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1  Summary 
Conjugation of ubiquitin-like proteins (UBLs) to target proteins involves an 

enzymatic cascade. The best-studied member of the UBL family is ubiquitin. In 

addition to ubiquitin, eukaryotes possess several other UBLs such as SUMO and 

Rub1/Nedd8. Interestingly, a group of bacterial and archaeal sulphur carriers 

resemble UBLs structurally, however, these proteins do not form protein 

conjugates. The eukaryotic protein Urm1 is related to these bacterial sulphur 

carriers, but also shares functional features of eukaryotic UBLs. Urm1 can act as a 

sulphur carrier for the thiolation of tRNAs, but also as a protein modifier. Both 

reactions require the E1-like enzyme Uba4. To date, the only described Urm1 

substrate in S. cerevisiae is the thioredoxin peroxidase Ahp1. Moreover, it has 

been shown that the double-glycine motif of Urm1 is required to modify Ahp1, and 

that Urm1 is covalently attached to a lysine residue of Ahp1. However, until now 

the functional role of protein urmylation remains unclear. 

 To gain insights into the function of Urm1 as a posttranslational protein 

modifier, we use tagged Urm1 to isolate Urm1-substrates and to identify them by 

mass spectrometry. In this study, we identified putative Urm1-substrates that are 

part of various cellular processes. In particular, the zinc-responsive activator 

protein 1 (Zap1), a master zinc regulator in S. cerevisiae, emerges as a novel 

Urm1-substrate. Not only does the transcription factor Zap1 regulate numerous 

genes in involved, inter alia, in zinc homeostasis, ROS defense, sulfate 

metabolism, phospholipid synthesis, but also ZAP1 transcription itself. Additionally, 

Zap1 acts as a zinc sensor by binding zinc ions directly through two zinc fingers 

(ZFs), which are located at the transactivation domains (ADs) AD1 and AD2. Here, 

we demonstrate that Zap1 urmylation is restricted to the cytoplasm. Zap1 is 

urmylated at the lysine residue K871. Intriguingly, lack of Zap1 urmylation seems 

to promote rapid ubiquitin-dependent degradation, whereas Zap1 is less 

susceptible to degradation in presence of the urmylation machinery. As a 

consequence, Zap1 urmylation positively influences Zap1 transcriptional activity 

and its downstream target Zrt1 in vivo. Thus, a possible function of Zap1 

urmylation could be to antagonize Zap1 ubiquitination and its subsequent 

ubiquitin-proteasome system (UPS)-mediated degradation. 
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2  Introduction 
Cellular processes require intricate and multilayered cellular regulation to maintain 

cellular homeostasis in response to diverse intracellular or extracellular changes. 

Several cellular strategies such as the regulation of mRNA transcription, mRNA 

processing, RNA splicing and translational control are employed to induce 

manifold cellular alterations. Additionally, proteins can undergo a variety of post-

translational modifications (PTMs) that can comprise in the conjugation of 

additional moieties to functional groups (e.g. acetylation, alkylation, methylation, 

lipidation and glycosylation) or by adding a new functional group to proteins (e.g. 

phosphorylation). PTMs affect the physical properties of proteins, which in term 

expand their cellular function and changes the protein dynamics. Proteins are not 

only modified by small molecules but by entire proteins belonging to the ubiquitin 

family of modifiers. Ubiquitin-like proteins (UBLs) like ubiquitin, Smt3 (SUMO), 

Atg8, Rub1 (NEDD8), Hub1, Atg8, Atg12, UFM1, ISG15, FAT10, FUB1, and Urm1 

share common features such as the globular β-grasp fold lending UBLs a globular 

tertiary structure (Hochstrasser, 2000; 2009). Though functionally diverse, the 

principles of substrate-conjugation of UBLs resemble the mechanism of the best-

studied UBL member ubiquitin (Fig. 2-1). Prior to the conjugation to target proteins,  

 
Fig. 2-1. General ized conjugation system of ubiquit in-l ike proteins (UBLs). 

Activation and conjugation of UBLs usually require an enzymatic cascade involving the E1 activating enzyme, 

the E2 conjugating enzyme and in some cases an E3 ligase. The C-terminus of the activated UBLs forms an 

isopeptide bond to the ε-amino group of the target acceptor residue. The UBL-protein modification is 

reversible through isopeptidases such as ubiquitin-like protein-processing enzymes (ULPs) or deubiquitinating 

enzymes (DUBs). Adopted from Hochstrasser, 2000. 
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ubiquitin and UBLs undergo an enzymatic cascade. First, the C- carboxyl group of 

UBLs’ terminal double-glycine motif (GG-motif) is activated by adenylation via the 

activating enzyme (E1). The E1 attacks the carboxyl-AMP of the UBL via its thiol 

group resulting in the formation of an UBL-E1 thioester. The activated UBL is 

transformed from the E1 to the cysteine side chain of the conjugating enzyme 

(E2), from which the UBL forms a ε-amino bond between the C-terminal 

carboxylate of the modifier and the lysine side chain of the conjugate. E3 protein 

ligases are required for the final transfer of the UBL to the substrate. E3s either 

allosterically activate E2s and/or function as adaptors mediating the UBL-substrate 

conjugation (e.g. RING E3 ligases). Alternatively, the E2-bound UBL is transferred 

to the E3 via a thioester bond before the UBL is lastly ligated to the substrate (e.g. 

HECT E3 ligases). 

UBL substrates can be either modified by one UBL moiety or by multiple 

single UBL moieties at different lysine residues (Geoffrey & Hay, 2009). However, 

UBLs such as ubiquitin, SUMO, Rub1 (Nedd8) and ISG15 are able to modify 

target proteins multiple times at the same lysine residue by forming polyUBL-

chains based on either linear or branched linkages that can contain the same UBL 

or a mixture of different UBL moieties (Leidecker et al., 2012; Singh et al., 2012; 

Ciechanover & Stanhill, 2014; and Fan et al., 2015). Although the function of 

mixed UBL-chains are not fully understood, chain formation of ubiquitin and its 

functional implication has been widely studied (Chau et al., 1989; and Pickart, 

2001). The best-studied UBL of the UBL family ubiquitin contains seven lysine 

residues, which all are susceptible to polyubiquitin chain formation (Xu et al., 
2009). While polyubiquitination on K48 guides the target protein to the 

proteasomal degradation, K63-linked polyubiquitin chains are involved in non-

proteolytic processes such as endocytosis, translation, DNA repair and signal 

transduction (Chau et al., 1989; Spence et al., 1995; Kerscher et al., 2006; Chen & 

Sun, 2009; Hochstrasser, 2009; and Rape, 2010). However, the function of K6-, 

K27-, K29- and K33-linked polyubiquitination is less known. 

Protein modifications are able to play diverse roles in cellular processes 

(Fig. 2-2). For instance, UBL conjugation to a target protein can provide an 

additional binding site (Fig. 2-2A). The ubiquitin-binding domain (UBD)-containing 
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proteasomal receptors such as Rpn13 recognize and strongly bind to polyubiquitin 

chains that are attached to substrates (Husnjak et al., 2008). Alternatively, UBL 

conjugation is able to cause conformational changes on the target protein that 

facilities binding to another protein (Fig. 2-2B). UBL modifications can also act as a 

molecular switch. The modification of different UBLs to the target protein can result 

in different fates of the UBL modified protein (Fig. 2-2C). These modifications can 

happen at the same attachment site and can be mutually exclusive. The 

proliferating cell nuclear antigen (PCNA), a DNA clamp that is essential for DNA 

replication and recombination, is modulated by the modification of SUMO or 

ubiquitin, which recruits distinct cofactors to the modified PCNA (Hoege et al., 
2002; Pfander et al., 2005; Moldovan et al., 2006 and Moldovan et al., 2007). 

Another mechanism of UBL conjugation is the inhibition of protein-protein 

interaction as a result of UBL modification of the target protein (Fig. 2-2D). For  

 

 
Fig. 2-2. General functions of UBLs. 

(A) UBL conjugation to target protein improves protein-protein interaction by providing an additional binding 

site. (B) UBL conjugation enhances protein-protein interaction by triggering a conformational change of the 

UBL-modified protein. (C) Modification by different UBLs acts like a switch enabling the modified protein to 

interact with different proteins. (D) UBL conjugation inhibits the interaction with a potential interaction partner. 

Adopted from Hochstrasser, 2009. 
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example, SUMOylation of the transcription factor specificity protein 1 (Sp1) by 

SUMO-2/3 prevents the interaction of Sp1 with the acetyl transferase p300 during 

embryonic development (Gong et al., 2014). 

Similar to many posttranslational modifications, modifications of proteins by UBLs 

are mostly reversible (Wilkinson, 1997; Nijman et al., 2005; and Reyes-Turcu et 
al., 2009). A set of proteases of Deubiquitinating enzymes (DUBs) and ubiquitin-

like protein-processing enzymes (ULPs) are capable of removing UBLs from their 

target proteins. In addition, most UBLs are synthesized as precursors with one or 

more amino acids following the GG-motif. The free GG-motif at the C-terminal end 

of UBLs is essential for protein conjugation. Therefore the precursors are 

processed by DUBs and ULPs, which remove the amino acids C-terminal of the 

GG-motif. Ubiquitin, for instance, is synthesized as precursor consisting of either a 

single ubiquitin moiety fused to ribosomal proteins or as polyubiquitin chains, 

which both require DUBs to yield processed ubiquitin monomers (Wiborg et al., 
1985; Baker & Board, 1987; and Ozkaynak et al., 1987). In summary, DUBs are 

both responsible for the processing of UBL precursors and capable of 

antagonizing protein modification by UBLs. They are important regulators of the 

free UBL pool and regulate the amount of UBL-modified proteins and thus 

influence the fate of the target proteins (Nijman et al., 2005). 

 

2.1  The ubiquit in-related modif ier Urm1 
Since the discovery of the first prokaryotic UBLs like the bacterial ThiS and MoaD, 

it has become apparent that UBLs and their activation via an E1-like enzyme 

seems to be evolutionary highly conserved across the domains of life 

(Rajagopalan, 1997; Taylor et al., 1998; Iyer et al., 2006; and Maupin-Furlow, 

2013). MoaD and ThiS structurally resemble the ubiquitin fold of other UBLs, as 

both have a β-grasp fold and a functional GG-motif (Rajagopalan, 1997; Taylor et 
al., 1998; Lake et al., 2001; Rudolph et al., 2001; and Wang et al., 2001). In 2000, 

the eukaryotic ubiquitin-related modifier 1 (Urm1) was discovered by a PSI BLAST 

search using the sequences of ThiS and MoaD, which were analyzed for proteins 

with high sequence similarity in S. cerevisiae database (Furukawa et al., 2000). 

The 99 amino acids (aa) long and β-grasp fold containing Urm1 protein shows 
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high identify to ThiS (20%) and MoaD (23%), particularly in the C-terminal region 

(Furukawa et al., 2000). ThiS, MoaD and the eukaryotic Urm1 are activated by 

adenylation at their C-terminal GG-motif by the E1-like enzymes ThiF, MoeB or 

Uba4 (MOCS3 in H. sapiens), respectively. It is believed that MoaB, ThiF and 

Uba4/MOCS3 most closely resemble the antecedent of the E1 superfamily (Taylor 

et al., 1998; Leimkühler et al., 2001; and Burroughs et al., 2009). Unlike most 

adenylated UBLs that form a thioester bond between the UBL and its E1, ThiS and 

MoaD are bound to ThiF and MoeB via an acyl disulphide, respectively (Fig. 2-3A) 

(Leimkühler et al., 2001; Xi et al., 2001; and Lehmann et al., 2006). In contrast to 

most UBLs, ThiS and MoaD do not conjugate to proteins, but serve as sulphur 

carriers in the thiamine and in the molybdenum-cofactor (MoCo) biosynthesis 

pathway, respectively (Pitterle et al., 1993; Taylor et al., 1998; Begley et al., 1999; 

Lake et al., 2001; Leimkühler et al., 2001; Wang et al., 2001). Remarkably, Urm1 

possesses a MoaD-related fold and is therefore structurally more similar to the 

prokaryotic sulphur carriers MoaD and ThiS than the eukaryotic UBLs (Xu et al., 
2006). Unlike most UBLs that are expressed as precursors, Urm1 is synthesized 

without any C-terminal extension preceding its functional GG-motif. It remains 

unclear how free Urm1 proteins are regulated. Notably, Urm1 is shown to dimerize 

in vitro resulting in the formation of a homodimer via its C-terminal ends that 

results in the internalization of the GG-motifs and potentially serves as a regulation 

for Urm1 conjugation activity (Yu & Zhou, 2008). Urm1 is highly conserved from S. 

cerevisiae to H. sapiens and contains a β-grasp fold (Furukawa et al., 2000; Xu et 

al., 2006).  
 

2.1.1  The Urm1 pathway 

A yeast-two hybrid (Y2H) screen using Urm1 as a bait led to the identification of 

the E1-like ubiquitin activating enzyme 4 (Uba4, MOCS3 in H. sapiens), whose N-

terminal region contains a MoeB-like domain showing high similarities to the E1 

domain of the eukaryotic Uba1, but also to the prokaryotic ThiF and MoeB 

(Furukawa et al., 2000; and Burroughs et al., 2009). Additionally, Uba4 contains a 

C-terminal rhodanese-like domain (RLD) that is present in many prokaryotic and in 
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all eukaryotic MoeB homologs (Hochstrasser, 2000; Mendel & Schwarz, 2002; 

Matthies et al., 2004; Krempinsky & Leimkühler, 2007; Schmitz et al., 2008; and 

Burroughs et al., 2009). Analogous to the activation of ubiquitin or ThiS/MoaD, 

Urm1 is first activated through the adenylation at its GG-motif by Uba4 (Fig. 2-3B). 

Adenylated Urm1 forms a covalent acyl-disulphide with Uba4 and is then released 

from Uba4 as a thiocarboxylated Urm1 intermediate (Fig. 2-3AB) (Pedrioli et al., 
2008; Schmitz et al., 2008; Schlieker et al., 2008; Nakai et al., 2008; Noma et al., 
2009; Hochstrasser, 2009; Leidel et al., 2009; Van der Veen et al., 2011 Wang et 
al., 2011). Interestingly, the two small archaeal modifiers (SAMP1 and SAMP2) 

function as protein modifiers and as sulphur carriers in tRNA thiolation and MoCo 

biosynthesis in a similar manner as the Urm1 system (Humbard et al., 2010; 

Miranda et al., 2011; and Anjum et al., 2015). Therefore, it is believed that Urm1 is 

a molecular fossil of the UBL family that is derived from its archaeal ancestors 

SAMP1/2 (Xu et al., 2006; Maupin-Furlow, 2013; and Anjum et al., 2015). 
Uba4 has two conserved cysteine residues that are vital for the thiocarboxylate 

formation of Urm1 and Urm1 function: C225 in the MoeB-like domain and C397 in 

the RLD (Furukawa et al., 2000; Matthies et al., 2005; Schmitz et al., 2008; Nakai 

et al., 2008; Leidel et al., 2009; Hochstrasser, 2009; Noma et al., 2009; Van der 

Veen et al., 2011; and Jüdes et al., 2016). To uphold Uba4 activity, Uba4 receives 

sulphur from the cysteine desulfurase Nfs1 and the RLD-containing sulfur 

transferase Tum1 (YOR251C) (Nakai et al, 2008; Leidel et al., 2009; Noma et al., 
2009; Huang et al., 2008; and Jüdes et al., 2016). To date no Urm1-specific E2, 

E3 or deurmylating enzyme has been identified. It has been speculated that Uba4 

might function as an E1- and E2-like hybrid (Hochstrasser, 2000), however this 

hypothesis has been challenged by the discovery of Urm1-Uba4 acyl-disulphide 

bond formation and of Urm1 thioester intermediates, since thioester bond 

formation are typically found in UBL-E2 conjugation (Pedrioli et al., 2008; Van der 

Veen et al., 2011; Wang et al., 2011). 
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Fig. 2-3. Analogies between the ubiquit in, Urm1 and ThiS pathways. 

(A) The thiocarboxylated ThiS functions as a sulphur carrier in the biosynthesis of thiamine. (B) Urm1 acts as 

a sulphur carrier and as a protein modifier. Analogous to ubiquitin and ThiS, Urm1 is activated at its carboxyl 

terminus by acyl-adenylation via the E1-like enzyme Uba4. The adenylated Urm1 covalently binds to Uba4 

forms a covalent Urm1-Uba4 binding. Through a series of enzymatic reactions, C-terminus of Urm1 is 

thiocarboxylated that is able to function as a sulphur donor in transfer RNA (tRNA) modification or as a protein 

modifier by an unknown mechanism. (C) Ubiquitin modifies proteins via an enzymatic cascade involving the 

enzymes E1, E2 and E3. Adopted from Pedrioli et al., 2008 and Wang et al., 2011. 
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So far 144 different RNA modifications have been identified in all kingdoms of life 

of which an array of PTMs are found in transfer RNAs (tRNAs) that enhances 
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(El Yacoubi et al., 2012; Jackman & Alfonzo, 2013; Machnicka et al., 2013; 

Hopper, 2013; Nakai et al., 2017). One of tRNA modifications is found at wobble 
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commonly subjected to methoxycarbonylmethyl modification (mcm5U34) at the 5’ 

position by the Elongator complex and/or to the addition of a thiocarbonyl group 

(s2U34) at the uracil ring by the Urm1 pathway (Machnicka et al., 2013; Nakai et al., 
2017). Thiocarboxylated Urm1 together with the thiouridylase Ncs6 (“Needs Cla4 

to Survive 6” or cytosolic thiouridylase 1 (CTU1/ATPBD3) in H. sapiens) and Ncs2 

(CTU2 in H. sapiens) are likely to transfer the sulphur from the Urm1 C-terminus to 

Ub GG
O

OH
GG

O

OAMP
Ub

ATP PPi

E1 E1 E2
GG

O

S
Ub

E1

GG
O

S
Ub

E2

E3
GG

O

N-substrate
Ub

sulphur carrier adenylation

A

protein modifier

B

ThiS GG
O

OH
GG

O

OAMP
ThiS

ATP PPi

ThiF ThiF
GG

O

ThiS
S

S-ThiF

SH
GG

O

ThiS
?

Thiamine synthesis

C

ATP PPi

Uba4
Urm1 GG

O

OH
GG

O

OAMP
Urm1

Uba4
GG

O

N-substrate
Urm1

E2/E3 ?

Ncs6/Ncs2
+ tRNA +ATP

tRNA s2U

GG
O

Urm1
S

S-Uba4

SH
GG

O

Urm1
?



INTRODUCTION 

 9 

thiolate U34 and modify U34 to s2U34 (Fig. 2-3B) (Nakai et al., 2008; Dewez et al., 
2008; Leidel et al., 2009; Schlieker et al., 2008; and Noma et al., 2009). 

Modification of mcm5s2U34 helps codon-anticodon interaction necessary for 

efficient mRNA decoding and enhances translational fidelity (Jablonowski et al., 
2006; Johansson et al., 2008; Laxman et al., 2013; Rezgui et al., 2013; Tükenmez 

et al., 2015; and Nedialkova et al., 2015). Lack thereof in Elongator and Urm1 

pathway mutants result in a complete loss or strong reduction in mcm5s2U34 of 

tRNALys(UUU), tRNAGlu(UUC) and tRNAGln(UUG) and result in translational defects such 

as slower mRNA decoding, ribosomal stalling and subsequently protein 

aggregation (Nakai et al., 2004; Bjork et al., 2007;  Dewez et al., 2008; Leidel et 
al., 2008; Schlieker et al., 2008; Nakai et al., 2008; Noma et al., 2009; Nedialkova 

et al., 2015). Consequently protein abundance of ~260 proteins is decreased in S. 
cerevisiae due to inefficient translation of long mRNAs containing a high amount of 

codons for K, Q and E (Fig. 2-4) (Laxman et al., 2013; and Rezgui et al., 2013). 

While lack of mcm5U34 modification pathway has no effects on cell viability, the 

cells lacking components of the Urm1 pathway for s2U34 modification pathway 

have reduced or no viability under stress conditions such as oxidative stress, high 

temperatures, nutrient starvation and DNA damage (Furukawa et al., 2000; 

Goehring et al., 2003ab; Chen et al., 2009; Khoshnood et al., 2016; Damon et al., 
2015; and Schorpp, 2011). Lack of both mcm5U34

 and of s2U34 causes lethality in 

S. cerevisiae and in C. elegans during embryogenesis at elevated temperatures 

(Bjork et al., 2007; Chen et al., 2009). Conversely, yeast lacking Urm1, Uba4 and 

Ncs6 are resistant to the Kluyveromyces lactis toxin γ-toxin that exclusively 

cleaves mcm5s2-modified tRNAs and causes G1 cell cycle arrest to WT cells 

(Fichtner et al., 2003; Lu et al., 2005; Huang et al., 2008; Jüdes et al., 2016). Urm1 

pathway mutants share certain phenotypes with target of rapamycin complex 1 

(TORC1) mutants such as rapamycin and caffeine sensitivity. Moreover, cells 

lacking Urm1 and Uba4 cause the mislocalization of the TORC1- and nutrient-

regulated transcription factors Gln3 and Gat1, which causes the misregulation of 

the TORC1-regulated target genes GAP1 and CIT2 and indicates the importance 

of the Urm1 pathway in nutrient sensing (Rubio-Texeira, 2007). Remarkably, 

sensitivity of rapamycin, caffeine and the oxidative stress inducing agent diamide 
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of Urm1-pathway mutants can be rescued by overexpression of unmodified 

tRNALys(UUU), tRNAGlu(UUC) and tRNAGln(UUG) indicating that these phenotypes 

together with the resistance towards to K. lactis γ-toxin and temperature sensitivity 

can be attributed to the absence of tRNA thiolation (Huang et al., 2008; Leidel et 
al., 2009; and Damon et al., 2015). 

