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erarbeitet.

München, den 9. September 2016

Stefan Seemayer

Dissertation eingereicht am: 20.09.2016
1. Gutachter: Dr. Johannes Söding
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Abstract

An understanding of protein tertiary structure is important for both basic and translational
research, for example to understand molecular mechanisms, engineer new or optimized
catalysts, or formulate new cures. Protein tertiary structures are typically determined
experimentally, a time-consuming process with average costs in the hundred thousands of
US dollars for determining a single protein structure. Consequently, there is much interest
in using computational methods for driving down the cost of obtaining new structures.

While great successes have been made in transferring structural information from al-
ready structurally solved homologous proteins, the sensitivity improvements of methods for
detecting homologous proteins have plateaued in recent years and homology-based protein
structure prediction is ultimately limited by the availability of a suitable template that
must be determined experimentally. De novo protein structure prediction could theoreti-
cally use physical models to determine the native conformation of a protein without prior
structural information but in practice, such approaches are limited by the computational
costs of evaluating expensive energy functions for many different points in an enormous
search space.

An old idea in protein bioinformatics is to use the compensatory mutations observed due
to the evolutionary pressure of maintaining a protein fold to predict which residue pairs in a
protein structures are interacting in the folded structure. If such interactions can be reliably
predicted, they can be used to constrain the search space of de novo protein structure
prediction sufficiently so that the lowest-energy conformation can be found. Through
recent improvements in the accuracy of such residue-residue interaction predictors, protein
domain structures of typical size could be predicted in a blinded experiment for the first
time in 2011. However, the new class of methods is still limited in its applicability in
that methods are sensitive to false-positive predictions of interactions and can only provide
reliable predictions with low false-positive rates for protein families that have a high number
of homologous sequences.

This work aims to improve residue-residue contact predictions by improving the un-
derlying mathematical models in a Bayesian framework. By explicitly modelling noise
effects inherent in the underlying data and including priors to reflect the nature of residue-
residue interactions, an attempt is made to reduce random and systematic errors inherent
in contact prediction to make protein de novo structure prediction widely applicable.
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Chapter 1

General Introduction to Protein
Structure Prediction

1.1 Protein Structure Determination

Since the first protein 3D structure was solved by X-ray diffraction in 1958 [1], structural
biology has grown into a field that produced many breakthroughs in basic and applied re-
search and many Nobel prizes were awarded for the solution of protein structures through
a variety of techniques. Using X-ray crystallography [2], Nuclear Magnetic Resonance
Spectroscopy [3], Cryo-Electron Microscopy [4], and Mass Spectrometry [5], a large num-
ber of protein structures (currently more than 111, 000 [6]) have been solved and the
files describing the coordinates of their atoms are deposited into the RSCB Protein Data
Bank (PDB) [7] together with annotations such as associated publications, experimental
details or the presence and atom coordinates of other molecules.

X-ray crystallography can be considered the workhorse of structural biology as 90%
of PDB entries have been determined using this method, with NMR spectroscopy at 9%
of structures and electron microscopy at 0.7% [6]. While X-ray crystallography has been
widely used in the past, finding the correct experimental conditions to arrive at a pure and
regular crystal remains challenging. This is especially the case for membrane proteins where
hydrophobic surfaces and flexibility are commonplace [8] but the high-throughput screening
of crystallization conditions [9] and the development of lipidic cubic phases [10] have lead to
higher success rates in the crystallographic study of membrane proteins. On the other hand,
Cryo-EM has become viable for solving near-atomic structures through the development
of better electron detectors and image processing [11]. Though this maturation of cryo-
EM technology, it can be expected that many new high-resolution cryo-EM structures will
enter the PDB, especially of large symmetric protein complexes whose orientation can be
efficiently classified by the image processing methods.

While the rate at which new protein structures are solved has steadily increased, the
even bigger advances in high-throughput sequencing techniques have lead to a situation
where the number of protein sequences grows much faster than the number of solved protein
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structures. The resultant sequence-structure gap [12] is expected to widen as time passes.
In order to boost knowledge about previously unknown folds, structural genomics

projects attempted to apply high-throughput approaches to protein structure determi-
nation and were successful at providing many new novel protein structures and reducing
the average cost per solved structure. While successful at their goal, the projects were
criticized for not being more efficient than leading traditional structural biology labs and
publications on novel structures arising from structural genomics projects yielded a signif-
icantly smaller impact than publications on novel structures from traditional groups [13].

1.2 Approaches of Protein Structure Prediction

With the sequence-structure gap ever widening, structural bioinformatics attempts to
bridge the gap through the computational prediction of protein structure using a com-
bination of physical and statistical techniques. The major approaches to protein structure
prediction and their benefits and challenges will be discussed in this section.

1.2.1 Homology Modelling

Since protein structure is more strongly conserved than protein sequence [14], there will be
several protein sequences folding into the same structure, suggesting that protein folds and
their corresponding sequences can be grouped into discrete clusters [15, 16] with overlaps
between folds indicating the existence of common motifs [17].

The conservation of protein structures enables the application of a knowledge-based
strategy for predicting the structure of unknown proteins: Using a sequence search method,
the protein of interest can be assigned to one of the clusters of protein folds and thus
predicted to be folding to the same structure as other sequences in that cluster. If structural
information is already available for one member of the cluster, this information can be
directly transferred by mapping equivalent residue positions [18], for example by generating
distance restraints between residues from the template structure [19]. For proteins where
suitable templates were available, the best-performing homology modelling methods were
able to generate predictions with Cα-root mean square distances < 3Å from the native
structure in the independent CASP11 evaluation [20].

Since homology modelling is only possible if a template structure can be found for the
target protein, the success of homology modelling is dependant on both the availability
of a template structure and the sensitivity and alignment quality of the sequence search
method used to detect cluster membership. From alignment length and sequence identity,
a safe homology modeling zone was defined for alignments with a sufficiently large overlap
and agreement [21] with low-identity alignments falling into a twilight zone where it is
unclear if a detected sequence homology would also lead to structural homology. More
sensitive sequence search methods such as HHblits [22] were developed to push the limits of
homology detection through the inclusion of more evolutionary information by comparing
profile hidden markov models of query and template multiple sequence alignments.
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Homology modelling leads to a multiplier effect for protein structure prediction: Every
previously unknown protein fold that has a structure solved for one member of the cluster
will allow the prediction of protein structures for all other members of that protein fold
that can be detected using sequence search methods. However, many protein folds are
challenging to determine due to experimental limitations so that homology modelling can-
not be applied. For such protein folds, de novo protein structure prediction can provide
an alternative solution.

1.2.2 De novo Protein Structure Prediction

De novo protein structure prediction is the discipline of predicting protein structures with-
out prior information on the structure of that protein or related proteins but only general
knowledge about intramolecular forces and protein folding. Typically, de novo protein
structure predictors are based on force-field models used to rank the free energy of a
conformation combined with efficient search strategies of exploring conformational space.
Since the native protein structure generally corresponds to the lowest-energy conforma-
tion [23], given an accurate force-field model, finding the lowest-energy conformation will
correspond to finding the native conformation.

Due to the high degree of conformational flexibility in proteins and the computational
cost of computing all-against-all forces on atoms, the search space of all possible confor-
mations cannot be explored exhaustively for proteins of typical lengths. For this reason,
de novo methods need to reply on simplifications to decrease computational complexity in
the choice of atom representation, forcefield model and amount of conformational freedom.

In order to assign an energy to a conformation under consideration, force-field models
sum up Lennard-Jones and electrostatic terms between atoms in the molecule, combined
with terms for hydrogen bonding, φ/ψ angle preferences, and torsion angles to make the
molecule more protein-like [24]. Since the amount of interactions to be calculated in-
creases quadratically with the amount of atoms for which interactions are considered, a
logical simplification is to reduce the amount of interacting objects by implicitly treating
solvent water molecules through an additional term in the force field model [25] instead of
calculating interaction terms between solvent molecules and the protein or other solvents.

Combined with a reduction of complexity in the force field model, conformational space
is also reduced by relying on discrete libraries of side chain orientations called rotamers [26].
For the protein main chain, conformational space can be reduced by using local conforma-
tions of small peptide fragments that were sampled from other crystal structures [27] or
treating secondary structure elements as rigid fragments to be assembled [28].

After the coarse-grained simulations arising from the discussed simplifications, many
methods follow up with a second fine-grained refinement step to arrive at a final model.
By careful tuning and extensive use of computing power, de novo methods have made
excellent (down to a Cα-RMSD of 1.4Å over 90 residues) predictions for a 112-residue
target protein [29] but since the size of the conformational search space grows exponentially
with the protein sequence, finding a lowest-energy conformation for longer proteins becomes
prohibitively expensive without relying on external help.
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1.2.3 Contact Maps for De Novo Structure Prediction

Residue-Residue Contact Maps are an alternative way of encoding protein structure that
can be can be trivially generated from a set of Cα atom coordinates. They are defined as
L× L matrices of binary variables C(i, j):

C(i, j) =

{
1, = Dβ(i, j) < t

0, = else
(1.1)

where Dβ(i, j) is the euclidean distance between Cβ atoms (Cα for glycine) for residues
(i, j) and t is a distance threshold (typically chosen as t = 8Å). Figure 1.1a shows an
example of a residue-residue contact map generated from a small protein domain.
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Figure 1.1: a. Residue-residue contact map of the human von Willebrand factor A3 domain
(PDB code 1atz), chain A. A black square is drawn at (i, j) if the C−β atoms of residues
i and j are closer than 8 Å.b. Predicted residue-residue contact map and true distance
map for 1atzA. The top- L

10
most confident predictions are highlighted as red crosses.

While only a 2D representation, residue-residue contact maps retain the full 3D struc-
tural information of a protein so that Cα atom coordinates can be reconstructed reliably
using residue-residue contact maps as input. Perhaps surprisingly, contact maps are still
informative when only part of their information is available: Partial contact maps gener-
ated from true 3D structures were shown to identify the true 3D structure out of a library
of decoy structures [30, 31] and to constrain the search space of de novo protein structure
prediction sufficiently to fold proteins to RMSD values of < 6.5 Å [32].

An explanation for why partial contact maps remain useful can be found in Figure 1.2:
By picking only one residue-residue interaction for every tenth residue in the protein, the
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orientation of secondary structure elements is still sufficiently constrained and the relative
orientation of secondary structure elements constrains the overall structure sufficiently to
quickly find the lowest-energy state. An attractive goal for protein structure prediction is
therefore to reliably determine a few of the residue-residue contacts of a protein through
another means than the full experimental determination of the protein structure since this
would enable the full structure calculation from the limited set of restraints.

Figure 1.2: Top- L
10

residue-residue contact predictions mapped onto the X-ray crystal
structure for 1atzA. The long-range residue-residue contacts constrain the orientation of
secondary structure elements relative to one another, greatly reducing the combinatorial
complexity of conformational sampling.

Experimental Determination of Residue-Residue Interactions

Several experimental techniques exist for deriving information residue-residue interaction,
most importantly chemical cross-linking and nuclear overhauser effect spectroscopy.

Chemical Cross-Linking [33] uses specially designed and commercially available cross-
linking reagents that covalently bind to two proximal functional groups in the protein (most
frequently, the amino groups found at the protein N terminus and in lysine side chains). By
varying the length of the spacer section of the cross-linking reagent, functional groups that
are at different distances to another can be linked together. The cross-linking products are
analyzed in a mass spectrometer, the residues participating in the cross-link identified and
thus residue-residue distance restraints are determined.

Nuclear Overhauser Effect Spectroscopy (NOESY) [34] can be used to infer distance
information using the Nuclear Overhauser Effect (NOE) that occurs when protons in a
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dipole-dipole interaction exchange magnetic spins (either directly or indirectly through
neighboring nuclei) in nuclear magnetic range (NMR) spectroscopy. By exploiting distance-
dependent variations in the strength of the measured NOE, distance information between
atoms can be derived after successful peak assignment in a 2D NMR experiment. The
distance information derived from NOESY experiments is used as the primary information
source when calculating protein structures from NMR data.

Computational Prediction of Residue-Residue Interactions

While experimental methods for determining residue-residue interactions can be applied
successfully to predict unknown protein structures, progress has been made to predict
residue-residue interactions computationally without reliance on experimental data. In-
stead of a binary contact map, residue-residue contact prediction calculates confidence
scores that give a degree of belief for each residue combination (i, j) to be interacting. Fig-
ure 1.1b shows a high-quality residue-residue contact prediction with the most confident
predictions highlighted compared with the distance map of true Cβ/Cα coordinates.

Typically interpreted in a machine learning framework, different features of protein
sequences such as conservation, sequence context, secondary structure and hydrophobicity
were found to correlate with the propensity of forming residue-residue interactions, with
the most descriptive feature being covariation between residue positions in a multiple
sequence alignment of homologous protein sequences as a result of compensatory mutations.
Chapter 2 will give an introduction to how previous contact prediction approaches made
use of the residue-residue covariation signal and discuss subtleties that have to be taken
into account when using it as input data.

Since the quality of residue-residue contact predictions controls the quality of the final
protein structure prediction, special effort has to be made to arrive at the best-possible
contact predictions. The aim of this thesis is therefore to improve the models underlying
residue-residue contact prediction in a bayesian framework to make the best possible use
of available data and expert knowledge about residue-residue interactions.



Part I

Precise Residue-Residue Contact
Prediction





Chapter 2

Introduction to Residue-Residue
Contact Prediction

Residue-residue contact prediction uses features calculated on multiple sequence alignments
to predict with residue positions of a protein family are interacting. While there has
been agreement for over 30 years [30] that contact predictions could be of use for protein
structure prediction, the contact prediction methods developed until the late 2000s were
not accurate enough for a blind 3D structure prediction as too many sources of noise caused
many false-positive predictions. It took until 2008 for the major noise sources of entropic
and phylogenetic effects [35] and until 2009 for indirect couplings [36] to be eliminated.
In 2011, it was finally shown that these improvements could be combined with a NMR-
based structure prediction program to fold de-novo protein structures using only sequence
data [37], causing a spike in interest in further development of even more accurate contact
prediction methods.

This chapter will introduce the basic concepts, techniques and error sources of residue-
residue contact prediction and present important previous methods.

2.1 Co-evolution as a Signal

The most important signal used in all modern residue-residue contact prediction methods
is evolutionary coupling. Since proteins evolve under evolutionary pressure to maintain
their function (and thus, their structure), there is selection pressure on the residue-residue
interactions in the protein that are important for constraining the fold. In most cases, a
high sequence conservation at these residue positions will be expected over the evolutionary
history of a protein family, but another way that interactions in a fold can be preserved
is to compensate for the mutation of one interaction partner by also mutating the other
interaction partner.

Consider a salt bridge interaction between a positively charged arginine residue and
a negatively charged aspartate residue as seen in Figure 2.1a. If the arginine residue is
exchanged into a lysine residue having a slightly smaller side chain, the interacting aspar-
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tate residue can grow into a slightly longer glutamate residue to maintain the interaction
distance. Alternatively, should the charge of the arginine change into a aspartate or glu-
tamate, the interacting aspartate can mutate into an arginine or lysine. Similar sets of
compensatory mutations can be found for hydrophobic interactions.

Since multiple sequence alignments can be seen as the evolutionary history of the extant
homologous sequences of a protein family, they also reflect compensatory mutations that
have occurred as co-occurring amino acid pairs in interacting MSA columns as shown in
Figure 2.1b. Evolutionary coupling residue-residue contact prediction methods use this
preference of amino acid pairs to occur together in the MSA more often than would be
expected by random chance as their main input signal. A simple contact prediction method
could therefore be constructed by just measuring the correlation (or alternatively, mutual
information) between all column pairs in the multiple sequence alignment and predicting
the n most highly correlated column pairs as contacting residues.

2.2 Error Sources for Contact Prediction

While some successes were achieved with using correlation or mutual information measures
for contact prediction, strong noise sources caused many false-positive predictions making
early contact prediction methods too unreliable for use in de novo protein structure predic-
tion. So far, several sources of error have been characterized and attempts have been made
to overcome these sources of error to varying levels of success. Figure 2.2 summarizes the
most important error sources that have been characterized.

Sample Size Effects The amount of data available for residue-residue contact prediction
is limited to the number of homologous sequence information that can be detected for the
protein family under study. For insufficient data scenarios, the many different possible
amino acid combinations at different position combinations will cause true interaction
signals to be almost indistinguishable from random statistical noise. These effects are
normally combatted through better statistical modelling, combined with the hope for more
data to become available through high-throughput sequencing experiments.

Entropic Effects Since covariation-based measures need sequence variation as a signal
for predicting residue-residue contact, the most highly conserved interactions in a protein
are paradoxically more difficult to detect since they display little variance [38, 39, 35].
Unless entropy is accounted for in the contact prediction, this would lead to an under-
estimation of true coupling scores in highly conserved columns while columns with high
variance being predicted to contain more contacts on average.

Phylogenetic Effects Almost all residue-residue contact prediction use mathematical
formulations that assume statistical independence between individual MSA sequences.
Since the sequences have evolved from a common ancestry, however, phylogenetically more
closely related sequences in the multiple sequence will still have statistical dependencies
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Figure 2.1: Acceptable substitutions for a Arg-Asp salt bridge. Both size and charge
changes can be compensated by a size and charge change in the interaction partner. a.
Lewis structures of interacting side chain residues showing the size and charge compen-
sations. b. Multiple sequence alignment representation of the two interacting columns.
Compensatory mutations can be seen as co-occurrence of interacting residue pairs.
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A

B

C

D

E

ADFLHEAC...
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ADGMDRAA...
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Figure 2.2: Noise Sources in Contact Prediction a. Sampling Size Effects. Residue-residue
contacts learned from protein MSAs with a low number of homologous sequences in rela-
tion to the number of residue position will have high amounts of statistical noise, leading
to inaccurate predictions. b. Entropic Effects. Overall coupling values are determined
by the amount of variation that can be measured in a MSA position, leading to striped
brightness patterns in the predicted contact maps. c. Phylogenetic Effects. Common
ancestry of the extant sequences observed in the MSA can cause spurious correlation of
residue positions in closely related sequences. d. Transitive Effects. Pairwise correlation
between all MSA positions can lead to spatially distant residues AC being assigned a high
coupling score if their constituent residues are part of other high-scoring, true interactions
AB, BC. Such high coupling scores can become higher than true physical interactions DE in
other parts of the protein and thus lead to false predictions. e. Intermolecular Couplings.
On homomeric proteins, intermolecular couplings (red) have to be disentangled from in-
tramolecular couplings (yellow) for de novo structure prediction to succeed (representative
contacts mapped on PDB code 3O0M)
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between their sequences as they have not had sufficient time to diverge [40]. This statis-
tical dependence of sequences will look like a covariation signal to residue-residue contact
prediction methods and thus lead to false-positive predictions.

Transitive Effects Correlation-based residue-residue contact prediction methods will
assign high coupling scores to residue positions that belong to other, highly-coupled true
residue-residue interactions even if they do not form a physical interaction themselves [40].
As shown in Figure 2.2b, such transitive coupling can lead to high-scoring false-positive
interactions that can mask true-positive lower-scoring interactions in other parts of the
protein. Transitive effects are typically eliminated by learning couplings using a global
statistical model under the maximum entropy assumption [36, 41, 42].

