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ABSTRACT 

Olfaction plays a fundamental role in detection and discrimination of the environment 

in all vertebrates, including teleosts, such as the zebrafish, Danio rerio. The zebrafish 

olfactory system is capable to detect a wide range of chemical compounds which trigger or 

contribute to behaviours crucial for survival such as foraging, migration, intraspecific 

communication, reproduction and predator avoidance. In contrast to terrestrial vertebrates, the 

teleost olfactory system lacks a separate vomeronasal organ (VNO), which is known to be 

involved in pheromone detection. However, although the zebrafish olfactory system consists 

only of one paired olfactory epithelium (OE), the containing olfactory sensory neurons 

express olfactory receptors related to those of the main OE and VNO of mammals. Thus, the 

fish olfactory system is capable to detect and process pheromones and show a context related 

behavioral response. Beside many olfactory driven social behaviors, kin recognition is of 

particular relevance to the field of neurobiology, because it depends on an imprinting 

paradigm which requires a two step learning process of olfactory and visual cues during a 

defined time window early in life. Zebrafish larvae imprint on the pigmentation pattern and 

olfactory cue of their kin on the 5
th

 and 6
th

 day of development. The created kin template 

allows discriminating between kin and non-kin and plays a fundamental role at early stages, 

as it was shown that zebrafish larvae prefer to group with their kin whereas sexually mature 

zebrafish use kin recognition to avoid inbreeding. Interestingly, larvae which are exposed to 

non-kin cues at the appropriate days show neither preference for kin nor for non-kin, 

suggesting a genetic predisposition for kin cues. However, the neuronal mechanisms 

underlying olfactory imprinting and kin recognition are unknown so far. Recent studies 

demonstrated that zebrafish recognize their kin based on Major Histocompatibility Complex 

(MHC) class II genotype similarity. Zebrafish which share MHC class II alleles show a 

similar pigmentation pattern (visual cue) as well as chemical signature (olfactory cue) and 

thus MHC class II genotype similarity may explain the genetic predisposition which prevents 

larvae to imprint on non-kin cues. Moreover, olfactory stimulation with MHC class II peptide 

ligands shows spatially overlapping activation of bulbar neurons compared to responses to kin 

odor, suggesting MHC peptides to be part of kin odor. Presently, the type of olfactory sensory 

neuron (OSN) which detects a kin odor related signal is unknown. The zebrafish OE bears 

four different types of OSNs, ciliated- and microvillous OSNs, kappe neurons and crypt cells; 

each type showing morphological- and immunohistochemical characteristics.  
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Our study combines behavioral, genetic and neuroanatomical methods to investigate 

the neuronal mechanisms involved in the processes of olfactory imprinting and kin 

recognition in the zebrafish. The first aim of this study is to provide new insights to the 

anatomy of the larval and adult zebrafish olfactory system. Combinatorial immunohistological 

analysis of four different calcium binding proteins (CBPs), Parvalbumin, Calretinin, 

Calbindin and S100, reveals a differential expression pattern of OSNs and their axonal 

projections into the olfactory bulb (OB). Combinatorial double immunohistochemistry 

identifies at least eight subpopulations of OSNs. We report three subpopulations of ciliated 

OSNs - one major subpopulation expresses Parvalbumin, Calbindin and Calretinin, and two 

populations are either positive for Parvalbumin and Calbindin or Calretinin only. 

Furthermore, we identify four subpopulations of microvillous OSNs, one expresses only 

Parvalbumin, one minor population shows S100 and Parvalbumin positivity, one is positive 

for Parvalbumin and Calbindin and finally one subpopulation of microvillous OSNs which is 

immunoreactive for Parvalbumin, Calbindin and Calretinin. Crypt cells, absent in terrestrial 

vertebrates and only present in teleosts, express only S100 and are negative for all other 

CBPs. Consistent with other reports, axonal projections of ciliated OSNs terminate into dorso- 

and ventromedial bulbar fields whereas microvillous OSNs project their axon into the 

ventrolateral OB. Additionally, we newly describe axonal projections of likewise microvillous 

OSNs which only express Parvalbumin and terminate into the mediodorsal OB. Moreover, we 

show S100 positive crypt cells to terminate into one single mediodorsal glomerulus, the 

mdg2, but also show additional axonal input into this glomerulus from S100 and Parvalbumin 

expressing microvillous OSNs.  

To investigate the type(s) of OSNs which detect a kin odor related signal, we focused 

on finding a reliable marker for neuronal activity in response to olfactory stimulation. The 

Extracellular signal Regulated Kinase (ERK) is a member of the ERK / Mitogen Activated 

Protein Kinase (MAPK) signaling pathway. Activation, for instance by binding of a ligand to 

an olfactory receptor leads to phosphorylation and therefore activation of ERK (pERK) which 

in turn translocates into the cell nucleus to modulate gene expression. In mammals, pERK is a 

common marker for neuronal activity and was previously used in the field of olfaction. Before 

starting to approach the identity of the OSN type involved in kin recognition, we validated 

pERK as a reliable marker for neuronal activation in the larval zebrafish after odor exposure. 

To this aim, we stimulated group raised larvae at the 9
th

 day of development with different 

odors and analyzed neuronal activation visualized by pERK immunopositivity in the larval 

zebrafish OE. With the use of accepted morphological criteria, we identified the four different 
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types of OSNs of the zebrafish OE. Additionally, we used the CBP S100 to mark specifically 

crypt cells. For the first time in larval zebrafish, we performed a timescale experiment to test 

best odor exposure duration with the result that detectable pERK levels are recognizable 

already after 3 minutes of odor exposure. However, prolonging the exposure duration does not 

lead to better pERK signals in OSNs. Furthermore, we demonstrate that olfactory stimulation 

with food and non-kin odor (conspecific odor) clearly results in a differential activation 

pattern of OSNs. Consistent with other studies, we identify activated ciliated and microvillous 

OSNs after exposure to food odor, whereas only microvillous cells show responses to 

conspecific odor. Crypt cells show activation neither to food odor nor to non-kin odor. Upon 

validation of pERK to mark neuronal activation in the larval zebrafish OE, we stimulated 

imprinted and non-imprinted 9 day old larvae with kin odor and analyzed activated OSNs. In 

two rounds of stimulation experiments, each with slightly different raising conditions, we 

provide the first direct evidence for crypt cells as well as a small subpopulation of 

microvillous cells to be involved in detection of a kin odor related signal. Interestingly, only 

larvae which were successfully imprinted show activated crypt cells in response to kin odor, 

whereas crypt cells of non-imprinted larvae show no increase in pERK levels. A difference in 

crypt cell number does not account for this difference in activation pattern as a comparison of 

crypt cell quantity reveals no significant difference between imprinted and non-imprinted 

larvae. Furthermore, we analyzed neuronal activation of bulbar neurons after exposure to kin 

odor. Consistent with our results on activation at the level of the larval OE, bulbar neurons of 

imprinted larvae show increased neuronal activation compared to non-imprinted larvae 

especially around the mediodorsal glomerulus that receives crypt cell input (mdG2) after kin 

odor exposure.  

The final aim of this study is to identify the existence of an accessory olfactory 

pathway in teleosts. In tetrapods, vomeronasal information is mainly transferred from the 

VNO to the accessory olfactory bulb (AOB) and from there to the medial amygdala. The 

medial amygdala is a part of the subpallium and initiates via amygdalo-hypothalamic 

pathways behavioral and also hormonal responses to incoming signals. Moreover, besides an 

involvement in fear and associative learning, the medial amygdala is also known to be 

involved in processing of conspecific odors in rodents. Although a separate VNO is absent in 

teleosts, we newly identify an accessory olfactory pathway in the zebrafish. By injection of 

DiI tracer into the mediodorsal OB, which is the target region of crypt cells and some 

microvillous OSNs, we demonstrate a neuronal circuit running from the mediodorsal OB to 

the medial amygdala and from there to the tuberal hypothalamus. Interestingly, non-imprinted 
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zebrafish larvae show increased activity of neurons in the medial amygdala compared to 

imprinted larvae. Finally, we demonstrate for the first time the OSN type which is involved in 

the detection as well as processing targets of a kin odor related signal in larval zebrafish.  
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1. INTRODUCTION 

1.1. Olfaction in vertebrates: overview 

Olfaction or the sense of smell is an important window for detection and discrimination of the 

environment in all vertebrates. The competence to detect and be responsive to chemical 

signals (chemosensation) of the external environment is of benefit for most animal species 

(including invertebrates) and is vitally important for survival and reproduction (Ache and 

Young 2005). Chemosensation is evolutionarily very old, as it is even present in bacteria 

(“quorum sensing”), slime molds and protozoans, illustrating the significance for every 

organism to sense its environment and communicate via chemicals (Ache and Young 2005). 

The general mechanism which enables an organism to identify and react on the chemical 

composition of its environment relies on the interaction of a chemical stimulus and its 

receptor expressed by chemosensory cells. Focusing on the sense of smell (olfaction), the 

olfactory system evolved a complex repertoire of receptors to enable an organism to detect 

and discriminate between numerous structurally different odor molecules (Buck and Axel 

1991, Menini et al. 2004). Although the olfactory sense is of fundamental importance for most 

vertebrates, the degree to which an organism depends on olfaction as well as the anatomy of 

olfactory structures varies between vertebrate species (Hoover 2010). However, although each 

organism is well adapted according to its needs to its terrestrial or aquatic olfactory 

environment the general principle of olfactory organization and its molecular mechanisms are 

evolutionarily conserved across vertebrates (Zippel 1982, Hoover 2010). Odorant detection 

occurs at the level of the olfactory epithelium, by binding of an odorant (ligand) to its receptor 

expressed by receptor neurons which selectively forward the olfactory information via their 

axons to the olfactory bulb (OB), the first station for odor processing. In general, tetrapod 

vertebrates sense their olfactory environment via two anatomically distinct olfactory organs: 

The main olfactory epithelium (MOE) and the vomeronasal organ (VNO) (Dulac and Torello 

2003). Both olfactory organs have been traditionally considered as functionally independent, 

with the MOE detecting common (airborne) odorants and the VNO responsible for detection 

of (less volatile) pheromones (social odorants), but recent studies refuted this hypothesis of 

“dual olfaction” by showing that both systems play synergistic roles in odor detection and 

subsequent olfactory-guided behaviors (Buck 2000, Dulac and Torello 2003, Ache and Young 

2005, Spehr et al. 2006, Baum 2012, Suarez et al. 2012). The ability to detect and distinguish 

between numerous airborne odors which are structurally complex and rarely comprised of a 
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single compound is mediated by olfactory receptors expressed by olfactory sensory neurons 

(OSNs) which reside in the olfactory epithelium (OE). The discovery of a large multigene 

family of olfactory-specific G-protein-coupled receptors (GPCRs) in the rat, now referred to 

as the OR family of odorant receptors (Mombaerts 2004a) led to the Nobel-prize award for 

Linda Buck and Richard Axel (Buck and Axel 1991). In the vertebrate genome the OR gene 

family is known to be the largest gene family although some variability in size of functional 

OR genes is found between species, ranging between 50 to 100 in teleosts to over 1000 

functional OR genes in rodents, demonstrating evolutionary variability to a great extent (Ache 

and Young 2005, Alioto and Ngai 2005, Niimura and Nei 2005, 2007). A second class of 

olfactory receptors, trace amine-associated receptors (TAARs), is present in the vertebrate 

main olfactory epithelium (Borowsky et al. 2001, Liberles and Buck 2006, Shi and Zhang 

2009). Like the OR gene family, the TAAR gene repertoire varies in size among vertebrates, 

but the TAAR gene family is much smaller in tetrapods than in teleosts, such as the zebrafish 

Danio rerio, which possesses the largest TAAR gene repertoire among vertebrates 

(Hashiguchi and Nishida 2007).  

However, in addition to ORs and TAARs, further receptor families, also belonging to 

GPCRs, are found in the vertebrate olfactory system (Table 1). In the tetrapod vomeronasal 

epithelium, olfactory sensory neurons express mainly three distinct subtypes of vomeronasal 

receptors (VRs), V1Rs, V2Rs and formyl peptide receptors (FPRs), all of them also GPCRs 

(Dulac and Axel 1995, Mombaerts 2004a, Liberles et al. 2009, Riviere et al. 2009). 

Vomeronasal olfactory sensory neurons expressing these receptors project olfactory 

information to the accessory olfactory bulb (AOB), which resides at the dorsal posterior 

region of the OB (Hayden and Teeling 2014). All vomeronasal and main olfactory epithelial 

OSNs express selectively only a single olfactory receptor allele, which is called the “one 

receptor - one neuron” hypothesis and, furthermore, neurons expressing the same receptor 

converge to the same discrete neuropil structure (glomerulus) within the OB (Vassar et al. 

1994, Mombaerts 2004a, b).  

As mentioned above, not all vertebrates do possess a vomeronasal organ separate from 

a main olfactory epithelium. Most tetrapods (amphibians, reptiles and mammals) sense their 

olfactory environment via a dual olfactory system (MOE and VNO). Unlike those tetrapods, a 

morphologically separate VNO is absent in fish, birds and their closest relatives, crocodiles 

and adult humans (Suarez et al. 2012). However, homologous genes to the mammalian 

vomeronasal receptor genes (termed VR-like, both V1R and V2R) are present in teleosts and 

V1R genes are even found in basal vertebrates such as the lamprey (Grus and Zhang 2009). In 
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teleosts, both, main olfactory- (ORs & TAARs) (Ngai et al. 1993a, Ngai et al. 1993b) and 

VR-like (V1Rs, V2Rs & FPRs) (Cao et al. 1998, Asano-Miyoshi et al. 2000, Pfister and 

Rodriguez 2005) receptors are expressed by OSNs located in one olfactory epithelium (OE). 

Although fish lack a separate VNO, they indeed use pheromones primarily for social 

behaviors such as predator avoidance, intraspecific (social) communication and reproductive 

behavior, hinting at a functional VNO in fishes (Hoover 2010). Early tetrapods were aquatic 

before they entered terrestrial habitats. Thus, the amphibian olfactory system displays a main 

OE and a separate VNO (Hayden and Teeling 2014). Nevertheless, the evolution of the VNO 

seems not uniquely associated to a terrestrial and therefore aerial olfactory lifestyle, as aquatic 

larva of the African clawed frog Xenopus laevis as well as fully aquatic salamanders already 

display a MOE and a VNO (Freitag et al. 1995, Eisthen 1997).  

Overall, the evolution of vertebrate olfactory organs, sensory neurons and receptors 

shows a remarkable diversity among various groups and results as much from adaptations to 

changing environments as from different needs (Figure 1). Frequent gene duplications, gene 

deletions and inactivating mutations (pseudogenes) reduce or expand gene repertoires - the 

combinations of such events are known as the birth-and-death process of evolution (Nei et al. 

1997). Evolutionary plasticity of vertebrate olfaction explains such variability of olfactory 

gene repertoires among species and gene gains and losses coincide with evolutionary events, 

such as the transition from water to land. In addition, olfactory subgenomes are directly linked 

to the habitat of a given species, thus aquatic, terrestrial and flying animals display different 

olfactory gene repertoires (Hayden et al. 2010, Hayden and Teeling 2014). A phylogenetic 

analysis of vertebrate olfactory receptor gene families elucidates the high diversity among 

vertebrates. The vertebrate OR gene family is classified into class I and class II, which are 

thought to have different affinities to water-soluble and volatile molecules, respectively. Thus, 

fully aquatic animals, such as the teleosts, mostly express class I ORs whereas amphibians do 

express both classes and mammals possess mainly class II OR genes (Freitag et al. 1998, 

Niimura and Nei 2005, 2006). A study in the African coelacanth, Latimeria chalumnae, an 

extant lobe-finned fish, shows that this “living fossil” expresses class I and class II receptor 

genes, the latter nonfunctional, indicating a possible branch between both classes of ORs 

(Freitag et al. 1998, Picone et al. 2014). Moreover, an expansion of VNO specific genes 

similar to those of tetrapods, especially of those of amphibians, is observed in this lobe-finned 

fish, suggesting an advanced development of the VNO, as recently identified in the African 

lungfish Protopterus dolloi (Gonzalez et al. 2010, Picone et al. 2014). As aforementioned, a 

MOE and a VNO as well as their characteristic receptors are present in amphibians, which are 
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well adapted to both aquatic and terrestric life. Thus, phylogenetically positioned in between 

teleosts und mammals, amphibians already show a segregation of their olfactory system as 

well as distinct expression zones of olfactory receptors (Syed et al. 2013). A specialization of 

both subsystems (MOE & VNO) to aerial and underwater olfaction is present in Xenopus 

laevis. Besides the separated VNO, the MOE of Xenopus is divided by a valve-like structure 

into two chambers, the lateral (LD) and medial diverticulum (MD), which express ORs 

associated to hydrophil (class I) and volatile (class II) odorants, respectively (Freitag et al. 

1995, 1998, Syed et al. 2013). The mammalian olfactory receptor repertoire displays a high 

diversity according to the animal’s habitat and lifestyle and thus reflects its extent of reliance 

on the sense of smell. Interestingly, whereas olfaction plays an important role for most 

terrestrial mammals, secondarily adapted aquatic vertebrates tend to lose their olfactory 

systems. For example, in baleen whales (Mysticeti), olfactory structures, such as OE and OB, 

albeit small as well as functional OR genes are present and are used in foraging. In contrast, 

their sistergroup, toothed whales (Odontoceti), such as dolphins, have completely lost their 

olfactory structures and more than 75% of their OR genes are non-functional (Kishida et al. 

