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1. Introduction

Conventional electronics intended to build devices and schemes by manipulating the
conducting electrons via charge, nowadays this gradually transforms into what we know
as spintronics (SPIN-TRansport electrONICS), i.e., the technology which manipulates
one more degree of freedom of the electron - the spin. This concept has evolved as
a result of strengthening the technological requirements to the conventional electronic
devices - first of all, concerning the reduced energy consumption, especially for the
high-frequency operating elements, and also concerning the sensitivity of the devices.
In turn, this has increased an interest within the academic community in the effects
explicitly involved in the electron charge/spin manipulation, as well as in the materials
which provide a large magnitude of these effects. The main theoretical description of
these effects was given in the early 1970s [1, 2]. It has become clear that the combination
of the material characteristics on different scales (e.g. spin-diffusion lengths, relaxation
time, etc.) leads to a variety of spin-transport effects, such as giant magnetoresistance
(GMR), anomalous Hall effect (AHE), spin Hall effect (SHE), spin accumulation, spin-
transfer torque (STT), anomalous Nernst effect (ANE), spin Nernst effect (SNE), etc.
All these phenomena constitute a base of spintronics. At the same time, the practical
ab-initio numerical models and the technical means for their realistic simulation are
still developing. A reliable ab-initio description of these effects in realistic models is a
necessary step needed in the Material Science in order to predict and understand the
particular features of the spin-phenomena in a given material or combined systems.
Development of spintronics is intimately connected with the search of new materials
which could combine ferromagnetic properties and properties of semiconductors. On
the one hand, such materials could be a source of the spin-polarized electrons and, on
the other, could be easily integrated with conventional semiconductor components. To
create such a hybrid material - semiconductor with ferromagnetic properties appears
to be a complex task, as integrating magnetic atoms into the crystal structure of the
semiconductor significantly deteriorates its magnetic properties.

Spintronics, as a new field, was recognized in 1988 due to the effect of giant magnetore-
sistance (GMR) discovered independently by Albert Fert [3] and Peter Grünberg [4].
They found that the mutual magnetic alignment in Fe/Cr multilayers, significantly
changes the electrical resistivity of the whole system. The resistivity is maximal when
the magnetization directions in ferromagnetic layers are antiparallel, but minimizes for
their parallel alignment. The change in electrical resistivity (about 50% at T = 4.2 K
and B = 2 T is due to the change of the electron scattering probability for different
spin directions. This discovery has boosted the growth of practical applications. GMR
effect was also found in so-called ”spin-valve” structures, consisting of two ferromag-
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netic layers separated by nonmagnetic conducting spacer [5]. The release of the first
spin-valve sensors in hard drive read heads was then announced in 1997 by IBM. Ten
years later, the GMR spin-valve was replaced by the related thin-layered structure,
the so-called magnetic tunnel junction (MTJ) based on the giant tunneling magnetore-
sistance (TMR): instead of the conducting nonmagnetic spacer, the electrons tunnel
through a thin insulating barrier, which is preferentially passed by electrons with a cer-
tain single spin orientation. The TMR signal was shown to be about 100 times larger
than that of a spin-valve. Although spintronic devices such as spin valves can be good
candidates for the construction of non-volatile memory such as the magnetoresistive
random access memory (MRAM) [6] where the read-out process is based on the TMR
effect in magnetic tunnel junctions and the writing process is done by exploiting the
Oersted field which is generated by a current in order to switch the magnetization.
However, it was shown that this process of writing is insufficient in terms of energy,
scalability and density. Therefore, to achieve lowpower operation, the switching of the
magnetization by the spin polarized currents via spin transfer torque effect (STT) was
suggested. Such a STT-MRAM possesses a number of advantages, among which are
high speed, very high endurance, non-volatility and, due to current-switching mecha-
nism, it becomes more scalable [7]. However, nowadays the current which is necessary
to reorient the magnetization is too high for most commercial applications [8]. An-
other spin-domain-based memory is the racetrack memory. This type of memory uses
magnetic domains to store information in tall columns of a magnetic material arranged
perpendicularly on the surface of a silicon substrate [9]. This type of memory would
allow for large storage capacity, low energy consumption, and low cost. There is an
intensive research going on in this direction to deliver a device for commercially based
device.

In spintronic devices a specific current is created by spins pointing in one direction, a
so-called spin current. To obtain such a current, it is necessary to order spins in one
direction - to polarize them. Also the lifetime of such spins should be long enough
for transferring over long distances. The spintronic components can possess memory
properties, high-speed switching and at the same time low energy consumption, as the
spin flip requires only little energy. In between operations, spintronic devices can be
switched off the power supply. But the central problem in spintronic remains, namely
the spin coherence time which corresponds to the time of spin-polarized electrons to
travel over macroscopic distances without the loss of information. If this time is too
short, then the disturbed spin orientation leads to a loss of information carried by every
spin. Experiments on spin coherence performed at room temperatures show that in
semiconductors (> 100 ns) this time is much longer compared to metals (∼ 0.1 − 20
ns) used in spin multilayers. In recent years, a lot of scientific and industrial attention
is attracted by diluted magnetic semiconductors (DMS). Despite the fact that the spin
coherence time in these materials is higher, the majority of them possess low Curie
temperatures which leads to limited applications. This shortcoming can be avoided by
the nanostructuring of the semiconductor which increases the solubility of the transition
metal impurities up to desired concentrations of 1 − 2% [10, 11]. In an alternative
way, the combination of the semiconductor and molecular structures can be used as
spintronic components. In the Ref. [12] the logic switch based on changes of the physical
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properties of the molecule is discussed. Among the advantages of using such complexes
is that due to the larger molecular mass the retention times in memory applications
becomes longer. Another benefit is a molecular design and synthesis which allows
the self-assembly onto metals and semiconductors for interconnection. For this to be
at all possible, it is necessary to ensure that the molecules operate within acceptable
temperature margins and switching speeds and, in addition, would need to be supported
by negligible parasitic effects within the supporting architecture [12].

Studies held in recent years define a new route in spintronic development known as
”Spintronics without magnetism” [13], where no ferromagnetic materials are used. The
main idea is the manipulation of the electric current only by spin-orbit coupling. Spin-
orbit coupling leads to spin polarization, i.e. allows to sort electrons by their spin:
electrons with spin ”up” scatter preferentially to the one side of the sample while
electrons with spin ”down” preferentially to the opposite side with respect to the
moving direction. This is the basis of the so-called spin Hall effect. Its mechanism
originates from the spin flow excited by the electrical current in perpendicular direction.
In turn, it leads to an inhomogeneous spin polarization in the sample due to the
asymmetry of electron scattering.

The spin Hall effect can be used for generating of spin polarized electrons which makes
it important for spintronic applications. The focus in the present work is put on the
theoretical investigation of the anomalous and spin Hall effects which remain central
in spintronics.

The main aim of the current work is to study the transport properties (longitudinal
and transverse) in metallic systems. In addition, the influence of the effect of the finite
temperatures (thermal lattice vibrations and thermal spin fluctuations) is considered.
The thesis is organized in the following way: Chapter 2 gives an overview of the main
concepts of density functional theory (DFT) as the calculations carried out in the
present work are based on DFT formalism. Chapter 3 deals with the Green function
formalism as implemented on the basis of the Korringa-Kohn-Rostoker (KKR) or mul-
tiple scattering theory (MST) formalism. The subject of Chapter 4 is the alloy-analogy
model implemented within the coherent potential approximation (CPA) which allows
us to take into account the effect of finite temperatures. Chapter 5 is devoted to the
calculation of the transport properties based on the Kubo formalism. In Chapter 6 a
detailed analysis of spin-related phenomena such as anomalous and spin Hall effects is
provided. Finally, in Chapter 7 the results obtained in the current work are presented
by means of corresponding publications.





2. Density functional theory

Calculating the electronic structure of many-body systems is a very complex task
with still very high demands to modern computer hardware. The traditional quantum
chemical approach to calculate the electronic properties of finite systems like molecules
or atomic clusters is usually based on the variational principle. Here, one normally
expands a trial wavefunction using a suitable basis set and applies the Rayleigh-Ritz
variation procedure in order to find the wavefunction, which minimizes the energy of
the whole system. Another method for the calculation of electronic properties, is the
so-called Korringa-Kohn-Rostoker Green function (KKR-GF) method, which is very
rarely used by quantum chemists. The method has its roots in the calculation of the
electronic band structure of solids and has also been applied to electronic systems
of finite extend. Within the KKR-GF approach the electrons are separated into two
groups. The core electrons, which are tightly bound to the nuclei are treated in an
atomic like way. The valence electrons, on the other hand, are able to move freely within
the whole system and are just scattered by the partially screened nuclear potentials.
Therefore, one can apply the multiple scattering formalism to the valence electrons,
giving access to the electronic Green function from which expectation values can be
calculated. In order to be able to do calculations for systems containing many atoms
it is also necessary to map the many-body electronic problem to a problem of a single
electron seeing an averaged effective potential. For this the very successful density
functional theory (DFT) is used.

The quantum description of electrons in a solid requires the solution of the correspon-
ding many body problem [14] which typically contains 1023 particles - both nuclei
and electrons. It is out of question to deal with this task directly, and the first ap-
proximation is to freeze the slow nuclei at fixed positions, by considering only the
electron subsystem in an external field. This is the so-called Born-Oppenheimer adia-
batic approximation. Therefore the system of interacting particles is moving in a static
external potential Vext. The wave function describing the stationary electronic state
Ψ(r1, · · · , rN) satisfies the Schrödinger equation:

Ĥ Ψ =

[
N∑
i

(
− ~2

2m
∇2
i + Vext(ri)

)
+
∑
i<j

U(ri, rj)

]
Ψ

= [ T̂ + V̂ + Û ] Ψ = EΨ , (2.1)

where the first term corresponds to the sum of the one-particle kinetic energies, the
second term describes interactions of each particle with the external potential (gen-
erated by the nuclei) and the last term contains the repulsive Coulomb interaction
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energy between the particles. The kinetic and electron-electron terms are independent
of the particular kind of the many-electron system. The system-specific information
(which nuclei and at which positions) is hidden entirely in the second term of the above
equation.

Due to their interaction, the motion of electrons in condensed media is correlated. At
first glance, this leads to the conclusion that it is impossible to describe such a system
using the approximation of independent particles. However, we can use a model system
of non-interacting particles, where the total energy E and the electron density n(r)
match the corresponding functions of the real system, and all interaction effects then are
described by an effective external field. This is the essence of density functional theory
(DFT). Formally DFT is based on the Hohenberg and Kohn theorems [15] whereby
there is a one-to-one correspondence between the ground-state electron density n0(r)
of a many-electron system and the external potential Vext(r), and thus all ground state
properties of the interacting electron gas can be retrieved in a unique way from the
electron density n(r) only, i.e. they can be described by introducing certain functionals
of the local density. Accordingly, the ground state energy of the ground state density
n0(r) can be written as following:

E0 = E [n0] = 〈Ψ0 [n0] | T̂ + V̂ + Û |Ψ0 [n0] 〉 , (2.2)

where the ground state wave function Ψ0 [n0] is a unique functional of n0. The external
potential can be represented by means of the density n(r) as following:

V [n] =

∫
d3r Vext(r)n(r) . (2.3)

The ground-state total energy of the system is given by the minimal value of the
functional E [n] which is reached for the ground-state electron density corresponding
to Vext(r).

E [n] = T [n] + U [n] +

∫
d3r Vext(r)n(r) . (2.4)

The way of minimizing the functional given by Eq. (2.4) was suggested by Kohn and
Sham [16]. Hereby, the energy functional for the non-interacting system can be written
as follows:

Es [n] = 〈Ψs [n] | T̂s [n] + V̂eff |Ψs [n] 〉 , (2.5)

where Ts is the kinetic energy of the non-interacting system and Veff is the effective
external potential. In case of ns(r) = n(r) Veff is chosen to be as:

Veff = Vext + U + (Ts − T ) . (2.6)

Then for an arbitrary non-interacting system one can solve the Kohn-Sham equa-
tions: [

− ~2

2m
∇2 + Veff(r)

]
φi(r) = Ei φi(r) , (2.7)
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where the electron orbitals φi(r) satisfy the following equation:

n(r) = ns(r) =
N∑
i

|φi(r)|2 . (2.8)

The effective single-particle potential can be expressed as follows:

Veff = Vext + Vee + Vxc (2.9)

= Vext + e2

∫
d3r′

n(r′)

|r′ − r| +
δExc [n(r) ]

δn(r)
, (2.10)

where the first term Vext describes the external potential, the second term Vee cor-
responds to the electron-electron Coulomb repulsion and the last term Vxc is an ex-
change correlation potential which contains many-electron effects (exchange and cor-
relation).

The Kohn-Sham equations given by Eq. (2.7) has to be solved self-consistently. This
means, one starts with an initial guess for the electron density n and computes the
corresponding Veff and then by substituting the effective potential into Eq. (2.7) one
obtains the functions φi. Using the calculated set of one-electron wave functions φi the
new electron density can be found (Eq. (2.8)). This procedure repeats until convergence
achieved. Therefore, the central issue in applying DFT is the way in which the exchange
correlation potential is defined. In case of the homogeneous electron gas the expression
for Veff is known, while for the inhomogeneous electron gas further approximations are
needed, e.g. such as the widely used local density approximation (LDA).

To treat relativistic effects one has to apply the four-current version of density func-
tional theory [17]. Within this theory the Dirac-Kohn-Sham equations are given as
follows [18]:

(−i~cα ·∇ + βmc2 + Veff + eα ·Aeff )ψi = Ei ψi , (2.11)

where the functions ψi are the four component wavefunctions (spinors), αi and β are
4 × 4 Dirac matrices [19]. The four component effective potential is given by V µ

eff =
(Veff ,−eAeff). The effective single particle potential is expressed as:

Veff = Vext + e2

∫
d3r′

n(r′)

|r′ − r| +
δExc[n(r), j(r) ]

δn(r)
(2.12)

and the effective vector potential is given by:

Aeff = Aext −
e

c

∫
d3r′

j(r′)

|r′ − r| +
δExc [n(r), j(r) ]

δj(r)
. (2.13)

where j(r) is the spatial part of the relativistic four component current jµ = (n, 1
c
j).

Due to the fact, that there is no simple approximation to Exc[n(r), j(r) ], the practical
application of Eq. (2.11) is quite difficult. However, by means of a Gordon decompo-
sition of the current further approximations can be made. This way, the part of the
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Dirac Hamiltonian (Eq. (2.11)) which depends on the effective vector potential can be
decomposed into orbital and spin contributions [20, 21]. This leads to the formulation
of relativistic spin density functional theory with exchange correlation energy being a
functional of n and the spin magnetization m, Exc[n(r),m(r) ]. Neglecting the or-
bital current and considering solely spin magnetization density m Eq. (2.11) can be
significantly simplified:

(−i~cα ·∇ + βmc2 + Veff + βσ ·Beff )ψi = Ei ψi , (2.14)

where

Veff = Vext + Vee +
δExc[n(r),m(r) ]

δn(r)
+
e

c

∫
d3 r′Aee(r

′) · δj(r′)

δn(r′)
(2.15)

and effective magnetic field

Beff = Bext +
δExc[n(r),m(r) ]

δm(r)
+
e

c

∫
d3r′Aee(r

′) · δj(r′)

δm(r′)
. (2.16)

Often the last terms that are responsible for magnetic interactions between the elec-
trons in Eq. (2.15) and Eq. (2.16) are neglected [22]. In case of collinear magnetism,
the corresponding effective magnetic field is given by Beff = Beff(r) êz with the mag-
netization pointing along the z axis. Then one can obtain the following form of the
Dirac-Kohn-Sham equations:

(−i~cα ·∇ + βmc2 + Veff + βσz ·Beff ) = Ei ψi (2.17)

with the effective potential

Veff = Vext + Vee +
δExc[n(r),m(r) ]

δn(r)
(2.18)

and the effective magnetic field

Beff = Bext +
δExc[n(r),m(r) ]

δm(r)
. (2.19)

Using spin projected densities n+(r) and n−(r) one can express the magnetization
density as:

n(r) = n+(r) + n−(r) (2.20)

m(r) = n+(r) − n−(r) . (2.21)

In the current work the calculations are based on the Eq. (2.17) with the local density
approximation to Vxc with the parametrization given by Vosko, Wilk, Nusair [23].

The central problem of the density functional theory is such that there is no simple
expression for the exchange correlation energy functional to work with in practice. The
simplest and most frequently used approximation for the exchange-correlation energy
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functional Exc[n(r) ] is the local density approximation (LDA), where the correspon-
ding density has a form similar to that for a homogeneous electron gas, but with
the density at every point in space replaced by the local value of the charge density
n(r). For the treatment of spin polarized systems the local spin density approximation
(LSDA) was suggested by Kohn and Sham [16]:

ELSDA
xc [n+(r), n−(r) ] =

∫
d3r n(r) εxc [n+(r), n−(r) ] , (2.22)

where n(r) = n+(r) + n−(r). Here εxc [n+, n− ] is the exchange-correlation energy per
electron of a homogeneous system with the densities n+(r) and n−(r) for spins up and
down, respectively. Both LDA and LSDA contain no fitting parameters. Furthermore,
since the DFT has no small parameter, a purely theoretical analysis of the accuracy
of different approximations is almost impossible. Thus, the application of any approx-
imation to the exchange-correlation potential in the real systems may be justified by
agreement between the calculated and experimental data.





3. Multiple scattering theory

Multiple scattering theory (MST) was first suggested by Rayleigh in the context of the
propagation of heat or electricity through inhomogeneous media [24]. In MST the cal-
culation of the properties of the complex system can be simplified by the decomposition
of the system into its constituent parts. Then the problem comes to find solutions for
the individual system components. As a result the overall solution of the considered
large system can be constructed by assembling solutions of its smaller parts. [25]

MST can be used in the electronic structure calculations of solid materials. In this
context it was shown by Korringa [26] that on the basis of MST the eigenvalues and
eigenvectors describing electronic states of the translationally invariant system can be
calculated. Few years later the same secular equation was derived by Kohn and Ros-
toker based on the variational formalism [27]. These works provide a basis on which the
modern Korringa-Kohn-Rostoker Green function (KKR-GF) method rests. The central
role in this method is played by the single-particle Green function (GF). The advantage
of the method is that it provides a direct access to the GF of the considered system and
as a result the wide spectra of the physical properties can be calculated. Particularly
the method avoids difficulties in treating systems with broken translational symmetry
(e.g. the presence of impurities or disordered alloys) as it allows for the statistical aver-
age of the GF of a statistical ensemble which can be used to calculate average physical
properties of the system by means of the coherent potential approximation (CPA) in-
corporated into the method. Another advantage of equal importance in the KKR-GF
method is the possibility to completely separate the lattice-dependent (structural) part
leading to structural constants for a particular lattice and a potential-dependent part
contained in the t-matrix determined for each potential type of the considered system.
Such an approach provides an efficient numerical treatment of complex systems.

3.1. Green function

Green function formalism employed in the KKR methods is based on the multiple
scattering theory. The Green function is defined as a resolvent of the operator Ĥ:

(E − Ĥ) Ĝ = 1̂ , (3.1)

where Ĥ is a one-particle Hamiltonian and E-complex scalar. For E ∈ IR it is associ-
ated with the total energy of the system.
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Thus, Ĝ is an analytic function of the complex energy E apart from the poles precisely
located at the discrete eigenvalues of Ĥ, corresponding to electron states. A way to
avoid such singularities for real energies is to introduce the side limits of Ĝ, namely:

Ĝ± = lim
δ→0+

(E − Ĥ ± iδ)−1 , (3.2)

where the Ĝ+ is the so-called retarded and Ĝ− the advanced Green function, respec-
tively. G+(−) are both analytical in the upper (lower) complex plane. In the following
only the retarded Green function will be considered thus the (±) symbol will be omit-
ted.

Green function can be written in a spectral representation using the corresponding
eigenstates |ψi〉 and eigenvalues Ei of Ĥ:

Ĝ± =
∑
i

|ψi〉 〈ψi|
E − Ei ± iδ

. (3.3)

If the continuous spectrum is considered, then the summation in Eq. (3.3) is replaced
by integration. The advanced and retarded Green functions are connected by the
important property:

Ĝ+† = Ĝ− (3.4)

and their difference provides the homogeneous Green function:

G̃ = Ĝ+ − Ĝ− (3.5)

= 2i
∑
i

|ψi〉〈ψi| Im
1

E − Ei + iδ

= 2i ImĜ+ ,

which can be used to get the Green function for any complex argument.

Ĥ can be split into the unperturbed part Ĥ0 describing a free electron and the pertur-
bation V̂ :

Ĥ = Ĥ0 + V̂ . (3.6)

The corresponding resolvent of Ĥ0:

(E − Ĥ0) Ĝ0 = 1̂ , (3.7)

is the free particle Green function Ĝ0. Using Ĝ0 one can compute the Green function
Ĝ using Dyson equation:

Ĝ = (E − Ĥ0 − V̂ )−1 =
[
(E − Ĥ0)(1 − Ĝ0 V̂ )

]−1

(3.8)

= (1 − Ĝ0 V̂ )−1 Ĝ0 (3.9)

= Ĝ0 + Ĝ0 V̂ Ĝ . (3.10)
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Obviously,

Ĝ = Ĝ0 + Ĝ0 V̂ Ĝ0 + Ĝ0 V̂ Ĝ0 V̂ Ĝ0 + . . . (3.11)

This repeated interaction with the potential V̂ can be summarized by the so-called
scattering operator T :

T̂ = V̂ + V̂ Ĝ0 V̂ + V̂ Ĝ0 V̂ Ĝ0 V̂ + . . . (3.12)

= V̂ + V̂ Ĝ0

(
V̂ + V̂ Ĝ0 V̂ + . . .

)
(3.13)

= V̂ + V̂ Ĝ0 T̂ . (3.14)

Thus, Eq. (3.10) can be written as:

Ĝ = Ĝ0 + Ĝ0 T̂ Ĝ0 . (3.15)

Comparing the expression given by Eq. (3.10) with the one given by Eq. (3.15) and
using Eq. (3.9) one can obtain the following expression (so-called Lippmann-Schwinger
equation) for the T -operator:

T̂ = V̂ + V̂ Ĝ0 T̂ (3.16)

= V̂ + V̂ Ĝ V̂ (3.17)

= V̂ (1 − Ĝ0 V̂ )−1 . (3.18)

Therefore the problem to find Ĝ is reduced to the calculation of the T -operator, which
in turn, according to Eq. (3.18), is reduced to finding the inverse of the operator
(1 − Ĝ0 V̂ ).

3.2. Scattering path operator

As was mentioned previously the MST problem is split into the single potential prob-
lems, i.e. the considered system is decomposed into the atomic regions (V̂ =

∑
i vi)

using for example the muffin-tin construction. In this case, the space is divided into
non-overlapping spheres centered at each site. Inside the sphere the potential is as-
sumed to be spherically symmetric and outside each sphere it is set to a constant value.
Each atomic region is treated as a single site problem, which will be discussed in more
detail in the following sections.

According to Eq. (3.16) the scattering operator T̂ can be written as a sum of the
individual scattering events vi as:

T̂ =
∑
i

T̂ i =
∑
i

vi (1 + Ĝ0 T̂ ) , (3.19)
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where the operators T̂ i are defined as:

T̂ i = vi + vi Ĝ0

∑
j

T̂ j (3.20)

= vi (1 + Ĝ0

∑
j

T̂ j) (3.21)

= vi (1 + Ĝ0 T̂
i +

∑
j 6=i

Ĝ0 T̂
j) (3.22)

= (1 − vi Ĝ0)−1vi (1 +
∑
j 6=i

Ĝ0 T̂
j) . (3.23)

It is convenient to introduce a corresponding single-site scattering operator ti:

ti = vi + vi Ĝ0 t
i = (1 − vi Ĝ0)−1 vi . (3.24)

Using the above definition for the t-operator Eq. (3.23) can be re-written as follows:

T̂ i = ti + ti Ĝ0

∑
j 6=i

T̂ j . (3.25)

Furthermore it is advantageous to introduce the scattering path operator τ̂ ij which was
first suggested by Györffy and Stott [28]:

T̂ =
∑
i,j

τ̂ ij . (3.26)

In contrast to the single site-scattering operator which describes all scattering events
at one site including on-site scattering, the scattering path operator takes into account
all possible scattering events starting at site i and ending at site j, i.e. describing the
transformation of the incoming waves to outgoing waves from all scattering sites:

τ̂ ij = tiδij + tiĜ0 t
k δkj +

∑
k 6=i

∑
l 6=k

ti Ĝ0 t
k Ĝ0 t

l δlj + . . . (3.27)

Hereby Eq. (3.15) can be re-written in terms of the scattering path operator:

Ĝ = Ĝ0 +
∑
i,j

Ĝ0 τ̂
ij Ĝ0 . (3.28)

As one can see from the above equation the calculation of the Green function of the
system is reduced to the calculation of the scattering path operator, together with the
free Green function Ĝ0.

3.3. Relativistic free electron Green Function

Relativistic free electron Green function in the real space representation is defined as
a resolvent of the corresponding Dirac Hamiltonian [29]:(

E − cα · p − βmc2)G0(r, r′, E) = δ(r− r′) 14 , (3.29)
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where p = −i~∇. The Dirac matrices αi and β are defined in the following way:

α =

(
0 σ
σ 0

)
, β =

(
12 0
0 −12

)
, (3.30)

where σ denotes the 2×2 Pauli matrices. Then, the corresponding solution of Eq. (3.29)
is given by:

G0(r, r′, E) = − 1

~2c2
(cα · p + βmc2 + E)

eipR

4πR
, (3.31)

where R = r − r′. Using the expansion of a plane wave in terms of the complex
spherical harmonics [19]:

eipr

4πR
= ip

∑
l,m

hl(pr) jl(pr
′)Y m

l (r̂)Y m∗
l (r̂′) , (3.32)

one obtains an expression for the free-particle Green function in spherical coordi-
nates [30]:

G0(r, r′, E) = − ip
∑
κ,µ

[ jµκ (r)hµ+×
κ (r′) Θ(r′ − r)

+ hµ+
κ (r) jµ+×

κ (r′) Θ(r − r′) ] (3.33)

with p being a relativistic momentum p =
√
E2/c2 −m2c2 [19] and with the bispinors:

jµκ (r) =

√
E +mc2

c2

(
jl(pr)χ

µ
κ(r̂)

ipcSκ
E+mc2

jl̄(pr)χ
µ
−κ(r̂)

)
, (3.34)

hµ+
κ (r) =

√
E +mc2

c2

(
h+
l (pr)χµκ(r̂)

ipcSκ
E+mc2

h+
l̄

(pr)χµ−κ(r̂)

)
, (3.35)

where jl(pr) and h+
l (pr) are the spherical Bessel (the incoming regular solution) and

Hankel functions (the outgoing irregular solution), respectively, that are solutions to the
free electron Schödinger equation in spherical coordinates. Furthermore, Sκ = sgn κ
and l̄ = l − Sκ is orbital angular momentum quantum number. The left-hand side
solutions of the Dirac equation (row spinors) are marked with the symbol ”×”:(

gκ(pr)χ
µ
κ(r̂)

ifκ(pr)χ
µ
−κ(r̂)

)×
=
(
gκ(pr)χ

µ
κ(r̂), −ifκ(pr)χµ−κ(r̂)

)†
. (3.36)

For the cases considered here, these are obtained by transposition of the Dirac spinor
with complex conjugation applied only to the spin-angular functions. If the free particle
Green function is available then one can construct the single-site Green function using
the Dyson equation (3.15).
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3.4. Dirac equation

In order to compute the Green function of a considered magnetic system it is necessary
to solve the single-site Dirac equation in the presence of an external magnetic field. The
effective potential Veff(r) is approximated using the muffin-tin construction, namely the
space is divided into non-overlapping (touching) muffin-tin spheres centered at each site
i. Such a single site potential vi is assumed to be spherically symmetric inside each
sphere and constant outside. Then the single-site Dirac equation has the form:(

− i~cα · ∇ + βmec
2 + Veff [n,m ](r)

+ βσz Beff [n,m ](r)
)
ψν(r) = Eν ψν(r) (3.37)

with

Beff(r) = Bext(r) + Bxc(r)

= Bext(r) +
δExc[n,m ]

δm(r)
. (3.38)

In spherical coordinates Eq. (3.37) can be written as:(
Ĥ − E

)
ψΛ(r) = 0 (3.39)

with

Ĥ = iγ5 σr c
( ∂
∂r

+
14 − β K̂4

r

)
+ Veff(r) + βσz Beff(r) +

c2

2
(β − 14) , (3.40)

where K̂ is the spin-orbit operator, Λ = (κ, µ) a short-hand notation for the combined
spin-orbit and magnetic quantum numbers κ and µ. The Dirac matrices αi, β are
defined in Eq. (3.30) and the matrix γ5 is defined in the following way:

γ5 =

(
0 −12

−12 0

)
. (3.41)

The Dirac Hamiltonian commutes with the operators σ2, ĵ2 and ĵz, total angular
momentum operator j and with the spin-orbit operator K̂ = β (14 + l̂·σ). In Eq. (3.40)
the following equation for the operator σr = σ·r

r
holds:

σr χΛ(r̂) = −χ−Λ(r̂) , (3.42)

where −Λ = (−κ, µ).

The eigenfunctions of the operators σ2, ĵ2, ĵz and K̂ are the spin-angular functions
defined as [19]:

χΛ(r̂) =
∑
ms

C
(
l
1

2
j; ml ,ms

)
Y µ−ms
l (r̂)χms (3.43)
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with the Pauli spin functions:

χ+ 1
2

=

(
1
0

)
and χ− 1

2
=

(
0
1

)
, (3.44)

Clebsch-Gordan coefficients C
(
l 1

2
j; ml ,ms

)
and spherical harmonics Y µ−ms

l .

The spin-orbit quantum number κ and the magnetic quantum number µ are the eigen-
values of the operators K̂ and ĵ2:

K̂ χΛ(r̂) = −κχΛ(r̂) , (3.45)

ĵz χΛ(r̂) = µχΛ(r̂) , (3.46)

where ĵz is the z-component of the total angular momentum operator ĵ:

ĵ2 χΛ(r̂) = j(j + 1)χΛ(r̂) . (3.47)

Considering Beff = 0 (paramagnetic case) in Eq. (3.40) the following ansatz can be
used to solve the Dirac equation of a spherical potential:

ψΛ(r) =

(
gκ(r)χΛ(r̂)
ifκ(r)χ−Λ(r̂)

)
, (3.48)

where gκ(r) and fκ(r) are the large and small components of the Dirac bispinor, res-
pectively. In the case of Beff 6= 0 the symmetry of the system is broken in spin space
and it is necessary to use an extended ansatz which can be obtained as a superposition
of the partial waves with different spin-angular character [31]:

ψν(r) =
∑

Λ

ψΛν(r) =
∑

Λ

(
gκν(r)χΛ(r̂)
ifκν(r)χ−Λ(r̂)

)
, (3.49)

where linearly independent wave functions are labeled with the index ν. If one substi-
tute this bispinor into Eq. (3.39) one obtains the following expressions for the coupled
radial wave functions [32]:

∂

∂r
PΛν(r) = − κ

r
PΛν(r) +

1

c2

[
E + c2 − Veff(r)

]
QΛν(r)

+
Beff(r)

c2

∑
Λ′

〈χ−Λ|σz |χ−Λ′〉QΛ′ν(r) , (3.50)

∂

∂r
QΛν(r) =

κ

r
QΛν(r) −

[
E − Veff(r)

]
PΛν(r)

+ Beff(r)
∑
Λ′

〈χΛ|σz |χΛ′〉PΛ′ν(r) (3.51)

with PΛν(r) = r gκν(r) and QΛν(r) = cr fκν(r). The spin-angular matrix elements are
nonzero only for the following conditions:

〈χΛ|σz |χΛ′〉 = δµµ′


− µ

κ+ 1
2

for κ = κ′

−
√

1 − µ2

(κ+ 1
2

)2
for κ = −κ′ − 1

0 otherwise .

(3.52)
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Considering only allowed values for the quantum number κ:

κ = −l − 1 if j = l +
1

2
, (3.53)

κ = l if j = l − 1

2
(3.54)

a coupling between the wave functions in Eq. (3.50) and Eq. (3.51) is obtained if
∆l = l − l′ = 0;±2 with ∆µ = 0. In practice, only coupling terms with ∆l = 0
are kept as they provide a much larger contribution compared to the terms with ∆l =
±2 [31]. However, it was shown that these terms may be important when calculating
such quantities as magnetocrystalline anisotropy [33].

3.5. Single-site scattering Green function

The single-site Green function Gn can be expressed in terms of the free particle Green
function G0 via the Dyson equation Eq. (3.15). In order to obtain this expression it
is necessary to determine the single-site t-matrices. This can be done by accounting
for the matching conditions for the wave functions. Since the space is divided into two
regions (with nonzero potential inside the muffin-tin sphere (r < rmt) and with zero
potential outside (r ≥ rmt)), the corresponding wave functions inside and outside the
sphere have to match each other smoothly at the boundary. Therefore, the regular wave
function outside the muffin-tin sphere can be expressed as a combination of incoming
and outgoing waves (this holds for rmt < r <∞):

ZΛ(r, E) =
∑
Λ′

jΛ′(r, E) t−1
Λ′Λ(E) − ip h+

Λ(r, E) . (3.55)

Using this matching conditions, the expression for the t-matrix can be determined [34].
Finally for a single scatterer i the single-site Green function in coordinate representation
becomes:

Gi(r, r′, E) =G0(r, r′, E)

+

∫ ∫
d3r′′ d3r′′′G0(r, r′′, E) ti(r′′, r′′′, E)G0(r′′′, r′, E) (3.56)

with the matrix elements of t-matrix given as:

tiΛΛ′(E) =

∫ ∫
d3r d3r′ j×Λ (r, E) ti(r, r′, E) jΛ′(r

′, E) . (3.57)

Inserting the expression for G0 (Eq. (3.33)) into Eq. (3.56) leads to the following ex-
pression for the single-site Green function:

Gi(r, r′, E) =
∑
ΛΛ′

ZΛ(r, E) tiΛΛ′(E)Z×Λ′(r
′, E)

−
∑

Λ

ZΛ(r, E) J×Λ (r′, E) Θ(r′ − r)

−
∑

Λ

JΛ(r, E)Z×Λ (r′, E) Θ(r− r′) , (3.58)
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where ZΛ and JΛ denote regular and irregular solutions and satisfy the following con-
ditions for r ≥ rmt:

ZΛ(r, E) =
∑
Λ′

jΛ′(r, E) (ti)−1
Λ′Λ(E) − ip h+

Λ(r, E) (3.59)

JΛ(r, E) = jΛ(r, E) . (3.60)

3.6. Multiple-scattering Green function

The multiple scattering Green function describing the whole system with an arbitrary
array of scatterers can be constructed in a similar way as performed for the single-site
Green function. As a starting point one can use the following Dyson equation:

Gnn = Gn + Gn T nnGn , (3.61)

where T nn describes the total scattering of the system omitting site n. In real space
representation the Green function can be written as follows:

G(r, r′, E) = Gn(r, r′, E)

+

∫ ∫
d3r′′ d3r′′′Gn(r, r′, E)T nn(r′′, r′′′, E)Gn(r′′′, r′, E) . (3.62)

According to Eq. (3.26) T nn has a following form:

T nn(r, r′, E) =
∑
i 6=n

∑
j 6=n

τ ij(r, r′, E) , (3.63)

where the multiple scattering path operator τ ij is given in Eq. (3.27):

τ ij(r, r′, E) = δij ti(r, r
′, E)

+

∫ ∫
d3r′′ d3r′′′ ti(r, r

′′′, E)
∑
k 6=i

G0(r′′, r′′′, E) τ kj(r′′′, r′, E) . (3.64)

As one can see ti(r, r
′, E) is non-zero only when r and r′ are located in the same atomic

cell i. The same applies to τ kj, namely when r and r′ belong to the atomic cell k and
j, respectively, the provided contribution is non-zero. Furthermore, the free electron
Green function can be re-written in terms of cell-centred coordinates:

G0(Ri + ri,Rj + r′j, E) = Gij
0 (ri, r

′
j, E) = G0(r,Rj −Ri + r′j, E) . (3.65)

The Hankel functions hΛ(r, E) are irregular at the atomic positions Ri and can be
expressed in terms of the Bessel functions around all other atomic cells at Rj [25, 29].
Finally, the free electron Green function acquires the form:

Gij
0 (ri, r

′
j, E) =

∑
ΛΛ′

jΛ(ri, E)Gij
0,ΛΛ′(E) j×Λ′(r

′
j, E) . (3.66)
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The expansion coefficients Gij
0,ΛΛ′(E) known as real-space structure constants depend

exclusively on the spatial arrangement of the sites and completely are independent
on the individual potentials on these sites Vi. Inserting the expression for the free
electron Green function obtained in Eq. (3.66) into the equation for the scattering
path operator (Eq. (3.64)) and multiplying from the left with j×Λ (ri, E) and from the
right with j×Λ′(r

′
j, E) followed by further integration over ri and rj, leads to the following

matrix equation for τ ijΛΛ′ :

τ ijΛΛ′(E) = δij t
i
ΛΛ′(E) +

∑
k 6=i

∑
Λ′′Λ′′′

tiΛΛ′′(E)Gik
0,Λ′′Λ′′′(E) τ kjΛ′′′Λ′(E) (3.67)

with the matrix elements given as:

τ ijΛΛ′(E) =

∫ ∫
d3r d3r′ j×Λ (ri, E) τ ij(ri, r

′
j, E) jΛ′(r

′
j, E) . (3.68)

Furthermore, inserting the expression obtained for the single-site Green function Eq. (3.58)
and the expression for the T -matrix Eq. (3.63) into the Dyson equation Eq. (3.62), one
obtains an expression for the relativistic multiple scattering Green function:

G(ri, r
′
j, E) =

∑
ΛΛ′

ZΛ(ri, E) τ ijΛΛ′(E)Z×Λ′(r
′
j, E)

−
∑

Λ

[ ZΛ(ri, E) J×Λ (r′i, E) Θ(r′ − r)

+ JΛ(ri, E) Z×Λ (r′i, E)Θ(r − r′) ] δij . (3.69)

Comparing the Green function of the entire system given by the above equation with
the single site Green function (Eq. (3.58)) one can notice that the main difference is
that the single site t-matrix is replaced by the scattering path operator τ ij.

