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opening up new doors and doing new things,

because we’re curious...

and curiosity keeps leading us down new paths.
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Abstract

Abstract

Virus-host interactions play a pivotal role within the ancient battle between viruses and host. Vir-
uses modulate a wide range of host signaling pathways, such as cell survival and programmed cell
death. Both pathways play prominent roles as part of the innate immune system. Thus, the regula-
tion of cell survival and programmed cell death is essential during antiviral activities. Several cell
death pathways are well studied, including their inducers and involved proteins. The induction of
reactive oxygen species (ROS) by viruses leads to cell death as well, but detailed mechanisms are
widely unknown.

In the main project of my thesis I describe the identification of a new programmed cell death path-
way, which is independent of caspases and induced by ROS. This pathway includes the cytoplasmic
ROS sensor KEAP1, the mitochondrial phosphatase PGAM5 and the mitochondrial cell death ex-
ecution protein AIFM1. Further analysis revealed that KEAP1 releases PGAM5 upon stimulation
with high amounts of ROS. Subsequently, PGAM5 dephosphorylates AIFM1 at position serine 116.
Besides its role in this cell death pathway, KEAP1 is known to induce cell survival by releasingNRF2.
This would highlight the role of KEAP1 as a switch between cell survival and cell death in response
to virus induced ROS. All proteins involved in this pathway are targeted by viral proteins, belong-
ing to different viral classes, emphasizing the co-evolution of this cell death pathway and these viral
proteins. I applied affinity purification coupled to mass spectrometry as well as functional assays to
identify and characterize this pathway. In conclusion, the innate immune system requires control
of ROS to execute cell survival and cell death pathways by which the innate immune system copes
with viral infections.

In the two additional projects of my thesis as well concerning virus-host interactions I contributed
to a large story that investigated strategies of viral perturbations of the host and interactions of viral
RNA with host proteins.
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1 Introduction

Infections of hosts occur regularly, but only few result in pathogenic disease. Due to the host’s
defense system, particular the innate and adaptive immune system, most pathogens can be kept
in check. Additionally, scientific research on pharmaceutical remedies already allows treating and
eliminating of many pathogens, especially fungi and bacteria. However, compared to fungi and
bacteria, there are only few pharmaceutical treatments to eliminate viral pathogens from the host.
Particularly persistent virus infections are difficult to treat. In case of virus infections the host has to
fight the battle against pathogens, which frequently find ways to escape detection and elimination
by the immune system. Therefore, the immune system developed more radical ways to eliminate
intruders, such as inducing death of infected cells. In this context mitochondria, essential cellular
organelles, play an important role in the connection of the immune system with cell death. To
support the immune system andmitochondria in this task, it is our keen interest to elucidate cellular
mechanisms that are involved in virus sensing and elimination. These new findings will support the
discovery of new approaches for treatments against viral pathogens. In the following four chapters
I will introduce

(1) the innate immune system, as essential part of the host’s antiviral defense

(2) mitochondria, as essential organelle of the cell to regulate antiviral immunity

(3) viruses, hijacking pathogens that need to be eliminated by the immune system

(4) mass spectrometry, as meaningful high throughput method for analysis of cellular system and
mechanisms

The first chapter ’the immune system’ discusses especially the innate immune system with focus on
the human immune system. I describe the components as well as signaling and execution processes
as steps of the innate immune system, particularly in the context of virus infections. The follow-
ing chapter describes functions of mitochondria being important for the immune defense, such as
reactive oxygen species (ROS) synthesis and signaling as well as cell death mechanisms. The third
chapter dealsmainlywith themechanisms how viral pathogens use the cell for themselves and avoid
detection by the innate immune system. The last chapter focuses on mass spectrometry as method
to study the innate immune system and more generally focuses on the use of mass spectrometry
in the field of protein-protein interaction studies to elucidate signaling pathways and virus-protein
interactions.

1.1 The innate immune system

The immune system of vertebrates is divided in two parts: the innate immune system as a first
line of defense against invading pathogens and the adaptive immune system which enable to long
lasting memory and protection from re-infection by similar pathogens. Both systems consist of
cells, molecules and processes that link these molecular machines and cells in organisms to pro-
tect against invading pathogens (figure 1.1). The innate immune system encompasses non-specific
physical barriers such as mucus and cornea, as well as a set of germ-line encoded receptors, which
are partly expressed in a cell-type specific manner. Particularly cells of the innate immune system,
including macrophages and dendritic cells (DCs), express a wide repertoire of immune receptors
[1, 2]. The adaptive immune system of humans includes T- and B-cells, which have the ability to
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1 Introduction

Figure 1.1: Comparison of innate and ad-
aptive immune system (adapted from [4]).
The innate immune system as first line of
defense composes of the endothelia barrier
as first defense, soluble factors (e.g. CRP,
complement system,MBL) in the blood and
a subset of germ line encoded receptors
mainly localized on innate immune cells.
These receptors are classified in five groups:
TLR, NLR, RLR, ALR and CLR. The adapt-
ive immune system as long lasting defense
is activated some days after the innate im-
mune system. It composes mainly of two
cell types: T cells and B cells. T-cells dif-
ferentiate depending on the innate immune
system signals to various T cell types having
regulatory or helping functions. B cells in-
stead produce antibodies from an antibody
stock continuously generated by recombin-
ation.
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generate B- and T-cell receptors by somatic recombination, allowing generation of receptors with
almost unlimited specificity [3].

Despite its complexity, the immune system has to distinguish correctly between molecules derived
from pathogens (non-self) and healthy tissue (self). Inability to correctly identify infected vs. non
infected cells can lead to detrimental side effects such as autoimmune diseases [5]. As the focus
of this thesis is to contribute to our understanding of basic function of the innate immune sys-
tem, the following chapter focuses on three functional parts of the innate immune system. Firstly,
the activation of the innate immune system by invading pathogens; secondly, the intra- and in-
tercellular signaling that alerts the organismal immune system and thirdly, the execution of the
immune response to perturb the pathogen. A part of these final execution processes is the activa-
tion of the adaptive immune system, which involves inflammatory processes. Here it is of critical
importance that organisms control these inflammatory processes since malfunction can culminate
in detrimental effects such as immunopathology or insufficient clearance of pathogens.

1.1.1 Pattern recognition receptors - Activation of the innate immune system

The innate immune system is widely known as the first line of defense and reacts quickly to infec-
tions or tissue damage [6]. Historically, it was thought to act in an unspecific manner on patho-
gens [1]. However, more recent development revealed a higher specificity than expected, mostly
due to the discovery of a wide range of pattern recognition receptors (PRRs) (figure 1.1) [1]. There
are two kinds of PRRs: endocytic and signaling PRRs [7]. Endocytic PRRs are either membrane
bound on phagocytes, called scavenging receptors, or distributed freely in extracellular compart-
ments, called soluble receptors [6]. Scavenging receptors enable direct sensing and phagocytosis of
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1.1 The innate immune system

detected invading microorganisms [6]. Soluble receptors sequester molecules of the complement
system, resulting as well in destruction of invading pathogens [6]. This section focuses on signaling
PRRs, which activate pathways resulting in transcriptional changes, subsequent release of signaling
molecules, such as cytokines, and activation of the innate and adaptive immune system.

Activation of the innate immune system occurs after detection of amolecular signature (called ’pat-
tern’) that is associated with a pathogen or injury [8]. Patterns derived from pathogens, such as bac-
teria, yeast, viruses, parasites, worms are called pathogen associated molecular patterns (PAMPs)
[8]. Patterns of injuries and non-pathogenic stimuli are named damage associated molecular pat-
terns (DAMPs) [9]. DAMPs are in many cases proteins or nucleic acids which are present in non-
physiological cellular compartments (e.g. nucleic acids in endosomes) or chemically modified, for
instance through oxidation in the extracellular milieu [9]. Many diverse PAMPs have been de-
scribed and include bacteria cell wall components, such as lipopolysaccharides (LPS), carbohydrate
structures and proteins in various modified forms [8]. Furthermore, non-processed viral nucleic
acids can serve as PAMPs [10]. Binding of PAMPs to PRRs activates the innate immune system and
sets off cascades of events that culminate in the ’arming’ of the organism against invading pathogens
[10]. Therefore, pattern recognition is a key function that is relatively well studied.

Currently, five families of PRRs are known: membrane-bound Toll-like receptors (TLRs) and C-
type lectin receptors (CLRs) and cytoplasmicNod-like receptors (NLRs), RIG-I-like receptors (RLRs)
and recently discovered AIM2-like receptors (ALRs) [11, 12]. After detection of pathogens, PRRs
initiate various PRR-specific signaling cascades resulting in production of Interferons (IFNs), pro-
inflammatory cytokines (e.g. Tumornecrosis factor (TNF), Interleukin (IL)-1β, IL6) and chemokines
(e.g. CXCL, CCL) [12]. Furthermore, PRR activation can lead to modulation of cellular machiner-
ies (e.g. modulation of translation) and induction of cell death [13]. The next sections focus only
on TLRs, RLRs and ALRs as they are involved in virus sensing.

Toll-like receptors

TLRs were the first PRRs being discovered. A protein named Toll was first identified in Drosophila
[14], and eleven years later the conserved signaling function in immunity was revealed in Droso-
phila, plants and humans [15, 16]. Later, ten other proteins of the humanTLR family were identified.
TLRs are transmembrane proteins with extracellular leucine rich repeats (LRR), forming horseshoe
shape structures as binding sites for PAMPs, a linker region (LR), for subcellular localization and an
intracellular Toll/interleukin-1 receptors (TIR) domain, for downstream signaling [17]. Except of
four TLRs (3, 7, 8 and 9), which are located to the endosome, all TLRs are plasmamembrane bound
[18]. The TLRs and their activating PAMPs are displayed in (table 1). Focusing on viruses, DNA
as well as single (ss) and double (ds) stranded RNAs, are detected by TLRs during the virus infec-
tion process in endosomal compartments [17]. After PAMP binding in most cases dimerization of
TLRs occur which results in recruitment of adaptor proteins to the TIR domain and subsequent
signaling [19]. Stimulation of TLRs leads via a signaling cascade to activation and nuclear translo-
cation of IFN regulatory factors (IRFs), Nuclear factor κB (NF-κB) and Activator protein-1 (AP-1),
which regulate transcription of IFNs, pro-inflammatory cytokines (TNFα, IL-1β, IL-6) and effector
cytokines to activate the adaptive immune system [1].