2007, Thewissen et al. 2011, Kishida et al. 2015). Similarly, most non-terrestrial amniotes 

(arboreal, aquatic or flying mammals and birds) seem to rely on other senses than olfaction, 

such as hearing and echolocation. Birds for example mainly communicate vocally and use 

visual cues, e.g. their plumage to find suitable partners for reproduction. Nevertheless, some 

studies showed that olfaction does play a role for example in homing behavior in birds 

(Gagliardo et al. 2013, Hayden and Teeling 2014). Like other mammals, bats possess a 

functional olfactory system but the degree to which they rely on olfactory cues varies highly 

between suborders. A VNO for example is not present in all taxa but present in most 

frugivorous taxa (Bloss 1999). However, whether the absence of a VNO in bats is a primitive 

trait and reevolved numerous times or existed and got lost or reduced in many chiroptera 

families is under debate (Wible and Bhatnagar 1996).  

 Another example for a shift of extent of reliance from the olfactory sense towards 

others is present in primates. The number of OR genes of primates is much smaller than that 

of other mammals. Primates, including humans, rely more extensively on vision rather than 

on olfaction. Gilad and colleagues suggested that the retrogression of primate olfactory ability 

results from the occurrence of trichromacy vision (color vision), since most remaining 

mammals are color-blind (dichromatic) (Gilad et al. 2004). However, recent studies on OR 

gene losses in each lineage of the primate evolution and whole genome analysis do not 

support this “color vision priority hypothesis” (Niimura 2012). There is a high variation in the 
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OR gene repertoire within primate lineages and moreover the number of OR genes varies 

between different individuals and within and between culturally distinct populations (Hoover 

2010, Niimura 2012). In humans, the variation of OR gene number, resulting from deletions 

and duplications of DNA segments, is known as the copy number variation (CNV). In such 

CNV regions, OR genes are enriched and differ between individuals which explains the 

variation of olfactory sensitivity to some odors among individuals. Moreover, OR gene loci 

show high number of single nucleotide polymorphisms (SNPs) which might lead to 

inactivation of OR genes resulting in a non-functional pseudogene (Niimura 2012). In 

general, approximately 50% of human OR genes are pseudogenes. However, the number of 

OR genes does not absolutely implicate the 

olfactory fitness of an individual, as dogs, known 

for their well-developed sense of smell, do not 

possess a larger number of functional OR genes 

compared to other mammalian species (Matsui et 

al. 2010, Niimura 2012). The number of OSNs 

with a particular receptor is more likely the crucial 

factor of olfactory sensitivity. Although it seems 

that olfaction does not play such a crucial role in 

primates, especially humans, compared to other 

Figure 1 Evolution of the vertebrate main olfactory system and vomeronasal system Relevant events 

related to the evolution of main olfactory system (MOS) (A) and vomeronasal system (VNS) (B) in vertebrates. 

Adapted from (Suarez et al. 2012) 
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senses such as hearing or vision (or taste), it is an important source of environmental 

information which might be perceived consciously or unconsciously. Interestingly, similar to 

fish, humans are another example for pheromone detection without possessing an anatomical 

distinct VNO. By expressing vomeronasal receptors (only V1Rs) in the olfactory epithelium, 

humans are able to detect pheromones and thus react unconsciously to physiological, 

behavioral and emotional aspects (Hoover 2010).  

Olfaction is, together with vision, gustation, somatosensation and mechanosensory 

lateral line sense, one of the evolutionary old senses among vertebrates and plays an important 

role for most species. Regarding its habitat, each organism is well adapted to its olfactory 

environment and uses odorants for foraging, communication, reproduction and predator 

avoidance. Analysis of olfactory receptor gene classes and their expression shows quite 

clearly that vertebrate olfaction originated in primarily aquatic living species and is conserved 

as well as diversified among vertebrates. However, the extent to which an organism relies on 

olfactory cues varies between species and seems to decline during vertebrate evolution with 

relying more on other senses such as hearing or vision. Nevertheless, although modern 

molecular genetic research provided new insights in development and function of olfaction in 

vertebrates, further comparative studies on gene expression coupled with functional research 

on molecular mechanisms are necessary to understand and answer those numerous remaining 

open questions on vertebrate olfaction.  
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Figure 2 The teleost olfactory epithelium (OE). (A) Dorsal view of a zebrafish head shows spatial organization 

of the OE. The paired OE lies at the dorsal part of the snout beneath the anterior (an) and posterior (pn) nostril. 

(B) Cross section of one adult zebrafish OE stained with DAPI. Red line outlines sensory region and blue line 

non-sensory region. White dashed box marks area shown in (C) in higher magnification. (C) Schematic 

representation of organization of olfactory sensory neurons (OSNs) within a cross section of a adult zebrafish OE. 

The four types of OSNs are intermingled within the sensory region of the zebrafish OE. Cilliated OSNs are shown 

in red, microvillous OSNs in blue, crypt cells in green and kappe neurons in purple. Scale bar in (B) 130µm. 

1.2. The teleost olfactory system 

Teleosts are the largest infraclass within ray-finned fishes (Actinopterygii) and account, with 

over 26.000 species, for more than 50% of all extant vertebrate species (Volff 2005). As other 

vertebrates, teleosts are capable to sense their olfactory environment and use olfactory cues 

for several important issues such as feeding, homing, kin recognition, reproduction and 

predator avoidance (Hansen and Reutter 2004). Compared to terrestrial vertebrate olfaction, 

teleost olfactory odors are dissolved in water and the active odorant detection space of fishes 

is restricted due to a 10.000 times slower diffusion transmission in water than in air 

(Rosenthal and Lobel 2006). In addition, a regulation of odor perception, such as the 

mammalian “sniffing” is not present in teleosts. Instead, teleosts overcome this constrained 

odor detection space by either pumping water through the nostrils using cilia or if existent, by 

contraction of the accessory sacs. In addition, fast swimming and the use of natural currents 

also facilitate the detection of certain odor sources (Cox 2008). However, just as the olfactory 

gene repertoire, the anatomy of the olfactory organs shows considerable variation among 

teleosts, but most of them exhibit (at least) a paired peripheral olfactory organ, the olfactory 

epithelium (OE), each located within an olfactory chamber at the anterodorsal part of the 

head. The olfactory chamber is connected to the exterior environment by anterior and 

posterior nostrils which provide a waterflow which flushes the OE with odorants diluted 
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within the surrounding water (Figure 2). In 

most teleosts, the shape of the OE is folded 

into lamellae whose numbers vary from a 

few to about 300 depending on the species 

(Hansen and Reutter 2004). Each lamella 

consists of a nonsensory region and a 

sensory region, containing nonsensory cells 

and olfactory sensory neurons, respectively. 

Depending on the species, the thickness of 

the olfactory epithelium ranges from about 

15µm (zebrafish, Danio rerio) to 110µm 

(pike, Esox lucius) (Holl 1965). The 

nonsensory region is comprised of supporting cells, nonsensory ciliated cells and basal cells. 

Basal cells are mitotically active and differentiate into new OSNs, therefore they are 

competent for a life-long renewal of the OE. At least three types of olfactory sensory neurons 

(OSNs) have been identified in actinopterygian (ray-finned) fishes, which are intermingled 

within the sensory region of the teleost olfactory epithelium and show different morphological 

appearance as well as different expression patterns of olfactory receptors (explained in detail 

in 1.2.1). Ciliated (cOSNs) and microvillous (mOSNs) olfactory sensory neurons, also present 

in the rodent MOE and VNO, respectively, make up the most prominent populations of 

receptor neurons. A third OSN type, named crypt cells, represent a comparatively small 

population of OSNs and are absent in the mammalian olfactory system. Recently, a fourth 

OSN type, kappe neurons was identified in the zebrafish OE (Ahuja et al. 2014). Every OSN 

expresses one type of olfactory receptor at its apical dendritic protrusions, which might be 

cilia or microvilli, or in the case of crypt cells both (Table 1). The binding of an odorant will 

lead to a change of the OSNs membrane potential and therefore triggering action potentials 

which propagate the information along the axon. OSN axons, which express the same 

receptor, project into the olfactory bulb (OB) into the same defined neuropil structures, named 

glomeruli, and make synaptic contacts onto projection neurons which in turn process and 

mediate olfactory information to higher brain areas such as the telencephalon (explained in 

detail in 1.2.2.).  

Table 1 Comparison of receptor expression and 

associated G-proteins on olfactory sensory neurons 

(OSNs) in zebrafish, mouse and human. See text for 

details and references. 
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1.2.1. Odor detection: The zebrafish olfactory epithelium 

Odor detection occurs at the level of the olfactory epithelium (OE). Odorants bind to olfactory 

receptors expressed on the apical dendritic protrusions of olfactory sensory neurons (OSNs) 

which relay the olfactory information to the olfactory bulb (OB). In the zebrafish, Danio 

rerio, the olfactory epithelium with its sensory and non-sensory cells develops from the 

olfactory placode, an ectodermal thickening from cells of the anterior neural plate at already 

24 hours post fertilization (pf) (Hansen and Zielinski 2005). The first olfactory receptor cells 

are detectable about 30 hours post fertilization with simultaneous opening of the nares 

(Moorman 2001). The zebrafish OE lies between the anterior and posterior nostril on each 

side of the head (Fig. 2A). Compared to other species (e.g. pike 110 µm), the OE of a an adult 

zebrafish is with its 15-20 µm thickness considerably thin (Hansen and Zeiske 1998). Four 

different types of OSNs are intermingled randomly within the sensory region of the zebrafish 

OE (Figure 3). Ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs) 

represent the two main types of vertebrate OSNs. Furthermore, two additional minor 

populations of OSNs are present in the zebrafish OE, crypt cells and kappe neurons (Ahuja et 

al. 2014). All four types of OSNs are well definable by morphological criteria, such as cell 

shape, position of their soma within the OE or by their apical dendritic protrusions.  

In addition, there are several immunohistochemical markers available which are 

beneficial in discriminating the four types of OSNs. As in mammals, ciliated OSNs appear 

spindle shaped with a soma located most basally within the OE. Their long slender dendrites 

end in a so called olfactory knob, from which a few cilia sprout into the lumen of the olfactory 

cavity. Zebrafish cOSNs express odorant receptors (OR), homologous to the mammalian OR 

class receptors, coupled to the olfactory specific G protein α-subunit Gαolf/s which activates 

cyclic AMP during signal-transduction (Jones and Reed 1989, Buck and Axel 1991, Hansen 

et al. 2003, Hansen and Reutter 2004, Sato et al. 2005, Saraiva et al. 2015). Fish express 

exclusively class I OR genes whereas tetrapods exhibit both, OR gene class I and class II (see 

1.1.) (Freitag et al. 1998, Niimura and Nei 2005). Furthermore, cOSNs express another class 

of olfactory receptors, trace amine associated receptors (TAARs), which are also found in 

mammals. However, the teleost TAAR gene repertoire, especially that of the zebrafish, 

represents the largest repertoire with 112 functional receptor genes among vertebrates so far 

(Gloriam et al. 2005, Liberles and Buck 2006, Hashiguchi and Nishida 2007, Korsching 

2009). 
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Another major population of olfactory sensory neurons is represented by microvillous 

OSNs. This OSN type appears plumper and its cell body localizes more apically than those of 

cOSNs. Numerous microvilli extend from the apical surface at the end of a short dendrite 

(Hansen and Zielinski 2005). Unlike tetrapods whose mOSNs are only present within the 

vomeronasal epithelium, the teleost mOSNs are intermingled with the other types of OSNs 

within the single main olfactory epithelium. Nevertheless, teleost mOSNs express 

homologues to the mammalian VR-type odorant receptors (Cao et al. 1998, Hansen et al. 

2003, Sato et al. 2005). The zebrafish genome contains 56 vomeronasal receptor (VR) genes, 

most of them belong to the V2R gene family but six are V1Rs (Hashiguchi and Nishida 2006, 

Saraiva and Korsching 2007, Yoshihara 2009). Due to an absence of a separate VNO in 

teleosts, V2Rs are called OLfC, belonging to the class C of GPCRs, characterized by a large 

N-terminal extracellular ligand binding region (Okamoto et al. 1998, Hino et al. 2009). 

Teleost V1R genes are called ora genes, which stands for olfactory receptors related to class 

A GPCRs (Saraiva and Korsching 2007). The ora gene family is with its 6 members very 

small but highly conserved across teleosts. Moreover, the presence of direct orthologues in 

lamprey indicates that this gene family is evolutionarily very old (Saraiva and Korsching 

2007, Korsching 2009). Currently the OSN type on which ORA receptors are expressed is not 

known but it is presumed that they are involved in pheromone detection whereas V2Rs detect 

peptides (Leinders-Zufall et al. 2009, Behrens et al. 2014) and both are likely to be expressed 

on mOSNs. 

So far, only one ORA receptor, ORA4, is found to be expressed on a small population 

of OSNs – the crypt cells. In contrast to mOSNs and cOSNs, crypt cells amount for just a 

minor population in the teleost OE, explaining why this cell type was identified very late 

(Bazaes et al. 2013). Nevertheless, as an exclusive feature of the fish OE, crypt cells are 

present in both ray-finned (bony) and cartilaginous fish and share morphological 

characteristics (Hansen and Finger 2000, Ferrando et al. 2006). Crypt cells appear egg shaped; 

the non-dendritic cell body is located most superficially in the olfactory epithelium. As the 

name implies, an apical invagination, the “crypt” opens towards the olfactory lumen from 

which about 7 cilia as well as numerous microvilli protrude (Hansen and Zeiske 1998, Hansen 

and Zielinski 2005). Every crypt cell is surrounded by at least one but in most cases two 

supporting cells. Supporting cells mainly function as supportive elements like releasing 

detoxifying enzymes, but among other duties they secrete components into the mucus which 

overlays the OE-lamina, and electrically isolate the OSNs (Hansen and Zeiske 1998, Hansen 

and Reutter 2004). As mentioned above, all crypt cells express a single V1R- homologue 
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receptor encoded by the ora4 gene which may signal olfactory information via the inhibitory 

Gi1b protein. The expression pattern of crypt cells according to a “one cell type- one receptor” 

rule represents a unique style of expression pattern different from the mosaic expression of 

different receptor types a la “one neuron- one receptor” seen in cOSNs and mOSNs (Oka et 

al. 2012). 

Recently, the Korsching Lab (University of Cologne) identified a novel population of 

olfactory sensory neurons in the zebrafish, Danio rerio. Kappe neurons represent the fourth 

OSNs type of the zebrafish OE (Ahuja et al. 2014). Like for the crypt cells, these pear-shaped 

OSNs with a characteristic cap at 

their apical end are very scarcely 

distributed within the OE and 

although very similar in 

appearance with crypt cells, kappe 

neurons show specific 

characteristics. In contrast to crypt 

cells, kappe neurons are more 

basally located within the OE and 

only bear microvilli on their apical 

end. So far, the olfactory receptor 

which is expressed on kappe 

neurons is not known but it was 

shown that these cells express the 

G-protein Go and are negative for 

all usual markers for the other 

OSN types of the zebrafish OE 

(Ahuja et al. 2014). Beyond supporting cells and the four OSN types of the zebrafish OE 

mentioned above, the OE bears also basal cells and ciliated non-sensory cells (for an overview 

see Fig. 3). Roundish basal cells lie between the axons of the OSNs and the basal parts of the 

supporting cells. Because olfactory sensory neurons have a limited life span they are 

substituted continuously by mitotically active basal cells which differentiate into new OSNs 

(Hansen and Zeiske 1998, Hansen and Reutter 2004). Ciliated nonsensory cells are 

intermingled between all other cell types within the OE and bear kinocilia at their apical 

endings towards the lumen. These cilia are motile and competent to propel odorants 

containing mucus and/or water forward (Sleigh 1989). Furthermore, goblet cells are present, 

Figure 3 The zebrafish olfactory sensory neurons (OSNs). Four 

types of OSNs are intermingled within the zebrafish olfactory 

epithelium (OE). Axonal projections of OSNs form the olfactory 

nerve (ON) and mediate olfactory information into the brain. 

Microvillous OSNs (blue) appear more plump. A short dendrite 

bears microvilli and their cell soma lies at intermediate depths. 

Ciliated OSNs (red) are located most basal within the OE. Cilia at 

the end of their long dendrite are extended towards the lumen. 

Crypt cells (green) are most apically positioned and appaer egg-

shaped. The typical crypt bears cilia and microvilli. Kappe neurons 

(purple) are egg-shaped. Their soma is located more basally than 

that of crypt cells. Kappe neurons express only microvilli at their 

apical, cap- formed end. Supporting cells and basal cells are 

intermingled between the four types of OSNs. 
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but restricted to the nonsensory area of the zebrafish OE. These oval cells are surrounded by 

ciliated nonsensory cells and secrete granules into the lumen of the OE (Hansen and Zeiske 

1998).  