The multiple scattering Green function provides a straightforward way to calculate
various physical observables by taking the trace of the Green function and the necessary
operator, namely:

〈Ô〉 = − 1

π
Im Tr Ô Ĝ . (3.70)

Particularly, the density of states n(E), the charge density ρ(r), spin- and orbital
magnetic moments can be calculated using the Green function:

n(E) = − 1

π
Im Tr

∫
Ω

d3r G(r, r, E) , (3.71)

ρ(r) = − 1

π
Im Tr

EF∫
dE G(r, r, E) , (3.72)

µspin = − 1

π
Im Tr

EF∫
dE

∫
Ω

d3β σz G(r, r, E) , (3.73)

µorb = − 1

π
Im Tr

EF∫
dE

∫
Ω

d3lz G(r, r, E) . (3.74)
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As one can see for these quantities only the site-diagonal part of G(ri, r
′
j, E) is needed

and thus only the scattering path operators τ ii need to be evaluated.

3.7. Coherent potential approximation (CPA)

To compute physical properties of randomly disordered alloys one needs an appro-
priate treatment of disorder. One of the widely used methods in the calculation of
the electronic structure of systems with broken translational symmetry, particularly
substitutional alloys, is a single site approach - the coherent potential approximation
(CPA) [25]. The main aim is to construct a translationally invariant medium, which
reflects the properties of the real material in an averaged way.

In case of disordered systems, the corresponding Hamiltonian can be split into the
translationally-invariant potential K and the randomly fluctuating on-site part of the
potential [35]:

H = K +
∑
i

εi a
†
i ai , (3.75)

where a†i and ai are the creation and annihilation operators for electron on site i, respec-
tively. Furthermore, one can introduce an arbitrary effective potential which possesses
the symmetry of the empty lattice σ. Taking this into account, the Hamiltonian of the
system (Eq. (3.75)) can be re-written in the following manner:

H = K +
∑
i

σ a†i ai︸ ︷︷ ︸
H0

+
∑
i

(εi − σ) a†i ai = H0 + V , (3.76)

where the last term is a randomly fluctuating on-site potential V =
∑

i Vi and H0 is
a Hamiltonian of the unperturbed system.

In that case, the averaged Green function can be written as:

〈G(E) 〉 = 〈 (E − H)−1 〉 = 〈 (E − H0 − V )−1 〉 . (3.77)

Introducing the so-called electron self-energy operator Σ(E), which remains unknown,
however includes all disorder effects, Eq. (3.77) can be modified:

〈G(E) 〉 = 〈 (E − H0 − V )−1 〉 = (E − H0 − Σ(E))−1 . (3.78)

As it can be seen from Eq. (3.78) it is necessary to construct a Green function corres-
ponding to the Hamiltonian H0 + Σ(E) in such a way, that it is equal to the statistically
averaged Green function of the original Hamiltonian H = H0 + V .

Using the definition of the unperturbed Green functionG0(E) = (E−H0)−1, Eq. (3.78)
can be re-written as:

〈G(E) 〉 = 〈 (G−1
0 − V )−1 〉 = (G−1

0 − Σ(E))−1 . (3.79)
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The solution of Eq. (3.79) with respect to Σ(E), is obtained by sum of the infinite
series:

Σ(E) = 〈V 〉 + 〈V G0 V 〉 − 〈V 〉G0 〈V 〉 + 〈V G0 V G0 V 〉 − · · · (3.80)

The above solution expressed through the infinite series is an exact solution. To cal-
culate such a sum directly is impossible therefore further approximations are needed.
Following the idea discussed in Ref. [36, 37], namely restricting to the terms containing
first order in powers of 〈V 〉, for ∀ site i, Eq. (3.80) can be written as:

Σi(E) ≈ 〈Vi 〉 + 〈ViG0 Vi 〉 + 〈ViG0 ViG0 Vi 〉 + · · ·

=
〈 Vi

1 − G0 Vi

〉
= 〈 ti 〉 = 0 (3.81)

with 〈 ti 〉 being a single-site t-matrix. The CPA condition requires that Σi = 〈 ti 〉 =
0. In that case, terms such as 〈 tiG0 tj 〉 are also included however the averaging is
restricted to an averaging at single site i independently of the surrounding sites.

Altogether, using Eq. (3.81) with G0(E) = (E − H0)−1 = (E − K − σ)−1, one
needs to determine an effective potential σ. Let’s consider a binary disordered alloy
such as A1−xBx where atomic site can be occupied with atom specie A with probability
xA = x or with atom specie B with probability xB = 1 − x (Fig. (3.1)). In this case
to calculate an observable one needs to take into account all possible arrangements of
atoms A and B on all possible positions in the solid, namely one needs to calculate the
average of all possible configurations. In that case, Eq. (3.81) (taking into account the
CPA restriction) is modified in the following way:

x
εA − σ

1 − (εA − σ)G0

+ (1− x)
εB − σ

1 − (εB − σ)G0

= 0 , (3.82)

where VA,B = εA,B − σ. Equivalently, one can re-write Eq. (3.82) in terms of the
scattering path operator [30]:

x τ iiA + (1− x) τ iiB = τ iiCPA , (3.83)

where τ iiA(B) is a scattering path operator of the effective medium with an atom A(B)

on site i. This component projected (α = A,B) scattering path operator is given as:

τ iiα =
[
t−1
α − t−1

CPA − τ−1
CPA

]−1
. (3.84)

The effective scattering t-matrix tCPA can be determined through the iterative proce-
dure starting from a reasonable guess.

It is necessary to mention as the CPA is a mean field theory, it does not account for any
short-range ordering effects that may be of significant importance in case of realistic
systems. In order to overcome this shortcoming the cluster generalization of the CPA
was suggested - the so-called non-local coherent potential approximation (NLCPA)
which was implemented within the multiple-scattering KKR formalism [38–40].
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Figure 3.1.: The configurational average of the statistically disordered alloy AxB1−x is
represented by an effective CPA medium (gray spheres).





4. Finite temperature effect

In ideal crystals (i.e., systems with perfect translational symmetry) the electronic states
represent the so-called Bloch waves (solutions to the Schrödinger equation for a pe-
riodic real-valued potential), which are infinitely spread over the whole space. This
reflects a physical property of the conducting electrons - in a perfect metal their mean
free path (average distance between the subsequent scattering events) is infinite. In
other words, the conductivity of electrons in the Bloch states is infinite and becomes
finite only if the translational invariance is broken. In a real solid this can have many
reasons: any type of chemical disorder, any local impurity or dislocation, i.e. any
randomness, including also the ground-state electron-electron interactions or even a
finiteness of the sample – all this leads to a break of translational symmetry. There-
fore, the study of the transport properties of a solid first of all means an adequate
description of the relevant translational-invariance breaking mechanisms, or in other
words - the account of disorder mechanisms, since any translational symmetry break
(except of maybe the finiteness of a sample) we call “disorder”. When analyzing the
relevance of the disorder mechanisms relevant for the transport properties in a particu-
lar situation, it is convenient to classify them into static and dynamic (e.g. thermally
induced). Altogether here we will consider only four basic of these: chemical (substi-
tutional impurities), structural (various defects), magnetic and electron correlations.
The chemical one can be considered as an exclusively static type, whereas the others,
despite they can be present at zero-temperature as well, can also be thermally induced.
For example, the magnons (thermally induced dynamical magnetic fluctuations) can be
“frozen” at zero temperature - this corresponds to a so-called magnetic-glass state. An
analogical situation is found for phonons – the amorphous solids with static structural
disorder represent a typical frozen-phonon state. On the other hand, both dynamical
phonons and magnons can be induced at zero temperature externally - by a mechanical
kick or an electromagnetic pulse. In any case, these kinds of disorder show a very pro-
nounced temperature dependence, while chemical disorder is in general temperature
independent. Another scattering mechanism leading to finite electrical conductivity is
electron-electron scattering. It is temperature dependent, however, its impact on the
resistivity is typically insignificant, except for systems with highly localized electrons,
where correlations become important. Such systems will not be in our focus.

There is an interplay between various types of disorder that are simultaneously present
in a solid. If these have a small amplitude, then the model of serial resistors (each
representing a separate source of disorder) can be applied to describe the temperature
dependence of the electrical resistivity. Namely, each scattering mechanism is assigned
to an individual resistor connected in series, thereby reflecting that the scattering
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Figure 4.1.: Types of disorder: chemical (left panel), random atomic displacements
(middle panel) and magnetic fluctuations (right panel) [41].

events are independent of each other. On the other hand, for a higher degree of
disorder, one has to deal with a net of resistors connected in parallel. At any given
temperature, different channels are active and contribute to the scattering processes.
Further increase of disorder leads to a saturation of the resistivity, indicating that all
channels are involved to some extent and the current already uses the most conductive
ones. Since in this state translational symmetry breaking induced by different types of
disorder are strongly superimposed and interferent there is no rigorous first-principles
approach dealing with this situation which has been proposed so far.

In nonmagnetic metals, the scattering mechanism due to phonons can be approximated
by the Bloch-Grüneisen formula [42]: within the low temperature regime (T � ΘD,
where ΘD is the Debye temperature), the resistivity might behave strongly nonlinearly
ρ(T ) ∼ βT 2 + γT 5; whereas in the high-temperature regime (T � ΘD) it changes
according to ρ(T ) ∼ α · T (Bloch-Grüneisen law), where α is the electron-phonon cou-
pling constant. Quite often, such a linear behavior is observed in the low temperature
regime as well, in particular, for the experimental data and present ab initio results [43].
Another scattering mechanism, specific for the magnetic systems, arises due to scatter-
ing by spin fluctuations. At zero temperature since all magnetic moments are perfectly
aligned, there is no contribution ρmag due to that mechanism. For T > 0 the magnetic
disorder induced by thermal fluctuations results into a corresponding increase of the
resistivity. Above the critical temperature (TC), when the fluctuations of local mag-
netic moments are saturated, resistivity shows a constant temperature-independent
behavior.

These two scattering sources are extremely temperature-dependent. Therefore, a cen-
tral aspect of this work is to account both scattering mechanisms simultaneously within
an arbitrarily wide temperature interval.
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4.1. Alloy-analogy model within CPA

Originally the CPA formalism was formulated to describe chemically disordered al-
loys [44]. Recently it was further modified in order to account for the lattice vibra-
tions [45] and spin fluctuations [46, 47], which broadly extends its application regime.
The approach to account for both types of disorder is essentially the same, being based
on the same original static alloy model. This becomes possible mainly due to the fact
that the dynamical phonons and magnons are much slower compared to the electronic
propagation, so that an electron “sees” a static situation at any instant in time. Due
to the single-site nature of the CPA, which neglects the inter-site chemical correlations,
the same holds here: the direction of the magnetic moment on a given site (or the posi-
tion of a given atom) is independent on the position of the moment on the other one (or
of the other atoms) - i.e., the magnons and phonons are treated as ”uncorrelated”.

The difference in the description of the lattice vibrations and spin fluctuations lies in
the particular construction of the perturbed Green functions (either by atomic dis-
placement or by rotation of the local magnetic moment). In general, the CPA medium
Green function is given as an average weighted sum of the corresponding projected
Green functions [41]:

G(r, r ′, E) =
∑
α

xαGα(r, r ′, E),
∑
α

xα = 1 , (4.1)

where α corresponds to a particular discrete atomic displacement in case of lattice
vibrations, and stands for a particular discrete direction of the local magnetic moment
in case of spin fluctuations. The individual projected Green functions Gα(r, r ′, E) are
computed in the usual way (see Chapter 2, Section 3.6, Eq. (3.69)) using the spherical
solutions Zα, Jα, with the component-projected τα given as follows [41]:

τα =
[
t−1
α − t−1

CPA + τ−1
CPA

]−1
. (4.2)

Dealing with thermal lattice vibrations (tα = tv), one needs to compute the matrix tv
given by the shifts of the atomic position {∆R}. This can be done by applying the
transformation matrix U (the nonrelativistic version of this is given in Ref. [48, 49] and
transformed to the relativistic form via a Clebsh-Gordan transformation [19]):

tv = U(∆R) t U(∆R)−1 . (4.3)

The thermal distribution of these atomic displacements can be set in several ways.
It can be constructed either based on experiment (active vibrational modes can be
determined from infrared and Raman spectroscopy) or by performing numerically de-
manding but straightforward calculations of the phonon modes [50]. However, as it
was found out when dealing with transport properties, another much simpler way can
be used: to choose the atomic displacements so that they reproduce the thermal root
mean square average displacement

√
〈u2〉T for a particular temperature T . There are

different ways to obtain
√
〈u2〉T . In the current work, it is calculated on the basis of

the Debye model, using the expression:
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Figure 4.2.: Distribution of atomic displacements (considering 14 directions) conform
with the crystal symmetry. As sufficient subset of displacements is marked
by red arrows (Nv = 6).

〈u2〉T =
3~2

mkBΘD

[
Φ(ΘD/T )

ΘD/T
+

1

4

]
, (4.4)

where Φ(ΘD/T ) is a Debye function, ~ - Planck constant, kB - Boltzmann constant, ΘD

- Debye temperature. The last term is connected with the zero-point vibration energy
in the quantum theory of the harmonic oscillator, and can be neglected. The function
Φ(ΘD/T ) was introduced numerically by Debye and its values are tabulated. On the
other hand, the root mean square displacement can be expressed as follows:

〈u2〉T =
Nv∑
v=1

xv |∆Rv(T ) | , (4.5)

where Nv is a number of displacement vectors. For simplicity the probability xv for
the specific atomic shift is chosen as 1/Nv. In calculations of transport coefficients, it
turned out, that the result is not much sensitive to the chosen distribution of atomic
displacements. For this reason, it is often enough to take a minimal number of lattice
degrees of freedom (in the present work Nv = 14). The corresponding distribution of
the displacement vectors is shown in Fig. (4.2).

Thermal spin fluctuations (tα = tf ) perturb the t matrix mainly through the rotation
of the magnetic moment. This can be taken into account by applying the spin rotation
matrix R determined by the set of directional vectors {ê}:

tf = R(ê) t R(ê)−1 . (4.6)

In contrast to the phonon case, where the final result is more sensitive to the ampli-
tudes rather than the angular distribution of the atomic shifts, in the magnon case,
the angular distribution of the magnetic moments strongly depends on the given tem-
perature, and in turn, becomes critical for the final result. There are different ways to
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construct a realistic temperature dependent distribution of the magnetic moments. It
might be obtained from first principles calculations. However, this way is numerically
very demanding similar to the case of phonon spectra. Alternatively, the distribution
of the magnetic moments can be reasonably predefined, e.g. for the ferromagnet one
may assume a Gibbs distribution. In this case, the adjusting of the Gibbs parame-
ters can be done using the experimental temperature dependence of magnetization.
It turned out that such an approach is often sufficient and results in good agreement
with experimental data. The most simple distribution is based on the disordered local
moment (DLM) approach with only two degrees of freedom (two directions for the
magnetic moments); see Fig. (4.3), top panel. This approach describes the localized
magnetic systems in the fully paramagnetic regime reasonably well, whereas in the
region T < TC strong deviations are observed due to the neglect of the fluctuations
along other directions. The corresponding distribution is determined as follows:

1

Nf

Nf∑
f=1

êf = x↑ ẑ + x↓ (−ẑ) (4.7)

with x↑ + x↓ = 1, and Nf = 2 is the number of orientation vectors êf . A much better
description is provided by an isotropic spherical spin configuration model (Fig. (4.3),
middle panel). In this case, the probability xf for the orientation vector êf pointing
along the specific direction determined by the spherical angles (θf , φf ) is given by the
following expression:

xf =
sin θf · exp [w(T ) ẑ · êf/kBT ]∑

f ′

sin θf ′ · exp [w(T ) ẑ · êf ′/kBT ]
, (4.8)

where w(T ) denotes a temperature dependent Weiss field-like parameter [51]. As men-
tioned, in contrast to the DLM spin configuration model, the distribution on a sphere
allows to account for the transverse fluctuations, thereby providing a better description
of the experimental situation. Another way for the construction of the distribution
of the magnetic moments is to orient these along the surface of a cone as shown in
Fig. (4.3) (bottom panel). In addition, there are more factors which make the mag-
netic distribution to deviate from a Gibbs or some other predefined distribution, such
as spin-orbit coupling, or various multiple short and long range exchange interactions
which can lead to a rather complicated picture of thermal disorder, which does not
fit to the single-site CPA representation. In principle, the latter can be accounted for
within the non-local CPA formalism [38]. On the other hand, it must be noted that all
given magnetic distributions work well for the localized magnetic systems only, since
none of the considered models accounts for the longitudinal spin fluctuations (change
of the local magnetic moment amplitude) which are essential for itinerant magnets (e.g.
Ni), especially in the high temperature region.

The remarkable feature of the alloy analogy model which we apply here, is that, despite
the fact that the description of microscopic details of the specific type of disorder could
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Figure 4.3.: Models of spin configurations: DLM-like distribution of the magnetic
moments (top panel), spherical distribution (middle panel), distribution
on a cone (bottom panel).
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be incomplete, macroscopically it provides a correct description. The main indication
of this is the qualitative and quantitative reproduction of the resistivity saturation
effect. Thereby, the CPA formalism provides an effective account for various types
of disorder. Moreover, it accounts for disorder not just on a level of computing the
electrical resistivity, but much more beyond, on the level of the electronic structure,
which allows to compute all other properties on the same footing.





5. Electronic transport based on the
Kubo formalism

Studying systems in the ground state experimentally, basic information is provided by
the linear part of the response to an external perturbation. Linear response can be char-
acterized by a constant coefficient, which in case of electric field due to a perturbation
is called conductivity. In anisotropic systems this constant has a tensor structure which
is determined by the symmetry of the considered system (as well as by the orientation
of the external perturbation). The first general approach to derive linear response co-
efficients theoretically was suggested by Ryogo Kubo in the 50ies [52]. The suggested
formalism is based on the linear response to a small perturbation of a system in the
equilibrium which can be expressed in terms of fluctuations of the dynamical variables
of the unperturbed system. This linear response formalism is directly applicable to the
problem of electrical conduction in solids.

5.1. Kubo equation

To derive the Kubo equation one can start from the system in thermodynamical equi-
librium state which can be described by the Hamiltonian Ĥ0. At some infinitely distant
point in time a small perturbation is applied (e.g. infinitely slow switching of the ex-
ternal electric field) and in that case the corresponding time-dependent Hamiltonian
of the system has the following form:

Ĥ(t) = Ĥ0 + V̂ (t) (5.1)

with V (t) being a time-dependent perturbation. The system state at any time can be
described by the density matrix ρ(t), which satisfies the corresponding von Neumann
equation:

i~
∂ρ(t)

∂t
=
[
Ĥ(t), ρ(t)

]
, (5.2)

where brackets [...] denote the commutator between Ĥ(t) and ρ(t). The system at
t0 = 0 was in the equilibrium state therefore

[
Ĥ0, ρ0

]
= 0, where ρ0 = ρ(t0 = 0) -

equilibrium density matrix, which is given by:

ρ0 =
e−β Ĥ0

Tr {e−β Ĥ0}
(5.3)
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with β = 1
kBT

, kB - Boltzmann constant and T - system temperature.

Then the computation of the expectation value of the arbitrary operator Ô involves
the equilibrium density matrix:

〈 Ô 〉 = Tr {ρ0 Ô} . (5.4)

In case of a time-dependent perturbation, the corresponding expectation value of Ô
becomes time-dependent and the calculation of the observable includes time-dependent
density matrix ρ(t):

〈 Ô 〉(t) = Tr {ρ(t) Ô} , (5.5)

where ρ(t) satisfies Eq. (5.2). This equation can be easily solved if one switches to the
interaction representation (Heisenberg picture), namely:

ρ̃(t) = e
i
~ Ĥ0t ρ(t) e−

i
~ Ĥ0t . (5.6)

Taking Eq. (5.6) into account, the Hamiltonian of the unperturbed system Ĥ0 can be
completely eliminated from Eq. (5.2):

i~
∂ρ̃(t)

∂t
= i~

∂

∂t

{
e
i
~ Ĥ0t ρ(t) e−

i
~ Ĥ0t

}

= −Ĥ0 ρ̃(t) + i~ e
i
~ Ĥ0t

∂ρ(t)

∂t
e−

i
~ Ĥ0t + ρ̃(t) Ĥ0

= −
[
Ĥ0 ρ̃(t)

]
+ e

i
~ Ĥ0t

[
Ĥ0 + V̂ (t), ρ(t)

]
e−

i
~ Ĥ0t

=
[
Ṽ (t), ρ̃(t)

]
, (5.7)

where Ṽ (t) = e
i
~ Ĥ0t V̂ (t) e−

i
~ Ĥ0t. The solution of the above equation can be given as

integral over time:

ρ̃(t) = ρ0 −
i

~

t∫
−∞

dt′
[
Ṽ (t′), ρ̃(t′)

]
(5.8)

with ρ0 = ρ̃(−∞). One can solve Eq. (5.8) iteratively:

ρ̃(t) = ρ0 −
i

~

t∫
−∞

dt1

[
Ṽ (t1), ρ0 −

i

~

t1∫
−∞

dt2

[
Ṽ (t2),

ρ0 −
i

~

t2∫
−∞

dt3

[
Ṽ (t3), ρ0 − . . .

] ] ]

= ρ0 +
∞∑
n=1

(
− i

~

)n t∫
−∞

dt1

t1∫
−∞

dt2 . . .

tn−1∫
−∞

dtn

×
[
Ṽ (t1),

[
Ṽ (t2),

[
. . . ,

[
Ṽ (tn), ρ0

] ] ]
. . .
]
. (5.9)
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In case of small perturbations (V (t) changes slowly) it is enough to keep only terms of
first order in Ṽ (t):

ρ̃(t) ≈ ρ0 −
i

~

t∫
−∞

dt′
[
Ṽ (t′), ρ0

]
. (5.10)

Returning back to the Schrödinger picture ρ(t) = e−
i
~ Ĥ0t ρ̃(t) e

i
~ Ĥ0t, Eq. (5.10) acquires

the form:

ρ(t) ≈ ρ0 −
i

~

t∫
−∞

dt′ e−
i
~ Ĥ0t

[
Ṽ (t′), ρ0

]
e
i
~ Ĥ0t . (5.11)

Using the above expression for the time-dependent density operator and taking into ac-
count the cyclic permutations under the trace, Eq. (5.5) can be rewritten in a following
way:

〈 Ô 〉(t) = Tr {ρ0 Ô} −
i

~

t∫
−∞

dt′Tr
{
e−

i
~ Ĥ0t

[
Ṽ (t′), ρ0

]
e
i
~ Ĥ0t Ô

}

= 〈 Ô 〉 − i

~

t∫
−∞

dt′ Tr
{[
Ṽ (t′), ρ0

]
e
i
~ Ĥ0t Ô e−

i
~ Ĥ0t︸ ︷︷ ︸

Õ(t)

}

= 〈 Ô 〉 − i

~

t∫
−∞

dt′ Tr
{
ρ0

[
Õ(t), Ṽ (t′)

]}

= 〈 Ô 〉 − i

~

∞∫
−∞

dt′Θ(t− t′)
〈 [

Õ(t), Ṽ (t′)
] 〉

. (5.12)

From the above equation follows, that the time-dependent expectation value of the
arbitrary Hermitian operator Ô of the perturbed system can be calculated exclusively
in terms of the unperturbed density matrix ρ0.
In the following, we consider the electrical conductivity as the linear response of the
current to an electric field. In this case the time-dependent external electric field is
applied at t = −∞ such that E(t) = E0e

−i(ω+ iδ)t and it increases adiabatically up to
its value at t = 0. The operator Ô(t) is replaced by the current density operator ĵ.
However, in the present work we deal as well with the spin Hall effect, therefore Ĵ should
be used to represent either the charge current or spin current density operator [53]. The

corresponding perturbation can be written as V̂ (t) = −P̂·E(t), where P̂ =
N∑
i=1

qi r̂i (qi

being the charge and r̂i position operator for the i-th point charge) is the polarization
of the sample caused by the external electric field. Therefore, for the spatial component
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of the current density Ĵµ, Eq. (5.12) can be written as:

〈Jµ〉(t) =
i

~
∑
ν

∞∫
−∞

dt′Θ(t− t′)

〈 [
J̃µ(t), P̃ν(t

′)
] 〉

E0e
−i(ω+ iδ)t′ (5.13)

assuming that 〈Jµ〉(t = −∞) = 0. Making use of the property 〈[ Ô, V̂ ]〉 = Tr {ρ0 [ Ô, V̂ ]} =

Tr { ρ0 Ô V̂ } − Tr { ρ0 V̂ Ô }, the commutator in Eq. (5.13) can be rewritten as:〈 [
J̃µ(t), P̃ν(t

′)
] 〉

= Tr
{
ρ0

(
e
i
~ Ĥ0t Ĵµ e

− i
~ Ĥ0t e

i
~ Ĥ0t′ Pν e

− i
~ Ĥ0t′

− e
i
~ Ĥ0t′ Pν e

− i
~ Ĥ0t′e

i
~ Ĥ0t Ĵµe

− i
~ Ĥ0t

)}
= Tr

{
ρ0

(
Ĵµ e

i
~ Ĥ0(t′−t)Pν e

− i
~ Ĥ0(t′−t)

− e
i
~ Ĥ0(t′−t) Pν e

− i
~ Ĥ0(t′−t) Ĵµ

)}
=
〈 [

Jµ, P̃ν(t
′ − t)

] 〉
. (5.14)

Furthermore inserting Eq. (5.14) into Eq. (5.13) one obtains the following expression:

〈Jµ〉(t) =
i

~
∑
ν

∞∫
−∞

dt′Θ(t− t′)

〈 [
Jµ, P̃ν(t

′ − t)
] 〉

E0,ν e
−i(ω+iδ)t e−i(ω+iδ)(t′−t)

=
i

~
∑
ν

∞∫
−∞

dt′′Θ(−t′′)

〈 [
Jµ, P̃ν(t

′′)
] 〉

e−i(ω+iδ)t′′ Eν(t) . (5.15)

Making use of the relation 〈 Jµ 〉(t) =
∑
ν

σµν Eν(t), one obtains the expression for the

conductivity:

σµν(ω) =
i

~

0∫
−∞

dt
〈 [

Jµ, P̃ν(t)
] 〉

e−i(ω+iδ)t . (5.16)

The above equation can be modified further by using the Kubo identity for an arbitrary
operator [54]:

i

~
[ Ô(t), ρ ] = ρ

β∫
0

dλ
˙̂
O(t − i λ ~) , (5.17)
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Taking into account that ˙̃P = V j (V is system volume) and that
〈[
Jµ, P̃ν(t)

]〉
= Tr

{
ρ
[
Jµ, P̃ν(t)

]}
= Tr

{[
P̃ν(t), ρ

]
Jµ
}

the expression for the conductivity tensor takes
the form:

σµν(ω) =

β∫
0

dλ

0∫
−∞

dt
〈

˙̃Pν(t− i~λ) Jµ

〉
e−i(ω+iδ)t

= V

β∫
0

dλ

0∫
−∞

dt
〈
j̃ν(t− i~λ) Jµ

〉
e−i(ω+iδ)t

= V

β∫
0

dλ

∞∫
0

dt
〈
jν J̃µ(t+ i~λ)

〉
ei(ω+iδ)t . (5.18)

Eq. (5.18) represents the Kubo equation [52] for the conductivity tensor and is only re-
stricted to small perturbations. However, to solve this equation is tedious as one has to
take into account many-body effects. Therefore further approximations are necessary.
Assuming a static case ω = 0 and using the independent electron approximation [55],
Eq. (5.18) transforms into:

σµν =
1

V

β∫
0

dλ e−λ(εn−εm)

×
∞∫

0

dt
∑
n,m

〈
f(εm){1 − f(εn)}

× e it~ (i~δ+ εn− εm) 〈m| ĵν |n 〉 〈n| Ĵµ |m 〉
〉
, (5.19)

where f(ε) = (e
ε−µ
kBT + 1)−1 is the Fermi-Dirac distribution function with µ denoting

the chemical potential. Integrating over λ leads to
β∫
0

dλ e−λ(εn−εm) = 1− e−β(εn−εm)

εn− εm .

The remaining β-dependent part turns into 1− e−β(εn−εm)

εn− εm f(εm)

(1 − f(εn)) = f(εm)− f(εn)
εn− εm . Using the above expressions Eq. (5.19) acquires the follow-

ing form:

σµν =
1

V

∑
n,m

f(εm) − f(εn)

(εn − εm)
〈m| ĵν |n 〉 〈n| Ĵµ |m 〉

∞∫
0

dt e
it
~ (i~δ+εn−εm)

=
i~
V

∑
n,m

f(εm) − f(εn)

(εn − εm)(εn − εm + i~δ)
〈m| ĵν |n 〉 〈n| Ĵµ |m 〉 . (5.20)

Taking into account that lim
δ→0+

1
(εn−ε)(εn−ε+iδ) = lim

δ→0+

d
dε

{
1

εn−ε+iδ

}
and

∞∫
−∞

dε

(ε − Ĥ) = 1, Eq. (5.20) can be rewritten using the integration over energies in the
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following form:

σµν =
i~
V

∞∫
−∞

dε f(ε)
∑
n,m〈

〈n | Ĵµ |m 〉
d

dε

( 1

ε − εm + iδ

)
〈m | ĵν |n 〉 δ(ε − εn)

− 〈m | ĵν |n 〉 δ(ε − εm) 〈n | Ĵµ |m 〉
d

dε

{ 1

ε − εn + iδ

}〉
. (5.21)

Introducing advanced and retarded Green function G±(ε) = 1

ε− Ĥ ± iδ ,

Eq. (5.21) can be rewritten in operator form:

σµν =
i~
V

∞∫
−∞

dε f(ε) Tr

〈
Ĵµ

dG+(ε)

dε
ĵν δ(ε − Ĥ)

− Ĵµ δ(ε − Ĥ) ĵν
dG−(ε)

dε

〉
. (5.22)

This equation was derived by Bastin [56] and represents the conductivity as a prod-
uct of Green functions and the current density operators. The computation of the
conductivity is numerically very demanding as Eq. (5.22) contains an integration over
δ-functions. However, a significant simplification can be achieved by shifting the inte-
gration into the complex plane, which is discussed in more detail in the next section.

Furthermore, Eq. (5.22) can be rewritten in terms of the current density operator ĵ in
the following way:

σµν =
i~
V

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG+(ε)

dε
ĵν δ(ε − Ĥ)

− ĵµ δ(ε − Ĥ) ĵν
dG−(ε)

dε

〉
. (5.23)

Replacing the δ-function in Eq. (5.23) with the following expression and dropping the
energy-dependence of the Green function for the sake of brevity:

δ(ε − Ĥ) = − 1

2πi

[
Ĝ+ − Ĝ−

]
(5.24)
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and splitting the expression into two equal parts, one obtains:

σµν = − ~
2πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG+

dε
ĵν (G+ − G−)

− ĵµ (G+ − G−) ĵν
dG−

dε

〉

= − ~
4πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG+

dε
ĵν (G+ − G−)

− ĵµ (G+ − G−) ĵν
dG−

dε

〉

− ~
4πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG+

dε
ĵν (G+ − G−)

− ĵµ (G+ − G−) ĵν
dG−

dε

〉
.

(5.25)

Leaving the first term in Eq. (5.25) untouched and applying a partial integration on
the second term, one arrives at the following expression:

σµν = − ~
4πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG+

dε
ĵν (G+ − G−)

− ĵµ (G+ − G−) ĵν
dG−

dε

〉

+
~

4πV

∞∫
−∞

dε
df(ε)

dε
Tr 〈 ĵµG+ ĵν (G+ − G−)

− ĵµ (G+ − G−) ĵν G
− 〉

+
~

4πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµG

+ jν

(
dG+

dε
− dG−

dε

)

− ĵµ
(
dG+

dε
− dG−

dε

)
jν G

−

〉
. (5.26)

If in Eq. (5.26) one keeps the second term unchanged, while one combines the first and
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third terms, one obtains the following expression:

σµν = − ~
4πV

∞∫
−∞

dε
df(ε)

dε
Tr 〈 ĵµ (G+ − G−) ĵν G

−

− ĵµG+ ĵν (G+ − G−) 〉

+
~

4πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG−

dε
jν G

− − ĵµG
− jν

dG−

dε

+ ĵµG
+ jν

dG+

dε
− ĵµ

dG+

dε
jν G

+

〉
= σIµν + σIIµν . (5.27)

Considering the term σIIµν and taking into account the part containing G− only, namely:

σII(−)
µν =

~
4πV

∞∫
−∞

dε f(ε) Tr

〈
ĵµ
dG−

dε
jν G

− − ĵµG
− jν

dG−

dε

〉
. (5.28)

For brevity the minus superscript is dropped atG−. Using the identity vµ = 1
i~ [G−1, rµ ]

and keeping in mind that jµ = −|e| vµ, Eq. (5.28) acquires the following form:

σII(−)
µν = − e

4πiV

∞∫
−∞

dε f(ε) Tr

〈
[G−1, rµ ]

dG

dε
jν G − ĵµG [G−1, rν ]

dG

dε

〉
. (5.29)

Application of the identity dG(ε)
dε

= −G2(ε) allows to rewrite Eq. (5.29) in the following
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way:

σII(−)
µν =

e

4πiV

∞∫
−∞

dε f(ε) Tr
〈

[G−1, rµ ]G2 jν G − ĵµG [G−1, rν ]G2
〉

=
e

4πiV

∞∫
−∞

dε f(ε) Tr
〈
G−1 rµG

2 jν G − rµGjν G

− jµ rν G
2 + jµGrν G

〉
=

e

4πiV

∞∫
−∞

dε f(ε) Tr
〈
rµG

2 jν − rµGjν G − jµ rν G
2 + jµGrν G

〉

=
e

4πiV

∞∫
−∞

dε f(ε) Tr
〈
rµG

2 jν − rν G
2 jµ + jµGrν G − rµGjν G

〉

=
e

4πiV

∞∫
−∞

dε f(ε) Tr

〈
rµG

2 jν − rν G
2 jµ

− e

i~

{
[G−1, rµ ]Grν G − rµG [G−1, rν ]G

}〉
=

e

4πiV

∞∫
−∞

dε f(ε) Tr

〈
rµG

2 jν − rν G
2 jµ

〉
. (5.30)

Introducing the superscript ”-” at G again, using dG(ε)
dε

= −G2(ε), and performing
partial integration, Eq. (5.30) takes the following form:

σII(−)
µν = − e

4πiV

∞∫
−∞

dε f(ε) Tr

〈
rµ
dG−(ε)

dε
jν − rν

dG−(ε)

dε
jµ

〉

=
e

4πiV

∞∫
−∞

dε
f(ε)

dε
Tr
〈
rµG

− jν − rν G
− jµ

〉

=
e

4πiV

∞∫
−∞

dε
f(ε)

dε
Tr
〈
G− (rµ jν − rν jµ)

〉
. (5.31)

Following the same algorithm one obtains the same structure for the term which in-
volves G+. Combination of these two expressions gives the following:

σIIµν =
e

4πiV

∞∫
−∞

dε
f(ε)

dε
Tr
〈

(G+ − G−)(rµ jν − rν jµ)
〉
. (5.32)



42 5. Electronic transport based on the Kubo formalism

And eventually the final expression takes the form:

σµν = − ~
4πV

∞∫
−∞

dε
df(ε)

dε
Tr 〈 ĵµ (G+ − G−) ĵν G

− − ĵµG+ ĵν (G+ − G−) 〉

+
e

4πiV

∞∫
−∞

dε
f(ε)

dε
Tr
〈

(G+ − G−)(rµ jν − rν jµ)
〉
. (5.33)

Considering the athermal limit, i.e. T = 0 K and taking into account that f(ε)
dε

=
−δ(ε − εF ), Eq. (5.33) can be transformed into the expression obtained by Středa [57],
namely:

σµν =
~

4πV
Tr 〈 ĵµ (G+ − G−) ĵν G

− − ĵµG
+ ĵν (G+ − G−) 〉

+
|e|

4πiV
Tr
〈

(G+ − G−)(rµ jν − rν jµ)
〉
. (5.34)

This formula is known as Kubo-Středa equation. The corresponding retarded and
advanced Green functions are evaluated at the Fermi energy and providing the so-
called Fermi surface contribution. The technical details of the implementation of the
Eq. (5.34) within the SPR-KKR code can be found in the work by Lowitzer [53].

5.2. Kubo-Bastin formalism

The calculations of linear response functions considered in the present work were per-
formed on the basis of the Kubo-Středa equation 5.34. It was demonstrated that this
formalism provides a coherent description of the AHE [58] and SHE [59] for pure met-
als, diluted, as well as concentrated alloys, and, in general, leads to good agreement
with available experimental data and other theoretical results. However, the mentioned
calculations of the conductivity tensor are often performed with a modified version of
Eq. (5.34). Namely, the second term (so-called current-orbital term) is neglected due
to the small contribution compared to the dominating first term [53].

In general, omitting of the orbital-current term is justified by symmetry reasons (par-
ticularly in case of systems with inversion symmetry), as in case of cubic systems this
term becomes site diagonal [58, 60, 61]. In addition, following the work by Bastin [56]
it was pointed out that the orbital-current term is equivalent to the Fermi sea contri-
bution and therefore can be neglected in metallic systems [60, 61]. The neglect of the
current-orbital term definitely simplifies the numerical implementation, however at the
same time it imposes a number of restrictions in the range of applications. Recently,
first principle calculations based on the Bastin formula implemented within the TB-
LMTO (tight-binding linear muffin-tin-orbital) approach have shown, that the Fermi
sea term indeed might provide a non-negligible contribution to the anomalous Hall
conductivity in the case of uniaxial systems (hexagonal cobalt) and multisublattice
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multicomponent systems (Heusler alloys) [62]. Therefore, to consider additionally sys-
tems for which the Fermi sea contribution turns out to be noteworthy, such as systems
with non-cubic symmetry, semiconductors, isolators (the chemical potential is placed in
the energy gap) the formalism on the basis of the Bastin formula [56] was implemented
within the fully relativistic spin polarized KKR-GF method [63]. In the following the
corresponding Kubo-Bastin expression is derived.

