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SUMMARY 

Diversity of life on Earth is a result of the emergence and the extinction of species. A 

crucial step in species formation is the reproductive isolation of populations that 

diverged from a common ancestor. The incapability of diverging populations to 

produce viable and fertile offspring prevents the exchange of genetic material, and 

therefore, gives rise to the formation of new species. Reproductive isolation can be 

caused by genes. As it turned out, many of these genes encode chromatin components 

that cause severe problems in a hybrid background. These findings link chromatin 

biology to species formation, but how evolutionary changes at the level of chromatin 

mediate reproductive isolation is still unclear.  

A particularly well-characterized model to study speciation is the gene pair Hybrid 

male rescue (Hmr) and Lethal hybrid rescue (Lhr) in the fruit fly. The presence of 

Hmr and Lhr causes lethality of male hybrids from Drosophila melanogaster mothers 

and D. simulans fathers. HMR and LHR form a chromatin-residing complex that 

localizes to centromeric heterochromatin and plays an important role in chromosome 

segregation in D. melanogaster. In hybrids, widespread mislocalization of this 

complex is suggested to cause lethality by a misregulation of de novo target loci. 

However, a detailed molecular description of HMR binding sites and their putative 

role in HMR’s function in pure species and in hybrid background remains to be 

elucidated.  

This study identifies and describes the genome-wide binding properties of HMR in 

D. melanogaster Schneider S2 cells. For this, we performed chromatin 

immunoprecipitation coupled to high-throughput sequencing (ChIP-seq) on HMR and 

endogenously epitope-tagged HMR. We demonstrate an extensive localization of 

HMR to genomic insulators and propose that HMR is targeted to these genomic sites 

by residing insulator protein complexes. Insulator proteins serve as regulatory 

elements of chromatin and transcription and successively gained new members during 

the evolution of Drosophila. Using protein knockdown strategies that affect the 

insulator protein complex structure, we demonstrate a loss of HMR binding to the 

affected genomic insulator sites once the insulator complex is disrupted. We found 

that HMR is associated with two classes of genomic insulators: gypsy and BEAF-32 

insulators. The gypsy insulator sites are associated with the DNA-binding protein 

Su(Hw) and are located at the gypsy and gypsy-twin repeats and at euchromatic sites 

across the genome. Coincidently, HMR is also found at the gypsy and gtwin repeat 
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regions as well as at non-repetitive regions at the chromosome arms such as the 1A-2 

locus. Another subset of HMR binding sites associates with BEAF-32, an insulator 

protein with direct DNA-binding activity. In contrary to gypsy insulators, HMR and 

BEAF-32 localize at boundaries that separate heterochromatin domains from active 

gene bodies. These genes are less transcribed upon the loss of HMR or BEAF-32 

indicating that HMR and BEAF-32 promote transcription at these genomic sites. As 

the loss of HMR or BEAF-32 was reported to cause similar phenotypes, we speculate 

that HMR and BEAF-32 act in a common pathway. Even though the underlying 

mechanism remains to be elucidated, it is tempting to speculate that HMR acquired 

this function during Drosophila evolution. 

Overall, we demonstrate a novel link between HMR and insulator proteins, a class of 

proteins that successively gained new factors during Drosophila evolution. Our 

findings provide new molecular insights for the speciation research field and further 

promote the chromatin research field by characterizing a biologically relevant 

example of chromatin factors. 
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ZUSAMMENFASSUNG 

Die Vielfalt des Lebens auf unserem Planeten ist das Ergebnis eines fortlaufenden 

Entstehens und Verschwindens biologischer Arten. Populationen, die sich 

auseinander entwickelt haben, sind nicht mehr in der Lage überlebensfähige und 

fortpflanzungsfähige Nachkommen hervorzubringen. Diese sogenannte reproduktive 

Isolation spielt bei der Entstehung neuer Arten eine entscheidende Rolle und kann 

durch Gene verursacht werden. Viele dieser Gene codieren Chromatin-Komponenten, 

welche schwerwiegende Probleme in Hybriden verursachen. Auf diese Weise sind 

Chromatin-Biologie und Artbildung eng miteinander verknüpft. Wie aber 

Veränderungen des Chromatins während der Evolution letztendlich in einer 

Inkompatibilität der Arten enden können, ist unklar. 

Ein besonders gut charakterisiertes Model bei der Untersuchung der Artbildung sind 

die beiden Gene Hybrid male rescue (Hmr) und Lethal hybrid rescue (Lhr) in der 

Fruchtfliege. Die Anwesenheit beider Gene führt dazu, dass männliche Hybride mit 

einer Drosophila melanogaster Mutter und einem D. simulans Vater früh in ihrer 

Entwicklung sterben. Die Genprodukte HMR und LHR bilden einen Proteinkomplex, 

der am Heterochromatin des Centromers zu finden ist und eine wichtige Rolle bei der 

Chromosomen-Segregation in D. melanogaster spielt. In Hybriden führt eine Bindung 

dieses Proteinkomplexes an falsche Stellen im Genom vermutlich zu einer 

Fehlregulierung dieser Bindestellen und letztlich zum Tod des Tieres. Derzeit ist 

jedoch nur sehr wenig über die Natur solcher Bindestellen bekannt. Wie die 

Bindestellen von HMR auf molekularer Ebene aussehen, und welche Auswirkungen 

diese auf die Funktion von HMR in der reinen Spezies und in Hybriden haben, muss 

noch erforscht werden.   

Diese Studie identifiziert und beschreibt die genomweiten Bindeeigenschaften von 

HMR in D. melanogaster Schneider S2 Zellen. Dafür haben wir Chromatin-

Immunpräzipitation und genomweite DNA Sequenzierung verwendet, speziell für 

HMR und endogen Epitop-getaggtes HMR. Wir zeigen eine umfassende Bindung von 

HMR an genomische Isolatoren und schlagen mit unseren Daten eine Rekrutierung 

von HMR an diese Bindestellen durch den anwesenden Komplex aus Isolator-

Proteinen vor. Die Familie der Isolator-Proteine bildet ein wichtiges regulatorisches 

Element des Chromatins und der zellulären Transkription und hat während der 

Evolution in Drosophila ständig neue Mitglieder erhalten. Mit Hilfe von Protein-

Knockdown-Experimenten, welche die Struktur von Isolator-Proteinenkomplexen 
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spezifisch beeinflussen, zeigen wir den Einfluss dieser Komplexe auf die HMR-

Bindung. HMR bindet an zwei verschiedene Klassen genomischer Isolatoren: gypsy-

und BEAF-32-Isolatoren. Die gypsy-Isolatoren sind mit dem DNA-bindenden Protein 

Su(Hw) assoziiert und befinden sind an den repetitiven Sequenzen gypsy und gtwin 

sowie an weiteren Stellen entlang des Genoms. HMR lokalisiert sowohl an gypsy und 

gtwin als auch an nicht-repetitive Sequenzen entlang der Chromosomenarme wie etwa 

die Region 1A-2. Zusätzlich bindet HMR an eine weitere Klasse von Isolatoren, 

nämlich solche, die mit dem DNA-bindenden Protein BEAF-32 assoziiert sind. Im 

Gegensatz zu den gypsy-Isolatoren lokalisieren HMR und BEAF-32 an die Grenze 

zwischen Heterochromatin und aktiv transkribierten Genen. Interessanterweise 

werden diese Gene weniger stark transkribiert sobald HMR oder BEAF-32 verloren 

gehen, was darauf hindeutet, dass HMR und BEAF-32 die Transkription dieser Gene 

unterstützen. Da der Verlust eines dieser Proteine außerdem in einem ähnlichen 

Phänotyp mündet, liegt die Vermutung nahe, dass HMR und BEAF-32 in ihrer 

Funktion zusammenarbeiten könnten. Obwohl der zugrundeliegende Mechanismus 

dieser Funktion noch weiter erforscht werden muss, ist es gut möglich, dass HMR 

eben diese Funktion erst während der Evolution in Drosophila erhalten hat.  

Zusammenfassend zeigen wir auf diese Weise zum ersten Mal einen Zusammenhang 

zwischen HMR und Isolator-Proteinen, einer Familie von Proteinen, die während der 

Evolution in Drosophila neue Mitglieder erhalten hat. Unsere Ergebnisse stellen 

wichtige Informationen für das Forschungsfeld der Artenentwicklung zur Verfügung 

und bringen darüber hinaus durch die Charakterisierung eines biologisch 

hochrelevanten Beispiels von Chromatin-Proteinen, das Feld der Chromatin-

Forschung weiter voran. 
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1 INTRODUCTION 

1.1 Speciation and hybrid incompatibility can be caused by 

genes 

Evolutionary biology seeks to explain the great diversity of life around us. In the first 

paragraph of his book On the Origin of Species, Darwin expresses his hope to “throw 

some light on […] that mystery of mysteries”. This was in 1859 (Darwin, 1859). In 

fact, biodiversity on Earth is the result of repeated formation and extinction of 

species. A crucial step in species formation is the reproductive isolation of 

populations that evolved from a common ancestor. Reproductive isolation is caused 

by infertility or lethality of the offspring from two sibling species. Mayr defined 

species as “groups of interbreeding natural populations that are reproductively 

isolated from other such groups” (Mayr, 1942). Reproductive barriers abolish or 

restrict the gene flow, the exchange of individual alleles, between populations. The 

genetic and phenotypic integrity of such populations is maintained by reproductive 

isolation even in geographical proximity (Coyne and Orr, 2004; Price, 2008; 

Seehausen et al., 2014). Reproductive isolation can occur through external forces, 

such as geographical barriers, or can be caused by intrinsic postzygotic barriers. In the 

latter case, incompatibility is caused by genes, or more generic, by genomic regions, 

that evolved independently in separate populations. But how can such hybrid 

incompatibility evolve without negatively affecting the pure species? The theoretical 

work on that started with the concept of Dobzhansky (Dobzhansky, 1936) and Muller 

(Muller and Pontecorvo, 1942). The Dobzhansky-Muller model (Figure 1) proposes 

that hybrid incompatibilities are caused by epistatic interactions of genes or genomic 

regions (a/A and b/B) that evolved independently in each of the hybridizing species: 

once the ancestral population is split into two, a can evolve into A in population 1 and 

b can evolve into B in population 2. A and B are not compatible but as A and B 

evolved independently, A and B are individually not negatively selected (Coyne and 

Orr, 2004). In the last few years, several of these hybrid incompatibility genes were 

mapped and subjected for investigation. So far, the speciation research field still lacks 

a detailed understanding of their molecular properties and function in pure species as 

well as of their deleterious role in hybrids. 
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Figure 1. Genetic incompatibility can cause reproductive isolation. The Dobzhansky-

Muller model explains how hybrid incompatibilities can be caused by the incompatibility of two 

genomic regions, A and B. The two genomic regions evolved independently (aa to AA and bb 

to BB) in two separate populations. The A-B interaction is not present in the pure species and 

therefore not subject to negative selection but causes severe problems in hybrids. Adapted 

from (Wu and Ting, 2004). 

 

1.2 Hmr and Lhr are hybrid incompatibility genes that encode a 

chromatin residing complex 

Hybrid incompatibility genes function normally within their own genetic background, 

but their divergence causes incompatible interactions in hybrids. The sibling fly 

species D. melanogaster and D. simulans (Figure 2 A) served as the main model 

system to identify hybrid incompatibility genes. Hybrid males from D. melanogaster 

mothers and D. simulans fathers dye at late larval stage and do not develop into 

adults, while hybrid females are sterile (Sturtevant, 1920). A mutation either in the 

D. simulans gene Lethal hybrid rescue (Lhr) (Watanabe and Kawanishi, 1979) or in 

the X-linked D. melanogaster gene Hybrid male rescue (Hmr) (Barbash et al., 2003) 

rescue the hybrid phenotypes (Figure 2 B). Hybrid male lethality results from a 

genetic interaction of the Hmr allele that diverged in D. melanogaster (Hmrmel) and 

the Lhr allele that diverged in D. simulans (Lhrsim) (Brideau et al., 2006). In fact, the 

gene pair Hmr and Lhr is the first described Dobzhansky-Muller gene pair (Brideau et 

al., 2006) and served as a popular model to study hybrid incompatibility on a 

molecular level (Satyaki et al., 2014; Thomae et al., 2013; Wei et al., 2014). Hmr and 

Lhr encode proteins that interact and form a protein complex that associates to 

chromatin (Satyaki et al., 2014; Thomae et al., 2013). 
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Figure 2. Hmr and Lhr are hybrid incompatibility genes and reproductively isolate 

D. melanogaster and D. simulans. (A) Phylogenetic tree of Drosophila species. 

D. melanogaster and D. simulans (shaded in grey) are very closely related and reproductively 

isolated. Adapted from (Granzotto et al., 2009) and (Seetharam and Stuart, 2013) (B) 

Speciation involves incompatibility of genes. Hmr and Lhr cause D. melanogaster and 

D. simulans hybrid incompatibility. Hmr has diverged in D. melanogaster, Lhr has diverged in 

D. simulans. The two genes cause reproductive isolation in hybrids. Hmr
2
 and Lhr

1
 alleles 

suppress the lethality of hybrid males and partially restore fertility of hybrid females. Pictures 

of flies kindly provided by Andrea Lukacs. Adapted from (Sawamura et al., 1993). 

 

1.3 Heterochromatin, a species barrier and driver for hybrid 

incompatibility 

D. melanogaster and its sibling species served as a popular model to study hybrid 

incompatibility. However, hybrid incompatibility genes were also identified in other 

organisms, ranging from yeast (Lee et al., 2008) to mammals (Mihola et al., 2009). 

Interestingly, many of these genes encode chromatin components, chromatin 

modifying enzymes or repetitive DNA elements that strongly interfere with chromatin 



INTRODUCTION    

8 

 

structure and organization (reviewed in (Sawamura, 2012)). Chromatin is the 

combination of proteins, noncoding RNA and chromosomal DNA of eukaryotes. On 

the one hand, chromatin allows high compaction of DNA and, on the other hand, 

chromatin permits regulated transcription of DNA throughout the cell cycle 

(Bohmdorfer and Wierzbicki, 2015; Holoch and Moazed, 2015; Meller et al., 2015; 

Pollard et al., 2007). In the first half of the 20
th

 century, chromosomal DNA was 

classified into euchromatin and heterochromatin. This classification was based on the 

observation that one fraction of chromatin – euchromatin – changes the degree of 

condensation throughout the cell cycle, whereas the other fraction – heterochromatin 

– remains condensed (Heitz, 1930) (reviewed in (Eissenberg and Reuter, 2009)). 

Heterochromatin is mainly present at the centromere and telomere regions containing 

long stretches of repetitive DNA, low-complex highly repetitive satellite DNA or 

transposable elements. These DNA elements evolve rapidly and are embedded in 

heterochromatin to prevent their transcription. Even closely related species strongly 

differ in the sequence and copy number of such repetitive elements (Clark et al., 2007; 

Le et al., 1995; Lerat et al., 2011; Vieira and Biemont, 2004). Several hybrid 

incompatibility proteins are connected to heterochromatin (reviewed in (Sawamura, 

2012)). These proteins show signs of adaptive evolution, which means that their 

alleles underwent positive selection during evolution (Bayes and Malik, 2009; 

Maheshwari and Barbash, 2012; Phadnis and Orr, 2009). This finding propels a model 

by which hybrid incompatibility results from the adaptive coevolution of chromatin-

associated factors and heterochromatic DNA (Brown and O'Neill, 2010; Crespi and 

Nosil, 2013; Johnson, 2010; Presgraves, 2010; Sawamura, 2012). Changes in 

sequence and copy number of heterochromatic DNA trigger the adaptive evolution of 

the corresponding regulatory factors and ensure chromatin integrity in the pure 

species (Figure 3 A). In the hybrid background, such molecular arms races may result 

in genetic incompatibility: Referring to the model proposed by Dobzhansky and 

Muller (Figure 1), the hybrid incompatibility (HI) protein and its genomic target sites 

coevolved in species 1. The species 2 genome evolved independently from species 1. 

Therefore, heterochromatic DNA and their regulatory factors are not compatible any 

more among the sibling species and result in chromatin misregulation once they are 

brought together in hybrids (Figure 3 B). 
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Figure 3. Chromatin-related molecular arms race in pure species can drive the 

evolution of hybrid incompatibility. (A) Changes in heterochromatic DNA, such as changes 

in sequence and copy number of selfish DNA elements, trigger the adaptive evolution of the 

corresponding regulatory factors. (B) The genes involved in this molecular arms race rapidly 

evolve and ensure chromatin integrity in pure species but become incompatible with sibling 

species genome and cause chromatin misregulation in hybrid background. 

 

The heterochromatin functions are diverse. Genes placed in heterochromatin 

proximity can get transcriptionally silenced (also known as position-effect-variegation 

(Spofford, 1976) (reviewed in (Eissenberg and Reuter, 2009)). This observation, 

together with the fact that some genes must be embedded in heterochromatin to be 

actively transcribed, suggests that heterochromatin plays a crucial role in gene 

regulation (Biggs et al., 1994; Devlin et al., 1990) (reviewed in (Yasuhara and 

Wakimoto, 2006)). In addition to its regulative function, heterochromatin is crucial in 

mediating chromosome segregation during meiosis. Chromosomes that do not 

recombine, namely the X and the 4
th

 chromosome in D. melanogaster, are paired by 

heterochromatic threads which eventually allow proper meiotic chromosome 

segregation (Dernburg et al., 1996; Hughes et al., 2009; Karpen et al., 1996; 

Theurkauf and Hawley, 1992). Such threads have also been identified in mammalian 

centromere regions during mitosis (Baumann et al., 2007; Chan et al., 2007).  
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1.4 Several hybrid incompatibility proteins are heterochromatin 

components 

Given the functional importance of heterochromatin in mitosis and meiosis and the 

rapid evolution of its underlying DNA sequences, heterochromatin potentially serves 

as a key player in setting up species barriers. Species-specific heterochromatin regions 

cause hybrid incompatibility, which is demonstrated by the Zygotic hybrid rescue 

(Zhr) locus. Zhr causes lethality in female hybrids of D. simulans females and 

D. melanogaster males (Sawamura et al., 1993) (inverse to the cross rescued by 

Hmr/Lhr, Figure 2 B). Zhr maps to a 359-bp repeat-containing region on the 

D. melanogaster male X chromosome (Ferree and Barbash, 2009; Sawamura and 

Yamamoto, 1997). This region causes mitotic segregation defects and death of female 

hybrid embryos (Ferree and Barbash, 2009). Besides heterochromatic DNA sequence, 

proteins that bind and regulate such sequences can cause reproductive isolation. 

Odysseus-site homeobox (OdsH) encodes a protein that binds to repeat-rich regions of 

the D. simulans X and 4
th

 chromosome and opens heterochromatic regions (Bayes and 

Malik, 2009; Ting et al., 1998). A gain of binding sites for the D. mauritiana OdsH to 

the D. simulans Y chromosome is suggested to affect heterochromatin packaging, 

which causes male sterility in hybrids (Bayes and Malik, 2009). Other examples for 

hybrid incompatibility genes identified in Drosophila are Nup160 and Nup96, which 

both encode components of the nuclear pore complex (NPC). NPCs are giant tunnel-

like structures in the nuclear membrane that mediate mutual exchange of molecules 

from cytosol to nucleus and vice versa. NPCs interact with chromatin, contribute to 

chromatin structure and gene regulation (Capelson et al., 2010; Grossman et al., 2012; 

Kalverda and Fornerod, 2010; Liang and Hetzer, 2011). The NPC’s architecture and 

function is remarkably conserved (Ryan and Wente, 2000; Vasu and Forbes, 2001; 

Yang et al., 1998). In contrast to other NPC components, Nup160 and Nup96 evolve 

rapidly and cause D. melanogaster and D. simulans hybrid lethality (Presgraves et al., 

2003; Tang and Presgraves, 2009). As NPCs are involved in chromosome 

segregation, it was speculated that Nup160 and Nup96 adaptively evolved to 

recognize repetitive DNA elements in centromeric heterochromatin (Sawamura, 

2012).  

Even though most HI genes were identified in Drosophila, reproductive isolation and 

chromatin are connected in mammals too. The first HI gene identified in mammals 

encodes PR domain-containing protein 9 (Prdm9), a DNA-binding protein with 
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histone H3 lysine 4 (H3K4) trimethyltransferase activity. In mouse, Prdm9 causes 

sterility in hybrid males by inducing meiotic arrest (Mihola et al., 2009). 

These examples show that Hmr and Lhr are not the only Drosophila genes that cause 

reproductive isolation. It is important to mention that hybrid incompatibility is the 

result of a complex interaction between the sibling species genomes. Hybrid 

incompatibility cannot be simply reduced to the divergence of two individual genomic 

regions as the Dobzhansky-Muller model proposes. In fact, male flies of 

D. melanogaster that express endogenous Hmr and transgenic Lhrsim are viable, 

whereas hybrid males that carry Hmrmel and Lhrsim are not (Brideau et al., 2006). This 

indicates that additional regions on the D. simulans genome cause hybrid male 

lethality. The identification of such genes is ongoing. Recently, Phadnis et al. 

identified another gene involved in hybrid incompatibility, the glutathione-S-

transferase-containing FLYWCH zinc finger protein (gfzf) (Phadnis et al., 2015). The 

cell cycle regulator gfzf causes hybrid male inviability by inducing meiotic arrest 

(Phadnis et al., 2015). A summary of hybrid incompatibility genes identified so far 

and mentioned in this work is given in Table 1. 

 

Table 1. Summary of hybrid incompatibility genes mentioned in this work.  

Gene Species Rapidly 

evolving 

Comment Reference 

gfzf D. melanogaster/ 

D. simulans 

yes Cell cycle regulator (Phadnis et al., 

2015) 

Hmr D. melanogaster/ 

D. simulans 

yes Interaction with LHR and 

heterochromatin proteins; 

centromeric 

heterochromatin-binding; 

role in centromere function 

(Barbash et al., 

2003; Thomae et 

al., 2013) 

Lhr D. melanogaster/ 

D. simulans 

yes Interaction with HMR and 

heterochromatin proteins; 

centromeric 

heterochromatin-binding; 

role in centromere function 

(Brideau et al., 

2006; Thomae et 

al., 2013) 

Nup160 D. melanogaster/ 

D. simulans 

yes Centromeric 

heterochromatin-binding? 

(Sawamura et al., 

2010; Tang and 

Presgraves, 2009) 

Nup96 D. melanogaster/ 

D. simulans 

yes Centromeric 

heterochromatin-binding? 

(Presgraves et al., 

2003) 

 

OdsH D. melanogaster/ 

D. simulans 

yes Heterochromatin-binding (Bayes and Malik, 

2009; Sun et al., 

2004; Ting et al., 

1998) 
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Ovd D. pseudoobscura/ 

D. bogotana 

yes Heterochromatin-binding; 

role in segregation 

distortion  

(Phadnis and Orr, 

2009) 

Prdm9 M. m. musculus/ M. 

m. domesticus 

yes Histone H3 

methyltransferase 

(Mihola et al., 

2009; Oliver et al., 

2009; Thomas et 

al., 2009) 

Zhr D. melanogaster/ 

D. simulans 

yes Centromeric 359-bp repeat 

region 

(Ferree and 

Barbash, 2009; 

Sawamura et al., 

1993) 

 

1.5 HMR, LHR and heterochromatic proteins interact and 

function in a dosage-dependent manner 

There are several examples for heterochromatin being involved in hybrid 

incompatibility (Table 1). This suggests chromatin as a driver in evolutionary 

processes and provides hints for a molecular arms race at the level of chromatin and 

its regulation. However, the molecular details on these processes are still poorly 

understood. Some mechanistic insights have been gained from studies on Hmr and 

Lhr. Hmr was among the first genes identified to cause hybrid inviability. Population 

genetic analysis demonstrated that Hmr and its genetically incompatible locus Lhr 

evolved both under positive selection (Barbash et al., 2004; Maheshwari et al., 2008). 

Notably, despite their deleterious function in hybrids, neither Hmr nor Lhr are 

essential for pure species viability. Loss-of-function mutations of Hmr and Lhr in 

D. melanogaster reduce female fertility (Aruna et al., 2009; Satyaki et al., 2014). Hmr 

orthologs from D. simulans and D. mauritiana can partially rescue this fertility 

phenotype (Aruna et al., 2009; Satyaki et al., 2014). On the contrary, only the 

D. melanogaster Hmr is lethal to hybrids, as hybrid males rescued by Hmrmel mutation 

are not killed by Hmr orthologs from sibling species (Barbash et al., 2004). This and 

the fact that hybrid female fertility in the case of Hmr mutant parents is partially 

rescued indicate that the role of Hmr in hybrids is not directly related to the pure 

species function. Instead, Hmr seems to gain new deleterious roles in hybrids. 

Hmr encodes a member of the Myb/SANT-like domain in ADF1 (MADF) protein 

family and contains four MADF domains that diverged between Hmr orthologs 

(Maheshwari et al., 2008). Originally, the MADF domain was identified in ADF1 

where it mediates ADF1 DNA binding activity (Cutler et al., 1998; England et al., 

1992). MADF domains are generally associated with DNA or chromatin binding 

suggesting that HMR potentially diverged in its chromatin binding specificity and 
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function (Aasland et al., 1996; Maheshwari et al., 2008). In fact, a single mutation in 

D. melanogaster Hmr’s third MADF domain, the Hmr
2
 allele, abrogates HMR’s 

centromere binding and rescues the hybrid phenotype (Barbash et al., 2003; Thomae 

et al., 2013) suggesting that HMR’s association to chromatin plays a crucial role in 

the hybrid gain-of-function. Apart from the N-terminal MADF domains, Hmr encodes 

a C-terminal BEAF, Su(var)3-7 and Stonewall-like (BESS) domain (Brideau et al., 

2006). The family of MADF-BESS domain containing proteins, with MADF at the N-

terminal part and BESS at the C-terminal part, consists of at least 16 members in 

D. melanogaster (Shukla et al., 2014). Interestingly, phylogenetic analysis revealed 

that the MADF-BESS proteins evolve rapidly and increased substantially in number 

during Drosophila evolution, presumably through gene duplication mechanisms 

(Shukla et al., 2014). Numerous of these genes, including Hmr and Overdrive, are 

involved in hybrid incompatibility.  