In addition to morphological characteristics, the four types of OSNs are 

distinguishable by several immunohistochemical markers which are often specifically 

expressed by different OSN types. The olfactory marker protein (OMP) as well as the 

transient receptor potential channel C2 (TRPC2) are characteristic markers for cOSNs and 

microvillous OSNs in the zebrafish OE, respectively (Sato et al. 2005). In addition, there are 

primary antibodies and/or in situ probes against Gα subunits available to distinguish between 

the four OSN types. In the zebrafish, calcium binding proteins (CBPs) are shown to be 

expressed in a selective combinatorial manner by cOSNs, mOSNs and crypt cells as well as in 

their axonal projections into the olfactory bulb (OB). Interestingly, our combinatorial 

expression analysis of four CBPs in the adult and larval zebrafish olfactory system brought at 

least eight subpopulations of zebrafish OSNs to light (Kress et al. 2015). In this study, the 

four CBPs, Parvalbumin (PV), Calbindin (CB), Calretinin (CR) and S100 were used in a 

combinatorial fashion to investigate different CBP expression profiles of the zebrafish OSN 

types. The CBP Parvalbumin is expressed with Calretinin and Calbindin in at least two of 

three subpopulations of cOSNs, the third cOSNs subpopulation mainly expresses Calretinin 

only. In addition, this study identified four subpopulations of mOSNs, which express either 

only PV, PV and S100, PV and CB and a subpopulation which is PV, CB, and CR positive. 

All crypt cells are negative for PV, CB and CR but express S100 homogenously in their cell 

bodies as well as their axonal projections (Oka et al. 2012, Kress et al. 2015). Additionally to 

the identification of at least eight subpopulations of OSNs in the zebrafish OE, the CBP 

analysis demonstrated that the axons of these OSN subtypes are also distinguishable in the 

OB to which they project (see 1.2.2.).  

 

1.2.2. Odor processing: The zebrafish olfactory bulb and its targets 

Olfactory information is mediated by reams of olfactory sensory neurons (OSNs) (see 

1.2.1) located within the olfactory epithelium (OE). The zebrafish unmyelinated axons of 

OSNs form the first cranial nerve (I), the olfactory nerve (ON), which terminates in the 

olfactory bulb (OB), a (sessile) paired structure seated on the telencephalon (Hansen and 

Reutter 2004). Like in other vertebrates, the OB is the brain structure presumed to be the first 
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station of odor processing. Each zebrafish OB contains approximately 20,000 neurons which 

are organized in four distinct layers, olfactory nerve layer, glomerular layer, external layer 

and internal cellular layer (Friedrich et al. 2009) (Figure 4). The olfactory nerve layer 

(ONL) is the outermost layer of the OB and is formed by axons of OSNs. The axons of OSNs 

branch at their end in specific neuropil structures called glomeruli, where they make synaptic 

contacts to second order olfactory neurons. The glomerular layer (GL) is comprised of 

approximately 140 glomeruli per OB which are arranged in a stereotyped pattern, bilaterally 

symmetric to the other OB (Braubach et al. 2012). Interestingly, each glomerulus is 

innervated by one or a few OSN subtypes expressing the same receptor (Sato et al. 2005, 

2007). Moreover, glomeruli which are activated by similar odorant classes are arranged in 

defined zones, therefore forming a chemotopic map (Friedrich and Korsching 1997, 1998). 

Several immunohistochemical studies and research using transgenic lines unraveled the 

differential projection pattern of OSNs into the OB. In zebrafish, cOSNs are shown to 

innervate mainly dorsal and a few ventromedial glomerular domains whereas mOSNs send 

their axons mainly to glomeruli of the ventrolateral OB. Interestingly, all crypt cells are 

shown to project their axon towards one singular glomerulus within the mediodorsal field of 

the zebrafish OB (mdg2) (Sato et al. 2005, Gayoso et al. 2012, Ahuja et al. 2013, Kress et al. 

2015). Ahuja and colleagues (2014) revealed that also the fourth zebrafish OSN type, the 

kappe neurons project their axon to a singular mediodorsal glomerulus (mdg5) previously 

reported to be the sole projection site of a mOSN subtype exclusively positive for Gαo 

(Braubach et al. 2012) . However, the projection pattern of all OSN types gets more 

complicated focusing on OSN subtypes with each subtype consequently innervating specific 

glomeruli as well. Our own study using four calcium binding proteins (CBPs) in a 

combinatorial pattern reported that at least 8 subpopulations (Figure 6) are present in the 

zebrafish OE (Kress et al. 2015). Although some of these subpopulations show overlapping 

bulbar projection targets, single projection profiles could be elucidated. A single 

subpopulation of mOSNs, for example, sends their Calbindin/Parvalbumin positive axons into 

a mediodorsal glomerulus (likely mdg5) close to the mdg2. Whereas the latter, the mdG2, is 

only innervated by S100 positive crypt cells and a small subpopulation of S100/Parvalbumin 

positive mOSNs. An additional ventral glomerulus (vpG) with Parvalbumin/Calbindin 

positive axons likely from mOSNs is also reported (Kress et al. 2015). Glomeruli located 

medial and/or ventral are of special interest because they are thought to be involved in 

processing of social and reproductive behaviors whereas lateral glomeruli are shown to 

mediate food odor related signals (Li et al. 2005, Koide et al. 2009). 
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As mentioned above, each glomerulus provides synaptic contact of OSN axons with 

dendrites of second-order neurons, such as mitral cells. The external cell layer (ECL) 

contains the somata of glutamatergic mitral and ruffed cells. Mitral cells are large 

glutamatergic neurons ranging in size from 4 – 18 µm in diameter and located mainly at the 

superficial edge of the ECL (Fuller et al. 2006). These major output neurons of the olfactory 

bulb are innervated at their apical dendrites by axonal projections of a single OSN subtype 

mostly within a single glomerulus but also receive synaptic input via dendritic contacts from 

bulbar interneurons of the internal cell layer. Additionally, glutamatergic ruffed cells occur 

between mitral cells which are innervated by OSN axons, mitral cells and bulbar interneurons 

(Kosaka and Hama 1982). The internal cell layer (ICL) is the deepest layer of the OB and 

contains interneurons and granule cells. GABAergic granule cells lack an axon but they 

extend dendritic processes to mitral and ruffed cells (Kosaka and Hama 1982, Kermen et al. 

2013). Additionally, lateral interactions within neurons of the OB are mediated by 

glutamatergic juxtaglomerular cells as well as by dopaminergic periglomerular neurons, 

which extend their processes into the glomerular layer (Byrd and Brunjes 1995, Edwards and 

Michel 2002).   

Figure 4 The zebrafish olfactory bulb (OB). (A) Schematic representation of arrangement of the four OB 

layers in the zebrafish. Olfactory sensory neurons (OSNs) project via the olfactory nerve into the OB thereby 

forming the primary olfactory nerve layer (ONL). The different types of OSNs target their axon to distinct 

glomeruli within the glomerular layer (GL). The external cell layer (ECL) contains mitral cells (glaucous) and 

ruffed cells (not shown), the output cells of the OB. Mitral cells make synaptic contacts onto OSN axon endings 

within glomeruli. The internal cell layer (ICL) contains cell bodies of granules cells (purple) and other inhibitory 

interneurons which modulate the activity of mitral cells and ruffed cells. (B) Cross section of an adult zebrafish 

OB stained with the Calcium binding protein Parvalbumin (red) and DAPI (blue) for nuclear stain. Parvalbumin 

visualizes axonal projections of different OSN types into different glomeruli of the ventral, dorsal and lateral 

OB. Adapted from (Kermen et al. 2013). 



Introduction 

15 

As mentioned above, a chemotopic map is represented by OSN subtypes expressing 

the same receptor and projecting their axon into the same glomerulus. Furthermore, glomeruli 

activated by similar molecular features are organized in defined zones. Because an odor is 

composed of different odorants, different odorant receptors are activated upon odor 

stimulation, therefore resulting in activation of spatially distributed glomerular domains 

(Friedrich and Korsching 1997, 1998, Fuss and Korsching 2001). In the zebrafish, large 

glomerular domains encode first-order chemical features such as the molecular category of an 

odorant. Furthermore, second-order-features like molecular structure (e.g. chain-length and 

branching) is encoded by local differences in activity pattern of cells within a glomerular 

domain (Friedrich and Korsching 1997, 1998, Fuss and Korsching 2001). Moreover, studies 

in zebrafish suggest that mitral cell firing carries multiplexed information about an odorant. 

Therefore, action potentials (APs) provide information about the odor category whereas the 

remaining mitral cell activity encodes the precise identity of a given odorant (Friedrich and 

Laurent 2004, Yaksi et al. 2007). Upon odor stimulation, activated OSNs trigger mitral cell 

firing, whereas spontaneous ruffed cell activity is inhibited by granule cells which are 

activated by mitral cells (Zippel et al. 1999).  

Olfactory information is mediated via mitral cell axons which run through the medial 

and lateral olfactory tracts to different higher brain centers. Both tracts are separate and 

anatomically well definable axon tracts. The medial olfactory tract (MOT) contains mainly 

fibers originating from the medial OB whereas the lateral olfactory tract (LOT) is 

comprised mainly of fibers of mitral cells located in the lateral OB (Sheldon 1912). Tracing 

studies in various teleosts have shown that both tracts are subdivided into medial and lateral 

regions (Sheldon 1912, Finger 1975, Bass 1981, von Bartheld et al. 1984). The medial part of 

the MOT (mMOT) as well as the LOT contains mitral cell fibers projecting to the 

telencephalon and diencephalon. Moreover, some mitral cell fibers of the mMOT also project 

to the contralateral OB, thus connecting both OBs (von Bartheld et al. 1984). The lateral part 

of the medial olfactory tract (lMOT) conveys synaptic input into the OB by centrifugal fibers 

originating from the telencephalon which are supposed to synapse with granule cells, thus 

providing a cortical feedback in order to modulate bulbar processing (Munz et al. 1982, Stell 

et al. 1984, Zucker and Dowling 1987, Kermen et al. 2013). 

A lot of work in different teleost species gained insights in the physiological role of 

bulbar efferent neurons and their projection targets of the two tracts. Tracing studies showed 

that LOT fibers specifically innervate the habenula (Hb) whereas MOT fibers also project to 

the ventral nucleus of the ventral telencephalon (Vv) and the posterior zone of the dorsal 
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telencephalon (Dp). The mammalian primary olfactory cortex (pyriform cortex) is believed to 

correspond to Dp in teleosts whereas Vv, a subpallial region, is linked to the septal area in 

mammals (Meek and Nieuwenhuys 1998, Kermen et al. 2013). Additionally, studies in 

zebrafish showed that mitral cell fibers which run through the MOT project specifically to the 

right dorsal habenula (dHb), the postcommissural and supracommissural ventral telencephalic 

nuclei (Vp; Vs, respectively), the intermediate nucleus of the ventral telencephalon (Vi) as 

well as to the hypothalamus in the diencephalon (Levine and Dethier 1985, Rink and 

Wullimann 2004, Miyasaka et al. 2009, Turner et al. 2016, Biechl et al. 2017). Presently, 

whether a chemotopic map, as present in the OB, is maintained in OB targets such as Dp is 

unknown. However, single cell recordings in the channel catfish indicate a chemotopical 

telencephalic organization thus showing that distinct pallial areas respond highly specific to 

distinct odorant classes (Nikonov and Caprio 2007, Kermen et al. 2013). On the other hand, 

studies in zebrafish could not provide evidence for a chemotopical organization in the 

telencephalon. Yaksi and colleagues showed that Dp and Vv neurons respond in an 

overlapping manner to various odorant classes, which is in line with studies in rodents, where 

a spatially segregated activity is absent in the primary olfactory cortex following odor 

stimulation (Stettler and Axel 2009, Yaksi et al. 2009). As aforementioned, projection 

neurons from the OB also send axons into distinct regions within the diencephalon. Due to 

their connectivity and functional heterogeneity, the teleost habenula (Hb) is divided in dorsal 

and ventral parts, both homologous to the mammalian medial and lateral habenulae, 

respectively (Amo et al. 2010). The ventral habenula (vHb) projects to serotonergic raphe 

nuclei and the dopaminergic neurons containing ventral tegmental area, thus the vHb is shown 

to be involved in control of motor behavior, motivation and reward-error prediction 

(Matsumoto and Hikosaka 2007, Stamatakis and Stuber 2012). Furthermore, the dorsal 

habenula (dHb) is subdivided into medial (dHbM) and lateral (dHbL) domains, and each 

domain expresses a distinct type of neurotransmitter, receives a distinct input and is involved 

in a distinct pathway to the interpeduncular nucleus of the brainstem (Agetsuma et al. 2010, 

Krishnan et al. 2014). Studies in the dHb indicate a possible role for the dHbM to be involved 

in experience-dependent modulation of fear responses (Agetsuma et al. 2010).  
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1.3. Odorants sensed by fish: Representation and behavior 

Three fundamental processes are essential for survival of every organism - reproduction, 

feeding and predator avoidance. Additionally, social interactions and migration are of great 

importance for many species as well. All of these tasks can be mediated by different classes of 

molecules via the olfactory system. In contrast to tetrapod olfaction, fish olfaction has to 

overcome the task that odorants are suspended in their aquatic environment (see 1.2.). How do 

fish discriminate between these complex mixtures of odorants and how do they know what 

behavior is suitable at this moment? Like the odorous environment, the mechanisms which 

determine the resulting behavior patterns are highly complex.  

There are four major classes of odorants which are known to be detected by fish. 

Amino acids are the prototypical food odorant class and vary in their structure as well as in 

their olfactory potency (Caprio and Byrd 1984, Valentincic et al. 2000, Nikonov and Caprio 

2007). In several teleost species, amino acids and nucleotides are shown to signal the 

presence and the quality of food, with detection thresholds of 10
-6

 to 10
-8

 M and around 10
-6 

respectively (Sutterlin and Sutterlin 1971, Suzuki and Tucker 1971). Nucleotides, like 

adenosine- and inosinetriphosphate (ATP and ITP) reach detection limits from feeding 

behavior and are characterized by arousal and appetitive swimming behavior by increasing 

swimming speed with many turns (Valentincic and Caprio 1997, Lindsay and Vogt 2004). 

Another class of food related odorants are polyamines. Cadaverine, putrescine and spermine 

are biogenic polyamines which are mainly released by decaying tissue. Cadaverine as well as 

putrescine is a very attractive odor for necrophagous animals such as rat or goldfish whereas 

this death-associated odor strongly elicits an avoidance response in zebrafish (Heale et al. 

1996, Michel et al. 2003, Rolen et al. 2003, Hussain et al. 2013). Although amino acids 

mainly signal the presence of food in many teleosts, recent electrophysiological and 

behavioral studies demonstrated amino acids to be involved in behaviors other than feeding. 

Studies in salmon for example observed that combinations of amino acids dissolved in their 

natal stream water participate in their homing behavior (Shoji et al. 2000, Yamamoto and 

Ueda 2009). Additionally, there is evidence that amino acids are involved in reproductive 

behavior. Thus, polar amino acids are shown to increase attraction of conspecific males by 

acting as co-factors of the fish reproductive pheromone prostaglandin F2α (PGF2α) in the 

common carp (Cyprinus carpio) (Lim and Sorensen 2011). It was shown in salmon that the 

tryptophan metabolite, L-Kynurenine, which is released by females with their urine into the 

water initiates sexual behavior in conspecific males (Yambe et al. 2006). However, while 
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amino acids are shown to be involved in many fish behaviors, such as feeding, reproduction, 

kin recognition, migration and predator avoidance, the roles for F-series prostaglandins 

(PGFs) are limited only to reproduction within all teleosts so far examined (Kitamura et al. 

1994, Sveinsson and Hara 1995, Moore 1996, Laberge and Hara 2001). Besides PGFs, 

steroids play a major role as pheromones by affecting the endocrine status as well as 

behaviors involved in reproduction in some teleost fish (Sorensen and Scott 1994). Thus, 

steroids regulate oocyte maturation and ovulation in female goldfish and are released via the 

urine into the surrounding water to induce sperm production und reproductive behavior in 

conspecific males (DeFraipont and Sorensen 1993, Poling et al. 2001, Kobayashi et al. 2002). 

Furthermore, male goldfish release the steroid adrostenedione (AD) and testosterone into the 

water to induce ovulation in female conspecifics and also increases aggressive behavior in 

other male goldfish (Sorensen et al. 2005b). Many studies have shown that the olfactory 

system of goldfish and other numerous teleosts is highly sensitive to sex pheromones like 

PGF, steroids and testosterone with detection thresholds in a picomolar range (Sorensen and 

Scott 1994, Stacey and Sorensen 2009). Another class of odorants with importance for social 

interactions and behaviors between conspecifics are bile salts (Doving et al. 1980, Hara 

1994). Like, pheromones as mentioned before, bile salts are mainly released into the 

surrounding water through urine and feces (Zhang et al. 2001). The function of bile salt 

olfaction in fish is not well understood but electroolfactogram (EOG) recordings revealed that 

numerous teleost species are highly sensitive to various mixtures of bile salts with detection 

thresholds of even diluted bile salts in nanomolar concentrations in the lake char (Giaquinto 

and Hara 2008, Bazaes et al. 2013). Moreover, studies on bile salt olfaction proposed the 

ability of the olfactory system to distinguish between free and conjugated bile salts at the level 

of olfactory receptors in lake char as well as in zebrafish (Michel and Derbidge 1997, Zhang 

and Hara 2009). Bile salts released by pacific salmon and absorbed by rocks and organic 

material within their home stream have been implicated to be used by the olfactory system to 

guide returning salmon home (Doving et al. 1980). Additionally, bile salts also may be 

involved in migration to spawning sites in sea lampreys (Sorensen et al. 2005a). However, 

recent findings indicate bile acids to be involved in species-specific interactions as they reveal 

highly similar bile salt profiles within species of the same family and order irrespective of 

their diet (Hagey et al. 2010). Another example for a social odorant is skin extract. Skin 

extract, liberated for example through injury or parasite infestation signals imminent danger 

and triggers a specific and stereotyped alarm or flight reaction characterized by rapid 

swimming, grouping, freezing or hiding in numerous species tested (Frisch 1938, Speedie and 
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Gerlai 2008, Doving and Lastein 2009). It was thought that club cells, abundant in the 

epidermis of fish, excrete the alarm substance or “Schreckstoff” which is in charge for the 

alarm reaction in conspecifics (Brown and Smith 1998, Poulin et al. 1999, Speedie and Gerlai 

2008). However, whether club cells release the alarm substance is not clear to date since they 

are shown to be involved in healing mechanisms of fish skin upon injury. The ingredients and 

its molecular identity of the alarm substance is not known yet, but recent findings identified 

chondroitin fragments secreted from shaken zebrafish skin which triggers alarm response in 

conspecifics (Mathuru et al. 2012). Although conspecific skin extract is a potent odorant for 

teleosts with response thresholds up to a dilution of 1:10
-6 

in crucian carp (Hamdani el and 

Doving 2003), the exact molecular and neuronal mechanisms which mediate this specific 

olfactory driven behavior is currently unknown.  