Intermolecular Interactions If a protein family forms a multimer to maintain its struc-
ture of function, there will not only be selection pressure on maintaining the fold of the
monomer but also on maintaining the interaction surfaces. In the case of homomultimers,
the covariation from interactions stabilizing the fold have to be distinguished from multi-
meric interactions for structure predictions to succeed but can help in precisely identifying
the structure of the protein-protein interaction once the structure of both interaction part-
ners has been solved [43, 44, 45].

From the sources of errors discussed above, it becomes clear that better contact predic-
tion accuracy can be achieved by effectively eliminating these noise sources. The following
sections will discuss previous milestones.

2.2.1 Correcting for Entropic Effects

One of the biggest improvements to contact prediction accuracy comes from correcting
entropic effects using the heuristic known as Average Product Correction (APC) [35]. Dunn
et al. proposed that the coupling signal observed in a predicted contact map C(i, j) consists
of the coupling due to structural and functional constraints Csf (i, j) and a background
term Cb(i, j) that is related to per-position entropy and phylogenetic coupling. Since most
position pairs in a contact map are expected to be non-contacting, they propose that the
background term Cb can be estimated using per-column and per-row average coupling
values C̄(i) and the average coupling value over the whole predicted contact map C̄:

Cb(i, j) =
C̄(i)C̄(j)

C̄
, Csf (i, j) = C(i)− Cb(i, j) (2.1)

While APC has been originally proposed for mutual information-based contact predic-
tion methods, it has been used to eliminate entropic effects in the majority of modern
maximum entropy and pseudo-likelihood contact prediction methods since it also signifi-
cantly boosts prediction accuracy there. Chapter 4 will discuss some of the characteristics
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of the APC heuristic more deeply and suggest alternatives more suitable for future method
development.

2.2.2 Correcting for Sequence Redundancy

Since the protein sequence space of a protein family is typically not sampled uniformly but
biased in many different ways, it can be expected that some protein sequences and variants
appear more frequently in a multiple sequence alignment than others, overemphasizing the
covariations measured in that branch of the evolutionary tree. Most contact prediction
methods correct for this effect by introducing weights that reduce the influence of sequences
that have a high sequence identity to many other sequences in the alignment. A common
strategy is to weight sequence i by the reciprocal of the number of sequences with a sequence
identity of at least 90% to sequence i:

wi =
1∑N

n=1 I(ID(i, n) ≥ 90%)

Section 3.6 will discuss experiments with alternative weighting schemes to better ac-
count for redundancy in MSAs.

2.2.3 Correcting for Transitive Effects

The second major improvement of residue-residue contact prediction was the elimination
of transitive effects to arrive at direct couplings. Inferring direct coupling parameters is a
problem that has come up in both the statistical physics (known here as the Invere Ising
problem) and probability theory (known as partial correlation) communities.

In the simplest case [37], direct couplings can be obtained by computing the covariance
matrix of all position pairs in the multiple sequence alignment Ω and its inverse P = Ω−1.
The inverse covariance matrix (also known as the precision matrix ) then can be used to
obtain the partial correlation ρ:

ρi,j = − Pi,j√
PiiPjj

Since the covariation matrix is not necessarily invertible, a shrinking procedure [42]
may be used to simplify convergence by increasing the diagonal elements of the covariance
matrix. Since covariance is typically estimated in a low-data scenario, a regularization term
introduced to the inversion objective function additionally helps direct coupling values for
potentially interacting pairs with low amounts of evidence to zero, reducing noise.

2.3 Markov Random Fields

After the initial successes with inverse matrix approaches, shrinking heuristics and regu-
larization, a more user-friendly and bayesian framework for the elimination of transitive
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Figure 2.3: Markov Random Fields for Contact Prediction. a. Visual representation of
graph structure. Each vertex corresponds to a column in the multiple sequence alignment
while every edge corresponds to covariation between MSA columns. b. Visualization of
the L× 21 vi(a) and the L×L× 21× 21 wi,j(a, b) matrices used to parametrize the model.

effects was found by directly learning the parameters of a global model of all residue posi-
tions using maximum-pseudo-likelihood approaches [41]. A Markov Random Field (MRF)
is an undirected graphical model allowing cycles that encodes all amino acid preferences
and residue-residue couplings into a joint probability distribution of observing a protein
sequence ~x = (x1, . . . , xL) given single-emission potentials vi(a) and pairwise emission po-
tentials wi,j(a, b):

P (~x|v,w) =
1

Z

L∏
i=1

exp [vi(xi)]
L∏

i,j=1
i 6=j

exp [wi,j(xi, xj)] (2.2)

where Z is a normalization term also known as the partition function that sums over
all possible sequence assignments to ensure the probability is normalized:

Z =
∑

x′∈{1...20}L
P (x

′|v,w) (2.3)

Since the normalization term can only be computed in exponential time, the MRF
likelihood is typically replaced by a pseudo-likelihood that has been proven to converge to
the same optimum as the number of sequences increases [46]. In a pseudo-likelihood, the
normalization is localized for a column i and will only sum over the 20 possible assignments
for that column while keeping the other positions fixed to the sequence context:
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Ppseudo(x|v,w) =
L∏
i=1

 1

Zi
exp [vi(xi)]

L∏
j=1
i6=j

exp [wi,j(xi, xj)]

 (2.4)

Zi =
20∑
a=1

exp [vi(a)]
L∏
j=1
i6=j

exp [wi,j(a, xj)] (2.5)

Because of the logarithmic parametrization, a coupling score of 1 can be understood
as the coupling being e1 times more likely than would be expected if the corresponding
positions were independent. This parametrization leads to a gauge invariance since multiple
parametrizations can express the same probability distribution. The indeterminacy can be
fixed by including a regularization prior that will favor the solution with all parameters
closest to zero and can also be used to include prior knowledge. A common example is to
use an L2 prior with regularization parameters λs, λp to push single and pairwise emission
parameters with low amounts of evidence towards zero and also reduce overfitting:

R(v,w) = λs ‖v‖2
2 + λp ‖w‖2

2 (2.6)

Note that the aforementioned L2 regularization is equivalent to the negative logarithm
of two gaussian priors centered around 0 with scale parameter λ−1

s , λ−1
p . Instead of simply

maximizing the pseudo-likelihood, we can now maximize the pseudo-log-likelihood minus
regularization term to arrive at a maximum a posteriori (MAP) estimate:

v̂, ŵ = arg max
v,w

pll(X|v,w)−R(v,w) (2.7)

2.4 Machine Learning-based Predictors

When looking at the top-performing contact prediction methods published so far, the most
precise methods [47] such as MULTICOM and pConsC3 combine many input features
into complicated machine learning apparatus to maximize the prediction score. While
such approaches yield impressive performance metrics, they are slow to train and are the
result of heuristic experimentation with input feature construction and learning strategy.
Furthermore, the trained predictors are too complex for human comprehension and thus
have to be used as a “black box”.

Since many of the top-performing predictors use a MRF-based contact predictor as their
main input feature and MRF models are still humanly comprehensible and are inviting for
better bayesian modelling, the focus of this work is on the improvement of MRF-based
contact prediction methods that is also expected to lead to improvements in the accuracy
of the complex black box predictors.
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2.5 Predicting 3D Structures from Contact Maps

The second part to de novo protein structure prediction is calculating protein 3D structures
from predicted residue-residue contact maps. While structure calculation is not part of
the thesis project, understanding some of the characteristics of structure calculation is
important for producing meaningful predictions. The following section will therefore give
a brief overview over common approaches.

2.5.1 Residue-Residue Contacts as Distance Restraints

Since the restraints generated by contact prediction methods are similar to the residue-
residue distance constraints that can be determined from NMR nuclear overhauser effect
(NOE) experiments, an obvious approach for solving protein 3D structure using predicted
residue-residue contacts is to use the existing tools for folding protein structures from exper-
imental data. The EVfold method [37] had some initial successes with the Crystallography
and NMR System (CNS) [48] and CNS is still employed in newer pipelines such as CON-
FOLD [49] since it can still run well on a moderately powerful desktop computer. On the
other hand, the powerful and computationally expensive Rosetta AbInitioRelax [50] is em-
ployed in approaches such as PConsFold [51] and further improved for the residue-residue
contact prediction scenario by RASREC [52].

2.5.2 Specialized Programs for Residue-Residue Contacts

Since existing forcefield-based approaches are typically very computationally expensive,
some interest has gone into developing custom protein structure prediction methods for
solving protein structures using predicted contact maps. Instead of using all-atom repre-
sentations and a forcefield model, only Cβ atom coordinates are initially shuffled to fulfill
the restraints of predicted contact maps and backbone geometry. After such an initial
model has been solved, the overall fold of the protein is already determined, making the
inclusion of side chains a matter of comparatively smaller conformational changes.

The FT-COMAR [53, 54] method made initial successes in predicting protein structures
from noisy data by a heuristic that generates an initial random solution using a distance
geometric algorithm combined with background knowledge of protein residue-residue dis-
tances and then iteratively refining the coordinates using different movement steps. Using
contact maps derived from crystal structures that had noise artificially added, FT-COMAR
can recover structures with Cα-RMSD ≤ 4 Å while using contact maps with 75% of the
information masked out. On contact maps predicted using the CORNET method [55]
taking the top-L

5
contacts, however, FT-COMAR only achieves Cα-RMSDs of ∼ 17 Å.

The newer GDFuzz3D [56] method was developed to calculate all-atom 3D structures
from predicted contact maps in a three-step procedure. First, the predicted contact map is
interpreted as an adjacency map of the graph of residue contacts and a natural-numbered
graph distance map is derived from the graph structure and then scaled to real-valued
distances using statistics derived from PDB structure contacts. Next, the 2D distance
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map is transformed into an euclidean distance map in 3D space and corresponding 3D
coordinates using the multidimensional scaling algorithm [57]. Finally, an all-atom model is
constructed from the coarse Cα 3D model and optimized using MODELLER with Cα−Cα
distance restraints ≤ 4 Å and predicted secondary structure from SSpro4 [58]. On CASP10
single-domain targets outperforms FT-COMAR with average TM-scores of 0.41 (compared
to 0.31 for FT-COMAR) and average RMSD values of 11.06 Å (compared to 14.88 Å for
FT-COMAR). On the set of 150 protein families from the PSICOV data set, FT-COMAR
(average TM-score 0.49) slightly outperforms the EVfold protocol (average TM-score 0.47)
and is outperformed by the computationally much more expensive PconsFold (average
TM-score 0.55).

2.5.3 Choosing Good Restraints for 3D Structure Prediction

The results of the aforementioned 3D structure prediction approaches repeatedly show that
while 3D structures can be calculated from only a few number of contacts, all methods
are very vulnerable to being derailed by false-positive contacts. A good contact prediction
method should therefore generate restraints with a high specificity. Secondly, especially
contacts between residues that are distant in sequence are important for constraining the
correct fold since local structural phenomena can already be partially determined through
reliable secondary structure prediction. A contact prediction method that achieves a high
accuracy on few long-distance interactions is therefore clearly more informative than a
method than can only generate many redundant local interactions.

2.6 Accuracy and Applicability of Contact Prediction

2.6.1 Evaluating Contact Prediction Accuracy

Since residue-residue contact prediction methods ultimately have to improve the accuracy
of ab initio protein structure prediction, a reasonable strategy for evaluating might be
to predict protein structures using different residue-residue contact predictions and then
directly evaluating the TM-score or Cα RMSDs of the models. Since the CASP10 ex-
periment, predicted contacts have been shown to assist protein structure prediction [59]
and since the recent CASP11 experiment, contact prediction models are employed in the
challenging free modelling category [60], thus proving their usefulness, and full ab initio
protein structure prediction pipelines evaluate their model quality using TM-score, Cα-
RMSD and other measures [37, 51, 56, 49]. However, the structure calculation pipelines
add a considerable amount of complexity of evaluation and so the precision and recall of
individual residue-residue contacts is often used as a simpler proxy for structural modelling
performance when developing a pure residue-residue contact predictor.

Using a test set of protein domains with experimentally well-determined coordinates
and accompanying MSAs of homologous protein sequences, contacts are predicted for each
MSA and each contact prediction method under comparison. For each of the protein
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domains for which a contact prediction was found, contacts too close in sequence (e.g.
|i− j| ≤ 6) are masked out since they are trivial to predict and more distant contacts are
grouped into sequence separation bins. As discussed in Section 2.5.3, especially contacts
between distant sequence regions are of importance since they are informative for folding
protein structures.

Using the filtered contact lists, the top-ranking n contacts are compared to the true
3D structures by assigning distances smaller than a threshold (typically, 8 Å are used) to
be true positives (TP) and contacts further away than that threshold to be false positive
(TP). The contacts that exist in structure but were not detected by the contact prediction
method are denoted as false negatives (FN) while the residue pairs that are spatially distant
and were not classified to be contacting are denoted as true negatives (TN). Using these
assignments, several performance criteria typical for evaluating binary classifiers can be
calculated:

Precision =
TP

TP + FP
(2.8)

Recall =
TP

TP + FN
(2.9)

F1 = 2× Precision×Recall

Precision + Recall
(2.10)

MCC =
TP×TN−FP×FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2.11)

To compare different methods against another, a typical plot is the mean precision for
the top-ranked n contacts averaged over all protein domains in the test set against the
number of accepted contacts n, either as an absolute number or normalized by protein
length. A popular single-figure performance criterion is the top-L

5
precision, or the mean

precision of contact predictions when choosing the top-ranked n = L
5

contacts for each
protein domain in the test set but other numbers such as the area under the ROC curve
or the area under the precision-recall curve are also used.

Since the performance on the discussed evaluation criteria is crucially dependent on the
set of protein domains used, methods can only be compared against each other fairly if
they had the same MSA data available. A de facto standard set of protein MSAs is the set
of 150 protein domains derived from Pfam that was originally published with the PSICOV
method [42] but has to be considered unrealistically easy because of its high sequence
coverage compared to real-life applications of predicting unknown protein structures. The
CASP RR category [61, 62, 47] is an independent evaluation of residue-residue contact
prediction during the CASP experiment. Participating methods are tasked to predict
contacts for the targets considered to be hard homology modeling targets and the evaluation
can therefore be considered more realistic although only performed on a smaller number
of proteins.
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2.6.2 Sequence Coverage and Applicability

Balakrishnan and Kamisetty argue that for reliable residue-residue contact predictions
to be made, a protein family of L residues will need to have at least 5L homologous
sequences aligned in its multiple sequence alignment for contact predictions to be reliable
enough to be used in ab initio structure prediction [41, 63]. As seen in Figure 2.4, only
a small minority of protein families annotated in the Pfam database currently meet this
threshold and such families occur in so many branches of life that they are likely to have
been extensively studied already and it is consequently also likely that an experimental
structure has already been solved.

Since the sequence-structure gap is expected to continue to grow [12] due to the faster
improvements in high-throughput sequencing technology compared to the increase in rate
of protein 3D structures being solved, it can be expected that both the applicability as the
importance of contact prediction will rise as time passes. Still, for rarer protein families
that are only specialized into a small subtree of the tree of life, even an extensive sequencing
of all extant species might not yield enough sequence coverage to make the family a suitable
target for 3D structure prediction.

Through improving residue-residue contact prediction and 3D structure calculation
methods, the influence of statistical noise in low-data prediction scenarios can be further
reduced, allowing to extract more information out of the same amount of available data.
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Figure 2.4: Sequence coverage of Pfam families relative to family size. For a protein family
with L residues or columns in the multiple sequence alignment, there should at least be 5L
homologous sequences so that the amount of information outweighs the statistical noise
inherent in contact prediction. The 5L criterion is shown as the straight line in the plot
with only protein families above the line currently being suitable targets for residue-residue
contact prediction. As can be seen from the high number of points at the bottom of the
plot, most Pfam families are currently not suited for contact prediction.
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Chapter 3

Improving Residue-Residue Contact
Prediction

3.1 Evaluation Dataset

To evaluate the predictive performance of contact prediction methods, two datasets of
protein MSAs combined with high-resolution crystal structures were used:

Initially, the dataset of 150 Pfam families and corresponding crystal structures initially
published with the PSICOV method [42] was used for most analyses since it has become
a de-facto standard evaluation set in the contact prediction community because of its ease
of use and availability. However, the protein families in the dataset are biased towards
protein families with high amounts of homologous sequences in their MSAs.

In order to have a more realistic evaluation scenario with a focus on more difficult
targets, Dr. Jessica Andreani built a more representative dataset using classes 1 (mainly
α), 2 (mainly β) and 3 (α + β) from the CATH database of protein domains [64], version
4. Using pdbfilter from the HH-suite scripts [22], domains were filtered for redundancy
and for each fold, the domain with the highest-resolution crystal structure was kept as a
representative. Alignments were enriched using HHblits using parameters to maximize the
detection of homologous sequences (E-Value cutoff 0.1, 5 iterations, all filtering disabled
with -all). After this procedure, each protein domain in the set is non-redundant to other
protein domains on both the fold and sequence level and no bias is placed on a particular
CATH class or the number of homologous sequence available for a domain. In total, 1231
domain MSAs and corresponding crystal structures were produced.

Since the difficulty of contact prediction is mostly dependent on the amount of sequence
data available for every position in the protein family, the measure of MSA diversity D
was defined in dependence of the number of sequences N and number of columns L in the
MSA as a criterion for describing the difficulty of predicting contacts for a protein family:

D =

√
N

L
(3.1)
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with D ∈ [0, 0.1) considered very hard, D ∈ [0.1, 0.3) considered hard, D ∈ [0.3, 0.5)
considered moderate difficulty, and D ∈ [0.5,∞) considered easy. The square root was
chosen instead of a linear dependency on N since the square root term shows a better
proportionality to the precision of contact predictions. Wherever possible, evaluation was
performed separately for each of these bins to give special attention to improvements in
the very hard and hard cases.

3.2 Explaining Phylogenetic Effects in Inverse Covari-

ance Approaches

Since existing contact prediction methods make the wrong assumption that sequences in a
multiple sequence alignment are drawn independently or only correct for the phylogenetic
interdependence of sequences using sequence weighting or average coupling corrections, a
reasonable approach to improving contact prediction accuracy is to include phylogenetic
interdependence explicitly in the contact prediction.

A simple way to include phylogenetic information into the model is to add additional
variables to each sequence that encode information about where in the phylogenetic tree
that sequence is located. As shown in Figure 3.1, if having an amino acid at a sequence
position can be explained by ancestry, couplings between sequence and phylogeny will be
learned instead of trying to explain the appearance of the amino acid by residue-residue
covariation.

3.2.1 Encoding Ancestry in Multiple Sequence Alignments

A phylogenetic tree was reconstructed using the FastTree 2 Maximum-Likelihood tree
reconstruction method [65]. Starting from the root node of the phylogenetic tree, the first
T (with T a configurable parameter to be optimized) nodes of the tree as determined by a
breadth-first traversal were selected to be the roots of sequence clusters and all sequences
having that node as a direct or indirect ancestor denoted to be members of that cluster.
As seen in Figure 3.2, the evolutionary time covered by the multiple sequence alignment is
crucial in selecting ancestral nodes that can form informative sequence clusters. If clusters
too high up in the evolutionary tree are chosen and the extant sequences have fully diverged
away from them, no phylogenetic coupling is expected to be observable for these clusters.
Since it is expected that annotating too many clusters will only lead to non-informative
coupling scores, large T were chosen to ensure that the informative levels of evolutionary
distance are covered by the cluster annotations.

