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Summary

Thermodynamic models are a key tool to investigate transcription control in the segmen-
tation of Drosophila. By modeling the binding of transcription factors to DNA sequences
and their e�ect on transcription initiation, thermodynamic models predict expression pat-
terns directly from the enhancer sequence, given the binding motifs and concentrations of
all relevant transcription factors (TFs). However, many parameters of the model are im-
possible to measure, e.g. the interaction strength between the TFs and the core promoter.
Hence, it is necessary to estimate these parameters by training the thermodynamic model
on known data, i.e. to �t the model predictions to already measured expression patterns of
known enhancers. The quality of the parameter training result, evaluated on independent
test data, indicates how well the model recapitulates the biological measurements, which
can help us to improve our understanding of the underlaying mechanisms of transcrip-
tion control. Therefore, proper parameter training is a crucial step for the construction of
thermodynamic models.

In this thesis, I develop a thorough parameter training setup that uses the limited
amount of available training data e�ciently and reduces parameter over�tting signi�cantly.
This optimized training setup applies a global parameter training algorithm, a method to
arti�cially increase the amount of training data, called data augmentation, and parame-
ter penalties, which is a technique to limit over�tting. I apply the novel training setup
to expand the scope of thermodynamic models of Drosophila segmentation considerably
by incorporating additional TFs into the model, and to investigate many aspects of tran-
scription control in greater detail than it was possible before. Among these topics are the
speci�city of TF binding motifs, the nature of TF cooperativity and DNA accessibility.
With the help of the here developed impact score, I assess the in�uence of all relevant
TFs in silico, delineate the cooperativity range of the key TF bcd, and determine the
importance of weak binding sites. Finally, I develop and discuss two alternative models
of transcription control that lack the prediction quality of thermodynamic models, but,
nevertheless, give valuable insights into the architectural principles of enhancers.

This project is part of a larger e�ort to advance our current understanding of transcrip-
tion regulation by reconstructing the segmentation network of Drosophila in silico. The
results of this thesis facilitate future modeling e�orts by optimally leveraging the available
data as well as by improving our understanding of thermodynamic models.
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Part I

Introduction





Chapter 1

Overview

The building plan of an organism is encoded in its genome in the form of genes. Yet,
the gene sequences are only a part of the genomic information. Not all genes are needed
and, therefore, active at the same time. As relevant as the gene sequence is the regulatory
information that controls when and where the gene gets activated or repressed according
to the requirement of the organism. Controlling gene expression enables organisms to react
to external and internal stimuli, and adapt to environmental changes. Furthermore, pre-
cise gene regulation is fundamental to metazoan development, during which the organism
creates a complex system of di�erent tissues and cell types, although all its cells carry
the same genome. In fact, gene sequences are often conserved over remarkably long evo-
lutionary timescales [1] and variations between related species derive from changes in the
regulatory code [2, 3, 4].

One crucial form of gene regulation is transcription control, which regulates the initi-
ation of mRNA production and stands therefore at the starting point of gene activation.
Transcription control is especially important for development and cellular di�erentiation.
It is reasonable to assume that the organismic complexity is connected to the complexity
of transcription control [5, 6]. The information that controls gene expression is encoded in
the genome, often in proximity to the coding region of the gene.

In eukaryotes, spatio-temporally controlled genes are not active by default. They get
activated by enhancer elements, also called cis-regulatory modules (CRMs) that recruit
the polymerase to the genes' core promoter. These enhancers are regulatory regions of the
genome, which are typically between 100bp and 3kb long. A single gene can be regulated
by multiple enhancers located in its proximity or in its introns. Likewise, an enhancer,
taken out of its native context, drives expression of promoters in its vicinity. By fusing it
to a reporter construct - a signaling protein with a suitable promoter (hsp70 + LacZ)- one
can measure the enhancer's inherent expression pattern.

The information that an enhancer carries is encoded in its sequence and the associated
epigenetic modi�cations. Transcription factors (TFs) read out the information by binding
to speci�c sites (typically 8 bp to 16 bp long) in the enhancer, which they recognize
based on a DNA sequence motif. TFs can be activators, which promote gene expression,
or repressors, which either prevent polymerase recruitment directly or inhibit activator
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function. The combined input from activators and repressors - integrated and transmitted
by the mediator complex - de�nes the expression pattern of the enhancer. Some TFs appear
to have a dual function as activator and repressor depending on the context in which they
bind; however, details are the subject of ongoing research, e.g. [7, 8].

There is some controversy on the degree of TFs interactions in one enhancer [9]. Re-
portedly, TF bind cooperatively to the DNA, either by nucleosome displacement [10, 11],
by protein-protein interaction [12], or, alternatively, DNA bending [13] and allosteric in-
teractions via DNA torsion [14]. Additionally, short-range repression, the local inhibition
of activators by a repressor, can be seen as a form of TF interaction although antagonistic
in nature [15]. Either way, TF interactions shape the architecture of enhancers. However,
little is known about their actual range or whether certain binding site orientations are
preferred.

In the language of transcription control, the enhancers function as sentences; they
can stand on their own and carry self-contained meaning. The words that assemble the
sentences are the TF binding sites. They, too, carry information, but usually do not
act individually and are context dependent. One focus of this thesis is to expand our
knowledge of the grammatical rules that govern the integration of the TF binding sites
and their interactions among each other as well as with the core promoter.

A number of reasons render the language of transcription control di�cult to decipher.
Unlike human languages or coding regions of genes, transcription control is fuzzily de�ned
on multiple levels. First, TFs recognize their binding sites very unspeci�cally. Even multi-
ple deviations from the consensus motif do not necessarily inhibit binding. Spelling errors
in the words are the norm rather than an exception. Due to their unspeci�c nature, TF
binding sites are distributed ubiquitously over the genome. Second, enhancers do not have
a clearly de�ned start or end. The best way to identify enhancer sequences is to search
for clusters of TF binding sites in regions of open chromatin [16, 17]. Furthermore, the
rules of site integration are very di�cult to grasp and �exible in nature [9, 18]. Little is
known about site spacing constraints or the range of site interactions. This fuzzy nature
of transcription control together with a high level of redundancy leads to a high functional
robustness even under substantial sequence divergence [19, 20].

The paradigm on which this thesis concentrates is the body segmentation of Drosophila
melanogaster embryos [21, 22]. The network consists of a cascade of TFs, which form
increasingly complex patterns and ultimately specify 14 parasegments, see �gure 1.1 left.
During the �rst 2.5 h of development, the Drosophila embryo undergoes 13 cycles of nuclei
division without membrane formation. The missing compartmentalization enables di�usion
of the maternally provided TFs, which is crucial for gradient formation and the evolutionary
adaption to di�ering egg-sizes [23]. The maternal TFs are mostly activators, which form
broad gradients along the anterior-posterior (AP) and the dorsal-ventral (DV) axes of the
egg, breaking the initial body symmetry, and starting the zygotic expression of gap genes.
These gap factors are expressed in broad domains and function mainly as short-range
repressors. During the blastoderm stage, at the onset of cellularization, maternal and gap
genes regulate the expression of pair-rule genes, which are typically expressed in seven thin
stripes, and also late gap genes. Typically, multiple enhancers control a single pair-rule
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or gap gene, each responsible for only one or two stripes. Some expression domains are
accounted for by more than one enhancer, further increasing the robustness of the system.
Their combined input forms the full expression pattern of the target gene in an additive
fashion. Further downstream of the cascade are segmentation polarity and homeotic genes,
which provide an even �ner layout of the embryo.

Figure 1.1: (Left) A cascade of TFs de�nes the map of segmentation for the anterior-
posterior axis in Drosophila embryos. (Right) Multiple enhancers control expression
of the pair-rule gene eve. Depicted as an example: a combination of broad activation
and precise repression delineates the expression of stripe 2. (Both illustrations are
unpublished �gures for presentation purposes.)

Anterior-posterior, AP, pattern formation during cellularization is a widely used paradigm
of transcription control for multiple reasons. First, the segmentation network is mostly
driven by transcription. Encoded in the enhancers is the full information on the formation
of gap and pair-rule patterns. Hence, it is feasible to construct a model of gene regula-
tion solely based on the DNA sequences of the enhancers. Neither post-transcriptional
regulation nor di�usion in�uences the spatial pattern of promoter expression substantially
[24]. Second, the events during segmentation are highly precise and robust both in space
and time. Although fundamentally stochastic in nature [25], the resulting patterns are
reproducible and can be modeled without noise by statistical frameworks. Third, the
segmentation cascade has been studied extensively. Countless knock-out experiments have
identi�ed all major factors in the system and explored how they a�ect segmentation. There
is an abundance of data about these TFs, their distribution, binding motifs, etc. as well
as about the enhancers and their expression. Drosophila, in general, has been a model or-
ganism for decades, with a fully sequenced genome for D. melanogaster and eleven closely
related species available. Finally, Drosophila embryos are a convenient paradigm. Com-
prised in one embryo is a multitude of TF concentrations in parallel, making a comparative
study of various conditions and levels of input possible in one experiment. Throughout
the thesis, the focus will be on relative di�erences rather than absolute values, thereby cir-
cumventing the problem that exact protein numbers are rarely known and more complex
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to model.

This thesis aims at recreating transcription control in silico in order to understand it.
The modeling framework of choice is a version of sequence-to-expression models, which are
also called thermodynamic models because their approach is rooted in statistical physics,
e.g. [15, 26, 27, 28]. Instead of modeling the segmentation in a coarse and simpli�ed
manner, thermodynamic models account for single TF binding events and incorporate
many mechanistic details like cooperative binding and the quality of binding sites. This
makes these models much more complex, and therefore more di�cult to construct, but
allows for a deeper understanding of the rules governing transcription control. In summary,
thermodynamic models predict expression patterns of enhancers from their sequence, with
the help of TF concentration pro�les and binding speci�cities. The model used in this
thesis is a version of GEMSTAT [28], adapted to greater performance and with additional
analytical features.

GEMSTAT models repressors like activators. The transition between a weak repressor
and a weak activator is continuous. A parameter, called the activatory potential, de-
termines not only the in�uence of the TF on the expression level but also its role. An
activatory potential above \beta = 1.0 indicates an activator, a value below indicates a re-
pressor. While this approach helps to simplify the model, it does not depict the workings
of repression. Most repressors in the early segmentation network a�ect activator binding
locally rather than the polymerase directly [29]. Hence, the last chapter of this thesis
explores alternative models of repression.

Unfortunately, many parameters needed to model transcription control, like the acti-
vatory potential or the absolute binding a�nity of the TFs, are di�cult or even impossible
to measure. These parameters have to be learned by �tting the model to known data, a
procedure that is called parameter optimization. A central element of optimization is the
quanti�cation of prediction quality in the form of the objective function, which measures
how closely the model prediction resembles the measured data. A lower objective func-
tion score indicates a better model �t. Especially when the model has many parameters,
the task of �nding a good parameter optimum is not trivial. There are many di�erent
optimization algorithms, which di�er in their strategy to navigate the parameter space
e�ciently.

A good model �t on the training data does not automatically imply a good model in
general. One must always consider over�tting. Complex models with many parameters
have an advantage during parameter training because they are more �exible and can better
adapt to the data. This �exibility makes them prone to assign too much meaning to
random noise in the data. For instance, a speci�c binding site con�guration, which is
present in only one enhancer, is most likely a random occurrence instead of a functional
unit. The di�erence between a good and an over�t model is that the former predicts unseen
data well1 because it distinguishes between general and random features in the data. In
other words, a good model generalizes well. A key to high-quality predictions is to make

1As indicated by a good test score, i.e. the objective function score on test data, which was not used
during training.
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the exploitation of rare data features harder for the model. This, however, reduces the
possibility to explore the implications of these rare features and gain new insights into the
details of transcription control. For this reason, large parts of this thesis are dedicated
to the topic of model training and to �nd a good balance between model exploration and
preventing over�tting.

Thermodynamic models have been studied and applied for research for more than a
decade [15, 26, 27, 28]. But most publications emphasize only the application of the model
to data and comparably little e�ort is put into the training aspects of the model. Often,
the models are trained on small data sets and without proper Cross-Validation. However, a
thorough parameter training set-up, as well as an in-depth analysis of the parameter result,
are crucial for any modeling endeavor; not only for reproducibility but also in order to
distinguish more clearly between di�erent models and to analyze how the model works and
what drives the prediction. To my knowledge, only two publications concentrate on these
issues. Suleimenov et al. compared global and local parameter optimization techniques
and found that global techniques are superior in some cases [30]. However, their analysis
is based on arti�cial data. Dresch et al. performed a sensitivity analysis to �nd out which
parameters in�uence the prediction [31]. Both publications are based on a limited dataset
of small size. This naturally reduces the number of parameters that can be trained reliably.
I know of no publication that tries to measure additional training data or collect the data
that is already published.

In this thesis, I build on the result of preceding modeling e�orts and improve the
parameter optimization setup. I additionally broaden the data foundation by collecting
all available enhancers with measured expression pattern from the literature, more than
doubling the number of available enhancers. These e�orts improve the model predictions
substantially.

Improving the model's ability to predict unseen data is not an end in itself. The
fundamental goal of modeling is to illuminate the rules governing transcription control
as they are encoded in enhancers. A high prediction quality is merely an indication of
how strongly the model approximates reality because it learned generalizable rules. This
thinking is brought to an extreme when model validation is treated only as an afterthought
to prove the soundness of the model. Often, the main modeling e�ort uses the full dataset,
arguing that the focus lies on �nding the optimal model and not the optimal prediction,
e.g. [15, 32, 33]. This interpretation misses that the parameter result has to be scrutinized
just as thoroughly and should always be reviewed on previously unseen data. Therefore,
instead of presenting a putative optimal parameter result, I am going to always present
a range of results, derived from multiple parsings of training data, and use the spread of
the distribution as an indicator for the inherent inaccuracy of the parameter prediction.
Furthermore, when determining the in�uence of a parameter, I have tested its impact not
on the training data, but on the test data.

A central aim of this thesis is to describe a modeling and parameter training setup that
facilitates the exploration of transcription control at greater depth than was possible before.
After presenting the fundamentals of thermodynamic models and the data foundation, I
am going to discuss fundamental aspects of training thermodynamic models, which will be
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applied in the rest of the thesis. The topics will be the choice of the objective function, the
parameter optimization algorithm, as well as how data augmentation and hyperparameter
training can improve the quality of the model. Using the optimized training setup enables
to increase the number of training parameters and incorporate new features into the model.
Among them are additional TFs, which have not been considered before, various TF in-
teractions, and DNA accessibility. Applying the impact score, which is a quantitative in

silico counterpart to an in vivo knock-out experiment, I am going to assess the in�uence
of various model elements, like the role of the single TFs, cooperativity, accessibility, but
also of model aspects not connected to a parameter, like the role of weak binding sites and
steric hindrance. Finally, I am going to explore alternative models, which are a simpli�ed
version of GEMSTAT, and apply a new approach to short-range repression.



Chapter 2

Thermodynamic Models

2.1 Models of Protein-DNA Interaction

The central aim of thermodynamic models is to decipher information from regulatory se-
quence. This means predicting expression based on the sequence of an enhancer. Therefore,
the identi�cation and weighting of TF binding sites is a crucial elements of thermodynamic
models. However, protein-DNA interaction is a complex process involving the chromatin
state, the DNA-sequence, as well as DNA-shape [34]. In order to build a feasible model, I
focus solely on the DNA sequence as the main predictor of TF-binding. Further features
like chromatin accessibility and DNA shape can be implemented additionally [35, 36]. In
the following, I describe a model of a single TF binding site by following the theoretical
foundations of Stormo et al. [37] and their implementation by Segal et al. [27] and He et
al. [28].

2.1.1 Binding Motifs

Consensus Sequences

Given a set of known TF binding sites, it is possible to identify a sequence pattern that
captures the basic mutual features of the sites. This sequence pattern is a tool to identify
binding sites, optionally allowing some mismatches. This pattern based binding model is
called the consensus sequence. For instance, take the TF krueppel, for which footprinting
experiments identi�ed a handful of sites [38]; the �rst six are:

AAACGGATT
GACCGGGTT
GAAGGGATT
AACTGGGTT
AAACGGGTT
CAAAGAGTT

AAACGGGTT strict consensus

RAMNGGRTT altern. consensus
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Here, two possible consensus motifs are depicted. Solely the most frequent base at every
position was selected for the strict consensus. The alternative consensus incorporates also
degeneracies using IUPAC characters [39]. The limitations of consensus sequences are
immediately apparent. First, most identi�ed sites show some mismatches. Only one of
the six sites �ts the consensus perfectly. However, if ambiguity is allowed, speci�city gets
lost. To illustrate this point, consider that one expects to �nd the strict consensus by
chance once every 262 kb and the alternative consensus approximately once every 8 kb.
Second, consensus sequences are designed for optimal human readability and, therefore,
omit information. By reporting only the most important base in every position, information
on alternatives is lost.

Position Weight Matrices

An alternative to consensus sequences is the position weight matrix (PWM) [37, 40].
The entries of the PWM are the frequencies, with which the bases A, C, G, and T occur
at every position of the binding motif 1.

Based on the six sites mentioned earlier, the krueppel PWM is:

PWMKr =

\left(              

pos. A C G T

1 3 1 2 0
2 6 0 0 0
3 4 2 0 0
4 1 4 1 1
5 0 0 6 0
6 1 0 5 0
7 2 0 4 0
8 0 0 0 6
9 0 0 0 6

\right)              
\cdot 1

Nsites

Nsites is a normalization constant so that the rows sum to 1. The advantage of the PWM is
that one can easily calculate the enrichment, i.e. the likelihood-ratio, of base b at a certain
position p in the motif.

LR(p, b) =
PWM(p, b)

Pbg(b)
(2.1)

The PWM in the numerator is simply the probability of �nding b at p in the set of known
binding sites. Pbg is the background probability of �nding base b anywhere in the genome.
Consider a sequence S = s1 \cdot \cdot \cdot sn of the length of a binding site. The enrichment of S in

1Most sources call this de�nition of the PWM the position count matrix (PCM) or position frequency
matrix PFM. The common de�nition of the PWM is a matrix of log-likelihood-ratios of base occurrence
between binding sites and background. I stick to the above given de�nition because it �ts well with the
de�nition of binding weight. Either way, both PWM and PCM carry the same information and can be
easily transformed into each other.
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the set of binding sites in comparison to the background is:

LR(S) =
\prod 
si

PWM(i, si)

Pbg(si)
(2.2)

The equation above assumes that all positions in the motif are independent of each other.
This is not necessarily true, which I am going to discuss later.

Although PWMs are not designed for human readability, there is a clear graphical
representation of them in the form of the sequence logo [41]. The sequence logo depicts
every position of the PWM as a stack of the base symbols A, C, G, and T. The frequency of
the base is depicted by the relative hight of their symbols. The total height of the stack is
determined by the relevance of that position. Hence, it is easy to spot the most important
base in the relevant positions, e.g. 2.1. The base symbols are often ordered with the most
important base at the top, so that reading the consensus is easy.

The relevance of a position is the information content, which is de�ned as the di�erence
in uncertainty between the background and the motif.

R(p) = H(p) - Hbg =
\sum 
b

PWM(p, b) \mathrm{l}\mathrm{o}\mathrm{g}2(PWM(p, b)) - 
\sum 
b

Pbg(b) \mathrm{l}\mathrm{o}\mathrm{g}2(Pbg(b)) (2.3)

A PWM position carries no information (R = 0 bit) if its entries just resemble the back-
ground base frequencies. For an uniform background model (Pbg(b) = 0.25), the maximum
information content is R = 2 bit.

Figure 2.1: The sequence logo of bcd generated by WebLogo [42]

2.1.2 Binding A�nity

Up to now, the equations describe the statistical aspects of TF binding. In the following,
I am going to discuss the biophysical aspects of binding. The starting-point is the binding
kinetic:

TF + S
k+

\rightleftarrows 
k - 

TF \cdot S

S is a binding site on a DNA strand and TF \cdot S the complex formed by the TF bound to
the DNA. The k\pm are the binding and dissociation rates. For thermodynamic models, it
is assumed that binding and dissociation are in equilibrium and that both rates are faster
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than the processes that gets modeled. This is not a trivial assumption and I am going
to discuss it later in greater detail. The dissociation constant Kd is de�ned as the ratio
between the concentrations of bound and unbound TFs.

Kd =
k - 
k+

=
[TF ][S]

[TF \cdot S]
\propto \mathrm{e}\mathrm{x}\mathrm{p}(\Delta G/RT ) (2.4)

The last term in 2.4 connects the ratio between the bound and unbound state with a change
in Gibbs free energy \Delta G, which is often just called binding energy. R is the gas constant
and T the temperature of the system. From this, it is possible to derive the probability
that site S is bound:

P (TF \cdot S) = [TF \cdot S]
[TF \cdot S] + [S]

(2.4)
=

[TF ]

[TF ] + 1
\alpha 
\mathrm{e}\mathrm{x}\mathrm{p}(\Delta G/RT )

(2.5)

\alpha is a scaling factor that is called absolute a�nity. It accounts for the absolute energy
level E0 = \mathrm{l}\mathrm{o}\mathrm{g}( - \alpha /RT ). Equation 2.5 resembles a Fermi-Dirac distribution, which can be
complicated to handle since \alpha is rarely known. However, if I assume that the binding site
is weakly bound (small binding energy, i.e. low concentration and or low a�nity), it is
possible to transform 2.5 into a Boltzmann distribution.

P (TF \cdot S) \approx \alpha \cdot [TF ] \cdot \mathrm{e}\mathrm{x}\mathrm{p}( - \Delta G/RT ) (2.6)

This transformation has multiple advantages. First, in this scenario, the binding probabil-
ity scales linearly with the factor concentration. And second, comparing di�erent binding
sites becomes much easier. Let's take sites S and S \prime bound by the same TF. Their occu-
pancy ratio becomes

P (TF \cdot S)
P (TF \cdot S \prime )

= \mathrm{e}\mathrm{x}\mathrm{p}((\Delta G\prime  - \Delta G)/RT ) =
w

w\prime (2.7)

The absolute terms cancel each other out so that only the site-speci�c terms w = \mathrm{e}\mathrm{x}\mathrm{p}( - \Delta G/RT )
remain. For this reason, I call w the relative binding weight.

Another assumption simpli�es the comparison of binding sites even further. If every
base in the binding site forms an independent bond with the TF and all these bonds do not
interfere with each other, then it is possible to decompose the binding energy in portions.

\Delta G =
\sum 
p

\epsilon p (2.8)

Every bond accounts for a share of the total binding energy. This is called the additivity
assumption, which I made in a similar form for equation 2.2. The sum becomes a product
when one transforms the energy terms into binding weights.

P (TF \cdot S)
P (TF \cdot S \prime )

=
\prod 
p

wp

w\prime 
p

(2.9)
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This equation looks similar to 2.2. In fact, it is possible to show � under the assumptions
made in this section � that the binding weights relate to the base frequencies of known
binding sites [43].

wp = \mathrm{e}\mathrm{x}\mathrm{p}( - \epsilon p/RT ) \propto PWM(p, sp)

Pbg(sp)
(2.10)

At this point, the statistical description of binding sites connects with the energy descrip-
tion of binding kinetics and, therefore, justi�es naming the matrix derived from base counts
position weight matrix.

2.1.3 Assumptions

Three assumptions are essential for thermodynamic models. Their implications should be
taken serious and can not be stressed enough. Here I recapitulate them in more detail.

1. Equilibrium: This is a key assumption to make for the model of protein-DNA bind-
ing and is ultimately the motivation why the expression model is called a thermodynamic
model [44, 45]. Equilibrium implies that binding and dissociation happens on time scales
much faster than changes in the cell environment and therefore transcription factor con-
centrations correspond directly to DNA occupancy. There is evidence that this assumption
is justi�ed. Photo-bleaching experiments indicate that TFs are bound transiently to DNA
with residence times of the order of seconds [46, 47], unlike the developmental processes
in the �y that happen on timescales of the order of several minutes. Another implication
is that all processes are reversible and that therefore the binding energy alone determines
TF residence time. Especially, any non-reversible assisting processes are inexistent, e.g.
recruiting or remodeling factors. There are indications that this might not always be true
[48], however, details are unknown. Nevertheless, most TF display binding in vitro as well
as in bacterial environments [49, 50], proving that predicted binding energies are a good
indicator of TF occupancy and assisting processes are not fundamentally necessary.

2. Weak binding: In equation (2.6) I assumed that the amount of free transcription
factors is low and therefore [TF ] << (\alpha w) - 1, resulting in a low binding probability. This
enabled us to transform the bulky logistic equation 2.5 into an equation that is linear in
the TF concentration and the a�nity. Furthermore, this assumption allows us to separate
the TF-speci�c (concentration, a�nity) from the site-speci�c terms (relative weight) of the
binding probability.

The TF-speci�c terms are unknown in many scenarios, e.g. during an analysis of
binding site clusters [51]. In this case, the only available information is the relative weight
w based on the PWM and the binding sequence. Then, equation 2.7 justi�es the use of the
relative binding weight as a measure of binding strength although it is only a precursor of
binding probability.