 

1.3.1. Odorant tuning of the zebrafish olfactory system  

The teleost olfactory system is capable to distinguish between vast numbers of odorants (for 

an overview of odorants sensed by fish see 1.3.). How such large varieties of stimuli are 

encoded and evoke a wide range of behaviors is an intriguing issue. Especially the study of 

detection of odorants from the initial event at the level of the olfactory epithelium (OE) upon 

processing the olfactory information in the olfactory bulb (OB) and higher order neuronal 

circuits involved in execution and modulation of different behaviors is of special interest in 

the field of neuroscience.  

According to the one receptor - one neuron rule, all vertebrate olfactory sensory neurons 

(OSNs) express only one receptor (Sato et al. 2007). As a consequence, a given odor activates 

a set of different receptors and OSNs convey the olfactory information to respective 

glomerular fields, forming a chemotopic map accordingly to the one receptor – one 

glomerulus rule (Friedrich and Korsching 1997, 1998) (see 1.2.2.). Many studies in various 

teleost species using different methods, provided great insight into the repertoire of odorants 

that bind to olfactory receptors and therefore to the different types of OSNs. However, very 

little is known about distinct ligands or an olfactory code. In addition, the response profiles or 

tuning of OSNs towards different classes of odorants is somewhat ambiguous across teleost 

species. Early studies in salmonids concluded that microvillous OSNs (mOSNs) are tuned 

towards amino acids whereas ciliated OSNs (cOSNs) detect bile salts (Thommesen 1983). 

Later studies in different species using patch clamp and calcium imaging allowed more 

insight into response profiles of OSNs (even though single OSN types are very difficult to 
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identify) and concluded that all OSN types respond to amino acids and bile salts without 

featuring any sharp odorant tuning (Lipschitz and Michel 2002, Schmachtenberg and 

Bacigalupo 2004, Bazaes and Schmachtenberg 2012, Meredith et al. 2012). Analyzing 

glomerular fields in which the different types of OSNs project to, Hansen et al. (2003) 

concluded in the channel catfish, using EOG recordings and pharmacology, that cOSNs are 

tuned mainly towards bile salts but also respond to amino acids whereas mOSNs 

preferentially respond to amino acids and nucleotides. In rainbow trout, Sato and Suzuki 

(2001) revealed with whole cell patch recordings that cOSNs respond to a wide variety of 

odorants, acting as “generalists” whereas mOSNs respond as “specialists” mainly to amino 

acids.  

The role of crypt cells remained elusive since their discovery. At first crypt cells were 

supposed to be involved in pheromone detection since their amount varies with seasonal 

changes. Most evidence for crypt cells involved in reproduction comes from a study in the 

crucian carp in which the number of crypt cells reaches its maximum during spawning season 

(Hamdani el et al. 2008). Most crypt cells show responses to reproductive pheromones of the 

opposite sex in mature trout whereas crypt cells in juvenile specimens are tuned to various 

odorants, indicating a specialization in their response profile while attaining sexual maturity 

(Bazaes and Schmachtenberg 2012).  

In goldfish, it was shown that cOSNs recovered faster than mOSNs after axotomy. 

Interestingly, olfactory nerve sectioned goldfish showed in behavioral tests sensitivity for 

food related odorants before responses to pheromones (Zippel et al. 1996). As mentioned 

above, various studies across many teleost species using different techniques revealed 

discordant results without making a general conclusion of the response profiles of the 

different types of olfactory sensory neurons. 

In the zebrafish Danio rerio, the tuning of OSNs towards different classes of odorants 

is not resolved as well. Koide et al. (2009) indicated mOSNs to be involved in food odor 

related behavior. By expression of the tetanus neurotoxin in mOSNs they could abolish 

attractive behavioral responses to amino acids in transgenic zebrafish. In addition, an 

immunocytochemical analysis using the ion channel permeant probe agmatine (AGB) also 

showed a preference for amino acids by mOSNs in the zebrafish (Lipschitz and Michel 2002). 

Recently, Hussain et al. (2013) uncovered an olfactory receptor which binds with high affinity 

the polyamine cadaverine. They showed that cadaverine is a major product of zebrafish tissue 

decay and elicits a strong odor driven avoidance behavior in conspecifics. Furthermore, they 

stated that cadaverine binds with high affinity to the trace amine associated receptor 13c 
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(TAAR13c) expressed on a small population of cOSNs. So far, kappe neurons are only 

identified in zebrafish but it is conceivable to find this cell type in other teleosts as well 

(Ahuja et al. 2014). Little is known about the possible function of this cell type but it could be 

supposable that they play a role in detection of social odorants since they project into a 

mediodorsal glomerulus. Our own study using immunohistochemical methods investigated 

the differential activation pattern OSNs of zebrafish larvae in response to different odors 

(Biechl et al. 2016b). By stimulating zebrafish larvae with food- and conspecific odor we 

showed that both cOSNs and mOSNs respond to a food related odor (containing amino acids) 

whereas mOSNs also responded to conspecific (social) odor. Activation of OSNs was 

measured by an increase of the activity marker pERK (phosphorylated extracellular signal 

regulated kinase). Interestingly, crypt cells showed no activation to these given odors. 

Moreover, stimulation experiments with kin odor provided strong evidence for crypt cells to 

be involved in kin recognition in larval zebrafish (Biechl et al. 2017) (see 1.3.2). Zebrafish are 

able to distinguish behaviorally between kin and non-kin using olfactory cues of their kin 

(Gerlach and Lysiak 2006, Gerlach et al. 2008). However, the molecular nature of kin odor is 

not known yet but our studies clearly indicate a role of crypt cells to be involved in detection 

of a social and kin-related signal in the zebrafish Danio rerio (Biechl et al. 2016b, Biechl et 

al. 2017).  

 

1.3.2. Olfactory imprinting & kin recognition in the zebrafish (Danio rerio) 

Recognition of individuals or the discrimination of various categories of conspecifics, also 

termed social recognition is of great importance for living in a stable social group in which 

individuals may interact with each other or simply to differentiate between “friend and foe”. 

As a part of social recognition, kin recognition allows an individual to distinguish between 

genetically related conspecifics, therefore between kin and non-kin. The discrimination as 

well as the differential treatment of kin and non-kin provide the organism as well as its 

relatives benefits and are considered stable strategies in evolution. Hamilton (1964a, b) states 

that helping within kinship increases the success of reproduction and fitness of the individual 

itself. Parental investment, alarm calls or grooming are such social interactions which 

strengthen and may increase survival of a kinship. In addition, kin recognition also assists in 

choosing the appropriate mate, thus avoid inbreeding, and producing healthy offspring 

(Gerlach and Lysiak 2006, Milinski 2014). Kin discrimination and favouring close relatives 

has been shown in invertebrates (Breed et al. 1988), as well as numerous vertebrate species 
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such as fish (Russell et al. 2004, Gerlach and Lysiak 2006), frogs (Pfennig et al. 1993), birds 

(Pravosudova et al. 2001) and mammals (Mateo and Johnston 2003). Besides, kin recognition 

is also found in plants as they are shown to alter their root growth in the presence of kin or 

non-kin, probably via chemical cues released by the roots (Pfennig and Sherman 1995, 

Dudley and File 2007).  

But how may an individual recognize its kin? One mechanism, familiarity, is suggested to be 

used to recognize possible relatives by social learning. Familiarity means that an organism is 

associated with family members early in life and remembers specific circumstances, such as a 

location (e.g. nest or lair) or characteristics of its conspecifics. This memory is used later to 

recognize possible relatives. Importantly, familiarity does not constrain genetic relatedness, as 

cross-fostering experiments in mice show that non-kin pups which are raised together treat 

themselves like they were full siblings later in life (Kareem and Barnard 1982, Tang-Martinez 

2001). However, an experiment in which lambs were separated at birth, but recognized their 

twins as kin, shows evidence that there must be another mechanism of kin recognition based 

on their phenotype (Ligout and Porter 2003). Such a mechanism is termed phenotype 

matching. In this case, young individuals learn cues, such as odor (Mann et al. 2003), 

acoustic signals or appearance (Cooke et al. 1972, Hauber et al. 2000) of conspecifics and of 

itself and generate a kin template. This template is used later in life and compared to putative 

kin (Holmes 1986, Mateo and Johnston 2003). However, both mechanisms are often used by 

the same individual to discriminate between kin and non-kin. Importantly, such life-long 

memory only occurs if appropriate cues are presented within a critical developmental period. 

Such form of phase sensitive learning is termed imprinting. One of the first and best known 

examples of imprinting is reported in most nidifugous birds, such as chicken, ducks and 

geese. Konrad Lorenz (1937) reported that newly born goslings imprint on the first object 

they see and follow them around. This behavior resulting from visual imprinting persists even 

into adulthood. Imprinting clearly differs from other forms of learning and memory as it is 

rapid, robust, limited to a small time window and independent of resulting behaviors. 

Furthermore, imprinting on parental appearance, such as plumage color influences 

preferences in mate choice in the lesser snow goose (Cooke et al. 1972). Acoustic stimuli 

have been shown to improve visual imprinting when presented prior the visual stimulus. 

Auditory together with visual cues play an important role for creating a strong mother – 

offspring bond in many avian species. Newly hatched chicks imprint on maternal feeding and 

distressing calls and learn associated behaviors which increases growth and chances of 

survival (Tefera 2012). 
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Several studies in various species reported imprinting based on olfactory cues. 

Olfactory imprinting is not restricted to a critical phase in juvenile specimen as two of the 

most prominent olfactory imprinting paradigms involve adult vertebrates. The so called 

`pregnancy block´ or `Bruce effect´ was first noted by Hilda M. Bruce (1959). Female mice 

imprint on urinary odors released by the mating partner during or shortly after mating. If the 

female is exposed to the male olfactory cues (pheromones) during the critical period, which is 

4 hours after mating, the female forms a long term olfactory memory of this individual male 

odor. Interestingly, exposure to pheromones from other males, for which the female has 

formed no olfactory memory, will activate neuroendocrine pathways which terminate the 

female´s pregnancy (Kaba et al. 1989, Brennan et al. 1990). MHC (Major Histocompabitility 

Complex) class I molecules, contained in the male´s urine, are detected by the female 

vomeronasal organ (VNO) which transmits the odorant information, specific to the male, to 

the accessory olfactory bulb (AOB). Repeated exposure of this learned male odor activates 

noradrenalin release in the AOB and decreases the receptivity to this odor and pregnancy will 

continue (Zufall and Leinders-Zufall 2007, Becker and Hurst 2008). Another prominent 

example of olfactory imprinting is known from sheep. The ewe becomes sensitive to the smell 

of amniotic fluid during parturition. Within this short, about 2 hours’ time window while 

giving birth, an exclusive bond between mother and lamb is established. Importantly, 

pregnant ewes show no reaction to new born lambs. Moreover, accordingly to this imprinting 

definition, ewes which are not exposed to their own lamb within this sensitive period will fail 

to develop this mother – lamb bond and will reject its offspring (Poindron et al. 1988, 

Poindron et al. 1993). In the European rabbit (Oryctolagus cuniculus), it was shown that pups 

imprint in utero on chemical cues associated on the mothers nutrition and show preference for 

this food later in life (Bilkó et al. 1994). 

Olfactory imprinting is also reported in several teleosts and is widely accepted to 

explain natal homing behavior in salmonids (Cooper and Hasler 1974, Cooper et al. 1976, 

Dittman et al. 1996, Bett and Hinch 2015). Juvenile salmonids are anadromous because they 

imprint on olfactory cues of their natal stream, migrate to the sea until adulthood and return 

for spawning guided by the olfactory memory formed early in life (Dittman et al. 1996, Hasler 

and Scholz 2012). The so called parr-smolt transformation (PST) is the change from young 

salmon `parr´ (about one to four years old salmon) to `smolt´; a transformation which 

prepares the young salmon for its emigration to the sea. During the PST, the young animal 

undergoes several hormonal changes, such as a dramatic increase in thyroid hormone which is 

supposed to be crucial in the formation of olfactory memory (Dickhoff et al. 1978, Morin et 
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al. 1989b, a). Therefore, the PST is believed to be the critical period of olfactory imprinting 

even though the exact or precise point in time at which imprinting occurs is not identified yet 

(Bett and Hinch 2015). However, there are anadromous fish which do not return to their natal 

water for spawning. For example, the migration strategy of lamprey is considered as a `non-

specific homing´, thus they migrate from the sea to a `general home area´ indicated by 

olfactory cues released by larval conspecifics (Waldman et al. 2008, Moser et al. 2015). 

However, most anadromous fish, such as salmonids use predominantly olfactory cues of their 

natal stream for homing and conspecific cues may play a secondary role for navigation (Bett 

and Hinch 2015). Another example of olfactory imprinting is shown in many coral reef fish. 

Reef fish larvae imprint on distinct odor cues from their settlement reef and prefer this odor 

instead of water from a nearby reef, thus limiting dispersal of reef populations through ocean 

currents (Atema et al. 2002, Lecchini et al. 2005, Gerlach et al. 2007a). It is supposed that 

odor cues released by island vegetation might assist reef fish larvae to navigate and find 

appropriate settlement habitat (Dixson et al. 2008). 

In the zebrafish Danio rerio, it was shown that visual and olfactory cues are essential 

to create a kin template which is used to discriminate between kin and non-kin (Gerlach and 

Lysiak 2006). At larval stages, zebrafish preferences for conspecific odor increases with 

relatedness. Grouping with kin is shown to increase growth of juvenile zebrafish, whereas 

zebrafish grouped with unrelated conspecifics showed retarded growth (Gerlach et al. 2007b). 

Consequently, staying with kin provides benefits such as earlier fertility by accelerated 

growth and better chances to survive. However, by attaining fertility, zebrafish avoid kin 

odor, most possibly for preventing inbreeding. In an effort to unravel the critical time window 

in which zebrafish larvae imprint on their kin, Gerlach and colleagues (2008) reported by 

cross fostering and behavioural tests that larvae imprint on day 6 post fertilization (dpf) on 

olfactory cues of their full siblings. Interestingly, zebrafish raised with non-kin do not imprint 

on non-kin cues nor do they show preference for non-kin odor in behavioural tests. Moreover, 

if exposed to kin odor on developmental days other than day 6, zebrafish larvae failed to 

imprint and therefore were unable to distinguish between kin and non-kin. Later, this 

imprinting paradigm was expanded by adding an essential additional cue involved in 

zebrafish imprinting. Hinz et al. (2013a) reported that zebrafish larvae raised in 

semitranslucent glass beakers, thus unable to identify more than the silhouette of surrounding 

kin, and zebrafish only exposed to olfactory cues of kin did not lead to successful imprinting. 

Thus, surprisingly, larvae which are not exposed to visual kin cues on day 5 failed to imprint 

even if exposed to kin odor on 6 dpf. Therefore, imprinting of zebrafish larvae on their kin 
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involves two sensory cues, vision and olfaction, and both cues have to be presented on 

appropriate developmental days which are day 5 and day 6, respectively (Hinz et al. 2013a). 

These findings raise the question why zebrafish larvae only imprint on visual and olfactory 

cues of their kin and not on non-kin cues, suggesting a genetic predisposition for kin related 

signatures. By comparing the pigment pattern of several zebrafish families with Major 

Histocompability Complex (MHC) class genotype similarity, it was shown that iris 

pigmentation and morphometry of zebrafish larvae relies on MHC class II alleles (Hinz et al. 

2012). MHC class II genes, especially MHC peptides were also shown to be involved as a kin 

related signal in olfactory imprinting in zebrafish (Hinz et al. 2013b). Olfactory choice tests of 

6dpf old zebrafish larvae indicate that MHC class II allele similarity is correlated with 

imprinting on kin. Moreover, MHC class II peptides are sufficient to evoke neuronal activity 

in the zebrafish olfactory bulb partially overlapping with responses to kin odor shown by 

calcium imaging (Hinz et al. 2013b). However, MHC class II peptides may serve as species 

identity cues involved in the process of olfactory imprinting as well as kin recognition later in 

life, anyway the kin odor itself consists likely of more components than MHC peptides. 