Hmr and Lhr are Drosophila-specific and rapidly evolving (Barbash et al., 2003; 

Brideau et al., 2006). Strikingly, these two genes not only genetically interact to cause 

hybrid phenotype, but also encode two proteins that physically interact to form a 

protein complex in vivo. Compared to Hmr, the Lhr gene encodes a small protein that 

does not contain a MADF domain but harbors a BESS domain too (Brideau et al., 

2006). The BESS domain mediates protein-protein interaction, in the case of HMR’s 

and LHR’s BESS domain their mutual interaction (Bhaskar and Courey, 2002; 

Brideau et al., 2006; Thomae et al., 2013).  

Biochemical analysis of HMR and LHR revealed numerous interaction partners. 

Among the most prominent ones is Heterochromatin Protein 1 a (HP1a) (Alekseyenko 

et al., 2014; Thomae et al., 2013), a protein that is heterochromatic and also termed 

Suppressor of variegation 205 [Su(var)205] due to its impact on position-effect-

variegation (Ebert et al., 2004; Eissenberg et al., 1990). The loss of a repressor such as 

HP1a results in a loss of silencing of a heterochromatic reporter gene. Numerous 

chromatin modifications and the proteins involved in writing and reading these 

modifications are specifically associated with one type of chromatin. For 

heterochromatin, these are HP1a and di- or tri-methylated lysine 9 on the histone H3 

tail (H3K9me2/3) (Dillon and Festenstein, 2002; Grewal and Rice, 2004; Richards 

and Elgin, 2002). HP1a is essential, highly conserved from yeast to human (Singh and 

Georgatos, 2002) and interacts with methylated H3K9 through its N-terminal chromo 

domain (CD) (Bannister et al., 2001; Jacobs and Khorasanizadeh, 2002; Jacobs et al., 

2001; Lachner et al., 2001; Nielsen et al., 2002). HP1a’s C-terminal chromo-shadow 
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domain (CSD) mediates HP1a multimerization and interactions with other proteins 

(Alekseyenko et al., 2014; Brasher et al., 2000; Li et al., 2003; Murzina et al., 1999; 

Stewart et al., 2005). HP1a interacts and cooperates with the proteins Su(var)3-7 and 

Su(var)3-9 to mediate transcriptional silencing at heterochromatic regions (Danzer 

and Wallrath, 2004; Greil et al., 2003; Schotta et al., 2002). In contrast to HP1a and 

Su(var)3-9, the protein Su(var)3-7 is Drosophila-specific, evolved rapidly and harbors 

a BESS domain (Jaquet et al., 2006) that mediates its interaction with Su(var)3-9 

(Schotta et al., 2002). Additionally, Su(var)3-7 harbors DNA-binding zinc finger 

domains that recruit Su(var)3-7 and its interaction partners to satellite repeat 

containing pericentromeric and telomeric regions (Cleard et al., 1997; Delattre et al., 

2000). The protein Su(var)3-9 localizes with both, Su(var)3-7 and HP1a to these 

heterochromatic regions (Schotta and Reuter, 2000). Su(var)3-9 is a histone methyl 

transferase that sets the histone H3K9 methylation mark (Schotta et al., 2002), which, 

in turn is recognized by HP1a, suggesting a mechanism for heterochromatin 

spreading.  

The cellular protein dosage of HMR, LHR and heterochromatin-associated proteins is 

crucial for their cellular function. Su(var) proteins act as modifiers of position-effect-

variegation in a dosage-dependent manner (Eissenberg et al., 1990; Eissenberg et al., 

1992; Locke et al., 1988; Schotta et al., 2002). Reduced or increased amounts of 

Su(var)3-7 further affect the genomic localization of Dosage Compensation Complex 

(DCC) proteins and the expression of dosage-compensated genes (Spierer et al., 

2008). Prior studies from Thomae et al. aimed to identify species-specific differences 

between HMR and LHR orthologues and highlighted different expression levels for 

HMR and LHR in the two species (Thomae et al., 2013). The HMR protein level is 

increased in D. melanogaster, whereas the LHR protein level is higher in D. simulans 

(Maheshwari and Barbash, 2012; Thomae et al., 2013). HMR and LHR do not only 

interact but also mutually stabilize each other (Satyaki et al., 2014; Thomae et al., 

2013). In hybrids, high levels of HMRmel and high levels of LHRsim face each other. 

HMRmel and LHRsim interact, which in turn results in a highly increased level of the 

HMR/LHR complex and a lethal gain of function in hybrids (Thomae et al., 2013). 

The molecular basis for this lethal gain-of-function remains to be elucidated. Higher 

levels of HMR and LHR lead to a remarkably increased number of their binding sites, 

both in the hybrids’ and in the pure species’ background (Thomae et al., 2013), 

indicating that the gain-of-function relates to chromatin binding activity.  
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1.6 HMR and LHR associate with fast evolving centromeric and 

telomeric heterochromatin 

So far, HMR’s and LHR’s genomic localization were studied using cytological 

staining where HMR and LHR locate in embryos at subdomains of pericentromeric 

heterochromatin (Satyaki et al., 2014). In these studies, HMR colocalizes with HP1a 

and H3K9me2 at Dodeca and GC-rich satellite repeats but not with the 359-bp 

satellite repeat that causes hybrid incompatibility (Zhr, see above) (Satyaki et al., 

2014). Further, LHR was described as part of classical heterochromatin present at 

pericentromeric regions (Filion et al., 2010; Greil et al., 2007). These studies localized 

ectopically epitope-tagged HMR and LHR, making the results prone to protein 

overexpression bias. The first, and to date only, studies localizing endogenous HMR 

and LHR come from Thomae et al., who found both proteins associated to the 

centromere in D. melanogaster cell lines and mitotic cells of the larvae wing imaginal 

discs, which points to a role of the HMR/LHR complex in mitosis (Thomae et al., 

2013). On polytene chromosomes, large genomic DNA structures that are isolated 

from endoreplicating tissue, the proteins HMR and LHR are additionally detected at 

several regions along the chromosome arms and at telomeres (Thomae et al., 2013). A 

common feature of these genomic regions is their association with heterochromatin 

features. Consistent with these findings, Thomae et al. uncovered that the HMR/LHR 

complex contains centromeric and pericentromeric factors apart from HP1a, such as 

Umbrea, NLP (nucleoplasmin-like protein), CENP-C (James et al., 1989; Padeken et 

al., 2013; Ross et al., 2013; Thomae et al., 2013; Vermaak and Malik, 2009) and the 

telomere protein Verrocchio (Raffa et al., 2010; Vedelek et al., 2015). 

Both, telomeres and centromeres are heterochromatic structures with unique features 

and crucial cellular functions. Telomeres harbor a specialized type of heterochromatin 

that is composed of rapidly evolving DNA sequences and associated proteins 

(Anderson et al., 2009; Mefford and Trask, 2002; Raffa et al., 2011). A protective 

telomere cap structure, forming on this DNA, shields chromosome ends and prevents 

telomere fusion (Andreyeva et al., 2005; Raffa et al., 2011). The centromere is an 

assembly platform for kinetochore proteins, which facilitate accurate chromosome 

segregation during mitotic cell division. The centromere structure is characterized by 

conserved and unique epigenetic features: the histone H3 variant CID (centromere 

identifier in Drosophila) is present at the inner centromere region, which is embedded 

in densely packed heterochromatin (Allshire and Karpen, 2008). This centromere-
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associated heterochromatin consists of long repetitive arrays and harbors selfish DNA 

sequences such as transposable elements (TEs) that are transcriptionally silenced 

(Birchler et al., 2000). The variation in copy number of such repetitive DNA is 

remarkably high and causes a broad variation in genome size among multicellular 

eukaryotes in general (Gregory, 2005) and among Drosophila species in particular  

(Bosco et al., 2007). On the one hand, the copy number of such DNA elements can 

rapidly change with processes that involve homology regions such as crossing over 

and duplication events (Charlesworth et al., 1994). On the other hand, selfish 

properties such as transposition for TEs (Hickey, 1982) and meiotic drive for satellite 

DNA sequences (Walker, 1971) can cause overrepresentation of repetitive DNA. In 

such a genetic conflict scenario, the action of selfish DNA on the host genome is 

detrimental to other genes, and therefore results in an arms race between selfish DNA 

and host defense mechanisms. The actions of selfish DNA have been proposed as an 

important driver of hybrid incompatibility (Brown and O'Neill, 2010; Crespi and 

Nosil, 2013; Johnson, 2010; Maheshwari and Barbash, 2011; Presgraves, 2010). As 

shown above, multiple Drosophila HI genes and gene products are associated with 

such genomic elements. Figure 4 depicts the cytological localization of HMR/LHR to 

various heterochromatic regions that are subject to this postulated molecular arms 

race and suggests a relation between this localization and the observed HMR/LHR 

complex functions and phenotypes. 
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Figure 4. HMR and LHR localize to centromere-associated heterochromatin and are 

crucial for centromere function. Based on cytological staining, the HMR/LHR complex 

associates with various heterochromatic regions across the Drosophila genome including 

centromeric heterochromatin, telomeres and other distinct regions at the chromosome arms 

such as cytological region 31, all regions of a postulated arms race (see text). HMR’s and 

LHR’s localization is in accordance to their loss-of-function phenotypes. Mitotic defects and 

transcriptional derepression of underling repetitive elements and heterochromatic genes are 

consistent with impaired centromere function (see text). 

 

1.7 HMR and LHR affect transcription of heterochromatic 

genes and repetitive DNA 

The loss of HMR or LHR by RNAi knockdown in D. melanogaster cells results in an 

increased rate of mitotic defects indicating that the HMR/LHR complex does not only 

localize to the centromere but also has a critical function in chromosome segregation 

(Thomae et al., 2013). What is then the function of HMR and LHR at centromere 

regions? On the one hand, HMR and LHR were not identified in CID pull down 

(Barth et al., 2014) and the reduction of HMR and LHR in D. melanogaster does not 

affect the kinetochore structure or the incorporation of newly synthesized CID 

(Thomae et al., 2013). On the other hand, loss of HMR or LHR results in highly 

increased transcription of transposable elements, including those located in 

centromeric and heterochromatic regions. This was shown in cell lines using RNAi 

knockdown approaches (Thomae et al., 2013) and in ovaries of Hmr and Lhr mutant 

flies (Satyaki et al., 2014). In ovaries, HMR and LHR suppress satellite DNA 

transcription, repeats with germline-specific expression such as telomeric HeT-A and 

retrotransposon copia but also somatic expressed repeats such as gypsy (Satyaki et al., 
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2014). In line with telomeric HeT-A derepression, Hmr and Lhr mutant flies also 

displayed higher copy number of HeT-A suggesting HMR/LHR being telomere cap 

proteins that regulate telomere length (Satyaki et al., 2014). However, the underlying 

mechanism of these observations is still poorly understood. Notably, also in hybrid 

male larvae where HMR and LHR proteins are present before the animal eventually 

dies, transposable elements are misregulated. The misregulation of repetitive DNA 

transcription could origin from defects in chromatin packaging, but could also be a 

secondary effect of hybrid developmental and physiological defects. Similar could be 

true for Hmr or Lhr loss-of-function mutant flies which display germline-associated 

phenotypes and chromosome segregation defects. Overall, HMR localizes to 

heterochromatin-associated sites in the genome, namely telomeric and centromeric 

regions, presumably via its interacting proteins, such as the heterochromatic proteins 

HP1a, SUVAR3-7 and the telomeric protein Verrocchio (Figure 4). Strikingly, these 

underling DNA sequence as well as their associated proteins are rapidly evolving 

(Figure 4). The role of HMR and LHR at such genomic sites is currently not well 

understood, but the loss of HMR or LHR results in transcription misregulation of 

coding and repetitive DNA at these sites (Figure 4).  

 

1.8 Evolution of insulators and insulator proteins in Drosophila 

Several genes associated with hybrid incompatibility are rapidly evolving. Further, a 

remarkably high portion of them is part of the MADF-BESS domain family in 

Drosophila, a protein family that successively gained new members during 

Drosophila evolution (Shukla et al., 2014). As described above, Hmr encodes four 

MADF domains and a BESS domain whereas Lhr lacks MADF domains but encodes 

a BESS domain (Brideau et al., 2006; Maheshwari et al., 2008). The BESS domain is 

often associated with the MADF domain (Bhaskar and Courey, 2002; Cutler et al., 

1998; England et al., 1992) and is named after BEAF or BEAF-32, a protein that 

belongs to another highly remarkable group of proteins in the context of Drosophila 

evolution. These proteins emerged in Drosophila and are called insulator proteins 

(Heger et al., 2013). Insulator proteins bind to rapidly evolving DNA elements that 

adaptively change during evolution (Ni et al., 2012; Yang et al., 2012). Many 

transposons or transposon-derived sequences such as gypsy give rise to genomic 

insulator sites, regulatory elements across the genome that mediate chromatin 

organization into distinct domains and ensure gene transcription integrity.  
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While only one insulator protein, CCCTC-binding factor (CTCF), is known in 

vertebrates, arthropods have experienced a successive gain of insulator proteins 

during evolution (Heger et al., 2013; Pauli et al., 2016; Schoborg and Labrador, 

2010). To date, Drosophila utilizes the largest known variety of insulator proteins 

such as CTCF, Boundary Element Associated Factor 32 (BEAF-32), Suppressor of 

Hairy wing [Su(Hw)], Modifier of mdg4 [Mod(mdg4)] and Centrosomal Protein 190 

(CP190), which all affect nuclear architecture (Sexton et al., 2012). Different 

Drosophila species underwent multiple genomic rearrangements and transposon 

invasions (Bosco et al., 2007; Clark et al., 2007), which presumably resulted in an 

adaptive response of regulatory DNA elements to maintain spatial and temporal gene 

expression. For example, binding sites of the insulator proteins BEAF-32 and CTCF 

show a high degree of variability when compared among very closely related species. 

The gain of new insulator sites is an adaptive change in response to chromosome 

rearrangements as well as to the birth of genes and has a direct impact on species-

specific transcription (Ni et al., 2012; Yang et al., 2012). This is very reminiscent of 

the situation for HMR, LHR, their interacting heterochromatin proteins and repetitive 

DNA elements described in the text before.  

This work provides a novel link between HMR and insulator proteins. Using genome-

wide mapping techniques, we found HMR localizing to discrete subsets of genomic 

insulator sites. One of them belongs to gypsy insulators that are marked by the 

presence of Su(Hw), Mod(mdg4) and CP190. The other subset of HMR binding sites 

associates with the insulator protein BEAF-32 and is exclusively found at the 

transcription start site of heterochromatic genes. Interestingly, such genes are 

transcriptionally affected in HMR and BEAF-32 mutants suggesting a functional 

relation between HMR, insulator proteins and heterochromatin. Further, these 

findings and the recurrent gain of insulator proteins in evolution suggest a putative 

role of insulator proteins and genome organization in the formation of species.  
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Figure 5. Hybrid incompatibility proteins, heterochromatin proteins and insulator 

proteins are interconnected by the BESS domain and partially subject to rapid 

evolution. HMR, LHR, Su(var)3-7 and BEAF-32 share the BESS domain. Insulator proteins 

and MADF-BESS domain family proteins successively gained new members during evolution 

(Heger et al., 2013; Shukla et al., 2014). In contrast to HP1a and Su(var)3-9, the BESS 

domain containing Su(var)3-7 is Drosophila-specific and evolved rapidly (Jaquet et al., 2006). 

Domain architecture obtained from: UniProt webpage, (Aagaard et al., 1999; Bhaskar and 

Courey, 2002; Brideau et al., 2006; Jaquet et al., 2002; Maksimenko and Georgiev, 2014). 
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1.9 Thesis aims 

The Drosophila gene Hmr was among the first identified hybrid incompatibility genes 

and constitutes one of the most studied genes in the field of speciation. HMR is a 

chromatin component in Drosophila and forms a chromatin-associated complex with 

LHR and other proteins. What makes the study of HMR particularly interesting as a 

model in the field of chromatin and evolution is:  

1
st
 Understanding the driving forces that lead to positive selection of hybrid 

incompatibility genes during evolution.  

2
nd

 Understanding the reasons for this adaptive evolution being genetically 

incompatible with sibling species and detrimental in a hybrid background.  

Both aspects are particularly related to the genomic localization of HMR. In 

D. melanogaster pure species, HMR localizes to centromeric heterochromatin and 

plays an important role in chromosome segregation and in the regulation of 

transposable elements and heterochromatic gene transcription. In hybrids, widespread 

mislocalization of HMR is suggested to cause lethality by a misregulation of de novo 

target loci. However, the molecular details of HMR binding sites and their putative 

role in HMR’s function in pure species and in hybrid background remains to be 

elucidated. To gain new insights on the nature and biology of HMR binding sites we 

aimed to:  

1
st
 Identify and describe HMR’s genomic binding sites on a molecular level in 

D. melanogaster. 

2
nd

 Dissect HMR’s targeting mechanisms and recruitment to its binding sites 

in the D. melanogaster genome. 

3
rd

 Elaborate on HMR’s function at its binding sites in the D. melanogaster 

genome. 

To address these questions, we identify and describe the genome-wide binding 

properties of HMR in D. melanogaster Schneider S2 cells, an embryonic cell line. S2 

cells are used as a popular model and provide genome-wide data sets of other 

chromatin features, which were generated by the modENCODE consortium. Further, 

this cell line is highly accessible to specific RNAi knockdown that allows specific and 

efficient reduction of proteins (Elbashir et al., 2001) and can be subjected to advanced 

genome editing (Bottcher et al., 2014; Kunzelmann et al., 2016). 

To answer the first question we performed chromatin immunoprecipitation coupled to 

high-throughput sequencing (ChIP-seq) on HMR using antibody directed against 

endogenous HMR generated prior to this study (Thomae et al., 2013). In collaboration 
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with Prof. Dr. Klaus Förstemann and his group (Biocenter LMU Munich), we 

generated an endogenously epitope-tagged HMR expressing cell line (Bottcher et al., 

2014) to be used in ChIP with commercial antibodies. The derived HMR binding sites 

were characterized with respect to their underlying DNA sequence and binding 

overlap to other chromatin marks and chromatin-associated proteins.  

To answer the second question, we took use of the RNAi knockdown strategy that 

allows efficient depletion of a target protein prior to ChIP. The knockdown of a 

putative HMR targeting factor followed by HMR ChIP allows assessing the specific 

effect of the knockdown on HMR binding relative to a negative control treatment. 

This strategy was combined with a detailed description and characterization of HMR 

binding sites (first question’s answer) and tailored bioinformatics analysis. 

To answer the third question, we took use of public data on gene transcription in Hmr 

mutant flies and other transcription datasets. By applying tailored bioinformatics 

analysis, we then related these data to the knowledge on the HMR binding sites. 

Such molecular insights should be of general interest for the speciation research field 

that currently lacks a mechanistic understanding of speciation and its evolutionary 

driving forces. By describing HMR’s genomic binding properties on a molecular 

level, we further promote the chromatin research field by characterizing a biologically 

relevant example for the deregulation of chromatin factors. 
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2 MATERIALS & METHODS 

2.1 Materials 

2.1.1 Cell lines 

Cells used in this work were D. melanogaster S2-DRSC cells obtained from the 

DGRC (Schneider, 1972). For CRISPR/Cas9-based tagging of HMR, either S2-DRSC 

cells or S2-DRSC cells with myc-Cas9 integration, clone 9-4 (neomycin-resistant) 

and 5-3 (hygromycin-resistant) (Bottcher et al., 2014) were obtained from the lab of 

Prof. Dr. Klaus Förstemann. Cell lines generated with CRISPR/Cas9 system are listed 

in Table 2.  

 

Table 2. List of cell lines generated with CRISPR/Cas9 system in this study. 

Name Description ID and date of 

freezing 

S2 HMR-Flag2 Parental line: S2-DRSC 

U6-gRNA and pRB14 (myc-Cas9) transfected 

Population 

p2-4, population 

(08/09/2014, 

02/10/2014, 

08/10/2014) 

S2 HMR-GFP Parental line: S2 myc-Cas9 (Bottcher et al., 2014) 

U6-gRNA 

Single clone 

p4-2, clone #6 

(08/09/2014, 

02/10/2014) 

S2 HMR-Strep2 Parental line: S2-DRSC 

U6-gRNA and pRB14 (myc-Cas9) transfected  

Single clone 

p2-5, clone #1 

(08/09/2014, 

02/10/214) 

S2 HMR-Strep2 Parental line: S2-DRSC 

U6-gRNA and pRB14 (myc-Cas9) transfected  

Single clone 

p2-5, clone #4 

(08/09/2014, 

02/10/214) 
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2.1.2 Plasmids 

Table 3. List of plasmids used in this study. 

Plasmids Description Reference/Source 

pRB14 Expression of myc-Cas9; used for CRISPR/Cas9 

strategy 

(Bottcher et al., 2014) 

pRB17 Template for overlap-extension PCR to generate 

U6-gRNA; contains the U6-promotor with a T7 

extension; used for CRISPR/Cas9 strategy 

(Bottcher et al., 2014) 

pMH3 Template for PCR to generate homologous 

recombination donors; containing the GFP-tag 

sequence and blasticidin resistance gene; used for 

CRISPR/Cas9 strategy (tagging, knockout 

blasticidin-2/2) 

K. Förstemann 

pMH4 Template for PCR to generate homologous 

recombination donors; containing the Flag2-tag 

sequence and blasticidin resistance gene; used for 

CRISPR/Cas9 strategy (tagging) 

(Bottcher et al., 2014) 

pIW1 Template for PCR to generate homologous 

recombination donors; containing the Strep2-tag 

sequence and blasticidin resistance gene; used for 

CRISPR/Cas9 strategy (tagging) 

(Bottcher et al., 2014) 

pKF277 Template for PCR to generate homologous 

recombination donors; containing blasticidin 

resistance gene; used for CRISPR/Cas9 strategy 

(tagging, knockout blasticidin-1-2) 

K. Förstemann 

pRB25 Template for PCR to generate homologous 

recombination donors; containing puromycin 

resistance gene; used for CRISPR/Cas9 strategy 

(tagging, knockout puromycin-1-2) 

K. Förstemann 

pSK23 Template for PCR to generate homologous 

recombination donors; containing puromycin 

resistance gene; used for CRISPR/Cas9 strategy 

(tagging, knockout puromycin-2-2) 

K. Förstemann 

 

2.1.3 Oligonucleotides 

Oligonucleotides used in this work were obtained from Sigma-Aldrich (desalt, 

100 µM in water). The sequences of oligonucleotides are listed in Table 4, Table 5, 

Table 6, Table 7. Oligonucleotides published in (Bottcher et al., 2014) were kindly 

provided by Prof. Dr. Klaus Förstemann. 

 

Table 4. List of oligonucleotides used for CRISPR/Cas9-based tagging of HMR. 

Name Sequence (5’-3’) Reference/Source 

lig4 and mus308 knockdown 

lig4 RNAi for  TAATACGACTCACTATAGGGCCCAATGAT

CCAAAGTGTTTTTGCA 

(Bottcher et al., 2014) 

lig4 RNAi rev TAATACGACTCACTATAGGGAAGTAGGAT

GCCTTCGCGA 

(Bottcher et al., 2014) 
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mus308 RNAi 

for  

TAATACGACTCACTATAGGGCTGGGACTC

CACCGGAAAG 

K. Förstemann 

mus308 RNAi 

rev 

TAATACGACTCACTATAGGGTACCGTCGC

CGTCCAGTAATG 

K. Förstemann 

gRNA in vitro transcription template generation 

oligo scaffold GTTTTAGAGCTAGAAATAGCAAGTTAAAA

TAAGGCTAGTCCGTTATCAACTTGAAAAA

GTGGCACCGAGTCGGTGC 

(Bottcher et al., 2014) 

oligo CRISPR 

target with T7 

prom. (HMR 

tagging) 

TAATACGACTCACTATAGCCACCGCCTTA

GCTCTCGAAACTTTGTTTTAGAGCTA 

Designed for this work; 

HMR-specific 

oligo CRISPR 

target with T7 

prom. (HMR N-

term knockout) 

CCTATTTTCAATTTAACGTCGTTGGAGCT

ATCAGGTGTCTGTTTAAGAGCTATGCTG 

 

Designed for this work; 

HMR-specific 

oligo CRISPR 

target with T7 

prom. (HMR C-

term knockout) 

CCTATTTTCAATTTAACGTCGCCTTAGCTC

TCGAAACTTTGTTTAAGAGCTATGCTG 

 

Designed for this work; 

HMR-specific 

oligo CRISPR 

target with T7 

prom. (LHR N-

term knockout) 

CCTATTTTCAATTTAACGTCGAGTGGTATA

TTAAAACATAGTTTAAGAGCTATGCTG 

 

Designed for this work; 

LHR-specific 

oligo CRISPR 

target with T7 

prom. (LHR C-

term knockout) 

CCTATTTTCAATTTAACGTCGGAAATATAA

AATGCTATTGTTTAAGAGCTATGCTG 

 

Designed for this work; 

LHR-specific 

primer antis. 

scaffold 

GCACCGACTCGGTGCCACT (Bottcher et al., 2014) 

U6-gRNA template generation by overlap-extension PCR 

U6-gRNA sense GCTCACCTGTGATTGCTCCTAC (Bottcher et al., 2014) 

U6-gRNA 

antisense 

GCTTATTCTCAAAAAAGCACCGACTCGGT

GCCACT 

(Bottcher et al., 2014) 

Homologous recombination template generation (tagging) 

HMR sense TGGGCCTACGCCGTCGGTAACTTGTCCA

CGGCCAGTCAGGATACACTGCTCGGCAA

GATGACGCAGCTGTTCTCTAAATACGCCA

AGGTCAATCCGCCACCGCCTGGATCTTC

CGGATGGCTCGAG 

Designed for this work; 

HMR-specific 

HMR antisense ACGGCGAAAGTTCTTACAGAGAATATGTA

TGACTAAACTACGTGTGCCAAAAGTTTCG

AGAGGAAGTTCCTATTCTCTAGAAAGTAT

AGGAACTTCCATATG 

Designed for this work; 

HMR-specific 

Homologous recombination template generation (knockout) 

HMR N-term 

sense 

CTCGACGGCTTGTGTGGGGGAAAGGCGC

GCGTAGGTCAAGATTGGAGCTATCACGT

GTCTAGGACGAAGTTCCTATACTTTCTAG

AGAATAGGAACTTCCATATG 

Designed for this work; 

HMR-specific 

  



MATERIALS & METHODS    

26 

 

HMR C-term 

antisense 

GGTACGGCGAAAGTTCTTACAGAGAATAT

GTATGACTAAACTACGTGTGCCAAAAGTG

TCGAGAGGAAGTTCCTATTCTCTAGAAAG

TATAGGAACTTCCATATG 

Designed for this work; 

HMR-specific 

LHR N-term 

sense 

TAGATTTTATTAAAGAAATTACCGTTAAGT

GGTATATTAAAGCATACGGATGAATTAGT

ACACAAGAAGTTCCTATACTTTCTAGAGA

ATAGGAACTTCCATATG 

Designed for this work; 

LHR-specific 

LHR C-term 

antisense 

CTCCTTGTTTGTTTAGTTATTAGTTCTTCG

AGAATGCAAAGCAAGTGAAATATAAAATG

TTATTTGAAGTTCCTATACTTTCTAGAGAA

TAGGAACTTCCATATG 

Designed for this work; 

LHR-specific 

Split BlastR 

sense (#351) 

ACAATCAACAGCATCCCCATCTC K. Förstemann 

Split BlastR 

antisense 

(#352) 

TTCTCATTTCCGATCGCGACGATAC K. Förstemann 

Split PuroR 

sense (#781) 

GGACGTTGGCTGCCGC K. Förstemann 

Split PuroR 

antisense 

(#782) 

CCCCTGCTTCCACGCT K. Förstemann 

PCR analysis on genomic DNA for verification 

Hmr CDS sense TATAAGCAGGTGAAGCCGAAC Designed for this work; 

HMR-specific 

Hmr 

downstream 

antisense 

TGCCCTCATCGCTATCATTCTG Designed for this work; 

HMR-specific 

Copia antisense GTAGGTTGAATAGTATATTCCAACAGCAT

ATG 

(Bottcher et al., 2014) 

 
Table 5. List of oligonucleotides used for transcript analysis by cDNA-qPCR. 