For the sake of simplicity, a binary encoding like in the PSICOV [42] and protein
sectors [66] works was used to encode both amino acids and sequence cluster membership.
Consequently, every sequence in the MSA corresponds to an T + 20 × L vector of binary
variables.
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Figure 3.1: Correcting phylogenetic noise by subtree membership annotations. a. An
example multiple sequence alignment with a phylogeny explaining common ancestry be-
tween sequences and phylogenetic subtree annotations p1 . . . p5. Most co-occurrences be-
tween amino acids can be explained by insufficient evolutionary time having passed for the
sequences to diverge away from a common ancestor. b. Decomposition of the covariation
matrix. By including additional phylogeny membership columns into the multiple sequence
alignment, residue-phylogeny and phylogeny-phylogeny interactions can be encoded by the
model so that residue-residue interactions that are due to phylogeny can be “explained
away” through appropriate choices of regularization coefficients ρ.
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Figure 3.2: Time-dependent divergence away from common ancestors. While the sequence
of each clade in the phylogenetic tree depends on the ancestral sequences above it, the de-
pendency decreases exponentially with evolutionary time as sequences diverge. Depending
on the total evolutionary time covered by the phylogenetic tree, the extant sequences might
still show dependence on the root sequence of the phylogenetic tree if only a short amount
of time (T1, left) has passed or the extant sequences are correlated in clusters of more
recent divergence in cases of longer evolutionary time (T2, right).
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3.2.2 Learning Sequence-Phylogeny Couplings

Similar to the PSICOV method, the N × (T + 20× 20) feature matrix is used to calculate
a covariance matrix that can be inverted using a regularization term [67, 68] to arrive
at direct interaction terms. As can be seen in Figure 3.1b, the matrix can be decom-
posed into sequence-sequence, sequence-phylogeny and phylogeny-phylogeny interactions
and sequences that are observed due to a common ancestry will be explained as terms in
the sequence-phylogeny sector while true residue-residue interactions can be found in the
sequence-sequence sector.

Using just the true residue-residue interactions in the sequence-sequence sector, an L1

norm is computed for each of the 20 × 20 submatrices corresponding to the amino acid
combinations observable at a pair of residue positions. The resultant summed score matrix
is processed using APC and then used to rank interacting residues.

3.2.3 Results of Phylogenetic Inverse Covariance

Figure 3.3 compare the contact prediction precision of phylogenetic inverse covariance
with other inverse covariance approaches on the PSICOV dataset. While the phylogenetic
inverse covariance leads to improvement over a non-phylogenetic inverse covariance before
APC is applied, the non-phylogeny-corrected inverse covariance benefits more from APC
and outperforms a phylogenetic inverse covariance without APC. Applying APC to the
phylogenetic inverse covariance leads to a slight decrease in precision. The loss in precision
after applying APC can be explained by assumptions APC makes over the distributions of
the prediction scores. Chapter 4 will characterize these assumptions further and propose
a replacement to APC.

3.3 L2,1 Regularization of Pairwise Potential Matrices

The L2 regularization seen in Equation 2.6 treats the coupling values of all pairwise residue
combinations as independent from another. While this is a reasonable modeling assumption
to simplify the MRF learning, it is not accurate for the contact prediction scenario.

When considering any pair (i, j) of residue positions within the protein fold, they can
either be evolutionarily constrained to maintain a fold or none such constraint exist. If
there is no evolutionary constraint, the correct solution for the MRF for this pair is to
set wi,j(a, b) = 0 for all (a, b) belonging to this residue combination. On the other hand,
if the two positions are interacting and there is evidence for an interaction between a
combination of amino acids (a, b), it is likely that other amino acid combinations (a′, b′)
would also interact at the same position. In both cases of interacting and non-interacting
residue positions, it is therefore reasonable to make the strength of the regularization on
one pair of amino acids also depend on the strength of the coupling of other amino acid
pairs at the same position.

The L2,1 prior used in group lasso regression [69] is a regularization term that groups
together related variables:
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Figure 3.3: Evaluation of Phylogenetic Inverse Covariance on the PSICOV dataset. While
phylogenetic inverse covariance boosts precision over inverse covariance, it cannot benefit
from a precision boost by Average Product Correction.
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RL2,1(w) = λ2,1

L∑
i,j=1
i6=j

‖wi,j‖2 = λ2,1

L∑
i,j=1
i 6=j

√√√√ 20∑
a,b=1

wi,j(a, b)
2 (3.2)

Consider a simple two-dimensional example with R =
√
x2

1 + x2
2. As can be seen

in Figure 3.7a, if x2 = 0, the gradient for x1 will push x1 to zero with the same force
as an L1 regularization term. If both x1 and x2 are nonzero, however, the strength of
the regularization term will be divided between both variables. In the case of contact
prediction, grouping together the 20× 20 entries for each (i, j) submatrix of wi,j(a, b) will
share the regularization pressure between all amino acid combinations found at a residue
position pair while position pairs with insufficient evidence have all of their (a, b) coupling
values strongly pushed towards zero.

The L2,1 prior was integrated as a new regularization term using the custom optimiza-
tion framework discussed in Section 3.5 to account for non-differentiable regions in the
objective function and evaluated for contact prediction accuracy improvements.

3.3.1 Results for L2,1 prior

Figure 3.4 compares the contact prediction precision for protein MSAs of the PSICOV
data set. While slight improvements to the precision of L2,1-regularized contact predictions
compared to L2-regularized contact predictions can be seen before APC was applied, the
APC-corrected L2-regularized contact predictions are more precise than both the APC-
corrected and non-APC-corrected L2,1-regularized contact predictions.

Since APC estimates per-column background couplings from the pre-correction cou-
pling matrices, a possible explanation for the unexpected decrease in predictive precision
could be that the L2,1 regularization shifts the mean background coupling in a way that is
incompatible with APC. See Chapter 4 for a more detailed discussion of this effect.

3.4 Contacts-per-Position Prior

The Average Product Correction (APC) enforces the same average number of predictions
(or average level of coupling) for each column or row in the predicted coupling matrix.
Such a correction makes biological sense since only a limited number of other residues can
interact with any given residue. Instead of enforcing this criterion as a post-correction step,
however, it was investigated whether including a constraint on the number of contacts per
position during the model learning process would improve prediction accuracy.

Using the bayesian framework of regularization terms as priors, a new term RCPP (with
new parameters λCPP , β, γ to be optimized) was added that limits the number of contacts
per position by using a smoothed step function to count the number of contacts:
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Figure 3.4: Evaluation of the L2,1 regularization. After Average Product Correction, the
grouped variable regularization performs systematically worse than the conventional L2

regularization.

RCPP (w) = λCPP

L∑
i=1

(
L∑
j=1

‖wi,j‖γ2

) 2β
γ

(3.3)

The regularization term RCPP is an Lp,q norm [70] (with p = 2, q = γ) and works on two
levels: First, all 20× 20 amino acid pairs for a pair of residue positions (i, j) are grouped
together into a L2 term ‖wi,j‖2. Next, all residues j of a column i are grouped together
like in a group lasso L2,1 term [71], but with individual summands exponentiated by γ ≥ 1
so that high values are exaggerated and low values even closer to zero. In addition to the
classic Lp,q term, the RCPP term allows exponentially scaling the regularization term by β
for increased flexibility.

By modifying the λCPP , β and γ parameters, the strength of the regularization can be
adjusted. Figure 3.5 shows the effect of varying λCPP on both stripe reduction and enforcing
sparsity. Note that the Contacts-per-Position prior includes both the L2,1 regularization
and L2 regularization as special cases: L2 regularization corresponds to setting γ = 2, β = 1
and L2,1 regularization corresponds to γ = 1, β = 1

2
.

For the protein family MSAs from the PSICOV data set, grid search (with (λCPP , β, γ) ∈
{10−2, 10−1, 100, 101} × {0.25, 0.5, 1, 2, 4} × {0.25, 0.5, 1, 2, 4}) was used to predict residue-
residue contacts using the RCPP regularization term.

Since Equation3.3 is non-differentiable for ‖wi,j‖ = 0, special care has to be taken when
optimizing the model under regularization. A custom optimization method was developed
for this purpose that will be discussed in Section 3.5.
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λCPP=0 λCPP=1

λCPP=4 λCPP=16

Figure 3.5: Effect of λCPP on the predicted contact maps. As the strength of the contacts-
per-position prior increases, the striping pattern in the resultant contact maps is reduced
but mean coupling also is more sharply centered around 0. The 50 most confident pre-
dictions are highlighted as red crosses. As the strength of regularization increases, the
decrease in striping leads to an increase in precision.
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3.4.1 Results for the Contacts-per-Position Prior

Before applying APC correction to the output matrices, contact predictions using a contact-
per-position prior with γ = 2, β = 2 showed higher precision values than non-APC-
corrected L2 prior contact predictions ( L

10
precisions of 46.0% vs. 40.8% on a non-redundant

set of SCOP domain MSAs). Applying APC to the predictions further boosts performance
both in the RCPP and L2 regularization cases, however, with the highest-precision RCPP

parametrization equalling an L2 regularization. Figure 3.6 shows the results of the contacts-
per-position prior evaluation after APC.

PLL+L2

PLL+CPP,β=2,γ=1

PLL+CPP,β=1,γ=2

PLL+CPP,β=0.5,γ=1

Figure 3.6: Evaluation of the Contacts-Per-Position Prior. The best-performing
parametrization of the contacts-per-position prior is identical to an L2 norm.

3.5 Optimizing with Non-Differentiable Points

For both the L2,1 regularization discussed in Section 3.3 and the contacts-per-position
prior discussed in Section 3.4, the regularization term is non-differentiable for cases where∑20

a,b=1 wi,j(a, b)
2 = 0 due to that term appearing in a denominator for the gradients. Since

regularization gradients strongly pull parameters to zero for both regularization terms
discussed here, it is therefore likely that a conventional optimization method will run
in to a non-differentiable point, causing gradient calculation and optimization methods
based on quadratic approximations to fail. To combat this optimization failure, a custom
optimization strategy was developed based on the Orthantwise Quasi-Newton algorithm
for L1-regularized objective functions [72] and the implementation thereof contained in the
liblbfgs library by Naoaki Okazaki.

While the Orthantwise Quasi-Newton algorithm only needs to deal with non-differentiable
spots for an L1 regularization that occur when any parameter is exactly zero, the grouped
regularization optimizer has to handle cases where whole groups of variables become zero.
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To do this, gradient evaluation and line search steps are split into blocks of grouped vari-
ables that can be evaluated and for which parameters can be updated individually. A
consequence of this is that there is not a single step length derived for all parameters in
the model per line search step but different variable groups can advance with different line
search steps.

Consider a likelihood function l(~Θ) under a regularization term r(~Θ) for variables θg,k
grouped into G groups of Kg variables each with regularization coefficient cg. The grouped
regularizer is defined as:

r(~Θ) =
G∑
g=1

cg

√√√√ Kg∑
k=1

θ2
g,k =

G∑
g=1

cg

∥∥∥~θg∥∥∥
2

(3.4)

The gradient for the regularization term can be shown to have a fixed magnitude cg for
each group of variables independent of the magnitude of variables in that group:

∂r(~Θ)

∂θg,k
= cg

θg,k∥∥∥~θg∥∥∥
2

(3.5)

Gradient evaluation for the regularization gradient was directly implemented inside
of the optimizer to handle the required special cases during optimization and a pseudo-
gradient �g,k of the likelihood function was introduced to handle non-differentiable spots
in the regularization gradient:

�g,k =


∂f(~Θ)
∂θg,k

, ~θg 6= 0,
∂f(~Θ)
∂θg,k

× (1− cg∥∥∥∇~θg l(~Θ)
∥∥∥
2

), ~θg = 0 ∧
∥∥∥∇~θg

l(~Θ)
∥∥∥

2
> cg,

0, ~θg = 0 ∧
∥∥∥∇~θg

l(~Θ)
∥∥∥

2
≤ cg,

(3.6)

A group of variables is considered to be “trapped” if all of the variables belonging to
the group are currently zero (i.e. the group of variables is located in a non-differentiable
spot). If a group of variables is trapped, the gradient for all variables will be forced to zero
(case 3 of Equation 3.6) unless the gradient of the unregularized function is sufficiently
strong to “escape” the trapped location with the magnitude of the regularization gradient
for group g pulling towards zero with magnitude cg (as shown in Equation 3.5) and the
likelihood gradient pointing out of the zero point. A group of variables can therefore escape
if the magnitude of its likelihood gradient is larger than the magnitude of the regularization
gradient cg (case 2). If the group is not currently trapped, the regularization term and
gradients will be defined for that variable block and can be calculated to determine the
search direction as normal (case 1).



3.6 Improved Sequence Weighting 33

Additionally, the line search strategy is modified to ensure that the optimization has a
chance of hitting the non-differentiable spots even if a strong gradient passes by the point
at zero: As illustrated in Figure 3.7b, for each of the variable blocks, a perpendicular is
drawn from the zero point of that block to the search direction line. If line search results
in a step length that crosses the foot of the perpendicular, the parameters for that variable
block are only advanced until they hit the foot. For the next iteration, the gradient at the
foot of the perpendicular can either point towards the zero point (indicating that there
was not enough evidence for the grouped variables to be nonzero) or the optimization can
continue normally, crossing the foot of the perpendicular.

a. b.

Figure 3.7: Minimization into non-differentiable points shown on a two-dimensional func-
tion R(x1, x2) =

√
x2

1 + x2
2 with a non-differentiable point at (0, 0) a. Perspective view

of R showing the overall shape of the function b. Contour plot of R showing the early
termination of line search. If line search for a variable block is crossing over the foot of the
perpendicular of the zero point of the variable block to the line search direction, variables
are only updated until the foot of the perpendicular is reached. Subsequent iterations can
allow the optimization to converge into the zero point or move away, depending on the
gradient at that point.

3.6 Improved Sequence Weighting

To reduce the effect of redundant sequences in the multiple sequence alignments for contact
prediction, redundant sequences are typically removed using an identity threshold and then
re-weighted to reduce the influence of remaining redundancy. Usually, a simple weighting
strategy is used that clusters sequences according to an identity threshold and then splits
a weight between all sequences in the cluster:
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wSn =
1

cn
, cn =

N∑
m=1

I(ID(n,m) ≥ 90%) ID(n,m) =
1

L

L∑
i=1

I(xni = xmi ) (3.7)

3.6.1 Alternative Weighting Schemes

Henikoff weights [73] use a per-column diversity measure and have been applied successfully
in many sequence analysis methods (see e.g. [74]). Each sequence position is inversely
scored depending on how many unique amino acids occur in the same column and how
often the current amino acid also appears in other sequences:

wHn =
L∑
i=1

1

ciNi(xni )
, ci = |{xni |n ∈ {1 . . . N}}| (3.8)

Ni(a) =
N∑
n=1

I(xni = a)

Since contact prediction primarily deals with pairwise interactions, the Henikoff weight-
ing scheme was extended to use a pairwise diversity measure in simple analogy to the
single-column measure:

wH2
n =

L∑
i,j=1
i6=j

1

ci,jNi,j(xni , x
n
j )
, ci,j =

∣∣{(xni , xnj )|n ∈ {1 . . . N}}
∣∣ (3.9)

(3.10)

3.6.2 Sequence Weighting Results

The sequence weighting methods were evaluated for their usefulness in accurate contact
prediction using the alignments of the PSICOV dataset. Figure 3.8 shows that the pairwise
Henikoff weights give an increase of 1.8 percent points in L

10
precision compared to the

commonly used simple weights, or 2.85 percent points compared to using no weighting.
The only slight improvements compared to not using weights can be explained by the fact
that input alignments were constructed to minimize redundancy. Still, the results show
that introducing suitable sequence weighting methods into the contact prediction procedure
can make it resistant to sampling biases introduced by redundant input alignments.

3.7 Learning Triplet Interactions

The residue-residue contact prediction methods published so far specialize on predicting
two-residue interactions as they can be simply understood as the presence or absence of
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Figure 3.8: Alternative Sequence Weighting Evaluation. On the PSICOV data set of
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edges in a residue interaction graph. For the highly position-specific interactions of salt
bridges or disulfide bonds this is a reasonable modeling approach, but there is evidence that
especially the hydrophobic residues in the core of a protein form different, more unspecific
interaction patterns so that a covariance signal might be weaker but present in many
residue positions [75].

Since hydrophobic interactions in the core of a protein fold are especially important for
maintaining the structure, a reasonable extension for residue-residue contact prediction is
to extend the MRF likelihood function by terms to account for several-residue interactions,
with the simplest extension being a triplet interaction term.

The following section will discuss a heuristic approach for extending the MRF model
to include the triplet terms most likely to be true triplet interactions and thus increase
model expressiveness.

3.7.1 Triplet Selection

If all possible triplet scores were included in the MRF model likelihood, the algorithmic
complexity of the model would necessarily rise from O(NL2202) for considering pairwise
interactions to O(NL3203) for triplet interactions. Since only very few triplets are ex-
pected to display sufficient covariance to be detected by the MRF model in relation to the
many possible triplets, it should be sufficient to heuristically pick a list of T triplets and
only optimize triplet coupling potentials for these pre-picked triplets, reducing algorithmic
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complexity to O(NL2 + T ) and making optimization feasible:

pll(X|u,v,w) =
N∑
n=1

 L∑
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i
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n
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(3.11)

Since triplet interactions require a covariance signal to be detected, it is expected that
the residues making up a triplet interaction will also show a high degree of pairwise co-
variation. Since pairwise interactions can be computed quickly, pairwise couplings are first
estimated for all pairs in the protein domain and then used to select candidate triplets.

Different heuristics of triplet selection were evaluated independently since it was unclear
a priori which would perform the best. First, two hypotheses of how triplet interaction can-
didates are detected seemed plausible. For a given combination of three positions (i, j, k),
there could either be strong evidence only in one correspondent combination of amino acids
(a, b, c) or several different amino acid combinations contributing partial signals. If specific
amino acid combinations contribute to the triplet signal, the correct strategy would be
to select triplets T as sextuplets (i, j, k, a, b, c) where for the case of partial contributions,
triplets (i, j, k) should be selected and all amino acids at that position combination should
be considered. For this reason, both sextuplet ranking score S6 and triplet ranking score
S3 from pairwise coupling signals v′i,j(a, b) were defined:

S6(i, j, k, a, b, c) = v′i,j(a, b) + v′j,k(b, c) + v′k,i(c, a) (3.12)

S3(i, j, k) =
20∑

a,b,c=1

v′i,j(a, b) + v′j,k(b, c) + v′k,i(c, a) (3.13)

Furthermore, it is known from pairwise coupling predictions that both positive and
negative coupling scores are indicative of spatial proximity (with positive couplings cor-
responding to positive selection for an interaction and negative couplings corresponding
to negative selection of that interaction). In order to use the maximum amount of in-
formation, all non-zero interactions should consequently be considered for ranking triplet
candidates. Again, several coupling signal transformations were chosen:

v′1i,j(a, b) = |vi,j(a, b)| (3.14)

v′2i,j(a, b) = (vi,j(a, b))
2 (3.15)

With vi,j(a, b) being the untransformed raw coupling potentials. All combinations of
coupling transformations and tuple ranking scores were used to select triplets T and will
be compared in the results section.