 

2.1.3  Urm1, the protein modif ier 

In contrast to the well-studied role of Urm1 as a sulphur carrier in tRNA thiolation, 

the function of Urm1 as a protein modifier remains enigmatic. Until now, the 

mechanism of Urm1 protein-modification pathway and the function of urmylation 

are as yet unclear. Previous works have shown the presence of higher migrating 

Urm1 adducts under steady state conditions, which massively increases under 

oxidative stress in S. cerevisiae, and cells from D. melanogaster and H. sapiens 

(Furukawa et al., 2000; Goehring et al., 2003a; Van der Veen et al., 2011; and 

Khoshnood et al., 2016). However, Urm1 adducts were absent in absence of 

Uba4, the catalytically inactive uba4 variants (uba4 C225S/A, uba4 C397S/A, uba4 
C225, C397S), or yeast expressing urm1ΔG and urm1ΔGG truncations. This 

clearly indicates the existence of Urm1-modified substrates, whose Urm1 

modification requires an ATP-dependent activation of its C-terminal glycine by the 

enzymatic activity of Uba4. Since no Urm1-specific E2, E3 have been identified, it 

remains unclear how substrate recognition and specificity is achieved. In terms of 

protein modification by Urm1, Van der Veen et al. have demonstrated that Urm1 is 

covalently conjugated to Urm1 substrates via a covalent isopeptide bond, as Urm1 

conjugates are fairly resistant to reducing agents such as hydroxylamine 

Dithiothreitol (DTT) or hydroxylamine (NH2OH) (Van der Veen et al., 2011). In 

contrast to ubiquitination, urmylation requires a thiocarboxylated Urm1 

intermediate, but also an Urm1 thioester intermediate, which is commonly 

observed in canonical UBL modifiers, as well. Through a series of site-directed 

mutagenesis of the only known yeast Urm1-substrate Ahp1, it could be 

demonstrated that the Urm1 conjugation machinery recognizes and conjugates 

Urm1 to lysine (K) 32 of Ahp1 (Van der Veen et al., 2011). Whether all Urm1-
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substrates are conjugated at their acceptor lysine has yet to be determined. All 

known Urm1 substrates are modified by a single Urm1 moiety and no 

polyurmylation has been observed in all known Urm1 substrates (Goehring et al., 
2003a; Van der Veen et al., 2011; Khoshnood et al., 2016). Though no 

deurmylation enzymes have been identified in eukaryotes, Urm1 substrates seem 

to accumulate by the addition of the irreversible cysteine peptidase inhibitor N-

ethylmaleimide (NEM), which is commonly used as an inhibitor of deubiquitination 

and deSUMOylation, suggesting the possible existence of a deurmylation enzyme 

in eukaryotes (Goehring et al., 2003a; Van der Veen et al., 2011; and Schorpp, 

2011). Previous studies show a reduction of putative urmylated substrates in cells 

lacking Ncs2 and Ncs6 indicating a potential crosstalk between the Urm1 protein 

modification and sulphur carrier pathway (Goehring et al., 2003b). However, this 

finding could not be reproduced in later studies, which showed no influence of 

urmylation in Δncs2 or in human cells that have significantly reduced levels of 

ATPBD3/Ctu1 (Ncs6 in S. cerevisiae) (Schorpp, 2011; and Van der Veen et al., 
2011). Interestingly, components of the Urm1 pathway, such as Uba4/MOCS3, 

ATPBD3/Ctu1 and Ctu2 (Ncs2 in S. cerevisiae), among with the deubiquitinating 

enzyme USP15, the nucleocytoplasmic shuttling factor CAS (cellular apoptosis 

susceptibility protein), the peroxiredoxin Ahp1 that plays an essential role in 

cellular response to reactive oxygen species (ROS) in yeast and its ortholog Prx5 

in D. melanogaster are confirmed Urm1 substrates in vivo (Jeong et al., 1999; Lee 

et al., 1999; Van der Veen et al., 2011; and Khoshnood et al., 2016). Moreover, 

Van der Veen et al. identified a small set of potential Urm1 substrates via MS/MS, 

which are involved in various cellular pathways such as ubiquitination, tRNA 

modification, nuclear transport, RNA regulation and oxidative stress (Fig. 2-4) (Van 

der Veen et al., 2011). Urmylation is present under steady state conditions and is 

significantly elevated under oxidative stress (Furukawa et al., 2000; Goehring et 
al., 2003; and Van der Veen et al., 2011). Intriguingly, the Urm1 pathway 

distinctively responses to different oxidative stressors, as treatment with hydrogen 

peroxide (H2O2), diamide and tert-Butyl hydroperoxide (t-BOOH) induces the 

formation of specific sets of Urm1 adducts (Van der Veen et al., 2011; and 

Schorpp, 2011). Indeed, while Ahp1 is urmylated under steady state conditions 
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and under diamide treatment, Urm1 does not modify Ahp1 under t-BOOH 

treatment (Goehring et al., 2003a). 

Though the function of urmylation remains unclear, urmylation might play a 

detrimental role in oxidative stress tolerance, as oxidative stress has been shown 

to be a strong inducer of urmylation. In concordant to these findings, cells deficient 

of Ahp1, Urm1 and Uba4 show sensitivity towards various oxidative stress-

inducing drugs (Goehring et al., 2003a). Since Δahp1 cells do not share many 

phenotypes with Urm1-pathway mutants that result in pleiotropic phenotypes, 

Urm1 might function and modify additional proteins in other cellular process 

(Goehring et al., 2003ab). Indeed, urmylation plays an important role during 

embryogenesis and improves overall fitness of D. melanogaster (Khoshnood et al., 
2016). Urm1 expression and protein conjugation by Urm1 are highly elevated 

during early embryonic stages and during larval/pupal transition. Concordantly to 

the appearance of urmylation during embryogenesis, loss of Urm1 causes a high 

lethality rate among flies homozygous for urm1 either during embryogenesis or at 

late pupal stages, raising the question what proteins are modified by Urm1 

(Khoshnood et al., 2016). Around 20% of flies homozygous for urm1 reach 

adulthood, but display a significantly reduced lifespan compared to wild type and 

Urm1 revertant flies. Recent in vitro studies have shown that the archaeal 

Urm1/SAMP homologue of S. solfataricus modify proteins, which are in turn 

recognized by the 20S proteasome and by the ATPase proteasome-activating 

nucleotidase (PAN) (Anjum et al., 2015). Furthermore, in vitro experiments using 

N-terminal fusion of the archaeal Urm1 to GFP, mimicking Urm1-modified GFP 

species, showed the degradation of Urm1-GFP in presence of an active 20S 

proteasome suggesting that protein stability in S. solfataricus might be regulated 

by Urm1 and would therefore resemble the eukaryotic UPS. Unlike archaeal Urm1, 

Urm1-modified substrates in yeast and human were not subjected to protein 

degradation (Goehring et al., 2003; and Van der Veen et al., 2011). 
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Fig. 2-4. Dual function of Urm1 as a protein modif ier and a sulphur carr ier. 

 

2.2  Zinc Regulation in Yeast 
Zinc (Zn) is an indispensible trace element for all organisms and serves as 

cofactors in around 10% of all proteins in humans ranging from enzymes, 

receptors, and growth factors to transcription factors (Sugarman, 1983; Andreini et 
al., 2006; Broadley, 2007; Prasad, 2008; and Plum et al., 2010). Since 

metalloproteins and Zn-binding proteins are as ubiquitous as their role in biological 

processes such as oogenesis, embryogenesis, conception, immune response, and 

regulation of the central nervous system, a tight control of the intracellular zinc 

levels is therefore a requirement for cell survivability (Hambidge & Krebs, 2007; 

Prakash et al., 2015). Excess of intracellular zinc levels are toxic and can compete 

with other metal ions for the binding to transporter proteins, enzymes, and ligands. 

The regulation of zinc homeostasis is mediated by a multilayered regulatory 

mechanism including RNA expression, RNA stability, translation, degradation, zinc 

storage/conservation, zinc sensors such as metallothioneins and zinc trafficking 

via anterograde and retrograde zinc transporters (Hamer, 1986; Palmiter & 

Findley, 1995; Eide, 2003; Rutherford & Bird, 2004; Krezel & Maret, 2007; Fukada 

et al., 2011; and Bird, 2015). The expression of the zinc-regulatory proteins and 

zinc-transporters are controlled by metal-responsive transcription factors such as 

the metal-responsive transcription factor 1 (MTF-1) in insects, fish, reptiles and 

mammals (Brugnera et al., 1994; and Choi & Bird, 2014). While MTF-1 regulates 
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cupper, iron and zinc homeostasis in higher eukaryotes, S. cerevisiae possess 

three metal-responsive transcription factors each specialized in either regulating 

cupper, iron and zinc, respectively (Rutherford & Bird, 2004). The zinc 

homeostasis in yeast is controlled by the zinc-responsive activator protein 1 

(Zap1) (Zhao et al., 1997; Eide, 2009; and Wilson & Bird, 2016). Functional 

homologs of Zap1 have been identified in Cryptococcus gattii, Candida albicans, 

Candida dubliniensis and Aspergillus fumigatus, suggesting that the mechanism to 

regulate zinc homeostasis by Zap1 homologs might be a common mechanism 

among the fungal kingdom (Moreno et al., 2007; Kim et al., 2008; Schneider et al., 
2012; and Choi & Bird, 2014, Böttcher et al. 2015). 

In response to zinc deficiency, Zap1 activates genes, which either play roles in 

zinc homeostasis or survivability under zinc starvation (Fig. 2-5A) (De Nicola et al., 
2007; Wu et al., 2008; North et al., 2012; MacDiarmid et al., 2013). Under zinc-

limiting conditions Zap1 mediates the expression of FET4, which transports Zn2+, 

Cu2+ and Fe2+, and two high affinity Zn2+-specific ZIP-family transporters ZRT1 and 

ZRT2, whose homologs play a detrimental role in metal transport among all 

kingdoms (Fig. 2-5A) (Zhao & Eide, 1996ab; Gaither & Eide, 2001; Waters & Eide, 

2002; Kambe et al., 2006; and Choi & Bird, 2014). Zap1 activates target genes 

expression by binding to one or more zinc-responsive elements (ZREs) located 

within the target genes’ promoter region (Fig. 2-5B) (Zhao et al., 1998; and Wu et 
al., 2008). Moreover, Zap1 activates its own expression by binding to a single ZRE 

conserved among Zap1-like homologs (Fig. 2-5B) (Zhao et al., 1998; Moreno et 
al., 2007; Schneider et al., 2012; Böttcher et al., 2015). Under zinc-replete 

conditions, binding of Zn2+ to the transactivation domains (ADs) AD1 and AD2 of 

Zap1, which in turn inactivates the transcriptional activity of Zap1 under a yet 

unknown mechanism. (Fig. 2-5B) (Bird et al., 2000; Bird et al., 2003; Qiao et al., 
2006; Wang et al., 2006; and Frey & Eide, 2011). Even though the Zap1 zinc-

sensing ability is important to suppress Zap1 target genes, expression of the C-

terminal DNA-binding domain (DBD) of Zap1 enables binding to ZREs, which 

activates Zap1 target genes in a zinc-independent fashion, indicating an additional 

post-translational mechanism to control Zap1 expression (Frey et al., 2011; and  
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Fig. 2-5. Zap1 target genes and zinc-dependent autoregulatory mechanism of Zap1. 

(A) Functional role of known or putative Zap1 target genes in yeast. Upregulated genes are depicted in yellow 

and down-regulated genes are depicted in blue. Since ZRT2 is activated and repressed by Zap1 depending to 

the intracellular zinc concentration, ZRT2 is depicted in blue and yellow. Genes, depicted as grey circles, are 

not regulated by Zap1. MITO: mitochondria; PM: plasma membrane; ORF: open reading frame. Fig. 2-5A is 

adapted from Eide, 2009. (B) Zinc-dependent autoregulatory mechanism of Zap1. Under zinc-depleted 

conditions Zap1 is transcriptional active and activates ZAP1 transcription by binding to the zinc-responsive 

element (ZRE) of upstream ZAP1 ORF. Zn2+ binding to Zap1 transcriptionally inactivates Zap1 and hence 

represses ZAP1 transcription. 
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Wilson & Bird, 2016). Zap1 not only controls zinc-dependent homeostatic 

responses, but also targets genes in sulfate metabolism, cell wall function, 

phospholipid synthesis, protein turnover and ROS defense (Fig. 2-5A) (Eide, 

2009). Previous studies showed an increase of intracellular ROS levels under zinc-

limiting conditions, which, in turn, leads to DNA damage, and to protein and lipid 

oxidation (Powell, 2000; Ho, 2004; Wu et al., 2007). As a protective mechanism 

from zinc deficiency-induced oxidative stress, Zap1 activates the expression of the 

cytosolic peroxiredoxin Tsa1 and the cytosolic catalase Ctt1 under low zinc 

conditions (Wu et al., 2008). Intriguingly, deletion of URM1 and ZRT1 shows a 

significantly slower growth indicating a possible connection between the Urm1 

pathway and the Zap1 signaling pathway (Costanzo et al., 2010). 
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Aim of this work 
The dual role of Urm1 as a sulphur carrier and protein modifier combines 

seemingly unrelated features of the prokaryotic sulphur carrier system and the 

eukaryotic protein modification system, suggesting that Urm1 may be an 

evolutionary fossil of the UBL family. While the sulphur carrier function of Urm1 in 

tRNA thiolation has been revealed, the protein modifier function of Urm1 remains 

largely unclear. Aside from this, only few proteins have been identified as Urm1-

substrates. Although numerous Urm1 adducts are present under regular growth 

conditions and upon oxidative stress, the peroxiredoxin Ahp1 is the only known 

Urm1 substrate in yeast, raising the question whether more proteins are modified 

by Urm1. Since Urm1 targets a specific lysine residue of Ahp1, it is conceivable 

that Urm1 may conjugate more proteins in a similar fashion. Despite extensive 

research on Ahp1 and its function in ROS defense, the role of Ahp1 urmylation 

continues to be ambiguous. 

In this study, we aimed to elucidate the function of protein urmylation in vivo. To 

address this question, an unbiased tandem mass spectrometry (MS/MS) screen 

was conducted to identify novel lysine-directed Urm1 substrates. Candidates were 

verified by biochemical methods and thus served as model substrates in 

investigating the mechanistic and cellular consequences of urmylation. 
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3  Results 
3.1  Identif ication of novel Urm1-substrates 
Although the role of Urm1 as a sulfur carrier in tRNA modification is adequately 

described (Leidel et al., 2009, Rezgui et al., 2013, Laxman et al., 2013 and 

Nedialkova & Leidel, 2015) the function of Urm1 as a protein modifier remains 

unknown. To date only few urmylated substrates are identified, such as MOCS3 

(Uba4 in S. cerevisiae), ATPBD3, CTU2, USP15 and CAS in mammalian cells 

(Van der Veen et al., 2011), Uba4 and the thiol-specific peroxiredoxin Ahp1 in S. 
cerevisiae, respectively (Goehring et al., 2003ab, Schorpp, 2011). To date, no 

functional relevance of Urm1 modification has been assigned to any of the above-

mentioned Urm1 substrates.  

Urm1 conjugation to Ahp1 is covalent and requires the ε-amino group of acceptor 

lysine (K) residues of Ahp1 and the enzymatic activity of the E1-like enzyme Uba4 

(Van der Veen et al., 2011 and Schorpp, 2011). In this work a SILAC-based mass 

spectrometry approach was performed to screen for novel Urm1-substrates and to 

identify urmylation sites, which would allow a greater understanding of the 

functional consequences of urmylation (Ong et al., 2002, Mann, 2006; Andersen et 
al., 2009, Matic et al. 2010; and Psakhye & Jentsch, 2012). Tryptic-digestion of 

Urm1 conjugated proteins produces branched peptides in which the C-terminal 

fragment of Urm1 is attached to a lysine residue within the target peptide. Thus, a 

proteomic search for specific peptides derived from trypsin-digested Urm1-

substrate branched conjugates (i.e. Urm1 branched peptides) could allow mapping 

of so far unknown urmylation sites. Detection of Urm1 branched peptides is 

challenging using wild type (WT) Urm1, as tryptic digestion of WT Urm1 results in 

very long Urm1 branched peptides (K/R…KDYILEDGDIISFTSTLHGG-ε-K…K/R). These 

masses would generate complex LC-MS/MS spectra making the identification of 

such Urm1 branched peptides demanding (Matic et al., 2008; and Matic & Hay, 

2012). To increase the probability of identifying Urm1-substrate branched 

peptides, a modified yeast strain expressing an Urm1 variant was constructed that 

would generate shorter Urm1 branched peptides (Δurm1 HisHAurm1-L96R) (Fig. 3-

1A). Tryptic digestion of urm1-L96R with its covalently attached target protein 
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would yield in K/R…HGG-ε-K…K/R (HGG-ε-K) Urm1 branched peptides and ought 

to improve the detection of urmylation sites via mass spectrometry. To determine 

whether the HisHAurm1-L96R variant can function as a WT version of Urm1, zeocin 

sensitivity of different Δurm1 mutant strains (as described in Schorpp, 2011) was 

tested (Fig. 3-1B). ∆urm1 cells show high sensitivity at already low concentrations 

of zeocin, whereas Δurm1 cells expressing HisHAurm1-L96R could rescue the 

sensitivity of the Δurm1 strain entirely. Δurm1 HisHAurm1-L96R cells with an 

additional deletion of the E1 enzyme Uba4 were once again sensitive to zeocin. 

Moreover the conjugation of HisHAurm1-L96R to protein substrates was also 

investigated (Fig. 3-1C). As previously shown, N-ethylmaleimide (NEM) enhances 

Urm1-conjugation (Van der Veen et al., 2011 and Schorpp, 2011). Both HisHAUrm1 

and HisHAurm1-L96R showed a comparable urmylation pattern in cells treated with 

and without NEM. Thus, the HisHAurm1-L96R strain appears to be suitable to  

 

 
Figure 3-1. Construction of a modif ied yeast strain to identify lysine-directed Urm1 

substrates. (A) Schematic of the Urm1 expression constructs. Tryptic digestion of HisHAurm1-L96R gives rise 

to a short HGG-ε-K branched peptide. HisHAurm1-L96R was integrated at the LEU2 locus of Δurm1 cells 

(HisHAurm1-L96R). The arrow indicates the tryptic cleavage site. (B) HisHAurm1-L96R is able to rescue the 

zeocin-induced sensitivity of Δurm1 cells, indicating that this variant does not interfere with Urm1 functions in 

yeast cells. Cells were plated in 5-fold dilutions on YPD with or without zeocin and incubated for 3 days at 

30°C. HisHAurm1-L96R was integrated at the LEU2 locus of Δurm1 (HisHAurm1-L96R) and of Δurm1 Δuba4 
(HisHAurm1-L96R Δuba4). (C) Urm1 conjugation pattern in yeast strains expressing HisHAUrm1 and HisHAurm1-
L96R. Cells were grown at 30°C either with (+) or without (-) 1h of 10 mM NEM incubation. Samples were 

collected and subjected to immunoblotting using anti-HA antibodies to detect HisHAUrm1. Dpm1 levels serve as 

a loading control. 
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screen for novel Urm1-substrates (Fig. 3-2A). To this end, the HisHAurm1-L96R 
strain was used to first enrich Urm1 and Urm1-conjugates in a denaturing Ni-NTA 

pull-down followed by a SILAC-based LC-MS/MS method that allows the 

quantitative detection of changes in protein abundance among differentially treated 

samples. Subsequently, isolated Urm1-conjugates from untreated and NEM-

treated cells were analyzed using the LC-MS/MS method. The LC-MS/MS screen 

identified 547 potential Urm1 substrates in total, of which a small subset of 21 

Urm1-substrates were significantly enriched upon NEM-treatment (H/L ratio of >1 

and a p-value of <0.05, Fig. 3-2B). Among these candidates, proteins are found 

associated with various cellular processes such as glycolysis (Pyk1, Tdh2 and 

Tdh3), sterol metabolism (Nsg2), protein biosynthesis (Ses1), RAS-cAMP pathway  

 
Figure 3-2. Purif ication and identif ication of urmylated substrates. 

 (A) Overview of the experimental workflow for the purification and identification of Urm1-modified substrates 

with HGG-ε-K linkages using the mutant variant HisHAurm1-L96R. (B) Scatter plot of normalized SILAC H/L 

ratios (NEM-treated versus untreated) for 547 quantified proteins were plotted against the sum of the 

respective peptide intensities. Proteins are color-coded according to their respective p-values, with red circles 

having values <0.001, orange circles between 0.001 and 0.01, yellow circles between 0.01 and 0.05 and blue 

circles >0.05. (C) A single Urm1-conjugation site of Zap1 was identified at K871. Following Ni-NTA pull-down, 

HisHAUrm1-conjugates were digested with trypsin. Branched peptides with HGG-ε-K linkages were detected 

and identified by LC-MS/MS and MaxQuant, respectively. 
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(Ira2), ubiquitin pathway (Ubp11), and zinc metabolism (Zap1) (Tab. 3-1). 

Together with the previously described Urm1-substrate Ahp1, proteins of the Urm1 

pathway (Nfs1 and Uba4) were identified among the targets. Unlike previous 

studies, Ahp1 urmylation was not increased upon NEM treatment (Van der Veen et 
al., 2011; and Schorpp, 2011). 