The starting point is an expression for the conductivity tensor derived by Bastin
et.al [56] on the basis of the Kubo equation [52] obtained as Eq. (5.22), however ex-
tended to the case of evaluation of the spin Hall conductivity by introducing a rela-
tivistic spin-polarization current-density operator Ĵξ:

σξµν =
i~
V

∞∫
−∞

dε f(ε) Tr

〈
Ĵξµ

dG+(ε)

dε
ĵν δ(ε − Ĥ) − Ĵξµ δ(ε − Ĥ) ĵν

dG−(ε)

dε

〉
(5.35)

with µ, ν ∈ {x, y, z} being Cartesian coordinates. The ξ ∈ {x, y, z} denotes the po-
larization direction of the spin current operator (see appendix A). The calculations
performed here are restricted to the case of ξ = z. Following the steps performed
in the previous section, we arrive at Eq. (5.27) (extended to account for spin Hall
conductivity):

σξµν = − ~
4πV

∞∫
−∞

dε
df(ε)

dε
Tr 〈 Ĵξµ (G+ − G−) ĵν G

− − ĴξµG+ ĵν (G+ − G−) 〉

+
~

4πV

∞∫
−∞

dε f(ε) Tr

〈
Ĵξµ

dG−

dε
jν G

− − ĴξµG
− jν

dG−

dε

+ ĴξµG
+ jν

dG+

dε
− Ĵξµ

dG+

dε
jν G

+

〉
. (5.36)

The conductivity tensor (Eq. (5.36)) in the limit of T → 0 K, takes the following
form:

σξµν =
~

4πV
Tr 〈 Ĵξµ (G+ − G−) ĵνG

− − ĴξµG
+ ĵν (G+ − G−)〉

+
~

4πV

εF∫
−∞

dεTr

〈
Ĵξµ

dG−

dε
jν G

− − ĴξµG
− jν

dG−

dε

+ ĴξµG
+ jν

dG+

dε
− Ĵξµ

dG+

dε
jν G

+

〉
= σIξµν + σIIξµν . (5.37)

This expression is the central result of the derivation. The first term is evaluated
at the Fermi energy εF and contains contributions exclusively from the states at the
Fermi level and is referred to as Fermi-surface term. The second term is given as an
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integration over all occupied states and is called Fermi-sea term. The details of the
numerical implementation of the Fermi sea term are discussed in the appendix B.

Furthermore, Eq. (5.37) can be analyzed in terms of symmetry. Let’s consider the more
general form of the response tensor χ in Eq. (5.37), namely using arbitrary operators
Â and B̂, which can denote charge current density operator ĵ, spin current density
operator Ĵ , magnetic torque operator T̂ (which is needed for a description of the
Gilbert damping [45, 64] or allows to formulate the so-called spin-orbit torque [65])
etc.

χµν =
~

4πV
Tr 〈 Âµ (G+ − G−) B̂ν G

− − ÂµG
+ B̂ν (G+ − G−) 〉

+
~

4πV

εF∫
−∞

dεTr

〈
Âµ

dG−

dε
Bν G

− − ÂµG
−Bν

dG−

dε

+ ÂµG
+Bν

dG+

dε
− Âµ

dG+

dε
Bν G

+

〉
= χIµν + χIIµν . (5.38)

At the beginning we focus on the symmetry analysis of the Fermi surface term χIµν .
For this purpose it is enough to consider the symmetry of the subexpression of χIµν :

Cµν = Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− − Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
. (5.39)

Symmetric part of Eq. (5.39):

1

2
[Cµν + Cνµ ] = +

1

2
Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− − Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
+

1

2
Tr
〈
Âν (Ĝ+ − Ĝ−) B̂µ Ĝ

− − Âν Ĝ
+ B̂µ (Ĝ+ − Ĝ−)

〉
= +

1

2
Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− − Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
+

1

2
Tr
〈
B̂µ Ĝ

− Âν (Ĝ+ − Ĝ−) − B̂µ (Ĝ+ − Ĝ−) Âν Ĝ
+
〉

= +
1

2
Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− − B̂µ (Ĝ+ − Ĝ−) Âν Ĝ
+
〉

+
1

2
Tr
〈
B̂µ Ĝ

− Âν (Ĝ+ − Ĝ−) − Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
. (5.40)

Only in case when Â = B̂ and particularly when Â = B̂ = ĵ Eq. (5.40) can be reformu-
lated to a Kubo-Greenwood-like expression [66], which gives access to the symmetric
part of the response tensor:

1

2
[Cµν + Cνµ ] = +

1

2
Tr
〈
ĵµ (Ĝ+ − Ĝ−) ĵν Ĝ

− − ĵµ (Ĝ+ − Ĝ−) ĵν Ĝ
+
〉

+
1

2
Tr
〈
ĵµ Ĝ

− ĵν (Ĝ+ − Ĝ−) − ĵµ Ĝ
+ ĵν (Ĝ+ − Ĝ−)

〉
= −Tr

〈
ĵµ (Ĝ+ − Ĝ−) ĵν (Ĝ+ − Ĝ−)

〉
= 4 Tr

〈
ĵµ Im Ĝ+ ĵν Im Ĝ+

〉
. (5.41)
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In a similar way the antisymmetric part is obtained:

1

2
[Cµν − Cνµ ] = +

1

2
Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− − Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
− 1

2
Tr
〈
Âν (Ĝ+ − Ĝ−) B̂µ Ĝ

− − Âν Ĝ
+ B̂µ (Ĝ+ − Ĝ−)

〉
= +

1

2
Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− − Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
− 1

2
Tr
〈
B̂µ Ĝ

− Âν (Ĝ+ − Ĝ−) − B̂µ (Ĝ+ − Ĝ−) Âν Ĝ
+
〉

= +
1

2
Tr
〈
Âµ (Ĝ+ − Ĝ−) B̂ν Ĝ

− + B̂µ (Ĝ+ − Ĝ−) Âν Ĝ
+
〉

− 1

2
Tr
〈
B̂µ Ĝ

− Âν (Ĝ+ − Ĝ−) + Âµ Ĝ
+ B̂ν (Ĝ+ − Ĝ−)

〉
. (5.42)

Only in case of Â = B̂ including case when Â = B̂ = j Eq. (5.42) can be modified to
the following form:

1

2
[Cµν − Cνµ ] = +

1

2
Tr
〈
ĵµ (Ĝ+ − Ĝ−) ĵν Ĝ

− + ĵµ (Ĝ+ − Ĝ−) ĵν Ĝ
+
〉

− 1

2
Tr
〈
ĵµ Ĝ

− ĵν (Ĝ+ − Ĝ−) + ĵµ Ĝ
+ ĵν (Ĝ+ − Ĝ−)

〉
= +

1

2
Tr
〈
ĵµ (Ĝ+ − Ĝ−) ĵν (Ĝ+ + Ĝ−)

〉
− 1

2
Tr
〈
ĵµ (Ĝ+ + Ĝ−) ĵν (Ĝ+ − Ĝ−)

〉
= +

1

2
Tr
〈 [

ĵµ (Ĝ+ − Ĝ−) ĵν − ĵν (Ĝ+ − Ĝ−) ĵµ

]
(Ĝ+ + Ĝ−)

〉
.

(5.43)

The obtained results show that in case of ideentical operators Â = B̂, particularly when
the same current density operators are present (the case of anomalous Hall effect), the
Fermi surface term provides contributions to the symmetric as well as antisymmetric
part of the response tensor. And the Fermi sea term in this case (Â = B̂ = ĵ) gives
access exclusively to the antisymmetric part of the tensor. This can be easily seen
from Eq. (5.38), where χIIµν = −χIIνµ. In case, when different operators have to be

used (Â 6= B̂) the simple decomposition into symmetric and antisymmetric part is not
possible.





6. Hall effect

The emergence of a transverse voltage (Hall voltage) when a current-carrying conductor
is exposed to the external magnetic field is known as the Hall effect. It was discovered
by Edwin Hall in 1879 in thin golden films [67] and is referred to in the literature as
ordinary Hall effect. In nonmagnetic metals, the effect is caused by electrons drifting
in the crossed electrical and magnetic fields. Due to the Lorenz force, the electron
trajectory distorts in the direction perpendicular to the current and magnetic field,
leading to the charge accumulation at the sample edges, triggering the Hall voltage.
Later, it was found that in the ferromagnetic materials the effect is much stronger,
however it has a completely different origin and is referred to as the anomalous Hall
effect (AHE) [68]. In contrast to the ordinary Hall effect, in the AHE the electron scat-
tering asymmetry occurs due to spin-orbit coupling. Over many years, a considerable
amount of theoretical - as well as experimental - studies were required to confirm Hall’s
inferences. In particular, it was shown that the Hall resistivity ρxy is proportional to
the magnetization M of the sample [69]. This empirical observation has led to the
formula describing ρxy as:

ρxy = R0Bz + 4π RsMz , (6.1)

where Mz is the magnetization along the z-axis and Bz is the z component of the
magnetic field. In the latter equation the first term describes the ordinary Hall effect,
due to the Lorenz force, whereas the second term is responsible for the AHE associated
with spin-orbit coupling. In Eq. (6.1) R0 is the ordinary Hall coefficient, which depends
mainly on the density of the carriers while Rs is the anomalous (extraordinary or
spontaneous) Hall coefficient, which depends on various material-specific parameters.
Using the connection of the resistivity and conductivity tensors for a simple cubic
system one obtains:

ρ = σ−1 =

 σxx σxy 0
−σxy σyy 0

0 0 σzz

−1

(6.2)

≈


σxx

σ2
xx +σ2

xy
− σxy
σ2
xx +σ2

xy
0

σxy
σ2
xx +σ2

xy

σxx
σ2
xx +σ2

xy
0

0 0 1
σzz

 , (6.3)

together with Eq.(6.1), the corresponding expressions for R0 and Rs can be derived,
taking into account that usually σxy � σxx :

R0 =
σxy(Bz)

Bz (σ2
xx + σ2

xy)
≈ σxy(Bz)

Bz

ρ2
xx , (6.4)
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Rs =
σxy(Mz)

4πMz (σ2
xx + σ2

xy)
≈ σxy(Mz)

4πMz

ρ2
xx . (6.5)

Although such an empirical treatment, suggested by equation ( 6.1), was widely used
to describe the Hall effect in magnetic systems, it did not provide more insight into
its physical nature. Moreover, later with discovery of a non-zero AHE in various
magnetically-compensated systems (antiferromagnets and ferrimagnets) it became clear
that this empirical form is not generally applicable.

6.1. Anomalous Hall effect

As was already mentioned, the AHE is a key phenomenon among the magnetotrans-
port effects, based on spin-orbit coupling. After being discovered more than hundred
years ago, it still remains a subject of intensive debate in the sense of separation of the
different contributing mechanisms and determine which one dominates under certain
conditions. The disentanglement of these mechanisms experimentally and manipulat-
ing them separately is quite a challenging task. Thus a detailed theoretical study is
quite desirable in order to investigate different contributions individually. Basically
here one has to distinguish between the contributions coming from the electron scat-
tering mechanisms and so-called intrinsic contributions.

An early insight into the intrinsic mechanism has been given by Karplus and Lut-
tinger [70]. They have shown that in the ideal periodic crystal with periodic intrinsic
SOC (when the electron’s orbital motion is coupled to its intrinsic spin), in addition
to normal electron velocity the so-called anomalous velocity arises [71, 72]. If the sum
of these anomalous velocities from all occupied electronic states is nonzero it leads to
the anomalous Hall conductivity (AHC). It was found that this contribution solely de-
pends on the band structure of the system and does not depend neither on scatterers
(impurities, phonons, magnons) [70, 73–77].

Later on, this intrinsic contribution was generalized in terms of an additional phase ac-
quired by the wave function of the quantum object (e.g., the conducting electron) while
it propagates through the medium (e.g., crystalline solid). This concept was already
known for quite a long time and has been used to interpret various quantum effects
(Aaronov-Bohm effect, weak localization, universal oscillations of the conductance,
etc.), however systematically it was first introduced by Berry and is referred today as
Berry phase. The corresponding medium, in turn, is said to provide the Berry cur-
vature created by the effective potential in which the quantum particle moves. By
considering conducting electrons, the phase of the wave function is connected with an
electron’s spin, which in its simplest form can be described in terms of the Pauli matri-
ces. While propagating, the spin might rotate, which results into a change of the phase
of the wave-function. These rotations are described by the part of Hamiltonian, which
couples the spin (in a form of a Pauli vector) to the coordinates of the medium. Such
coupling can be provided either by exchange or spin-orbit mechanisms. For example,
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when magnetization M(r) = M n̂(r) varies as a function of the real space coordinate:

H = K − M (n̂ · σ) , (6.6)

spin couples to the real-space coordinate via exchange mechanism described by the
coupling constant M . In case of the spatially uniform medium (M=const) the spin
couples to the reciprocal (k-space) coordinate via the spin-orbit parameter α. For
example, in the celebrated two-dimensional Rashba model [78, 79] one has:

H = K + α (σxky − σykx) − M σz , (6.7)

where K is the corresponding kinetic term. In both cases the relevant part is described
by the scalar product n̂ · σ, where in the first case the directional unity vector n̂ just
points along the magnetization:

n̂(r) =
1

M

 Mx(r)
My(r)
Mz(r)

 , (6.8)

and in the second is

n̂(k) =
1

λ

 αky
−αkx
−M

 , λ =
(
M2 + α2k2

x + α2k2
y

)1/2
, (6.9)

so that Eq. (6.7) can be rewritten in a form similar to Eq. (6.6):

H = K + λ (n̂ · σ) . (6.10)

Thus, the way in which the electron accumulates the phase depends solely on the
geometrical properties of the vector field n̂. In order to see this, we have to go from the
global coordinate system into the frame of the spin (so, that the new z-axis corresponds
to the spin-quantization axis). In this new reference both Eqs. 6.6 and 6.10 get:

H ′ = T †H T = T †K T + γ σz , (6.11)

where T is the corresponding rotational matrix: T † (n̂ · σ) T = σz and γ is a scalar.
Thus, the central quantity is the kinetic term T †KT modified by the so-called gauge
transformation. It is easy to show, that such a gauge transform can be represented in
terms of the additional vector-potential A. Indeed, for K ∼ p2: T † p2T = (p + A)2,
where p is the momentum operator and A = T † pT . Since we are working in the

space of the Pauli spinors ϕ =

(
ϕ+

ϕ−

)
, the gauge transform should be written as

T †K T ∼ T †
(

p 0
0 p

)2

T ≈
(

p + A+ 0
0 p + A−

)2

. (6.12)

The vector-potential transforms into a diagonalized matrix if we assume that vector
n̂ varies slowly and the magnetization M (or the exchange-splitting γ-parameter) is
large enough in order to prevent spin-flip transitions. This is the so-called adiabatic
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condition which is crucial for applying the concept of a Berry phase. Now all the
information about the spin rotations described by the unitary operator T , is fully
contained in the vector-potential A. By computing its explicit form, one finds that
the Pauli components A+ and A− which are related to majority- and minority-spin
are of the same form but have an opposite sign: A+ = −A−. In other words, the
electrons of opposite spin experience an opposite force. This force can be related to
the magnetic field via B = ∇ × A, which, however, does not couple to the electron
charge. We would obtain the same result also for charge-less spin-1/2 particles, as e.g.,
neutrons. For this reason, the Hall effect produced by the Berry phase mechanism
represents nothing else but the spin-Hall effect (this will be discussed in more details
in the next chapter). The charge Hall current arises only due to the disbalance of the
spin-projected occupations of conducting electrons, given by the Fermi-Dirac functions
f(ε±) for the corresponding eigenvalues ε+ and ε−:

A = f(ε+) A+ + f(ε−) A− =
(
f(ε+) − f(ε−)

)
A+ . (6.13)

The corresponding magnetic flux through the two-dimensional medium (say, in the
xy-plane) is defined via the corresponding perpendicular component of the induced
magnetic field Bz:

Φ =

∫
Bz dS =

∫
(∇×A)z dS =

∫
(∂xAy − ∂yAx) dS (6.14)

=

∫ (
f(ε+) − f(ε−)

) (
∂xA

+
y − ∂yA

+
x

)
dS ,

where all quantities are coordinate functions of the corresponding medium. E.g., dS is a
real element of the medium (dS = dxdy in the direct and dS = dkxdky in the reciprocal
space) and ∂x(y) are the gradients with respect to x(y) coordinates in the direct, and
for kx(y) in the reciprocal space. Accordingly, the eigenvalues ε± are also functions of
the corresponding spatial coordinates. The relevant part of the Hall conductivity is
then defined simply as σxy = (e2/~) (Φ/Φ0), where Φ0 = ~c/e is the quantum of the
magnetic flux. As it was shown by Bruno and coworkers [80, 81],

Bz = ∂xA
+
y − ∂yA

+
x ∼ n̂ · (∂xn̂× ∂yn̂) . (6.15)

Assuming a half-metallic situation at zero temperature, i.e., f(ε+) = 1 and f(ε−) = 0,
the Hall conductivity can be written as a surface integral

σxy =
e2

2~

∫
Bz dxdy =

e2

2~

∫
n̂ · (∂xn̂× ∂yn̂) dx dy . (6.16)

Since (∂xn̂× ∂yn̂) dxdy = dΩ formally represents an oriented element of the spherical
surface with a unity radius, given by n̂ = n̂(x, y), the whole expression in the integral
in Eq. (6.16) is equal to the elementary spherical angle dΩ = n̂ · dΩ along n̂. Thus,
the integral in Eq. (6.16) reduces simply to a multiple of times t by which the vector
n̂ wraps over the sphere while running over the xy-space, i.e. to a purely geometrical
characteristic (see, e.g. Ref. [82]):

σxy =
e2

2~
· 4πt . (6.17)
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This description is applicable only if n̂ varies smoothly, so that its derivatives ∂x(y)n̂
does exist. Considering these simple models one can also easily figure out the quantiza-
tion conditions of σxy (i.e., when t = 0,±1,±2, ..), by searching for the corresponding
distribution of the magnetization field in case of Eq. (6.6), or by fitting the spin-orbit
coupling strength α in case of Eq. (6.10). In both cases this will lead to the appearance
of the various fascinating vortex textures. In real space an example of such structures
are the magnetic skyrmions [83], and in the reciprocal space - the celebrated Weyl
points [84, 85]. It is worth to stress, that in Eq. (6.6) the spin-orbit coupling as an
active mechanism of the topological AHE was completely neglected. However, it is
known to play a crucial role in the formation of the skyrmion structures by causing the
Dzyaloshinskii-Moriya interaction [86, 87], which leads to the magnetization canting.
Also one can easily show that this nontrivial magnetization distribution might lead to
a vanishing total magnetization in the material but still show a non-zero AHE. In the
second case, which assumes a constant magnetization, the spin-orbit appears to be the
only ingredient necessary for the spin rotations. In this case, the magnetization might
also vanish in total, but it is important that the system maintains the local magnetic
moments to provide the local exchange splitting, otherwise the charge AHE is fully
converted to the spin-Hall effect.

In case of a real solid, the Berry-phase AHE is accounted for within the general Kubo-
Bastin formalism (see Chapter 2, Section 5.2), where it corresponds to the σII

xy con-
tribution (so-called Fermi-sea part) obtained via integrating over all occupied states.
In addition, if the system has broken translational symmetry due to defects or chem-
ical disorder, usually there is another significant part of the total AHE coming from
the scattering effects. These effects concern only the electrons which are strictly con-
ducting, i.e. situated precisely at the Fermi energy, since the possibility of scattering
assumes the ability of the electron to be excited, at least infinitesimally. For this reason,
in the Kubo-Bastin formalism this contribution is associated with σI

xy (Fermi-surface
contribution). Due to the necessary presence of scatterers in the last case and their
absence in the former case, these two sources are often referred as extrinsic and intrinsic
(due to the properties of the “host” bandstructure) contributions, respectively. The
phenomenological description of scattering mechanisms is substantially more compli-
cated than for the Berry-phase contributions (see, e.g. [81]). For this reason, in the
following we will consider only their basic empirical features.

One of the relevant scattering mechanisms, known as a skew-scattering, was considered
by Smit [73, 74]: an asymmetric scattering, which leads to the change of direction of
the electron’s trajectory as the electron acquires a temporary orbital component in its
otherwise linear motion and is captured into a virtual bound state of the impurity [88].
This is shown schematically in Fig. (6.1) (left panel). The electron is scattered by
the attractive scattering center and its linear trajectory is perturbed to introduce a
curved segment into its motion [88]. Due to the spin-orbit coupling the probability
for the itinerant electron with spin up/down to scatter to the left or to the right of
the scattering center becomes different. This, in turn, leads to the asymmetry in the
number of the electrons with spin up/down accumulated at the edges of the sample. In
the dilute limit (low impurity concentration, c� 1) at T = 0 K the following relation
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Figure 6.1.: Schematic representation of skew-scattering (left panel) and side-jump
scattering (right panel) mechanisms giving rise to the AHE.

is valid for the anomalous Hall coefficient:

Rskew
s = aρ0 + bρ2

0 (6.18)

with ρ0 being a residual resistivity of an alloy, a and b are constants. In the Eq. (6.18)
the first term is usually larger compared to the second term, but with increasing im-
purity concentration in the case of strong scattering, both terms are of the same order
of magnitude [89]. However, it was shown that in the concentrated regime this scal-
ing relation is not applicable [90, 91]. Another mechanism is the so-called side-jump,
which results in a delay of electron’s motion introduced by a scattering process. It was
first described by Berger [92, 93]. This mechanism can be interpreted as a side way
displacement of the center of mass of an electron’s wave packet, depicted in Fig. (6.1)
(right panel). The electron’s wave packet is distorted as the SOC influences the elec-
tron’s motion. This contribution does not depend neither on magnitude of the scat-
tering potential nor on its type (impurities, phonons, magnons) and the corresponding
anomalous Hall coefficient can be written as:

Rsj
s = B ρ2

xx , (6.19)

where B is an empirical coefficient. Based on the work of Smit [74], it was shown that
this coefficient has comparable magnitude but opposite sign when compared to the
corresponding coefficient related to the intrinsic contribution, but a complete cancel-
lation of both terms does not occur [75]. In other words, the final AHE occurs due to
the asymmetric canceling of two large intrinsic (topological) and extrinsic (scattering)
contributions.

In contrast to the intrinsic contribution, the last two mechanisms emerge only in the
presence of scattering sources, such as impurities (phonons, magnons, etc.) and there-
fore they have been combined to the so-called - extrinsic (or sometimes also called
incoherent) contribution.

There is a large number of theoretical works dedicated to the calculation of the ex-
trinsic contributions to AHE within the different approaches, particularly based on
the quantum mechanical Kubo-Středa formula [55, 58, 71, 77] and on the Boltzmann
formalism [70, 73, 74, 92–94].
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In the present work the calculations of the transport properties are based on the Kubo-
Středa equation as well as Kubo-Bastin formula. Such an approach allows not only
to study different properties in the dilute limit but in addition to consider a wide
concentration range, while the Boltzmann approach is exclusively restricted to the
dilute limit.

On the basis of the analysis within the semiclassical picture of the different mechanisms
contributing to the AHE in the dilute limit, it was found that the dominant scattering
mechanism is the skew-scattering, since its contribution is inversely proportional to the
impurity concentration, while the side-jump is completely independent of the impurity
amount [71, 95], similar to the intrinsic contribution:

σintr
xy ∝ c0 , σskew

xy ∝ c−1 , σsj
xy ∝ c0 . (6.20)

Since the measured quantity is the resistivity rather than the conductivity, one ex-
presses Eq. (6.20) as:

ρintr
xy ∝ c2 , ρskew

xy ∝ c , ρsj
xy ∝ c2 . (6.21)

Specifically for the dilute regime at T = 0 K the separation of different contributions
was suggested [95], whereas with increasing the impurity concentration the interplay
between different mechanisms increases, making them rather indistinguishable. Thus,
the total AHC can be decomposed into three main contributions [95]:

σxy = σskew
xy + σsj

xy + σintr
xy . (6.22)

Since, in the dilute limit the dominant scattering mechanism is skew scattering then
according to the scaling relation, suggested in [95] it can be expressed as σskew

xy = σxx S,
where S is the skewness factor. Taking into account that intrinsic and side-jump
contributions are completely independent on the impurity concentration, Eq. (6.22)
can be written as follows:

σxy = σxx S + σsj
xy + σintr

xy︸ ︷︷ ︸
=const

. (6.23)

This scheme allows to decompose the total AHC into intrinsic and extrinsic contribu-
tions, however it relies on the assumption that the side-jump term is indeed small.

The situation with separation of different contributions becomes even more compli-
cated if finite temperatures get involved due to the emergence of additional sources
of scattering, such as scattering by phonons and magnons. The scaling relations in-
troduced for skew-scattering (Eq. (6.18)) and side-jump (Eq. (6.19)) mechanisms are
invalid at finite temperatures as the interference between these mechanisms increases
with increasing temperature [89]. Nevertheless, there are experimental [96–100] as well
as theoretical studies [101–104] aiming to separate different contributions within certain
temperature intervals as well as to study the impact of different scattering mechanisms
such as phonons [105, 106] and magnons on AHE in general. Whereas most of the
theoretical studies consider mainly only one of the mechanisms, in the present work
we aimed to study the combined effect using an ab initio approach in which we also
include the thermal influence.
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6.2. Spin Hall effect

Along with anomalous Hall effect lots of experimental and theoretical attention is
devoted to the spin Hall effect (SHE). The SHE occurs in nonmagnetic materials when
the electrical current flows through the sample with spin-orbit coupling and results
in a spin polarization at opposite edges of the sample. The microscopic mechanisms
leading to SHE are essentially the same as in case of the AHE. Namely, the electrons
with ’spin-up’ are scattered in opposite direction with respect to electrons with ’spin-
down’ due to the presence of the spin-orbit coupling. Based on the fact that both
phenomena share the same origin the classification of the contributing mechanisms
is identical as in case of the AHE, namely: intrinsic, skew-scattering and side-jump.
In contrast to the AHE, the SHE provides an opportunity to generate spin currents
avoiding the injection from the ferromagnetic materials making it more attractive in
the development of potential spintronic devices. The efficiency of the SHE in various
materials is characterized by the so-called spin Hall angle (SHA) α, which describes
the conversion of the charge into the spin current. Therefore, materials with large spin
Hall angles are indeed highly desirable. In the literature α is defined as the ratio of
the transverse conductivity (σzxy) and the longitudinal conductivity (σxx) as:

α =
σzxy
σxx

. (6.24)

Since, the microscopical mechanisms leading to the SHE are the same as those in
case of the AHE, the identical decomposition into intrinsic (coherent) and impurity
scattering based extrinsic (incoherent) contributions can be made. In turn, the extrinsic
contribution splits into skew-scattering and side-jump. This decomposition is done in
analogy to the equation valid in case of the AHE:

σzxy = σz(intr)
xy + σz(skew)

xy + σz(sj)xy , (6.25)

where σ
z(intr)
xy corresponds to the intrinsic contribution, σ

z(skew)
xy corresponds to skew-

scattering and σ
z(sj)
xy gives side-jump contribution. It was shown theoretically [107] that

in the superclean regime the dominant scattering mechanism is skew-scattering, which
can be expressed as:

σz(skew)
xy = S σxx , (6.26)

where S represents the so-called skewness factor.
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In this chapter the main results of the current work are summarized. The central
goal of the present work is to study transverse transport effects, particularly the AHE
and SHE and gain broader understanding of the microscopic origin of these phenom-
ena. For that purpose the Kubo-Středa formalism was used which allows to work out
a procedure to separate along with commonly accepted contributions (intrinsic, side-
jump, skew-sacttering) an additional contribution arising from the side-jump scattering
mechanism [108]. This scheme opens a way for further deeper theoretical investiga-
tions of the spin Hall effect with a possible elucidation of its dominating mechanisms.
Furthermore, the subject of the present work is the development and its subsequent
numerical implementation of the general approach which allows to treat many different
quantities (AHE, SHE, SOT, Gilbert damping, Edelstein effects, etc.) within an effi-
cient fully relativistic material specific ab initio approach [63]. This method is based
on the Kubo-Bastin formula for the transport coefficients. The main emphasis is put
on the Fermi-sea contribution which appears along with the well-known Fermi-surface
contribution and which is important especially in the spin-orbit-induced transverse
transport phenomena. The various theoretical and technical aspects of the approach
are discussed in detail. The implemented formalism is applicable to pure systems as
well as disordered alloys in the full concentration range and treats intrinsic (coher-
ent) and extrinsic (incoherent) contributions within one and the same methodological
approach.

Moreover, the investigation of the aforemetioned phenomena is extended to finite tem-
peratures. The alloy-analogy model based on the CPA approach presented in Ref. [47]
allowed to study the influence of the combined effect of the thermal lattice vibrations
and thermal spin fluctuations as well as their individual effect on the transport pro-
perties. The thermally induced lattice vibrations are treated in the present work as
randomly distributed uncorrelated atomic displacements. For each site a fixed number
of displacement directions are set up with equal statistical weights, and with the am-
plitude of displacements varying with temperature. Each displacement is treated as
a different (pseudo)atomic type that allows to calculate the statistical average within
the CPA alloy theory, in full analogy with random alloy systems [47]. The amplitude
of displacements for each temperature is taken according to the root-mean-square dis-
placement of the atoms. The later is evaluated in the present work within the Debye
model approach. In the case of spin fluctuations the angular distribution of the mag-
netic moments representing the experimental magnetization was chosen to map the
corresponding temperature. From our calculations [47, 109–112] it follows that both
scattering channels, connected with the phonon scattering and scattering by spin dis-
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order, have similar contributions and in order to obtain reasonable agreement with
experimental data, it is necessary to account for a combination of these contributions
simultaneously



7.1. Calculating linear-response functions for finite temperatures 57

7.1. Calculating linear-response functions for finite
temperatures

The article ”Calculating linear-response functions for finite temperatures on the basis of
the alloy analogy model” published in The Journal of Physical Review B is reprinted
with permission from Phys. Rev. B, 91, 165132 (2015); copyright 2015 American
Physical Society.
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I. INTRODUCTION

Finite temperature often has a very crucial influence on
the response properties of a solid. A prominent example
for this is the electrical resistivity of perfect nonmagnetic
metals and ordered compounds that take only a nonzero
value with a characteristic temperature (T ) dependence due
to thermal lattice vibrations. While the Holstein transport
equation [1,2] provides a sound basis for corresponding
calculations, numerical work in this field has been done
so far either on a model level or for simplified situations
[3–6]. In practice the Boltzmann formalism is often adopted,
using the constant-relaxation-time (τ ) approximation. This is
a very popular approach in particular when dealing with the
Seebeck effect, as in this case τ drops out [7,8]. The constant-
relaxation-time approximation has also been used extensively
when dealing with the Gilbert damping parameter α [9–11].
Within the description of Kambersky [10,12], the conductivity-
and resistivitylike intra- and interband contributions to α

show a different dependency on τ , leading typically to a
minimum for α(τ ) or equivalently for α(T ) [10,11,13]. A
scheme to deal with the temperature-dependent resistivity that
is formally much more satisfying than the constant-relaxation-
time approximation is achieved by combining the Boltzmann
formalism with a detailed calculation of the phonon properties.
As was shown by various authors [14–17], this parameter-free
approach leads for nonmagnetic metals in general to a very
good agreement with experimental data.

As an alternative to this approach, thermal lattice vibrations
have also been accounted for within various studies by
quasistatic lattice displacements leading to thermally induced
structural disorder in the system. This point of view provides
the basis for the use of the alloy analogy, i.e., for the use of
techniques to deal with substitutional chemical disorder, also
when dealing with temperature-dependent quasistatic random
lattice displacements. Examples of this are investigations on
the temperature dependence of the resistivity and the Gilbert
parameter α based on the scattering matrix approach applied
to layered systems [18]. The necessary average over many

configurations of lattice displacements was taken by means of
the supercell technique. In contrast to this the configurational
average was determined using the coherent potential approxi-
mation (CPA) within investigations using a Kubo-Greenwood-
like linear expression for α [19]. The same approach to deal
with the lattice displacements was also used recently within
calculations of angle-resolved photoemission spectra on the
basis of the one-step model of photoemission [20].

Another important contribution to the resistivity in the
case of magnetically ordered solids is given by thermally
induced spin fluctuations [21]. Again, the alloy analogy has
been exploited extensively in the past when dealing with the
impact of spin fluctuations on various response quantities.
The representation of a frozen spin configuration by means
of supercell calculations has been applied for calculations of
the Gilbert parameter for α [18] as well as for the resistivity
or conductivity [18,22,23]. Also, the CPA has been used for
calculations of α [24] as well as the resistivity [21,25]. A
crucial point in this context is obviously the modeling of
the temperature-dependent spin configurations. Concerning
this, rather simple models have been used [24], but also quite
sophisticated schemes. Here one should mention the transfer
of data from Monte Carlo simulations based on exchange
parameters calculated in an ab initio way [26] as well as work
based on the disordered local moment (DLM) method [25,27].
Although the standard DLM does not account for transversal
spin components it nevertheless allows representation of the
paramagnetic regime with no net magnetization in a rigorous
way. Also, for the magnetically ordered regime below the Curie
temperature it can be demonstrated that the uncompensated
DLM still leads for many situations to good agreement with
experimental data on the so-called spin disorder contribution
to the resistivity [21,25].

In the following we present technical details and ex-
tensions of the so-called alloy analogy scheme which
has already been used when dealing with the tempera-
ture dependence of response quantities on the basis of
Kubo’s response formalism [19,24]. Various applications
will be presented for the conductivity and Gilbert damping
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parameter accounting simultaneously for various types of
disorder.

II. THEORETICAL FRAMEWORK

A. Configurational average for linear-response functions

Many important quantities in spintronics can be formulated
by making use of the linear-response formalism. Important
examples for this are the electrical conductivity [28,29], the
spin conductivity [30], and the Gilbert damping parameter
[19,31]. Restricting attention here for the sake of brevity to the
symmetric part of the corresponding response tensor χμν this
can be expressed by a correlation function of the form

χμν ∝ Tr〈Âμ ImG+ Âν ImG+〉c. (1)

It should be stressed that this is not a real restriction as
the scheme described below has been used successfully
when dealing with the impact of finite temperatures on the
anomalous Hall conductivity of Ni [32]. In this case the more
complex Kubo-Středa or Kubo-Bastin formulation for the full
response tensor has to be used [33].

The vector operator Âμ in Eq. (1) stands, for example,
in the case of the electrical conductivity σμν for the current
density operator ĵμ [29], while in the case of the Gilbert
damping parameter αμν it stands for the torque operator T̂μ

[9,19]. Within the Kubo-Greenwood-like equation (1) the
electronic structure of the investigated system is represented
in terms of its retarded Green function G+(r,r ′,E). Within
multiple-scattering theory or the Korringa-Kohn-Rostoker
(KKR) formalism, G+(r,r ′,E) can be written as [34–36]

G+(�r,�r ′,E) =
∑
��′

Zm
�(�r,E)τmn

��′ (E)Zn×
�′ (�r ′,E)

− δmn

∑
�

Zn
�(�r,E)J n×

� (�r ′,E)	(r ′
n − rn)

+ J n
�(�r,E)Zn×

� (�r ′,E)	(rn − r ′
n). (2)

Here r,r′ refer to points within atomic volumes around sites
Rm,Rn, respectively, with Zn

�(r,E) = Z�(rn,E) = Z�(r −
Rn,E) being a function centered at site Rn. Adopting a fully
relativistic formulation [35,36] for Eq. (2), one gets in a
natural way access to all spin-orbit-induced properties such
as, for example, the anomalous and spin Hall conductivity
[30,33,37] or the Gilbert damping parameter [19]. In this case,
the functions Zn

� and J n
� stand for the regular and irregular

solutions, respectively, to the single-site Dirac equation for site
n with the associated single-site scattering t matrix tn��′ . The
corresponding scattering path operator τnn′

��′ accounts for all
scattering events connecting the sites n and n′. Using a suitable
spinor representation for the basis functions the combined
quantum number � = (κ,μ) stands for the relativistic spin-
orbit and magnetic quantum numbers κ and μ, respectively
[35,36,38].

As has been demonstrated by various authors [28,29,39]
representing the electronic structure in terms of the Green
function G+(r,r ′,E) allows chemical disorder in a random
alloy to be accounted for by making use of a suitable alloy
theory. In this case 〈· · · 〉c stands for the configurational average
for a substitutional alloy with reference to the site occupation.

FIG. 1. (Color online) Configurational averaging for thermal lat-
tice displacements: The continuous distribution P (�Rn(T )) for the
atomic displacement vectors is replaced by a discrete set of vectors
�Rv(T ) occurring with the probability xv . The configurational
average for this discrete set of displacements is made using the CPA,
leading to a periodic effective medium.

Corresponding expressions for the conductivity tensor have
been worked out by Velický [28] and Butler [29] using the
single-site coherent potential approximation which include in
particular the so-called vertex corrections.

The CPA can be used to deal with chemical but also with
any other type of disorder. In fact, by making use of the
different time scales connected with the electronic propagation
and spin fluctuations, the alloy analogy is exploited when
dealing with finite-temperature magnetism on the basis of the
disordered local moment model [27,40]. Obviously, the same
approach can be used when dealing with response tensors at
finite temperatures. In connection with the conductivity this
is often called the adiabatic approximation [41]. Following
this philosophy, the CPA has been used recently also when
calculating response tensors using Eq. (1) with disorder in the
system caused by thermal lattice vibrations [19,32] as well as
by spin fluctuations [21,42].