The parallelized fast C code for learning pseudo-likelihood MRF models was extended
to additionally optimize triplet interaction terms from a user-provided list of triplets.
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3.7.2 Detecting Interacting Triplets

The triplet couplings learned by the maximum-pseudo-likelihood estimator were evaluated
for recognizing spatially proximal three-residue interactions by using it for ranking {i, j, k}
residue sets using the triplet coupling values. For each of the residue combinations, either
the most highly coupled TS(i, j, k)max = maxa,b,cw

′
i,j,k(a, b, c) value (“single evidence”) in

the set of selected triplets T was used to rank the residue combination, or evidence for all
couplings were summed TS(i, j, k)Σ =

∑20
a,b,c=1w

′
i,j,k, with the same coupling transforma-

tions for v′i,j(a, b) discussed above applied to the triplet couplings w′i,j,k(a, b).
Figure 3.9 compares the triplet couplings after pseudo-likelihood optimization with

simply using the S6 score discussed above for ranking triplet interactions. The S6 score
appears to be already highly informative in picking spatially close triplet pairs with the
triplet scores after optimization performing slightly worse than the pre-optimization S6

scores in high-diversity multiple sequence alignments. In the low-diversity case, all eval-
uated methods are equally bad at detecting spatially close triplet interactions with mean
pairwise distances > 12Å. While triplet couplings are not informative by themselves, com-
bining them into a model that also takes pairwise interactions into account might still help
improve predictive performance.

3.7.3 Combining Pair and Triplet Interactions

Pseudo-likelihood maximization methods produce coupling information for both pairwise
and triplet terms. While only a small number of triplet interactions are expected to exist
in a protein MSA and it is expected that only a small fraction will be detectable from a
coevolution-based method, it is also expected that these detected triplets will show high
specificity. A reasonable idea is therefore to combine the information of triplet couplings
with the pairwise couplings to predict pairwise contact probabilities in a bayesian frame-
work using bayes factors (a bayesian interpretation of likelihood-ratio tests):

BF (i, j) =
P (Ci,j = 1|‖wi,j,k‖α, ‖vi,j‖2, T )

P (Ci,j = 0|‖wi,j,k‖α, ‖vi,j‖2, T )
= (3.16)

=
P (‖wi,j,k‖α, ‖vi,j‖2|Ci,j = 1, T )

P (‖wi,j,k‖α, ‖vi,j‖2|Ci,j = 0, T )

P (Ci,j = 1)

P (Ci,j = 0)
≈ (3.17)

≈ P (‖wi,j,k‖α|Ci,j = 1, T )

P (‖wi,j,k‖α|Ci,j = 0, T )

P (‖vi,j‖2|Ci,j = 1, T )

P (‖vi,j‖2|Ci,j = 0, T )

P (Ci,j = 1)

P (Ci,j = 0)
(3.18)

The bayes factor can be decomposed into terms involving the triplet couplings (first
fraction) and pairwise couplings (second fraction) plus a prior (third fraction). These one-
dimensional probability distributions can be fit separately for Ci,j = 1 (i.e. they are part
of a physically contacting residue pair) and Ci,j = 0 using mixture density models.
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Figure 3.9: Triplet Couplings for Tri-Residue Contact Prediction. For different triplet
scoring methods, the mean sum of residue-residue Cα distances dij + djk + dki is plotted
against the ranking of the corresponding triplet prediction.
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Triplet coupling scores were fit as the mixture of three exponential distributions, with
mixing weights πd:

P (‖wijk‖α = x|Cij, T ) =
3∑
d=1

πdλd exp [−λdx] ,
∑
d=1

πd = 1 (3.19)

Figure 3.10 shows the binned triplet score counts for contacting and non-contacting
triplets together with their fits and the corresponding bayes factor term. As the triplet
coupling score increases, the bayes factor increases correspondingly. The dip for coupling
scores between 0.05 and 0.17 can be explained by the limited-data learning scenario of
triplet interactions.

Figure 3.10: Fitting of Triplet Score Distributions of Couplings Learned from Non-
Redundant Protein Domain MSAs. The bars represent log-counts for triplet scores where
triplets involve contacting residues (green) and triplets that are spatially distant (red).
The lines show the fits of Equation 3.19 and the blue line the Bayes Factor component.

Pairwise coupling scores were fit as the mixture of three exponential distributions for
the contacting case and as a mixture of an exponential distribution and a log-normal
distribution for the non-contacting case:

P (‖vij‖2 = x|Cij, T ) =

{∑3
d=1 πdλd exp [−λdx] , Cij = 0

π4λ4 exp [−λ4x] + π5
1

xσ
√

2π
exp

[
− (lnx−µ)2

2σ2

]
, Cij = 1

(3.20)

Figure 3.11 shows the binned pair score counts for contacting and non-contacting
residues together with the fitted distribution and the corresponding bayes factor term.
Again, the bayes factor increases as the pairwise coupling score increases.
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Figure 3.11: Fitting of Pair Score Distributions of Couplings Learned from Non-
Redundant Protein Domain MSAs. The bars represent log-counts for summed pair scores
of contacting residues (green) and non-contacting residues (red). Fits of Equation 3.20 are
shown as lines with the Bayes Factor shown in blue.

By combining the probability fits with the prior for observing a contacting residue
pair (third fraction of the bayes factor), the bayes factor can be used to calculate posterior
probabilities for a pair of residues to be interacting given the triplet and pair coupling
information:

P (Ci,j = 1|‖wi,j,k‖α, ‖vi,j‖2, T ) =
1

1 +BF (i, j)
(3.21)

A similar bayes factor was also developed to calculate posterior values for the only-
pairwise situation of traditional pseudo-likelihood models and will be compared with triplet
interaction posteriors and traditional APC-corrected summed score matrices.

3.7.4 Triplet Couplings for Pairwise Constraints

Figure 3.12 shows the prediction performance of triplet contact prediction methods to
enhance pairwise contact prediction on real-world protein domain MSA data. Since the
posterior probability estimate using only pairwise terms uses the same information as
the conventional L2 norm sum score, it is not surprising that pair posterior and pseudo-
likelihood methods exhibit identical performance. Unfortunately, the triplet posterior term
shows inferior prediction performance compared to all other methods with even simply
using the pairwise coupling potentials of a pseudo-likelihood model that also includes triplet
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terms being more informative than computing a posterior probability. It can therefore be
concluded that the additional coupling scores for triplet interactions cannot help a more
accurate pairwise prediction.

Pair Term from Triplet-PLL

PLL+Posterior+APC

PLL+APC

Triplet-PLL + Posterior + APC

Figure 3.12: Results of Triplet Evaluation for Pairwise Constraints. Using the posterior
formulation of Equation 3.21, the utility of triplet coupling potentials for detecting pairwise
residue-residue interactions is examined for four different MSA diversity classes. In all
cases, triplet posterior scores perform the worst at predicting residue-residue contacts,
with the difference in performance especially high for alignments with many homologs.
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3.8 Full Likelihood Approaches

While it has been shown that the pseudo-likelihood estimate is consistent with the full
likelihood estimate for large amounts of data, there is no clear indication whether pseudo-
likelihood performs as well as full likelihood in the low-data scenarios typical of contact
prediction. While the partition function of the full likelihood cannot typically be com-
puted due to its exponential complexity, it is possible to use monte carlo methods to get
an approximate gradient for optimization by drawing protein sequences according to the
current estimate of the probability distribution.

This section will discuss two sampling-based methods to approximate the full likelihood
gradients and then go a step further by including phylogenetic interdependencies in the
sampling process to integrate phylogenetic noise correction into a full likelihood framework.

3.8.1 Intractability of Partition Function

As mentioned in the introduction to this part, the partition function for a markov random
field is:

Z =
∑

x′∈{1...20}L
p(x

′|v,w) (3.22)

With p(x
′ |v,w) an unnormalized probability term. Since the sum goes over all possible

amino acid sequences of length L, this means that 20L terms would need to be summed
up to compute the partition function exactly. For all realistic protein lengths, however,
this impossible — the most powerful supercomputer at the time of writing (Tianhe-2 can
perform 33.86 × 1015 floating-point operations per second) would take a little more than
5 years to compute this sum even for a 19-residue protein assuming that each summand
only requires one floating point operation:

2019

33.86× 1015 × 60× 60× 24× 365
≈ 5.038

As the full likelihood function cannot be computed exhaustively, a strategy often used
in bayesian inference is to instead employ sampling methods. The following sections will
discuss how sampling was applied to the MRF model to optimize the full likelihood func-
tion.

3.8.2 Hybrid Monte Carlo Method

The Markov Chain Monte Carlo (MCMC) class of algorithms provide the facilities to
generate samples from a probability distribution by generating a markov chain of samples
whose equilibrium distribution is equal to the underlying probability distribution. By
relying on the sampling approach, the computationally expensive partition function is
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no longer needed, making optimization of the full likelihood feasible and sample mean
and variance of the equilibrium distribution can be used for quadratic approximations in
the optimum of the MRF full likelihood. Since the sample mean of the markov chain is
equivalent to the sample mean of the full likelihood MRF probability, these mean values are
expected to accurately recover residue-residue coupling. Section 12.2 gives a more detailed
overview over important Monte Carlo algorithms.

Based on the fast GPU implementation of MRF gradients discussed in Chapter 7, the
Hybrid Monte Carlo algorithm explained in Section 12.2.1 was implemented as a GPU
code to sample from the full likelihood MRF probability. While it is possible to determine
unnormalized likelihood gradients and unnormalized likelihood values, the differences in
gradient magnitudes frequently leads to cases where the generated candidates are frequently
rejected and HMC parameters need to be manually adjusted for each new protein under
study. Since another interpretation of the likelihood gradient more suitable for optimization
was found in contrastive divergence, the HMC approach was abandoned.

3.8.3 Reinterpreting the Full Likelihood Gradient

Alternatively to the HMC strategy of sampling from an unnormalized probability dis-
tribution, another approach is to sample sequences from the current model probability
distribution and use these samples to calculate full likelihood gradients. The gradients
of the Markov Random Field Likelihood can be rearranged into the following forms (see
Appendix A for the full derivation):

∂L(X|v,w)

∂wi,j(a, b)
=Ni,j(a, b)−NP (xi = a, xj = b|v,w) (3.23)

∂L(X|v,w)

∂vi(a)
=Ni(a)−NP (xi = a|v,w) (3.24)

with Ni,j(a, b) and Ni(a) being pairwise and single amino acid counts that are fixed for
a given input MSA, respectively. The probability terms correspond to the marginals of
the full MRF probability distribution that would contain the partition function term Z to
ensure the probability distribution is correctly normalized.

Since the marginal probability distributions P (xi = a, xj = b|v,w) and P (xi = a|v,w)
consist of a term that is constant for a given input alignment and a term that depends
on the expected number of amino acids and amino acid pairs according to the model
probability, the expected counts can also be estimated by pairwise and single frequencies
of a sampled data set drawn from the correct model distribution.

By the use of Gibbs sampling, unnormalized probability terms of a candidate sequence
can be compared to a baseline sequence and the candidate sequence accepted or rejected
without the need of normalizing the probability distributions. If the Gibbs sampling process
is repeated, a set of new sequences can be drawn independently from the model distribution
to form a new multiple sequence alignment that can be used as empirical probabilities in
the above equations.
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The next sections will show how Gibbs sampling can be used to optimize the full
likelihood from sampled gradients. Chapter 13 will show how the marginal probability dis-
tributions was used to sample synthetic multiple sequence alignments for sequence analysis
method debugging and protein engineering applications.

3.8.4 Contrastive Divergence

While originally only applied to training products of expert models, the Contrastive Di-
vergence (CD) method [76] can applied for maximizing general log-likelihoods without the
expensive computation of a normalization term. Instead, Gibbs sampling is used to gener-
ate new samples from the input data by evolving just one step of a markov chain. Hinton
showed empirically that by re-evolving the markov chain from the input data for each gra-
dient evaluation, gradients can be computed that will point towards the true parameters
whereas if the parameter optimum is reached, the mean direction of sampled gradients will
zero out so that the model converges after sufficient numbers of iterations.

The MRF probability can be rearranged into the following conditional probability for
observing an amino acid a at position i given the model parameters and all other sequence
positions as context:

logP (xi = a|~v, ~w, (x1...L\{xi})) ∝ vi(a) +
L∑
j=1
j 6=i

wi,j(a, xj) (3.25)

This conditional probability can be used in a Gibbs sampler to evolve new sequences:
A random sequence position is picked with uniform probability and the amino acid at that
position is replaced by a randomly selected amino acid using the conditional probabilities
in Equation 3.25. This process is repeated for all sequences in the input alignment to derive
a new sampled alignment. By alternating between parameter updates using the sampled
gradients and the sampling of new MSAs, the maximum-likelihood solution for the MRF
parameters can be reached.

The Persistent Contrastive Divergence (PCD) algorithm [77] is a variation on the CD
algorithm: Instead of restarting the MSA sampling procedure from the original input
MSA in every iteration, the markov chains are never restarted and are just updated using
new model parameters in every iterations. On several data sets, Tieleman et al. showed
convincingly that PCD shows superior convergence properties compared to CD.

PCD was implemented for the full likelihood optimization of contact prediction MRFs
with the results shown in Figure 3.13 — both APC-corrected and non-APC-corrected
predictions perform worse than the corresponding pseudo-likelihood predictions.

To elucidate whether the discrepancy in prediction score arises from sampling errors,
synthetic protein MSAs generated from the methods outlined in Chapter 13 using coupling
potentials learned from real-world protein MSAs were used to compare the real-world
coupling potentials to coupling potentials recovered during sampling. Figure 3.14 shows
that the recovered coupling potentials for both PLL and PCD methods are centered more
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PLL+APC

PLL

PCD+APC

PCD

Figure 3.13: Results of Persistent Contrastive Divergence Evaluation. Contrastive
divergence-based methods perform worse than pseudo-likelihood approaches.

around zero than what is described by true coupling parameters, a tendency that persisted
for various choices of regularization parameters λpair.

Since a centering on zero should not necessarily have a negative effect on the ranking of
residue-residue interactions, a second evaluation was performed to compare the root-mean-
square-difference of score ranks determined by PLL and PCD methods from the true ranks
of the parameters the synthetic MSAs were generated from. As seen in Figure 3.15, different
choices of target function and regularization coefficient mostly affect pairwise coupling
potentials wi,j while single emission potentials vi(a) and summed-score matrices ‖~wij‖
show little difference in the distribution of rank differences. The discrepancy on real-world
protein MSAs must therefore result from variance in the covariance patterns introduced by
sampling protein MSAs since both PCD on real-world MSAs and PLL on sampled MSAs
have included at least one step of sampling to arrive at coupling parameters. PCD could not
outperform a sampling-free pseudo-likelihood method since the noise introduced through
sampling outweighed the possible reduction of statistical noise through a full-likelihood
treatment as compared to a pseudo-likelihood method.

3.8.5 Phylogenetic Contrastive Divergence

Since Contrastive Divergence requires the sampling of a protein MSA in every iteration of
the maximum-likelihood optimization, an extension to the sampling strategy is to include
phylogenetic interdependencies into the sampling process by evolving markov chains ac-
cording to a reconstructed phylogeny instead of generating independent markov chains. By
including the same phylogenetic interdependencies in the sampling as would be expected
in the input MSA, the phylogenetic interdependencies no longer need to be expressed us-
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+

True Potentials
PCD, λpair = 0.2·L

PLL, λpair = 0.2·L

PLL, λpair = 0.02·L

+

Figure 3.14: Recovery of True Coupling Potentials using PCD and PLL. Using cou-
pling potentials derived from real-world protein alignments, synthetic MSAs were derived
for which coupling parameters were recovered using pseudo-likelihood and persistent con-
trastive divergence optimizers. The scatterplot shows a 2D slice out of all coupling param-
eters with the dimensions selected to be the two largest-magnitude dimensions for the true
coupling potentials.
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Method

PCD, λpair= 0.2 · L

PLL, λpair= 0.02 · L

PLL, λpair= 0.2 · L

Root-Mean-Squared Rank Difference

Figure 3.15: Recovery of Coupling Ranks using PCD and PLL. For a set of protein
MSAs synthetically generated from known coupling parameters, the difference in the vi(a)
potential ranks, wij(a, b) potential ranks and ‖~wij‖ sum score ranks was compared to the
true ranks observed in the known coupling parameters with a histogram of root-mean-
square-deviations of ranks plotted. Only for wi,j(a, b) values, a difference of ranks can be
observed for the different coupling recovery methods and regularization parameters.

ing the pairwise coupling terms, increasing contact prediction accuracy. While persistent
contrastive divergence showed sub-par prediction accuracy to simpler pseudo-likelihood
models, the explicit treatment of phylogenetic noise could outweigh the newly introduced
statistical noise and lead to an overall improvement.

Phylogeny was reconstructed using the FastTree approximate maximum-likelihood phy-
logenetic tree reconstruction method [65] and ancestral sequences were reconstructed using
the CodeML method in the PHYLIP toolkit [78].

As seen in Figure 3.16, the coupling values produced by the phylogenetic contrastive
divergence methods were significantly worse at predicting residue-residue contacts than
approaches not including phylogenetic sampling. Since ancestral sequence and tree topol-
ogy constrain the sampling of the empirical gradients, it is unclear whether the sampled
multiple sequence alignments cover the sequence space sufficiently for the stochastic opti-
mization to converge towards an optimum. More work would have to go into investigating
whether the generated MSAs are comparable to the data distribution although initial in-
vestigations show that per-column amino acid frequencies converge to comparable values
as in the input MSA.
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PLL+APC

PLL

PhyloCD+APC

PhyloCD

Figure 3.16: Results of Phylogenetic Contrastive Divergence Evaluation. In its current
state, phylogenetic contrastive divergence is unable to recover the true coupling potentials
detectable from a MSA.



Chapter 4

Replacing the Average Product
Correction

For many of the approaches discussed in the previous chapter, an initial improvement
of contact prediction precision could be achieved when comparing a baseline MRF model
without APC against the improved method without APC, but the baseline model with APC
would outperform the improved model without APC and applying APC to the improved
model would reduce its performance. The Average Product Correction can therefore be
seen as a barrier to further improvement in contact prediction methods and needs to be
understood in more depth. This chapter summarizes the discoveries made in disentangling
APC and details an attempt at replacing it with a more robust correction.

4.1 Underlying Assumptions of APC

Since the attempts at improving contact prediction outlined in the previous chapter were all
turning out to be unsuccessful, experiments to check the sanity of the different components
of contact prediction were made of which one experiment yielded unexpected results.