Common quantification errors in SILAC experiments are due to an incomplete 

incorporation of isotopic amino acids and arginine-to-proline conversions that lead 

to reduced ion intensities of the ‘heavy’ labeled peptides that results in a reduced 

H/L ratio (Ong et al., 2003; and Park et al., 2012). Previous studies have shown 

that a reciprocal label-swap replication experiment would reduce the preceding 

technical errors (Park et al., 2012). For this reason, a label-swap replication 

experiment was performed in parallel. The LC-MS/MS analysis of the label-swap 

experiment revealed that 17 proteins of the 21 identified proteins had a negative 

H/L ratio, strongly indicating that these proteins were urmylated upon NEM 

treatment (Tab. 3-1). In order to ensure reproducibility and comparability of the 

generated data, we repeated the experiments twice using HisStrepurm1-L96R in 

label-free LC-MS/MS analysis. Most proteins that were identified from the previous 

SILAC experiment were identified once or twice in the above-mentioned replication 

experiments (Tab. 3-1). Furthermore, to demonstrate that the urm1-L96R variant 

modifies the same set of proteins as WT Urm1 upon NEM-treatment, a yeast 

strain expressing HisHAUrm1 and HisStrepUrm1 was generated and used in following 

denaturing purification experiments: (1) SILAC with HisHAUrm1 without NEM vs. 
HisHAUrm1 with NEM; (2) SILAC with HisHAUrm1 Δuba4 with NEM vs. HisHAUrm1 with 

NEM and (3) two label-free LC-MS/MS experiments with HisStrepUrm1 in presence 

of NEM (Tab. 3-1). In summary, all of the highly accumulated substrates that were 

previously found in HisStrepurm1-L96R could be identified in the experiments 

conducted with WT HisStrepUrm1. In addition the urm1-L96R variant allows 

prediction of protein urmylation sites by identifying HGG-ε-K branched peptides. In 

total, 59 proteins with their respective HGG-ε-K branched peptides were detected 

in the entirety of all purification experiments using the urm1-L96R variant. In one of 

the label-free experiment, we were able to identify three tryptic branched peptides 

of Urm1-Ahp1 at K41, K107 and K32, which was previously identified as the 
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urmylation site of Ahp1 (data not shown, Van der Veen et al., 2011). Out of the 21 

highly accumulated substrates, we were able to find HGG-ε-K branched peptides, 

which could be assigned to 5 proteins (Tab. 3-1). Importantly, the zinc-responsive 

activator protein (Zap1) was identified as Urm1-substrate in several repetition 

experiments using HisHAurm1-L96R variant and wild type Urm1 with NEM-treated 

cells. Moreover, an Urm1-Zap1 branched peptide at K871 was identified, signifying 

a likely acceptor lysine residue for Zap1 urmylation (Fig. 3-2C, Tab. 3-1). 

Additionally, we could confirm Zap1 with a negative H/L ratio in a reciprocal label-

swap replication experiment, confirming NEM-induction (Fig. 3-2C). 

 

 
Table 3-1. List of HisHAurm1-L96R  modif ied proteins signif icantly enriched in NEM-treated 

cells.  

Proteins are color-marked according to their respective p-values, with red having values <0.001, orange 

between 0.001 and 0.01, and yellow between 0.01 and 0.05. Experiments in which the respective proteins are 

detected using WT Urm1: (1) HisHAUrm1 (-NEM; ‘light’ medium) vs. HisHAUrm1 (+NEM, ‘heavy’ medium); (2) 
HisHAUrm1 Δuba4 (+NEM; ‘light’ medium) vs. HisHAUrm1 (+NEM; ‘heavy’ medium); (3) label-free experiments 

LC-MS/MS analysis of HisStrepUrm1 and HisHAurm1-L96R: (1) label-swap replication experiment (+NEM; ‘light’ 

medium) vs. (-NEM, ‘heavy’ medium); (2) label-free experiment LC-MS/MS analysis of HisHAurm1-L96R. 

*Urm1-substrate branched peptide detected in replicates using HisStrepurm1-L96R. 

 

Systematic name Standard name Protein description Urm1 urm1-L96R HGG-K Site Positions
YNL156C NSG2 sterol biosynthesis yes yes
YOL081W IRA2 GTPase-activator protein for Ras-like GTPase yes no
YKR098C UBP11 Ubiquitin carboxyl-terminal hydrolase yes yes
YJR009C TDH2 Glyceraldehyde 3-phosphate dehydrogenase yes yes 331*

YGR192C TDH3 Glyceraldehyde 3-phosphate dehydrogenase yes yes 331*
YDR422C SIP1 5'-AMP-activated protein kinase yes yes
YIL008W URM1 yes yes
YAL038W PYK1 Pyruvate kinase yes yes 135;233;236*
YNR021W YNR021W Protein of unknown function yes yes
YOR070C GYP1 Cis-golgi GTPase-activating protein (GAP) for yeast Rabs yes yes
YBR171W SEC66 Preprotein translocase subunit Sec66 yes yes
YKR075C YKR075C Unknown function yes yes
YNL169C PSD1 Phosphatidylserine decarboxylase yes no
YPL224C MMT2 Cation efflux family yes yes
YDR233C RTN1 Reticulon yes yes
YMR183C SSO2 SNARE domain;Syntaxin yes yes
YDR023W SES1 Cytosolic seryl-tRNA synthetase yes no
YDL025C RTK1 Putative protein kinase yes yes 177*
YML048W GSF2 Endoplasmic reticulum (ER) localized integral membrane protein yes yes
YJL056C ZAP1 Zinc-responsive activator protein 1 yes yes 871
YHL023C RMD11 Subunit of the Iml1p/SEACIT complex yes yes
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3.2  Zap1 – a novel Urm1-substrate 

3.2.1  Urm1 modif ies Zap1 

Zap1 is a zinc-regulated transcription factor (Zhao & Eide, 1997), which is not only 

the master regulator of zinc uptake, homeostasis (Zhao & Eide, 1996ab), 

conservation (Lyons et al. 2000), storage (MacDiarmid et al., 2000) and 

detoxification (Miyabe et al., 2000 and MacDiarmid et al., 2003), but is involved in 

various adaptive processes such as sulfate metabolism (De Nicola et al. 2007 and 

Wu et al., 2008), cell wall function, phospholipid synthesis, protein turnover and 

ROS defense (Wu et al., 2007 and Wu et al., 2008). Zap1 also regulates its own 

expression via a positive auto-regulatory mechanism (Zhao & Eide, 1997). This 

transcriptional auto-regulation is controlled through the binding of Zap1 to a short 

DNA sequence called zinc-responsive element (ZRE), which is located upstream 

at the ZAP1 promoter. Zap1 binding to ZRE occurs under zinc-deficient conditions 

and thus potentiates the transcriptional activity of Zap1. Zap1 acts as a zinc 

sensor by directly binding to Zn2+ ions.  

To confirm Zap1 as bona fide Urm1-substrate, HisStrepUrm1 was first purified 

using a denaturing tandem affinity purification (TAP) method (adapted from 

Tagwerker et al., 2006; and Maine et al., 2010) and immunoblotted against 

urmylated Zap1 using anti-HA antibodies (Fig. 3-3). A slower-migrating Zap1HA-

species was detected in cells expressing Zap1HA and HisStrepUrm1, corresponding 

to an Urm1-modified Zap1 variant. 

 

 
Figure 3-3. Zap1 is a novel Urm1 substrate. 

Detection of urmylated Zap1HA using tandem affinity purification of HisStrepUrm1. Zap1 urmylation was verified 

by a denaturing Ni-NTA pull-down of HisStrepUrm1 followed by denaturing Strep-tag purification (TAP). Prior to 

kDa
Zap1HA-HisStrepUrm1

Zap1HA

Dpm1

HisStrepUrm1

H
is
St
re
p U
rm
1

W
t

150
100

25

15TA
P

In
pu
ts

150
100

W
T



RESULTS 

 24 

TAP, cells were treated with 10 mM NEM for 1h at 30°C. Samples were subjected to immunoblotting using 

anti-Urm1 antibodies to detect HisStrepUrm1 and anti-HA antibodies to detect Zap1HA. Dpm1 levels serve as a 

loading control. The C-terminal HA-tag was integrated at the endogenous ZAP1 locus. HisStrepUrm1 was 

integrated at the LEU2 locus of Δurm1.  

 

3.2.2  Urm1 influences the transcriptional activity of 
Zap1  

Initial experiments have shown that Zap1 levels were significantly decreased in 

Δuba4 and cells expressing zap1-K871R (KR) that no longer has the predicted 

lysine residue for Zap1 urmylation (data not shown). We therefore wondered if the 

decrease of Zap1 levels was dependent on intracellular zinc concentrations. To 

this end, we constructed yeast strains that contain a C-terminally HA-tagged Zap1 

variant expressed from its endogenous locus. WT, Δurm1 cells expressing Zap1HA 

or zap1-K871RHA were grown in either zinc-limiting (-Zn) or zinc-replete (+Zn) 

conditions. As expected, addition of zinc drastically reduces the expression of 

Zap1HA, but Zap1HA levels were decreased in Δurm1, KR and Δurm1 KR 
independent of zinc abundance when compared with WT (Fig 3-4A). We therefore 

checked whether the ZAP1 expression was affected by lack of urmylation. To this 

end, we quantified mRNA levels via the real time RT-qPCR method. Absolute 

amounts of ZAP1 mRNA were quantified in WT, Δurm1 cells expressing WT Zap1 

or WT cells expressing zap1-K871RHA that were grown in zinc-replete (+Zn) and 

zinc-deficient conditions (-Zn). While expression of ZAP1 mRNA levels were 

downregulated under zinc-replete conditions, ZAP1 expression was upregulated 

under zinc-limiting conditions (Fig. 3-4B). Compared to WT, ZAP1 expression was 

reduced by approximately two-fold in Δurm1, zap1-K871RHA and Δurm1 zap1-
K871RHA under zinc-limiting conditions. Consequently, we investigated, if the 

expression of the Zap1 downstream target Zrt1 is affected by the absence of 

urmylation. Indeed, ZRT1 expression was slightly downregulated in Δurm1, in 

zap1-K871RHA and Δurm1 zap1-K871RHA (Fig. 3-4C). 
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Figure 3-4. Loss of Zap1 urmylation results in decreased Zap1 level and reduced 

transcript ional activity of Zap1. 

(A) Zap1 levels are reduced in absence of Zap1 urmylation. WT, Δurm1 expressing endogenous Zap1HA or 

zap1-K871RHA were grown exponentially in either LZM containing 1 mM (+) or 3 μM (-) ZnCl2 at 30°C. 

Samples were subjected to immunoblotting using anti-HA antibodies to detect Zap1HA. Dpm1 levels serve as a 

loading control. (B) Real-time RT-qPCR analysis of ZAP1 gene expression of cells WT, Δurm1, zap1 K871R 

and combinations grown to log phase in zinc-abundant 1mM ZnCl2 LZM (+Zn) and switched to zinc limiting 

conditions in 3 μM ZnCl2 LZM (-Zn) at 30°C for 4.5h. Fold change was calculated relative to -Zn/+Zn ratio. 

Transcripts were normalized to the housekeeping gene ACT1. Normalized ZAP1 mRNA of cells grown in +Zn 

were set to 1. Values are mean for n=2. (C) Quantitative reverse transcription PCR (RT-qPCR) of ZRT1 

mRNA under zinc-limiting conditions. WT, Δurm1 cells, cells expressing zap1 K871R or combinations were 

grown to log phase in LZM containing either 1000 μM or 3 μM ZnCl2 at 30°C for 4.5h. mRNA was extracted 

from cells and cDNA was generated by using the RT-PCR method. Shown are the relative ZRT1 mRNA levels 

normalized to the housekeeping gene ACT1. Normalized ZRT1 mRNA signal were set to 1. Values are mean 

for n=2.  

 

3.2.3  Urmylation in response to zinc-deficiency 

Prior studies have shown that zinc deficiency increases intracellular levels of 

reactive oxygen species (ROS) (Powell et al., 2000; and Ho, 2004), which in turn 

leads to DNA damage and to protein and lipid peroxidation. Since both Urm1 and 

Zap1 play a vital role in ROS defense (Goehring et al., 2003a; Khoshnood et al., 
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2016; Wu et al., 2007, 2009; and MacDiarmid et al., 2013), we wondered if 

urmylation is changed under zinc-limiting condition. Therefore, Δurm1 cells 

expressing HisStrepUrm1 under the constitutive ADH1 promoter were grown with 

NEM, the oxidizing reagent tert-Butyl hydroperoxide (t-BOOH) or with a limiting 

zinc medium (LZM) (Fig. 3-5). Even though Zap1 urmylation does not seem to be 

increased by zinc-deficiency (data not shown), more substrates are urmylated 

upon zinc-deficient conditions. While cells grown in YPD show few urmylated 

substrates, cells grown in LZM showed increased amounts of Urm1-conjugates 

indicating that zinc deficiency might be an additional trigger for urmylation. NEM 

and t-BOOH served as controls as it is known that these substances strongly 

induce urmylation. 

 
Figure 3-5. Effects of oxidative stress and low zinc condit ions on Urm1 conjugation. 

Cells expressing HisStrepUrm1 under the control of the constitutive ADH1 promoter were grown in YPD and 

switched to 10 mM NEM, 1.5 mM t-BOOH or zinc-limiting LZM containing 3 μM ZnCl2. Samples were then 

taken after the indicated time points and subjected to immunoblotting using Urm1-specific antibodies to detect 

Urm1. Asterisk indicates cross-reactive bands. 

 

3.2.4  Role of Urm1 in zinc-deficiency 

Since several urmylated substrates accumulate under zinc-limiting conditions, we 

next investigated, if cells lacking Urm1 or Uba4 were sensitive under zinc 

deficiency. Therefore, cells were grown on either zinc-replete (+Zn) or zinc-limiting 

(-Zn) medium (Fig. 3-6A). Cells lacking either Urm1 or Uba4 show a strong 

sensitivity towards zinc-limiting conditions. zap1-K871RHA however showed no 

sensitivity towards zinc-limiting conditions. As previously shown, Zap1 levels are 
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lower in absence of Urm1 and in cells expressing zap1-K871R under zinc-replete 

and –limiting conditions potentially caused by a decrease in transcriptional activity 

of Zap1 and/or due to a destabilization of Zap1 caused by lack of Zap1 urmylation 

(Fig. 3-4A). Hence, we wondered whether constitutively urmylated Zap1 in Δurm1, 

Δuba4 and zap1-K871R improves the stability Zap1, which in turn reverts the 

sensitivity of cells lacking Urm1, Uba4 and cells expressing zap1-K871R. To mimic 

a constitutively urmylated Zap1 species, the fusion protein zap1-urm1ΔGGHisHA 

was constructed and integrated into the endogenous ZAP1 locus (or ZAP1-K871R 
locus) in WT, Δurm1 and Δuba4 cells. To assess the expression of zap1-
urm1ΔGGHisHA in WT, Δurm1, Δuba4 and zap1-K871R, protein levels of zap1-
urm1ΔGGHisHA are evaluated (Fig. 3-6B). In contrast to the lowered levels of 

Zap1HA in Δurm1 and in zap1-K871RHA expressed in WT (Fig. 3-4A), zap1-
urm1ΔGGHisHA levels are comparable between WT, zap1-K871R and Δurm1 cells. 

However, zap1-urm1ΔGGHisHA levels are lower in Δuba4 cells compared to WT. 

Cell-growth of the above-mentioned strains expressing zap1-urm1ΔGGHisHA are 

subsequently tested on zinc-replete and -limiting conditions (Fig. 3-6A). In contrast 

to the zinc sensitivity of Δurm1 and Δuba4, Δurm1 and Δuba4 expressing of zap1-
urm1ΔGGHisHA show no or slight sensitivity to zinc-limiting conditions, respectively. 

This finding suggests that Urm1-modification of Zap1 is vital for cell survival under 

zinc deficiency. Previous studies indicate that Zap1 plays a role in oxidative stress 

tolerance by activating the thioredoxin peroxidase Tsa1 and the cytosolic catalase 

Ctt1 (Wu et al., 2007, 2009). To test whether Zap1 and Zap1 urmylation protect 

cells under oxidative stress, we spotted cells in serial dilution on YPD and on YPD 

containing t-BOOH (Fig 3-6C). Cells lacking Zap1 show an equivalent sensitivity to 

t-BOOH seen in Δurm1, Δuba4 and Δzap1 Δurm1. Yet, zap1-K871RHA showed no 

sensitivity to t-BOOH. Expression of zap1-urm1ΔGGHisHA could partially rescue the 

sensitivity of Δurm1, but not in cells lacking Uba4, suggesting that Urm1-

modification of Zap1 plays a vital role in the cell survivability under zinc-limiting 

conditions, but to a lesser extent under oxidative stress. Though the expression of 

zap1-urm1ΔGGHisHA in Δurm1 fully or partially reverts the sensitivity to zinc 

deficiency and oxidative stress, respectively, cells lacking Uba4 expressing zap1-
urm1ΔGGHisHA are partially sensitive to zinc-limiting conditions and strongly  
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Figure 3-6. Epistat ic analysis of Δurm1 ,  Δuba4 ,  Δzap1 ,  zap1 K871R and zap1-urm1ΔGGHisHA 

under zinc-l imit ing and oxidative stress-induced condit ions. 

(A) WT strain or strains lacking Urm1, Uba4, Zap1 or combinations expressing either Zap1 or zap1-
urm1ΔGGHisHA under the endogenous ZAP1 promoter were grown over night. To create zap1-urm1ΔGGHisHA, 

urm1ΔGGHisHA::LEU2 was integrated to the C-terminal ZAP1 locus. Five-fold serial dilutions of cells (adjusted 

to OD600 = 0.5) were spotted on LZM plates either containing 1 mM (+Zn) or 3 μM ZnCl2 (-Zn). Plates were 

incubated at 30°C for 3 days. (B) WT, Δurm1 and Δuba4 cells expressing either zap1-urm1ΔGGHisHA or zap1 
K871R-urm1ΔGGHisHA under the endogenous ZAP1 promoter were grown in LZM with 3 μM ZnCl2 (- Zn) at 

30°C. Samples were subjected to immunoblotting using anti-HA antibodies to detect zap1-urm1ΔGGHisHA or 

zap1 K871R-urm1ΔGGHisHA, respectively. (C) WT strain or strains lacking Urm1, Uba4, Zap1 or combinations 

expressing either Zap1 or zap1-urm1ΔGGHisHA under the endogenous ZAP1 promoter were grown over night. 

Five-fold serial dilutions of cells (adjusted to OD600 = 0.5) were spotted on YPD plates and on YPD plates 

containing 1 mM t-BOOH. Plates were incubated at 30°C for 3 days. 

 

sensitive to oxidative stress (Fig. 3-6AC). This sensitivity might stem from the 

significantly lower zap1-urm1ΔGGHisHA levels Δuba4 compared with the zap1-
urm1ΔGGHisHA levels in WT and Δurm1, and zap1-K871R-urm1ΔGGHisHA 

expressed in WT (Fig. 3-6B). 
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3.2.5  Prerequisites for Zap1 urmylation 

Due to the multi-layered Zap1 regulation through its own transcriptional activation 

via a positive auto-regulatory mechanism and as a zinc sensor, we examined the 

zinc-dependency of Zap1 urmylation. In zinc-replete conditions, zinc ions are able 

to bind residues embedded in the transactivation domains AD1 and AD2 (Fig. 3-

7A, red and orange box), which in terms inhibit the transcriptional activity of Zap1. 

Prior studies have shown that the Zap1 truncation zap1552-880 (zap1-AD2) is 

transcriptionally impaired, as it lacks AD1 (Bird et al., 2000ab, Fig. 3-7A). Similarly, 

the N-terminal truncation zap1Δ17-700 (zap1-DBD), that lacks both transactivation 

domains AD1 and AD2, shows no transcriptionally activity. Importantly, however, 

both truncations are able to bind to ZREs (Frey & Eide, 2011). To investigate 

whether the transcriptional activation domains are necessary for Zap1 urmylation, 

we constructed the zap1 truncations zap1-AD2HA and zap1-DBDHA using the 

constitutive CYC1 promoter to bypass the transcriptional positive feedback loop 

(Fig. 3-7A). To see whether zap1-AD2HA or zap1-DBDHA were urmylated the 

denaturing Ni-NTA pull-down method was used to purify HisStrepUrm1 and 

potentially urmylated zap1-AD2HA or zap1-DBDHA (Fig. 3-7B). Indeed, a slower 

migrating urmylated species of zap1-AD2HA and zap1-DBDHA could be detected 

indicating that the activation domains AD1 and AD2 are not required for Zap1 

urmylation. Since both Zap1 truncations are shown to bind to ZREs via the DNA-

binding domain (DBD), we examined whether Urm1-modification of Zap1 depends 

on the presence of the DBD domain. Therefore, a Green fluorescent protein 

(GFP)-tagged C-terminal Zap1 variant under the control of CYC1 promoter, 

containing the last 64 aa of Zap1 C-terminus, was integrated in WT and in Δuba4 

expressing HisStrepUrm1 (zap1-C, Fig. 3-7C). Compared to endogenous expressed  
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 Figure 3-7. Urm1 modif ies Zap1 at K871. 