Name Sequence (5’-3’) Publication 

tub97EF for GAGCAAGAACAGCAGCTACTTTGT (Padeken et al., 2013) 

tub97EF rev CACCTTGACGTTGTTGGGAAT (Padeken et al., 2013) 

Hmr for AATCGCTTGCGAAGAACACT (Thomae et al., 2013) 

Hmr rev ACTGGCCGTGGACAAGTTAC (Thomae et al., 2013) 

Lhr for CGCCAAGAGAAAGCTACTCG (Thomae et al., 2013) 

Lhr rev CATGGCCGGACTGAGTAAAT (Thomae et al., 2013) 

HP1a for AAGTCAGCCGCCTCCAAGAAGG (Thomae et al., 2013) 

HP1a rev ATGGTGTCCTGCTCCGCATCTG (Thomae et al., 2013) 

 
Table 6. List of oligonucleotides used for ChIP-qPCR in the order applying to figures. Listed 

primers were designed in this study with Primer3. #: Primers are from (Wallace, 2010). 

Name Sequence (5’-3’) 

2L:302129-302248 for CACAGCAACGAAGCTCTCTG 

2L:302129-302248 rev AGCATAGTGACCCGCATCTC 

3R:23793216-23793267 for GAGCAAGAACAGCAGCTACTTTGT 

3R:23793216-23793267 rev CACCTTGACGTTGTTGGGAAT 

3RHet:2107224-2107336 for AACCCTATCCAAATTTCGAACC 

3RHet:2107224-2107336 rev AGCCAAGATGAAGTCGATGC 
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4:855631-855744 for TAAACTCAGCCCTGCATTCC 

4:855631-855744 rev GTGTTAAACCAATCCGAGACATC 

2RHet:369982-370075 for CATTTGACTTCTTCGACACGAC 

2RHet:369982-370075 rev GACACTGATTTACACAAAGCACAAC 

2RHet:370407-370487 for TGCATACCCTACAAATAGTTTTGC 

2RHet:370407-370487 rev TTGATCGGCTAAGTGAAGTGG 

gypsy 5’ for 
#
 GGTTTCTCTAAAAAGTATGCAGC 

gypsy 5’ rev 
#
 CTGGCCACGTAATAAGTGTGC 

gtwin 5’ for 
#
 ATGAAGTCACTCGGCAACCT 

gtwin 5’ rev 
#
 ACGCTTGGTAAAAGTATGCAATTG 

3L:2244123-2244231 for TTCCTGATACCAGGCGAAC 

3L:2244123-2244231 rev CAGTTCACTCCGCAGATACG 

2L:22247197-22247280 for CCGTACAATTTCCGAGCAG 

2L:22247197-22247280 rev GAAACTTGAAGAACCGATTGC 

 
Table 7. List of primers used for RNAi experiments combined with ChIP. 

Name Sequence (5’-3’) Publication 

CP190 RNAi for 

 

TAATACGACTCACTATAGGGCCTGGCTG

TGCCTGAGA 

(Van Bortle et al., 2012) 

CP190 RNAi rev 

 

TAATACGACTCACTATAGGGCTGGTAGA

CTTATGTCCGAAA 

(Van Bortle et al., 2012) 

CTCF RNAi for 

 

TAATACGACTCACTATAGGGGAGCCCG

ACATCAGTTCAAT 

(Van Bortle et al., 2012) 

CTCF RNAi rev 

 

TAATACGACTCACTATAGGGGAGCACTT

GAAGGATGGCTC 

(Van Bortle et al., 2012) 

GFP RNAi for TTAATACGACTCACTATAGGGAGAACGT

AAACGGCCACAAGTTCAGC 

(Thomae et al., 2013) 

GFP RNAi rev TTAATACGACTCACTATAGGGAGATGCT

GGTAGTGGTCGGCGAG 

(Thomae et al., 2013) 

GST RNAi for 

 

TTAATACGACTCACTATAGGGAGAAGTT

TGAATTGGGTTTGGAGTTTCC 

(Thomae et al., 2013) 

GST RNAi rev 

 

TTAATACGACTCACTATAGGGAGATCGC

CACCACCAAACGTGG 

(Thomae et al., 2013) 

HMR RNAi for 

 

TTAATACGACTCACTATAGGGAGAGATG

TGGAGGTCATAGAGAATCCGCCAATG 

(Thomae et al., 2013) 

HMR RNAi rev 

 

TTAATACGACTCACTATAGGGAGAACCT

TGTTGTGCAGGGAGTCCTCCGTC 

(Thomae et al., 2013) 

HP1a RNAi for 

 

TAATACGACTCACTATAGGGAGATGGG

CAAGAAAATCGACAACCCTGAG 

(Thomae et al., 2013) 

HP1a RNAi rev 

 

TAATACGACTCACTATAGGGAGAGCGTC

CTTGAGTTTCCTTGGCCTTG 

(Thomae et al., 2013) 

 

 

2.1.4 Antibodies and beads 

Antibodies used in this work are listed in Table 8. The HMR- and LHR-specific rat 

monoclonal antibodies were generated by Dr. Elisabeth Kremmer at the Service Unit 

Monoclonal Antibodies at the Helmholtz-Zentrum-München and used in (Thomae et 

al., 2013). The HMR-specific antibodies were raised against an aminoterminal (N-

terminal) fragment spanning amino acids 2-416 fused to an N-terminal Glutathione S-
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transferase (GST) tag. The LHR-specific antibodies were raised against full length 

LHR N-terminally fused to the Maltose-Binding Protein (MBP). Beads used in this 

work for affinity purification are Protein A Sepharose 4 Fast Flow (GE Healthcare) 

and Protein G Sepharose 4 Fast Flow (GE Healthcare). 

 

Table 8. List of antibodies used in this work. 

Antibody Host Clonality Reference/Provider Application 

Primary antibodies 

anti-Rat IgG 

(Fc)-unconj., 

MinX Hu 

rabbit polyclonal RRID:AB2339804 

Dianova, 312-005-046 

IP: 10 µg per reaction 

anti-CID 7A2 rat monoclonal Elisabeth Kremmer IF: 1:200 

anti-CP190 Bx63 rabbit monoclonal RRID:AB2615894 

(Frasch et al., 1986) 

WB: 1:3000 

 

anti-CTCF N3 rabbit polyclonal RRID:AB2616159 

(Bartkuhn et al., 2009) 

WB: 1:3000 

IF: 1:1000 

anti-FLAG M2 mouse monoclonal RRID:AB262044 

Sigma-Aldrich, F1804 

WB: 1:10000 

IP: 5 µL per reaction 

IF: 1:100 

anti-FLAG M2 mouse monoclonal RRID:AB262044 

Sigma-Aldrich, A2220 

IP: 30 µL per reaction 

anti-Histone H3 rabbit polyclonal RRID:AB302613  

Abcam, ab1791 

WB: 1:2000 

IP: 2.5 µL per reaction 

anti-H3K9me3 rabbit polyclonal RRID:AB2532132 

Active Motif, 39161 

WB: 1:2000 

IP: 5 µL per reaction 

anti-HMR 2C10 rat monoclonal RRID:AB2569849 

(Thomae et al., 2013) 

WB: 1:25 

IP: 1 mL per reaction 

IF: 1:25 

anti-HP1a C1A9 mouse monoclonal RRID:AB528276 WB: 1:25 

IP: 300 µL per 

reaction 

anti-LHR 12F4 rat monoclonal RRID:AB2569850 

(Thomae et al., 2013) 

WB: 1:25 

IP: 1 mL per reaction 

IF: 1:25 

anti-Tubulin mouse monoclonal RRID:AB2241150 

Abcam, ab44928 

WB: 1:800 

Secondary antibodies 

anti-mouse 

HRP-linked 

whole Ab 

sheep polyclonal RRID: AB772210 

GE Healthcare, NA931 

WB: 1:5000 

anti-rabbit HRP-

linked whole Ab 

donkey polyclonal RRID: AB772206 

GE Healthcare, NA934 

WB: 1:5000 

anti-rat HRP-

linked whole Ab 

goat polyclonal RRID: AB772207 

GE Healthcare, NA935 

WB: 1:5000 

anti-mouse 

Alexa Fluor 

conjugate 

donkey polyclonal Jackson Immuno 

Research  

IF: 1:300 

anti-rabbit Alexa 

Fluor conjugate 

donkey polyclonal Jackson Immuno 

Research  

IF: 1:1000 

anti-rat Alexa 

Fluor conjugate 

donkey polyclonal Jackson Immuno 

Research  

IF: 1:300 
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2.1.5 Kits, enzymes and markers 

Table 9. List of kits, enzymes and markers used in this work. 

Description Supplier/Model 

100 bp DNA ladder New England Biolabs 

1 kb DNA ladder New England Biolabs 

Agilent 2100 Bioanalyzer kits Agilent DNA microfluidic chips 

Agilent DNA 1000 Reagents 

Agilent DNA 12000 Reagents 

cDNA synthesis Invitrogen SuperScript III First-Strand Kit 

DNA purification kit Qiagen QIAquick Gel Extraction Kit  

Sigma GenElute PCR Clean-Up Kit 

ECL detection reagents Bio-Rad Clarity™ Western ECL Substrate 

Fluorometer reagents Thermo Fischer Qubit dsDNA HS Assay Kit 

In-vitro Transcription Kit Ambion MEGAscript T7 Transcription Kit 

 Ambion MEGAshortscript T7 Transcription Kit 

Library preparation NEBNext DNA Library Prep 

Diagenode MicroPlex Library Preparation Kit 

Phusion HF DNA Polymerase New England Biolabs 

Protein marker Peqlab peqGOLD Prestained Protein-Marker V 

qPCR Reagents Applied Biosystems Fast SYBR Green Master Mix 

Ribonuclease A Sigma, R4875 

RNA isolation kit QIAGEN RNeasy Mini Kit 

Taq DNA Polymerase New England Biolabs 

 

2.1.6 Chemicals and consumables 

Table 10. List of chemicals and consumables used in this work. 

Description Supplier 

384 Well Lightcycler Plate Sarstedt 

384 Well Lightcycler Plate Sealing Tape, 

optical clear 

Sarstedt 

AFA Tubes (Tubes for Covaris S220 

instrument) 

Covaris S-Series Tube & Cap 12 x 24 mm 

Agarose Bio&Sell 

AMPure XP  Agencourt 

Aprotinin Genaxxon bioscience 

Bradford reagents Bio-Rad Protein Assay 

Bromophenol blue Merck 

Coomassie Brilliant Blue G250 Serva 

Coverslip, Poly-L-Lysine coated Sigma 

DAPI Life Technologies 

DTT (1,4 Dithiothreitol) Roth 

DMSO (Dimethyl sulfoxide) Sigma 

DMP (Dimethyl pimelimidate) Sigma 

EDTA VWR Prolabo 

EGTA Roth 

Ethidium bromide Merck 

Falcon tubes 15 mL/ 50 mL  Sarstedt 

Fetal calf serum Sigma 

Filter papers Whatman 
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Folded filters Schleicher & Schuell 

Formaldehyde, methanol-stabilized Sigma, 37% (w/v) solution 

Formaldehyde, methanol-free Thermo Scientific, 16% (w/v) solution 

Glycerol VWR 

Glycine Sigma 

HEPES Serva 

HCl VWR 

Image-iT FX signal enhancer Invitrogen 

KH2PO4 Merck 

KOH Merck 

KCl Sigma 

Leupeptin Genaxxon bioscience 

LiCl VWR 

Methanol VWR 

MG-132 (proteasome inhibitor) Enzo Life Sciences 

MgCl2 VWR 

Midori Green Direct NIPPON Genetics 

Na-azide (sodium azide) Merck 

Na-borate (sodium borate) Sigma 

Na2HPO4 Merck 

NaCl Serva 

Na-DOC (Sodium deoxycholate) Sigma 

NaOH Merck 

NEM (N-ethylmaleimide, deubiquitinase 

inhibitor) 

Thermo Fisher Scientific 

Nitrocellulose membrane Whatman Protan membrane BA85 

Non-fat dry milk Heirler 

Normal goat serum Dianova 

NP-40 Perbio Science 

Penicilin-Streptomycin Gibco 

Pepstatin Genaxxon bioscience 

Pipette, serological, 5 mL/ 10 mL/ 25 mL Sarstedt 

Pipettor filter tips Biozym, Gilson 

Pipettor tips Brand, Sarstedt 

PMSF (phenylmethanesulfonylfluoride) Sigma 

Protein A/ Protein G Sepharose beads GE Healthcare 

Roller bottles Greiner Bio-One 

Schneider’s Drosophila Medium Invitrogen 

SDS (Sodium dodecyl sulfate) Serva 

SDS-PAGE gels Expedeon RunBlue Precast Gels 

Serva SERVAGel Precast Gels 

Sealing foil Brand PARAFILM 

T75/ T175 Flasks Greiner Bio-One 

Tubes 1.5 mL Greiner, Sarstedt 

Tubes 1.5 mL, DNase-, Rnase free Biozym 

Tris (Tris(hydroxymethyl)-aminomethan) Biozym   

Triton X-100 Sigma 

Tween 20 Sigma 

Vectashield Vector Labs 

X-ray films Fujifilm 
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2.1.7 Technical devices 

Table 11. List of technical devices used in this work. 

Description Supplier/Model 

-20 °C Freezer Miele, Liebherr 

-80 °C Freezer GFL 

4 °C Refrigerator Liebherr 

25 °C Incubator, roller bottles (cell culture) Bellco-Tecnomara 

26 °C Incubator (cell culture) LMS 

Bioanalyzer (platform for DNA analysis) Agilent 2100 Bioanalyzer 

Cell Counter Casy cell counter, OMNI Life Science 

LUNA-II cell counter, Logos Biosystems 

Centrifuges Eppendorf Centrifuges 5424/ 5417C/ 5430R 

Hettich Rotina 46 

Sigma 3-18 

Thermo/Heraeus Pico 17 

Chambers for running protein-gels Invitrogen Novex Mini-Cell 

Developer machine Agfa Curix 60 

Dounce homogenizer B. Braun S fit pestle  

Fluorometer Thermo Fischer Qubit 3.0 Fluorometer 

Hemocytometer Hausser Scientific Bright-Line 

Ice machine Ziegra 

Imaging system Bio-Rad ChemiDoc Touch 

Incubation shaker (Multitron) Infors 

Laminar-flow hood CleanAir 

Magnetic stirrer Bachofer Ika-Combimag Reo 

Microscope Leica DMIL LED 

Microwave Daewoo 

pH-meter inoLab pH 720 

Pipetboy Brand accu-jet pro 

Pipettors Gilson 

Power supply (run of protein-gels and 

blotting) 

Bio-Rad PowerPac Basic 

Precision scales Kern ALS 120-4N 

Mettler Toledo 

Quantitative Real-Time PCR instrument Roche LightCycler 480 II 

Rotator Stuart SB3 

Rolling station IDL TRM-V 

Scales Kern PCB 

Sartorius Extend 

Scanner Epson Perfection V700 Photo 

Shaker Bachofer Vortex Genie 

neoLab DOS-10L 

Sonicator Covaris S220 Focused-ultrasonicator 

Spectrophotometer Biozym NanoDrop DeNovix DS-11 

Peqlab NanoDrop ND-1000 

Thermomixer Eppendorf ThermoStat plus/ comfort 

Vacuum concentrator LaboGene MiniVac Systems 

Water bath B. Braun Thermomix 1420 

Water filtering machine Elga Purelab Ultra 

Western transfer chambers Bio-Rad Mini Trans-Blot Cell 
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2.1.8 Software 

Table 12. List of software applications used in this work. 

Device/Application Software 

Genome-wide binding profile visualization BioViz Integrated Genome Browser 

Genome-wide data analysis R studio and others, see section 2.2.9 Data 

analysis 

Image processing Adobe Photoshop 

Adobe Illustrator 

Bio-Rad Image Lab 

ImageJ 

Office and general data analysis Microsoft Word 

Microsoft Excel 

Microsoft PowerPoint 

Primer design Primer3 (Rozen and Skaletsky, 2000) 

UCSC in silico PCR (Jim Kent) 

Quantitative DNA fragment size analysis Agilent 2100 Expert software 

qPCR  Roche LightCycler 480 SW 1.5 

Sequence alignments FlyBase Basic Local Alignment Search Tool 

Softonic Serial Cloner 2-6-1 

 

2.1.9 Datasets 

Table 13. List of publically available genome-wide datasets used in this work. 

Type Target, 

sample 

System Access Publication 

ChIP-chip BEAF-32 D.mel S2 cells GEO GSE32815 (Riddle et al., 2011) 

ChIP-seq CP190 D.mel S2 cells GEO GSE32815 (Ong et al., 2013) 

ChIP-seq CTCF D.mel S2 cells GEO GSE32815 (Ong et al., 2013) 

ChIP-seq H3K27me3 D.mel S2 cells GEO GSE27111 (Negre et al., 2011) 

ChIP-seq Mod(mdg4) D.mel S2 cells GEO GSE32815 (Ong et al., 2013) 

ChIP-seq Su(Hw) D.mel S2 cells GEO GSE32815 (Ong et al., 2013) 

RNA-chip untreated D.mel S2 cells GEO GSE46020 (Rus et al., 2013) 

RNA-chip BEAF-32 

mutant 

D.mel larvae wing 

imaginal disc 

GEO GSE36736 (Gurudatta et al., 2012) 

RNA-seq BEAF-32 

knockdown 

D.mel S2 cells GEO GSE57168 (Lhoumaud et al., 2014) 

RNA-seq HMR mutant D.mel larvae BioProject 

PRJNA236022 

(Satyaki et al., 2014) 

RNA-seq HMR mutant D.mel ovaries BioProject 

PRJNA236022 

(Satyaki et al., 2014) 
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2.2 Methods 

2.2.1 Cell culture and RNAi 

Cell culture and passaging 

D. melanogaster S2-DRSC cells were grown at 26 °C in Schneider's Drosophila 

medium supplemented with 10 % fetal calf serum and antibiotics (100 units/mL 

penicillin and 100 μg/mL streptomycin) using 25 cm
2
, 75 cm

2
 or 175 cm

2 
corning 

flask with 5 mL, 15 mL or 36 mL medium volume respectively. Cells were kept at a 

density of 0.5-7x10
6
 cells/mL.  

 

Cell counting and harvesting 

Cell density was determined using a Hemocytometer, Casy cell counter or LUNA-II 

cell counter following suppliers’ instructions. For harvesting, cells were resuspended, 

transferred to falcon tube and spun down at 160 g for 5 min. 

 

Cell long-term storage 

For long-term storage of cells, cells were harvested in logarithmic growth phase and 

resuspended in freezing solution (50 % fetal calf serum, 40 % Schneider's Drosophila 

medium, 10 % DMSO). To freeze slowly, 1 mL resuspension (containing approx. 

5x10
7
 cells) was placed in cryovial in freezing rack with isopropanol over night at -

80 °C and transferred to liquid nitrogen for long-term storage afterwards. To thaw 

quickly, cells were thawed by resuspending in 15 mL supplemented Schneider's 

Drosophila medium and seeded in 75 cm
2
 corning flask. After cells settled down, 

medium was renewed and cells were cultured as described above. 

 

Gene knockdown by RNAi 

For RNAi experiments, cells were seeded to a density of 1x10
6
 cells/mL one day 

before dsRNA treatment. For dsRNA treatment, medium was removed and replaced 

with serum-free medium containing 10 μg/mL dsRNA (e.g. 175 cm
2 

corning flask: 

120 μg dsRNA in 12 mL medium). After 1 hr of incubation, serum-containing 

medium was supplied (e.g. 175 cm
2 

corning flask: 24 mL supplemented medium). 

Cells were split 1:1 after three days and were harvested seven days after dsRNA 

treatment (Figure 9).  

The dsRNA was prepared using the MEGAScript T7 Transcription Kit according to 

manufacturer’s instructions. DsRNA was synthesized in 40 µL total volume from 
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300 ng gel-purified in vitro transcription template. In vitro transcription was 

performed overnight at 37 °C, followed by 15 min DNase treatment and products 

isolated by LiCl precipitation. Primers for generating in vitro transcription template 

are listed in Table 7 and were verified for dsRNA sequence specificity by using E-

RNAi (http://www.dkfz.de/signaling/e-rnai3/) (Horn and Boutros, 2010). Knockdown 

efficiency was tested on the protein level by Western Blot analysis on whole cell 

lysate and partially tested on the transcript level by reverse transcription followed by 

quantitative real-time PCR. 

 

2.2.2 Genome editing using CRISPR/Cas9 

The clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 

system from Streptococcus pyogenes has been used for sequence-specific targeting of 

the Cas9 nuclease. Cas9 induces DNA double strand breaks at genomic sites, which 

are defined by complementary sequence-specific guide RNA (gRNA). Providing 

PCR-based homologous recombination donors and suppressing the alternative non-

homologous end joining (NHEJ) DNA repair pathway, enables the genomic 

introduction of protein tags and resistance cassette (Figure 6 A) or gene knockout by 

substituting the gene body with a resistance cassette (Figure 6 B).  
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Figure 6. Experimental strategy for endogenous epitope tagging and gene knockout 

using CRISPR/Cas9 system. (A) The Cas9 nuclease is directed to genomic sites by 

sequence-specific guide RNA (gRNA) and induces DNA double strand break at the gene 

body 3’ end. The DNA defect is repaired by homologous recombination (HR). By providing an 

artificial HR donor, the epitope tag and resistance cassette are integrated. The functional 

resistance cassette allows for later positive selection (see also Figure 7). (B) DNA double 

strand breaks are induced at the gene body 5’ end and 3’ end. By providing two artificial 

homologous recombination donors that complement for a functional resistance cassette, the 

gene is replaced by a resistance cassette that allows for later positive selection. 

 

Gene knockout strategies and endogenous tagging of Hmr in S2 cells were performed 

in collaboration with Prof. Dr. Klaus Förstemann and were performed exactly as 

described in (Bottcher et al., 2014; Kunzelmann et al., 2016). For endogenous 

tagging, we provided gRNA by in vitro transcription or by transfecting U6-gRNA 

DNA template (Figure 7, Figure 11). For gene knockout, we provided gRNA by 

transfecting U6-gRNA DNA template and aimed to promote HR-mediated repair by 

mus308 and lig4 RNAi and performed optional double selection (blasticidin and 

puromycin or blasticidin only). An experimental setup overview and reagents are 

shown in Figure 7, Figure 8 and Table 4. The cell lines generated in this way are 

listed in Table 2.  
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Figure 7. Reagents and workflow for endogenous epitope tagging using CRISPR/Cas9 

system. (Top left and center) A crucial step in CRISPR/Cas9-mediated genome editing is 

the sequence-specific targeting of the nuclease enzyme Cas9 by site-specific guide RNA 

(gRNA). gRNA was either transfected after in vitro transcription or was transfected as DNA 

template for later in vivo host transcription. For T7 promoter driven in vitro transcription, 

template DNA was generated by PCR using site-specific primer pairs. For host in vivo 

transcription, the gRNA sequence is under control of a host U6 promoter fused to the initial 

PCR product by overlap extension PCR. (Top right) Artificial homologous recombination 

donor fragments coding for GFP, Flag2 or Strep2 and a resistance cassette were generated 

by PCR using site-specific primer pairs. Prior to transfection, the NHEJ pathway, an 

alternative mechanism to homologous recombination repair, was suppressed by knockdown 

of lig4. Workflow according to (Bottcher et al., 2014). 
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Figure 8. Reagents for gene knockout using CRISPR/Cas9 system. (A and A’) Reagents 

for Hmr knockout. (B and B’) Reagents for Lhr knockout. The gene body is cleaved at 5’ end 

and 3’ end. Homologous recombination donors complement for a functional resistance 

cassette, blasticidin resistance gene (BlastR) and puromycin resistance gene (PuroR) that 

allows for later positive selection. gRNA are provided as U6-gRNA DNA template (see 

Figure 7). Workflow according to (Bottcher et al., 2014) with additional knockdown of mus308 

and optional double selection (blasticidin and puromycin or blasticidin only). 
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2.2.3 Protein methods 

Cell lysis 

Cells were harvested and resuspended in RIPA (140 mM NaCl, 10 mM Tris HCl 

pH 7.3, 1 mM EDTA pH 8.0, 1 % Triton X100, 0.1 % SDS, 0.1 % Na-DOC), 

typically 1x10
6
 cells in 200 µL RIPA, supplemented with protease inhibitors and 

benzonase, vortexed and kept on ice for about 30 min. The lysate was boiled in 

Laemmli and subjected directly to further analysis or stored at -20 °C. 

