of the triaugmented 

triangular prism surrounding Ce2 is reduced. Though two equilateral triangles comprise the 

triangular prism, which preserve the horizontal mirror plane and inversion center, the capping N4 

atoms are not centered above the rectangular faces of the prism, thus eliminating the mirror plane 
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and 2-fold rotation perpendicular to the main rotation axis. The symmetry group is thus C3h in 

Schönflies notation. Two Ce2–N bond distances are found, d(Ce2–N4) = 2.656 Å and d(Ce2–N8) = 

2.792 Å.  

TEM 

Table S9. TEM EDX of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) in atom% (standard deviations), mean values based on 

9 measurement points each. All experiments showed more O than theoretically predicted. This might be due to 

hydrolysis of the surface. The experimental values, however, are to be understood in relation between the two 

domains.  

 average value  

from model 

mean value of domains 

with low O content 

mean value of domains 

with higher O content 

N (K) 60.9 53(4) 52(1) 

O (K) 1.0 2(1) 5(1) 

P (K) 31.8 39(5) 36(3) 

Ce (L) 6.4 6(1) 7(2) 

 

 

Figure S6. Electron diffraction along [001] (a) and [100] (b), both SAED (left) and nanodiffraction (right) whole 

pattern symmetry in accordance to space group P63/m derived from X-ray data. 
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Figure S7. Reciprocal lattice sections (see also Figure S12, S13) reconstructed from single crystal X-ray 

diffraction data (left) compared to SAED patterns along special directions from different crystallites (middle) 

with corresponding simulations (right) based on single crystal X-ray data, all each unit cell highlighted in red. 
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Figure S8. Fourier filtered STEM-HAADF images (a-c) including structure projection as overlay (P atoms in 

orange, Ce1 atoms in green, Ce2 atoms in light green) and drift corrected EDX mappings (d) both with atomic 

resolution viewed along zone axis [100], [001] and [120], bright contrasts correspond to Ce, darker ones to P. 
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Figure S9. Top: Experimental unfiltered STEM-HAADF image along [001] showing Ce2 atom columns with 

varying intensity (some marked by red arrows). Bottom: Same figure, visually enhanced by interpolating 

brightness over four pixels, followed by extrapolation of bright areas over nine pixels (with Photoshop).  
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Figure S10. SAED patterns along [120] (a) and [121] (b) zone axis containing superstructure reflections, pattern 

indexed with the average structure model (red), supercell highlighted in green. Unfiltered STEM-HAADF image 

(c) along [120] with corresponding Fourier transform (d) showing superstructure reflections (green arrows) 

similar to those in SAED above based on different Ce2 positions. STEM-HAADF image (e) along [120] with 

corresponding Fourier transform (e) of a domain without superstructure, superstructure reflections are missing 

(red arrows) and no different Ce2 positions can be observed. 
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Figure S11. (a) EELS spectrum of Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ), red arrows represent positions of the Ce
3+-

M5 and Ce3+-M4 edges. (b) Reference EELS spectra of CeF3 and CeO2 from Arai et al.. 12 Blue and red dotted lines 

illustrate different M5/M4 ratios in correspondence to Ce3+ and Ce4+.  

Off-axis EELS spectra do not suggest the presence of Ce4+ in Ce4−0.5xLi3P18N35−1.5xO1.5x (Figure S10). They 

show relative to the zero loss peak the Ce-M5 and Ce-M4 edges at 881.6 eV and 899.4 eV energy loss, 

respectively. These positions of the Ce signals are very close to typical values for Ce3+(M5 at 882.0 eV, 

M4 at 899.7 eV) in Ce2Zr2O8 or CeO2. The Ce4+ peaks occur at lightly increased energy loss. The M5 to 

M4 ratio is nearly one with the M5 edge showing more intensity than the M4 edge. This is in 

accordance with the higher M5/M4 ratio of Ce3+ compared to the lower M5/M4 ratio of Ce4+ known 

from the literature. The more asymmetrically shaped M4 edge compared to the M5 is also 

characteristic for Ce3+.12,13,14 
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Ce2 Displacement Measurement 

Position deviation of the Ce2 atoms along [001] of 0.3(1) Å is the mean value of 10 directly measured 

distances from a representative STEM-HAADF micrograph (cf. Figure 10). In order to determine the 

maximum distance between two deflected Ce2 atoms (atoms A and C in Figure 10), in a first step the 

centers of gravity of the Ce2 atoms and a horizontal neutral axis perpendicular to [001] were defined. 

The distance of 0.3(1) Å is then the sum of the deviations of the centers of gravities of two Ce2 atoms 

(one above and one below) from the neutral axis in [001] direction.  

Synchrotron Data 

Supercell model refinement procedure 

Data were integrated (see Experimental section) with the supercell parameters and absorption 

corrected with SADABS in Laue class 6/m.15 Two hkl-files were manually generated for the use with 

two scale factors; one hkl-file contained the average structure reflections and one contained the 

superstructure reflections (−h+k = 3n are average structure reflections).  

Initially, only the z coordinates of all Ce2 atoms within the supercell model were refined (with 

JANA2006)16 on the superstructure reflections, neglecting all symmetry restrictions (P1 symmetry). 

The other atom sites were kept fixed, which is feasible because the superstructure reflections carry 

information on the Ce2 distortion only and because the average structure is already well-established. 

The average structure scale factor was refined prior to including the satellite reflections and was kept 

constant for the following refinement steps since both scale factors were highly correlated. The scale 

factor of the superstructure reflections was set to the average structure scale factor and kept 

constant since it is to 100 % correlated to the Ce2 atom dislocation. The refinement converged in an 

R-value of ≈ 30 %. The refined Ce  displacement of 0.1 Å corresponds to the minimal value since in 

this scenario the whole crystal would be modulated. The satellite reflection scale factor scales 

linearly with the displacement parameters; as the satellite reflection scale factor decreased to a 

fraction of the average structure scale factor the displacement gets larger (≈ 0.1 Å at same scale 

factor, ≈ 0.3 Å at one third of the average structure scale factor). Since the real superstructure 

reflection scale factor is unknown the accurate displacement cannot be determined.  

A subsequent refinement was carried out in which all atoms were refined, but symmetry restrictions 

were applied. Those restrained the symmetry to P63/m for all non-Ce2 atoms and additional 

translational symmetry was added to treat the unit cell enlargement.  
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Reconstructed reciprocal lattice planes 

The following reciprocal lattice planes are once shown as originally calculated (with linear intensity 

scaling) with the program Crysalis17 and once visually enhanced by conversion to gray-scale and 

optimization of the tonal correction with Adobe Photoshop. 

 

Figure S12. Top to bottom: hk2, hk4 and hk6 planes. 
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Figure S13. hhl plane. Visual enhancement (as stated above) reveals superstructure reflections for every lattice 

plane hkl with l = 2n, except for the hk0 plane. 

 

Figure S14. Results of the superstructure refinement: Ce2 atoms related by symmetry highlighted by the same 

color. Bottom: viewed along <110>, Ce2 displacement is highlighted by green lines perpendicular [001], N and 

Li atoms were not displayed for clarity.  
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Structure Description in (3+2)D superspace 

Lattice, symmetry and modulation vectors 

Since the superstructure refinement revealed P63 symmetry for the displaced Ce2 atoms, the 

superspace group P63(α, β, 0)0(−α−β, α,0)0 was chosen for the (3  )D modulation description. The 

diffraction pattern was indexed based on the basic cell with two modulation vectors q1 = (1/3, 1/3, 0) 

and q2   (− /3, 1/3, 0) (Figure 11). The diffraction vector then is: 

  h = ha* + kb*+ lc*+ mq1 + nq2 

It is apparent that due to the commensurateness of the superstructure an unambiguous indexing is 

not possible as one satellite is shared by three basic structure reflections. This might be regarded as 

merohedry in 5D but does not impede structure refinement as the reflections were treated as 

overlapped.18 Hence, a set of three symmetry-equivalent modulation waves is obtained with 

directions q1, q2 and the linear combination q1 + q2. Since the indexing is ambiguous, the maximum 

satellite order of the reflections hklmn was set to m = n = 1. To retain the same satellite order for 

reflections of the symmetry equivalent direction q1 + q2, the order o is defined as  

  o = ½ (|m| + |n| + |n−m|) 

Concluding from the superstructure refinement described above, a purely z-polarized modulation 

function uCe2 (x4, x5) is considered for the displacement of Ce . Following Fourier’s theorem, any 

wave-like function can be expanded in a basis of periodic sine and cosine functions. 

  uCe2(x4, x5) = mn [Amn∙sin( π∙m∙x4    π∙n∙x5)   Bmn∙cos( π∙m∙x4    π∙n∙x5)] 

Here, x4 = q·r + t and x5 =  q·r + u, in which r is the position of the Ce2 atom in unit cell L = l1x + l2y + 

l3z and phase shifts t and u denote the distance to physical space. Of the six amplitudes A10, B10, A01, 

B01, A11, and B11 only two, e.g. A10 and B10, have to be determined since the others are related by 

symmetry. The number of parameters to describe the commensurately modulated structure is two 

and therefore one less than in the supercell refinement.  

Refinement 

For the refinement in P63(α, β, 0)0(−α−β, α,0)0, the basic structure model was first transformed to 

P63. For all non-modulated atoms, however, the inversion center and mirror plane were manually 

reintroduced by setting local symmetry restrictions. All atomic positions and anisotropic 

displacement parameters were refined. The amplitudes A10 and B10 were refined to a significance of 

0.004370(15) and 0.00223(3), respectively. The x3–x4 and x3–x5 Fobs Fourier maps are shown in 
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Figure S15. In this refinement, the scale factor of the average structure and the satellite reflection 

scale factor were assumed to be equal. Therefore, the resulting Ce2 displacement is the minimal 

value, as for the supercell refinement, since this assumes that the whole crystal is modulated. The 

site occupancy factors of Ce2 cannot be refined since they are also to 100 % correlated with the scale 

factor. From TEM EDX data (Table S10) we inferred that the superstructure domains contain very 

little oxygen that might just stem from surface hydrolysis. Hence, modulated domains with a fully 

occupied Ce2 are fathomable, in which local structure has sum formula Ce4Li3P36N70. 

Superspace Symmetry Discussion 

Both the supercell and superspace refinement yielded the same qualitative result and little 

uncertainty remains about the superstructure. However, in the superspace description, another 

interpretation of the modulation is possible, since the modulation vectors q1, q2, and q1+q2 are 

commensurate. In fact, the chosen Bravais class P6/m(α, β, 0)(−α−β, α,0) does not contain the full 

symmetry of the observed lattice. Since α   β   1/3, the actual Bravais class should be P6/mmm (α, α, 

0)(− α, α,0). However, no incommensurate (3  )D superspace group within this class is compatible 

with the superstructure.  

The case that all components of the wave vectors in (3+2)D dimensions are commensurate can result 

in a (3+1)D modulation; for those special wave-vectors, van Smaalen derived additional 

commensurate (3+1)D Bravais-classes.19 Bravais-class P6/mmm(1/3, 1/3, 0) fits the present problem 

and therefore the modulation could also be described in an adequate (3+1)D superspace group with 

q = (1/3, 1/3, 0).  

The commensurate (3+1)D superspace groups are not tabulated, but all space groups in 4D have 

been derived and are in principle accessible via the program CARAT (including 5D and 6D space 

groups).20–22 However, the deduction of (3+1)D spacegroups with the program is not straightforward 

so that we rather established it ourselves. Since the superstructure symmetry is known from 

previous analysis and a superspace group is determined by the arithmetic crystal class and 

translational components, one can formulate the commensurate (3+1)D superspace group P63(1/3 

1/3 0)0 with non-lattice generator (x1-x2, x1, x3+1/2, x4). As can be verified by visual inspection of 

Figure 12 and S14, this superspace group describes the structure as well as the (3+2)D group. The 

(3+1)D group also resolves the indexing ambiguities since for satellite order o = 1, all reflections are 

then unique. The modulation is then described by one wave triplicated by space group symmetry. 

 



3.3 Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of Aberration-Corrected 
Scanning Transmission Electron Microscopy and Synchrotron Diffraction 

130 

 

 

Figure S15. Fobs maps of the Ce2 position (blue line) in superspace. Top: x3 vs. x4; bottom: x3 vs. x5 map. Black 

lines indicate the electron density profile. 
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Abstract 

The new imidooxonitridophosphate AlP6O3x(NH)3-3xN9 with x ≈ 0.33 was synthesized under high-

pressure high-temperature conditions. The crystal structure determination of the microcrystalline 

product involved a combination of electron microscopy, synchrotron X-ray diffraction and solid-state 

NMR. In the solid there are discrete AlN6 octahedra that interconnect imidophosphate layers. The 

network topology is unprecedented but related to other nitride structures. 

3.4.1 Introduction 

Aluminum-containing nitrides are compounds of high interest1 and even bulk or nanostructured AlN 

itself exhibits a variety of properties and applications: High electrical resistance and high thermal 

conductivity for thermal management, high toughness for armor material and structure-dependent 

electronic properties (band gap) for piezoelectric devices and nanoelectronic purposes.2-7 (Oxo-

imido)nitridophosphates, which exhibit networks with a high degree of condensation, are discussed 

as high performance ceramics with good mechanical properties and high thermal and chemical 

stability. Recently discovered phosphorus nitrides are well suited to host lanthanide-based activator 

ions revealing strong luminescence.8-10 With regard to ion-exchange and ion-conductivity, 

nitridophosphates like Li18P6N16, Li2PO2N, Li7PN4 represent candidates for energy storage materials.11-

13 The newly discovered layer-like MH4P6N12 (M = Mg, Ca) may be a promising candidate for 

intercalation of metal ions and for exfoliation in order to obtain 2D nanomaterials.14 Subsequently, 

research for other robust nitrides with Al atoms as part of a network seems to be rewarding with 

respect to structure-property relations. Owing to the oxophilicity of aluminum, sixfold coordinated Al 

atoms have often been observed in oxides or hydrates. Thus, besides coordination compounds15 such 

as Al(EDA)3·3BH4·EDA16 only few crystal structures of nitrogen-containing compounds with sixfold 

coordinated aluminum have been elucidated so far in solid-state chemistry, e.g. those of Na3AlP3O9N 
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(Fig. S1, ESI†)17,18 and γ-ALON19 or Al(CN)3.20 Shock-wave experiments that reach peak pressures 

between 15 and 43 GPa and temperatures around 1300 °C enabled the phase transition of AlN from 

the wurtzite to the rocksalt structure type,21-24 with the latter containing AlN6 octahedra stable at 

standard conditions. Tetrahedra-containing nitride networks show structural features similar to 

those of silicates. One can expect a broad structural diversity especially due to the presence of Al and 

P in one phase, because both elements are known for possible tetrahedral and octahedral 

coordination.25 Yet, easily accessible methods for the synthesis of stable aluminum nitrides and 

related compounds such as oxonitrides or imidooxonitrides are lacking. This challenge has been 

overcome in terms of improving established high-pressure high-temperature synthesis at conditions 

up to 1500 °C and 15 GPa. Using reactive reactants like azides realizes a reductive N2 atmosphere and 

enables routes to a wide range of metal containing nitrides.9,26-28 In favorable cases, addition of 

mineralizers like NH4Cl also improves the growth of single crystals for structure determination. In the 

case of microcrystalline and possibly heterogeneous products, structure determination by powder X-

ray diffraction or electron diffraction tomography may be an option, but it can be difficult and rather 

imprecise. In contrast, diffraction experiments with microfocused synchrotron X-ray radiation deliver 

accurate data of crystallites with volumes down to sub-micron size depending on chemical 

composition. Suitable microcrystals of new compounds can be discovered by transmission electron 

microscopy (TEM). Unit-cell dimension and chemical composition are accessible via selected area 

electron diffraction (SAED) and energy dispersive X-ray spectroscopy (EDX), respectively. Synchrotron 

X-ray data sets of these crystals can be obtained after re-locating them by X-ray fluorescence in 

combination with diffraction.29,30 This approach avoids the drawbacks of electron crystallography 

while exploiting its benefits. It is well suited for the investigation of small amounts of microcrystalline 

and possibly inhomogeneous samples obtained by high-pressure high-temperature synthesis and 

was successfully used to characterize the mixed network of AlP6O3x(NH)3-3xN9 (x ≈ 0.33), see Fig. 1. 

3.4.2 Results and discussion 

The compound was synthesized in a Walker-type multianvil press31 at 5 GPa and 1100 °C, starting 

from stoichiometric mixtures of amorphous HPN2 32 and Al powder (see paragraph S2, ESI†). NH4Cl 

was added as mineralizer and HgCl2 as activator for Al (formation of intermediate amalgams). The 

gray microcrystalline powder obtained is stable against air and moisture and contains micron- and 

submicron-sized crystallites (Fig. 1a-c). A tentative reaction equation may be written as: 

2Al + O2 + 12HPN2             2 AlH2P6ON11 + N2 + 4H2 [NH4Cl, HgCl2] 

5 GPa / 1100 °C 
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The new imidooxonitridophosphate was identified by SAED (S3, ESI†) tilt series from selected 

microcrystals (Fig. 1d) which yielded a primitive monoclinic unit cell with a = 4.7, b = 8.3, c = 10.6 Å 

and β = 101°. This corroborates the metrics determined by X-ray diffraction as seen by comparing 

SAED patterns with reciprocal lattice sections reconstructed from single-crystal X-ray diffraction data 

(see paragraph S4 and Fig. S8, ESI†). EDX spectra show no other elements than Al, P, O, N and 

confirmed the composition of AlH2P6ON11 (Table S9, ESI†). In addition, electron energy-loss 

spectroscopy (EELS) on thin areas of crystallites also corroborates the presence of N as well as O (Fig. 

S10, ESI†). 

 

Fig. 1: SEM image (a) of microcrystals of AlP6O3x(NH)3-3xN9 (x ≈ 0.33) characterized by TEM (300 kV) and 

microfocused X-rays; (b) micro-crystal (marked by white circle) on a TEM finder grid; (c) area irradiated by SAED 

(green circle) and synchrotron radiation (red circle), (d) SAED tilt series with experimental patterns (top) and tilt 

angles (green) as well as simulated patterns and tilt angles (red) based on the refined structure model from X-

ray data (bottom). 

Attempts to determine the crystal structure from X-ray powder data did not yield an unequivocal 

structure model because of poor overall crystallinity, impurities, and reflection overlap of known (AlN 

and β-HPN2)32 and further unknown byproducts.  
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However, after the structure had been elucidated (see below), Rietveld refinements confirmed that 

AlP6O3x(NH)3-3xN9 is the main phase with a fraction of more than 90% (see Paragraph S5 Fig. S11 and 

Table S12, ESI†). High-temperature powder diffraction showed that AlP6O3x(NH)3-xN9 is stable up to 

980 °C and decomposes into unidentified products at higher temperature (Fig. S13, ESI†). 

The infrared spectrum (see paragraph S6 and Fig. S14, ESI†) shows strong absorption bands below 

1500 cm-1 characteristic for imidonitridophosphate networks.33,34 The intense band at 434 cm-1 

corresponds to  l―N bending vibrations, which is in good agreement with literature data for  l 

octahedrally coordinated by six N.23 Additional significant absorption bands between 2600 - 3250 cm-

1 can be attributed to N―H valence modes, that indicate presence of H in AlP6O3x(NH)3-3xN9.14,35 

Further evidence for the presence of hydrogen in the structure comes from solid-state NMR 

spectroscopy (see paragraph S7, ESI†). The 1H NMR spectrum (Fig. 2b) shows several components 

that are not completely resolved at 50 kHz MAS rate. The majority component at 7.2 ppm is most 

likely associated with NH4
+ ions that may originate from the mineralizer NH4Cl.14,36 The additional 

resonance at approximately 5 ppm probably originates from hydrogen in AlP6O3x(NH)3-3xN9. More 

detailed information can be extracted from the 31P NMR spectra shown in Fig. 2c. The chemical shifts 

of the two 31P (I=1/2) resonance lines at 14.8 and -19.4 ppm are very similar to those observed in 

CaH4P6N12.14 The number of 31P resonances corroborates the pair-wise similarity of the four P atom 

sites in the structure model. The intensities of the two lines correspond to the multiplicities of the 

Wyckoff positions 4f and 2e. Part of the resonance at -19.4 ppm may, however, be due to the 

presence of β-HPN2, as indicated by the superimposed spectrum in Fig. 2c (blue). In order to confirm 

the proximity of H to the P atoms in AlP6O3x(NH)3-3xN9, magnetization was transferred from 1H to 31P 

in a cross-polarization (CP) experiment. As can be seen from Fig. 2c, both resonances are still present 

in the CP spectrum, which clearly shows the existence of hydrogen in the crystal structure. The 

resonance line of the central transition in the 27Al (spin I=5/2) NMR spectrum (Fig. 2a) is broadened 

by quadrupolar interaction and centered around -7.7 ppm. Shifts in this range are typical for Al 

octahedrally coordinated by N,37 which again is consistent with the structure model. Thus, in addition 

to rocksalt-type AlN,23 this compound is one of the rare examples where Al may actually be observed 

in such coordination in solid-state compounds. 
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Fig. 2: Solid-state NMR spectra of AlP6O3x(NH)3-3xN9 with x ≈ 0.33 at 50 kHz MAS: (a) 27Al, (b) 1H and (c) 31P-{1H}-

cross-polarization spectrum (green line) superimposed with single-pulse excitation spectrum (black line) and 

the spectrum of β-HPN2 (single-pulse excitation, blue line). 

The synchrotron X-ray dataset (see paragraph S4, ESI†) of the pre-characterized crystal yielded a 

monoclinic crystal structure in space group P21/m with lattice parameters a = 4.7566(2), 

b = 8.3266(3), c = 10.6298(7) Å and β = 101.601(4)°. Minor deviations from the lattice parameters 

from X-ray powder data (S3, Table S17, ESI†) may originate from chemical inhomogeneity of 

AlP6O3x(NH)3-3xN9 with various values of x. All atoms except H were refined anisotropically, resulting 

in final residuals R1(obs) = 0.0285 and wR2(all) = 0.0735. The crystallographic data are summarized in 

the Supporting Information (Tables S15 - S17, ESI†). Further details on the structure analysis can be 

obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany 

(fax: +49-7247-808-666; e-Mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-

431557. 
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Fig. 3: Crystal structure of AlP6O3x(NH)3-3xN9 with x ≈ 0.33, view approximately along [100], AlN6 octahedra (violet), 

differently orientated P(N/N,O)4 tetrahedra (gray and black, blue and light blue) and H atoms in gray. 