A cheating regularization term consisting of an L2 regularization with pair-dependent
λp(i, j) was introduced to help contact prediction by masking out all pairs (i, j) from the
predicted contact map whose physical Cβ/Cα distance is larger than the median distances
measured for the protein family under consideration as shown in Figure 4.1. By giving
distant pairs a high regularization factor C × λp(i, j) (with C ∈ {1, 2, 4, 8}) and a low
regularization factor λp(i, j) to other pairs, it should become much less likely to make
completely false predictions and precision would be expected to go up. Surprisingly, as
shown in Figure 4.2, increasing the masking factor C has the opposite effect on precision
once APC is applied.

Looking back at the definition of the APC in Section 2.2.1, the two major underlying
assumptions are that the total coupling observed in a predicted contact matrix is the sum
of structural and functional coupling terms plus a background term controlled by entropic
and phylogenetic effects, and that the background term can be estimated by computing
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C=1 C=2

C=4 C=8

Figure 4.1: Contact prediction matrices under cheating regularization. As the masking
factor is increased, the distant residue pairs are more strongly disfavored.
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Figure 4.2: Evaluation of “cheating” regularization. While the masking increases precision
as expected when not using APC (top panel), an increasing masking factor decreases
precision after APC correction (bottom panel).
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mean statistics over the total coupling matrix since most cells of the total coupling matrix
show the background distribution.

The second assumption becomes problematic when modifying the underlying probabil-
ity distribution to improve contact prediction, however, since the inclusion of any mod-
ification to prior or optimization strategy will affect all of the matrix and thus shift the
background distribution assumed by the matrix. This means that when attempting to im-
prove contact prediction through an altered probabilistic model, APC has to be replaced
for improvements to become visible.

4.2 Eigenvalue Interpretation of APC

For the largest eigenvalue λ0 of the pre-APC coupling matrix and its corresponding eigen-
vector v0, the background coupling Cb of Equation 2.1 is an approximation of the outer
product of the first eigenvector scaled by the first eigenvalue:

Cb ≈ v0v
T
0 × λ0 (4.1)

The identity was confirmed empirically using contact prediction data. Because of this
identity, APC can be reinterpreted as simply removing the highest degree of variation
within a coupling matrix. While not discussed in the literature around APC, this result
greatly simplifies understanding of APC and is further indication that measuring back-
ground model statistics from the same input matrix that should be corrected can lead to
wrong corrections when the underlying model is changed.

4.3 Entropy Correction

Since the problems with APC described above come from using the contact matrix to cal-
culate a background model, a replacement for APC was developed that would use statistics
from the input multiple sequence alignment instead and thus eliminate any dependencies
from changes in the probabilistic modeling.

As shown in Figure 2.2b, the main noise component in contact prediction comes from
entropic effects since the strength of covariation that can be measured at a pair of residue
positions is dependent on the product of entropies h(i) of participating columns i. A scat-
terplot shown in Figure 4.3 shows that the APC correction term Cb in realistic contact maps
correlates with the geometric mean of per-column entropies for the corresponding align-
ments. Consequently, the Entropy Correction (EC) was defined as the original coupling
matrix minus the geometric mean of per-column entropies, scaled by factor α:
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Figure 4.3: Entropy Correction correlates well with APC term (ρ = 0.91). For the
majority of points in the contact maps under comparison, the geometric mean of per-
column entropies correlates well with the correction term from Average Product Correction.

CEC(i, j) = C(i, j)− αE(i, j) (4.2)

E(i, j) =
√
h(i)h(j) (4.3)

h(i) =
20∑
a=1

P (xi = a) logP (xi = a) (4.4)

The correction term in Equation 4.2 no longer depends on statistics of the coupling
matrix. However, the additional parameter α is introduced that will have to be determined.

4.3.1 Finding the Correction Magnitude

To find a suitable correction magnitude α, synthetic multiple sequence alignments of vary-
ing numbers of sequence, topology and evolutionary distance were produced using the pro-
cedure outlined in Chapter 13. Using structural knowledge associated with the multiple
sequence alignments, a correction magnitude α∗ was chosen to maximize the area-under-
ROC-curve for the resultant contact predictions. The resulting α∗ values are plotted against
evolutionary distance and sequence count in Figure 4.4 to determine how the quantities
are related to another.

While some correlation between the number of sequences, the evolutionary distance and
the ideal correction magnitude can be seen, there is considerable variance in the α∗ values
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Figure 4.4: Optimal Entropy Correction Magnitudes for Synthetic Alignments.

and no functional form becomes apparent for the relationship even on simple synthetic
data. In order to investigate the effectiveness of entropy correction without spending more
time on calibration of the correction magnitude, several heuristic strategies were chosen.

Maximum-AUC Entropy Correction (MAUC-EC) Maximum-AUC EC uses the α∗

derived from structural information to perform the best-possible correction term. While
this strategy can be considered cheating since it relies on structural information, it can
serve as an upper bound to the performance of entropy correction.

Renormalizing Entropy Correction (NORM-EC) The coupling score matrix to be
corrected is linearly rescaled so that the lowest matrix element corresponds to 0 and the
90% percentile corresponds to 1 in the rescaled matrix with values from the 90% to 100%
percentiles having values larger than 1. Since it is expected that 90% of the matrix will
be comprised of background coupling signals, this operation corresponds to scaling the
range of background couplings into the range [0, 1]. The Entropy Correction matrix is also
rescaled into the interval [0, 1] and subtracted from the rescaled coupling matrix.

Minimum-Frobenius-Norm Entropy Correction (F-EC) The correction magni-
tude αF is chosen to minimize the frobenius norm of the entropy-corrected coupling matrix
(cf. Equation 4.2) and thus minimize the amount of coupling remaining after correction.

αF = arg min
α
‖C − αE‖2 (4.5)

By deriving for α, an analytical term can be determined for αF :
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αF =

∑
i,j C(i, j)E(i, j)∑

i,j E
2(i, j)

(4.6)

4.3.2 Discussion of Entropy Correction

The different entropy correction strategies were applied to the real-world set of protein do-
main MSAs described in Section 3.1. Figure 4.5 compares the different entropy correction
strategies in their prediction performance to uncorrected pseudo-likelihood contact predic-
tion matrices and APC-corrected matrices. Apart from the renormalizing EC that appears
to fail at correcting entropic effects in the coupling matrix, both Minimum-Frobenius-
Norm-EC and Maximum-AUC-EC are successful in correcting the entropic effects from
the coupling matrix, with a slim lead in the performance metrics by APC that can be
explained by the APC method additionally correcting for phylogenetic effects by enforcing
a mean coupling level in the output matrix.
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Figure 4.5: Evaluation of Entropy Correction. Entropy-corrected contact predictions
achieve almost the same precision as APC-corrected contact predictions. The remaining
discrepancy in precision scores can be explained by the uncorrected phylogenetic noise.

Since the original goal of entropy correction was to correct for entropic effects using
only the input MSA to compute statistics in order to be more tolerant to changes in the
contact prediction models, the discussed strategies can only be considered as partially
successful since they either rely on structural information for Maximum-AUC-EC or still
compute summary statistics on the contact map in the case of Minimum-Frobenius-Norm-
EC. Still, the Minimum-Frobenius-Norm EC can be considered more stable than APC
since it only uses a single value αF to correct a whole coupling matrix while APC uses per-
column mean coupling values for each column to determine correction magnitude. Through
further investigation, it might however still be possible to find a relationship between input
MSA parameters and the optimal correction magnitude α∗.
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Chapter 5

Conclusion

While currently published contact prediction methods are already very successful at pre-
dicting contacts for well-sequenced protein families, the underlying statistical models carry
many simplifying assumptions and have heuristics stacked on top of them that greatly
contribute to the predictive performance.

The reasonable assumption that replacing assumptions with a more explicit bayesian
model of protein interactions would improve predictive performance turned out to be false.
This phenomenon can be explained by that heuristics such as the Average Product Cor-
rection make assumptions about the score distributions of the generated contact predic-
tions. When a different modelling of protein interactions changes these distributions, the
heuristics fail and produce worse predictions that cancel out any progress made by the
improvement in modelling. Further improvement in contact prediction is thus blocked as
long as these heuristics are used.

In order to unblock further progress in contact prediction methods, the heuristics have
to be replaced by well-understood probabilistic models. An attempt was made in replacing
the Average Product Correction with a correction solely dependent on the per-column
entropies in the input alignment, with the remaining phylogenetic noise corrected by the
APC left uncorrected. If a reliable calibration of the magnitude of entropy correction
can be found that does not depend on statistics on the prediction matrices, the entropy
correction could serve as a suitable replacement.
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Part II

Accelerating Evolutionary Coupling
Methods





Chapter 6

Introduction to High Performance
Computing

With evolutionary coupling methods based on MRFs turning out to become the new state
of the art in residue-residue contact prediction and existing implementations being imple-
mented in slow and proprietary programming languages, we saw a need for a high-quality
free implementation of these methods as a starting point for further improvements.

High Performance Computing (HPC) is the section of computer science focusing on
optimizing algorithms to be executed as efficiently as possible on a given machine architec-
ture, exploiting parallelism to further decrease computation times. We used our previous
experience in HPC to create a high-speed implementation of a MRF pseudo-likelihood
contact predictor called CCMpred. This chapter will go into important considerations for
making algorithms run efficiently on CPU and GPU hardware architectures.

6.1 Hardware Architectures

In order to optimize algorithms effectively, it is vital to be aware of the execution properties
of the underlying hardware architecture. The following section will give an introduction
to the CPU and GPU architectures used in this work.

6.1.1 CPU Architectures

For the purpose of HPC, a computer can be simplified to a series of central processing unit
(CPU) cores used for calculations and controlling program flow that operate on a hierarchy
of memories of increasing size and decreasing access speeds.

Modern computers typically have 4 to 32 processor cores that can execute roughly
1.5× 109 to 4.0× 109 operations per second independently from another and theoretically
achieving on the order of 1.6×1010 floating point operations per second and processor core.
In practice, the computational efficiency is highly dependent on the ordering of operations
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and how quickly the required data can be loaded from memory. For this matter, it is
important to consider the memory hierarchy present in typical computers.

Memory type Time to first data /s Bandwidth /bytes s−1 Capacity /bytes

L1 Cache[79] 10−9 n/a 105

L2 Cache[79] 10−8 n/a 106

L3 Cache[79] 10−7 n/a 109

DDR4 RAM[80] 10−6 1010 1010

SSD[81] 10−5 109 1012

HDD[82, 83] 10−3 108 1013

Table 6.1: Approximate memory access timings, bandwith and capacity for different mem-
ory types. As we move further away from the CPU, capacity, access latencies and capacity
increase while bandwidth decreases.

As seen in Table 6.1, the memory capacity increases as we move away from the CPU,
but so do access times. If an algorithm’s data can be predictably read from high-capacity
storage into RAM and caches, fetches of subsequent data will hit the caches and main
memory instead of causing additional reads from storage, increasing performance. The
most important task for writing efficient programs for CPU architectures is therefore to
lay out memory so that it can be accessed as sequentially as possible.

6.1.2 CUDA GPU Architecture

Additional considerations need to be made when calculating on general-purpose graphics
processing units (GPGPUs). According to the NVIDIA Cuda programming model [84],
a graphics card consists of several hundreds to thousands of processor cores organized in
streaming multiprocessors (SM), plus its own hierarchy of memories.

Compared to CPU cores, GPU cores typically have a lower clock rate (on the order of
109 operations per second) and cannot execute instructions independently. Instead, groups
of 32 processors are grouped together in a warp of threads executing the same instruction
in lock step. For this reason, it is important to divide problems up into several thousands
of subtasks to fully occupy all GPU cores and minimize branching within a warp so that
groups of threads do not have to wait for others to complete.

Since a GPGPU carries its own limited amount of memory, there are both overheads in
transferring data to and from the GPU. Consequently, a GPGPU computation will only be
sensible if the problem fits into the GPU memory and a sufficient amount of computation
in relation to data transfer can be performed on the GPU before data needs to be sent
back to the computer memory.

Similar to the CPU programming model, there is a memory hierarchy for GPU pro-
gramming: a large (several gigabytes) amount of slow global memory is available to all
cores while the faster memories are only available to subgroups of threads (shared memory,
typically 48 kilobytes per group of up to 1024 threads) or only available to a single thread
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(registers). Since memory is accessed in parallel by several threads, memory access should
ideally be coalesced, i.e. all threads of a warp accessing a contiguous and aligned segment
of 128 bytes in global memory.

6.2 Parallel Programming

Before 2005, processor were increasing their speeds through Dennard scaling : The power
use (and consequently, heat generation) of a processor stays constant within a certain area
and CPU frequency. If we want to increase the speed of a CPU, we therefore had to shrink
the transistors to complete more computation in the same size of chip. Since 2005, however,
processor manufacturers have begun hitting physical lower limits for transistor size: small
transistors increase the risk of current leakage, causing interference. Since we cannot shrink
transistors further, we cannot get higher clock rates. Instead, CPU manufacturers are
now increasing processor power by producing processors where several cores can complete
computations in parallel independently from one another but still sharing memory.

In this section, we will discuss strategies for dividing up problems to be computed in
parallel, first by exploiting all of the available arithmetic units of a single processor core
using SIMD instructions and then going into multi-core parallelization strategies.

6.2.1 SIMD Parallel Programming

The idea of single instruction, multiple data (SIMD) programming is that while we cannot
increase the speed at which instructions are processed further, we can increase the amount
of work being done per instruction. Say we have a large in-memory array on which we
want to perform computations. Instead of processing one array element after the other, we
can use several arithmetic units of a processor core by letting one processor core process
several subsequent array elements according to special instructions (as specified in the SSE,
SSE2, SSE3, AVX and AVX2 standards). This lets us perform computations on 4 to 16
array elements in a single processor core in a single clock cycle. The instructions can be
placed into the code explicitly as SIMD intrinsics [85] or if it is clear to the compiler that an
array operation will be processed sequentially over all array elements, can be automatically
inserted by the compiler.

6.2.2 Shared Memory Parallel Programming

Now that we have maximized the amount of computation that can be done with a single
processor core, the next step of parallelization is to employ several processor cores in
parallel. In the shared memory parallel programming model, all processor cores share access
to a common main memory so that for efficient computation, the main responsibility of the
programmer is to divide up the work in a way that processors can work as independently
from one another as possible without having to wait too long for synchronization.
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A very convenient yet powerful technique for parallelizing shared-memory programs is
to use the OpenMP[86] programming interface that is supported by major C and C++
compilers. In the simplest use case, an annotation to a for loop can be made saying that
the individual loop calls can be executed in parallel. From this information, the compiler
can infer which variables should be kept local to each of the independent threads and which
should be shared between threads. Additional annotations for critical regions that should
be executed sequentially and reduction operations are also possible. After compilation, the
program will automatically use as many threads as there are cores available in the system
or as many as have been specified by an environment variable. By compiling the same code
while ignoring the OpenMP annotations, it is also possible to have a sequential version of
the algorithm use the exact same code.

6.2.3 CUDA Parallel Programming

Finally, the last parallel programming model explained here is the CUDA (formerly Com-
pute Unified Device Architecture) model of parallel programming on general-purpose graph-
ics processing units (GPGPUs). As processor threads execute in groups of 32 called warps,
CUDA shares similarities to SIMD programming and is sometimes also called SIMT (single
instruction, multiple thread) programming.

In CUDA, work is described in a kernel whose execution is divided up in a virtual
three-dimensional coordinate system called the grid. The grid is divided into blocks that
the GPU can schedule on a streaming multiprocessor as it sees fit, without possibility of
programmer control. This is to ensure efficient parallelization and that newer-generation
GPUs can increase performance by simply increasing the number of streaming multipro-
cessors. Within a block, work can be further divided into threads that are assigned to the
individual GPU cores. Within a block, some kilobytes shared memory can be requested
that can be accessed by all threads belonging to the block to exchange information dur-
ing computation. Alternatively, every thread always has access to the significantly slower
global memory of the GPU which is several gigabytes big.

Since a GPU has its own memory chips, the programmer has to manage memory
allocation and deallocation on both the CPU (using malloc and free commands) and the
GPU (using cudaMalloc and cudaFree commands). Before data can be used on the GPU,
it has to be copied to the device using the cudaMemcpy command which can also be used
to copy results back to the CPU memory once computation is finished. Since memory
bandwidth between GPU and CPU is limited, a CUDA implementation of an algorithm
will only be more efficient if a sufficient amount of computation can be performed on the
GPU before communication with the host computer becomes necessary again.

Because of the hardware limitations of a GPU, the amount of registers, shared memory
and threads allocated to a single block will determine how many of the cores of a streaming
multiprocessor can be used to execute a kernel since all cores have to share resources from
a common pool. The ratio of computing to available cores is called the occupancy and it’s
important to allocate resources so that occupancy can be maximized.



Chapter 7

Accelerating Evolutionary Coupling
Methods

With the different computing architectures and parallel programming models explained, we
can now apply them to the use case of accelerating pseudo-likelihood evolutionary coupling
methods. First, we will outline steps to make the sequential computation as efficient as
possible by re-using intermediate results in the computations and optimizing the order in
which variables are stored in memory. After this, we will go into detail how computations
can be divided up to be done in parallel.

7.1 Complexity of Required Computation Steps

A pseudo-likelihood maximization program consists of two components — a numerical op-
timization method such as conjugate gradients to maximize a function given its parameters
and gradients, and the likelihood function that computes the function value and gradients
for each step of the optimization procedure. If the protein family under consideration has
N sequences with L positions each and we want to optimize for I iterations, the complex-
ity of the conjugate gradient method will be in O(SL2) since the number of parameters
in the model grows quadratically in the number of columns in the alignment. The actual
pseudo-likelihood and gradient computation will have a complexity in O(SNL2) as will
become apparent in a moment.

Since efficient algorithms for numerical optimization already exist, we will focus our
attention on optimizing the pseudo-likelihood and gradient computation which also takes
up the majority of run-time.