Note, that the weak binding assumption is only important in order to connect binding
statistics with the concept of binding energies and weights. In the following, it becomes
apparent that the thermodynamic model itself assumes a Fermi-Dirac distribution for the
occupancy of a binding site and, therefore, is able to model strong as well as weak binding
sites (see equation 2.14).
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3. Additivity: While calculating the speci�city, I assumed that the single positions in
the binding motif contribute independently to the binding energy. There are 410 = 1048576
possible 10-base long binding motifs. Even high throughput techniques struggle to mea-
sure all those binding sites thoroughly. Assuming simple additivity reduces the number
of measurements to 3 \cdot L + 1 = 31. (Consensus sequence plus three nucleotide mutations
in every position.) Most methods of measuring binding speci�cities would be unfeasible
without this reduction. Similarly, techniques for which binding sites are sampled randomly
instead of systematically, e.g. B1H, report rarely enough sites to calculate accurate statis-
tical correlations between the single positions. The additivity assumption is crucial, but
controversial [52, 53]. However, a recent comparison of di�erent speci�city models shows
that for most tested transcription factors, mononucleotide additivity can compete with
more complex models [54].

4. Di�usion: There is an additional assumption that is relevant for the calculation of
spatial expression patterns but not thermodynamic models in general. TF and RNA di�u-
sion is negligible in the segmentation network of Drosophila during the blastoderm stage.
This assumption does not a�ect the model itself. However, it becomes important if one
calculates expression rates of neighboring embryo segments. The assumption states that it
is possible to calculate the expression level for every position in the embryo independently
without considering that expression products di�use to other positions. Di�usion of TFs
is crucial during the early stages of embryogenesis, especially for the formation of the bcd
gradient [23]. However, during the blastoderm stage at the onset of cellularization, di�u-
sion does not a�ect the expression patterns considerably, otherwise the �y would not be
able to develop sharp expression patterns like the stripes of the pair rule genes.

2.2 Multiple Binding Sites

Up to know, I modeled a single binding site. The following section describes multiple
binding sites and, ultimately, binding con�gurations of whole enhancers. The weight de-
scription, which has been developed in the last sections, will be very useful. To simplify
notation, I de�ne the absolute binding weight, notated as capital W , as the relative weight
w in combination with the TF-speci�c parameters:

W = \alpha \cdot [TF ] \cdot w (2.11)

2.2.1 Partition Function

To describe the system of multiple binding sites, one needs micro- and macro-states. A
micro-state is a speci�c con�guration in which the binding sites are occupied, e.g. for
a system with two sites, the state that the �rst site is bound and the second is empty.
A macro-state is a combination of micro-states, e.g. all states in which only one site is
bound. According to Boltzmann's law, the propensity of the system to be in a certain
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state is dependent on its energy level.

P (micro-state n) \propto \mathrm{e}\mathrm{x}\mathrm{p}( - En/RT ) =: \omega n (2.12)

Since all micro-states are mutually exclusive, one can easily calculate the probability of a
macro-state.

P (macro-state M) =

\sum 
n\in M \omega n\sum 
all \omega n

=
ZM

Ztot

(2.13)

Z is the sum of weights and is called the partition function. By using that all probabilities
have to sum to 1.0, it is possible to reduce the calculation of probability to a simple
counting of weights. Note that it is not necessary to know the absolute weights \omega . Since
every term gets divided by Ztot, it is possible to omit the scaling factor. The only crucial
term is the relative ratio between the weights. This simpli�es many calculations because
absolute values are often unknown, e.g. absolute TF concentrations. To see it from another
perspective, rescaling of the weights is the same as de�ning a new zero-point for the energy
in equation 2.12.

2.2.2 Calculating Occupancies

Imagine a stretch of DNA with N binding sites s of binding weight Ws. Consider the
possibility of multiple TFs although a binding site is always TF-speci�c. If two TFs bind
to the exact same position, the model de�nes two binding sites, one for each TF. Notice
that an unoccupied site has a di�erent weight W0 from an occupied. It is always possible
to scale all weights by a mutual factor and de�ne the zero point of energy, i.e. the reference
point, so that W0 = 1.

Consider a single binding site N = 1. There are two micro-states: the TF is bound
with weight W1 or not bound W0 = 1. Hence, the occupancy of the site is:

pbound =
W1

W0 +W1

=
\alpha \cdot [TF ] \cdot w

1 + \alpha \cdot [TF ] \cdot w
(2.14)

This resembles equation 2.5, which can be derived without the use of the weak binding
assumption. The weak binding assumption is not relevant in the following. It has been
necessary for the derivation of the relative binding weight w. If there were an alternative
way to calculate the binding energies, it would be still possible to use the equations from
this section.

Before modeling an arbitrary number of binding sites, consider the scenario with only
two sites W1 and W2. What is the probability that both sites are bound (1, 1)? Since I
assume that the sites are independent, it is possible to add their binding energies in order
to calculate the full energy of the system. This translates to a multiplication on the weight
level:

W1,2 = \mathrm{e}\mathrm{x}\mathrm{p}( - E/RT ) = \mathrm{e}\mathrm{x}\mathrm{p}( - (E1 + E2)/RT ) = W1 \cdot W2 (2.15)
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The other micro-states can be calculated similarly, with one or both binding weights re-
placed by W0. This yields:

p(1, 1) =
W1 \cdot W2

1 +W1 +W2 +W1 \cdot W2

(2.16)

The macro-state of site one bound (1, ?), consists of the states (1, 0) and (1, 1). Its proba-
bility is:

p(1, ?) =
W1 +W1 \cdot W2

1 +W1 +W2 +W1 \cdot W2

(2.17)

I call this the occupancy of site 1. Of course, it is possible to simplify it by extracting the
factor 1 +W2.

p(1, ?) =
W1

1 +W1

(2.18)

As expected, we recover the case of a single site, because both sites are independent. So
why bother with multiple sites? To answer this, assume the two sites were not independent.
For instance, both binding sites overlap and only one of the sites can be bound at same
time. In this case, the micro-state (1, 1) would be forbidden and the occupancy of site 1
would be:

p(1, ?) =
W1

1 +W1 +W2

(2.19)

In this scenario, the TFs compete for binding, which is re�ected in the occupancy. If site 2
is weak (W2 \approx 0), the occupancy of site 1 is the same as in equation 2.14. If, on the other
hand, site 2 is strongly bound (W2 >> W1), site 1 is inaccessible p(1, ?) \approx 0.

It is now easy to generalize to an arbitrary number of sites. Keep in mind that an
AND-operation (site 1 and site 2 is bound) requires the multiplication of binding weights,
while an OR-operation (site 1 or site 2 is bound) requires the addition of weights as can
be seen above.

There is one caveat. The number of possible con�gurations increases exponentially with
the number of sites. It is necessary to calculate all of them for Ztot. However, there is an
e�cient way to go through all con�gurations performing a number of steps linear to the
number of sites. The main idea is to go through all sites one by one starting at one end of
the sequence. Let's de�ne the precursor partition function Zs as the partition functions of
all sites up to position s. Z\ast 

s is the partition function up to s with the last site explicitly
bound. It is possible to calculate both sums by iteration. The starting point is:

Z\ast 
0 = 1 Z0 = 1 (2.20)

The update rules are as following:

Z\ast 
s = Ws \cdot Zo(s - 1) Zs = Zs - 1 + Z\ast 

s (2.21)

Here, I used o(s  - 1) as an abbreviation for the last site that does not overlap with site
s. The update-rule for Zs resembles the two cases that position s is occupied Z\ast 

s and that
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s is empty Zs - 1. The full partition function is simply the last precursor sum Ztot = Zn.
Let's de�ne Ys and Y \ast 

s in the same fashion, except that Y counts the sites in the opposite
direction starting from the other end of the sequence. Now we have everything we need to
calculate the occupancy of any site s.

p(s) =
Z\ast 

s \cdot Y \ast 
s

Ws \cdot Zn

(2.22)

Note that the Ws appears in the denominator because the weight of site s has been ac-
counted for twice, once in Z\ast 

s and the second time coming from the opposite direction with
Y \ast 
s . Nevertheless, p(s) still scales more or less proportional to Ws with some corrections

from interacting sites.

2.2.3 Cooperativity

An assumption of the last section was that the binding sites do not interact if they do
not overlap. Under this assumption, the binding energy of two sites is simply the sum of
their respective energies, leading to a multiplication of their weights. Let's advance beyond
independent sites and incorporate interaction terms explicitly.

Interaction of sites is often called cooperativity. The assumption is that neighboring
binding events support each other by e.g. opening the chromatin, changing the DNA-
shape or forming protein-protein bonds [55, 56, 57]. Although a supportive interaction is
mostly assumed, I do not exclude suppressive interactions. In fact, the model described
here incorporates a general form of interaction without going into the details of the actual
biological mechanism. The key idea is that any interaction changes the energy landscape
of the bound protein. I express this change as a correction term \epsilon for the total energy E.

E = E1 + E2 + \epsilon (2.23)

If \epsilon < 0, then the cooperatively bound TFs are on a deeper energy level than the indepen-
dently bound TFs and, therefore, are more �rmly bound. In contrast, if \epsilon > 0, the energy
well is not as deep. The extreme case would be \epsilon >> 0 in which the state of simultaneously
bound TFs would be forbidden energetically. An example of the latter would be overlap-
ping sites that can not be bound at the same time. The weight of the combined state W1,2

is therefore

W12 = e - E/RT = e - E1/RT e - E2/RT e - \epsilon /RT = W1\gamma W2 (2.24)

\gamma is the cooperativity parameter. Following the analysis of energy balance, \gamma > 1 is a
cooperative interaction and \gamma < 1 is a repressive interaction. In general, I am going to use
\gamma as a cooperativity function depending on the distance between the binding sites and the
type of interacting TFs.

An additional assumption is necessary to e�ciently incorporate cooperativity for the
calculation of the partition function: two bound TFs can only interact if there is no third
TF bound between them, see �gure 2.2. This assumption has mainly practical reasons,
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although, depending on the biological mechanisms of cooperativity, it is de�nitely plausible.
The update rules for the precursor partition functions are now:

Z\ast 
s = Ws

s - 1\sum 
\sigma =0

\gamma (s, \sigma ) \cdot Z\ast 
\sigma Zs = Zs - 1 + Z\ast 

s (2.25)

Where \gamma (s, \sigma ) = 0, if sites s and \sigma overlap. When implementing the update rule for Z\ast , it
is not necessary to calculate the full sum from the beginning up to the position s  - 1. If
there is a maximum cooperative range and t is the last non-interacting site, i.e. \gamma (s, \~t) = 1
for all \~t <= t, then there is a shortcut:

s - 1\sum 
\sigma =0

\gamma (s, \sigma ) \cdot Z\ast 
\sigma = Zt +

s - 1\sum 
\sigma =t+1

\gamma (s, \sigma ) \cdot Z\ast 
\sigma (2.26)

It is easy to prove the latter by induction over t.

Figure 2.2: Next neighbor assumption: TF 2 interrupts the interaction between
site 1 and 3.

2.3 Enhancer-Promoter Interaction

Thermodynamic models simplify gene expression by reducing it to a single step: recruit-
ment of the polymerase to the core promoter. All consecutive steps are assumed to be
independent of the enhancer sequence. Therefore, the model does not predict expression
levels, which would require a detailed model of the promoter and other factors, but the
probability that the core promoter is occupied. By staying in the binding energies frame-
work, one can interpret the core promoter as a binding site with some weight qbtr. qbtr is
called the basal transcription rate because it represents the autonomous binding rate of
the polymerase. In this model, the TFs bound to the enhancer help to recruit or repel the
polymerase by forming bonds via a mediator complex. These bonds carry binding energy
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\epsilon TF depending on the type of TF. An activator lowers the energy barrier if \epsilon TF < 0 and,
therefore, promotes polymerase binding. Otherwise, if \epsilon TF > 0, the TF is a repressor.

The model distinguishes two macro-states: the promoter is occupied with partition
function ZON and the promoter is not bound with ZOFF. As with TF binding sites, I de�ne
qbtr so that the empty site has weight 1.0. The probability that the polymerase is bound
can be calculates as:

pbound =
qbtr \cdot ZON

ZOFF + qbtr \cdot ZON

(2.27)

I already calculated ZOFF in the last section as the unaltered partition function of the
full enhancer by applying the update rules 2.21 or 2.25 to incorporate TF-interactions. It
is possible to calculate ZON in the same fashion by incorporating extra energy terms.

Z\ast 
ON,0 = 1 ZON,0 = 1 (2.28)

The update rules are:

Z\ast 
ON,s = \beta TF \cdot Ws

s - 1\sum 
\sigma =0

\gamma (s, \sigma ) \cdot Z\ast 
ON,\sigma ZON,s = ZON,s - 1 + Z\ast 

ON,s (2.29)

Every time one encounters a bound TF, it is necessary to account for an additional energy
term:

\beta TF = \mathrm{e}\mathrm{x}\mathrm{p}( - \epsilon TF/RT ) (2.30)

The parameter \beta TF is called the activatory potential of the TF. I identify activators
as TFs with \beta TF > 1 because they increase the ZON/ZOFF-ratio and, therefore, promote
gene expression. Repressors have \beta TF < 1; they inhibit gene expression. The continuous
transition from activators to repressors around \beta = 1.0 is one advantage of thermodynamic
models because it allows us to treat both types of TF in the same way. Notice that a re-
pressor with \beta R annihilates the e�ect of an simultaneously bound activator with activatory
potential \beta A = 1/\beta R. The weights of the TFs are not important for that matter because
they only a�ect the likelihood of these two TFs being bound. In general, the binding weight
of a TF matters greatly since the con�guration with a �rmly bound TF carries a larger
share of the total weight than with a loosely bound TF.

2.4 Implementation

The thermodynamic model that I used for all predictions of this thesis is a modi�ed version
of GEMSTAT [28]. The core algorithm of GEMSTAT remained relatively unchanged. I
implemented modi�cations that increase the performance of the program, enabled paral-
lelization, and included additional features for improved execution handling and visualiza-
tion. Additionally, I included data analysis tools into GEMSTAT that calculate the impact
score of the most relevant program parameters, see section 4.2.3.

Two additions that I implemented were also implemented by the creators of GEMSTAT
in follow-up publications. They included accessibility information to improve binding site
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predictions, see section 6.3 and [35]. Furthermore, they added a global parameter opti-
mization technique, see section 4.3.2 and [30].

The source code and all changes from the original GEMSTAT version are accessible as
a GitHub repository [58].



Chapter 3

Data Foundation

For any kind of model training, it is necessary to have a strong data foundation. The data
is the basis to train unknown parameters and assess the model quality. From a modeling
perspective, the enhancer elements are the essential data. Their sequences are the model
input and their expression pro�les are the output. The transcription factors are the second
type of data. They build a semantic knowledge base that structures the sequence into
binding sites. This chapter presents the composition, source, and quality of the available
data.

3.1 Enhancers

Enhancer elements, also called cis-regulatory modules (CRM), are the core data. Ther-
modynamic models help to understand and computationally reconstruct how enhancers
regulate gene expression. As input, they take the enhancer sequences and predict the en-
hancer expression levels along the anterior�posterior embryo axis as output. Therefore, an
enhancer is more than a single data point. Along the embryo axis, it comprises expression
rates for multiple TF compositions, which can be compared relatively. For the Drosophila
segmentation paradigm, it is a standard procedure to model expression with a resolution
of 1% egg length, yielding 100 expression levels. Naturally, neighboring sections of the
embryo are similar in their TF compositions and show similar expression levels reducing
the number of e�ectively independent data points.

To measure the expression pattern of an enhancer, one fuses its sequence with a re-
porter construct and integrates it into the genome of D. melanogaster embryos, �gure 3.1.
Reporter constructs contain a basal promoter driving a reporter gene, e.g. lacZ or GAL4,
which gets localized by in situ hybridization against its transcript. The enhancer sequence
controls expression largely independently of the genome integration site and the gene se-
quence. The core promoter gets selected to be susceptible to expression control, e.g. by
selecting a pair rule gene promoter.

Expression patterns in Drosophila embryos are sharp and precisely positioned. The
expression rate was measured in a binary fashion, i.e. distinguishing only between expressed
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Figure 3.1: An embryo stained with a reporter construct for the enhancer ems (-22).
The images were digitalized by hand. Relevant for the localization of the expression
domain is the staining at the embryo borders, where the nuclei are located. The
�rst read-out is binary (expressed/not-expressed), which gets smoothed to resemble
natural gradients.

and not-expressed, as described in �gure 3.1. This is due to the limitations of most reporter
construct experiments. Most data in the literature was generated with simple staining
methods, although there are methods for high-resolution expression measurements, which
measure even absolute expression levels [59].

The expression pro�les are arti�cially smoothed after the measurement. This is done
so that the pro�les resemble actual patterns, which have a natural gradient at the edges
due to di�usion and graded input.

While the measurement of enhancer output is relatively simple, the identi�cation of
enhancers and delineating their sequence is not. Enhancers have no clearly de�ned bound-
aries and di�er in length. The typical size of an enhancer is between 500bp and 1500bp.
Although there are tools for enhancer prediction in silico [60, 16], only laborious in vivo

experiments can prove enhancer activity.

I found 98 enhancers in the literature that drive clear expression patterns in the mid-
blastoderm stage before cellurarization [16, 22, 61, 62, 17, 63]. I considered only enhancers
that are di�erentially expressed exclusively on the AP-axis. A full list together with ex-
pression pro�les is in the appendix IV. I chose a uniform naming scheme in which the
enhancer is named after the gene, which it presumably controls in combination with a
location identi�er (approximated distance to the gene promoter in kb, + for downstream
and  - for upstream).

Only a fraction of the found enhancers is optimally delineated. Hence, the enhancer
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sequences vary in size between about 360bp and over 2700bp. E.g. Kvon et al. parsed
about 13.5% of the D. melanogaster genome in 2kb tiles without pre-screening. They
measured expression systematically [61]. Thus, the tested regions contain enhancers as
well as �anking sequences, which could include additional binding sites that disturb the
original enhancer pattern. Nevertheless, I follow the principle to implement exactly what
has been measured since, �rst, any in�uence of �anking sequence is accounted for by the
reporter construct and, second, any in silico delineation would be speculative.

The expression domains are unevenly distributed over the embryo axis. Figure 3.2
depicts the number of expressed enhancers for every position along the AP-axis. While
there are over 30 enhancers in the future head of the �y, only 7 are expressed in the
posterior cap. This imbalance can lead to biases in the model and should be kept in mind
during parameter training. As an example, consider a hypothetical TF expressed in the
head region that binds equally to all enhancers. Any model that tries to �t the data would
be inclined to implement this TF as an activator.

Figure 3.2: Sum of the expression pro�les for (A) all 98 enhancers and (B) the 17
TFs, yielding the e�ective number of expressed enhancers/TFs at every position.

3.2 Transcription Factors

If enhancers are the sentences in the language of transcription control, transcription factor
binding sites are the words. As with any language, a dictionary of words is necessary
before one can start to identify grammatical rules. In order to compile a full dictionary for
AP segmentation during mid-blastoderm, I searched the literature for regulatory TFs. I
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identi�ed 17 potential factors, see table 3.1. Among them are 6 TFs that � to my knowledge
� have never been used for modeling.

Most modeling e�orts, e.g. [28, 27], use a set of 8 TFs: the two maternally provided
activators bcd (bicoid) in the anterior and cad (caudal) in the posterior, the maternal
repressor cic (capicua) as well as the gap gene gt (giant), hb (hunchback), Kr (Kruppel),
kni (knirps), and tll (tailless). Together they drive large parts of the mid-blastoderm
segmentation expression. I use this set, to which I refer to as the reduced TF set, for a
baseline model.

In contrast to the reduced set, I de�ne the 17 TFs as the full set or the expanded set.
This set contains the additional gap factors btd (buttonhead), an activator in the head
region [64], fkh (forkhead) and hkb (huckebein), two repressor in the embryo termini [65].
Furthermore, the two repressors run (runt) and slp1 (sloppy paired 1) are pair rule genes
that show gap-gene-like behavior during early segmentation [66, 67]. The late gap factors
D (Dichaete), Nub (Nubbin) as well as pdm2 (POU domain protein 2) come up late in
the posterior and a�ect mainly pair rule genes [68, 69, 70]. Finally, D-Stat is a maternally
provided, ubiquitous activator [71, 72].

TFs are able to di�erentially regulate transcription along the AP-axis because they
themselves are expressed in patterns. High-resolution concentration measurements [73]
are a source for TF concentration pro�les along the AP-axis. For TFs lacking protein
distribution data, I used mRNA expression as an alternative [74]. The concentration
pro�les are depicted in �gure 3.4. Unlike the enhancer patterns, the TF concentrations
pro�le are continuous, except for the factors, for which I derived the concentration from
mRNA. This di�erence should be kept in mind for the evaluation of expression predictions
because it has implications on the measure of prediction quality. Since predicted enhancer
patterns are derived from a continuous input, they can be expected to be much smoother
and less sharp than the measured ones. A perfect �t might not always be possible. Overall,
the TFs are more evenly distributed over the AP axis than the enhancers, see �gure 3.2 B.
Hence, there is not a strong bias in the input that favors certain regions in the embryo.

The critical aspect of TFs are the binding speci�cities depicted by the PWMs. As
discussed in section 2.1.1, TF binding sites are de�ned by a fuzzy logic, which allows for
mismatches. Measuring binding speci�cities is a non-trivial task. Common methods are
bacterial one-hybrid B1H [75], Footprinting [76] and Selex [77].

Most methods incorporate a selection step, in which unbound or weakly bound se-
quences get sorted out. E.g. B1H selects binding sites by making them necessary for
the survival of bacteria colonies. Colonies with weak sites are less �t and get sorted-out.
This selection step favors the consensus binding site disproportionally and leads to overly
speci�c PWMs [78]. For this reason, it is common to decrease the PWM's speci�city arti-
�cially by adding uniformly distributed pseudocounts, which serve as a constant o�set for
every entry in the PWM reducing the relative distance between the minimum and maxi-
mum. Especially when the binding site sample size is very low, many entries in the PWM
will be zero without pseudocounts rendering many binding options completely impossible
independent of the rest of the motif, which is regarded as undesirable [79]. Pseudocounts
prevent this and allow the comparison of weak sites, e.g. in equation 2.7.
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A method that comes close to the thermodynamic model of protein binding, is High
Performance - Fluorescence Anisotropy HIP-FA [78]. HIP-FA was developed to measure
the binding a�nities of speci�c sequences directly in a high-throughput fashion. Typically,
one measures the binding a�nity of all single-base mutations of the consensus sequence
to the TF. HIP-FA can measure a�nities for weak as well as strong binders with high
accuracy. Because the method takes weak binders into account, HIP-FA PWMs have in
general a lower information content than alternative PWMs. That means that the binding
motifs are less speci�c than other methods suggest. Nevertheless, the HIP-FA PWMs are
superior as input for thermodynamic models in comparison to B1H and Footprinting PWM
sets, see [78] and section 5.1. Therefore, HIP-FA PWMs are the default choice as input
and I use alternative PWMs only if HIP-FA PWMs are not available.

Figure 3.3: The TF's binding motifs as sequence logos. Also depicted is the infor-
mation content. Alternative sequence logos are in �gure 5.2
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Table 3.1: All relevant TFs of the AP segmentation system.

Name Stage Type Binding Domain

bcd Maternal A Homeodomain
cad A Homeodomain
cic R HMG-box
D-Stat A STAT-domain

btd Gap Factor A Zinc Finger
fkh R Winged Helix
gt R B-Zip
hb R Zinc Finger
hkb R Zinc Finger
kni R Zinc Finger
Kr R Zinc Finger
tll R Zinc Finger

run Early Pair Rule R Runt-domain
slp1 R Winged Helix

D Late Gap Factor A HMG-box
Nub R POU-domain
pdm2 R POU-domain
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Figure 3.4: Concentration pro�les of 16 TFs along the AP embryo axis. Not included is D-
Stat, which is ubiquitously expressed. The run pro�le has already pair-rule characteristics.
Substituting the pro�le for an earlier version does not alter the predictions noticeable.
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Part II

Results





Chapter 4

Model Training

Many parameters of thermodynamic models are unknown because they are di�cult or
impossible to measure. The most important ones are the activatory potentials, the TF
concentrations, the absolute binding a�nities, the cooperativity parameters and the basal
transcription rate. The �rst four parameters are TF-speci�c, in contrast to the basal
transcription rate, which is a global parameter because it a�ects all enhancers.

Note that the TF concentration c and the absolute binding a�nity \alpha appear together
in all equations. Hence, it is possible to split up the concentration into a relative factor,
ranging between 0 and 1, and a scaling factor c = crel \cdot cscale. I fuse the scaling factor to the
a�nity resulting in a single parameter cscale \cdot \alpha . This combined parameter, for the sake of
simplicity called the absolute a�nity \alpha , describes the TF binding strength. The relative
concentration, in the following called the concentration c, describes di�erences in protein
abundance. It is comparably simple to measure across the embryo and serves as input
data.

If not stated otherwise, homotypic cooperativity is always incorporated. Hence, every
TF is associated with 3 unknown parameters. All these parameters plus the basal tran-
scription rate have to be estimated. This is done by searching for the parameter setting
that best reproduces the measured expression pro�les. The science of training parameters
to data is called parameter optimization. The basic principle of parameter optimization is
to start with an initial set of parameters and then apply small alterations to them while
monitoring the prediction quality of the model.

The two fundamental steps, measuring the prediction quality and updating the pa-
rameters, will be the topics of the following two sections. The remainder of the chapter
will be about assessing the result of the parameter training and strategies to improve the
procedure for thermodynamic models.