The crystal structure of AlP6O3x(NH)3-3xN9 (Fig. 3) is characterized by a stacking of imidooxonitrido-

phosphate building blocks that extend parallel to (001). These are built up from all-side vertex-

sharing Q4-type P(N/O)4 tetrahedra and interconnected by slightly distorted AlN6 octahedra (Fig. 4 

left, there is only one Wyckoff site for Al) with a shorter axial Al-N bonds (2.033(2) - 2.047(2) Å) and 

longer equatorial Al-N bonds (2.105(2) - 2.107(2) Å). These are in good agreement with Al atoms 

coordinated by six N atoms in solids like Al[CN]3 20 or NaCl-type AlN.23 The driving force for the 

formation of unusual octahedrally coordinated Al atoms is most likely the high pressure applied 

during synthesis.38 P-N bond lengths (Table S18, ESI†; 1.603(3) - 1.659(2) Å) correspond to typical 

bond lengths in (oxo)nitridophosphates.39-42 

With regard to Liebau`s nomenclature,43 the tetrahedra in the imidooxonitridophosphate layers form 

sechser rings oriented parallel to (001), which are interconnected by zig-zag chains forming dreier 

rings (Fig. 4, right). Thus, these blocks between the AlN6 octahedra formally correspond to an AB2 

structure formed by interconnected tetrahedra with A corresponding to P and N,NH,O corresponding 

to B. Ignoring Al atoms, the degree of condensation is κ = n(P):n(N/O) = 0.5. However, this 

substructure does not extend into a 3D framework. So far, this was considered typical for compounds 

with sterically demanding cations, e.g. hexagonal BaAl2Si2O8 (hexacelsian), where Ba+2 ions are 

situated between sechser ring double layers of (Al/Si)O4 tetrahedra.44,45 Since Al3+ is rather small 

(53.5 pm),46 ion size is, however, probably not a crucial factor in the present case.  
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Fig. 4: Left: AlN6 octahedra in AlP6O3x(NH)3-3xN9, right: network topology, each line represents a P-N-P bond, zig-

zag chains, dreier and sechser rings, according to nomenclature introduced by Liebau,43 highlighted in black, 

unit cells outlined (both images with viewing direction along ≈[100]). 

Due to similar X-ray scattering factors of O an N, bond valence sum calculations were used to assign 

trivalent N and divalent O or NH positions.47 In conclusion, the anion positions of the sechser rings 

are occupied exclusively by N. Considering possible hydrogen bonds, every second position 

connecting these rings to the tetrahedra chains was assumed to be a NH group, whereas the 

positions within the tetrahedra chains in the middle of the building blocks have a mixed occupancy of 

N and O. This is in accordance with structure refinements based on X-ray data. 

AlP6O3x(NH)3-3xN9 is structurally related to the imidonitridophosphate CaH4P6N12, which crystallizes in 

space group Cmce. Both structures exhibit the same point symbol14,48 {3.65} because of an equal 

number of dreier and sechser rings and an equal linking in their networks. However, the network 

topologies are different, as are the unit-cell dimensions and space groups. The crystal structures of 

CaH4P6N12 and AlP6O3x(NH)3-3xN9 contain different arrangements of similar (yet not identical) 

structure motifs of six P(N,O)4 tetrahedra as represented in Fig. 5a and Fig. 5b. Although both motifs 

exhibit the point symmetry m and the structures look quite similar at first glance, direct structural 

(e.g. group-subgroup) relations between the two compounds are not present due to differently 

orientated tetrahedra. The sechser ring layers in AlP6O3x(NH)3-3xN9 (Fig. 5c and Fig. 5d, blue 

tetrahedra) and the interconnecting zig-zag tetrahedra chains (gray and black tetrahedra in Fig. 5c 

and Fig. 5d) within a building block of imidooxonitridophosphate layers between the Al3+ ions point in 

opposite directions (orientations represented by color variations in Fig. 5). This is different from the 

mutual orientation of the imidonitridophosphate layers and the zig-zag chains in CaH4P6N12 (Fig. 5c), 

where both features point in the same direction within a building block between the Ca2+ ions.14  
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Fig. 5: Structure motifs of six tetrahedra of orthorhombic CaH4P6N12 (a) and monoclinic AlP6O3x(NH)3-3xN9 with 

x ≈ 0.33 (b) present in the two different crystal structures (c and d); differently oriented tetrahedra chains (gray 

and black) and differently orientated tetrahedra in layers (blue and light blue) highlighted. 

The orientation of the entire building blocks in CaH4P6N12 alternate along [001], whereas the zig-zag 

chains (along [010]) between the sechser ring layers alternate within each building block in 

AlP6O3x(NH)3-3xN9. The main similarity between both structures is the presence of imido(oxo)nitrido-

phosphate building blocks with the same number of various ring sizes between the layers of 

octahedrally coordinated metal ions. 

3.4.3 Conclusion 

In conclusion, high-temperature and high-pressure conditions during synthesis appear to be essential 

in order to realize AlN6 octahedra in stable compounds. Compared to rock salt type AlN,23 in this 

work less extreme conditions were sufficient to obtain AlN6 octahedra in a imidooxonitridophosphate 

network. With simultaneous presence of Al and P in one phase the light metal prefers octahedral 

coordination in contrast to P, which is tetrahedrally coordinated by N. Similarities and differences 

between the structures of AlP6O3x(NH)3-3xN9 and CaH4P6N12, respectively, become obvious by focusing 

on slightly different structure motifs. Both networks are built up from related structural motifs in 

different arrangements, pointing to possible rigid structures of imido(oxo)nitridophosphates. The 

characterization of AlP6O3x(NH)3-3xN9 bridges the gap between imidonitridophosphates and 

oxonitridophosphates and can initiate a discussion about additional properties like high thermal 

stability, hardness, luminescence or optoelectronic properties and their structural requirements. 
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3.4.5 Supporting Information 

 

S1: Crystal structure of cubic Na3AlP3O9N, P(O,N)4 tetrahedra in gray and AlO6octahedrahighlighted in violet.1,2 

S2: Synthesis of AlP6O3x(NH)3-3xN9(x ≈ 0.33)  

Al powder (7.3 mg, 0.27 mmol, Grüssing, 99.99% metal content), amorphous HPN2 (97.2 mg, 1.62 

mmol, synthesized according to Lücke, ref. 3), HgCl2 (0.7 mg, 1 mol% in relation to Al; as activator, i.e. 

for the amalgamation of Al) and NH4Cl (1.0 mg, 1 mol% in relation to Al; as mineralizer) were ground 

in a ball mill (Specamill GS06000 with agate capsule and agate balls, Specac) with 2 balls (3x 3min). 

Oxygen impurities in starting materials could not be excluded completely. The mixture was tightly 

packed in a crucible of hexagonal boron nitride (Henze, Kempten) and closed with a cap of the same 

material. The reaction was carried out in a Walker-type multianvil assembly as described in ref. 4 and 

5.The material was compressed to 5 GPa at room temperature and then heated to 1100 °C in 30 

minutes. This temperature was held for 60 minutes and then cooled down in 120 minutes. After slow 

decompression (12 h),AlP6O3x(NH)3-3xN9(x ≈ 0.33)was obtained as a microcrystalline gray powder, 

stable against air and moisture.  

S3: Electron Microscopy 

Scanning electron microscopy (SEM) was done with a Jeol JSM 6500F (Jeol, Germany) equipped with 

energy dispersive X-ray (EDX) detector (model 7418, Oxford Instruments, Great Britain). The sample 

was fixed on electrically conductive tabs (G3347, Plano GmbH, Germany). For transmission electron 

microscopy (TEM), microcrystals of AlP6O3x(NH)3-3xN9were ground in absolute ethanol and drop-cast 

on copper finder grids with a continuous carbon film (S160NH2, Plano GmbH, Germany) before 

transferring them into the TEM on a double-tilt holder. A Jeol 2010 (Jeol, Germany) with a LaB6 

emitter operated at 200 kV acceleration voltage combined with a TEM Cam F216 camera (TVIPS, 

Germany, resolution 2k x 2k) and an EDAX Apollo XLT EDX detector (EDAX, Germany) was used for 
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preliminary studies. In addition, a Titan 80-300 (FEI, USA) with a field emitter operated at 300 kV or 

120 kV acceleration voltage combined with an UltraScan 1000 Camera (Gatan, USA, resolution 2k x 

2k) and a TEM TOPS 30 EDX spectrometer (Gatan, Germany) was used. Electron energy loss 

spectroscopy (EELS) was done on the Titan 80-300 in STEM mode at 300 kV acceleration voltage with 

a post-column filter (GIF Tridiem 893, Gatan, Germany). For EELS measurements, the sample was 

plasma-cleaned for 20 s. The product is moderately electron-beam sensitive at acceleration voltages 

of 120-300 kV. For the evaluation of the TEM data, the following software was used: Digital 

Micrograph (EELS spectra), ProcessDiffraction7 (geometric calculations for selected area electron 

diffraction, SAED) and JEMS (SAED simulations), ES Vision and EDAX TEAM (EDX spectra).6-10 

S4: Synchrotron Measurements and Crystal Structure Analysis 

All single-crystal experiments were done at beamlineID11 of the ESRF (Grenoble, France) at a 

wavelength of 0.3351 Å (Si(111) double-crystal monochromator). The TEM grid containing the 

precharacterized microcrystals was fixed on a glass fiber on a goniometer head. The alignment of the 

crystal in the focused X-ray beam (ca. 4 x 6 μm) was done by an optical telescope, followed by more 

accurate centering via collecting single diffraction patterns while slightly shifting the sample. The 

data was recorded using a Frelon2k CCD detector and indexed as well as integrated with Crysalis.11 

Parasitic scattering from Cu TEM grid was discarded. Further correction of the incident-angle-

dependent detector absorption12 and scaling as well as semi-empirical absorption correction was 

done.13 Further details on the structure analysis can be obtained from the Fachinformationszentrum 

Karlsruhe,76344 Eggenstein-Leopoldshafen, Germany (fax: +49-7247-808-666; e-Mail: crysdata@fiz-

karlsruhe.de) on quoting the depository number CSD-431557.  

S5: Powder X-Ray Diffraction 

Powder diffraction patterns(samples filled in 0.3 mm in diameter glass capillaries under Ar; for 

temperature dependant measurements quartz glass capillaries of 0.3 mm in diameter were used) 

were collected at room temperature with a StoeStadiP (Cu Kα1 radiation, modified Debye-Scherrer 

geometry, Ge(111) monochromator) and a Mythen 1K silicon stripe detector. Temperature 

dependant powder diffraction patterns were collected with a StoeStadiP (Mo Kα1 radiation, modified 

Debye-Scherrer geometry, Ge(111) monochromator) and a Mythen 1K silicon stripe detector in 20 K 

steps to a maximum of 1000 °C. Data were collected at constant temperature. Rietveld refinements 

were done with TopasAcademic14 employing the fundamental parameters approach13,15 and using 

spherical harmonics of fourth order for modeling preferred orientation.16 
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S6: FTIR spectroscopy 

The FTIR spectra of AlP6O3x(NH)3-3xN9 (x ≈ 0.33) were recorded with a Perkin-Elmer Spectrum BX II 

spectrometer using KBr pellets. The FTIR spectrum shows weak and broad absorption bands in the 

range from 3250 - 2600 cm-1 corresponding to N-H valence modes. The strong absorption bands 

between 1500 and 800 cm-1 are characteristic for (imidooxo)nitridophosphate networks.17-20 

S7: Solid-state nuclear magnetic resonance (NMR) spectroscopy 

Solid-state NMR spectra were acquired on a BrukerAvance-III spectrometer with an 11.7 T magnet, 

operating at a 1H frequency of 500.25 MHz, using a commercial 1.3 mm double-resonance MAS 

probe. For all measurements, the 1H resonance of 1% Si(CH3)4 in CDCl3 was used as an external 

secondary reference. 

 

S8: SAED patterns (300 kV) from different crystallites (left, including directly measured unit cell parameters) 

compared to reciprocal lattice sections reconstructed from single crystal X-ray diffraction data (right). 

The comparison between reciprocal lattice sections reconstructed from single-crystal X-ray 

diffraction data and SAED patterns in accordance to the monoclinic metrics. Neither in SAED patterns 

(S10, left) nor in the reciprocal lattice sections (S10, right) there is additional intensity between 
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reflections along [001]. This would be expected for an enlargement of the unit cell regarding the 

related compounds MH4P6N12 with M = Ca, Mg.  

S9: TEM EDX measurements (300 kV) of AlP6O3x(NH)3-3xN9 in atom% (standard deviation). 

 Al (K) P (K) N (K) O (K) 

K1 5.7 29.2 60.2 4.8 

K2 6.0 32.8 58.3 2.9 

K3 6.5 34.6 56.2 2.7 

K4 5.6 30.7 56.9 6.8 

K5 5.4 34.1 57.9 2.5 

K6 6.4 34.7 56.6 2.3 

K7 6.2 33.0 53.7 7.2 

K8 6.0 35.2 52.5 5.7 

K9 6.2 34.6 53.0 6.2 

mean value  6.1(4) 33.2(20) 56.1(26) 4.6(20) 

ideal value 5.3 31.6 57.9 5.3 

 

 

S10: EELS spectrum (300 kV) of AlP6O3x(NH)3-3xN9, black lines represent positions of N-K and O-K edges.  

The EELS spectrum shows the N-K edge at 401 eV energy loss as well as the O-K edge at 532 eV 

energy loss. The ratio of N:O based on EELS measurements is with 9:1 close to the ratio of 11:1 for 

AlP6O3x(NH)3-3xN9.  
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S11: Rietveld refinement of AlP6O3x(NH)3-3xN9, observed (thick black line) and calculated (thin light gray line) 

powder diffraction patternsas well as difference plot (dark gray line) and positions of Bragg reflections (black: 

AlP6O3x(NH)3-3xN9, light gray: β-HPN2, dark grey: AlN). 

Additional unexplained reflections (red arrows in Fig. S11) belong to an unknown side phase. The 

structure determination of that side phase was not possible because no matching crystals for the 

combination of TEM and microfocused synchrotron diffraction could be found. The lattice 

parameters of AlP6O3x(NH)3-3xN9obtained by the Rietveld refinement show a small deviation (volume 

difference of 0.9 %) from those obtained by single-crystal measurements. This is probably caused by 

chemical variations in AlP6O3x(NH)3-3xN9, represented by x.  
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S12: Crystallographic data of Rietveld refinement of AlP6O3x(NH)3-3xN9 with x ≈ 0.33 and with standard deviation 

in parentheses. 

 AlH2P6ON11 beta-HPN2 AlN 

molar weight (in g/mol) 384.892 33.116 40.988 

space group (no.) P21/m (11) I42d  (122) Fm3m (225) 

unit cell parameters  

(in Å / °) 

a = 4.7416(2) 

b = 8.3250(3) 

c = 10.623(6) 

β = 102.88(1) 

a = 4.749(5) 

c = 6.55(1) 

a = 3.9373(4) 

cell volume (in Å3) 408.79(4) 147.9(4) 61.03(2) 

x-ray density (in g/cm3) 3.1271(3) 2.694(7) 4.461(1) 

absorption μ (in mm-1) 13.611(1) 11.48(3) 15.748(5) 

number of reflections 277 17 3 

spherical harmonics 4 0 0 

RBragg 0.0348  0.0391 0.0667 

independent parameters 53 

background parameters 18 

Rp / Rwp 0.0601 / 0.0797 

GooF 1.570 

 

 

 

S13: Temperature-dependant X-ray powder diffraction pattern of AlP6O3x(NH)3-3xN9. 
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S14: FTIR spectrum of AlP6O3x(NH)3-3xN9. 

 
 
S15: Crystallographic data and details of the structure refinement of AlP6O3x(NH)3-3xN9with x ≈ 0.33 and with 

standard deviation in parentheses. 

formula  AlP6O(NH)2N9 

molar weight (in g/mol) 384.892 

crystal system / space group (no.) monoclinic / P21/m (no. 11) 

lattice parameters (in Å, °) a = 4.7566(2), b = 8.3266(3), c = 10.6298(7),  

 β = 101.601(4) 

cell volume (in Å3) 412.41(4) 

density (in g·cm-3) 3.100 

formula units per unit cell 2 

F(000) 380 

θ range (in °) 2.061 ≤ θ ≤ 13.846 

wavelength (in Å) 0.3351 

total no. of reflections / independent reflections 1285 / 1103 

refined parameters / restraints 105 / 0 

R-values(all data) R1 = 0.0351, wR2 = 0.0735 

R-values (F2 > 2σ(F2)) R1 = 0.0285, wR2 = 0.0702 

goodness of fit 1.046 

absorption coefficient (in mm-1) 0.196 

weight w = 1/ [σ2(F0
2) + (0.0205P)2+0.1217P]* 

Δρmax, Δρmin (in e Å-3) +0.63, -0.51 

* P = [2Fc
2 +Max(F0

2,0)]/3 



3.4 An unusual nitride network of aluminum-centered octahedra and phosphorus-centered tetrahedra and 
structure determination from microcrystalline samples 

149 

S16: Atom coordinates and equivalent isotropic displacement parameters (in Å2) of AlP6O3x(NH)3-3xN9 with 

standard deviation in parentheses. 
 

atom Wyckoff 

site 
x y z Ueq s. o. f.  

P1 4f 0.16554(8) 0.08551(4) 0.32927(5) 0.00890(12) 1 

P2 4f 0.33412(8) 0.08486(4) 0.67156(5) 0.00893(12) 1 

P3 2e 0.10774(12) 1/4 0.08409(7) 0.01196(14) 1 

P4 2e 0.53473(12) 1/4 0.91759(7) 0.01218(15) 1 

Al5 2e 0.75102(12) 1/4 0.50031(7) 0.00978(16) 1 

N1/O1 2e 0.4273(4) 1/4 0.0511(2) 0.0218(5) 0.48(3)/0.52(3) 

N2/O2 2e 0.8816(4) 1/4 0.9501(2) 0.0225(5) 0.52(3)/0.48(3) 

N3 4f 0.0177(3) 0.57434(15) 0.37888(16) 0.0098(3) 1 

N4 4f 0.5186(3) 0.07479(15) 0.37899(16) 0.0100(3) 1 

N5 4f 0.0718(3) 0.09399(16) 0.17310(17) 0.0119(3) 1 

N6 4f 0.5837(3) 0.59393(16) 0.17146(17) 0.0126(3) 1 

N7 2e 0.0518(4) 1/4 0.3889(2) 0.0093(3) 1 

N8 2e 0.4556(4) 1/4 0.6163(2) 0.0094(4) 1 

H5 4f 0.02(2) 0.029(15) 0.129(15) 0.11(3)* 0.5 

H6 4f 0.60(2) 0.517(17) 0.126(14) 0.11(3)* 0.5 

* For both H atoms the same displacement parameter was used. 

 

S17: Anisotropic displacement parameters (in Å2) of AlP6O3x(NH)3-3xN9 with standard deviation in parentheses. 

Atom U11 U22 U33 U12 U13 U23 

P1 0.00643(18) 0.00652(19) 0.0141(3) -0.00008(13) 0.00287(14) -0.00016(11) 

P2 0.00664(19) 0.00627(19) 0.0142(3) 0.00001(13) 0.00288(14) -0.00004(11) 

P3 0.0097(2) 0.0133(3) 0.0132(3) 0 0.00299(19) 0 

P4 0.0102(2) 0.0123(3) 0.0139(3) 0 0.0021(2) 0 

AL5 0.0083(3) 0.0089(3) 0.0128(4) 0 0.0036(3) 0 

N1/O1 0.0118(8) 0.0343(12) 0.0200(13) 0 0.0049(7) 0 

N2/O2 0.0125(8) 0.0361(12) 0.0189(13) 0 0.0031(7) 0 

N3 0.0071(5) 0.0079(5) 0.0146(8) -0.0011(5) 0.0023(5) 0.0002(4) 

N4 0.0072(5) 0.0075(5) 0.0152(8) -0.0010(5) 0.0023(5) 0.0003(4) 

N5 0.0122(6) 0.0098(6) 0.0137(8) -0.0002(5) 0.0026(5) -0.0010(4) 

N6 0.0149(6) 0.0103(6) 0.0122(8) 0.0000(5) 0.0016(5) 0.0020(5) 

N7 0.0078(7) 0.0069(7) 0.0137(11) 0 0.0036(6) 0 

N8 0.0080(7) 0.0071(7) 0.0134(11) 0 0.0033(6) 0 
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S18:Bond lengths in AlP6O3x(NH)3-3xN9 with standard deviation in parentheses.  

bond length (in Å) bond  length (in Å) 

P1-N3 1.6413(14) P3-N5 1.6361(15) 

P1-N4 1.6585(15) P4-N1/O1 1.6022(24) 

P1-N5 1.6315(18) P4-N2/O2 1.6164(21) 

P1-N7 1.6454(11) P4-N6 1.6394(16) 

P2-N3 1.6535(15) Al5-N3 2.1050(15) 

P2-N4 1.6426(14) Al5-N4 2.1071(15) 

P2-N6 1.6373(18) Al5-N7 2.0329(20) 

P2-N8 1.6453(11) Al5-N8 2.0470(20) 

P3-N1/O1 1.6273(19) N5-H5 0.73(14) 

P3-N2/O2 1.6030(25) N6-H6 0.81(15) 

 

Taking only X-ray data into account, the assignment of light-atom sites in AlP6O3x(NH)3-3xN9is not 

unequivocal. Miscellaneous refinements with small differences in the occupancy of the light atoms 

yielded various models of the occupancy of H, N and O sites in the zig-zag tetrahedra chains but 

showed not significant differences in their figures of merit (R-values, GooF, interatomic distances, 

residual electron density). H positions are assigned to residual electron density and NMR 

investigations, N-H bond lengths refined. Bond-valence sum calculations21 were considered and the 

final model yielded suitable values for all cations (difference of P5+ and Al3+< 7%) and helped with the 

assignment of N vs. O/NH on the anion sites. The result is that Al is surrounded only by N atoms (N3, 

N4, N7, N8; difference < 5%).Both N-H groups and N/O mixed occupied sites are located in the zig-zag 

chains because the N1/N2 BVS values for only N on this sites were too small (up to 11%) and the 

corresponding O1/O2 values for only O were too high (up to 24%).In the final refinement, the 

compositely occupied positions N1/O1 and N2/O2 showed the same ratio of O and N. 
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4 Structure-property relations of tin and indium containing tellurides 

4.1 Overview  

Tellurides are an important class of materials because of their high suitability for daily applications. 