7.2 Decomposing Computations for Reuse

The pseudo-likelihood of coupling parameters v,w to generate alignment X is defined as
such:
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By calculating the derivative of equation 7.1 of wi,j(a, b), we can obtain the gradient
for pairwise emission parameters (see Appendix A for the full derivation):

∂pll(v,w|X)
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Similarly, we can derive for vi(a) to obtain the gradient for single emission parameters:
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From looking at equations 7.1, 7.2, 7.3 and 7.4, we can see that certain terms appear
in several places for these computations. We can therefore save computation time by
identifying and pre-computing these terms ahead of actual pseudo-likelihood and gradient
computation:

sumPot(n, a, i) = vi(a) +
L∑
j=1
j 6=i

wi,j(a, x
n
j ) (7.5)

Z(n, i) =
21∑
a=1

exp [sumPot(n, a, i)] (7.6)

pCond(n, a, i) =
exp [sumPot(n, a, i)]

Z(n, i)
(7.7)

We can now rewrite equations 7.1 to 7.4 in a simplified way using these precomputed
terms:

pll(v,w|X) =
N∑
n=1

L∑
i=1

log pCond(n, xni , i) (7.8)

∂pll(v,w|X)

∂vi(a)
= N(xi = a)−N pCond(n, a, i) (7.9)

∂pll(v,w|X)

∂wi,j(a, b)
= N(xi = a ∧ xj = b)−

N∑
n=1

I(xnj = b) pCond(n, a, i) (7.10)

Where Ni(a) corresponds to the number of times amino acid a appears in column i and
Ni,j(a, b) corresponds to the number of times amino acids a and b co-occur in columns i
and j (matrices that can be pre-computed once before optimization begins). With all the
precomputed terms identified, we can formulate algorithm 7.1 for pre-computing values
and then calculating log-likelihood and gradients.
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Algorithm 7.1 Pseudo-log-likelihood computation with precomputed values.

for i, j ← 1 . . . L, i 6= j, a, b← 1 . . . 20 do
// Initialize pairwise gradients with minuend of equation 7.10
gi,j(a, b)← Ni,j(a, b)

end for
5: pll← 0

for n← 1 . . . N do
for i← 1 . . . L do

Z(n, i)← 0
for a← 1 . . . 20 do

10: // Calculate sumPot in O(NL2)
// Note random access depending on xnj
sumPot(n, a, i)← vi(a) +

∑L
j=1
j 6=i

wi,j(a, x
n
j )

Z(n, i)← Z(n, i) + exp sumPot(n, a, i)
end for

15: for a← 1 . . . 20 do
pCond(n, a, i)← exp sumPot(n,a,i)

Z(n,i)

gi(a)← N(xi = a)−N pCond(n, a, i)
// Compute subtrahend of equation 7.10 in O(NL2)
// Note random access depending on xnj

20: for j ← 1 . . . L ∧ j 6= i do
gi,j(a, x

n
j )← gi,j(a, x

n
j )− pCond(n, a, i)

end for
end for
pll← pll + log pCond(n, xni , i)

25: end for
end for
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7.3 Efficient Memory Access

While the naive algorithm 7.1 will compute the pseudo-log-likelihood and gradients cor-
rectly, it currently will have to frequently jump to different memory locations to do its
job. From the introduction of this section, we know that random memory accesses require
an additional seek in memory every time we jump to a non-prefetched memory location,
giving us significant slowdowns. The next step in optimization is therefore to make sure
that memory can be accessed as linearly as possible by rearranging memory layout and
the order of access. For the sake of simplicity, we will only consider the most important
accesses to pairwise coupling parameters wi,j(a, b) and pairwise coupling gradients gi,j(a, b)
here but memory access patterns for all other variables was also optimized.

7.3.1 Variable Re-ordering

A simple strategy for ensuring that memory access to a multidimensional array is as linear
as possible is to use the same order of array indices as the order of for statements so that
the innermost for loop goes over the quickest-changing dimension in the array as seen in
algorithm 7.2 and figure 7.1a. On the other hand, when reading in a transposed manner
(see algorithm 7.3 and figure 7.1b), most cell accesses will result in jumping in memory
to another row, incurring new seek times if the array is bigger than what fits into the
processor caches.

Algorithm 7.2 Efficient linear memory access on a 2D array

k ← 0
for i← 0..3 do

for j ← 0..3 do
A(i, j)← k
k ← k + 1

end for
end for

Algorithm 7.3 Inefficient transposed memory access on a 2D array

k ← 0
for j ← 0..3 do

for i← 0..3 do
A(i, j)← k
k ← k + 1

end for
end for

In the case of our pseudo-likelihood algorithm as seen in algorithm 7.1, the in-memory
index ordering for wi,j(a, b) and gi,j(a, b) should consequently be (i, a, j, b). However, as
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Figure 7.1: Efficient and inefficient memory access on a 2D array A(i, j) with memory
accesses in row-major order. a. Optimally efficient linear memory access as seen in algo-
rithm 7.2. b. Inefficient transposed access as seen in algorithm 7.3

we can see in lines 14 and 23 of algorithm 7.1, there is an additional complication in that
the memory addresses we have to access depend on the sequence data at xnj . Since we
cannot control which amino acid we observe, we have to compensate for the random seeks
introduced by the data by reordering our operations so that (n, j) stays constant for as
long as possible so that we only make random jumps rarely and then linearly process data
starting from the jump destination. Since b = xnj for all our accesses, our optimal memory
layout therefore becomes (xnj , j, a, i).

7.3.2 Exploiting Symmetry

As seen above, accessing a matrix in transposed coordinates is inefficient. However, for
the purposes of our markov random field model, we can exploit the symmetry in the data:
wi,j(a, b) = wj,i(b, a). This means that as long as we are willing to pay the additional
memory overhead of keeping both the necessary triangle matrix for wi,j(a, b) for i < j
and also the transposed triangle matrix for j > i in memory, we can always replace in-
efficient transposed memory accesses by their efficient linear counterparts. The necessary
re-symmetrization step after each evaluation step has unfavorable memory access charac-
teristics but since it has a much lower complexity of L2202 compared to gradient calculation,
the speedups gained by this optimization greatly outweigh the slowdown incurred by this
additional step.

7.3.3 The Final Sequential Algorithm

Putting all considerations above together, we arrive at algorithm 7.4, the memory access-
optimized version of a pseudo-log-likelihood function and gradient calculation. Note that
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we now write v(a, i), w(b, j, a, i), g(a, i) and g(b, j, a, i) to denote the re-ordered indices in
the corresponding potential and gradient arrays.

Algorithm 7.4 The final memory access-optimized pseudo-log-likelihood function

g(a, i) = Ni(a) ∀i ∈ {1 . . . L}, a ∈ {1 . . . 20}
g(b, j, a, i)← Ni,j(a, b) ∀i 6= j ∈ {1 . . . L}, a, b ∈ {1 . . . 20}
Z(n, i)← 0 ∀n ∈ {1 . . . N}, i ∈ {1 . . . L}
pll← 0
for n← 1 . . . N do

for a← 1 . . . 20, i← 1 . . . L do
sumPot(n, a, i)← v(a, i)

end for
for j ← 1 . . . L do

// Note: random memory jump here depending on xnj
for a← 1 . . . 20, i← 1 . . . L ∧ i 6= j do

sumPot(n, a, i)← sumPot(n, a, i) + w(xnj , j, a, i)
end for

end for
for a← 1 . . . 20, i← 1 . . . L do

Z(n, i)← Z(n, i) + exp sumPot(n, a, i)
end for
for a← 1 . . . 20, i← 1 . . . L do

pCond(n, a, i)← exp sumPot(n,a,i)
Z(n,i)

g(a, i)← g(a, i)− pCond(n, a, i)
end for
for i← 1 . . . L do

pll← pll + log pCond(n, xni )
end for
for j ← 1 . . . L do

// Note: random memory jump here depending on xnj
for a← 1 . . . 20, i← 1 . . . L ∧ i 6= j do

g(xnj , j, a, i)← g(xnj , j, a, i) + pCond(n, a, i)
end for

end for
end for

7.3.4 Parallelization with SIMD intrinsics

With the sequential algorithm optimized, it was now time to begin parallelizing the pro-
gram using SIMD intrinsics. However, by inspecting the assembly generated by the GNU
and Intel C compilers, it turned out that the code reorganizations necessary for ensuring
memory access allowed the compilers to automatically detect the linear operations over
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memory vectors and SSE and AVX instructions were inserted automatically. We also ex-
perimented with manually inserting SIMD intrinsics at appropriate locations but achieved
similar runtimes as the automatically-generated assembly code.

7.4 Learning Evolutionary Couplings on Many Pro-

cessor Cores

Having optimized our algorithm to make the most out of a single processor core, the next
step is to decompose the computation into steps that can be performed in parallel on
several processor cores in order to further speed up computation.

First, we need to identify what variables which part of the algorithm will have to read
from and write to and whether there are any interdependencies. The algorithm will only
have to read from the MSA xni and the coupling potentials vi(a) and wi,j(a, b) so because
these values stay constant within one iteration of computation, we will not have to worry
about synchronization. Furthermore, while we write to the sumPot(n, a, i), Z(n, i) and
pCond(n, a, i) variables, any fixed sequence index n and will never need to write to the
variables for another sequence index. Finally, we sum up pseudo-likelihood values and
gradient values for all sequence and column indices.

Taking all these interdependencies into account, a simple parallelization strategy be-
comes apparent: We can launch separate parallel computations for each sequence index n
by parallelizing the outer loop in algorithm 7.4. All writes to the precomputed terms will
only affect their own sequence index n so we only need to make sure that accesses to the
shared pll, g(a, i) and g(b, j, a, i) variables are sequential. The OpenMP standard supports
the pragma omp atomic setting for this which will only minimally impact performance.

7.5 Learning Evolutionary Couplings on the GPU

Since pseudo-likelihood maximization breaks down to calculating various vector operations
on very large matrices without too much synchronization necessary, it is a suitable candi-
date for computing pseudo-log-likelihood values and gradients on the GPU. The following
section will outline the steps taken to make PLL maximization execute well on current
GPUs.

7.5.1 Conjugate Gradients on the GPU

Initial experiments showed that when running PLL and gradient calculations on the GPU
and transferring parameters and gradients between CPU and GPU for every iteration
to do the numerical optimization on the CPU, the majority of runtime of the algorithm
would spent on data transfer. We therefore realized that the only way of achieving highly
performant PLL maximization using the GPU would be to transfer all data to the GPU
once, then do all of the work (PLL and gradient calculation plus numerical optimization)
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there and only copy back results after convergence. Because of this requirement, the
amount of memory used on the GPU became crucial for success.

In PLL maximization, memory usage increases quadratically in the number of MSA
columns. We can calculate the number of variables in the parameter space P from the
number of columns L in the MSA as such:

P (L) = 202L2 + 20L (7.11)

For the purposes of numerical optimization, we will require several times this amount of
memory since in addition to the memory required for storing the current model parameters,
we will at least need to allocate memory for storing the current gradient estimates and most
algorithms will need additional variables to ensure more efficient convergence. Assuming
all parameters are stored as 4-byte single-precision floating point numbers, we will therefore
need 4CP (L) bytes of memory in total, where C is the total number of times the parameters
need to be stored in memory. For a simple gradient descent, C = 2. In the case of
GPU computation, we needed to find an optimization algorithm with good convergence
properties that is still memory-efficient enough to fit into the GPU memory. For a typical
problem of L = 300, the problem size is P (300) = 1.0 × 108 variables already. Assuming
we store values as single-precision floating point values taking four bytes per value, the
highest factor C we can fit into a 2 GB graphics card would be C = 5.

We initially planned on using the limited-memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm since it provides excellent optimization properties by estimating the
curvature of the target function by generating a local estimate of the Hessian matrix to
efficiently converge into the maximum of the function and is a typical choice for fitting
log-linear models[87]. Unfortunately, the L-BFGS algorithm needs to maintain a history
of the parameter and gradient values from previous iterations, giving it a C = 13 or higher
for 10 iterations of history. Since this memory requirement is too high for our purposes,
we decided to use the lower-C Conjugate Gradients algorithm instead.

The Conjugate Gradient algorithm is an efficient optimization algorithm that in addi-
tion to storing parameter and gradient stores a previous search direction vector, resulting
in C = 3. Using the previous search direction, it can be guaranteed that the next chosen
search direction will be orthogonal to all previously chosen search directions, leading to
efficient convergence. In order to make use of conjugate gradients on the GPU, we im-
plemented a CPU and GPU-supporting conjugate gradients library and released it as the
open source library libconjugrad.

7.5.2 Reordering Memory for Streaming Multiprocessors

Similar to the optimization for CPUs, a crucial part of efficient optimization on the GPU
was also to decide on an efficient memory layout. Instead of optimizing for linear memory
access, the goal for efficient GPU programming is to optimize for coalesced memory access.
Lucky for us, the same memory layout as discussed in Section 7.3 will also ensure coalesced
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access as long as the variable positions are correctly aligned to 128 byte boundaries. By
introducing some padding variables, this can easily be ensured.

7.5.3 Efficient Pre-Computation

All pre-computed values in equations 7.5, 7.6 and 7.7 can be efficiently pre-computed using
a single kernel. Since we only read from potential variables v and w and only write to
fixed array positions for one fixed (n, i), it makes sense to parallelize according to cells in
the multiple sequence alignment. We execute a block per sequence index n in the MSA
and within that block launch a separate thread for every position i. Figure 7.2 outlines
the parallelization and computation strategy to calculate precomputed values.
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Figure 7.2: Pre-computation of frequently used values sumPot(n, a, i), Z(n, i) and
pCond(n, a, i) by summing up single-emission potentials with pairwise emission potentials
based on the amino acid at the current sequence position.

7.5.4 Efficient Gradient and Pseudo-Log-Likelihood Computa-
tion

With the pre-computation completed, calculating the actual gradient and pseudo-log-
likelihood values becomes relatively easy. As seen in Equation 7.8, pseudo-log-likelihood
computation can be completed by simply summing up log pCond(n, a, i) for all n, xni , i.
We do this using a standard reduction kernel to maximize efficiency. For gradient com-
putation, the minuend of Equations 7.9 and 7.10 can again be pre-calculated once before
optimization begins. For the subtrahend, we need to repeatedly decrement appropriate
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gi,j(a, x
n
j ) by pCond(n, a, i) depending on n, j and xnj . To maximize the usage of GPU

cores and ensure we do not encounter write conflicts, a thread block is launched for every
column j that decrements gi,j(a, x

n
j ) by pCond(n, a, i) for all n, a, i. Figure 7.3 illustrates

the parallelization strategy for computing gradient subtrahends.
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Figure 7.3: GPU computation of gradients. Conditional probability values pCond(n, a, i)
are atomically added to the pairwise gradient matrix wi,j(a, b) to compute the subtrahend
of the pairwise gradient. The minuend corresponds to the pairwise counts and can be
pre-computed once before optimization begins.

7.5.5 Performance Profiling

Using the NVIDIA visual profiler, we were able to identify the computation steps taking
up the most time in order to focus our optimization efforts. Table 7.1 shows the different
kernels together with their runtimes for a typically-sized example alignment. We can see
that as expected, the kernels d compute edge gradients and d compute pc together take
up more than 90% of runtime. Looking into these algorithms further, we see that their
runtime is dominated by the on-GPU memory bandwidth for accessing global memory.
This indicates that our optimizations have resulted in very good GPU core utilization.
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Chapter 8

Conclusion

Algorithms can be restructured to execute several orders of magnitude quicker on a single
processor core and make use out of today’s many-core computers. While the particularities
of a particular algorithm have to be considered when optimizing, a set of best practices such
as identifying performance bottlenecks and linearizing memory access exist that provide a
good starting point.

By applying the techniques for high performance computing discussed in this part,
we were able to speed up residue-residue contact prediction by 35 to 112 times while
maintaining the same predictive accuracy as the best competing methods. We released
this software as the open-source software CCMpred. The software package allow interested
researches to easily and quickly run their own contact predictions and provide a solid
foundation for building improved contact prediction methods — both for ourselves and
other researchers in the community. In fact, at the time of writing, CCMpred has already
become a component for several contact prediction methods and is used to provide quick
contact prediction response times in web servers.

A next logical step for even faster contact predictions would be to divide computa-
tion up between several computers, e.g. using the Message Passing Interface (MPI) API
for communicating between computers. However, since the whole pairwise emission po-
tential matrix needs to be accessed by each of the iterations of summing over sequences
in each of the pre-computation steps run in every iteration of the optimization, applying
the same parallelization strategy to a distributed memory system would lead to a large
communication overhead. For this reason, further work would have to go into finding an
efficient parallel algorithm for this use case before multi-computer parallelism will lead to
faster overall computation times. Until then, the minute-scale run times on GPUs should
be sufficient for typical domain sizes and more throughput can be achieved by predicting
contacts for several protein families in parallel.
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Part III

Interactive Evolutionary Coupling





Chapter 9

Introduction to Scientific
Visualization in Modern Web
Browsers

9.1 Modern Web Technologies

From the early 2000s until now, development of web pages have been revolutionized by the
joint work of various standards organizations.

While the HTML5 standard jointly worked on by the Web Hypertext Application Tech-
nology Working Group (WHATWG) introduced new elements to be included in web pages
such as the <canvas> element for drawing graphics, the HTML5 standard is typically used
as a stand-in for the combination of several innovations in different standards worked on
by different working groups. In addition, major web browsers greatly improved their per-
formance and standards compliance. The other major development of the modern web
is the introduction of the EcmaScript6 standard (developed by the Ecma International
standards organization) for the JavaScript programming language and the significant per-
formance improvements of introducing just-in-time (JIT) compilation to the V8 (powering
Google Chrome) and SpiderMonkey (powering Mozilla Firefox) JavaScript engines.

Together with these two major improvements, new standards such as CSS3 (developed
by the world wide web consortium) offer more powerful options for laying out documents,
WebGL and WebCL (developed by the Khronos Foundation) allow access to the graphics
card from the web browser and the introduction of Scalable Vector Graphics as a way to
flexibly create and control graphical elements programmatically by modifying the document
structure of the webpage offer a powerful environment for processing and displaying various
types of information.

Since all of the aforementioned standards were jointly developed by all major browser
and hardware manufacturers, they form a standardized platform without the need for the
vendor-specific extensions to standards and proprietary plugins of the late 1990s and early
2000s. The websites created on these new standards run on a variety of computers and web
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browsers, are accessible to people with disabilities and can also be accessed from mobile
devices. In addition, they greatly reduce the complexity for web developers in supporting
many edge cases and differences in features of different browser versions. Consequently, the
new web platform forms a very attractive foundation for developing interactive experiences
and has lead to an explosion in innovation in the open source world.

9.2 JavaScript for Visualization

Built on top of the new programming APIs, low-level wrapper libraries were created by
the open source community to conveniently access all of the newly available features. For
the purposes of data visualization, the D3.js (Data-driven Documents) library by Mike
Bostock and the Three.js library by Ricardo Cabello build the foundation for the majority
of modern web-based visualization.

D3.js applies the idea of Wilkinson’s Grammar of Graphics [88] of decomposing charts
into their commonly used components to the web by allowing developers to map data
values onto the properties of elements in an HTML page. Since Scalable Vector Graphics
are handled by modern browsers as substructures of the document tree of a HTML page,
plots can be generated simply by mapping the data values of a data set onto e.g. the X
and Y coordinates of point or line elements in a SVG graphic.

Three.js is a similarly low-level library for accessing the WebGL programming interface
by specifying shapes through polygons, adding light sources and offloading the calculation
of the final image to the graphics processing unit of the computer.

Since the two libraries mentioned here only provide the most basic primitives for cre-
ating graphics on web pages, many higher-level visualization libraries have been built on
top of them such as NVD3.js for drawing commonly used plot types using D3.js.