Recently, our own studies using a common neuronal activity marker (pERK; see next 

paragraph), showed strong evidence for crypt cells together with a small subpopulation of 

mOSNs to detect a kin odor specific signal in larval zebrafish. Importantly, only crypt cells of 

imprinted larvae showed neuronal activation in response to kin odor containing water, 

suggesting changes already at the level of the olfactory epithelium, especially at the level of 

receptor expression due to olfactory imprinting (Biechl et al. 2016b, Biechl et al. 2017). 

Several methods are available to detect neuronal activity in the peripheral as well as 

the central nervous system, however, all of them with pros and cons. The extracellular signal 

regulated kinase (ERK) is a member of the mitogen activated protein kinase (MAPK) family; 

protein kinases are involved in cell communication in response to different stimuli. ERK is 

catalytically inactive but upon cell activation, ERK gets activated by phosphorylation by its 

upstream kinase MEK (ERK kinase). The MAPK signalling pathways are involved in 

regulation of several cell functions such as proliferation, gene expression, cell survival and 

apoptosis in response of diverse stimuli. Phosphorylation dependent activation events might 

be triggered by osmotic stress, heat shock, mitogens or other ligands (e.g. transmitter 

signalling molecules) which bind on receptors expressed on the cell membrane (Widmann et 

al. 1999). Such receptors might be G-protein coupled receptors (GPCRs) such as olfactory 

receptors expressed on OSNs. Upon phosphorylation, phosphorylated ERK (pERK) is 

translocated into the nucleus of the activated cell to activate transcription factors such as 
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immediate early genes (e.g. egr-1 or c-fos) which in turn regulate gene expression involved in 

neuronal and synaptic plasticity underlying learning and memory (Figure 5) (Gao and Ji 

2009). pERK is a widely accepted marker for neuronal activity (Randlett et al. 2015) and also 

used in the field of olfaction because of its rapid activation followed (olfactory) stimulation 

(Miwa and Storm 2005, Biechl et al. 2016b, Biechl et al. 2017).  

 

Figure 5 Activation of an olfactory sensory neuron. (1) Binding of a ligand to its receptor leads to a cascade 

of phosphorylation events which finally leads to the (2) phosphorylation of the extracellular signal regulated 

kinase (pERK). pERK translocates into the nucleus and (3) promotes expression of immediate early genes 

(IEGs) such as cfos. (4) IEG messenger RNA (mRNA) translocates out of the nucleus where it is translated 

into IEG proteins (5) IEG proteins often act as transkription factors and return into the nucleus and promote or 

inhibit (6) the expression of other genes. (7) Effector mRNAs are translated to (8) effector proteins which lead 

to intracellular adaptions (synaptic plasticity). For references see text. 
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2. AIM OF THE STUDY 

The formation of long lasting olfactory memories as resulting from olfactory imprinting is 

conserved across animals, in invertebrates as well as in vertebrates (see examples above); 

however, the underlying mechanisms are poorly understood. Previous work in zebrafish 

gained much insight into the processes involved in visual and olfactory imprinting resulting in 

kin recognition later in life (see 1.3.2). 

The zebrafish, Danio rerio, is widely used in developmental and neurobiological 

studies. As a model organism, the zebrafish is advantageous for its small size, low cost and 

rapid reproduction. To study the mechanisms involved in olfactory imprinting, the zebrafish 

suits especially because of its easy experimental manipulation of breeding, for instance in 

isolation or kin groups. Additionally to these handling benefits, several well established 

immunohistochemical methods, involving many primary antibodies, are available to study 

underlying mechanisms on the neuronal basis of olfactory imprinting in the zebrafish, Danio 

rerio. In addition, although teleosts, such as the zebrafish, lack a separate vomeronasal organ 

(VNO), receptor expression displays a high degree of molecular conservation between 

zebrafish and mouse olfactory system (Saraiva et al. 2015).  

Based on what is known so far, the aim of this thesis is to obtain more insights into neuronal 

mechanisms involved in olfactory imprinting, starting at the level of the olfactory epithelium 

(OE), followed by the level of first odor processing, the olfactory bulb (OB) and finally 

showing evidence of OB targets involved in this special form of olfactory driven long-term 

memory.  

(1) The first aim of my study is to provide more insights into different subpopulations 

of zebrafish olfactory sensory neurons (OSNs) characterized with calcium binding proteins 

(CBPs) in adult and larval zebrafish. In a comprehensive combinatorial immunohistochemical 

study, I demonstrate different expression patterns of Calbindin, Calretinin, Parvalbumin and 

S100 in OSNs as well as their differential bulbar targets with special emphasis of filling gaps 

in the knowledge of OE projections to the dorsomedial olfactory bulb (Kress et al. 2015).  

(2) Odor detection occurs at the level of the olfactory epithelium (OE). Olfactory 

receptors expressed on four distinct types of olfactory sensory neurons (OSNs) bind different 

odorants with variable affinity (see 1.2.1). The ability to discriminate between thousands of 

different odorants relies on differential activation of these receptors expressed on OSNs. So 

far, little is known on odorant specification of the four types of OSNs in the zebrafish, Danio 

rerio. To identify the type or types of OSNs which are activated in response to different odor 
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exposures, I choose the neuronal activity marker pERK (phosphorylated extracellular signal 

regulated kinase; see above). Additionally, I validate the expression of the neuronal activity 

marker pERK in the larval zebrafish OE in response to different odors as well as different 

odor exposure durations. With the use of accepted immunohistochemical markers (antibodies) 

as well as morphological characteristics of the four zebrafish OSNs (described in 1.2.1), I 

demonstrate pERK as a reliable marker for spatial activation of OSNs after odor stimulation 

in the larval zebrafish. Moreover, with the knowledge of the exact time point of olfactory 

imprinting, I stimulated imprinted as well as non-imprinted larvae with kin odor and analysed 

the different response profiles of the four distinct types of zebrafish OSNs (Biechl et al. 

2016b). 

(3) The final aim of my study is to describe for the first time an accessory olfactory 

system, as present in mammals, in the zebrafish, Danio rerio. By application of DiI tracer into 

the medial OB or tuberal hypothalamus, I show secondary olfactory projections of the 

zebrafish OB into distinct telencephalic areas. Furthermore, I describe the presence of a 

teleostean medial amygdala characterized by Otpa positivity and receiving olfactory input 

from dorsomedial OB glomerular fields. Moreover, I present evidence for the teleostean 

medial amygdala to be involved in kin recognition in the larval zebrafish by analyzing 

neuronal activity in the medial OB and intermediate ventral telencephalic nucleus (medial 

amygdala) in response to kin odor exposure (Biechl et al. 2017). 
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3. RESULTS 

3.1. Kress, S., D. Biechl and M. F. Wullimann (2015). "Combinatorial 

analysis of calcium-binding proteins in larval and adult zebrafish primary 

olfactory system identifies differential olfactory bulb glomerular projection 

fields." Brain Struct Funct 220(4): 1951-1970. 

 

Contributions: 

 

The study was designed by SK, DB and MFW. The immunohistochemical processing was 

performed by SK and DB. Analysis of data was done by SK, DB and MFW. The first version 

of the manuscript was written by SK, DB and MFW. The final version was written by SK, DB 

and MFW. SK and DB share first authorship. 
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3.2. Biechl, D., K. Tietje, G. Gerlach and M. F. Wullimann (2016). "Crypt 

cells are involved in kin recognition in larval zebrafish." Sci Rep 6: 24590. 

 

Contributions: 

 

The study was designed by D.B., K.T., G.G. and M.F.W. The behavioral experiments were 

performed by D.B. and K.T. (Oldenburg). The immunohistochemical processing was 

performed by D.B (Munich). Analysis of data was done by D.B., K.T., G.G. and M.F.W. The 

first version of the manuscript was written by D.B. and K.T. The final version was written by 

D.B., K.T., G.G. and M.F.W. D.B. and K.T. share first authorship. 
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3.3. Biechl, D., K. Tietje, S. Ryu, B. Grothe, G. Gerlach and M. F. Wullimann 

(2017). “Identification of accessory olfactory system and medial amygdala in 

the zebrafish” Sci Rep 7: 44295. 

 

Contributions: 

 

The study was designed by DB, KT, GG and MFW. The behavioral experiments were 

performed by DB and KT (Oldenburg). The tracing experiments were done by DB and MFW. 

The immunohistochemical processing was performed by DB (Munich). Analysis of data was 

done by DB, KT, SR, BG, GG and MFW. The first version of the manuscript was written by 

DB, KT and MFW. The final version was written by DB, KT, SR, BG, GG and MFW. DB 

and KT share first authorship. 
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4. DISCUSSION 

Across a wide range of vertebrates, the process of olfactory imprinting on distinct 

olfactory cues and therefore formation of long lasting olfactory memories is conserved across 

animals, in invertebrates as well as in vertebrates. Olfactory imprinting is a learning process 

which is related to a natural, biologically relevant context and occurs at a defined 

developmental time window (sensitive period). Larvae of zebrafish are known to imprint on 

visual and olfactory cues of their kin during a 24-hour window and use this olfactory memory 

for kin recognition later in life (see 1.3.2). Interestingly, larvae do not imprint on non-kin cues 

on the appropriate days, suggesting a genetic predisposition on kin cues. Although several 

studies revealed first insights on the processes involved in olfactory imprinting in zebrafish, 

the underlying mechanisms are poorly understood so far. 

The aim of this doctoral thesis was to gain more insight into the process of olfactory 

imprinting from a neurobiological view. For this, it is absolutely essential to understand and 

interrelate anatomical, genetic and behavioral factors involved in zebrafish olfaction. For this 

reason, this thesis was part of a collaboration with the laboratory of Gabriele Gerlach in 

Oldenburg, Germany (behavioral and genomic experiments) and the Rainer Friedrich lab in 

Basel, Switzerland (behavior, Ca
2+

 imaging and MHC peptide-stimulation). My thesis begins 

with a comprehensive anatomical study of elements of the zebrafish olfactory system and 

proceeds with following analyses involving neuronal activity in response to kin odor exposure 

in imprinted and non-imprinted zebrafish larvae. 

In contrast to other vertebrates, the teleostean olfactory system consists of one paired 

olfactory epithelium (OE), which bears olfactory sensory neurons (OSNs) mediating olfactory 

information via the olfactory nerve to the olfactory bulb (OB). The zebrafish OE consists of 

four different types of OSNs. Like in tetrapods, ciliated and microvillous OSNs (cOSNs and 

mOSNs), are the two main types of OSNs in teleosts. However, both types of OSNs are 

intermingled within each single OE and therefore not correlated to separate structures 

represented by the main olfactory epithelium (MOE) and the vomeronasal organ (VNO) in 

tetrapods, respectively. Additionally, two further types of OSNs, kappe neurons and crypt 

cells, even though making up small populations, are intermingled within the zebrafish OE. 

However, although the teleostean olfactory system displays morphological differences to that 

of tetrapods, basic essentials, such as expression of odorant receptors, binding and processing 

of odorants or involved signaling molecules, are comparable to that of tetrapods (see 1.1). 
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First of all, the data on calcium binding protein expression will be discussed in detail 

(4.1). Afterwards, an extended discussion will focus on neuronal activity at the level of odor 

detection (olfactory epithelium) as well as at the level of odor processing (olfactory bulb) 

(4.2.1). Moreover, the existence of a telostean medial amygdala and its possible involvement 

in kin recognition will be part of this extended discussion (4.2.2). 
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4.1. Combinatorial analysis of calcium binding proteins in larval and adult 

zebrafish reveals distinct subpopulations of olfactory sensory neurons and 

identifies their differential glomerular olfactory bulb targets  

The aim of this study was to define the expression of four different calcium binding 

proteins (CBPs), Parvalbumin (PV), Calbindin (CB D28k), Calretinin (CR) and S100 in the 

olfactory system of larval and adult zebrafish (Danio rerio). Since only the two CBPs, CR and 

S100 have been investigated in the zebrafish olfactory system so far, the present study using 

additional CBPs provided new insights into subpopulations of olfactory sensory neurons 

(OSNs) as well as their projection targets into the olfactory bulb (OB) in larval and adult 

zebrafish. In order to investigate a possible differential expression pattern of OSNs, we 

applied the four different CBPs in a combinatorial fashion and analyzed the expression pattern 

of single- and double-label preparations of larval as well as adult zebrafish olfactory epithelia 

(OE) and OB cryostate sections. Altogether, the present study using four different CBPs in 

combinatorial fashion reveals at least eight subpopulations of OSNs in the zebrafish OE 

(Figure 6). There is one very obvious S100-like positive crypt cell population which is 

negative for all other CBPs, projecting into one of overall six glomeruli in the mediodorsal 

olfactory bulb (see also (Braubach et al. 2012)). Additionally, we report three subpopulations 

of cOSNs, one major subpopulation positive for PV, CB and CR, and two minor populations 

either positive for PV and CB or CR only. Furthermore, we identified four subpopulations of 

mOSNs, one minor population double labeled with S100 and PV, one only PV positive 

subpopulation, one positive for PV and CB and finally mOSNs immunoreactive for PV, CB 

and CR.  

Calcium-binding proteins (CBPs), such as Parvalbumin, Calretinin, Calbindin (D28k) 

and S100, belong to a larger group of proteins which are involved in numerous cellular 

functions across vertebrates. The family of CBPs is a heterogenous group but most CBPs 

exhibit a characteristic amino acid sequence, which folds up into a helix-loop-helix pattern, 

the so called EF-hand, in which calcium
 
ions bind (Andressen et al. 1993). CBPs of the EF-

hand family may either act as a `trigger´ to induce distinct cellular responses or function as a 

`buffer´ in the presence of Ca
2+ 

(Dalgarno et al. 1984). The four CBPs used in this study are 

such `buffer´- proteins which, in addition to their role in regulation of Ca
2+

 within cells, are of 

special interest from a neuroanatomical point of view. Thus, CBPs are shown to be expressed 

in distinct neuronal subpopulations in various vertebrate species, therefore considered as an 

excellent marker to study anatomy and distribution of distinct neuronal subsystems in the 
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vertebrate central nervous system (CNS). Parvalbumin (PV), Calbindin (CB) and Calretinin 

(CR), for example, reveal consistent cytoarchitectonical distributions of different neocortical 

cell types in several mammalian species (Celio 1990, Van Brederode et al. 1990, Hendry and 

Jones 1991). In rats, Celio (1990) stated a general conclusion in which PV is said to be mainly 

expressed in neurons with thick myelinated axons with restricted projection fields such as 

GABAergic interneurons of the mammalian cortex. On the other hand, CB is mostly observed 

in neurons with thin unmyelinated axons with diffuse projection targets such as thalamic 

projection neurons or spinal-, retinal-, vestibular- or cochlear nuclei. However, although PV 

and CB mainly show complementary distribution, both CBPs are expressed in cerebellar 

Purkinje cells and dorsal root ganglia of the spinal cord. In addition, combinatorial analysis of 

PV, CB and CR in cortices of several mammalian species demonstrates that these three CBPs 

define non-overlapping distinct subpopulations of GABAergic cortical interneurons (Celio 

1990, Hendry and Jones 1991, Résibois and Rogers 1992, Andressen et al. 1993). In the rat 

main olfactory bulb (MOB), these three CBPs are localized in several classes of bulbar 

neurons and deprivation experiments demonstrate that CBP expression is regulated by 

olfactory experience (Philpot et al. 1997). 

 For example, PV is expressed in a subpopulation of GABAergic bulbar interneurons, 

however, the morphology and laminar distribution of this PV immunopositive (-ir) 

subpopulation displays an enormous heterogeneity (Kosaka et al. 1994). PV, CR and S100 are 

also shown to be located in distinct neuronal populations in the teleost central nervous system. 

Like in mammals, teleostean cerebellar Purkinje cells are shown to express PV in their soma 

as well as in their axonal projections (Alonso et al. 1992, Porteros et al. 1998, Crespo et al. 

1999). Moreover, CR-ir is seen in the efferent cerebellar system as well as in other specific 

neuronal populations of the teleost brain (Díaz‐Regueira and Anadón 2000, Castro et al. 2006, 

Biechl et al. 2016a). The CBP S100 selectively labels neuromasts of the lateral line system 

and taste buds in adult zebrafish. In the zebrafish olfactory system, S100 is expressed 

exclusively in a small subpopulation of olfactory sensory neurons (OSNs), the crypt cells, 

whereas CR-ir is seen in very numerous OSNs, mostly ciliated OSNs (Castro et al. 2006, 

Germanà et al. 2007, Koide et al. 2009, Braubach et al. 2012, Gayoso et al. 2012). Several 

studies using CR and S100 demonstrated no conclusive expression profiles of the four 

zebrafish OSNs. This disagreement might result from CBP investigation at different 

developmental stages, as for example CR is expressed in cOSNs and mOSNs in larval 

zebrafish (Koide et al. 2009), whereas CR-ir is seen mostly in cOSNs in adult specimen 

(Castro et al. 2006, Germanà et al. 2007, Gayoso et al. 2011, Braubach et al. 2012, Kress et al. 
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2015). Another CBP, S100 has been under great debate to be considered as a specific marker 

for crypt cells. Several studies demonstrated S100 to visualize steadily the entire crypt cell 

population of larval and adult zebrafish (Germana et al. 2004, Sandulescu et al. 2011, 

Braubach et al. 2012, Biechl et al. 2016b). Crypt cells are easily distinguishable, because their 

round shape, their crypt formed indentation, as well as their most apical location within the 

OE is well distinguishable from the appearance of cOSNs and mOSNs. However, some 

studies in zebrafish showed that that in addition to crypt cells, also some plump and spindle 

shaped OSNs, likely mOSNs, show immunopositivity to the S100 antibody (Gayoso et al. 