Since tellurides have been discovered as phase change materials, as possible superconductors and as 

thermoelectrics, they became integral parts in modern materials science.1-5 The change between 

crystalline and amorphous state of Ge2Sb2Te5 and related materials encodes the binary code for 

optical storage (e.g. DVD-RW, blue ray) or phase change random access memory.6-8 With respect to 

energy materials, layered iron-containing selenides and tellurides are discussed as 2D 

superconductors.9-11 Moreover, germanium antimony tellurides (GST materials) play a promising role 

as thermoelectric coolers and thermoelectric generators based on Peltier and Seebeck effects, 

respectively.12 The major advantage of thermoelectric power generators without moving parts is 

their reliability. Thermoelectric generators consist of couples of p- and n-doped semiconductors and 

with applied temperature gradient, heat is converted directly into electrical power (see Fig. 1).13-15 

The efficiency of this process is determined by the dimensionless figure of merit ZT = S2σT/ κ, where S 

is the Seebeck coefficient (in µV/K), T the absolute temperature (in K), σ the electrical conductivity (in 

Ω-1m-1) and κ the total thermal conductivity (in WK-1m-1). The latter is the sum of the electronic (κe; 

heat transferred through electrons and holes) and phononic part (κph; heat transferred through 

lattice vibrations). κe is associated to σ by the Wiedemann-Franz law. The thermal conductivity 

depends inter alia on the real structure.16 The thermal diffusivity and thus κph are influenced by the 

concentration and distribution of defects. The industry requests, with reference to commercially 

competitive power generators, ZT values of about four with a Carnot efficiency of ~ 30%.17 Those, 

however, have not been reached yet, but thermoelectric generators still play an important role in the 

utilization of wasted heat.  

 

Fig. 1. A schematic of p- and n-type thermocouple (left) and some typical applications for generating electrical 

power with thermoelectric devices using wasted heat (right, highlighted in red). 
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In order to optimize the thermoelectric properties in a targeted manner, different approaches are 

possible. For reasons of manageable diversity of thermoelectric materials, the focus within this thesis 

is on tellurides, especially on substitution variants of GST materials. The Seebeck effect as material 

parameter is directly linked to the chemical composition, which can be changed by substitution of 

Ge, Sb or Te by various elements like Bi, Cd, In, Sn, Se. Furthermore, the ratios of the elements to 

each other can be adjusted, e.g. with the GeTe content.18 Substitution of Ge2+ by Ag+ can modify the 

vacancy concentration, which is correlated to real-structure effects. Local mass fluctuations or 

nanostructuring, like nanoprecipitates in a matrix with a different composition, yield enhanced ZT 

values significantly larger than one.19,20 The concept of phonon-glass electron-crystal implies 

materials with crystal structures that allow efficient transmission of charge carriers while largely 

blocking the flow of heat by the lattice, as it is the case of glasses. As this concept arose, it changed 

the way of thinking about thermoelectric materials and enhanced ZT values were conceptually 

available.21-23 Various thermal treatments (e.g. temper temperatures, heating and cooling rates) offer 

further possibilities for nanostructuring.24,25 In dependence of thermal treatment GST materials can 

be obtained in an amorphous phase, cubic high-temperature phase, stable trigonal phase and 

metastable pseudocubic phase. Substitutions mentioned above being able to shift the existence 

ranges of the modifications. The high-temperature phase crystallizes in the rocksalt type with Te2- on 

the anion position and cation positions occupied with Sb3+, Ge2+ and substituting elements and 

vacancies, respectively. Quenching the cubic high-temperature phase leads to a metastable pseudo-

cubic modification with short-range ordered and defect layers, all of which being oriented orthogonal 

to the “cubic” <111>. This phase can be described as an intermediate state between the cubic HT 

phase and the trigonal phase. Annealing below the stability range of the cubic high-temperature 

phase, results in the formation of thermodynamically stable layered structures similar to the 

tetradymite or GeTe type. Instead of locally ordered defect planes, van der Waals gaps are formed in 

the fcc-anion arrangement, which separate resulting blocks with a distorted rocksalt structure. The 

thickness of the individual building blocks is determined by the GeTe content.26-28 Structure models 

of the different tellurides can be based on powder X-ray diffraction combined with TEM and in ideal 

cases single crystal X-ray diffraction, when single crystals can be obtained from chemical transport. If 

elements with similar Z are present in one phase, diffraction experiments using anomalous 

dispersion are needed to refine the corresponding occupancy factors. From the methodical point of 

view, the detection of real-structure phenomena in tellurides is frequently done with TEM using 

electron diffraction, HRTEM and STEM.29-31 TEM can record chemical and structural changes at scales 

below the coherence lengths of X-rays, making it the method of choice.  
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Abstract 

Indium-doped tin tellurides are promising and thoroughly investigated thermoelectric materials. Due 

to the low solubility of In2Te3 in SnTe and vice versa, samples with the nominal composition 

(SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.75 consist of a defect-rocksalt-type Sn-rich and a defect-

sphalerite-type In-rich phase which are endotaxially intergrown and form nanoscale hetero-

structures. Such nanostructures are kinetically inert and become more pronounced with increasing 

overall In content. The vacancies often show short-range ordering. These phenomena are 

investigated by temperature-dependent X-ray diffraction and HRTEM as well as STEM with element 

mapping by X-ray spectroscopy. The combination of real-structure effects leads to very low lattice 

thermal conductivity from room temperature up to 500 °C. Thermoelectric figures of merit ZT of 

heterostructured materials with x = 0.136 reach ZT values up to 0.55 at 400 °C. 

4.2.1 Introduction 

Concerning sustainable power generation, research for optimized thermoelectric materials plays an 

important role in materials science.1 Such materials can reversibly interconvert thermal and electrical 

energy. The efficiency of this energy conversion is quantified by the dimensionless figure of merit ZT 

= S2σT/(κph κe), where S is the Seebeck coefficient, σ the electrical conductivity, T the temperature 

and κph and κe the phononic and the electronic thermal conductivities, respectively. The latter two 

are coupled by the Wiedemann-Franz law and cannot be individually optimized in typical 

semiconductors. The same applies for S and σ which are both coupled to the charge-carrier 

concentration and effective mass. High Seebeck coefficients are found for semiconductors or 

insulators with low carrier concentrations whereas electrical conductivity is high for metals with high 

charge-carrier concentrations and mobilities.2 Enhanced thermoelectric properties at certain 

temperatures would involve an improvement of S and σ with a simultaneous and more or less 

independent reduction of κph. One promising approach combines chemical and structural variations, 

e.g. partial cation ordering, differently pronounced superstructures or partial long-periodic order as 

well as heterostructuring.3–6  

https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib1
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib2
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib3
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Vacancies and disorder often increase phonon scattering and lower κph.7,8 Concerning doping and 

substitution, the associated change of the electronic structure, of course, also influence the 

thermoelectric properties.9,10  

Tellurides are prominent thermoelectric materials due to their broad structural variety, their suitable 

electronic properties and various ways of nanostructuring.11,12 For example, structure-property 

relations of prominent tellurides like PbTe, Bi2Te3, (GeTe)x(AgSbTe2)100−x (TAGS materials) or phases of 

the system Ge/Sb/Te (GST materials) and their substitution variants were investigated extensively.13–

17 There are only few studies about thermoelectric properties of indium tellurides. Tetragonal InTe, 

better written as In+In3+Te2, shows very low thermal conductivity (ca. 0.4 Wm−1K−1 at ≈ 330 °C).18 

Electronic structure calculations for β-In2Te3 by discrete variational X-alpha cluster models based on 

LCAO and HFS approximations suggest that this defect sphalerite structure is a good thermoelectric 

material.19 Material optimization of In2Te3 was done, for instance, by combination with other 

thermoelectric materials like GeTe, Bi2Te3, InSb and Al-doped In/Sn/Te alloys. Heterostructuring can 

play a crucial role concerning enhanced thermoelectric properties.20–24 

In contrast, SnTe with rocksalt-type structure has limited thermoelectric efficiency. This is due to its 

rather low Seebeck coefficient (maximum S of 150 μV/K at 600 °C) and relatively high thermal 

conductivity (9 − 3 W/mK between  5 − 500 °C). For the enhancement of thermoelectric properties 

at ambient pressure, recent work focuses on various p- and n-doping experiments with Bi, Sb, Mg, 

Ca, Sr, Mn, Fe, Cd, Hg.25–31 Sb doping leads to vacancies, possibly involving layer-like short-range 

order.32 In-doped variants reach figures of merit up to ZT = 0.9 at 900 K for Sn0.96In0.027Te, which can 

be further increased to ZT = 1.1 by adding iodine (Sn0.954In0.027I0.06Te).33 At the solubility limit of 

6 mol% In2Te3 in SnTe, the vacancy concentration on the cation position amounts to 3.3 at%. The 

influence of larger amounts of SnTe in In2Te3 is so far unexplored. Yet, it is intriguing as SnTe and 

In2Te3 are stable over a broad temperature range. They crystallize in cubic structures with differently 

filled voids owing to the different ionic radii and valence electron concentrations.34 SnTe is a rocksalt-

type phase whereas In2Te3 adopts a defect-sphalerite type, which can be disordered or form 

superstructures.35 Due to similar lattice parameters (SnTe 36: 6.300 Å, In2Te3 37: 6.170 Å) and the same 

basic fcc arrangement of Te atoms, endotaxial heterostructures of both structures in indium tin 

tellurides promise improved thermoelectric properties, at least in certain temperature ranges. Here 

we report on real-structure effects and the associated thermoelectric properties of such systems, 

taking into account two different cooling rates of samples. 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib9
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib11
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib13
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib13
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib18
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib19
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib20
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib25
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib32
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib33
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib34
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib35
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib37
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4.2.2 Experimental Section 

Synthesis 

Samples of (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.75 were prepared by fusing stoichiometric mixtures 

of the elements (tin 99.999%, Inconex Kft. Fémipari, Budapest; indium 99.999%, Smart Elements; 

tellurium, 99.999%, Sigma Aldrich) in silica glass ampoules under Ar atmosphere at 860 °C for one 

day. Then they were quenched in water and subsequently annealed at 575 °C for up to 4 days, 

followed by slow cooling at air. Further samples were quenched in water after initial fusing. For 

thermoelectric characterization, disk-shaped samples with diameters of up to 20 mm were prepared 

like the slowly cooled ones in flat-bottom silica glass ampoules (but quenched at air after initial 

fusing). The ingots were polished to a thickness of   − 3 mm and cut into appropriate pieces. In order 

to simulate possible structural changes during thermoelectric measurements, pieces of the samples 

with x ≤ 0.3 were heated up to 450 °C under Ar atmosphere for 1 h and then slowly cooled by 

switching off the furnace. All products were obtained as metallic gray ingots.  

 

Analytical methods 

The phase composition was analyzed by powder X-ray diffraction (PXRD). Samples were ground in an 

agate mortar and fixed between Mylar foils with traces of Lithelen vacuum grease. Data were 

recorded with a Guinier camera (G670, Huber, Germany; Cu-Kα1 radiation, λ   1.54051 Å, Ge(111) 

monochromator) equipped with an oscillating sample holder and a fixed image plate detector 

(15 min acquisition time and 15 read-outs). Temperature-programmed PXRD patterns were collected 

in steps of 20 K (30 min acquisition time each) from RT to 750 °C and back to RT (5 K/min rate) on a 

diffractometer with modified Debye-Scherrer geometry (StadiP, Stoe&Cie. GmbH, Germany; Mo-Kα1 

radiation, λ   0.7093 Å, Ge(111) monochromator) equipped with a moving Mythen 1 K silicon stripe 

detector and a graphite furnace. Powdered samples were filled into silica glass capillaries (0.3 mm 

diameter) under Ar atmosphere. Rietveld refinements were carried out with TOPAS-Academic,38 

where reflection profiles were described by a fundamental parameter approach, anisotropic 

microstrain and crystal size effects. Slight preferred orientation was taken into account by 4th order 

spherical harmonics. For all refinements, the same set of parameters was used. Common 

displacement parameters for cations and anions, respectively, were assumed. Site occupancies were 

derived from energy-dispersive X-ray spectroscopy (EDX, see below), taking into account charge 

neutrality, overall composition and phase fractions. They were not refined due to similar X-ray 

scattering factors of In and Sn.  

Chemical compositions were determined by EDX on polished parts of ingots (Dimple Grinder 650, 

Gatan, USA) using a Dualbeam Helios Nanolab G3UC (FEI, USA) scanning electron microscope (SEM) 



4.2 Structural variations in indium tin tellurides and their thermoelectric properties 

158 

with field emission gun (FEG) and X-Max80 SDD EDX-detector (Oxford Instruments, Great Britain) at 

20 kV acceleration voltage.  DX spectra were collected until 5∙105 counts were reached.  

Transmission electron microscopy (TEM) was performed on a Titan Themis 60–300 (FEI, USA, 300 kV 

acceleration voltage) equipped with X-FEG, monochromator, CS probe corrector and windowless 4-

quadrant Super-X EDX detector (acquisition time per spectrum 45 s). Images were recorded using a 

4k×4k Ceta CMOS camera (FEI, USA). Small amounts of the samples were ground in absolute ethanol, 

drop-cast on copper grids with holey carbon film (S166-2, Plano GmbH, Germany) and transferred 

into the microscope on a double-tilt holder. TEM data were evaluated using Digital Micrograph,39 

JEMS40 and ProcessDiffraction741 for indexing and simulation of SAED patterns and ES Vision42 for 

quantifying EDX spectra.  

 

Physical property measurements 

Thermoelectric measurements comprised 3 heating/cooling cycles up to 475 °C (heating/cooling rate 

10 K/min, 3 data points per temperature) under He atmosphere. Seebeck coefficients and electrical 

conductivities were measured by a four-point setup43 from cuboid samples (~6 mm × 2 mm × 

1.5 mm) with a LSR-3 instrument (Linseis, Germany) equipped with NiCr/Ni thermocouples and Ni 

electrodes (measurement current: 100°mA). Thermal diffusivity Dth was measured applying the laser-

flash method with an LFA1000 instrument (Linseis, Germany) equipped with Nd-YAG-Laser (350 V 

and 2 ms pulse) and InSb detector on disk-like samples (diameter 4–10 mm and 1–2 mm thickness) 

with same temperature program as for electrical transport measurements and 5 measurement 

points per temperature step. Simultaneous heat loss and finite pulse corrections were applied using 

Dusza's model.44 Thermal conductivity was calculated according to κ   Cp∙ρ∙Dth using densities ρ 

determined according to  rchimedes’ principle with a precision of 0.03 g/cm3. Heat capacities Cp 

were calculated according to the Dulong-Petit approximation.45 According to experimental values for 

SnTe 46 and In2Te3,47 Cp of these materials is about 10% higher than the Dulong-Petit value of 

0.20 Jg−1 K−1 in the temperature range between RT and 500 °C; this probably adds this uncertainty to 

the values of κ and thus  T, which may be slightly higher and lower, respectively. 

 

 

https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib39
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib40
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib41
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib42
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib43
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib44
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib45
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib46
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib47
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4.2.3 Results and Discussion 

4.2.3.1 Composition and average structure of quenched and slowly cooled phases 

The present investigation focuses on heterogeneous samples (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.3; 

samples with In contents up to x = 0.75 are considered for comparison in order to confirm general 

trends (concerning homogeneous samples with lower In contents see Ref. 33). Quenching samples 

with In2Te3 contents x>0.167 predominantly leads to inhomogeneous mixtures, which are probably 

not in equilibrium; traces of side phases were not elucidated in detail. According to PXRD and EDX, 

homogeneous rocksalt-type products with x = 0.167 and x = 0.136 could be obtained by quenching as 

shown by SEM-EDX and Rietveld refinements (cf. Table S1, Fig. S2 and crystallographic data in Tables 

S3 and S4; S abbreviates Supporting Information). In contrast, annealed ones reported in the 

literature were inhomogeneous showing nanoscale precipitates; thus, samples with x>0.06 can form 

heterostructures.33 For annealed samples with x>0.136, PXRD and EDX show two cubic structures 

with different composition. Corresponding Rietveld fits are shown in Fig. 1 and Fig. S7, 

crystallographic data are given in Tables 1 and 2, S7 and S8 and EDX results are listed in Tables S5 and 

S6. For overall compositions corresponding to SnIn2Te4 (a), Sn2In2Te5 (b), Sn5In2Te8 (c), Sn7In2Te10 (d), 

Sn12In2Te15 (e) and Sn19In2Te22 (f), the formal decomposition can be described by the following 

tentative equations which take into account approximate EDX results (uncertainties due to 

intergrown phases) and phase fractions from Rietveld refinements (biased by compositional 

uncertainties and the similar electron counts of In, Sn and Te); molar phase fractions are given after 

each equation. 

 

a) 4 [(SnTe)0.75(In2Te3)0.75]    3 In0.06Sn0.91Te + 9 In0.647Sn0.03Te   (25% : 75%) 

b) 5 [(SnTe)1.2(In2Te3)0.6]    6 In0.06Sn0.91Te + 9 In0.627Sn0.06Te   (40% : 60%) 

c) 8 [(SnTe)1.875(In2Te3)0.375]   15 In0.06Sn0.91Te + 9 In0.567Sn0.15Te (62% : 38%) 

d) 10 [(SnTe)2.1(In2Te3)0.3]    21 In0.02Sn0.97Te + 9 In0.62Sn0.068Te   (70% : 30%) 

e) 15 [(SnTe)2.4(In2Te3)0.2]    36 In0.02Sn0.97Te + 9 In0.587Sn0.121Te   (80% : 20%) 

f) 22 [(SnTe)2.59(In2Te3)0.136]   57 In0.02Sn0.97Te + 9 In0.54Sn0.19Te   (86% : 14%) 

 

The chemical compositions of the decomposition product correspond to In-doped SnTe in rocksalt 

structure type as main phase and defect-sphalerite-type Sn-doped In2Te3 with partially filled 

vacancies. As expected, the phase fraction of Sn-doped In2Te3 increases with increasing In content.  

 

 

https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib33
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#bib33
https://www.sciencedirect.com/science/article/pii/S0022459617304279#f0005
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#t0005
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
https://www.sciencedirect.com/science/article/pii/S0022459617304279#s0065
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Figure 1. Rietveld fits of samples (annealed at 500 °C) with nominal compositions (SnTe)2.1(In2Te3)0.3 (a), 

(SnTe)2.4(In2Te3)0.2 (b) and (SnTe)2.59(In2Te3)0.136 (c); experimental data (black), calculated pattern (light gray), 

difference plot (dark gray) and calculated reflection positions of different phases (vertical lines, black for 

rocksalt structure type and gray for defect-sphalerite structure type); phase fractions based on Rietveld 

refinement. 
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Table 1. Details of the Rietveld refinements of slowly cooled samples with the nominal compositions 

(SnTe)2.1(In2Te3)0.3 (left) and (SnTe)2.4(In2Te3)0.2 (middle) and (SnTe)2.59(In2Te3)0.136 (right) and its decomposition 

products based on the decomposition reaction equations and EDX. 

nominal composition (SnTe)2.1(In2Te3)0.3 (SnTe)2.4(In2Te3)0.2 (SnTe)2.59(In2Te3)0.136 

phase composition  In0.02Sn0.97Te In0.62Sn0.086Te In0.02Sn0.97Te In0.587Sn0.121Te In0.02Sn0.97Te In0.54Sn0.19Te 

M / g mol
-1

 245.045 208.996 245.045 209.362 245.045 209.245 
space group (no.) Fm3m (225) F43m (216) Fm3m (225) F43m (216) Fm3m (225) F43m (216) 

phase fraction / mol% 77.5(4) 22.5(4) 83.6(6) 16.2(6) 89.1(8) 10.9(8) 
formula per unit cell 4 4 4 4 4 4 
lattice parameter / Å 6.3141(2) 6.1644(3) 6.3071(2) 6.1607(4) 6.3072(2) 6.174(6) 

cell volume / Å
3
 251.72(2) 234.24(4) 250.89(2) 233.82(5) 250.90(2) 235.3(6) 

X-ray density / g cm
-3

 6.4659(6) 5.9735(9) 6.4873(5) 5.954(1) 6.4871(5) 5.99(2) 
µ / mm

-1
 166.59(1) 152.80(2) 167.14(1) 152.43(3) 167.14(1) 153.4(4) 

reflections 13 13 13 13 13 13 
parameters / 

thereof background 
23 / 12 26 / 12 23 / 12 

Rp / Rwp / GooF 0.0187 / 0.0264 / 3.082 0.0249 / 0.0360 / 4.381 0.0241 / 0.0366 / 4.347 
RBragg 0.0156 0.0136 0.0127 0.0070 0.0100 0.0354 

 

Table 2. Atom coordinates, site occupancies and isotropic displacement parameters for nominal compositions 

(SnTe)2.1(In2Te3)0.3 (top), (SnTe)2.4(In2Te3)0.2 (middle) and (SnTe)2.59(In2Te3)0.136 (bottom), based on the 

decomposition reaction equations and EDX. 

phase (structure type) atom 
position 

x y z Wyckoff 
position 

s.o.f. Biso 

In0.02Sn0.97Te (NaCl) In/Sn 
Te 

½ ½ ½ 
0 0 0 

4b 
4a 

0.02/0.97 
1 

0.44(3) 
= B(iso) 
cation 

In0.62Sn0.086Te (sphalerite) In/Sn/□ 
Te 

¼ ¼ ¼ 
0 0 0 

4c 
4a 

0.62/0.086/0.294 
1 

1.5(2) 
= B(iso) 
cation 

In0.02Sn0.97Te (NaCl) In/Sn 
Te 

½ ½ ½ 
0 0 0 

4b 
4a 

0.02/0.97 
1 

0.62(3) 
= B(iso) 
cation 

In0.587Sn0.121Te (sphalerite) In/Sn/□ 
Te 

¼ ¼ ¼ 
0 0 0 

4c 
4a 

0.587/0.121/0.292 
1 

2.7(4) 
= B(iso) 
cation 

In0.02Sn0.97Te (NaCl) In/Sn 
Te 

½ ½ ½ 
0 0 0 

4b 
4a 

0.02/0.97 
1 

1.00(3) 
= B(iso) 
cation 

In0.54Sn0.19Te (sphalerite) In/Sn/□ 
Te 

¼ ¼ ¼ 
0 0 0 

4c 
4a 

0.54/0.19/0.27 
1 

1.8(9) 
= B(iso) 
cation 
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Figure 4. a) Bright-field image (top) of a quenched (SnTe)2.1(In2Te3)0.3 crystal showing two different phases 

(bottom) distinguishable by HRTEM and SAED along [110], different reflection intensities are highlighted with + 

and -; b) HRTEM image of slowly cooled (SnTe)2.1(In2Te3)0.3 along [110] and corresponding Fourier transforms 

(from highlighted square areas) of two intergrown domains. R and S denote rocksalt-type and sphalerite-type 

phases, respectively. 