(A) Schematic diagram of full-length Zap1 and truncated Zap1-fragments lacking AD1 (zap1-AD2) or both 

activation domains (zap1-DBD). Both truncations are able to bind ZREs. However, zap1-AD2 displays low 

transcription activity, while zap1-DBD shows no transcriptional activity. Both constructs are expressed under 

the CYC1 promoter, possess a C-terminal HA-tag and are integrated into the LEU2 locus. Transactivation 

domains AD1 and AD2 are shown as red and orange boxes, respectively, while the DNA-binding domain 

DBD, consisting of five zinc fingers, is marked in blue boxes. (B) Cells expressing zap1-AD2 or zap1-DBD 

with His-Strep-tagged or untagged Urm1 under the control of the constitutive ADH1 promoter were treated 

with 10 mM NEM for 1h at 30°C. HisStrepUrm1 was purified using a denaturing Ni-NTA pull-down to detect 

urmylated truncated Zap1-fragments. Samples were subjected to immunoblotting using Urm1-specific 

antibodies to detect HisStrepUrm1 and anti-HA antibodies to detect HA-tagged zap1-variants. Dpm1 levels serve 

as a loading control. (C) The 64 aa long C-terminal fragment zap1-C, which lacks both activation domains 

and the DNA-binding domain, was expressed under the CYC1 promoter. zap1-C was N-terminally GFP-

tagged and integrated into the LEU2 locus. Urmylated zap1-C species was detected by Ni-NTA pull-down of 

either HisStrep-tagged or untagged Urm1. Prior to Ni-NTA pull-down, cells were treated with 10 mM NEM for 

1h at 30°C. Samples were subjected to immunoblotting using Urm1-specific antibodies to detect HisStrepUrm1 

and anti-GFP antibodies to detect zap1-C. Dpm1 levels serve as a loading control. (D) Urm1 modifies zap1-C 

at K871. A lysine to arginine mutation of the neighboring lysine residue zap1-C-K877R or a cysteine to serine 

substitution of zap1-C-C872S did not abolish urmylation. However, zap1-C-K871R was no longer urmylated. 
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full-length Zap1, GFPzap1-C fragment protein levels are higher and affected from 

the presence or absence of Uba4. Thus, we were able to use these novel strains 

and test the influence of Uba4 on urmylation of Zap1. Using the denaturing Ni-NTA 

pull-down method to purify HisStrepUrm1, a slower migrating urmylated GFPzap1-C 

species was detected in WT cells expressing GFPzap1-C and HisStrepUrm1, but not in 

cells lacking Uba4, indicating that Zap1 urmylation is Uba4-dependent (Fig. 3-7C). 

According to previous experiments we generated GFPzap1-C variants, which 

possess lysine to arginine substitutions at either K871, the neighboring K877 or a 

cysteine to serine substitution at C872 (Fig. 3-7D). GFPzap1-C and all GFPzap1-C 

variants, but GFPzap1-C K871R, were urmylated. This result implies that the Urm1-

conjugation machinery is able to specifically recognize and urmylate the predicted 

acceptor lysine residue K871 in the zap1-C fragment and possibly urmylate full-

length Zap1 at K871. 

 

3.2.6  Zap1 urmylation occurs in the cytoplasm 

Next we investigated whether Zap1 urmylation occurs in specific compartments 

(e.g. nucleus or cytoplasm) or in the entire cell. Previous microscopic and 

subcellular fractionation assays show that the localization of overexpressed Zap1 

under the inducible GAL promoter is nuclear (Bird et al., 2000, Frey et al., 2011). 

However, overexpression of Zap1 results in zinc-independent transcriptional 

activation of target genes such as ZRT1 due to the zinc-independent and 

constitutive binding of Zap1 to the chromatin via the ZREs (Frey et al., 2011). To 

examine the localization of endogenous Zap1, we integrated a GFP-tag at the C-

terminus of the ZAP1 locus (Fig. 3-8A). Zap1GFP was predominantly localized at 

the cytoplasm as speckled dots and only a fraction of Zap1GFP was found in the 

nucleus. As previously demonstrated, zap1-AD2 also localized in the cytoplasm as 

speckled dots and to the nucleus (Bird et al., 2000). We therefore speculated if a 

nuclear localization signal (NLS) is localized within the C-terminus of Zap1. Using 

NLS-Mapper (http://nls-mapper.iab.keio.ac.jp/, Kosugi et al., 2009), we were able 

to identify a putative bipartite NLS at 847-876 aa within Zap1. Consequently, we  
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Figure 3-8. Zap1 urmylation occurs in the cytoplasm. 

(A) Live cell fluorescence microscopy of yeast cells expressing either C-terminal GFP-tagged Zap1 with ZAP1 

promoter or N-terminal GFP-tagged zap1-C with CYC1 promoter. Cells were grown exponentially in SC 

medium at 30°C and images were taken using a fluorescence microscopy. (B) Localization of nuclear or 

cytoplasmic zap1-C. zap1-C under the control of the CYC1 promoter was fused to the SV40 bipartite NLS 

(zap1-C-NLS, KRPAATKKAGQAKKKK) or to the PKI NES (zap1-C-NES, LALKLAGLDI) and integrated to the 

LEU2 locus. Cells were grown exponentially in SC medium at 30°C and images were taken using a 

fluorescence microscopy. (C) Cells expressing either the nuclear zap1-C-NLS or cytoplasmic zap1-C-NES 

with His-Strep-tagged or untagged Urm1 were treated with 10 mM NEM for 1h at 30°C. HisStrepUrm1 was 

purified using a denaturing Ni-NTA pull-down to detect urmylated zap1-C variants. zap1-C-NLS KR and zap1-

C-NES KR possess a K871R mutation. Samples were subjected to immunoblotting using Urm1-specific 

antibodies to detect HisStrepUrm1 and anti-GFP antibodies to detect zap1-C. Dpm1 levels serve as a loading 

control. The asterisk denotes a cross-reactive band. 
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looked for the localization of the GFPzap1-C (Fig. 3-8A). Similar to full-length 

Zap1GFP, GFPzap1-C was predominantly localized in the cytoplasm as speckled 

dots and was rarely found in the nucleus. This finding coincided with recent 

screens for subcellular localization of proteins (Chong et al., 2015 and Koh et al., 

2015). In these studies, Zap1 was predominantly localized in the cytoplasm under 

steady-state conditions. Since Zap1HA and GFPzap1-C share an analogous 

nucleocytoplasmic localization, we wondered whether urmylation takes place in 

the nucleus, cytoplasm or in both compartments. To this end zap1-C variants were 

constructed that would be exclusively localized to the nucleus or in the cytosol. 

Therefore we fused SV40 bipartite nuclear localization signal (NLSSV40, 

KRPAATKKAGQAKKKK) or the protein kinase inhibitor nuclear export signal 

(NESPKI, LALKLAGLDI) to the C-terminus of zap1-C (Fig. 3-8B). All these reporter 

constructs were under the control of the CYC1 promoter and were integrated to the 

LEU2 locus. While GFPzap1-C-NLS was largely localized to the nucleus, GFPzap1-

C-NES was homogenously distributed throughout the cells (Fig. 3-8C). To 

evaluate whether the nuclear or cytoplasmic GFPzap1-C variant was urmylated, 

cells expressing HisStrepUrm1 and GFPzap1-C-NLS or GFPzap1-C-NES were 

subjected to denaturing Ni-NTA pull-down of HisStrepUrm1. Both cytoplasmic 
GFPzap1-C-NES and nuclear GFPzap1-C-NLS were urmylated (Fig. 3-8C). 

 

3.3  Function of Zap1 urmylation 

3.3.1  Zap1 stabil i ty is increased in the presence of 
Zap1 urmylation 

After showing that Urm1 covalently modifies Zap1 in the cytoplasm we studied the 

cellular consequence of Zap1 urmylation. Initially, we could observe that Zap1 

urmylation correlates with Zap1 protein levels. We already showed that this was 

partially due to increased transcription activity (Fig. 3-3B and Fig. 3-4AB). We now 

analyzed whether urmylation could have an additional effect on protein stability. To 

this end, we constructed yeast strains that express Zap1HA under the control of the 

constitutive CYC1 promoter that lacked the ZAP1 ZRE in the sequence upstream 

of the CYC1 promoter and that were integrated to the LEU2 locus. To test whether 

urmylation stabilizes Zap1, we first investigated degradation kinetics of full-length 
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Zap1HA under the control of the CYC1 promoter by utilizing the cycloheximide 

(CHX) shut-off method in WT, Δurm1 and Δuba4 cells (Fig. 3-10A). In contrast to 

WT cells, Zap1HA was degraded with slightly faster kinetics in cells lacking Urm1 

and Uba4. Since GFP is a very stable protein that is resistant to proteases and 

ubiquitin-dependent degradation, putative degrons were frequently fused to GFP in 

order to destabilize the GFP-fusion protein (Chalfie et al., 1994 and Li et al., 1998). 

Therefore, we examined the degradation kinetics of GFP and GFPzap1-C. Since 
GFPzap1-C was urmylated at K871, the degradation kinetics of GFPzap1-C-K871R 

was tested as well (Fig. 3-10B). Though, GFPzap1-C was degraded over time, 

GFPzap1-C degradation kinetics was slower than full-length Zap1HA. In absence of 

urmylation (GFPzap1-C Δurm1 and GFPzap1-K871R) GFPzap1-C was degraded with 

faster kinetics. Since the Zap1HA and zap1-CGFP degradation in absence of 

urmylation was marginally faster, we wondered if the non-urmylated nuclear Zap1 

pool masks the urmylated cytoplasmic pool of Zap1. 

 

 
Figure 3-10. Zap1 is degraded with faster kinetics in absence of urmylation. 

(A) Degradation kinetics of Δurm1 and Δuba4 cells expressing Zap1HA under the control of the constitutive 

CYC1 promoter. Exponentially grown cells incubated in YPD at 30°C were treated with CHX to inhibit 

translation. Samples were then taken after the indicated time points and subjected to immunoblotting using 

anti-HA antibodies to detect Zap1HA. Dpm1 levels serve as a loading control. (B) WT and Δurm1 expressing 

GFP, GFPzap1-C or GFPzap1-C-K871R under the control of the constitutive CYC1 promoter were incubated in 

YPD at 30°C. CHX was added to the cultures to inhibit translation. Samples were then taken after the 

indicated time points and subjected to immunoblotting using anti-GFP antibodies to detect GFP, GFPzap1-C 

and GFPzap1-C-K871R, respectively. Pgk1 levels serve as a loading control. 
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To investigate the degradation kinetics of the non-urmylated nuclear pool and the 

urmylated cytoplasmic Zap1 pool, we utilized the CHX shut-off experiment to study 

the degradation kinetics of GFPzap1-C-NLS (Fig. 3-11A) and GFPzap1-C-NES (Fig. 

3-11B). Initial experiments show that GFPzap1-C-NLS and GFPzap1-C-K871R-NLS 

were stable over a period of ≥4h in all cell lines (data not shown). Cells expressing 
GFPzap1-C-NES and GFPzap1-C-NES K871R were rapidly degraded within 30 min. 

We therefore shortened the CHX shut-off experiment and examined the 

degradation kinetics of both constructs within 25 min. While GFPzap1-C-NLS was 

stable over time, full-length GFPzap1-C-NES was rapidly and completely degraded 

into a shorter N-terminal degradation intermediate at 25 min. Remarkably, 
GFPzap1-C-NES K871R degraded even faster than GFPzap1-C-NES indicating that 

Zap1 urmylation enhances Zap1 stability. 

 

 
Figure 3-11. Zap1 C-terminus contains a cytoplasmic, Urm1-dependent degron. 

(A) Cells expressing GFPzap1-C-NLS and GFPzap1-C-NLS K871R under the control of the constitutive CYC1 

promoter were incubated in YPD at 30°C. CHX was added to the cultures to inhibit translation. Samples were 

then taken after the indicated time points and subjected to immunoblotting using anti-GFP antibodies to detect 
GFPzap1-C-NLS and GFPzap1-C-NLS K871R, respectively. Dpm1 levels serve as a loading control. (B) Cells 

expressing GFPzap1-C-NES and GFPzap1-C-NES K871R under the control of the constitutive CYC1 promoter 

were incubated in YPD at 30°C. CHX was added to the cultures to inhibit translation. Samples were then taken 

after the indicated time points and subjected to immunoblotting using anti-GFP antibodies to detect GFPzap1-C-

NES and GFPzap1-C-NES K871R. Dpm1 levels serve as a loading control. 

 

Prior experiments showed that overexpression of Urm1 not only leads to an 

increase in free Urm1, but also an overall increase in Urm1-conjugates (data not 

shown). Urmylation significantly increased when replacing the endogenous URM1 

promoter to the inducible GAL1 promoter (Fig. 3-12A). We therefore asked 

whether a pulse of galactose-induced Urm1 would increase the overall Zap1HA by 

putatively increasing the urmylated Zap1 pool. To this end, we utilized cells 

expressing Zap1HA under the CYC1 promoter together with the inducible Urm1 

under the GAL1 promoter (Fig. 3-12A). Remarkably, overall Zap1HA level was 
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elevated in galactose-induced cells (Fig. 3-12A). Hence, we speculated that the 

elevated Zap1HA level was due to Zap1 urmylation triggered by a burst of 

galactose-induced Urm1 expression. To exclude that the elevated Zap1HA level in 

presence of galactose-induced Urm1 was due to improved Zap1 transcription or 

translation, we utilized the CHX shut-off experiment to determine Zap1HA 

degradation kinetic of cells, which were grown either with (+) or without (-) 

galactose for 3h at 30°C (Fig. 3-12B). Intriguingly, while Zap1HA was entirely  

 

 
Figure 3-12. Elevated Urm1 levels lead to Zap1 stabil ization. 

(A) Overview of Urm1 under the control of the inducible GAL1 promoter. Upon galactose-induced 

overexpression of Urm1 Zap1HA protein levels are elevated. Cells expressing Zap1HA and Urm1 under the 

control of the inducible GAL1 promoter were grown exponentially in YPR for 4.5h. Galactose was added to the 

medium and incubated for 3h to induce Urm1. Samples were collected and subjected to immunoblotting using 

anti-HA antibodies and Urm1-specific antibodies to detect Zap1HA and Urm1, respectively. (B) Zap1 

degradation rate is decreased in presence of elevated Urm1 levels. Cells expressing Zap1HA and Urm1 under 

the control of the inducible GAL1 promoter were grown exponentially in YPR for 4.5h. Galactose was added to 

the medium and incubated for 3h to induce Urm1. CHX was then added to the cultures to inhibit translation. 

Samples were then taken after the indicated time points and subjected to immunoblotting using anti-HA 

antibodies and Urm1-specific antibodies to detect Zap1HA and Urm1, respectively. Pgk1 levels serve as a 

loading control. Quantification of Zap1 degradation kinetics and half-life are shown below. Values are mean for 

n=2. 
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degraded after 90 min in cells grown without galactose (-Gal half-life t1/2=14.3 

min), Urm1-inducing cells showed a notable delay in Zap1HA degradation kinetics 

(+ Gal half-life t1/2=48.6 min) (Fig. 3-12B). This finding suggests that a short 

overexpression of Urm1 was able to protect Zap1HA from degradation. 

 

3.3.2  Ubiquit in proteasome-dependent degradation of 
Zap1 

As shown previously, Zap1 is a highly unstable protein that is rapidly degraded in 

an Urm1-dependent manner. We therefore investigated the nature of Zap1 

degradation in order to understand how Zap1 urmylation could positively influence 

Zap1 stability. Earlier studies showed that yeast cells carrying the heat-sensitive, 

proteasomal mutant cim3-1 grown under restrictive temperatures caused a cell 

cycle arrest at G2/M and an accumulation of proteasomal substrates (Ghislain et 
al., 1993). To investigate if degradation of Zap1 is proteasomal dependent, the 

degradation kinetics of Zap1HA under the constitutive CYC1 promoter were tested 

in WT, cim3-1 and Δurm1 cim3-1 cells (Fig 3-13). Zap1HA expressed in cim3-1 and 

cim3-1 Δurm1 was strongly stabilized. We therefore conclude that degradation of 

Zap1 is mediated via the proteasome. To assess, if the proteasomal degradation 

of Zap1 was mediated by Zap1 ubiquitination, we examined whether the C-

terminus of Zap1 was polyubiquitinated. Using an immunoprecipitation (IP) method 

to purify GFP and GFPzap1-C, the eluates were probed with anti-ubiquitin 

antibodies (Fig. 3-14A). We could detect faint bands of ubiquitin in mock and GFP 

samples, whereas several higher migrating bands corresponding to ubiquitinated  

 

 
Figure 3-13. Zap1 is degraded via the ubiquit in-proteasome system. 

WT, cim3-1 and cim3-1 Δurm1 expressing Zap1HA under the control of the constitutive CYC1 promoter were 

first grown to log phase at 25°C and incubated under the non-permissive temperature of 37°C for 1.5h to 

functionally inactivate the proteasome in cim3-1 cells. CHX was added to the cultures to inhibit translation. 
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Samples were then taken after the indicated time points and subjected to immunoblotting using anti-HA 

antibodies to detect Zap1HA. Pgk1 levels serve as a loading control.  

 

species were detected in the immunoprecipitated GFPzap1-C sample indicating that 

the C-terminus of Zap1 is ubiquitinated. Next, GFPzap1-C-NLS and GFPzap1-C-NES 

were immunoprecipitated under denaturing conditions and probed for ubiquitin 

using anti-ubiquitin antibodies (Fig. 3-14B). Compared to GFPzap1-C-NLS, a high 

amount of ubiquitin was co-immunoprecipitated with GFPzap1-C-NES. Since we 

could not IP GFPzap1-C-NES in equimolar amounts among all strains, we were 

unable to conclusively discern whether Zap1 urmylation influences Zap1 

ubiquitination in this experimental setup. 
 

 
Figure 3-14. GFPzap1-C and the cytoplasmic GFPzap1-C-NES are strongly ubiquitylated. 

(A) WT cells (mock) and cells expressing GFP or GFP-tagged zap1-C were grown exponentially in YPD at 

30°C and subjugated to immunoprecipitation of GFP and GFPzap1-C using GFP-Trap. Samples were subjected 

to immunoblotting using anti-GFP antibodies to detect GFP and GFPzap1-C and anti-ubiquitin antibodies to 

detect ubiquitinated substrates. (B) Cytoplasmic GFPzap1-C-NES is strongly ubiquitylated, but not the nuclear 
GFPzap1-C-NLS. WT cells (mock) and WT, Δurm1, Δuba4, cells expressing either GFP, GFPzap1-C-NES, 
GFPzap1-C-NLS or their respective KR mutant counterparts, were grown exponentially in YPD at 30°C and 

subjugated to immunoprecipitation of GFP and GFPzap1-C using GFP-Trap. Samples were subjected to 

immunoblotting using anti-GFP antibodies to detect GFP, GFPzap1-C-NES and GFPzap1-C-NLS. Anti-ubiquitin 

antibodies were used to detect ubiquitinated substrates. 
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3.3.3  Identif ication of a Zap1-specif ic E3 l igase 

As GFPzap1-C and the cytoplasmic GFPzap1-C-NES were shown to be highly 

ubiquitinated, we sought to identify the responsible E3 ligase. For this reason, we 

immunoprecipitated GFPzap1-C and GFPzap1-C-K871R (Fig 3-15, left) and 

investigated samples by LC-MS/MS analysis (Fig 3-15, right). Due to a 

contamination of the GFPzap1-C-K871R sample with GFPzap1-C proteins possibly 

during sample preparation, an examination on the differences between both 

samples was not possible. Nonetheless, the interaction partners of GFPzap1-C 

could be analyzed using immunoprecipitated GFPzap1-C samples after a LC-

MS/MS analysis. Alongside the identification of Urm1 and Uba4, we could co-

purify most of the Doa10 complex (i.e. Doa10, Cue1, Rad23, Ubx2, Ufd2, Npl4 and 

Cdc48) in the GFPzap1-C samples. Interestingly, it was previously shown that the 

E3 ligase Doa10 together with the ER-associated intramembrane protease Ypf1 

and the ERAD-factor Dfm1 could recognize and degrade the Zap1-target gene 

ZRT1 in a zinc-dependent manner (Avci et al., 2014). In order to verify that the 

 
Figure 3-15. Putative interaction partners of zap1-C. 

WT cells (mock) and cells expressing GFP-tagged zap1-C or zap1-C-KR under the control of MET25 promoter 

were immunoprecipitated using GFP-Trap to immunoprecipitate zap1-C or zap1-C-KR (left panel). Samples 

were collected and a fraction was subjected to immunoblotting using anti-GFP antibodies to detect zap1-C. 

The remaining sample was subjected to LC-MS/MS analysis. A list of selected, putative zap1-C interaction 

partners were listed with their respective peptide intensities (right). 
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Doa10 complex was responsible for mediating the ubiquitin-dependent 

degradation of Zap1; we examined the degradation kinetics of WT, Δdoa10 and 

cdc48-3 cells expressing Zap1 under the control of the constitutive CYC1 promoter 

using the CHX shut-off method (Fig. 3-16A). Degradation of Zap1HA in cells lacking 

Doa10 and in cdc48-3 cells was either delayed or completely abolished, 

respectively. Analogously, we tested if the delay in Zap1HA degradation in Δdoa10 

and cdc48-3 cells could be attributed to defective degradation of the cytoplasmic 

Zap1 pool. We therefore utilized the CHX shut-off experiment to monitor the 

degradation kinetic of GFPzap1-C-NES in WT, Δdoa10 and cdc48-3 cells (Fig. 3-

16B). GFPzap1-C-NES degradation was completely blocked in Δdoa10 and strongly 

delayed in cdc48-3 cells. Intriguingly, GFPzap1-C-NES was completely stabilized in 

Δdoa10 cells. These data clearly indicate that the degradation process of 

cytoplasmic Zap1 works via a Doa10 and Cdc48 dependent pathway. 
 