B. Treatment of thermal lattice displacement

A way to account for the impact of the thermal displacement
of atoms from their equilibrium positions, i.e., for thermal
lattice vibrations, on the electronic structure is to set up a
representative displacement configuration for the atoms within
an enlarged unit cell (the supercell technique). In this case one
has either to use a very large supercell or to take the average
over a set of supercells. Alternatively, one may make use of
the alloy analogy for the averaging problem. This allows in
particular attention to be restricted to the standard unit cell.
Neglecting the correlation between the thermal displacements
of neighboring atoms from their equilibrium positions the
properties of the thermally averaged system can be deduced
by making use of the single-site CPA. This basic idea is
illustrated by Fig. 1. To make use of this scheme a discrete
set of Nv displacement vectors �Rq

v (T ) with probability x
q
v

(v = 1, . . . ,Nv) is constructed for each basis atom q within
the standard unit cell that conforms with the local symmetry
and the temperature-dependent root mean square displacement
(〈u2〉T )1/2 according to

Nv∑
v=1

xq
v

∣∣�Rq
v (T )

∣∣2 = 〈
u2

q

〉
T
. (3)

In the general case, the mean square displacement along the
direction μ (μ = x,y,z) of the atom i can either be taken from
experimental data or represented by the expression based on
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the phonon calculations [43]:

〈
u2

i,μ

〉
T

= 3�
2Mi

∫ ∞

0
dωgi,μ(ω)

1

ω
coth

�ω

2kBT
, (4)

where h = 2π� is the Planck constant, kB is the Boltzmann
constant, and gi,μ(ω) is a partial phonon density of states [43].
On the other hand, a rather good estimate for the root mean
square displacement can be obtained using Debye’s theory. In
this case, for systems with one atom per unit cell, Eq. (4) can
be reduced to the expression

〈u2〉T = 1

4

3h2

π2MkB	D

[
�(	D/T )

	D/T
+ 1

4

]
(5)

with �(	D/T ) the Debye function and 	D the Debye
temperature [44]. Ignoring the zero-temperature term 1/4 and
assuming a frozen potential for the atoms, the situation can be
dealt with in full analogy to the treatment of disordered alloys
on the basis of the CPA. The probability xv for a specific
displacement v may normally be chosen as 1/Nv . The Debye
temperature 	D used in Eq. (5) can be either taken from
experimental data or calculated by representing it in terms
of the elastic constants [45]. In general the latter approach
should give more reliable results in the case of multicomponent
systems.

To simplify notation we restrict or attention in the following
to systems with one atom per unit cell. The index q numbering
sites in the unit cell can therefore be dropped, while the index
n numbers the lattice sites.

Assuming a rigid displacement of the atomic potential in
the spirit of the rigid muffin-tin approximation [46,47] the
corresponding single-site t matrix t loc = tn with respect to the
local frame of reference connected with the displaced atomic
position is unchanged. With respect to the global frame of
reference connected with the equilibrium atomic positions
Rn, however, the corresponding t matrix t is given by the
transformation

t = U (�R) t loc U (�R)−1. (6)

The so-called U transformation matrix U (s) is given in its
nonrelativistic form by [46,47]

ULL′(s) = 4π
∑
L′′

il+l′′−l′ CLL′L′′ jl′′ (|s|k) YL′′(ŝ). (7)

Here L = (l,m) represents the nonrelativistic angular momen-
tum quantum numbers, jl(x) is a spherical Bessel function,
YL(r̂) is the real spherical harmonics, CLL′L′′ is a corresponding
Gaunt number, and k = √

E is the electronic wave vector. We
here use atomic Rydberg units for the energy E, which is
measured with respect to the so-called muffin-tin zero. The
relativistic version of the U matrix is obtained by a standard
Clebsch-Gordan transformation [38].

The various displacement vectors �Rv(T ) can be used to
determine the properties of a pseudocomponent of a pseu-
doalloy. Each of the Nv pseudocomponents with |�Rv(T )| =
〈u2〉1/2

T is characterized by a corresponding U matrix Uv and
a t matrix tv . As for a substitutional alloy, the site diagonal
configurational average can be determined by solving the
multicomponent CPA equations within the global frame of

FIG. 2. (Color online) Configurational averaging for thermal
spin fluctuations: The continuous distribution P (ên) for the ori-
entation of the magnetic moments is replaced by a discrete set
of orientation vectors êf occurring with a probability xf . The
configurational average for this discrete set of orientations is made
using the CPA, leading to a periodic effective medium.

reference:

τCPA =
Nv∑
v=1

xvτ v, (8)

τ v = [(tv)−1 − (tCPA)−1 + (τCPA)−1]−1, (9)

τCPA = 1

�BZ

∫
�BZ

d3k[(tCPA)−1 − G(k,E)]−1, (10)

where the underline indicates matrices with respect to the
combined index �. As was pointed out in previous work
[42], the cutoff for the angular momentum expansion in these
calculations should be taken as l � lmax + 1 with the lmax

value used in the calculations for the nondistorted lattice.
In all calculations we have used Nv = 14: increasing the set
of directions for the atomic displacements led to only minor
changes of the final results.

The first of these CPA equations represents the require-
ment for the mean-field CPA medium that embedding of a
component v should lead on the average to no additional
scattering. Equation (9) gives the scattering path operator for
the embedding of the component v into the CPA medium,
while Eq. (10) gives the CPA scattering path operator in terms
of a Brillouin zone integral with G(k,E), the so-called KKR
structure constants.

Having solved the CPA equations, the linear-response
quantity of interest may be calculated using Eq. (1) as for
an ordinary substitutional alloy [28,29]. This implies that one
also has to deal with the so-called vertex corrections [28,29]
that take into account that one has to deal with a configuration
average of the type 〈Âμ ImG+ Âν ImG+〉c which in general
will differ from the simpler product 〈Âμ ImG+ 〉c〈Âν ImG+〉c.

C. Treatment of thermal spin fluctuations

As for the disorder connected with thermal displacements,
the impact of disorder due to thermal spin fluctuations may be
accounted for by use of the supercell technique. Alternatively
one may again use the alloy analogy and determine the
necessary configurational average by means of the CPA as
indicated in Fig. 2. As for the thermal displacements in a first
step a set of representative orientation vectors êf (with f =
1, . . . ,Nf ) for the local magnetic moment is introduced (see
below). Using the rigid spin approximation the spin-dependent
part BXC of the exchange-correlation potential does not change
for the local frame of reference fixed to the magnetic moment
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when the moment is oriented along an orientation vector êf .
This implies that the single-site t matrix t loc

f in the local frame
is the same for all orientation vectors. With respect to the
common global frame that is used to deal with the multiple
scattering [see Eq. (10)] the t matrix for a given orientation
vector is determined by:

t = R(ê) t loc R(ê)−1. (11)

Here the transformation from the local to the global frame
of reference is expressed by the rotation matrices R(ê) which
are determined by the vectors ê or corresponding Euler angles
[38]. Again the configurational average for the pseudoalloy
can be obtained by setting up and solving the CPA equations
in analogy to Eqs. (8)–(10).

D. Models of spin disorder

The central problem with the scheme described above is
obviously the construction of a realistic and representative
set of orientation vectors êf and probabilities xf for each
temperature T to be used in the subsequent calculation of the
response quantity using the alloy analogy model. A rather
appealing approach is to calculate the exchange-coupling
parameters Jij of a system in an ab initio way [26,48,49]
and to use them in subsequent Monte Carlo (MC) simulations.
Figure 3 (top) shows results for the temperature-dependent
average reduced magnetic moment of corresponding simula-
tions for bcc Fe obtained for a periodic cell with 4096 atom
sites. Note that these results have been obtained using the
exchange coupling parameters calculated for the DLM state,
modeling the disordered magnetic state above TC that gave
the best agreement with the experimental Curie temperature
[27]. The MC calculations for Fe using a classical Heisenberg
Hamiltonian have been discussed in [50] in more detail. In the
case of Ni the calculations of Jij have been performed for the
ferromagnetic (FM) state. The Curie temperature obtained via
MC simulations is strongly underestimated, which was also
discussed previously by many authors (see, e.g., [51]). The
full line gives the value for the reduced magnetic moment of the
MC cell MMC∗ (T ) = 〈mz〉T /m0 projected on the z axis, calcu-
lated for the last single Monte Carlo step (ẑ is the orientation of
the total moment, i.e., 〈m〉T ‖ẑ; the saturated magnetic moment
at T = 0 K is m0 = |〈m〉T =0|). This scheme is called MC∗
in the following. In spite of the rather large number of sites
(4096) the curve is rather noisy in particular when approaching
the Curie temperature. Nevertheless, the spin configuration
of the last MC step was used as an input for subsequent
spin-polarized relativistic (SPR) KKR-CPA calculations using
the orientation vectors êf with the probability xf = 1/Nf with
Nf = 4096. As Fig. 3 (top) shows, the temperature-dependent
reduced magnetic moment MKKR(MC∗)(T ) deduced from the
electronic structure calculations follows one-to-one the Monte
Carlo data MMC∗(T ). This is a very encouraging result for
further applications (see below) as it demonstrates that the
CPA although being a mean-field method and used here in its
single-site formulation is nevertheless capable of reproducing
results of MC simulations that go well beyond the mean-field
level.

However, using the set of vectors êf of the scheme MC*
also for calculations of the Gilbert damping parameters α as a
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FIG. 3. (Color online) Averaged reduced magnetic moment
M(T ) = 〈mz〉T /|〈m〉T =0| along the z axis as a function of the
temperature T . Top: Results of Monte Carlo simulations using the
scheme MC* (full squares) compared with results of subsequent
KKR calculations (open squares). Middle: Results of Monte Carlo
simulations using the scheme MC (full squares) compared with
results using a mean-field fit with a constant Weiss field parameter
wMC(TC) (open diamonds) and a temperature-dependent Weiss field
parameter wMC(T ) (open squares). In addition experimental data (full
circles) together with a corresponding mean-field fit obtained for
a temperature-dependent Weiss field parameter wexpt(T ). Bottom:
Results of Monte Carlo simulations using the scheme MC (full
squares) compared with results of subsequent KKR calculations using
the MC scheme (up triangles) and a corresponding DLM (down
triangles) spin configuration, respectively.
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FIG. 4. (Color online) Overview of the different models used to
treat spin disorder together with the notation used in the text. The
starting point is a temperature-dependent magnetization M(T ) either
(i) taken from experiment or (ii) obtained from a Monte Carlo sim-
ulation that uses exchange-coupling constants from a first-principles
electronic structure calculation. Three different models abbreviated
as MC, DLM, and cone are then used to obtain a representative
distribution of moments [weights and directions {xf ,êf (θ,φ)}] that
in turn reproduce M(T ). On the right in parentheses the source is
given (“MC” or “expt” data) upon which the calculation of response
quantities is based.

function of temperature led to extremely noisy and unreliable
curves for α(T ). For that reason an average has been taken
over many MC steps (scheme MC) leading to a much smoother
curve for MMC(T ) as can be seen from Fig. 3 (middle) with
a Curie temperature T MC

C = 1082 K. As this enlarged set of
vectors êf got too large to be used directly in subsequent
SPR-KKR-CPA calculations, a scheme was worked out to get
a set of vectors êf and probabilities xf that is not too large but
nevertheless leads to smooth curves for M(T ).

The first attempt was to use the Curie temperature T MC
C

to deduce a corresponding temperature-independent Weiss
field parameter w(TC) on the basis of the standard mean-field
relation

w(TC) = 3kBTC

m2
0

. (12)

This leads to a reduced magnetic moment curve MMF(T ) that
shows by construction the same Curie temperature as the
MC simulations. For temperatures between T = 0 K and TC,
however, the mean-field reduced magnetic moment MMF(T )
is well below the MC curve [see Fig. 3 (middle)].

As an alternative to this simple approach we introduced
a temperature-dependent Weiss field parameter w(T ). This
allows us to describe the temperature-dependent magnetic
properties using the results obtained beyond the mean-field
approximation. At the same time the calculation of the
statistical average can be performed by treating the model
Hamiltonian in terms of the mean-field theory. For this reason
the reduced magnetic moment M(T ), being a solution of the
equation (see, e.g., [52])

M(T ) = L

(
wm2

0M(T )

kBT

)
, (13)

was fitted to that obtained from MC simulations MMC(T ) with
the Weiss field parameter w(T ) as a fitting parameter, such that

lim
w→w(T )

M(T ) = MMC(T ), (14)

with L(x) the Langevin function.
The corresponding temperature-dependent probability x(ê)

for an atomic magnetic moment to be oriented along ê

is proportional to exp(w(T )ẑ · ê/kBT ) (see, e.g., [52]). To
calculate this value we used Nθ and Nφ points for a regular grid
for the spherical angles θ and φ corresponding to the vector
êf :

xf = sin(θf ) exp[w(T )ẑ · êf /kBT ]∑
f ′ sin(θf ′) exp[w(T )ẑ · êf ′/kBT ]

. (15)

Figure 5 shows the θ -dependent behavior of x(ê) for
three different temperatures. As one notes, the mean-field
(MF) fit to the MC results perfectly reproduces these data
for all temperatures. This applies of course not only for the
angular-resolved distribution of the magnetic moments shown
in Fig. 5 but also for the average reduced magnetic moment
recalculated using Eq. (13), shown in Fig. 3. Obviously, the MF
curve MMF(MC)(T ) obtained using the temperature-dependent
Weiss field parameter w(T ) perfectly reproduces the original
MMC(T ) curve. The great advantage of this fitting procedure
is that it allows the MC data set to be replaced with a large
number NMC

f of orientation vectors êf (pointing in principle in
any direction) with equal probability xf = 1/NMC

f [106 MC
steps have been used to calculate MMC(T ) for each T] by
a much smaller data set with Nf = NθNφ (where Nθ = 180
and Nφ = 18 have been used in all calculations presented here)
with xf given by Eq. (15).

Accordingly, the reduced data set can straightforwardly be
used for subsequent electronic structure calculations. Figure 3
(bottom) shows that the calculated temperature-dependent
reduced magnetic moment MKKR-MC(MC)(T ) agrees perfectly
with the reduced magnetic moment MMC(T ) given by the
underlying MC simulations.

The DLM method has the appealing feature that it combines
ab initio calculations and thermodynamics in a coherent
way. Using a nonrelativistic formulation, it was shown that
the corresponding averaging over all orientations of the
individual atomic reduced magnetic moments can be mapped
onto a binary pseudoalloy with one pseudocomponent having
up- and downward orientations of the spin moment with
concentrations x↑ and x↓, respectively [25,53]. For a fully
relativistic formulation, with spin-orbit coupling included, this
simplification cannot be justified any longer and a proper
average has to be taken over all orientations [54]. As we do
not perform DLM calculations but use here the DLM picture
only to represent MC data, this complication is ignored in the
following. Having the set of orientation vectors êf determined
by MC simulations, the corresponding concentrations x↑ and
x↓ can straightforwardly be fixed for each temperature by the
requirement

1

Nf

Nf∑
f =1

êf = x↑ẑ + x↓(−ẑ), (16)
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FIG. 5. (Color online) Angular distribution P (θ ) of the atomic
magnetic moment m obtained from Monte Carlo simulations (MC)
for the temperatures T = 200, 400, and 800 K compared with mean-
field (MF) data xf (full line) obtained by fitting using a temperature-
dependent Weiss field parameter w(T ) [Eq. (13)].

with x↑ + x↓ = 1. Using this simple scheme, electronic struc-
ture calculations have been performed for a binary alloy hav-
ing collinear magnetization. The resulting reduced magnetic
moment MKKR-DLM(MC)(T ) is shown in Fig. 3 (bottom). Note
that again the original MC results are perfectly reproduced.
This implies that when calculating the projected reduced
magnetic moment Mz that is determined by the averaged Green
function 〈G〉 the transversal magnetization has hardly any
impact.

Fig. 3 (middle) gives also experimental data for the M(T )
[55]. While the experimental Curie temperature T

expt
C = 1044

K [55] is rather well reproduced by the MC simulations
T MC

C = 1082 K, note that the MC curve MMC(T ) is well
below the experimental curve. In particular, MMC(T ) drops
too fast with increasing T in the low-temperature regime
and does not show the T 3/2 behavior. The reason for this
is that the MC simulations do not properly account for the
low-energy long-ranged spin-wave excitations responsible for
the low-temperature magnetization variation. Performing ab
initio calculations for the spin-wave energies and using these
data for the calculation of M(T ), much better agreement with
experiment can indeed be obtained in the low-temperature
regime than with MC simulations [56].

As the fitting scheme sketched above needs only the
temperature-reduced magnetic moment M(T ) as input it can
be applied not only to MC data but also to experimental
data. Figure 3 shows that the mean-field fit MMF(expt)(T ) again
perfectly fits the experimental reduced magnetic moment curve
Mexpt(T ). Based on this good agreement this corresponding
data set {êf ,xf } has also been used for the calculation of
response tensors (see below).

An additional much simpler scheme to simulate the experi-
mental Mexpt(T ) curve is to assume that the individual atomic
moments are distributed on a cone, i.e., with Nθ = 1 and
Nφ � 1 [24]. In this case the opening angle θ (T ) of the cone is
chosen such as to reproduce M(T ). In contrast to the standard
DLM picture, this simple scheme already allows transversal
components of the magnetization to be taken into account.
Corresponding results for response tensor calculations will be
shown below.

Finally, it should be stressed here that the various spin
configuration models discussed above assume a rigid spin
moment, i.e., its magnitude does not change with temperature
or with orientation. In contrast to this, Ruban et al. [57]
use a longitudinal spin fluctuation Hamiltonian with the
corresponding parameters derived from ab initio calculations.
As a consequence, subsequent Monte Carlo simulations based
on this Hamiltonian account in particular for longitudinal
fluctuations of the spin moments. A similar approach has been
used by Drchal et al. [58,59], leading to good agreement with
the results of Ruban et al. However, the scheme used in these
calculations does not supply in a straightforward manner the
necessary input for temperature-dependent transport calcula-
tions. This is different from the work of Staunton et al. [60],
who performed self-consistent relativistic DLM calculations
without the restriction to a collinear spin configuration. This
approach in particular accounts in a self-consistent way for
longitudinal spin fluctuations.

E. Combined chemical and thermally induced disorder

The various types of disorder discussed above may be
combined with each other as well as with chemical, i.e.,
substitution, disorder. In the most general case a pseudocom-
ponent vf t is characterized by its chemical atomic type t , the
spin fluctuation f , and the lattice displacement v. Using the
rigid muffin-tin and rigid spin approximations, the single-site
t matrix t loc

t in the local frame is independent of the orientation
vector êf and displacement vector �Rv , and coincides with
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t t for the atomic type t . With respect to the common global
frame one has accordingly the t matrix

tvf t = U (�Rv) R(êf ) t t R(êf )−1U (�Rv)−1. (17)

With this the corresponding CPA equations are identical to
Eqs. (8)–(10) with the index v replaced by the combined index
vf t . The corresponding pseudoconcentration xvf t combines
the concentration xt of the atomic type t with the probabilities
for the orientation vector êf and displacement vector �Rv .

III. COMPUTATIONAL DETAILS

The electronic structure of the investigated ferromagnets
bcc Fe and fcc Ni, has been calculated self-consistently
using the SPR-KKR band structure method [61,62]. For the
exchange-correlation potential the parametrization as given
by Vosko et al. [63] has been used. The angular momentum
cutoff of lmax = 3 was used in the KKR multiple-scattering
expansion. The lattice parameters have been set to the
experimental values.

In a second step the exchange-coupling parameters Jij

have been calculated using the so-called Lichtenstein formula
[26]. Although the self-consistent field (SCF) calculations
have been done on a fully relativistic level, the anisotropy
of the exchange coupling due to the spin-orbit coupling
has been neglected here. Also, the small influence of the
magnetocrystalline anisotropy for the subsequent Monte Carlo
simulations has been ignored, i.e., these have been based
on a classical Heisenberg Hamiltonian. The MC simulations
were done in a standard way using the Metropolis algorithm
and periodic boundary conditions. The theoretical Curie
temperature T MC

C has been deduced from the maximum of
the magnetic susceptibility.

The temperature-dependent spin configuration obtained
during a MC simulation has been used to construct a set
of orientations êf and probabilities xf according to the
schemes MC* and MC described in Sec. II D to be used
within subsequent SPR-KKR-CPA calculations (see above).
For the corresponding calculation of the reduced magnetic
moment the potential obtained from the SCF calculation for
the perfect ferromagnetic state (T = 0 K) has been used. The
calculation for the electrical conductivity as well as for the
Gilbert damping parameter has been performed as described
elsewhere [42,64].

IV. RESULTS AND DISCUSSION

A. Temperature-dependent conductivity

Equation (1) has been used together with the vari-
ous schemes described above to calculate the temperature-
dependent longitudinal resistivity ρ(T ) of the pure ferromag-
nets Fe, Co, and Ni. In this case obviously disorder due to
thermal displacements of the atoms as well as spin fluctuations
contributes to the resistivity.

To give an impression of the impact of the thermal
displacements alone Fig. 6 gives the temperature-dependent
resistivity ρ(T ) of pure Cu (	Debye = 315 K), which is
found to be in very good agreement with corresponding
experimental data [65]. This implies that the alloy analogy
model that ignores any inelastic scattering events should
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FIG. 6. (Color online) Temperature-dependent longitudinal re-
sistivity of fcc Cu ρ(T ) obtained by accounting for thermal vibrations
as described in Sec. II B compared with corresponding experimental
data [65]. In addition results are shown based on the lowest-order
variational approximation (LOVA) to the Boltzmann formalism [15].

in general lead to rather reliable results for the resistivity
induced by thermal displacements. Accordingly, comparison
with experiment for magnetically ordered systems should
allow the most appropriate model for spin fluctuations to be
found.

Figure 7 (top) shows theoretical results for ρ(T ) of bcc
Fe due to thermal displacements ρv(T ), spin fluctuations
described by the scheme MC ρMC(MC)(T ), as well as the
combination of the two influences [ρv,MC(MC)(T )]. First of
all one notes that ρv(T ) is not influenced within the adopted
model by the Curie temperature TC but is determined only by
the Debye temperature. ρMC(MC)(T ), on the other hand, reaches
saturation for TC as the spin disorder no longer increases with
increasing temperature in the paramagnetic regime. Figure 7
also shows that ρv(T ) and ρMC(MC)(T ) are comparable for
low temperatures but ρMC(MC)(T ) exceeds ρv(T ) more and
more for higher temperatures. Most interestingly, however, the
resistivity for the combined influence of thermal displacements
and spin fluctuations ρv,MC(MC)(T ) does not coincide with the
sum of ρv(T ) and ρMC(MC)(T ) but exceeds the sum for low
temperatures and lies below the sum when approaching TC.

Figure 7 (bottom) shows the results of three different calcu-
lations including the effect of spin fluctuations as functions of
the temperature. The curve ρMC(MC)(T ) is identical with that
given in Fig. 7 (top) based on Monte Carlo simulations. The
curves ρDLM(MC)(T ) and ρcone(MC)(T ) are based on a DLM- and
a conelike representation of the MC results, respectively. For
all three cases results are given including as well as ignoring
the vertex corrections. Note that the vertex corrections play a
negligible role for all three spin disorder models. This is fully
in line with the experience for the longitudinal resistivity of
disordered transition metal alloys: as long as the the states
at the Fermi level have dominantly d character the vertex
corrections can be neglected in general. On the other hand,
if the sp character dominates, inclusion of vertex corrections
may alter the result on the order of 10% [66,67].

Comparing the DLM result ρDLM(MC)(T ) with ρMC(MC)(T )
one notes in contrast to the results for M(T ) shown above
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FIG. 7. (Color online) Temperature-dependent longitudinal re-
sistivity of bcc Fe ρ(T ) obtained by accounting for thermal vibrations
and spin fluctuations as described in Sec. II B. Top: By accounting
for vibrations (vib, diamonds), spin fluctuations using the scheme
MC (fluct, squares) and both (vib + fluct, circles). The dashed line
represents the sum of resistivities contributed by lattice vibrations or
spin fluctuations only. Bottom: By accounting for spin fluctuations
êf = ê(θf ,φf ) using the schemes (see Fig. 4): MC(MC) (squares),
DLM(MC) (up triangles), and cone(MC) (down triangles). The full
and open symbols represent the results obtained with the vertex
corrections included (VC) and excluded (NVC), respectively.

[see Fig. 3 (bottom)] quite an appreciable deviation. This
implies that the restricted collinear representation of the spin
configuration implied by the DLM model introduces errors
for the configurational average that seem in general to be
unacceptable. For the Curie temperature and beyond in the
paramagnetic regime ρDLM(MC)(T ) and ρMC(T ) coincide, as
was shown formally before [21].

Comparing finally ρcone(MC)(T ) based on the conical rep-
resentation of the MC spin configuration with ρMC(MC)(T ),
one notes that this simplification also leads to quite strong
deviations from the more reliable result. Nevertheless, one
notes that ρDLM(MC)(T ) agrees with ρMC(MC)(T ) for the Curie
temperature and also accounts to some extent for the impact
of the transversal components of the magnetization.

The theoretical results for bcc Fe (	Debye = 420 K)
based on the combined inclusion of the effects of thermal
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FIG. 8. (Color online) Top: Temperature-dependent longitudinal
resistivity of bcc Fe ρ(T ) obtained by accounting for ther-
mal vibrations and spin fluctuations using the scheme MC
vib + fluct[MC(MC)], squares and a mean-field fit to the experi-
mental temperature magnetic moment Mexpt {vib + fluct[MC(expt)],
diamonds}, compared with experimental data (circles) [65]. Bottom:
Corresponding results for fcc Ni. In addition results are shown
accounting for thermal displacements (vib) only for the ferromagnetic
(FM) and the paramagnetic (PM) regimes. The dashed line represents
the sum of resistivities contributed by lattice vibrations or spin
fluctuations only. Experimental data have been taken from Ref. [68].

displacements and spin fluctuations using the MC scheme
[ρv,MC(MC)(T )] are compared in Fig. 8 (top) with experimental
data [ρexpt(T )]. For the Curie temperature obviously a very
good agreement with experiment is found, while for lower
temperatures ρv,MC(MC)(T ) exceeds ρexpt(T ). This behavior
correlates well with that of the temperature-dependent reduced
magnetic moment M(T ) shown in Fig. 3 (middle). The too
rapid decrease of MMC(T ) compared with the experimental
results implies an essentially overestimated spin disorder at
any temperature, leading in turn to a too large resistivity
ρv,MC(MC)(T ). On the other hand, using the temperature depen-
dence of the experimental reduced magnetic moment Mexpt(T )
to set up the temperature dependent spin configuration as
described above a very satisfying agreement of ρv,MC(expt)(T ) is
found with the experimental resistivity data ρexpt(T ). Note also
that above TC the calculated resistivity increases the saturation,

165132-8

7.1. Calculating linear-response functions for finite temperatures 65

-



CALCULATING LINEAR-RESPONSE FUNCTIONS FOR . . . PHYSICAL REVIEW B 91, 165132 (2015)

in contrast to the experimental data, where the continuing
increase of ρexpt(T ) can be attributed to the longitudinal spin
fluctuations leading to a temperature-dependent distribution
of local magnetic moments on Fe atoms [57]. However,
this contribution was not taken into account because of the
restriction in present calculations of using fixed values for the
local reduced magnetic moments.

Figure 8 (bottom) shows corresponding results for the
temperature-dependent resistivity of fcc Ni (	Debye = 375 K).
For the ferromagnetic regime that the theoretical results are
comparable in magnitude when only thermal displacements
[ρv(T )] or only spin fluctuations [ρMC(expt)(T )] are accounted
for. In the latter case the mean-field w(T ) has been fitted
to the experimental M(T ) curve. Taking both into account
leads to a resistivity [ρv,MC(expt)(T )] that is well above the sum
of the individual terms ρv(T ) and ρMC(expt)(T ). Comparing
ρv,MC(expt)(T ) with experimental data ρexpt(T ), our finding
shows that the theoretical results overshoot the experimental
ones as one comes closer to the critical temperature. This
is a clear indication that the assumption of a rigid spin
moment is quite questionable as the resulting contribution to
the resistivity due to spin fluctuations as much too small. In
fact the simulations of Ruban et al. [57] on the basis of a
longitudinal spin fluctuation Hamiltonian led on the case of
fcc Ni to a strong diminishing of the average local magnetic
moment when the critical temperature is approached from
below (about 20% compared to the value at T = 0 K). For bcc
Fe, the change is much smaller (about 3%) justifying in this
case the assumption of a rigid spin moment. Taking the extreme
point of view that the spin moment vanishes completely above
the critical temperature or in the paramagnetic regime only
thermal displacements have to be considered as a source for
the finite resistivity. Corresponding results are shown in Fig. 8
(bottom) together with corresponding experimental data. The
very good agreement between the two obviously suggests that
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FIG. 9. (Color online) Temperature-dependent Gilbert damping
parameter α(T ) for bcc Fe obtained by accounting for spin fluctu-
ations based on the experimental M(T ) dependence and calculated
using the schemes MC (circles), DLM (up triangles), and cone (down
triangles); as well as the Gilbert damping parameter calculated by
accounting for spin fluctuations using the scheme MC and based on
the M(T ) dependence obtained in MC simulations.

remaining spin fluctuations above the critical temperature are
of minor importance for the resistivity of fcc Ni.

B. Temperature-dependent Gilbert damping parameter

Figure 9 shows results for the Gilbert damping parameter
α of bcc Fe obtained using different models for the spin
fluctuations. All the curves show the typical conductivitylike
behavior for low temperatures and the resistivitylike behavior
at high temperatures, reflecting the change from dominating
intra- to interband transitions [11]. The curve denoted “expt” is
based on a spin configuration obtained from the experimental
Mexpt(T ) data. Using the conical model to fit Mexpt(T ) as the
basis for the calculation of α(T ) leads obviously to a rather
good agreement with αM(expt)(T ). With instead a DLM-like
representation of Mexpt(T ), on the other hand, the transverse
spin components are suppressed and noteworthy deviations
from αM(expt)(T ) are found for the low-temperature regime.
Nevertheless, the deviations are less pronounced than in the
case of the longitudinal resistivity [see Fig. 7 (bottom)],
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FIG. 10. (Color online) Top: Temperature-dependent Gilbert
damping α(T ) for bcc Fe, obtained by accounting for thermal
vibrations and spin fluctuations accounting for lattice vibrations
only (circles) and lattice vibrations and spin fluctuations based on
a mean-field fit to the experimental temperature-reduced magnetic
moment Mexpt (diamonds) compared with experimental data (dashed
and full lines) [69,70]. Bottom: Corresponding results for fcc Ni.
Experimental data have been taken from Ref. [69].
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where corresponding results are shown based on MMC(T ) as
a reference. Obviously, the damping parameter α seems to be
less sensitive to the specific spin fluctuation model used than
the resistivity. Finally, using the spin configuration deduced
from Monte Carlo simulations, i.e., based on MMC(T ), quite
strong deviations for the resulting αM(MC)(T ) from αM(expt)(T )
are found. As for the resistivity [see Fig. 7 (bottom)] this seems
to reflect the too fast drop of the reduced magnetic moment
MMC(T ) with temperature in the low-temperature regime
compared with the drop in temperature (see Fig. 3). As was
found before [19], accounting only for thermal vibrations α(T )
[Fig. 7 (bottom)] gives results comparable to the case when
only thermal spin fluctuations are allowed. Combing both
thermal effects does not lead to a curve that is just the sum of the
two α(T ) curves. As found for the conductivity [Fig. 7 (top)]
obviously the two thermal effects are not simply additive. As
Fig. 10 (top) shows, the resulting damping parameter α(T )
for bcc Fe that accounts for thermal vibrations as well as spin
fluctuations is found to be in reasonable good agreement with
experimental data [19].

Figure 10 shows also corresponding results for the Gilbert
damping of fcc Ni as a function of temperature. Accounting
only for thermal spin fluctuations on the basis of the experi-
mental M(T ) curve leads in this case to completely unrealistic
results, while accounting only for thermal displacements leads
to results already in rather good agreement with experiment.
Taking finally both sources of disorder into account, again
no simple additive behavior is found but the results are
nearly unchanged compared to those based on the thermal
displacements alone. This implies that the results for the
Gilbert damping parameter of fcc Ni hardly depend on the
spin fluctuations but are governed significantly by thermal
displacements.

V. SUMMARY

Various schemes based on the alloy analogy that allow in-
clusion of thermal effects when calculating response properties
relevant in spintronics have been presented and discussed.
Technical details of implementation within the framework
of the spin-polarized relativistic KKR-CPA band structure
method have been outlined that allow thermal vibrations as
well as spin fluctuations to be dealt with. Various models
to represent spin fluctuations have been compared with each
other concerning the corresponding results for the temper-
ature dependence of the reduced magnetic moment M(T )
as well as response quantities. It was found that response
quantities are much more sensitive to the spin fluctuation
model than the reduced magnetic moment M(T ). Furthermore,
it was found that the influence of thermal vibrations and
spin fluctuations is not additive when calculating electrical
conductivity or the Gilbert damping parameter α. Using
experimental data for the reduced magnetic moment M(T )
to set up realistic temperature-dependent spin configurations,
satisfying agreement for the electrical conductivity as well
as the Gilbert damping parameter could be obtained for the
elemental ferromagnets bcc Fe and fcc Ni.
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V. Drchal, S. Khmelevskyi, and I. Turek, Phys. Rev. B 85,
214405 (2012).
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Abstract. Finite-temperature effects in the first-principles calculations of elec-

tronic transport up to now include almost exclusively only electronic temper-

atures by means of the Fermi-distribution function neglecting the influence of

lattice vibrations. Here, employing the linear response Kubo formalism as im-

plemented in a fully relativistic multiple-scattering Korringa–Kohn–Rostoker

Green function method a systematic first-principles study of the anomalous Hall

conductivity (AHC) of the 3d-transition metals Fe, Co and Ni is presented.

It is shown that the inclusion of both correlations and thermal lattice vibra-

tions is needed to give a material-specific description of the AHC in transition

metals. The employed general framework will allow a first-principles description

of other transverse transport phenomena treating correlations, finite temperatures

and disorder on the same footing, giving valuable insights for experiments.
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1. Introduction

The simple experiment by Hall [1] driving a current through a ferromagnet and observing the

anomalous Hall effect (AHE) as a transverse voltage has fruitfully spurred the development

of experimental and theoretical methods dealing with transport in solids. It now stands as a

paradigm for understanding related transverse transport phenomena, such as e.g. the spin Hall-

(SHE), anomalous- and spin-Nernst effects that have received intense interest in recent years.

They all share a common origin, namely they are obviously spin–orbit-driven relativistic effects.

The AHE has for decades eluded theoretical understanding—it took more than 50 years for

Karplus and Luttinger [2] to put forward an insight that initiated modern theories of the AHE.

They identified the anomalous velocity as an interband matrix element of the current operator

that is today the foundation of semiclassical approaches that give a topological formulation

of the AHE in terms of the Berry phase of Bloch bands in pure crystals [3, 4]. The latter is

used to define the so-called intrinsic contribution to the AHE. Already early on Smit [5, 6] and

Berger [7] discussed other extrinsic origins of the AHE, namely skew- and side-jump scattering.

There are extrinsic contributions to the AHE that fall in neither category [4]; however, it is

now commonly established that we separate the AHE into an intrinsic and a skew-scattering

contribution and declare the difference to the total AHE as side-jump scattering [8]. Experiments

then rely on a scaling mechanism to extract these contributions from the raw data.

Besides a wealth of model calculations (see the review [8] and references therein) that

are tailored to identify general trends but miss the material specific aspect a number of first-

principles calculations building on a density-functional theory (DFT) framework have been

undertaken recently to compute the anomalous Hall conductivity (AHC) in the transition metals

(TMs) [9–12]. Almost all of them rely on the Berry phase formulation for pure crystals and

therefore are only able to deal with the intrinsic contribution. Boltzmann transport theory-based

formulations have been used in the context of the SHE [13] to compute the skew-scattering

contributions in the dilute limit for alloys. Covering the whole concentration range of alloys

and including all contributions to the AHE has recently been done [14, 16] on the basis of a

Kubo–Středa formulation [17, 18].

The role of correlations in the electronic structure of the 3d-TM has only very recently been

addressed in the context of the AHE [10, 11]. Employing the local spin-density approximation

(LSDA), or generalized gradient approximation (GGA), gives unfavorable agreement with

experiment, and with the AHE being a property of the Fermi surface [9, 19] it became clear that

the LSDA/GGA does not supply the proper band structure. This is demonstrated, in particular,

for the case of Ni (see also table 1) where the LSDA/GGA strongly overestimates the magnitude

of the AHC. Employing the LSDA/GGA+U remedies this problem, by moving down d-bands

relative to the Fermi energy (EF), thereby making the X2 hole pocket present in LSDA/GGA

disappear.
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Table 1. Intrinsic AHC σxy in (� cm)−1 of the ferromagnetic TMs Fe, Co and

Ni from first-principles theoretical (present work compared to others) as well as

experimental (Exp.) studies. The magnetization has been assumed to be oriented

along the [001] direction.

bcc-Fe hcp-Co fcc-Co fcc-Ni

LSDA, present work 685 325 213 −2062

LSDA + U , present work 703 390 379 −1092

LSDA/GGA 753a,767b 477a 249c −2203a,−2200d

650e 481c 360e −2410e

LSDA + U /GGA+U 643f −960d,−900b

Exp. 1032g 813h −646(@RT)i

−1100(5K)j

a Wang et al [9].
b Weischenberg et al [10].
c Roman et al [33].
d Fuh and Guo [11].
e Turek et al [16].
f Tung et al [12].
g Dheer [34].
h Volkenshtein et al [36].
i Lavine [35].
j Ye et al [21].

A further important aspect of the AHE that is addressed in experimental studies but rarely

in theoretical considerations is the temperature dependence of the AHE. For the pure 3d-

systems, measurements of the AHE are typically done on commercially available specimens

or thick layers grown on a substrate [20–22] and the temperature is changed in order to vary the

resistivity. The latter makes the discussion of the temperature dependence very delicate when

trying to disentangle different mechanisms and contributions to the AHE (inelastic scattering:

scattering by phonons/magnons, etc). It is advocated, however, as an empirical fact [8, 23]

that inelastic scattering processes suppress the skew scattering at higher temperatures with the

intrinsic and side-jump (see however the remark above) contributions dominantly prevailing.