4.1 Assessing Prediction Quality - Objective Functions

Objective functions measure quantitatively the quality of the model prediction. They
compare the measured data to the prediction of the model and express the deviation as
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a score1. Objective functions enable us to compare and rank di�erent models or sets of
model parameters.

The measured data is in this case the expression pro�le of the enhancer along the
anterior-posterior embryo axis. As model resolution, I take 1% egg length, resulting in
100 predictions along the axis. The model identi�es occupancy of the core promoter as
expression rate. Therefore, the predictions are probabilities. The measurements are binary
expressed/repressed readouts from staining experiments. Neither prediction nor measure-
ment represents actual mRNA concentrations. Everything that counts is the relative dif-
ferences along the AP axis, while the scale of the prediction is irrelevant. For this reason,
an objective function that is scale-invariant is preferable.

In the following, pi is the predicted expression level and mi the measured expression
with i the position along the embryo axis.

4.1.1 Sum of Squared Errors

A commonly used objective functions is the sum of squared errors (SSE) [81].

SSE0 =
1

N

N\sum 
i=0

(mi  - pi)
2 (4.1)

The reason for choosing to square the di�erences is so that the result is always positive
and is easy to derivate. The SSE is on its own not scale-invariant but can be modi�ed to
ignore scales. This is possible by scaling the prediction retroactively by a factor \beta , which
improves the �t to the measurement.

SSE =
1

N

N\sum 
i=0

(mi  - \beta pi)
2 (4.2)

I calculate \beta by requiring that it should minimize the SSE score. A simple analytical
calculation yields:

\beta =

\sum 
i mipi\sum 
i p

2
i

(4.3)

The main weaknesses of SSE for this type of data is that it scores deviation between
patterns rather than di�erences in shape. This can lead to unintuitive scores rendering a
comparison between results di�cult. Figure 4.1 gives an example: shown are two enhancers
and their �awed prediction. The prediction of enhancer A �ts the anterior domain perfectly
but misses the expression in the posterior domain completely. This is a realistic scenario,
which happens when a posterior activator is missing. The prediction for enhancer B is
almost perfectly anti-correlated to the measurement and is, therefore, obviously wrong.
Surprisingly, the prediction for B has a better SSE score than A, although, by intuition, A
should score better. The reason is that the scaling factor \beta reduces B's prediction level so
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Figure 4.1: Exemplary comparison of SSE and correlation as objective functions.

that the error in most parts of the embryo is minimal. Hence, the major source of error is
B's expression domain, which is similar in size to the missed domain in A.

One can further modify the SSE by weights wi, if one wants the score to punish devia-
tions in certain positions more than others, e.g. where measurements are more precise or
in the expressed domains, as a simple attempt to solve the problem in �gure 4.1.

SSEw =
1

N

N\sum 
i=0

wi(mi  - \beta pi)
2 \beta =

\sum 
iwimipi\sum 
i wip2i

(4.4)

Reliable measurement precisions are not recorded for this data and can not serve as
weighting. Based on experience, I advise against the use of manually chosen weights. Ap-
plying such weights deteriorates the prediction, judged on qualitative as well as quantitative
measures (alternative quality measures like Precision-Recall plots, data not shown). The
reason is that hand selecting weights introduces biases, which are, in general, unfavorable
for the training process.

4.1.2 Pearson Correlation

An inherent scale free objective score is the Pearson correlation [82].

C =

\sum N
i=0(mi  - \=m)(pi  - \=p)

| | m - \=m| | 2| | p - \=p| | 2
(4.5)

Here, \=x is the mean of x along the AP-axis and | | x| | 2 = (
\sum 

i x
2
i )

1/2 is the norm of x. A per-
fect �t has a correlation of C = 1, while C =  - 1 means that the two patterns are perfectly

1For this reason, the objective function is often called loss or cost function, e.g. [80].
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anti-correlated. In contrast to the SSE, the correlation scores shape and not deviation.
The bene�t of this interpretation can be seen in �gure 4.1. The Pearson correlation can
easily distinguish the decent prediction of enhancer A from the bad prediction of enhancer
B. For this reason and because of its simplicity, the Pearson correlation is the objective
function of choice in this thesis.

Note that in contrast to the SSE, which has to be minimized to �t the data, the
correlation has to be maximized. By convention, most optimization algorithms aim to
minimize the objective function. Therefore, I use the negative correlation as the objective
function. Nevertheless, results will be reported as positive correlations.

Of course, it is also possible to weight the correlation like the SSE.

C =

\sum N
i=0wi(mi  - \=m)(pi  - \=p)

| | m - \=m| | w,2| | p - \=p| | w,2

(4.6)

The same caveat as for weighted SSE applies to the weighted correlation. If there is no
objective weighting scheme, e.g. measurement errors, simplicity should be favored.

4.1.3 Precision-Recall Plots

Figure 4.2: Example of a PR-plot. The dotted line indicates the precision of a
random guess. By demanding a higher recall, the predictions become less precise.
The area under the curve AUC is a summary of the curve's position in the plot.

Not as an alternative objective function but as an independent quality measure, consider
the Precision-Recall-plot (PR). The main idea is to de�ne a threshold above which an
enhancer counts as active in that position. Much like the ROC-plot, one draws a PR-plot
by scanning the full range of thresholds and plotting the respective precision and recall.
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The precision is the ratio between the true-positive predictions and the total number of
positive predictions. It is the probability that a predicted enhancer activity is correct.
The recall is the ratio between true-positive predictions and the total number of positive
measurements. It is the fraction of correctly identi�ed expression domains.

The PR-plot carries the same information as the ROC-plot, however, displays it better
when there are considerably fewer positive than negative data-points [83]. This is bene�cial
for this data because most enhancers are expressed in small domains. A good prediction is
characterized by having both, high precision and high recall. Figure 4.2 shows an example
of an PR-plot. PR-plots help to assess the quality of a prediction by eye and will serve as
an alternative quality measure.

4.1.4 Integrating Multiple Enhancers

One enhancer is just a single aspect of the data. Normally, thermodynamic models deal
with many enhancers and have to �t all of them at once. The objective function has,
therefore, to integrate the scores of multiple enhancers si. The immediate solution, which
is also bias free, is the average of all enhancer scores. Simple averaging guarantees that all
enhancers contribute equally to the total score and hence that the optimization algorithm
makes equal e�ort to �t all enhancers.

S =
1

N

N\sum 
i=0

si (4.7)

However, there are cases in which a di�erent weighting scheme can be reasonable. In theory,
there are dozens of ways in which one can attribute a disproportional share of the total
score to single enhancers. One can achieve this by a weighted average in which important
enhancers receive a bigger weight. One could put more weight on enhancers from certain
'reliable' sources or enhancers with underrepresented features. An example of the latter
would be enhancers expressed at the tips of the embryo. I advise against this integration
scheme because a general rule for objective functions is that simplicity is bene�cial and
preset biases are disadvantageous. Unintuitive and hand-optimized objective functions are
di�cult to interpret and likely lead to unwanted behavior during parameter optimization.

Capped Score Imagine enhancers that are problematic or have not been measured cor-
rectly. They will receive a bad score, e.g. a negative correlation. The algorithm fails to
predict these enhancers. However, the di�erence between a score of  - 0.3 and  - 0.7 is more
or less pointless. On the other hand, an increase of correlation from 0.3 to 0.7 means
usually the di�erence between a fair and a great prediction. By setting a minimal score of
0, the optimization algorithm is encouraged to improve the enhancers in a regime where
changes matter.

S =
1

N

N\sum 
i=0

\mathrm{m}\mathrm{a}\mathrm{x}(si, 0) (4.8)
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Alternatively, one can argue that there is little gain above a certain score and everything
beyond is certainly over-adaptation, especially since the data quality is limited. Again,
the interesting range of scores distinguishes between poor and good predictions. A capped
score would stay in this range.

S =
1

N

N\sum 
i=0

\mathrm{m}\mathrm{i}\mathrm{n}(si, 0.75) (4.9)

The examples here are for the correlation as the objective function, but can be adjusted
to the SSE.

Median Score The argument for capped scores was that the optimization algorithm
should concentrate on the poor but promising predictions. A natural way to do this is to
move away from a score average towards the median of scores. The median is the one score
that separates the good from the bad half of the predictions. Any change in parameters
improves the median only if it results in a net improvement for the majority of enhancers.
Concentrating on a handful of high-gain enhancers is, therefore, discouraged.

Vertical Correlation The expression patterns of our enhancer collection are not equally
distributed over the AP axis. For instance, many enhancers are expressed in the head of
the embryo and very few at the tips of the embryo, recall �gure 3.2. All aforementioned
modi�cations do not change the fact that every enhancer is equally important if one does
not want to adjust that by hand. Imagine all predictions to be collected in a matrix where
every enhancer is one row and every position in the embryo is a column. Instead of calculat-
ing the correlation along the horizontal axis, I propose to calculate the correlation between
measurement and prediction for every position and average the result for all positions. By
using this vertical correlation, all positions contribute equally to the total score.

There is one caveat. The resulting score is not scale-free anymore. It is conceivable that
enhancers have large di�erences in expression strength. By scale-free scoring the enhancers
one by one, it is possible ignore the absolute expression rate. The vertical correlation builds
on the assumption that the rates are similar.

4.1.5 Comparison

What is the best objective function to use for the parameter training? Comparing objective
functions is conceptionally di�cult because they are used for two di�erent purposes. First,
as a guide for the algorithm to train the parameters to the measured data (the training
objective function) and, second, as a quality assessment after the parameter training (the
test objective function). One expects that models trained with one objective function excel
at the quality measure based on the same objective function. Hence, the test objective
function loses its core quality of being objective in this case.

It is not possible to solve this problem. However, comparing the results across di�erent
quality measures shows that some training objective functions are clearly better suited
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for the parameter optimization. I repeated the model training with 5 di�erent training
objective functions. The results in table 4.1 are quality measures for the predictions on
unseen data (cross validation) using training techniques from the following sections in
this chapter. Immediately apparent is that the median correlation as well as the vertical
correlation are worse than the other training objective functions regardless of the quality
measure. Of the remaining three training objective functions, the capped and the averaged
correlation yield almost equal scores. Using SSE results in similar scores only for 3 out
of 4 quality measures. This in combination with the conceptional considerations of 4.1.1
suggests to reject SSE as training objective function.

The capped correlation follows the same concept as the average correlation but with
some adjustments to improve the prediction. Since the di�erence is insigni�cant, I favor
the simpler and more intuitive quality measure. In the following, the training as well as
test objective function of choice will always be the Pearson correlation averaged over all
enhancer results.

Table 4.1: Test scores measured with di�erent objective functions (column) after multiple 10-
fold cross validation runs using various objective function for the parameter training (row). The
objective functions are CORR (averaged correlation), SSE (averaged sum of squared errors),
CCORR (capped correlation), MCORR (median correlation), VCORR (vertical correlation), and
AUC-PR (area under the precision recall curve). Marked are the best results for every test
function.

test func. training func.

CORR SSE CCORR MCORR VCORR

CORR 0.411\pm 0.01 0.387\pm 0.014 0.407\pm 0.01 0.355\pm 0.038 0.199\pm 0.014
SSE 0.29\pm 0.002 0.289\pm 0.003 0.289\pm 0.002 0.294\pm 0.003 0.314\pm 0.002

MCORR 0.507\pm 0.036 0.515\pm 0.026 0.5\pm 0.036 0.451\pm 0.046 0.189\pm 0.025
AUC-PR 0.4\pm 0.02 0.38\pm 0.02 0.4\pm 0.02 0.36\pm 0.02 0.26\pm 0.02

4.2 Model Selection

Although the objective function can score the quality of a model �t, it is not possible to
compare models simply based on how well they �t the training data. Complex models, i.e.
models with many parameters, usually outperform simple ones during parameter training
because they have more freedom and can better adapt to variations in the data. In the
worst case, a model with enough parameters could simply memorize the presented data
and would receive a perfect score. The true indicator of a good model is rather how well it
predicts previously unseen data, meaning how well it distinguishes between general features
and random noise in the training data. This is expressed in the test score that is de�ned as
the score on an independent data set, called test data. The test data must not be used for
the training of the model, otherwise, it would thwart the idea of testing on unseen data.



38 4. Model Training

For instance, take again the overly complex model that simply memorizes the random
noise in the training data. Since it does not learn any general features of the data, its
predictions on new data are more or less random and would score poorly on the test data,
resulting in a low test score. Such a behavior is called over�tting, see for example [80, 81].

4.2.1 Cross-Validation

In order to derive general features from the training data, the model has to be confronted
with su�cient training data. Simultaneously, the test data has to be su�ciently diverse
and as unbiased as possible, too. In this case, the data, identi�ed enhancers with measured
expression, is sparse. Since it is not possible to put an enhancer in the training data as well
as in test data, it is necessary to �nd a balance between both data sets. Cross-Validation
(CV) is a common solution, which ultimately enables testing on the whole data set.

For CV, one divides the available data into N disjunct fragments of similar size. The
parsing should be random in an unbiased fashion. One then does N parameter optimiza-
tions on N  - 1 data fragments and tests the result on the left-out fragment. The �nal
prediction is the concatenation of all test predictions, for which the full test score can be
calculated. The obvious advantage is that one does not need to worry about the selection
of the test data because every available data point (enhancer) is once in the test data. The
disadvantage is that one has to train the model multiple times, which costs computation
time and yields multiple parameter results that are not necessarily consistent.

The last aspect is problematic if the parameters are used for a follow-up analysis,
where a the single optimal parameter setting is preferable. However, as a positive side
e�ect, this enables to test the sensitivity of the model towards variations of the training
data. If the optimization yields similar parameters in every CV-iteration, the model, and
its training process are stable and therefore more credible. Figure 4.3 depicts the spread
of the activatory potentials after a ten-fold CV training. While the parameter training is
very stable for the TFs bcd and hb, the prediction for gt depends strongly on the training
data. However, the results are consistent in the sense that the predicted role of the TFs
(activator/repressor) is always the same.

Di�erent parsings yield slight variations in the test score even when applying the same
training strategy. Especially for small datasets, it is possible that the parsing is biased,
e.g. all enhancers of a certain type end up in the same data fragment. Such unwanted
clustering could not only impede the parameter training but also favor certain models. For
this reason, I repeat all analysis steps 10 times with 10 independent parsings. The �nal
test score is simply the average score for all repeats.

The number of data fragments determines the size of the training data. In the case of
leave-one-out LOOCV, every data point is its own fragment. Although LOOCV has the
advantage of an almost full dataset allocated to training, it also takes the most computation
time. Assuming that the time for a single parameter optimization run is solely proportional
to the amount of training data, it is possible estimate the necessary computational resources
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Figure 4.3: Example of the spread of parameter training results. The violin plot
represents the distribution of the values. Marked in red is the median. TF predicted
to be activators have an activatory potential above 1.0 and can be found in the top
half of the graph. Repressors are in the bottom half.

for a N -fold CV.

TN = (N  - 1)Tfull (4.10)

I tested a 5 and a 10-fold CV set-up. To do so, I drew 10 parsings for each 5 and 10-fold
CV and trained a thermodynamic model with the reduced parameters (8 TFs) and with
the extended set of parameters (17 TFs). Not surprisingly, 10-fold CV yields on average
noticeably better test scores, however, the di�erence is not signi�cant, see table 4.2 and in
more detail B.3. I nevertheless decided to use 10-fold CV as the standard for all following
experiments.

Table 4.2: Test scores (correlation) for 5 and 10-fold CV as well as 10-fold CV with clustering
based parsing (c10) each for a small set of parameters (8 TF) and a large parameter space (17
TF).

CV 5 10 c10

8 TF 0.34 0.351 0.353
17 TF 0.36 0.369 0.378

As an alternative to a completely random parsing of the data fragments, I tested a
bias-reducing technique. The idea is to prevent an uneven distribution of enhancers of a
similar type. To do so, I split the enhancers into six clusters based on their binding site
content using Ward's hierarchical clustering method. I distributed the enhancers of the
same cluster equally among all data fragments in a random fashion. I did this 10 times and
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trained the model separately on all 10 parsings. The resulting test scores are noticeable
� however not signi�cantly � better than for bias-unaware parsings B.3. For all further
experiments, I use the bias-reduced 10-fold CV because they are in all other aspects equal
to the completely random parsings.

Figure 4.4: Enhancer dendrogram based on TF content. The six clusters are marked
in red. The root, where all branches meet, is cropped from the �gure.

Having decided on the CV-method, I did not redraw new parsings for every experiment
and instead reused the same 10 parsings making the results more comparable. By doing
this, I can compare model results using the Wilcoxon signed-rank test, which assumes that
results are paired, i.e. performed under the same conditions on the same data.

4.2.2 Parameter Regularization

Relevant for model assessment is the test score rather than the training score. In fact,
improving the training score beyond a certain point can lead to a deterioration of the test
score. This e�ect is called over�tting and is one of the main problems of model selection.
Given enough freedom, a model can adapt extremely well to the training data. In this
case, the model tries to �t the noise in the data (e.g. spurious and weak binding sites,
exact enhancer expression etc.) and neglects to learn general features. Extreme parameter
values are often an indicator of over�tting because the optimization algorithm is free to
exploit any random pattern in the data as long as it improves the training data.

The idea behind parameter regularization is to prevent the algorithm from �tting the
noise in the data in order to improve test scores. Here, I describe two simple techniques that
reduce the algorithm's freedom during model training by limiting the available parameter
range. These approaches are similar to the idea behind Lasso [84] and ridge regression [85],
which are regularization methods for linear models.

First, I set a range cut-o� for all parameters. This is done by transforming every
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parameter with a bijective and monotonous function t.

t : [min,max] \rightarrow [ - \infty ,\infty ]

p \mapsto \rightarrow \mathrm{l}\mathrm{o}\mathrm{g}

\biggl( 
\mathrm{l}\mathrm{o}\mathrm{g}(p) - \mathrm{l}\mathrm{o}\mathrm{g}(min)

\mathrm{l}\mathrm{o}\mathrm{g}(max) - \mathrm{l}\mathrm{o}\mathrm{g}(p)

\biggr) 
The optimization algorithm works with the transformed parameters p\prime = t(p), which

can take any value. The back-transformed parameters are always positioned between the
prede�ned boundaries. If for example, the optimization increases p\prime \rightarrow \infty , the real model
parameter p will slowly converge to its maximum. For this reason, this approach is called
a soft boundary, in contrast to a hard boundary, which is reachable.

Second, I apply a parameter penalty by adding an extra term to the objective function.

penalty = \lambda \cdot | | p| | (4.11)

\lambda is a scaling parameter called the absolute penalty. | | p| | is the parameter norm. It scales
with the parameters' deviation from a neutral setting (absolute a�nities and cooperativities
equal zero and activatory potentials equal 1). A TF with parameters in the neutral setting
are neither repressors nor activators and do not bind the DNA. It is as if the TF were not
present.

If the optimization algorithm includes a certain TF into the model or increases the TF's
importance, the gain in score has to outweigh the penalty, otherwise, the total objective
function would deteriorate. Conversely, if the presence of a TF does not improve the
prediction, the optimization algorithm has an incentive to push its parameter back to the
neutral setting. The gain is twofold; on the one hand, it reduces the parameters to a
reasonable range by applying a soft boundary. On the other hand, it makes over�tting
harder because adapting to noise becomes unfavorable.

Consider the situation in which a TF has no binding sites in the training data but several
in the test data. Without a penalty, its parameters would move together with the other
parameters and �nish in a random setting because they do not a�ect the training result.
However, the resulting parameters would likely be disadvantageous for the prediction on
the test data. The parameter penalty prevents this e�ect.

There are multiple options for the parameter norm. The L1-norm is just the sum of
the absolute parameter values with the exception of the activatory potential for which I
add max(\alpha , 1/\alpha ) - 1 because a repressor with \alpha R < 1 equals in strength an activator with
1/\alpha R. The alternative is the L2-norm, which works the same way, but takes the sum of the
squared values. A direct comparison between the two options is di�cult because the e�ect
depends heavily on the absolute parameter strength \lambda . In general, the L2-norm penalizes
extreme values more than weak ones. The L1-norm is more e�ective when it comes to
pushing parameters back in the neutral setting. For this reason, I choose the L1-norm.

The choice of the absolute parameter penalty \lambda is crucial. It is a so-called hyperparam-
eter because it a�ects the �nal result without being trained by the optimization algorithm.
If the penalty is too weak, the technique is ine�cient. If the penalty is too strong, it
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inhibits the algorithm from identifying relevant patterns. There is no obvious choice for
\lambda . One could select \lambda by trial and error and chose the one value that yields the best test
result. This, however, is very controversial because it is a not so obvious case of training
parameters on test data. I am going to discuss a technique for hyperparameter training in
a later section 4.5. The alternative is to guess a value based on typical parameter norms.

4.2.3 Impact Score

The goal of thermodynamic models is not only to predict expression patterns but to un-
derstand the underlying mechanics of the transcription control. The objective function
assesses the quality of the prediction but it does not reveal how the model works. One
can inspect the thermodynamic parameter after training to see which TFs are most likely
relevant for the prediction, however, it is di�cult to conclude how much impact a TF has
on the basis of the raw parameter values. E.g. di�erent TFs have their unique binding
weight distributions, might be blocked by other factors etc.

To render TF predictions comparable, I introduce the impact score. The basic concept
follows the idea of an in silico knock-out experiment. The impact score \scrI of a single
parameter p is the di�erence in test score C between the unaltered "wild type" prediction
and a modi�ed "mutated" prediction in which the respective parameter is set to its neutral
position \varnothing (activatory potential equals 1, absolute a�nity and cooperativity equals 0).

\scrI (p) = C(p) - C(p = \varnothing ) (4.12)

The impact score is positive if changing the parameter deteriorates the prediction,
suggesting an overall positive in�uence of the underling mechanism, and is negative if the
test score of the mutated model is better than the full model. The latter case can be an
indicator for over�tting.

The impact score of a TF is similarly de�ned, with all parameters relevant to this TF
set to the neutral setting. It quanti�es how the prediction would change if the TF were
not present. One can calculate the impact score for the full prediction (see �gure 4.5) but
also per enhancer to see where the TF drives expression (see for example appendix C.6).

In contrast to in vivo knock-out experiments, we have an in-depth control of the model
and can use the impact score to dissect it on every conceivable level. It is possible to extend
the concept of an impact score to hyperparameter (e.g. cooperativity range), groups of
binding sites (e.g. strong sites) and basically every mechanistic detail of the model (e.g.
steric hindrance). The only caveat is that the impact of the discussed feature has to be
strong and consistent enough to be visible above the noise of di�erent predictions. For
example, the impact of a single binding site is likely too irrelevant and too variable to be
measurable.

An alternative to the impact score is a classical sensitivity analysis [86]. The local
parameter sensitivity is de�ned as:

\scrS (p) = p

C

\partial 

\partial p
C (4.13)
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Figure 4.5: The impact score of single TFs as percentage of the total test score
(light blue) and the fraction of impact from homotypic cooperativity alone (dark
blue). The error bars are based on the results for �ve di�erent CV-parsings.

\scrS measures the susceptibility of the model to parameter p at a certain position in the
parameter space. Note that both the sensitivity as well as the impact analysis are local in
their nature. Both scores depend not only on the value of the single parameter itself but
also on the state of all other model parameters, i.e. they analyze a speci�c parameter result
rather than the model in general. The scores neither capture the general susceptibility of
the model to a parameter nor do they account for possible compensation or enhancement
e�ects of other parameters. I prefer the impact score because of its biological motivation
(mutation/knock-out), which makes it in my opinion easier to interpret.

There are multiple possibilities to extend the local sensitivity \scrS or impact analysis to a
global analysis [87]. Most methods sample from the full parameter space and are therefore
computationally very expensive. They additionally extend the concept of a �rst-order
analysis as in equation 4.13 to a higher-order analysis by varying multiple parameters.
Dresch et al. performed a global analysis of a thermodynamic model with nine parameters
and �nd modest second-order e�ects [31]. The second-order e�ects were especially high for
parameters which are naturally connected to other parameters, e.g. cooperativities.

4.3 Parameter Optimization Algorithms

There is a multitude of parameter optimization algorithms. Their basic function is to
�nd a parameter optimum, i.e. a set of parameters that minimizes the objective function.
They di�er in their strategy how to move through the multi-dimensional parameter space
and the stopping criteria, which assesses whether a set of parameters qualify as a satis-
factory solution. Figure 4.6 illustrates the trajectories of 16 parameters of an exemplary
optimization run.
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Figure 4.6: Example of parameter trajectories. Depicted are 16 parameters that get
trained simultaneously. Three typical stages of model training are visible. First,
an exploratory phase, in which the direction of the training is not determined yet,
then a fast adjustment close to the �nal position, followed by a long �ne-tuning
phase.

Finding the best strategy depends on the structure of the landscape laid out by the
objective function. Certain factors complicate �nding an optimum; Among them are a
high-dimensional parameter space and an ill-conditioned2 problem setting. Both factors
are typical for thermodynamic models, justifying an examination of the topic.

In more detail, I compared two types of algorithms: local and global. Local algorithms
search for a local optimum, which is any solution that minimizes the objective function
within a local neighborhood. Global optimization algorithms aim to �nd the best possi-
ble solution in the whole parameter space, which is called the global optimum. Global
algorithms do not guarantee that their solution is indeed a global optimum, however, they
apply strategies that prevent the algorithm from getting stuck in the �rst encountered
optimum and to further explore the parameter space.