4.2 Structural variations in indium tin tellurides and their thermoelectric properties 

163 

4.2.3.2 Thermal behavior of quenched phases  

Temperature-dependent PXRD up to 700 °C (Fig. 2) shows structural changes and melting points of 

(SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.3.  dditional data for 0.375 ≤ x ≤ 0.75 show the same trends 

concerning the influence of chemical composition on temperature-dependent changes in a more 

pronounced way (Fig. S10). At low temperatures, the samples contain two phases. At ca. 420–580 °C 

(Table S11, cf. line T1 in Figs. 2 and S10), the reflections of the In-rich sphalerite-type phase vanish. 

Since the melting points of In2Te3 (Tmelt = 667 °C) and SnTe (Tmelt = 790 °C) are relatively high, this 

most likely corresponds to their dissolution in the In-doped SnTe main phase. This dissolution is also 

corroborated by the temperature-dependent change of the lattice parameter of the In-doped SnTe 

main phase (Fig. 3). The lattice parameter of the Sn-rich phases increases with increasing 

temperature up to a plateau between ~300 °C and ~550 °C, where the dissolution of the In-rich 

phase starts. As it introduces up to 10% of vacancies on the cation site, lattice parameters of the 

rocksalt-type phases even decrease slightly upon heating before they increase again above ~600 °C. 

At ca. 700 °C (Table S11), the single crystalline phase melts (cf. line T2 in Figs. 2 and S10).  

4.2.3.3 Influence of the composition on the nanostructure 

In accordance with PXRD, TEM investigations show the decomposition of (SnTe)2.1(In2Te3)0.3 into two 

phases with different In content, independent of the thermal treatment. Fig. 4a depicts different 

areas in a quenched crystal matching either the Sn-rich rocksalt-type phase (EDX: measured 

In0.17Sn0.74Te, calculated In0.02Sn0.97Te) or the In-rich defect-sphalerite-type phase (EDX: measured 

In0.62Sn0.073Te, calculated In0.62Sn0.086Te). The assignment of the phases is obvious from d values that 

differ by ~5% in HRTEM micrographs and SAED patterns and in particular from the different intensity 

distribution of Bragg peaks in SAED and Fourier transforms (Figs. 4 and 5, which also confirms the 

cubic metrics). The In-rich phase shows short-range layer-like defect ordering in planes perpendicular 

to<111>, similar to the situation in disordered Ga2Te3.48,49 Occasionally, the typical superstructures of 

In2Te3 35,50 were also observed (Fig. S12), especially in In-rich precipitates, i.e. less pronounced in 

samples with the composition (SnTe)2.4(In2Te3)0.2. Around the defect layers, the stacking of Te-atom 

layers remains a cubic ABC one as in the NaCl type as long as defects are not long-range ordered. This 

can be directly observed by HRTEM, even in slowly cooled (SnTe)2.4(In2Te3)0.2 (Fig. S13). Sn 

incorporation reduces the number cation vacancies in the defect-sphalerite-type structure. 
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Figure 3. Temperature dependent behavior of the lattice parameters of rocksalt-type In-doped SnTe, starting 

from heterogeneous samples with an In-rich side phase (see text).  

In contrast, the low In content of the rocksalt-type phase involves vacancy concentrations of ≈ 1 at%. 

HRTEM images of the SnTe-like phase thus show less pronounced defect ordering. At phase 

boundaries (Fig. 4b), the relative orientations of two phases indicate endotaxial intergrowth. This is 

also corroborated by Fig. S14, which indicates the superposition of two cubic diffraction patterns by 

reflection splitting at high angles. Depending on composition and thermal treatment, different 

degrees of defect ordering can be observed (Fig. 5). Heterogeneous phase composition has been 

observed for all slowly cooled samples.33 In contrast to x = 0.3, sphalerite-type precipitates in 

samples with x = 0.136 and 0.2 were only detected after annealing or slow cooling. Thermal 

treatment thus has a stronger influence for compositions closer to the solubility limit of In2Te3 in 

SnTe. Scanning transmission electron microscopy (STEM) and STEM-EDX mapping highlight the In-

rich precipitates (Fig. S15). Their size lies between 5 and 100 nm.  
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Figure 5. HRTEM images of quenched (left) and slowly cooled (right) (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.3 

along the cubic<110>direction with corresponding Fourier transforms and SAED patterns, which show angles of 

90°±0.1° between the directions [110]* and [001]*. The HRTEM images show rocksalt-type (left) and defect-

sphalerite-type areas (right). Different lattice spacings corresponding to d111 and d002 were measured for both 

phases (highlighted in black).  
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4.2.3.4 Thermoelectric properties 

As the high degree of covalent bonding in In2Te3 and variants thereof leads to unfavorable 

thermoelectric properties, only samples of (SnTe)3-3x(In2Te3)x with x ≤ 0.3 were investigated (Fig. 6, cf. 

Fig. S16 for a direct comparison of the averaged properties). With the exception of the first heating 

of quenched samples, subsequent heating and cooling curves do not differ within experimental error. 

Slow cooling enhances the thermoelectric properties of all samples, probably due to the formation or 

coarsening of the precipitates. In subsequent cycles, no irreversible processes were observed. 

Seebeck coefficients S of In-containing samples are significantly enhanced compared to pristine SnTe, 

both for the samples in this study as well as those with lower In content.33 Positive S indicates p-type 

conduction. Band gaps estimated according to the Goldsmid-Sharp relationship 51,52 are smaller than 

0.18 eV for SnTe 53 at 300 K: 0.138 eV for x = 0.3, 0.143 eV for x = 0.2, 0.157 eV for x = 0.136 (Scheme 

S17). The rather high electrical conductivity σ of pristine SnTe decreases with increasing In2Te3 

content, but its temperature dependence becomes less pronounced, the absolute values for 0.136 ≤ 

x ≤ 0.3 are in the range of those for x<0.033,33 but lead to a non-linear behavior (maxima at ≈ 350 °C) 

of S, σ and the power factor as a function of temperature.33 Temperature dependent PXRD (Figs. 2 

and 3) reveals that the discontinuities are that this is due to dissolution of In2Te3. 

Compared to In-doped SnTe with x<0.1, the thermal conductivity κ for x>0.136 lies in the same range 

with values<3.2 Wm−1 K−1 and typically is lower. In doping in SnTe and the associated vacancies 

increase cation mass fluctuations yielding low values for the phononic part κph (<2.0 Wm−1 K−1 at RT), 

possibly enhanced by the segregation of the precipitates. In slowly cooled samples, they are larger 

and thus fewer, leading to increased κph: the minimum κph = 0.6 Wm−1 K−1 of (SnTe)2.88(In2Te3)0.04 33 

contrasts to κph ≈ 0.15 Wm−1 K−1 of (SnTe)2.59(In2Te3)0.136 (both at 475 °C) even though this value bears 

a relatively high systematic uncertainty. 

ZT values of slowly cooled samples are higher than those of quenched ones (different heating curves 

in Fig. 6) since Sn-doped In2Te3 probably does not precipitate completely during quenching. For x = 

0.136, samples with precipitates reach maximal ZT = 0.55 at 400 °C.  
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Figure 6. Thermoelectric properties of (SnTe)3-3x(In2Te3)x with 0.136 ≤ x ≤ 0.3, different triangles represent 

different cycles of measurements: (a) Seebeck coefficient, (b) electrical conductivity, (c) total and (d) lattice 

thermal conductivity, (e) power factor and (f) thermoelectric figure of merit ZT. 
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4.2.4 Conclusion 

In contrast to SnTe doped with low concentrations of In2Te3 (solid solutions with x<0.1), higher 

concentrations may be expected to be comparable germanium-indium or tin-antimony tellurides 

with similar Sn or In concentrations. However, PXRD and TEM revealed the formation In-rich 

precipitates with defect-sphalerite-type structure and pronounced short-range defect ordering or 

long-range ordered superstructures at the highest In concentrations, where the precipitates are close 

to In2Te3 itself. The precipitates are endotaxially intergrown in a Sn-rich rocksalt-type matrix. 

Nanoscale heterostructures are little influenced by heat treatment. Both the heterostructuring as 

well as the defects explain the very low phononic parts of thermal conductivity over the whole 

temperature range. In terms of overall thermoelectric properties, no very high ZT values have been 

reached so far. Still, heterostructured phases containing SnTe and In2Te3 certainly have potential for 

further optimization. Co-doping with Se or  l may be a promising approach to combine the low κ 

with higher S and σ, similar to related studies on SnTe and SnSe.54,55 Heterostructures with In4Se3 56 

may be another option. 
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4.2.6 Supporting Information 

Table S1: TEM-EDX results (in atom%) of quenched (SnTe)3-3x(In2Te3)x with x = 0.136 (Sn19In2Te22) and x = 0.2 

(Sn12In2Te15), based on averaging 5 and 4 measurement points, respectively; calculated values for nominal 

composition are for comparison. 

 (SnTe)2.4(In2Te3)0.2 calc. (SnTe)2.59(In2Te3)0.136 calc. 

In 7(2) 6.9 5.3(2) 4.7 

Sn 39(2) 41.4 40.0(3) 44.2 

Te 54(1) 51.7 54.7(4) 51.2 

 

 

 

Figure S2: Rietveld fits of quenched (SnTe)2.4(In2Te3)0.2 (a) and (SnTe)2.59(In2Te3)0.136 (b):  experimental data 

(black), calculated pattern (light gray), difference plot (dark gray, below), and calculated reflection positions 

(vertical lines, bottom).  
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Table S3: Details of the Rietveld refinements for quenched (SnTe)2.4(In2Te3)0.2 and (SnTe)2.59(In2Te3)0.136. 

nominal composition (SnTe)2.4(In2Te3)0.2 (SnTe)2.59(In2Te3)0.136 

M / g mol-1 238.759 240.024 

space group (no.) Fm3m (225) Fm3m (225) 

formula per unit cell 4 4 

lattice parameter / Å 6.2968(2) 6.2925(2) 

cell volume / Å3 249.66(2) 249.15(2) 

X-ray density / gcm-3 6.3521(5) 6.3989(5) 

µ / in mm-1 163.53(1) 164.77(1) 

reflections 13 13 

parameters / 
thereof background 

23 / 12 14 / 6 

Rp / Rwp  0.0226 / 0.0362 0.0234 / 0.0364 

RBragg 0.0217 0.0082 

 

Table S4: Atomic coordinates, site occupancies and isotropic displacement parameters of quenched 

(SnTe)2.4(In2Te3)0.2 and (SnTe)2.59(In2Te3)0.136. 

 

phase atom 
position 

Wyckoff 
position 

x y z s.o.f. Biso 

(SnTe)2.4(In2Te3)0.2 
(NaCl type) 

In/Sn/□ 
Te 

4b 
4a 

½ ½ ½ 
0 0 0 

0.11/0.83/0.06 
1 

1.02(9) 
0.52(9) 

(SnTe)2.59(In2Te3)0.136 

(NaCl type) 
In/Sn/□ 

Te 
4b 
4a 

½ ½ ½ 
0 0 0 

0.09/0.86/0.05 
1 

1.14(9) 
0.56(8) 

 

Table S5: TEM-EDX results (in atom%) of slowly cooled (SnTe)3-3x(In2Te3)3x with 0.136 ≤ x ≤ 0.3, averaged from 4 

- 6 measurement points each for both the Sn-rich and the In-rich phases; calculated values for nominal 

composition are for comparison. 

 (SnTe)2.1(In2Te3)0.3 (SnTe)2.4(In2Te3)0.2 (SnTe)2.59(In2Te3)0.136 

 Sn rich In rich calc. Sn rich In rich calc. Sn rich In rich calc. 

In 5(1) 34(1) 10.5 5(1) 32(4) 6.9 3.8(8) 7.7(6) 4.7 

Sn 40(1) 7(1) 36.8 40(1) 11(4) 41.4 41(2) 40.2(8) 44.2 

Te 56(1) 58(2) 52.6 54(1) 57(1) 51.7 55(1) 52.2(9) 51.2 

Note that uncertainties may be due to the dimensions of SEM-EDX measurement points that may to some 

extent be averaged measurements of both phases (e.g. nanoprecipitates in matrix with other composition). 
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Table S6: SEM-EDX results (in atom%) of quenched (SnTe)3-3x(In2Te3)3x with 0.375 ≤ x ≤ 0.75, averaged from 5 - 8 

measurement points each for both the Sn-rich and the In-rich phase; calculated values for nominal composition 

are for comparison.  

 (SnTe)0.75(In2Te3)0.75 (SnTe)1.2(In2Te3)0.6 (SnTe)1.875(In2Te3)0.375 

 Sn rich In rich calc. Sn rich In rich calc. Sn rich In rich calc. 

In 20.8(6) 31.1(9) 28.6 21.5(3) 23.3(2) 22.2 6.8(8) 30(6) 13.3 

Sn 24.9(8) 11.0(9) 14.3 23.9(1) 20.7(1) 22.2 43(2) 6(3) 33.3 

Te 54.2(2) 57.9(3) 57.1 54.5(2) 56.0(2) 55.6 50(1) 66(5) 53.3 

Note that uncertainties may be due to the dimensions of SEM-EDX measurement points that may to some 

extent be averaged measurements of both phases (e.g. nanoprecipitates in matrix with other composition). 
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Figure S7: Tentative Rietveld refinement results for quenched samples with nominal composition 

(SnTe)0.75(In2Te3)0.75 (a), (SnTe)1.2(In2Te3)0.6 (b) and (SnTe)1.875(In2Te3)0.375 (c); experimental data (black), 

calculated pattern (light gray), difference plot (dark gray, below) and calculated reflection positions of the 

different phases (thin black and gray vertical lines, bottom); phase fractions determined by Rietveld refinement 

are given in mol% (note that Rietveld programs initially yield weight%). Note that the quantification was not 

calibrated and also depends on the compositions assumed for the individual phases – it is therefore just a 

rough estimate. 



4.2 Structural variations in indium tin tellurides and their thermoelectric properties 

175 

Table S8: Details of the Rietveld refinements for quenched samples with nominal composition 

(SnTe)0.75(In2Te3)0.75, (SnTe)1.2(In2Te3)0.6 and (SnTe)1.875(In2Te3)0.375. Phase compositions were estimated from 

EDX and take into account charge neutrality and overall sample composition. 

nominal composition (SnTe)0.75(In2Te3)0.75 (SnTe)1.2(In2Te3)0.6 (SnTe)1.875(In2Te3)0.375 

phase composition  In0.27Sn0.6Te In0.573Sn0.133Te In0.167Sn0.75Te In0.555Sn0.167Te In0.033Sn0.95Te In0.612Sn0.083Te 

M / g mol
-1

 242.515 205.450 242.515 206.715 242.515 210.509 

space group (no.) Fm3m (225) F43m (216) Fm3m (225) F43m  (216) Fm3m (225) F43m  (216) 

phase fraction / mol% 42.4(4) 57.6(4) 45.6(5) 54.4(5) 75.5(8) 24.5(8) 

formula per unit cell 4 4 4 4 4 4 

lattice parameter / Å 6.2684(2) 6.1631(2) 6.2936(2) 6.1632(2) 6.2784(4) 6.185(1) 

cell volume / Å
3
 246.30(2) 234.10(2) 249.28(2) 234.11(2) 247.48(5) 236.6(1) 

X-ray density / g cm
-3

 6.5400(6) 5.8292(4) 6.4619(6) 5.8650(6) 6.5509(1) 5.909(4) 

µ / mm
-1

 168.44(2) 149.14(1) 166.42(2) 150.10(1) 167.63(3) 1451.35(9) 

reflections 13 13 13 13 13 13 

parameters / 
thereof background 

26 / 12 26 / 12 27 / 12 

Rp / Rwp /GooF 0.0232 / 0.0319 / 3.706 0.0218 / 0.0300 / 3.371 0.0317 / 0.0512 / 6.370 

RBragg 0.0206 0.0183 0.0149 0.0225 0.0093 0.0133 

 

 

Table S9: Atomic coordinates, site occupancies based on the decomposition reaction equations (charge 

neutrality, EDX, overall composition) and isotropic displacement parameters for nominal compositions 

(SnTe)0.75(In2Te3)0.75 (top), (SnTe)1.2(In2Te3)0.6 (middle) and (SnTe)1.875(In2Te3)0.375 (bottom). 

phase (structure type) atom 
position 

x y z Wyckoff 
position 

s.o.f. Biso 

In0.27Sn0.6Te  
(NaCl) 

In/Sn/□ 
Te 

½ ½ ½ 
0 0 0 

4b 
4a 

0.06/0.91/0.03 
1 

0.76(6) 
= Biso (cation) 

In0.573Sn0.133Te  
(sphalerite) 

In/Sn/□ 
Te 

¼ ¼ ¼ 
0 0 0 

4c 
4a 

0.647/0.03/0.323 
1 

2.7(1) 
= Biso (cation) 

In0.167Sn0.75Te  
(NaCl) 

In/Sn/□ 
Te 

½ ½ ½ 
0 0 0 

4b 
4a 

0.06/0.91/0.03 
1 

0.78(6) 
= Biso (cation) 

In0.555Sn0.167Te  
(sphalerite) 

In/Sn/□ 
Te 

¼ ¼ ¼ 
0 0 0 

4c 
4a 

0.627/0.06/0.313 
1 

2.6(1) 
= Biso (cation) 

In0.033Sn0.95Te  
(NaCl) 

In/Sn/□ 
Te 

½ ½ ½ 
0 0 0 

4b 
4a 

0.06/0.91/0.03 
1 

0.90(9) 
= Biso (cation) 

In0.612Sn0.083Te  
(sphalerite) 

In/Sn/□ 
Te 

¼ ¼ ¼ 
0 0 0 

4c 
4a 

0.567/0.15/0.283 
1 

0.9(4) 
= Biso (cation) 
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Figure S10: Temperature-dependent PXRD patterns (asterisks mark reflections caused by the furnace) of 

quenched (SnTe)0.75(In2Te3)0.75 (top), (SnTe)1.2(In2Te3)0.6 (middle) and (SnTe)1.875(In2Te3)0.375 (bottom); heating 

and cooling (from bottom to middle and middle to top, respectively, in each image), the horizontal line as T1 

marks the dissolution of the In-rich sphalerite-type phase in the main phase, the line at T2 marks the melting 

point; reduced number of intensities of certain reflections during cooling results from preferred orientation 

after recrystallization in small capillaries.  
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Table S11: Approximate temperatures where reflections matching the different structure types disappear as a 

consequence of dissolution (or exsolution during cooling) of the In-rich sphalerite-type phase or because of 

melting of the whole sample. Temperatures can be correlated with T1 and T2 in Figures 2 and S10. 

 

nominal  
composition 

T2 
(melting point) 

T1 
dissolution / exsolution 
of the In-rich phase 

(SnTe)0.75(In2Te3)0.75 650 °C 580 °C 

(SnTe)1.2(In2Te3)0.6 680 °C 580 °C 

(SnTe)1.875(In2Te3)0.375 700 °C 540 °C 

(SnTe)2.1(In2Te3)0.3 700 °C 560 °C 

(SnTe)2.4(In2Te3)0.2 > 700 °C * 500 °C 

(SnTe)2.59(In2Te3)0.136 > 700 °C * 420 °C 

* experiment carried out up to 700 °C, where the melting point was not yet reached. 

 



4.2 Structural variations in indium tin tellurides and their thermoelectric properties 

178 

 

Figure S12: a)  lectron diffraction pattern of “hypo-stoichiometric” cubic α-In2Te3-II (space group F43m, a = 

18.50 Å, taken from G. L. Bleris, T. Karakostas, J. Stoemenos, N. A. Economou, Phys. Stat. Sol. A 1976, 34, 243, a 

superstructure of defect sphalerite-type β-In2Te3 (R. R. Desai, D. Lakshminarayana, P. B. Patel, P. K. Patel, C. J. 

Panchal, Mater. Chem. Phys. 2005, 94, 308; b) SAED and HRTEM images of In-rich precipitates in 

(SnTe)2.1(In2Te3)0.3 along [111] with corresponding Fourier transforms, showing superstructure reflections 

similar to those of α-In2Te3-II; c) SAED and HRTEM images of precipitates with lower In content in 

(SnTe)2.4(In2Te3)0.2 along [111] with corresponding Fourier transforms, showing very weal superstructure 

reflections whose positions correspond to those of α-In2Te3-II . 
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Figure S13: HRTEM image along [110] showing cubic ABC stacking sequence (highlighted by red, green and 

blue) of the Te-atom in slowly cooled (SnTe)2.4 (In2Te3)0.2.  

 

Figure S14: Slowly cooled (SnTe)2.1(In2Te3)0.3 viewed along [110]: a) SAED pattern of a region with two 

intergrown domains showing reflection splitting at higher diffraction angles (highlighted with white arrows). b) 

HRTEM micrograph of same region with c) corresponding Fourier transform showing broad reflections due to 

simultaneous presence of rocksalt-type and sphalerite-type phases. 
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Figure S15: STEM-EDX mapping of representative crystals in slowly cooled (SnTe)3-3x(In2Te3)x with 

0.136 ≤ x ≤ 0.3; from the left to the right: HAADF image, In(L), Sn(L) and Te(L) EDX maps. Dotted circles are in 

the same place in all images for easier comparison. 
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Figure S16: Averaged thermoelectric properties (without first heating curve) of (SnTe)3-3x(In2Te3)x with 

0.136 ≤ x ≤ 0.3. 