 
Figure 3-16. Doa10 and Cdc48 mediate the degradation of Zap1 and zap1-C.  

(A) WT, Δdoa10, cdc48-3 cells expressing Zap1HA under the control of the constitutive CYC1 promoter were 

first grown at room temperature to reach logarithmic phase of growth. Prior CHX addition, the cells were 

incubated for 2h at non-permissive temperature (37 °C). Samples were then taken after the indicated time 

points and subjected to immunoblotting using anti-HA antibodies to detect Zap1HA. Pgk1 levels serve as a 

loading control. (B) WT, Δdoa10, cdc48-3 cells expressing GFPzap1-C under the control of the constitutive 

CYC1 promoter were first grown at room temperature to reach logarithmic phase of growth. Prior CHX 

addition, the cells were incubated for 2h at non-permissive temperature (37 °C). Samples were then taken 

after the indicated time points and were prepared by the TCA method and subjected to immunoblotting using 

anti-GFP antibodies to detect GFPzap1-C. Pgk1 levels serve as a loading control. 
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4  Discussion 
Despite recent studies about the importance of Urm1 as a sulphur carrier by 

thiolating U34 in wobble tRNALys(UUU), tRNAGln(UUG), and tRNAGlu(UUC), little is known 

about Urm1 as a post-translational protein modifier. Though a few Urm1 

substrates have been identified, the precise role of urmylation on these Urm1-

modified substrates have yet to be elucidated. 

In this thesis, we developed a quantitative proteomic approach to identify novel 

Urm1 substrates. We could reproducibly recognize a set of so far unknown Urm1 

protein substrates. Importantly, with this strategy we were able to detect known 

Urm1 target proteins such as Ahp1 and Uba4, and several previously unidentified 

Urm1-substrates, indicating that our MS-based protocol is a potent method for the 

detection of Urm1 target proteins. Moreover, for the first time we could detect 

respective Urm1-attachment sites in a proteomic approach confirming that Urm1 is 

indeed a lysine-directed modifier. Among this set of proteins, we could identify and 

verify the zinc-dependent transcription-activator Zap1, a master zinc regulator in S. 
cerevisiae, as a lysine-directed Urm1-substrate. Urm1 modifies Zap1 at the very 

C-terminus (even in absence of the transcriptional-activation and chromatin-

binding domain of Zap1) and seems to stabilize Zap1. Accordingly, absence of 

Zap1 urmylation made Zap1 more susceptible to ubiquitin-dependent degradation. 

While cells lacking Urm1 and Uba4 show an impaired growth under zinc-depleted 

conditions, these cells can be rescued by expressing a linearly fused zap1-
urm1ΔGG, indicating that Zap1 urmylation plays an important role under zinc 

deficiency. In line with the zinc sensitivity of cells lacking Urm1, ZAP1 expression 

and the expression of the Zap1 target gene ZRT1 are downregulated. The 

following findings and their implications will be discussed below. 
 

4.1  Strategy for the identif ication of novel Urm1-
substrates 

Deletion of the Urm1 pathway displays a plethora of stress-induced phenotypes in 

S. cerevisiae suggesting an essential role of Urm1 in stress tolerance (Furukawa 

et al., 2000; Goehring et al., 2003ab; Chen et al., 2009; Khoshnood et al., 2016; 
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Damon et al., 2015; and Schorpp, 2011). Due to the dual function of Urm1 as a 

protein modifier and its role in Urm1 tRNA thiolation it is difficult to connect a new 

identified stress-induced phenotype with a specific Urm1 activity. Many Urm1-

deficient phenotypes correlate with lack of U34 thiolation and there are no known 

phenotypes that are attributed to a lack in substrate urmylation (Leidel et al., 2009; 

data not shown). Moreover, it remains unclear, if the urmylation and sulphur donor 

function of Urm1 are functionally connected (Goehring et al., 2003b; Schorpp, 

2011; data not shown). Previous studies in S. cerevisiae, mammalian cells and D. 
melanogaster described very few urmylated substrates under steady-state 

conditions, but various oxidizing agents such as diamide, H2O2, tert-butyl 

hydroperoxide (t-BOOH) enhanced protein urmylation (Furukawa et al., 2000; 

Goehring et al., 2003a; Van der Veen et al., 2011; and Khoshnood et al., 2016). 

Treatment with diamide, H2O2 and t-BOOH yielded disparate and distinct 

urmylation patterns suggesting that these oxidizing agents trigger specific Urm1 

conjugates. An even more potent stimulant of Urm1 conjugation is N-

ethylmaleimide (NEM), which causes irreversible alkylation of free thiols (Gregory, 

1955). This in turn affects all thiol-containing proteins such as the alkylation and 

inactivation of cysteine peptidases that are able to resolve UBLs and possibly 

deurmylases. 

To understand the cellular functions of Urm1 and to maximize the amount of 

urmylated proteins in an unbiased manner, a SILAC-based quantitative proteomics 

approach was conducted in the presence of NEM, as it would potentially 

deactivate deurmylases, trapping urmylated proteins and eventually leading to the 

accumulation of Urm1-substrates. To exclude Urm1 interactors and to increase the 

amount of urmylated proteins, a denaturing Nickel-nitrilotriacetic acid (Ni-NTA) 

purification method or a denaturing tandem affinity purification (TAP) method was 

utilized. By the nature of LC-MS/MS-based sample preparation, branched 

peptides, among other things, are generated by tryptic digestion. These branched 

peptides are derived from covalently modified proteins and enable the 

identification of potential Urm1-targeted acceptor lysine residues. Since WT Urm1 

would generate Urm1 branched peptides of considerable length, the HisHAurm1-
L96R variant was used in order to generate Urm1-specific HGG-ε-K signature 
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branched peptides in a LC-MS/MS approach, which allows the recognition of 

urmylation sites (Fig. 3-2A). A total of 547 putative Urm1-substrates were identified 

in the screen using NEM-treated and untreated cells expressing HisHAurm1-L96R, 

which included the known Urm1-substrates Ahp1 and Uba4 indicating the overall 

reliability of the LC-MS/MS. Even though Urm1 and the Urm1-modified substrates 

were purified under denaturing conditions, it is still possible for high-affinity binders 

and contaminants to be co-purified (Lüders et al., 2003; and Tagwerker et al., 
2006). Since both samples contain approximately equimolar amounts of high-

affinity binders and contaminants, proteins with a H/L ratio of >1 and a p-value of 

<0.05 were inquired in order to exclude false-positives. Indeed, 21 proteins met 

the above-mentioned criteria and were significantly enriched in NEM-treated cells 

(Fig. 3-2B, Tab. 3-1). The majority of these proteins was additionally found in at 

least one of two confirmation experiments using urm1-L96R variants and was also 

identified in at least one of three experiments using WT Urm1, suggesting that 

these proteins are very likely to be true covalently modified Urm1-substrates (Tab. 

3-1). Utilizing the urm1-L96R variants proved to be advantageous, as it allowed 

the identification of Urm1-specific HGG-ε-K signature peptides, which in turn lead 

to the recognition and characterization of Urm1-attachment sites. Thus, we were 

able to identify a total of 59 Urm1-attachment sites using the urm1-L96R variant in 

the total sum of three denaturing purification experiments. Consistent with previous 

results, we were able to identify the lysine residue K32 of the peroxiredoxin Ahp1 

as the Urm1-attachment site and K41 and K107 as additional acceptor lysine (Van 

der Veen et al., 2011, data not shown). Whether urmylation of Ahp1 at K41 and/or 

K107 plays a physiological role in regulating Ahp1, remains to be shown in future 

studies. Among the Urm1-attachment sites, we were able to discover the lysine 

residue 871 of the zinc-responsive transcription factor Zap1 as Urm1 acceptor site 

and could confirm Zap1 urmylation at K871 in western blot experiments (Tab. 3-1, 

Fig, 3-7D). 

Altogether, the HisHAurm1-L96R variant appears to be an excellent tool to identify 

unknown Urm1-substrates under various conditions in a mass spectrometry 

approach. The His-tag enables Urm1-conjugates to be purified under denaturing 

conditions by preserving protein modifications, while non-covalent protein-protein 
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interactions are unstable under these conditions. In addition the L to R conversion 

of the urm1-L96R variant allows the identification of Urm1-attachment sites by 

trypsin digestion and creating tryptic branched peptides of Urm1-substrates that 

can be measured by LC-MS/MS. We were able to identify several unknown Urm1-

substrates and a set of Urm1-modified proteins with their respective Urm1-

attachment sites. This data could provide new insights into the role of Urm1 as a 

protein modifier. It remains to be seen if more proteins can be validated as bona 
fide Urm1-substrates and how these urmylated proteins impact cells in vivo. 

 

 

4.2  Urm1 modif ies Zap1 
In this work, we identified the zinc-responsive transcription factor Zap1 as a novel 

lysine-directed Urm1-substrate using LC-MS/MS and validated Zap1 urmylation by 

the denaturing tandem affinity purification (TAP) method. As previously shown, 

substrate urmylation requires the presence of the E1-like enzyme Uba4 and an 

acceptor lysine within the target protein (Furukawa et al., 2000; and Van der Veen 

et al., 2011). To investigate whether Zap1 urmylation is dependent on the 

enzymatic activity of Uba4 and requires the acceptor lysine K871, Δuba4 Zap1HA 

and zap1 K871RHA strains were created in HisStrepUrm1 background. However, 

Zap1HA was unstable in these strains compared to Zap1HA in Wt cells making it 

challenging to investigate Zap1 urmylation in these strain backgrounds. To 

examine whether the decrease in Zap1 levels stems from the influence of Zap1 

urmylation on the transcriptional activity of Zap1, the endogenous ZAP1 promoter 

was replaced to various constitutive (CYC1, ADH1) and inducible promoters 

(MET25, GAL1) in order to discontinue Zap1 binding to ZAP1 ZRE and hence 

uncoupling the autoregulatory Zap1 mechanism. Yet, Zap1 levels remained 

decreased in absence of Urm1, Uba4 or in cells expressing zap1-K871RHA 

indicating that Urm1-conjugation to Zap1 does not influence the transcriptional 

activity of Zap1, but may improve Zap1 stability (data not shown). By fusing the 

last 64 aa of Zap1 (zap1817-880, zap1-C) to GFP, we were able to obtain a GFP 

reporter that was more stable than Zap1HA and thus could be used in Δuba4 

strains and in cells expressing GFPzap1-C-K871R. Remarkably, the Urm1 
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conjugation machinery was able to recognize the short Zap1-specific sequence of 
GFPzap1-C and urmylate GFPzap1-C in an Uba4-dependent manner. Moreover, 

urmylation clearly depends on presence of lysine K871 of Zap1, as GFPzap1-C-
K871R was no longer urmylated. Zap1 seems to be specifically mono-urmylated at 

K871 although the C-terminal part of Zap1 and zap1-C contains multiple lysine 

residues. Zap1 (and zap1-C variant) urmylation only affects a small fraction of the 

total Zap1 pool independent of Zap1 expression and intracellular zinc 

concentrations (data not shown). This observation is especially peculiar, as the 

zap1-C variants are overexpressed under constitutive promoters like CYC1 and 

ADH1 indicating that the urmylated Zap1 pool is being tightly regulated. Whether 

this observation stems from a transient Zap1 urmylation and subsequent 

deurmylation or from an unknown trigger that potentiates or down regulates Zap1 

urmylation is unclear. 

 

4.2.1  Localization of Zap1-Urm1 

To gain more insights into the function of Zap1 urmylation, we studied the cellular 

localization of urmylated Zap1. Unlike previous publications showing mycZap1 

under the control of GAL1 promoter to be localized to the nucleus, we showed that 

endogenously expressed Zap1GFP was predominantly localized to the cytoplasm 

and was rarely observed in the nucleus under zinc-replete conditions (Bird et al., 
2000, Fig. 3-8A). The discrepancy in localization of overexpressed mycZap1 and 

endogenously expressed Zap1GFP could be explained by preceding studies that 

showed that overexpressed Zap1 was constitutively bound to ZRT1 ZREs, (and 

possibly other ZREs), independent of the cellular zinc concentration (Frey et al., 
2011). The constitutive binding of mycZap1 to the chromatin could explain prior 

observations of a predominant nuclear mycZap1, as overexpression of Zap1 seems 

to bypass the zinc-sensing ability of Zap1 and possibly enabling the translocation 

of Zap1. As our data concurred with recent screens for subcellular localization of 

yeast proteins, in which endogenous Zap1GFP showed a predominantly 

cytoplasmic localization under zinc-replete conditions (Chong et al., 2015; and Koh 

et al., 2015), it is likely that Zap1 is retained in the cytoplasm under zinc-replete 
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conditions and translocated to the nucleus under zinc deficiency; a regulatory 

mechanism commonly observed with conditional transcription factors that are 

retained in the cytoplasm, but translocated to the nucleus in response to external 

stimuli (Johnson et al., 1999; Yamaguchi-Iwai et al., 2002; Cox et al., 2004; and 

Lindert et al., 2009). In fact, a recent study demonstrated that zinc-starvation 

promoted the gradual nuclear translocation of Zap1 over time (Kawamata et al., 
2017). Since GFPzap1-C is recognized by the Urm1 conjugation machinery and 

shows a similar cellular localization of full-length Zap1, we used this GFPzap1-C 

version to fuse it to sequences targeting GFPzap1-C either to the nucleus via a 

nuclear localization signal (NLS) or cytoplasm via a nuclear export signal (NES). 

Both GFPzap1-C-NES and GFPzap1-C-NLS predominantly localized into their 

intended cellular compartments. We could demonstrate that the cytoplasmic 
GFPzap1-C-NES and nuclear GFPzap1-C-NLS was urmylated. While ScUrm1 and 

hUrm1 are localized ubiquitously distributed within cells, ScUba4 and hUba4 are 

strictly located at the cytoplasm (Chowdhury et al., 2012; Chong et al., 2015 and 

Koh et al., 2015). However, subcellular fractionation of human cells showed that 

free hUrm1 and conjugated hUrm1-substrates alike are solely found in the 

cytoplasm (Van der Veen et al., 2011). In line with this finding, Drosophila Urm1 is 

exclusively localized at the cytoplasm (Khoshnood et al., 2016). How is the 

predominantly nuclear GFPzap1-C-NLS still being recognized and urmylated by the 

cytoplasmic-localized Urm1-conjugation machinery? The urmylation machinery 

might target the newly translated and cytoplasmic GFPzap1-C-NLS pool. Thus, a 

small fraction of GFPzap1-C-NLS is being urmylated. Together, the localization 

studies done on the Urm1 machinery and the Urm1 conjugates as well as our data 

on GFPzap1-C-NES/NLS urmylation point to the urmylation of the cytoplasmic Zap1 

pool. 

 

4.2.2  Role of Zap1 urmylation 

Thus far, accumulation of Urm1-modified proteins was observed upon oxidative 

stress implying a contribution of protein urmylation in the defense against reactive 

oxygen species (ROS). Another contributor for preserving the intracellular redox 
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homeostasis is zinc (Powell, 2000). It is believed that zinc exerts its antioxidant 

properties by complexation with sulfhydryl groups, which prevents ROS-induced 

oxidation and thus preventing formation of aberrant disulfide bonds (Eide, 2011; 

and Jarosz et al. 2017). Consequently, zinc deficiency elevates the intracellular 

ROS level, resulting in a higher susceptibility to ROS-induced cellular damages 

(Oteiza et al., 2000; Ho & Ames, 2002; Wu et al., 2007; and Wu et al., 2009). The 

zinc-dependent transcription factor Zap1 is able to counteract zinc deficiency by 

activating zinc transporters that facilitate zinc influx (Zhao & Eide, 1996, 1997). 

Additionally, Zap1 activates the expression of the thioredoxin peroxidase Tsa1 and 

the cytosolic catalase Ctt1 (Wu et al., 2007, 2009). These two proteins play a 

pivotal role in protecting cells from ROS under low zinc conditions. In zinc limiting 

conditions, sulphur assimilation is repressed in a Zap1-dependent manner (Wu et 
al., 2009). Since both sulphur assimilation and combating oxidative stress require 

large amounts of NADPH, Zap1-dependent repression of the sulphur assimilation 

pathway results in a higher availability of NADPH to combat oxidative stress 

(Slekar et al., 1996; and Eide, 2009). Consequently, we investigated the role of the 

Urm1 pathway under zinc deficiency. Remarkably, lack of Urm1 and/or Uba4 

caused sensitivity towards cells grown under zinc-limiting conditions, whereas 

supplementing the medium with zinc reversed the growth defects. These data 

suggest that the observed growth defects are linked to zinc deficiency and/or its 

subsequent induction of oxidative stress. In addition, Urm1 adducts appeared in 

response to zinc deficiency, indicating that the protein-conjugation branch of Urm1 

might play an important role in combating the adversary effects of zinc deficiency. 

Which proteins are urmylated, how urmylation of these substrates benefit cells 

under zinc-limiting conditions and whether the sulphur-donor branch of Urm1 acts 

synergistically under low zinc remains an open question. 

Under zinc-limiting condition, ZAP1 expression was significantly reduced in cells 

lacking urmylation, as both cells expressing Δurm1 and zap1-K871R showed a 

comparable reduction in ZAP1 mRNA, indicating that Zap1 urmylation improves 

the transcriptional fidelity of Zap1 and is therefore detrimental in maintaining the 

transcriptional autoregulation of ZAP1. As a consequence of the decreased ZAP1 

expression, protein levels of Zap1 were reduced in both Δurm1 and zap1-K871R. 
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Furthermore, the reduction in ZAP1 expression resulted in a mild reduction of the 

downstream target ZRT1, which is the primary zinc transporter in S. cerevisiae 

that is activated upon zinc deficiency. As this reduced ZRT1 expression is most 

likely a secondary effect caused by a reduced ZAP1 transcription in absence of 

Zap1 urmylation, it is likely that more ZAP1 downstream targets are negatively 

affected by loss of Zap1 urmylation. As Zrt1 levels were reduced in Δurm1 and 

Δuba4 cells, loss of Zap1 urmylation may impair Zap1’s function in zinc 

homeostasis (data not shown). To test whether Zap1 urmylation improves cell 

growth on zinc-limiting conditions, we also tested growth of cells that did not 

express endogenous Zap1, but the linear fused zap1-urm1ΔGG. This variant was 

used to mimic a constitutively urmylated Zap1 variant. Intriguingly, cells expressing 

a zap1-urm1ΔGG fusion, but lacking Urm1 or Uba4, were able to grow like or 

perhaps even slightly better than WT cells expressing zap1-urm1ΔGG or under 

zinc-limiting conditions. However, cells expressing zap1-urm1ΔGG lacking Urm1 

and Uba4 showed growth impairment or no growth under t-BOOH induced 

oxidative stress. This result implies that Zap1 urmylation seems to be vital in 

restoring Zap1 function in zinc homeostasis, but does not contribute in ROS 

defense. In contrast, cells expressing zap1-K871R showed no growth defects 

under the above-mentioned conditions. How zap1-K871R is able to grow on zinc-

limiting conditions, but Δurm1 does not, remains ambiguous. A possible 

explanation for this discrepancy is that Urm1 could conjugate to neighboring lysine 

residues of Zap1, though no urmylation could be observed with cells expressing 
GFPzap1-C-K871R and GFPzap1-C-NES-K871R. Another possible explanation is 

that Urm1 modifies additional target proteins that are involved in zinc homeostasis, 

enabling these urmylated substrates to compensate the reduced functionality of 

unmodified Zap1/zap1-K871R (Fig. 3-5). Conversely, the rescue of cells lacking 

Urm1 and Uba4 with the expression of the Zap1-Urm1 fusion zap1-urm1ΔGG 

could stem from the fact that the entire Zap1 pool is constitutively urmylated, which 

might drastically enhance overall activity of Zap1 that in turn allows a more 

efficient response to zinc deficiency. In addition, zap1-urm1ΔGG could even carry 

out additional cellular functions that are advantageous during low zinc conditions. 

Prior studies showed that fusion of ubiquitin-like proteins (UBLs) such as SUMO or 
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ubiquitin to proteins could indeed mimic a UBL-modified form of the target protein 

and therefore results in a change of the target protein’s properties, such as an 

increase in stability and solubility (SUMO, Malakhov et al., 2004; and Wang et al., 
2010) or in the destabilization of the fused protein (ubiquitin, Bachmair et al., 1986; 

and Cadima-Couto et al., 2009). Indeed, zap1-urm1ΔGG levels and zap1-K871R-
urm1ΔGG between WT and Δurm1, but not Δuba4, were comparable and could 

indicate to a more stabilized Zap1 variant than WT Zap1 (Fig. 3-6B). However, 

further studies are required to assess whether zap1-urm1ΔGG is indeed more 

stable than Zap1. 