2011, Gayoso et al. 2012, Biechl et al. 2016b). Furthermore, based on in situ hybridization 

data, Oka et al. (2012) stated that in contrast to a small subpopulation of mOSNs, crypt cells 

do not express any S100 gene and specific crypt cell recognition by S100 

immunohistochemistry is only feasible in particular assay conditions. Ahuja et al. (2013) 

showed that paraformaldehyde (PFA) fixed OE of adult zebrafish resulted in S100 staining of 

crypt cells and a small subpopulation of mOSNs as reported in other studies mentioned above 

as well as shown in our present study. In fresh frozen tissue preparations they specifically 

identify the entire crypt cell population. Based on a study by Catania et al. (2003), Ahuja et al. 

(2013) tested an antibody against trkA, a neurotrophin-NGF-receptor, to suit as a better 

marker for crypt cells. Unfortunately, it turned out to be that trkA, such as in the case of S100, 

cross reacts with an unknown protein instead of the expected antigen. 

Given that the S100 antibody recognizes an unknown protein in crypt cells, but 

nevertheless provides reliable crypt cell identification, we used the term S100-like to describe 

the immunopositivity of crypt cells from now on. In the present study (Kress et al. 2015), as 

well as in the following study (Biechl et al. 2016b), we demonstrate S100-like positive crypt 

cells and their projections into one sole glomerulus (mediodorsal glomerulus; mdG2) in the 

zebrafish OB, as reported in previous studies (Braubach et al. 2012, Ahuja et al. 2013). 

Moreover, we show evidence of additional input of S100-like and PV positive mOSNs into 

this glomerulus. This result is affirmed by tracing data (Ahuja et al. 2013) which shows some 

backlabeled mOSNs following DiI injection into mdG2 most likely the subpopulation of 

S100/PV-ir mOSNs described in our study. Furthermore, we are confident that our S100 

antibody is a reliable marker for the entire crypt cell population as well as for a small 

subpopulation of mOSNs, since we do not see any other projection targets of S100-like fibers 

outside the mdG2 glomerulus. Furthermore, regarding the S100/PV-ir mOSN projection into 

mdG2, we also see PV-ir within the mdG2 in single antibody staining preparations in larval 

and adult zebrafish. This label cannot originate from crypt cells since they are negative for 
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PV. The only plausible explanation is that mOSNs, expressing S100 and PV project their 

axons into the mdG2 of the zebrafish OB. In addition, our study shows that almost all cOSNs 

project their axons into dorsal and ventromedial glomerular domains whereas one large 

subpopulation of mOSNs, expressing PV, CB and CR, terminate into ventrolateral fields of 

the zebrafish OB. This projection pattern is in line with a study by Sato et al. (2005) who 

generated double transgenic zebrafish lines expressing distinct fluorescent proteins in cOSNs 

and mOSNs under the control of regulatory regions of the olfactory marker protein (OMP) 

and transient receptor potential channel 2 (TRPC2), respectively. Interestingly, in this study, 

neither cOSNs nor mOSNs showed innervations into mediodorsal bulbar fields of transgenic 

zebrafish. However, our study demonstrates PV-ir axonal projections innervating the entire 

mediodorsal bulbar field (mdG). Furthermore, these PV expressing fibers of the mdG only co-

express CB at more anterior parts whereas no co-expression is seen for CR in any part within 

the entire mdG, thus confirming our finding of a PV only positive subpopulation of mOSNs. 

Regarding to the absence of TRPC2 expressing mOSN projections within the mdG shown in 

transgenic zebrafish (Sato et al. 2005), we conclude that mOSNs innervations into mdG 

reported in our study (PV only and PV/CB positive mOSNs) express no TRPC2, but another 

type of ion channel. In this case, the view on signal transduction in mOSNs has to be 

reconsidered, since mOSNs have been specifically associated with TRPC2 in mammals as 

well as in teleosts, such as zebrafish (Liman et al. 1999, Sato et al. 2005). In zebrafish, 

another protein, Gαo, is associated with mOSNs (Oka and Korsching 2011). A comprehensive 

anatomical study on glomerular organization in zebrafish reported Gαo-ir fibers in mdG5, a 

second mediodorsal glomerulus (Braubach et al. 2012). Up to that time, it was suggested these 

Gαo-ir fibers originate from mOSNs and some crypt cells. However, a previous study 

unraveled a new OSN type, kappe neurons, as the source of these Gαo positive fibers in mdG5 

(Ahuja et al. 2014). However, the receptor which is expressed on this cell type is not known 

so far. Based on our results on CBP expression within the mdG, it would be possible that 

kappe neurons correspond to the PV/CB-ir subpopulation of mOSNs, as they also project into 

mdG5 in our data.  

To recap our results of CBP positivity focused on the mediodorsal field of the 

zebrafish OB, we identify the cellular origin of (at least) two glomeruli, which are the mdG2 

and mdG5, as receiving input from crypt cells and possibly PV/CB positive kappe neurons, 

respectively. However, four more glomeruli are present in the mediodorsal field of the 

zebrafish OB, all of them showing PV only (one) or PV/CB (three) positivity. It would be 

possible that the remaining mediodorsal glomeruli also receive input by at least three distinct 
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subpopulations of mOSNs, all of them negative for CR expression. If this is the case, these 

five glomeruli in all would be innervated by distinct populations of mOSNs, each of them 

expressing one particular receptor. There are numerous vomeronasal type 2 (V2R) genes 

present in teleosts, about 24 potentially functional in zebrafish (Hashiguchi and Nishida 2005, 

2006), whereas only six V1R like genes (ora 1-6), all of them highly conserved between 

several telost families, exist (Saraiva and Korsching 2007). In contrast to teleosts, mammalian 

V1Rs are numerous, highly divergent and vary between species. In rodents, V1Rs are related 

to pheromone detection which is also assumed to other species (Boschat et al. 2002, Young et 

al. 2005). However, based on several behavioral studies, the teleostean medial olfactory tract 

(MOT), containing fibers originating from the medial OB, is associated with mediating social 

behaviors, whereas the lateral olfactory tract (LOT) contains mainly fibers of lateral bulbar 

regions and is shown to mediate behaviors related to feeding (Sheldon 1912, Finger 1975, von 

Bartheld et al. 1984). Furthermore, both tracts contain mitral cell axons which project to 

different targets within the telencephalon and diencephalon (see 1.2.2). In general, odors are 

supposed to be processed in a combinatorial fashion, whereas odors of special biological 

significance, such as pheromones, are considered to activate a so called `labeled line´ 

pathway. The `labeled line´ theory defines a coding strategy in which a given odor activates a 

distinct signaling pathway which immediately leads to a behavioral or physiological response 

(Touhara and Vosshall 2009). It was shown in insects that a male-specific pheromone elicits 

and suppresses mating behavior in males and females respectively. Interestingly, both 

resulting behaviors are mediated by only one class of OSNs, expressing the same receptor 

(“one neuron - one receptor rule”) and project to one glomerulus (“one receptor - one 

glomerulus rule”). To elicit those two opposed behaviors, two different classes of second-

order neurons, one GABAergic and the other cholinergic, are connected to this glomerulus 

and innervate a putative pheromone sensing center which in turn specifically targets two 

sexually dimorphic regions (Kurtovic et al. 2007). Similarly, such a `labeled line´ pathway 

may also be present in the case of crypt cell signaling. In contrast to cOSNs and mOSNs, the 

entire crypt cell population expresses only one single V1R related receptor encoded by the 

ora4 gene, thus extending the “one neuron - one receptor rule” to a “one cell type - one 

receptor rule” (Oka et al. 2012). Furthermore, consistent with other studies, the present study 

demonstrates crypt cells to target their axons into one single mediodorsal glomerulus, the 

mdG2, thus correlating to the “one receptor – one glomerulus rule” which is also present in 

mammals (Mombaerts et al. 1996, Ahuja et al. 2013). With regard to following studies 

included within my thesis (see RESULTS 3.2 and 3.3), crypt cells suit very well to be 
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considered a labeled line, as they are shown to be specifically involved in detecting a kin odor 

related signal in larval zebrafish (Biechl et al. 2016b).  Moreover, increased activity of second-

order neurons around mdG2 as well as in a telencephalic region assumed to be related to 

socially relevant olfactory information in response to kin odor confirms the assumption for 

crypt cells as a labeled line (Biechl et al. 2017). However, the latter results regarding crypt 

cells as a labeled line will be discussed in detail in section 4.2. 

A second possible labeled line is delineated in our study by PV/CB-ir mOSNs 

projecting to mdG5. This assumption is affirmed by the fact that only Gαo-ir OSNs, kappe 

neurons, send their axon to this glomerulus. However, although it is likely that all kappe 

neurons express a single receptor, likely a V2R type, proof of the unique expression of one 

receptor, as seen in crypt cells, is so far missing (Ahuja et al. 2014). As mentioned above, six 

ora genes are present in the zebrafish, one of them expressed by crypt cells (ora4). The 

remaining five V1R type receptors (encoded by ora1-3 and ora6) might represent labeled 

lines as well, thus distinct populations of mOSNs positive for PV only or double labeled by 

Figure 6 Expression of four different Calcium-Binding Proteins (CBPs) in the zebrafish olfactory system. 

Right: Combinatorial analysis of CBP expression reveals at least eight subpopulations of olfactory sensory 

neurons (OSNs). Bigger font size means that this (sub)population makes up a major (sub)population. There are 

four subpopulations of microvillous OSNs (dark-blue), all of them expressing Parvalbumin (PV) and three 

subpopulations of ciliated OSNs (red). The CBP S100 is specifically expressed in all crypt cells (green) and a 

minor subpopulation of microvillous OSNs which also express PV (light-blue). Kappe neurons (purple) likely 

express PV and Calbindin (CB). Left: Schematic drawing of a cross section through a larval zebrafish olfactory 

epithelium (OE) and olfactory bulb (OB). Analysis of the differential expression pattern of CBPs shows 

evidence for the existence of at least two labeled lines. Crypt cells (green) project their axon into one 

mediodorsal glomerulus (mdG2). Additional axonal input into this glomerulus comes from S100/PV expressing 

microvillous OSNs (light blue). Another glomerulus (out of 6) within the mediodorsal domain, mdG5, recieves 

input from PV/CB expressing OSNs, which represent, according to other studies most likely kappe neurons. 
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PV and CB may express one particular ora gene and project to the four remaining 

mediodorsal glomeruli as well as to the ventral glomerulus which is also innervated by 

PV/CB-ir fibers. Regarding the large population of PV/CB/CR-ir mOSNs, they almost 

certainly innervate the ventrolateral glomerular field and, possibly, according to Sato et al. 

(2005), likely express V2R related receptors and TRPC2. In conclusion, the present study 

expands the knowledge of expression of CBPs within distinct subpopulations of OSNs as well 

as their axonal projections into appropriate bulbar glomeruli. Moreover, combinatorial 

analysis of CBP expression of OSNs reveals hints for various labeled lines and their possible 

olfactory role.  

 



Processing of kin odor in the zebrafish olfactory system 

 

92 

4.2. Processing of kin odor in the zebrafish olfactory system 

With regard to identify neuronal events involved in the process of kin odor detection 

we performed a comprehensive study using behavioral and immunohistochemical techniques 

in larval zebrafish. Foremost, we validated the phosphorylated extracellular signal regulated 

kinase (pERK) as a reliable marker for neuronal activity in the larval zebrafish olfactory 

system. Thereby, we performed a temporal analysis of pERK up-regulation in olfactory 

sensory neurons (OSNs) in response to two different olfactory stimuli (food and conspecific, 

non-kin larval odor). This resulted in best duration of 7 minutes of odor stimulation in larval 

zebrafish. These experiments also showed that both, cOSNs and mOSNs are activated by food 

odor whereas mOSNs mainly responded to conspecific odor (non-kin odor). Interestingly, 

crypt cells showed no activation to food as well as to conspecific odor. 

Furthermore, by manipulation of larval rearing conditions, we created groups of either 

imprinted or non-imprinted larvae, which enabled us to compare neuronal activation at the 

level of the olfactory epithelium, olfactory bulb and telencephalic brain centers between these 

two groups. Based on our data, we show strong evidence of crypt cells and a small 

subpopulation of microvillous cells to detect a kin odor related signal. Moreover, only crypt 

cells of imprinted larvae show neuronal activation in response to kin odor exposure whereas 

crypt cells of non-imprinted larvae do not. Consequently, we also show an increase of 

neuronal activation of second order neurons around the crypt cell´s target glomerulus (mdG2) 

in the olfactory bulb of imprinted larvae in contrast to non-imprinted larvae. Tracing 

experiments in adult zebrafish revealed a neuronal pathway starting at crypt cells and 

probably microvillous cells to transmit olfactory information, including kin odor, to the 

mediodorsal olfactory bulb and via the medial olfactory tract to the intermediate ventral 

telencephalic nucleus (medial amygdala in teleosts; see later) and from there to the tuberal 

hypothalamus. This olfactory circuit shown in our study demonstrates for the first time an 

accessory olfactory system in zebrafish as described in tretrapods. Surprisingly, regarding 

neuronal activation of cells in the medial amygdala, we only find an increase of neuronal 

activation in non-imprinted larvae when exposed to kin odor.  

 

 4.2.1 Crypt cells are involved in kin recognition in larval zebrafish  

In order to investigate which type of olfactory sensory neuron (OSN) detects a kin 

odor related signal, we mapped neuronal activity following olfactory stimulation, indicated by 
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pERK upregulation, in olfactory sensory neurons (OSNs) in the olfactory epithelium (OE) of 

9 days post fertilization (dpf) old zebrafish larvae. pERK is widely used to mark neuronal 

activity in mammals and is also shown to visualize neuronal responses within the olfactory 

system following odor stimulation in mice (Mirich et al. 2004). Upon phosphorylation, pERK 

is translocated into the nucleus of the activated cell to modulate expression of transcription 

factors which in turn regulate gene expression involved in neuronal and synaptic plasticity 

underlying learning and memory (Figure 5). It was shown that pERK is preferable to other 

markers, such as IEGs (e.g c-fos or egr1), because of its rapid activation and its cellular 

distribution (soma and cell protrusions) (Gao and Ji 2009, Randlett et al. 2015). IEGs, such as 

c-fos, are also good markers for neuronal activity. However, it takes at least about 1 hour to 

trigger IEG induction and therefore detect a sufficient IEG protein signal by 

immunohistochemistry. Although detection of IEG mRNA by in situ hybridization (ISH) is 

possible already around 30 minutes after stimulation, the resulting delay between stimulation 

and potential response of the tested animal is often too long to link neuronal induction with 

specific responses (behaviors) (Chaudhuri 1997, Watts et al. 2006). However, we first wanted 

to investigate pERK as a reliable marker for activation in zebrafish OSNs following olfactory 

stimulation. Therefore we stimulated zebrafish larvae with either food-, conspecific odor 

(non-kin) or E3 medium (control) for 3, 7, 11 and 15 minutes. Analysis of activated OSNs 

reveals that pERK intensity as well as number of activated cells are independent of stimuli 

duration since a strong pERK signal is observed in all activated OSNs in all exposure 

durations. However, our perception of signal to noise ratio in the immunostains suggested an 

exposure time of 7 minutes to give best results. Our results are in line with data from studies 

in mice, which show that about 10 - minute olfactory stimulation is sufficient to detect 

neuronal activation in brain regions related to processing of olfactory cues (Dudley et al. 

2001, Taziaux et al. 2011). Moreover, consistent with our results on rapid induction of pERK 

in OSNs, Hussain et al. (2013) reports detectable pERK signals in OSNs following 3-5 minute 

olfactory stimulation in adult zebrafish. Furthermore, olfactory stimulation to different odors 

(food, conspecific and E3-medium) reveals a differential pattern of activated OSNs within the 

larval OE. High numbers of cOSNs and to a much lesser extent mOSNs are activated in 

response to food odor exposure, whereas almost exclusively mOSNs show pERK induction 

following exposure to a conspecific odor in addition to food odor. Interestingly, crypt cells 

show neuronal activation neither to food nor to conspecific odor. These response patterns are 

consistent with data from other studies, although there is a great interspecific variability 

regarding the potential tuning of OSNs within teleosts (Bazaes et al. 2013). For example in 
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carp, mOSNs are mainly tuned towards food related odors, whereas cOSNs play a role in 

mediating the alarm reaction and crypt cells are suggested to be involved in reproduction 

(Hamdani el et al. 2001, Hamdani el and Døving 2002, Hamdani el et al. 2006, 2008). 

Electrophysiological data by, Hansen et al. (2003) in channel catfish suggest all OSN types to 

respond to amino acids, but with cOSNs additionally responding to bile salts, whereas 

mOSNs also respond to nucleotides. In goldfish, mOSNs are assumed to respond 

preferentially to amino acids (Speca et al. 1999). In transgenic zebrafish, blocking of synaptic 

transmission in distinct populations of mOSN abolished attractive behavioral responses to 

amino acids (Koide et al. 2009) which is in line with other studies (Lipschitz and Michel 

2002), including the study presented here (Biechl et al. 2016b). Amino acids and nucleotides 

are typically indicative for food whereas bile salts are considered as a social odorant since bile 

salt profiles within a teleost family and order feature high similarities (Hagey et al. 2010). 