RIG-I-like receptors

Compared to TLRs, which sample the extracellular environment and endocytosed material, sev-
eral viruses enter the cytosol without being detected by these receptors. A distinct set of receptors,
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1 Introduction

Table 1: Ligands of TLRs [17, 20–22])

Receptors Ligand Origin of ligand
TLR1 triacylated lipopeptides Bacteria and mycobacteria

TLR2

Lipoprotein/ Lipopeptides Various pathogens
Peptidoglycan (PGN) Gram-positive bacteria
Lipoteichoic acid Gram-positive bacteria
Lipoarabinomannan Mycobacteria
Phospholipomannan Fungi
Glycoinositolphospholipids (GPI an-
chor)

Trypanosoma cruzi

Zymosan Fungi
Heat-shock protein 70 Host
envelope proteins Measles virus, hCMV, HSV-1

TLR3 double-stranded RNA Viruses

TLR4

Lipopolysaccharid (LPS) Gram-negative bacteria
Fusion protein RSV
Heat-shock protein 60 and 70 Host
Type II repeat extra domain A of
fibronectin

Host

Oligosaccharides of hyaluronic acid Host
Polysaccharide fragments of heparin
sulphate

Host

Fibrinogen Host
TLR5 Flagellin Bacteria
TLR6 diacylated lipopeptides Mycoplasma

TLR7 single-stranded RNA Virusesguanine nucleoside analog1
TLR8 single-stranded RNA Viruses
TLR9 CpG-containing DNA Bacteria and viruses
TLR10 N.D. N.D.
1 7-Thia-8-oxo-guanosine, 7-deazaguanosine, and related guanosine analogs

named RIG-I-like receptors (RLRs), were identified which screen the cytosol and also nuclear en-
vironment for virus-derived nucleic acids in order to stimulate the innate inmmune system [23].
RLRs are cytoplasmic PRRs and have three known members: Retinoic acid-inducible gene 1 (RIG-
I), Melanoma differentiation associated gene 5 (MDA5) and Laboratory of genetics and physiology
2 (LGP2) [23]. RLRs can contain tandem N-terminal caspase activation and recruitment domains
(CARDs), Asp-Glu-X-His/Asp (DExD/H) helicase domain andC-terminal repressor domain (RD)
(figure 1.2) [23].

Although RIG-I and MDA5 can recognize RNA viruses, they differ in the type of virus they sense.
Whereas RIG-I detects paramyxovirus, influenza virus and Japanese encephalitis virus, MDA5
is required for picornavirus detection [24]. RIG-I has been shown to bind dsRNA bearing a 5’-
triphosphorylated (5’PPP) overhang or diphosphates [25–28]. MDA5 interacts with dsRNA which
exceeds 100 nt [29] and LGP2 binds diverse dsRNAs [30, 31] (table 2). The RD seems to be the do-

4



1.1 The innate immune system

Figure 1.2: Domain structure of RLRs [23].
All three RLRs compose of a SF2 type helicase domain and a RD or CTD. Only RIG-I and MDA5 can signal further
downstream via their tandem CARD.

main responsible for distinction between various ligands for these receptors, as the key residue in
the RD differs in all three receptors [32]. These types of RNA are usually not present in the cytosol
but produced in vast amounts by virus replication. Further described signaling mechanisms focus
on RIG-I. By interaction of the RDwith triphosphates, conformational changes of RIG-I occur, res-
ulting in tetramer formation [33]. This releases theCARDs from theDExD/Hhelicase domain. Now
other RNA structures, such as dsRNA, can bind within the DExD/H helicase domain and finally ac-
tivate RIG-I [25, 32, 34]. Upon activation, RIG-I initiatesNF-κB and IRF3 and -7 translocation to the
nucleus, resulting in expression of type I IFN and subsequent activation of IFN stimulated genes
(ISGs), also called IFN regulated genes (IRG) [34, 35]. LGP2 seems to control RIG-I and MDA5
by different mechanisms [36]. This is probably due to LGP2 lacking CARDs which are critical for
downstream signaling [37]. LGP2 was proposed to be a negative feedback regulator for RIG-I [36].
The LGP2 RD has the highest dsRNA binding affinity of all three receptors and could thus compete
for binding to downregulate the signal [38]. This function could be upstream of RIG-I and MDA5
such as facilitating ligand detection [36]. Additionally, LGP2 has been suggested to participate in
anti-microbial signaling of DNA viruses and cytosolic DNA [39].

Table 2: Ligands of RLRs [10, 21]

Receptors Ligand Origin of ligand

RIG-I
5’PPP ssRNA (base pairing)

Virusesshort dsRNA
sequences specific to viral genomes (poly-U
region)

MDA5 long dsRNA with >100 nt Viruseslong poly I:C
LGP21 dsRNA Viruses
1 LGP2 an inhibitor and modifier of RIG-I and MDA5, respectively
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1 Introduction

Apart from cytosolic virus-derived RNA also cytosolic DNA is a signature for infection with a
pathogen. Thus devoted receptors that constantly assay the cytoplasm for presence of DNA have
evolved and are a critical part of the innate immune system.

AIM2-like receptors

The first cytoplasmicDNA sensor that was identified is called Absent inmelanoma 2 (AIM2). AIM2
can bind DNA and activates the inflammasome, a macromolecular complex that has the ability to
mature pro-cytokines into their biologically active versions. AIM2 was thus coining a new family
of receptors called AIM2-like receptors (ALRs). This family now comprises various cytoplasmic
and nuclear receptors (table 3) that are involved in cytokine induction as well as inflammasome
activation. In 2006 Stetson proposed a TLR9 a cytosolic DNA sensing pathway that is independ-
ent of TLR9 [40]. A year later DNA-dependent activator of IFN regulatory factors (DAI) was the
first proposed cytosolic DNA sensor activating IRF-3 and IRF-7 [41]. However, even at this time
it was already evident that it cannot be the only sensor and that DNA sensing in the cytoplasm
is much more complex than sensing of specific RNAs [42]. Indeed, several other DNA receptors
where identified, among them absent in melanoma 2 (AIM2), IFN gamma inducible protein 16
(IFI16) and cGAMP synthetase (cGAS) [11, 43–47]. The latter three receptors are at the moment the
most widely accepted PRRs sensing DNA [12, 48]. AIM2 and IFI16 compose of two domains: two
DNA-binding HIN-200 domains and a protein-protein interaction Pyrin domain [12]. AIM2 is a
cytosolic protein and initiates formation of an inflammasome [44], resulting in cytokine matura-
tion and cell death. IFI16 is a nuclear localized protein, which shuttles to cytosol [44, 46], where it
has been reported to result in both, inflammasome and IFN induction [11, 46]. IFI16 mainly recog-
nizes foreign DNA from viruses replicating in the nucleus, such as viruses of the herpesvirus family
(HSV-1, KSHV and EBV) [11, 46, 49]. Additionally, IFI16 requires association of Breast cancer type
1 susceptibility protein (BRCA1) (a DNA damage indicator) to distinguish between self and non-
self DNA [50]. cGAS is a cytosolic protein, which signals compared to the other two receptors via
a second messenger, called cyclic GMP-AMP (cGAMP) [51–53]. cGAS leads to IFN and cytokine
induction, upon detection of dsDNA and RNA:DNA hybrids [51, 53, 54].

Table 3: Ligands and localizations of ALRs [21, 55]

Receptors Ligand Localization Origin of ligand
AIM2 dsDNA cytoplasmic Viruses

DAI DNA cytoplasmic Virusessequences specific to viral gen-
omes (poly-U region)

IFI16

dsDNA

nuclear Virusesoligonucleotides
poly(dA-dT)
poly(dG-dC)

cGAS
DNA

cytoplasmic Virusespoly(dA-dT)
poly(dG-dC)

After detection of pathogens by PRRs the innate immune system is activated. The signals which are
transmitted vary based on the PRR which is activated as well as on the activation strength. Many of
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1.1 The innate immune system

the receptors result in activation of the NF-κB signaling pathway and in induction of IFN expres-
sion. The next chapter elucidates details of these signaling pathways, roles of second messengers in
signaling and of organelles as signaling hubs.

1.1.2 Signaling pathways of the innate immune system

After activation of PRRs, they mostly assemble to large signaling complexes including adaptor
proteins. These complexes activate signaling cascades, which subsequently activate transcription
factors. This results in expression of IFNs, cytokines and chemokines, which lead to expression or
activation of execution proteins, leukocytes and is needed for the full activation of the adaptive im-
mune system. The signaling cascades differ between the different receptors (or receptor classes).
TLRs for example signal through distinct proteins, namely Myeloid differentiation primary re-
sponse protein (MyD88) and/or TIR domain-containing adapter molecule 1 (TICAM1, or TRIF).
Signaling downstream of RLRs and ALRs involves proteins that are physically linked to organelles,
such as mitochondria, peroxisomes, mitochondria-associated membranes (MAM) and endoplas-
mic reticulum (ER) (second part of this section) [56] and secondmessengers that have to be bound
by adaptor proteins which further transmit the signal. Thus, the before mentioned receptors utilize
these diverse pathways which eventually results in similar but also diverse transcriptional responses
that are translate in distinct outcomes. Importantly, the receptors and their downstream pathways
also cross talk with each other to enhance and specify the immune answer [57].

TLR3 and TLR7 signaling starting at endosomes

TLRs signal through their intracellular TIR domain. TLRs dimerize after binding of appropriate
PAMPs to the extracellular/ endosomal LRR domain, which leads to a conformational change of
theTIRdomain of someTLRs, such asTLR9 [58]. Subsequently, adaptor proteins, possessing aswell
a TIR domain, bind to the TLR’s TIR domain. Several adaptor proteins are known to be involved
in TLR signaling: MyD88, Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP,
or MAL) , TICAM1, TICAM2 (or TRAM) and Sterile alpha and TIR motif-containing protein 1
(SARM) [59]. Except of SARM, all proteins mediate downstream signaling. SARM has a TIR do-
main but it has been shown to block the activity of TICAM1, but not of MyD88 [60, 61]. All TLRs,
except TLR3, bind MyD88 or a complex with MyD88 and TIRAP [59]. After adaptor protein ac-
tivation, kinases are bound and activated. These kinases initiated gene expression by phosphoryla-
tion of distinct transcription factors, including NF-κB, IRF3, IRF5 and IRF7 [62]. These transcrip-
tion factors translocate to the nucleus and regulate expression of antiviral and pro-inflammatory
genes.

The following two pathways describe TLR3 and TLR7 signaling as examples for the two distinct
pathways involved in recognition of viral dsRNA or ssRNA, respectively (figure 1.3). The adaptor
proteins involved in TLR3 and TLR7 signaling are TICAM1 and MyD88, respectively. Compared
to other TLRs, the endosomal TLRs (3, 7, 8, 9) are cleaved at the ectodomain in the endolysosomal
compartment before activation [63, 64]. This is essential to avoid recognition of self while regular
protein processing at the ER [65]. However, this is controversially discussed.