Concordant to the observed reduction of ZAP1 mRNA in cells lacking the ability to 

urmylate Zap1, we could consistently observe noticeable reduction in Zap1 levels 

in cells lacking urmylation. This phenomenon persisted in cells lacking Urm1, 

Uba4 expressing Zap1 or in cells expressing zap1-K871R under constitutive 

promoters such as CYC1, which uncouples the autoregulatory mechanism of Zap1 

and enables Zap1-indepdendent, constitutive ZAP1 expression (Fig. 3-10A, data 

not shown). These findings indicate that Zap1 urmylation positively affects Zap1 

stability, but not the transcriptional activity of Zap1. Since zap1-K871R protein 

levels were reduced as well and is unlikely to alter the activity of the URM1 

pathway, it is improbable that the Urm1-dependent tRNA modification branch has 

an effect on Zap1 translation and consequently on Zap1 protein level. Since the 

translation of a subset of genes enriched for AAA, CAA and GAA codons is 

impaired in absence of Urm1- and ELP-dependent tRNA modification of tKUUU, 

tQUUG, tEUUC (Rezgui et al., 2013 and Laxman et al., 2013), we examined if ZAP1 

mRNA is enriched with these above-mentioned codons. In silico analyses done by 

Rezgui et al. show that ZAP1 is not significantly enriched in the codons AAA, CAA 

and GAA, indicating that the translation of Zap1 is probably not impaired in 

absence of Urm1-dependent tRNA modification (Rezgui et al., 2013). 

Since Zap1 urmylation positively influences Zap1 levels, it is possible that Urm1-

modified Zap1 species are less prone to degradation compared to unmodified 

Zap1. Thus, the role of Zap1 urmylation could be to maintain a constant pool of 

Zap1 that is able to rapidly respond to Zap1-dependent environmental stressors. 

Intriguingly, degradation of full-length Zap1 was not dramatically accelerated in 
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absence of Zap1 urmylation, even though the overall protein levels of Zap1 were 

largely reduced. This observation might be blurred by the fact that only a small 

percentage of the overall Zap1 is urmylated. A way to potentiate urmylation would 

be to increase Urm1 expression, as Urm1 is low abundant under steady-state 

conditions (Ghaemmaghami et al., 2003; and Chong et al., 2015). Indeed, free 

Urm1 and Urm1 adducts increased when Urm1 was expressed under the GAL1 

promoter than Urm1 expressed under the constitutive ADH1 promoter (Fig. 3-

12A). Consequently, strong overexpression of Urm1 could be used to increase the 

urmylated Zap1 pool, which in turn would facilitate to study the effect of elevated 

Zap1 urmylation in cells. Indeed, when Urm1 was overexpressed using the 

galactose-inducing system, we could observe a markedly increase in Zap1HA level 

and slowed Zap1HA degradation compared to the accelerated Zap1 degradation 

kinetics in cells, which had no galactose-induction and consequently no Urm1 

expression (Fig. 3-12B). Even though these findings suggest that Zap1 urmylation 

antagonizes Zap1 degradation, it has yet to be assessed whether there is indeed 

an increase in Zap1 urmylation under the GAL induction system than in WT cells. 

Since Zap1 urmylation exclusively occurs in the cytoplasm under zinc-replete 

conditions, a way to monitor a larger pool of urmylated Zap1 would be to examine 

the degradation kinetics of cytoplasmic Zap1. Consequently, we looked for the 

degradation kinetics of the cytoplasmic GFPzap1-C-NES, which we have shown to 

be recognized by the Urm1 conjugation machinery and urmylated at the acceptor 

lysine K871, and compared the degradation kinetics to the non-urmylated nuclear 
GFPzap1-C-NLS. While the nuclear GFPzap1-C-NLS was very stable, GFPzap1-C-

NES was rapidly degraded (Fig. 3-11). Compared to GFPzap1-C-NES, degradation 

of the non-urmylated GFPzap1-C-NES-K871R variant was highly accelerated; 

indicating that Zap1 urmylation positively influences the stability of cytoplasmic 

Zap1 (Fig. 3-11B). A way to further verify the positive effect of Urm1 on Zap1 

stability would be to examine the degradation kinetics of full-length Zap1 in the 

cytoplasm and compare it to the stability of nuclear Zap1. Despite these findings, 

the exact mechanism by which Urm1 is able to antagonize Zap1 degradation is not 

entirely clear. Prior studies have shown that the otherwise stable GFP can be 

susceptible to degradation by fusing GFP to a degron (Li et al., 1998). Various 
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degrons consist of a short amino-acid sequence such as the Deg1 of Matα2 or 

CL1 and are able to destabilize various reporter proteins (Hochstrasser & 

Varshavsky, 1990, Hochstrasser et al., 1991, Chen et al., 1993 and Gilon et al., 
1998). Peculiarly, only cytoplasmic Zap1 seems to be highly susceptible to 

degradation, suggesting that the C-terminus sequence of Zap1 contains a degron, 

which is exclusively recognized in the cytoplasm. While various degrons are 

degraded independent to their respective subcellular localization, the ubiquitously 

localized Cdc5 appears to be efficiently degraded in the nucleus (Bennett et al., 
2005; and Arnold et al., 2015). Similarly, the C-terminal Zap1 degron seems to be 

solely recognized in the cytoplasm. We have shown that GFPzap1-C and the 

cytoplasmic GFPzap1-C-NES as well as GFPzap1-C-K871R-NES, but not GFPzap1-C-

NLS and GFPzap1-C-K871R-NLS, were highly ubiquitinated and that full-length 

Zap1 degradation was halted in the proteasomal mutant cim3-1 (Fig. 3-14AB, Fig. 

3-13). Moreover, GFPzap1, GFPzap1-C-NES and GFPzap1-C-K871R-NES were highly 

ubiquitinated, whereas GFPzap1-C-NLS and GFPzap1-C-K871R-NLS were not 

modified by ubiquitin (Fig. 3-14AB). As GFPzap1-C-K871R-NES was more 

susceptible to proteasomal degradation than GFPzap1-C-NES, non-urmylated 
GFPzap1-C-NES in cells lacking Urm1 and Uba4 and GFPzap1-C-K871R-NES 

should be ubiquitinated more. However, the comparison of ubiquitination between 
GFPzap1-C-NES expressed in WT, Δurm1 and Δuba4, as well as GFPzap1-C-
K871R-NES expressed in WT, was no possible as overall protein levels and pull-

down efficiency of GFPzap1-C-NES and GFPzap1-C-K871R-NES in cells lacking 

urmylation were significantly lower than GFPzap1-C-NES expressed in WT (Fig. 3-

11, 3-14B). Therefore, further ubiquitination experiments using equimolar amounts 

of purified GFPzap1-C-NES and GFPzap1-C-K871R-NES are needed to assess Zap1 

ubiquitination in presence and absence of urmylation. 

Taken together, these findings suggest Zap1 is degraded via the proteasome and 

indicate that the C-terminus contains an ubiquitin-dependent cytoplasmic degron. 

As the ubiquitin-dependent Zap1 degradation occurs in the cytoplasm, we 

searched for potential E3 ligases that could be responsible for the ubiquitination of 

Zap1. We were able to identify most of the E3 ubiquitin ligase complex Doa10 as 

interaction partners in a mass spectrometry approach. Furthermore we could show 
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that the degradation of Zap1 is slowed down or completely halted in Δdoa10 and 

cdcd48-3 cells expressing Zap1HA or zap1-C-NES, respectively. It remains to be 

seen, whether the binding of Doa10 to Zap1 and its consequent ubiquitination is 

countered by Zap1 urmylation. Taken together our data suggest that urmylation 

and ubiquitination of Zap1 are interconnected and serve as disparate mechanisms 

in regulating Zap1 – and also Zap1 transcription – on a posttranslational level. 

Urm1 might function as an antagonist of ubiquitin and ubiquitination of Zap1, 

similar to the proposed role of IκBα SUMOylation (Desterro et al., 1998). In this 

study, the authors showed that SUMOylation and ubiquitination of IκBα occur at 

the same acceptor lysine (K21) and that SUMOylated IκBα is resistant to TNFα-

induced degradation, suggesting that SUMO1 functions as a direct antagonist of 

ubiquitin and ubiquitin-dependent degradation of IκBα. Unlike SUMOylation and 

ubiquitination of IκBα that target the same acceptor lysine, Zap1 appears to be 

urmylated and ubiquitinated at different lysine residues, as zap1-K871R-NES is 

still being degraded (Fig. 3-11B). 

 

4.2.3  Working model and outlook 

Zap1 is urmylated at K871 in the cytoplasm (Fig. 4-1). In contrast to the nuclear 

pool of Zap1, cytoplasmic Zap1 is highly unstable. In presence of the urmylation 

machinery, Zap1 is less prone to degradation by the UPS, but is highly 

destabilized in absence of Zap1 urmylation. Therefore, Urm1 conjugation to Zap1 

could sterically hinder the interaction of the ubiquitin conjugation machinery by 

blocking the interaction of an ubiquitin E3 ligase such as Doa10 and consequently 

obstruct the degradation of Zap1. Stabilization of urmylated Zap1 could also be 

caused indirectly, such as facilitating the nucleocytoplasmic shuttling of Zap1 (as 

implicated by Van der Veen and colleagues), which in turn leaves less Zap1 to be 

localized in the cytoplasm that might consequently be degraded by the UPS 

machinery (Van der Veen et al., 2011). Either way, Zap1 urmylation seems to be 

detrimental in stabilizing Zap1, which in turn improves ZAP1 expression and 

expression of target genes under zinc-limiting conditions. Future studies are 

needed to elucidate the mechanism on how Zap1 urmylation antagonizes Zap1 
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degradation and whether this protective mechanism of Urm1 affects additional 

Urm1-substrates. 

 
Figure 4-1. Model for the role of Zap1 urmylation. 

Cytoplasmic Zap1 is recognized by the Urm1 conjugation machinery and modified at C-terminus of Zap1 at 

K871. Unmodified or deurmylated Zap1 are ubiquitinated at the C-terminus of Zap1 and consequently 

degraded by the UPS. On the other hand, Zap1 modification by Urm1 sterically hinders the binding of the 

ubiquitination machinery to Zap1. Conversely, urmylated Zap1 inhibits Zap1 ubiquitination and is therefore 

resistant to the targeting and consequent degradation via the ubiquitin-proteasome system.  
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5  Materials and methods 
5.1  Materials 

5.1.1  Chemicals and reagents 

Unless otherwise mentioned, chemicals and reagents were obtained from Abcam, 

Applied Biosystems, Becton Dickinson, Biomol, Biorad, Biozym, Carl Roth, 

Chromotek, GE Healthcare, Invitrogen, Merck, New England Biolabs, Promega, 

Roche or Sigma-Aldrich. For all the methods described, sterile solutions, sterile 

flasks and deionized water were used.  

 

 

5.1.2  Antibodies 

The following antibodies were used for protein detection by immunoblotting, for 

intracellular localization studies by immunofluorescence microscopy and for 

studying protein-protein interactions by immunoprecipitation. 

 
Primary antibodies Source 
Monoclonal anti-c-myc (9E10) 
Polyclonal anti-c-myc (A-14) 
Monoclonal anti-Dpm1 
Monoclonal anti-GFP (B-2) 
Monoclonal anti-HA (F-7) 
Polyclonal anti-HA (Y-11) 
Monoclonal anti-Pgk1 
Polyclonal anti-Urm1 

Santa Cruz 
Santa Cruz 
Invitrogen 
Santa Cruz 
Santa Cruz 
Santa Cruz 
Invitrogen 
This study 

Secondary antibodies  

HRP-coupled anti-mouse IgG 
HRP-coupled anti-rabbit IgG 
Alexa Fluor 488 anti-rabbit IgG 

Dianova 
Dianova 
Molecular Probes 

 

 
5.2  Microbiological and genetic techniques 

5.2.1  E. coli  techniques  
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E. col i  strains 
Strain name Genotype Source 

Rosetta (DE3) F- ompT hsdSB(rB
- mB

-) gal dcm (DE3) pRARE (CamR) Novagen 

Rosetta 2 F– ompT hsdSB(rB
- mB

-) gal dcm lacY1 pRARE (CamR) Novagen 

Stellar F–, endA1, supE44, thi-1, recA1, relA1, gyrA96, phoA, 
Φ80d lacZΔ M15, Δ (lacZYA - argF) U169, Δ (mrr - 
hsdRMS - mcrBC), ΔmcrA, λ– 

Clontech 

XL1-Blue 
 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 
[F´ proAB lacIq Z∆M15 Tn10 (Tetr)] 
 

Stratagene 
 

 
E. col i  vectors 

Vector name Epitope tag 

Selection 

marker  Source 

pGEX-4T1 GST ampicillin  Sigma-Aldrich 
pQE30 6xHis ampicillin  Clontech 

 

E. coli  media  

LB-medium/[plates] 1% (w/v) tryptone peptone 

 0.5% (w/v) yeast extract 

 0.5% (w/v) NaCl 

 [2% (w/v) agar] 

 adjust volume with ddH2O 

 sterilize by autoclaving 

  

optional: add antibiotics after autoclaving and cooling down to 60°C. 

 

SOB 2.5% (w/v) tryptone peptone 

 0.625% (w/v) yeast extract 

 10 mM NaCl 

 2.5 mM KCl 

 adjust volume with ddH2O 

 10 mM MgCl2 and 10 mM MgSO4 
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SOC SOB containing 10 mM glucose 
 

Transformation buffer 1 (TB 1) 10 mM MOPS, pH 6.5 

adjusted with KOH 

 100 mM KCl 

 45 mM MnCl2 

 10 mM CaCl2 

 10 mM KAc, pH 7.5 adjusted with HCl 

 adjust volume with ddH2O 

 

Transformation buffer 2 (TB 2) TB 1 with 10% glycerol 

 

Transformation buffer 3 (TB 3) 100 mM CaCl2 

 50 mM MgCl2 

  

Cult ivation and storage of E. coli  
Liquid cultures were grown on LB media at 37°C (or at 25°C for recombinant 

protein expression) with constant shaking. Cells grown on agar plates were 

incubated at 37°C. Bacteria transformed with plasmid DNA were grown on media 

containing the appropriate antibiotic (50 μg/ml ampicillin and 50 μg/ml kanamycin). 

The cell culture density was determined by measuring the absorbance at a 

wavelength of 600 nm (OD600). Cultures were either stored temporarily at 4°C or 

were put in 15% (v/v) glycerol solution at -80°C for long-term storage. 

 

Preparation of chemically competent E. coli  
Fresh cells were streaked out from a frozen glycerol stock on a LB agar plate and 

grown overnight. A single colony was picked and incubated in 5 ml LB medium 

overnight. 2 ml of the overnight culture was inoculated in 200 ml pre-warmed SOB 

and grown to ~0.5 OD600. The culture was then cooled on ice for 10 min were 

harvested by centrifugation (10 min, 2500 rpm, 4°C). The cell pellet was 

resuspended in 100 ml TB 1 and cooled on ice for 10 min. The resuspended cells 

were pelleted by centrifugation and resuspended in a solution containing 16 ml TB 
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2 and 560 μl DMSO and incubated on ice for 15 min. Finally, the competent cells 

were stored in 150 μl aliquots at -80°C. 

Transformation of plasmid DNA into competent E. coli 
Competent E. coli cells were thawed on ice and 50 μl of chemically competent 

cells were mixed with 10 ng plasmid DNA. Subsequently, the solution was 

incubated on ice for 30 min, incubated at 42°C for 45 s. After the heat shock, the 

cells were incubated on ice for 2 min and were incubated in 1 ml LB at 37°C for 

30-45 min under constant shaking. The transformed cells were harvested (3 min, 

800 g, room temperature), plated on ampicillin-containing LB agar plates and 

incubated overnight at 37°C. 

 
Recombinant protein expression in E. coli  
For the expression recombinant proteins in E. coli, competent Rosetta (DE3) and 

Rosetta 2 were used. Cells transformed with the desired plasmid DNA were 

directly transferred and incubated in 25 ml LB medium containing the appropriate 

antibiotic overnight at 37°C. The overnight culture was transferred to 1 l ampicillin-

containing LB medium. Once the cells reach 0.6 OD, the protein expression was 

induced by the addition of 0.5 M IPTG for at least 4 h at 25°C. Lastly, the cells 

were harvested by centrifugation (5 min, 800 g, 4°C) and stored in -80°C. 
 

5.2.2  S. cerevisiae  techniques 

S. cerevisiae strains 
Strain 
name Genotype Reference 

DF5 MATa 
(WT) MATa his3-200, LEU2-3, 2-112, lys2-801, trp1-1, ura3-52 (Finley et al., 1987) 

IP541 MATa lys1::natNT2 arg4::hphNT1 I. Psakhye 

W303 MATa eu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 E. Schwob, K. 
Nasymth 

PJ69-7a MATa trp1-901 LEU2-3,112 ura3-53 his3-200 gal4 gal80 GAL1-HIS3 
GAL2-ADE2 met2::GAL7-lacZ Warf 

RH448a MATa LEU2 his4 lys2 ura3 bar1-1 M. Knop 
RC757α MATα his6 met1 sst2-1 cyh2 can1 M. Knop 
ySL_333 DF5, MATa pCYC1-GFP-zap1-C::LEU2 this work 

ySL_334 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C::LEU2 this work 

ySL_335 DF5, MATa uba4::kanMX6 urm1::natNT2 pADH1-6His-Strep-URM1-
tADH::URA3 pCYC1-GFP-zap1-C::LEU2 this work 

ySL_336 DF5, MATa urm1::natNT2 pCYC1-GFP-zap1-C::LEU2 this work 
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ySL_337 DF5, MATa uba4::kanMX6 urm1::natNT2 pCYC1-GFP-zap1-C::LEU2 this work 

ySL_010 DF5, MATa lys1::natNT2 arg4::hphNT1 uba4::HIS3MX6 urm1::kanMX6 
pADH1-6His-3HA-URM1L96R-tADH::URA3 this work 

ySL_018 DF5, MATa lys1::natNT2 arg4::hphNT1 urm1::kanMX6 pADH1-6His-
Strep-URM1-tADH::URA3 this work 

ySL_021 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 this work 

ySL_022 DF5, MATa lys1::natNT2 arg4::hphNT1 urm1::natNT2 pADH1-6His-
Strep-URM1-L96R-tADH::URA3 this work 

ySL_026 DF5, MATa ZAP1-6HA::klTRP1 this work 

ySL_030 DF5, MATa uba4::kanMX6 urm1::natNT2 pADH1-6His-Strep-URM1-
tADH::URA3 ZAP1-6HA::klTRP1 this work 

ySL_031 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
ZAP1-6HA::klTRP1 this work 

ySL_061 DF5, MATa ZRT1-3myc::klTRP1 this work 
ySL_062 DF5, MATa ZRT1-3myc::klTRP1 urm1::natNT2 this work 

ySL_063 DF5, MATa uba4::kanMX6 urm1::natNT2 pADH1-6HisFlag-URM1 
tADH::URA3 ZRT1-3myc::klTRP1 this work 

ySL_065 DF5, MATa urm1::kanMX6 zap1-K871R-6HA:TRP this work 
ySL_073 DF5, MATa zap1::hphNT1 this work 

ySL_075 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
zap1-K871R-6HA::klTRP1 this work 

ySL_081 DF5, MATa uba4::kanMX6 ZAP1-6HA::klTRP1 this work 
ySL_105 DF5, MATa urm1::natNT2 zap1::hphNT1 this work 
ySL_105 DF5, MATa urm1::natNT2 zap1::hphNT1NT1 this work 
ySL_107 DF5, MATa ZAP1-GFP::klTRP1 this work 
ySL_117 DF5, MATa pMET25-GFP-zap1-C::URA3 this work 
ySL_132 DF5, MATa pMET25-GFP-zap1-C-K871R::URA3 this work 
ySL_249 DF5, MATa ZAP1-urm1ΔGG-6His-3HA::LEU2 this work 
ySL_250 DF5, MATa zap1-K871R-urm1ΔGG-6His-3HA::LEU2 this work 
ySL_251 DF5, MATa ZAP1-urm1ΔGG-6His-3HA::LEU2 urm1::natNT2 this work 
ySL_252 DF5, MATa ZAP1-urm1ΔGG-6His-3HA::LEU2 uba4::kanMX6 this work 
ySL_255 DF5, MATa zap1-K871R-6HA::klTRP1 this work 
ySL_256 DF5, MATa pCYC1-ZAP1-6HA::LEU2 this work 
ySL_259 DF5, MATa pCYC1-zap1-AD2-6HA::LEU2 this work 

ySL_260 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-zap1-AD2 6HA::LEU2 this work 

ySL_262 DF5, MATa pCYC1-zap1-DBD-6HA::LEU2 this work 

ySL_263 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-zap1-DBD 6HA::LEU2 this work 

ySL_274 DF5, MATa uba4::kanMX6 pCYC1-ZAP1-6HA::klTRP1 this work 
ySL_363 DF5, MATa pCYC1-GFP-zap1-C K877R::LEU2 this work 

ySL_364 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-K877R::LEU2 this work 

ySL_365 DF5, MATa pCYC1-GFP-zap1-C-K871R::LEU2 this work 

ySL_366 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-K871R::LEU2 this work 

ySL_367 DF5, MATa pCYC1-GFP-zap1-C-C872S::LEU2 this work 

ySL_368 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-C872S::LEU2 this work 

ySL_415 DF5, MATa pCYC1-GFP-zap1-C-NLS::LEU2 this work 

ySL_416 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-NLS::LEU2 this work 

ySL_417 DF5, MATa pCYC1-GFP-zap1-C-NES::LEU2 this work 
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ySL_418 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-NES::LEU2 this work 

ySL_419 DF5, MATa pCYC1-GFP-zap1-C-K871R-NLS::LEU2 this work 

ySL_420 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-K871R-NLS::LEU2 this work 

ySL_421 DF5, MATa pCYC1-GFP-zap1-C-K871R-NES::LEU2 this work 

ySL_422 DF5, MATa urm1::natNT2 pADH1-6His-Strep-URM1-tADH::URA3 
pCYC1-GFP-zap1-C-K871R-NES::LEU2 this work 

ySL_441 DF5, MATa urm1::natNT2 pCYC1-GFP-zap1-C-NLS::LEU2 this work 
ySL_443 DF5, MATa urm1::natNT2 pCYC1-GFP-zap1-C-NES::LEU2 this work 
ySL_445 DF5, MATa uba4::kanMX6 pCYC1-GFP-zap1-C-NLS::LEU2 this work 
ySL_447 DF5, MATa uba4::kanMX6 pCYC1-GFP-zap1-C-NES::LEU2 this work 
ySL_452 DF5, MATa pCYC1-GFP::LEU2 this work 
ySL_455 DF5, MATa pCYC1-GFP-zap1-C::LEU2 this work 
ySL_457 DF5, MATa uba4::kanMX6 pCYC1-GFP-zap1-C::LEU2 this work 
ySL_458 DF5, MATa pCYC1-GFP-zap1-C-K871R::LEU2 this work 
ySL_476 DF5, MATa cim3-1 pdr5::HIS3MX6 pCYC1-GFP-zap1-C::LEU2 this work 
ySL_508 DF5, MATa cim3-1 urm1::natNT2 Zap1-HA6::TRP this work 
ySL_510 DF5, MATa cim3-1 pCYC1-Zap1-HA6::TRP this work 
ySL_521 DF5, MATa natNT2::pGAL1-Urm1 pCYC1-Zap1-6HA::LEU2 this work 
ySL_524 DF5, MATa doa10::kanMX6 pCYC1-GFP-zap1-C-NES::LEU2 this work 
ySL_525 DF5, MATa doa10::kanMX6 pCYC1-Zap1-6HA::LEU2 this work 
ySL_526 DF5, MATa cdc48-3 pCYC1-GFP-zap1-C-NES::LEU2 this work 
ySL_527 DF5, MATa cdc48-3 pCYC1-ZAP1-6HA::LEU2 this work 