9.3 Bioinformatics in the Browser

Following the developments of the new web, the bioinformatics community adopted the
new visualization and web development techniques in their own web server developments.
An important development is the BioJS javascript framework originally introduced by John
Gómez [89]. BioJS provides a standard and registry for bioinformatics data visualization
components that can be mixed together to create bioinformatic user interfaces without
reinventing the wheel on commonly used components such as multiple sequence alignment
viewers, sequence feature viewers or graph viewers. Even complex components such as
3D molecular viewers have been implemented in pure JavaScript, first by cross-compiling
previously existing viewers into JavaScript (JSMol being a JavaScript version of JMol [90])
and later on from-scratch developments of molecular viewers using Three.js (WebGLMol
(https://github.com/biochem-fan/GLmol) and PV [91]).

https://github.com/biochem-fan/GLmol
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9.4 Performance Considerations

Even though JavaScript performance has drastically improved with new just in time-
compiling virtual machines, it is still important to keep performance in mind when de-
veloping interactive visualizations in the browser. Re-layouting of documents especially
in tables is still a computationally expensive operation so it is important to minimize the
amount of re-layouting necessary by adding and removing elements in bulk and using fixed
object sizes. When drawing in an SVG element, there are still noticeable performance
problems when rendering complex graphics. It is therefore advisable to limit visualiza-
tions to drawing fewer than 10000 elements and using binned representations to reduce the
amount of necessary drawing.
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Chapter 10

Interactive Evolutionary Couplings

The interactive visualization techniques and technologies discussed above were applied to
contact prediction by custom development of a series of visualization components based on
HTML5 and JavaScript and running within a custom-made contact prediction webserver
to provide an environment for understanding contact predictions and enriching them with
expert knowledge about protein folding and the protein family under study. The following
chapter will discuss the design of the individual components.

10.1 Contact Map Viewer

The most common way of visualizing residue-residue contact predictions is to map summed
coupling scores to greyscale values in a 2D map of (i, j) positions. Since the resultant plot
is symmetric across the main diagonal, the true contact map of the protein family under
study is often plotted in one triangle matrix so that it can be directly compared with the
predicted contact map in the other triangle matrix.

Since web-based visualizations allow for interactivity, the coupling map is enhanced by
allowing user-selectable representation for each of the triangle matrices. The representa-
tions available are the common summed score matrix and APC-corrected summed score
matrices, together with binary contact maps and shaded distance maps (if a PDB structure
was provided).

To simplify comparing of predictions, highlighting an (i, j) position pair with the mouse
will also highlight the corresponding (j, i) position in the other triangle matrix. The contact
map viewer also serves as a selector panel for all subsequently discussed visualization
components — clicking on an (i, j) position pair forwards that position pair to all other
visualization components that will provide more details on the selected interaction.
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10.2 Information in Pairwise Coupling Matrices

While contact prediction methods typically only consider summed score matrices, the cou-
pling potentials learned for each of the alignment position combinations contain valuable
information what amino acids interact at any given position pair. To visualize these inter-
action potentials, a custom plot was developed based on D3.js showing both the magnitude
of individual coupling strengths and physical properties of the amino acids involved. Since
sequence logos are a successful technique for visualizing sequence profiles by mapping fre-
quency to letter size, the initial idea for the pairwise visualization was to map pairwise
frequencies to letter sizes on a 2D matrix, creating 2D sequence logos.

When the user clicks on a residue position combination (i, j) on the contact map view,
the coupling potentials are displayed in the coupling matrix viewer. The 20× 20 possible
amino acid combinations are shown in a 20 × 20 grid, with amino acids of similar phys-
ical properties (positive, negative, hydrophobic, aromatic, small, etc.) color-coded and
positioned next to each other. For each of the 20 × 20 amino acid combinations, a circle
split into two color-coded halves and labeled by the interacting amino acids is drawn with
the area of the circle corresponding to the magnitude of the coupling parameters. Nega-
tive couplings are shown as upside-down circle since a negative coupling contains valuable
information by signifying an interaction that needs to be avoided to stabilize the protein.

As seen in Figures 10.1c and 10.1d, common interactions stabilizing protein folds have
a characteristic fingerprint in the coupling matrix viewer that can be easily recognized by
the color-coded amino acids. For example, since hydrophobic amino acids are grouped in
the beginning of both plot axes, a hydrophobic interaction will be visible as large dark grey
circles in the bottom-left square of the coupling matrix viewer while salt bridges consisting
of a positively-charged (blue) and a negatively-charged (red) amino acids will be shown as
red-and-blue circles in off-diagonal matrix elements together with some same-charge amino
acids showing negative couplings as upside-down circles.

By looking more closely at the coupling patterns observable in the coupling matrix
viewer, it becomes apparent that not just the type of interaction, but also size prefer-
ences for the amino acids and consequently distance preferences for the interactions can
be learned from the coupled amino acids. From this insight, another Master’s thesis (and
now doctoral thesis) project was started to predict interaction distances for creating better
distance restraints.
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10.3 Couplings on 3D Structures

To allow users to validate the contact predictions, it is helpful to map predicted contacts
onto the corresponding 3D structure to validate the constraints and measure the true
distances. For this, the WebGLMol (https://github.com/biochem-fan/GLmol) protein
viewer based on Three.js has been extended to draw cylinders when a (i, j) position pair
was selected on the contact map viewer. Figure 10.1b shows the protein structure viewer
displaying a salt bridge interaction.

10.4 Web Server Development

All visualization components described above were combined with a simple bioinformatics
workflow system to create a CCMpred webserver using the Django Python web application
framework [92] and the Celery task worker system [93].

Starting from a simple submission page, the user can provide a single protein sequence or
multiple sequence alignment that will be enriched with homologous protein sequences using
HHblits [22] and residue-residue contacts predicted using CCMpred. Once the prediction
is completed, the user gets redirected to the results page shown in Figure 10.2 where they
can interactively explore the results of the contact prediction and optionally upload a 3D
structure to compare predicted contacts to the structural data.

https://github.com/biochem-fan/GLmol
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a. b.

c. d.

Figure 10.1: Interactive Visualization Components for the CCMpred webserver. a. The
configurable contact map viewer can show summed score matrices, APC-corrected score
matrices, physical contact maps and physical distance maps. Shown here is the APC-
corrected predicted contact map and a distance map from the PDB structure. b. We-
bGLMol protein structure viewer with a custom addition of showing selected contacts as
cylinders. c. Coupling matrix viewer showing a salt bridge interaction. d. Coupling
matrix viewer showing a hydrophobic interaction.
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a.

b.

Figure 10.2: CCMpred webserver user interface. a. Job submission page. The user
can paste or upload a protein sequence or multiple sequence alignment and the specified
sequence will automatically enriched with homologous sequences before the actual contact
prediction begins. b. An example prediction page. When a user clicks on an (i, j) pair
in the contact map viewer, the corresponding wi,j(a, b) coupling matrix is loaded into the
coupling matrix viewer and the contact highlighted on a user-supplied 3D structure (if
available). The log viewer shows the CCMpred run protocolling the pseudo-likelihood
optimization and convergence.
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Chapter 11

Conclusion

Modern interactive visualization techniques and minimizing the time passed between the
user requesting information and the response appearing allow structural biologists and
protein engineering researchers interested in applying evolutionary coupling methods in
their studies of a protein family to focus on the biological questions they want to answer
instead of concentrating on how a tool is correctly used. By following these principles,
the CCMpred webserver provides an intuitive and user-friendly tool to explore the topic
of evolutionary coupling and its application in protein folding and has been successfully
used in collaborations with structural biology groups. Furthermore, the visualizations
convey an intuitive understanding of the coupling potentials learned from multiple sequence
alignments and are useful in debugging and improving contact prediction methods further.

The visualization components developed in this work could be useful for developers of
other websites so a valuable further step would be to package up individual visualization
components as BioJS components.
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Part IV

Generating Protein Sequences from
Couplings





Chapter 12

Introduction to Computational
Protein Design

Computational protein design is the part of protein engineering that uses computational
methods to predict protein sequences that will fold into a desired fold and exhibit a desired
activity [94]. Depending on the goal of the study, protein design can be employed to
optimize or change ligand specificity [95], catalyze reactions [96], prefer one of several
alternative conformations [97], or, most typically, to maximize the thermostability [98].

The task of finding an optimal protein sequence can be seen as a complex optimization
problem where the search space is made up of the space of possible amino acid sequences
plus the possible conformations of their side chains. While the search space is already
enormous when considering only these two factors, flexible-backbone models have been
used more recently to further expand the dimensionality of the search space.

By using empirical and knowledge-based force field models that were further optimized
for protein design tasks, a free energy “score” can be attached to a given configuration
of sequence and conformation. While the search space cannot be fully enumerated for
reasonably-sized proteins, discretizing side-chain conformations [99] combined with Monte
Carlo-based [100] or genetic algorithms [101] for traversing the search space efficiently make
it possible to stochastically explore meaningful parts of the search space and at least find
local optima. For small proteins, Dead End Elimination (DEE) [102] can be used to prune
impossible areas of the search space to arrive at a global optimum.

Through Monte Carlo optimizations of a library of 108 protein structures, Kuhlmann
and Baker showed that 51% of lowest free energy-model residues in the protein core were
identical to the residues appearing at these positions in nature [103], indicating that the
stochastic exploration of sequence space by nature has already done a remarkable job at
optimizing protein stability. However, by introducing artificial selection pressures that
would not be observed in nature, protein design can help optimize proteins to even better
fit the needs of humanity.
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12.1 Covariation in Protein Design

Covariation has been previously used in protein design applications in the framework of
protein sectors by Rama Ranganthan and colleagues. Using covariance statistics as a clus-
tering similarity measure, proteins can be dissected into allosterically interacting groups
of residues that are mostly biochemically independent from other sectors [104, 66]. An
artificial protein MSA was sampled from a Monte Carlo algorithm to match the covariance
properties of a MSA of real-world WW domain and proteins from the artificial MSA ex-
pressed. While mean sequence identity between artificial and natural sequences was low
at 36% as expected when sampling using per-column amino acid frequencies, the artificial
MSA sequences taking covariation into account folded into the native structure in 28% of
experiments when taking covariation into account while natural sequences folded into the
native structure 67% of times and protein sequences taking only single-column frequencies
into account would not fold into the native structure [105].

Another application of covariation in a protein context is the work of Ollikainen and
Kortemme [106]. Using 40 diverse protein domain MSAs and corresponding structures,
ensembles of alternative backbone and side-chain conformations were generated and then
low-energy sequences were sampled using the Monte Carlo-based Rosetta toolkit. APC-
corrected mutual information covariance scores were calculated for both the natural MSAs
and low-energy sequences obtained from protein design. Comparing the covariance scores of
natural and designed sequences show significant overlap between covariances that is highest
when using intermediate levels of backbone flexibility in the protein design process. On
the amino acid level, similar amino acid pairs are found to be covarying in natural and
designed sequences, except for interactions not modelled by the energy function underlying
the protein design such as cation-pi interactions.

12.2 Markov Chain Monte Carlo Algorithms

The Markov Chain Monte Carlo (MCMC) class of algorithms allow the efficient traversal
of high-dimensional probability distributions with local minima through stochastic pro-
cesses and consequently enjoy widespread application in protein design approaches. By
following along a markov chain that has the same equilibrium distribution as the underly-
ing probability distribution, MCMC algorithms can be used to generate samples from an
underlying distribution or empirically compute integrals for the distribution without the
computationally expensive calculation of a partition function.

12.2.1 Metropolis-Hastings and Hybrid Monte Carlo Algorithms

Within the class of MCMC algorithms, the metropolis-hastings algorithm is a popular
choice because it can construct markov chains following a probability distribution with
little requirements: It is sufficient to compute a term p(x|Θ) that is proportional to the true
probability distribution P (x|Θ) but does not need to be normalized [107]. The metropolis-
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hastings algorithm first constructs a candidate sample x′ by modifying an existing sample
x and then accepts the candidate with a probability of α. For α > 1, the candidate is
always accepted. If the candidate is rejected, the existing sample is emitted as the new
sample instead:

α =
P (x′|Θ)

P (x|Θ)
=
p(x′|Θ)

p(x|Θ)
(12.1)

Using this simple acceptance criterion, the markov chain of emitted samples has been
shown to follow the same equilibrium distribution as the underlying probability distribu-
tion P (x|Θ). However, the candidate construction strategy is important to achieve the
acceptance rates necessary for efficient optimization.

For probability distributions where a gradient can be computed, the Hybrid Monte
Carlo (HMC) or Hamiltonian Monte Carlo method can generate samples with a high accep-
tance probability [108]. Model parameters Θ are reinterpreted as the position parameters
~q of a virtual particle with uniform mass moving across a probability landscape defined by
the model probability distribution and carrying a momentum ~p. Together, ~p and ~q form a
hamiltonian that can be integrated over time to generate new proposed candidates.

12.2.2 Gibbs Sampling

Another important MCMC algorithm is the Gibbs sampling algorithm. If a probability
distribution can be rearranged to calculate marginal probabilities for all Ω possible values
of one random variable given all other dimensions P (xi|x1, . . . , xL \ {xi},Θ), new sam-
ples for all random variables can be efficiently determined using an iterative scheme of
S replacements of 100% acceptance probability. When picking a sufficiently high S, the
samples produced by the Gibbs sampling algorithm can be considered independent from
another. The whole procedure is outlined in Algorithm 12.1.

Algorithm 12.1 Gibbs Sampling

// Input: X1

for s← 1 . . . S do
// Randomly pick a position to mutate with uniform probability
i← randomInteger({1 . . . L}, P (i) = 1

L
)

for j ← 1 . . . L do
// Randomly pick a new value at position i from conditional probability

xs+1
j ←

{
xsj , i 6= j

randomInteger({1 . . .Ω}, P (a) = P (xi|xs1, . . . xsL \ {xsi},Θ)), i = j

end for
end for
// XS+1 now contains a newly sampled sequence
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Chapter 13

Sampled Protein Sequences from
Couplings

The prior works combining protein design and residue-residue covariation that were men-
tioned in the last chapter show a strong connection between the results of protein de-
sign methods and the covariation occurring in nature and measurable by even more old-
fashioned contact prediction methods. The results even show that covariation information
can sufficiently constrain protein sequences so they can fold into a native structure. Instead
of generating sequences using a protein design-centered sampling method, a reasonable ex-
periment would consequently be to draw protein sequences directly from the probability
distribution underlying a MRF-based contact prediction, thus simplifying the protein de-
sign process by avoiding the dependency on carefully tuned forcefield, backbone flexibility,
and sequence search methods. Additionally, such a model can be used to generate synthetic
sequence data to further deeper understanding of sequence analysis methods.

This chapter will explain the techniques used for implementing such a covariation-based
protein sequence sampling method and will show how they can be used for protein design
and sequence analysis applications.

13.1 Gibbs Sampling Sequences from MRFs

The marginal probability distribution for observing an amino acid in a single alignment
position given the others as derived in Equation 3.25 can be used in a Gibbs sampling
algorithm to efficiently evolve new sequences from a starting sequence. As opposed to
the contrastive divergence optimization scenario encountered previously, the Gibbs sam-
pler is continued for higher numbers of substitutions S in proportion to a user-specified
phylogenetic distance.

In order to more realistically evolve sequences from common ancestries, the Gibbs
sampling procedure was modified to evolve several branching markov chains guided by
a phylogenetic tree. For every edge pointing away from an ancestral sequence, Gibbs
sampling is started using the ancestral sequence as a starting state and choosing a number
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of substitutions S proportional to the length of the current branch. The resultant sampled
sequence is annotated to the descendant clade in the tree and will become the ancestral
sequence for all of its descendants.

Artificial sequences that were derived from phylogenies were compared to ideal phyloge-
netic models and models where sequences are sampled independently by choosing different
tree topologies. While possible to provide phylogenetic trees that were reconstructed us-
ing a phylogenetic tree reconstruction program, perfect binary trees and trees that only
consist of one common root node of which all extant sequences are direct descendants (the
“star” topology) were studied to better understand the effects of common ancestry on the
evolutionary coupling signals.

13.2 Debugging Evolutionary Coupling Methods with

Synthetic Sequences

13.2.1 Characterizing Phylogenetic Noise

By varying the evolutionary distance between clades and the evolutionary distance be-
tween the extant sequences and their common ancestors, phylogenetic inderdependencies
and thus phylogenetic noise can be encoded into the sampled MSA. As seen in Figure 13.1,
more sequences in the resultant MSA make the true couplings stand out from the back-
ground coupling. Figure 13.2 characterizes the magnitude of phylogenetic noise for different
numbers of sequences, evolutionary distances and tree topologies.

Both when increasing the number of sampled sequences and increasing the evolution-
ary distance of sampling, the amount of variation in the alignment and thus the observed
covariation increases, leading to an increase in mean coupling strength. Since additional
interdependencies between extant sequences exist for the binary tree phylogeny, the over-
all variation and the couplings observed in the sampled MSAs are about 30% lower than
couplings in MSAs sampled from star-shaped phylogenetic trees that show less interdepen-
dency. While both the mean coupling between physically interacting and non-interacting
residues increases, the foreground coupling becomes more clearly discernible from the back-
ground covariation as evolutionary distance increases.

Looking at only the coupling scores observed for non-contacting residue pairs, the
level of background coupling signal stays constant for the binary tree phylogeny when
increasing the evolutionary distance covered but increases when sampling from a star-
shaped phylogeny. As explained previously in Section 2.2 and Figure 3.2, recent common
ancestry leads to sequences that have not fully diverged away into independence. When
sampling using a binary tree, extant sequences might have lost their correlation to the
ancestral sequence at the root of the binary tree but might still be correlated with the
roots of subtrees found further down in the phylogenetic tree.
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N=25 N=26 N=27 N=28

N=29 N=210 N=211 N=212

Figure 13.1: Effect of Number of Sequences on Synthetic Alignments. As the number of
sequences in the multiple sequence alignment increases, the true residue-residue interactions
become more distinguished from the background couplings.

13.2.2 Separating Noise Effects Corrected by APC

Since the sampling strategy allows the creation of protein MSAs with sequences drawn
independently from another, the amount of phylogenetic noise present in the contact pre-
diction of a protein family can be disentangled by generating synthetic alignments with
and without phylogenetic interdependencies and transforming the contact predictions us-
ing APC (which should correct for both entropic and phylogenetic effects) and entropy
correction (which should correct only for entropic effects). By comparing the prediction
accuracies of both corrections against each other and an uncorrected contact prediction, the
magnitude of the different noise sources with respect to their effect on prediction accuracy
can be quantified.

However, the sampled alignents do not support the inclusion of gaps and the per-
column entropy values were significantly different from the ones calculated for biological
alignments, causing entropy corrections to fail to produce reasonable corrections for syn-
thetic alignments. For the lack of time, a further investigation of the shift of entropy terms
will have to be done in future work.



102 13. Sampled Protein Sequences from Couplings

13.3 Predicting the Effect of Mutations

Since the joint probability of the MRF can be used to assign probabilities of any protein
sequence to be drawn from the MRF probability distribution, the MRF distribution can
be used as a statistical potential using the inverse Boltzmann distribution. The Boltzmann
distribution P (X) can be solved for E(X), setting kT = 1:

P (X) =
1

Z
e−

E(X)
kT (13.1)

⇒ E(X) = −kT lnP (X)− kT lnZ (13.2)

= − lnP (X)− lnZ (13.3)

The statistical potential formulation can be used to compare the change in statistical
potential energy E(X0) to an alternative state E(X1):

∆E = E(X1)− E(X0) = lnP (X0)− lnP (X1) (13.4)

Putting this result into the MRF contact prediction framework shows that the un-
normalized probability terms can be used to compare the difference in model free energy
without computing a normalization term.