TLR3 signals only through the adaptor protein TRIF [66, 67]. TLR3 binding to dsRNA results in
phosphorylation of several tyrosine residues by protein tyrosine kinases, namely Epidermal growth
factor receptor (EGFR) and Src [68]. TRIF oligomerizes upon binding to phosphorylated TLR3 and
subsequently distributes the signal to three different pathways: IFN induction, cytokine induction
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for TLRs, RLRs and ALRs, respectively.

and cell death induction. To induce IFN expression, TRIF employs TNF receptor-associated factor
3 (TRAF3) [69]. TRAF3 binds Inhibitor of NF-κB kinase (IKK)ε, which subsequently either recruits
TANK-binding kinase 1 (TBK1) or IL-1 receptor-associated kinase 1 (IRAK1) for phosphorylation
and thereby activation of IRF3 or IRF7, respectively [70–72]. Both transcription factors induce type
I IFN. IRF3 is responsible for IFN-β gene regulation [35, 73, 74]. For induction of cytokine ex-
pression, TRIF employs TRAF6 [75]. TRAF6 engagement leads to binding of Mitogen-activated
protein kinase kinase kinase 7 (MAP3K7 or TAK1), TGF-beta-activated kinase 1, MAP3K7-binding
protein 2 (TAB2) and dsRNA-activated protein kinase (PKR) [76]. Subsequently, this whole com-
plex is released to the cytosol and activates Mitogen-activated protein kinase (MAPK) pathways
and the IKK complex. Both pathways lead to activation of transcription factors, such as cAMP re-
sponse element-binding protein (CREB), AP-1 andNF-κB [72]. NF-κB, which is phosphorylated by
various kinases, translocates upon dimerization into the nucleus and activates gene transcription of
pro-inflammatory cytokines, such as IL-1β, IL-6 and TNFα, as well as of IFNγ [77, 78]. NF-κB tran-
scription factors are a family of five different proteins: NFκB2 p52/p100, NF-κB1 p50/p105, c-Rel,
RelA/p65, and RelB. To act as transcription factors they dimerize and initiate transcription of genes
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1.1 The innate immune system

involved in a broad spectrum of biological processes, among them innate and adaptive immunity,
inflammation, stress response [1]. To induce cell death, TRIF binds to Receptor-interacting protein
kinase 1 (RIPK1) [79]. Hereby, RIPK1 recruits FAS-associated death domain (FADD), which inter-
acts with caspase-8 and subsequently activates caspase-8-dependent apoptosis [79]. However, re-
cent studies have shown that RIPK1 can also induce caspase-8 dependent apoptosis without FADD
[80]. Further, RIPK1 can induce necroptosis, a caspase-independent cell death pathway (see chapter
1.2.2) [81]. TLR3 signaling can be blocked by SARMandDisintegrin andmetalloproteinase domain-
containing protein 15 (ADAM-15); both impair binding toTRIF by their ownTIRdomain [60, 82].

TLR7 signals via adaptor protein MyD88. After binding to TLR7, MyD88 interacts with IRAK1
and 4 via their death domain (DD) [59]. Subsequently, TRAF6 binds this complex. As mentioned
above, TRAF6 activates the IKK complex and MAPK pathway. TRAF6 ubiquitinylates IKKβ and
subsequently phosphorylates inhibitor of κB (IκB) proteins. This phosphorylation leads to poly-
ubiquitinylation and proteasomal degradation of these inhibiting proteins releasing the transcrip-
tion factor NF-κB. The MAPK pathway involves a cascade of MAP kinases [83]. First, MAP3K7
phosphorylates MAP2K this kinase further phosphorylates MAPK which can be one of these three
kinases: ERK, JNK or p38. The final MAPK subsequently phosphorylates and activates the tran-
scription factors AP-1 (all three MAPK) and CREB (only by p38) [84, 85].

RIG-I signaling via mitochondria signaling hub

Cytosolic recognition of viral RNA is accomplished by RLRs. The described signaling pathway in
the following section elucidates the downstream signaling of RIG-I after binding viral RNA (fig-
ure 1.3). After ligand binding and the before full activation, Tripartite motif protein (TRIM)25
binds to the first CARD of RIG-I [86]. Subsequently, TRIM25 ubiquitinylates the second CARD
of RIG-I [86]. The ubiquitinylated RIG-I interacts with 14-3-3ε protein to form a ’RIG-I translocon’
complex, consisting of RIG-I, TRIM25 and 14-3-3ε protein [87]. This complex is guided by 14-3-
3ε to mitochondria and associated structures. Here, RIG-I binds to mitochondrial associated ad-
aptor protein (MAVS), also called IPS-1, VISA and CARDIF [88–91]. MAVS is located at the outer
mitochondrial membrane, peroxisome or MAM [88, 92, 93]. MAVS has an N-terminal CARD,
which interacts with the CARDs of RIG-I. This process initiates polymerization of MAVS via its
transmembrane domain [94, 95]. Further, adaptor proteins of the TRAF family, including TRAF3,
TRAF5 andTRAF6 [94, 96–100], are recruited toMAVSfilament and ubiquitinylateMAVS at Lys63.
This ubiquitinylation results in binding of NF-κB essential modulator (NEMO) [101]. NEMO is an
adaptor protein which can recruit proteins leading to IFN production as well as proteins leading
to pro-inflammatory cytokine induction [101]. To induce IFN NEMO binds TBK1. After forma-
tion of this NEMO-TBK1 complex, MAVS is ubiquitinylated by TRIM25 resulting in degradation
of MAVS. Without MAVS the NEMO-TBK1 complex is released to the cytosol where TBK1 phos-
phorylates IRF3 which dimerizes and translocates to the nucleus activating IFN transcription [102].
To induce pro-inflammatory cytokines, NEMO recruits IKK, which results in IκB degradation and
release of NF-κB [88]. Additionally to these pro-survival pathways, apoptosis, a cell death pathway
(chapter 1.2.2), induction is described for MAVS [103]. This is supported by the finding that MAVS
activates caspases, cellular proteases involved in programmed cell death, which subsequently cleave
MAVS [104–106]. Additionally to the activation of caspases, MAVS influences the ubiquitinylation
of Voltage-dependent anion channel 1 (VDAC1). Upon ubiquitinylation VDAC1 is degraded, res-
ulting in decreased outer mitochondrial membrane potential and subsequently cell death [107].

cGAS signaling by generation of cGAMP as second messenger
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Compared to intracellular RNA signaling via MAVS which is locally acting within the cells, intra-
cellular DNA signaling has the potential to cross cell-cell borders. In addition to the organelle loc-
alized protein STING, a second messenger, called cGAMP, is part of the DNA signaling (figure 1.3).
The N-terminal region of cGAS binds the backbone of canonical B-DNA [108, 109]. Upon DNA
binding, cGAS dimerizes and catalyzes the dinucleotide formation of ATP and GTP to cGAMP
[47, 53, 110]. This produced secondmessenger has a 2’-5’-linkage which is different from the known
3’-5’-linkage in the prokaryotic second messenger cGAMP [52]. After synthesis, cGAMP binds to
ER localized Stimulator of interferon genes protein (STING) [111]. Thus, the ER is a signaling hub
in DNA sensing. After cGAMP binding, STING translocates to the Golgi where it initiates innate
immune response [111–114]. Similarly to MAVS, STING can signal through two different pathways.
One pathway involves binding of TBK1 which subsequently phosphorylates IRF3 resulting in IFN
induction [112, 115]. The other pathway involves the IKK complex resulting in NF-κB activation
[116]. Upon DNA sensing by cGAS not only in the infected cell but in neighboring cells as well
IFNs are produced. This is due to the fact that cGAMP can pass through gap junctions [117]. This
allows a fast response of the whole cellular environment with the aim to reduce the infectibility of
cells and by that reduce the viral load.

All those examples show that the site of signal detection is not the site of signaling. It is currently not
clear why this happens, but an interesting hypothesis is that this local separation of detection and
signaling may raise the threshold required to induce potent antiviral signaling. This could be im-
portant tominimize accidental signaling that could induce autoimmunity [56]. After ligand binding
by various PRRs they initiate different signaling pathways, resulting in activation of transcription
factors, like NF-κB, AP-1, IRF3 and -7 and CREB. After activation of transcription factors, cellular
machinery starts transcription of type I IFNs, pro-inflammatory cytokines and chemokines. These
different proteins are translated in the cytosol and released via the ER-Golgi apparatus and endo-
somes to the extracellular environment. The releasing cell as well as the neighboring cells detect
these proteins with appropriate receptors and start subsequent signaling to protect from spreading
pathogens. The next chapter will elucidate further these different execution proteins, their down-
stream signaling and resulting effects on the host and pathogen.

1.1.3 Execution of signaling

Pro-inflammatory cytokines, chemokines and IFNs are a subset of small proteins which are secreted
upon the before mentioned induction of the innate immune system. As PRRs are mainly located
on innate immune cells, these immune cells warn other cells of the organism by appropriate small
proteins to become protect from the invading pathogen [118]. The secreted proteins can act in an
autocrine and paracrine way on target cells, where they stimulate further cytokine production and
in the case of IFNs also activate expression of IFN stimulated genes (ISGs) which have antiviral
activity. The following section gives an overview on secreted proteins, the second part describes
IFN induced cellular pathways and finally focuses on the activity of some ISGs.

IFNs, cytokines and chemokines

IFN was discovered by Issacs and Lindenmann nearly 60 years ago [119]. They applied supernatant
of chicken membranes treated with an inactivated influenza virus to other membranes which were
subsequently protected from viral infection [119]. Biochemical analysis showed that the transferred
activity was due to an acid stable protein which they called IFN. It is now known thatmany different
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1.1 The innate immune system

types of IFNproteins exist, that can broadly be separated in three types (type I, II and III) depending
on their gene and protein sequence and the receptor that is activated by the respective IFN.

Type I IFNs are expressed in all cells and contain five different protein groups: IFNα, β, ω, τ and
δ. However, only the first three are present in humans, the latter two were detected only in giraffes
and ruminants and in pigs, respectively [120, 121]. IFNα contains a family of 14 genes, encoding for
distinct isoforms, whereas IFNβ names only one protein [122]. Type I IFNs have no introns. The
isoforms of IFNα are responsible for the outcome of the immune response with respect to antiviral,
antiproliferation and immunomodulatory activity. Above mentioned signaling events results in
IRF3 and -7 activation, which subsequently induces transcription of type I IFNs in infected cells
[123, 124]. An exception to this activation procedure are plasmacytoid dendritic cells (pDCs), which
have the ability to utilize a fast track pathway, involving TLR signaling viaMyD88 followed by direct
activation of IRF7 [123]. This results in very fast and prominent induction of IFNα gene and protein
expression [123]. Type I IFNs are expressed quickly after virus detection but only for a short period
of time.

The only member of type II IFNs is IFNγ. IFNγ is a secondary cytokine, as it is not directly in-
duced by PRR signaling, but by the cytokine IL-12 as well as in response to activation of specific
receptors present on NK cells and primed T-cells. IL-12 is regulated through NF-κB signaling and
secreted exclusively from immune cells [125], such as DCs. After release, IFNγ forms homodimers,
which bind to IFNγ receptor (IFNGR), composing of four subunits [126]. IFNγ is one of the major
molecules, besides TNFα and other immunoregulatory cytokines, such as IL-12 and IL-18, to en-
able crosstalk between innate and adaptive immune system [127–129]. Additionally, its expression
appears to be more sustained than expression of type I IFNs.

Type III IFNs compose of IFNλ with at the moment four known family members, IFNλ 1-4 [130–
133]. IFNλ signal via the IFNλ receptor 1 (IFNLR1 or IL-28R), which ismostly localized on epithelial
cells and mediate antiviral immunity similar to type I IFNs [130, 134]. Type I and II IFNs have in
common that they promote an antiviral state in cells for defense against pathogens by inducing
expression of ISGs, described in more detail in part three of this chapter.