This then again is used to experimentally analyze the AHE. Recently, model calculations [23]

studied the role of inelastic scattering by phonons employing a Kubo formalism and introducing

a phenomenological scattering rate γ as the imaginary part of the self-energy. To our knowledge,

no first-principles approach has been used so far to deal with the temperature dependence of

AHE in 3d-TMs.

In this work, we present a generally applicable formalism and results of a first-principles

approach for calculating the AHC of TMs and their alloys. We show that the inclusion of both

finite-temperature and correlation effects leads to a unified material-specific description of these

systems.

2. Theoretical approach

As the AHE is inherently a relativistic phenomenon, we choose to work within a fully relativistic

approach employing the Kohn–Sham–Dirac equation as formulated in spin-polarized DFT
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employing the Hamiltonian

HD = −i cEα · E∇ + mc2β + V̄KS(Er) + β E6 · EBxc(Er) (1)

as implemented within the multiple-scattering Korringa–Kohn–Rostoker (KKR) Green function

method [24]. Here V̄KS and EBxc are the spin-averaged and spin-dependent part of the one-particle

potential, respectively, m the electron mass, c the velocity of light and the relativistic matrices

Eα, β and E6 have the usual meaning [25–27]. Using the fully relativistic Dirac approach has the

important advantage [18] that disorder (see below) can be treated elegantly without recourse to a

Pauli approach, which poses difficulties in calculating the vertex corrections (vc). To determine

longitudinal and transverse components of the conductivity tensor, a natural starting point is

the linear response Kubo framework that can also be used to derive the Berry phase-related

semiclassical approach [3, 4, 28]. The Kubo approach has important advantages as compared to

the latter. It allows one to straightforwardly include disorder, and is therefore able to describe

not only pure systems but also alloys in the full concentration range including intrinsic and

extrinsic contributions to the AHE [14, 16]. Further making use of an alloy-analogy model

(see below), finite temperatures can be accounted for. It also allows one to include correlations

beyond LSDA in the framework of LSDA + U or LSDA+DMFT (dynamical mean field

theory) [29, 30]. For cubic and hexagonal systems with the magnetization pointing along the

êz-direction, the AHE in the Kubo–Středa formalism is given [17, 18] by the off-diagonal tensor

element σyx = −σxy of

σµν =
h̄

4π N�
Trace 〈 ĵµ(G+ − G−) ĵνG− − ĵµG+ ĵν(G

+ − G−)〉c

+
|e|

4π iN�
Trace 〈(G+ − G−)(r̂µ ĵν − r̂ν ĵµ)〉c (2)

with the relativistic current operator Êj = −|e|cEα and the electronic retarded and advanced Green

functions G± (calculated at EF) which in the framework of the presented KKR approach are

given in a relativistic multiple scattering representation [24]. The angular brackets denote a

configurational average that here is carried out using the coherent potential approximation

(CPA), which allows one to include vc, which are of utter importance for the quantitative

determination of both the longitudinal and transversal conductivity in alloys. As has been

argued and also shown [8, 14, 16], calculations omitting the vc give the intrinsic AHC. Thereby,

subtracting the latter from the AHC obtained from the value including the vc, the extrinsic part

can be extracted.

Several sources of electron scattering at finite temperatures will determine the

T -dependence of the AHE. We neglect the redistribution of states due to finite temperature

in the electronic subsystem as well as electron–magnon interaction that can be treated as spin-

disorder scattering in a pseudo-alloy as has been done recently for Pd–Fe alloys [15]. Here, we

consider as a dominant effect only thermal lattice vibrations. To include the latter as a source

of electron scattering, one could generalize equation (2) to finite temperatures by including the

electron–phonon self-energy 6el–ph when calculating the Green function G±. This, however, is

computationally very expensive. Therefore, the consideration is restricted to elastic scattering

processes by using a quasi-static representation of the thermal displacements of the atoms from

their equilibrium positions as has already been used successfully by the authors in the theory

of Gilbert damping [31]. Treating each displaced atom as an alloy partner, we introduce an

alloy-analogy model to average over a discrete set of displacements that is chosen to reproduce
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Figure 1. Dependence of the AHC (T = 0 K) for bcc-Fe (left), hcp-Co (middle)

and fcc-Ni (right) as a function of the U -value in the LSDA + U calculation.

the thermal root mean square average displacement
√

〈u2〉T for a given temperature T .

This was chosen according to 〈u2〉T = 3h̄2

mk2D
[
8(2D/T )

2D/T
+ 1

4
] with 8(2D/T ) the Debye function,

h̄ the reduced Planck constant, k the Boltzmann constant and 2D the Debye temperature [32].

Ignoring the zero temperature term and assuming a frozen potential for the atoms, the situation

can be dealt with in full analogy to the treatment of disordered alloys using the CPA.

To study the impact of correlations (beyond LSDA), we employed an implementation of

the LSDA+DMFT framework into the KKR [30] and obtained the LSDA + U by retaining the

static part of the self-energy. Around mean field double counting corrections have been used.

The chosen values for U and J are commonly used in the description of 3d-TMs.

3. Results and discussion

We performed LSDA as well as LSDA + U calculations of the AHC of 3d-TMs. The LSDA + U

calculations were performed keeping J = 0.9 eV fixed and scanning the U -range up to typical

values employed for the 3d-TMs. In figure 1 the dependence of the intrinsic AHE at T = 0 K

for bcc-Fe, hcp-Co and fcc-Ni is shown. Whereas for Fe and Co only small variations of

the AHC are observed, a pronounced U -dependence for Ni is seen with the experimentally

extracted intrinsic value of −1100 S cm−1 recovered at a U -value of around 2.5 eV (this value

is also used in calculation of the T -dependence below). Analysis shows that this is due to

a downshift of minority 3d-bands w.r.t. EF and a vanishing hole pocket at the X2 point, as

has already been recently discussed [11]. In table 1, we show the calculated values for Fe

(U = 1.8 eV), Co (hcp and fcc, U = 2.3 eV ) and Ni (U = 2.5 eV) in comparison with other

calculations as well as experiment. (Note that in our previous calculation [14], we obtained for

Ni a value of −1635 S cm−1, which deviates by 20% from the value reported here. This was due

to an inappropriate small setting for the muffin-tin radii rMT (i.e. no touching spheres) used in

the calculations which employ the atomic-sphere approximation (ASA, rASA) for the potential

construction. The muffin-tin zero in the KKR calculation is obtained by averaging over the area

between rMT and rASA. For Ni it turns out that the AHC is very sensitive to such an inappropriate

setting. We checked this issue for Fe and Co and found no such sensitivity, i.e. shrinking rMT
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Table 2. Spin- and orbital-magnetic moments in µB for the 3d-TMs at T = 0 K

as calculated in LSDA and LSDA + U (using the U - and J -values mentioned in

the text).

bcc-Fe hcp-Co fcc-Co fcc-Ni

LSDA, spin 2.26 1.60 1.64 0.64

LSDA + U , spin 2.21 1.61 1.66 0.65

LSDA, orbital 0.05 0.08 0.08 0.05

LSDA + U , orbital 0.13 0.12 0.22 0.08
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Figure 2. Temperature dependence of the longitudinal resistivity ρxx of Fe

(left) and Ni (right) as calculated in LSDA and LSDA + U compared to

experiment [40].

by 5% only changed the AHC values by at most 2%.) In addition, we report the spin- and

orbital-magnetic moments of the 3d-TMs calculated in LSDA and LSAD + U in table 2.

Another important aspect is the temperature dependence of the transverse AHC. To

assess in a first step the validity of the presented approach to deal with thermal lattice

displacements, the longitudinal resistivities were calculated for the 3d-TMs making use of

the Kubo–Greenwood expression for the symmetric part of the conductivity tensor [37–39].

The results for ρxx are shown in figure 2 and compared with experimental data taken

from the literature. As can be seen, the agreement is rather good. Therefore, we expect

the aforementioned framework to be a reasonable approximation to properly describe

electron–phonon scattering and the temperature dependence of the AHE (Note that deviation

from the experimental data becomes larger in the high-temperature range. This could be

attributed to the effect of spin disorder, which however has been neglected in the current study.

In particular, Ni shows a larger deviation which might be due to the fact that it has a smaller

Curie temperature resulting in a stronger effect of the spin disorder.)

Early measurements of the AHE in Ni report a value of −646 S cm−1 at room

temperature [35]. Recent experimental work [21] analyzed this in more detail claiming the

AHE to consist of an intrinsic component of about −1100 S cm−1 and a sizable skew-scattering

contribution at low temperatures, which both diminish at higher temperatures albeit with
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different rates. In figure 3 the calculated temperature dependence of the AHE in Ni using LSDA

and LSDA + U (U = 2.5, J = 0.9 eV) as well as experimental results [21] are shown. As could

be expected from the above, the LSDA result strongly overestimates the magnitude over the

whole temperature range, whereas LSDA + U fairly well reproduces the experimental result.

This demonstrates that both correlations beyond LSDA as well as temperature-induced thermal

vibrations combined need to be taken into account. The vc due to the lattice vibrations have

little impact in the low-T regime and are negligible at higher temperatures such that, as seen in

experiment, the intrinsic contribution survives. We attribute the deviation from the total AHC

in the low-T range to possible impurities that might be present in the sample. In contrast to Ni,

the temperature dependence in Fe (see figure 4) is found to be small.
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In the context of both the SHE and the AHE [13, 14, 41, 42], it has already been shown

that in the dilute/super-clean limit large skew-scattering contributions can arise with the AHC

scaling as σxy ∝ σxx . To demonstrate this and put it in the context of the recent experiment by

Ye et al [21], we performed calculations for Mg impurities and Fe impurities in Ni, employing

the CPA for both the impurities and the thermal lattice vibrations. As can be seen in figure 5, the

calculated full AHC (including vc) approaches the experimental curve for higher temperatures.

However in the low-temperature regime, larger deviations are visible. Taking the difference

between the calculation with vc and that without vc (intrinsic values), one also observes that

the impurity-induced extrinsic contribution for Mg shows the same sign as seen in experiment,

i.e. it increases the absolute value, whereas for Fe impurities the opposite behavior is seen.

This highlights again the fact that the skew-scattering component in an impurity-specific way

determines the quantitative low-temperature behavior of the AHC in clean 3d-metals but also

that the experimental determination of ‘clean’ systems is extremely challenging.

In summary, we have used the linear response Kubo formalism as implemented in a fully

relativistic multiple-scattering KKR Green function method to study systematically from first

principles the AHC of the 3d-TMs Fe, Co and Ni. Going beyond the LSDA in DFT employing

the LSDA + U and including finite temperatures by using a CPA-alloy analogy for the lattice

displacements provided the necessary means to allow for a material-specific description of the

AHC. Further, the impact of dilute impurities has been analyzed. The presented framework is

now ready to be applied to the whole concentration range of correlated TM-alloys. Treating

correlations beyond the static limit (LSDA + U ) of the LSDA+DMFT combined with a linear

response transport formalism is a major issue for future work. Further, the developed method

is straightforwardly applicable to a number of related transverse transport phenomena, e.g. the

spin Hall- and spincaloric effects such as the anomalous- and spin-Nernst effects [41, 43, 44].
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Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems,
besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming
from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all
these scattering effects on equal footing was recently suggested within the framework of the multiple scattering
formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin
fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal
resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with
experiments demonstrates that the proposed numerical scheme does provide an adequate description of the
electronic transport at finite temperatures.

DOI: 10.1103/PhysRevB.95.125109

I. INTRODUCTION

Rare-earth elements may exhibit both ferromagnetic or
antiferromagnetic order in certain temperature regimes. Nowa-
days, it is commonly accepted that Gd, having the hcp
structure, possesses a simple ferromagnetic (FM) order up to its
Curie temperature Tc. However, in early experimental studies
a helical magnetic structure was observed in polycrystalline
Gd in the temperature range between 210 and 290 K [1].
Such a helical spin configuration is easily destroyed by a weak
magnetic field [1], leading to a collinear magnetic structure
in the system. This means that only in the absence of an
applied magnetic fields can this type of antiferromagnetism
be observed. Recent experiments on single crystals of Gd did
not reveal any anomalies in the low-field magnetization curves
and confirm that Gd has a normal ferromagnetic structure up to
its Curie temperature [2,3]. The Curie temperature determined
experimentally was found to be 289 K with a saturated
magnetic moment of 7.12μB [4]. In another experimental
study the Curie temperature was determined to be 293.2 K
with an absolute saturation moment of 7.55μB [5]. Although
Gd behaves like a simple ferromagnet it has nevertheless a
rather complex temperature dependence of its magnetization:
as the temperature decreases to 230 a spin-reorientation
occurs from the magnetization parallel to the c axis to the
magnetization tilted by 30◦ with respect to the c axis, reaching
its maximum tilt angle of 60◦ at around T = 180 K [2].
Such a behavior is quite demanding concerning an adequate
theoretical description. Therefore, in the present work the
direction of the magnetization is taken along the c axis unless
it is mentioned otherwise.

It is well established that the magnetism in Gd is dominated
by f electrons with a magnetic moment of 7μB due to half
filling of the highly localized 4f states. The observed excessive
magnetic moment is attributed to the valence 5d6sp band
exhibiting spin polarization due to the strong exchange field
created by the 4f electrons [6], as is extensively discussed in
the literature [7–11]. In particular, these discussions concern

*kchpc@cup.uni-muenchen.de

the finite-temperature behavior of the magnetic moment of
the valence electrons [12] observed experimentally. In earlier
discussions it has been suggested to treat these on the basis
of the Stoner model [13]. Recent investigations by experi-
ment [9,14,15] as well as theory [10,11,16] based on first-
principles calculations clearly demonstrate the finite exchange
spitting of valence states above the Curie temperature despite
the vanishing total magnetization, which implies a much more
complicated picture of interactions than provided by the simple
Stoner model.

The rather different origin of the spin magnetic moment for
the f and 5d6sp electrons leads also to a different dynamical
behavior characterized in general by a different magnetization
dissipation rate. This would imply separate spin dynamics
equations for f and 5d6sp spin magnetic moments coupled
via the exchange interactions, as was considered in particular
in Gilbert damping calculations by Seib and Fähnle [17]. The
authors, however, point out that the common equation for
all types of spin moments can be used in the limit of slow
magnetization dynamics [18], which also allows us to use
a common Gilbert damping parameter calculated within the
adiabatic approximation.

It is well known that, in magnetic systems, the electrical
resistivity is caused by electron scattering by various magnetic
inhomogeneities in addition to the electron-phonon scattering
as well as scattering by impurities and other structural
defects. The latter contribution is responsible for the so-called
residual resistivity observed in the zero-temperature limit. The
resistivity part due to the phonon mechanism shows usually
a T 5 behavior at low temperatures and varies linearly with
T above the Debye temperature TD . This behavior can be
described on the ab initio level and corresponding studies on
transition metals [19] lead in general to good agreement with
experimental data. In the present study not only the linear
dependence was obtained in the temperature region T > TD

but it was found also well below TD . A theoretical description
of the resistivity caused by thermal spin-fluctuation effects was
first given on the basis of the s-d (in rare earth d-f ) model
Hamiltonian [20–22]. This approach suggests a T 2 dependence
in the low-temperature limit and an almost constant resistivity
above the Curie temperature. In the intermediate-temperature
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regime the T dependence of the resistivity is expected to be
rather complex. Recent ab initio calculations of the param-
agnetic spin-disorder resistivity for a number of transition
metals and their alloys as well as rare-earth metals are based
on two alternative approaches: the disordered local moment
approach using the coherent-potential approximation (CPA)
formalism and averaging the Landauer-Büttiker conductance
of a supercell over the random noncollinear spin-disorder
configurations, with both leading in general to good agreement
with experimental values [10,23]. However, for a quantitative
description of the temperature-dependent electrical resistivity
from first principles one needs to combine the influence of
lattice vibrations and spin fluctuations, which is a nontrivial
task. Therefore, certain approximations are required to reach
this goal.

During the last years, the anomalous Hall effect (AHE) and
its dependence on the temperature attracts also much attention.
In the case of Gd, a number of theoretical investigations
have been performed to explain the unexpectedly large AHE
observed experimentally [24]. Previously, these studies were
performed on a model level. An earlier description of the AHE
of Gd was based on the uniform electron gas model accounting
for spin-orbit coupling effects leading, in turn, to an asymmetry
in the scattering process (skew-scattering mechanism) [25].
However, due to the high localization the electrons giving
rise to the magnetic moment are unable to participate in
conduction; therefore this model is not appropriate to describe
the AHE in rare-earth systems. The model developed by
Kondo [26] was based on the s-d (s-f ) interaction leading to a
scattering of the conduction electrons by the thermally induced
spin moment tilting. In this model the necessary asymmetry
is due to the intrinsic spin-orbit coupling of the f electrons.
Therefore, the Hamiltonian describing the interaction of the
conduction and the localized electrons is valid when the orbital
angular moment of localized electrons remains unquenched.
This is not the case for Gd and therefore it cannot be used
to describe the AHE in this metal. Another model which
eliminated the above-mentioned constraint was developed by
Maranzana [27] and is based on Kondo’s model. In this model
the skew-scattering mechanism originates from the interaction
between the localized spin moment and the orbital momentum
of the conduction electron.

Within the discussed models the large AHE in Gd was
ascribed solely to the skew-scattering contribution. Another
scattering mechanism, the so-called side-jump mechanism,
first introduced by Berger [28,29], was accounted within a
model suggested by Fert [30]. It was demonstrated, particularly
for Gd, that the side-jump contribution is equally important
as the skew-scattering mechanism and should be taken into
account as well.

In this paper, we discuss the impact of finite temperatures,
taking into account thermal lattice vibrations and spin fluctu-
ations, on the transport properties in Gd from first principles
by making use of the alloy analogy model [31].

II. COMPUTATIONAL DETAILS

The electronic structure calculations are based on
the Korringa–Kohn–Rostoker (KKR) Green’s function
method [32] implemented in the fully relativistic spin-

polarized Munich SPR-KKR package with angular-momentum
cutoff lmax = 4. A full four-component Dirac formalism is
employed to describe the electronic structure within Kohn–
Sham–Dirac density functional theory [33]. For spd elec-
trons the local density approximation was used with the
parametrization given by Vosko et al. [34]. To treat the highly
correlated 4f states the local spin-density approximation + U

(LSDA+U ) method was used with the double counting part
of the LSDA+U functional evaluated within the so-called
atomic limit expression [35]. The temperature effects are
treated within the alloy analogy scheme based on the CPA
alloy theory [36–38], and assuming a frozen potential for the
atoms [31]. For the description of the magnetic spin fluc-
tuations the temperature-dependent magnetization data were
taken from experiment [5]. The calculation of the transport
properties of Gd is based on the Kubo–Středa formalism, with
the corresponding expression for the conductivity given by

σμν = h̄

4πN�
Tr〈ĵμ(G+−G−)ĵνG

−−ĵμG+ĵν(G+−G−)〉c

+ |e|
4πiN�

Tr〈(G+−G−)(r̂μĵν −r̂ν ĵμ)〉c, (1)

with the relativistic current operator ĵ = −|e|cα and the elec-
tronic retarded and advanced Green’s functions G± evaluated
at the Fermi energy EF by means of the relativistic multiple
scattering or KKR formalism [32]. The angular brackets
denote a configurational average which here is carried out
using the coherent-potential approximation (CPA) which takes
into account the so-called vertex corrections (VCs) [37]. In the
last equation, N is the number of sites and � is the volume of
the unit cell. As was justified by previous work [39] the second
term in the Eq. (1) has been omitted.

The Gilbert damping parameter [40,41] was calculated
within the linear-response theory using the Kubo–Greenwood-
like equation:

αμν = − h̄γ

πMs

Tr〈T̂μImG+T̂νImG+〉c, (2)

where Ms is the saturation magnetization, γ is the gyromag-
netic ratio, and T̂μ is the torque operator [41].

III. RESULTS

A. Electronic structure

The electronic structure of Gd has been calculated by
using the experimental lattice parameters a = 3.629 Å,
c/a = 1.597. As was mentioned above, the 4f electrons
have been treated as the valence electrons with correlations
described within the LSDA + U scheme with the Coulomb
parameter U = 6 eV and the exchange parameter J = 0.9 eV.

The spin magnetic moment obtained in the calculations
for T = 0 K equals to 7.63μB and accordingly is in a good
agreement with the experimental saturated magnetic moment
of 7.55μB per atom [5]. The dominating contribution of 7μB is
associated with the f electrons, while the excessive spin mag-
netic moment of 0.63μB is a result of the exchange splitting for
the 5d6s6p electrons due to a strong exchange field produced
by the f electrons, as was discussed previously [6,11,12].
The persistence or vanishing of the exchange splitting with

125109-2

7.3. Impact of finite temperatures on the transport properties of Gd 81

-



IMPACT OF FINITE TEMPERATURES ON THE . . . PHYSICAL REVIEW B 95, 125109 (2017)

0

5

10

15

20

n↑ G
d(E

) 
(s

ts
./e

V
)

T = 50 K
T = 275 K
T = 300 K

-12 -8 -4 0 4 8
energy (eV)

-20

-15

-10

-5

0

n↓ G
d(E

) 
(s

ts
./e

V
)

0

1

2

n↑ G
d(E

) 
(s

ts
./e

V
)

T = 50 K
T = 275 K
T = 300 K

-12 -8 -4 0 4 8
energy (eV)

-2

-1

0

n↓ G
d(E

) 
(s

ts
./e

V
)

FIG. 1. Spin-resolved DOS of Gd for various temperatures.
Bottom panel shows magnified area.

increasing temperature is a matter of debate both in theory
and experiment. Several experimental reports indicate that it
collapses approaching the Curie temperature [7], while others
demonstrate that the exchange splitting persists even in the
paramagnetic state [9,42]. The spin-resolved total density
of states (DOS) calculated in the global frame of reference
with the quantization axis along the average magnetization
at finite temperatures is represented in Fig. 1. Obviously, a
temperature increase results in changes of the majority and
minority spin DOS due to the spin mixing caused by the
thermal spin fluctuations. This leads to the same DOS for
both spin directions at T > Tc. The energy positions of the f

states are almost unchanged in the whole temperature region.
However, the exchange splitting of the spin-up and spin-down
5d6s6p states (having the main contribution to the DOS at the
energies around EF ) decreases (as it depends on the average
magnetization of the system) with increasing temperature. In
particular, this results in an increase of the DOS at the Fermi
level in the paramagnetic state.

B. Electrical resistivity

One of the central transport properties of metallic systems
is their electrical resistivity. The experimentally measured
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FIG. 2. Temperature-dependent electrical resistivity: (top) in-
plane, (bottom) out-of-plane components. Black solid circles show
experimental results [5], empty blue triangles show only thermal
lattice vibrations, empty green diamonds show only spin fluctuations,
empty red circles show total resistivity including both effects
simultaneously, and brown dashed line corresponds to the sum of
individual contributions.

temperature-dependent resistivity of Gd exhibits an anisotropy
with different magnitudes along the hexagonal axis (ρzz) and
in the basal plane (ρxx) [5] (see Fig. 2). Both ρ(T ) curves are
characterized by an abrupt slope change close to the Curie
temperature.

In addition to the total ρ(T ) values, we investigated its
temperature dependence caused only by lattice vibrations (vib)
or only by magnetic fluctuations (fluct), which appear to be
of comparable magnitude. From this one has to conclude
that these sources of the temperature-dependent resistivity are
additive only in the case of weak disorder (low temperatures),
which does not hold when approaching the Curie temperature
(strong disorder) [43]. In this regime they must be taken into
account simultaneously, since only then the overall behavior of
the resistivity curves agrees well with experiment. This allows
us to conclude that the maximum of the experimental ρzz (close
to the Curie temperature) is not a result of short-range magnetic
order as was suggested in earlier literature [5], since the present
calculations are based on the single-site CPA. The present
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FIG. 3. Total DOS at the Fermi level depending on the
temperature.

results suggest its origin as a combination of two competitive
mechanisms. On the one hand, thermally induced disorder
grows, leading to a resistivity increase and, on the other hand,
the effective DOS around EF relevant for the conductivity
increases with increasing T < Tc (Fig. 3), which effectively
reduces the resistivity.

While the calculated resistivities agree with the exper-
iment rather well, there is a quantitative underestimation
(see Fig. 2). This can have various sources. One could be
the so-called “‘frozen-potential” approximation used in the
present calculations. This approach allows us to account for
the most significant contributions to the resistivity, but it
neglects the changes in the local magnetic moments with
increasing temperature. Nevertheless, as the Gd local magnetic
moment is rather robust and does not depend essentially
on the temperature, this approximation seems to be well
justified. A second reason, which is more crucial for ρzz,
might be the neglect of the anisotropy of the thermal atomic
displacements. A third source for discrepancy may be the use
of the single-site approximation by the CPA, which neglects
the coherent scattering or interference effects which might
show up in multiple scattering.

C. Anomalous Hall effect

As was already mentioned, Gd shows a rather large AHE,
which is well described within a model that accounts at the
same time for skew-scattering and side-jump mechanisms [30].
However, within this model only electron scattering by
thermally induced spin fluctuations is discussed, while the con-
tribution from the electron-phonon mechanism is completely
neglected. Within the present calculations both contributions
are taken into account. The resulting total anomalous Hall
resistivity can be seen in Fig. 4 (top panel) in comparison
with experimental results (for polycrystalline samples as well
as single crystals) and the theoretical result obtained on the
basis of model calculations by Fert [30]. One can see that the
anomalous Hall resistivity shows a pronounced temperature
dependence: the resistivity increases from zero at T = 0 K
to a maximum value just below the Curie temperature and
then drops to zero as the magnetization vanishes with further
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FIG. 4. Anomalous Hall resistivity depending on the tempera-
ture: Top panel compares with experimental results (Exp.1 [44],
Exp.2 [44], Exp.3 [45,46]) and results from model calculations [30].
Bottom panel shows individual contributions. Empty blue triangles
show only thermal lattice vibrations, empty green diamonds show
only spin fluctuations, empty red circles show total resistivity
including both effects simultaneously, brown dashed line corresponds
to the sum of individual contributions.

increasing temperature. Overall there is a qualitative and
quantitative agreement of our first-principles results with
experiment as well as with the model calculations. In Fig. 4
(bottom panel) the individual contributions arising from the
scattering by the lattice vibrations and spin fluctuations
are shown. One can see that both mechanisms provide
contributions nearly of the same order of magnitude. The
qualitative behavior of the total AHR is determined by the
scattering due to spin disorder, while the contribution due to
lattice vibrations shows, as expected, a monotonic increase
with temperature. It is interesting to compare the sum of
the individual contributions with the total AHR. From Fig. 4
(bottom panel) one can see that the total AHR significantly
exceeds the sum of these contributions. Therefore for the
correct description of the total AHR it is necessary to account
simultaneously for the combination of scattering due to the
thermal lattice vibrations and spin fluctuations.
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Comparing the calculated anomalous Hall resistivity with
experimental data, one notices that the discrepancy is more
pronounced at low temperatures and nearly nonexistent as
we approach TC (see Fig. 4). On one hand, the spread of
experimental data is rather large. It would be helpful to
have more reliable experimental data to better reveal any
systematics in the discrepancies. On the other hand, the
discrepancies are connected, of course, to the approximations
used in the calculations, which were discussed in the previous
section.

D. Gilbert damping

Nowadays, much attention is payed to the ultrafast
magnetization dynamics in various materials, including Gd
as an important example of rare-earth materials. At the
same time, in case of Gd there is a lack of studies, both
theoretical and experimental, particularly dealing with the
dissipation channels in the slow magnetization dynamics
regime. Our work is meant to fill this gap on the theory
side.

In the present work, the Gilbert damping parameter for
Gd has been calculated in the limit of slow magnetization
dynamics [18]. It describes the magnetization dissipation for
the whole system, accounting for f -like and 5d6sp-like spin
magnetic moments characterized by their slow simultaneous
coherent motion. The corresponding results of calculations of
the Gilbert damping as a function of temperature up to the
Curie temperature are shown in Fig. 5. The separate contribu-
tions due to thermal lattice vibrations and spin fluctuations are
shown together with the curve accounting for both sources si-
multaneously. One can see a monotonic decrease of the Gilbert
damping due to electron-phonon scattering with rising temper-
ature. On the other hand, the curve representing the effect of
the electron scattering due to thermal spin fluctuations exhibits
a decrease in the low-temperature region due to the dominating
breathing Fermi-surface dissipation mechanism, while above
150 K the increase of the Gilbert damping is determined by the
increase of thermal magnetic disorder leading to magnetization

dynamics due to electron scattering events accompanied by
spin-flip electron transitions. However, approaching the Curie
temperature, the Gilbert damping reaches a maximum at 275 K
with a following decrease up to the Curie temperature. This
behavior correlates with the temperature-dependent behavior
of the resistivity ρzz(T ) and can be associated with the
decrease of probability of spin-flip scattering of transport
electrons caused by a modification of the electronic structure
discussed above. A similar nonmonotonic behavior has been
found for the temperature dependence of the total Gilbert
damping.

IV. CONCLUSIONS

In summary, we have studied the transport properties in the
highly correlated system Gd from first principles. The electron-
electron correlation effects were approximately accounted for
by using the LSDA+U approach, resulting in an adequate
description of the electronic structure. In turn, it enables a
proper physical description of the transport properties. In this
contribution we discussed the impact of finite temperatures
(including the impact of thermal lattice vibrations and spin
fluctuations) on the electrical resistivity as well as on the
anomalous Hall resistivity. The applied approach based on the
single-site CPA describing thermal lattice vibrations and spin
fluctuations allows us to analyze individual contributions to
the longitudinal and transverse resistivities arising due to these
mechanisms. In both cases it turned out that, in order to obtain
reasonable agreement with experimental data, it is necessary
to account for a combination of the contributions connected
with the phonon scattering and scattering by spin disorder
because the simple sum of these contributions, especially for
the AHR, significantly deviates from experiment. In the case
of the longitudinal resistivity a slight anisotropy was observed
which is in agreement with experimental results. For the out-
of-plane resistivity a small experimentally detected maximum
in the vicinity of the Curie temperature was fully reproduced.
The emergence of this maximum according to experimental
findings was attributed so far to the magnetic short-range-order
effect. However, in the present calculations such an ordering
was completely neglected because the distribution of the
spin magnetic moments are considered absolutely random.
Accordingly, the origin of this maximum is solely due to spin
disorder.

In case of the AHR a small anisotropy was observed
as well. The calculated temperature-dependent AHR with
magnetization pointing along the c axis agrees surprisingly
well with the experimental data. The maximum occurred just
below the Curie temperature and the further abrupt drop is well
reproduced.
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7.4. Tailoring of the extrinsic spin Hall effect in
disordered metal alloys

The article ”Tailoring of the extrinsic spin Hall effect in disordered metal alloys” pub-
lished in The Journal of Physical Review B is reprinted with permission from Phys.
Rev. B, 92, 235142 (2015); copyright 2015 American Physical Society.
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We present a first-principles study of the extrinsic spin Hall effect in dilute metallic alloys and show how
tailoring the magnitude of the spin Hall conductivity can be achieved by materials design concerning composition
and varying the concentration of the alloy partners. An essential ingredient is the relative strength of the
spin-orbit coupling of host and impurity partner. This is systematically studied by changing alloy composition
and performing model calculations in which the spin-orbit coupling strength is scaled. The calculations reveal that
changing the impurity concentration affects the extrinsic contributions, namely skew scattering and side jump,
differently. This is put into the context of recent model calculations put forward by Fert and Levy [Phys. Rev.
Lett. 106, 157208 (2011)]. A fully relativistic Kubo-Středa formalism as implemented in the multiple-scattering
KKR electronic structure method is used. The calculations were carried out for Pd, Pt, and Cu hosts doped with
4d including Ag and Cd and 5d impurities including Au and Hg.
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I. INTRODUCTION

The scattering of electrons by impurities depends on the
spin polarization of the carriers. The resulting asymmetric
scattering is caused by spin-orbit coupling (SOC) and leads to
a spatial separation of electrons with different spin projections.
This effect is known as extrinsic spin Hall effect (SHE). It was
first predicted theoretically in 1971 by Dyakonov and Perel
[1] but was detected experimentally much later. The idea of
creating spin currents in nonmagnetic materials without using
ferromagnets or external magnetic fields opens new routes for
the construction of spintronic devices. The main characteristic
of suitable materials is the so-called spin Hall angle (SHA) α,
which represents the ratio of spin to charge conductivity:

α = σ z
xy

σxx

, (1)

where σ z
xy represents spin Hall conductivity (skew, side-

jump, or total) and σxx is a longitudinal charge conductivity.
Materials with high values of the SHA allow us to generate
large spin currents in devices without magnetic components.
Recently, large SHAs were predicted theoretically and found
experimentally for a number of materials. Particularly for Au
wires the measured SHA is α = 0.1 [2], for Pt the magnitude
of the experimental SHA is α = 0.08 [3,4], even higher but
negative α = −0.15 [5] was obtained experimentally for high
resistivity β-Ta, and a gigantic SHA was found in the β-W
thin films with a value of α = 0.3 [6]. For the above-listed
materials the SHE is of intrinsic nature. The intrinsic SHE
arises exclusively from the influence of the SOC on the band
structure of the material. As such it is difficult to manipulate,
and materials design geared towards obtaining a large intrinsic
SHE is necessary, i.e., finding a combination of elements that
crystallize in an ordered system possessing a significant SHE.
One possibility to manipulate the SHE in a given material
would be to apply isotropic pressure or uniaxial strain which
changes the band structure, lattice parameter, density of states
at the Fermi level, etc., which in turn could result in changes

*kchpc@cup.uni-muenchen.de

of the intrinsic contribution. The influence of the uniaxial
strain on the spin Hall conductivity (SHC) was studied for
semiconductors [7]. It was demonstrated that the SHC is rather
sensitive to the tensile strain or compression. Alternatively,
finite temperatures have an effect on the intrinsic SHE as it
was demonstrated from first-principles calculation for 4d and
5d transition metals, namely for Pd, Au [8], and Pt [9]. In
the latter calculations only electronic temperatures were taken
into account by introducing a Fermi distribution function. In
the case of Pt and Pd there is a decrease in magnitude of
the intrinsic contribution with increasing temperature, while
in the case of Au the magnitude increases continuously with
temperature [8].

On the other hand manipulating the extrinsic contributions
to the SHE by alloying is a viable route to obtain large
SHAs. This can be done in two major ways: by changing the
combination of the host and impurity metals or by changing
the concentration of the impurities. Recently, a large SHA was
predicted theoretically [10] for Cu doped with Bi impurities
with α = 0.081, being extrinsic of the skew-scattering type.
Later it was confirmed experimentally [11] to be indeed
of skew-scattering nature, however with opposite sign α =
−0.24. A few years later another experiment to measure SHA
of Cu doped with Bi impurities was performed by the same
experimental group using a different experimental technique
[12] which confirmed the sign and the magnitude of the SHA.
Other calculations based on Friedel’s sum rule for Cu doped
with 5d impurities took into account both contributions, skew
scattering and side jump, and reported large contributions from
both mechanisms [13]. The latter approach was refined in
subsequent studies in terms of a phase shift model [14], which,
however, pointed out that final conclusions can only be reliably
drawn from first-principles calculations.

In the following we present first-principles calculations that,
in particular, focus on the influence of the SOC strength on
the incoherent (extrinsic) contributions to the SHE in dilute
disordered alloys: heavy hosts doped with 4d and 5d impurities
(for brevity of notation we include Ag and Cd into 4ds and
Au and Hg into 5ds) and a light host doped with 5d impurities
making material specific predictions of systems showing a
large SHA. These studies are supplemented by calculations in
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which the SOC strength is manipulated to directly expose its
influence within a fully relativistic scheme.

II. METHOD

The calculation of the spin Hall conductivity is based on
the following linear response expression with spin polarization
along the z axis and its current density operator along x due to
the electric field along y:

σ z
xy = �

4πN�
Tr

〈
Ĵ z

x (Ĝ+ − Ĝ−)ĵyĜ
−

− Ĵ z
x Ĝ+ĵy(Ĝ+ − Ĝ−)

〉
c
, (2)

where � is the volume of the unit cell and N is a number
of sites. In Eq. (2) the relativistic current density operator
is given by ĵy = −|e|cαy . Ĵ z

x = |e|cαx(β�z − γ5p̂z

mc
) is the z

component of the relativistic spin-polarization current density
operator [15–17] with current density along the x direction.
αx,y , β, and γ5 are standard Dirac matrices, and �z is the
z component of the vector of the relativistic spin matrices
[18,19].

The retarded and advanced Green functions, G+ and G−,
are evaluated at the Fermi energy. Equation (2) is obtained
from the Kubo-Středa equation [20–22] by neglecting a term
related to orbital currents. This approximation is justified as
this term only gives a small contribution when compared to
the extrinsic contributions arising from the first term in the
dilute cubic metallic alloy systems considered here (see also
Refs. [22–24]). The Green function G is used as given by the
fully relativistic multiple-scattering representation supplied
by the Kohn-Korringa-Rostoker method [25]. A full four-
component Dirac formalism is employed to describe the elec-
tronic structure within Kohn-Sham-Dirac density functional
theory [26].

The brackets 〈. . .〉c imply a configurational averaging that,
in this work, is carried out in terms of the coherent potential
approximation (CPA) combined with transport theory [27].
The vertex corrections (vc) that are essential for describing
the extrinsic contributions to the SHC are given by the
difference of the configurational averages 〈Ĵ z

μG+ĵνG
−〉c −

〈Ĵ z
μG+〉c〈ĵνG−〉c [28]. The averaging procedure for terms

in 〈Ĵ z
μG+ĵνG

−〉c within the CPA leads to a splitting of
the (spin Hall) conductivity into a site-diagonal and a site-
off-diagonal term, the latter describing intersite hopping. In
line with neglecting the on-site orbital-current related term,
the site-diagonal term is also neglected. In the following,
the conductivity without vertex corrections is defined as the
intrinsic (coherent) part, σ z(nv)

xy ≡ σ z(intr)
xy , and the part which

is solely caused by the vertex corrections, σ z(vc)
xy ≡ σ z(extr)

xy =
σ z

xy − σ z(intr)
xy , is defined to be extrinsic (incoherent). Usually

the intrinsic contributions are bound to the existence of well
defined energy bands, which for a semiclassical formulation
in terms of a Berry phase can be found. For a disordered alloy
the denotation “intrinsic contribution” loses its meaning, as
there are no well-defined energy bands. The use of “coherent”
and “incoherent” is tied to the language of the employed CPA
averaging procedure [28,29]. We will, however, use the terms
intrinsic and extrinsic in what follows.