 

Nuclear extract preparation 

Following steps were all performed on ice, cold room and using ice-cold reagents. All 

centrifugation steps were performed in 4 °C cooled centrifuges. Cells were harvested 

and washed twice with PBS (2.7 mM KCl, 136 mM NaCl, 4 mM Na2HPO4, 1.7 mM 

KH2PO4). The pure cell volume (PCV) was estimated and cells resuspended in 3 

volumes PCV of hypotonic Buffer A (10 mM HEPES pH 7.6, 15 mM KCl, 2 mM 

MgCl2, 0.1 mM EDTA pH 8.0). Cells were incubated for 30 min for swelling and 

homogenized using a Dounce homogenizer. Afterwards, nuclei were stabilized by 

adding 1/10 volume Buffer B (50mM HEPES pH 7.6, 1 M KCl, 30 mM MgCl2, 

0.1 mM EDTA pH 8.0) and spun down for 25 min at 8500 g. After removal of 

supernatant, the nuclear pellet volume (NPV) was estimated and nuclear pellet 

resuspended in 3 NPV of Buffer A : Buffer B mix (volume ratio 9 : 1). Nuclear 

proteins were isolated by adding 1/10 NPV of 4 M (NH4)2SO4 pH 7.9 and incubation 

on rotating wheel for 25 min. To remove unsoluble cellular debris, sample was 

ultracentrifuged for 90 min at 100000 g. Supernatant was recovered and determined 

for volume. Proteins were precipitated from supernatant by adding 0.3 g of solid 

(NH4)2SO4 per 1 mL supernatant volume under continuous stirring. After 15 min of 

incubation time, precipitate was spun down for 35 min at 15000g, dissolved in 0.2 

NPV of Buffer C (25 mM HEPES pH 7.6, 150 mM KCl, 12.5 mM MgCl2, 0.1 mM 

EDTA pH 8.0, 10 % glycerol) and dialyzed against three times against 1 L of 

Buffer C (supplemented with protease inhibitors) for 80 min each. Remaining 

precipitates were spun down for 15 min at 14000 g. The supernatant was subjected for 

Bradford assay and quickly frozen in liquid nitrogen and stored at -80 °C.  

 

Bradford assay  

Protein quantification was performed with Bradford assay (Bradford, 1976) using 

Bio-Rad Protein Assay according to manufacturer’s instructions.   
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Affinity Purification 

Affinity Purifications were essentially performed as described for 

immunoprecipitation reaction in ChIP. Instead of using sheared chromatin, nuclear 

extract was used as starting material and instead of RIPA Buffer, BC150 Buffer 

(25 mM HEPES pH 7.6, 150 mM KCl, 12.5 mM MgCl2, 0.1 mM EDTA pH 8.0) was 

used as immunoprecipitation buffer and washing buffer. Nuclear extract was diluted 

in BC 150 Buffer and subjected to immunoprecipitation. 400 µg of diluted nuclear 

extract were used per immunoprecipitation reaction.  

After immunoprecipitation, beads, input and supernatants (optional) were boiled in 

Laemmli buffer and subjected directly to further analysis or stored at -20 °C. 

 

SDS-Polyacrylamid-Gelelectrophoresis (SDS-PAGE) 

SDS-PAGE was used to separate proteins according to their electrophoretic mobility 

(Laemmli, 1970). The samples were boiled in Laemmli (5xLaemmli: 250 mM 

Tris HCl pH 6.8, 10 % SDS, 500 mM DTT, 25 % Glycerol, 0.5 % Bromophenol blue) 

at 95 °C for 10 min. Optionally, the heating time was increased: 65 °C for 25 min 

(first step) and 95 °C for 5 min (second step) to ensure complete reduction of 

antibodies. For work with crosslinked material it was heated 65 °C for 2 hrs (first 

step) and 95 °C for 10 min (second step) to reverse crosslinks.  

Gels were purchased from Expedeon (RunBlue Precast Gels) and Serva (SERVAGel 

Precast Gels) and protocol performed as described in manufacturer’s instructions. 

All samples were spun down at maximal speed for 10 min and supernatant was used 

for analysis. Electrophoresis was typically performed at 180 V. Protein standards 

were purchased from Peqlab and used according to manufacturer’s instructions. For 

visualization after separation, gels were either subjected to Coomassie-staining or 

Western Blot analysis. 

 

Coomassie-staining 

Coomassie-staining was used to visualize proteins on SDS-PAGE gels and was 

performed as described in (Bramhall et al., 1969). 

 

Western Blot analysis 

Western Blot analysis was used to specifically visualize proteins upon SDS-PAGE by 

antibody-based detection. The following protocol is based on (Towbin and Gordon, 

1984). After SDS-PAGE, the gel and other components were assembled in the 
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transfer apparatus in the following order: case (black side), sponge, two whatman 

papers, SDS-PAGE gel, nitrocellulose membrane, two whatman papers, sponge, case 

(clear side). The components were soaked in Western Blot Buffer (20 mM Tris HCl, 

192 mM glycine, 20 % methanol) before. The transfer was performed at constant 

voltage of 50 V for 4 hrs (max 150 mA). After transfer, the membrane was washed 

with PBS and blocked for 30 min (up to overnight) in 5 % non-fat dry milk dissolved 

in PBS. The membrane was incubated with primary antibody in 1 % non-fat dry milk 

dissolved in PBS-Tween 20 (PBS-T; final concentration of Tween 20: 0.02 - 0.1 %) at 

4 °C overnight. The membrane was washed twice for 10 min in PBS-T and incubated 

with secondary antibody for 1 hr at room temperature. Afterwards, membrane was 

washed twice in PBS-T for 10 min each and subjected to chemiluminescence 

detection using Bio-Rad Clarity™ Western ECL Substrate according to 

manufacturer’s instructions. Chemiluminescence signals were detected by exposing to 

X-ray films or by using Bio-Rad ChemiDoc Touch imaging system.  

 

2.2.4 Nucleic Acids methods 

Polymerase Chain Reaction 

Polymerase Chain Reaction (PCR) (Mullis et al., 1986) was used for DNA 

amplification, generation of in vitro transcription templates and other primer-

sequence-directed DNA products (e.g. overlap extension PCR for CRISPR/Cas9 

strategy). If not stated otherwise, Taq DNA Polymerase or Phusion HF DNA 

Polymerase and other reaction components from New England Biolabs were used 

according to manufacturer’s instructions. 

PCR products were analyzed with agarose gel electrophoresis, restriction digest (New 

England Biolabs reagents and protocols) or sequenced using GATC or MWG 

sequencing service. For DNA purification from PCR reaction, Sigma GenElute PCR 

Clean-Up Kit was used according to manufacturer’s instructions. 

 

RNA-isolation and cDNA synthesis 

For transcription analysis, cDNA was prepared and subjected to qPCR. Total RNA 

was isolated from 5-6x10
6 

cells using Qiagen RNeasy Mini Kit according to 

manufacturer’s instructions and eluted in 30 µL. 500-1000 ng of total RNA were 

treated with DNase at 37 °C for 1 hr and cDNAs were synthesized by using 

SuperScript III First-Strand Kit with random hexamers primers according to 
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manufacturer’s instructions. Upon synthesis, cDNA was treated with RNAse H at 

37 °C for 20 min. 

 

Preparative and analytical agarose gel electrophoresis 

Agarose gel electrophoresis was performed to analyze and separate DNA fragments 

according to their size (Aaij and Borst, 1972). 1-2 % agarose gel was prepared by 

dissolving agarose in TBE buffer (90 mM Tris, 90 mM Boric acid, 2 mM EDTA) by 

boiling in the microwave. Loading dye and DNA ladder from New England Biolabs 

were used according to manufacturer’s instructions. For visualization of DNA under 

UV light (254 nm), either the agarose gel was supplied with ethidiumbromide 

(1 μg/ml) or the DNA sample was supplied with Midori Green Direct according to 

manufacturer’s instructions. Electrophoresis was performed with up to 10 V/cm gel 

length. 

For DNA purification from gel, DNA band was excised from the gel with scalpel and 

purified using Qiagen QIAquick Gel Extraction Kit according to manufacturer’s 

instructions. 

 

2.2.5 Immunofluorescence imaging 

Immunolocalization 

Immunofluorescence analysis was performed to characterize HMR’s and LHR’s 

localization manner in CRISPR/Cas9 system generated Schneider S2 cell lines 

expressing endogenously epitope-tagged HMR. Further, we used 

immunofluorescence to investigate localization changes of HMR, LHR and CTCF 

after RNAi knockdown treatment in S2 cells. 

For analysis, cells were subjected on a Poly-L-Lysine coated coverslip and settled for 

20 min in a humidified chamber (150 μL of cell suspension with approx. 5-6x10
6 

cells/mL per coverslip). Coverslips were rinsed in a 12-well plate for 5 min with PBS 

and cells fixed for 12 min at room temperature in PBS containing 3.7 % formaldehyde 

and 0.3 % Triton X-100. After fixation, cells were immediately washed with PBS 

twice to remove residual formaldehyde before permeabilization. Cells were 

permeabilized for 6 min on ice with ice cold PBS containing 0.25 % Triton X-100 and 

washed with PBS twice afterwards. Then, coverslips were transferred to humidified 

chamber. Permeabilized material was blocked for 45 min at room temperature with 

Image-iT FX signal enhancer (100 μL per coverslip). Primary antibodies were diluted 

in PBS containing 5 % normal goat serum, spun down at max. speed for 5 min and 
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supernatant added to coverslip (100 μL per coverslip) and incubated for 2 hr at room 

temperature. Coverslips were washed in a 12-well plate for 5 min with PBS 

containing 0.1 % Triton X-100 and with PBS for 5 min afterwards. Fluorophore 

coupled-secondary antibodies were diluted in PBS containing 5 % normal goat serum, 

spun down at max. speed for 5 min and supernatant added to coverslip (100 μL per 

coverslip) and incubated for 1 hr at room temperature. Coverslips were rinsed in a 12-

well plate twice with PBS containing 0.1 % Triton X-100 and were washed with PBS 

for 5 min afterwards. After washing, coverslips were transferred to humidified 

chamber and incubated for 6 min with PBS containing 200 ng/mL DAPI, washed 

twice in a 12-well plate with PBS, mounted in Vectashield (4.5 μL per coverslip) and 

sealed with nail polish. Afterwards, coverslips could be stored at 4 °C protected from 

light.  

 

Confocal microscopy imaging 

Images were acquired using a Leica TCS SP5 confocal microscope with a 63x 

glycerol immersion objective (NA = 1.3). Z stacks were deconvolved using the 

Huygens Essential Software (SVI). Other image processing steps were performed 

with ImageJ. 

 

2.2.6 Chromatin immunoprecipitation (ChIP) 

Chromatin immunoprecipitation (ChIP) experiments were performed to analyze the 

genomic localization of HMR in S2 cells. The experiment requires chromatin 

crosslinking, isolation and preparation steps, immunoprecipitation, DNA isolation and 

DNA analysis. The basic ChIP procedure is outlined in Figure 9 A. Within this 

work, multiple steps in the protocol were adjusted and optimized. The protocol is 

based on the modENCODE ChIP-seq protocol, provided by the lab of Prof. Dr. Gary 

Karpen (Lawrence Berkeley National Laboratory, CA) (Landt et al., 2012).  

If not stated otherwise, chromatin was crosslinked and isolated from 200x10
6
 cells in 

50 mL tubes scale and aliquoted for long-term storage and further processing in 

1.5 mL tubes scale (chromatin isolated from 50x10
6
 cells per tube). Typically, 

chromatin prepared from 15-40x10
6 
cells was used per immunoprecipitation reaction. 

For nuclear lysis and following steps, all buffers were supplemented with inhibitors 

Aprotinin, Pepstatin, Leupeptin, PMSF and MG-132. 
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Fixation, lysis and chromatin preparation 

Cells were harvested in logarithmic growth phase, washed once in PBS (2.7 mM KCl, 

136 mM NaCl, 4 mM Na2HPO4, 1.7 mM KH2PO4, tempered, 25 °C), resuspended in 

PBS (tempered, 25 °C) and crosslinked with 1 % formaldehyde (methanol-stabilized, 

37 % stock solution) for 5 min at 25 °C. Crosslinking reaction was stopped with 12 % 

glycine (1.5 M stock solution), mixing and incubating on ice for 5 min. Following 

steps were all performed on ice, cold room and using ice-cold reagents. All 

centrifugation steps were performed in 4 °C cooled centrifuges. The cells were 

washed once in PBS and lysed for 10 min in Buffer A (10 mM HEPES pH 7.6, 

10 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 0.25 % Trition X-100). The 

crosslinked chromatin was spun down for 2 min at 1500 g and resuspended in 

Buffer B (10 mM HEPES pH 7.6, 100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM 

EGTA pH 8.0, 0.01 % Triton X-100). Chromatin was aliquoted in 1.5 mL reaction 

tubes, spun down for 2 min at 1500 g and the chromatin pellet frozen in liquid 

nitrogen and stored at -80 °C. 

The crosslinked chromatin obtained from previous step was thawed at 4 °C for 10 min 

and washed with 1 mL TE Buffer (10 mM Tris-Cl pH 7.3, 1 mM EDTA pH 8.0) to 

remove residual Buffer B. Chromatin was spun down for 2 min at 1500 g and 

resuspended in 1 mL TE Buffer. Suspension was transferred to an AFA Tube 

(Covaris S-Series Tube & Cap 12 x 24 mm) and SDS stock solution was added to the 

desired final concentration of 0.1 %.  

For chromatin AFA shearing, Covaris S220 Focused-ultrasonicator device was used 

with default settings except for the following parameters: 

 

Duty cycle   5 % 

Peak incident power  140 W 

Cycles per burst  200 

Processing time  flexible, range from 5 min to 60 min 

Water bath temperature 4 °C 

Water level (RUN)  level 10 

 

After shearing, the buffer composition was adjusted to 1 % Triton X-100, 0.1 % Na-

DOC and 140 mM NaCl using stock solutions. PMSF and MG-132 was supplemented 

and rotated for 10 min. The samples were centrifuged for 20 min at maximal speed to 

pellet insoluble material. The supernatant was transferred into a fresh tube with 
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equilibrated Protein A/G Sepharose beads (30 µL beads per 500 µL supernatant) and 

incubated for 1 hr on rotating wheel. After pre-clearing, the samples were centrifuged 

for 20 min at maximal speed and supernatant subjected to immunoprecipitation 

reactions. 100 µL of supernatant (soluble sheared chromatin prepared from 2.5x10
6
 

cells) was kept as input sample.  

 

Immunoprecipitation from sheared chromatin 

Immunoprecipitation was performed using rat, mouse and rabbit antibodies non-

covalently coupled to Protein A/G Sepharose as solid phase. In immunoprecipitations 

with rat antibodies, a bridging antibody from rabbit, anti-Rat IgG (Dianova, 312-005-

046), was used. Antibodies from other species were directly coupled to beads. 30 µL 

equilibrated beads were used per immunoprecipitation reaction. Prior to 

immunoprecipitation, antibodies were incubated with beads overnight on rotating 

wheel – if required anti-Rat IgG was coupled to beads beforehand for 1 hr at room 

temperature – and surplus antibody removed by washing once with RIPA buffer 

afterwards.  

300-800 µL of soluble sheared chromatin (prepared from 15-40x10
6 

cells) were 

incubated overnight with the antibody-coupled beads constantly rotating at 4 °C. The 

beads were spun down for 1 min at 500 g and washed 5 times with 500 µL RIPA 

Buffer for 5 min constantly rotating. In last washing step, the beads and associated 

chromatin were transferred to fresh 1.5 mL tubes. After washing steps, the samples 

were processed as described in the following section. 

 

DNA isolation 

Beads with bound chromatin fragments were spun down, and resuspended in 100 µL 

RIPA Buffer. Input and ChIP samples were treated with RNase A (final concentration 

of 0.2 mg/mL) for 30 min at 37 °C. Afterwards, SDS stock solution was added to 

0.5 % final concentration and samples treated with Proteinase K (final concentration 

of 1 mg/mL) for 2 hrs at 56 °C for protein digestion. Crosslinks were reversed by 

overnight incubation at 65 °C. 

The DNA fragments were purified using the Sigma GenElute PCR Clean-Up Kit 

according to the manufacturer’s instructions. The purified DNA was eluted in 50 µL 

ddH2O or elution buffer and DNA concentration measured with NanoDrop 

Spectrophotometer (only suited for input sample) or Qubit Fluorometer (suited for 

input and ChIP sample) according to manufacturer’s instructions. Quantitative DNA 
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fragment size analysis (without PCR-based amplification only suited for input 

sample) was performed using the Agilent 2100 Bioanalyzer with the Agilent DNA 

1000 and DNA 12000 Kits and the Agilent 2100 Expert software according to the 

manufacturer’s instructions. 

For sequence enrichment analysis, DNA was subjected to qPCR (typically input DNA 

diluted 1:1000, ChIP DNA diluted 1:9 used) or library preparation and sequencing 

(typically 5-20 ng used).  

 

 

Figure 9. Experimental approach for ChIP combined with RNAi knockdown (A) ChIP 

experiment overview. Chromatin ImmunoPrecipitation (ChIP) can be used to identify protein-

binding sites or to assay the enrichment and enrichment-changes at known binding sites. 

After crosslinking of intact cells, chromatin is isolated and sheared into small fragments of 

approximately 200 bp in length. The material is subjected to an IP reaction that enriches for 

chromatin fragments bound or crosslinked to the protein of interest (purple). After purification, 

DNA can be subjected to high-throughput sequencing or assayed by quantitative real-time 

PCR. (B) Experimental setup for RNAi followed by ChIP. Drosophila S2 cells were treated 

with dsRNA. RNAi lasted for 7 days and included treatment sample and a negative control 

sample with unspecific dsRNA. After crosslinking and ChIP-seq, the samples were compared 

to obtain RNAi-specific differences. 
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2.2.7 Quantitative real-time PCR 

Quantitative real-time PCR (qPCR) was used for relative quantification of DNA 

obtained from ChIP reaction or from reverse transcription reaction. The following 

sections refer to ChIP but also apply to DNA obtained from reverse transcription 

reaction. Reverse transcription-specific differences are highlighted in the section 

Transcription analysis using quantitative real-time PCR. 

 

 

Primer design 

Oligonucleotides used for quantitative real-time PCR are listed in Table 5 and 

Table 6 and were designed by using Primer3 (http://biotools.umassmed.edu/ 

bioapps/primer3_www.cgi) (Rozen and Skaletsky, 2000), with default settings except 

for the following parameters: 

 

Product size:   Min: 90, Opt: 120, Max: 140 

Primer Tm:   Min: 58, Opt: 60, Max: 61 

Max Tm Difference: 1.0 

Primer GC%:  Min: 50, Max: 60 

Max Poly-X:  3 

CG Clamp:  1 

 

Primer sequences were verified for specificity using UCSC in silico PCR (https:// 

genome.ucsc.edu/cgi-bin/hgPcr). 

 

 

qPCR performance and analysis 

Quantitative real-time PCR was performed using the Applied Biosystems Fast SYBR 

Green Master Mix, Sarstedt 384 Well Lightcycler Plates and the real-time PCR 

system Roche LightCycler 480 II according to the manufacturer’s instructions. All 

reactions were performed in triplicates. Fluorescence from the amplification reaction 

is proportional to the amount of amplified product and allows the determination of the 

starting template amount. The cycle number at which the fluorescent signal is 

detected is called the threshold cycle number (Ct).  
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Reaction mixture: 

5 µl 2x Applied Biosystems Fast SYBR Green Master Mix 

1 µl Primer forward, 3 mM  

1 µl Primer reverse, 3 mM 

1 µl ddH2O 

2 µl DNA template, diluted 

 

qPCR program: 

Mode Temperature Duration Heating Rate Cycles 

Polymerase Activation 95 °C 20 s 4.4 °C/s 1 

Quantification
#
 95 °C 3 s 4.8 °C/s 

45 
 60 °C 30 s 2.2 °C/s 

Melting curves
Ω

 95 °C - 0.11 °C/s 1 

#. Single acquisition. Ω. Multiple Acquisitions (5 per 1 °C)  

 

For each primer pair a standard curve was generated using a 10-fold serial dilution of 

ChIP input DNA. The starting quantity of template ranged from 5 ng to 0.005 ng. The 

Ct values were plotted against the log of the starting quantity for each dilution. The 

primer efficiency E for each primer pair is calculated from the slope of the standard 

curve: 

 

 𝐸 = 10−1/𝑠𝑙𝑜𝑝𝑒 

(with: E = primer efficiency; slope = slope of the standard curve generated 

by using a 10-fold serial dilution of ChIP input DNA) 

(Equation 1) 

 

Melting-curve analysis was performed in order to confirm that the primer pairs and 

reaction conditions only yield the specific PCR product. The presence of unspecific 

product as for example caused by primer-dimer formation, gives one or more 

additional melting curves. Calculation of primer efficiency as well as melting curve 

analysis was performed using Roche LightCycler 480 software.  

 

Based on Ct values, it is possible to determine the DNA amount in any given sample. 

The ChIP input sample represents the total amount of DNA used in the ChIP, while 

the ChIP sample represents the amount of DNA specifically bound by the 

immunoprecipitated protein. The efficiency of ChIP is expressed as % input, which is 

calculated as the ratio of the amount of DNA obtained from the ChIP over that 
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measured in the ChIP input sample, see Equation 2-4. For calculation of the fold 

enrichment, the % input value of the target ChIP is divided by the % input value of 

the control ChIP, see Equation 5. In order to evaluate whether the binding of the 

protein of interest is specific to a given locus (locus-specific fold enrichment), the 

fold enrichment at the target locus in the target ChIP is divided by the fold 

enrichment at the negative control locus (tub97EF), see Equation 6. The analysis of 

qPCR data was performed using Microsoft Excel. 

 

 ∆𝐶𝑡 = 𝐶𝑡𝐶ℎ𝐼𝑃 𝑖𝑛𝑝𝑢𝑡 − 𝐶𝑡𝐶ℎ𝐼𝑃 (Equation 2) 

   

 𝐷𝑁𝐴𝑟𝑒𝑙 = 𝐸∆𝐶𝑡 

(with: DNArel = relative concentration of DNA in sample; 

E = primer efficiency) 

(Equation 3) 

   

 

 

%𝑖𝑛𝑝𝑢𝑡 = 𝐷𝑁𝐴𝑟𝑒𝑙 ×
𝑑(𝐶ℎ𝐼𝑃)

𝑑(𝐶ℎ𝐼𝑃 𝑖𝑛𝑝𝑢𝑡)
×

𝑣(𝐶ℎ𝐼𝑃 𝑖𝑛𝑝𝑢𝑡)

𝑣(𝐶ℎ𝐼𝑃)
× 100 

(with: %input = DNA amount in ChIP as percentage of ChIP input taking into 

account primer efficiency; qPCR template dilution factors and volume factors; 

DNArel = relative concentration of DNA in sample; d(ChIP) = dilution factor 

of ChIP sample; d(ChIP input) = dilution factor of ChIP input sample; v(ChIP 

input) = volume factor of ChIP input sample; v(ChIP) = volume factor of ChIP 

sample) 

(Equation 4) 

   

 
𝑓𝑜𝑙𝑑 𝑒𝑛𝑖𝑐ℎ𝑚𝑒𝑛𝑡 =

%𝑖𝑛𝑝𝑢𝑡 (𝑡𝑎𝑟𝑔𝑒𝑡 𝐶ℎ𝐼𝑃, 𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑜𝑐𝑢𝑠)

%𝑖𝑛𝑝𝑢𝑡 (𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝐶ℎ𝐼𝑃, 𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑜𝑐𝑢𝑠)
 

(with: %input = DNA amount in ChIP as percentage of ChIP input taking into 

account primer efficiency; qPCR template dilution factors and volume factors) 

(Equation 5) 

   

 
𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑓𝑜𝑙𝑑 𝑒𝑛𝑟. =

𝑓𝑜𝑙𝑑 𝑒𝑛𝑟. (𝑡𝑎𝑟𝑔𝑒𝑡 𝐶ℎ𝐼𝑃, 𝑡𝑎𝑟𝑔𝑒𝑡 𝑙𝑜𝑐𝑢𝑠)

𝑓𝑜𝑙𝑑 𝑒𝑛𝑟. (𝑡𝑎𝑟𝑔𝑒𝑡 𝐶ℎ𝐼𝑃, 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑙𝑜𝑐𝑢𝑠)
 (Equation 6) 
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Transcription analysis using quantitative real-time PCR 

Based on Ct values it is possible to determine the change of transcript levels in a 

tester treatment relative to a calibrator treatment (control treatment, here GFP RNAi 

or GST RNAi) and to a reference gene (here tub97EF), see Equation 7-9. The 

analysis of qPCR data was performed using Microsoft Excel. 