Pro-inflammatory cytokines are mainly induced through activation of NF-κB. They are composed
of around 40 genes, such as IL-1β, IL-6 and TNFα, encoding for proteins with a molecular weight
between 8-40 kDa [135–137]. Among other functions, these cytokines are involved in thematuration
of T-helper (Th) cells into Th1, Th2 and Th17 cells.

Finally, also chemokines are secreted upon activation of the innate immune system. These are cy-
tokines which induce chemotaxis. Currently, around 50 chemokines are described and divided in
two groups based on the position of their cysteine residues in theirN-terminus: CC (both cysteines
together) and CXC (cysteines divided by one other amino acid) [138]. Chemokines induce activ-
ation and migration of leukocytes to their sites of action. These locations can be either sites of
infection or lymphatic organs that are involved in activation of the adaptive immune system.

IFN signaling pathway

Intracellular signaling cascades triggered by type I and III IFNs are identical and exemplified based
on IFNα signaling in figure 1.4 [130, 134]. IFNAR is a heterodimeric receptor consisting of two
chains, namley IFNAR1 and 2. The cytoplasmic tail of IFNAR1 binds Tyrosine kinase 2 (TYK2)
and the cytoplasmic tail of IFANR2 binds Janus kinase 1 (JAK1). Both kinases subsequently ac-
tivate two different signaling pathways, a third is mediated by the IFNAR heterodimer itself. The
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first signaling pathway results in tyrosine phosphorylation of Signal transducer and activator of
transcription (STAT)1 and 2 by both kinases. STAT heteromers interact in the nucleus with IRF9.
This trimeric complex is called IFN stimulated gene factor 3 (ISGF3) and binds to IFN-stimulated
response element (ISRE) promoter to induce ISG expression [139]. The second signaling pathway
results in phosphorylation of IRS 1/2 by both kinases which subsequently activate Phosphoinos-
itide 3-kinase (PI3K) [140]. PI3K can phosphorylate AKT which regulates Mammalian target of
rapamycin (mTOR). mTOR positively influencing mRNA translation and is particularly involved
in translation of ISG proteins. PI3K can as well phosphorylate Protein kinase Cδ (PKCδ) which
regulates ISG transcription and apoptosis [141]. This signaling through PI3K can regulate the bio-
logical activity of ISGF3. The third signaling pathway, mediated by IFNAR1/2 itself, activatesMAPK
signaling cascade for activation of p38. Upon activation by MAPK, Mitogen- and stress-activated
protein kinase 1 and 2 (MSK 1/2) phosphorylated p38, which translocates to the nucleus and modi-
fies histones for ISG expression [142, 143].

There are various cellular mechanisms that inhibit the IFN system to control the immune response
in order to avoid its overreaction. Among other proteins, Suppressor of cytokine signaling (SOCS)
and Protein inhibitor of activated STAT (PIAS) as inhibitors of the JAK-STAT pathway are dampen-
ing IFN and cytokine related signaling. SOCS inhibits STAT activation, by binding to JAK [144, 145],
whereas PIAS inhibits STAT protein translocation [146].

IFNγ binds to the cell surface heterodimeric IFNγ receptor (IFNGR) 1/2. It induces via JAK2 the
phosphorylation and homodimerization of STAT1, which translocates to the nucleus and activates
transcription of genes controlled by IFNγ activated sequence (GAS) promoter [147]. Nuclear phos-
phatases dephosphorylate STAT1, which translocates out of the nucleus to reenter the signaling
pathway. Genes that are regulated by GAS promoters are also controlled by type I IFN signaling.
However, a specific subset of genes regulated by type I and II IFNs exist.

IFN stimulated genes

In this introduction I refer to type I IFN stimulated genes as ISGs. ISGs are proteins which act
intracellularly and often have the potential to inhibit various steps of the viral life cycle, such as
entry, translation and replication [148]. However, ISGs do not always protect individual cells from
cell death but rather prevent the viruses to spread and infect neighboring cells or tissues. ISGs can
also target non-viral intracellular pathogens and regulate activity of type I and II IFNs. Among
the known around 2000 genes regulated by the ISRE promoter [149] are known antiviral pro-
teins including: RNA-dependent protein kinase (PKR), 2’-5’-oligoadenylate synthetase (2’-5’-OAS),
Myxovirus resistance (Mx) proteins, IFN-induced proteins with tetratricopeptide repeats (IFIT)
proteins, IFN-induced transmembrane (IFITM) protein, Intercellular adhesion molecule (ICAM),
TRIM proteins [141]. The defect of individual ISGs can result in severely impaired antiviral defense
against particular pathogens, illustrating the complexity and specificity of certain ISGs. In this sec-
tion I will describe two extensively studied ISGs, namely PKR and IFIT family, in more detail.

PKR has two N-terminal dsRNA binding motifs which bind dsRNA generated during viral infec-
tions, and two kinase domains for autophosphorylation and phosphorylation of targeted substrates
[150, 151]. Upon dsRNA binding PKR dimerizes and is activated by autophosphorylation [152]. Ac-
tivated PKR influences cellular protein translation, various signal transduction pathways and ap-
optosis (see chapter 1.2.2) [150, 153, 154]. PKR controls protein synthesis by phosphorylation of the
α subunit of Eukaryotic translation initiation factor (eIF)2, which subsequently inhibits eIF2 and
arrests protein translation of capped mRNAs [150]. As example for signal transduction pathways
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Figure 1.4: Interferon stimulated execution signals of the innate immune system.
After transcription initiation by IRF3 and 7, IFNα is produced and secreted from a virus infected cell. Extracellular
IFN binds in an autocrine (same cell) or paracrine (neighboring cells) fashion to IFNAR and induces oligomerization
of the transcription factors STAT1 and 2 and IRF9. These transcription complexes translocate to the nucleus and initiate
transcription of ISGs. Cells express ISGs to achieve an antiviral state within cells, either to eliminate already replicating
virus or be prepared to eliminate invading virus in the neighboring cells.

NF-κB signaling is described. To control NF-κB signaling, PKR phosphorylates IκB, which sub-
sequently leads to release of NF-κB and its translocation to the nucleus [155]. Activation of NF-κB
is independent of eIF2 phosphorylation [156]. Finally, PKR induces apoptosis through activation
of Fas-associated death domain (FADD) and caspase-8 [157]. Apoptosis induction through PKR is
triggered by various stimuli, such as eIF2 phosphorylation [158] and NF-κB activation [158], mostly
depending on the viral infection.

IFIT proteins have four members in humans, IFIT1, 2, 3 and 5 [159]. IFIT proteins are expressed
at very low level and are induced upon viral infection or IFN treatment. All IFITs are cytoplasmic
proteins without reported enzymatic activity. However, IFIT proteins form large protein complexes,
consisting of IFIT proteins and additional cellular factors [160–162]. Formation of such complexes
may influence the spectrum of viruses target by individual IFIT proteins [163]. IFIT proteins have
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been shown to bind to viral nucleic acids within a positive charged pocket, such as 5’PPP-RNA
and 2’Ounmethylated RNA [160, 162, 164–166], both common nucleic acids associated with viral
infection [167, 168]. By binding of 2’O unmethylated RNA, IFIT1 blocks translation of this RNAs
[162].
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1.2 Involvement of mitochondria in innate immunity

An important feature of the innate immune system is the utilization of cellular organelles, such as
mitochondria and ER, as signaling hubs. Besides their participation in IFN induction, mitochon-
dria are also involved in cell death and ROS production. The next chapter will elucidate the last two
mentioned tasks in more detail.

Mitochondria are essential cellular organelles which differ in their composition from all other cel-
lular organelles. Based on the endosymbiotic theory, mitochondria are suggested to be leftovers
from a symbiotic relationship with prokaryotic cells. Major hints are the existence of mitochon-
drial DNA (mtDNA) and the remarkable similarity of the mitochondrial membrane ATPase and
mitochondrial membrane composition compared to bacteria derived counterparts [169]. Addi-
tionally, unlike other organelles which have one surrounding membrane, mitochondria have two
membranes. Mitochondria can be divided in four compartments, the outer mitochondrial mem-
brane (OMM), the intermembrane space (IMS), the inner mitochondrial membrane (IMM) and
the matrix (M) (figure 1.5). Both membranes consists of lipid bilayers that differ in their protein
and lipid content [170].

outer mitochondrial
membrane (OMM)

inner mitochondrial
membrane (IMM)

matrix (M)inter membrane
space (IMM)

Figure 1.5: Structure of mitochondrion.
Mitochondria consist of four compartments di-
vided by two lipid bilayer membranes: outer
mitochondrial membrane and inner mitochon-
drial membrane. The space between the mem-
branes is called intermembrane space. The com-
partment within the inner mitochondrial mem-
brane is called matrix.

In humans, mitochondrial DNA only encodes for 13 mitochondrial proteins, 22 tRNAs and two
ribosomal RNAs [171]. The additional 1000 proteins annotated to localize to mitochondria are en-
coded by nuclear DNA [172]. Mitochondria are present in several copies within each cell harboring
several copies of mtDNA. Energy production is a major task of mitochondria [173] and the copy
number of mtDNA scales with the energy demand of the cell. Mitochondrial fusion and fission
processes adjust the number of mitochondria per cell as well as the mtDNA copy numbers [174].
Some cell types, particular neuronal and muscle cells have a higher energy demand [173].

Mitochondria are involved in multiple cellular functions, such as transport and import of bio-
molecules, energy metabolism, ROS metabolism, Calcium homeostasis, cell death and innate im-
munity. The most prominent function is the generation of energy in form of ATP synthesis. Other
metabolic functions are the synthesis of amino acids and lipids aswell as synthesis of heme and iron-
sulfur clusters. Additionally, mitochondria take part in regulation of the cellular stress response,
cell proliferation and play a central role in programmed cell death [175]. Accordingly, mitochon-
dria have amajor influence on aging and cancer processes as well as on neurodegenerative diseases,
such as Alzheimer’s and Parkinson’s disease [175]. In addition, mitochondria are also a major hub
for immune signaling.

The following sections shortly describe mitochondrial energy metabolism and will focus on ROS
synthesis and functions as well as on various cell death pathways acting via mitochondria.

ATP synthesis with the oxidative phosphorylation (OxPhos) system
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Adenosine triphosphate (ATP) is the most important molecule for storage and transmission of en-
ergywithin the cell. To generate energy the cell has tometabolize incoming nutrients, such as carbo-
hydrates, lipids and proteins, by glycolysis, β-oxidation and proteolysis, respectively. The products
of these three catabolic processe, pyruvate, acetyl-CoA and several othermetabolites, are used in the
tricarboxylic acid (TCA) cycle. The TCA cycle takes place in the mitochondrial matrix and gen-
erates reduced nicotinamid-adenin-dinucleotid (NADH) and reduced flavin-adenin-dinucleotid
(FADH2). NADH and FADH2 are substrates for the oxidative phosphorylation (OxPhos) system
located on the IMM. The OxPhos system consists of five protein complexes (I-V). Electrons from
NADH and FADH2 are passed along the first four complexes and the resulting energy is used to
pump protons to the IMS. The last complex, complex V, is an ATP synthetase which uses this pro-
ton gradient (IMS to matrix) to bind free phosphate to ADP, generating ATP [176]. A side product
of the OxPhos system are ROS which can be used as second messenger to control physiological
functions, but also result in detrimental effects if their intracellular concentration is raising above
a critical level.