 

Scheme S17: Calculations for the band gap estimation based on Goldsmid-Sharp relation:  

a) Eg = 2eSmaxTmax = 2·e·111.1µV K-1·((350+273.15) K) = 0.138 eV for (SnTe)2.1(In2Te3)0.3 

b) Eg = 2eSmaxTmax = 2·e·114.8µVK-1·((350+273.15) K) = 0.143 eV for (SnTe)2.4(In2Te3)0.2  

c) Eg = 2eSmaxTmax =2·e·126.4µVK-1·((350+273.15) K) = 0.157 eV for (SnTe)2.59(In2Te3)0.136   
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Abstract 

Starting from stoichiometric mixtures of the elements, quaternary and quinary solid solutions 

(GexSn1–x)0.8(InySb1–y)0.13Te were obtained. Concerning the ratio Ge/Sn and Sb/In, respectively, lattice 

parameters of the metastable phases with rocksalt-type average structures approximately obey 

Vegard's law. Stable phases correspond to a disordered rocksalt type at high temperature and to 

trigonal layered structures with van der Waal gaps at lower temperature as shown by temperature-

dependent powder X-ray diffraction combined with TEM, which reveals layer-like vacancy ordering, 

whose extent depends on composition and thermal treatment. In the long-periodically ordered 

model compounds 21R-Ge0.5Sn0.5InSbTe4 and 9P-GeSnInSbTe5 studied by resonant scattering data at 

K-absorption edges, Sb and Sn concentrate near the van der Waals gaps. Compared to Ge0.8Sb0.13Te 

and Sn0.8Sb0.13Te, the simultaneous presence of In and Sn combines increased electrical conductivity 

with low thermal conductivity and enhanced thermoelectric properties in certain temperature 

ranges. Phase transitions correlate with changes of the thermoelectric properties. 

4.3.1 Introduction 

Multinary tellurides exhibit various properties that lead to intriguing applications. The rapid 

transformation between amorphous and polycrystalline states enables information storage in phase-

change RAM and optical storage media.1-3 Such tellurides are semiconductors with small bandgaps, 

similar to thermoelectric materials that are known for the conversion of heat into electrical energy.4 

The efficiency of thermoelectric materials can be quantified by the dimensionless Figure of merit ZT = 

S2σT / (κph   κe), where S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute 

temperature, and κph and κe are the phononic (lattice) and electronic thermal conductivities, 

respectively. Since σ is correlated with κe via the Wiedemann-Franz law, these physical properties 

cannot be changed independently in order to optimize the ZT value. Simple binary chalcogenides like 

SnSe, PbTe, Bi2Te3, or copper selenides as well as complex compounds like clathrates, 
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(AgSbTe2)x(GeTe)1–x (TAGS) or nanostructured tellurides such as AgPbmSbTe2+m (LAST) exhibit good 

thermoelectric performance.5-12 Structural complexity in compounds with simple basic structures 

may therefore be attractive concerning the targeted improvement of thermoelectric materials.13 

Starting from the binary compounds GeTe, SnTe, In2Te3, and Sb2Te3, each possessing its individual 

advantages, combinations of them yield a wide range of possible thermoelectric materials with 

different levels of structural complexity.14-20 As structure-property relations of germanium antimony 

tellurides (GST materials) have been investigated in much detail,1821,22 the latter can serve as a 

ternary reference system. Figure 1 outlines examples for possible quaternary and quinary 

compounds of Ge, In, Sb, and Sn applied to a fixed cation to Te ratio. This selection ensures 

comparability to previous studies of Sn- or In-containing tellurides.23,24  

 

Figure 1. Scheme of a set of possible quaternary and quinary tellurides of Ge, In, Sb, and Sn with the same 

molar Te content based on the general formula (GexSn1–x)0.8(InySb1–y)0.13Te. Phases investigated in this 

contribution are highlighted in bold typeface, the others are known from literature. As all samples in this 

contribution exhibit rocksalt-type structures, the general sum formula (GexSn1–xTe)12(In2ySb2–2yTe3) is 

normalized to (GexSn1–x)0.8(InySb1–y)0.13Te, both with 0 ≤ x,y ≤ 1. 

he different charges of Ge2+ and Sb3+ lead to vacancies on the cation position. Quenching the 

disordered rocksalt-type high-temperature (HT) phase of GST materials leads to a metastable 

pseudo-cubic phase with short-range vacancy ordering. Depending on temperature, stable trigonal 

structures, e.g. In3Te4-type ones with van der Waals gaps, are slowly formed from the pseudocubic 

phases.25,26 In addition, distorted variants of the rocksalt type have been described.3,27 Both 

composition and thermal treatment influence the thermoelectric properties of these tellurides. 

There are three approaches towards their optimization: (1) substitution (alloying) or co-doping,24,28,29 

(2) inducing pronounced real structures based on vacancy ordering by “partial” diffusion-controlled 

phase transitions18,30 and (3) heterostructuring by segregation of precipitates with different 

composition in a GST matrix.31 Compared to Ge0.8Sb0.13Te, the compounds Ge0.8In0.067Sb0.067Te and 

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0001
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Ge0.8In0.13Te (where vacancy ordering is little influenced by the In content) show that the substitution 

of Sb by In correlates with an increased Seebeck coefficient, improving ZT at temperatures below 250 

°C.24 On the other hand, Sn-containing GST materials such as Ge0.4Sn0.4Sb0.13Te and Sn0.8Sb0.13Te show 

higher electrical conductivity and more pronounced vacancy ordering than pristine GST phases.23 For 

Ge3.25Sn1.1Sb1.1Te6, a superstructure of the rocksalt type was observed.32 In contrast, samples with the 

composition Sn0.8In0.13Te consist of an In-doped SnTe matrix and In-rich precipitates; they are 

characterized by low thermal conductivity (2.5.Wm–1.K–1 at ca. 400 °C).33 Syntheses of quinary 

samples like Ge0.4Sn0.4In0.067Sb0.067Te (normalized to Te1) address the question how higher complexity 

correlates with structural effects and changes of thermoelectric properties; and they promise to 

afford intriguing samples for transmission electron microscopy (TEM). Due to the lacking scattering 

contrast of Sn, In, and Sb in conventional diffraction experiments, resonant X-ray scattering is 

required in order to elucidate the element distribution.34 This can be applied to long-range ordered 

layered compounds. From such results, it is possible to draw conclusions regarding the element 

distribution around vacancy layers in disordered compounds. Therefore, the elemental distribution in 

the long-periodically ordered layered phases GeSnInSbTe5 and Ge0.5Sn0.5InSbTe4 was elucidated. This 

contribution focuses on structure-property relations of quaternary and quinary tellurides with the 

general composition (GexSn1–x)0.8(InySb1–y)0.13Te. For comparison, quinary phases with higher vacancy 

concentration are also evaluated (Ge0.286Sn0.286In0.143Sb0.143Te and Ge0.35Sn0.35In0.1Sb0.1Te). 

4.3.2 Results and Discussion 

4.3.2.1 Sample characterization and average crystal structures 

All metallic gray products discussed in this contribution were obtained in quantitative yield and 

powder X-ray diffraction (PXRD) patterns confirm homogeneity. Energy-dispersive X-ray spectroscopy 

(EDX, cf. Table S1, Supporting Information) is consistent with the composition of the stoichiometric 

mixtures of starting materials. Rietveld refinements confirm a rocksalt-type average structure (at RT) 

for air-cooled samples of Ge0.4Sn0.4In0.13Te, Sn0.8In0.067Sb0.067Te, and Ge0.4Sn0.4In0.067Sb0.067Te (Figure 2, 

Tables S2 and S3, Supporting Information). Rietveld refinements for further cubic samples (see 

below) are shown in Figure S4, Table S5, and Table S6 (Supporting Information). The predominantly 

Lorentz-shaped reflections are affected by anisotropic microstrain. For solid solution series 

(GexSn1-x)0.8(InySb1-y)0.13Te, cubic lattice parameters a change approximately in accordance with 

Vegard's law (Figure S7, Supporting Information). With increasing Sn content, a increases while with 

increasing In content it decreases, however, less pronounced due to the relatively small difference in 

ionic radii (In3+ vs. Sb3+) and low total In/Sb content.35 

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0002
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Figure 2. Profile fits of the Rietveld refinements based on X-ray diffraction patterns of Ge0.4Sn0.4In0.13Te (a), 

Sn0.8In0.067Sb0.067Te (b), and Ge0.4Sn0.4In0.067Sb0.067Te (c) cooled to air; experimental data (black), calculated 

pattern (light gray), difference plot (dark gray), and calculated reflection positions (black vertical lines). 

Pronounced layer-like defect ordering and a tendency towards superstructures becomes evident 

with increasing vacancy concentrations as illustrated for Ge0.35Sn0.35In0.1Sb0.1Te and more clearly on 
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Ge0.286Sn0.286In0.143Sb0.143Te by selected area electron diffraction (SAED) and high resolution 

transmission electron microscopy (HRT M). “Comet-like” diffuse streaks observed in S  D patterns 

and Fourier transforms of HRTEM micrographs (Figure S8, Supporting Information) of quenched 

Ge0.35Sn0.35In0.1Sb0.1Te can be explained by a pseudocubic domain structure with a non equidistant 

arrangement of finite vacancy layers.36 HRTEM images of quenched Ge0.286Sn0.286In0.143Sb0.143Te reveal 

some layered domains (size < 100 nm) with vacancy ordering (Figure 3). Occasionally, this 

corresponds to a fivefold superstructure of the rocksalt type along one of its <111> directions 

comparable to those of Ge3MnSb2Te7 37 and Ge3.25Sn1.1Sb1.1Te6,32 in this case with three slabs along 

the trigonal axis to reach identity. According to HRTEM images (Figure S9d, Supporting Information), 

Te atoms retain their “cubic”  BC stacking sequence. This corresponds to a rhombohedral lattice 

with a ≈ 4. 68 Å and c ≈ 5 .3 Å (for details and coordinates, cf. Figures S9 and S10, Supporting 

Information). In this structure, one slab consists of five anion and four cation layers separated by a 

vacancy layer, the space group is R3m. A simulated SAED patterns assuming the superposition of 

twin domains corresponds to the experimental one. Yet, most ordered domains in 

Ge0.286Sn0.286In0.143Sb0.143Te are very small, so that PXRD patterns exhibit only very weak reflections 

that can be attributed to the layered structure (Figure S11, Supporting Information).  

 

Figure 3. HRTEM image and corresponding Fourier transforms of the marked areas of quenched 

Ge0.286Sn0.286In0.143Sb0.143Te along <110> zone axis (with respect to pseudocubic modification), areas with 

layered and rocksalt structures labelled with 1 and 2, respectively. 

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0003
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4.3.2.2 Element distribution in quinary phases with layered structures determined by resonant X-

ray diffraction 

 

Figure 4. Crystal structures of Ge0.5Sn0.5InSbTe4 and GeSnInSbTe5 with selected interatomic distances. 

Problems with low scattering contrast of In/Sn/Sb/Te were overcome by using anomalous dispersion 

in order to elucidate the cation distribution in the long-periodically ordered layered tellurides 

Ge0.5Sn0.5InSbTe4 and GeSnInSbTe5. Powder data collected slightly at the low-energy side of the K-

absorption edges of In, Sn, Sb, and Te were combined with an off-edge dataset in joint Rietveld 

refinements (cf. Experimental Section). No anti-site disorder was taken into account and for the 

anion positions full occupancy with Te was assumed. Results of the refinements are provided in 

Figure 4, Figures S12 and S13 (Supporting Information) as well as in Table 1, Table 2, Table 3, and 

Table S14 (Supporting Information). Further details of the structure determinations are available 

from Fachinformationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen (Germany), on quoting 

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0004
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-tbl-0001
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-tbl-0002
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-tbl-0003
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the depository numbers CSD-433534 (21R-Ge0.5Sn0.5InSbTe4) and CSD-433533 (9P-GeSnInSbTe5) as 

well as the names of the authors and citation of the paper (E-mail: crysdata@fiz-karlsruhe.de).  

Table 1. Crystallographic data and details of the joint Rietveld refinement (patterns recorded at different 

wavelengths near absorption edges) for annealed 21R- Ge0.5Sn0.5InSbTe4. 

 21R-Ge0.5Sn0.5InSbTe4 

M / g mol-1 842.650 

space group R3m (no. 166) 

Z 3 

lattice parameters 

/ Å 

a = 4.25141(11) 

c = 41.2224(12) 

cell volume / Å 3 645.25(4) 

X-ray density / 

gcm-3 

6.5055(4) 

F(000) 1047 

parameters / 

thereof 

background 

189 / 120 (24 for each dataset) 

wavelength / Å all data 0.354198(9)[a] 0.389706(1) 0.406596(1) 0.424565(1) 0.443690(1) 

  off edge Te-K edge Sb-K edge Sn-K edge In-K edge 

reflections 1786 344 366 350 359 367 

µ / in mm-1 - 1927.8(1) 2343.8(1) 1243.69(7) 1064.12(6) 1055.82(6) 

Rp 0.0476 0.0471 0.0385 0.0508 0.0499 0.0505 

Rwp 0.0678 0.0634 0.0571 0.0730 0.0702 0.0711 

GooF 2.369 1.831 2.036 2.723 2.712 2.323 

RBragg - 0.0124 0.0151 0.0147 0.0140 0.0213 

 

[a] e.s.d. from wavelength calibration  
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Table 2. Crystallographic data and details of the joint Rietveld refinement (patterns recorded at different 

wavelengths near absorption edges) for annealed 9P-GeSnInSbTe5. 

 9P-GeSnInSbTe5 

M / g mol-1 1065.920 

space group P3m1 (no. 164) 

Z 1 

lattice 

parameters / Å 

a = 4.26208(5) 

c = 17.3730(2) 

cell volume / Å 

3 

273.305(7) 

X-ray density / 

gcm-3 

6.4761(2) 

F(000) 442 

parameters /  

thereof 

background 

215 / 120 (24 for each dataset) 

wavelength / Å all data 0.354198(9)[a] 0.389807(8) 0.406685(6) 0.424694(6) 0.443820(6) 

  off edge Te-K edge Sb-K edge Sn-K edge In-K edge 

reflections 2350 435 469 443 462 469 

µ / in mm-1 - 1886.88(5) 1114.88(3) 965.08(2) 843.46(2) 723.64(2) 

Rp 0.0639 0.0632 0.0600 0.0739 0.0599 0.0668 

Rwp 0.0900 0.0935 0.0811 0.0995 0.0851 0.0937 

GooF 2.019 2.338 1.445 1.853 2.473 1.833 

RBragg - 0.0228 0.0176 0.0226 0.0219 0.0188 

 

[a] e.s.d. from wavelength calibration 

Table 3. Cation site occupancy factors in 21R-Ge0.5Sn0.5InSbTe4 and 9P-P-GeSnInSbTe5; numbers without 

standard deviation result from sum-formula constraints (parameters not independent) 

 site/ Wyck. Ge Sn In Sb 

21R-

Ge0.5Sn0.5InSbTe4 

M1 / 6c 

M2 / 3a 

0.132(4) 

0.235 

0.239(9) 

0.022 

0.235(11) 

0.531 

*0.39 

0.212 

9P- 

GeSnInSbTe5 

M1 / 2d 

M2 / 2c 

*0.37 

0.13 

0.09(1) 

0.41 

0.37(2) 

0.13 

0.164(8) 

0.335 

 

Ge0.5Sn0.5InSbTe4 forms a 21R-In3Te4-type structure (space group R3m) isostructural to GeSb2Te4, but 

the element distribution (Figure 4, Table 3) differs from (Ge1-xSnx)Sb2Te4.39 Ge2+ and In3+ 

predominantly concentrate in the center of the distorted rocksalt-type slabs (M :  3.5 % Ge, and 
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53.1 % In), whereas Sn2+ and Sb3+ prefer the position near the van der Waals gaps (M1:  3.9 % Sn and 

39.0 % Sb). The slabs are separated by van der Waals gaps with a Te–Te distance of 3.8133(9) Å, 

which deviates less than 3 % from the corresponding distance in isostructural tellurides.29,40,41 The 

coordination octahedron next to the van der Waals gap (M1) is strongly distorted with shorter bonds 

[2.9163(8) Å] to the unsaturated Te atoms and longer bonds [3.0287(7) Å] to the Te atoms within the 

slab. The distortion is corroborated by bond angles and lengths: Te1–M1–Te1: 93.59(3)°, M1–Te2: 

3.2054(11). Bond lengths [Te2–M2: 3.0287(7) Å] and angles [Te2–M2–Te2: 89.14(2)°] of the M2 

octahedrons within the slabs are more regular.  

Similar to (Ge1–xSnx)2Sb2Te5, quinary GeSnInSbTe5 crystallizes in the 9P-Pb2Bi2Se5 structure type  

(space group P3m1).39,42 The Te–Te distance at the van der Waals gaps is relatively short [3.764(5) Å], 

indicating typical partially covalent bonding. The distorted 3+3 coordination of M2 next to the van 

der Waals gap [M2–Te3 bonds 2.922(3) Å, M2–Te2 bonds 3.259(4) Å] is also typical and becomes 

more regular around M1 towards the middle of the slabs [M1–Te1: 3.073(1) Å]. Bond angles are a 

measure of the distortion of the octahedra: Te3–M2–Te3 93.64(9)°, Te2–M2–Te2 81.68(8) vs. Te2–

M1–Te1 90.73(6)°, Te1–M1–Te1 87.81(3)°. Ge2+ and In3+ prefer positions inside the slabs (M : 37 % 

Ge, 37 % In), whereas Sn2+ and Sb3+ concentrate near the van der Waal gap (M1: 41 % Sn, 33.5 % Sb). 

This element distribution might be explained by large lone-pair ions preferring the distorted 

octahedra. 

4.3.2.3 TEM study of (GexSn1-x)0.8(InySb1-y)0.13Te  

amples with constant vacancy concentration (in contrast to the TEM studies above) enable to assess 

the influence of the various chemical compositions on real structures. Starting from ternary tellurides 

like GST materials, several TEM studies elucidated the influence of the chemical composition on the 

nanostructures. Here we address the new phases mentioned in Figure 1.23,24 TEM imaging on 

Sn0.8In0.067Sb0.067Te, Ge0.4Sn0.4In0.13Te, and quinary Ge0.4Sn0.4In0.067Sb0.067Te shows many deviations 

from the average structure. Depending on the composition, nanostructures are more or less 

pronounced (Figure 5).  

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0001
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0005
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Figure 5. Representative HRTEM images of quenched (a) Sn0.8In0.067Sb0.067Te, (b) Ge0.4Sn0.4In0.13Te and (c) 

Ge0.4Sn0.4In0.067Sb0.067Te crystallites along the (pseudo-)cubic <110> direction with corresponding Fourier 

transforms and SAED patterns.  



4.3 Structural Complexity and Thermoelectric Properties of Quaternary and Quinary Tellurides 
(GeₓSn₁₋ₓ) ˌ₈(InᵧSb₁₋ᵧ) ˌ₁₃Te with 0 ≤  ,   ≤ 1 

192 

In the present element combination, high Sn content seems to impede extensive layer-like vacancy 

ordering, this is a certain similarity with In-doped SnTe. Vacancy layers were only locally observed in 

HRTEM images of Sn0.8In0.067Sb0.067Te (Figure 5a), comparable to Sn0.8Sb0.13Te (Figure S15, Supporting 

Information) and Sn0.8In0.13Te;33 diffraction patterns show almost no diffuse streaks. Similar to studies 

on Ge0.4Sn0.4Sb0.13Te or Ge0.8In0.13Te,23,24 the presence of Ge seems to facilitate the formation of 

irregularly spaced finite vacancy layers in Ge0.4Sn0.4In0.13Te and Ge0.4Sn0.4In0.067Sb0.067Te indicated by 

typical “comet-shaped” diffuse streaks (Figure 5b, c). Thermal treatment also strongly influences 

nanostructures as exemplarily shown for Ge0.4Sn0.4In0.067Sb0.067Te (Figure 6). A pronounced 

nanostructure is obtained after very slow cooling to room temperature (for 1 d). The observed 

herringbone-like arrangement of vacancy layers (Figure 6 top) is well known from Ge0.8Sb0.13Te and 

Sn0.8Sb0.13Te.23 Faster thermal treatment similar to that during thermoelectric measurements leads to 

less pronounced short-range defect ordering (Figure 6 bottom). Yet, PXRD patterns of differently 

treated samples (Figure S16, Supporting Information) are rather similar as they only represent 

average structures. 

 

Figure 6. Representative HRTEM images with corresponding FT and SAED patterns of Ge0.4Sn0.4In0.067Sb0.067Te 

cooled to RT within 1 d (a) and of Ge0.4Sn0.4In0.067Sb0.067Te thermally treated as during thermoelectric 

measurements (b).  

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0005
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0005
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0006
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0006
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0006
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4.3.2.4 Temperature-dependent behavior and thermoelectric properties 

Temperature-dependent PXRD was performed starting from quenched samples (Figure 7 bottom and 

Figure S17, Supporting Information). Similar to In-doped SnTe, Sn0.8In0.067Sb0.067Te exhibits no phase 

transitions between RT and 700 °C. In accordance with literature, phase transitions between cubic HT 

phases and trigonal stackings of distorted rocksalt-type slabs interconnected via van der Waals gaps 

were observed for the quinary phases discussed in this contribution, more pronounced for higher 

vacancy concentrations. A phase transition for Ge0.286Sn0.286In0.143Sb0.143Te is indicated by reflection 

splitting, resembling the pattern of the 39R-As2Ge4Te7 structure type between 300 °C and 500 °C 

(Figure S18, Supporting Information). However, temperature-dependent PXRD patterns of 

Ge0.4Sn0.4In0.13Te and Ge0.4Sn0.4In0.067Sb0.067Te show only moderate reflection broadening in the 

existence range of trigonal phases, suggesting only a slight trigonal distortion of the average cubic 

structure. Thermoelectric properties of some (GexSn1–x)0.8(InySb1–y)0.13Te phases and comparable ones 

are presented in Figure 7a–d. At temperatures of phase transitions, thermoelectric properties also 

change, visualized by temperature-dependent PXRD patterns (Figure 7e). Comparable to GST 

materials, temperature T1 marks the transition from the metastable pseudocubic to the trigonal 

layered modifications with van der Waals gaps that transform to the cubic HT phase at T2. During 

subsequent cooling/heating cycles, only the transition between the rocksalt-type HT phases and 

trigonal ones occur. In accordance with GST and Sn-containing GST,23,31 phase transitions have a 

stronger influence on thermoelectric properties at higher vacancy concentrations. Focusing on 

rocksalt-type structures of the quinary phases in this contribution, which exhibit more promising 

properties than layered ones, higher ZT values correlate with lower vacancy concentration because 

of the favored cubic structure. Further improvement is observed when Ge is completely substituted 

by Sn (Figure 7 left). The high electrical conductivity (σ = 2300 S·cm–1 at 75 °C) of Sn0.8In0.067Sb0.067Te 

drops at HT, in contrast to nearly constant progression of σ for the other phases. With relative 

changes of S and κ similar to In-doped SnTe, Sn0.8In0.067Sb0.067Te shows a non-linear behavior of the ZT 

value with its maximum between 300 °C and 400 °C. The formation and dissolution of In-rich 

precipitates has been discussed in this context.33 Regarding substitution of individual elements, the 

maximal Seebeck coefficient changes significantly (ca. 180 μV·K–1 for Ge0.8In0.13Te, ca. 160 μV·K–1 for 

Sn0.8Sb0.13Te, and ca. 100 μV·K–1 for Ge0.8In0.067Sb0.067Te). The low thermal conductivities of all the 

complex phases containing In appear promising, especially at temperatures < 300 °C. Like other cubic 

phases, Ge0.4Sn0.4In0.13Te and Ge0.4Sn0.4In0.067Sb0.067Te, show low minimal thermal conductivities of κmin 

≈  .4 Wm–1·K–1. For Ge0.35Sn0.35In0.1Sb0.1Te and Ge0.286Sn0.286In0.143Sb0.143, a further improvement is 

observed. This may be due to more pronounced nanostructures. Yet, the complexity of a quinary 

system precludes general trends concerning the influence of a specific element on thermoelectric 

properties. 

http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0007
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0007
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0007
http://onlinelibrary.wiley.com/doi/10.1002/zaac.201700337/full#zaac201700337-fig-0007
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Figure 7. Thermoelectric properties, (a) Seebeck coefficient, (b) electrical conductivity, (c) thermal conductivity, 

and (d) ZT value of quaternary and quinary phases starting from air-quenched samples in relation to their 

thermal behavior; thermoelectric properties of the first heating illustrated with empty squares and averaged 

properties from reproducibly cycled measurements illustrated with filled black squares; (e) heating sections of 

the temperature-dependent PXRD data (complete temperature-dependent PXRD cf. Figure S17, Supporting 

Information), which correspond to the first heating curve of thermoelectric measurements; changes indicate 

phase transitions discussed in the text, they are marked by vertical black dashed (T1) and dotted lines (T2). 