4.3.1 Local Optimization

Two local optimization algorithms are commonly used for many optimization applications,
among them thermodynamic models [28, 27, 26]: Nelder-Mead Simplex [88] and (quasi-
Newton) gradient descent [89, 90].

A simplex in n dimensions is a geometrical object that has n+1 vertices (line, triangle,
tetrahedron etc.). The idea behind the Nelder-Mead algorithm is to de�ne a simplex
in the parameter space, where every vertex is a potential solution. In every iteration,
the algorithm moves the simplex by replacing the vertex representing the worst solution.

2Ill-conditioned means that small changes in the input (parameter space) lead to large variations in the
output (objective function score).
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Occasional shrinking narrows the scope of the algorithm until an optimum is found. The
strength of the simplex method is that it does not require the derivatives of the objective
function.

The basic concept of gradient descent is to start from an initial point and move in the
direction of the negative gradient of the objective function. Since the gradient indicates the
direction of steepest ascent, moving in the opposite direction reduces the objective function,
if the step size is not too large. In few words, quasi-Newton methods improve navigation
through the parameter space by additionally approximating the second derivative of the
objective function, also called the Hessian matrix, which describes the local curvature.
Gradient methods are very e�cient if the computation of the gradient is easy and fast.
For thermodynamic models, this is impeded by the fact that calculating derivatives is very
time-consuming.

As a local optimization strategy, I follow He et al. [28] and try both the Nelder-Mead
Simplex and a gradient descent3, both implemented into C++ via the GNU scienti�c
library [91]. Additionally, I try a strategy that alternates between both algorithms. In
order to prevent the algorithms from getting stuck in the �rst local optimum, I perform
three consecutive training iterations with small parameter adjustments between them. In
this fashion, the algorithm gets kicked out of the local optimum and is free to further
explore the parameter space for better optima, which from my experience is very bene�cial
(data not shown). Note this training strategy is completely deterministic. Under the same
initial conditions, two training runs will always yield the same result.

4.3.2 Global Optimization

Global optimization strategies usually incorporate a stochastic component that allows the
algorithm to jump out of a local minimum enabling a more thorough parameter exploration,
while still following a global trend to minimize the objective function. The balance between
the exploitative and exploratory behavior determines the scope of a global optimization
algorithm.

Our global optimization algorithm of choice is the Covariance Matrix Adaptation -
Evolutionary Strategy CMA-ES [92]. The biologically motivated evolutionary strategies
always consider a population of solutions, which move as a group through the parameter
space. Every iteration is a new generation that gets sampled based on the previous gener-
ation's �tness, i.e. the objective function score. For CMA-ES, the optimal population size
\nu depends logarithmically on the number of training parameters n. A rule of thumb is:

\nu = 4 + \lfloor 3 \mathrm{l}\mathrm{o}\mathrm{g}(n)\rfloor (4.14)

The CMA-ES algorithm samples a new generation from a multi-dimensional normal dis-
tribution. The covariance matrix de�nes the spread of the population across the parameter
space dimensions. The algorithm constantly adapts the covariance to optimally navigate
the parameter landscape much like quasi-Newton methods learn the Hessian matrix. The

3In contrast to He et al., I use the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno algorithm [90].
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initial population spread \sigma de�nes the scope of the algorithm and serves as adjustment
parameter for the above-mentioned exploration/exploitation balance.

The CMA-ES algorithm has some advantages. By adapting the covariance, the algo-
rithm is optimally suited for ill-conditioned optimization problems. In theory, the algorithm
needs more function evaluations than local methods, however, it is easily parallelizable.
Since a whole generation can be evaluated at the same time on a handful (10-16) of nodes,
CMA-ES has in my experience a speed advantage (data not shown).

4.3.3 Benchmarking

Suleimenov et al. have benchmarked a local and a global parameter optimization strategy
[30]. They constructed synthetic data that looks like Drosophila enhancers, but with prede-
�ned thermodynamic parameters. In this fashion, they were able to conclude that a global
strategy is superior to a local one for high-resolution input data. For low-resolution expres-
sion data, they found that a global strategy provided no bene�t justifying the additional
computation resources.

In contrast to Suleimenov et al., I tested local and global strategies thoroughly with real
enhancer data. I do not use synthetic data and thus do not know the true parameter values.
For the model, it is important whether a strategy improves the test scores. I performed
10 independent 10-fold CV training runs with CMA-ES as a global strategy and two local
strategies (simplex and simplex mixed with gradient). I repeated the analysis for a model
with 17 TFs and with a reduced model with 8 TFs. I found the strategy involving the
gradient method to be signi�cantly worse than both the pure simplex method as well as
the global strategy, see table 4.3 and appendix B.4. I also found that CMA-ES yields
noticeable better test scores than the simplex method but only for 17 TF, i.e. for a model
with many parameters is the improvement signi�cant (Wilcoxon signed-rank test p \leq 0.01).

Table 4.3: Test results for 8 TF (25 parameters) and 17 TF (52 parameters) trained with a
gradient-based method, Simplex, and CMA-ES.

Gradient Simplex CMA-ES

8 TF 0.257 0.363 0.368
17 TF 0.329 0.391 0.41

Figure 4.7 A depicts the results of B.4 as an enwrapped PR plot. Especially for high
recall values, the global results are signi�cantly more precise. Does the global strategy
over�t less (maybe due to an earlier stopping criteria) or does it sample the parameter
space better? Part B shows a scatter-plot of training scores. The x-axis shows the result
for the local strategy, the y-axis the global strategy. Every point represents one dataset
that was used for training and scoring. It demonstrates that the the global strategy's
improvement of test score is preceded by already better training results. In conclusion,
CMA-ES searches the parameter space more thoroughly than local strategies and �nds
better parameter solutions, which in the end also score better on the test data.
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Figure 4.7: (A) enwrapped PR plot of 10 CV test results. (B) Scatter-plot of
training results on 100 di�erent training sets for a local strategy (Simplex) and a
global strategy (CMA-ES).

CMA-ES is a stochastic algorithm. Thus, training runs are not reproducible and two
runs on the same data will yield di�erent solutions. I checked how much variation is possible
and repeated the above mentioned training. While the local strategies would yield the
exact same solution, we see some di�erences for the repeated CMA-ES run. Nevertheless,
averaged over 10 CV parsings the di�erences vanish, see table B.4. It is therefore crucial
that one test the model on multiple CV parsings to average out outliers.

Although the repeated CMA-ES training run yields on average the same result, there
are noticeable di�erences for single CV parsings. If these di�erences came from a subop-
timal training, it would be possible to improve the overall result by performing a more
thorough parameter search. To test this, I started a training run with two full CMA-ES
iterations and selected the result with the better training score. This multitrain strategy
yielded similar test scores as both single-iteration training runs, see appendix B.4. The
di�erence in average test score is negligible. Since the multitrain strategy takes twice as
much computation time, I retained the single-iteration strategy.

4.4 Data Augmentation

The amount of training and test data is crucial for any modeling endeavor. Especially for
complex models with many parameters is a rich training set extremely important because
these models are prone to over�tting. Novel enhancers, the essential training data, are
di�cult to identify and measure. Additionally, there is a limited number of naturally
occurring enhancers in the segmentation network. Thus, a huge increase in training data
from new experiments is unrealistic.

The basic concept of data augmentation is to arti�cially increase the amount of training
data by transforming and distorting existing data. The technique is often used in the
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context of image analysis, where images get cropped or rotated to generate new data
points [93, 94]. Alternative approaches are to add noise [95] or, for sequence data, to
simulate evolutionary di�erences [96].

The goal is always the same: to confront the optimization algorithm with additional
noise so that it is forced to learn more general features and can not exploit random patterns
in the real data. Much like the parameter penalty, data augmentation raises the cost of
over�tting.

I tested three di�erent approaches of generating new data, which I introduce in the
following.

4.4.1 Simulated Evolution

In order to augment the training data, I generated three altered versions of the enhancers
by introducing single-nucleotide variants into the sequence. This increases the amount of
training data 4-fold. I did not change the expression pro�le. This is justi�ed because evo-
lutionary comparisons between closely related Drosophila species reveal strong di�erences
in the enhancer sequences but a high conservation of expression patterns [19, 97]. I tested
a 5%, 15% as well as a 25% selection rate. I chose a maximal uninformative approach in
which a base that got selected for mutation changes into any base with equal probability.
Note that the mutation rate is smaller than the selection rate because 25% of the mutated
positions will select the original base (3.75%, 11.25%, 18.5%).

I found no di�erence in test score between the augmented and the unaltered prediction
runs for any mutation rate, see table B.5. If anything the average test score decreased
slightly. Although the sequence alternations did not improve the end result, it is remarkable
how stable the prediction quality is when trained on strongly mutated sequences.

As an alternative to single-nucleotide variants I tried an approach that crops the se-
quences on the edges. I removed a �xed percentage of the enhancers total sequence. The
proportion, in which both ends get shortened, was chosen randomly. As before I added
three altered copies to the training enhancers and did not change their expression pro�les.
I tested a 10% and 25% cropping rate; however, a signi�cant improvement in test score
was not achievable, see table B.5.

4.4.2 Homologous Enhancers

Instead of using arti�cially mutated sequences to enrich the training data, there is the
option to use actual homologous sequences. Besides D. melanogster, the genomes of 11
additional Drosophila species have been sequenced [98, 99]. These species are in order
of their relatedness to D. melanogaster : D. simulans, D. sechellia, D. yakuba, D. erecta,
D. ananassae, D. pseudoobscura, D. persimilis, D. willistoni, D. mojavensis, D. virilis, D.
grimshawi. Together they span 40 million years of evolution.

I identi�ed homologs based on the two-species alignments with the D. melanogaster

genome obtained from the UCSC Genome Browser [98]. In order to �nd a homolog, I
required that the boundaries of the enhancer fall in a block of conserved sequence or that
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Figure 4.8: (Left) The procedure to identify a homolog of a D. melanogaster en-
hancer in a related species, here D. pseudoobscura. If the boundary of the enhancer
is not in a conserved block, we expand the enhancer based on the next conserved
block. (Right) Performance di�erences for a 17 TF model with (Aug3) and without
(Aug0) augmentation. More details in table B.6.

the enhancer contains a conserved block of at least 100bp length. If one or both enhancer
boundaries were not conserved, I estimated the homolog's delineation based on the closest
conserved block. I rejected homologs that were shorter than 200bp or longer than 2500bp.
78% of the D. melanogaster enhancers are conserved in all of the 11 additional species.
For only two enhancers it was not possible to �nd a homolog in any of the species. For a
graphical representation, see the left side of �gure 4.8.

Table 4.4: Test scores for di�erent augmentation strategies with two, three and four fold aug-
mentation. Regular augmentation is with closely related species �rst, alternative augmentation
considers weakly related species �rst. All experiments with 17 TF and without Hyperparameter-
training. (** signi�cant at p \leq 0.01; signi�cance is depicted for relevant pairs only.)

CV No Aug Aug2 Aug2 alt. Aug3 Aug3 alt. Aug4

Avg 0.378 0.392 0.386 0.401 0.404 0.396
Std 0.023 0.015 0.014 0.017 0.012 0.012

\ast \ast 

\ast \ast 

Despite substantial sequence divergences, I am con�dent that these bona �de enhancers
drive expression patterns similar to the D. melanogaster ones and that it is possible to use
them to augment the training data. This comes from the fact that �rst, the relevant
TFs [100, 101] as well as their binding speci�cities [102] are conserved well beyond the
Drosophila genus.
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Secondly, a small set of homologous enhancers has been identi�ed in other species and
the expression driven by these enhancers has been measured in D. melanogaster embryos.
Their patterns are highly similar to the D. melanogaster homologs [103, 104, 19]. Fur-
thermore, earlier modeling e�orts demonstrated that these enhancers' expression can be
reliably predicted by a model trained to D. melanogaster data [27].

I experimented with the number of additional enhancers and with the order of species
to select homologs. As a standard approach, I started with closely related species to
add enhancer homologs and moved to more distant relatives until a maximum number of
additions have been selected. As an alternative approach, I mixed the order by starting
with the intermediate species (D. yakuba, D. erecta, D. ananassae) followed by the standard
order. I performed training runs with two, three as well as four additions (Aug2, Aug3,
Aug4). All forms of augmentation improved the test score, however, only for more than
two additions were the results signi�cant, see table 4.4 and in the appendix B.6. Aug4
yielded slightly worse results than Aug3 and requires more computation time. The order of
species was irrelevant for the test result. In conclusion, the method of choice is three-fold
augmentation with the standard order of species, see 4.8 (Right).

4.5 Hyperparameter Training

The parameter penalty \lambda is one example of a hyperparameter of the model. In general,
hyperparameters are all model parameters that are not subject to optimization. Further
examples are the scope of the optimization algorithm and the range of cooperativity. The
choice of the parameter penalty has an impact on the predictions, however, it is neither
possible to train \lambda on the training data nor use the test data. Using the training data
would thwart the idea of the parameter penalty because reducing the penalty automatically
increases the objective function. Using the test data to determine \lambda is problematic because
it would render the test data no longer independent from the parameter training. By
tuning \lambda to improve the test score, one would train it on the test data by hand.

There are two possible solutions to choose the hyperparameters. The �rst solution is
to guess reasonable parameters and not change them retroactively. The second solution
is to use a third data set, called the validation data, to chose the best hyperparameters
independently of the training and test data.

A common approach is to use nested cross-validation in which the training data is
again parsed into multiple fragments to serve as an independent cross-validation set-up,
e.g. [105]. After the inner cross-validation run determined the optimal hyperparameter,
the model is trained on the full training data and tested on the last data share as with
normal cross-validation. This procedure gets repeated for every training run, the outer
cross-validation loop. Nested CV greatly increases the number of training runs (one inner
cross-validation loop for every hyperparameter and every batch of the training dataset). I
do not apply this approach for the simple reason that it is very resource intensive.

To see this, consider that the training in the inner cross-validation instances takes
similar computation time as the full training. Even with a small set of hyperparame-
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ter settings and a coarse inner cross-validation fragmentation, it would require orders of
magnitude more computation time. Since the parameter optimization takes several min-
utes, sometimes more than one hour, nested cross-validation is simply too computationally
expensive.

Figure 4.9: The hyperparameter training set-up HTI/II. All training results get
tested on the validation data. The results with the best validation score are used
for the �nal prediction.

Alternatively, I tried two hyperparameter training strategies, which I call HTI and
HTII. They di�er in their choice of validation data. HTI is a simple version of the nested
cross-validation set-up. Instead of training on 9 out of 10 data fragments during cross-
validation, I hold one data fragment back as validation data and use only 8 shares, see
�gure 4.9. The advantage of this approach over the nested cross-validation is that for every
training instance I need to train the model only once for every hyperparameter setting and
can simply use the best set of training parameters to predict the test data. An additional
training run with the best hyperparameters is not necessary because the parameters have
already been calculated with the full training data. The disadvantage is the reduction of
available data. First, the training data is reduced because the validation data is at no
point merged back with the training data, and second, the validation data itself is very
small because only one data fragment is used to assess the quality of the hyperparameter
setting. Since the data fragments contain around 10 enhancers each, the validation data is
likely not representative.

HTII solves the problem of HTI by applying ideas similar to data augmentation. Instead
of holding data fragments back for validation and therefore reducing the training data, I
train on the original training data, 9 out of 10 data shares. The validation data consists of
homologous sequences of the training enhancers from two Drosophila species (D. yakuba
and D. erecta). If there is no homologous enhancer, I simply used the original sequence.
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Table 4.5: Test scores for no penalty (NP: \lambda = 0), best-guess penalty (HT0: \lambda = 10 - 3) and
the hyperparameter training strategies HTI and HTII (\lambda \in \{ 10 - 3, 5 \cdot 10 - 3, 10 - 2\} ), each with
and without data augmentation. HTII+ with additionally \lambda \in \{ 5 \cdot 10 - 4, 10 - 1\} . (* signi�cant at
p \leq 0.05)

No Aug Aug3

test score NP HT 0 HT I HT II NP HT 0 HT I HT II HTII+

Avg 0.362 0.378 0.389 0.383 0.389 0.401 0.417 0.411 0.405
Std 0.029 0.023 0.026 0.015 0.015 0.017 0.032 0.01 0.012

\ast \ast 

By applying this strategy, the training data does not get reduced and there is a rich
validation data set. The caveat is that the validation data has similarities to the training
data, especially when data augmentation is used. Hence, it was necessary to test whether
this strategy is compatible with data augmentation. Note that test and training data are
even with HTII completely independent because no homolog of a test enhancer entered
the validation data.

As adaptable hyperparameter, I chose the strength of the parameter penalty \lambda . Since
the available computation resources are limited and single training instances take up to
one hour, I limited tests to three values for \lambda (0.001, 0.005, 0.01). I tested both strategies,
HTI and HTII, with and without data augmentation, see table 4.5 and in more detail B.7.
Overall, applying any form of parameter penalty improves the �nal test score noticeably.
However, only with hyperparameter training the improvement becomes signi�cant (HTII
in the case of augmentation, HTI without augmentation).

The e�ect of hyperparameter training and augmentation is additive. The best average
results are achieved with HTI in combination with 3 fold augmentation. Although the test
score for HTI is slightly better than for HTII, I prefer HTII as hyperparameter training
scheme because it reduces the variation across di�erent CV parsings signi�cantly (F-test:
with augmentation p \leq 0.01, without augmentation p \leq 0.05). Probably because of the
broader data basis in the validation set as well as the training set, the scores for HTII di�er
less, indicating more consistent results.

The addition of further hyperparameter values is not bene�cial as can be seen in table
B.7. For HTII+, I tested 5 hyperparameter values \lambda (0.0005, 0.001, 0.005, 0.01, 0.1)
without any improvement of the �nal test score.

4.6 Focused Discussion: the Optimal Training Strategy

The optimized parameter training set-up is a combination of techniques that I tested on
their own as well as in combination with others. It consists of a global parameter optimiza-
tion algorithm (CMA-ES), L1 parameter penalty, a hyperparameter training set-up based
on homologous enhancers (HTII), and three-fold data augmentation (Aug3), also based



4.6 Focused Discussion: the Optimal Training Strategy 53

on homologous enhancers. Table 4.6 summarizes the the improvement in performance for
every single technique and their combination, which I measure in the form of percentage
gain. There are multiple ways to measure the e�ect of the training methods. I chose
to evaluate the gain by comparing the test scores with and without the technique under
otherwise optimal conditions. Of course, this is only an approximation, which helps to
visualize the improvements.

Table 4.6: Approximate improvement gained from the training techniques of the last sections as
percentage of the base test score. The last column is the gain from all four techniques combined.

CMA-ES L1-penalty HTII Aug3 Combined

8 TF 1.4% 0.6% 2.8% 1.9% 16.4%
17 TF 4.9% 3.1% 2.6% 7.3% 13.9%

Two things are immediately apparent. First, the improvement in score for every tech-
nique on its own is relatively small but their e�ect can be combined. Taken together, these
methods result in a substantial step forward in prediction quality. Particularly successful
on its own is data augmentation. This comes mainly from the fact that the number of
enhancers, which are the training data, is very low. Since identi�cation and measurement
of additional enhancers is very laborious and since there is a limited number of naturally
occurring enhancers in D. melanogaster, data augmentation is the only way to extended
the training data considerably.

It is common in the �eld of image analysis to augment the data with new images
by mirroring them on one axis. The equivalent in this case would be to use the reverse
complement of the sequences. However, this is not a valid option for thermodynamic
models because they process the enhancers independently of their orientation. Hence, the
expression output would be the same and the e�ective number of training enhancers would
remain unchanged.

Second, the improvement is especially noteworthy for the extended model with 17 TFs.
The reason is the increased number of parameter for the extended model (52 instead of 25
for the reduced model). This is not surprising since a larger set of parameters increases
the risk of over-�tting. All techniques are designed to handle many model parameters:
CMA-ES improves the navigation through the parameter space; the penalty (with the
penalty strength as trainable hyperparameter) limits parameter values and pushes useless
parameters back into the neutral position; augmentation broadens the data foundation
substantially. In their combination, they allow us to train a model with more details and
evaluate even minor aspects transcription control.
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Chapter 5

Model Evaluation

The last chapter depicted all the tools to improve the predictive power of thermodynamic
models. However, predicting patterns as accurate as possible is ultimately not the purpose
of this thesis. The primary goal is to understand the mechanisms of transcription control
and enhancer architecture. We learn these details by probing the trained model and by
trying alternative models in order to assess the in�uence of all system components. Only
with high-quality predictions, we can be con�dent that the model represents mechanisms
underlying the real biological system. A high prediction quality, represented by a good test
score, enables us to build more complex models and dissect them in much greater detail
than a coarse, low-quality model.

5.1 Binding Speci�cities

5.1.1 Number of Binding Sites

I already introduced the speci�cities of the binding motifs in the form of a PWM, see
chapter 3.2. PWMs are a continuous measure of TF binding site strength. They do not
categorize sequences whether they are binding sites or not. In theory, every sequence can
be bound by any TF and the identi�cation of binding sites is unnecessary. Since most
sequences have a negligible binding weight, they do not a�ect the prediction; however,
they have a strong in�uence on the computation time of the model. The time required
to calculate the partition functions in equation 2.21 depends linearly on the number of
sites, quadratically if cooperativity is incorporated. Including all sites regardless of their
quality is computationally unfeasible. Hence, I de�ne a threshold T of the binding energy
for the inclusion of sites. Equation 2.10 shows that the energy is proportional to the
log-likelihood-ratio LLR between the PWM and the background probabilities. To de�ne a
uniform threshold for all TFs, I scale the threshold with the binding energy of the consensus
site \mathrm{m}\mathrm{a}\mathrm{x}(LLR). The thermodynamic model identi�es a sequence as a binding site if:

LLR \geq (1 - T )\mathrm{m}\mathrm{a}\mathrm{x}(LLR) (5.1)
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The threshold becomes more strict for lower T . At T = 0 only the consensus is identi�ed
as a binding site. For T \geq 1, sites with a negative1 LLR are included. There is little
reason to include sites with a negative LLR, thus, the reasonable range for T is between
0 and 1. Figure 5.1 depicts the distribution of binding weights for all possible sites in the
enhancers. Included are sites with binding weight of roughly 3 orders of magnitude. Most
sites are much weaker and will be neglected. The right hand side of �gure 5.1 shows eight
exemplary bcd sites. The �rst four are the strongest bcd sites in their enhancer, the latter
four are the weakest for a threshold of T = 0.5. Most di�erences to the consensus site are
in the lesser important �anking region of the motif. The model includes sites with one or
two mismatches in the core motif, too, although their weight is one order of magnitude
lower.

Figure 5.1: (left) Histogram of binding energies (\mathrm{l}\mathrm{o}\mathrm{g}10(w)) of enhancer binding sites.
For the model we use only a subset of approximately 0.4% of all sites, however, they
carry 66% of the total binding weight. (Right) exemplary strong and weak binding
sites of bcd. Marked are mismatches in the core motif (red) and in the �anking
region (yellow).

In the following, I compare predictions with di�erent thresholds T . This analysis is not
meant to answer the question to which extent weak sites are relevant for the model because
the training algorithm has the possibility to adapt to a scarce site distribution during the
training phase. In a later section about enhancer architecture (6.2), I am going to revisit
the issue of weak sites and tackle the question with an impact analysis, which is much more
suitable for this question because the impact score measures in�uence without giving the
model the chance to adapt. Here, I only determine the in�uence of site distribution on the
model training.

1The LLR will be negative if the PWM frequencies of the site are lower than the background frequencies.
In other words, it is more likely that this sequence comes from a background sample than from a set of
sites.
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I compared four thresholds T \in \{ 0.4, 0.5, 0.6, 0.7\} . The steps between the thresholds
resemble almost a doubling of incorporated sites and each quadruples the training time of
the model, table 5.1. Both, too few and too many sites, can deteriorate the prediction.
Certainly, ignoring relevant sites impedes the training because important features of the
enhancers are not incorporated.

Table 5.1: Number of sites, computation time and test scores with various site thresholds T for
the reduced as well as for the expanded Model. Standard deviation for all test results is \sigma \approx 0.01.
(\ast : due to long computation time, the result for T = 0.7 with 17 TF is based on only 5 iterations.)

8 TF 17 TF

T 0.4 0.5 0.6 0.7 0.4 0.5 0.6 0.7

# sites per enhancer 50 96 181 350 61 123 238 462
# sites per kb 35 67 125 243 42 86 166 321

comp. time [min] 5 15 60 584 15 60 240 2220

test score 0.373 0.37 0.346 0.351 0.384 0.411 0.405 0.375\ast 

In contrast to ignoring sites, it is not immediately clear why incorporating more sites
reduces the prediction quality. One reason can be that the PWMs are an imprecise measure
for the assessment of weak sites. The HIP-FA PWMs, which are used here, were measured
by testing all single base mismatches. Hence, it is reasonable to assume that strong binding
sites similar to the consensus are correctly modeled. In the case of multiple mismatches,
the PWMs rely on the additivity assumption, which might misinterpret the strength of
those sites, see section 2.1.3.

A threshold of T = 0.5 seems to be optimal from a model training aspect and to be a
good balance between number of sites and computation time. Thus, this threshold will be
the default for all following predictions.