However, a general conclusion on teleost OSN tuning is hard to make since within all 

examined teleosts so far, not only the responding profiles of OSNs differ, but also bulbar 

projection patterns across species show discrepancies (Bazaes et al. 2013).  

In any case, stimulation with food odor, as well as with conspecific odor revealed no 

activation of zebrafish crypt cells. To evaluate a possible role for crypt cells in detection of a 

kin odor related signal, we performed additional stimulation experiments. In contrast to the 

previous experiment, we generated two different groups of zebrafish larvae. By rearing larvae 

isolated in small glass beakers, we either prevented olfactory imprinting on day 6, or allowed 

the larvae to imprint on their kin by adding kin odor containing water into the beakers. Except 

for this difference, this rearing condition allowed all larvae to grow up under same conditions 

(e.g. changing water, feeding, and isolation) and precludes other influences on resulting data. 

Importantly, despite raising larvae in glass beakers, visual imprinting, which occurs at day 5 

and is required for successful olfactory imprinting (see Introduction) is possible because 

larvae are able to recognize pigmentation of other kin through glass walls in a larger tank 

which contains the small glass beakers with the isolated fish (Hinz et al. 2013a). Additionally, 

in these kin odor stimulation experiments we used in the subsequent histological assay the 

calcium binding protein (CBP) S100 to identify specifically crypt cells. Similar to the 

previous experiment we used accepted morphological criteria to identify cOSNs and mOSNs. 

Since their discovery, crypt cells have been suggested to play a role in detection of social 

olfactory signals, such as pheromone sensing. In the crucian carp, crypt cells project into the 

ventral OB from where projections neurons terminate into the lateral part of the medial 

olfactory tract (lMOT), the latter known to mediate reproductive behaviors (Weltzien et al. 
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2003). Furthermore, crypt cells are shown to vary in their density as well as location within 

the OE depending on the seasons in sexually mature carp (Hamdani el et al. 2006, 2008). 

During winter, only some crypt cells are present within the carp OE whereas in spring even 

more crypt cells are visible at more deep locations within the OE. Interestingly, during the 

summer, and therefore the spawning season, crypt cells are clearly detectable and positioned 

at the surface of the OE, reinforcing the hypothesis of crypt cells to be involved in carp 

reproductive behavior, (Hamdani el et al. 2008). Also, Sandulescu et al. (2011) demonstrated 

an early increase of zebrafish crypt cell quantity which later decreases at a particular time 

during OE development. In this study, upon first appearance in the zebrafish OE at day 4 post 

fertilization (dpf) the number of crypt cells increased steadily until reaching a peak at 7 dpf. 

From that age on, crypt cell number deceased dramatically over 70% and recovered until 

larvae reached 12 dpf. Comparing this non-linear growth of crypt cells to the sensitive phase 

in which olfactory imprinting (from day 6 to 7) occurs, it seems as if the olfactory system, 

especially crypt cells, prepare for the upcoming imprinting event. Based on these studies, we 

exposed imprinted and non-imprinted zebrafish larvae with kin odor and demonstrate strong 

evidence for crypt cells to detect a kin odor related odorant. Interestingly, only crypt cells of 

imprinted larvae show activation in response to kin odor. In contrast to imprinted larvae, non-

imprinted larvae show no response after stimulation with kin odor. Importantly, this is not due 

to an absence of this cell type, as crypt cell numbers do not differ between non-imprinted and 

imprinted larvae (Biechl et al. 2016b). Furthermore, quantitative polymerase chain reaction 

(qPCR) data reveals no evidence for down-regulation of ORA4 receptor expression in non-

imprinted zebrafish larvae (unpublished data by Gerlach Lab, Oldenburg). However, it seems 

that the missing cue, which is obviously contained in the kin odor, changes the responsiveness 

of crypt cells in an unknown manner. Crypt cells express only one single V1R-like receptor, 

encoded by the ora4 gene (Oka et al. 2012). However, the ligand which binds on ORA4 is 

presently unknown. Based on our data, the ligand of ORA4 is contained in kin odor. 

Moreover, our study also indicates that olfactory imprinting occurs at the level of the OE, as 

crypt cells, and therefore ORA4, show no activation in presence of the appropriate odorant 

when this is not presented during the sensitive phase of olfactory imprinting. However, as 

mentioned in section 4.1. ORA4 is one of 6 teleostean receptors identified within the highly 

conserved ora gene family (Saraiva and Korsching 2007). So far, only one of those receptors, 

ORA1, was deorphanized in adult zebrafish and shown by calcium imaging to be highly 

responsive to 4-hydroxyphenylacetic acid. Moreover, even low concentrations of this 

compound mediate, via ORA1, an increase in oviposition frequency in zebrafish mating pairs 



Crypt cells are involved in kin recognition 

 

96 

(Behrens et al. 2014). Thus, similar to the role of mammalian V1Rs, ORA1 represents a 

putative pheromone receptor involved in modulation of reproductive behavior  (Boschat et al. 

2002). Therefore, it would be in line with our data that demonstrate crypt cells, and therefore 

consequently ORA4, to be involved in modulation of reproductive behavior. However, recent 

studies in zebrafish demonstrated that visual as well as olfactory imprinting is related to 

similarity of Major Histocompatibility Complex (MHC) class II genes (Hinz et al. 2012). 

Moreover, based on calcium imaging data and behavioral assays, Hinz et al. (2013b) 

concluded that MHC class II peptides function as chemical signals. Only zebrafish which 

share MHC class II alleles, are able to imprint on each other during the sensitive period. 

However, MHC peptides are recognized by V2R receptors expressing mOSNs of the mice 

vomeronasal epithelium and are shown to function as individuality signals underlying mate 

recognition. Furthermore, MHC peptides have been demonstrated to be linked to pregnancy 

block (also known as `bruce effect´; see 1.3.2) in mice (Leinders-Zufall et al. 2004, Becker 

and Hurst 2008). Since mammalian V1R and V2R receptors have been shown to be tuned 

towards molecules of low molecular weight (e.g. steroids) and peptides respectively, it would 

be unlikely that ORA4 is a specific receptor for MHC peptides in zebrafish (Boschat et al. 

2002, Isogai et al. 2011, Behrens et al. 2014). On the other hand, despite the `one neuron – 

one receptor ´ rule, one cannot rule out that crypt cells express another receptor in addition to 

ORA4. The idea of a second olfactory receptor expressed on crypt cells arises by a study in 

mice which demonstrates that parallel expression of two odorant receptors in one neuron is 

possible if one of these receptors is not active (Mombaerts 2004b). Ferreira et al. (2014) 

showed in zebrafish that indeed receptor expression depends on receptor activity. However, 

they demonstrated that signaling through G protein βγ subunits is necessary to maintain 

expression of only one single receptor per OSN by suppression of other receptor genes. The 

molecular mechanisms which maintain such a silencing of odorant receptors also in newly 

developing OSNs is likely due to epigenetic events such as histone methylation.  

In addition to crypt cells, a small subpopulation of mOSNs is shown to respond to kin odor. 

Considering that MHC peptides are a compound of kin odor, possibly these mOSNs express a 

V2R receptor and bind to such peptides. In any case, kin odor is comprised by a mixture of 

numerous odorants that signal besides genetic relatedness also other social information such 

as gender and physiological status. It is maybe too simple if kin recognition would be 

mediated by only one chemical compound. It is more likely that a receptor code, generated by 

interaction of multiple receptors, consequently activated by more than one ligand, signals the 

information of familiarity and unfamiliarity in larval zebrafish. In the same way could 
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concentration of odorants and possible interactions in-between activated receptors play a role 

in detection at the level of the OE as well as processing in the OB. The latter idea arises from 

studies in mice which demonstrate olfactory receptor antagonism between odorants in the 

mammalian OE. These studies show that the electrophysiological outcome of odorant 

mixtures was neither additive nor a simple average of its compound and suggest that a 

masking, counteraction or other interaction of odorant mixtures occurs within the olfactory 

system (Jinks and Laing 2001, Wiltrout et al. 2003). Oka et al. (2004) demonstrated in mice 

that odorants are able to activate olfactory receptors as agonists as well as antagonize OSN 

responses during binding. Since crypt cells, as well as their receptor ORA4 are present in non-

imprinted zebrafish larvae, it would be possible that such a receptor antagonism is responsible 

for the failed activation of crypt cells in response to kin odor. In that case, ORA4 is not 

activated because the appropriate ORA4 ligand may act as an antagonist to ORA4, resulting 

from the absence of this ligand during the sensitive phase of olfactory imprinting. Another 

possibility as mentioned above could be derived from inhibition because of changes at the 

second messenger transduction pathway or by direct effects of odorants on ion channels 

which leads to suppression of the inward transduction current in the OSN (Kurahashi et al. 

1994). Anyway, molecular modifications regarding crypt cell sensitivity must involve 

epigenetic mechanisms since OSNs are replaced continuously and newborn crypt cells 

somehow “know” how to response to kin odor (Ferreira et al. 2014).  

Taken together, our study reveals that crypt cells as well as a small subpopulation of 

mOSNs detect a kin odor related signal. Moreover, we demonstrate that lack of a so far 

unknown compound contained in kin odor during the sensitive phase of olfactory imprinting 

(day 6 to 7 post fertilization) results in a failure of crypt cells activation in non-imprinted 

zebrafish larvae. As a result, the ability of zebrafish larvae to imprint and therefore distinguish 

kin from non-kin later in life depends on at least one distinct olfactory cue presented during a 

defined period of time which determines the sensitivity of crypt cells to kin odor.  

  

4.2.2 Identification of the teleostean medial amygdala and its possible role in 

kin recognition based on neuronal activity in response to kin odor 

The olfactory system of most tetrapods, including mammals, reptiles and amphibians, 

is comprised of two anatomically distinct and segregated olfactory systems: a main olfactory 

system (MOS) composed of a main olfactory epithelium (MOE) bearing ciliated olfactory 

sensory neurons (OSNs) projecting odor information into the main olfactory bulb (MOB) and 
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the accessory olfactory system (AOS) consisting the vomeronasal organ (VNO) with 

microvillous OSNs targeting their axons into the accessory olfactory bulb (AOB). In both, 

MOB and AOB, OSNs expressing the same receptor target their axons into one or two 

glomeruli where they synapse with mitral cells. In general, the MOE is specialized for 

detection of volatile, generic odorants whereas the VNO is shown to detect mainly non 

volatile odorants relevant for social and reproductive behaviors. However, both systems are 

not entirely separated as integration of olfactory information of MOS and AOS occurs in the 

mammalian amygdala (Licht and Meredith 1987). Furthermore, several studies demonstrated 

that the response profiles of both systems are not exclusive, as responses of MOE and AOB to 

both pheromones and general odorants are shown (Baxi et al. 2006, Eisthen and Wyatt 2006). 

The AOB forms a projection pathway different and independent to that of the MOB. Mitral 

cells of the MOB target their axons to multiple brain structures forming the primary olfactory 

cortex; whereas mitral cells of the AOB project to discrete brain areas within the so called 

vomeronasal amygdala and to specific nuclei of the hypothalamus. The vomeronasal 

amygdala includes the bed nuclei of the accessory olfactory tract and stria terminalis, 

posteromedial cortical and medial nuclei of the amygdala (Halpern 1987). In tetrapods, the 

amygdaloid complex is composed of pallial and supallial areas and shown to be crucial in 

motivated and emotional behaviors. Regarding olfaction, the amygdala is involved in 

associative learning between odorants and modulation of olfactory driven behaviors (Ono et 

al. 1995). In the ventral diencephalon, hypothalamic nuclei play a dominant role in regulation 

of numerous physiological functions, such as regulation of sleep, blood pressure, temperature, 

thirst and satiety, stress and social behaviors. The endocrine state of the animal is controlled 

by hypothalamic areas which regulate the release of various hormones by the pituitary gland. 

Therefore, projections from the VNO to hypothalamic areas (e.g. preoptic area, the 

ventromedial hypothalamic nucleus and ventral premammillary nucleus) are involved in 

reproductive and aggressive behaviors (Halpern 1987).  

In contrast to most tetrapods, the teleostean olfactory system lacks a separated 

vomeronasal organ (VNO). However, expression of corresponding vomeronasal receptors 

also present in tetrapods (V1R & V2R) as well as detection of and physiological response 

pheromones is demonstrated in all teleost species investigated (see 1.1 and 1.3.1). In teleosts, 

the medial zone of the dorsal telencephalon is suggested to contain the homologue of the 

pallial amygdala (Salas et al. 2003). In vertebrates, including zebrafish, each glomerulus 

receives convergent olfactory input from OSN types expressing the same olfactory receptor. 

As mentioned above (see 1.2.2), bulbar mitral cells receive odor information from the 



Discussion 

99 

periphery by forming synapses with axonal endings of OSNs. Olfactory information is 

mediated to different higher brain centers via mitral cell axons forming the medial and lateral 

olfactory tract (MOT & LOT). Several studies, including our work, demonstrated crypt cells 

to project their axon into one single defined glomerulus (mdG2) within the OB (see citations 

above). Moreover, DiI - tracing visualized secondary olfactory projections from the 

mediodorsal OB into telencephalic areas (Gayoso et al. 2012). These are, the dorsal posterior 

part of the telencephalon (Dp) which is considered to correspond to the mammalian primary 

olfactory cortex and receives the strongest olfactory input amongst teleosts. The teleostean 

ventral nucleus (Vv) as well as the supracommissural nucleus (Vs) of the ventral 

telencephalon corresponds to the septal area and subpallial amygdala in mammals, 

respectively (Wullimann and Mueller 2004, Mueller et al. 2008). In goldfish, Levine and 

Dethier (1985) identified another bulbar projection target which is located even more 

posterior within the subpallial region, the intermediate nucleus of the ventral telencephalic 

area (Vi). 

 Based on our data which show that crypt cells (and a small population of mOSNs) are 

strongly tuned towards kin odor, we extended our approach on kin odor processing to the next 

stations of odor processing, that is the OB as well as a distinct subpallial area, Vi - eventually 

representing the medial amygdala in teleosts. Consistent with other studies, application of DiI 

into the mediodorsal bulbar field, including mdG2, visualized clearly telencephalic olfactory 

projections targets in adult zebrafish. Such as other glomerular fields do, projection neurons 

located in the mediodorsal OB innervate the posterior zone of the dorsal telencephalon (Dp) 

as well as the ventral nucleus of the ventral telencephalon (Vv). Additionally to those 

common olfactory bulb targets, neurons of the mediodorsal glomerular field project to the 

postcommissural (Vp) and supracommissural (Vs) ventral telencephalic nuclei as well as to 

the right dorsal habenula (dHb) (Gayoso et al. 2012, Turner et al. 2016). The experiments in 

my thesis combine antero and retrograde tract tracing and immunohistochemical visualization 

of the transcription factor Orthopedia (Otp) (indicative for the mammalian medial amygdala) 

and provide for the first time evidence for an accessory olfactory pathway in zebrafish. 

Besides demonstrating Vi to receive secondary olfactory input, also indicative for the medial 

amygdala, we further demonstrate that Vi projects to the ventral periventricular hypothalamic 

zone (Hv) of the tuberal hypothalamus, which has been previously identified in zebrafish as 

the homologue of the mammalian hypothalamic arcuate nucleus (Forlano and Cone 2007). 

The fact that mediodorsal bulbar projections run into this posterior subpallial region, more 

precisely into the Otp positive Vi (medial amygdala) and from there to the tuberal 
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hypothalamus is diagnostic for an accessory olfactory system in mammals (Dulac and Torello 

2003) as well as in all tetrapods examined so far (Martinez-Garcia et al. 2008). Although an 

accessory olfactory system or vomeronasal system was considered to be exclusive to 

tetrapods, several data from studies in teleosts, such as goldfish or the present study in 

zebrafish, indicate that this sensory subsystem involved in processing vomeronasal 

information is basal to all bony vertebrates. Interestingly, in lungfish, a sarcopterygian clade 

considered as the closest living relatives of tetrapods, a “hidden” accessory olfactory system 

was previously discovered. Gonzalez et al. (2010) demonstrated that a olfactory circuitry, as 

seen in tetrapods, is existing in the African lungfish Protopterus dolloi. They showed that 

`epithelial crypts´ (microvillous cells; not to be confounded with teleostean crypt cells), which 

express markers of vomeronasal receptors project their axon to an as AOB identified structure 

at the lateral edge of the MOB. Moreover, secondary projections from the AOB run via a 

putative medial amygdala and from there to the lateral hypothalamus. Although a separate 

VNO may be exclusive to all tetrapods, vomeronasal receptors are found in all vertebrates so 

far. Moreover, based on the latter study in lungfish, together with our results presented here, 

we clearly demonstrate that the zebrafish Danio rerio exhibits all components (except a 

separate VNO) of a vomeronasal system comparable to that present in tetrapods. In zebrafish, 

OSNs within the single peripheral OE project into the mediodorsal OB from where projection 

neurons mediate vomeronasal information via the medial amygdala to the tuberal 

hypothalamus.  