An implementation of this strategy was included in the CCMpred toolkit and can be used
to scan a native protein sequence for ∆E values of all single-, pairwise-, or multi-amino-acid
substitutions.
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Number of 
Sequences

Figure 13.2: Signal-to-Noise Ratio of Contact Prediction determined on Artificial Se-
quences. For a set of 100 protein families with known physical contacts, artificial multiple
sequence alignments were drawn for varying numbers of sequences and evolutionary dis-
tances, using five alignments for each family, sequence count and evolutionary distance.
As either the number of sequences or the evolutionary distance covered increases, both the
mean coupling in non-contacting residues (background) as the mean coupling in contacting
residues (foreground) increases, but the foreground coupling increases more quickly than
the background coupling. For binary tree topologies, the amount of background coupling is
higher for low evolutionary distances due to the phylogenetic noise introduced by common
ancestry.
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Chapter 14

Conclusion

Evolutionary couplings are a powerful tool for understanding the residue-residue inter-
actions that are important for a protein family under study. The generative model of
protein sequences can be used to generate new protein sequence alignments that can even
simulate phylogenetic interdependence, or to predict the effect of mutations using the in-
verse Boltzmann distribution. However, the models learned from protein multiple sequence
alignments can only reflect compensatory mutations that have been previously observed,
and any interaction that makes biochemical sense but has not been seen before will have
their compatibility underestimated.

Since evolutionary coupling methods tap a previously unused source of information for
protein design approaches, they can provide an orthogonal source of information to the
existing techniques based on structural modeling and could be integrated as an additional
energy term in protein design to move the search towards residue-residue interactions that
are more likely to be correct. For a proper validation, high-quality experimental data of
changes in Gibbs free energy or changes in melting temperature upon single- and multi-site
mutations could be used to examine the predictive performance of these energy terms.
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Appendix A

Derivation of the Markov Random
Field Likelihood Gradients

A.1 Pseudo-Likelihood

The pseudo-log-likelihood of the MRF for a multiple sequence alignment X of N sequences
and L columns with coupling parameters v,w is defined as:

pll(v,w|X) = log
N∏
n=1

L∏
i=1

p(Xi = xni |(xn1 , . . . , xni−1, x
n
i+1, . . . x

n
L,v,w))

=
N∑
n=1

L∑
i=1

log

exp

[
vi(x

n
i ) +

∑L
j=1
j 6=i

wi,j(x
n
i , x

n
j )

]
∑21

c=1 exp

[
vi(c) +

∑L
j=1
j 6=i

wi,j(c, xnj )

]

=
N∑
n=1

L∑
i=1

vi(xni ) +
L∑
j=1
j 6=i

wi,j(x
n
i , x

n
j )− logZn

i

 (A.1)

With the partition function normalization term Zn
i :

Zn
i =

20∑
c=1

exp

vi(c) +
L∑
j=1
j 6=i

wi,j(c, x
n
j )

 (A.2)

The derivative for single-column emission potentials is:
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∂ pll(v,w|X)

∂vi(a)
=

N∑
n=1

L∑
i′=1

I(i′ = i, xni′ = a)−

∑20
c=1

(
exp

[
vi′(c) +

∑L
j′=1
j′ 6=i′

wi′j′(c, x
n
j′)

]
I(i′ = i, c = a)

)
∑20

c=1 exp

[
vi′(c) +

∑L
j′=1
j′ 6=i′

wi′j′(c, xnj′)

]
 =

(A.3)

=
N∑
n=1

I(xni = a)−
exp

[
vi(a) +

∑L
j′=1
j′ 6=i

wij′(a, x
n
j′)

]
∑20

c=1 exp

[
vi(c) +

∑L
j′=1
j′ 6=i

wij′(c, xnj′)

]
 (A.4)

= N(xi = a)−
N∑
n=1

exp

[
vi(a) +

∑L
j′=1
j′ 6=i

wij′(a, x
n
j′)

]
∑20

c=1 exp

[
vi(c) +

∑L
j′=1
j′ 6=i

wij′(c, xnj′)

] (A.5)

When deriving the pairwise emission potentials, it is important to note the symmetry of
the pairwise emission potentials: wij(a, b) = wji(b, a). The derivative for pairwise emission
potentials is:

∂ pll(v,w|X)

∂wij(a, b)
= N(xni = a, xnj = b)−

N∑
n=1

exp

[
vi(a) +

∑L
j′=1
j′ 6=i

wij′(a, x
n
j′)

]
∑20

c=1 exp

[
vi(c) +

∑L
j′=1
j′ 6=i

wij′(c, xnj′)

]+ (A.6)

+N(xni = b, xnj = a)−
N∑
n=1

exp

[
vj(b) +

∑L
i′=1
i′ 6=j

wji′(b, x
n
i′)

]
∑20

c=1 exp

[
vj(c) +

∑L
i′=1
i′ 6=j

wji′(c, xni′)

] (A.7)

A.2 Full Likelihood

The log-likelihood of the MRF for a multiple sequence alignment X of N sequences and
L columns with coupling parameters v,w is defined as:

ll(v,w|X) =
N∑
n=1

 L∑
i=1

vi(x
n
i ) +

L∑
i,j=1
i 6=j

wij(x
n
i , x

n
j )− logZ

 (A.8)

With the partition function Z:
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Z =
∑

x′∈{1...20}L
exp

 L∑
i=1

vi(x
′
i) +

L∑
i,j=1
i6=j

wij(x
′
i, x
′
j)

 (A.9)

The single-column emission potential gradient is:

∂ ll(v,w|X)

∂vi(a)
=
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The pairwise emission potential gradient is:
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protein sequence searching by HMM-HMM alignment. Nature Methods, 9(2):173–
175, dec 2012. ISSN 1548-7091. doi:10.1038/nmeth.1818.

[23] Kim, P and Baldwin, R. Intermediates In The Folding Reactions Of Small Proteins.
Annual Review of Biochemistry, 59(1):631–660, 1990. ISSN 00664154. doi:10.1146/
annurev.biochem.59.1.631.

[24] O’Meara, MJ, Leaver-Fay, A, Tyka, MD, Stein, A, Houlihan, K, Dimaio, F, Bradley,
P, Kortemme, T, Baker, D, Snoeyink, J, and Kuhlman, B. Combined covalent-
electrostatic model of hydrogen bonding improves structure prediction with Rosetta.
Journal of Chemical Theory and Computation, 11(2):609–622, 2015. ISSN 15499626.
doi:10.1021/ct500864r.

[25] Lazaridis, T and Karplus, M. Effective energy function for proteins in solution.
Proteins: Structure, Function and Genetics, 35(2):133–152, 1999. ISSN 08873585.
doi:10.1002/(SICI)1097-0134(19990501)35:2〈133::AID-PROT1〉3.0.CO;2-N.

[26] Dunbrack, RL. Rotamer libraries in the 21st century. Current Opinion in Structural
Biology, 12(4):431–440, 2002. ISSN 0959440X. doi:10.1016/S0959-440X(02)00344-5.

[27] Simons, KT, Kooperberg, C, Huang, E, and Baker, D. Assembly of protein tertiary
structures from fragments with similar local sequences using simulated annealing and
Bayesian scoring functions. Journal of molecular biology, 268(1):209–225, 1997. ISSN
0022-2836. doi:10.1006/jmbi.1997.0959.

[28] Jones, DT. Predicting novel protein folds by using FRAGFOLD. Proteins: Structure,
Function and Genetics, 45(SUPPL. 5):127–132, 2001. ISSN 08873585. doi:10.1002/
prot.1171.

[29] Qian, B, Raman, S, Das, R, Bradley, P, McCoy, AJ, Read, RJ, and Baker, D.
High-resolution structure prediction and the crystallographic phase problem. Nature,
450(7167):259–264, 2007. ISSN 0028-0836. doi:10.1038/nature06249.

[30] Havel, TF, Crippen, GM, and Irwin, D. Effects of Distance Constraints on Macro-
molecular Conformation . 11 . Simulation of Experimental Results and Theoretical
Predictions. Biopolymers, 18:73–81, 1979. ISSN 0006-3525. doi:10.1002/bip.1979.
360180108.

[31] Tress, ML and Valencia, A. Predicted residue-residue contacts can help the scoring
of 3D models. Proteins, 78(8):1980–91, jun 2010. ISSN 1097-0134. doi:10.1002/prot.
22714.



114 BIBLIOGRAPHY

[32] Li, W, Zhang, Y, and Skolnick, J. Application of sparse NMR restraints to large-
scale protein structure prediction. Biophysical journal, 87(2):1241–1248, 2004. ISSN
00063495. doi:10.1529/biophysj.104.044750.

[33] Sinz, A. Chemical cross-linking and mass spectrometry for mapping three-
dimensional structures of proteins and protein complexes. Journal of Mass Spec-
trometry, 38(12):1225–1237, dec 2003. ISSN 1076-5174. doi:10.1002/jms.559.

[34] Jeener, J, Meier, BH, Bachmann, P, and Ernst, RR. Investigation of exchange
processes by two-dimensional NMR spectroscopy. Journal of Chemical Physics,
71(11):4546–4553, 1979. ISSN 00219606 (ISSN). doi:10.1063/1.438208.

[35] Dunn, SD, Wahl, LM, and Gloor, GB. Mutual information without the influence of
phylogeny or entropy dramatically improves residue contact prediction. Bioinformat-
ics, 24(3):333–40, feb 2008. ISSN 1367-4811. doi:10.1093/bioinformatics/btm604.

[36] Weigt, M, White, RA, Szurmant, H, Hoch, JA, and Hwa, T. Identification of direct
residue contacts in protein-protein interaction by message passing. PNAS, 106(1):67–
72, jan 2009. ISSN 1091-6490. doi:10.1073/pnas.0805923106.

[37] Marks, DS, Colwell, LJ, Sheridan, R, Hopf, TA, Pagnani, A, Zecchina, R, and Sander,
C. Protein 3D structure computed from evolutionary sequence variation. PloS one,
6(12):e28766, jan 2011. ISSN 1932-6203. doi:10.1371/journal.pone.0028766.

[38] Fodor, AA and Aldrich, RW. Influence of conservation on calculations of amino acid
covariance in multiple sequence alignments. Proteins, 56(2):211–21, aug 2004. ISSN
1097-0134. doi:10.1002/prot.20098.

[39] Martin, LC, Gloor, GB, Dunn, SD, and Wahl, LM. Using information theory
to search for co-evolving residues in proteins. Bioinformatics (Oxford, England),
21(22):4116–24, nov 2005. ISSN 1367-4803. doi:10.1093/bioinformatics/bti671.

[40] Lapedes, AS, Giraud, BG, Liu, L, and Stormo, GD. Correlated Mutations in Models
of Protein Sequences : Phylogenetic and Structural Effects. Technical Report 1999,
Institute of Mathematical Statistics, 1999.

[41] Balakrishnan, S, Kamisetty, H, Carbonell, JG, Lee, SI, and Langmead, CJ. Learning
generative models for protein fold families. Proteins, 79(4):1061–78, apr 2011. ISSN
1097-0134. doi:10.1002/prot.22934.

[42] Jones, DT, Buchan, DW, Cozzetto, D, and Pontil, M. PSICOV: precise structural
contact prediction using sparse inverse covariance estimation on large multiple se-
quence alignments. Bioinformatics, 28(2):184–90, jan 2012. ISSN 1367-4811. doi:
10.1093/bioinformatics/btr638.



BIBLIOGRAPHY 115

[43] Morcos, F, Pagnani, A, Lunt, B, Bertolino, A, Marks, DS, Sander, C, Zecchina, R,
Onuchic, JN, Hwa, T, and Weigt, M. Direct-coupling analysis of residue coevolution
captures native contacts across many protein families. PNAS, 108(49):E1293–301,
dec 2011. ISSN 1091-6490. doi:10.1073/pnas.1111471108.

[44] Hopf, TA, Colwell, LJ, Sheridan, R, Rost, B, Sander, C, and Marks, DS. Three-
Dimensional Structures of Membrane Proteins from Genomic Sequencing. Cell,
149(7):1607–1621, may 2012. ISSN 00928674. doi:10.1016/j.cell.2012.04.012.

[45] Dos Santos, RN, Morcos, F, Jana, B, Andricopulo, AD, and Onuchic, JN. Dimeric
interactions and complex formation using direct coevolutionary couplings. Scientific
reports, 5:13652, jan 2015. ISSN 2045-2322.

[46] Gidas, B. Consistency of Maximum Likelihood and Pseudo-Likelihood Estimators for
Gibbs Distributions. In Fleming, W and Lions, PL (editors), Stochastic Differential
Systems, Stochastic Control Theory and Applications, pages 129–145. Springer New
York, New York, NY, 1988. ISBN 978-1-4613-8762-6. doi:10.1007/978-1-4613-8762-6
10.

[47] Monastyrskyy, B, D’Andrea, D, Fidelis, K, Tramontano, A, and Kryshtafovych, A.
New encouraging developments in contact prediction: Assessment of the CASP11
results. Proteins, oct 2015. ISSN 1097-0134. doi:10.1002/prot.24943.

[48] Brunger, AT. Version 1.2 of the Crystallography and NMR system. Nature protocols,
2(11):2728–33, 2007. ISSN 1750-2799. doi:10.1038/nprot.2007.406.

[49] Adhikari, B, Bhattacharya, D, Cao, R, and Cheng, J. CONFOLD: Residue-residue
contact-guided ab initio protein folding. Proteins, 83(8):1436–49, aug 2015. ISSN
1097-0134.

[50] Rohl, CA, Strauss, CEM, Misura, KMS, and Baker, D. Protein Structure Prediction
Using Rosetta. Methods in Enzymology, 383(2003):66–93, 2004. ISSN 00766879.
doi:10.1016/S0076-6879(04)83004-0.

[51] Michel, M, Hayat, S, Skwark, MJ, Sander, C, Marks, DS, and Elofsson, A. PconsFold:
Improved contact predictions improve protein models. Bioinformatics, 30(17):482–
488, 2014. ISSN 14602059. doi:10.1093/bioinformatics/btu458.

[52] Braun, T, Koehler Leman, J, and Lange, OF. Combining Evolutionary Information
and an Iterative Sampling Strategy for Accurate Protein Structure Prediction. PLoS
computational biology, 11(12):e1004661, dec 2015. ISSN 1553-7358. doi:10.1371/
journal.pcbi.1004661.

[53] Margara, L, Vassura, M, Di Lena, P, Medri, F, Fariselli, P, and Casadio, R. Recon-
struction of the protein structures from contact maps. 5(3):1–18, 2006.



116 BIBLIOGRAPHY

[54] Vassura, M, Margara, L, Di Lena, P, Medri, F, Fariselli, P, and Casadio, R. Fault Tol-
erance for Large Scale Protein 3D Reconstruction from Contact Maps. In Giancarlo,
R and Hannenhalli, S (editors), Algorithms in Bioinformatics: 7th International
Workshop, WABI 2007, chapter Fault Tole, pages 25–37. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2007. ISBN 978-3-540-74126-8. doi:10.1007/978-3-540-74126-8 4.

[55] Fariselli, P, Olmea, O, Valencia, A, and Casadio, R. Prediction of contact maps with
neural networks and correlated mutations. Protein engineering, 14(11):835–43, nov
2001. ISSN 0269-2139.

[56] Pietal, MJ, Bujnicki, JM, and Kozlowski, LP. GDFuzz3D: A method for protein
3D structure reconstruction from contact maps, based on a non-Euclidean distance
function. Bioinformatics, 31(21):3499–3505, 2014. ISSN 14602059. doi:10.1093/
bioinformatics/btv390.

[57] Kruskal, JB. Multidimensional scaling by optimizing goodness of fit to a non-
metric hypothesis. Psychometrika, 29(1):1–27, 1964. ISSN 00333123. doi:10.1007/
BF02289565.

[58] Cheng, J, Randall, AZ, Sweredoski, MJ, and Baldi, P. SCRATCH: A protein struc-
ture and structural feature prediction server. Nucleic Acids Research, 33(SUPPL.
2):72–76, 2005. ISSN 03051048. doi:10.1093/nar/gki396.

[59] Taylor, TJ, Bai, H, Tai, CH, and Lee, B. Assessment of CASP10 contact-assisted
predictions. Proteins: Structure, Function and Bioinformatics, 82(SUPPL.2):84–97,
2014. ISSN 08873585. doi:10.1002/prot.24367.

[60] Kinch, LN, Li, W, Monastyrskyy, B, Kryshtafovych, A, and Grishin, NV. Evaluation
of free modeling targets in CASP11 and ROLL. Proteins: Structure, Function and
Bioinformatics, (September), 2016. ISSN 10970134. doi:10.1002/prot.24973.

[61] Monastyrskyy, B, Fidelis, K, Tramontano, A, and Kryshtafovych, A. Evaluation of
residue-residue contact predictions in CASP9. Proteins: Structure, Function, and
Bioinformatics, 79(S10):119–125, 2011. ISSN 08873585. doi:10.1002/prot.23160.

[62] Monastyrskyy, B, D’Andrea, D, Fidelis, K, Tramontano, A, and Kryshtafovych, A.
Evaluation of residue-residue contact prediction in CASP10. Proteins: Structure,
Function, and Bioinformatics, 82(0 2):138–153, feb 2014. ISSN 08873585. doi:10.
1002/prot.24340.

[63] Kamisetty, H, Ovchinnikov, S, and Baker, D. Assessing the utility of coevolution-
based residue-residue contact predictions in a sequence- and structure-rich era.
PNAS, 110(39):15674–15679, sep 2013. doi:10.1073/pnas.1314045110.

[64] Sillitoe, I, Lewis, TE, Cuff, A, Das, S, Ashford, P, Dawson, NL, Furnham, N,
Laskowski, RA, Lee, D, Lees, JG, Lehtinen, S, Studer, RA, Thornton, J, and Orengo,



BIBLIOGRAPHY 117

CA. CATH: Comprehensive structural and functional annotations for genome se-
quences. Nucleic Acids Research, 43(D1):D376–D381, 2015. ISSN 13624962. doi:
10.1093/nar/gku947.

[65] Price, MN, Dehal, PS, and Arkin, AP. FastTree 2 - Approximately maximum-
likelihood trees for large alignments. PLoS ONE, 5(3), 2010. ISSN 19326203. doi:
10.1371/journal.pone.0009490.

[66] Halabi, N, Rivoire, O, Leibler, S, and Ranganathan, R. Protein sectors: evolutionary
units of three-dimensional structure. Cell, 138(4):774–786, 2009. doi:10.1016/j.cell.
2009.07.038.

[67] Friedman, J, Hastie, T, and Tibshirani, R. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics (Oxford, England), 9(3):432–41, jul 2008. ISSN
1468-4357. doi:10.1093/biostatistics/kxm045.

[68] Witten, DM, Friedman, JM, and Simon, N. New Insights and Faster Computa-
tions for the Graphical Lasso. Journal of Computational and Graphical Statistics,
20(4):892–900, dec 2011. ISSN 1061-8600. doi:10.1198/jcgs.2011.11051a.
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