 

 ∆𝐶𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = 𝐶𝑡𝑡𝑎𝑟𝑔𝑒𝑡 𝑔𝑒𝑛𝑒 − 𝐶𝑡𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑔𝑒𝑛𝑒 (Equation 7) 

   

 ∆∆𝐶𝑡 = ∆𝐶𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑡𝑒𝑠𝑡𝑒𝑟 − ∆𝐶𝑡𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑,𝑐𝑎𝑙𝑖𝑏𝑟𝑎𝑡𝑜𝑟 (Equation 8) 

   

 

 

𝐸𝑥𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 = 𝐸∆∆𝐶𝑡 

(with: E = primer efficiency) 
(Equation 9) 

 
 

2.2.8 ChIP DNA library preparation and next-generation sequencing 

Next-generation sequencing was used for genome-wide analysis of DNA obtained 

from ChIP reactions. For sequencing, all libraries were prepared using MicroPlex 

(Diagenode) or NEBNext (NEB) Library Preparation kit according to manufacturer’s 

instructions. In brief, DNA fragment ends were repaired, ligated to adaptor elements, 

amplified by PCR and purified for sequencing. If required, DNA was concentrated 

using vacuum concentrator. All libraries were prepared without size-selection. DNA 

was purified using Agencourt AMPure XP reagents, and concentration was measured 

with Qubit Fluorometer according to manufacturer’s instructions.  

Quantitative DNA fragment size analysis was performed using the Agilent 2100 

Bioanalyzer with the Agilent DNA 1000 and DNA 12000 Kits and the Agilent 2100 

Expert software according to the manufacturer’s instructions. 

Sequencing was performed in the group of Dr. Helmut Blum, the Genomics unit of 

LAFUGA at the LMU Gene Center with the help and advice of Dr. Stefan Krebs. 

Samples were sequenced single-end, 50 bp on Illumina HiSeq1500 sequencer. 

Samples description and the obtained read numbers are listed in Table 14.  
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Table 14. List of ChIP-seq samples and the obtained read numbers used in this work. 

Cell line, 
treatment 

Antibody Sample name ID Index
Ω
 unique 

read 
number 

S2, untreated HMR 2C10 HMR_1 TG7 #3 7321851 

S2, untreated HP1a C1A9 HP1a_1 TG9 #5 9615590 

S2, untreated FLAG M2 IgG_1 TG6 #2 8941371 

S2, untreated LHR 12F4 LHR_1 TG8 #4 7931351 

S2, untreated Input Input_1 TG5 #1 10427301 

S2, untreated HMR 2C10 HMR_2 TG45 #8 11790768 

S2, untreated HP1a C1A9 HP1a_2 TG47 #6 3793451 

S2, untreated FLAG M2 IgG_2 TG46 #7 17068323 

S2, untreated Input Input_2 TG44 #1 14681351 

S2, untreated HMR 2C10 HMR_3 TG37 #2 11727510 

S2, untreated Input Input_3 TG36 #1 14734701 

S2, untreated HP1a C1A9 HP1a_4 TG4 #10 13525876 

S2, untreated Input Input_4 TG1 #7 21798351 

S2, Hmr-Flag2, 
untreated HMR 2C10 HMR_5 TG12 #8 11786439 

S2, Hmr-Flag2, 
untreated FLAG M2 FLAG_5 TG11 #7 16721688 

S2, Hmr-Flag2, 
untreated Input Input_5 TG10 #6 14215373 

S2, Ctrl RNAi HMR 2C10 HMR_CtrlRNAi_1 TG19 #7 8637377 

S2, Ctrl RNAi HP1a C1A9 HP1a_CtrlRNAi_1 TG16 #4 765717 

S2, Ctrl RNAi Histone H3 H3_CtrlRNAi_1 TG27 #10 13497422 

S2, Ctrl RNAi H3K9me3 H3K9me3_CtrlRNAi_1 TG33 #4 9610889 

S2, Ctrl RNAi Input Input_CtrlRNAi_1 TG13 #1 14443029 

S2, HMR RNAi HMR 2C10 HMR_HMRRNAi_1 TG20 #8 11868648 

S2, HMR RNAi HP1a C1A9 HP1a_HMRRNAi_1 TG17 #5 7419588 

S2, HMR RNAi Histone H3 H3_HMRRNAi_1 TG28 #11 10562127 

S2, HMR RNAi H3K9me3 H3K9me3_HMRRNAi_1 TG34 #5 8553421 

S2, HMR RNAi Input Input_HMRRNAi_1 TG14 #2 14445163 

S2, CP190 RNAi HMR 2C10 HMR_CP190RNAi_1 TG21 #9 10825131 

S2, CP190 RNAi HP1a C1A9 HP1a_CP190RNAi_1 TG18 #6 10031543 

S2, CP190 RNAi Histone H3 H3_CP190RNAi_1 TG29 #12 13085885 

S2, CP190 RNAi H3K9me3 H3K9me3_CP190RNAi_1 TG35 #6 11137815 

S2, CP190 RNAi Input Input_CP190RNAi_1 TG15 #3 15526600 

S2, Ctrl RNAi HMR 2C10 HMR_CtrlRNAi_2 TG52 #9 14947403 

S2, Ctrl RNAi Input Input_CtrlRNAi_2 TG48 #2 11772305 

S2, HMR RNAi HMR 2C10 HMR_HMRRNAi_2 TG53 #10 15528028 

S2, HMR RNAi Input Input_HMRRNAi_2 TG49 #3 16101359 

S2, CP190 RNAi HMR 2C10 HMR_CP190RNAi_2 TG54 #11 15719248 

S2, CP190 RNAi Input Input_CP190RNAi_2 TG50 #4 1024172 

S2, CTCF RNAi HMR 2C10 HMR_CTCFRNAi_2 TG55 #12 17217080 

S2, CTCF RNAi Input Input_CTCFRNAi_2 TG51 #5 15926054 

S2, Ctrl RNAi Histone H3 H3_CtrlRNAi_2 TG59 #4 1231249 

S2, Ctrl RNAi Input Input_CtrlRNAi_2 TG56 #1 10756706 

S2, HMR RNAi Histone H3 H3_HMRRNAi_2 TG60 #5 8934748 

S2, HMR RNAi Input Input_HMRRNAi_2 TG57 #2 8693426 

S2, CP190 RNAi Histone H3 H3_CP190RNAi_2 TG61 #6 11286236 

S2, CP190 RNAi Input Input_CP190RNAi_2 TG58 #3 12157132 

S2, CTCF RNAi Histone H3 H3_CTCFRNAi_2 TG63 #12 11511532 

S2, CTCF RNAi Input Input_CTCFRNAi_2 TG62 #11 13177107 

Ω. Sanger index sequences used for multiplexing: #1: ATCACG,  #2: CGATGT, 
#3: TTAGGC, #4: TGACCA, #5: ACAGTG, #6: GCCAAT, #7: CAGATC, #8: ACTTGA, 
#9: GATCAG, #10: TAGCTT, #11: GGCTAC, #12: CTTGTA 
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2.2.9 Data analysis 

The raw reads were aligned to the D. melanogaster genome assembly (UCSC dm3) 

using Bowtie (version 2.2.6) (Langmead et al., 2009) and excluding chromosome 

Uextra. Only uniquely mapped reads are kept using samtools (version 1.2) (Li et al., 

2009). The raw read quality was accessed using FASTQC (version 11.5) (Andrews, 

2010) and reads filtering was performed using FastX (version 0.0.13) (Hannon, 2010). 

Sequencing tracks of both fold enrichment and log (of base 2) transformation with 

parameter settings –m FE and –m logLR –p 0.00001 were generated using MACS 

(version 2.1.1) (Zhang et al., 2008), which were then visualized using IGB (Nicol et 

al., 2009) and IGV (Thorvaldsdottir et al., 2013) genome viewers. Peak calling was 

performed using HOMER 4.8 with parameter settings -style factor -size 200 -

fragLength 200 -inputFragLength 200 (Heinz et al., 2010). Motif search and peak 

annotation were performed using ChIPseeks implementation of HOMER (Chen et al., 

2014).  

For downstream analysis, peaks identified in two out of three biological replicates 

were taken. Downstream analysis steps were performed using Python and R and parts 

of data preprocessing was done using ChipPeakAnno (Zhu et al., 2010). For the 

clustering of HMR peaks according to adjacent HP1a ChIP signals, three clusters 

were generated with K-means algorithm (MacQueen, 1967).  

For repeat analysis, reads from ChIP-seq experiments were mapped to RepBase 

version 19.10 (Bao et al., 2015) using bowtie (Langmead et al., 2009). Only unique 

reads were kept for analysis.  For each repetitive element log (of base 2) fold change 

was calculated. For the read density tracks, deepTools (version 2.3.3.5) (Ramirez et 

al., 2016) with parameter sets --ratio ratio --pseudocount=1 was utilized to normalize 

against the control. 

To examine ChIP signals across species, genome positions of interest were lifted into 

the sibling species genome using UCSC liftOver (https://genome.ucsc.edu/cgi-

bin/hgLiftOver). We used liftOver to convert genome coordinates between 

D. melanogaster dm3 and D. simulans droSim1 assemblies with setting “Minimum 

ratio of bases that must remap: 0.1” which is the minimum number of bases that must 

be directly aligned in gapless blocks from the first genome to the second. 
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3 RESULTS 

The gene pair Hmr and Lhr is one of the most studied HI gene pairs. However, the 

molecular details of HMR’s localization, HMR’s targeting to its genomic binding 

sites and HMR’s actions on the D. melanogaster pure species genome are not well 

understood. This work for the first time describes the localization of HMR to 

chromatin on a genome-wide scale and provides a novel link between HMR and 

genomic insulator sites.  

 

3.1 HMR and LHR interact and mutually affect their protein 

level 

The HI genes Hmr and Lhr encode the proteins HMR and LHR. These proteins 

physically interact and stabilize each other in a common complex. This was 

demonstrated in L2-4 cells and flies (Satyaki et al., 2014; Thomae et al., 2013). It 

even cumulated in a model proposing a protein level-dependent mechanism for hybrid 

incompatibility (Thomae et al., 2013). Therefore, we were aiming to verify these 

findings in the S2 cell system that we use in this study. 

To demonstrate the physical interaction of HMR and LHR in S2 cells, we purified 

HMR and LHR from D. melanogaster S2 cell nuclear extract with anti-HMR and 

anti-LHR antibodies and analyzed the immunoprecipitates by Western Blot. 

Analogous to previous findings, LHR co-purifies with HMR and vice versa 

(Figure 10 A).  

To demonstrate the mutual dependency of HMR and LHR in S2 cells, we applied 

HMR- and LHR-directed knockdown by RNAi and analyzed the resulting protein 

levels of HMR and LHR in cell lysates by Western Blot. RNAi knockdown takes use 

of the cell-owned RNAi pathway that regulates cellular transcript levels. Here, the 

treatment with specific double-strand RNA (dsRNA) efficiently reduces the 

transcripts of the desired target gene, which eventually results in a reduction of the 

translated protein (Elbashir et al., 2001). Analogous to previous findings, the protein 

levels of HMR and LHR are mutually dependent (Figure 10 B). In HMR knockdown, 

the LHR protein is depleted together with HMR and vice versa. This mutual 

dependency of the protein levels could reflect a contribution to synthesis or stability 

of the respective complex partner. Therefore, we further analyzed the Hmr mRNA 

and Lhr mRNA levels in HMR and LHR knockdown. While the Hmr mRNA levels 

are not affected in LHR knockdown and the Lhr mRNA levels are not affected in 
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HMR knockdown, the protein levels of HMR and LHR are highly dependent on each 

other (Figure 10 C). Similar was reported for components of the polycomb PRC2 

complex (Tan et al., 2007), Histone Methly Transferases (Fritsch et al., 2010) and the 

pair JIL-1/PW53 (Dr. Catherine Regnard, personal communication). Altogether, these 

results indicate that HMR and LHR stabilize each other in a common complex.  

 

 

Figure 10. HMR and LHR coimmunoprecipitate and stabilize each other 

posttranscriptionally. (A) Western Blot of Coimmunoprecipitates from S2 cell nuclear 

extract using anti-HMR and anti-LHR antibody shows interaction of HMR and LHR. Rabbit 

anti-Rat IgG served as negative control (MOCK). (B) Western Blot of S2 cell lysates after 

specific and control RNAi-mediated knockdown (KD) shows mutual protein level dependency 

of HMR and LHR. (C) Hmr and Lhr transcript levels assayed by qPCR after RNAi treatment. 

Shown are transcript levels relative to control RNAi treatment after internal normalization 

against tub97EF. Error bars indicate SD of five biological replicates. 
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3.2 Endogenous epitope tagging of HMR using CRISPR/Cas9 

system 

3.2.1 Experimental strategy for endogenous epitope tagging  

The major aim of this work was to identify genomic binding sites of HMR using 

chromatin immunoprecipitation. The quality of such an experiment is highly 

dependent on the antibody specificity and the enrichment by affinity purification 

(Landt et al., 2012; Orlando, 2000). For HMR complex immunoprecipitation, Dr. 

Andreas Thomae generated stable cell lines expressing epitope-tagged HMR (Thomae 

et al., 2013). The drawback of these cell lines is that HMR is not under control of the 

endogenous promoter. This could result in increased HMR protein dosage. As HMR 

protein levels are crucial for HMR’s genomic localization and function in pure 

species (Thomae et al., 2013), we decided to generate cells expressing endogenously 

epitope-tagged HMR. For this purpose, I applied the CRISPR/Cas9 system that was 

adapted for targeted integration of chromosomal fragments in eukaryotic genomes. 

The experiments were performed in collaboration with Prof. Dr. Klaus Förstemann, 

who adapted and established this approach for Drosophila (Bottcher et al., 2014; 

Kunzelmann et al., 2016). 

The key step in CRISPR/Cas9 genome editing is a sequence-specific targeting of the 

nuclease enzyme Cas9. In this way, DNA double strand breaks at defined genomic 

positions are generated. The specificity of the cleavage is ensured by a sequence-

specific guide RNA that directs the Cas9 enzyme to its genomic target sites. The 

induced DNA double strand breaks are repaired by homologous recombination (HR), 

an alternative mechanism to the non-homologous end-joining (NHEJ) repair. NHEJ 

can be suppressed by knockdown of lig4 or mus308, two crucial components of the 

NHEJ pathway (Bottcher et al., 2014; Kunzelmann et al., 2016). By providing 

artificial HR donor fragments, an epitope tag and resistance cassette can be placed at 

the 3’ end of the gene body upstream of the 3’ UTR resulting in a C-terminally tagged 

protein (MATERIALS & METHODS, Figure 6, Figure 7). After transfection, cells 

were selected for the presence of the resistance cassette and screened for site-specific 

integration. 
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3.2.2 Verification of cell lines generated by CRISPR/Cas9 system 

In this work, I generated HMR-Flag2, HMR-Strep2 and HMR-GFP expressing S2 

cells. HMR-Flag2 expressing cells were derived from a uniformly tagged cell 

population with almost 100 % tagging efficiency. HMR-Strep2 and HMR-GFP 

expressing cells were derived from single clones according to (Bottcher et al., 2014). 

Site-specific integration of the HR donor into the genomic landing site was tested by 

PCR on genomic DNA and analysis of the resulting PCR products (Figure 11). The 

first PCR primer pair targets only tagged allele (Figure 11 A, purple triangles) 

whereas the second PCR primer pair targets wild type genome sequence 

(Figure 11 A, green triangles) and results in a short favored PCR product for 

untagged alleles and in a long unfavored PCR product for tagged alleles. Therefore, 

the first primer pair is suited to test site-specific integration, whereas the second 

primer pair ensures high integration frequency across the allele homologs and across 

the cell population. 

The HMR-Flag2 expressing cells, obtained after resistance cassette-based selection, 

showed a very high site-specific integration frequency (Figure 11 B) and were 

directly used for further analysis. HMR-Strep2 and HMR-GFP expressing cells 

showed site-specific integration events but also the presence of untagged wild type 

alleles (Figure 11 C). Therefore, we derived single clones from HMR-Strep2 and 

HMR-GFP expressing cell populations. Clone 1 and clone 4 from HMR-Strep2 and 

clone 6 from HMR-GFP expressing cells display site-specific integration at all Hmr 

gene copies. 
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Figure 11. Verification of CRISPR/Cas9 system-based generated cell lines by PCR on 

genomic DNA.  (A) PCR primer pair (purple and green triangles) locations and their 

expected products (dashed lines) for wild type Hmr allele and tagged Hmr allele. Site-specific 

integration is tested with a primer pair located upstream and downstream of the homology 

region. (B) PCR analysis on genomic DNA from cell population after resistance cassette 

based selection to verify site-specific integration at the Hmr locus. The expected product 

sizes are indicated on the right. (C) PCR analysis as described in (B) on genomic DNA from 

single cells (#) and their parental population (P). Successfully verified samples are marked 

with a filled circle. 
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3.2.3 Characterization of HMR-Flag2 expressing cells 

Among the cell lines generated by CRISPR/Cas9, colleagues and I used HMR-Flag2 

expressing S2 cells for further analysis. For initial characterization, I analyzed HMR’s 

protein level and immunohistological localization. The HMR-Flag2 fusion protein is 

expressed to protein levels comparable with wild type cells based on Western Blot 

analysis on cell lysates (Figure 12 A). Nevertheless, HMR-Flag2 levels are slightly 

higher than HMR wild type levels. This might be due to a loss of the Hmr 

3’ untranslated region (UTR) and its potential regulatory function on HMR. In 

HMR-Flag2 cells, the tag and the resistance cassette are placed at the 3’ end of the 

gene body, which results in a loss of the 3’ UTR in the Hmr gene transcripts. Further, 

I monitored the cellular localization of HMR-Flag2 by immunofluorescence 

microscopy.  The HMR-Flag2 fusion protein exhibits a prominent localization to the 

centromere, here indicated by the overlap with the centromeric histone H3 variant Cid 

(Figure 12 B, white arrows). The centromeric localization of HMR in 

D. melanogaster S2 cells was described previously (Thomae et al., 2013). 
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Figure 12. Characterization of HMR-Flag2 expressing cells generated by CRISPR/Cas9. 

(A) Western Blot analysis on cell lysates to assay HMR protein level. LHR and Tubulin protein 

detection served as control. (B) Immunofluorescence microscopy on cells co-stained for HMR 

and FLAG (top row, HMR-Flag2) or CID and FLAG (middle row, HMR-Flag2 and bottom row, 

wild type). White arrows indicate signal overlap of HMR, CID and FLAG in HMR-Flag2 cells. 

Scale bar represents 5 µm. 
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3.3 Genome-wide binding map of HMR in D. melanogaster 

Previous immunohistological studies demonstrated that HMR localizes to centromere 

or centromere-proximal regions in diploid cells (Maheshwari and Barbash, 2012; 

Thomae et al., 2013). Further, HMR localizes to telomeres and distinct regions across 

the chromosome arms on polytene chromosomes (Thomae et al., 2013). However, a 

high resolution binding map of HMR that allows dissecting the underlying binding 

site features, such as DNA sequence and co-binding proteins, was lacking so far.  

To access genomic binding of HMR in high resolution, we applied chromatin 

immunoprecipitation (ChIP) in D. melanogaster S2 cells. In brief, ChIP involves 

covalent in vivo crosslinking of proteins and DNA, chromatin fragmentation, 

immunoprecipitation of the target protein and associated chromatin, isolation and 

analysis of the enriched DNA (MATERIALS & METHODS, Figure 9).  

 

3.3.1 ChIP-seq of the HMR/LHR complex 

The antibody used in ChIP is crucial for the experimental outcome and interpretation 

(Landt et al., 2012; Orlando, 2000). We applied a highly specific anti-HMR (Thomae 

et al., 2013) and anti-FLAG antibody in combination with HMR-Flag2 expressing 

cells generated with CRISPR/Cas9 system to target HMR. Further, we applied an 

anti-LHR antibody (Thomae et al., 2013) to target the HMR interacting protein LHR 

(Figure 13 A). Notably, all these antibodies are monoclonal and therefore target a 

single epitope present in the peptide they were raised against. The anti-HMR antibody 

was raised against the HMR N-terminus and therefore targets HMR and HMR-Flag2 

(Figure 13 A). The anti-FLAG antibody targets the C-terminal double FLAG tag of 

HMR-Flag2 but serves as a powerful negative control when applying in HMR 

expressing wild type cells where the FLAG epitope is absent (Figure 13 A).  

HMR ChIP and FLAG ChIP were performed in wild type and HMR-Flag2 cells. LHR 

ChIP was performed in wild type cells. Different antibodies that target HMR/LHR in 

ChIP give a similar signal pattern distribution across genomic regions but are not 

entirely overlapping (Figure 13 B). As expected, all ChIP signals are absent in the 

negative control (Figure 13 B).  
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Figure 13. ChIP-seq of the HMR/LHR complex. (A) Monoclonal antibodies used in ChIP 

and the peptide locations where the antibodies were raised against. Wild type (wt) S2 cells 

and HMR-Flag2 expressing cells generated with CRISPR/Cas9 system were used. Anti-HMR 

antibody was raised against HMR N-terminus (Thomae et al., 2013) whereas anti-FLAG 

antibody targets the C-terminal double FLAG tag of HMR-Flag2 and serves as negative 

control in wt cells. Anti-LHR antibody was raised against whole LHR (Thomae et al., 2013). 

HMR and LHR presumably interact via BESS domain located at HMR C-terminus (Brideau et 

al., 2006) (B) Genome browser view of signals from ChIP reactions targeting HMR/LHR 

complex. Used cell line and antibody are stated. Control is anti-FLAG in HMR (wt) expressing 

cells. (C) Venn diagram of HMR peaks identified in three independent biological replicates. 
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Peaks identified in at least two out of three are highlighted and used for downstream analysis. 

(D) Venn diagram of HMR peaks identified in HMR (wt) and HMR-Flag2 expressing cells. (E) 

Venn diagram of HMR, FLAG (targeting HMR) and LHR peaks. 

 

Using the anti-HMR antibody, we derived a set of 794 HMR binding sites, present in 

at least two out of three independent biological replicates from HMR expressing wild 

type cells (Figure 13 C). These binding sites also largely overlap with the anti-HMR 

ChIP in HMR-Flag2 expressing cells (Figure 13 D). However, when applying the 

anti-FLAG antibody in HMR-Flag2 expressing cells, we derived a set of peaks that 

shares only 80 out of 542 with anti-HMR antibody (Figure 13 E). The results from 

(Figure 13 D) demonstrate that the differences among these peak sets are not due to 

differences between the HMR and the HMR-Flag2 protein. Therefore, we conclude 

that the differences of ChIP peak sets are due to the ChIP antibody and not due to 

intrinsic HMR and HMR-Flag2 properties. Assuming that the antibodies recognize 

single epitopes in the crosslinked HMR/LHR complex in vivo structure, both, anti-

FLAG and anti-LHR antibody, target the C-terminal region of HMR: anti-FLAG 

antibody targets the C-terminal tag, anti-LHR antibody targets LHR which interacts 

with HMR’s C-terminal BESS domain (Thomae et al., 2013). In accordance with 

these findings, the peak set derived with anti-LHR antibody is highly reminiscent of 

the anti-FLAG ChIP in HMR-Flag2 expressing cells (185 out of 197 overlapping, 

Figure 13 E). A heatmap-based genome-wide analysis of the corresponding ChIP-seq 

profiles along the anti-HMR and anti-FLAG ChIP peaks confirms this (Figure 14).  
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Figure 14. ChIP-seq profiles of anti-FLAG (HMR-Flag2 expressing cells) and anti-LHR 

antibody are distinct from anti-HMR antibody. Heatmaps of signals of anti-FLAG (HMR-

Flag2 expressing cells), anti-LHR and anti-HMR ChIP. Genomic regions are centered on anti-

HMR ChIP peaks (HMR-only and HMR+FLAG) and on anti-FLAG ChIP peaks (FLAG-only). 

 

3.3.2 HMR binding site verification for genome-wide analysis 

Different HMR ChIP data derived with different monoclonal antibodies share only a 

subset of peaks. To verify our ChIP results and to decide which peak set to use for 

subsequent genome-wide analysis, we compared the genomic location of HMR ChIP 

peaks with the ChIP signals obtained in the negative control IgG ChIP. First, we 

selected four positive and two negative control loci in ChIP-qPCR. We observe 

enrichment of HMR at the tested HMR binding sites compared to negative control 

reactions (Figure 15).  
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Figure 15. ChIP-qPCR showing HMR enriched at HMR binding sites identified in ChIP-

seq compared to negative control regions. HMR ChIP is enriched for binding sites in wild 

type and HMR-Flag2 expressing cells. In contrast, FLAG ChIP is enriched for HMR binding 

sites only in HMR-Flag2 expressing cells but not in wild type cells lacking FLAG tag epitope. 

Data are represented as mean ± SD of three technical replicates. 

 

Second, we compared the binding sites on a genome-wide scale in ChIP-seq 

(Figure 16). Here, two different antibodies (anti-HMR and anti-FLAG) were applied 

to the same chromatin from wild type cells. Almost none of the HMR binding sites 

were enriched in the negative anti-FLAG control IgG (Figure 16 A, A’). Further, we 

compared the genomic location of FLAG ChIP peaks from HMR-Flag2 expressing 

cells with the ChIP signals obtained in the negative control IgG. Here, in contrast to 

(Figure 16 A, A’), the same antibody (anti-FLAG) was applied to two different 

chromatin types (HMR-Flag2 expressing cells and wild type cells). Again, almost 

none of the HMR binding sites were enriched in the negative control 

(Figure 16 B, B’). 
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Figure 16. HMR and FLAG ChIP signals are not overlapping with negative control IgG 

ChIP signals. The FLAG ChIP in HMR-Flag2 cells (orange) targets HMR whereas FLAG ChIP 

in wt cells (grey) serves as negative control IgG (A) Venn diagram of HMR and control IgG 

peaks (pool of peaks from two independent biological replicates). (A’) Composite plot of HMR 

and control IgG ChIP signals at genomic HMR peak positions. (B) Venn diagram of FLAG 

and control IgG peaks. (B’) Composite plot of FLAG and control IgG ChIP signals at genomic 

FLAG peak positions.  

 

After comparing with negative control IgG ChIP, we compared the identified binding 

sites with the recently published collection of phantom peaks, genomic regions which 

are prone to generate unspecific signals in ChIP experiments (Jain et al., 2015). 