We present below a systematic study of the influence of the
spin-orbit coupling strength on a model system. As we here use
a fully relativistic Dirac approach that encompasses, besides
the spin orbit coupling, relativistic effects in all orders beyond
1/c2, simple scaling of the velocity of light in a calculation
would affect all contributions not only the SOC. Instead a
method is used that allows for direct scaling of spin orbit
coupling strength (while retaining the other relativistic effects).
This is done in a Dirac approach [30] using a modified spin
orbit operator that scales the SOC strength for each partial
wave while solving for the scattering solutions. Employing
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FIG. 1. (Color online) The dependence of the SHC in Pt0.99Pt0.01

as a function of the SOC strength: (a) on the impurity with scaling in p

and d channel, separately; (b) in p and d channel simultaneously; (c)
either on the host or the impurity in p and d channel simultaneously.
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this approach also implies that matrix elements of the current
operators ĵx and Ĵ z

y involving the Dirac αμ matrices that couple
small and large component have to be transformed [31] to a
decoupled form.

III. COMPUTATIONAL DETAILS

The transport calculations were performed using the SPR-
KKR Munich package [25] that is based on a fully relativistic
Kohn-Sham-Dirac version of density functional theory. The
local density approximation was used with the exchange
correlation functional as parametrized Vosko-Wilk-Nussair
(VWN) [32]. The atomic sphere approximation (ASA) has
been used. The angular momentum cutoff was set to lmax = 3.

Evaluating the SHC using Eq. (2) involved computational
demanding Brillouin-zone (BZ) integrations over products of
scattering path operators that are constituents of the multiple-
scattering representation of the Green functions G+ and G−.
The calculations were performed for dilute alloys (down to
0.5%) which for lifetime smearing is small. Therefore, the
Green functions show a pronounced structure in k space, and
a large number of k points had to be used in the BZ integration:
in the order of 106–107 (in the full BZ). The lattice constants
used for the dilute alloys are those of the host elements, namely
a(Cu) = 3.61 Å, a(Pd) = 3.89Å, a(Pt) = 3.92Å [33].
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FIG. 2. (Color online) Intrinsic (coherent) part of SHC in: (a) Pd
host doped with 4d impurities; (b) Pt host doped with 5d impurities.

IV. RESULTS AND DISCUSSION

A. Manipulation of the spin-orbit coupling in Pt

Since the fundamental source of the SHE is the spin-orbit
interaction, it is important to investigate its influence on the
extrinsic contribution to the SHE. This could be probed by
choosing a fixed host and inserting different impurities, thereby
changing the SOC strength. This leads, however, to drastic
changes in the host and impurity potential which makes a
systematic analysis difficult. For this reason we first discuss
the influence of the SOC strength by considering a model
approach in which we choose the two alloy partners to be of
the same chemical type and scaling the SOC strength on one
of the partners. As we are working in a fully relativistic (κ,μ)
representation that has no spin-orbit strength parameter, we
apply a scheme that allows the direct manipulation of the SOC
as mentioned in the previous section.

As a case study we have chosen Pt as an element with strong
spin-orbit interaction strength and a large SHE and constructed
a model system that consists of a Pt host with 1% of Pt impurity
to mimic an alloy behavior. The impurity concentration as
well as host and impurity materials were kept fixed. The
SOC strength on the impurity (host) was then varied while
it remained fixed for the host (impurity). The gradual change
of the SOC strength was first applied individually and then
simultaneously for the p and d channels. Figure 1(a) shows
the total spin Hall conductivity depending on the scaling of
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FIG. 3. (Color online) Extrinsic (incoherent) part of SHC in:
(a) Pd host doped with 4d impurities; (b) Pt host doped with 5d

impurities.
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SOC for the impurity in the p and d channels individually. For
this situation no contribution from the extrinsic part of the spin
Hall conductivity was observed in either of the channels, i.e.,
the calculated Hall conductivities with and without vc are the
same. In the case of the d channel there is a small dependence
of the total SHC on the SOC strength, while for the p channel
it shows a rather constant behavior. Figure 1(b) presents a
more detailed analysis of the SHC for the SOC scaled on the
impurity simultaneously in the p and d channels. As can be
seen, the intrinsic part (σ z(nv)

xy ) of the SHC is independent of
the SOC scaling and is rather small compared to the extrinsic
one. The extrinsic contribution on the other hand shows a
clear dependence on the SOC strength. The magnitude of the
extrinsic conductivity is determined by the SOC strength: the
larger the relative difference in SOC between host and impurity
element the larger is the contribution. Figure 1(c) shows the
dependence of the extrinsic contribution to the SHE on the
SOC scaled on the host (impurity), while it is kept fixed on
the impurity (host) simultaneously in p and d channels. As
can be seen in both cases there is a pronounced dependence of
the extrinsic contribution on the SOC. The obtained curves are
symmetric. The symmetry of the curves (the magnitude and
the sign) can be attributed to the SOC difference for the host
and impurity obtained in both cases: either by scaling the SOC
in the linear regime on the host by fixing it on the impurity
or vise versa. The prime contribution to the extrinsic part of
the SHC is due to scattering in both p and d channels, which
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FIG. 4. (Color online) Skew-scattering SHA: (a) Pd host doped
with 4d impurities; (b) Pt host doped with 5d impurities.

is consistent with results obtained recently for the SHE in a
copper host doped with 5d impurities [34].

B. Pt and Pd hosts doped with 4d or 5d impurities—case study

In the previous section we used a model to investigate the
influence of the SOC on the extrinsic part of the SHE. As a
next step we consider real systems based on Pd and Pt host
materials doped with 4d and 5d impurities.

In the following we analyze different contributions to the
SHC. The decomposition into intrinsic and extrinsic part is
based on the vertex corrections [21,22,35]. The calculations
were performed for several impurity concentrations: 1%, 2.5%,
4.5%, and 5%. Figure 2(a) shows the intrinsic contribution of
Pd-based and Fig. 2(b) of Pt-based alloy systems.

In case of late impurities for both systems the intrinsic con-
tribution is rather independent of the impurity concentration
and shows a constant behavior, while for early ones there is
some concentration dependency present.

In contrast to the intrinsic part of the SHC, the extrinsic
contribution (Fig. 3) shows a pronounced dependence on the
impurity concentration for both systems. Another important
characteristic is a sign change that occurs in both systems: For
the light impurities (compared to the host element) the sign is
positive, while for the heavy ones it becomes negative.

Figure 4 shows the skew-scattering SHA for Pd-based (a)
and Pt-based (b) systems. As can be seen for both systems, the
skew-scattering SHA strongly depends on the concentration,
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FIG. 5. (Color online) Side-jump SHA: (a) Pd host doped with
4d impurities; (b) Pt host doped with 5d impurities.
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namely, it is inversely proportional to the concentration in
accordance with model [36–38] and other first-principles
studies [22,39]. In contrast to the skew-scattering contribu-
tion, the side-jump SHA demonstrates strong concentration
dependence (Fig. 5).

C. Cu host with 5d impurities

Cu has a negligible intrinsic SHE as compared to Pd
or Pt hosts. By adding impurities, however, large extrinsic
contributions to the SHE can be generated. According to
the results of recent model calculations based on resonant
scattering [13] for a Cu host doped with 5d impurities,
large contributions from the skew-scattering and side-jump
mechanism to the SHA are obtained [13]. Recently, the
skew-scattering contribution was described by first-principles
calculations [10,39] and by an extended version of the resonant
scattering model of Fert and Levy [34].

In this paper we present both contributions, skew scattering
and side jump, based on first-principles calculations.

A decomposition scheme of the conductivity into different
contributions is used that is based on the vertex corrections
[21,22,35]. Figure 6(a) shows the intrinsic and (b) the extrinsic
contribution to the SHC. As can be seen the intrinsic part of the
SHC is rather small compared to the extrinsic one, while the
latter is inversely proportional to the impurity concentration.
For the late 5d impurities, the extrinsic contribution is more
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FIG. 7. (Color online) SHC in Cu doped with 5d impurities:
(a) skew scattering; (b) side jump.

significant due to increasing of the SOC strength of the
impurities [40].

The next step in the analysis of the different contributions
is the decomposition of the extrinsic part of the SHC into
skew-scattering and side-jump contributions. For this purpose,
the same decomposition scheme as proposed for the anomalous
Hall effect [35] and successfully used to decompose the SHC
[22] is applied. Figure 7 shows the skew-scattering (a) and
side-jump (b) conductivities for 5d impurities in a Cu host with
different concentrations. As can be seen, the skew-scattering
conductivity depends on the concentration of the impurities:
The magnitude is larger for lower impurity concentration. The
side-jump conductivity is independent of the impurity amount,
and its magnitude is comparable to the intrinsic contribution.
In addition, the side-jump conductivity shows a change in sign
as a function of the atomic number.

Important for applications in spintronics is the spin Hall
angle, as it gives the figure of merit for converting a
longitudinal charge current into a transverse spin-polarized
current. We performed calculations of the skew-scattering and
side-jump contributions to the SHA for Cu with 5d impurities
(see Fig. 8). The obtained results are compared to calculations
based on an analytical model [13] and on the Boltzmann
transport formalism [14]. In the Kubo-Středa calculations
several concentrations were considered, while in Boltzmann
calculations and the analytical model only 1% and 2%,
respectively, of impurity concentration was used. Figure 8(a)
shows the resulting skew-scattering and side-jump (b) SHA.
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The skew-scattering contribution to the SHA is independent
of the impurity concentrations, while the side-jump exhibits
a pronounced dependence on the concentration (proportional
to the concentration [13]). As can be seen, first-principles and
analytical model based results agree well [41]. For impurities
such as Ta, W, Os, and Ir large values of the side-jump SHA
can be obtained by increasing the concentration, as can be
seen from Fig. 8(b), which is in an agreement with predictions
from calculations based on an analytical model [13]. However,
in the case of skew scattering, there is a sign change in the
analytical model calculations, while the first principles results
give positives values for all impurities.

V. CONCLUSIONS

We have investigated the influence of spin-orbit coupling
strength on the extrinsic (incoherent) contribution to the spin
Hall conductivity using a model system as well as realistic
disordered dilute alloys. The results for the model system
are consistent with those obtained for disordered alloys based
on Pd and Pt hosts. Namely, a large contribution from the
extrinsic contribution to the SHC is observed when the relative
difference in the SOC strength of the host and impurity
increases. For both sets of systems we observed a sign change
in the extrinsic part. The change occurs when the impurity
becomes heavier than the host element. Alternatively, to
obtain large values of the extrinsic part of the SHC one
can change the impurity concentration. By decreasing the
concentration the magnitude of the SHC increases, mainly
due to the skew-scattering contribution as it is inversely
proportional to the impurity concentration in the dilute limit.
The side-jump contribution is independent of the impurity
concentration and has a small magnitude for all considered
systems compared to the dominant skew scattering, thus it
does not influence the behavior of the extrinsic part of the
SHC. In the dilute limit the side-jump SHC does not depend
on the impurity concentration. As, however, the longitudinal
conductivity σxx decreases with increasing concentration, the
SHA (sj) does depend on the impurity concentration: For
higher concentrations we obtain higher values for the SHA
(sj). This is well illustrated for the Cu host doped with 5d

impurities. The SHA from the skew-scattering contribution is
concentration independent. An important observation is that at
5% of the impurity concentration the magnitudes of the side-
jump and the skew-scattering SHA become comparable. The
magnitude of the side-jump SHC is comparable to the intrinsic
part of the SHC. Large values for the side-jump SHA are
obtained for Ta, W, Os, and Ir impurities for the concentration
5%. With increasing of the impurity concentration even higher
values for the side-jump SHA can be obtained, which is in line
with results based on an analytical model [13]. This suggests
these are candidates for experimental investigations in order
to obtain large SHA values.
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7.5. Separation of the individual contributions to the
spin Hall effect

The article ”Separation of the individual contributions to the spin Hall effect” published
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We present a procedure for the separation of the intrinsic, side-jump, and skew-scattering contributions to
the spin Hall conductivity within the ab initio Kubo-Středa approach. Furthermore, two distinct contributions to
the side-jump mechanism, either independent of the vertex corrections or solely caused by them, are quantified
as well. This allows for a detailed analysis of individual microscopic contributions to the spin Hall effect. The
efficiency of the proposed method is demonstrated by a first-principles study of dilute metallic alloys based on
Cu, Au, and Pt hosts.
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I. INTRODUCTION

A detailed understanding of the spin Hall effect (SHE) [1] is
the key issue for its efficient application in spintronic devices.
The phenomenon, being connected to the anomalous Hall
effect (AHE) [2–4], is a powerful tool for the creation of spin
currents in nonmagnetic materials. Three main mechanisms
contributing to the AHE as well as the SHE were established
[5–7], all caused by spin-orbit coupling (SOC). They are
known as the intrinsic mechanism due to the anomalous veloc-
ity [2,8], the extrinsic skew-scattering [3] and side-jump [4]
mechanisms. In dilute alloys the skew-scattering contribution
to the spin Hall conductivity dominates [9–12] since it is
inversely proportional to the impurity concentration, while
the other two contributions are concentration independent.
Moreover, the skew-scattering mechanism is solely caused
by the vertex corrections [5,10,12,13]. These features provide
the basis for a simple separation of the skew-scattering
contribution [10]. On the other hand, the intrinsic mechanism is
caused exclusively by the host band structure [2], which makes
it accessible by considering the corresponding ideal crystal
[14–16]. The side-jump mechanism is much more subtle.
Although it is caused by the presence of impurities in a host,
the corresponding contribution to the spin Hall conductivity
does not depend on their concentration [5]. Furthermore, for
uncorrelated short-range disorder it is even independent of
the type of impurities [17]. In contrast to the skew scattering,
the side-jump mechanism is not only caused by the vertex
corrections but has a contribution independent of them [5].
This complicates its coherent description, and quite often dif-
ferent approximations are used. For instance, in Refs. [12,18]
the influence of the vertex corrections was neglected for the
semiclassical resonant scattering model proposed to describe
the side-jump contribution to the spin Hall conductivity.
On the other hand, in Ref. [10] only the part caused by
the vertex corrections was considered, which together with
the skew-scattering contribution can be elegantly separated

*kchpc@cup.uni-muenchen.de

from the rest [19]. However, for a complete description and
comparison of the different mechanisms contributing to the
SHE, it is highly desirable to have a consistent and fully
ab initio treatment of the side-jump contribution.

II. APPROACH AND RESULTS

In this paper we propose an efficient procedure for the sep-
aration of the three main contributions, as well as the two parts
related to the side-jump mechanism, schematically illustrated
by Fig. 1. Practically, this is realized by means of the first-
principles Kubo-Středa approach as implemented within the
multiple-scattering Korringa-Kohn-Rostoker Green-function
method [10]. Computational details of the method used can
be found in the Appendix. Our procedure is based on the
commonly accepted decomposition of the total spin Hall
conductivity (SHC),

σ z
xy = σ zintr

xy + σ zsj
xy + σ zskew

xy , (1)

into its intrinsic (intr), side-jump (sj), and skew-scattering
(skew) contributions [5–7]. In addition, for the side-jump
contribution we perform the decomposition

σ zsj
xy = σ zsj(nvc)

xy + σ zsj(vc)
xy , (2)

where the first and second terms represent the parts indepen-
dent of the vertex corrections and solely caused by them,

Skew
Intrinsic Side jump

scattering

Without
vertex
corrections

σz intr
xy σ

z sj(nvc)
xy —

Caused by
vertex
corrections

— σ
z sj(vc)
xy σz skew

xy

FIG. 1. Schematic representation of the considered individual
contributions to the spin Hall effect.
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respectively. Within the present work, we quantify the four
distinct contributions from Eqs. (1) and (2) by applying the
proposed separation technique to Cu, Au, and Pt hosts with 5d

impurities.
The so-called anomalous-distribution and intrinsic skew-

scattering contributions, which were additionally singled out
in Ref. [5], are assumed to be included in σ

zsj(nvc)
xy and σ

zsj(vc)
xy ,

respectively. For the former one this is quite natural since
the anomalous distribution is caused by the longitudinal
component of the coordinate shift [20], whose transversal
component to an applied electric field is responsible for the
side-jump velocity [5]. Moreover, the anomalous-distribution
contribution arises without the vertex corrections. By contrast,
the intrinsic skew-scattering contribution arises due to the
vertex corrections as well as the asymmetric scattering rate
[21], similar to its conventional counterpart represented in our
analysis by σ zskew

xy . However, in comparison to this quantity,
the intrinsic skew-scattering contribution is independent of the
impurity concentration [5,21], which makes it similar to the
side-jump mechanism. Therefore, here we follow Ref. [7] in
parsing the mechanisms, where this contribution was formally
attributed to the side-jump scattering.

In the dilute limit, σ zskew
xy is inversely proportional to the

impurity concentration, which also holds for the longitudinal
charge conductivity σxx . This allows one to rewrite Eq. (1) as
[10]

σ z
xy(σxx) = σ zintr

xy + σ zsj
xy + αskewσxx, (3)

where αskew = σ zskew
xy /σxx is the spin Hall angle related to

the skew scattering. Then, the separation of the sum of the
intrinsic and side-jump contributions from the skew-scattering
contribution can be done by extrapolating to the situation of
vanishing charge conductivity

σ zintr
xy + σ zsj

xy = σ z
xy(σxx → 0). (4)

At low impurity concentrations σ z
xy shows a linear behavior

as a function of σxx [10], which is discussed in more detail in
the Appendix. Such a typical situation is shown in Fig. 2 by
the results obtained for dilute Cu(Au) alloys [22].

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

σxx (μΩ cm)-1

0

0.5

1

1.5

σz xy
 (μ

Ω
 m

)-1

2 at.%

3 at.%

4 at.%
5 at.%

FIG. 2. (Color online) The spin Hall conductivity as a function of
the longitudinal charge conductivity is shown for four dilute Cu(Au)
alloys labeled by the corresponding impurity concentrations.
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FIG. 3. (Color online) The skew-scattering contribution σ zskew
xy

(left) at the impurity concentration 1 at. % as well as the sum of the
intrinsic and side-jump contributions σ zintr

xy + σ
zsj
xy (right) are shown

as obtained for different dilute alloys based on Cu, Au, and Pt hosts.

Due to the linear behavior of the SHC as a function of the
charge conductivity, it is possible to perform an extrapolation
using just a few points. This gives us the sum σ zintr

xy + σ
zsj
xy ,

whose subtraction from the total SHC provides the skew-
scattering contribution as well. The corresponding results for
Cu, Au, and Pt hosts with different 5d impurities are shown
in Fig. 3 (left panels). Going from Cu to Pt via Au, the
skew-scattering contribution decreases since the difference
between impurity and host SOC becomes smaller [13]. On
the other hand, the increase of the host SOC enhances the sum
shown in the right panels of Fig. 3. In order to demonstrate
that this effect is caused by the enhancement of the intrinsic
contribution, we need to perform a further separation of the
individual contributions σ zintr

xy and σ
zsj
xy .

A possible way to access the intrinsic contribution to the
SHC is based on the Berry curvature formalism [15,23].
To obtain this contribution within the used Kubo-Středa
approach, we employ a scheme similar to the one proposed
and successfully applied to pure metals in case of the AHE
[24]. It implies an addition of a small imaginary part iε to
the Fermi energy (EF ), in order to calculate σ z

xy given by
Eq. (3) of Ref. [10] via an integration over the Brillouin
zone (BZ). Due to this procedure, we avoid the numerical
problems caused by a δ-function-like behavior of the integrand
at the real energy axis, which is present for pure crystals [24].
Then, the intrinsic contribution to the SHC can be obtained by
the extrapolation limε→0 σ z

xy(EF + iε). Applying this scheme
with the parameters described in the Appendix, we have
obtained σ zintr

xy as 0.017 (μ� m)−1 for Cu, 0.074 (μ� m)−1

for Au, and 0.409 (μ� m)−1 for Pt. These results are in good
agreement with other ab initio calculations, which provided
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for Au and Pt hosts the values of 0.07–0.08 [25,26] and 0.44
[16] (μ� m)−1, respectively. This shows that the Fermi-sea
contribution neglected in the used Kubo-Středa formula (see
the Appendix) does not exceed 8% of the total intrinsic
contribution.

With the intrinsic contribution determined, the separation
according to Eq. (1) is achieved. Let us perform now the
decomposition of the side-jump contribution following the
idea of Eq. (2). As was mentioned above, the skew scattering
is solely caused by the vertex corrections. By contrast, the
side-jump mechanism is not only provided by them but has
also a contribution independent of the vertex corrections. This
is transparent within the semiclassical approach, where the
side-jump contribution to the spin current density can be
written, in analogy to the AHE [5], as

jzsj
x = σ zsj

xy Ey = −|e|
V

∑
k

gkS
z
kv

sj
k,x . (5)

Here, Sk and vsj
k are the spin polarization [13] and the so-called

side-jump velocity [20], respectively. According to Ref. [20],
vsj

k is determined by both the scattering at impurities and the
topological properties of the host crystal related to its Berry
curvature [23,27]. The nonequilibrium part of the distribution
function gk is proportional to the mean free path [28,29]

�k = �out
k + �in

k (6)

consisting of the scattering-out and scattering-in terms, where
the latter one corresponds to the vertex corrections of the Kubo
theory [30]. Thus, Eqs. (5) and (6) support the decomposition
of Eq. (2) with σ

zsj(nvc)
xy and σ

zsj(vc)
xy describing the parts

independent of the vertex corrections and solely caused by
them, respectively. Our procedure allows us to obtain these
contributions to the side-jump mechanism separately.

Indeed, the part σ
zsj(vc)
xy was already derived in Ref. [10]

via a procedure similar to Eq. (4) but applied to the difference
of the SHCs obtained with and without vertex corrections.
Here, using the same approach together with our knowledge
of the total side-jump contribution, we can obtain its first part
as σ

zsj(nvc)
xy = σ

zsj
xy − σ

zsj(vc)
xy . Figure 4 shows the two parts of

the side-jump contribution to the SHC separately. The most
important point is that they are of comparable size. This
means it is impossible to neglect one of them, but one has to
consider the entire side-jump contribution to the SHC. Another
interesting point is related to the magnitude of the side-jump
contribution comparing Au and Pt as a host. While for Pt
the intrinsic contribution σ zintr

xy is about six times larger than
for Au, there is no similar enhancement for σ

zsj
xy . In other

words, the influence of the Berry curvature on the side-jump
mechanism is not as important as the scattering properties
caused by impurities.

This finding supports the main assumption of the resonant
scattering model proposed by Fert and Levy [12,18] for the
estimation of the side-jump contribution to the SHE. Indeed,
their approach does not include the influence of the host
band structure via the Berry curvature, due to the restriction
to systems for which the spherical band approximation can
be justified. Taking into account that the vertex corrections
are also neglected in the Fert-Levy model, one could assume
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FIG. 4. (Color online) The two parts of the side-jump contribu-
tion, σ

zsj(nvc)
xy (left) and σ

zsj(vc)
xy (right), are shown for different dilute

alloys based on Cu, Au, and Pt hosts. The dashed curves in the left
panels are plotted (in arbitrary units) according to Eq. (7) obtained
within the Fert-Levy model [12].

that it may describe σ
zsj(nvc)
xy for hosts with a free-electron-like

Fermi surface. For the considered systems, the scattering phase
shift of p electron states in the expression derived for this
contribution in Ref. [12] has no significant influence on its
structure. Therefore, we neglect it and obtain

σ zsj(nvc)
xy ∼ (1 − 4 sin2 η2) sin 2η2. (7)

Here, η2 is the scattering phase shift corresponding to the
impurity d states. Within the resonant scattering model this
quantity can be approximated by πZd

10 [12], where Zd is the
number of impurity d electrons which changes from 1 for Lu
to 10 for Au impurities. As shown by Fig. 4, for Cu and Au
hosts such a model estimation provides reasonable qualitative
agreement with the calculated σ

zsj(nvc)
xy . This is not the case

for platinum because of its complex Fermi surface [31]. The
model-based results also strongly disagree with σ

zsj(vc)
xy . This

needs to be kept in mind for comparison of the side-jump
contribution obtained within the two different approximations
mentioned in the Introduction.

It is important to mention that our results clarify the
situation concerning a long-standing question about the mag-
nitude of the side-jump contribution [3,4,7,32,33]. While it is
commonly believed that in the dilute limit the skew-scattering
mechanism should be dominating [9–12], there was no clear
understanding whether the side-jump contribution may ever
be significant as well. Various estimations aimed to elucidate
this point but based on simple general arguments led to
different conclusions. For instance, Crépieux and Bruno stated
in Ref. [32] that it is impossible to predict which of the two
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extrinsic mechanisms should dominate in the high-disorder
regime, while Sushkov et al. [33] concluded that the side-
jump contribution is generally negligible. Based on our first-
principles calculations, we show that the two contributions
can be comparable even at impurity concentrations of a
few at. %. The same conclusion was obtained by Fert and
Levy based on their impurity-specific model consideration
[12]. This demonstrates that an adequate description of the
electron scattering at impurities is essential, in order to derive
a reasonable estimation of the side-jump contribution.

Finally, it is desirable to have a scheme to determine
σ zintr

xy by considering dilute alloys instead of ideal crystals. In
contrast to the latter ones, the aforementioned scheme based
on the broadening via a complex energy is not necessary
to ensure the convergence using a reasonable number of
k points [24]. This idea can be realized in the following
way. As was discussed above, applying the procedure of
Eq. (4) to the total SHC and the difference between the
total SHC and its counterpart calculated without the vertex
corrections, we obtain σ zintr

xy + σ
zsj
xy and σ

zsj(vc)
xy , respectively.

This allows us to separate the resulting sum σ zintr
xy + σ

zsj(nvc)
xy

as σ zintr
xy + σ

zsj
xy − σ

zsj(vc)
xy . Now let us take into account that

generally the side-jump contribution depends on the type of
impurity atoms solved in the host. By contrast, the intrinsic
contribution, entirely provided by the band structure of the
related ideal crystal, is impurity independent. Consequently,
by an appropriate choice of impurities it should be possible to
obtain the case |σ zintr

xy | � |σ zsj(nvc)
xy |, that would provide a good

estimation for the intrinsic contribution as the dominant one
in the known sum σ zintr

xy + σ
zsj(nvc)
xy . Impurities, which fulfill

the required condition, could be recognized by a statistical
analysis of results obtained for a large number of different
alloys based on the same host. However, one can reduce the
computational effort by reasonable predictions of impurities
possessing negligible side-jump mechanism. One class of
possible candidates is related to light atoms with s character
of valence electron states. Indeed, the SOC induced by them
should be weak because of both the small atomic number and
the vanishing atomic orbital moment. From this perspective,
Li, Be, Na, and Mg impurities can be taken, in order to estimate
the intrinsic contribution.

Following this route, we have performed additional calcu-
lations considering the four light impurities in Cu, Au, and
Pt hosts. The sum σ zintr

xy + σ
zsj(nvc)
xy obtained according to the

procedure explained above is shown in Fig. 5. Evidently, the
chosen impurities provide a good estimate for the intrinsic
contribution. By averaging over the four considered alloys for
each host, we evaluate σ zintr

xy as 0.016 (μ� m)−1 for Cu, 0.088
(μ� m)−1 for Au, and 0.404 (μ� m)−1 for Pt. These values
are in good agreement with those obtained by the calculations
discussed above, which are shown as horizontal dashed lines in
Fig. 5 for comparison. Thus, this way to estimate the intrinsic
contribution can be used as a cheaper alternative to the direct
but computationally demanding calculations.

III. SUMMARY

We propose an accurate procedure for the separation of the
intrinsic, side-jump, and skew-scattering contributions to the

Li Be Na Mg0

0.2

0.4

0.6

0.8

σz xy
 (μ

Ω
 m

)-1

Pt host
Au host
Cu host

0.409

0.074
0.017

FIG. 5. (Color online) The sum of the intrinsic contribution σ zintr
xy

and the first part of the side-jump contribution σ
zsj(nvc)
xy calculated

for Li, Be, Na, and Mg impurities in Cu (green circles), Au (blue
triangles), and Pt (red squares) hosts is shown in comparison to
the corresponding intrinsic contribution (dashed lines and numbers)
obtained from its straightforward calculations.

spin Hall conductivity within one and the same computational
method based on the first-principles Kubo-Středa approach.
This is applied to various dilute alloys based on Cu, Au,
and Pt hosts, which especially clarifies the influence of
the vertex corrections on the side-jump mechanism. The
presented scheme opens a way for further deeper theoretical
investigations of the spin Hall effect with a possible elucidation
of its dominating mechanisms.
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APPENDIX: COMPUTATIONAL DETAILS

Based on the Kubo-Středa linear-response theory [32,34],
the presented spin Hall conductivity was calculated as a
correlation function describing the connection between a
spin-current Ĵ induced by a charge current ĵ:

σ z
xy = �

4πN�
Tr

〈
Ĵ z

x (Ĝ+ − Ĝ−)ĵyĜ
−

− Ĵ z
x Ĝ+ĵy(Ĝ+ − Ĝ−)

〉
c
, (A1)

where � is the unit-cell volume and N refers to the
number of sites. This expression involves the y component
of the relativistic current density operator ĵy = −|e|cαy

and the z component of the relativistic spin-polarization
current density operator [24,35,36] with the current density
along the x direction: Ĵ z

x = |e|cαx(β
z − γ5p̂z

mc
). Here, α,

β, and γ5 are the standard Dirac matrices and 
z refers
to the z component of the vector of the relativistic spin
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matrices (μ = x,y,z) [37,38]:

αμ =
(

02 σμ

σμ 02

)
, β =

(
12 02

02 −12

)
, (A2)

γ5 =
(

02 −12

−12 02

)
, 
z =

(
σz 02

02 σz

)
(A3)

with σμ being the Pauli matrices.
Equation (A1) was used for the pure host crystals as well

as the alloys considered in our work. To describe the effect
of random substitutional disorder for the latter ones, we use
the coherent potential approximation (CPA) [30,39]. For this
case the brackets 〈. . .〉c in Eq. (A1) indicate a configurational
average treated by means of CPA. The calculation of vertex
corrections appearing as a difference between correlated
and uncorrelated configurational averages 〈Ĵ z

x Ĝ+ĵyĜ
−〉c and

〈Ĵ z
x Ĝ+〉c〈ĵyĜ

−〉c, respectively, is based on the CPA transport
formalism introduced by Butler [30]. Note that the latter
slightly differs by the one introduced by Velický [39] and
used, e.g., in the TB-LMTO approach [40].

Further note that in Eq. (A1) a term related to the orbital
current has been neglected as it was done previously [10,40].
For cubic crystals, which is the case for the systems considered
in the presented work, this term has been shown to be small
[41]. In the case of the anomalous Hall conductivity, the
neglected term is equivalent to the Fermi-sea term [40] present
in the Bastin equation [42], which represents a sum over
all occupied states and cannot affect a description of skew
scattering or side jump but the intrinsic mechanism. It was
demonstrated that for cubic systems the Fermi-sea contribution
is significantly smaller in comparison to the dominant Fermi-
surface contribution [41]. Here, we can estimate the amount of
the Fermi-sea contribution by comparing our results obtained
for the pure host crystals with those from Refs. [16,25,26]
based on the Berry curvature calculations including both
contributions. This allows us to conclude that the missing
contribution does not exceed 8% of the complete intrinsic
contribution to the SHC.

For our first-principles calculations, we either take into
account the vertex corrections in Eq. (A1) or completely skip
them from the consideration, obtaining either the total SHC
σ z

xy or its part called σ z(nvc)
xy , respectively. Their difference gives

us the contribution σ z(vc)
xy which is solely caused by the vertex

corrections. The obtained decomposition

σ z
xy = σ z(nvc)

xy + σ z(vc)
xy (A4)

is extended further as

σ z(nvc)
xy = σ zintr

xy + σ zsj(nvc)
xy (A5)

and

σ z(vc)
xy = σ zskew

xy + σ zsj(vc)
xy . (A6)

This procedure is schematically represented by Fig. 1 and
explained in detail above. The crucial point is the linear
behavior of σ z

xy or σ z(vc)
xy as a function of the longitudinal

charge conductivity in the dilute limit, where both σ zskew
xy and

σxx are inversely proportional to the impurity concentration.
Depending on the magnitude of the intrinsic and side-jump
contributions, the well-pronounced linear behavior illustrated
by Fig. 2 can be obtained at different concentrations for differ-
ent alloys. A significant decrease of the impurity concentration
would require an enormous increase of the number of k points
in the Brillouin zone. However, for the considered systems the
necessary linear dependence of the SHC as a function of σxx

was achieved with impurity concentrations above 0.5 at. %,
which allowed us to use the reasonable number of k points
mentioned below.

The G+ and G− present in Eq. (A1) are the retarded
and advanced Green functions evaluated at the Fermi level
by means of the relativistic Korringa-Kohn-Rostoker method
[43] and obtained as G±(r,r′,E) = limη→0+ G(r,r′,E ± iη).
The Green function in the real-space multiple-scattering
representation is given by (see Ref. [44], and references
therein)

G(r,r′,EF ) =
∑
��′

Zn
�(r,EF ) τnm

��′(EF ) Zm×
�′ (r′,EF )

− δnm

∑
�

[
Zn

�(r,EF ) J n×
� (r′,EF )�(r ′

n − rn)

+ J n
�(r,EF ) Zn×

� (r′,EF )�(rn − r ′
n)

]
(A7)

with the four-component site-centered wave functions
Zn

�(r,EF ) and J n
�(r,EF ) being regular and irregular solutions

to the single-site Dirac equation. Here, � = (κ,μ) represents
the relativistic quantum numbers and τ is the scattering path
operator.

The calculations were performed using the atomic sphere
approximation for the potential. A wave-function expansion
with angular momentum cutoff lmax = 3 was used. For the
investigated alloys, impurity concentrations in the range 0.5–5
at. % were considered with the corresponding number of k
points in the BZ as 109 to 107 to ensure convergence. In case
of the pure crystals, a small imaginary part ε between 10−6

and 10−4 Ry was added to the Fermi energy with using about
109 k points.
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We present a general first-principles approach to treat various linear response phenomena relevant for
spintronics. It is based on a Kubo-Bastin formalism and implemented within the multiple-scattering Korringa-
Kohn-Rostoker (KKR) Green’s function method with the underlying electronic structure determined by density
functional theory. The symmetric (e.g., longitudinal electronic transport) as well as the antisymmetric (e.g.,
transverse transport) parts of the response tensor are determined, including both the so-called Fermi-sea and the
Fermi-surface contributions. To describe spin-orbit-induced phenomena, such as the anomalous and spin Hall
effects, a fully relativistic description is employed. Exploiting the adopted Green’s function method substitutional
disorder in the full concentration range of alloys is treated within the coherent potential approximation, taking full
account of occurring vertex corrections in the averaging procedure for the linear response quantities. Extrinsic
(scattering related, e.g., side-jump and skew scattering) and intrinsic (band structure–related) contributions to the
transport tensors are treated on equal footing. Other phenomena, such as Gilbert damping and spin-orbit torques,
are particular cases of the general framework and their determination is briefly addressed. The versatility of
the method is demonstrated by presenting results for the anomalous and spin Hall conductivities for elemental
transition metals and their alloys.

DOI: 10.1103/PhysRevB.92.184415 PACS number(s): 71.15.Rf, 72.10.Bg, 72.15.−v, 72.25.Ba

I. INTRODUCTION

There exist a number of transverse transport phenomena
that have attracted a lot of attention in recent years due to
their potential application in spintronics and their interesting
underlying mechanisms. Among them are the anomalous
(AHE) [1] and spin Hall (SHE) [2–4] effects and their spin-
caloritronic counterparts [5], the anomalous and spin-Nernst
effects [6–8], as well as the newly discovered spin-orbit torque
in which a current exerts a torque on the magnetization
in a ferromagnet [9–11]. Common to these effects is their
relativistic origin, i.e., they are induced by spin-orbit coupling.

Quite generally, mechanisms giving rise to these effects
are classified as band structure–related topological intrinsic or
scattering-related extrinsic contributions (among the latter are
skew and side-jump contributions). Many model calculations
exist for these effects, each of which focuses on one or a
few underlying mechanisms and typically rely on certain
parameters [1,12–14]. Only recently have ab initio methods
been developed that in most cases start from a density
functional theory description of the electronic structure and
that are able to provide a material-specific characterization
of these phenomena. Several computer codes are now able to
determine the intrinsic Berry-phase-associated contributions
relying on the existence of well-defined energy bands in
ordered systems [15–20]. Disorder in this particular approach
can be introduced in a phenomenological way which allows
one to include finite lifetime effects and can be used to describe
systems with small content of impurities (dilute limit). On
the other hand, the Boltzmann approach has been used to
deal exclusively with extrinsic skew scattering contributions
in the dilute limit. An approach that is capable of treating all
the aforementioned linear response phenomena in a general

*dkopc@cup.uni-muenchen.de

way, i.e., treating intrinsic and extrinsic contributions on the
same footing as well as being able to include disorder away
from the dilute limit, is the Kubo linear response formalism in
combination with a suitable alloy theory (see below).

The latter is our methodological starting ground in its
Kubo-Greenwood (KG) formulation that is well established
in describing longitudinal electronic transport, more precisely,
giving the symmetric part of the transport tensor that connects
a current with the electric field. Only states at the Fermi
energy (Fermi surface) contribute to this part of the transport
tensor. Many first-principles calculations have been performed
employing the KG method implemented within the Korringa-
Kohn-Rostoker (KKR) or the linear muffin-tin orbital (LMTO)
electronic structure methods, demonstrating the viability to
treat disordered systems and giving material-specific results
[21–23]. Let us note in passing that already on the KG level
the inclusion of vertex corrections (vc) becomes important and
is readily incorporated in these approaches.