 
S. cerevisiae vectors 

Plasmid type Name (marker) Copies/Cell  Reference 

Integrative 
YIplac211 (URA3) 

1 Gietz and Sugino, 1988 YIplac128 (LEU2) 

2μ pUG36 (URA3) 50-100 J. H. Hegemann  

Yeast two-hybrid 
pGAD-C1-3 

pGBD-C1-3 
50-100 James et al., 1996 

 

S. cerevisiae media and solutions 

YPD/YPR/YPG [plates] 1% yeast extract 

 2% bacto-peptone 

 2% carbon source (glucose, raffinose or 

galactose) 

 [2% agar] sterilized by autoclaving 

 

 For selection plates: YPD medium with 2% agar was 

cooled to 60°C and the respective selection drug was added. 
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 200 mg/l geneticine disulphate (G418) 

 100 mg/l nourseothricin (NAT) 

 500 mg/l hygromycin B (Hph) 

  

amino acid drop out mix 800 mg adenine 

 800 mg uracil 

 800 mg tryptophan 

 800 mg histidine 

 800 mg arginine 

 800 mg methionine 

 1200 mg tyrosine 

 2400 mg leucine 

 1200 mg lysine 

 2000 mg phenylalanine 

 8000 mg threonine 

 

optional: 1200 mg isoleucine 

 6000 mg valine 

 4000 mg aspartic acid 

 

SC-medium/[plates] 0.67% yeast nitrogen base 

 0.2% amino acid drop out mix 

 2% carbon source (glucose, raffinose or 

galactose) 

 [2% agar] sterilized by autoclaving 

 

low zinc medium (LZM) 2x SC 

 20 mM sodium citrate, pH 4.2 

 1 mM EDTA 

 2% glucose 

 adjust volume with ddH2O 

 sterilized by sterile filtration 
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sporulation medium 2% (w/v) potassium acetate, sterilized by autoclaving 

zymolyase 100T solution 0.9 M sorbitol 

 0.1 M Tris-HCl, pH 8.0 

 0.2 M EDTA, pH 8.0 

 50 mM DTT 

 0.5 mg/ml zymolyase 100T 

SORB 100 mM LiOAc 

 10 mM Tris-HCl, pH 8.0 

 1 mM EDTA, pH 8.0 

 1 M  sorbitol 

 sterilized by filtration 

 
PEG 100 mM LiOAc 

 10 mM Tris-HCl, pH 8.0 

 1 mM EDTA, pH 8.0 

 40% (w/v) PEG-3350 

 sterilized by filtration 

 

Cult ivation and storage of S. cerevisiae 
In general, a fresh single yeast colony was inoculated in YP or SC based medium 

at 30°C (25°C with heat sensitive strains) overnight. Overnight cultures were 

generally diluted to 0.1 OD600 in a new flask containing fresh medium. Yeast cells 

were then grown at 30°C under constant shaking until they reach the mid-log 

phase (OD600 0.6-0.9). Cultures on grown on YP or SC based agar plates were 

stored at 4°C up to 1-2 months. Conversely, stationary cultures were stored in 

15% (v/v) glycerol solutions at -80°C for long-term storage. 

 

Preparations of competent yeast cells 

Mid-log phase growing yeast cells were harvested by centrifugation (500 g, 5 min, 

room temperature), washed with ½ volume of sterile ddH2O and lastly washed with 

1/10 volume SORB. The cells were pelleted again and resuspended in 360 μl 



MATERIAL AND METHODS 
 

 62 

SORB and 50 μl denatured carrier DNA. The competent cells were stored at -

80°C. 

 

Transformation of yeast cells 

200 ng of circular or 2 μg of linearized plasmid DNA/PCR product was added to 10 

μl or 50 μl competent yeast cells, respectively. Six volumes of PEG were added, 

mixed thoroughly and the cell suspension was incubated at room temperature for 

30 min. A final concentration of 10% DMSO was added to the solution prior to 

heat-shocking the cells at 42°C for 10-20 min. Cells were pelleted by centrifugation 

(500 g, 3 min, room temperature) and resuspended in 200 μl sterile ddH2O. If the 

transformed DNA contains an auxotrophic genetic marker, the transformed cells 

were directly plated on their respective SC agar plates. For transformed DNA that 

contain antibiotic resistance markers, transformed cells were incubated for 1-2h in 

2 ml liquid YPD medium at 30°C (25°C for heat sensitive strains) prior to plating.  

 

Genomic manipulation by homologous recombination 

Integration of DNA into yeast genome was either achieved by introducing a 

linearized integrative vector or by transforming a PCR DNA fragment in yeast cells. 

The integrative yeast vectors of the YIplac vector series were used in this study, 

since they do not contain autonomous replication elements. Consequently, only 

stably integrated vectors are propagated in yeast. Prior to transformation, YIplac 

vectors were linearized within their respective auxotrophic markers by introducing 

a single cut using restriction enzymes. Linearized YIplac plasmids were then 

integrated into the yeast genome by homologous recombination with the 

endogenous marker gene. 

Deletions, truncations, N-/C-terminal tags, point mutants or fusions were generally 

introduced by employing a PCR-based strategy, which ensures stable integration 

into the yeast genome by homologous recombination (Longtine et al. 1998, Knop 

et al., 1999, Janke et al., 2004). For this approach, the PCR products consisted of 

a selection marker gene and were additionally flanked by 45-55 bp sequences that 

were homologous to the target sequence. The desired DNA fragments were 

amplified by PCR, purified using the QIAquick purification PCR kit, transformed 
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into competent yeast cells and plated on the respective selection medium. The 

correct recombination event was confirmed by yeast colony PCR. 

 

PCR reaction mixture  100 ng plasmid DNA 

    30 μl 10x ThermoPol reaction buffer (NEB) 

 10.5 μl dNTP-Mix (10 mM each, NEB) 

 19.2 μl forward primer (100 μM) 

 19.2 μl reverse primer (100 μM) 

   2.4 μl Taq DNA polymerase 

   2.1 μl Vent DNA polymerase (NEB) 

 adjust to a total volume of 300 μl with ddH2O 
 

Cycling parameters  
PCR step T [°C] Time Cycles 

Initial denaturation 95/97 3 min 1 

Denaturation 94 30 s/1 min 

10 Annealing 54 30 s 

68 72 2 min 40 s 

Denaturation 95/97 30 s 

20 Annealing 54 30 s/1 min 

68 68 2 min 40 s (+20 s/cycle) 

Final elongation 68 10 min 
1 

Cooling 4 ∞ 

Grey: conditions for the amplification of all natNT2-based cassettes 
 

Yeast colony PCR 

Genomic alterations such as insertions, deletions, truncations and mutations were 

identified by the PCR-based yeast colony strategy. A fresh single yeast colony 

was transferred into a safe-lock reaction tube that contained 20 µl 0.02 M NaOH 

and acid-washed glass beads (Sigma). The yeast cells were lysed at 95°C for 5 

min under vigorous shaking (1400 rpm) and the cell debris was pelleted by 

centrifugation (16.000 g, 1 min, RT). The supernatant was transferred to a PCR 

reaction tube and was used as PCR template. Two DNA oligonucleotides were 

used for the yeast colony PCR that were able to prime upstream/downstream of 

the altered chromosomal locus (primer 1) as well as within the integrated selection 
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marker gene (primer 2). The yeast colony PCR was carried out using the PCR 

reaction mixture and the cycling parameters as described below. 

 

PCR reaction mixture     4.0 μl yeast solution (template) 

     5.0 μl 10x ThermoPol reaction buffer (NEB) 

   1.75 μl dNTP Mix (10 mM each, Thermo Fisher 

Scientific) 

     3.2 μl primer 1 (10 μM) 

     3.2 μl primer 2 (10 μM) 

        1 μl 50 mM MgCl2 

     0.4 μl Taq DNA polymerase 

 32.45 μl ddH2O 

 

Cycling parameters  
PCR step T [°C] Time Cycles 

Initial denaturation 94 5 min 1 

Denaturation 94 30 s 

30 Annealing 55 30 s 

Elongation 72 1 min/kb 

Final elongation 72 15 min 
1 

Cooling 4 ∞ 

 

Mating of haploid S. cerevisiae  strains 

Equal amounts of freshly streaked haploid yeast strains of opposite mating type 

(MATa, MATα) were mixed in 500 μl YPD and incubated at 30°C overnight under 

constant shaking (200 rpm). Cells were sedimented by centrifugation (500 g, 5 

min, RT), resuspended in 100 μl H2O and plated on respective selection plates to 

select diploid cells. 

 

Sporulation and tetrad dissection of diploid yeast strains 

Fresh diploid colonies were first incubated in 5 ml YPD at 30°C overnight. 800 μl 

of the overnight culture was harvested by centrifugation (500 g, 5 min, RT), 

washed four times in 1 ml sporulation medium and incubated in 4 ml sporulation 

medium at RT for 3-7 days. 10 μl of the culture was mixed with 10 μl zymolyase 
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100T solution and incubated at RT for 10 min. This mixture was subsequently 

applied on pre-warmed YPD agar plates, dissected with a micromanipulator 

(Singer MSM Systems) and grown on YPD plates for 3-3 days at 30°C. Lastly, the 

tetrads were genotypically examined either by replica plating the cells on selection 

plates or by their phenotype. 

 

Mating-type analysis of haploid yeast strains 

The mating type analysis utilizes the tester strains RC757α and RH448a to identify 

yeast mating-types, since these strains are hypersensitive to the mating 

pheromones secreted by both MATa and MATα strains. As a result, tester strains 

were not able to grow in the proximity of haploid cells with opposite mating type. 

Consequently, a halo was formed surrounding the replica-plated colony, if said 

strain displayed the opposite mating type as the tester strain. In principle, the 

tester strain were resuspended in 50 μl of ddH2O and mixed with 10 ml of 

lukewarm YPD containing 1% (w/v) molten agar. The mixture was poured over 

YPD agar plates. Next, the tetrads were replica plated on the a- and α-tester agar 

plates and incubated for at 30°C for one or two days.  

 

Analysis of protein-protein interaction using the yeast two-hybrid 

system (Y2H)  

The two-hybrid system was used to identify novel protein-protein interactions in 

the yeast. Protein-protein interactions were determined by using fusion proteins 

containing the bait protein fused to the DNA-binding domain (BD) and the prey 

protein that was fused to the activation domain (AD) of the Gal4 transcription 

factor. In case the bait interacted with the prey protein, Gal4 BD and AD were 

brought in proximity, resulting in the reconstitution of a functional Gal4 transcription 

factor. Essentially, Y2H-specific yeast strains were used which lacked the 

transcription factor Gal4 and contained the reporter genes GAL1-HIS3 and GAL2-

ADE2 that only showed gene expression in presence of a functional Gal4. Initially, 

full-length ORFs, fragments or mutant variants of proteins were fused to the C-

terminus of either the BD or AD of the Gal4 transcription factor and the fusion ORF 

was inserted into the expression vectors pGBD-C1 and pGAD-C1, respectively. 
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The plasmids were transformed into competent PJ69-7a cells (Warf) and streaked 

on SC –Leu –Trp plates at 30°C for 3-3 days. Protein-protein interactions were 

tested by growing the transformed Y2H strains on SC –Leu –Trp –His and/or on 

SC –Leu –Trp –Ade agar plates. 

 

Phenotypic analysis of S. cerevisiae mutant variants using growth 

assays 

A canonical way to analyze phenotypes of yeast mutant variants was to compare 

their growth rates with other strains under optimal and suboptimal conditions (e.g. 

environmental, chemical stressors, etc.). Overnight cultures were harvested during 

the mid-log growth phase and washed once with 1 ml ddH2O. A total of 0.5 OD 

yeast cells (ad 250 μl ddH2O) were transferred to a 96-well microtiter plate. After 

four to five 1:5 serial dilutions, the cells were spotted onto the respective agar 

plates using a sterile 96-pin stamp. Finally, the growth phenotypes of the mutant 

variants were incubated for several days at different temperatures. 

 

Analysis of protein stabil i ty using the cycloheximide chase assay 

The protein stability was determined by the cycloheximide chase assay. 

Cycloheximide is a potent eukaryotic protein synthesis inhibitor that immediately 

stops de novo protein synthesis, which in turn permitted the study of protein 

degradation over time. Essentially, cells were grown to mid-log phase, harvested 

by centrifugation (500 g, 5 min, RT) and resuspended in growth medium 

containing 150 μg/ml of cycloheximide. For each time point, 1 OD of cells were 

harvested (16.000 g, 1 min, RT) and immediately frozen in liquid nitrogen. Finally, 

protein extracts were prepared and the protein turnover for the protein of interest 

was determined by western blotting. 

 

Microsomal preparation 

To isolate microsomal fractions, 20 OD log phased cells were sedimented by 

centrifugation (500 g, 5 min, 4°C), washed once with ice-cold water and 

resuspended in 1 ml lysis buffer (50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM 

EDTA, pH 8.0, EDTA-free protease inhibitors (Roche)). Zirconia/silica beads (ø 0.5 
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mm, Carl Roth) were added to the cell suspension and the cells were lysed using a 

multi-tube bead-beater (3x 30 Hz, 1 min, 5 min cooling intervals, 4°C, MM301 

Retsch). The reaction tubes containing the cell lysates were perforated with a 

heated syringe needle and piggybacked into a fresh reaction tube (500 g, 2 min, 

4°C). Cell debris was removed by centrifugation (500 g, 10 min, 4°C). The total cell 

extract (T) contains the soluble fraction (S, cytosolic and nuclear proteins) and the 

microsomes (P, ER, nuclear envelope and golgi apparatus). To separate the 

soluble fraction from the microsomal fraction, whole cell extracts were transferred 

into ultracentrifuge-compatible reaction tubes (microfuge tube polyallomer, 

Beckman Coulter) and fractionated by ultracentrifugation (100.000 g, 30 min, 4°C, 

TLA 55 rotor).  

 

Membrane fractionation 

To investigate whether the proteins found in the microsomal fraction were either 

membrane-associated or peripheral membrane proteins, microsomes were 

enriched as described in microsomal preparation. Microsomal fractions were 

divided in equal parts and resuspended in lysis buffer either containing 1 M 

Na2CO3, pH 11.3, 500 mM NaCl or 1% SDS. The samples were incubated on ice 

for 30 min with occasional vortexing and then centrifuged (20.000 g, 30 min, 4°C). 

After the removal of the supernatant, the pellets were resolubilized in SDS-PAGE 

sample buffer and analyzed by immunoblotting. 

 

Semi-denaturing purif ication of ubiquitylated GFP-tagged proteins 

To examine ubiquitylated GFP-tagged proteins, 50-200 OD of mid-log phased 

yeast cells were harvested, lysed by cryogenic grinding and resuspended in lysis 

buffer (3x volume to 1x OD, 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA, 

0.5% Triton X-100, PIC, 10 mM NEM). The cell lysates were piggybacked (500 g, 

2 min) to fresh reaction tubes in which the cell debris was sedimented by two 

centrifugation steps (2655 g, 5 min, 4°C and 15.700 g, 5 min, 4°C). 15 μl pre-

equilibrated GFP agarose beads (GFP-Trap_A, Chromotek) were added to the 

cleared supernatant and incubated for 150 min at 4°C. After removing the 

supernatant (100 g, 2 min, RT), the beads were washed once with dilution buffer 
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(10 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA, PIC, 10 mM NEM), thrice 

with wash buffer 1 (PBS, 8 M urea, 1% SDS) and once with wash buffer 2 (PBS, 

1% SDS). The specifically bound proteins were eluted from the agarose beads by 

the addition of 20 μl SDS-PAGE sample buffer and analyzed by immunoblotting. 

 

Yeast indirect immunofluorescence 

Protein subcellular localization was studied by immunofluorescence microscopy. 

Yeast cells were grown to mid-log phase in SC medium and were fixed by adding 

a formaldehyde solution (total concentration 0.1 M KPO4, 4% formaldehyde) to the 

culture. Cells were incubated for 1h at RT, harvested by centrifugation (500 g, 5 

min, 4°C) and washed three times with 1 ml SP buffer (0.1 M KPO4, pH 6.5, 1.2 M 

sorbitol). Yeast cells were resuspended in 0.9 ml SPβ buffer (SP containing 20 

mM β-mercaptoethanol) and 0.1 ml Zymolyase 100T solution (2.5 mg/ml in SPβ 

buffer). After an incubation period of 15 to 45 min at 30°C, yeast cell walls were 

digested. Spheroplasts were kept on ice for 5 min, washed three times with 1 ml 

cold SP buffer (1.500 g, 5 min) and seeded on polylysine-coated multi-well slides. 

Cells were permeabilized with methanol (-20°C) for 5 min, followed by incubation 

with acetone (-20°C) for 30 s. Multi-well slides were air dried for 5 min at room 

temperature. To prevent unspecific binding of the antibodies, 20 μl of PBS-B (50 

mM NaPO4, 150 mM NaCl, pH 7.5, 1% BSA) were added for each multi-slide well 

and incubated for 1 h at RT. A primary antibody was added (polyclonal rabbit anti-

HA Y-11, 1:100 in PBS-B) to each multi-well slide and incubated in a moist 

chamber at 4°C. Afterwards, cells were washed six times with PBS-B and the 

fluorescence-labeled secondary antibody (Alexa Fluor 488 goat anti-rabbit IgG) 

was added for 2 h at RT in a moist chamber. Slides were washed five times with 

PBS-B and once with PBS-B containing DAPI (0.25 μg/ml DAPI in PBS). The 

solution was incubated for 30 min at RT in the dark and consequently air dried for 

5 min at RT. Finally, a drop of mounting medium (Vectashield, Vector 

Laboratories) was applied at each well, slides were then covered by a cover slip 

and lastly sealed with nail polish. Multi-well slides could now be examined under a 

fluorescence microscope. 
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5.2.3  Molecular biological techniques 

General buffers and solutions 

 

HU sample buffer 8 M  urea 

 5%  SDS 

 1 mM  EDTA 

 1.5%  DTT 

 0.04%  bromophenol blue 

 

4x SDS sample buffer 0.25 M  Tris-HCl, pH 6.8 

 8%  SDS 

 40%  glycerol 

 0.04%  bromophenol blue 

 5%  β-mercaptoethanol 

 

MOPS buffer 50 mM  MOPS 

 50 mM  Tris base 

 3.5 mM  SDS 

 1 mM  EDTA 

 

Transfer buffer 250 mM  Tris base 

 1.92 M  glycine 

 0.1%  SDS 

 20%  methanol 

 

TBS-T 50 mM  Tris-HCl, pH 7.6 

 150 mM  NaCl 

 0.1%  Tween 20 

 

TBE buffer 10x 1 M Tris 

 1 M boric acid 

 0.02 M EDTA 
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DNA loading buffer 5x 0.5% (w/v) SDS 

 0.1 M EDTA, pH 8.0 

 25% glycerol 

 0.25% (w/v) orange G 

 

 

Isolation of plasmid DNA from E. coli 
A single E. coli colony containing the DNA plasmid of interest was inoculated in 5 

ml LB medium and incubated for 8-14 h at 37°C under constant shaking. Plasmid 

preparation kits were used to extract plasmids (Qiaprep Spin Miniprep, Qiagen 

and AccuPrep Plasmid Mini Extraction Kit, Bioneer). 

 

Isolation of chromosomal DNA from S. cerevisiae  

To extract chromosomal DNA from S. cerevisiae, a yeast DNA purification kit 

(MasterPure yeast DNA purification, Epicentre) was used. Usually, a total of 1.5 ml 

overnight yeast culture was used for the chromosomal yeast DNA isolation. 

 

Determining DNA concentration 

The DNA concentration was determined by measuring the absorbance at the 

wavelengths of 260 nm and 280 nm (NanoDrop 1000, Thermo Scientific). 