Interestingly, the ChIP peaks derived from anti-FLAG and anti-LHR antibody are 

largely overlapping with phantom peak regions, whereas the anti-HMR antibody-

based peaks are not (Figure 17). This finding does not mean that anti-LHR and anti-

FLAG ChIP profiles are necessarily incorrect. In fact, the phantom peak positions 

share various features that are essential for HMR’s binding properties such as the 

presence of insulator proteins and their corresponding DNA binding motifs as 

demonstrated and discussed later in this work (Jain et al., 2015). However, in order to 

rule out potential unspecific ChIP signals, we decided to proceed analysis exclusively 

with the peak set derived from the anti-HMR antibody which contains a subset of the 

anti-FLAG and anti-LHR antibody-based ChIP peaks (Figure 13 E). 
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Figure 17. HMR, FLAG and LHR ChIP peak overlap with genomic phantom peak 

positions that can give raise to false positive ChIP signals. Genomic phantom peak 

positions used for analysis were described for S2 cells in (Jain et al., 2015). (A) Venn 

diagram of HMR and phantom peaks. (B) Venn diagram of FLAG, LHR and phantom peaks. 

 

To further validate HMR’s genome-wide binding data, we applied HMR-directed 

knockdown by RNAi, assayed the resulting protein levels of HMR in cell lysates by 

Western Blot as described before (Figure 10 B) and subjected cells to HMR ChIP. 

Next, we monitored the genome-wide changes in enrichment against negative control 

knockdown cells (Figure 18, also Figure 19 C). Though, HMR knockdown results in 

a genome-wide reduction of HMR binding and showed a substantial effect on many 

HMR binding sites, a subset of HMR binding sites remains enriched in HMR 

knockdown (Figure 18). Such knockdown resistant binding sites were described for 

other chromatin-associated factors before and can be interpreted as high-affinity 

binding sites (Schwartz et al., 2012) or assigned to incomplete removal of the target 

protein. The HMR ChIP reaction supernatants are not depleted for the HMR epitope 

after ChIP in untreated cells (Figure S1) which means that the antibody amount in 

ChIP is limiting to the yield of ChIP DNA rather than the epitope amount. In case the 

epitope is more abundant than the epitope-recognizing antibody, the detectable effect 

of an epitope targeting knockdown can decrease. 

 

 



RESULTS    

66 

 

 

Figure 18. Changes in HMR ChIP enrichment after HMR knockdown versus GST control 

knockdown. (A) Scatter plot showing the fold changes of normalized HMR ChIP tag number 

mapped to a 200 bp HMR peak region in two biological replicates. Peak regions with less 

than 50 aligned tags were excluded from the analysis. (B) Histograms showing the frequency 

of HMR peaks that display HMR ChIP signal reduction after HMR knockdown. 

 

3.3.3 HMR ChIP-seq data resembles prior immunohistological 

studies 

Using different antibodies and RNAi knockdown strategy in ChIP, we derived a 

reliable set of 794 HMR binding sites. To compare this high-resolution HMR binding 

information with prior localization studies on HMR, we monitored HMR binding site 

distribution and density across the D. melanogaster 2
nd

 chromosome (Figure 19 A). 

Strikingly, HMR binding sites are enriched proximate to centromere and cytological 

region 31. HMR was described to bind these two genomic regions in independent 

immunohistological experiments before (Maheshwari and Barbash, 2012; Thomae et 

al., 2013). Furthermore, region 31 contains eight bands of HP1a antibody staining 

(Fanti et al., 2003). The anti-HP1a ChIP in our experiments (Figure 19 C) is in 

agreement with this finding. In line with HP1a ChIP-seq data obtained from the 

modENCODE consortium (Kharchenko et al., 2011), we observe HP1a enriched at 

pericentromeric heterochromatin together with HMR when spotting the 
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heterochromatin-euchromatin border on the 2
nd

 chromosome (Figure 19 B). Even 

though HMR and HP1a were reported to physically interact, HMR binding sites do 

not completely cover HP1a chromatin domains but rather mark their edges 

(Figure 19 C).  

 

 

Figure 19. HMR binding at pericentromeric and other heterochromatic regions (A) 

Histogram showing HMR peak density across left arm (2L) and right arm (2R) of the 2
nd

 

chromosome. Cytological region 31 and centromere-proximal regions are enriched for HMR 

binding sites. (B) Genome browser view of HMR, HP1a and control IgG ChIP signals at 2
nd

 

chromosome centromere-proximal region. (C) Genome browser view of HMR, HP1a and 

control IgG ChIP signals at region 31. HMR ChIP signals are displayed for control knockdown 

and HMR knockdown.  
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In summary, HMR is shown to be enriched at heterochromatic genome regions by 

independent techniques in different biological material. First, this provides evidence 

for a high reliability of our ChIP data and, second, it suggests that HMR localization 

is at least partially consistent between cell types.  

 

3.4 HMR binding sites largely overlap with genomic insulators 

Chromatin-associated proteins can distribute along chromatin and assemble in 

domains such as HP1a. This results in a dispersed ChIP signal. Alternatively, proteins 

bind sequence-specific such as transcription factors that give rise to a sharp ChIP 

signal peak. The genomic tracks (Figure 19 C) and composite plots of HMR ChIP 

signals at HMR binding sites (Figure 16 A’, B’) revealed sharp ChIP signals with 

approximately 200 nucleotides in width, suggesting HMR being part of chromatin 

residing complexes with well-defined genomic binding positions.  

To identify potential targeting factors of HMR, we performed DNA sequence motif 

analysis with HOMER. Strikingly, the HMR binding sites are enriched for DNA 

sequence motifs that associate with the insulator DNA binding proteins BEAF-32 

(27 %) and Su(Hw) (26 % and 17 %) (Figure 20 A). Both proteins can bind DNA 

sequence-specific by zinc-finger DNA-binding domains and are associated with other 

functional insulator complex components such as CP190 and Mod(mdg4) (Gause et 

al., 2001; Ghosh et al., 2001; Pai et al., 2004). We used insulator protein ChIP data 

derived from S2 cells (Ong et al., 2013; Riddle et al., 2011) and compared them with 

the HMR binding profile. Indeed, HMR and insulator complex components show a 

strong binding overlap (Figure 20 B).  
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Figure 20. HMR localizes to genomic binding sites of the insulator proteins Su(Hw) and 

BEAF-32. (A) Sequence motifs identified within HMR peak regions using HOMER motif 

search. Motif logo, p-value of enrichment, percentage of regions with this motif and putative 

binding factors are indicated. (B) Venn diagram of HMR, Su(Hw) (Ong et al., 2013) and 

BEAF-32 (Riddle et al., 2011) ChIP peaks. (C) Genome browser view of HMR, the insulator 

proteins CP190, Mod(mdg4), Su(Hw), CTCF (Ong et al., 2013) and BEAF-32 (Riddle et al., 

2011) ChIP signals shows binding overlap of HMR with various genomic insulator sites. 

 

Genomic insulator sites are occupied by different combinations of insulator complex 

components (Schwartz et al., 2012). Judging from our ChIP data, HMR binds to 

various of these insulator complexes (Figure 20 C). HMR is particularly enriched at 

the well characterized class of gypsy insulators. Gypsy insulators are composed of 

Su(Hw) binding motifs, and several proteins, including Su(Hw), Mod(mdg4), and 

CP190 (Georgiev and Gerasimova, 1989; Gerasimova et al., 1995; Pai et al., 2004; 

Parkhurst et al., 1988). Approximately half of the HMR binding sites are associated 

with gypsy insulator (Figure 21 A). The first identified gypsy insulator site is named 
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1A-2, due to its cytological location, and is located between the yellow and achaete 

genes (Gerasimova et al., 1995). HMR also binds to this region (Figure 21 B). 

Overall, in accordance with BEAF-32 and Su(Hw) binding motif enrichment, HMR 

binding sites are mainly associated with BEAF-32-bound insulator or Su(Hw)-bound 

gypsy insulator sites.  

 

 

Figure 21. HMR localizes to gypsy and non-gypsy insulator sites. (A) Combinatorial 

binding pattern of HMR with insulator proteins. ChIP peak overlap of HMR with CP190, 

Mod(mdg4), Su(Hw), CTCF (Ong et al., 2013) and BEAF-32 (Riddle et al., 2011). HMR peaks 

assigned to the Su(Hw)-containing gypsy groups are depicted in green, non-gypsy groups are 

depicted in orange. Combinations with less than ten HMR peaks are not shown. (B) Genome 

browser view of ChIP signals of HMR and the gypsy insulator proteins CP190, Mod(mdg4) 

and Su(Hw) (Ong et al., 2013) at the gypsy insulator 1A-2. Su(Hw) binding motifs identified in 

the underlying DNA sequence are depicted in green. 
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3.5 HMR localizes to the insulator of gypsy and gypsy-twin 

retrotransposons 

Genome-wide analysis of HMR binding sites revealed an extensive localization of 

HMR to genomic insulator sites, in particular to the gypsy insulator that is derived 

from gypsy transposons. Further, HMR interacts with HP1a and affects repetitive 

DNA transcription (Satyaki et al., 2014; Thomae et al., 2013).  

To investigate, whether HMR localizes to repetitive DNA, we assayed the enrichment 

of repeats by mapping HMR, HP1a and Su(Hw) ChIP-seq reads to the RepBase 

repeat database (Bao et al., 2015). HP1a is a heterochromatin component covering 

several repetitive DNA elements. Indeed, HP1a ChIP is enriched for the centromeric 

heterochromatin-associated Dodeca satellite (DMSAT6) (Abad et al., 1992) and the 

transposable elements Rt1a and Rt1b (DMRT1A, DMRT1B) (Figure 22 A) 

(Kaminker et al., 2002). These repeats however, are neither enriched in HMR ChIP 

nor in Su(Hw) ChIP. Instead, HMR ChIP and Su(Hw) ChIP are both enriched for the 

long terminal repeat (LTR) retrotransposon gypsy, and gypsy-twin (gtwin) 

(Figure 22 A’, A’’). Gtwin is a gypsy-related sequence (Bowen and McDonald, 2001; 

Kotnova et al., 2005) and both retroelements are suppressed in transposition by the 

flamenco locus in Drosophila (Kotnova et al., 2005; Prud'homme et al., 1995; 

Razorenova et al., 2001). HMR’s localization to the gypsy and gtwin 5’ end is in good 

agreement with the strong binding correlation of HMR with insulator proteins. HMR, 

Su(Hw), Mod(mdg4) and CP190 show almost identical binding pattern across gypsy 

and gtwin and are specifically enriched at the LTR’s 5’ region (Figure 22 B, B’). This 

is the region where the gypsy insulator is located. The gypsy insulator is composed of 

a 340-bp sequence containing 12 Su(Hw) binding motifs bound by Su(Hw) and other 

protein complex components (Figure 22 B, B’).  
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Figure 22. HMR localizes with gypsy insulator to gypsy and gtwin 5’ region. (A, A’, A’’) 

ChIP tag enrichment of HP1a, HMR and Su(Hw) ChIP (Ong et al., 2013) at repetitive DNA 

elements from RepBase. The log2-fold enrichment over input is plotted against the RPKM of 

an individual repeat sequence. Only repetitive elements that are more than 2-fold enriched 

are displayed. (B, B’) ChIP tag distribution of HMR, CP190, Mod(mdg4), Su(Hw) ChIP (Ong 

et al., 2013) across the gypsy (GYPSY_I) and gtwin (GTWIN_I) retrotransposon sequence. 

HMR is enriched with gypsy insulator proteins at the gypsy insulator sequence (green).  
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Figure 23. HMR localizes to gypsy and gtwin 5’ region dependent on CP190. (A) 

Western Blot analysis on cell lysates to assay protein levels after HMR, CP190 and CTCF 

knockdown (KD). Tubulin protein detection served as control. (B) Normalized fold-enrichment 

of HMR after CP190 KD, CTCF KD at gypsy and gtwin 5’ region, a HMR binding site without 

CP190 (positive) and two negative control regions (negative). Data are represented as mean 

± SD of three independent biological replicates. 

 

To test whether HMR binding to the gypsy insulator depends on the insulator 

complex, we performed HMR ChIP after knockdown of CP190 and CTCF 

(Figure 23 A) and probed immunoprecipitated DNA by qPCR (Figure 23 B). CP190 

is required for gypsy insulator complex recruitment and maintenance whereas the 

insulator protein CTCF is not required (Pai et al., 2004; Schwartz et al., 2012). After 

CP190 knockdown, HMR binding is reduced at gypsy and gtwin 5’ region, the regions 

where the insulator complex is located. A CTCF knockdown does not affect the 

enrichment at these sites (Figure 23 B). This finding suggests that HMR’s binding to 

gypsy insulators is dependent on CP190. 

In summary, HMR binds to the gypsy and gypsy-twin elements. HMR’s binding to 

these sites dependents on the presence of CP190 or the gypsy insulator complex in 

general.  
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3.6 HMR’s localization to genomic insulator sites depends on the 

presence of the insulator protein complex 

HMR ChIP-qPCR analysis after knockdown experiments demonstrated that HMR’s 

binding to the gypsy insulator complex at the gypsy and gtwin 5’ region is dependent 

on CP190. To test whether CP190 also impacts HMR binding on a genome-wide 

scale, we performed HMR ChIP-seq after CP190 knockdown (analogous shown in 

Figure 23 A). We analyzed the enrichment changes against control knockdown by 

sequencing and group-wise comparison (Figure 24 A). According to literature, we 

expect the gypsy-like group to be affected by CP190 knockdown, whereas the 

non gypsy-like group to be not affected (Figure 24 B) (Schwartz et al., 2012). After 

CP190 knockdown, HMR binding is only reduced in the gypsy-like group 

(Figure 24 C). To control for specificity, we subjected HMR ChIP after HMR 

knockdown to the same analysis. Here, HMR binding is affected equally in both 

groups (Figure 24 D). A quantification of the effect on HMR binding by assessing the 

aligned ChIP tags to HMR binding sites confirmed specificity (Figure 25). 

The insulator protein CP190 serves as an adaptor protein for large insulator complex 

structures that are placed in nucleosome depleted regions of the genome (Bartkuhn et 

al., 2009). As nucleosome occupancy can serve as a proxy for insulator complex 

integrity at these sites (Schwartz et al., 2012), we wondered whether the CP190 

knockdown affects nucleosome occupancy. To access nucleosome occupancy, we 

performed Histone H3 ChIP. The H3 ChIP signal is increased in the gypsy-like group 

of HMR binding sites after CP190 knockdown, but not in the non gypsy-like group 

(Figure 24 C). After HMR knockdown, none of the groups are affected in H3 binding 

(Figure 24 D). On the one hand, this demonstrates the importance of CP190 for gypsy 

insulator complex integrity. The loss of HMR binding at these sites is accompanied 

by the loss of the gypsy insulator complex. On the other hand, these findings suggest 

that HMR does not fulfill an essential role in maintaining gypsy insulator complex 

integrity. 

Overall, these results demonstrate the important role of insulator complexes in 

mediating HMR’s binding to chromatin.  
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Figure 24. Insulator protein complexes are crucial for HMR’s genome-wide localization. 

(A) Venn diagram of HMR ChIP peaks with ChIP peaks of the gypsy insulator proteins 

CP190, Mod(mdg4) and Su(Hw) (Ong et al., 2013). HMR binding sites are grouped in gypsy-

like group (green) and non gypsy-like group (orange). (B) CP190 serves as an adaptor 
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protein for gypsy insulator complexes and is crucial for complex stability at chromatin 

(Schwartz et al., 2012). (C, D) Composite plot of HMR and Histone H3 ChIP signals at HMR 

binding sites after CP190 (C) and HMR knockdown (D). Monitored groups are defined in (A). 

 

 

Figure 25. Insulator protein complexes are crucial for HMR’s genome-wide localization 

- Quantification. (A) Histograms showing the frequency of HMR peaks that display HMR 

ChIP signal reduction after CP190 and HMR knockdown in gypsy-like and non gypsy-like 

HMR peak regions. Analyzed are the fold changes of input-normalized HMR ChIP tag number 

mapped to a 200 bp HMR peak region. Peak regions with less than 50 aligned tags were 

excluded from the analysis. (B) Analysis of data shown in (A). Box plots represent fold-

change of HMR ChIP signal. Significance of difference was estimated with p-values 

calculated with Wilcoxon rank sum test (Wilcoxon, 1946). For both box plots, the box 

represents the interval that contains the central 50 % of the data with the line indicating the 

median. The length of the whiskers is 1.5 times the interquartile distance (IQD). 
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3.7 HMR does not localize to insulator bodies and HMR’s 

localization to centromere-proximal regions is independent from 

CP190 

In cytological staining, nuclear gypsy insulator complexes concentrate in structures, 

so called insulator bodies, which associate with the nuclear lamina (Byrd and Corces, 

2003). The formation of insulator bodies correlates with gypsy insulator function and 

requires the gypsy insulator proteins Su(Hw), CP190 and Mod(mdg4) (Capelson and 

Corces, 2005, 2006). The gypsy insulator proteins and also CTCF are present in gypsy 

insulator bodies. It was shown that CTCF and Mod(mdg4) fail to form insulator 

bodies in the absence of CP190 (Gerasimova et al., 2007). We aimed to investigate 

whether HMR also localizes to such insulator bodies and whether insulator bodies are 

dependent on HMR. To do so, we monitored the cellular localization of HMR, LHR 

and CTCF after HMR, LHR and CP190 RNAi knockdown by immunofluorescence 

microscopy. RNAi efficiency was tested by probing protein levels in cell lysates 

(analogous shown in Figure 23 A). The CP190 knockdown serves as a positive 

control. The loss of CP190 results in a loss of insulator bodies marked by CTCF 

whereas HMR or LHR loss does not affect insulator bodies’ integrity (Figure 26). 

HMR and LHR localize to distinct cellular foci which were identified as centromeres 

or centromere-proximal regions in independent experiments (Figure 12 B and 

(Thomae et al., 2013)) and are not overlapping with CTCF signals in 

immunofluorescence. In addition, the cytological localization of HMR and LHR is 

mutually dependent but is not affected by CP190 knockdown. This indicates that 

HMR’s localization to centromere-proximal regions is independent of CP190. 
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Figure 26. HMR’s and LHR’s localization to centromere-proximal regions is CP190-

independent. (A) Immunolocalization of LHR and CTCF in LHR knockdown and CP190 

knockdown S2 cells. LHR signal is lost in LHR knockdown, CTCF-stained insulator bodies are 

lost in CP190 knockdown. (B) Immunolocalization of HMR and CTCF in HMR knockdown and 

CP190 knockdown S2 cells. HMR signal is lost in HMR knockdown, CTCF-stained insulator 

bodies are lost in CP190 knockdown. Neither HMR, nor LHR immunolocalization are affected 

in CP190 knockdown. Scale bars represent 5 µm. The experiment was performed in two 

independent biological replicates (one replicate is shown). 
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3.8 HMR associates with chromatin state borders at active genes 

The vast majority of HMR binding sites overlap with genomic insulator sites. 

Insulators have been reported to coincide with transcription start sites (TSS) and 

chromatin domain borders (Cuddapah et al., 2009; Guelen et al., 2008; Schwartz et 

al., 2012; Sexton et al., 2012). Based on the combinatorial pattern of 18 histone 

modifications, the Drosophila S2 cell genome was partitioned into nine chromatin 

states (Kharchenko et al., 2011).  

To investigate whether HMR binding sites mark chromatin domain borders at TSS, 

we used this data set and monitored the annotated states (color representation as 

described in (Kharchenko et al., 2011)) relative to the position of HMR peaks. We 

sorted the genomic regions according to non-bordering (annotation is identical up- 

and downstream of peak summit) or bordering (annotation is different up- and 

downstream of peak summit). Within these groups, we sorted the genomic regions, 

first, according to the states upstream of the HMR peak summit and, second, 

according to the annotation downstream of the HMR peak summit (Figure 27 A).  

A major fraction of the HMR binding sites is found at transcriptionally active TSS 

(red, state 1) and intronic regions (brown, state 3). Strikingly, approximately half of 

the HMR binding sites border chromatin states (Figure 27 A). At these borders, HMR 

is predominantly associated to transcriptionally active TSS (red, state 1) or separates 

domains from extensive silent domains (white, state 9). An enlarged view on a 

bordering subset, aligned with our HP1a and HMR ChIP data (Figure 27 A), 

demonstrates reliability and mutual comparability of our ChIP data and the chromatin 

states classification. HMR signal is distinctly placed at domain borders, whereas 

HP1a signal resembles heterochromatin regions (dark blue, state 7). When we applied 

the 5-state annotation, based on Filion et al. (Filion et al., 2010), we could confirm the 

classification into the distinct chromatin states. However, when applying this 

annotation, we could not dissect for non-bordering and bordering sets, presumably 

due to limited resolution (Figure 27 A). 
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Figure 27. HMR and the associated insulator proteins BEAF-32 and Su(Hw) border 

chromatin domains at active TSS. (A) Chromatin state annotation at HMR binding sites. 

Genomic sites are clustered according to the spatial pattern of chromatin states upstream and 

downstream of the HMR binding site. Each row represents a HMR binding site. Chromatin 

state annotation is taken from (Kharchenko et al., 2011) (9-state) and (Filion et al., 2010) (5-

state). Zoom-in additionally shows heatmaps of HMR and HP1a ChIP signals. (B) Genome 

browser view of HMR, Su(Hw), CTCF, CP190, Mod(mdg4) (Ong et al., 2013) and Histone 

mark H3K27me3 (Negre et al., 2011) ChIP signals at even-skipped (eve) gene locus. (C) 
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Same as (A) but showing BEAF-32 and Su(Hw) binding sites (Ong et al., 2013) in addition to 

HMR binding sites. HMR and BEAF-32 border heterochromatin states at TSS whereas 

Su(Hw) does not (depicted with arrows). 

 

Insulator proteins have been shown to mark H3K27me3 chromatin domains and to be 

functionally relevant at these sites by demarcating chromatin domain borders 

(Bartkuhn et al., 2009; Cuddapah et al., 2009; Negre et al., 2010; Van Bortle et al., 

2012). We also find HMR associated to these genomic sites (Figure 27 B). The gypsy 

insulator can modulate these chromatin structures and block the spreading of the 

H3K27me3 histone mark (Comet et al., 2011; Kahn et al., 2006). This restrictive role 

on H3K27me3 mark spreading has been confirmed in cultured cells, but only for 

domain borders adjacent to non-active genes. At the borders adjacent to active genes, 

insulators seem to be dispensable for H3K27me3 domain maintenance (Schwartz et 

al., 2012).  

The genome-wide analysis of HMR binding sites showed that HMR overlaps with 

Su(Hw) and BEAF-32 binding sites. To dissect insulator- and HMR-specific 

differences, we next applied the same analysis on Su(Hw) and BEAF-32 binding 

sites. Interestingly, Su(Hw), BEAF-32 and HMR show distinct properties in 

chromatin domain bordering. HMR and BEAF-32 specifically border heterochromatin 

whereas Su(Hw) does not (Figure 27 C, arrow).  

In summary, HMR borders chromatin states. We supplement this finding with two 

independent chromatin state annotations and our own ChIP data on the 

heterochromatin mark HP1a. HP1a chromatin domain borders associate to HMR and 

BEAF-32 binding sites.  

 

3.9 HMR borders HP1a domains at active promoters together 

with BEAF-32 

HMR and the gypsy insulator DNA binding protein Su(Hw) share genomic binding 

sites and mark chromatin domain borders. Focusing on HMR- and Su(Hw)-specific 

differences, we realized that HMR borders HP1a chromatin regions whereas Su(Hw) 

does not. In fact, there is a second class of HMR binding sites that is Su(Hw)-

independent but associates with HP1a and BEAF-32 (Figure 28 A).  

To investigate these differences genome-wide, we sorted the HMR binding sites 

according to the presence of HP1a and compared the two classes of HMR binding 

sites against each other. Class 1 associates with HP1a and borders HP1a chromatin at 
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the TSS of actively transcribed genes (124 out of 794) whereas class 2 contains the 

major fraction of HMR binding sites (670 out of 794) but does not associate with 

HP1a (Figure 28 A). When we compared class 1 and class 2 for their distribution 

across the genome, we found class 1 enriched at region 31, centromere-proximal 

regions and the 4
th

 chromosome, whereas class 2 binding sites are rather equally 

distributed (Figure 28 B). 

 

 

Figure 28. HMR borders heterochromatin at centromere-proximal regions, region 31 and the 4
th

 

chromosome. (A) Heatmaps of HMR, the heterochromatin marks HP1a and the insulator proteins 

BEAF-32 (Riddle et al., 2011), Su(Hw), Mod(mdg4) and CP190 (Ong et al., 2013) ChIP signals. 

Genomic regions are centered on HMR binding sites, clustered according to adjacent HP1a signals and 

sorted by HMR signal intensity. (B) Histogram showing HMR peak density across the annotated 

D. melanogaster genome. Class 1 HMR binding sites are enriched at region 31, centromere-proximal 

regions and the 4
th

 chromosome.  
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We compared the class 1 and class 2 binding sites for their ChIP signal overlap with 

insulator proteins. The HP1a-associated HMR binding sites (class 1) are essentially 

lacking Su(Hw) and other gypsy insulator proteins but are enriched for BEAF-32 

binding sites (Figure 29 A). Same is true for the underlying consensus sequences 

identified by HOMER. The BEAF-32 binding motif is predominantly present in 

class 1 whereas Su(Hw) binding motifs are predominantly present in class 2 

(Figure 29 B).  

 

 

Figure 29. HMR overlaps with BEAF-32 binding sites at heterochromatin domain borders. (A) 

ChIP peak overlap of the insulator proteins CP190, Mod(mdg4), Su(Hw) (Ong et al., 2013) and BEAF-

32 (Riddle et al., 2011) with class 1 and class 2 HMR binding sites. (B) Sequence motifs identified 

within class 1 and class 2 HMR peak regions using HOMER motif search. Motif logo, p-value of 

enrichment, percentage of regions with this motif and putative binding factors are indicated. 