4.3.3 Conclusions 

This study gives a comparison of quaternary and quinary tellurides with Ge, In, Sb, and Sn regarding 

their average and real structures as well as their thermoelectric properties. Phases 

(GexSn1-x)0.8(InySb1-y)0.13Te with 0 ≤ x,y ≤ 1 crystallize in average rocksalt-type structures at HT and in 

quenched samples. TEM revealed the tendency of forming layered structures with increasing vacancy 

concentration. Thermal treatment similar to that applied during thermoelectric measurements 

enables only limited vacancy ordering at low temperatures. It results in a herringbone-like 
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arrangement of vacancy layers in the quinary compounds discussed. The distribution of Ge and In 

within the rocksalt-type slabs and of Sb and Sn near the van der Waals gaps in trigonal 21R-

Ge0.5Sn0.5InSbTe4 and 9P-GeSnInSbTe5 structures as determined by resonant PXRD differs from the 

element distribution in related quaternary compounds. It is a model for the environment of finite 

vacancy layers in highly disordered phases. The influence of changes of the elemental ratios in 

quaternary and quinary phases outbalance differently pronounced nanostructures with individual 

distributions of vacancy layers. The simultaneous presence of In and Sn results in ZT values related to 

ones of In-containing GST materials. Quinary tellurides like Ge0.4Sn0.4In0.067Sb0.067Te or 

Ge0.35Sn0.35In0.1Sb0.1Te have the advantage of nearly constant electrical conductivity combined with 

very low thermal conductivity over a large temperature range. In order to increase the Seebeck 

coefficient of quinary phases, further changes in the element ratios may be a promising approach. 

This study, however, shows that individual aspects of material optimization cannot be simply 

combined in order to further improve ZT in an additive way. 

4.3.4 Experimental Section 

Synthesis 

Samples of (GexSn1–x)0.8(InySb1–y)0.13Te were prepared by melting stoichiometric amounts of the 

elements (Ge: 99.99 %, Smart  lements; Sb: 99.99 %, Smart  lements; In: 99.999 %, Smart  lements; 

Te 99.999 %,  lpha  esar; Sn: 99.999 %, Inconex Kft. Fémipari Budapest) in silica glass ampoules in an 

argon atmosphere at 900 °C for 24 h. All samples were then quenched at air, follow by annealing at 

590 °C for 4 d and subsequently quenched at air for (GexSn1–x)0.8(InySb1–y)0.13Te with 0 ≤ x,y ≤ 1 or in 

water (Ge0.35Sn0.35In0.1Sb0.1Te, Ge0.286Sn0.286In0.143Sb0.143Te). The same temperature treatment (with 

final quenching at air) was applied for the samples for thermoelectric characterization. The mass of 

the samples did not differ from that of the weighed starting materials by more than 3 wt %. In order 

to monitor structural changes depending on thermal treatment, parts of the samples of 

Ge0.4Sn0.4In0.067Sb0.067Te were again heated in silica ampoules in an argon atmosphere, applying two 

different temperature programs: (a) heating up to 580 °C and subsequently cooling by switching off 

the furnace and (b) heating up to 450 °C in 1 h and subsequently cooling by switching off the furnace. 

In order to simulate the temperature treatment during thermoelectric measurements the last 

procedure was repeated two times. The layered phases Ge0.5Sn0.5InSbTe4 and GeSnInSbTe5 were 

obtained by fusing stoichiometric mixtures of the elements in silica glass ampoules under Ar 

atmosphere at 950 °C for 4 d and subsequently annealing for 6 d at 550 °C (Ge0.5Sn0.5InSbTe4) or 350 

°C (GeSnInSbTe5) and finally quenched in water. All products were obtained as metallic gray ingots. 
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Powder X-ray diffraction 

Samples were ground in an agate mortar and fixed between Mylar foils with traces of Lithelen 

vacuum grease. PXRD patterns were recorded with a Guinier camera [G670, Huber, Germany; Cu-Kα1 

radiation, λ = 1.54051 Å, Ge(111) monochromator] with 15 min acquisition time (10 read-outs). 

Temperature-dependent PXRD patterns were recorded with a diffractometer with modified Debye-

Scherrer setup [StadiP, Stoe & Cie. GmbH, Germany; Mo-Kα1 radiation, λ = 0.7093 Å, Ge(111) 

monochromator] equipped with a moving Mythen 1 K silicon stripe detector and a graphite furnace. 

Powdered samples were filled into silica glass capillaries (diameter 0.5 mm) in an argon atmosphere 

and heated with 5 K·min–1 from RT to 750 °C and back to room temperature. Every 20 K, data were 

collected with 30 min acquisition time for each pattern. PXRD of Ge0.5Sn0.5InSbTe4 and GeSnInSbTe4 

with synchrotron radiation was carried out at beamline ID31 of the ESRF (Grenoble, France) with a 

Debye-Scherrer setup [array of 9 point detectors with Si(111) analyzer crystals].43 Samples in silica 

glass capillaries (0.2 mm diameter) were rotated during data acquisition. The off-edge wavelength 

0.354198(9) Å was calibrated with a Si standard (NIST 670c).44 The positions of the absorption edges 

were determined for each compound from energy-dependent fluorescence scans. The wavelengths 

for measurements were chosen slightly on the low-energy side of the K edges of the respective 

element (Sb-K edge: 30.4868 keV, 0.406698 Å; Te-K edge: 31.8087 keV, 0.389781 Å; In-K edge: 

27.9403 keV, 0.443747 Å; Sn-K edge: 29.1966 keV, 0.424653 Å). Energy-dependent fluorescence 

yielded dispersion correction terms Δf′′ and the corresponding Δf′ using Kramers-Kronig transform45 

as provided by the program CHOOCH.46  

All Rietveld refinements were carried out with TOPAS-Academic, where reflection profiles were 

described by a fundamental parameter approach,47 including anisotropic microstrain and spherical 

harmonics of the 4th order for preferred orientation. For the refinements with each type of data 

(laboratory X-rays or synchrotron radiation) the same set of parameters were used. For laboratory 

radiation, site occupancies were derived from the nominal composition, which was in accordance 

with EDX (see below). Common displacement parameters were refined for cations and Te, 

respectively. In case of resonant X-ray data, site occupancies were refined using individual 

displacement parameters for each Wyckoff position. These refinements were constrained to match 

the nominal compositions. Stephens' algorithm was used to describe anisotropic line-shape 

broadening.48 
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Electron microscopy 

The chemical composition was verified using EDX spectroscopy during scanning (SEM) and 

transmission (TEM) electron microscopy. SEM was performed on a JSM 6500F instrument (JEOL) 

operated at 30 keV accelerating voltage with a Si/Li EDX detector (Oxford Instruments, model 7418). 

For TEM sample preparation, small amounts of the samples were ground in absolute ethanol, drop-

cast on copper grids with holey carbon film (S166–2, Plano GmbH, Germany) and transferred into the 

microscope on a double-tilt holder. TEM was done using a Titan Themis 60–300 (FEI, USA) operated 

at 300 kV acceleration voltage and equipped with X-FEG, monochromator, CS corrector and 

windowless 4-quadrant Super-X EDX detector (acquisition time 45 s). Micrographs and diffraction 

patterns were recorded with a 4k × 4k Ceta CMOS camera (F I, US ) and evaluated using Digital 

Micrograph,49 JEMS 50 and ProcessDiffraction7 51 for indexing and simulation of SAED patterns. EDX 

spectra were quantified using ES Vision.52 

Thermoelectric Characterization 

 lectrical conductivities and Seebeck coefficients were measured on cuboid samples (ca. 6 ×   × 1.5 

mm3) in a helium atmosphere with a four-point setup,53 on an LSR-3 instrument (Linseis, Germany) 

with NiCr/Ni thermocouples and a continous reverse of the polarity of the thermocouples. 

Measurements comprised 3 heating/cooling cycles 50 – 475 – 75 °C with 25 K steps at 10 K·min–1 

heating rate and 3 data points per temperature. Thermal diffusivity (Dth) measurements were 

performed in a helium atmosphere applying the laser-flash method with an LFA1000 instrument 

(Linseis, Germany) equipped with Nd-YAG-Laser (350 V and 2 ms pulse) and InSb detector on disk-

shaped samples (diameter 4–10 mm and 1–2 mm thickness). Corrections for simultaneous heat loss 

were considered using Dusza's model.54 Heat capacities cp were estimated according to the Dulong-

Petit approximation55 and densities ρ were determined using Achimedes' principle with a precision of 

0.03 g·cm–3. The thermal conductivity was obtained as κ   cp·ρ·Dth. The calculated cp values used in 

this contribution (0.214–0.22 J·g–1·K–1 at 300 K) are in the range of measured cp values of related 

binary and ternary compounds (Ge0.8Sb0.13Te: 0.23 J·g–1·K–1,23 SnTe: 0.19 J·g–1·K–1,56 S Sb2Te3: 0.205 

J·g-1·K–1,57 In2Te3: 0.22 J·g–1·K–1,58 all at 300 K; temperature-dependent changes < 10%). The combined 

uncertainty of the measurements is ~ 15% for the ZT value. 
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4.3.6 Supporting Information 

Table S1. Results of EDX analyses (of at least 3 individual measurements) in atom%: measured (with standard 

uncertainties estimated from variance) / calculated (from nominal composition). 

 Ge Sn In Sb Te 

Ge0.4Sn0.4In0.13Te  * 21.9(7) / 20.7 19.8(3) / 20.7 7.1(2) / 6.9 - 51.2(2) / 51.7 

Sn0.8In0.067Sb0.067Te - 43.1(7) / 41.4 4.0(4) / 3.4 2.3(4) / 3.4 50.6(6) / 51.7 

Ge0.4Sn0.4In0.067Sb0.067Te 18.8(8) / 20.7 21.8(2) / 20.7 3.9(3) / 3.4 2.5(3) / 3.4 53.0(8) / 51.7 

Ge0.4Sn0.4Sb0.13Te  * 19(3) / 20.7 21.8(4) / 20.7 - 7(1) / 6.9 52(3) / 51.7 

Ge0.8In0.067Sb0.067Te  * 40(4) / 41.4 - 3.5(5) / 3.4 3.8(5) / 3.4 52(3) / 51.7 

Ge0.72Sn0.08In0.067Sb0.067Te  * 34(1) / 37.2 5.3(4) / 4.1 3.3(9) / 3.4 3.6(8) 3.4 54.3()9 / 51.7 

Ge0.24Sn0.56In0.067Sb0.067Te  * 12.3(3) / 12.4 30.0(6) / 29.0 3.4(7) / 3.4 2.3(3) / 3.4 52.0(2) / 51.7 

Ge0.08Sn0.72In0.067Sb0.067Te  * 5.9(9) / 4.1 3.9(1) / 3.4 38(2) / 37.2 1.2(2) / 3.4 51(1) / 51.7 

Ge0.35Sn0.35In0.1Sb0.1Te  * 18.1(6) / 18.4 19.4(4) / 18.4 5.3(2) / 5.3 5.0(4) / 5.3 52.2(8) / 52.6 

Ge0.286Sn0.286In0.143Sb0.143Te 14(2) / 15.4 16.2(2) / 15.4 8.4(4) / 7.7 7.4(4) / 7.7 54(2) / 53.8 

Ge0.5Sn0.5InSbTe4 6.1(4) / 7.1 6.9(5) / 7.1 15.0(5) / 14.3 16.0(6) / 14.3 56.1(8) / 57.1 

GeSnInSbTe5 9.4(6) / 11.1 11.3(5) / 11.1 12.2(6) / 11.1 12.8(6) / 11.1 54.2(7) / 55.5 

 

 * analyses from TEM-EDX, all others from SEM-EDX 

 

Table S2. Crystallographic data from the Rietveld refinements for Ge0.4Sn0.4In0.13Te, Sn0.8In0.067Sb0.067Te and 

Ge0.4Sn0.4In0.067Sb0.067Te cooled at air.  

 Ge0.4Sn0.4In0.13Te Sn0.8In0.067Sb0.067Te Ge0.4Sn0.4In0.067Sb0.067Te 

M / g mol-1 219.062 237.519 219.991 

space group Fm3m (no. 225)  

Z 4 

lattice parameter a / Å 6.09689(3) 6.27036(4) 6.11014(3) 

cell volume / Å3 226.634(4) 246.534(5) 228.114(4) 

density, X-ray / g cm-3  6.4200(1) 6.422(1) 6.4032(1) 

µ / in mm-1 150.542(3) 165.76(3) 150.714(2) 

reflections 13 13 13 

parameters / thereof 

 background 

15 / 6 17 * / 6 15 / 6 

Rp / Rwp 0.0240 / 0.0382 0.0198 / 0.0290 0.0218 / 0.033 

RBragg 0.0367 0.0157 0.0099 

  * different number of parameters due to more parameters for crystallite size and microstrain  
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Table S3. Atom coordinates, site occupancies and isotropic displacement parameters for Ge0.4Sn0.4In0.13Te, 

Sn0.8In0.067Sb0.067Te and Ge0.4Sn0.4In0.067Sb0.067Te; due to similar scattering factors of In, Sb and Sn, their 

occupancies were calculated from the nominal composition, the deviation of site-specific sums from 1 

corresponds to the number of vacancies. 

 Te position 

(fully 

occupied) 

x y z  Biso cations / vacancies x y z  occupancy Biso 

Ge0.4Sn0.4In0.13Te 4a 0 0 0  0.76(3) 4b ½ ½ ½  0.4 Ge  

0.4 Sn  

0.13 In 

2.01(4) 

Sn0.8In0.067Sb0.067Te 4a 0 0 0 0.51(3) 4b ½ ½ ½  0.8 Sn 

0.067 In 

0.067 Sb 

1.53(4) 

Ge0.4Sn0.4In0.067Sb0.067Te 4a 0 0 0  1.13(3) 4b ½ ½ ½  0.4 Ge 

0.4 Sn 

0.067 In 

0.067 Sb 

2.49(3) 

 
 
 
 

 

Figure S4. Profile fits of Rietveld refinements for air-cooled samples with the nominal compositions (which are 

in accordance with EDX, Table S1) Ge0.286Sn0.286In0.143Sb0.143Te (left) and Ge0.35Sn0.235In0.1Sb0.1Te (right); 

experimental data (black), calculated pattern (light gray), difference plot (dark gray) and calculated reflection 

positions (black vertical lines). These profile fits represent a rough approximation of the average crystal 

structures of these samples, reflection broadening corresponds to rhombohedral distortions in small domains 

(similar to Fig. 3). Traces of a trigonal superstructure of the rocksalt type in Ge0.286Sn0.286In0.143Sb0.143Te (note the 

weak unexplained reflections) were further characterized by TEM (cf. Fig. S8 - S10). 
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Table S5. Crystal data and details of the Rietveld refinements for Ge0.35Sn0.35In0.1Sb0.1Te and 

Ge0.286Sn0.286In0.143Sb0.143Te. 

 Ge0.35Sn0.35In0.1Sb0.1Te Ge0.286Sn0.286In0.143Sb0.143Te 

M / g mol-1 218.230 216.157 

space group Fm3m (no. 225) 

Z 4 

lattice parameter / Å a = 6.0785(2) a = 6.0647(5) 

cell volume / Å3 224.59(2) 223.06(5) 

density, X-ray / g cm-3 6.4539(6) 6.436(1) 

µ / in mm-1 153.80(2) 155.85(4) 

reflection 13 13 

parameters / thereof background 19 / 6 19 / 6  

Rp / Rwp 0.0236 / 0.0368 0.0465 / 0.0697 

RBragg 0.0076 0.0129 

 

 

Table S6. Atom coordinates, refined site occupancies and displacement parameters from the Rietveld 

refinements for Ge0.35Sn0.35In0.1Sb0.1Te and Ge0.286Sn0.286In0.143Sb0.143Te (cf. Table S5). 

 Te position 

(fully 

occupied) 

x y z  Biso cations / vacancies x y z  occupancy Biso 

rocksalt-type 

Ge0.35Sn0.35In0.1Sb0.1Te 

4a 0 0 0  1.73(8) 4b ½ ½ ½  0.35 Ge 

0.35 Sn 

0.1 In 

0.1 Sb 

3.99(8) 

rocksalt-type 

Ge0.286Sn0.286In0.143Sb0.143Te 

4a 0 0 0  2.9(2) 4b ½ ½ ½ 0.286 Ge 

0.286 Sn 

0.143 In 

0.143 Sb 

4.4(1) 
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Figure S7. Vegard plots for (GexSn1-x)0.8In0.067Sb0.067Te with 0 ≤ x ≤ 1 (left) and for Ge0.4Sn0.4(InySb1-y)0.13Te with 

0 ≤ y ≤ 1 (right): samples quenched at air, cubic lattice parameter a vs. Sn and In content, respectively. Least-

squares standard deviations of lattice parameters are in the range of 10-4 Å, but exact values of a depend on 

the cooling rate and are thus not reproducible within the numerical standard deviation. 

 

 

Figure S8. HRTEM images of Ge0.35Sn0.35In0.1Sb0.1Te (left) and Ge0.286Sn0.286In0.143Sb0.143Te (right), both samples 

annealed in existence range of cubic high-temperature phase and subsequently quenched in water; viewed 

along the cubic <110> direction, with corresponding Fourier transforms and SAED patterns. Areas with 

pronounced real-structure phenomena were chosen as evidenced by diffuse streaks that indicate an irregular 

distribution of spacings of the vacancy layers, especially in Ge0.35Sn0.35In0.1Sb0.1Te. 
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Figure S9. SAED and HRTEM of water-quenched Ge0.286Sn0.286In0.143Sb0.143Te showing a superstructure of the 

rocksalt type comparable to those found in samples of Ge3.25Sn1.1Sb1.1Te6 (T. Rosenthal, S. Welzmiller, L. 

Neudert, P. Urban, A. Fitch, O. Oeckler, J. Solid. State Chem. 2014, 219, 108) and Ge3MnSb2Te7 (S. Welzmiller, F. 

Heinke, P. Huth, G. Bothmann, E. -W. Scheidt, G. Wagner, W. Scherer, A. Pöppl, O. Oeckler, J. Alloys Compd. 

2015, 652, 74): (a) HRTEM image (left) with corresponding Fourier transforms of differrent regions (right) 

indicating the possible superposition of three (or more likely, four) different regions corresponding to 

individual twin domains: 1. long-range ordered layer-like atom arrangement with a periodicity of ca. 3 · 17.2 Å = 

51.6 Å, 2. similar to 1. but differently oriented and 3. without additional reflections in the ZOLZ (but most likely 

in other directions); (b) SAED pattern along the pseudocubic <110> direction (with respect to a cF lattice with a 

≈ 6.0 Å) with four additional reflections along <111> [and additional ones in Fig. S10]. This suggests trigonal 

metrics with atrigonal = a/√     d002/√    (  ∙  .99 Å)/√    4.23 Å and ctrigonal = 15·d111 = 15 ∙ 3.44 Å = 51.6 Å [trans-

formation matrix (1 1 0 | 11 0 | 1515 15) from the cF cell]. The total Fourier transform of the HRTEM image 

(c) matches the SAED pattern (b). The Fourier-filtered HRTEM image (d) shows the ABC stacking of Te atoms 

around a vacancy layer (highlighted in color).  
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Figure S10. a): SAED tilting series of quenched Ge0.286Sn0.286In0.143Sb0.143Te with corresponding simulations and 

indexing based on a long-range ordered superstructure model in space group R3m with a stacking of 27 atom 

layers along trigonal [001] (refers to one of the rocksalt type lattice´s <111> directions). The patterns at the 

bottom are a twin-like superposition of the domains 1 and 2 that result from vacancy ordering in layers 

perpendicular to their individual [001] (indicated by black arrows). b): view of the constructed superstructure 

(cf. manuscript) and c) crystallographic data of the superstructure model (lattice parameters adapted to fit the 

PXRD pattern).  
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Figure S11. PXRD patterns of Ge0.286Sn0.286In0.143Sb0.143Te: water-quenched sample vs. sample cooled at air (top, 

dark gray and black, respectively). Both may be explained as a superposition of a phase with average NaCl-type 

structure and a layered structure model in R3m as shown in Fig. S10 (bottom, gray and light gray, respectively). 
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Figure S12. Profile fits of the Rietveld refinements for quenched  1R-Ge0.5Sn0.5InSbTe4 based on diffraction 

patterns with synchrotron radiation (the strongest reflection is cut off) measured at different wavelengths; 

experimental data (black), calculated pattern (light gray), difference plot (dark gray) and calculated reflection 

positions (black vertical lines). 
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Figure S13. Profile fits of the Rietveld refinements for quenched 9P-GeSnInSbTe5 based on diffraction patterns 

with synchrotron radiation (the strongest reflection is cut off) measured at different wavelengths; experimental 

data (black), calculated pattern (light gray), difference plot (dark gray) and calculated reflection positions (black 

vertical lines). 
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Table S14. Atom coordinates, site occupancies and isotropic displacement parameters for 21R-Ge0.5Sn0.5InSbTe4 

and 9P-GeSnInSbTe5; Te positions assumed to be fully occupied, occupancies without standard deviations are 

calculated from refined ones via constraints (cf. manuscript). 