5.1.2 Alternative PWM Sets

Next, I compared di�erent sets of PWMs generated by three di�erent methods: HIP-FA,
B1H, and Footprinting. Relevant for the interpretation of a PWM is not only the order
of the bases but also the overall speci�city measured in the form of information content.
HIP-FA PWMs are less speci�c than their alternatives, which makes this comparison also
about what level of speci�city is optimal for the model. For this reason, I tested the PWM
sets with and without pseudocounts PC. As PC for every entry, I choose 0.25 for the count-
based PWMs (B1H and Footprinting) summing to one additional unspeci�c binding site.
For the HIP-FA PWMs, which sum to 100, we add 1 in every entry.

To concentrate on the e�ect of the PWMs, I limit the complexity in the system and
use the reduced set of 8 TFs. Notice that there is not a good HIP-FA PWM available for
cic and, therefore, I use the B1H PWM instead. Figure 5.2 depicts the di�erences between
the PWM sets.
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Table 5.2: Listed are the average number of sites per enhancer and test scores applying various
PWM sets, each tested with and without pseudo-counts (PC). Since B1H as well as Footprinting
PWMs call fewer binding sites using the same threshold (T = 0.5), I tested a prediction with
more binding sites (PC and T = 0.6). The HIP-FA PWMs score signi�cantly better than the
alternative ones in every category (Wilcoxon signed-rank test p \leq 0.01).

No PC PC More Sites

sites score sites score sites score

HIP-FA 96 0.37 101 0.377 181 0.346
Footprinting 37 0.305 41 0.321 79 0.327

B1H 29 0.289 38 0.311 67 0.305

Table 5.2 shows the average test scores for all PWM sets for 10 independent 10-fold
cross-validation runs. The HIP-FA PWMs clearly outperform all other PWMs by a large
margin (Wilcoxon Signed-rank test against B1H and Footprinting with and without PC p \leq 
0.01). The second best PWM set is Footprining with PC (against B1H + PC p \leq 0.05). It
is especially noticeable that PC are very bene�cial in the case of B1H and Footprinting but
not so much for HIP-FA. This indicates that HIP-FA correctly captures the unspeci�city
of TF-DNA binding, while B1H and Footprinting are too speci�c.

An alternative explanation could be that the binding site threshold T = 0.5 is too
strict for the more speci�c PWMs. In fact, the number of binding sites identi�ed by B1H
or Footprinting is almost one-third of the number of HIP-FA sites. It is possible that
predictions with unspeci�c PWMs would perform better if they were based on a similar
number of binding sites as HIP-FA. Hence, I tested the energy threshold T = 0.6 also for
B1H and Footprinting, table 5.2. Again, the number of binding sites doubles. However,
the test scores do not change signi�cantly for B1H and Footprinting. Thus, the better
performance of HIP-FA is based on a better site assessment and not necessary on calling
more sites.

5.2 Model Expansion

5.2.1 Additional Transcription Factors

Almost all tests that I did up to now, indicate that the expansion of the TF set improves
the prediction result. Table 5.3 summarizes the results of a naive and a fully optimized
training approach. This proves the importance of parameter regularization. The bene�t
of the additional TFs is not signi�cant if we apply no form of parameter penalty or data
augmentation. Without our advanced optimization set-up, the inclusion of additional TFs
leads to over-�tting and an overall suboptimal performance.

Applying the techniques of chapter 4 is especially bene�cial for predictions with the
expanded set of TFs. Only with an optimized training technique, there is a signi�cant
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Figure 5.2: (Left) SequenceLogos for all PWMs. The trend that the HIP-FA PWMs are
less speci�c than their B1H and Footprinting counterparts is immediately visible by the
height of the logos. (Right) Visualization of the key results from table 5.2. The HIP-FA
PWMs clearly outperform alternative PWM sets even without the use of pseudo-counts.

di�erence between the reduced and the full model. Therefore, it is possible to conclude
that the expanded set contains relevant TFs for the pattern formation. Figure 5.3 depicts
the improvement in the form of a PR-plot.

Table 5.3: Test results for 8 TF and 17 TF trained without parameter regularization or augmen-
tation (naive training) and all techniques of chapter 4 applied (optimized training).

Naive Training Optimized Training

8 TF 0.351 0.37
17 TF 0.362 0.411

Although the test results are promising, three important questions are still open. First,
which TFs are relevant for the system, or better, which TFs have the most impact on the
model? Second, is the result of the prediction plausible and consistent with experimental
data? And third, how do the TFs in�uence the predictions? Figure 5.4 answers the �rst
two questions. Depicted are the impact of all TFs as a measure of TF in�uence on the
prediction, see section 4.2.3, and the distribution of activatory potentials, which indicates
whether a factor is regarded as an activator or a repressor.

All TFs except slp1 are categorized correctly and most very consistently. The classic
8 TFs, bcd, cad, cic, gt, hb, Kr, kni, and tll are all correctly predicted in every training
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Figure 5.3: The PR-plot sums-up the model predictions for ten independent 10-
fold CV runs with our optimized training set-up. The expanded model with 17 TFs
clearly outperforms the reduced model with 8TFs.

iteration, except for gt that was falsely predicted to be a weak activator in only one out of
100 training runs. Considering that gt binding sites are in only 61% of the enhancers, a
single misclassi�cation is not surprising.

Also not surprising is that these 8 TFs have a huge in�uence on the patterns. Knocking-
out bcd alone accounts for roughly half of the prediction score. This result �ts well with
the reported role of bcd as a key TF-independent of bcd dependent TFs. The posterior
activator cad has less impact, most likely because we have fewer enhancers expressed in the
posterior part of the embryo. Also clearly important are cic, hb, kni, Kr, and �although
less important� gt. Unexpected is the small impact and the large standard deviation of
tll. To understand this, it is necessary to evaluate the impact on the single enhancer level.

Figure C.6 in the appendix shows the impact of the TFs on each individual enhancer. If
the impact is positive, the TF is to some degree necessary for the model prediction of this
enhancer. Removing the TF from the model deteriorates the prediction, see for example
�gure 5.5. On the other hand, the impact of a TF on an enhancer is negative if removing it
from the model improves the prediction. In this case, the parameters of the TF have been
over�t in general or the interaction of the TF with the enhancer can not be explained by the
model. All of the important TFs in�uence the prediction of certain enhancers negatively,
although the averaged impact for most of them is positive. Especially noticeable is that tll
represses its own enhancers, which is most likely the reason for its low average impact.

5.2.2 Focused Discussion: Role of the Transcription Factors

The additional TFs show a similar behavior, however, their average impact is in most
instances much lower. D, Nub and pdm2 are late gap factors that play a secondary role in
the segmentation network [68, 69, 70]. If knocked-out or ectopically expressed, they cause
slight patterning defects of pair rule genes, but not a complete loss of entire expression
domains. This makes it especially challenging to predict their role. However, the model
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Figure 5.4: (Left) Average impact of all TFs as percentage of total prediction score
(blue) and the impact of the cooperativity alone (gray). Negative impact indicates
an improvement in the prediction after removing the TFs. (Right) Distribution of
the activatory potential for all CV parsings (100 parameter values) in the form of a
violin plot. The distribution width depicts the density of parameter predictions, the
red lines mark the median prediction. The black line marks the boundary between
activators (activatory potential > 1) and repressors (< 1).

correctly predicts D to be an activator (97/100 times) and Nub to be a repressor (99/100
times). D shows an overall positive impact, e.g. by helping to form posterior pair rule
expression (run, eve and h), see �gure C.6. Figure 5.5 (A) depicts exemplary patterning
defects for a ftz and a run enhancer when D gets knocked-out in silico. While the stripes
are still present, they are less pronounced and weaker expressed. Also shown are the results
from in vivo deletion experiments from the literature, where a similar e�ect was observed
[68].

Nub is in its impact comparable to tll. The on average negative impact comes mainly
from gap-gene enhancers, e.g. an early run enhancer run(+1), D(+4), and kni(+1). Nev-
ertheless, the model predicts that Nub sharpens the gap between pair-rule stripes, e.g.
run(-31), run(+30), and ftz(-6), see �gure 5.5 (B). An explanation for this result could be
inconsistent enhancer staging. For the expression measurement, enhancers were selected
from the same time point during embryogenesis. Nonetheless, an imprecision of a couple
of minutes is highly likely, especially, since the experimental results come from di�erent
sources. It is plausible that the late-expressed gap gene �ts pair-rule stripes well while
being detrimental to the prediction of early gap-patterns. A solution to this problem is
hardly possible with the data situation at the moment and would require remeasuring all
enhancers with a more thorough staging or time resolved expression measurements, i.e.
from live-reporters [106].

Although pdm2 is correctly classi�ed as a repressor in 83 out of 100 training instances,
the model assigns this TF almost no impact in any enhancer. This comes from the fact
that pdm2 has binding sites in very few enhancers and receives, therefore, a low weight by
the algorithm due to our parameter regularization e�ort.

The gap factors fkh and hkb act as repressors in the termini [65]. They are expressed
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Figure 5.5: In silico knock-out experiments for Dichaete (A), Nub (B), and forkhead
(C). The wild-type pro�les (wt, blue) show the superposed predictions of ten CV
runs, the knock-out pro�les (red) show the prediction without the deleted TF,
scaled to the wild-type track. The measured data is plotted in black. Also included
are published in vivo knock-out experiments for Dichaete and forkhead [68, 65].

in the anterior and posterior cap of the embryo and constrain expression to the middle
segment. The model clearly identi�es fkh as a repressor with high impact. Figure 5.5 (C)
depicts the patterning defects of a fkh deletion in vivo as well as in silico. It successfully
predicts the posterior expansion of the seventh ftz stripe in the case of lacking fkh input.
Among the expanded set of TFs, fkh has the largest impact. hkb, on the other hand, has
no measurable impact. The model clearly struggles to assign hkb a role (repressor 54/100
instances). Much like pdm2, hkb binds only a few enhancers. The model identi�ed only
15 binding sites for hkb, mostly because its PWM is very speci�c, see �gure 3.3. Thus, it
is not surprising that the training algorithm assigns this TF a very low binding a�nity.
However, experiments from Casanova suggest that hkb has a similar e�ect as fkh and only
the combined knock-out of both TFs leads to a full patterning defect of ftz stripe 7 [65]. It
seems that in the model, fkh compensates for some of the hkb repression, which is missing
due to a lack of predicted hkb binding sites. Somehow, the hkb PWM used here and
alternative ones from the literature, which are extremely similar [75], do not re�ect the in
vivo binding speci�city for which we have no explanation.

The gap factor btd is an activator that helps to form eve stripe 1 [64]. The model
consistently predicts btd to be an activator (94/100 training runs), however, with vanishing
impact. btd binds to the enhancer of eve stripe 1, eve(+7), and additionally the stripe
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1 enhancers of prd and run (prd(-3), run(-10)), but its impact is barely visible above the
broad background expression of bcd.

Run and slp1 are early pair rule genes that show gap-gene-like behavior during early
segmentation [66, 67]. They are both repressors that constrain the boundaries of anterior
expression domains. Indeed, the model predicts run to be repressor in most training
instances (96/100) although its impact is very low. Run has a positive impact on some
head enhancers (oc and noc) but is clearly a secondary TF.

Figure 5.6: Distribution of slp1 position-speci�c binding content and concentration.
The red curve illustrates where the enhancers with slp1 sites are expressed along
the embryo axis. We calculate the position-speci�c binding content by averaging
the expression patterns of all enhancers weighted with the summarized slp1 bind-
ing weight in their sequence. Most enhancers with strong slp1 binding sites are
expressed in the posterior tail of the embryo.

The only TF that the model wrongly classi�es is slp1. The model predicts that slp1 is an
activator that boosts expression in the embryonic head region (89/100 training instances).
Figure 5.6 shows that most of the enhancers that carry slp1 binding sites are expressed
posterior to the expression domain of slp1. However, the yield in score from the few
head enhancers, if slp1 is an activator, is greater than the mild e�ect of a repressive slp1.
Interestingly, one of the most pronounced targets of slp1 is an enhancer that regulates the
slp locus (slp1/slp2) itself. It is unclear whether these binding sites are spurious or whether
it is a case of auto-regulation, which the static model can not capture.

Finally, Stat is a ubiquitous activator that targets evidentially multiple pair rule and
gap genes [71, 72]. One expects that any ubiquitous TF activity has only a minor impact
on the shape of the expression predictions since its concentration pro�le does not carry
positional information. However, it does change the overall expression level much like the
basal transcription rate qbtr and therefore alters the sensitivity to the input of other TFs.
A high sensitivity leads to sharper expression pro�les, while a low sensitivity results in
broader expression pro�les. The algorithm predicts Stat to be a strong activator in most
training instances (95/100), thus capturing its reported role.
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5.3 Expression Predictions

After establishing the parameter training methods and analysis of the parameter results, I
am going to now focus on the actual output of the model: the expression predictions.

Here I present the results for the best model, which incorporates all 17 TF and was
trained with the fully optimized training setup. As a reminder, I repeated the parameter
training 10 times with di�erent cross validation parsings. Therefore, there are 10 di�erent
test results for every enhancer. Figure 5.7 shows a superposition of the ten test results in
one pro�le for each enhancer. The superposed pro�le depicts the average prediction based
on di�ering models. It is possible to see which expression domains get predicted well on
average.

The spread in prediction quality of the di�ering models is depicted in �gure 5.8. It
shows the distribution of test scores for every single enhancer in the form of a box plot.
The median score is marked in red. The score distribution of most enhancers show a
large variance. Hence, the prediction results depend heavily on the parameter results and,
therefore, on the composition of the training data. The enhancer that gets predicted is
never part of the training data according to the rules of cross validation. However, the test
result of a certain enhancer will likely be better, if more enhancers similar to the predicted
one are in the training set. Nevertheless, almost all enhancers can be predicted well in at
least some instances; 96 out of 98 enhancers have at least once a test score above 0.5. Many
have a high test score in all cases, e.g. gt(-10), Kr(-3), and rib(+3). Only few enhancers
are consistently di�cult to predict, most prominently dfd(-13) and gt(-1).

The large spread of test scores is especially surprising since the roles of the important
TF get correctly predicted in almost all training iterations, see section 5.2. It is rather the
composition of TF activity that causes the di�erences between a good and a bad prediction.
Take for example gt(-1), which is di�cult to predict. The enhancer drives expression in
two domains that get separated by Kr repression, see �gure 5.7 and C.6. While Kr is
necessary for gt(-1), it is deleterious for the enhancer Kr(-2). Depending on the balance of
enhancers in the training set, either gt(-1) or Kr(-2) will be suboptimal predicted.

This discrepancy between results from similar models can be seen from two viewpoints.
From the modeling viewpoint, there are clearly aspects of the biological system that are
not understood and that have to be simpli�ed. The con�icting role of TFs like Kr in
the example above means that either some of its binding sites are falsely predicted or
that the enhancer architecture is more complex. A reason for the former can be missing
accessibility information, i.e. whether the chromatin at the TF binding sites is open for
protein binding. In support of the latter, one should mention that the model as stated
here ignores the e�ective range of repressors or heterotypic interactions, both aspects will
be topics of later sections in this thesis.

On the other hand, there is the statistical viewpoint. It states that there is much loose-
ness in the system, i.e. the prediction has high variance. In other words, small changes
in the composition of the training data can yield large di�erences in the prediction result.
There are typically three approaches to deal with this issue. More training data, stricter pa-
rameter regularization, or ensemble approaches. The data augmentation technique showed
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that a broader data foundation improves the model training greatly. Unfortunately, the
data that is available is limited and is laborious to expand. Similarly fruitful was our
regularization e�ort, however, it is hardly feasible to strengthen regularization or reduce
the number of parameters without giving up on the goal to build an in-depth model of
transcription control. Improving the model should enable the inclusion of more features
not the other way around.

Ensembles of models are known to reduce the prediction variance [107]. Instead of
training a single model that represents our best understanding of the system and the data,
an ensemble relies on multiple diverse models2. Their predictions combined constitute the
�nal ensemble prediction. A training technique that generates an ensemble is bagging [108].
The name stands for bootstrap aggregation. For this technique, the model gets trained
multiple times with di�ering fragments of the training data, the so called bootstrap samples.
The �nal result is the superposition of all models. The results in �gure 5.7 are generated
in a similar spirit. They too are a superposition of multiple models, each trained on a
slightly di�erent training data set3.

Indeed, the superposed prediction performs well in comparison to the single predictions.
The average correlation of the single models is \=C = 0.411 \pm 0.01, while the correlation of
the ensemble model is more than one standard deviation higher Ce = 0.422. Although an
improvement of the model prediction is desirable, the ensemble model lacks one key feature
that is interpretability. By combining multiple models, the resulting predictions depict no
longer the biophysical model that was described in chapter 2. For this reason, ensemble
models are interesting only on a theoretical level.

2The term diverse models includes in this context also the use of the same model framework with
di�ering parameters.

3In our case, the model was trained on exactly 90% of the available data, while for bagging each iteration
of training data contains on average 63% of the whole data (random sample with replacement).
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Figure 5.7: Superposed model predictions for ten CV-parsings (blue) and measured pro-
�les (gray). The correlation between prediction and measurement is indicated between the
enhancer name and the pro�les.
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Figure 5.8: Test scores (correlation) of all enhancers as a box plot for 10 data parsings. How
well a enhancer gets predicted depends strongly on the composition of the training data.
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Chapter 6

Enhancer Architecture

The preceding chapter showed that sequence binding content, i.e. the composition of TF
binding weight, does not fully explain the expression patterns. Furthermore, the compo-
sition of binding content is often inconsistent, e.g. when enhancers carry binding sites of
TF that could distort the correct expression pattern. It is therefore plausible that the
information encoded in the sequence is additionally organized on higher levels beyond the
mere composition of TFs. This includes features like binding site interaction, steric hin-
drance, sequence accessibility, and short range repression. I call all those aspects enhancer
architecture.

Given our lack of understanding of enhancer expression, architectural features could
be part of the reason why the predictions still deviate from the measured expression. The
following sections build up on the architecture that is already included in the model, i.e.
homotypic interaction, and investigate further aspects in more detail as well as analyze
whether including them improves the expression model.

6.1 TF Interactions

There is plenty of evidence that TF binding sites of the same and of di�erent type tend to
cluster in enhancers [109, 51]. However, the statistical analysis of site clustering does not
necessarily prove actual protein interaction or cooperative binding. If the site clusters are
functionally relevant, including their e�ects in the model should improve the predictions.

Until now, the model gave all TFs the option to interact homotypically based on a
fairly simple uniform interaction model. This model assumes a constant level of coopera-
tivity \gamma regardless of the distance between the binding sites until a maximal range of 50bp
and no cooperativity between sites that are farther apart. These assumptions were made
to constrain the computation time of the predictions, which increases substantially if het-
erotypic interactions and longer distances are allowed. Furthermore, additional heterotypic
interactions introduce new parameters to the simulation (one per TF pair) and, therefore,
increase the risk of over�tting. Regardless of those simpli�cations, cooperativity of some
TFs has a noticeable impact on the predictions, see �gure 5.4. In the following, I depict
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alternative and more complex interaction models.
The cooperativity function de�nes the level of cooperativity \gamma for a pair of sites based

on their distance and TF types. The simplest model, which was used up to now, is
a uniform model with a maximal range. In this model, the range is a hyperparameter
of the model and de�nes a threshold below which TFs interact distance-independently.
Alternative interaction functions model a declining cooperativity level, see �gure 6.2 left.
The linear interaction model assumes a linear decline with the gradient determined so that
the function is continuous at the point of the maximal range. The third model assumes a
Gaussian decline. For simplicity, the width of the Gaussian is �xed to 1/3 of the maximal
range. The training parameter for both, the Gaussian and the linear model, is still the
maximal level of cooperativity.

Consider binding sites of TFs i and j and distance d. The maximal range is de�ned
as R and \gamma i,j is the cooperativity parameter, which gets trained during optimization. The
interaction function is:

\gamma (i, j, d) = 1 +

\left\{           
\gamma i,j d < R uniform

\gamma i,j (1 - d/R) d < R linear

\gamma i,j \mathrm{e}\mathrm{x}\mathrm{p}
\Bigl( 
 - 9d2

2R2

\Bigr) 
d < R gaussian

0 d \geq R

(6.1)

6.1.1 Cooperativity Range

Before testing di�erent cooperativity models, let us explore the clustering of binding sites
in order to formulate a hypothesis of preferred spacing con�gurations.

Figure 6.1: (Left) Enrichment analysis of bcd clusters. The z-values were calculated
in 10bp windows by comparing clustering of bcd sites in enhancers with randomly
placed sites (10,000 repeats). (Right) Conservation of clustering. The clustering
analysis on the left was repeated for 12 drosophila species. Depicted are the number
of species for which we see clustering for this distance. An enrichment counts as
conserved if its empirical p-value is p \leq 0.01.

As will be seen later, bcd shows the most pronounced cooperativity. Hence, I concen-
trate the analysis on bcd homotypic interaction. Figure 6.1 (Left) shows the result of an
enrichment analysis for bcd sites. For this analysis, I counted the number of bcd site pairs
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in the segmentation enhancers weighted with the product of their binding weights. This
weighting is rather conservative as it neglects clusters of weak binding sites. An alter-
native method would be simple counting, which takes clusters of weak sites into account
but depends strongly on the binding weight threshold [51]. I counted sites in windows
of 10bp site distance and compared the result with randomly placed binding sites (10000
iterations). In addition, it is possible to calculate empirical p-values by counting how often
the null model shows similar or higher levels of enrichment. Strong clustering of bcd sites
(z-values > 2) for distances below 50bp can be seen, especially pronounced between 20bp
and 30bp (empirical p-value 0.0031). As a negative control experiment, I repeated the pro-
cedure with random sequences, which resemble real enhancers in length and dinucleotide
frequencies. The random sequences exhibit no similar clustering. A second narrow peak at
a 140bp distance is most likely an artifact. This gets con�rmed by a conservation analysis,
�gure 6.1 (Right). In this graph, I counted for each distance window the number of species,
in which bcd clusters signi�cantly. I based the signi�cance of an enrichment on empirical
p-values (p \leq 0.01), which I calculated by repeating the enrichment analysis 10000 times
with randomly shu�ed enhancer sequences. I shu�ed dinucleotides so that the sequences
are similar to enhancers but without any meaningful binding site architecture. The empir-
ical p-value for a certain distance is the fraction of shu�ed data sets that show stronger
enrichment at this distance than the real enhancers. In contrast to the probably spurious
cluster at a 140bp distance, the site clusters below 50bp distance are conserved in up to
10 Drosophila species. The results for other TFs are in the appendix IV.

Although pronounced, the clustering does not necessarily prove actual cooperativity, es-
pecially since similar p-values are not unexpected due to the multi-testing problem1. Thus,
I performed a conservation analysis as further validation. Figure 6.1 (Right) illustrates to
which degree enrichment is conserved in other Drosophila species. I count an enrichment
(or depletion) as conserved in a species if its empirical p-value is below 0.01. The ma-
jority of species (more than 75\%) exhibit an enrichment of bcd pairs on short interaction
distances (10bp � 30bp), indicating a functional importance of bcd clustering.

Judging from the bcd data, an interaction range of 50bp seems to be a good starting
point to explore the distance dependence of cooperativity. In theory, a too short range
might miss the full extent of the interaction, while a too long range would hamper training
the cooperativity parameter due to spurious interactions. In practice, neither the range as
a hyperparameter nor the shape of the interaction function has a striking in�uence on the
test results. I tested four interaction ranges for the uniform cooperativity model from 0 (no
interaction) to 100bp, as well as a linear and a Gaussian cooperativity model with 50bp
range each, see �gure 6.2 right. Although some di�erences are signi�cant, e.g. for both, 8
TFs and 17 TFs, the model with 50bp uniform interaction is an improvement upon a model
without interaction, however, the e�ect is very small. In accordance with the clustering
analysis, it seems that a range of 50bp is optimal, but the results are hardly decisive.

1The concept of the multi-testing problem is that at any signi�cance level false positives are not rare if
enough tests are performed. E.g. one expects one false positive result among 100 tests at the signi�cance
level of 0.01.
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Figure 6.2: (Upper Left) The distance pro�le for three di�erent models of inter-
action. Technically, only the linear model is continuous at 100% range, although
the gap of the gaussian model is negligible. (Upper Right) test scores for uniform
models with various ranges (0 - 100bp) and linear, as well as gaussian interaction
(50bp). (Lower Left) Impact of the homotypic cooperativity as percentage of the
test score. (Lower Right) Spread of the interaction range: parameter results for
100 predictions.

De�ning the maximal range as a �xed hyperparameter has the draw-back that all TF
interactions operate with the same range, which is not necessarily the case. Furthermore,
the range parameter is only a small element of the whole model. By de�ning the range at
the beginning, the optimization algorithm is able to adapt the training parameters to it,
rendering the test results barely distinguishable. Both problems can be avoided by making
the range of every interaction pair a training parameter. In this fashion, the optimization
algorithm selects the optimal range during the parameter training.

In more detail, I implemented the maximal range as a training parameter for the pre-
diction. In an e�ort to constrain the number of training parameters I tested the model
with the reduced set of TFs and homotypic cooperativity. An additional parameter penalty
pushes the range parameter back to zero. Given the earlier results, it is not surprising that
training the range does not improve the test score. The �nal test score is 0.364 \pm 0.005,
which is worse than the �xed 50b-range model, possibly due to the additional training
parameters. Hence, it is possible to conclude that the small impact of cooperativity does
not stem from the fact that we have not found the critical interaction range.
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Figure 6.3: Impact of di�erent range segments for the bcd homotypic interaction
as percentage of total test score.