1.2.1 Synthesis and effects of reactive oxygen species

Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are comprised of different
highly reactive molecules, based on oxygen or nitrogen, respectively (figure 1.6) This section fo-
cuses only on ROS as major player in immunity.

Figure 1.6: Types of reactive oxygen species.
Common reactive oxygen species with name,
chemical formula and simplified electron struc-
tures. The dots designate an unpaired electron,
which is chemically named radical.

O2 O=Ooxygen
O2

-O=O-peroxide -2

O2
-O=Osuperoxide anion -

OH H-Ohydroxyl radical
OH- H-O-hydroxyl ion
H2O2 H-O-O-Hhydrogen peroxide

There are eight known sites for ROS production at the IMM. Two of them are located in complex
I and III of the OxPhos system (figure 1.7) [177]. A side product of the establishment of the proton
gradient are electrons, which leak out of the redox centers and react with oxygen in the matrix to
generate superoxide anions [178]. Superoxide anions re reduced by Superoxide dismutases (SODs)
to hydrogen peroxide (H2O2). These reactions also take place in the IMS and cytosol. Here differ-
ent SODs are involved. In total, humans encode for three SODs: SOD1 (a Cu/Zn-SOD), SOD2 (a
MnSOD) and SOD3 (a Cu/Zn-SOD) [179]. They differ in their cellular localization and the metal
ions in their catalytic center [179]. SOD1 is mainly localized in the cytosol and partly in the mito-
chondrial IMS. It convertes mainly cytosolic ROS produced by NOX enzymes on ER and plasma
membrane as well as leaking ROS frommitochondria. SOD2 is localized in themitochondrial mat-
rix and responsible for ROS leaking from theOxPhos system. SOD3was detected in all extracellular
liquids and quenches free radicals [180–182]. Mutations of SOD enzymes are commonly found in
neurodegenerative disease, such as amyotrophic lateral sclerosis (ALS), and result in increased cell
death [183, 184]. Since H2O2 is detrimental to cells when transformed to hydroxyl radicals, catalase
reduces H2O2 to water and oxygen or the Gluthation (GSH) scavening system scavenges H2O2 by
generating water.
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Figure 1.7: Cellular synthesis of reactive oxygen species.
Cellular ROS are synthesized mainly on three different places in the cell: [a] at Complex I and III of the OxPhos system
in the mitochondrial inner membrane, [b] at the ER membrane by NADPH oxidase (NOX)4 and [c] in the cytosol
during transformation of hypoxanthine to uric acid catalyzed by Xanthine oxidase (XO). In all cases superoxide anion is
produced which can be detoxified by Superoxide dismutases (SODs) to hydrogen peroxide. Hydrogen peroxide can be
reduced to water by enzymatic reactions including Catalase or Glutathione peroxidase (GPx). Hydrogen peroxide can
freely diffuse through the mitochondrial membranes. The Fenton reaction generates hydroxyl radicals from hydrogen
peroxide which is highly reactive.

If the H2O2 amount is too high to be controlled by catalytic or scavenging proteins, it transforms to
hydroxyl radicals by an oxidation reaction that involves iron. Hydroxyl radicals are highly reactive
molecules which target lipids, DNA and proteins. Such targeting can cause detrimental effects in
the cell. Oxidation of lipids (figure 1.8 a) results in disintegration of membranes. If the IMM is
affected, the proton gradient is lost, which leads to decrease of ATP synthesis. Oxidation of DNA
bases (figure 1.8 b) effects base pairing due to changes of hydrogen bonds and ultimately induce
mutations. Finally, the uncontrolled oxidation of protein backbones (figure 1.8 c) can lead to pep-
tide bond breaks and malfunctional or non-functional proteins. If these oxidation processes either
accumulate or actively increase above a critical threshold, cells initiate a cell death program.

Despite having the above described detrimental effects, ROS can be also used in a controlled man-
ner as second messenger. As such it is involved in the regulation of several biological processes,
such as epigenetics, autophagy, immunity, cell proliferation and differentiation, hormone signaling
and cell death [185]. These cellular processes are controlled by defined oxidation reactions between
ROS and cysteine residues of proteins, which modulate the function of targeted proteins as shown
in figure 1.9. As with other cellular secondmessengers, like Ca2+, the ROS concentration is relevant
for downstream signaling. Low intracellular levels of ROS (pico- to nanomolar) are required for
general homeostasis [185]. Slightly elevated levels initiate ROS scavenging pathways [185]. These
pathways can include Catalase, Glutathione or Kelch-like ECH-associated protein 1 (KEAP1) and
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Figure 1.8: Oxidation
reactions on cellular macro-
molecules by reactive oxygen
species.
Hydroxyl radicals can react
with cellular macromolec-
ules molecules (lipids, DNA
and proteins) and induce
irreversible damage. (a)
lipid peroxidation (b) DNA
oxidation (c) protein oxidation
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Nuclear factor (erythroid-derived 2)-like 2 (NRF2) [185–188]. The latter pathway sense ROS via
KEAP1 which results in activation of a transcriptional program [186–188]. In homeostatic condi-
tions, KEAP1 acts as a scaffold protein for substrates of E3 ligase Cullin 3 (CUL3) [189]. One of
these substrates is NRF2. NRF2 binds directly upon translation KEAP1 [186]. This interactions me-
diates ubiquitin dependent proteasomal degradation of NRF2 through CUL3 [189, 190]. KEAP1 is a
cysteine-rich protein [191], which changes its conformation upon high oxidative stress by formation
of disulfide bridges [191]. These conformational changes result in release of NRF2 and transloca-
tion of NRF2 to the nucleus [191]. In the nucleus NRF2 binds to antioxidant response elements
(ARE) on the DNA and activates transcription of cytoprotective genes, such as NAD(P)H:quinone
reductase (NQO1), Glutathione S-transferase (GST),Heme oxygenase 1 (HMOX1) andThioredoxin
(TXN) [192–195]. Highly increased levels of ROS, as described before, result in oxidative stress and
subsequently cell death [185].
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Figure 1.9: ROS acting as a second messenger influence protein functions (adapted from [196, 197]).
Proteins can be activated (darker color) or inactivated (faint color) by small amounts of ROS. [a] Transcription factors
(TF) can be deactivated by oxidation, resulting in impaired DNA binding e.g. NF-κB, AP-1, HIF-1α. [b] TF can also be
activated by forming heterodimers via disulfide bonds e.g. FOXO binding to p300/CBP acetyltransferase. [c] Proteins
can interact via disulfide bonds and dissociate upon forming disulfide bonds, due to conformational changes e.g. KEAP1-
NRF2, ASK1-TRX, p53-JNK. [d] Oxidation of proteins can result in activation e.g. disulfide bond-mediated homodimers
of ATMkinase phosphorylateHSP27 and activateG6PDwhich contributes tomaintenance of cellular redox homeostasis.
[e] Proteins can be inhibited by ROS such as Protein tyrosine phosphatase, resulting in elevated protein phosphorylation
of their target proteins. [f] Stability of proteins can be influences by ROS e.g. proteasome subunit 26S can be inactivated
through oxidation, resulting in less degradation of ubiquitinylated proteins.

1.2.2 Cell death pathways

Mitochondria are involved in several cell death signaling pathways. Cell death in general is a natural
process required during development or regeneration of cells or tissue [198]. In addition, cell death
can also be caused by injury or be a consequence of pathogen encounter [198]. There are various
forms of cell death. They differ in their induction, by the morphological changes on the cell and
partly their localization in the organism. The main cell death pathways are programmed cell death
(PCD), including apoptosis and necroptosis, as well as uncontrolled cell death such as necrosis.
Apoptosis and necrosis can be clearly distinguished by their morphological changes on the cell
(table 4).

Table 4: Morphological characteristics of apoptosis and necrosis (adapted from [199])

Morphological char-
acteristics of cellular
organelles

apoptosis necrosis

cytoplasm shrinking swelling
membrane blebbing loss of integrity
mitochondria become leaky swelling
nucleus condensation no changes
chromatin aggregation at nuclear membrane no changes
vesicle formation yes, cell fragmented into small vesicles no, complete cell lysis
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Table 5: Comparison of various forms of programmed cell death [202–204]

Programmed cell death
Caspase-dependent Caspase-independent

intrinsic
apoptosis

extrinsic
apoptosis

pyroptosis parthanatos necroptosis necrosis

involved
proteins

Bcl-2
family
members,
caspases,
cyto-
chrome
c

Bcl-2
family
members,
caspases,
TNF re-
ceptor
family,
cyto-
chrome
c

caspase-1,
IL-1β

PARP1,
Calpains,
AIFM1

RIPK1,
RIPK3,
MLKL

inflam-
matory

no no yes no yes yes

1.2.2.1 Programmed cell death

Programmed cell death (PCD) comprises various forms of cell death including, apoptosis, parthanatos
and necroptosis [200]. PCD is essential for cell homeostasis of multicellular organisms. A well-
studied example is apoptosis, which is required for successful development [201]. Malfunctions of
PCD can result in pathological disorders, like cancer, neurodegenerative diseases or failures during
embryogenesis [198]. The various forms of PCD differ both in their involved proteins and their
biochemical outcome (table 5).

The following section will only focus on intrinsic and extrinsic apoptosis, parthanatos and necrop-
tosis. The most studies PCD pathway until now is apoptosis. There are two mechanistically distinct
apoptotic signaling pathways: an intrinsic and an extrinsic signaling pathway. They vary in the
inducing trigger coming from inside the cell or outside the cell, respectively. Both of these path-
ways require caspases, cell death specific cysteine proteases [205], although caspase-independent
cell death pathways, involving cathepsin, calpains and serine proteases exist [206, 207]. Caspase-
independent cell death pathways pathways involve different triggers and execution proteins and can
be activated also in the presence of caspases in the cell [198, 208].