 Te  
positions 

x y z Biso cation 
positions 

x y z occupancy Biso 

21R-
Ge0.5Sn0.5InSbTe4 

6c[a] 0 0 0.29029(3) 1.32(3) 6c 0 0 0.42638(3)  0.132(4) Ge  
0.239(9) Sn 
0.235(11) In 
0.39 Sb 

1.50(4) 

 6c[a] 0 0 0.13127(2) 1.08(3) 3a 0 0 0 0.235 Ge 
0.022 Sn 
0.531 In 
0.212 Sb 

0.31(5) 

9P-GeSnInSbTe5 1a[a] 0 0 0  1.22(4) 2d ⅔ ⅓ 0.10590(1 )  0.37 Ge 
0.09(1) Sn 
0.37(2) In 
0.164(8) Sb 

1.02(2) 

 2d[a] ⅓ ⅔ 0. 043(1) 0.90(3) 2c 0 0 0.32729(8) 0.13 Ge 
0.41 Sn 
0.13 In 
0.335 Sb 

1.63(4) 

 2d[a] ⅔ ⅓ 0.4175(1) 1.67(4)     

[a] Te position fully occupied 
 

 

Figure S15. HRTEM image (right) of a crystallite in quenched Sn0.8Sb0.13Te along the pseudocubic <110> 

direction with corresponding Fourier transform and SAED pattern. Short range ordering of the vacancies to 

layers is observed in some areas and corresponds to diffuse intensities between Bragg positions in Fourier 

transforms of selected areas (bottom left). This ordering occurs only in small domains, therefore the diffuse 

intensities are very weak (and almost invisible) in the SAED pattern (top left) of the whole crystallite.  
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Figure S16. PXRD patterns of Ge0.4Sn0.4In0.067Sb0.067Te with different thermal treatments, they are very similar. 
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Figure S17. Temperature-dependent PXRD patterns of water-quenched Sn0.8In0.067Sb0.067Te (top left), 

Ge0.4Sn0.4In0.13Te (top middle), Ge0.4Sn0.4In0.067Sb0.067Te (top right), Ge0.286Sn0.286In0.143Sb0.143Te (bottom left) and 

Ge0.35Sn0.35In0.1Sb0.1Te (bottom right); patterns during heating and cooling (from bottom to middle and middle 

to top, respectively, in each image), horizontal lines mark phase transitions (dashed lines mark the existence 

range of the layered trigonal modification during heating, dashed-dotted lines mark the transition temperature 

from cubic high-temperature phase to the trigonal phase during cooling), asterisks mark reflections caused by 

the furnace, reduced number of intensities of certain reflections during cooling result from preferred 

orientation caused by recrystallization of melts in capillaries. 
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Figure S18. PXRD pattern of Ge0.35Sn0.35In0.1Sb0.1Te collected at 350 °C (left) with a simulation corresponding to 

an average structure with the GeTe structure type; Differences between experimental and calculated pattern 

may be due to the presence of remaining pseudocubic (quenched, cf. manuscript) phase. PXRD pattern of 

Ge0.286Sn0.286In0.143Sb0.143Te collected at 375 °C (right, black) with a simulation corresponding to the 39R-

As2Ge4Te7 structure type. Black lines represent experimental PXRD patterns and light gray lines PXRD 

simulation with site occupancies according to the nominal composition of the quinary compounds. (compare 

with references: M. N. Schneider, O. Oeckler, Z. Anorg. Allg. Chem. 2008, 634, 2557 and M. N. Schneider, P. 

Urban, A. Leineweber, M. Döblinger, O. Oeckler, Phys. Rev. B 2010, 81, 184102). 
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5 Using electron microscopy for the elucidation of new crystal structures  

5.1 Intergrowth of luminescent oxonitridosilicates with complex crystal structures 

Lukas Neudert, Dajana Durach, Peter Schultz, Wolfgang Schnick, Oliver Oeckler  

unpublished results  

As previously discussed in Chapter 2, high-temperature synthesis of metal hydrides with metal 

fluorides at simultaneous presence of metal amides and silicondiimide allows easy access to new 

(oxo)nitridosilicates. If O is present in the product, it stems usually from impurities of commercial 

chemicals. When dopants like CeF3 or EuF2 are added to the starting materials, the activator ions 

partly occupy the metal sites and luminescence can be observed. In order to obtain phase-pure 

products, such a broad synthetic approach can be unfavorable due to the likely formation of 

competing products with similar structures and similar chemical composition. This also applies for 

the reaction of La(NH2)3, LaF3 and BaH2 with “Si2(NH)3 · 6 NH4Cl” at 1600 °C in a radio-frequency 

furnace, which leads to an heterogeneous microcrystalline product (see Fig. 1). Yellow (Eu2+-doping) 

or green (Ce3+-doping) luminescence of the majority of the product can be correlated to new 

oxonitridosilicates because the emission of rare-earth doped BaSi7N10 is significantly shifted towards 

blue emission.1  

 

Fig. 1: (a) Powder X-ray diffraction pattern of heterogeneous sample with side phase BaSi7N10 (black tick 

marks). The majority of the reflections belong to unit cell parameters of new oxonitridosilicates identified by 

TEM (red and blue tick marks). (b) SE image of heterogeneous product containing large BaSi7N10 crystals 

besides new microcrystalline and related phases type 1 and 2.  
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The structure determination of the new phases using common laboratory methods was limited, 

because of reflection overlap in powder diffraction patterns and small size of the crystals < 10 μm. 

Following the method combination discussed in Chapter 2, the combined analysis of SAED patterns 

as part of TEM pre-characterization and reciprocal lattice sections obtained from synchrotron X-ray 

data showed that systematic absences were incompatible with any space group. It was likely that the 

vast majority of the crystals were intergrown on the micrometer scale. With further electron-

diffraction experiments, two sets of lattice parameters were found (type 1: hP a = 17.5 Å, c = 22.7 Å, 

type 2: hP a = 20.2 Å, c = 22.7 Å, see Fig. 2). The 2mm and 6 symmetry of the SAED patterns along 

zone axis <100> and [001], respectively, match the hexagonal P lattices and suggest Laue class 6/m. 

The same c parameter and relations a2   √3 a1/2 and 3V2 = 4V1 associate the two unit cells. As the 

viewing directions with respect to the two different unit cells were derived (e.g. along zone axis [110] 

and [120]), superposition of SAED patterns of type 1 and type 2, explain the experimental diffraction 

patterns of intergrown crystals (see Fig. 2 a). Reflection positions match those of the simulated ones. 

EDX revealed the two oriented intergrown phases as barium-lanthanum oxonitridosilicates with 

different Ba:La:Si ratios (type 1 ≈ 1: :4 and type   ≈ 1:3:6). Subsequently, individual non-intergrown 

single crystals with dimensions of maximum 1.5 x 10 x 1 µm3 of both types were identified on TEM 

grids. Comparable TEM investigations on a product using SrH2 instead of BaH2 as starting material 

revealed a third new phase with similar hexagonal metrics to type 2 but Sr instead of Ba (a = 19.6 Å, c 

= 21.9 Å). For the structure models of the two related oxonitridosilicate frameworks sub-micron 

synchrotron X-ray diffraction data were collected (ID11, ESRF, Grenoble). The pre-characterized 

microcrystals were re-located using X-ray fluorescence scans.  

Because of the complexity of the interrupted, centrosymmetric 3D frameworks of vertex- and edge-

sharing Si(O,N)4 tetrahedra, a tentative structure model of type 1 can be described most properly 

assuming two different slab-like building blocks, stacked parallel to <001> (see Fig. 3a: A light green 

and B green). The pronounced tendency towards intergrowth is due to very similar building blocks in 

both structures. Model one shows an equal top and bottom tetrahedra building block, represented 

by A in Fig. 3. It is built up from achter ring cages and in their centers distorted trigonal OLa5 

bipyramids (see Fig. 3b light green and 3e structural elements I in pink). Building block B (see Fig. 3 c-

d) is the reason for the difference between the two structure models. For the structure of type 1 the 

building block B (see Fig. 3 c) consists of pairs of branched vierer rings (structural motif II green), 

dreier rings (structural motif III orange) and pairs of tetrahedra (structural motif IV blue). Although 

the structure model of type 2 is not finally refined, great similarity between the structure models are 

apparent because some structural motifs are present in both structures.  
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Fig. 2: BF image and SAED tilting series of an intergrown crystallite (a top) and corresponding superposition of 

the SAED simulations of the lattice points (based on tentative structure models, derived from X-ray data, a 

bottom) with unit cells of two new and related hexagonal phases highlighted; type1 (blue) and type2 (red). 

Individual pre-characterized crystallites with unit cell parameters and EDX of the two new oxonitridosilicates, 

each a BF image and a representative SAED pattern (b). The superposition of type 1 and type 2 patterns results 

in the patterns of the intergrown crystal (highlighted in violet). Comparison of reciprocal lattice section of an 

intergrown crystal including a schematic pattern decomposition into the two lattice types (c) with SAED 

patterns of different individuals (d); all viewed along [001]; Dimensions of the lattice types highlighted in blue 

and red. 
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Fig. 3: Crystal structure of type 1 phase with building block A and B highlighted in green and light green (a). 

Substructure of the building blocks (b and c). Individual structural motifs I-IV (d). 

STEM-HAADF at atomic resolution viewed along the special directions can support the structure 

refinement of type 2 (a, c, d). Z-contrast images along zone axis [100] showed similar heavy atom 

positions of the type 2 La/Ba and La/Sr oxonitridosilicates and suggest isotypic crystal structures (see 

Fig. 4 a, b). The distribution of elements with low scattering contrast such as the combinations N/O 

and Ba/La can be analyzed with bond-valence sum calculations. Similar to the approach described in 

chapter 2.2 and 5.1 green luminescence La3-xBaxSi6N11-xOx:Ce3+ with x ≈ 0.1 crystallizing in the 

La3Si6N11 structure type2,3 was found and characterized. 

 

Fig. 5: Fourier-filtered Z-contrast STEM-HAADF images of Ba/La oxonitridosilicate type 2 along special direc-

tions showing the projection of the heavy atoms (a, c, d). The contrast distribution (metal cation positions) 

along [100] of (a) match the one of the isotypic La/Sr oxonitridosilicate (b). 
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5.2 Phase identification and unit-cell parameter of new oxonitridophosphates 

Lukas Neudert, Dominik Bauman, Simon D. Kloß, Wolfgang Schnick, Oliver Oeckler 

unpublished results 

Rapidly growing databases like the Inorganic Crystal Structure Database with around 4000 additional 

entries per year underline the importance of structure determination on materials science. The most 

common method to elucidate the crystal structure of novel solids is single-crystal or powder X-ray 

diffraction. However, these methods are often limited by the size of the obtained single crystals or 

phase purity of powder samples. Other analytical methods or combinations thereof are more 

practical to overcome these challenges than the optimization of the synthesis conditions. As electron 

microscopy links imaging, diffraction and chemical analysis via BF, SAED and EDX, it is possible to 

identify different phases in heterogeneous microcrystalline samples. With the help of chemical 

composition and initial unit-cell parameters, it is possible to compare the product with databases or 

to identify the corresponding phases as new ones.  

 

Fig. 1: New microcrystalline phases discovered by combination of SAED and EDX; a) BF image with averaged 

EDX, indexed SAED pattern of a monoclinic PON modification (a = 26.6 Å, b = 4.8 Å, c = 21.4 Å, β = 123.3°). b) BF 

image with averaged EDX and SAED-tilting series of the first lanthanum oxonitridophosphate (monoclinic, a = 

14.0 Å, b = 7.1 Å, c = 41.4 Å, β = 97.7°).  
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The determination of the unit-cell parameters can be done manually with a SAED tilting series 

around one axis with a 90° angle. Such an approach was applied to identify two microcrystalline 

phases, obtained from high-pressure high-temperature synthesis. The first lanthanum 

oxonitridophosphate and a new monoclinic PON modification were found (see Fig. 1). Structure 

models were obtained using single-crystal datasets collected with sub-micron synchrotron beams 

(e.g. ID11, ESRF, Grenoble) of pre-characterized crystallites on TEM grids.4 HRTEM or STEM images 

could not be obtained at atomic resolution since the samples are beam sensitive.  

5.3 Formation of Superstructures in Tellurides 

Lukas Neudert, Juliane Stahl, Matthias Grotevent, Oliver Oeckler 

unpublished results 

TEM can be important for the elucidation of real-structure effects of many tellurides. In this context, 

a non-periodical stacking of layers along [001] or defect ordering and superstructure formation, 

seems to be likely for ferromagnetic Fe2.3GeTe crystallizing in the space group P3m1. The structure of 

Fe2.3GeTe is related to that of Fe3GeTe2 and Fe2Ge. Additional reflections in SAED pattern can be 

explained by double diffraction based on superimpose of laminar crystals. This effect causes Moiré 

patterns in HRTEM and additional reflections in the corresponding FT.5 No superstructure but a non-

periodic stacking of building units along [001] in correspondence to diffuse intensity along [001]* was 

found in Fe2.3GeTe (see Fig. 1).6  

Under ideal circumstances represented for example by simple or high symmetric crystal structures, 

atomic resolved STEM-HAADF can directly visualize atom positions, from which structure models can 

be derived or confirmed. STEM-HAADF is powerful especially if the samples are heterostructured or 

individual domains are only extended over a few nanometers.7-10 By SAED tilting series and STEM-

HAADF images along the special projection [110] (see Fig. 2), the rocksalt structure type in quenched 

Ge0.35Sn0.37In0.07Sb0.11Te is directly visible. The heavier Te atoms correspond to brighter contrast due 

to increased scattering power. Darker contrast corresponds to the mixed occupied site of 

Ge/Sn/In/Sb with vacancies. Furthermore, such quinary thermoelectrics show pronounced real 

structure effects after slow cooling.11  
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Fig. 1: TEM data of ferromagnetic Fe2.3GeTe: Plate-like crystal shape observed in STEM dark-field image (a), 

SAED with corresponding simulations and tilting angles, diffuse intensity along [001]* (highlighted in orange) 

(b), SAED and reciprocal lattice section both viewed along [001] (c), corresponding HRTEM and FT (d), both with 

additional reflections explained by double diffraction based on laminar crystals superimpose.  

 

Fig. 2: Directly observed rocksalt structure in Ge0.35Sn0.37In0.07Sb0.11: STEM-HAADF micrographs viewed along 

[110] zone axis (left). Z-contrast allows differentiation between Te atoms and mixed occupied cation sites. 

Enlargement (right) with structure projection of rocksalt-type with Te2- in red and cations in green.  

With the combination of electron diffraction and HRTEM a superstructure in Ge4In2Te7 was 

elucidated qualitatively and a trigonal structure model was constructed (see Fig. 3). Additional 

reflections in SAED pattern and HRTEM images with pronounced vacancy ordering in different 

domains of quenched Ge0.571In0.286Te (Ge4In2Te7) revealed a fourfold superstructure of the rocksalt 

type along one of its <111> directions comparable to those of other tellurides like Ge3MnSb2Te7 or 

Ge3.25Sn1.1Sb1.1Te6.12-14 As SAED provides the dimensions of the lattice parameters and HRTEM 

illustrates the remaining “cubic”  BC stacking sequence of the Te atoms, a rhombohedral structure 

model in space group R3m with a ≈ 4.23 Å and c ≈ 41.1 Å could be derived. The model consists of 
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three slabs each with four anion and three cation layers. The slabs are separated by vacancy layers 

(see Fig. 3g). Simulated and superimposed SAED patterns match the experimental diffraction pattern 

assuming the superposition of twin domains in Ge4In2Te7 compared to similar observations described 

for Ge0.286Sn0.286In0.143Sb0.143Te.11 

 

Fig. 3: Structure model of quenched Ge4In2Te7 (Ge0.571In0.286Te) derived from TEM: trigonal superstructure of 

rocksalt type: HRTEM images (a) and corresponding Fourier transforms of different regions (b, d) and SAED 

pattern (e) indicating the possible superposition of three (or more likely, four) different regions corresponding 

to individual twin domains. Simulated SAED pattern as superposition of two domains (f) along trigonal [100] 

which refers to one of the rocksalt type lattice´s <111> directions. Fourier filtered enlarged HRTEM image 

shows ABC stacking of the Te atoms around the vacancy layer (d). Combined with the periodicity of 13.7 Å 

taken from SAED a long-range ordered trigonal structure model in space group R3m is likely (atrigonal = acubic/√    

d002∙ /√    ( .99 Å∙ )/√    4.23 Å and ctrigonal = 3·4·dcubic111 = 12·3.42 Å = 3·13.70 Å = 41.10 Å). Projection and 

crystallographic data of the constructed superstructure model of Ge4In2Te7 (g). 
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6 Conclusion and Outlook 

6.1 Complex oxonitridosilicate and oxonitridophosphate frameworks 

In this thesis, diffraction and imaging techniques using X-rays and electrons were adopted 

synergistically to handle challenging cases of structure determinations of nitride networks. With the 

efficient combination of SAED, STEM, EDX and microfocused synchrotron X-ray diffraction, 

microcrystalline and heterogeneous samples no longer prevent the structural elucidation of new 

compounds. The drawbacks of a general high-temperature synthesis using reactive starting materials 

for (oxo)nitridosilicates were overcome by the efficient methodical combination. This also applies to 

the (oxo)nitridophosphates presented in this thesis which were obtained from high-temperature and 

high-pressure synthesis involving small amounts of product, occasionally of poor crystallinity.  

During this work, TEM was the starting point for the discovery and structural characterization of 

several microcrystalline (oxo)nitridosilicates and (oxo)nitridophosphates. In addition, it was 

important for supporting structure refinements and structure confirmation. Even for intergrown 

microdomains of structurally related phases, TEM investigations yielded the unit cell parameters, 

provided further symmetry information, and disclosed sum formulas of recently identified 

compounds. Subsequently, microfocused X-ray synchrotron radiation enabled the collection of 

accurate structural data, which allows precise, state-of-the-art structure determination of chemically 

and structurally complex nitrides. When isotypic Ba/La and Sr/La oxonitridosilicates are found, the 

unequivocal assignment of Sr and La the subsequent transfer to the assignment of Ba and La 

positions is possible. In principle, the joint characterization of TEM and microfocused X-ray diffraction 

allows all steps of phase identification, structure determination as well as its confirmation on only 

one microcrystal coming from a powder sample. For chemists, this approach can be a powerful 

opportunity to identify and characterize new compounds with less laborious synthesis, even in cases 

of adverse product quality. This method can be considered as further development of the single-

particle-diagnosis approach1 extended to crystallites with small scattering volume < 1 μm3. The small 

scattering volume of the La24Sr10.58[Si36N72]O7.16F6.84 needles required the use of intense synchrotron 

radiation. The latter might be substituted in the future by electron diffraction tomography as it has 

been shown for nanorods.2 Although structure determinations based on powder X-ray or electron-

diffraction tomography data have the advantage that no synchrotron with microfocused beam is 

needed, these methods frequently render less precise structure models. However, missing structural 

information can be compensated by using the rough structure model from electron data and 

combining them with additional information from Rietveld refinements or with theoretical 
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calculations.3,4 Precise 2D and 3D structure models can be obtained with the advancement of 

electron crystallography and its combination with DFT methods.5-7  

The knowledge of crystal structures is the first step toward the derivation of syntheses for phase-

pure products or structure-property relation for a systematic tuning of intriguing properties, like 

luminescence. The demonstration of a theory-experiment relation appears to be worthwhile purpose 

and was achieved by the synthesis and structural elucidation of La24Sr10.58[Si36N72]O7.16F6.84. Its highly 

symmetric AB2 framework topology has been predicted theoretically, but it was now synthesized and 

characterized. For future synthesis in order to obtain prospective phosphors, this nitridosilicate oxide 

fluoride can act as a starting point for a broad structural and chemical plurality of metal containing 

rigid nitridosilicates with a structure related to the one of La24Sr10.58[Si36N72]O7.16F6.84. Further ion-

exchange or substitution experiments, which can involve the rigid anionic network as well as the 

incorporated counter ions appears to be promising. The overall charge is adjustable by changing the 

O/F ratio. From several SiAlONs it is known that Si can be substituted by Al.8 Furthermore, La3+ / Sr2+ 

can be exchanged by Na+, Ca2+ or other lanthanides including the doping of the activator ions Eu2+ 

and Ce3+. Such chemical variations can be documented by Z-contrast imaging using STEM-HAADF. 

Thus, the position and the distribution of the different ions can be directly visualized. With the latter, 

conclusions about changed activator-ion concentration and distribution in relation to changed 

luminescence properties might be drawn.  

In addition to the structural similarities of (oxo)nitridosilicates and (oxo)nitridophosphates, this thesis 

also shows similar challenges in their synthesis and structure determination. Thus, it is reasonable to 

apply comparable approaches to overcome obstacles on structure determination of 

(oxo)nitridophosphates. The combination of TEM and X-ray methods was examined on non-ideal 

samples of new nitridophosphates with complex structures. Starting from microcrystalline products 

from syntheses in the multianvil press the structural diversity of oxonitridophosphates is expanded 

by the identification and characterization of AlP6O3x(NH)3-3xN9 (x ≈ 0.33). This first aluminum 

imidooxonitridophosphate bridges the gap between imidonitridophosphates and oxonitrido-

phosphates. The motif of six corner sharing P(N/O/NH)4 tetrahedra in slightly different arrangements 

was observed in AlP6O3x(NH)3-3xN9 as well as in CaH4P6N12 and SrH4P6N12. This allows the suggestion 

that the prioritized formation of this motif helps to stabilize rigid imido-(oxo)nitridophosphate 

frameworks. The knowledge about their structural relations may open a pathway to a higher 

condensed compound represented by MIIP8N14. 

Structure models with unusual displacement parameters or models based on PXRD with very broad 

reflections or with several unknown side phases can give rise to doubts about the correctness of the 

structure determination. For such ambiguous cases like CaMg2P6O3N10, CaGaSiN3 as well as air and 

moisture sensitive CaMg2GaN3 and CaMg2Ga2N4, SAED-tilting series as well as HRTEM-defocus series 
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provide structurally relevant contributions for the final models. Thus, more crystal structures can be 

determined and analyzed leading to a better understanding of nitrides.  