More interesting than the score is the parameter training result, �gure 6.2 lower right.
The TFs cad, kni, tll, and gt show no form of cooperativity except some outliers. Consis-
tently, the optimization algorithm assigns vanishing ranges. The homotypic interactions
of Kr and cic have a signi�cant impact but are overall negligible. The data on hb is di-
vided. Some enhancers gain from hb cooperativity while others disagree, resulting in zero
average impact. The only clear case is bcd. It is the only TF for which cooperativity
has a measurable impact and, therefore, shows the most consistent clustering of the range
parameter. The median range is close to 50bp, which is also a cluster for the non-vanishing
hb cooperativity.

An impact analysis reveals which interaction-distances drive cooperativity. The idea
of this analysis is similar to the impact of TFs or cooperativity parameter but instead of
knocking-out all or some TF parameters in silico, one deactivates cooperativity for certain
distance windows and compare the result with the full model. Figure 6.3 depicts the
impact of various overlapping bcd interaction windows. The result is very noisy due to
the rather small impact of the cooperativity parameter in general, however, interactions
over a distance between 10 bp to 40bp are clearly the main source of impact. Interactions
on longer range scales (50b+) show either vanishing or even negative impact. This result
agrees well with clustering analyses of bcd binding sites.

Compare the impact to the enrichment and conservation analysis. All indicate accor-
dantly the relevance of clusters of bcd binding sites and homotypic cooperativity of bcd
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within a range of 50bp.

6.1.2 Orientation

The model is fundamentally strand-invariant on the level of the whole enhancer because it
scans both strands for TF binding sites. Using the reverse DNA-strand as input sequence
does not alter the result, which re�ects the orientation-independent behavior of enhancers
in vivo [110]. Nevertheless, the local orientation of binding sites can have an impact on
their interaction with their surrounding sites, e.g. in the case of dimer formation [111, 112].

In order to implement an orientation-aware interaction model, let us distinguish whether
two TFs bind on the same DNA strand (+ orientation) or on opposite strands ( - orien-
tation). The new interaction model is a modi�cation of the Gaussian model with an
additional training parameter per interaction, called the skewness s, that controls the
orientation bias.

\gamma (i, j, d, o) = 1 + \gamma i,j

\biggl( 
1 + erf

\biggl( 
oi,js

3d

R

\biggr) \biggr) 
\mathrm{e}\mathrm{x}\mathrm{p}

\biggl( 
 - 9d2

2R2

\biggr) 
(6.2)

Here, the orientation of sites i and j is oi,j = \pm 1. The function erf() is the error
function, which is implemented in most programming libraries.

erf (x) =
1\surd 
\pi 

\int x

 - x

\mathrm{e}\mathrm{x}\mathrm{p}
\bigl( 
 - t2

\bigr) 
dt (6.3)

The error function is point-symmetric in x = 0 and maps [ - \infty ,\infty ] \rightarrow [ - 1, 1]. An
unbiased model has skewness s = 0. By altering sign and value of s, the optimization
algorithm can choose direction and magnitude of the orientation bias, see �gure 6.4.

Introducing the skewness increases the number of training parameters. Hence, addi-
tional parameter regularization is necessary to prevent over�tting. This can be done by
adding the L1-norm of all skewness parameters to the parameter penalty. In this fashion,
the model gets pulled back to an unbiased state with s = 0 if the gain does not outweigh
the penalty.

I tested the orientation-aware model with the reduced set of 8 TFs and 50bp-range
homotypic cooperativity for all TFs although most of them showed marginal signs of co-
operativity because some TFs could display orientation biased cooperativity exclusively.
However, the resulting orientation bias is vanishing, except outliers and small traces for
bcd. Not surprisingly, the impact of the skewness is negative or insigni�cant. This indicates
that - at least at the coarse level of our interaction model - cooperativity is orientation
independent.

6.1.3 Heterotypic Interactions

Most thermodynamic models include homotypic cooperativity by default. In the same
fashion, as homotypic interaction is implemented, it is possible to implement heterotypic
cooperativity by adding a parameter for every TF combination.
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Figure 6.4: (Upper Left) The orientation-aware interaction function with three dif-
ferent values of skewness. (Upper Right) The error function as it is used for the
interaction model. (Lower left) Predicted skewness parameters. The parameter
penalty holds the skewness at zero for most TFs. Only the high impact bcd homo-
typic interaction shows preference for opposite strands. (Lower Right) The impact
of the skewness parameter and the cooperativity parameters.

Even if only TF pairs that have overlapping expression domains are considered, imple-
menting heterotypic cooperativity increases the number of training parameters substan-
tially. I de�ne TFs as overlapping and consider them for heterotypic interaction if their
expression domains have a positive correlation. This increases the number of cooperativ-
ity parameters from 8 to 22 in the case of the reduced model and from 17 to 67 for the
expanded model. In both cases, the number of training parameters approximately doubles.

Including this amount of parameters increases the computation time of the prediction
substantially. Therefore, I tested only 5 di�erent 10-fold CV parsings for the expanded
model. The trend is nevertheless clear. Both, the reduced as well as the expanded model,
deteriorate signi�cantly when heterotypic cooperativity gets included. The reason is over-
�tting due to a large number of parameters. In addition, most heterotypic interactions
show a negative or vanishing impact, see appendix C.8.

Adding all heterotypic interactions at the same time is therefore not an option. For
this reason, I concentrate on bcd and hb. Experiments suggest that hb could change its
role from being repressor to an activator in the presence of bcd sites [7, 8], but details
of the exact mechanism are unknown. For the model, I included interaction between bcd
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Table 6.1: Test results for 8 TF and 17 TF trained with only homotypic and with heterotypic
cooperativity. The heterotypic results are signi�cantly worse (Wilcoxon signed-rank test p8TF \leq 
0.01, p17TF \leq 0.05)

Cooperativity homotypic heterotypic

8 TF 0.37 0.35
17 TF 0.41 0.375

and hb in addition to homotypic cooperativity. I further gave the bcd-hb interaction the
possibility to display repressive behavior. By allowing the interaction function to take on
parameters between 0 and 1, it can disfavor the simultaneous binding of both factors. To
stay in the picture of equation 2.23, binding of one TF builds an energy barrier, hampering
simultaneous binding of the second TF. To distinguish both variations of cooperativity
from each other, I call them positive and negative cooperativity.

But what does the combined binding of an activator and a repressor mean for the
model prediction? The answer to this question depends not only on the cooperativity
parameter but also on the activatory potentials (\beta a,\beta r) of the involved TFs. The combined
state of both TFs is e�ectively activating if the activator is stronger, i.e. the combined
potential \beta a \cdot \beta r > 1, and repressive if the repressor is stronger, \beta a \cdot \beta r < 1. Thus, if a weak
repressor interacts with a strong activator, positive cooperativity promotes expression,
while negative cooperativity hampers expression. Training the bcd-hb interaction yields a

Figure 6.5: (Left) Scatter plot of predicted cooperativity parameters for the het-
erotypic bcd-hb interaction and their impact for 100 di�erent CV-parsings. The
impact is always normalized by the average prediction score. (Right) A similar
scatter plot with the impact and the combined potential of bcd and hb \beta a \cdot \beta r.

positive cooperativity in most cases, however, its impact is inconsistent. The cases with
positive and with negative impact balance each other out, leading to a vanishing average
impact. In an e�ort to explain this behavior, I created two scatter plots. The left side of
�gure 6.5 depicts the spread of the cooperativity parameter and its impact for every CV-
parsing. The right side is a scatter plot of the combined potential \beta a \cdot \beta r and the impact.
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Unfortunately, the data does not show a consistent trend. The impact's magnitude depends
on the cooperativity strength, as expected, but no distinctive cooperativity parameter is
noteworthy. Interestingly, the activatory potential of bcd and hb cancel each other out
in most cases. Neither the predictions with an activating nor with a repressive combined
potential show a consistent impact.

In conclusion, although the optimization algorithm clearly favors a strong positive bcd-
hb cooperativity, there is not an actual sign of interaction between those TFs at this level.
One reason could be that cooperativity modi�es the likelihood of combined binding, but
does not simulate a switch-like behavior of the TFs' role as it is reported for hb and bcd. A
form of interaction that could do that is synergy, which will be discussed in the following.

6.1.4 Synergy

Cooperative binding is one form of TF interaction. As it is implemented in the model, it
boosts the combined weight of interacting sites, thereby rendering the con�guration with
both sites being bound more likely. Once bound, the TFs interact independently with
the core promoter according to the model. This holds true for negative cooperativity,
which works similarly, but hampers simultaneous binding. From a modeling point of view,
cooperativity a�ects the binding a�nity, but not the activatory potential. In order to
distinguish it from cooperativity, I call an interaction that a�ects the activatory potential
of simultaneous binding TFs synergy, see �gure 6.6.

How is synergy implemented and how is it di�erent from cooperativity? As always, it
is best to approach synergy from an energy point of view. Remember that the activatory
potential can be seen as a form of binding energy between a TF and the core promoter.
A positive energy promotes binding of PolII, negative energy hampers it. The combined
potential of two TFs can be seen by adding their activatory energies, which is the same as
multiplying their activatory potentials, see equation 2.30. Synergy introduces a correction
term for the sum of activatory energies.

\epsilon = \epsilon 1 + \epsilon 2 + \epsilon synergy (6.4)

Translated to the level of the training parameters, the synergy parameter is a multiplicative
factor for the activatory potentials of two simultaneous bound TFs.

\beta = \beta 1 \cdot \beta 2 \cdot \gamma synergy (6.5)

In a way, synergy works similar to cooperativity. When calculating the partition sums, the
model inserts \gamma synergy to the combined potential \beta 1 \cdot \beta 2. Unlike cooperativity, this e�ects
ZON only. Furthermore, with \gamma synergy \in [0,\infty ), the synergy parameter can change the role
of the involved TFs by pushing the combined potential above or respectively below 1.0. In
this fashion, two repressors could, in theory, become activators, if bound synchronously.

Let's try to replace cooperativity with synergy in the predictions. For the interaction
function, I choose simple 50bp-range, uniform, homotypic synergy, similar to the interaction
function of the cooperativity. The resulting test scores for the synergy prediction are
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Figure 6.6: (Upper Left) The orientation-aware interaction function with three dif-
ferent values of skewness. (Upper Right) The error function as it is used for the
interaction model. (Lower left) Predicted skewness parameters. The parameter
penalty holds the skewness at zero for most TFs. Only the high impact bcd homo-
typic interaction shows preference for opposite strands. (Lower Right) The impact
of the skewness parameter and the cooperativity parameters.

signi�cantly worse than with cooperativity (score 0.355\pm 0.01, Wilcoxon signed-rank test
p \leq 0.01). The predicted synergy parameters show no clear trend and, therefore not
surprisingly, the average impact of each synergy parameter is smaller than the standard
deviation (data not shown). Hence, synergy is not a compelling alternative model to replace
homotypic cooperativity. To explain this result, consider that synergy works similarly to
cooperativity. The one thing in which synergy is di�erent from cooperativity is that synergy
can change the role of simultaneously bound TFs. However, there is no clear evidence that
a homotypic pair of repressors becomes an activator or vice versa.

To �nd an application for synergy, consider the bcd-hb interaction. I use the standard
model with 8 TFs and homotypic cooperativity. In addition, I allow synergistic interaction
between bcd and hb within a range of 50bp. The resulting synergy shows a clear trend, but
it does not agree with the hypothesis that hb changes its role to an activator if close to bcd.
The predicted synergy parameter is almost exclusively below 1.0, indicating a repressive
behavior of hb. This coincides well with the reported role of hb as a short-range repressor,
although the impact of this interaction is too low to con�rm it, see �gure 6.7.
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Figure 6.7: Scatter plot of the bcd-hb synergy parameter and its impact for 100
training instances. The model clearly prefers a repressive synergy, but the average
impact is close to zero.

6.1.5 Focused Discussion: the Impact of Interaction Terms

TF interactions, synergy or cooperativity, are second order correction terms to the �rst
order single binding site model. The preceding sections showed that the impact of inter-
action terms is very low in comparison to the impact of the TFs as �rst-order elements.
There are two reasons for this.

First, con�gurations with two simultaneously bound TFs are usually less likely than
single binding events. Consider two TFs that are independently bound 10\% of the time
(absolute binding probability p = 0.1). Thus, both TFs are bound simultaneously only
1\% of the time. Even though this calculation is a huge simpli�cation, it exempli�es the
weight ratio between single and simultaneous binding events. Cooperativity changes this
ratio but only for speci�c con�gurations.

This leads us to the second reason. Binding sites are highly abundant, see 5.1.1. Most
TFs have at least weak sites in most enhancers. Therefore, the optimization algorithm has
a rich data basis to �ne-tune the �rst order parameters (binding a�nity and activatory
potential). By contrast, two-site con�gurations, especially when only speci�c distances or
orientations are considered, are comparatively infrequent. Therefore, training the interac-
tion parameters is more di�cult and the results are noisy, as we have seen.

The �rst argument holds true regardless of the data used in the study and argues that
interaction terms might inherently have a low impact. The second reason is entirely a
shortcoming of the data set. The homotypic bcd cooperativity, which is clearly visible
in the results, demonstrates that given enough data, it is possible to identify relevant
interactions. Even if enhancer identi�cation and measurement were not a problem, there
would still be a limited number of natural enhancers in the anterior-posterior patterning
paradigm of Drosophila, which is already expanded by considering multiple species.

What can be done to reduce the lack of data? An answer could be synthetically
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designed enhancers. These enhancers are tailored to a speci�c research question such as
TF interaction. Although still cumbersome to design and to measure they could expand
the data basis in many relevant directions. E.g. a set of synthetic sequences could be used
to systematically probe the range of a certain TF interaction. Without synthetic enhancers
we are limited to analyze the sequences that evolution provided us with.

6.2 Enhancer Structure

6.2.1 Weak Binding Sites

I already analyzed the role of binding site numbers and energy thresholds, see section
5.1.1. The analysis concentrated on the in�uence of site numbers on the training process.
In section 5.1.1, I de�ned the threshold for the identi�cation of binding sites before the
parameter optimization and found the surprising result that the test score does not level
for an increasing amount of sites. Instead of assessing the role of weak binding sites, I
allowed the algorithm to adapt to the given set of binding sites and measured its response.

Figure 6.8: (Left) The four categories of sites, their relative share of total binding
weight, as well as the number of sites per enhancer. (Right) The average impact of
each category on the prediction of the 8 TF model.

In contrast to the above mentioned alteration before the training, which I call in this
context prior analysis, I now perform a posterior analysis, in which I alter the model
after the parameter training and measure its impact. While a prior analysis measures the
adaptability of the model optimization to hyperparameters, a posterior analysis investigates
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the importance of model elements. A posterior analysis is always speci�c to the parameter
training outcome. I always average over 10 independently trained models (di�erent CV-
parsings) to generalize the result of the posterior analysis.

To determine the in�uence of weak binding sites, it is necessary to measure their impact
after parameter training. In theory, it is possible to compute the impact of every single
site, however, their impact is too small to be meaningful. Therefore, I partitioned all sites
into four categories (I, II, III, IV) based on their relative binding weight (0 \leq TI < 0.125,
0.125 \leq TII < 0.25, 0.25 \leq TIII < 0.375, 0.375 \leq TIV < 0.5; for the de�nition of T ,
see equation 5.1). Category I comprises the strongest sites, category IV the weakest sites.
Although the site counts di�er, the sums of relative weight are similar for all categories,
see �gure 6.8.

I calculate the impact of each category by deleting all sites of this category and com-
paring the test results. The calculation was performed for the 8 TF model with homotypic
cooperativity, �gure 6.8. The results are similar for other models (data not shown). The
�rst observation is that the overall impact of most categories is relatively low. One can
delete a substantial amount of sites per enhancer without a dramatic e�ect.

Although categories III and IV do not carry substantial importance on their own,
deleting both categories of sites at once has a huge impact. This speaks to the relevance of
weak sites. Especially noteworthy is that the strongest sites do not carry the most impact.
In fact, the by far most important sites are in category II. These sites, approximately 7.5
per enhancer, are still strong sites but contain some deviation from the consensus sequence.

Figure 6.9: (Left) The average impact of bcd sites partitioned in four categories
of site strength. (Right) Exemplary sites of each category. The number of sites in
each category are based on 98 enhancers.
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There is one caveat. Every PWM generates a unique weight distribution, which is
di�cult to compare with distributions of other TFs. Could it be that TFs cluster in certain
categories because of their di�erent nature and that the categories represent groups of TFs
and not so much binding strength? In other words, is category II so important because it
contains, for example, most of the relevant bcd sites?

Figure 6.10: Two example enhancers, their expression prediction (wt, blue), and
knock-out predictions of bcd categories (I-IV, red). Also depicted, the test correla-
tion C. Relatively weak bcd binding sites (categories III and IV) have the biggest
impact in both enhancers.

To address this concern, I repeated the analysis with a single TF. Because of its im-
portance, I choose bcd. Figure 6.9 depicts an exemplary site and its binding weight for
each category. In sum, the binding weight of bcd sites is distributed evenly over the four
categories. The impact of each category is shown in the same manner as before, but now
only the bcd were removed. Interestingly, category I, which represents approximately one
bcd site in every other enhancer, has on average a negative impact. These sites, although
almost perfect matches, largely do not determine the result of the prediction. Categories
II, III, IV carry similar impact, but no category on its own is solely responsible for the
majority of bcd activity. This would suggest that single sites do not a�ect enhancer ex-
pression at large. The expression is rather controlled by large groups of sites, even if these
sites are comparably weak. Figure 6.10 shows two exemplary enhancers that illustrate this
e�ect.

This fuzzy logic renders the language of transcription control di�cult to understand
and to model but might be advantageous from an evolutionary perspective. If the correct
expression of a gene would rely on single sites, a single base mutation could be lethal for the
embryo. Encoding the patterning information into clusters of fuzzily de�ned sites improves
the robustness of the system.

6.2.2 Steric Hindrance

Most thermodynamic models assume steric hindrance, i.e. two factors can not bind over-
lapping binding sites. Obviously, TFs occupy some space on the DNA when bound and
prevent other factors from binding. Bacteria use this as a simple mechanism for repression
[113]. Since it is not known how much space a TF occupies, the model excludes all con�g-
urations in which overlapping sites are simultaneously bound. Here, the size of a binding
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site is determined entirely by the PWM. A rough size estimate shows the plausibility of
this model. The TFs have a diameter of approximately 4nm - 5nm [114], while their motifs
are around 10bp - 16bp long, equaling 3.4nm - 5.4nm. Furthermore, one could argue that
every relevant position in the motif is certainly in contact with the TF. Whether steric

Figure 6.11: (Left) Impact of steric hindrance. By constraining the size of a site, one
takes steric hindrance stepwise out of the model. (Right) The level of site overlap.
The Jaccard index measures how often sites of two TFs overlap in comparison to
the total number of their sites. A Jaccard index of 1 means that all sites overlap
at least once with the other TF.

hindrance has an e�ect on the model or not depends additionally on the site occupancy. If
the sites are occupied for only a small fraction of the time, they rarely interact and steric
hindrance is irrelevant. On the other hand, if the sites are occupied most of the time, steric
hindrance becomes relevant.

Figure 6.11 (Left) depicts the impact of steric hindrance in a stepwise fashion. I used
the 8 TF model, which was trained with steric hindrance and calculated its impact by
constraining the maximal occupied space of a TF base by base. At maximal site size of
0bp, binding sites stop overlapping because they occupy no space. The impact of steric
hindrance is small but measurable (approximately 3\% of the total test score). The right
side of �gure 6.11 shows which factors tend to overlap the most and are, therefore, most
likely the cause for the impact of steric hindrance. Especially noticeable are hb, Kr, and
gt, which overlap homotypically, because they have a repetitive (hb and Kr) or symmetric
(gt) motif, see �gure 3.3.
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6.3 Accessibility

6.3.1 Modeling Open Chromatin

The models discussed until this point assume that all sites are equally accessible to proteins
and that binding depends solely on sequence recognition. Nevertheless, epigenetic factors,
especially chromatin accessibility, also play an important role. Chromatin accessibility
measured by e.g. DNase I correlates well with TF occupancy [115, 116] and incorporating
accessibility information improves predictions of TF binding [117, 118]. Since binding sites
are ubiquitous throughout the genome due to their unspeci�cities, open chromatin is an
essential feature that distinguishes enhancers from non-regulatory sequences [119].

How can one utilize accessibility data in the model? Certainly, if the enhancer is not
properly con�ned, including accessibility can help us to depreciate spurious binding sites.
But are enhancers just open in general or is there an interior �ne-structure? Peng et
al. investigated this question and came to the conclusion that incorporating accessibility
improves the expression predictions [35]. Their heuristic model identi�es accessibility with
local DNase I cleavage site density in 20bp windows, ranked and normalized on a genome-
wide scale (DNase-seq). An additional parameter \theta translates the rank-normalized values
racc into a prior for TF binding.

W \rightarrow e - \theta (1 - racc) W (6.6)

A value of racc = 1 indicates the highest genome-wide cut-site density; racc = 0 in-
dicates a closed site. The data that Peng et al. used for their investigation was fairly
limited (39 enhancers modeled with 6 TFs) and of comparably low-quality (B1H PWMs,
approximately 13 million mapped DHase I cleavage events). Hence, I aimed at reproduc-
ing the result with the improved modeling setup and deep-sequenced data. I compared
accessibility data from two di�erent enzymes, DNase I as in the original publication (86
million mapped events) and transposase Tn5 (from the ATAC-seq protocol [120]; 28 mil-
lion mapped cleavage events). For the concern of this analysis, ATAC-seq works similar to
DNase-seq, with the exception that the cutting bias di�ers.

Furthermore, I changed the accessibility response curve slightly:

W \rightarrow e - \theta (0.5 - racc) W (6.7)

This minor change rescales the prior so that open sites (racc > 0.5) actively gain weight.
This change is necessary, otherwise, the absolute weight of all sites would be substantially
decreased, leading to higher a�nity parameters as compensation, which will be punished
by the parameter penalty. Thus, the weight penalty would disfavor strong accessibility
scales \theta , which this version prevents. In both cases, a parameter value of \theta \rightarrow 0 reverts
all weights back to the plain thermodynamic model. I use this fact to regularize the
accessibility parameter by an L1-penalty like the other parameters.

Note that accessibility data is not available for all Drosophila species, hence, an accessi-
bility model does not bene�t from data augmentation and can only apply hyperparameter



6.3 Accessibility 85

Table 6.2: Average test scores (HTI, no augmentation) for predictions with and without acces-
sibility. Also depicted is the average impact of the accessibility parameter (percentage of total
score).

No Acc DNase-seq ATAC-seq Negative Control

8 TF 0.349 0.359 0.374 0.348
Impact Acc - 12.6\pm 2.9\% 34.0\pm 2.2\% 2.1\pm 0.8\%

17 TF 0.348 0.362 0.368 0.342
Impact Acc - 20.6\pm 7.0\% 39.4\pm 6.0\% 3.2\pm 2.6\%

training scheme HTI. Nevertheless, a signi�cant improvement in test score for both the 8
TF and the 17 TF model can be seen (Wilcoxon signed-rank test p \leq 0.05), but only for
the ATAC-seq data, see table 6.2. DNase-seq based accessibility improves the model, but
not signi�cantly. Not surprisingly, the impact of the accessibility parameter is substantial,
proving that the improvement is really driven by the new accessibility information. As
a negative control experiment, I trained the model with accessibility data derived from
gDNA. In this experiment, DNA is �rst cleared of all proteins before it gets treated ac-
cording to the ATAC-seq protocol. Hence, the gDNA data resembles solely the cutting
bias of the enzyme, but not DNA accessibility in any cellular state. As expected, gDNA
data does not improve the model prediction and the accessibility parameter has a vanishing
impact.

6.3.2 Enhancer Cores

The improvements introduced by modeling the accessibility are similar to those that can
be seen from data augmentation. Unfortunately, it is not possible to combine those two
techniques, because there is no accessibility data for other Drosophila species. But there is
an alternative possibility to use the information about open chromatin. When evaluating
the accessibility pro�les of enhancers, it is often possible to see a clear peak, which is most
likely the core of the enhancer were the chromatin is open for TF binding. Since most of
the enhancers are not properly delineated, cropping all �anking sequences and using the
enhancer core could reduce the number of spurious sites substantially. I tested whether
these cropped sequences can substitute for the full enhancer.

I tested three data sets with di�erent values for the maximum length of the enhancer
core: 300bp, 500bp, and 800bp. Any enhancer that is shorter remains unaltered. Oth-
erwise, I identi�ed the core as the stretch of sequence within the enhancer that has the
highest cleavage-site density. Furthermore, I repeated the identi�cation of homologous en-
hancers with those cropped sequences and used them for data augmentation. Everything
else was left as before. This applies especially to the parsing of CV fragments.