 

Class 1 and class 2 are also different when investigating their annotation. According 

to HOMER peak annotation, almost all of the HP1a-associated HMR binding sites 

(class 1) are in close proximity to transcription start sites (TSS) (90 %), whereas 

class 2 binding sites are annotated as various genomic elements (Figure 30 A). For 

class 1, HMR binds to very narrow regions placed between the HP1a-marked regions 

and the gene body. To gather information on the transcriptional activity and 

characteristics of these genes, we monitored transcript levels of the HMR-bound 

genes. Analysis of RNA-seq based transcription profiling from Drosophila S2 cells 

demonstrates that the genes bound by HMR are actively transcribed (Figure 30 B). In 

agreement with that, HMR binding correlates with the acetyltransferase CREB 

binding protein (dCBP/p300), H3K27ac and H2BK5ac when subjecting HMR peak 
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positions to i-cisTarget web tool (Herrmann et al., 2012) (data not shown). In 

Drosophila, the two histone marks correlate well together and likely give redundant 

information (Karlic et al., 2010). H3K27ac is thought to be produced by dCBP/p300, 

which is present at enhancers and promoters (Tie et al., 2009). 

 

 

Figure 30. HMR borders heterochromatin domains at active gene promoters (A) Distribution of 

class 1 and class 2 HMR binding sites for various genomic annotations assigned by HOMER. (B) Box 

plot comparing normalized expression level of all genes to HMR-bound genes (promoter/TSS 

annotated, see (A)). S2 cell mRNA levels were used according to (Rus et al., 2013). Significance of 

difference was estimated with p-values calculated with Wilcoxon signed rank test (Wilcoxon, 1946). 

For both box plots, the box represents the interval that contains the central 50 % of the data with the 

line indicating the median. The length of the whiskers is 1.5 times the interquartile distance (IQD). 

 

Overall, these results demonstrate the presence of two distinct HMR binding site 

groups when comparing to HP1a. First, HMR can associate to gypsy insulator sites, 

which are not associated to HP1a chromatin and distributed throughout the genome. 

Second, HMR can associate to BEAF-32 binding sites which border HP1a chromatin 

at the TSS of actively transcribed genes. 

 

  



   RESULTS 

85 

 

3.10 HMR promotes transcription at HP1a domain borders  

We identified a group of HMR binding sites, which border heterochromatin domains 

and overlap with BEAF-32 binding sites. At these sites, HMR is predominantly 

enriched near transcription start sites of highly expressed genes. To monitor a 

potential role of HMR in transcription of protein coding genes, we took use of 

transcription analysis data derived from Hmr mutant larvae and ovary tissue (Satyaki 

et al., 2014). In these studies, HMR was reported to impact preferentially 

heterochromatic gene transcription (Satyaki et al., 2014). In order to assess HMR 

binding site-specific differences, we compared the transcript changes in class 1 and in 

class 2. We selected the TSS-annotated HMR binding sites and analyzed the 

associated gene transcription. In Hmr mutant tissue, transcript levels of class 1-

associated genes are reduced compared to wild type (Figure 31), indicating that HMR 

promotes gene transcription at HP1a domain borders.  

 

 

Figure 31. HMR enhances gene transcription at HP1a domain borders (class 1 HMR 

binding sites). Box plot showing the log2 fold change of protein coding gene transcripts of all 

analyzed genes and HMR-bound genes (promoter/TSS annotated) in class 1 and in class 2. 

The RNA-seq data comes from experiments done in D. melanogaster ovaries (A) and 

D. melanogaster larvae (B) (Satyaki et al., 2014). Significance of difference was estimated 

with p-values calculated with Wilcoxon rank sum test (Wilcoxon, 1946). For both box plots, 

the box represents the interval that contains the central 50 % of the data with the line 

indicating the median. The length of the whiskers is 1.5 times the interquartile distance (IQD). 
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Given the extensive binding overlap between HMR and BEAF-32 at the 

transcriptionally affected class 1 HMR binding sites, we next asked whether BEAF-

32 has an impact on the transcription of these genes, too. We reanalyzed transcription 

analysis data of BEAF-32 mutant larvae wing imaginal disc tissue and S2 cell 

transcription after BEAF-32 knockdown with respect to HMR binding sites 

(Figure 32, similar as in Figure 31). In addition to class 1 and class 2 HMR binding 

site-associated genes, we monitored control groups of BEAF-32-bound and Su(Hw)-

bound genes. Comparing these groups among each other, we can conclude that the 

loss of HMR and BEAF-32 result in similar transcriptional changes for class 1-

associated genes and genes bound by HMR and BEAF-32 (independent from the 

classification given in Figure 28) (Figure 32). Notably, the effect on transcription in 

S2 cells is substantially lower than in the other monitored systems (Figure 32). Even 

though HMR and BEAF-32 bind to the affected regions in S2 cells, their function at 

such genomic sites might be rather relevant in more specific tissue or distinct times 

during development. 
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Figure 32. BEAF-32 and HMR enhance gene transcription at shared binding sites and 

class 1 HMR binding sites. Box plot showing the log2 fold change of protein coding gene 

transcripts of analyzed genes in proximity to TSS-annotated HMR, BEAF-32 and/or Su(Hw) 

binding sites. The RNA-seq data comes from publically available data sets (MATERIALS & 

METHODS, Table 13) (Gurudatta et al., 2012; Lhoumaud et al., 2014; Satyaki et al., 2014). 

Significance of difference was estimated with p-values calculated with Wilcoxon rank sum test 

(Wilcoxon, 1946). The box represents the interval that contains the central 50 % of the data 

with the line indicating the median. The length of the whiskers is 1.5 times the interquartile 

distance (IQD). 
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3.11 HMR at heterochromatin borders does not affect 

heterochromatin maintenance and localizes CP190-independent 

We identified HMR being very precisely located between HP1a domain and the body 

of genes. The transcription of such genes seems to be promoted by HMR. The role of 

HP1a on gene transcription is described recently to be very diverse (reviewed in 

(Yasuhara and Wakimoto, 2006)). From a naive point of view, HP1a can either 

enhance the transcription of associated genes or can repress transcription by spreading 

into the active gene body. Given the strong association of HMR to the HP1a 

chromatin border, we wondered whether HMR has a functional role in maintaining 

HP1a chromatin integrity or in preventing HP1a spreading. To investigate the effect 

of HMR on HP1a and the associated histone mark H3K9me3, we performed HP1a 

and H3K9me3 ChIP after HMR knockdown. First, we analyzed cell lysates after 

HMR knockdown in Western Blot. HMR loss affects neither the cellular levels of 

HP1a nor the cellular levels of H3K9me3 (Figure 33 A). To test whether HMR loss 

affects their localization manner and enrichment, we monitored HP1a and H3K9me3 

ChIP signal in class 1. Reorientation of class 1 genomic regions (Figure 33 B) allows 

displaying the HMR-marked boundary of heterochromatin and active gene body. 

Interestingly, neither HP1a ChIP signal, nor H3K9me3 ChIP signal are changed after 

HMR knockdown (Figure 33 C). This finding indicates that HMR neither maintains 

heterochromatin integrity at these sites, nor prevents the spreading of heterochromatin 

into the active gene body. Interestingly, the ChIP signal pattern of HP1a and 

H3K9me3 differs at these sites. The HP1a signal covers HMR binding sites whereas 

H3K9me3 signal is present beyond the HMR binding sites. These sites are depleted 

for nucleosomes, a feature that was associated with insulator complex structures 

(Figure 24 C, D) (Bartkuhn et al., 2009). The loss of CP190 results in increased 

nucleosome occupancy and loss of HMR binding at Su(Hw)-bound gypsy 

insulator sites (Figure 24 C). Both observations are in agreement with CP190’s 

importance for gypsy insulator complex formation (Schwartz et al., 2012). In 

contrary, class 1 HMR binding sites are essentially lacking Su(Hw) but are 

enriched for BEAF-32. To assess CP190’s role at these sites, we assayed HMR and 

Histone H3 ChIP signal after CP190 knockdown (Figure 33 D). In contrast to 

HMR’s gypsy insulator binding sites (Figure 24), class 1 HMR binding sites seem to 

be CP190-independent. CP190 knockdown neither reduces HMR binding, nor affects 

nucleosome occupancy at these sites (Figure 33 D). This observation is in agreement 
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with previous studies on the binding dependency of BEAF-32 and CP190. Both 

proteins share numerous binding sites, but, in contrast to gypsy insulator complexes, 

BEAF-32 binds independent of CP190 (Schwartz et al., 2012). 
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Figure 33. HMR in class 1 HMR binding sites does not affect heterochromatin 

maintenance and seems to localize CP190-independent. (A) Western Blot analysis on cell 

lysates to assay protein levels after HMR knockdown. Tubulin protein detection served as 

control. (B) Line out for class 1 HMR binding sites orientation for analysis of heterochromatin 

after HMR knockdown. Bottom cluster of HMR binding sites within class 1 is vertically 

reflected. (C) Composite plots of HP1a and H3K9me3 ChIP signals at class 1 HMR binding 

sites after HMR knockdown. Orientation of genomic locations as described in (B) (D) 

Composite plots of HMR and Histone H3 ChIP signals at class 1 HMR binding sites after 

HMR knockdown. Orientation of genomic locations as described in (B). 
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4 DISCUSSION  

The protein HMR causes reproductive isolation of two closely related Drosophila 

species. HMR in D. melanogaster was intensively studied over the last decades and 

served as the most popular example of a speciation protein that associates with 

chromatin. However, a detailed understanding of HMR’s binding to the genome and 

the principles underlying HMR targeting to its binding sites was lacking. To the best 

of our knowledge this study presents the first genome-wide high resolution map of 

HMR’s binding across the D. melanogaster genome and provides a novel link 

between HMR and genomic insulator sites, a class of regulatory elements that rapidly 

evolved in Drosophila and gave rise to several Drosophila-specific proteins.  

 

4.1 HMR localizes to gypsy insulators and BEAF-32 insulators at 

heterochromatic regions 

Using anti-HMR antibody in chromatin-immunoprecipitation sequencing (ChIP-seq) 

experiments in D. melanogaster Schneider S2 cells, we demonstrate an extensive 

localization of HMR to two groups of genomic insulators. The first group, gypsy 

insulators, associates with Su(Hw) and other gypsy insulator complex components and 

locates along euchromatic chromosome arms. The second group, associates with the 

insulator protein BEAF-32 and locates at heterochromatic regions (illustrated in 

Figure 34). This second group is particularly interesting, as HMR, LHR and HP1a 

physically interact and were shown to localize at the same genomic binding sites 

(Alekseyenko et al., 2014; Brideau et al., 2006; Greil et al., 2007; Satyaki et al., 2014; 

Thomae et al., 2013). In our experimental setup, HMR locates to transcription start 

sites at the boundaries between HP1a-marked heterochromatin and active genes 

together with BEAF-32. These binding sites are embedded within larger 

heterochromatic regions such as pericentromeric regions, region 31 and the 4
th

 

chromosome (illustrated in Figure 34). Notably, we do not detect HMR as a 

constitutive component of heterochromatin such as HP1a or the histone mark 

H3K9me3.  
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Figure 34. HMR localizes to euchromatic gypsy (green) and heterochromatic BEAF-32 

insulators (yellow). HMR-bound gypsy insulators localize along chromosome arm regions 

and at the 5’ end of the repetitive elements gypsy and gtwin. HMR-bound BEAF-32 insulators 

localize at heterochromatic regions, primarily centromere-proximal regions, region 31 and the 

4
th
 chromosome. HMR borders HP1a-marked heterochromatin domains together with BEAF-

32 at the transcription start site (TSS) of actively transcribed heterochromatic genes. 

 

To the best of our knowledge, this study for the first time acquired high-resolution 

binding data of HMR under endogenous expression. The difference between this 

study and prior studies could be due to technical limitations such as mapping 

resolution or spatial and temporal HMR expression differences. Cytological staining 

of polytene chromosomes identified HMR and its interaction partner LHR at 

heterochromatic regions across chromosome arms, in particular at cytological region 

31 (Thomae et al., 2013). We found this region particularly enriched for the BEAF-

32-associated group of HMR binding sites. Further, we found HMR binding sites 

enriched at pericentromeric heterochromatin, an observation that resembles the 

centromere-proximal binding of HMR and LHR (Thomae et al., 2013). However, 

recent studies also report HMR localizing with repeats such as 2L3L, Dodeca and GA-

rich satellites (Satyaki et al., 2014), a finding that we cannot confirm with our ChIP 

experiments. ChIP data interpretation relies on the mapping of short sequences to the 

genome. In a conventional ChIP-seq analysis that only analyzes uniquely mapped 

reads, Drosophila centromere core regions and other highly repetitive arrays of 
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genomic DNA are excluded (Sun et al., 2003; Sun et al., 1997). To address this 

limitation, we performed repeat analysis for HMR and HP1a ChIP and confirmed that 

HP1a is associated to repeats such as satellite DNA. Consistent with our data on 

uniquely mapped regions across the chromosome arms (illustrated in Figure 34), we 

find HMR not associated to satellite DNA but to the repetitive elements gypsy and 

gtwin, the only repeats that harbor an insulator binding site within their sequence. The 

convergent results from cytological staining on Drosophila polytene chromosomes 

(Brideau et al., 2006; Thomae et al., 2013) and the ChIP-seq data from this study 

indicate that HMR’s binding is at least partially conserved. However, we cannot rule 

out that HMR’s binding is spatially and temporally regulated and varies over cell 

cycle, the tissue and the developmental stages. In fact, HMR displays a tissue-specific 

mRNA (Graveley et al., 2011) expression and a tissue-specific localization in 

cytological staining (Dr. Andreas Thomae, unpublished). Further, there is increasing 

evidence for a temporal regulation of HMR over the cell cycle. HMR’s binding to 

centromere-proximal regions is lost in mitosis (Thomae et al., 2013) and potentially 

linked to a proteasome-mediated degradation of HMR upon mitotic nuclear envelope 

breakdown. These cell-to-cell differences are not addressable in cell population-based 

analysis such as ChIP-seq. A comprehensive understanding of HMR’s association to 

chromatin during development, and within different cell types and tissues is still 

lacking and is going to be a highly interesting aspect for future research.  

Our findings further indicate that HMR does not directly bind to DNA. Even though, 

HMR’s MADF domains were associated with direct DNA binding activity (Barbash 

et al., 2003; Bhaskar and Courey, 2002), we found HMR’s binding sites mostly 

associated with DNA binding motifs assigned to the direct DNA binding activity of 

Su(Hw) or BEAF-32. The postulated direct DNA binding activity of HMR could be 

tested using an in vitro genome-wide DNA binding assay (Villa et al., 2016). How 

well such assay reflects the in vivo binding of the dosage-dependent HMR remains to 

be tested. 
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4.2 HMR’s genomic localization depends on insulator complexes 

Apart from descriptive binding information on HMR, detailed information on HMR’s 

recruitment to chromatin was lacking. Prior studies showed that the binding of the 

HMR interaction partner LHR is dependent on HMR but not vice versa (Satyaki et al., 

2014; Thomae et al., 2013). Further, LHR was reported to localize dependent on 

HP1a (Greil et al., 2007). However, in the current study as well as in former studies 

HMR, LHR and HP1a protein levels were shown to be mutually dependent which 

makes such studies difficult (Satyaki et al., 2014; Thomae et al., 2013). Here, we took 

advantage of the S2 cell system being suitable for highly efficient RNAi-mediated 

protein knockdown strategies to test the targeting mechanism of HMR to its genomic 

binding sites. By efficiently depleting CP190, a crucial component of the gypsy 

insulator complex (Schwartz et al., 2012), we could demonstrate that the binding of 

HMR to genomic gypsy insulators depends on the integrity of the residing insulator 

complex. One possibility is that HMR interacts physically with one or more 

components of the gypsy insulator complex. Immunoprecipitation experiments on 

CP190 in embryonic nuclear extract (Moshkovich et al., 2011) identified HMR as a 

prominent interactor of CP190 (Dr. Elisa Lei, personal communication). Further, 

Su(Hw) copurified with HMR and LHR while Mod(mdg4) copurified with HMR 

(Thomae et al., 2013). However, experiments performed by immunoprecipitating 

endogenously expressed HMR and LHR could not finally confirm the reported 

interactions (Figure S2). To which extent HMR and insulator complex components 

directly interact remains to be tested. Apart from a direct recruitment of HMR by the 

insulator complex, it is possible that HMR is directed to its genomic sites by a 

chromatin feature that is exposed in the presence of the insulator complex. Insulator 

complexes localize in nucleosome free regions (Bartkuhn et al., 2009; Schwartz et al., 

2012). The loss of the insulator complex results in increased nucleosome occupancy 

at HMR binding sites, which in turn could result in masking some other HMR binding 

feature. In contrast to the gypsy insulator, CP190 loss did not impair the binding of 

HMR to BEAF-32-associated insulators. It remains to be addressed what recruits 

HMR to the BEAF-32-associated heterochromatic sites in the genome. At this point, 

we speculate that HMR is recruited to heterochromatin by the BEAF-32 insulator 

complex, analogous to the CP190-dependent gypsy insulator complex along the 

chromosome arms. In contrast to gypsy insulators, however, BEAF-32 insulators act 

independently of CP190 (Schwartz et al., 2012). In agreement with that, CP190 
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knockdown disrupts cellular gypsy insulator structures and HMR’s binding to 

genomic gypsy insulators but does not disturb HMR’s binding to BEAF-32 insulators 

in ChIP and HMR’s centromeric localization in immunofluorescence. However, in 

contrast to HP1a and gypsy insulator complex components, BEAF-32 was not 

enriched in HMR or LHR immunoprecipitations (Thomae et al., 2013). As HMR and 

LHR interact with HP1a (Alekseyenko et al., 2014; Brideau et al., 2006; Greil et al., 

2007; Satyaki et al., 2014; Thomae et al., 2013), it is also possible that HMR gets 

recruited to these genomic binding sites by HP1a. Paradoxically, HMR is only 

detected at HP1a heterochromatin boundaries. A similar pattern was reported for the 

heterochromatin boundary-factor Epe1 in yeast (Braun et al., 2011). Epe1 is recruited 

to heterochromatin by physical interactions but is then actively removed from the 

heterochromatin body by specific polyubiquitylation and degradation and persists 

only at the boundaries (Braun et al., 2011). HMR localization seems to rather happen 

downstream of HP1a.  This is further supported by the fact that HMR knockdown is 

not affecting HP1a and H3K9me3 marks, also not at HMR binding sites. However, 

testing a potential recruitment of HMR by HP1a with HMR ChIP after HP1a 

knockdown could be difficult as cellular HMR and LHR protein levels are sensitive to 

HP1a. In such an approach, it has to be clarified whether changes in HMR binding are 

specific. This can be done by comparing HP1a-associated HMR binding sites against 

an internal control group which is not associated to HP1a. 

 

4.3 Is HMR a functional insulator complex component? 

In the previous sections, localization and recruitment of HMR to its genomic binding 

sites were discussed. Even though, the HMR binding sites identified in this study 

share features with insulator protein binding sites, this does not necessarily link HMR 

to insulator complex function. Whether HMR plays a role at its genomic binding sites 

in the maintenance or establishment of insulator complexes is not known. CP190 

serves as an adaptor protein for gypsy insulator complexes, dramatically changes 

nucleosome occupancy and insulator bodies built by CTCF and gypsy (Bartkuhn et 

al., 2009; Gerasimova et al., 2007; Schwartz et al., 2012). In contrast to that, HMR 

loss neither influences nucleosome occupancy, nor insulator bodies. Importantly, 

HMR localizes only to a subset of the identified insulator sites, indicating that HMR 

acts downstream of general insulator complex components and is not responsible for 

their maintenance.  
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Even though HMR’s binding seems to depend on the insulator complexes and not vice 

versa, it is possible that HMR establishes insulator complexes de novo. This could be 

mediated by the interaction of HMR with insulator complex components. In an 

experiment where HMR was artificially targeted between an enhancer and a reporter 

gene promoter, HMR strongly interfered with the reporter gene expression (Thomae 

et al., 2013). This property is highly reminiscent of the described enhancer blocking 

activity of insulator proteins (reviewed in (Gaszner and Felsenfeld, 2006; Schwartz 

and Cavalli, 2017; West et al., 2002)) and potentially involves the establishment of an 

insulator complex structure. Such putative insulator recruitment function of HMR 

could be highly relevant in hybrids, where HMR binding sites are gained (Thomae et 

al., 2013). HMR’s gained binding sites might then serve as recruitment platforms for 

novel unspecific insulator sites. 

In summary, we found HMR not being associated to classical heterochromatin 

regions but localizing to genomic insulator sites. We could demonstrate that HMR’s 

binding to euchromatic gypsy insulators depends on the presence of the gypsy 

insulator complex but not vice versa. The targeting mechanism of HMR to BEAF-32 

insulators at heterochromatic genes remains to be solved. However, this group of 

HMR binding sites resembles previous cytological studies that describe HMR being 

associated to several heterochromatic regions. 

 

4.4 HMR mediates the expression of heterochromatic genes – 

potentially in concert with BEAF-32 

The high density of HMR binding sites at pericentromeric heterochromatin correlates 

well with the strong colocalization of HMR and the centromeric H3 variant CID in 

immunolocalization experiments (Thomae et al., 2013). However, the fact that the 

purification of chromatin containing the centromeric H3 variant CID did not identify 

HMR argues against HMR being a bona fide component of the centromere core 

region (Barth et al., 2014). Notably, the copies of gypsy are located at centromeric 

and/or pericentromeric regions (Heredia et al., 2004). However, CP190 knockdown 

that abolishes HMR binding to the 5’ gypsy insulator does not affect the centromeric 

localization of HMR, indicating HMR being recruited to the centromere in a different 

manner. Further, centromeric satellite DNA is lacking in HMR ChIP. We therefore 

assume that the binding of HMR and BEAF-32 to the TSS of actively transcribed 

heterochromatic genes result in HMR’s cytological localization to the centromere. 
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Interestingly, HMR loss and BEAF-32 loss result in phenotypes that are similar and 

linked to centromeric function. In S2 cells, either the knockdown of BEAF-32 or the 

knockdown of HMR causes mitotic chromosome segregation defects (Emberly et al., 

2008; Thomae et al., 2013). Further, flies that carry a mutation in Hmr or flies in 

which BEAF-32 is only contributed maternally both display reduced female fertility 

(Aruna et al., 2009; Roy et al., 2007). In contrast to BEAF-32, the gypsy insulator 

proteins Mod(mdg4) and CP190 are not required for oogenesis (Baxley et al., 2011; 

Chodagam et al., 2005). This raises a hypothesis in which the lack of HMR binding to 

BEAF-32-associated heterochromatic regions is responsible for the female sterility 

phenotype observed in Hmr mutant flies. But how can we explain these phenotypes 

on a mechanistic level that involves HMR’s and BEAF-32’s action on chromatin?  

It was suggested that the BEAF-32-associated phenotype is caused by the impact of 

BEAF-32 on the transcription of genes involved in cell cycle regulation (Emberly et 

al., 2008). Such connection to cell cycle regulator genes was not observed for the 

genes misregulated in Hmr mutant flies (Satyaki et al., 2014). However, our analysis 

on published transcription data indicates that loss of either HMR or BEAF-32 result in 

a similar effect on heterochromatic gene transcription. Whether these changes in 

transcription are due to direct transcriptional regulation or whether these are 

secondary effects due to the mitotic defect phenotype or an overall altered chromatin 

structure remains to be solved. Importantly, also Su(Hw) is required for female 

germline development (Baxley et al., 2011; Klug et al., 1968; Parkhurst et al., 1988). 

This function however, is independent from the other gypsy insulator proteins CP190 

and Mod(mdg4). It was shown that Su(Hw) can serve as a transcriptional regulator 

which has a direct impact on its germline-associated phenotype (Soshnev et al., 2013). 

Even though a critical Su(Hw)-regulated target gene, Rbp9 (Soshnev et al., 2013), 

was not affected in Hmr mutant tissue (Satyaki et al., 2014), it demonstrates that a 

direct regulation of few target genes might also cause HMR and BEAF-32 mutant 

phenotypes. 

The mechanisms by which BEAF-32 affects gene transcription are currently not well 

understood, but BEAF-32 is often found near paused RNA Polymerase II (Jiang et al., 

2009). There is growing evidence that BEAF-32 fulfills a role in gene expression by 

regulating RNA Polymerase II promoter proximal pausing (Duarte et al., 2016; Li and 

Gilmour, 2011) (Prof. John T. Lis, personal communication). Additionally, BEAF-32 

localizes not only to the promoter of heterochromatic genes but also, together with 

MOF, upstream of MSL-bound genes (Philip et al., 2012). This is not the case for the 
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insulator proteins CP190, Su(Hw) and CTCF (Philip et al., 2012). MOF and the MSL 

complex are part of the dosage compensation system that equalizes X-linked gene 

expression between males and females (reviewed in (Conrad and Akhtar, 2012; 

Straub and Becker, 2007)). Even though the lack of BEAF-32 was not found to affect 

dosage compensation, it disrupts male X chromosome morphology (Roy et al., 2007). 