The methodical diversity of TEM was applied to comprehensive and targeted investigations on the 

first non-alkali earth nitridophosphate Ce4Li3P18N35 with a degree of condensation of  > ½. The 

linking of SAED, STEM-HAADF imaging, EDX and EELS allowed for an elucidation of different structural 

features even on the sub-angstrom scale in two different domain types in the blue luminescent 

nitridophosphate. As the detection of small structural variations from an average structure model 

requires either strong interaction between probe and material or high brilliance of the detecting 

beam combined with a large crystal volume, TEM facilitated a targeted search of a superstructure of 

Ce4Li3P18N35. STEM-HAADF enabled the direct observation of Ce3+ vacancies or Ce3+ displacements, 

leading to a long-range periodic order in Ce4Li3P18N35. Structure refinements in a supercell or with a 

superspace group based on synchrotron X-ray data yielded the same qualitative superstructure 

model as the one derived from STEM. The displacements of the Ce2 atoms in some domains are 

responsible for the unusual displacement parameters of the average structure model based on 

diffraction data of the whole crystal. The major conclusion is that the structure of Ce4Li3P18N35 is 

stabilized either by forming a superstructure or by introducing vacancies on one Ce2 site. Due to the 

vacancies the compound has the sum formula Ce4−0.5xLi3P18N35−1.5xO1.5x with x ≈ 0.7 . This 

comprehensive structure determination presents the combination of aberration-corrected (S)TEM9,10 

and synchrotron diffraction driven to the edge of their state-of-the-art performance limits.  

Such a synergistic and efficient combination of transmission electron microscopy and synchrotron X-

ray diffraction for the structure determination of new nitrides, expands fundamental structural 

research significantly and pushes structure determination to a higher level of detail. This is all the 

more remarkable as the probed samples were not just model systems but rather novel complex 

compounds have been characterized. TEM presented in this thesis explains and displays structural 

phenomena of nitrides, where X-ray diffraction reaches its limits. The remark: “What I can see, I 

belive” can act as an overall conclusion for the T M within this thesis. Trial and error approaches are 

being replaced by the ability to visualize crystal structures of nitrides directly at the atomic scale.  

By means of such a combination of modern analytical instruments the understanding of intriguing 

properties known from nitrides, notably solid-state lighting, may be enabled. With the advancement 

and better accessibility of electron-diffraction tomography there is an additional method available in 

order to obtain precise structural data less elaborately, compared to synchrotron diffraction data.  
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6.2 Tin and indium containing tellurides  

Although the synthesis of tellurides does not rival the complexity of the nitrides presented 

previously, structure and property changes of thermoelectric tellurides based on different chemical 

compositions or different thermal treatment are difficult to identify and are even more difficult to 

translate into distinct structure-property relations. Investigations on the systems (SnTe)3-3x(In2Te3)3x 

and (GexSn1-x)0.8(InySb1-y)0.13 show the combination of laboratory and synchrotron X-ray methods with 

TEM in order to provide detailed structural analysis down to the angstrom scale. In addition to the 

knowledge of the average crystal structures, the description of real-structure phenomena is needed 

to understand their decisive influence on the thermoelectricity of the tellurides. As the chemical and 

structural complexity of ternary, quaternary or even quinary tellurides increases, diffraction as well 

as imaging techniques are required to illustrate different real-structure effects. The overall 

methodical link with measurements of physical properties allows an integral characterization. Thus, 

such combinations can help to optimize thermoelectric variables. In heterostructured thermoelectric 

materials, it is rewarding to characterize precipitates not only in their appearance, but also to 

determine their crystal structure. The results presented in this work are the basis for conclusions 

about successful material optimization. 

The formation of Sn-doped In-rich precipitates similar to In2Te3 with defect-sphalerite-type structure 

and pronounced short-range defect ordering embedded in an In-doped SnTe matrix seem to have an 

effect of lowering the phononic contribution to the thermal conductivity over the whole temperature 

range between 25 and 500 °C. The precipitates, which are endotaxially intergrown with the Sn-rich 

rocksalt-type matrix, picture the degree of disorder on the nm and µm scale. The insertion of 

vacancies on the cation sites and their partial ordering invokes increased disorder on the atomic 

length scale. In addition, it can be concluded that the characteristics of these heterostructures are 

more influenced by changing the In content than by various heat treatments. The potential of 

optimized heterostructured phases containing SnTe and In2Te3 are better described based on the 

conclusions of this thesis. Further co-doping,11,12 to achieve higher Seebeck coefficients and higher 

electrical conductivity may open new and more application-oriented research on tellurides 

containing Sn and In. Furthermore, such comparative studies extend the understanding of solid-state 

reactions, when not only the initial and the final state are considered, but structural and chemical 

changes within various influences are documented. The extension of the starting materials SnTe and 

In2Te3 with GeTe and Sb2Te3 for the high-temperature synthesis leads to increased miscibility and 

homogenous quaternary and quinary tellurides with predominantly average rocksalt-type structure. 

SAED and HRTEM document the pathway of differently pronounced defect ordering over a 

herringbone-like arrangement of vacancy layers to layer-like trigonal superstructures of the rocksalt 

type. This underlines the importance of TEM to elucidate superstructures, when laboratory powder 



6.2 Tin and indium containing tellurides 

226 

X-ray methods are limited.13 Resonant X-ray diffraction on trigonal layer-like 21R-Ge0.5Sn0.5SbInTe4 

and 9P-GeSnSbInTe5 revealed the cation distribution within the rocksalt-type slabs, separated by van 

der Waal gaps. Thus, the environment of finite vacancy layers in highly disordered phases is 

illustrated, resulting in an improved understanding of the formation of superstructures of the 

rocksalt type. Once more, the synergism of synchrotron X-ray diffraction, electron diffraction, HRTEM 

and spatially-resolved EDX turned out to be ideal combination for the investigation of such 

microscopic and nanoscopic effects. 

With respect to the thermoelectric properties, a trend towards nearly constant electrical conductivity 

combined with very low thermal conductivity over a large temperature range has emerged when Sn 

and In are present. A significant improvement of the Seebeck coefficients of the current quaternary 

and quinary tellurides by further changes in the element ratios and defect concentrations, predict 

reaching properties that are more seminal. 
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7 Summary 

In this PhD thesis, various challenges occurring during the discovery and the structure determination 

of new nitrides as well as the characterization of structure-property relations have been solved by 

means of combined X-ray and electron microscopy methods. The focus is on diffraction data based 

on electron beams, laboratory and synchrotron X-ray radiation as well as on atomic resolved TEM 

methods of imaging, and spectroscopy to analyze (oxo)nitridosilicates, oxonitridophosphates and 

tellurides. These combinations of methods proved to be particularly successful.  

Structure determination of nitride networks 

(Oxo)nitridosilicates doped with rare earth elements are well known as luminescent materials, e.g. in 

phosphor-converted LEDs. New phosphors are required in order to realize inter alia higher efficiency 

and higher color rendering indices for commercial LEDs. As luminescence properties are widely 

dependent on the crystal structure, precise structure determination of such phosphors is crucial. The 

syntheses of the (oxo)nitridosilicates, mentioned in this thesis, involve high-temperature conditions 

(T > 1500°C) of a radio-frequency furnace and utilize reactive nitrogen-rich materials in combination 

with metal hydrides and metal halogenides. This metathesis related approach yielded numerous 

products predominantly microcrystalline and heterogeneous. With the combination of SAED, STEM, 

EDX and powder X-ray diffraction it was possible to identify six new microcrystalline 

(oxo)nitridosilicates described in chapter two and five. Due to similarities between (oxo)nitride-

silicate and (oxo)nitridophosphate tetrahedral networks, similar approaches for the characterization 

of both stable compound classes are reasonable and were applied. 

La₃BaSi₅N₉O₂:Ce³⁺   A yellow phosphor with an unprecedented tetrahedra network; 

structure investigated by combination of electron microscopy and synchrotron X-ray 

diffraction 

Starting from multiphase products obtained from 

high-temperature synthesis, the microcrystalline and 

luminescent compounds La3BaSi5N9O2:Ce3+ were 

identified by the combination of EDX and SAED, 

yielding its sum formula and its metrics. This pre-

characterization was the basis for the data collection 

using microfocused synchrotron X-ray radiation and the subsequent structure determination of the 

orthorhombic oxonitridosilicate. La3BaSi5N9O2:Ce3+ crystallizes in space group Pmn21 (a = 9.5505(8), 
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b = 19.0778(16), c = 12.1134(9) Å and Z = 8) showing an interrupted framework that consists of 

vertex-sharing SiN4 and SiN2O2 tetrahedra. One quarter of the cation sites are split positions. HRTEM 

and Z-contrast STEM images confirmed the structure model of La3BaSi5N9O2:Ce3+ and highlighted 

anti-phase boundaries. Bond-valence sum calculations helped with the atom assignment. The high 

quality of this crystal structure determination is required in order to enable property tuning, as there 

is a sensitive correspondence between atomic environments and luminescence. The structure 

determination of La3BaSi5N9O2:Ce3+ by the combination of TEM and microfocused synchrotron X-ray 

diffraction is the first example yielding highly accurate crystal-structure data for the case of the large 

amount of more than 150 atoms with greatly differing atomic weight in the unit cell.  

 

Highly Symmetric AB₂ Framework Related to Tridymite in the Disordered Nitridosilicate 

La₂₄Sr₁₄₋₇ₓ[Si₃₆N₇₂](O₁₋ₓFₓ)₁₄ (x = 0.849) 

The challenges of the structure determination of 

La24Sr10.58[Si36N72]O7.16F6.84 are based on two cir-

cumstances. On the one hand because of its 

microcrystalline needle-shaped crystals and on the 

other hand due to the presence of cation vacancies 

combined with the fact that the ratio of charge and 

electron count, i.e. scattering power, is the same 

for La3+ and Sr2+. The refinement of La24Sr10.58[Si36N72]O7.16F6.84 is precise despite the small scattering 

volume of the crystals and the complexity of the nitridosilicate oxide fluoride. The latter crystallizes 

in a predicted highly symmetric AB2 framework (space group P63/mmc, a = 16.2065(3), c = 9.4165(1) 

Å, Z = 1) and the cavities of the hexagonal structure are filled with La3+, Sr2+ as well as O2- and F- ions. 

The framework is related to that of tridymite but differs in the orientation of the SiN4 tetrahedra. 

SAED confirms the hexagonal metrics, no superstructure reflections were detected. High-resolution 

Z-contrast STEM images yielded the projected heavy atom positions of La24Sr10.58[Si36N72]O7.16F6.84 for 

the confirmation of the structure model. The characterization of La24Sr10.58[Si36N72]O7.16F6.84 combines 

an advanced methodical approach with the structure determination represents theory-experiment 

relation.  
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CaMg₂P₆O₃N₁₀   A Quinary Oxonitridophosphate with an Unprecedented Tetrahedra 

Network Structure type 

CaMg2P6O3N10 was obtained from a combined high-temperature and 

high-pressure synthesis in the multianvil press. Unusual enlarged 

displacement ellipsoids and consequently anomalous interatomic 

distances may indicate an incorrect structure determination and 

justify a closer investigation with TEM. In the structure model of 

CaMg2P6O3N10 an unusually oblate Ca2 displacement ellipsoid was 

observed. SAED of CaMg2P6O3N10 confirmed its metrics, as 

determined by X-ray diffraction. HRTEM micrographs match the corresponding simulations based on 

the structure model, which lead to confirmation of the latter. The oblate Ca2 displacement ellipsoid 

was further explained by BVS. CaMg2P6O3N10 exhibits an interpenetrating network of two subnets 

build up by interconnected Friauf polyhedral, which are formed by twelve P(O/N)4 tetrahedra. The 

results on CaMg2P6O3N10 show how exceptional atomic environments can be explained.  

 

Puzzling Intergrowth in Cerium Nitridophosphate Unraveled by Joint Venture of 

Aberration-Corrected Scanning Transmission Electron Microscopy and Synchrotron 

Diffraction 

The first rare-earth metal nitridophosphate 

Ce4Li3P18N35 with a degree of condensation 

> 0.5 was synthesized by high-pressure 

metathesis starting from CeF3 and LiPN2. 

Ce4Li3P18N35 exhibits an unprecedented 

hexagonal structure (averaged model: 

space group P63/m with a = 13.9318(1) and 

c = 8.1355(1) Å, Z = 2). The cations Li+ and 

Ce3+ fill channels parallel [001] built up by 

triangular columns of 1
[(P12

[4]N2
[3]N24

[2])18−] units and a stacking of sechser rings with alternating up 

and down orientation of the P(N/O)4 tetrahedra. TEM revealed two intergrown domain types that 

differ slightly in composition and structure. In the first one, high resolution Z-contrast STEM 

micrographs directly revealed a distortion of ≈ 0.3 Å of the Ce  atoms along [001] explaining a 

threefold superstructure. The corresponding supercell was derived from SAED. For the quantitative 

interpretation of these very weak reflections, synchrotron radiation was used. The superstructure 
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model was refined in a supercell as well as in an equivalent commensurate (3+2)-dimensional 

description in the superspace group P63(α,β,0)0(−α−β,α,0)0. The second domain type with the sum 

formula Ce4−0.5xLi3P18N35−1.5xO1.5x (x ≈ 0.7 ) shows slightly higher oxygen content, which correlates with 

Ce2 vacancies. The vacancies were directly observed in high resolution Z-contrast STEM micrographs, 

showing their random distribution. EDX was used to determine the different compositions of the 

domains and EELS confirmed the absence of Ce4+. Apart from these special structural features, 

Ce4Li3P18N35 exhibits blue luminescence peaking at 455 nm and shows paramagnetic behavior. 

Ce4Li3P18N35 marks a outstanding example of how thorough investigations at the state-of-the-art 

limitation of TEM and X-ray diffraction can detect structural deviations on the sub-Å scale as well as 

extend the scope of nitridophosphates with desired properties like luminescence.  

 

An unusual nitride network of aluminum-centered octahedra and phosphorus-centered 

tetrahedra and structure determination from microcrystalline samples 

In contrast to (oxo)nitridosilicates, few oxo-

nitridophosphates have been synthesized to 

date. This is due to fundamental difficulties 

concerning their synthesis and often the 

poor crystallinity of the reaction products. In 

terms of structural characterization and new 

structures, comparable questions arise. 

Electron microscopy in combination with X-ray structure determination, identifies new phases and 

helps to uncover properties that are associated with special structural features. AlP6O3x(NH)3-3xN9 

with x ≈ 0.33 was synthesized as a microcrystalline product under high-pressure and high-

temperature conditions in the multianvil press. Electron microscopy yielded the monoclinic unit-cell 

parameters and the sum formula. EELS confirmed the N:O ratio. Microfocused synchrotron X-ray 

diffraction and solid-state NMR were applied to determine the crystal structure of AlP6O3x(NH)3-3xN9 

(space group P21/m with a = 4.7566(2), b = 8.3266(3), c = 10.6298(7) Å and β = 101.601(4)°, Z = 2). 

The structure consists of discrete AlN6 octahedra that interconnect imidophosphate layers. The 

network topology is unprecedented but related to that of MP6H4N12 with M = Ca, Mg. The structural 

characterization of AlP6O3x(NH)3-3xN9 by the synergism of high-pressure, high-temperature synthesis, 

TEM and microfocused synchrotron X-ray diffraction overcome the individual methodical 

shortcomings thus, an efficient approach towards new nitridophosphates and their characterization 

is presented.  
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Unpublished nitrides 

The combination of electron microscopy and microfocused synchrotron X-ray diffraction was applied 

for the identification of additional new nitrides. Two coherently intergrown barium lanthanum 

oxonitridosilicate oxides were identified and characterized with TEM. They both show hexagonal 

symmetry and exhibit nearly the same c lattice parameter and a 3:4 ratio between the unit cell 

volumes. Single-crystal data of other non-intergrown and pre-characterized crystallites were 

collected using sub-micron synchrotron beams. The two related crystal structures can be described 

as sandwich-like stacking of building blocks that contain vertex and corner sharing Si(O/N)4 

tetrahedra, forming complex connection patterns. The cations of Ba, La and Sr, in the case of an 

isotypic compound also found by TEM, are located in the cavities of the framework. HRTEM and high 

resolution STEM-HAADF provide helpful data for the refinement and confirmation of the structure 

models. A fourth La/Ba oxonitridosilicates was identified and pre-characterized by TEM. Synchrotron 

X-ray data revealed that the green luminescent La3-xBaxSi6N11-xOx:Ce3+ (x ≈ 0.1) crystallizes in the 

La3Si6N11 structure type. With regard to oxonitridophosphates, a new monoclinic PON modification 

and the first lanthanum oxonitridophosphate have been detected and described by means of 

electron diffraction and EDX.  

 

Thermoelectric tellurides  

One of the key motivations of the present research is to provide valuable contributions to energy-

converting materials or energy savings in any form. Besides fundamental research on rigid nitride 

networks that may find applications, e.g. as phosphors, the optimization of thermoelectric materials 

is equally relevant for energy-saving materials. Prominent binary chalcogenides like PbTe, GeTe, 

SnTe, SnSe or In2Te3 and Bi2Te3 are ideal starting candidates to form different ternary, quaternary or 

quinary thermoelectrics with individual beneficial properties. The mutual dependence of 

thermoelectric properties and structural changes is the main subject of the investigations on 

tellurides in this thesis. Since GST materials and their substitution variants are promising and 

thoroughly investigated thermoelectric materials, they are an initial compound class for comparative 

material optimization with respect to the thermoelectric figure of merit. Substitution experiments on 

GST involve changing the vacancy concentration or ways of introducing disorder. GST-related 

compounds are examples that show differently pronounced real-structure phenomena like disorder 

leading to superstructures, short-range ordering of defects, or non-periodic stacking of building units, 

all of which effect thermoelectricity.  
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Experiences up to now have shown that the supplement of X-ray diffraction methods by TEM in 

relation to thermoelectric measurements, allows the correlation between variable thermoelectric 

properties and structural changes at the same time, illustrated by electron diffraction, HRTEM as well 

as spatially-resolved EDX. With this, TEM helps to document and understand structural changes of 

compounds in the system Ge/In/Sn/Sb/Te, even if no significant increase of the thermoelectric 

performance is observed. 

 

Structural variations in indium tin tellurides and their thermoelectric properties 

Ternary phases with the nominal composition 

(SnTe)3-3x(In2Te3)3x with 0.136 ≤ x ≤ 0.75 were 

obtained by fusing the elements. By means of 

TEM and PXRD a Sn-rich defect rocksalt type 

and an In-rich defect-sphalerite type phase 

were characterized. The relationship be-

tween the nominal composition and the 

observed phase fractions was elucidated. The 

low solubility of In2Te3 in SnTe and vice versa leads to heterostructures with endotaxial intergrowth 

of the Sn-rich and the In-rich nanodomains or nanoscaled precipitates of In-rich phases in the Sn-rich 

matrix. HRTEM and STEM EDX mapping illustrates this result. In addition to various vacancy 

concentrations associated with the In content, quenching or slow cooling of the samples has a major 

influence on the characteristic and the pronunciation of the real-structure effects, shown by 

temperature-dependent PXRD, HRTEM, and STEM. Such wide-ranging investigations are an elegant 

way of quantitatively evaluating the heterostructuring and its influence on the properties of 

(SnTe)3-3x(In2Te3)3x. Randomly distributed defects or short-range ordered defects observed for 

quenched (SnTe)3-3x(In2Te3)3x with 0.136 ≤ x ≤ 0.3 can enhance phonon scattering and thus, very low 

thermal conductivities κph << 2.0 W m-1 K-1 are measured. Slow cooling instead of quenching of 

(SnTe)3-3x(In2Te3)3x phases with band gaps < 0.16 eV enhances thermoelectric ZT values to a maximum 

of 0.55 for x = 0.136 below 450 °C.  
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Structural Complexity and Thermoelectric Properties of Quaternary and Quinary Tellurides 

(GeₓSn₁₋ₓ)₀ˌ₈(InᵧSb₁₋ᵧ)₀ˌ₁₃Te with 0 ≤ x, y ≤ 1 

In order to study the influence of combined 

Ge and Sb substitution by Sn and In on 

structure-property relations, various ternary, 

quaternary and quinary thermoelectric 

tellurides were investigated. Starting from 

In2Te3, SnTe, GeTe and Sb2Te3, p-type 

semiconducting phases with the sum formula (GexSn1-x)0.8(InySb1-y)0.13Te with 0 ≤ x,y ≤ 1 were 

obtained by fusing the elements in silica ampoules. Depending on the Ge/Sn and Sb/In ratios, the 

solid solutions of the metastable phases show defect rocksalt-type structure that obey Vegard´s law. 

TEM and synchrotron X-ray diffraction revealed the tendency towards forming trigonal structures 

with increasing Te content. TEM showed the severe impact on various degrees of nanostructuring 

based on such substitutions as well as thermal treatment. For quenched Ge0.286Sn0.286In0.143Sb0.143Te, a 

long-range ordered superstructure of the rocksalt structure type (space group R3m, a = 4.2676 Å, c = 

52.267 Å) with a stacking of 27 atom layers including a twin-like superposition of differently 

orientated domains was derived from SAED, HRTEM and PXRD. Similar investigations on quenched 

Ge0.571In0.286Te (Ge4In2Te7) revealed a superstructure with 21 atom layers (space group R3m, a ≈ 4.23 

Å and c ≈ 41.1 Å). Resonant X-ray diffraction data yielded structure models and the elemental 

distribution of 21R-Ge0.5Sn0.5InSbTe4 (space group R3m, a = 4.2454(2) Å, c = 41.162(2) Å) and 9P-

GeSnInSbTe5 (space group P3m1, a = 4.2624(1) Å, c = 17.3730(6) Å). Ge2+ and In3+ concentrated in the 

center of the slab-like building blocks and Sn2+ and Sb3+ prefer the positions near to the van der Waal 

gaps, which separate the building blocks related to the rocksalt type. As they influence thermo-

electric properties, differently pronounced nanostructures like randomly distributed or short-range 

ordered vacancies for (GexSn1-x)0.8(InySb1-y)0.13Te samples are illustrated by HRTEM. The combined 

presence of Sn and In significantly increases electrical conductivity while keeping thermal 

conductivity low. Lowering the phononic contribution to the thermal conductivity by introducing 

nanostructures like defect layers with limited lateral extension perpendicular to <111>cubic, is one 

approach for optimizing ZT as applied in Ge0.4Sn0.4In0.067Sb0.067Te. The combination of physical 

characterization, laboratory X-ray, and resonant X-ray diffraction as well as TEM, links different 

analytical methods and allow integral characterization of quaternary and quinary tellurides. These 

contributions constitute more than an overview of the variety of structural features of In and Sn 

containing tellurides, associated with their individual thermoelectric properties.  
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