Since we demonstrated an accessory olfactory system in zebrafish, we investigated a 

possible role of the medial amygdala to be involved in kin recognition (Figure 7). Therefore, 

we analyzed neuronal activity along the recent identified accessory olfactory pathway, 

starting in the mediodorsal OB and finally in the medial amygdala in imprinted and non-

imprinted zebrafish larvae following kin odor exposure. Additional to a high activation of 

crypt cells, visualized by an increase of the neuronal activity marker pERK (see above), we 

demonstrate high activation of second order neurons around the bulbar crypt cell target, 

mdG2. This increase in neuronal activation matches appropriately to what we found at the 

level of the OE. In fact, significantly elevated neuronal activation in response to kin odor is 

seen in crypt cells as well as in their bulbar target glomerulus, mdG2, whereas a contrary 

situation is seen in non-imprinted larvae (Biechl et al. 2016b). This result, together with data 

of our previous work corroborates that mdG2 is the exclusive target of crypt cells consistent 

to the `one receptor – one neuron´ rule. Furthermore, the comparison of neuronal activation 
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within the area of the intermediate nucleus of the ventral telencephalon (Vi; teleostean medial 

amygdala) revealed a somewhat unexpected situation. 

 

Figure 7 Comparison of neuronal activity in imprinted and non-imprinted zebrafish larvae in response to 

kin odor. (A) and (B) Crypt cells of imprinted larvae show increased activity (yellow cloud) following kin odor 

exposure, whereas (A’) crypt cells of non-imprinted larvae show no response to kin odor.I (A) Increased activity 

is also seen in bulbar neurons around the crypt cell projection target, the mediodiorsal glomerulus 2 (mdG2) of 

imprinted larvae compared to non-imprinted larvae (A’). In contrast to imprinted larvae (A), neurons of Vi show 

increased activity after kin odor exposure (A’). (C) Scheme of the teleostean accessory olfactory pathway 

demonstrated by injection of DiI into the mediodorsal glomerulus. Abbreviations: an: anterior nostril; CC: crista 

cerebellaris; CCB: corpus cerebelli; Ctec: commissura tecti; Dp: posterior zone of dorsal telencephalon; EG: 

eminentia granularis; Hb: Habenula; LVII: facial lobe; LX: vagal lobe; MO: medulla oblongata; OB: olfactory 

bulb; OE: olfactory epithelium; pn: posterior nostril; SC: spinal cord; Tel: telencephalon; Teo: optic tectum; TH: 

ruberal hypothalamus; Vi: intermediate nucleus of ventral telencephalon; Vv: ventral nucleus of ventral 

telencephalic area. 
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 Instead of an increase of neuronal activation in imprinted larvae as seen at previous 

levels of odor detection, only cells of non-imprinted larvae show increased neuronal 

activation exposed to kin odor within the medial amygdala. The observation of increased 

neuronal activation in Vi of non-imprinted larvae was puzzling at first sight, but indicates that 

Vi cells show activation to a new, for the larvae unknown social odor. The amygdaloid nuclei 

are generally considered as the center of emotional processings, as they are associated with 

mediating the emotional and hormonal response to sensory information, often related to stress 

(Davern and Head 2011). Generally, almost all subdivisions of the amygdala are involved in 

processing of diverse sensory inputs. However, several studies in mammals demonstrate the 

medial amygdala to be more activated in response to stimuli which causes stress or anxiety 

than other nuclei. Assuming that stress is defined by distinct brain areas, including the 

amygdala, into different categories, Dayas et al. (2001) demonstrated a differential sensitivity 

of central and medial amygdaloid nuclei to physical stress and psychological stress. 

Visualizing neuronal activation by expression of the immediate early gene c-fos, they showed 

that hemorrhage and immune challenge (physical stressors) activated cells of the central 

amygdala whereas noise and restraint (psychological stressors) activated more cells in medial 

nuclei of the amygdala. However, the medial amygdala is also implicated to be a major center 

for decision making in a social related context. Moreover, a previous study by Samuelsen and 

Meredith (2009) further subdivided the medial amygdala into distinct regions, each showing 

differential response to conspecific or heterospecific odors. A categorization of biologically 

relevant odors within the medial amygdala was demonstrated by presenting male mice either 

conspecific (male, female urine) or heterospecific (hamster vaginal fluid, steer urine) odors. 

Conspecific odors increased c-fos expression in both anterior and posterior medial amygdala, 

whereas a heterospecific odor activated cells only in anterior medial amygdala. 

This study, as well as similar experiments in hamster, clearly demonstrates that also 

within the medial amygdala, a decision of odorant relevance (biologically important or not 

important) is made. The exposure to threatening stimuli, indicating the presence of a predator 

leads to an increase of neuronal activation in the posterior medial amygdala, similar to 

conspecific odors. Therefore, biological relevant odors, such as conspecific (reproduction & 

social behavior) or potentially ominous odors elicit responses in the dorsal and ventral 

subregions, respectively (Samuelsen and Meredith 2009). 

Relating to our finding in zebrafish, which shows increased activation of the medial 

amygdala after kin odor exposure only in non-imprinted larvae, there are several possible 

hypotheses. Because of the absence of the necessary olfactory cue during the imprinting 
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phase, cells of the medial amygdala are activated by the “unknown” kin odor similar as they 

would be activated by a stressor. This also implicates that non-imprinted larvae recognize kin 

odor as an potentially conspecific odor, since kin odor most likely contains compounds which 

signal the presence of another conspecific. However, it would make sense that the presence of 

conspecifics, which is definitely new to a naive non-imprinted larva, and which did not create 

any positive or negative memory to this odor (such as imprinted larvae do in a natural 

environment as well as in our experiment, see below) signals potential danger. In contrast, 

imprinted larvae may probably store a “nothing bad happened” memory when exposed to kin 

odor and recollecting this olfactory memory when exposed to kin odor may modulate the 

release of calming hormones and peptides, such as oxytocin. The peptide hormone oxytocin 

has been implicated in many behaviors involved in social recognition, social attachment and 

especially in processes such as social bonding (Carter et al. 1992). In the sheep OB as well as 

in other brain regions, oxytocin release has been shown to be involved in induction of 

maternal behavior (Keverne and Kendrick 1992, Da Costa et al. 1996). Moreover, oxytocin 

knock-out mice fail to recognize their kin, but this social memory is restored after oxytocin 

treatment. Interestingly, neuronal activation of neurons in the medial amygdala was decreased 

in this mouse line compared to wildtype mice after exposure, whereas other brain structures 

like the OB, piriform cortex, cortical amygdala and the lateral septum displayed equal levels 

of neuronal activation. Moreover, projection targets of the medial amygdala also showed 

decreased neuronal activation in oxytocin knock-out mice compared to wildtype, thus 

demonstrating oxytocin receptor activation in the medial amygdala to play a crucial role for 

social recognition in mice (Ferguson et al. 2001).  

In conclusion, at the level of the olfactory epithelium, olfactory imprinting as well as 

kin recognition depends on neuronal activation of crypt cells as well as a small subpopulation 

of mOSNs in larval zebrafish. Moreover, in contrast to imprinted larvae, crypt cells of non-

imprinted zebrafish larvae fail to show neuronal response after kin odor exposure. This 

difference between imprinted and non-imprinted larvae indicates changes resulting from the 

absence of the olfactory kin cue at day 6 post fertilization. However, the molecular 

mechanisms underlying this difference as well as the crypt cell ligand are unkown so far. 

Further studies on potential structural changes of the crypt cell receptor, as well as changes 

involving elements of the downstream signaling pathway or inhibition of crypt cell activity by 

other OSNs are needed to figure out why crypt cells of non-imprinted larvae change their 

odorant tuning related to kin odor.  
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APPENDIX 

List of abbreviations: 

AOB  accessory olfactory bulb 

CB  Calbindin 

CBP  Calcium Binding Protein 

cOSN ciliated olfactory sensory 

neuron 

CR  Calretinin 

Dp posterior zone of the dorsal 

telencephalon 

Dpf  days post fertilization 

ECL  external cell layer 

GL  glomerular layer 

GPCR G- protein coupled receptor 

H  Hypothalamus 

Hb  Habenula 

HT  tuberal hypothalamus 

ICL  internal cell layer 

lMOT  lateral part of the MOT 

LOT  lateral olfactory tract 

mdG  mediodorsal glomerulus 

mMOT medial part of the MOT 

MOE  main olfactory epithelium 

mOSN  microvillous olfactory 

sensory neuron 

MOT  medial olfactory tract 

OB  olfactory bulb 

OE  olfactory epithelium 

ON  olfactory nerve 

ONL  olfactory nerve layer 

OR  odorant receptor 

OSN  olfactory sensory neuron 

pERK phosphorylated extracellular 

signal regulated kinase 

PV  Parvalbumin 

TAAR  trace amine-associated 

receptor 

TRPC2 transient receptor potential 

channel C2 

Vi intermediate ventral 

telencephalic nucleus 

VNO  vomeronasalorgan 

Vp  postcommissural ventral 

telencephalic nucleus 

VR  vomeronasal receptor 

Vs supracommissural ventral 

telencephalic nucleus 

Vv  ventral nucleus of the 

ventral telencephalon

 

  



Appendix 

 

Eidestattliche Versicherung / Statutory declaration: 

 

 

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation 

„Neuronal basis of olfactory imprinting and kin recognition  

in the zebrafish Danio rerio“ 

selbstständig angefertigt habe. Desweiteren habe ich mich außer der angegebenen keiner 

weiteren Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder 

annähernd übernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter 

Bezeichnung der Fundstelle einzeln nachgewiesen. 

 

I hereby confirm that the dissertation  

“Neuronal basis of olfactory imprinting and kin recognition  

in the zebrafish Danio rerio“ 

is the result of my own work and that I have only used sources or materials listed and 

specified in the dissertation. 

 

 

München, den  

Munich, date  

Daniela Biechl 

 

 

  



Appendix 

 

Author Contributions 

Kress, S., D. Biechl and M. F. Wullimann (2015). "Combinatorial analysis of calcium-

binding proteins in larval and adult zebrafish primary olfactory system identifies 

differential olfactory bulb glomerular projection fields." Brain Struct Funct 220(4): 

1951-1970. 

 

 

The study was designed by SK, DB and MFW. The immunohistochemical processing was 

performed by SK and DB. Analysis of data was done by SK, DB and MFW. The first version 

of the manuscript was written by SK, DB and MFW. The final version was written by SK, DB 

and MFW. SK and DB share first authorship. 

 

 

 

_____________________________                                   _____________________________ 

Date, Dr. Sigrid Kress                                                                                               Date, Daniela Biechl 

                                                                                             

 

 

                                                                                                         _____________________________ 

                                                                                                         Date, PD Dr. Mario Wullimann 

  



Appendix 

 

Biechl D, Tietje K, Gerlach G, Wullimann MF (2016). “Crypt cells are involved in kin 

recognition in larval zebrafish.” Scientific reports 6, 24590. 

 

The study was designed by D.B., K.T., G.G. and M.F.W. The behavioral experiments were 

performed by D.B. and K.T. (Oldenburg). The immunohistochemical processing was 

performed by D.B (Munich). Analysis of data was done by D.B., K.T., G.G. and M.F.W. The 

first version of the manuscript was written by D.B. and K.T. The final version was written by 

D.B., K.T., G.G. and M.F.W. D.B. and K.T. share first authorship. 

 

_____________________________                                   _____________________________ 

Date, Kristin Tietje                                                                                                    Date, Daniela Biechl 

                                                                                             

 

 

                                                                                                         _____________________________ 

                                                                                                         Date, PD Dr. Mario Wullimann 

 

 

Biechl
 
D, Tietje K, Ryu

 
S, Grothe

 
B,Gerlach

 
G, Wullimann

 
MF. Identification of 

accessory olfactory system and medial amygdala in the zebrafish.Scientific reports 7, 

44295 (2017) 

 

 

The study was designed by DB, KT, GG and MFW. The behavioral experiments were 

performed by DB and KT (Oldenburg). The tracing experiments were done by DB and MFW. 

The immunohistochemical processing was performed by DB (Munich). Analysis of data was 

done by DB, KT, SR, BG, GG and MFW. The first version of the manuscript was written by 

DB, KT and MFW. The final version was written by DB, KT, SR, BG, GG and MFW. DB 

and KT share first authorship. 

 

_____________________________                                   _____________________________ 

Date, Kristin Tietje                                                                                                    Date, Daniela Biechl 

                                                                                             

 

 

                                                                                             _____________________________ 

                                                                                                    Date, PD Dr. Mario Wullimann 

 

  



Appendix 

 

Curriculum vitae 

Daniela Biechl 

 

 

Personal data 

      Nationality  German 

 

Institutional affiliation 

 

                    Position  doctoral student 

         Research group  PD Dr. Mario Wullimann 

    Chair  Prof. Dr. Benedikt Grothe 

 

Education 

  since 2013 doctoral student at the Ludwig-Maximilians-     

Universität München 

 

2013 – 2016 Member of the Schwerpunktprogramm / 

SPP1392: “Integrative Analysis of Olfaction” of 

the Deutsche Forschungsgemeinschaft (DFG, 

German Research Foundation). Active Group of 

Gabriele Gerlach (Carl von Ossietzky University 

of Oldenburg), Rainer Friedrich (Friedrich 

Miescher Institute for Biomedical Research, 

Basel) and Mario Wullimann (Ludwig – 

Maximilians Universität, München). 

 

        2013  Certificate as diploma biologist Univ.; Ludwig-

Maximilians-Universität München; Diploma 

thesis: “Expression of Sonic hedgehog and its role 

in cerebellar development in the zebrafish, Danio 

rerio. Supervised by PD Dr. Mario Wullimann 

 

 

Teaching experience  

 2012 – 2016 mentoring of students in diverse practical 

courses; mentoring undergraduate students 

 



Appendix 

 

Conference participations 

Oral presentation 

2016  European Conference on Comparative Neurobiology 

(ECCN8) Munich, Germany. “Crypt cells are involved in 

kin recognition in larval zebrafish” 

2015  SPP Integrative Analyses of Olfaction Annual meeting 

Aachen, Germany. ”Neuronal basis of olfactory 

imprinting in the zebrafish Danio rerio”. 

2014  SPP Integrative Analyses of Olfaction Annual Meeting 

Delmenhorst, Germany. ”Neuronal mechanisms of 

olfactory imprinting in the zebrafish Danio rerio”. 

2013  SPP Integrative Analyses of Olfaction Annual meeting 

Jena, Germany. ”Neuronal basis of olfactory imprinting 

in the zebrafish Danio rerio”. 

 

SPP Integrative Analyses of Olfaction PhD student 

meeting Munich, Germany. “What happens when fish 

smell kin odor?” 

 

Poster  

2015  Biechl, D., Tietje K., Namekawa, I.; Friedrich, R., 

Gerlach, G., Wullimann, M. F.,  ECRO meeting, 

Istanbul, Turkey. Olfactory imprinting and pERK related 

cellular activity in the zebrafish larvae olfactory system. 

 

Biechl, D., Tietje K., Namekawa, I.; Friedrich, R., 

Gerlach, G., Wullimann, M. F., German Neuroscience 

Society Meeting (NWG), Göttingen, Germany. Olfactory 

imprinting and pERK related cellular activity in the 

zebrafish larvae olfactory system. 

 

2013  Biechl, D., Kress S., Wullimann M., ECRO meeting, 

Leuwen, Belgium. Olfactory imprinting in zebrafish: 

“Combinatorial analysis of Ca-binding proteins in 

olfactory sensory neurons and their primary projections 

II.” 

 

Biechl, D., Kress S., Wullimann M., SPP Integrative 

Analyses of Olfaction Annual meeting Jena, Germany. 

“Combinatorial analysis of zebrafish olfactory sensory 

neurons and their primary projections shown with 

Cabinding proteins”. 

 



Appendix 

 

Biechl, D., Kress S., Wullimann M., SPP Integrative 

Analyses of Olfaction Annual meeting German  

Zoollogical Society, Munich, Germany. “Combinatorial 

analysis of zebrafish olfactory sensory neurons and their 

primary projections shown with Cabinding proteins”. 

 

Biechl, D. and Wullimann M. F., European Conference 

on Comparative Neurobiology (ECCN 7) Budapest, 

Hungary. “Transgenic shh-GFP line suggests hedgehog 

signaling in larval zebrafish optic tectum and 

cerebellum” 

 

Publications  

 

Kress, S., D. Biechl and M. F. Wullimann (2015). "Combinatorial analysis of calcium-binding 

proteins in larval and adult zebrafish primary olfactory system identifies differential 

olfactory bulb glomerular projection fields." Brain Struct Funct 220(4): 1951-1970. 

 

Biechl, D., A. Dorigo, R. W. Koster, B. Grothe and M. F. Wullimann (2016a). "Eppur Si 

Muove: Evidence for an External Granular Layer and Possibly Transit Amplification 

in the Teleostean Cerebellum." Front Neuroanat 10: 49. 

 

Biechl, D., K. Tietje, G. Gerlach and M. F. Wullimann (2016b). "Crypt cells are involved in 

kin recognition in larval zebrafish." Sci Rep 6: 24590. 

 

Biechl, D., K. Tietje, S. Ryu, B. Grothe, G. Gerlach and M. F. Wullimann (2017). 

"Identification of accessory olfactory system and medial amygdala in the zebrafish." 

Sci Rep 7: 44295. 

 

Gerlach, G., Tietje, K., Biechl, D., Hinz, C., Kress, S., Namekawa I., Friedrich, R., 

Wullimann, M. F.“ Behavioral, neuronal and genetic basis of olfactory imprinting and 

kin recognition in zebrafish” (in preparation). 

  



 

 

 

  



 

 

 