Intrinsic apoptosis

Intrinsic apoptosis (figure 1.10) is also calledmitochondrial apoptosis since the apoptotic signals are
transmitted throughmitochondria. It can be triggered by damage of cellular macromolecules (pro-
teins, DNA) or organelles, upon ultraviolet irradiation, exposure to toxic chemicals or withdrawal
of essential proteins like growth factors [209]. All triggers result in the release of mitochondrial res-
ident molecules which activate caspases. The major players of intrinsic apoptosis are members of
the B-cell lymphoma-2 (BCL-2) family, released mitochondrial IMS proteins, such as cytochrom c,
and caspases. The BCL-2 family comprises three groups of proteins: the inhibitory or anti-apoptotic
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Figure 1.10: Intrinsic apoptosis pathway.
Upon intracellular stimuli, such as damaged proteins or UV
irradiation, pro-apoptotic proteins of the BCL-2 family are
activated, like BAX and BID. BAX forms homooligomers
which translocate tomitochondria andwith the help of tBID
form pores in the mitochondrial outer membrane resulting
in the release of cytochrom c, SMAC and HtrA2. The lat-
ter two inhibit XIAP, which inhibits caspases under normal
conditions. Cytochrom c binds APAF1, which oligomerizes
and subsequently interacts with pro-caspase-9. Caspase-9
is fully active upon release of XIAP and cleaves caspase-3,
which cleaves targeted substrates and resulting inDNA frag-
mentation. Bax can be inhibited by pro-survival proteins,
such as Bcl-2 and Bcl-xL.

proteins (e.g. Bcl-2, BCL-xL), the pro-apoptotic proteins (e.g. BAX, BAK) and the regulating Bcl-
2 homology 3 (BH3)-only proteins (e.g. BAD, BID, NOXA and PUMA) [210–213]. Caspases are
assigned to three groups: the initiator caspases, responsible for starting the signaling process, the
effector caspases, executing the death signal by cleaving cellular substrates, and inflammatory cas-
pases, which mediate inflammatory responses [198].

Regulatory BH3-only proteins are activated upon stress signals [211, 214]. One example is the tran-
scriptional regulation of NOXA and PUMA by p53 after DNA damage [215]. PUMA binds to the
pro-apoptotic protein BAX [216] upon which BAX forms homooligomers, translocates from the
cytosol to mitochondria and inhibits by binding anti-apoptotic protein Bcl-2 [217, 218]. It was re-
cently shown by Grosse et al. and Salvador-Gallego et al. that BAX forms ring and arc like struc-
tures onOMM [219, 220], the so-calledmitochondrial outer membrane permeabilization (MOMP)
pores [219, 220]. MOMP formation leads to releaso of several IMS proteins, including cytochrome
c, Diablo homolog mitochondrial (DIABLO or Smac) and Serine protease HTRA2 mitochondrial
(HtrA2 or Omi) [221–223]. Cytochrom c is normally involved in the energy metabolism at the
electron transport chain. After an apoptotic stimuli cytochrome c is released and binds the scaf-
fold proteinApoptotic protease-activating factor 1 (Apaf-1) [224]. Apaf-1 subsequently oligomerizes
and interacts with the initiator caspase-9 via their CARD, forming the activated caspase-9-Apaf-1
holoenzyme complex [225]. The complex is still inhibited by X-linked inhibitor-of-apoptosis pro-
tein (XIAP) to avoid false activation of cell death. Smac and Omi support the apoptosis inducing
function of cytochrome c by binding to XIAP [223]. When the interaction of XIAP to caspase-9-
Apaf-1 holoenzyme complex is released, the complex is fully activated and is called apoptosome
[225, 226]. Caspase-9 can now cleave effector pro-caspases-3, -6 and -7. After cleavage, these ef-
fector caspases cleave their substrates at the appropriate recognition sequence [227]. Slee at al.
showed that caspase-3 is the most important effector caspase responsible for cleavage of various
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substrates involved in cytoskeleton structure and DNA repair [228], such as actin, nuclear lamins,
Receptor-interacting protein (RIP), XIAP, Poly(ADP-ribose) polymerase 1 (PARP1) and Inhibitor
of caspase-activated DNase (ICAD) [228]. ICAD inhibits caspase-activated DNase (CAD), which
amongst others is responsible DNA fragmentation and chromatin condensation [229]. The results
of caspase cleavage is membrane blebbing and cell shrinkage, chromatin condensation and nuc-
leosomal fragmentation, which are the aforementioned morphological characteristics of apoptosis
[230]. Another hallmark of apoptosis is the exposure of a plasma membrane lipid called phos-
phatidylserine to the outer surface of apoptotic cells [231]. Phosphatidlyserine marks the apoptotic
cell for phagocytosis, the end of the cell death process. There is no release of cellular material to the
environment, avoiding inflammatory responses [232].

Extrinsic apoptosis

Extrinsic apoptosis (figure 1.11) is also called receptor-mediated apoptosis. In contrast to intrinsic
apoptosis, extrinsic apoptosis is triggered by signals outside the cell. These signals are transmitted
by cytokines (e.g. TNFα, TRAIL, FasL, Apo3L) and hormones(e.g. Estrogen), which bind to recept-
ors on the cell surface[232, 233]. The receptors mediating cytokine induced extrinsic apoptosis are
members of the tumor necrosis factor (TNF) receptor gene superfamily [234]. The TNF receptor
family consists of proteins with a cysteine-rich extracellular domain for ligand binding, and a cyto-
plasmic death domain (DD) responsible for intracellular interactions [235]. The following section
focuses on the TNFα and FasL induced extrinsic apoptosis pathways.

TNFα is generated and released upon sensing of diverse stimuli that lead to activation of an innate
immune response as described in chapter 1.1.2. Trimeric TNFα binds to the transmembrane TNFα
receptor (TNFR)1, which is capable to mediate cell death signaling. After TNFα binding to TNFR1
several adaptor proteins are recruited to form a scaffold which subsequently recruits caspases. The
involved adaptor proteins contain different combinations of death domains to bind to TNFR1 and
to each other (figure 1.12).

TNFR1 associated death domain (TRADD) directly interacts with TNFR1 through its death do-
main. Fas associated protein with death domain (FADD) interacts with TRADD through their
death domain. Subsequently, initiator pro-caspase-8 is recruited to FADD via its death effector
domain. This interactions leads to cleavage of caspase-8 followed by enzymatic processing of the
executor caspase-3, -6 and -7, which subsequently mediate cell death by cleaving their appropri-
ate substrates as described above. Additionally, Receptor interacting protein kinase 1 (RIPK1) is
recruited to TNFR1 to mediate a signaling cascade activating NF-κB.

Another protein that has the ability to induce cell death is Fas ligand (FasL). It is mostly generated
on cytotoxic T cells after repeated activation of antigen receptors [236]. After FasL binds to its re-
ceptor Fas, Fas directly interacts with FADD which subsequently recruits caspase-8 [237]. Besides
processing of the executer caspases, caspase-8 cleaves BID, too [237]. Truncated BID (tBID) trans-
locates to mitochondria to interact with BAX and subsequently activates the apoptosis pathway
[237]. Caspase-8 can be inhibited by FLICE-inhibitory protein (FLIP), which is transcriptionally
regulated by NF-κB [238]. FLIP blocks caspase-8 activation by binding FADD and caspase-8 and
thereby inhibits apoptosis [239–241]. There are several viral FLIP (v-FLIP) proteins, inhibiting re-
ceptor mediated apoptosis, for example in Human Herpesvirus 8 (HHV-8, also named KSHV) and
Molluscipoxvirus [242]. Avoiding early apoptosis is of advantage for viral replication.
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Figure 1.11: Extrinsic apoptosis pathway.
Upon binding of extracellular binding of TNF, the cell has
two signaling options: mediating cell survival from mem-
brane bound TNFR1 via ubiquitinylated RIPK1 to activate
NF-κB (grey) or inducing cell death via internalized TNFR
and caspases. This cell death pathway is called extrinsic ap-
optosis. Upon internalization TRADD, TRAF2 and RIPK1
bind TNFR1. As RIPK1 is not ubiquitinylated it dissoci-
ates from the complex, interacts with RIPK3 which phos-
phorylates RIPK1. Subsequently, FADD and pro-caspase-
8 are binding which inactivate RIPKs and gets activated
as caspase-8. Caspase-8 subsequently activates caspase-3,
which cleaves its target proteins to induce DNA fragment-
ation. Caspase-8 can also truncate BID (tBID) which trans-
locates to mitochondria inducing intrinsic apoptosis.
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Both, intrinsic and extrinsic apoptosis pathways, converge at the point of the execution phase,
namely the activation of executer caspase. This point is considered being the final path of apop-
tosis [232].

Parthanatos

Parthanatos (figure 1.13) is a programmed caspase-independent cell death induced by overactivation
of nuclear localized PARP1 and nuclear translocation of mitochondrial resident protein Apoptosis
inducing factor, mitochondrial 1 (AIFM1). PARP1 is involved in DNA repair, chromatin function
and genomic stability [243]. It has three major domains: an N-terminal domain harboring a nuc-
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Figure 1.13: Parthanatos cell death pathway.
UponDNA single strand breaks the DNA ismarked and activates PARP1. PARP1 attaches PAR-groups to several proteins
for accumulation of DNA damage repair factors. Generation of PARylated modifications require NAD+ . High NAD+

depletion and increased production of PAR result in not well understood activation of AIFM1, probably by translocation
of PAR to mitochondria. Subsequently, AIFM1 transmembrane domain is cleaved and truncated AIFM1 is release and
translocate to the nucleus being here involved in chromatin condensation.

lear localization signal and two zinc finger motifs for DNA-binding; a central domain for auto-
modification and a C-terminal domain harboring a NAD-binding site and the PAR-synthesizing
site [244] Upon DNA strand breaks, induced by ultraviolet (UV) light, ROS or alkylating agents,
PARP1 locates to the damaged DNA strand and triggers a suicidal cascade [200, 245]. First, PARP1
binds DNA single-strand breaks and modifies surrounding histones by poly(ADP-ribose) (PAR)
[246]. This negatively charged area marks the DNA single-strand breaks for arriving repair en-
zymes [246]. Synthesis of PAR requires high amounts of NAD+, resulting in depletion of NADH
and ATP. However, if the DNA damage is too severe, PAR polymers accumulate and induce the re-
lease of AIFM1 [244]. AIFM1 is protein localized on the inner mitochondrial membrane facing to
the intermembrane space. It is nuclear encoded and imported as precursor into the mitochondria,
where its mitochondrial localization signal is cleaved off [247]. It is described bearing a oxidore-
ductase domain and a C-terminal domain responsible for cell death mediating activites [247, 248].
The transmembrane domain of AIFM1 is located in the IMM facing with its C-terminus to the IMS
[247]. After activation by PAR, AIFM1 is cleaved and translocates as truncated AIFM1 (tAIFM1)
to the nucleus [249, 250]. Nuclear tAIFM1 mediates large scale DNA fragmentation in cooperation
with cyclophilin A, resulting in necrotic like cell death [251].

Necroptosis

Another PCD pathway resulting in necrotic like inflammatory death is necroptosis (figure 1.14).
Necroptosis was identified when cells were treated with TNF in the presence of pan-caspase inhib-
itors [252]. Later it was shown that RIPK1 and RIPK3 are essential for necroptosis [253, 254].