Interestingly, male X chromosome morphology is also highly sensitive to Su(var)3-7 

and HP1a protein levels (Spierer et al., 2008; Spierer et al., 2005). Both proteins are 

interactors of HMR (Thomae et al., 2013). Apart from its impact on male X 

chromosome morphology, the heterochromatic factor Su(var)3-7 is required for 

oogenesis and female fertility (Basquin et al., 2014). It is tempting to speculate that 

the morphologic phenotypes of HMR, LHR, BEAF-32 and Su(var)3-7 are not due to 

site-specific actions but rather due to severe changes in chromatin structure and 

integrity. Heterochromatin is crucial in mediating chromosome segregation and 

telomere protection (Allshire and Karpen, 2008; Andreyeva et al., 2005; Raffa et al., 

2011). Therefore, HMR-related phenotypes, such as mitotic defects in cultured cells 

and proliferative fly tissue and telomere lengthening (Satyaki et al., 2014), point 

towards a functional role of HMR in setting up heterochromatin. Transcription 

analysis in Hmr mutant flies revealed a strong misregulation of heterochromatic genes 

as well as repeat sequences (Satyaki et al., 2014). The heterochromatic genes affected 

by HMR are present at centromere-proximal regions and the 4
th

 chromosome, which 

are both repeat-rich heterochromatic regions (Lohe et al., 1993; Sun et al., 2003; Sun 

et al., 1997). It is possible that HMR specifically functions on these genes to ensure 

their expression in a repeat-rich and transcriptionally silent environment. In turn, this 

gene expression could ensure the surrounding heterochromatin integrity (Yasuhara 

and Wakimoto, 2006). Mechanistically, HMR could serve as an insulator barrier 

together with BEAF-32 in antagonizing the spreading of repressive heterochromatin 

marks (Gaszner and Felsenfeld, 2006; Schwartz and Cavalli, 2017; West et al., 2002). 

We can relate the set of misregulated heterochromatic genes well to our HMR binding 

data. However, we do not find HMR directly binding to misregulated repeats apart 

from gypsy and gtwin. This indicates that the effect of HMR to repeat transcription is 

not mediated by direct binding of HMR. The misregulation of TEs is a stress-response 

and therefore often associated with stress-related phenotypes such as mitotic defect 

(Dr. Severine Chambeyron, personal communication). Therefore, the TE 

misregulation upon HMR loss is not necessarily a direct effect of HMR but could also 

be a consequence of the mitotic defect phenotype. To shed light on this, we aimed to 
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test a putative role of HMR on heterochromatin by monitoring HP1a and H3K9me3 

binding after HMR knockdown but could not detect any effect of HMR on 

heterochromatin maintenance. Whether HMR has a direct role in TE repression by 

establishing or maintaining heterochromatin remains to be tested in future studies. A 

functional role of HMR in heterochromatin establishment and maintenance could be 

strongly dependent on development timing and development-specific expression of 

HMR. The concepts of heterochromatin initiation and maintenance were dissected in 

S. pombe first (Grewal, 2010; Moazed, 2009) but similar is true for Drosophila. For 

example, the Drosophila PIWI is crucial for the initiation but not for the maintenance 

of H3K9me3 mark across repeats in ovaries. This temporal-specific effect of PIWI on 

H3K9me3 was demonstrated by inducing PIWI knockdown at various developmental 

stages and monitoring H3K9me3 by ChIP (Dr. Severine Chambeyron, personal 

communication). 

Overall, it is tempting to speculate that HMR is part of a functional protein network 

together with LHR, Su(var)3-7 and the insulator protein BEAF-32, in setting up 

chromatin morphology and heterochromatin in particular by maintaining gene 

expression in a repeat-rich environment.  

 

4.5 How do our findings help in understanding HMR’s gain-of-

function in hybrids? 

Hybrid flies lack imaginal discs and suffer from impaired cell proliferation in mitotic 

tissues such as the larval brain (Bolkan et al., 2007). HMR and LHR were shown to 

localize to centromeres and pericentromeric heterochromatin, where they contribute 

to chromosome segregation in mitosis and to the suppression of transposable elements 

(Satyaki et al., 2014; Thomae et al., 2013). More recently, it was shown that 

knockdown of the hybrid incompatibility factor gfzfsim restores cell proliferation in 

hybrid male larval brain and rescues hybrid lethality (Phadnis et al., 2015). These 

findings implicate that the reason for hybrid male lethality are cell proliferation 

defects. In such a scenario, the combination of HMRmel and LHRsim in hybrids causes 

dysfunction at centromeres or pericentromeric heterochromatin, which then triggers a 

mitotic cell cycle checkpoint set by gfzf (Phadnis et al., 2015).  

How does a better understanding of HMR’s binding properties in pure species help in 

dissecting HMR’s deleterious function in hybrids? Importantly, the pure species 

function is distinct from the detrimental gain-of-function in a hybrid background. As 
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discussed in the introduction section, HMR is not essential in the pure species 

background but gains a lethal function in the hybrid background. Polytene 

chromosomes from hybrid male larvae show a widespread mislocalization of HMR 

across the genome (Thomae et al., 2013), indicating that genomic localization matters 

for D.mel/D.sim hybrid incompatibility. Thomae et al. could mirror such 

mislocalization by HMR overexpression and proposed that the gain of HMR binding 

sites is due to increased HMR and LHR protein levels in hybrids (Thomae et al., 

2013).  

In this first scenario, HMR’s function is conserved across species and differences 

between species consist primarily in HMR and LHR protein levels. First, amino acid 

residues that are critical for hybrid incompatibility are conserved across species, and 

second, Hmr orthologs from D. simulans and D. mauritiana can partially rescue 

female fertility defects in Hmr mutant D. melanogaster flies (Aruna et al., 2009; 

Satyaki et al., 2014). Purely protein dosage-driven changes in localization and 

function were described for other chromatin components including the 

heterochromatic Su(var) proteins  (Eissenberg et al., 1990; Eissenberg et al., 1992; 

Locke et al., 1988; Schotta et al., 2002; Spierer et al., 2008). The characteristics of 

HMR binding sites gained in hybrids are not known. It is possible that HMR localizes 

to other genomic insulator binding sites, to heterochromatic regions or to other, 

unrelated genomic regions. At these sites, HMR could have the potential to fulfill its 

pure species function at a non-designated site in the genome. This could be 

recruitment of an insulator complex accompanied by chromosome conformational 

changes, gained enhancer-blocking or barrier activity, establishment of 

heterochromatin, bidirectional transcription or others. Overall, the range of 

possibilities is broad and highly speculative.  

In a second scenario, hybrid incompatibility is caused by a species-specific function 

of HMR. HMR orthologues exhibit different properties in a hybrid background. This 

is indicated by the fact that D.mel/D.sim hybrid males rescued by Hmrmel mutation are 

not killed by Hmr orthologs from sibling species (Barbash et al., 2004). Notably, the 

pure species function that can be complemented with sibling species orthologues 

(Aruna et al., 2009; Satyaki et al., 2014) is distinct from the detrimental function in 

hybrids. Even though Thomae et al. concluded that protein interactions are rather 

similar for HMR and LHR orthologues, the interaction between LHR and Su(Hw), for 

example, is D. melanogaster-specific (Thomae et al., 2013). Such differences might 



   DISCUSSION 

101 

 

be sustainable in the pure species background but detrimental in the hybrid 

background.  

Taking both options into account, it could also be that intrinsic HMR properties are 

crucial in defining HMR protein levels in a hybrid background. Such could be the 

presence or absence of posttranslational modifications on residues that could result in 

stabilization or destabilization of the protein or severe posttranslational processing 

such as enzymatic cleavage accompanied with degradation. 

In any case, it is likely that the integrity of heterochromatin is not preserved under 

these conditions. HMR mutations, HMR knockdown, HMR overexpression and 

hybrids, all are accompanied by mitotic defects and misregulation of heterochromatic 

genes and transposable elements (Satyaki et al., 2014; Thomae et al., 2013). Even 

though we did not observe HMR binding extensively to repeats, we could clearly see 

that HMR-bound heterochromatic genes are affected in HMR and BEAF-32 mutant 

flies. Whether the transcriptional changes are cause or consequence of the mitotic 

defect phenotypes associated with these mutations remains to be solved. Further, 

transcriptional changes can be attributed to delay in development, differences in tissue 

types, or impaired heterochromatin. Species-specific heterochromatin can cause 

mitotic chromosome segregation defects (Ferree and Barbash, 2009) as 

pericentromeric heterochromatin ensures centromere and kinetochore integrity 

(reviewed in (McKinley and Cheeseman, 2016)). In addition, heterochromatin 

mediates chromosome segregation for the X and the 4
th

 chromosome in 

D. melanogaster by the formation of heterochromatic threads in mitosis and meiosis 

(Baumann et al., 2007; Chan et al., 2007; Dernburg et al., 1996; Hughes et al., 2009; 

Karpen et al., 1996; Theurkauf and Hawley, 1992). A failure of pairing 

heterochromatic regions results in a failure of chromosome segregation and mitotic 

arrest. The 359-bp satellite repeats on the X chromosome, for example, were shown to 

cause widespread mitotic defects and hybrid lethality from D. simulans mothers and 

D. melanogaster fathers (Ferree and Barbash, 2009).  

In this respect, it is also notable that hybrid lethality depends on the D. melanogaster 

X chromosome, as male hybrids that carry a D. simulans X chromosome and an 

autosomal copy of Hmrmel survive (Barbash, 2010; Hutter et al., 1990). The 

D. melanogaster dosage compensation system that upregulates expression on the male 

X chromosome (reviewed in (Conrad and Akhtar, 2012; Straub and Becker, 2007) 

shows signs of positive selection and was proposed to cause hybrid lethality by 

species-specific divergence of the involved components (Pal-Bhadra et al., 2004; 
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Rodriguez et al., 2007). Using mutants of four main D. melanogaster dosage 

compensation genes, Barbash genetically tested whether failure in dosage 

compensation decreases hybrid male viability and concluded that it was rather 

increased (Barbash, 2010). However, it was also shown that the chromatin structure of 

the male X chromosome is particularly dependent on the dosage of the 

heterochromatic proteins Su(var)3-7 and HP1a (Spierer et al., 2008; Spierer et al., 

2005). Both proteins interact with HMR and LHR (Thomae et al., 2013). Given the 

additional link of BEAF-32 to dosage compensation, it could well be that these 

pathways are highly interconnected, for instance by a mass action-based model in 

which the protein dosage of the corresponding factors is essential (Locke et al., 1988). 

Based on the law of mass action, a dosage-dependent influence was, for example, 

proposed for the Su(var) proteins and their extent on the assembly of heterochromatin 

(Locke et al., 1988). Altogether, it is important to note that hybrid incompatibility 

cannot be nailed down to Hmr, Lhr, or other HI genes alone but involves the interplay 

of such with a species-specific cellular background.  

 

4.6 HMR’s divergent evolution could have been triggered by 

changes in repeat copy number 

How hybrid incompatibility genes evolve and what drives their rapid evolution is a 

long standing question in the field of evolutionary research. Heterochromatin was 

considered as one of the key components in prior models that propose a molecular 

arms race between fast evolving sequences such as short satellite repeats, transposable 

elements and their corresponding regulatory chromatin surrounding which results in 

adaptive changes (Brown and O'Neill, 2010; Crespi and Nosil, 2013; Johnson, 2010; 

Maheshwari and Barbash, 2011; Presgraves, 2010). In the case of Drosophila, 

D. simulans has a smaller genome, with about 4-fold less satellite DNA (Bosco et al., 

2007) and less transposable elements (Dowsett and Young, 1982; Lerat et al., 2011; 

Vieira and Biemont, 2004; Vieira et al., 2012) than its sibling species 

D. melanogaster. Gypsy and gtwin are unique among the transposable elements as 

they encode full-length envelope proteins in various Drosophila species. These 

species range from very close D. melanogaster sibling species to more distant siblings 

such as D. virilis (Ludwig and Loreto, 2007; Mejlumian et al., 2002). This finding and 

the phylogeny of gypsy and gtwin elements across various host species support a 
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hypothesis by which their copies are able to spread horizontally between sexually 

isolated species (Heredia et al., 2004; Ludwig and Loreto, 2007). 

However, two findings do not match with a direct molecular arms race scenario 

between HMR and TEs. First, we did not find HMR bound to transposable elements 

apart from gypsy and gtwin. Second, most of the transposable elements which are 

misregulated in Hmr mutant flies are transpositionally inactive in the D. melanogaster 

species (Kofler et al., 2012; Satyaki et al., 2014). 

Alternatively, HMR could have evolved to ensure the expression of heterochromatic 

genes surrounded by repetitive DNA. There is growing evidence that heterochromatin 

and its components are important for the transcription of genes embedded in repetitive 

DNA (Yasuhara and Wakimoto, 2006). Class 1 HMR binding sites associate with 

heterochromatin and transcriptionally active genes. We therefore want to propose a 

model where HMR serves as an activating factor to keep these genes actively 

transcribed under the evolutionary pressure of a gained number of repetitive DNA 

(illustrated in Figure 35 A). At least two evidences support this model. First, the 

expression of such genes is affected in Hmr mutant flies and also in BEAF-32 mutant 

flies. Second, these regions are subject to repetitive DNA evolution and substantially 

differ in D. melanogaster and D. simulans (Bosco et al., 2007; Dowsett and Young, 

1982; Lerat et al., 2011; Vieira and Biemont, 2004; Vieira et al., 2012). 

D. melanogaster exhibits a higher expression of HMR and has a higher amount of 

repetitive DNA then D. simulans where HMR is virtually absent (Thomae et al., 

2013) and the amount of repetitive DNA is lower. What triggered the evolution of 

HMR with respect to changes in repetitive DNA elements if HMR is not capable to 

bind such sequences? The heterochromatic protein Su(var)3-7 is capable to bind short 

repeats directly  (Cleard et al., 1997; Delattre et al., 2000). Su(var)3-7 evolved fast 

and is, in contrast to HP1a and Su(var)3-9, Drosophila-specific (Jaquet et al., 2006), 

same as HMR. According to that, we speculate that Su(var)3-7 served as a ‘molecular 

sensor’ for changes in repetitive DNA. In turn, this resulted in an adaptive change for 

HMR and LHR, both interacting with Su(var)3-7 (illustrated in Figure 35 A) 

(Thomae et al., 2013). Notably, the cellular function of Su(var) proteins, as well as the 

ones of HMR and LHR are highly dependent on the protein’s concentration 

(Eissenberg et al., 1990; Eissenberg et al., 1992; Locke et al., 1988; Satyaki et al., 

2014; Schotta et al., 2002; Thomae et al., 2013). In that way, changes in repeat copy 

number could have spurred a cascade of mass action-based changes. From these 

changes, HMR could have gained a function in activating heterochromatic gene 
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transcription or, more general, supported adaptive chromatin changes due to increased 

repeat copy number (illustrated in Figure 35 A). Such scenario would constitute an 

example of how a chromatin-related molecular arms race can drive the evolution of 

hybrid incompatibility (illustrated in Figure 3, Figure 35). 

 

4.7 Did HMR and BEAF-32 coevolve to ensure gene expression 

under the selective pressure of genome sequence changes? 

The class 1 HMR binding sites fit a model that proposes adaptive changes in HMR 

due to changes in repeat copy number. A preliminary analysis on the evolutionary 

conservation of HMR binding sites suggest that HMR class 1 binding site regions are 

indeed less conserved than other HMR or insulator protein binding sites (Figure S3). 

As pointed out in prior sections, HMR and BEAF-32 might act in concert at these 

genomic sites to ensure heterochromatic gene transcription.  

Did HMR, BEAF-32 and other heterochromatic components evolve interdependently 

in fulfilling their function? HMR, LHR and Su(var)3-7, the proteins involved in the 

proposed model of molecular arms race, are Drosophila lineage-specific. Notably, 

phylogenetic analysis demonstrated that non-CTCF insulator proteins such as 

Su(Hw), CP190, Mod(mdg4) and BEAF-32 are limited to arthropods and were 

successively gained during evolution (Heger et al., 2013; Schoborg and Labrador, 

2010). Further, it reveals that BEAF-32 is exclusively Drosophila lineage-specific, 

same as HMR, LHR and Su(var)3-7 (Pauli et al., 2016). It is striking that most of 

these proteins belong to the MADF-BESS domain family. This is an evolutionary 

young protein family and has only few members in Drosophila which are presumably 

derived from a common ancestor gene (Shukla et al., 2014). HMR, LHR, Su(var)3-7 

and BEAF-32 all govern MADF and/or BESS domains. Further, isoforms of the 

Drosophila protein dADD1, an orthologue to the ADD domain of human ATRX, 

gained MADF domains suggesting a divergence of the corresponding gene in 

Drosophila (Lopez-Falcon et al., 2014) (Dr. Addie Kolybaba-Steward, Dr. Anne-

Kathrin Classen, personal communication). This is particularly interesting as the 

human ATRX is involved in heterochromatin formation and transposon silencing 

(Bassett et al., 2008; Groh and Schotta, 2017; Sadic et al., 2015). Apart from that, 

dADD1 interacts with HP1a (Alekseyenko et al., 2014; Lopez-Falcon et al., 2014).  

Also another HI protein, which is Overdrive, belongs to the MADF-BESS domain 

family. Altogether, heterochromatin components (Su(var)3-7, dADD1), insulator 
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protein BEAF-32 and HI proteins (HMR, LHR, Overdrive) are originating from the 

MADF-BESS domain family and show signs of rapid evolution. As discussed before, 

most of these proteins are interconnected, either functionally or by biochemical 

interaction, often via their BESS domain. We therefore speculate that, in a first step, 

these proteins coevolved, and, in a second step, adaptively evolved in a molecular 

arms race with repetitive DNA (illustrated in Figure 35). Shared domain architecture 

is not limited to MADF and BESS. Interestingly, also the insulator protein 

Mod(mdg4) and the hybrid incompatibility protein gfzf share a rarely occurring 

FLYWCH zinc finger domain (Phadnis et al., 2015). How exactly the birth of these 

genes and their gain or loss of function in diverse Drosophila species occurred during 

evolution remains to be solved. On the one hand, HMR is present in D. melanogaster 

and D. simulans and HMR orthologues can substitute sibling species HMR function 

(Aruna et al., 2009; Satyaki et al., 2014). On the other hand, HMR expression levels 

are substantially higher in D. melanogaster (Thomae et al., 2013). Whether HMR 

gained a species-specific function in D. melanogaster or lost an ancestral function in 

D. simulans is unclear.  

Further, it is possible that HMR acquired multiple functions that relate to 

heterochromatin and genomic insulators. HMR’s class 1 binding sites at 

heterochromatic genes could be linked to evolutionary changes in repeat copy 

number, heterochromatic gene transcription and female fertility (see above), whereas 

HMR’s function at gypsy insulator sites could have been gained another time in 

evolution. Notably, heterochromatin factor Su(var)3-7 and insulator proteins share 

another feature: they bind to rapidly changing DNA sequence and adaptively change 

their genomic binding sites whereas their binding motifs and their DNA binding 

domains are conserved (Ni et al., 2012; Yang et al., 2012). Insulator proteins 

presumably have a role in coordinating genome organization and function during 

evolution. Studies that come to this conclusion were done on the Drosophila insulator 

proteins CTCF and BEAF-32, comparing binding sites in the species 

D. melanogaster, D. simulans, D. yakuba and D. pseudoobscura (Ni et al., 2012; 

Yang et al., 2012). In this four Drosophila species, the insulators binding motifs are 

virtually identical. However, the number and genomic position of insulator binding 

sites diverged over time. Newly evolved binding sites of CTCF and BEAF-32 are 

correlating with the occurrence of new genes, changes in gene locations, genome 

rearrangements and genome size changes during Drosophila evolution (Ni et al., 

2012; Yang et al., 2012). These findings suggest a strong positive selection of newly 
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gained insulator binding sites during evolution. In preliminary analysis, we observe 

that HMR indeed binds together with insulator proteins in regions at the genome that 

are less conserved across D. melanogaster and D. simulans than regions bound by 

insulator proteins in the absence of HMR (Figure S3). Whether HMR fulfills a 

function at these sites and which fraction of the HMR binding regions (gene body, 

regulatory regions, neighboring repeats) differ between species, however, is unknown. 

A very interesting example of a new born D. melanogaster-specific gene bound by 

HMR (Figure S4) is sphinx, a non-coding RNA gene that is involved in regulating 

D. melanogaster male courtship behavior (Chen et al., 2011). It could well be that the 

birth and regulation of genes such as sphinx, that affect phenotypic traits, constitute a 

critical step in prezygotic reproductive isolation. 
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Figure 35. Model of how repetitive DNA and insulator proteins result in adaptive 

evolution and species-specific function of HMR. (A) (1) Active transcription of 

heterochromatic genes surrounded by repeats which are sensed and regulated by a mass 

action-based protein network that consists in Su(var) proteins, HMR, LHR and insulator 

proteins. (2, 3) Increase in repeat copy number antagonizes heterochromatic gene 

transcription and therefore (4) triggers mass action-based functional adaption in the protein 

network. (5) HMR and BEAF-32 ensure heterochromatic gene transcription. (B) Successive 

gain of insulator proteins in insects during evolution. The MADF-BESS domain family gives 

rise to a mass action-based protein network that is involved in the regulation of transposable 

elements and adaptively changed due to changes in repeat copy number. 
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Figure S1. Western Blot of CoImmunoprecipitates from HMR-Flag2 expressing S2 cell cross 

linked chromatin using anti-HMR, anti-LHR, anti-HP1a and anti-FLAG (A2220 and F1804) 

antibody. Supernatant of IP reactions was loaded after reverse crosslinking. Co-depletion of 

HMR and LHR in anti-FLAG IP and partial depletion of HMR in anti-HMR IP and HP1a in anti-

HP1a IP. Protein A/G sepharose beads served as negative control. 

 

 
 
Figure S2. Western Blot of CoImmunoprecipitates from S2 cell nuclear extract using anti-

HMR and anti-LHR antibody shows interaction of HMR, LHR and the insulator proteins 

CP190 and CTCF. Protein A/G sepharose beads served as negative control. 
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Figure S3. HMR binding sites are enriched for fast evolving BEAF-32 binding sites 

(part1/2) (see following page). 
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Figure S3. HMR binding sites are enriched for fast evolving BEAF-32 binding sites  

(part2/2) Heatmaps of BEAF-32 ChIP signals derived from D. melanogaster (D.mel) and 

D. simulans (D.sim) embryos (Yang et al., 2012). Signals are centered around TSS-annotated 

BEAF-32 binding sites (part 1/2 A), TSS-annotated Su(Hw) binding sites (part 1/2 B) and 

HMR binding sites (part 2/2), clustered according to adjacent HP1a signals and sorted by 

HMR intensity. To display D.sim-derived BEAF-32 ChIP signals according to the homologous 

D.mel genome position, D.mel genomic positions were lifted into the D.sim genome using 

liftOver. In case of a missing homologous sequence, the genome position is marked in 

orange. The significance of difference between the proportion of missing genome positions in 

class 1 and class 2 was estimated with p-values calculated with proportional test. 

 

 
 
Figure S4. Genome browser view of HMR, the insulator proteins CP190, Mod(mdg4), Su(Hw) 

and CTCF (Ong et al., 2013) in proximity to the D. melanogaster-specific gene sphinx (Chen 

et al., 2011). 
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ABBREVIATIONS 

aa amino acid  

Ab Antibody 

AFA Adaptive Focused Acoustics 

ATRX Alpha-thalassemia X-linked mental retardation 

BEAF-32 Boundary Element Associated Factor 32 

BESS BEAF, Su-Var(3-7), Stonewall-like 

BF Bright field 

bp Basepair(s) 

ChIP Chromatin immunoprecipitation 

CENP Centromeric protein 

CID Centromer identifier in Drosophila 

CRISPR clustered, regularly interspaced, short palindromic repeats 

CP190 Centrosomal Protein 190 

CD chromo domain 

CSD chromo-shadow domain 

Ctrl Control 

DAPI 4',6-diamidino-2-phenylindole 

DCC Dosage compensation complex 

DGRC Drosophila genomics resource center 

CBP CREB-binding protein 

Ct threshold cycle number 

CTCF CCCTC-binding factor 

D. mel Drosophila melanogaster 

D. sim Drosophila simulans 

Da Dalton 

dADD1 Drosophila ADD1 

DGRC Drosophila genomics resource center 

DNA Deoxyribonucleic acid 

dsRNA Double stranded RNA 

ECL enhanced chemiluminescent 

eve even-skipped 

for forward 

g standard gravity 

gfzf glutathione-S-transferase-containing FLYWCH zinc finger protein  

gRNA guide RNA 

GFP Green fluorescent protein 

GST Glutathione S-transferase 

gtwin gypsy-twin 

HI Hybrid Incompatibility 

Hmr Hybrid male rescue 

Hmrmel Drosophila melanogaster Hmr 

Hmrsim Drosophila simulans Hmr 

hr Hour 

HRP Horseradish Peroxidase 

HP1a Heterochromatin Protein 1a 

HR Homologous recombination 

IF Immunofluorescence 

IgG immunoglobulin G 

IP Immunoprecipitation  

IQD  Interquartile distance 
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IVT in vitro transcription 

kb Kilobase(s) 

kDa Kilodalton 

Lhr Lethal hybrid rescue 

Lhrmel Drosophila melanogaster Lhr 

Lhrsim Drosophila simulans Lhr 

LTR long terminal repeat 

MADF Myb/SANT-like in ADF1 

MBP Maltose-Binding Protein  

min Minute(s) 

mL Milliliter 

Mod(mdg4) Modifier of mdg4 

modENCODE MODel organism ENCyclopedia Of DNA Elements 

MOF Males absent on the first 

mRNA messenger RNA 

MSL Male specific lethal 

NA numerical aperture 

NHEJ non-homologous end joining  

NLP nucleoplasmin-like protein 

NPC nuclear pore complex 

NPV nuclear pellet volume 

nt nucleotide(s) 

OdsH Odysseus-site homeobox 

Ovd Overdrive 

PAGE Polyacrylamide gel electrophoresis 

PBS Phosphate-buffered saline 

PCV pure cell volume  

PRC Polycomb Repressive Complex 

Prdm9 PR domain-containing protein 9 

qPCR Quantitative real-time Polymerase Chain Reaction 

rev reverse 

RIPA Radioimmunoprecipitation assay 

RNA Ribonucleic acid 

RNAi RNA interference 

RPM Reads Per Million mapped reads 

s second(s) 

SD standard deviation 

SDS Sodium dodecyl sulfate 

Su(Hw) Suppressor of Hairy wing 

Su(var)205 Suppressor of variegation 205 

TE transposable element 

TSS Transcription start site 

TTS Transcription termination site 

UCSC University of California, Santa Cruz 

UTR Untranslated region 

UV Ultraviolet 

WB Western Blot 

wt wild type 

Zhr Zygotic hybrid rescue 
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