There are two approaches: �rst, one retrains all parameters with the new input se-
quences, and second, one reuses the already trained parameters of the full enhancers and
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Table 6.3: Average test scores for the enhancer cores. Maximum enhancer length was de�ned
as 300bp, 500bp, or 800bp. Retrain means that the parameters were trained on the cropped
enhancers; reuse means that we used parameters trained on the full sequences. Additionally, I
performed a negative control experiment with 500bp long �anking sequences (regions of minimal
accessibility).

max length 300bp 500bp 800bp full negative control

retrain 0.361 0.382 0.369 - 0.135
reuse 0.335 0.372 0.376 0.37 0.178

apply them onto the cropped test enhancers. Thus, a prior and a posterior analysis ap-
proach. Table 6.3 shows the test scores for both analysis steps. The results for 17 TFs are
similar (data not shown). It is clear that the 300bp long enhancer cores are probably too
short because the test score is clearly lower. For this dataset, the loss of prediction quality
is less severe when one retrains the parameters, as it is expected because in doing so the
training algorithm can adapt to the smaller number of binding sites. Datasets with longer
enhancer cores are even able to improve on the full sequences. Especially pronounced is
the improvement for 500bp long enhancers with retrained parameters, which is signi�cant
at a con�dence level of p \leq 0.05.

But one can not use any stretch of sequence from the enhancers. Sequence accessibility
is crucial for the selection of the enhancer core. As a negative control experiment, I selected
500bp long �anking sequences, i.e. the least accessible regions of the enhancers. In contrast
to the most accessible regions, these sequences can not substitute the full enhancers as can
be seen in table 6.3.

However, those are only average scores. In reality, every enhancer is a special case.
Figure 6.12 (Left) shows a scatter plot of test scores. In this plot, I compare the predictions
for the full and the core sequences. For more comparability, both predictions use the same
parameters; only the sequences are di�erent. It is clear that the score di�erence between
core 500bp and full-length enhancer are more or less symmetrically distributed around the
diagonal so that the average scores are similar. The right side of �gure 6.12 presents two
exemplary cases: tll(-3) and kni(-1). The accessibility landscapes within the enhancers
have some similarity. Both enhancers are fairly long with an open region at the boundary,
but only the prediction for tll(-3) bene�ts from cropping the sequence. The prediction of
kni(-1) deteriorates strongly.

In conclusion, most enhancers are not properly delineated. Accessibility information
can help to �nd the functional core of the enhancer but it is di�cult to crop the sequence
of all enhancers to a suitable length. A reason could be that the accessibility landscape
does not fully capture the chromatins susceptibility to TF binding. The whole process
of nucleosome and TF binding might be much more dynamic and dependent on the local
concentration ratios of TFs.
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Figure 6.12: (Left) Scatter plot comparing prediction results for the full enhancers
with cropped enhancers (blue circles: max 500bp; red squares: max 800bp). The
predictions are superpositions of ten independent CV parsings. (Right) Predictions
for two exemplary enhancers and their accessibility landscape marked in the scatter
plot on the left.
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Chapter 7

Alternative Models

Up to this point, only modi�ed versions of the standard thermodynamic model were con-
sidered. Characteristic of the standard model is that all binding events are accounted for
individually and that activators and repressors are fundamentally similar. In the following,
I am going to discuss models that ignore these premises.

7.1 Simpli�ed Model

The standard thermodynamic model is fairly complex and computationally intensive be-
cause it needs many training parameters and it accounts for every binding site. Espe-
cially the repeated calculation of the partition function requires substantial computation
resources. Furthermore, two training parameters determine the impact of a TF in the
standard model: the absolute a�nity and the activatory potential. The �rst measures
how strong the TF binds to the enhancer, the second measures how e�ectively it recruits
the polymerase to the core promoter. Although these are two di�erent features of a pro-
tein, both control ultimately the response of the model to a binding site. Is it possible
to combine these parameters into a single one that mediates between sequence input and
expression output?

Decreasing the number of parameters reduces the complexity of the model. This could
be bene�cial, since the output of the standard thermodynamic model has a high variance,
which is hallmark of overly complex models, see section 5.3. Therefore, an additional
motivation for a simpli�ed model is to reduce the variance of the predictions and in this
fashion improve the prediction.

Here, I propose a simpli�ed model that initially ignores much of the enhancer archi-
tecture but enables the stepwise inclusion of higher-order features. The central element of
the simpli�ed model is the convoluted variable vij, which summarizes the presence of the
architectural feature i for the whole enhancer j. An example is the binding content of a
certain factor, represented by the summarized binding weight of all its sites.

vij =
\sum 

i site in j

wi (7.1)
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This is an example of a �rst-order convoluted variable because vij represents single
binding events. A second-order variable is the sum of all cooperating weights of two
factors vikj .

vikj =
\sum 

i,k site in j

wiwk\delta (i and k interact) (7.2)

The delta function \delta �lters all relevant interaction pairs according to prede�ned rules,
e.g. all pairs within a certain range. The parameter pi, which I call the expression potential,
links the convoluted variables directly to the logistic expression function:

pexpr =
\mathrm{m}\mathrm{a}\mathrm{x}(E, 0)

1 + \mathrm{m}\mathrm{a}\mathrm{x}(E, 0)
Ej = qbtr +

\sum 
i

cipiv
i
j +

\sum 
i,k

cickpikv
ik
j (7.3)

Depicted here is a second-order model. Higher orders are conceivable but are likely not
relevant. The basal transcription rate qbtr is the zero-order global scaling parameter. As
with the standard model, the TF concentrations c carry the position information because
they de�ne the distribution of the input factors. The potential p is a combination of the
binding a�nity and the activatory potential as it fully describes the e�ect of the TF on the
transcription rate. Activators have a positive potential, while repressors have a negative
potential. Notice, that the role of the second-order terms is independent of the �rst-order.
Hence, the simpli�ed model is strati�ed and allows for a clear separation of the input
features, in contrast to the standard thermodynamic model, in which binding a�nity and
activatory potential a�ects both layers. The simpli�ed model is less constrained for the
same reason. E.g. a TF could be an activator but the combined binding of two TF proteins
resembles a repressor. It is this context-dependent role that the simpli�ed model enables.

The prediction quality of the simpli�ed model is signi�cantly lower than the standard
model. Figure 7.1 and table 7.1 depict the large margin in prediction quality between
the standard and the simpli�ed model. Why does the simpli�ed model fail at predicting
expression and what can we learn from this?

One reason could be that the optimization algorithm fails at predicting the correct roles
for the TFs. However, the TFs are correctly predicted as activators (bcd and cad) and
repressors (hb, gt, Kr, kni, tll, and cic; data not shown). Their individual impact is similar
to their impact in the standard model. Hence, the simpli�ed model correctly captures
the coarse features of the segmentation network but fails to adapt to the measured data.
Hence, there is an inherent characteristic of expression control that is not considered in the
simpli�ed model. In order to understand this aspect, let us compare the simpli�ed with
the standard model.

The simpli�ed model has a certain linear component. The model itself is not linear
because the output is constrained by a response curve, which re�ects a saturation behavior,
but the convoluted variables summarize the binding content in a linear fashion. In this
kind of model, two weak sites can weigh as much as one strong site. The convoluted
variables do not account for the number of sites nor do they consider saturation of binding
occupancy. In reality, a binding site can be occupied at most 100% of the time. The
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Figure 7.1: Comparison of the standard model with a �rst-order simpli�ed model.
Both predictions are with 8TFs.

standard model acknowledges this and distinguishes between a TF that is �rmly bound
even to suboptimal binding sites and a TF that is loosely bound. In the case of the latter,
the occupancy depends almost linearly on the binding weight and the factor concentration,
while the former has a damped response to changes in concentration or mutations in the
binding motif since most relevant sites are already bound at saturation. The parameter
that controls this behavior is the absolute binding a�nity. E.g. bcd and cad play an
important role as key activators in the standard model. However, cad has continuously
two orders of magnitude lower binding a�nities than bcd, but a larger activatory potential,
resulting in an overall similar impact score.

But the simpli�ed model is also linear in a di�erent aspect: its training parameters.
The potential is a linear scaling parameter of the e�ect of the TF. In the standard model,
there is a non-linear connection between the activatory potential and the expression output.
Depending on the number of binding sites in the enhancer, the partition functions resemble
high-degree polynomials. The simpli�ed model does not distinguish between the state in
which a strong site is bound and a state, in which the activatory potentials of a cluster of
weak sites combine in a multiplicative fashion. It is this combination of non-linear e�ects
and the parameters to model protein binding that is missing in the simpli�ed model and
most likely the reason for the lack of prediction quality in comparison to the standard
model.

7.2 Short-Range Repression

An advantage of thermodynamic models is that they model activators and repressors the
same. The transition from an activator to a repressor is continuous in the standard model.
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Table 7.1: Average test scores for the simpli�ed model with only �rst- as well as with additional
second-order terms. The standard model refers to the model and training set-up of the preceding
chapters.

model �rst-order second-order standard

8 TF 0.296 0.304 0.372
17 TF 0.293 0.321 0.41

During parameter training, the optimization algorithm classi�es the TFs automatically
with a remarkable precision in most cases, see section 5.2, which reduces the need for
prior knowledge about these TFs. The underlying assumption is that repressors work as
anti-activators hindering the recruitment of PolII to the core promoter directly. Although
convenient from a modeling point of view, this assumption is certainly false for most TFs.
In contrast to pair-rule gene repressors, the repressors in the group of gap factors are rather
short-range repressors (SRR), which a�ect the activators that bind close to them, but not
the core promoter directly [29].

In summary, there are two possibilities to suppress activators: �rst, by hampering their
ability to initiate expression and, second, by preventing activator binding, which is also
called quenching. In the �rst scenario, the activators still bind to the enhancer but their
interaction with the core promoter is interrupted. For a model that incorporates SRR on
this level, see [15] or section 6.1.4. In their work, Fakhouri et al. analyzed the range of the
repressor gt with the help of synthetic enhancers [15]. They conclude that the repressive
e�ect of gt has a range of approximately 80bp and does not follow a strictly monotonous
decline.

Multiple publications come to the conclusion that the second scenario, in which repres-
sors quench activators, is closer to the reality. E.g. the gap factor kni changes � with the
help of the co-repressor Groucho � the chromatin state locally (increased histone density
and deacetylation) and reduces activator occupancy [121, 122]. He et al. proposed a model
for SRR on the basis of activator quenching [28]. They argue that their quenching model
is su�cient to capture the e�ect of repressors, although the prediction quality deteriorates
slightly in comparison to the standard model. In contrast to Fakhouri et al., He et al.
based their analysis on native Drosophila enhancers, however, they did not explore the
in�uence of the repression range.

Here, I propose an algorithm that models repressors as mediators of chromatin acces-
sibility. This model is similar to the quenching model of He et al. but simpli�ed with
less free training parameters. The special nature of the algorithm in combination with the
improved parameter training set-up enables us to explore the in�uence of repression range
as well as the rami�cations of SRR in much greater depth.

In the SRR model, activators are treated as in the standard model. They interact
directly with the core promoter and their impact is controlled by two parameters, the
absolute binding a�nity, and the activatory potential. Repressors, on the other hand, act
by shaping the repressive landscape R in the enhancer, see �gure 7.2. Every activator
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Figure 7.2: An activator site is surrounded by repressors that shape the repressive
landscape. In this depiction, the repressive e�ect declines linearly.

binding site in the enhancer is more or less receptive to binding based on its position in
this landscape, which works similar to the accessibility in section 6.3 in the sense that it
acts as a prior for binding.

Wa \rightarrow 
1

1 +R
Wa (7.4)

A high R value indicates strong repression as it lowers the binding weight of the acti-
vators preventing indirectly the activators e�ect. The repressive landscape has to be cal-
culated before computing the activator function by considering the distance and strength
of all repressor sites.

R(a) =
\sum 
r

\rho rcrwr\delta (a, r) (7.5)

In the equation above, a is an activator site and r are repressor sites with relative binding
weight wr and concentration cr; \delta (a, r) is the distance function. An example for the distance
function is:

\delta (a, r) =

\Biggl\{ 
1 if distance a to r \leq 50bp

0 otherwise
(7.6)

The multiplicative factor \rho r is called the repressive parameter. It is a TF-speci�c
training parameter that controls both the repressive e�ect as well as the binding a�nity
of the TF. \rho r sums up how strongly the TF shapes the repressive landscape.
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Figure 7.3: (Left) Average test scores for SRR-models with various repression ranges
(0bp - 300bp) and di�erent repression functions (uniform, linear, and gaussian).
(Right) PR-plot of the 150bp-range SRR model in comparison to the standard
8TF GEMSTAT model.

The primary objectives are to test whether the repressive landscape is a viable model
and over which ranges repression most likely works. To simplify the analysis, I concentrated
on the reduced set of TFs, although the results for the expanded set are qualitatively similar
(data not shown). Only two activators are explicitly modeled like in the standard model:
bcd, and cad. Six repressors act over a short range: gt, hb, Kr, kni, tll, and cic. I applied
the uniform repression function as delineated in 7.6. Figure 7.3 (Left) depicts the test
scores for various repression ranges as well as a control experiment with only activators.
The test score monotonously improves with increasing repressive range up to a range of
150bp, beyond this point, the test score saturates. The actual shape of the repression
function is of lesser importance. Two predictions with 150bp range, one with a linear
declining repressive function, and one with a gaussian decline, yield almost the same test
result. The test scores are overall signi�cantly lower than the test scores of the standard
model. Additionally, the PR-plot in �gure 7.3 (Right) shows that the standard model
outperforms the SRR-model.

The analysis above tries to narrow down the repression distance by setting the range as
a hyperparameter. In this fashion, the optimization algorithm is able to adapt the training
parameters speci�cally to the prede�ned range. Hence, a posterior impact analysis can be
more informative, similar to the analysis of the cooperativity distance, see section 6.1.1.
The left site of �gure 7.4 depicts the impact of all TFs, activators and repressors, for
the uniform 150bp-range model. The overall trend is similar to the standard model, see
�gure 4.5; the order of importance is more or less conserved. However, the di�erence in
impact between activators and repressors is much larger, which is not surprising because
the e�ect of the short-range repressors is delivered via the activators. In other words,
without the activators, the repressors' function is futile. The right site of �gure 7.4 shows
the impact of single distance segments, which can be calculated by ignoring this segment
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Figure 7.4: (Left) Impact of the single TFs in the 150bp-range SRR model as
percentage of the test score. The TFs bcd and cad are activators and are modeled as
in the standard model; gt, Kr, kni, tll, and cic are short-range repressors and rely on
the activators to deliver their impact. (Right) The impact of 25bp distance segments
of the repression function. The blue bars depict the impact of all repressors for this
segment. The continuous lines show the impact of the single TFs.

for the computation of the repressive landscape. Overall, the impact is well distributed
over the full range of 150bp as can be seen by the low impact of any single segment. The
TFs kni, hb, and cic seem to operate mainly within a range below 100bp. Puzzling are Kr
and tll, which seem to target activators beyond the distance of 100bp.
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Part III

Discussion





Discussion

The topic of this thesis the application of thermodynamic models of transcription control
and their parameter training on known enhancer expression patterns in Drosophila seg-
mentation. The function of thermodynamic models is to predict expression from enhancer
sequences given the binding motifs and protein concentrations of all relevant transcription
factors (TF). The intention behind designing these models is to analyze body segmentation
in Drosophila and to decipher the language of transcription control in general.

After roughly a decade of research with and on thermodynamic models, there are many
aspects of transcription control that are still elusive. Key topics of ongoing research con-
cern the interaction of TF binding sites with each other, the details of repressor mechanics,
and the interaction of TFs with nucleosomes. All of these topics concern enhancer archi-
tecture and require a high degree of complexity to model. However, the small amount of
training data, i.e. the measured enhancers, limits our ability to train complex models with
many parameters. Most studies use up to 44 enhancers to train thermodynamic models
of Drosophila segmentation at the blastoderm stage. A thorough literature search has
revealed that there are 98 enhancers available, but although this is a substantial addition,
thermodynamic models are still limited considering the large number of parameters that
need to be trained.

In addition to the large number of training parameters, thermodynamic models are
non-linear, non-separable, i.e. the solution can not be reduced to a combination of solu-
tions on independent subspaces, and ill-conditioned, i.e. small variations in the input data
yield large di�erences in the output. Therefore, before dealing with enhancer architecture,
I developed an e�cient model training setup, which prevents over�tting and optimally
utilizes the available data. There is large body of literature on optimization problems
with similar di�culties e.g. [84, 85, 93, 94, 92, 95]. I adapted some of the techniques
to the setting of thermodynamic models. The resulting training setup comprises a global
parameter optimization algorithm (CMA-ES), a L1-parameter penalty with hyperparame-
ter training, and three-fold data augmentation with homologous sequences. Each of these
methods independently helps to decrease over�tting and improves the prediction quality
that I measured in multiple independent cross-validation instances. I was able to show
that when combined, these techniques signi�cantly enhance the prediction quality.
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Model Evaluation

The �rst application of the improved model training setup was to compare di�erent TF
binding motifs. I found that binding motifs measured with the HIP-FA method improve the
predictions substantially. HIP-FA measures binding a�nities in thermodynamic equilib-
rium, in contrast to alternative methods like B1H and Footprinting, which utilize binding
site selection. It is therefore not surprising that the HIP-FA motifs are best suited for
thermodynamic models, even though their information content is typically lower, i.e. the
motifs are less speci�c. This suggests that TF binding is indeed relatively unspeci�c and
that transcription information is encoded in clusters of sites rather than in single binding
sites.

I continued the analysis of the segmentation network by extending the model. I included
additional TFs that have not been incorporated up to this point, among them the late gap
factor D (Dicheate), and the early pair rule genes run (runt) and slp1 (sloppy paired
1). Only with the optimized model training setup is it possible to e�ciently train the
parameters necessary to model the additional TFs and prove that their addition enhances
the model quality signi�cantly. In this way, I came closer to the goal of modeling the
whole segmentation system during the blastoderm stage and showed that advances in
model training enable us to study transcription control in more depth.

An impact analysis revealed which TFs are most relevant for the model prediction.
The impact is a quantitative score that compares the test score of the model with and
without a certain TF. Note that the impact score does not consider that the remaining
parameters could adapt to the missing feature, e.g. by a second parameter training for the
remaining parameters (posterior analysis). The impact of a TF depends on the parameter
training result. Therefore, I averaged the impact of every factor over ten independent
parameter training results. The advantage of the impact score is that it measures the
in�uence of TFs independently of indirect e�ects from TFs further downstream in the
segmentation network. This allows to distinguish direct and indirect impact, which is
not possible in in vivo experiments. My results reveal that the maternal activators bcd
(bicoid) and cad (caudal) are by a large margin the most important TFs, followed by the
gap factors cic (capicua), fkh (forkhead), gt (giant), hb (hunchback), Kr (Kruppel), kni
(knirps). Especially bcd does not only initiate the segmentation cascade but is also a key
TF for pair rule pattern formation during the blastoderm stage.

The impact score is also useful to investigate the importance of weak binding sites for
the expression prediction. Since the impact of single sites is too small to be informative,
I divided the sites into four categories according to their binding weight. The strongest
sites are in category I; the weakest sites are in category IV. The number of sites is di�erent
between the categories but the total binding content, i.e. the sum of the binding weights, is
similar. Since there are fewer strong than weak sites, the impact of all categories is similar.
For all TFs combined as well as for bcd alone, it is not only the strongest sites close to the
consensus that determine the predicted expression. Rather, the expression prediction is also
based on many weak sites, which often have multiple deviations from the consensus motif.
Although enhancers consisting of consensus sites only could also form reliable expression
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patterns, they might be prone to patterning defects caused by small mutations. The
predictions of the thermodynamic model are remarkably stable even when multiple sites
are deleted in silico. This stability can also be observed in the evolutionary di�erence
between enhancers from diverse species. Many enhancers are conserved over comparatively
long evolutionary time scales despite strong sequence divergence. The unspeci�c nature of
TF binding together with a high degree of redundancy probably aids this stability.

Transcription Factor Interactions

It is well established that TF binding sites interact, even though the exact mechanisms are
not fully known. I tested multiple alternative forms of interaction. However, introducing
interaction terms increases the number of training parameters and renders the model opti-
mization more di�cult and prone to over�tting. The depth in which it is possible to explore
TF interaction is therefore limited by the amount of available training data. Consider that
in order to train a certain TF interaction, many instances of neighboring binding sites of
those TFs are needed. Otherwise, the algorithm does not have enough training instances
to draw a conclusion about the e�ect of the interaction. The parameter training setup
will, in this case, push the interaction parameter to a neutral position in order to prevent
over�tting. Hence, the limitation is especially severe for TFs with few binding sites. This
limitation is a prime example of the necessary trade-o� between preventing over�tting and
including even marginal features into the model.

To model homotypic interactions, i.e. interaction of factors of the same type, I tested
two di�erent models of interaction, which I called cooperativity and synergy. Cooperativity,
which is the model that thermodynamic models usually utilize, assumes that interacting
binding sites gain extra binding energy when bound at the same time. This additional en-
ergy, originating from protein interactions, nucleosome depletion or DNA bending, boosts
the binding weight and therefore the occupancy of the simultaneously bound sites. Synergy
does not a�ect protein binding but assumes that the interaction with the core promoter
is altered. Instead of a�ecting the binding weight, synergy introduces an extra term that
a�ects the activatory potential of simultaneously bound TFs. The interpretation for syn-
ergy is that the activity of bound TFs can be changed by co-factors. Synergy can amplify
the e�ect of the TF but also counteract it. For instance, there are experiments suggesting
that hb changes its role from repressor to activator in the presence of bcd binding sites.

Although similar in their implementation, synergy was not able to substitute coopera-
tivity in the model predictions, which indicates that cooperativity is better suited to de-
scribe TF interactions. I additionally tested whether synergy could model the unexplained
bcd-hb interaction. Simpson-Brose et al. reported that hb shows activatory behavior in
the presence of bcd sites. Yet, synergy failed to reproduce this switch-like e�ect. The data
hinted rather towards a repressive e�ect of hb upon bcd sites, which �ts the short-range
repressor role of hb. Consider that this analysis might also lack the necessary data foun-
dation because the switch-like e�ect of bcd-hb synergy as it is described in the literature
might apply only to few enhancers.

For the homotypic cooperativity model, I further analyzed whether incorporating bind-
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ing site orientation, the shape of the interaction function, and the interaction range have
an e�ect on the predictions. I obtained decisive results only for the interaction range. I
concentrated the analysis on bcd because it showed the strongest e�ect. By testing multiple
interaction ranges and performing an impact analysis, I was able to narrow the interaction
range down to around 50bp. This result is consistent with the strong clustering of bcd
sites within the same range, which can be seen in the majority of the analyzed Drosophila

species.

Alternative Models

The last chapter of this thesis explores two alternative models of transcription control.
They are in their nature similar to thermodynamic models but di�er in some key features.
The simpli�ed model is supposed to serve as an alternative to the full thermodynamic model
in order to decrease the computation time and simplify the analysis. The key di�erence of
the simpli�ed model is that protein binding is not modeled explicitly but rather combined
with the activatory function. Thus, the simpli�ed model does not distinguish a �rmly
bound TF with a weak e�ect on the expression from a weakly bound with strong e�ect.
This lack of detail is probably the reason why the simpli�ed model scores consistently
worse than the full thermodynamic model and proves that total binding content is not the
only de�ning feature of enhancers. Rather, the distribution of the binding content among
the sites of a TF as it is modeled by the thermodynamic model is important for the proper
enhancer expression.

A second alternative model takes a similar approach in order to model short-range
repression (SRR). This model depicts SRR by building a repressive landscape. The model
is motivated by the idea that the repressors shape the protein binding landscape around
their binding site. In this model, repressors do not a�ect expression directly but through
preventing activator binding. For this reason, the activators carry a large impact in the
SRR model. The model suggests that short-range repressors act over a fairly long range
(beyond 100bp). However, experiments indicate that repressors have in fact a slightly
shorter range between 75bp to approximately 100bp [15, 123]. In contrast to expectations,
the test score does not deteriorate for models above a certain repressive range, in fact, the
success of the standard model suggests that the e�ect of repression gets integrated over
long ranges. Overall, the prediction quality of the SRR model is only slightly worse than
the predictions of the full model. This indicates that designing a SRR model, in which
activator blocking is the only mode of repression, is possible, although many details are
still unclear, which leaves scope for further research.

Residual Error

Regardless of the advancements of the improved training setup, the residual error in the
model predictions is still substantial. Some enhancers are consistently di�cult to predict
and the variance of the prediction result is high, i.e. slight variations of the training data
a�ect the training result disproportionately. This raises the question: what is the limiting
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factor for further improvement of the prediction? There are three aspects to the issue
of prediction quality: the parameter training method, model design, and the available
data. This thesis explored parameter training in depth. Based on the currently available
literature, it is unlikely that there is much more potential for improvement from this side.

The quality of the model is highly speci�c to the biological system. It describes how
well the model is suited to capture the underlying mechanisms represented by the given
data. This thesis explored some alternatives to the standard thermodynamic model. The
simpli�ed model was deliberately designed to require fewer parameters than the standard
model in order to test whether the prediction quality could be improved by reducing
the complexity of the model. The idea was among others to reduce the variance of the
prediction, which is a major source of error, see section 5.3. Other models are designed
to test alternative mechanisms of transcription control, e.g. the alternative interaction
model, which I called synergy, and the SRR model. The intention was to design a model
that better captures the biological reality and, thus, describes transcription control more
accurately. However, none of these alternative models improve the prediction quality.