Going beyond the KG method and capturing the an-
tisymmetric (transverse) parts of the transport tensors is
methodologically and computationally much more demanding
and only recently first-principles approaches have been devised
that are based on the Kubo-Středa and Kubo-Bastin formalism
[24–28]. There are several reasons for this: (i) As transverse
transport phenomena like the AHE and SHE are manifestly
spin-orbit induced, the effect of spin-orbit coupling has to
be incorporated appropriately when calculating the electronic
structure. (ii) One contribution to the tensor results exclusively
from the states at the Fermi level and depends, in particular
for pure systems, very sensitively on the topology of the
Fermi surface. This implies the use of a huge number of
k points needed for the Brillouin-zone integrations. Also, in
the dilute limit of disordered alloys the vertex corrections have
been shown to be of utter importance [25,29], again leading,
together with the fine structure of the electronic states to be
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sampled, to great computational effort in the evaluation of
k-space integrals. (iii) Finally, going beyond KG one either has
to include a Fermi-sea term in the Kubo-Bastin formulation
or to recast the transport equations into the Kubo-Středa
equation. The latter then is often simplified by neglecting an
orbital current term or relying on cancellation of terms in
inversion symmetric systems, therefore restricting its range of
application.

In this paper we present a Kubo-Bastin framework that in its
formulation and implementation within relativistic multiple-
scattering theory allows one to treat a variety of spin-orbit-
induced linear response phenomena including the anomalous
and spin Hall effect. It is applicable to pure systems as well
as disordered alloys in the full concentration range and treats
intrinsic (coherent) and extrinsic (incoherent) contributions
within one and the same methodological approach. The
application of the scheme to other phenomena (e.g., Gilbert
damping, spin-orbit torques) is straightforward and is briefly
discussed.

The paper is organized as follows: In Sec. II we formulate
a generalized Kubo-Bastin theory within a fully relativistic
framework. Based on the given expression we perform a
symmetry analysis of the response tensor followed by a
particular formulation for the anomalous and spin Hall effects.
We then outline the linear response Kubo-Bastin approach
within the relativistic KKR method, with more details given in
the Appendix. In Sec. III we give technical details concerning
the implementation. Finally, in Sec. IV we present results for
the AHE and SHE in pure systems as well as disordered alloys.
The paper is summarized in Sec. V.

II. THEORY

As we want to discuss, in particular, transverse spin-orbit-
induced transport phenomena, we base our approach on the
relativistic four-component Dirac formalism when dealing
with the underlying electronic structure. This is motivated by
the following reasons: (i) no approximation is involved when
treating spin-orbit-induced properties, and (ii) it allows one
to avoid problems to treat disorder [30] (vertex corrections)
which would otherwise occur in a Pauli approach. The
corresponding Dirac-Hamiltonian is given as

ĤD = −i�c α · ∇ + (β − I4)mc2 + VKS(r) . (1)

The single-particle potential VKS appearing in Eq. (1) is
determined in the framework of Kohn-Sham-Dirac (KSD)
spin-density functional theory (KSD-SDFT) [31,32] and in-
cludes an exchange term β� · Bxc. The standard Dirac and spin
matrices [31,33,34] αμ, β, and �μ are given as (μ ∈ {x,y,z})

αμ =
(

02 σμ

σμ 02

)
, β =

(
I2 02

02 −I2

)
, �μ =

(
σμ 02

02 σμ

)
,

(2)

with the σμ being the Pauli matrices. The KSD Green’s func-
tion (GF) is defined as the resolvent of the Dirac-Hamiltonian
Eq. (1), Ĝ(z) = (z − ĤD)−1, with z being a complex energy
variable.

A. Generalized Kubo-Bastin formalism

The starting point of our derivation is the Kubo-Bastin
[35] like expression for the response tensor χ describing the
reaction of the system in the observable represented by an
operator B̂ due to the perturbation represented by the operator
Â:

χμν = − �
2π	

∫ ∞

−∞
f (E)Tr

〈
B̂μ

dĜ+

dE
Âν(Ĝ+ − Ĝ−)

− B̂μ(Ĝ+ − Ĝ−)Âν

dĜ−

dE

〉
dE . (3)

Here μ,ν ∈ {x,y,z} denote Cartesian coordinates, 	 is the
volume of the system, f (E) = [e(E−μ)/kBT + 1]−1 denotes the
Fermi-Dirac distribution function with the chemical potential
μ, the Fermi energy EF = μ(T = 0 K), Ĝ+ and Ĝ− are the
retarded and advanced Green’s function operators (for brevity
their energy arguments will be suppressed), and 〈. . . 〉 denotes
a configurational average. Following a procedure by Crépieux
and Bruno [30], when deriving the Kubo-Středa equation we
obtain (by keeping one half of the term and doing a partial
integration on the second half) an expression that lends its
hand to further insightful analysis as well as a first-principles
implementation:

χμν = χI
μν + χII

μν (4)

χI
μν = − �

4π	

∫ ∞

−∞

df (E)

dE
Tr〈B̂μ(Ĝ+ − Ĝ−)ÂνĜ

−

− B̂μĜ+Âν(Ĝ+ − Ĝ−)〉dE (5)

χII
μν = + �

4π	

∫ ∞

−∞
f (E)Tr

〈
B̂μĜ+Âν

dĜ+

dE
− B̂μ

dĜ+

dE
ÂνĜ

+

−
(

B̂μĜ−Âν

dĜ−

dE
− B̂μ

dĜ−

dE
ÂνĜ

−
)〉

dE. (6)

In the limit T → 0 K, f (E) becomes a step function and the
first term Eq. (5) contributes to χ only in quantities to be
evaluated at the Fermi energy EF, whereas for the second term
Eq. (6) the integration is over all occupied states. For this
reason in what follows the term χI

μν Eq. (5) will be denoted as
Fermi-surface and the term χII

μν Eq. (6) as the Fermi-sea term.
Note that the last equation is a different but an equivalent form
of the original equation by Bastin et al. [35].

B. Symmetry analysis

For the particular case of Â = B̂ = Ô the Fermi-sea term
is purely antisymmetric, χII

μν = −χII
νμ. This can be seen by

inspecting the first term in Eq. (6) containing only retarded
(Ĝ+) as well as the second term in parenthesis containing
exclusively advanced (Ĝ−) Green’s functions. Both terms are
antisymmetric, which can be shown by exploiting the property
of the trace.

The analysis of the Fermi-surface term can be carried out
by considering the symmetry-related subexpression of χI , i.e.,

Cμν = Tr〈B̂μ(Ĝ+ − Ĝ−)ÂνĜ
− − B̂μĜ+Âν(Ĝ+ − Ĝ−)〉 .
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Extracting the symmetric part for Â = B̂ = Ô leads to

1
2 [Cμν + Cνμ] = −Tr〈Ôμ(Ĝ+ − Ĝ−)Ôν(Ĝ+ − Ĝ−)〉

= 4Tr〈Ôμ�Ĝ+Ôν�Ĝ+〉 , (7)

a Kubo-Greenwood–like expression, where �Ĝ+(E) =
1
2i

[Ĝ+(E) − Ĝ−(E)]. This is frequently used in transport
calculations, with Ô = ĵ being the charge current operator
yielding the symmetric (and in particular, the longitudinal)
contribution to the conductivity tensor σμν .

Extracting the antisymmetric part for Â = B̂ = Ô gives

1
2 [Cμν − Cνμ] = 1

2 Tr〈[Ôμ(Ĝ+ − Ĝ−)Ôν

− Ôν(Ĝ+ − Ĝ−)Ôμ](Ĝ+ + Ĝ−)〉
= 2i Tr〈[Ôμ�Ĝ+Ôν − Ôν�Ĝ+Ôμ] �Ĝ+〉,

where �Ĝ+(E) = 1
2 [Ĝ+(E) + Ĝ−(E)]. For the example of

a charge-charge current response, this states that the (an-
tisymmetric) anomalous Hall effect results from the Fermi
sea as well as the antisymmetric surface contribution. It has
been shown that in the latter case the Fermi-sea term can be
transformed into a surface term [30,36] and the intrinsic AHE
in a (pure) metallic ferromagnet is a topological Fermi-surface
property [37].

To highlight the advantages of the presented scheme, let
us note in passing that the case Â = B̂ = T̂, with T̂ being the
magnetic torque operator, allows a formulation of the Gilbert
damping [38–40]. Furthermore, the spin-orbit torque, i.e., the
torque exerted on the magnetization in a ferromagnet resulting
from a charge current [9,41], is obtained by using B̂ = T and
Â = j [42,43].

Finally, we want to point out that further symmetry analysis
of the response tensors on grounds of the (magnetic) space
group of a bulk system can give additional relations, depending
on the particular choice of operators Â and B̂ [44,45].

C. Conductivity within Kubo-Bastin linear response formalism

In the chosen relativistic formalism the electric current
operator is given by ĵ = −|e|cα, with e > 0 being the
elementary charge. For describing the spin Hall effect, we
here employ the relativistic spin (-polarization) current-density
operator

Ĵξ =
(

β�ξ − γ5�ξ

mc

)
|e|cα , (8)

inspired by Bargmann and Wigner [46] and already used
previously [25,47,48], with the kinetic momentum � = (p̂ +
|e|
c

A)14, the canonical momentum p̂, the vector potential A,
and [34]

γ5 =
(

02 −12

−12 02

)
. (9)

For the remainder of the paper we consider the limit T →
0 K of Eqs. (5) and (6) and two particular cases, both of which
are characterized by choosing Â = ĵ as charge current operator.
The (longitudinal) charge and anomalous Hall conductivities
are obtained by setting B̂ = ĵ. The spin Hall conductivity is
obtained by setting B̂ = Ĵξ , where ξ ∈ {x,y,z} characterizes

the polarization direction of the spin current operator. With
this Eqs. (5) and (6) read

σ ξ
μν = σ ξ,I

μν + σ ξ,II
μν , (10)

σ ξ,I
μν = �

4π	
Tr

〈
Ĵ ξ

μ(Ĝ+ − Ĝ−)ĵνĜ
− − Ĵ ξ

μĜ+ĵν(Ĝ+ − Ĝ−)
〉
,

(11)

σ ξ,II
μν = �

4π	

∫ EF

−∞
Tr

〈
Ĵ ξ

μĜ+ĵν

dĜ+

dE
− Ĵ ξ

μ

dĜ+

dE
ĵνĜ

+

−
(

Ĵ ξ
μĜ−jν

dĜ−

dE
− Ĵ ξ

μ

dĜ−

dE
ĵνĜ

−
)〉

dE , (12)

where in Eq. (11) the Green’s functions are evaluated at the
Fermi energy EF and the energy arguments at the GFs have
been omitted throughout. The conductivity tensor σμν in terms
of the charge-charge response is obtained by replacing Ĵ ξ

μ with
ĵμ in the last expression. For the remainder of the paper we
consider the special case ξ = z and, if present, the following
particular choice for the exchange field Bxc(r) = B(r)êz in the
Hamiltonian Eq. (1).

Note that in the discussion of longitudinal transport [49] and
the AHE one can show that terms involving only retarded or
advanced GF, i.e., terms of the type 〈jG+jG+〉 or 〈jG−jG−〉,
can be neglected in the weak disorder limit [50], and this is
indeed done in actual calculations [51]. In the present work all
contributions are taken into account, in particular, because we
discuss the full concentration range of alloys.

D. Kubo-Bastin linear response formalism within relativistic
multiple-scattering KKR

The formalism presented here is inspired by previous im-
plementations of the (relativistic) Kubo-Greenwood approach
[52–56] which go back to a formulation by Butler [21].
These are restricted to the treatment of the symmetric part
of the conductivity tensor evaluated at the Fermi energy.
Here we report on a very general framework that (i) gives
the symmetric as well as antisymmetric contributions by
evaluating Fermi sea and surface contributions; (ii) is fully
relativistic and therefore captures all important contributions to
transverse transport (skew scattering, side jump); (iii) is easily
extendable to any other operator pair for dealing with other
phenomena like Gilbert damping [38,40,42] and spin-orbit
torques; (iv) allows treatment of efficiently disordered systems,
avoiding costly supercell approaches; and (v) lends its hand to
straightforwardly include finite temperatures effects [57].

The evaluation and first-principles treatment of Eqs. (11)
and (12) for solids requires a suitable representation of the
GF, which in our chosen formalism will subsequently lead
to a product expression containing matrix elements of the
current operators with the basis functions and k-space integrals
over scattering path operators. Disorder and ensuing vertex
corrections in the averaging procedure will be treated by means
of the coherent potential approximation (CPA) [21,58].

The real-space representation of the Green’s function
operator Ĝ(z) can be very efficiently obtained by using the
spin-polarized relativistic version of multiple-scattering theory
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[59–63]:

G(r,r′,z) =
∑
′

Zn
(r,z) τnm

′(z) Zm×
′ (r′,z)

− δnm

∑


[
Zn

(r,z) J n×
 (r′,z)�(r ′

n − rn)

+ J n
(r,z) Zn×

 (r′,z)�(rn − r ′
n)

]
. (13)

Here r,r′ refer to atomic sites at Rn and Rm, respectively, where
Zn

(r,z) = Z(rn,z) = Z(r − Rn,z) as well as J n
(r,z) are

basis functions centered at positions Rn. Note that here
the basis functions are normalized according to the Oak
Ridge–Bristol convention [64]. The four-component wave
functions Zn

(r,z) [J n
(r,z)] are regular (irregular) solutions

to the single-site Dirac equation at complex energy z labeled
by the combined quantum numbers  [ = (κ,μ)], with κ and
μ being the spin-orbit and magnetic quantum numbers [34].
The superscript × indicates the left-hand side solution of the
Dirac equation [60]. The quantity τnm

′(z) is the scattering
path operator that transfers an electronic wave coming in
at site m into a wave going out from site n accounting for
all possible intermediate scattering events. The retarded and
advanced GF are obtained as the side limits G±(r,r′,E) =
limη→0+ G(r,r′,E ± iη).

Inserting the real-space representation Eq. (13) into Eqs.
(11) and (12) and cyclic permutation under the trace leads to
sums of products of matrix elements evaluated on a given
site and scattering path operators τmn. Pursuing the route
of Butler [21] having a subsequent CPA averaging in mind,
the conductivity tensor will partition into an on-site term σ 0

involving regular (Z) as well as irregular solutions (J) and
an off-site term σ 1 containing only regular solutions (both for
Fermi sea and surface terms):

σ ξ
μν = σ ξ0

μν + σ ξ1
μν

= σ ξ0,I
μν + σ ξ1,I

μν + σ ξ0,I I
μν + σ ξ1,I I

μν . (14)

Working towards determining the energy derivative of the GF
in terms of finite differences (see below) as well as representing
the GF above and below the real axis leads to expressions of
the form

1

	
Tr

〈
Ĵ ξ

μĜ(za)ĵνĜ(zb)
〉 = 1

	
Tr

∫
	

d3rĴ ξ
μ �Gν(r,r,za,zb)

= 1

	n

Tr
∫

	n

d3r Ĵ ξ
μ �Gn

ν (r,r,za,zb) ,

(	n denotes the volume of the unit cell at site n), containing
pairs of complex energies za and zb and contributions to �Gν

with

�Gn
ν (r,r,za,zb) =

∑
αβ

xαxβ�G1,αβ,n
ν (r,r,za,zb)

+
4∑

k=1

xα�G
0,α,n
νk (r,r,za,zb) , (15)

given in Appendix A. The Greek indices (α,β) denote alloy
partners and xα their concentrations. The terms in �G

0,α,n
νk

containing irregular solutions J, k ∈ {1,2,3,4} are associated
with the on-site contributions σ ξ0 only. The term �G

1,αβ,n

ν1

containing exclusively regular solutions Z contributes to σ ξ1

requiring special treatment when performing the statistical
average (done here within the CPA) in the case of an alloy.
The appearing vertex corrections in this term are important and
can, particularly in the dilute limit, give sizable contributions
to the transverse conductivities (see Refs. [24,27] and below).
As shown by Butler [21], they correspond to the scattering
term in Boltzmann transport theory [25,65,66].

The evaluation of Eq. (15) leads to matrix elements of
regular functions of the form Mabν

′ = 〈Z×
(za)|Ôν |Z′(zb)〉	n

and matrix elements involving irregular functions whose
evaluation is outlined in Appendix B. Let us note that the
formalism is very general insofar as other linear response
quantities (Gilbert damping, spin-orbit torques, etc.) are easily
obtained by the appropriate choice of operators (Â, B̂) and
adaptation of their matrix elements to be inserted in the final
multiple-scattering transport expressions.

The described formalism is applicable to pure systems
as well as alloys in the full concentration range. For a
pure system with a perfect band structure, the transverse
(antisymmetric) component of the response is called intrinsic
and is often associated with the existence of the Berry curvature
coded in the band structure. An alloy, however, has no
well-defined energy bands. Within the formalism presented
here, one can separate the full response into coherent and
incoherent contributions, with the latter exclusively caused by
the vertex corrections. As a manner of speaking, the coherent
contributions are here named intrinsic, the incoherent ones are
called extrinsic, and the presented formalism captures both of
them.

III. IMPLEMENTATION AND COMPUTATIONAL DETAILS

The expressions (11) and (12) as well as the following
equations have been implemented into the MUNICH SPR-KKR

package [63,67]. A fully relativistic Dirac four-component
scheme for the basis functions Z and J has been used
throughout with an angular momentum cutoff of �max = 3.
The self-consistent field (SCF) potentials have been ob-
tained within KSD-SDFT employing the Vosko-Wilk-Nussair
(VWN) parametrization [68] for the exchange-correlation
functional in the local density approximation (LDA). The
involved energy integration has been performed on a semicircle
in the complex plane using typically 50 energy points and
453 (562 × 30) for cubic (hcp) system k-points in the BZ.
As a shape approximation for the potential, the atomic sphere
approximation (ASA) has been used. Experimental lattice con-
stants have been used. Using these SCF potentials, subsequent
Kubo-Bastin transport calculations have been performed. For
the determination of the Fermi-surface term Eq. (11) in the
concentrated regime of alloys approximately 105 k points in
the BZ turned out to be sufficient due to smearing of the GF in
k space for the disordered system. In the dilute limit with the
concentration of an alloy partner becoming very small, around
106–107 k points had to be used to ensure convergence. In
contrast to the disordered systems which for the calculations
are carried out on the real-energy axis for pure elements, a
small imaginary part has been added, z = EF + iη, and an
extrapolation for η → 0+ has been carried out while ensuring
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TABLE I. The AHC σxy in (	 cm)−1 of the ferromagnetic
transition metals bcc-Fe, hcp-Co, and fcc-Ni and the alloys Fe50Pd50

and Ni50Pd50 from first-principles theoretical (present work compared
to other) as well as experimental (expt.) studies. The magnetization
has been assumed to be oriented along the [001] direction.

σ 0
xy σ 1,I

xy σ 1,I I
xy σxy σ theo

xy σ
exp
xy

Fe 20 687 192 899 750,d 878,e 796f 1032a

Co 39 316 169 524 484,g 694,e 471f 813h

Ni –84 –2654 57 –2681 –2500,e–2432f –1100b

Fe50Pd50 (nvc) –18 314 101 397
Fe50Pd50 (vc) –18 457 102 541 303c

Ni50Pd50 (nvc) –113 –1830 130 –1813
Ni50Pd50 (vc) –113 –1417 130 –1400 –1293c

aReference [69].
bReference [70].
cReference [71].
dIntrinsic, BCA, Ref. [16].
eIntrinsic, + scattering-independent side-jump, Ref. [72].
fKubo-Bastin, TB-LMTO, Ref. [28].
gIntrinsic, BCA, Ref. [73].
hEstimated expt. value, Ref. [18].

for every value of η convergence with respect to the k mesh.
Values of up to 109 k points have been used in this case.

For the treatment of the Fermi-sea contribution, Eq. (12)
the energy path has been distorted to a semicircle in the
upper (lower) half of the complex plane for the first (sec-
ond) term containing the retarded (advanced) GF G+ (G−)
encompassing the valence states. The derivative of the GFs in
the complex plane along a direction parallel to the real axis
has been obtained by a two-point finite difference formula,
dĜ±(z)/dz ≈ 1

h
[Ĝ±(z + h/2) − Ĝ±(z − h/2)], with h ∈ R.

A value of h = 10−4 Ry turned out to be sufficient because
of the smearing of the GF in the complex plane. The latter
smoothing of the GF also leads to a fast k-mesh convergence,
and it was sufficient to use around 103 k points at each energy
point, except for the points near and next nearest to the real
axis at EF for which typically 106 k points have been used.

Here we restrict the spin current-density operator to z

polarization, i.e., only Ĵz is considered. Other polarization
directions and the resulting tensor forms in a fully relativistic
approach are discussed elsewhere [45]. Furthermore, as we
here consider the SHE in paramagnetic systems without
external fields, the vanishing vector potential in Eq. (8)
results in a spin-polarization current-density operator with
components

Ĵ z
μ =

(
β�z − γ5p̂z

mc

)
|e|cαμ, μ ∈ {x,y}. (16)

More details on the evaluation of matrix elements are given in
Appendix B.

IV. RESULTS AND DISCUSSION

In Tables I and II we show the anomalous Hall conductivity
(AHC) for various systems as calculated by the Kubo-Bastin
approach [Eqs. (11) and (12)] for both pure systems as well
as alloys.

TABLE II. The SHC σ z
xy in (	 cm)−1 of the nonmagnetic metals

Cu, Pt, and Au and the alloys Cu50Au50 and Au50Pt50 from first-
principles theoretical (present work compared to other) studies.

σ z0
xy σ z1,I

xy σ z1,I I
xy σ z

xy σ z,theo
xy

Cu –17 172 28 184
Pt 98 4093 133 4324 4400a

Au –16 743 90 817 700,b 800c

Cu50Au50 (nvc) –20 605 71 656
Cu50Au50 (vc) –20 872 71 923
Au50Pt50 (nvc) 34 2911 607 3553
Au50Pt50 (vc) 34 2992 607 3634

aIntrinsic, BCA, Ref. [17].
bIntrinsic, BCA, Ref. [76].
cIntrinsic, BCA, Ref. [77].

Let us first turn to the ferromagnetic systems and the
determined values for the anomalous Hall conductivities.
Table I shows the total conductivities σxy and the various
contributions to it for the elemental ferromagnets Fe, Co,
and Ni as well as for the two alloys Fe50Pd50 and Ni50Pd50.
Discussing the overall numbers, one can state that for the
systems considered the Fermi-surface contribution σ 1,I

xy is the
dominant one, but also the Fermi-sea term σ 1,I I

xy can give a
significant contribution. This is seen, in particular, for the
systems Fe, Co, and Fe50Pd50. Similar observations have
been made before [28] in a tight-binding LMTO (TB-LMTO)
framework (see the remarks below).

The site-diagonal term σ 0
xy is not significant, contributing

only 2%–3% with a maximum of 10%. Note that we here show
the sum of both Fermi sea and surface contributions to σ 0

xy.
Both are numerically delicate, as they contain matrix elements
involving the irregular solutions J n

(r,z) and can become rather
large. However, their sum σ 0

xy is small.
The AHC has been calculated recently within a Kubo-

Bastin framework implemented in the TB-LMTO electronic
structure method [28]. When comparing the results presented
here to the latter ones, however, one has to be careful. First,
in the TB-LMTO method the coherent potential functions
and structure constants depend on the chosen representation.
Even though the full conductivity is invariant with respect
to the particular choice, some ambiguity in assigning terms
contributing to the surface and sea terms arises, as only
the sum of the antisymmetric part of the coherent surface
term and sea term is invariant. Therefore only the numbers
for the total conductivities should be compared. Second, in
the LMTO transport approach there appear only intersite
hoppings. A term equivalent to the site-diagonal contribution
σ 0 appearing in the present work does not exist. Third,
the TB-LMTO method employs (configuration independent)
effective velocity operators, i.e., the operator matrix elements
are nonrandom while here the matrix elements as well as the
scattering path operator are configuration dependent.

Turning now to the particular systems, for bcc Fe we find
a total AHC that underestimates the experimental value by
roughly 10%. On the other hand, this number is comparable to
those obtained in calculations of the AHC employing the Berry
curvature approach (BCA), including the intrinsic as well as a
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KÖDDERITZSCH, CHADOVA, AND EBERT PHYSICAL REVIEW B 92, 184415 (2015)

scattering-independent side-jump term (σxy = 878 (	 cm)−1,
Ref. [72]). Both of these contributions are included in the
present formalism (coherent part). Note that calculations using
the BCA leaving out the scattering-independent side-jump
term give smaller values [15,16] [in the range of σxy =
750 (	 cm)−1]. For hcp Co the comparison to experiment as
well as other theoretical results is less clear-cut, as there is a
larger variation. Furthermore, the Fermi-sea term represents a
significant contribution to the total AHC, as has been observed
in another recent work [28]. For Ni notably all theoretical
calculations employing the LDA grossly overestimate the
experimental value. This has already been attributed to the
deficiencies in properly describing the electronic structure,
namely, the correlations are not fully captured by this approx-
imation. Using the LDA + U or GGA + U approach, AHCs
are obtained that are close to experimental values [20,57,72].

For alloys we show results for a particular concentration
for Fe50Pd50 and Ni50Pd50 in Table I. Results for calculations
including the vertex corrections (vc) as well as excluding them
(nvc) are given. As can be seen the vc contribute substantially
in the Fermi-surface term. On the other hand the Fermi-sea
term does not contain any incoherent contribution, i.e. the
vc do not occur in this case. This is in accord with the
findings in Ref. [28], where it was analytically shown that
for the AHE treated within the TB-LMTO CPA the vc are
vanishing in the Fermi sea. Note, however, that this proof
relied on a particular formulation of the CPA equations within
the TB-LMTO formalism.

In Fig. 1 we show the AHC for FexPd1−x as a function of
concentration. Overall the concentration dependence as well
as the sign change is in good agreement to experiment. For all
concentrations the dominant contribution to the AHC is given
by the site-off diagonal Fermi-surface term (σ 1,I

xy ). By analyz-
ing the contribution dependence in more detail one observes

0 0.2 0.4 0.6 0.8x
-3

-2

-1

0

1

2

σ xy
 (1

0-3
Ω

 c
m

)-1

fcc-FexPd1-x

FIG. 1. (Color online) The AHC of fcc-FexPd1−x as a function
of concentration x determined within the Kubo-Bastin formalism.
The total AHC (σ vc

xy ) and different contributions to it are shown: the
on-site term (σ 0

xy), the off-site Fermi-surface term, including vertex
corrections (σ 1,I,vc

xy ) and the off-site Ferm-sea contribution (σ 1,I I
xy ).

Additionally, the off-site term omitting the vc (σ 1,I,nvc
xy ) is shown for

comparison. Experimental data [71] for σxy (full circles) determined
at T = 4.2 K is also displayed.

that the incoherent contributions (vc) play a minor role in the
middle of the concentration range but become very important
at small concentrations. This dominance of extrinsic effects
at small concentrations lends credibility to the Boltzmann
formalism that is applicable to alloys in the dilute limit and
captures the skew-scattering contribution [74]. Note that the
formalism presented here gives all contributions to the AHC
and allows one to extract intrinsic (coherent) as well as extrin-
sic (incoherent) contributions (e.g., skew scattering and side
jump), as has been done before in the Kubo-Středa approach
[24–26]. The site-diagonal term σ 0

xy gives only a minor con-
tribution to the AHC over the whole concentration range and
shows almost negligible variation. The Fermi-sea term σ 1,I I

xy
follows the same trend, even though it is somewhat larger and
shows stronger variation for vanishing concentration (x → 0).
One exception to the former statements is the range in which
the total AHC changes sign (x ≈ 0.2). There the site-diagonal
as well as the Fermi-sea term gain larger relative weight
that is, however, due to the fact that the Fermi-surface term
approaches zero.

Let us turn now to the discussion of paramagnetic systems
and the spin Hall conductivity (SHC). As both the AHE
and SHE share the same relativistic origin and underlying
mechanisms, observations made for the SHC can be discussed
along the lines above for the AHC. In Table II we show the
intrinsic SHC for Cu, Pt, and Au as well as the full SHC for the
alloys Cu50Au50 and Au50Pt50. Overall, again the site-diagonal
contribution σ z0

xy is very small. The Fermi-sea contribution
σ z1,I I

xy is small but non-negligible, and for Au50Pt50 is largest
and constitutes about 15% of the total SHC. For the pure
systems Pt and Au, there is fair agreement to other theoretical
BCA-based calculations. Let us note here that for Pt and
Au the experimental spin Hall angle αsH, i.e., the ratio
between the SHC and the longitudinal charge conductivity
for pure systems, is discussed rather controversially, with
large scatter in the reported data (Pt: αsH = 0.37 . . . 12, Au:
αsH = 0.8 . . . 11.3). Therefore we omitted a detailed list of
experimental values in Table II and refer the interested reader
to a recent compilation of experimental data [75]. Note further
that in the case of the SHC for disordered systems the vertex
corrections also vanish numerically in the Fermi-sea term, as
has been observed for the AHC (see Table II). This can be seen
as a result of the particular construction of the vc Eq. (A2), as
these are only expressed in terms of scattering path operators
τ and are independent of the chosen operators for the matrix
elements.

In Fig. 2 we show the concentration-dependent SHC of the
alloy CuxAu1−x . For this system the total SHC is essentially
given by the Fermi-surface term σ z1,I

xy , with the site-diagonal
and Fermi-sea term giving almost negligible contribution and
having the largest relative contribution in the middle of the
concentration range. The large diverging scattering contri-
butions for x → 0 and x → 1 are of incoherent (extrinsic)
origin, an observation already made for other dilute alloys [25].
A comment concerning both AHC and SHC in dilute alloys
seems in due place here: together with the divergence of the
SHC at the boundaries, also the longitudinal conductivities will
diverge such that the ratio σ (z)

xy /σxx, namely, the anomalous or
spin Hall angle, that is usually determined in experiment, will
have a finite value. Furthermore, as the intrinsic contribution
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FIG. 2. (Color online) The SHC of CuxAu1−x as a function of
concentration x determined within the Kubo-Bastin formalism. The
total SHC and different contributions (notation: see text and Fig. 1
caption) to it are displayed.

to the AHC/SHC for a perfect crystal (no disorder) is finite, its
contribution to the Hall angle at T = 0 K will vanish. At finite
temperature, however, induced scattering by lattice vibrations
or impurities will lead to a finite σxx and indeed, experimental
data for the AHE in metallic systems is often obtained by
varying temperature or by doping.

V. SUMMARY

We presented a general linear response Kubo-Bastin
approach and a subsequent implementation within a first-
principles multiple-scattering Green’s function method. The
so-called Fermi-surface and Fermi-sea contributions are both
treated on equal footing, employing a fully relativistic formu-
lation spin-orbit-induced phenomena, particularly transverse
transport quantities as the anomalous and spin Hall effect are
properly described. The derived transport expression gives all
elements of the (conductivity) tensor, namely, the symmetric
and, in particular, antisymmetric components. Furthermore,
the approach is not only able to deal with pure systems,
but, using the CPA, substitutionally disordered alloys of
any concentration can be treated, thereby avoiding inferior
approximations as the virtual crystal approximation (VCA)
and/or large supercells. The described method is able to
capture both intrinsic as well as extrinsic (e.g., side-jump
and skew-scattering) contributions to the transport tensors
consistently within one and the same formulation. Vertex
corrections (within the CPA) are fully taken into account. We
presented applications for the AHE and SHE and discussed the
various contributions to the (spin) transport tensors for pure
systems as well as a number of transition-metal alloys.

As the derived expression within the KKR(-CPA) factorizes
into matrix elements of the chosen operators and products of
scattering path operators, the method can be straightforwardly
adapted to deal with a number of linear response quantities by
simply replacing the matrix elements. This concerns, e.g., the
Gilbert damping [38] or spin-orbit torques. Spin-caloritronic
quantities (e.g., spin and anomalous Nernst effects) will be
accessible with minor effort within the presented Kubo-Bastin
approach.

Finally, we want to point out that finite-temperature effects
can be easily taken into account, as has already been done in
Kubo-Greenwood–like formulations for longitudinal transport
and Gilbert damping [38,78] using an alloy analogy model for
lattice vibrations and spin fluctuations.
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APPENDIX A: KKR-CPA TRANSPORT FORMALISM
FOR THE KUBO-BASTIN FORMULATION

Starting from Eqs. (11) and (12) and due to the employed
contour integration and the required energy derivative of
the GF, matrix elements have to be calculated for pairs of
complex energies. Note that in former approaches using the
Kubo-Greenwood formulation for disordered alloys, calcu-
lations were performed on the real axis (symmetric surface
term only). This very much simplified the expressions and
implementation, as on the real axis the wave functions (Z

and J) become real and one can neglect the second term in
Eq. (13) containing the irregular solutions [see also Eq. (7)].
Furthermore, phase relations have been used to relate wave
functions with energy z = (limη→0+ EF + iη) to those with
z = limη→0+ (EF − iη), leading to transformation relations
between matrix elements for the 〈jG+jG+〉, 〈jG+jG−〉,
〈jG−jG+〉, and 〈jG−jG−〉 terms in Eq. (11). Away from the
real axis (i.e., when evaluating the Fermi-sea contribution and
distorting the integration path for the energy into the complex
plane) these are not applicable anymore for arbitrary operator
pairs. For the τ matrix the following relation is, however, valid,

τnm
′(z∗) = (−)l+l′[τmn

′(z)
]∗

, (A1)

and can therefore be exploited. In what follows we work along
the solution of the transport equation and notation introduced
by Butler [21] and, however, extend it to the Kubo-Bastin
formalism. For reasons of simplified notation, we here present
only the case of having one atom per unit cell; the indices n

and m therefore are numbering the unit cells in the crystal.
With this the contributions to �Gn

ν Eq. (15) read as

�G1,αβ,n
ν (r,r,za,zb) =

∑
1234

Zαn
1

(r,za) j
Aβn

ν23
(rws,za,zb)Zαn×

4
(r,zb)

×
∑

5678

D̃α
84

(zb)Dα
15

(za)D̃β

62
(za)Dβ

37
(zb)χ̃5678 (za,zb),
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�G
0,α,n
ν1 (r,r,za,zb) =

∑
1234

Zαn
1

(r,za) j
Aβn

ν23
(rws,za,zb)Zαn×

4
(r,zb)

×
∑
56

Dα
15

(za)D̃α
64

(za) τ̄ nn
52

(za) τ̄ nn
36

(zb),

�G
0,α,n
ν2 (r,r,za,zb) = −

∑
134

τ̄ nnα
34

(zb)
[
J αn

1
(r,za) Zαn×

4
(r,zb) jAαn

ν13
(r,za,zb) + Zαn

1
(r,za) Zαn×

4
(r,zb) j̄ Bαn

ν13
(r,za,zb)

]
,

�G
0,α,n
ν3 (r,r,za,zb) = −

∑
123

τ̄ nnα
12

(za)
[
Zαn

1
(r,za) J αn×

3
(r,zb) jAn

ν23
(r,za,zb) + Zαn

1
(r,za) Zαn×

3
(r,zb) j̄ Cαn

ν23
(r,za,zb)

]
,

�G
0,α,n
ν4 (r,r,za,zb) =

∑
13

[
J αn

1
(r,za) J αn×

3
(r,zb) jAαn

ν13
(r,za,zb) + Zαn

1
(r,za) Zαn×

3
(r,zb) j̄Dαn

ν13
(r,za,zb)

]
,

with τ̄ denoting the CPA averaged τ matrix and the Greek
indices α,β signify the atom type which occupies an atomic site
n,m. In the last expression the auxiliary r-dependent quantities
containing the charge current operator,

jAαn
ν12

(r,za,zb) =
∫ r

0
d3r ′Zαn×

1
(r ′,za) ĵνZ

αn
2

(r ′,zb),

jBαn
ν12

(r,za,zb) =
∫ r

0
d3r ′J αn×

1
(r ′,za) ĵνZ

αn
2

(r ′,zb),

jCαn
ν12

(r,za,zb) =
∫ r

0
d3r ′Zαn×

1
(r ′,za) ĵνJ

αn
2

(r ′,zb),

jDαn
ν12

(r,za,zb) =
∫ r

0
d3r ′J αn×

1
(r ′,za) ĵνJ

αn
2

(r ′,zb),

j̄Xαn
ν12

(r,za,zb) = jXαn
ν12

(rws,za,zb) − jXαn
ν12

(r,za,zb),

for X = A,B,C,D

have been used, where rws denotes the Wigner-Seitz (or ASA)
radius. The following standard definitions [21,64] for the
auxiliary matrices Dα,D̃α,xα,�mα , and τnnα are employed:

Dα = 1 + τ̄ 00xα, D̃α = 1 + xατ̄ 00,

xα = [1 − �mα τ̄ 00]−1 �mα,

�mα = m̄ − mα, τnnα = Dατ̄ 00 = τ̄ 00D̃α ,

where m̄ = t̄−1, with t̄ being the CPA average of the single-site
t matrices tα and mα = [tα]−1. In the solution of the transport
equations the quantity

χ̃12 34 = χ̃K1K2 = {[1 − χ w]−1χ}K1K2 , (A2)

where the combined indices K1 = (14),K2 = (23) play
a crucial role as they contain the vertex corrections. The
auxiliary quantity χ is given by

χK1K2 = χ12 34 (za,zb)

=
∑

m,m�=n

τ̄ nm
12

(za) τ̄ mn
34

(zb)

=
⎡
⎣ 1

	BZ

∫
	BZ

τ̄12 (k,za)τ̄34 (k,zb) d3k

⎤
⎦

− τ̄ nn
12

(za) τ̄ nn
34

(zb), (A3)

and is obtained via an integral over the BZ and results
from the assumed periodicity of the CPA medium after a
Fourier transformation. The determination of the four index
quantity χ and the inversion Eq. (A2) are computationally very
demanding, in particular, when many k points are needed and
with growing system size (number of atoms per unit cell). A
scheme to exploit symmetry when dealing with the BZ integral
Eq. (A3) has been worked out previously [79]. This allows us
to restrict χK1K2 to its nonzero elements and to integrate only
over the irreducible part of the BZ. The interaction term w is
given as

w12 34 (za,zb) = wK1K2 (za,zb)

=
∑

α

cαxα
12

(za)xα
34

(zb) ,

where cα in the last expression denotes the concentration of
the alloy partner α (denoted as xα in the main text).