After TNF binding to TNFR1 the extrinsic apoptosis pathway is initiated. However, when caspase-8
is inhibited by host or viral proteins, such as FLIP or viral FLIP (vFLIP), RIPK1 stays associated to
RIPK3 and FADD and caspase-8 are released. The resulting complex consisting of one RIPK1 mo-
lecule and numerous RIPK3 molecules is called necroptosome [255]. The cytosolic necroptosome
recruits Mixed lineage kinase domain-like protein (MLKL), which is phosphorylated by RIPK3 and
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Figure 1.14: Necroptosis cell death pathway.
The general TNF induced cell death pathway involves caspases. However, in certain circumstances caspases are inhibited.
In these cases RIPK1 stays associated with RIPK3, but not with FADD and caspase-8. Upon phosphorylation of RIPK1 by
RIPK3, a complex with numerous RIPK3molecules is formed which is responsible for phosphorylation ofMLKL.MLKL
oligomerize, translocates to the plasma membrane and permeabilize this membrane.

oligomerizes [256]. Phosphorylated MLKL aggregates were shown to translocate to the plasma
membrane where it induces plasma membrane lysis resulting in release of damage-associated mo-
lecular patterns (DAMPs), a hallmark of necrosis [257]. An essential part for execution of cell death
in the necroptosis pathway is an increase of ROS production [252]. Increased ROS is produced in
theOxPhos system and byNOX enzymes rather than being a consequence of insufficient ROS scav-
enging or degradation [252, 258]. Although this pathwaymainly operates throughTNF-induced cell
death, other membrane receptors, such as TLR3 and 4, and intracellular proteins, such as the ALR
receptor DAI and the ISG PKR, were identified as triggers for necroptosis [204]. This indicates that
necroptosis is a cell death mechanism during viral infections.

1.2.2.2 Necrosis

All forms of cell death mentioned before are tightly controlled. Necrosis is described as a ’more
chaotic way of dying’ [206]. Apoptotic pathways avoid release of cellular molecules, which would
act as DAMPs and trigger inflammatory responses. However, such release of cellular content is a
hallmark of necrosis [259, 260]. Morphological characteristics of necrosis are swelling of organelles,
disruption of plasma membrane and release of cellular molecules to the extracellular environment
[198, 261]. Necrosis can be triggered by tissue injuries due to toxins, cold, heat, osmotic shock
and rupture of blood vessels. They result in compromised supply of oxygen and nutrients and
subsequently ischemia [262].
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To conclude, mitochondria play an essential role in maintaining homeostasis in the cell. Besides
their role inATPproduction they are required organelles formany cell death pathways. In part these
cell death pathways are required for virus inhibition. Many viruses have evolved viral proteins to
control various cell death pathways.
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1.3 Viruses counteracting the innate immune system

Viruses are acellular pathogens which require a host for replication. By this definition they are
no living organisms but infectious agents and are not classified in any kingdom, such as animals
and bacteria. The first identified virus was tobacco mosaic virus by Beijerinck in 1898 which in-
fects tobacco plants [263]. Viruses that are released from a cells are called virions. A Virion consist
of the viral genetic material, the capsid coated by envelop proteins and in several cases an addi-
tional lipid bilayer. Based on their genetic material viruses are classified in eight groups: ssDNA,
dsDNA, dsDNA-RT, (+)ssRNA, (-)ssRNA, ambisense ssRNA, dsRNA, ssRNA-RT [264]. In general
the viral life cycle consists of three steps: entry, replication and shedding. Herpesviruses and some
other viruses have an additional step called latency, which is an established lifelong persistent in-
fection of the host [265, 266]. After viral entry via the endocytotic pathway or direct penetration
of the plasma membrane, viruses transport their nucleic acid to the site of replication. Thereby
most RNA viruses release their nucleic acid in the cytoplasm, whereas most DNA viruses require
cooperation with the nuclear import machinery to release their nucleic acid in the nucleus for rep-
lication [264, 267]. However, there are also RNA viruses replicating in the nucleus andDNA viruses
replicating in the cytoplasm. By using cellular replication machinery and cellular resources (RNA
polymerases, ribosomes, amino acids, nucleotides, etc) viruses produce copies of their genetic ma-
terial and translate their encoded proteins. When viruses release their genetic material and during
the replication process, the host can detect them by numerous nucleic sensing mechanisms men-
tioned in chapter 1.1.1. Therefore, viruses evolved mechanisms to escape detection by the host’s
surveillance machinery. These mechanisms include blunting of the innate immune defense sys-
tem, degradation of inhibiting cellular proteins and impairment of early cell death. This chapter
describes mechanisms of some viruses (table 6) to interfere with these three cellular processes. I
mostly focus on viruses that are related to my studies.

Table 6: Viruses of different families used in the studies

Virus full virus name family genetic mater-
ial

resulting disease

HCV Hepatitis C
virus

Flaviviridae (+)ssRNA persistent liver infection
as hepatitis C (liver dis-
ease)

RSV Respiratory
syncytial virus

Paramyxoviridae (-)ssRNA, non-
segmented

acute lung infection

FluAV Influenza A
virus

Orthomyxoviridae (-)ssRNA, 8 seg-
ments

Acute lung infection

LaCV La Crosse virus Bunyaviridae (-)ssRNA, 3 seg-
ments

Encephalitis (brain dam-
age)

Rota Rotavirus A Reoviridae dsRNA severe diarrhoea
HSV-1 Herpes simplex

virus
Herpesviridae dsDNA Persistent neuronal infec-

tion
KSHV Human herpes

virus 8
Herpesviridae dsDNA Cancer
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1.3.1 Strategies to interfere with the innate immune system

The main aim of viruses is to either overwhelm and thereby disarm the host immune system or to
hide from the immune system [268]. However, viruses avoid early death of the host, as the virus
would die as well [268]. To achieve this, viruses have several options: to directly attack proteins
and cells of the immune system, to avoid detection by the immune system by masking their nucleic
acids or escape detection by means of a latency phase during which only limited viral products are
expressed.

Impairing PRRs, downstream adaptors and IFN signaling

Disarming the innate immune system can occur by interfering with PRRs and their downstream
signaling proteins (see chapter 1.1.2). In this regard, receptors of the TLR, RLR and ALR family
with their appropriate cellular adaptor proteins TRIF, MAVS and STING, respectively, are in focus
of viral attacks to abolish downstream signaling and influence ISG activation.

DNA viruses, such as HSV and KSHV, predominantly perturb ALR signaling. HSV-1 promote de-
gradation of the DNA sensor IFI16 through its E3-ubiquitin ligase Infected cell protein 0 (ICP0)
[269, 270]. Thereby, HSV-1 DNA can not be recognized anymore in the nucleus. Additionally,
HSV-1 encodes for ICP27 and Us11 protein inhibiting IRF3 and STAT1 activation as well as pro-
duction of 2’-5’ OAS, respectively [271]. By that, further downstream signaling of various PRRs is
disturbed as well as production and function of ISG [271]. KSHV encodes a viral IRF1 that binds
STING and prevents its phosphorylation by TBK1 inhibiting further downstream signaling [272].
Furthermore, viral IRF1 interacts with MAVS to abolish downstream signaling after recognition of
its viral RNA by RLRs during replication [273]. Viral IRF1 is required for reactivation of KSHV
from its latent phase [272]. Another viral protein which is required for reactivation of KSHV is
Latency-associated nuclear antigen (LANA). It inhibits cGAS, a cytoplasmic DNA sensor, avoiding
generation of cGAMP and subsequent activation of innate immune response [274]. Additionally,
ORF52 protein (KicGAS) of KSHV inhibits cGAS through binding to cGAS andDNA [275]. This in-
hibits the enzymatic activity of cGAS [275] to avoid detection by the innate immune system through
recognition of viral DNA.

RNAviruses, such asHCV, FluAV andRotavirus, interferemainly with TLR andRLR signaling. For
example, HCV encodes for its own serine protease Non-structural (NS)3/4a protein which select-
ively cleaves MAVS (RLR-pathway) and TRIF (TLR-pathway) to interrupt two different signaling
pathways [276, 277]. Cleavage of MAVS results in loss of its ability to dimerize and to signal further
downstream. Another protein of HCV, NS4B, binds STING located at MAMs via a STING homo-
logy domain and abrogates IFN induction [278, 279]. A commonly studiedRNAvirus, FluAV, has as
well several strategies to inhibit the immune system. The viral transcription process of FluAV leads
to accumulation of viral 5’PPP-RNA, which would result in induction of IFN signaling. Therefore,
FluAV encodes for NS1 protein which inhibits several host proteins. However, NS1 proteins differ
among various FluAV strains resulting in different specificity for host proteins. In general NS1 pro-
teins can act on three different levels of innate immunity signaling. First, NS1 binds TRIM25, the
MAVS ubiquitin ligase required for release of the downstream signaling complex [102], inhibiting
its multimerization which results in perturbation of RLR signaling [280, 281]. However, inhibi-
tion of TRIM25 does not necessarily hinder IRF3 activation [280]. Second, NS1 proteins of highly
pathogenic FluAV strains, such as PR8 strain (H1N1) and Ud stain (H3N2), additionally inhibit
IRF3 activation which is required for IFN induction [280–282]. Thereby, NS1 protein of PR8 strain
inhibits IRF3 by a truncated cytoplasmic localized NS1, whereby NS1 of Ud strain binds Cleavage
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and polyadenylation specificity factor (CPSF30), an essential protein for RNA export, and thereby
inhibits production of IFNβ [283, 284]. Third, FluAV induces expression of SOCS3 a inhibitor of
STAT activation, resulting in reduced expression of IFNβ and cytokines [285]. Rotavirus decreases
IFN response by mediating degradation of IRF protein through targeting the IRF association do-
main which is required for dimerization [286, 287]. Moreover, Rotavirus Viral protein 3 (VP3) has
2’-5’-phosphodiesterase activity and degrades 2’-5-oligoadenylates [288]. These are required for ac-
tivation of ISG RNaseL a IFN induced RNA degradation enzyme [288].

Masking viral nucleic acids

Viral nucleic acid is themain viral structure that can be sensed by the innate immune system. Mam-
malian mRNA is modified on the 5’-end to enable proper RNA processing and translation. mRNA
carries a cap-2 which consists of a N7-methylguanosine on the 5’-end and two methylations on the
first and second ribose [176]. The cap-2-RNA is always bound to the cap-binding complex and the
Eukaryotic translation initiation factor 4F (eIF4F) [289]. These are responsible for processing of
RNA, such as splicing and 3’-polyadenylation, nuclear export of RNA and recruitment of the 40S
ribosome in order to allow translation [289].

Viruses do not carry a cap-2 on their RNA in general but generate 5’PPP-RNA and are there-
fore prone to be detected by the innate immune system. Cytoplasmic 5’PPP-RNA activates RIG-I
and IFIT proteins resulting in the establishment of an antiviral state in the host. Hence, viruses
evolved strategies, such as utilizing cellular cappingmachinery, ’cap-snatching’, cappingwith virally-
encoded enzymes or cap-substitution with viral proteins, to modify their nucleic acid and to avoid
detection by the innate immune system [290].