What is not considered in the modeling framework is the possibility that the TF binding
is not an equilibrium process, which would require a completely di�erent type of model,
e.g. [124]. Note that I assume that the TF binding landscape on the DNA re�ects the
concentration of free TF at the same moment. This assumption implies that the dwell
time of TFs on the DNA is much shorter than the biological development processes that
the model tries to capture, e.g. the formation of a TF gradient, which takes a couple
of minutes. A non-equilibrium model has to consider previous states of the system, too.
However, there is evidence that the equilibrium assumption is reasonable [46, 47] and that
TF binding follows closely the current TF concentration, see 2.1.3.

At least until now, it has been impossible to design a model that outperforms the
standard model, e.g. in the form of GEMSTAT, to my knowledge. Therefore, the remaining
aspect that a�ects prediction quality is the training data. This topic comprises both the
amount and the quality of the available data. In order to better understand how the
data can help to improve the model, an analysis of the �aws in the predictions will be
constructive. The best tool for this analysis is the impact score.

With the impact analysis, it is possible to assess the in�uence of the TFs on every
single enhancer separately. This analysis shows that every TF with non-vanishing impact
in�uences at least some enhancer negatively. Negative impact means that the prediction de-
teriorates when the TF gets incorporated into the model. For instance, bcd is undoubtedly
an activator that initiates transcription in the anterior part of the embryo; but bcd binding
sites are also present in purely posteriorly expressed enhancers. On those enhancers, bcd
has a negative impact, even though its average impact over all enhancers is positive. For
instance, the enhancer D(+4) is expressed entirely outside of the bcd gradient, however,
there are multiple strong bcd sites present, which resemble almost the consensus. There
are multiple possible explanations for this behavior.

If these sites are spurious binding sites, it means that the predictions utilize a �awed
binding motif. A reason for this could be that protein binding di�ers in vitro from binding
in vivo. Alternatively, the binding model could be too simplistic, e.g. multiple mismatches
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from the consensus are considered to be independent. It would be easy to adapt the
model if better binding motifs were available. The HIP-FA binding motifs, which were
used in this thesis, still rely on the additivity assumption. This assumption states that the
binding weight of any site can be calculated by independently evaluating deviations from
the consensus at every position. Such a binding model is called zero-order, in contrast
to �rst-order models that also incorporate dinucleotide deviations. Incorporating higher-
order motifs into the thermodynamic model is simple because the motif a�ects only the
prediction of binding weights. On the experimental side, HIP-FA can measure higher-
order motifs easily and accurately too. It is not clear yet how strongly the �rst-order
binding predictions deviate from the zero-order. Nevertheless, given the sensitivity of the
thermodynamic model to the quality of the binding motifs, higher-order binding models
have the potential to improve the expression prediction further. The success of the HIP-FA
motifs demonstrated that this can be bene�cial.

It is very likely that most of the sites that apparently do not �t into the model are
correctly annotated because they are very similar to the consensus site. In this case,
the problem could originate from the fact that thermodynamic models do not predict
absolute expression levels but rather relative patterns. Note that the expression patterns
are measured in a simpli�ed on-o� assay and get smoothed arti�cially in order to prevent
sharp expression boundaries. This method of expression measurements ignores any �ne
structure and di�erential expression levels in the patterns. From the perspective of those
measurements, it is not possible to distinguish whether the activity of a TF is spurious
or whether the TF is necessary to �ne-tune the correct expression level or to constrain
protein expression. For instance, the TF tll represses its own enhancers. One can only
speculate whether this indicates that tll is auto-regulated. The alternative is that these
sites are inactive because they are repressed locally by other factors and by nucleosomes,
or they lack necessary cofactors.

Similar to Peng et al. [35], I found that incorporating accessibility information, which
re�ects nucleosome binding patterns, indeed improves the model predictions. Even if the
resolution is low, accessibility data can help to delineate the enhancer boundaries. Since
most enhancer boundaries are not properly de�ned, many spurious sites could stem from
inaccessible regions �anking the actual enhancer sequence. With higher resolution, the
model could distinguish continuous levels of accessibility, however, it is not clear whether
this directly re�ects changes in binding weight. Unfortunately, incorporating accessibility
and using data augmentation are mutually exclusive because the accessibility pro�les of
Drosophila species other than D. melanogaster are not known. For this reason, it is not
possible to check the accessibility model with the fully optimized training setup.

Data as a Limiting Factor

Although heterotypic clustering is common, i.e. grouping of sites of di�erent TFs, it is
not possible to e�ciently train a thermodynamic model with heterotypic TF interactions.
It is implausible that di�erent TFs do not interact. There are two explanations that are
more likely. First, the interaction model is �awed. Second, not enough training data is
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available; or better, there is not enough data tailored to this speci�c question. Having
enough training data is especially crucial because every heterotypic interaction term adds
another training parameter to the model and, therefore, increases the model complexity.
A handful of enhancers with which one could clearly discriminate correct from incorrect
interaction models would improve the data situation substantially.

Unfortunately, all of the available data consists of naturally occurring enhancers that
originate from millions of years of evolution. Characteristic for these enhancers is the
stochastic distribution of binding sites and that multiple connected mechanisms ensure ex-
pression stability and mutation tolerance. Hence, identi�cation of novel enhancer modules
in the genome of Drosophila will not solve the data shortage. The number of undetected
enhancers is likely small since the number of patterned genes is limited. The addition of
enhancers from other Drosophila species was bene�cial for the parameter training although
the correct expression pro�le of these enhancers are unknown. It is possible to expand the
set of homologous enhancers further, because the genomes of 12 Drosophila species have
been sequenced and a large amount of genetic variations in D. melanogaster has been iden-
ti�ed [125]. However, the positive e�ect of data augmentation saturated after the addition
of more than three homologs. This is not surprising because the augmented enhancers
follow the same design principles as the already known enhancers.

Synthetic enhancers could be a source for more training data. There are two variations
of synthetic enhancers. De novo enhancers designed from scratch are simple constructs
which contain only the necessary TF binding sites mostly implemented as consensus sites.
The advantage of the de novo approach is its simplicity and that only a limited number
of parameters are necessary to model its expression. The advantages are at the same time
disadvantages. An overly simplistic enhancer does not capture the complex interactions
that govern real enhancers. For this reason, de novo enhancers are a good tool to probe
speci�c mechanisms, e.g. to test certain TF interactions, but might fall short to fully depict
enhancer architecture. An alternative approach is to use derived synthetic enhancers, which
are designed by starting with real enhancers and modifying them in speci�c details. In
this fashion, the synthetic enhancers still encompass the architectural principles of real
enhancers. However, due to the interwoven structure of real enhancers, it is di�cult to
design speci�c mutations targeting a single architectural aspect.

I have already mentioned that the small amount of training data limits the depth to
which transcription control can be probed with thermodynamic models. I have demon-
strated how smart training techniques like parameter penalization and data augmentation
can help with the data shortage but do not solve it. Since the number of naturally oc-
curring enhancers is limited, only synthetic enhancers can increase the amount of training
data substantially.

There is an additional aspect of the training data that I have not discussed yet. With
increasing amounts of data, data quality becomes the limiting aspect of model training.
What does data quality mean? The input sequences are correct although the enhancer
boundaries are not always properly delineated. However, the available enhancer data
lacks the optimal resolution of the expression patterns in space, time and quantity. The
experimental read-out of the enhancers that I have used is binary. Either one detects
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expression or the reporter is repressed. The reporter constructs neither detect expression
gradients � it is common to apply an arti�cial smoothing to the binary expression data
that accounts for di�usion and the graded input � nor �ne structure in the patterns,
e.g. di�erent peak height. Since the expression prediction is continuous there will always
be a discrepancy between the binary measurement and the predictions of the model. The
parameter optimization algorithm tries to correct this deviation, which does not necessarily
lead to better predictions. Furthermore, I have scored the di�erences between measurement
and prediction always with a scale-free objective function because the absolute expression
level is not known. For this reason, all enhancers appear to be of equal expression strength
regardless of the number of activator binding sites, which is probably not true. Novel
reporter constructs that can measure at least relative di�erences in expression level would
improve the predictions substantially by providing a realistic measure of the expression
patterns and gradient levels.

In this thesis, the model predicts expression for one time-point in the middle of the
blastoderm stage. However, correctly staging the enhancer expression is di�cult. Fur-
thermore, it is impossible to address the dynamics of segmentation because only snapshot
information is available. Live-reporters are able to measure enhancer driven expression over
several minutes, which would aid embryo staging and could also illustrate the dynamics of
enhancer control.

The example of HIP-FA, which provided better and more precise binding motifs, demon-
strates that better data quality has an e�ect on the prediction quality. Similar improve-
ments � if not greater � can also be expected from a better quality of the enhancer data.
Remeasuring all enhancers is laborious and time intensive. However, measurements of new
enhancers should incorporate improved reporter constructs in the future. The design of
novel reporter constructs and their application to the measurement of synthetic enhancers
are topics of current research at our lab.

In conclusion, thermodynamic models are a key tool to study transcription control
and to decipher the language of enhancers. By improving the prediction quality of the
models, it is possible to gain insights into the workings of gene regulation. There are three
aspects that can limit the ability to predict expression patterns. Limited training data,
model quality, and a naive parameter optimization. This thesis discussed especially the
latter aspect: parameter optimization. I have shown how to train a complex, parameter
rich thermodynamic model even with limited data, making the most out of the given
data quality. The most severe problem that remains is the lack of data and the low data
quality. The analyses that I have performed for this thesis demonstrate how bene�cial
an improvement of data is and that designing new and more complex models is di�cult
without the necessary data resolution to test and compare them.
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Appendix





Enhancer

Table A.2: The enhancers used as data basis.

Name Alias Length [bp] Coordinates R5 Source

Antp (+50) ChIP AHD-1 1500 3R:2774273..2775773 Fisher et al.
Abd-B (+20) VT42863 2166 3R:12776398..12778564 Kvon et al.
Abd-B (+50) VT42848 2209 3R:12745522..12747731 Kvon et al.
Abd-B (+70) VT42837 2212 3R:12726430..12728642 Kvon et al.
btd (-3) btd head 1799 X:9584106..9585905 Schroeder et al.
cad (-2) ChIP AHD-2 1500 2L:20768045..20769545 Fisher et al.
cad (+14) cad (+14) 1636 2L:20784670..20786306 Schroeder et al.
cnc (+5) cnc (+5) 1420 3R:19020990..19022410 Schroeder et al.
D (+4) D (+4) 1724 3L:14166136..14167860 Schroeder et al.
dfd (+13) ChIP-miRNA9 1500 3R:2630027..2631527 Fisher et al.
ems (-22) HC 25 1094 3R:9705258..9706352 Chen et al.
ems (+9) HC 18 1041 3R:9736403..9737444 Chen et al.
eve (-4) eve 37ext ru 2096 2R:5861773..5863869 Schroeder et al.
eve (-1) eve stripe2 662 2R:5865217..5865879 Schroeder et al.
eve (+5) eve stripe4 6 601 2R:5871404..5872005 Schroeder et al.
eve (+7) eve 1 ru 807 2R:5873440..5874247 Schroeder et al.
eve (+8) eve stripe5 799 2R:5874147..5874946 Schroeder et al.
fkh (-2) fkh (-2) 1707 3R:24411719..24413426 Schroeder et al.
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Name Alias Length [bp] Coordinates R5 Source

ftz (-7) ftz (-7) 1617 3R:2681761..2683378 Schroeder et al.
ftz (-6) ftz (-6) 1239 3R:2683373..2684612 Schroeder et al.
ftz (-1) ftz (-1) 1074 3R:2688614..2689688 Schroeder et al.
ftz (+3) ftz +3 1744 3R:2692616..2694360 Schroeder et al.
ftz (+20) VT37580 2091 3R:2709408..2711499 Kvon et al.
fz2 (+80) Cluster-8458 1234 3L:19145853..19147087 Fisher et al.
gt (-10) gt (-10) 1744 X:2331789..2333533 Schroeder et al.
gt (-6) gt (-6) 2181 X:2327322..2329503 Schroeder et al.
gt (-3) gt (-3) 1208 X:2324294..2325502 Schroeder et al.
gt (-1) gt (-1) 1238 X:2323048..2324286 Schroeder et al.
h (-22) VT27671 2139 3L:8645778..8647917 Kvon et al.
h (-11) h stripe34 rev 911 3L:8657463..8658374 Schroeder et al.
h (-10) h stripe7 rev 931 3L:8658177..8659108 Schroeder et al.
h (-9) h 6 ru 867 3L:8659676..8660543 Schroeder et al.
h (-5) h 15 ru 2677 3L:8662700..8665377 Schroeder et al.
h (+12) h stripe0 468 3L:8680591..8681059 Ochoa-Espinosa et al.
hb (-3) hb centr & post 1022 3R:4526520..4527542 Schroeder et al.
hb (-2) HC 01 859 3R:4524620..4525479 Chen et al.
hb (+3) hb anterior actv 720 3R:4520323..4521043 Schroeder et al.
hbn (-1) HC 14 1008 2R:16849286..16850294 Chen et al.
hkb (-2) hkb ventral elem 589 3R:173891..174480 Schroeder et al.
hth (+16) Cluster-8277 1645 3R:6448530..6450175 Fisher et al.
hth (+69) VT39530 2256 3R:6395394..6397650 Kvon et al.
hth (+100) Cluster-8531 1503 3R:6363647..6365150 Fisher et al.
kni (-5) kni (-5) 1402 3L:20692603..20694005 Schroeder et al.
kni (-1) kni 83 ru 1654 3L:20689008..20690662 Schroeder et al.
kni (+1) kni (+1) 1478 3L:20687055..20688533 Schroeder et al.
knrl (+8) knrl (+8) 1297 3L:20604991..20606288 Schroeder et al.
Kr (-3) Kr CD1 ru 1413 2R:21110136..21111549 Schroeder et al.
Kr (-2) Kr CD2 ru 1811 2R:21111530..21113341 Schroeder et al.
Kr (-1) Kr AD2 ru 1195 2R:21113325..21114520 Schroeder et al.
Kr (+10) Cluster-8297 1045 2R:21124126..21125171 Fisher et al.
noc (-1) HC 34 489 2L:14489159..14489648 Chen et al.
nub (-2) nub (-2) 1984 2L:12615792..12617776 Schroeder et al.
oc (-4) oc otd early 1837 X:8547931..8549768 Schroeder et al.
oc (+7) oc (+7) 1832 X:8537082..8538914 Schroeder et al.
odd (-5) odd (-5) 1383 2L:3610420..3611803 Schroeder et al.
odd (-3) odd (-3) 1649 2L:3608812..3610461 Schroeder et al.
os (+5) HC 06 974 X:18198042..18199016 Chen et al.
pdm2 (+1) pdm2 (+1) 1622 2L:12678898..12680520 Schroeder et al.
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Name Alias Length [bp] Coordinates R5 Source

prd (-6) Cluster-8520 1077 2L:12091700..12092777 Fisher et al.
prd (-3) HC 03 1101 2L:12088746..12089847 Chen et al.
prd (+4) prd +4 1311 2L:12080376..12081687 Schroeder et al.
rib (+3) HC 11 663 2R:15160750..15161413 Chen et al.
run (-42) run (-42) 1222 X:20522461..20523683 Schroeder et al.
run (-41) run (-41) 1282 X:20523501..20524783 Schroeder et al.
run (-31) run (-31) 2523 X:20533075..20535598 Schroeder et al.
run (-17) run -17 996 X:20548261..20549257 Schroeder et al.
run (-10) run stripe1 1616 X:20551039..20552655 Schroeder et al.
run (-8) run stripe5 1335 X:20552655..20553990 Schroeder et al.
run (-9) run -9 861 X:20555735..20556596 Schroeder et al.
run (+1) HC 36 1298 X:20561726..20563024 Chen et al.
run (+19) run (+19) 2260 X:20583284..20585544 Schroeder et al.
run (+30) run (+30) 2708 X:20594595..20597303 Schroeder et al.
slp1 (-1) slpA 370 2L:3824597..3824967 Ochoa-Espinosa et al.
slp1 (+3) slpB 791 2L:3828818..3829609 Ochoa-Espinosa et al.
slp2 (-3) slp2 (-3) 2639 2L:3832698..3835337 Schroeder et al.
SoxN (+7) ChIP-50 1500 2L:8831698..8833198 Fisher et al.
tll (-3) tll K2 2459 3R:26673280..26675739 Schroeder et al.
tll (-1) tll P2 2759 3R:26675739..26678498 Schroeder et al.
tll (-2) HC 07 1036 3R:26675091..26676127 Chen et al.
tll (+4) tll head 985 3R:26681312..26682297 Ochoa-Espinosa et al.
tollo (-12) HC 23 908 3L:15216686..15217594 Chen et al.
tsh (+48) ChIP-2 1500 2L:21876210..21877710 Fisher et al.
fd19B (-1) CG9571 head 755 X:19986472..19987227 Ochoa-Espinosa et al.
CG7271 (-1) ChIP AHD-10 1500 3L:18581141..18582641 Fisher et al.
mir7 (-8) mir7 head 361 2R:16485383..16485744 Ochoa-Espinosa et al.
mir281 (-2) ChIP-miRNA5 1500 2R:8059538..8061038 Fisher et al.
iab-4 (-28) VT42796 2111 3R:12646484..12648595 Kvon et al.
iab-4 (+41) VT42831 2134 3R:12716036..12718170 Kvon et al.
iab-4 (+48) VT42832 2128 3R:12717726..12719854 Kvon et al.
bxd (+71) VT42747 2091 3R:12526519..12528610 Kvon et al.
bxd (+73) VT42746 2155 3R:12524782..12526937 Kvon et al.
anterior split 1 KrRank1 1500 2R:9448948..9450448 Fisher et al.
stripe 80 1 HC 12 1292 2R:7914182..7915474 Chen et al.
anterior split 2 HC 35 1053 3R:20997138..20998191 Chen et al.
stripe 80 2 HC 46 1148 3R:22081560..22082708 Chen et al.
anterior cap HC 52 1188 2R:19233370..19234558 Chen et al.
stripe 80 3 HC 57 1006 2L:15973654..15974660 Chen et al.
stripe 80 4 HC 58 1202 X:7159751..7160953 Chen et al.
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Figure A.5: Expression domains of all 98 enhancers.



Results � Model Training

We use the Wilcoxon Signed-rank test to measure signi�cance in the case of paired results
(experiments based on the same ten CV parsings, table A.2 onwards). Levels of signi�cance
for important comparisons are marked by: * p \leq 0.05; ** p \leq 0.01.

Table B.3: Test scores (correlation) for 5 and 10-fold CV as well as 10-fold CV with clustering
based parsing (c10) each for a small set of parameters (8 TF) and a large parameter space (17
TF).

8 TF 17 TF

CV 5 10 c10 5 10 c10

1 0.367 0.347 0.348 0.386 0.367 0.375
2 0.343 0.339 0.35 0.337 0.367 0.373
3 0.338 0.326 0.361 0.359 0.355 0.345
4 0.309 0.33 0.354 0.354 0.366 0.405
5 0.324 0.353 0.328 0.39 0.382 0.399
6 0.343 0.352 0.347 0.361 0.411 0.389
7 0.354 0.359 0.377 0.36 0.378 0.335
8 0.352 0.366 0.365 0.363 0.343 0.403
9 0.349 0.348 0.334 0.372 0.348 0.379
10 0.317 0.385 0.364 0.32 0.368 0.374

Avg 0.34 0.351 0.353 0.36 0.369 0.378
Std 0.018 0.017 0.015 0.021 0.019 0.023
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Table B.4: Comparison of local and global parameter optimization algorithms with CMA-ES
repeated. All results are under three-fold augmentation and Hyperparameter training. Repeat:
same as CMA-ES with 17 TFs. Multitrain: two training iterations of CMA-ES.

8 TF 17 TF

CV Gradient Simplex CMA-ES Gradient Simplex CMA-ES Repeat Multitrain

1 0.196 0.373 0.373 0.321 0.402 0.413 0.403 0.402
2 0.237 0.372 0.357 0.309 0.386 0.399 0.394 0.396
3 0.264 0.366 0.373 0.341 0.39 0.427 0.409 0.412
4 0.222 0.365 0.378 0.33 0.398 0.417 0.42 0.425
5 0.302 0.358 0.37 0.319 0.392 0.411 0.415 0.418
6 0.294 0.357 0.372 0.362 0.397 0.413 0.424 0.413
7 0.278 0.376 0.376 0.306 0.395 0.41 0.404 0.415
8 0.224 0.361 0.37 0.359 0.369 0.389 0.423 0.413
9 0.252 0.344 0.354 0.324 0.388 0.401 0.399 0.4
10 0.3 0.360 0.36 0.32 0.393 0.417 0.414 0.420

Avg 0.257 0.363 0.368 0.329 0.391 0.41 0.411 0.411
Std 0.037 0.009 0.008 0.019 0.009 0.011 0.01 0.009

\ast \ast 

Table B.5: Two di�erent types of augmentation. Three-fold augmentation by 5%, 15% and 25%
alteration rate as well as 10% and 25% cropping. All experiments with 17 TF and without
Hyperparameter-training.

CV No Aug Alt5 Alt15 Alt25 Crop10 Crop25

1 0.375 0.398 0.367 0.387 0.393 0.394
2 0.373 0.341 0.364 0.38 0.341 0.36
3 0.345 0.355 0.362 0.374 0.383 0.39
4 0.405 0.378 0.357 0.367 0.374 0.386
5 0.399 0.375 0.379 0.381 0.352 0.37
6 0.389 0.375 0.443 0.376 0.427 0.386
7 0.335 0.382 0.398 0.373 0.388 0.387
8 0.403 0.367 0.353 0.354 0.395 0.391
9 0.379 0.386 0.354 0.324 0.39 0.369
10 0.374 0.387 0.368 0.388 0.381 0.369

Avg 0.378 0.374 0.375 0.37 0.382 0.38
Std 0.023 0.017 0.028 0.019 0.024 0.012
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Table B.6: Test scores for di�erent augmentation strategies with two, three and four fold aug-
mentation. Regular augmentation is with closely related species �rst, alternative augmentation
considers weakly related species �rst. All experiments with 17 TF and without Hyperparameter-
training.

CV No Aug Aug2 Aug2 alt. Aug3 Aug3 alt. Aug4

1 0.375 0.389 0.388 0.4 0.396 0.401
2 0.373 0.381 0.382 0.412 0.406 0.392
3 0.345 0.393 0.382 0.376 0.409 0.384
4 0.405 0.379 0.392 0.439 0.390 0.388
5 0.399 0.409 0.387 0.398 0.423 0.42
6 0.389 0.39 0.41 0.405 0.412 0.411
7 0.335 0.383 0.395 0.39 0.406 0.393
8 0.403 0.424 0.356 0.39 0.410 0.383
9 0.379 0.374 0.372 0.397 0.407 0.399
10 0.374 0.397 0.394 0.403 0.383 0.384

Avg 0.378 0.392 0.386 0.401 0.404 0.396
Std 0.023 0.015 0.014 0.017 0.012 0.012

\ast \ast 

Table B.7: Test scores for no penalty (NP: \lambda = 0), best-guess penalty (HT0: \lambda = 10 - 3) and
the hyperparameter training strategies HTI and HTII (\lambda \in \{ 10 - 3, 5 \cdot 10 - 3, 10 - 2\} ), each with and
without data augmentation. HTII+ with additionally \lambda \in \{ 5 \cdot 10 - 4, 10 - 1\} 

No Aug Aug3

CV NP HT 0 HT I HT II NP HT 0 HT I HT II HTII+

1 0.412 0.375 0.439 0.388 0.36 0.4 0.47 0.403 0.401
2 0.365 0.373 0.373 0.382 0.392 0.412 0.402 0.394 0.385
3 0.337 0.345 0.415 0.387 0.415 0.376 0.385 0.409 0.405
4 0.391 0.405 0.366 0.394 0.389 0.439 0.441 0.42 0.418
5 0.336 0.399 0.39 0.387 0.395 0.398 0.389 0.415 0.411
6 0.343 0.389 0.371 0.384 0.402 0.405 0.369 0.424 0.415
7 0.367 0.335 0.409 0.343 0.378 0.39 0.413 0.404 0.406
8 0.395 0.403 0.384 0.387 0.389 0.39 0.419 0.423 0.386
9 0.354 0.379 0.39 0.396 0.396 0.397 0.451 0.399 0.398
10 0.324 0.374 0.349 0.386 0.376 0.403 0.427 0.414 0.42

Avg 0.362 0.378 0.389 0.383 0.389 0.401 0.417 0.411 0.405
Std 0.029 0.023 0.026 0.015 0.015 0.017 0.032 0.01 0.012

\ast \ast 
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Model Evaluation
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Figure C.6: Impact of every TF on single enhancers. The impact is measured always
on the test data. Blue indicates positive impact (deleting the TF deteriorated the
prediction), while red indicates that the TF interferes with the correct prediction.
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Figure C.7: Enrichment of homotypic clustering for all TFs in 10bp segments compared
to shu�ed binding sites (10000 iterations). In gray: negative control with 98 pseudo-
enhancer (shu�ed enhancer sequences).
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Figure C.8: Impact of heterotypic cooperativity. Notice the symmetric nature of the
heatmap due to the symmetry of cooperativity. The scale is cropped at 5% impact
although bcd homotypic interaction has more impact. Otherwise most other impact
values were not visible.
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