Setting w to zero in Eq. (A2) amounts to neglecting the
vertex corrections. Further note, however, that the formalism
is equally well applicable to pure systems. In that case χ = χ̃

because w = 0.

APPENDIX B: MATRIX ELEMENTS

The regular and irregular solutions of Eq. (1) are expanded
into four spinors of the form [80,81]

Z(r) =
∑
′

(
g′(r)χ′(r̂)

if′(r)χ−′(r̂)

)
, (B1)

where g and f are the radial functions of the large and
small components, respectively, and χ are the usual spin-
angular functions [34], being linear combinations of products
of complex spherical harmonics Ym

l and the spin functions
χms

,ms ∈ {− 1
2 ,+ 1

2 }. The quantum number  in the latter
expression is used to label the states which can have mixed
spin-angular character. We use the notation − = (−κ,μ).

Both, the AHE and SHE in the linear response framework
originate from a perturbation given by the charge current.
Within the relativistic framework used here the current opera-
tor is represented by ĵ = −|e|cα. Therefore, matrix elements
of the Dirac αμ have to be evaluated. Note, when calculating
these matrix elements significant errors can be introduced
when using the shape approximation in the form of the ASA.
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Here we use a scheme proposed by Shilkova and Shirokovskii
[82] that has already been used before to correct for these
errors. This can be checked by comparing to yet another form
of the matrix elements for α that has been derived before
[83] and relies on rewriting the matrix elements using the
anticommutator [ĤD,α]+ into an equivalent form containing
the momentum operator p̂.

The calculations of matrix elements of the spin-polarization
current-density operator Eq. (16) is naturally split into two
components. The first component contains products of β,αμ

and �z matrices which can be simplified using

β�zαμ = iεzμν

(
0 −σν

σν 0

)
, μ ∈ {x,y}, ν �= z,μ,

(B2)
where in the last expression εijk is the Levi-Civita symbol with
the understanding of the mapping x → 1, y → 2, z → 3 for
the coordinate directions. By inspection of Eq. (2) it is seen
that the matrix elements Eq. (B2) can be easily computed using
the existing matrix elements of the current operator containing
the αμ matrices.

The second part involves matrix elements of the operator
γ5p̂zαμ, i.e.,

γ5p̂zαμ = −�
i
∇z�μ , (B3)

which are evaluated using the gradient formula of Ref. [33],
Eq. (2.57):

∇M φl(r) Ym
l (r̂) =

√
l + 1

2l + 3
C(l 1, l + 1; m M)

×Ym+M
l+1 (r̂)

[
dφl(r)

dr
− l

r
φl(r)

]

−
√

l

2l − 1
C(l 1, l − 1; m M)

×Ym+M
l−1 (r̂)

[
dφl(r)

dr
+ l + 1

r
φl(r)

]
,

with M ∈ {−1,0,1} denoting a spherical coordinate, φl a
radial function, Ym

l a complex spherical harmonic, and
C(j1j2j ; m1m2) being a Clebsch-Gordan coefficient. (For
phase conventions and definitions employed, see Ref. [33].)
To use the latter formula the vector operator components
Eq. (B3) have to be transformed from Cartesian coordinates
{x,y,z} into spherical coordinates {−1,0,1} using A±1 =
∓ 1√

2
(Ax ± iAy),A0 = Az, both for the momentum operator

and the relativistic Pauli-spin operator �μ.
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KÖDDERITZSCH, CHADOVA, AND EBERT PHYSICAL REVIEW B 92, 184415 (2015)

[35] A. Bastin, C. Lewiner, O. Betbeder-Matibet, and P. Nozieres,
J. Phys. Chem. Solids 32, 1811 (1971).
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[49] Branislav K. Nikolić, Phys. Rev. B 64, 165303 (2001).
[50] N. A. Sinitsyn, A. H. MacDonald, T. Jungwirth, V. K. Dugaev,

and J. Sinova, Phys. Rev. B 75, 045315 (2007).
[51] T. Naito, D. S. Hirashima, and H. Kontani, Phys. Rev. B 81,

195111 (2010).
[52] J. Banhart and H. Ebert, Solid State Commun. 94, 445 (1995).
[53] P. Weinberger, P. M. Levy, J. Banhart, L. Szunyogh, and
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8. Summary

The central focus of the current work has been the theoretical study of the longitudinal
and transverse (anomalous and spin Hall effect) transport properties of pure systems as
well as disordered alloys including the impact of finite temperatures. The investigations
dealt with a number of different issues. One of them was to study the extrinsic spin
Hall effect in dilute metallic alloys and to show how to tailor the magnitude of the
spin Hall conductivity can be achieved by materials design via the composition and
varying the concentration of the alloy partners. The calculations revealed that by
decreasing the impurity concentration, the magnitude of the SHC increases mainly
due to the skew-scattering contribution as it is inversely proportional to the impurity
concentration in the dilute limit. In contrast, the side-jump contribution is independent
of the impurity concentration and has a small magnitude for all considered systems
compared to the dominant skew scattering, thus it does not influence the behavior
of the extrinsic part of the SHC. Furthermore, in order to understand the microscopic
origin of the various contributions to the spin Hall effect, a procedure for the separation
of the intrinsic, skew-scattering and two distinct side-jump contributions to the spin
Hall conductivity within the ab initio Kubo-Střreda approach was presented. The
efficiency of the proposed method is demonstrated by a first-principles study of dilute
metallic alloys based on Cu, Au, and Pt as hosts materials.

Moreover, the impact of finite temperatures on the transport properties has been stud-
ied in detail. This is achieved by treating thermal lattice vibrations and spin fluc-
tuations using the alloy analogy model. Within this approach which is based on the
adiabatic approximation, the temperature induced atomic displacements are seen as a
random, quasistatic and temperature dependent distortion of the lattice with a corres-
ponding distortion of the potential. The resulting temperature induced disorder of the
potential is treated using the CPA as it is done for chemical disorder due to alloying.
The impact of disorder due to thermal spin fluctuations are accounted for by use of
the alloy analogy model with the necessary configurational average by means of the
CPA. It was demonstrated that taking into account both thermal lattice vibrations
and spin fluctuations significantly improves the agreement of the calculated results
with experimental data for longitudinal as well as transverse transport.

Finally, the most important part of the current work is dedicated to the development
of the Kubo-Bastin formalism and its further implementation within the multiple-
scattering KKR Green function method. The suggested general framework allows us to
treat along with anomalous and spin Hall effects, other spin-orbit-induced phenomena
such as Gilbert damping and spin-orbit torques. Furthermore, the approach is able to
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deal not only with pure systems but also with substitutionally disordered alloys in a
wide concentration range. The described method allows us to treat intrinsic as well
as extrinsic contributions to the conductivity tensors. In addition, the implemented
formalism provides symmetric as well as antisymmetric contributions by calculating
Fermi sea and surface contributions which are both treated on equal footing. The
versatility of the method is demonstrated by presenting results for the anomalous and
spin Hall conductivities for elemental transition metals and their alloys.



A. Matrix elements of the
Bargmann-Wigner spin-polarization
operator.

According to Vernes et al. [113] the relativistic spin-current density operator Ĵpj =
|e|cαjTp can be defined via the four-vector polarization operator T obtained by Bargmann
and Wigner [114], which is given by the following expression:

T = βΣ − γ5 Π

mc
, (A.1)

T4 = i
Σ ·Π
mc

(A.2)

with the kinetic momentum Π = p̂ + |e|
c

A and the canonical momentum p̂. Then
the spin-polarization current-density operator Jpj for the current along the j-axis and
projection on the p-axis (p ∈ {x, y, z}) can be written as:

Ĵpj =
(
β Σp −

γ5 p̂p
mc

)
|e| c αj . (A.3)

In order to calculate the corresponding matrix elements of the spin-polarization current-
density operator (here the derivation is given in terms of the regular matrix elements
ZΛ), one deals with the matrix elements of the first and second term individually, given
by Eq. (A.3):

M jp
ΛΛ′ = 〈ZΛ | Ĵpj |ZΛ′ 〉 = |e|c 〈ZΛ | β Σp αj |ZΛ′ 〉 −

|e|
m
〈ZΛ | γ5 p̂p αj |ZΛ′ 〉 . (A.4)

In the following derivation the prefactors are omitted for the sake of brevity.

A.1. Contribution of β Σp αj

Taking into account the commutator relations:

[ β Σi, αj ]− = 0 for i 6= j , (A.5)

[ β Σi, αi ]− = 2γ5 β = −2β γ5 6= 0 (A.6)
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and considering the properties of the Pauli-matrices one obtains the following expres-
sion with p, j, k ∈ {x, y, z} = {1, 2, 3} (latin characters associated with cartesian
coordinates) ∀p, j : p 6= j:

β Σp αj = iεpjk

(
0 −σk
σk 0

)
, (A.7)

where ε is the Levi-Civita symbol and k 6= p, j. Using this equation, one can calculate
the first part of the spin-polarization current-density operator Jpj matrix elements (here,
the prefactors are omitted):

M jp
ΛΛ′ = 〈ZΛ | β Σp αj |ZΛ′ 〉 (A.8)

= iεpjk

∫
dr3

(
gΛ χΛ

ifΛ χ−Λ

)×(
0 −σk
σk 0

)(
gΛ′ χΛ′

ifΛ′ χ−Λ′

)
= −εpjk

[ ∫
gΛ fΛ′ 〈χΛ |σk |χ−Λ′ 〉 dr3 +

∫
fΛ gΛ′ 〈χ−Λ |σk |χΛ′ 〉 dr3

]
= −εpjk

[
R1

ΛΛ′ A
1k
ΛΛ′ + R2

ΛΛ′ A
2k
ΛΛ′

]
= −εpjk SkΛΛ′ (A.9)

with the radial (RΛΛ′) and angular (AΛΛ′) matrix elements given by:

R1
ΛΛ′ =

∫
r2 dr gΛ fΛ′ , (A.10)

R2
ΛΛ′ =

∫
r2 dr fΛ gΛ′ , (A.11)

A1k
ΛΛ′ = 〈χΛ |σk |χ−Λ′ 〉 , (A.12)

A2k
ΛΛ′ = 〈χ−Λ |σk |χΛ′ 〉 . (A.13)

Taking into account the transformation of the operators from cartesian (x, y, z) to
spherical coordinates (−1, 0,+1), namely

Ax =
1√
2

(A− + A+) , (A.14)

Ay =
i√
2

(A− − A+) , (A.15)

Az = A0 , (A.16)

A±1 = ∓ 1√
2

(Ax ± iAy) . (A.17)

Equation (A.8) can be rewritten as follows:

M̃x
ΛΛ′ =

1√
2

[
J−ΛΛ′ + J+

ΛΛ′

]
, (A.18)

M̃y
ΛΛ′ =

i√
2

[
J−ΛΛ′ − J+

ΛΛ′

]
, (A.19)

M̃ z
ΛΛ′ = J0

ΛΛ′ (A.20)
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with the definition

JλΛΛ′ = R1
ΛΛ′ A

1λ
ΛΛ′ + R2

ΛΛ′ A
2λ
ΛΛ′ (A.21)

with λ ∈ {−1, 0,+1}.

Furthermore, if one considers the case of βΣpαp and neglects the fact that two operators
do not commute Eq. (A.6), one obtains:

β Σp αp =

(
0 I2

−I2 0

)
= γ5 β = −β γ5 = −αp β Σp . (A.22)

The corresponding matrix elements are written as:

Mpp
ΛΛ′ =

∫
dr3

(
gΛ χΛ

ifΛ χ−Λ

)×(
0 I2

−I2 0

)(
gΛ′ χΛ′

ifΛ′ χ−Λ′

)
= i

[ ∫
gΛ fΛ′ 〈χΛ |χ−Λ′ 〉 dr3 +

∫
fΛ gΛ′ 〈χ−Λ |χΛ′ 〉 dr3

]
= i

[
R1

ΛΛ′ δΛ−Λ′ + R2
ΛΛ′ δ−ΛΛ′

]
= iδΛ−Λ′

[
R1

ΛΛ′ + R2
ΛΛ′

]
with δΛ−Λ′ = δ−ΛΛ′ . However, in the present calculations the spin current density
operator is restricted to the z polarization, i.e., only Ĵz is considered.

A.2. Contribution of γ5 p̂p αj

Starting from pi = ~
i
∇i, the second part of the spin-polarization current-density op-

erator given in Eq. (A.4) (omitting the prefactors), can be re-written in the following
way:

γ5 pp αj =
~
i
∇p

(
0 −I2

−I2 0

)(
0 σj
σj 0

)
= −~

i
∇p

(
σj 0
0 σj

)
︸ ︷︷ ︸

Σj

= −~
i
∇p Σj . (A.23)

Furthermore using the transformation matrix from spherical to cartesian coordinates

U =


+ − 0

x 1√
2

1√
2

0

y − i√
2

i√
2

0
z 0 0 1

 , (A.24)
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Eq. (A.23) takes the following form:

γ5 pp αj =
~
i

∑
λλ′

Uiλ Ujλ′ ∇λ γ5 αλ′ = −~
i

∑
λλ′

Uiλ Ujλ′ ∇λ Σλ′ . (A.25)

First, let’s consider the case p = z and j = x, i.e. we need to calculate the matrix
elements of the operator γ5 pz αx, which can be rewritten in spherical coordinates (using
Eq. (A.24)) as:

γ5 pz αx = −Uz0 Ux+

(
~
i
∇0

)
Σ+ − Uz0 Ux−

(
~
i
∇0,

)
Σ− . (A.26)

As one can see from Eq. (A.26) it is necessary to calculate actually two sets of matrix
elements, i.e.

Mxz
ΛΛ′ = M0+

ΛΛ′ + M0−
ΛΛ′ . (A.27)

Hereby, one needs to calculate the matrix elements M0+
ΛΛ′ and M0−

ΛΛ′ in spherical co-
ordinates and afterwards the transformation to the cartesian coordinates is applied.
Therefore:

M0+
ΛΛ′ = 〈Zb

Λ | −
~
i
∇0 Σ+ |Za

Λ′ 〉 = −
∫

d3r Zb×
Λ

( ~
i
∇0 Σ+

)
Za

Λ′ , (A.28)

where a, b indicate different energies. The regular wave functions are given by

Zb×
Λ = ( gbΛ χ

†
Λ, −if bΛ χ†−Λ ) and Za

Λ′ =

(
gaΛ′ χΛ′

ifaΛ′ χ−Λ′

)
(A.29)

with the spin-angular functions:

χΛ(r̂) =
∑

ms =± 1
2

C(l ,
1

2
j ;µ − ms, ms)Y

µ−ms
l (r̂)χms . (A.30)

Inserting Eq. (A.29) into Eq. (A.28), one obtains:

M0+
ΛΛ′ = −〈Zb

Λ |
~
i
∇0 Σ+ |Za

Λ′ 〉

= −~
i

∫
d3r ( gbΛ χ

†
Λ ,−if bΛ χ†−Λ )

(
∇0σ+ 0

0 ∇0σ+

)(
gaΛ′ χΛ′

ifaΛ′ χ−Λ′

)
= −~

i

∫
d3r

[
gbΛ χ

†
Λ∇0 σ+ g

a
Λ′ χΛ′ + f bΛ χ

†
−Λ∇0 σ+ f

a
Λ′χ−Λ′

]
. (A.31)
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To proceed further with the derivation, it is necessary to make use of following gradient
formula [115]:

∇M φl(r)Y
m
l (r̂) =

√
l + 1

2l + 3
C(l 1, l + 1;mM)

× Y m+M
l+1 (r̂)

[
dφl(r)

dr
− l

r
φl(r)

]
−
√

l

2l − 1
C(l 1, l − 1;mM)

× Y m+M
l−1 (r̂)

[
dφl(r)

dr
+
l + 1

r
φl(r)

]
=

1∑
ξ=0

√
l + ξ

2l + 4ξ − 1
C(l 1, l − 1 + 2ξ;mM)

× Y m+M
l−1+2ξ(r̂)

[
(−)1+ξ dφl(r)

dr
− l + 1− ξ

r
φl(r)

]
, (A.32)

where M ∈ {−1, 0,+1} denote spherical coordinates. The Clebsch-Gordan coefficients
used in the previous equation are in the abbreviated form, namely instead of C(j1 j2 j;
m1m2m), C(j1 j2 j; m1m2) is given withm = m1 +m2. φl represents a radial function
and Y m

l is a complex spherical harmonic.

Furthermore, applying the gradient formula for M = λ and m = µ − ms and taking
into account that 〈χms |σ+ |χm′s 〉 =

√
2 δms, 12

δm′s,− 1
2
, Eq. (A.31) can be rewritten as

following:

M0+
ΛΛ′ = − ~

i

√
2 {
∫

r2 dr gbΛ

[
dgaΛ′

dr
− l′

r
gaΛ′

]√
l′ + 1

2l′ + 3

∑
msm′s

Cms
Λ C

m′s
Λ′

× C(l′ 1, l′ + 1, µ′ −m′s, 0) δl,l′+1δµ−ms,µ′−m′s+0 δms, 12
δm′s,− 1

2

−
∫

r2 dr gbΛ

[
dgaΛ′

dr
+
l′ + 1

r
gaΛ′

]√
l′

2l′ − 1

∑
msm′s

Cms
Λ C

m′s
Λ′

× C(l′ 1, l′ − 1 , µ′ −m′s, 0) δl,l′−1δµ−ms,µ′−m′s+0 δms, 12
δm′s,− 1

2

+

∫
r2 dr f bΛ

[
dfaΛ′

dr
− l̄′

r
faΛ′

]√
l̄′ + 1

2l̄′ + 3

∑
msm′s

Cms
−ΛC

m′s
−Λ′

× C(l̄′1, l̄′ + 1, µ′ −m′s, 0) δl̄,l̄′+1δµ−ms,µ′−m′s+0 δms, 12
δm′s,− 1

2

−
∫

r2 dr f bΛ

[
dfaΛ′

dr
+
l̄′ + 1

r
faΛ′

]√
l̄′

2l̄′ − 1

∑
msm′s

Cms
−ΛC

m′s
−Λ′

× C(l̄′1, l̄′ − 1, µ′ −m′s, 0) δl̄,l̄′−1 δµ−ms,µ′−m′s+0 δms, 12
δm′s,− 1

2
} . (A.33)
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For ms = 1
2
, m′s = −1

2
, Eq. (A.33) takes the following form:

M0+
ΛΛ′ = −~

i

{
R1

ΛΛ′ [ g
b
Λ, g

a
Λ′ ]A

1(0+)
ΛΛ′ − R2

ΛΛ′ [ g
b
Λ, g

a
Λ′ ]A

2(0+)
ΛΛ′

+ R̄1
ΛΛ′ [ f

b
Λ, f

a
Λ′ ]A

1(0+)
−Λ,−Λ′ − R̄2

ΛΛ′ [ f
b
Λ, f

a
Λ′ ]A

2(0+)
−Λ,−Λ′

}
(A.34)

with the radial (RΛΛ′) and angular matrix elements (AΛΛ′) defined as:

R1
ΛΛ′ [ g

b
Λ, g

a
Λ′ ] =

∫
r2 dr gbΛ

[
dgaΛ′

dr
− l′

r
gaΛ′

]
,

R2
ΛΛ′ [ g

b
Λ, g

a
Λ′ ] =

∫
r2 dr gbΛ

[
dgaΛ′

dr
+
l′ + 1

r
gaΛ′

]
,

R̄1
ΛΛ′ [ f

b
Λ, f

a
Λ′ ] =

∫
r2 dr f bΛ

[
dfaΛ′

dr
− l̄′

r
faΛ′

]
,

R̄2
ΛΛ′ [ f

b
Λ, f

a
Λ′ ] =

∫
r2 dr f bΛ

[
dfaΛ′

dr
+
l̄′ + 1

r
faΛ′

]
, (A.35)

A
1(0+)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C

1
2
Λ C

− 1
2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, 0) δl,l′+1 δµ−µ′,1 , (A.36)

A
2(0+)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C

1
2
Λ C

− 1
2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, 0) δl,l′−1 δµ−µ′,1 . (A.37)

After deriving the expressions for all matrix elements, it turns out that all of them
have a similar structure. Each of them consists of a set of radial RΛΛ′ and angular AΛΛ′

matrix elements. However the latter ones occurred in two polarizations. Therefore it
is reasonable to show the corresponding angular matrix elements only.

For the caseM0−
ΛΛ′ = −〈Zb

Λ | ~i ∇0 Σ− |Za
Λ′ 〉 and taking into account that 〈χms |σ− |χm′s 〉

=
√

2 δms,− 1
2
δm′s, 12

(ms = −1
2
, m′s = 1

2
), the corresponding angular matrix elements are

as follows:

A
1(0−)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C
− 1

2
Λ C

1
2

Λ′ C(l′ 1, l′ + 1, µ′ − 1

2
, 0)δl,l′+1 δµ−µ′,−1 , (A.38)

A
2(0−)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C
− 1

2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, 0) δl,l′−1 δµ−µ′,−1 . (A.39)

In case of M00
ΛΛ′ = −〈Zb

Λ | ~i ∇0 Σ0 |Za
Λ′ 〉 with 〈χms |σ0 |χm′s 〉 = 2m′s δms,m′s (ms =

m′s = 1
2
, ms = m′s = −1

2
) one has accordingly:
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A
1(00)
ΛΛ′ =

√
l′ + 1

2l′ + 3
{ C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ + 1, µ′ − 1

2
, 0)

− C
− 1

2
Λ C

− 1
2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, 0) } δl,l′+1 δµ−µ′,0 , (A.40)

A
2(00)
ΛΛ′ =

√
l′

2l′ − 1
{ C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, 0)

− C
− 1

2
Λ C

− 1
2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, 0) } δl,l′−1δµ−µ′,0 . (A.41)

For the matrix elementsM++
ΛΛ′ = −〈Zb

Λ | ~i ∇+ Σ+ |Za
Λ′ 〉 with 〈χms |σ+ |χm′s 〉 =

√
2 δms, 12

δm′s,− 1
2

(ms = 1
2
, m′s = −1

2
) one writes:

A
1(++)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C

1
2
Λ C

− 1
2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, +1) δl,l′+1 δµ−µ′,2 , (A.42)

A
2(++)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C

1
2
Λ C

− 1
2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, +1) δl,l′−1 δµ−µ′,2 . (A.43)

For M+−
ΛΛ′ = −〈Zb

Λ | ~i ∇+ Σ− |Za
Λ′ 〉 with 〈χms |σ− |χm′s 〉 =

√
2 δms,− 1

2
δm′s, 12

(ms = −1
2
,

m′s = 1
2
) one has:

A
1(+−)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C
− 1

2
Λ C

1
2

Λ′ C(l′ 1, l′ + 1, µ′ − 1

2
, +1) δl,l′+1 δµ−µ′,0 , (A.44)

A
2(+−)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C
− 1

2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, +1) δl,l′−1 δµ−µ′,0 . (A.45)

For M+0
ΛΛ′ = −〈Zb

Λ | ~i ∇+ Σ0 |Za
Λ′ 〉 and 〈χms |σ0 |χm′s 〉 = 2m′s δms,m′s (ms = m′s = 1

2
,

ms = m′s = −1
2
) one gets:

A
1(+0)
ΛΛ′ =

√
l′ + 1

2l′ + 3
{ C

1
2
Λ C

1
2

Λ′C(l′ 1, l′ + 1, µ′ − 1

2
, +1)

− C
− 1

2
Λ C

− 1
2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, +1) } δl,l′+1 δµ−µ′,1 , (A.46)
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A
2(+0)
ΛΛ′ =

√
l′

2l′ − 1
{ C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, +1)

− C
− 1

2
Λ C

− 1
2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, +1) } δl,l′−1 δµ−µ′,1 . (A.47)

For M−+
ΛΛ′ = −〈Zb

Λ | ~i ∇−Σ+ |Za
Λ′ 〉 operator with 〈χms |σ+ |χm′s 〉 =√

2 δms, 12
δm′s,− 1

2
(ms = 1

2
, m′s = −1

2
) one has:

A
1(−+)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C

1
2
Λ C

− 1
2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, −1) δl,l′+1 δµ−µ′,0 , (A.48)

A
2(−+)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C

1
2
Λ C

− 1
2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, −1) δl,l′−1 δµ−µ′,0 . (A.49)

The case M−−
ΛΛ′ = −〈Zb

Λ | ~i ∇−Σ− |Za
Λ′ 〉 with 〈χms |σ− |χm′s 〉 =√

2δms,− 1
2
δm′s, 12

(ms = −1
2
, m′s = 1

2
) gives:

A
1(−−)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C
− 1

2
Λ C

1
2

Λ′ C(l′ 1, l′ + 1, µ′ − 1

2
, −1) δl,l′+1 δµ−µ′,−2 , (A.50)

A
2(−−)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C
− 1

2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, −1) δl,l′−1 δµ−µ′,−2 (A.51)

and finally for M−0
ΛΛ′ = −〈Zb

Λ | ~i ∇−Σ0 |Za
Λ′ 〉 with 〈χms |σ0 |χm′s 〉 =

2m′sδms,m′s with ms = m′s = 1
2
, ms = m′s = −1

2
the angular matrix elements are as

follows:

A
1(−0)
ΛΛ′ =

√
l′ + 1

2l′ + 3
{ C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ + 1, µ′ − 1

2
, −1)

− C
− 1

2
Λ C

− 1
2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, −1) } δl,l′+1 δµ−µ′,−1 , (A.52)

A
2(−0)
ΛΛ′ =

√
l′

2l′ − 1
{ C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, −1)

− C
− 1

2
Λ C

− 1
2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, −1) } δl,l′−1 δµ−µ′,−1 . (A.53)

For the numerical implementation it is necessary to generalize the obtained expressions
for the angular matrix elements. In the following, the generic structures of the corres-
ponding matrix elements are written with n being spin-polarization index and s the
current index (n, s ∈ {−1, 0,+1}):

A
1(ns)
ΛΛ′ =

√
2

√
l′ + 1

2l′ + 3
C

s
2
Λ C

− s
2

Λ′ C(l′ 1, l′ + 1, µ′ +
s

2
, n)

× δl,l′+1 δµ−µ′,n+s for s 6= 0 , (A.54)
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A
1(ns)
ΛΛ′ =

√
l′ + 1

2l′ + 3
{C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ + 1, µ′ − 1

2
, n)

−C−
1
2

Λ C
− 1

2

Λ′ C(l′ 1, l′ + 1, µ′ +
1

2
, n) }

× δl,l′+1 δµ−µ′,n+s for s = 0 , (A.55)

A
2(ns)
ΛΛ′ =

√
2

√
l′

2l′ − 1
C

s
2
Λ C

− s
2

Λ′ C(l′ 1, l′ − 1, µ′ +
s

2
, n)

× δl,l′−1 δµ−µ′,n+s for s 6= 0 , (A.56)

A
2(ns)
ΛΛ′ =

√
l′

2l′ − 1
{C

1
2
Λ C

1
2

Λ′ C(l′ 1, l′ − 1, µ′ − 1

2
, n)

−C−
1
2

Λ C
− 1

2

Λ′ C(l′ 1, l′ − 1, µ′ +
1

2
, n) }

× δl,l′−1 δµ−µ′,n+s for s = 0 . (A.57)





B. Technical aspects

As was already mentioned, the implementation of the Kubo-Bastin formalism requires
a proper treatment of the Fermi sea term, given by the second term of the Eq. (5.37):

σξ,IIµν =
~

4πV

εF∫
−∞

dεTr

〈
Ĵξµ

dG+

dε
jν G

+ − ĴξµG
+ jν

dG+

dε

+ ĴξµG
− jν

dG−

dε
− Ĵξµ

dG−

dε
jν G

−

〉
. (B.1)

The implementation effort significantly reduces as both terms in Eq. (B.1) contain
only products of the either retarded G+ or advanced G− Green functions, i.e. there
is no cross term involved. However, the central task of the implementation is to treat
energy derivatives of the corresponding Green functions. Since G+ and G− are analytic

functions, the limit lim∆z→0
Ĝ±(z+∆z)−Ĝ±(z)

∆z
exists with z = x+iy (z ∈ C). Therefore the

Cauchy-Riemann relations are valid for Ĝ± = u(x, y)± iv(x, y), i.e. ∂u
∂x

= ∂v
∂y
, ∂u
∂y

= − ∂v
∂x

leading to:

dĜ±

dz
=

∂u

∂x
± i

∂v

∂x
=

∂v

∂y
∓ i

∂u

∂y
=

∂u

∂x
∓ i

∂u

∂y
. (B.2)

Or equivalently one has:

dĜ±

dz
=

dRe Ĝ±

dRe z
± i

d Im Ĝ±

dRe z
. (B.3)

For an sufficient and accurate treatment of the Fermi sea term the energy integration
path was distorted to a semicircle in the upper (lower) half of the complex plane for
the terms containing the retarded G+ (advanced G−) Green functions (Fig. (B.1)).
Therefore, the energy derivative of the Green functions is calculated numerically in
terms of two point finite difference taken along a straight line segment (h) parallel to
real axis:

dĜ±(z)

dz
= Re

[
Ĝ±(z + h

2
) − Ĝ±(z − h

2
)

h

]

± i Im

[
Ĝ±(z + h

2
) − Ĝ±(z − h

2
)

h

]

=
Ĝ±(z + h

2
) − Ĝ±(z − h

2
)

h
, (B.4)
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Re z

Figure B.1.: The energy contours for the evaluation of the Fermi sea term in case of
energy z (upper panel) and energy z∗ (lower panel).

Im z

Re z

h
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z + h/2
z - h/2

Fermi sea

Fermi surface

Figure B.2.: Scheme for numerical evaluation of the derivative of the corresponding
Green function.

with h ∈ R and small. The numerical evaluation of the derivative is performed on the
semicircle energy path in the complex plane shown in Fig. (B.2).

Further analysis of the Fermi sea term (Eq. (B.1)) leads to the fact that its calculation
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can be reduced to the calculation of expressions of the following types:

Ĵξµ Ĝ
± ĵν

dĜ±(z)

dz
≈ Ĵξµ Ĝ

±(z) ĵν

[
Ĝ±(z + h

2
) − Ĝ±(z − h

2
)

h

]
(B.5)

and:

Ĵξµ
dĜ±(z)

dz
ĵν Ĝ

± ≈ Ĵξµ

[
Ĝ±(z + h

2
) − Ĝ±(z − h

2
)

h

]
Ĝ±(z) ĵν . (B.6)

Combining equations Eq. (B.5) and Eq. (B.6) and considering only the first part of
Eq. (B.1) (containing the product of retarded Green functions Ĝ+) can be rewritten in
the following way:

Tr

〈
Ĵξµ Ĝ

+(z) ĵν
dĜ+(z)

dz
− Ĵξµ

dĜ+(z)

dz
ĵν Ĝ

+(z)

〉
≈ 1

h
Tr
〈
Ĵξµ Ĝ

+(z) ĵν Ĝ
+(z+) − Ĵξµ Ĝ

+(z) ĵν Ĝ
+(z−)

− Ĵξµ Ĝ
+(z) ĵν Ĝ

+(z) + Ĵξµ Ĝ
+(z) ĵν Ĝ

+(z)
〉

=
1

h
Tr
〈
Ĵξµ Ĝ

+(z) ĵν Ĝ
+(z+) − Ĵξµ Ĝ

+(z+) ĵν Ĝ
+(z)

− [ Ĵξµ Ĝ
+(z) ĵν Ĝ

+(z−) − Ĵξµ Ĝ
+(z−) ĵν Ĝ

+(z)]
〉

=
1

h
Tr
〈
Ĵξµ Ĝ

+(z) ĵν Ĝ
+(z+) − ĵν Ĝ

+(z) Ĵξµ Ĝ
+(z+)

− [Ĵξµ Ĝ
+(z) ĵν Ĝ

+(z−) − ĵν Ĝ
+(z) Ĵξµ Ĝ

+(z−)]
〉

(B.7)

with z± = z±h/2. In a same way the second part (containing the product of advanced
Green functions Ĝ−) of Eq. (B.1) is treated. Thereby the calculation of the Fermi sea

term is reduced to the calculation of the expressions of the type Tr
〈
Ĵξµ Ĝ

+(z) ĵν Ĝ
+(z+)

〉
,

which also are used in the calculation of the Fermi surface contribution and are already
implemented within the Kubo-Středa formalism [53].





C. Numerical tests

The implementation of the Kubo-Bastin equation, particularly of the Fermi sea term,
is an important part of the current work. Therefore, to ensure the correctness of the
implementation a number of the convergence tests were performed with respect to the
few numerical parameters.

According to the work by Butler [116] and in full analogy with the Kubo-Středa equa-
tion, the full conductivity tensor σξµν obtained using the Kubo-Bastin formula, can be
split into two parts: on-site σξ0µν and off-site σξ1µν :

σξµν = σξ0µν + σξ1µν

= σξ0,Iµν + σξ1,Iµν︸ ︷︷ ︸
Fermi surface

+σξ0,IIµν + σξ1,IIµν︸ ︷︷ ︸
Fermi sea

, (C.1)

where the on-site terms contain regular (ZΛ) as well as irregular solutions (JΛ), whereas
the off-site terms consist of regular solutions only. The numerical treatment of the on-
site term, both Fermi surface and sea, is a delicate task, as the mentioned irregular
solutions can lead to abnormally large values. However, since the full on-site term
consists of Fermi sea and surface on-site terms of opposite sign, it eventually acquires
rather small values.

In order to determine the optimal settings needed to perform calculations for real
system, a number of convergence tests were carried out. For this purpose few testing
systems were selected such as disordered alloys as well as pure systems. In the following
the results are shown for Fe0.7Pd0.3 as an example. At first we checked the convergence
of the Fermi sea on-site term depending on the length of the line segment h. This is
illustrated in the Fig. (C.1) (top panel) for Fe0.7Pd0.3. One can see that there is a slight
deviation from the otherwise constant behavior. The converged result is achieved with
h = 10−4 Ry and therefore, this value is used in the subsequent calculations.

Furthermore the dependence of the Fermi sea σξ0IIµν on the number of energy points
(NE) sampled on the integration semicircle and on the number of the k-points needed
for the Brillouin-zone integrations was investigated. In Fig. (C.1) (bottom panel) the
on-site Fermi sea term is shown depending on the number of k-points, plotted for several
number of energy points (NE). One can see that σξ0xy is rather insensitive to the number
of k-points and shows a rather constant behavior already at relatively low numbers.
For this reason the adjustable k-mesh was introduced in order to reduce the numerical
effort. Namely, the density of k-mesh increases when approaching Fermi energy and the
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Figure C.1.: On-site Fermi sea term of Fe0.7Pd0.3 depending on the parameter h (top
panel) and on the number of energy points NE on the contour (excluding
EF) and on the number of k-points (bottom panel).

maximal number is used at the Fermi level (to obtain the Fermi surface contributions).
In contrast to the weak k-dependence, σξ0xy shows a rather pronounced dependence on
the number of energy points on the contour. As one can see, the converged value is
obtained already at NE= 32 and therefore is considered sufficient for the subsequent
calculations.



D. Acronyms

List of the most important acronyms used in the current work:

• AHC anomalous Hall conductivity

• AHE anomalous Hall effect

• ANE anomalous Nernst effect

• CPA coherent potential approximation

• DFT density functional theory

• GF Green function

• KKR Korringa-Kohn-Rostoker

• NLCPA non-local coherent potential approximation

• SHC spin Hall conductivity

• SHE spin Hall effect

• SNE spin Nernst effect

• SOT spin orbit torque

• STT spin-transfer torque
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Phys. Rev. B 92, 045120 (2015).

[109] D. Ködderitzsch, K. Chadova, J. Minár, and H. Ebert, “Impact of finite tempera-
tures and correlations on the anomalous Hall conductivity from ab initio theory,”
New Journal of Physics 15, 053009 (2013).

[110] S. Mankovsky, S. Polesya, K. Chadova, H. Ebert, J. B. Staunton, T. Gruenbaum,
M. A. W. Schoen, C. H. Back, X. Z. Chen, and C. Song, “Temperature-dependent
transport properties of FeRh,” Phys. Rev. B 95, 155139 (2017).

[111] K. Chadova, S. Mankovsky, J. Minár, and H. Ebert, “Impact of finite tempera-
tures on the transport properties of Gd from first principles,” Phys. Rev. B 95,
125109 (2017).

[112] S. Mankovsky, K. Chadova, D. Ködderitzsch, J. Minár, and H. Ebert, “Electronic,
magnetic, and transport properties of Fe-intercalated 2H-TaS2 studied by means
of the KKR-CPA method,” Phys. Rev. B 92, 144413 (2013).

[113] A. Vernes, Györffy, and P. Weinberger, “Spin currents, spin-transfer torque, and
spin Hall effects in relativistic quantum mechanics,” Phys. Rev. B 76, 012408
(2007).

[114] V. Bargmann and E. Wigner, “Group theoretical discussion of relativistic wave
equations,” Proc. Nat. Ac. Sci. US. 34, 211 (1948).

[115] M. Rose, Elementary Theory of Angular Momentum (Wiley,New York, 1957).

[116] W. H. Butler, “Theory of electronic transport in random alloys: Korringa-Kohn-
Rostoker coherent-potential approximation,” Phys. Rev. B 31, 3260 (1985).



Acknowledgements

First of all, I am deeply grateful to Prof. Dr. Hubert Ebert for giving me the oppor-
tunity to work on the exciting topic of spintronics, and for his guidance and support
throughtout my work. I would like to express my gratitude to Dr. Diemo Ködderitzsch
for his supervision of my work. I appreciate his kind and persistent encouragement
and constant help during my time at LMU.

I owe a debt of gratitude to Dr. Sergiy Mankovsky for his much-needed scientific advice
and many fruitful discussions.

Moreover, I would like to thank my former and present colleagues, Svitlana Polesya,
Sebastian Wimmer, Gerhard Kuhn, Dr. Sven Bornemann, Prof. Dr. Jan Minár, Dr.
Gerald Derondeau, Dr. Stephan Borek, Prof. Jürgen Braun, Martin Offenberger for
many interesting discussions and for creating a very enjoyable work atmosphere.

I also want to offer a special thank you to our secretary Rita Römling for her generous
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