 

Agarose gel electrophoresis 

DNA samples were resuspended with 5x DNA loading buffer, loaded into pockets 

of 0.7 – 2% agarose gels that contained 0.5 μg/ml ethidium bromide and subjected 

to gel electrophoresis at 100 V in TBE buffer. A DNA ladder (1 kb Plus DNA 

ladder, Invitrogen) was used as a size reference. DNA fragments were visualized 

under UV light. 
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DNA sequencing 

The MPIB core facility and Eurofins Genomics performed all sequencing reaction. 

The sample concentration usually consisted of 50 - 100 ng/μl for plasmid DNA or 1 

– 10 ng/μl for PCR products. 

 

Molecular cloning 

Primers that were used for cloning generally consisted of a leader sequence, a 

restriction site and lastly a hybridization sequence, which was complementary to 

the template DNA. Generally, a high-fidelity DNA-polymerase (Phusion high-fidelity 

polymerase, New England Biolabs) was used for PCR-based DNA amplification. 

The following PCR reaction setup was used: 

 

PCR reaction mixture 50-250 ng template DNA 

         10 μl 5x Phusion HF buffer 

           1 μl dNTP Mix (10 mM each, Thermo Fisher 

Scientific) 

           3 μl primer 1 (10 μM) 

           3 μl primer 2 (10 μM) 

        0.5 μl Phusion DNA polymerase 

      31.5 μl ddH2O 

 

Cycling parameters  
PCR step T [°C] Time Cycles 

Initial denaturation 98 1 min 1 

Denaturation 98 30 s 

30 Annealing 55 30 s 

Elongation 72 30 s /kb 

Final elongation 72 7 min 
1 

Cooling 4 ∞ 

 

 

PCR products were isolated by gel extraction and were purified by a gel extraction 

kit (QIAquick gel extraction kit, Qiagen). The PCR products and the vector DNA 

were sequence-specifically cleaved with their designated restriction enzymes in 
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accordance to standard protocols and manufacturer’s instructions (Sambrook et 
al., 1989 and New England Biolabs). Optionally, linearized vectors were incubated 

at 37°C for 1 h with calf intestinal alkaline phosphatase (New England Biolabs) to 

avoid re-ligation during the DNA ligation reaction. To stop enzymatic activities, 

insert DNA and linearized vectors were purified on a column (QIAquick PCR 

purification kit, Qiagen). For the ligation reaction insert vector ratio of 3:1 – 6:1 was 

used. The ligation reaction was incubated with T4-DNA ligase either for 4 h or over 

night at 16°C following the manufacturer’s instructions (New England Biolabs). 

 

Site-directed mutagenesis 

Site-directed mutagenesis was used to introduce specific DNA alterations such as 

specific substitutions, insertions or deletions in double stranded plasmid DNA 

(Kunkel, 1985). Principally, this PCR-based method utilizes two complementary 

oligonucleotide primers, containing the desired mutated nucleotide(s) with 10-15 nt 

flanking sequences complementary to the template DNA. The template plasmid 

DNA was amplified with a high-fidelity DNA polymerase (PfuUltra II Fusion HS 

DNA polymerase, Agilent).  

 

PCR reaction mixture  100 ng template DNA 

      5 μl 10x cloned Pfu reaction buffer 

   2.5 μl dNTP Mix (10 mM each, Thermo Fisher 

Scientific) 

   0.5 μl forward primer (10 μM) 

   0.5 μl reverse primer (10 μM) 

      1 μl 50 mM MgCl2 (NEB) 

   0.5 μl PfuUltra II Fusion HS DNA polymerase 

     39μl ddH2O 

 

Cycling parameters  
PCR step T [°C] Time Cycles 

Initial denaturation 95*/92** 2 min 1 

Denaturation 95*/92** 30 s 
30 

Annealing 60 30 s 
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Elongation 72*/68** 1 min/kb* 2 min/kb** 

Final elongation 72*/68** 7 min 
1 

Cooling 4 ∞ 

*<10 kb vector DNA or 

<6 kb genomic DNA 

>10 kb vector DNA or 

>6 kb genomic DNA 

 

 

Reverse transcription quantitative PCR (qRT-PCR) 

To quantify mRNA expression in yeast a two-step reverse transcription 

quantitative PCR (qRT-PCR) was applied. First, RNA was extracted from yeast 

and converted into complementary DNA (cDNA) using a reverse transcriptase. 

The newly synthesized cDNA served as a template for quantitative real-time PCR. 

In general, 2 OD of mid-log phased yeast were harvested. RNA was isolated from 

cells according to the manufacturer’s instructions (RNeasy Mini Kit, Qiagen). For 

the reverse transcription, 1 μg of total RNA was used as a template for the cDNA 

synthesis. The method was carried out according to the manufacturer’s 

instructions (Transcriptor First Strand cDNA Synthesis Kit, Roche). Thereafter, 18 

μl of qRT-PCR master mix containing SYBR Green I Master (LightCycler 480 

SYBR Green I Master), primers and H2O was added into 384 multiwell plates 

(LightCycler® 480 Multiwell Plate 384) and mixed with 2 μl of 1:5 diluted cDNA 

samples. Triplicates were made for each reaction and pipetted by a CAS-1200 

OCR setup robot (Corbett Lifescience).  

 

PCR reaction mixture    10 μl SYBR Green I Master Mix 

 0.12 μl Primer 1 (100 μM) 

 0.12 μl Primer 2 (100 μM) 

 7.76 μl ddH2O 

      2 μl cDNA PCR mix (1:5 diluted) 
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Cycling parameters  
PCR step T [°C] Time Cycles 

Initial denaturation 95 10 min 1 

Denaturation 95 10 s 

45 Annealing 55 10 s 

Elongation 72 16 s 

4°C ∞ 1 

 

Second derivative maximum method was used to quantify the template cDNA 

concentrations. As a result, an input sample dilution series for each primer pair 

was used as a standard (1:1, 1:10, 1:100 and 1:1000). Additionally, to assess the 

specificity of primer pairs, a melting curve analysis was employed after the 

amplification step.  

 

Trichloroacetic acid (TCA) protein precipitation 

Small-scale, denaturing yeast cell extracts were prepared by TCA protein 

precipitation. A total of 1 OD yeast cells was pelleted by centrifugation (16.100 g, 1 

min) and incubated in 1 ml ice-cold ddH2O with 150 μl lysis buffer (2M NaOH, 

7.5% β-mercaptoethanol) for 15 min on ice. Proteins were then precipitated by the 

addition of 150 μl 55% TCA and incubated for 15 min on ice. The precipitated 

material was sedimented by two consecutive centrifugation steps (20.000 g, 15 

min, 4°C and 16.000 g, 1 min, RT). Denatured proteins were then resuspended in 

100 μl HU sample buffer. 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE was performed in order to separate proteins according to their 

respective sizes. Pre-cast 4-12% gradient gels (NuPage 4-12% Bis-Tris Protein 

Gels, Invitrogen) were mainly used for this study, since these gels allowed a good 

resolution of various sized proteins (10 – 200 kDa). Protein samples were loaded 

onto the gels and separated by gel electrophoresis was carried out at a constant 

voltage of 110 V for 2 h using MOPS buffer. Protein sizes were determined by 

using a pre-stained protein standard marker (Precision Plus Protein All Blue 

Standards, Bio-Rad Laboratories). Proteins separated by SDS-PAGE were either 
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stained with Coomassie brilliant blue or transferred to a polyvinylidene fluoride 

(PVDF) membrane for immunoblotting (see Western blot analysis).  

 

Coomassie staining 

To remove SDS from SDS-PAGE gels, which inhibited the staining efficiency 

Coomassie brilliant blue, gels were washed three times with 100 ml ddH2O for 10 

minutes at RT. Proteins were subjected to an in-gel staining step by incubating it 

with a Coomassie brilliant blue solution (PageBlue protein staining solution, 

Thermo Scientific) for 1h (or overnight) at RT. Background staining was removed 

by washing the gels with 100 ml ddH2O for 20 min at RT. 

 
Western blot analysis 

Western blotting analysis utilizes specific antibodies that allow the visualization of 

target proteins. Proteins were first separated by SDS-PAGE (see above) and 

transferred onto PVDF membranes (Immobilon-P, Millipore) using a wet tank 

blotting system (TE22 Mighty Small Transfer Tank, Hoefer). Protein blotting was 

achieved in a blotting buffer containing transfer tank at a constant voltage of 70 V 

for 2 h at 4°C. PVDF membranes were initially blocked for 30 min – 1 h at RT 

using a blocking buffer (TBST with 5% skim milk powder) and consequently 

incubated with a primary antibody either for 1 h at RT or overnight at 4°C under 

constant shaking. The membrane was washed twice with TBST for 5 min at RT, 

incubated with horseradish peroxidase-conjugated secondary antibody (1:5000, 

Dianova) diluted in blocking buffer for 1-2 h at RT and washed twice times with 

TBST for 30 min at RT. Target proteins were detected by chemiluminescence 

using enhanced chemiluminescence kits (Pierce ECL Western Blotting Substrate 

and Pierce ECL 2 Western Blotting Substrate, Thermo Fisher Scientific) followed 

by exposure to light sensitive films (Amersham Hyperfilm ECL, GE Healthcare). 

Alternatively, a charged-coupled device camera (LAS-3000, Fujifilm) was used for 

chemiluminescent detection of target proteins. 

 

Purif ication of HisStrepUrm1-conjugates from denatured yeast extracts 

To identify urmylated conjugates in yeast expressing N-terminally His-tagged 

Urm1, a denatured Ni-NTA purification was carried out (Hoege et al., 2002; Sacher 
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et al., 2005). Firstly, 200 OD of log-phased cells were harvested by centrifugation 

(2500 g, 5 min, 4°C), washed with 50 ml cold PBS, transferred to a 50 ml falcon 

tube and lysed by incubating the cells with 5 ml of lysis buffer (1.85 M NaOH, 7.5% 

β-mercaptoethanol) for 15 min on ice. The cell lysate was incubated with 5 ml 55% 

TCA for 15 min on ice; precipitates were sedimented by centrifugation (8000 g, 20 

min, 4°C), washed twice with 5 ml ice-cold acetone. The pellet was air-dried for 10 

min at RT, resuspended in buffer A (6 M guanidinium chloride, 100mM NaH2PO4, 

10mM Tris-HCl, pH 8.0, 0.5% NP-40) and incubated for 1 h at RT under constant 

shaking. Insoluble aggregates were removed by centrifugation (20.000 g, 20 min, 

4°C), after which the supernatant was transferred to a fresh 15 ml falcon tube. 

Thereafter, 20 mM imidazole and 50 μl of Ni-NTA agarose beads (Qiagen) were 

added to the denatured protein extract and incubated over night at 4°C. The 

protein solution was loaded onto 5 ml a disposable polypropylene column (Qiagen) 

and the Ni-NTA agarose beads were cleared from the protein extract by gravity-

flow. Beads were washed once with 15 ml of washing buffer 1 (buffer A with 20 

mM imidazole), 15 ml of washing buffer 2 (buffer A with 20 mM imidazole, pH 6.3), 

15 ml of buffer C (8 M urea, 200 mM NaCl, 100 mM Tris-HCl, pH 6.3) with 0.5% 

NP-40 and finally with 15 ml of buffer C. HisUrm1-conjugates that were bound to 

the beads were eluted by incubation with 30 μl of SDS sample buffer at 99°C for 

10 min. Samples were subsequently subjected to SDS-PAGE and immunoblotting. 

For a His/Strep-tag tandem affinity purification of HisStrepUrm1, Urm1-conjugates 

were eluted with 15 ml elution buffer (8 M urea, 200 mM NaCl, 50 mM NaH2PO4, 

100 mM Tris-HCl, pH 6.3, 250 mM imidazole, 1% SDS) and dialyzed against PBS, 

pH 8.0 at 4°C overnight. 1 ml of strep-tactin slurry (Strep-Tactin Superflow Plus, 

Qiagen) was added to the dialyzed eluate and incubated for 4 h or overnight at 

4°C. The strep-tactin beads were washed three times with 10 bed volumes of 

PBS. Urm1-conjugates were eluted with 1 ml of 10 mM desthiobiotin, precipitated 

with 500 μl 55% TCA for 15 min on ice and sedimented by two centrifugation steps 

(20.000 g, 15 min, 4°C; 20.000 g, 1 min, RT).  Precipitates were resuspended in 

HU buffer, incubated at 65°C for 10 min and analyzed by Western blotting. 
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Purif ication of recombinant GST-tagged proteins from E. coli 
Rosetta (DE3) or Rosetta 2 cells expressing recombinant GST-tagged proteins 

were resuspended in 30-40 ml lysis buffer (1x PBS, 400 mM NaCl, 5 mM DTT, 

PIC) and disrupted by a high-pressure homogenizer (3x 40 mbar, EmulsiFlex-C3, 

Avestin). Lysates were cleared from the insoluble cell material (23.000 g, 20 min, 

4°C) and incubated with 800 μl glutathione sepharose slurry (glutathione 

sepharose 4 Fast Flow, GE Healthcare) for 2 h at 4°C. The suspension was 

loaded onto a column, which separated the resins from the cell lysate. Resins 

were washed with 0.5 l lysis buffer and eluted twice with 0.5 ml elution buffer (1x 

PBS, 400 mM NaCl, 5 mM DTT, 50 mM gluthathione, PIC). The eluate was 

dialyzed against PBS over night at 4°C, frozen in liquid N2 and stored at -80°C. For 

the tandem purification of GST-His-Flag-Urm1, GST purification was carried out as 

described above. Instead of eluting the glutathione resins with the elution buffer, 

resins were incubated with 20 U/ml thrombin at 25°C overnight. Resins were 

sedimented (500 g, 2 min, RT) and 100 μl of Ni-NTA agarose (Qiagen) were 

incubated with the supernatant for 1h at 25°C. The suspension was loaded onto a 

column, washed three times with 10 ml Ni-NTA washing buffer (PBS, 20 mM 

imidazole) and eluted with 1 ml NiNTA elution buffer (PBS, 250 mM imidazole). 

The elution was subsequently dialyzed against PBS over night at 4°C, frozen in 

liquid nitrogen and stored at -80°C. 
 

5.3  Mass spectrometry analyses 
SILAC-based mass spectrometry 

Stable isotope labeling with amino acids in cell culture (SILAC) coupled with 

MS/MS was employed to detect novel Urm1-conjugates. Auxotrophic yeast mutant 

variant strains deficient in the biosynthesis of lysine and arginine (Δlys1 Δarg4) 

expressing His- and HA-tagged Urm1 (HisHAUrm1) were grown for at least 10 cell 

divisions in SC growth media supplemented with either normal or heavy arginine 

and lysine (Arg0, Lys0; Light, Arg10, Lys8; Heavy, Cambridge Isotope Laboratories). 

Mid-log phased yeast cells grown in heavy SC media were treated with 10 mM 

NEM for 1 h at 30°C, harvested and combined with equal amount of untreated 

cells that were grown in light SC media. For label-swap replication experiments, 
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cells grown in light SC media were treated with 10 mM NEM for 1 h at 30°C, 

harvested and combined with equal amount of untreated cells grown in heavy SC 

media. HisHAUrm1-conjugates were purified using either denaturing Ni-NTA 

purification or a denaturing tandem affinity purification (see Purification of 
HisStrepUrm1-conjugates from denatured yeast extracts) and separated by SDS-

PAGE, stained with Coomassie Blue, excised in ten slices, trypsinized and 

analyzed by LC-MS/MS at the Biochemistry Core Facility of the Max-Planck 

Institute of Biochemistry using LTQ-Orbitrap mass spectrometers. Peptides of 

putative urmylated-conjugates were identified using the MaxQuant software (Cox 

and Mann, 2008). Search for Urm1 branch motif (TLHGG-ε-K, HGG-ε-K) were 

carried out either with urm1-S94R or urm1-L96R mutant variants. These mutants 

enabled trypsin-dependent cleavage of the C-terminal tail of Urm1 and 

subsequently the identification of putative urmylation sites. 
 

5.4  Computational analyses 
The Saccharomyces Genome Database (www.yeastgenome.org/) and the 

National Center for Biotechnology Information (www.ncbi.nlm.nih.gov/) were 

sources for DNA/protein sequences and scientific literature. DNA sequencing 

analyses and DNA primer design were carried out either with Lasergene 13 

(DNASTAR) or with SnapGene Viewer (SnapGene). Protein and DNA sequence 

alignment was either analyzed with BLAST (blast.ncbi.nlm.nih.gov) or with MultAlin 

(multalin.toulouse.inra.fr/multalin/). Images obtained either by microscopy or by 

Western blot quantification were carried out with ImageJ (https://imagej.nih.gov/ij/). 

Contrast of western blot films was adjusted using Adobe Photoshop CS5.1 (Adobe 

Systems). For texts, tables, graphs and figures Microsoft Office 2011 (Microsoft 

Corporation) was used. 
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7  Abbreviations 
% percent 

°C celsius 

μ  micro (x10-6) 

μg microgram 

μl microliter 

2μ  multi-copy vectors 

aa amino acid 

AAA  ATPases associated with various cellular activities 

AD  transactivation domain 

ATP  adenosine 5-triphosphate 

BD  Gal4 DNA binding domain 

bp  base pairs 

BSA  bovine serum albumin 

CCD  camera charged-coupled device camera 

cDNA  complimentary DNA 

CEN  centromeric (low copy vectors) 

CHX  cycloheximide 

C-terminal  carboxyl-terminal 

C-terminus  carboxyl terminus 

DAPI  4',6-diamidino-2-phenylindole 

DBD DNA-binding domain 

DMSO  dimethylsulfoxide 

DNA  deoxyribonucleic acid 

dNTP  deoxy nucleoside triphosphate 

DTT  dithiothreitol 

DUB  deubiquitylating 

E glutamate 

E1  ubiquitin activation enzyme 

E2  ubiquitin conjugation enzyme 

E3  ubiquitin ligase 

E4  polyubiquitylation factor 
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EDTA  ethylenediaminetetraacidic acid 

ELP elongation protein  

ER  endoplasmic reticulum 

ERAD  ER-associated degradation 

F  farad 

g  gram 

g  gravitational constant (6.6742x10-11 N m2 kg-2) 

Gal  galactosidase 

GFP green fluorescence protein 

GG double glycine 

Gln glutamine 

Glu gluatamate 

h  hour 

H2O2 hydrogen peroxide 

HA human influenza hemagglutinin 

Ig  immunoglobulin 

IP immunoprecipitation 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

K kilo (x103) 

J Joule 

K lysine 

kan  kanamycin 

kb  kilo base pairs 

kDa  kilo dalton 

LB  Luria-Bertani 

LC-MS/MS liquid chromatography tandem mass spectrometry 

Lys lysine 

LZM limited zinc medium 

M  molar 

m  milli (x10-3) 

MAT  mating type 

mcm5U34 5-methylcarboxymethyluridine modification at U34 
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min  minutes 

MoCo Molybdenum cofactor 

MOPS  3-N-Morpholinopropane sulfonic acid 

mRNA  messenger RNA 

MW  molecular weight 

MS mass spectrometry 

MS/MS tandem mass spectrometry 

n  nano (x10-9) 

NEM  N-ethylmaleimide 

NH2OH hydroxylamine 

Ni-NTA nickel−nitrilotriacetic acid 

nm nanometer 

nt nucleotide 

ADP  adenosine 5-diphosphate N-terminal amino-terminal 

N-terminal amino terminal 

N-terminus  amino terminus 

OD  optical density 

ORF  open reading frame 

PAGE  polyacrylamide gel electrophoresis 

PBS  phosphate-buffered saline 

PCR  polymerase chain reaction 

PEG  polyethylene glycol 

PIC protease inhibitor cocktail 

PMSF  phenylmethylsulphonyl fluoride 

PTM post-translational modification 

PVDF  polyvinylidene fluoride 

Q glutamine 

qRT-PCR reverse transcription quantitative PCR 

RNA  ribonucleic acid 

rpm  rounds per minute 

ROS reactive oxygen species 

RT  room temperature 
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RT-qPCR reverse transcriptase quantitative polymerase chain reaction 

RLD rhodanese-like domain 

s  seconds 

S  sedimentation coefficient (Svedberg) 

SAMP small archaeal ubiquitin-like modifier protein 

SC  synthetic complete 

SDS  sodium dodecylsulfate 

SILAC stable isotope labeling with amino acids in cell culture 

s2U34 thio-modification of U34  

SUMO small ubiquitin-like modifier 

TAP tandem affinity purification 

TBE  Tris/borate/EDTA buffer 

t-BOOH tert-butyl hydroperoxide 

TBS  Tris-buffered saline 

TCA  trichloro acidic acid 

TEMED  N,N,N’,N’-tetramethylethylenediamin 

Tris  Tris(hydroxymethyl)aminomethane 

tRNA transfer RNA 

U  unit 

U34 wobble uridine at 34th position in tRNA 

Ub  ubiquitin 

UBA  ubiquitin associated 

UBC  ubiquitin-conjugating enzyme 

UBD ubiquitin-binding domain 

UBL ubiquitin-like protein 

ULP ubiquitin-like processing enzyme 

UPS  ubiquitin/proteasome system 

Urm1 ubiquitin-related modifier 1 

UV  ultraviolet light 

V  volt 

v/v  volume per volume 

w/v  weight per volume 
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WT  wild type 

YPD  yeast bactopeptone dextrose medium 

Y2H yeast-two hybrid 

ZF zinc finger 

Zn zinc 

ZRE zinc-responsive element 

Ω  ohm
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