Hijacking the cellular capping machinery occurs when the cellular RNA polymerase II (RNA pol
II) is used for mRNA synthesis, a situation for most of the viruses [291]. Cap-snatching occurs
for FluAV in the nucleus, its site of replication, and for most other segmented (-)ssRNA viruses,
such as bunyaviruses, in the cytoplasm, their site of replication [292]. FluAV cleaves the 5’-end of
host mRNA including additional nucleotides by its own polymerase, which possesses endonuclease
activity [293, 294]. FluAV uses this capped RNA primer for transcription of its own mRNA [293].
The now capped viral RNA looks like cellularmRNAs, cannot be sensed byPRRs and is translated by
cellular ribosomes [293, 295]. Capping with virally-encoded enzymes was first identified in vaccinia
virus [296]. Other non-segmented (-)ssRNA viruses encode as well for capping enzymes named L
protein, such as RSV, vesicular stomatitis virus (VSV) and Dengue virus (DENV) [297–299]. Addi-
tionally, capping of RNA can occur with viral proteins instead of a cap-2. These viral cap proteins
directly interacts with eIF4E, the cap-binding protein of the eIF4F complex [289, 291]. However,
viral capping is not always identical to host mRNA capping, several viruses, such as RSV and New-
castle disease virus, lack the 2’-O methylation, leaving still an option for detection [297, 300].

Hiding from host detection

Another mechanism to avoid detection is by hiding from the immune system in a dormant state,
also called latency [268]. Latency is known to occur during herpes viruses and human immunode-
ficiency virus 1 (HIV-1) infection in neuronal and T-cells, respectively [266, 301]. During latency the
virus remains silent within the host and does not produce infectious particles, however, the virus
can be reactivated and than transmitted [266]. To maintain latency viruses keep a small set of viral
genes active to keep under the radar of the immune system. Additionally, herpes viruses integrate
in the host genome to replicate together with the host cell [265]. Reactivation of HSV-1 can occur
by different triggers, such as exposure to ultra violet (UV) light, fever or emotional stress [265].
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1.3.2 Strategies to interfere with protein expression levels

Although viruses evolved several strategies to circumvent their host, they have to ensure that un-
wanted cellular proteins are not produced or immediately degraded. Influences on those steps en-
sure efficient replication for viruses.

Controlling the host transcription and translation machinery

The before mentioned processes for masking viral nucleic acids still require the host translation
machinery. Thus, cellular mRNAs encoding antiviral proteins are transcribed as well. Thus, viruses
evolved translation strategies by other means than the conventional cellular translation. Thereby,
viruses can inhibiting cellular proteins responsible for initiation of cellular translation, such as
eIF4E and poly(A)-binding protein (PABP) [302]. These strategies include the use of internal ri-
bosome entry site (IRES) structures and the before described cap-substitution by viral proteins.

An IRES structure allows translation in the absence of a cap on the 5’-end and can be located every-
where within themRNA [303]. Viruses likeHepatitis A andC virus as well as KSHVuse IRES struc-
tures to promote translation of their proteins. There are also host mRNAs carrying IRES structures.
This is essential in situation when translation machinery is compromised, such as during mitosis
and programmed cell death [304, 305]. These cellular mRNAs include c-myc, p53, XIAP, Bcl-2 and
AIFM1 [306, 307]. However, depending on the class of IRES structure (class I-IV) cellular proteins
are still required for successful initiation of translation. These proteins include IRES trans-acting
factors (ITAFs), eIF4G and eIF4E [290, 305]. If host translation initiation factors are inhibited, vir-
uses need other mechanisms to recruit ribosomes and start translation. HCV circumvents the need
of eIF protein through direct recruitment of ribosomes to its IRES [308].

Viruses with (+)ssRNA genome can use cap-substitution. Thereby, Viral proteins genome-linked
(VPg) are covalently attached to the 5’-end of (+)ssRNA [290]. These proteins are responsible for
40S ribosome recruitment [290], and allow translation directly after release of (+)ssRNA into the
cell [290]. Examples of viruses carrying VPg for translation initiation are Poliovirus and Norwalk
virus [309–311].

However, when viruses performed cap-snatching, it is not beneficial to shut down the translation
machinery, as viral mRNAs would be similarly affected. These viruses affect the transcription, RNA
processing and nuclear export of cellular mRNAs to reduce cellular mRNAs and allow predomin-
antly translation of viral mRNAs. Some examples for perturbing transcription are E7 protein of
human papilloma virus (HPV16), which inhibits TATA-binding protein (TBP) and 3C protease of
Poliovirus, which cleaves TBP [312, 313]. HSV-1 triggers the loss of serine phosphorylation in the
C-terminal domain on RNA Pol II to shut off transcription of cellular DNA [314]. FluAV utilizes
its protein PA-X to selectively inhibit host mRNA transcribed by RNA Pol II [315]. When targeting
nuclear mRNA export viruses either interact with nuclear export factors, such as aforementioned
NS1 protein of FluAV [316], or interfere with nuclear mRNA processingmechanisms, such as afore-
mentioned ICP27 protein of HSV-1 [317, 318]. Both strategies aim to restrain cellular mRNAs in the
nucleus and therefore avoiding their translation.

Attacking proteasome

Another option to affect protein levels is rapid degradation of unwanted proteins. In this con-
text, proteins have to be labeled for degradation by ubiquitin ligases for the cellular proteasome
machinery. KSHV targets TRIF and p53 for proteosomal degradation and thus evades from the
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innate immune system [319, 320]. The half-life of TRIF is reduces through contribution of Replic-
ation and transcription activator (RTA) protein of KSHV [319]. Additionally, viral IRF1 of KSHV
binds cellular Ubiquitin-specific protease 7 (USP7). USP7 inhibits p53 acetylation and results in an
increased ubiquitinylation and degradation of p53 and decreases p53-mediated antiviral response
[320]. Furthermore, viral IRF3 of KSHV binds the DNA-binding domain of p53 to inhibit its phos-
phorylation which results in destabilization [321]. By p53 destabilization uncontrolled proliferation
and cell growth take place resulting in tumor formation [321].

RNA virus RSV induces ROS upon infection which would subsequently activate the KEAP1-NRF2
pathway resulting in release of NRF2 [322]. However, RSV induces NRF2 degradation via the pro-
teasome avoiding expression of cytoprotective genes resulting in lung damage of children [322].
Furthermore, RSVNS1 protein promotes proteosomal degradation of 2’5’OAS-like protein to avoid
activation of RNAseL and subsequent RNA degradation [323].

1.3.3 Strategies to interfere with cell death pathway

An ultimate step for infected cell is to enter a cell death program (suicide) to avoid spreading of the
pathogen to neighboring cells [324]. Similar to other host strategies to eliminate viruses, viruses
co-evolved programs to inhibit cell death mechanisms (shown in figure 1.15). In this case cells try
to label themselves with ’eat me’ signals, such as extracellular phosphatidylserine [231, 325], for mac-
rophages, which would result in phagocytic clearance of infected cells. Viruses often try to avoid
actively induction of early cell death as this would inhibit their replication. However, some viruses,
such as FluAV, Ebola virus and HIV-1, use cell death as a means to leave the cell or to specifically
target immune cells in order to weaken the immune response [326]. The induction of cell death
is sometimes a matter of time, in the beginning of an infection cell death would not be beneficial
as viral replication is not completed. However, it might be beneficial in later phases when viruses
already replicated efficiently.

Avoiding cell death

Several viral proteins have been identified to inhibit intrinsic and extrinsic apoptosis. Often, these
proteins are homologues to cellular anti-apoptotic proteins. For example, KSHV protein KSBcl-2
is a viral Bcl2-homologs [328, 329]. Additionally, KSHV encodes a vFLIP to inhibit caspase-8 and
activate NF-κB and JNK/AP1 pathway [330–332]. Thus, KSHV targets various cell death pathways
during infection to avoid host induced cell death and allow persistent infection. These viral proteins
are involved in cell death pathways associated to mitochondria (chapter 1.2.2). Furthermore, HCV
NS5A protein and KSHV K13 protein activate NF-κB to induce pro-survival genes [329]. Besides
various ways to avoid apoptosis viruses evolved strategies to inhibit necroptosis, too. For example,
herpes viruses encode for a viral inhibitor of RIP activation (vIRA), which binds the RHIM motif
of RIPK3 and thereby inhibits polymerization of RIPK3 [333]. Several viruses, such as RSV, FluAV
and KSHV, have been shown to induce increased amounts of ROS after infection which eventually
causes cell death [334, 335]. The detailed mechanisms of ROS-induced cell death are largely un-
known until now. However, viruses evolved strategies to overcome detrimental amount of ROS by
increasing expression of SODs, such as FluAV [336].

Promoting cell death

Viruses promote cell death either to exit cells during cell lysis or to evade the immune system by
killing virus-specific T-cells [337]. When inducing cell death, viruses targetmitochondrial cell death
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Figure 1.15: Evolutionary relationships in cell autonomous death pathways and virus-encoded countermeasures
[327].

processes. For example, the Human immunodeficiency virus 1 (HIV-1) Nef protein activates the
cellular pro-apoptotic Bax protein [329]. Targeting of T-cells for apoptosis was mainly shown for
HIV and HCV resulting in persistent infections [268]. These viruses avoid clearance of their infec-
ted cells by promoting death of cytotoxic T-cells which are responsible cells for clearance of these
infected cells.
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1.4 Mass spectrometry as tool for interaction studies

Mass spectrometry (MS) is an analytical method applied to a wide range of biological questions
in natural sciences. By using MS, different types of molecules can be identified, analyzed and ac-
curately quantified. These molecules range from biomolecules, such as peptides, proteins and oli-
gonucleotides, to chemical compounds in the field of pharmaceuticals and environmental meas-
urements. In this chapter I will focus on the biochemical aspect of analyzing biomolecules in the
field of proteins known as proteomics [338]. The main advantage of analyzing proteins instead of
cellular RNA or DNA consists in identifying the functional components required for cellular reac-
tions. Not every gene is transcribed tomRNA and not everymRNA is translated to a protein within
the cell. Furthermore, increasing mRNA and proteins have different kinetics while regulation. Not
only functional cellular reactions have to be understood but also properties of proteins have to be
elucidated as displayed in figure 1.16.
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Figure 1.16: Analysis levels of functional cellular signaling networks.
The complexity of molecules increases from DNA to PTMs, whereas the available high throughput methods and ma-
chines decrease from DNA to PTM analysis.

Proteomics investigate various protein properties, such as protein-protein interactions, post-translational
modifications (PTMs), expression levels, subcellular localization and structural information. The
established methods for studying these properties are limited by the availability of antibodies for
investigated proteins or genetically tagged proteins. Therefore, these information can nowadays be
analyzed byMSwith a singlemachine in an unbiased way. However, technical development ofmass
spectrometers and improvement of sample preparation are required to gain deeper data sets.

Although it does not yet provide exhaustive information, as every cell type expresses a specific
subset of possible proteins and isoforms, the systematic investigation of the human proteome [339–
342] represents a major achievement in proteomics. As mentioned above, it is essential to know
protein levels available for cellular reactions. However, information on protein expression levels
as such does not provide any hint on their functional role within the cell. The investigation of the
human interactome provided further insights into cellular signaling networks [343] and has been
complemented by studies on post-translational modifications of proteins allowing a much deeper
understanding of functional cellular signaling networks [344–347].

The following chapter describes the principle of MS as well as various instrument parts and its ex-
perimental application for protein-protein and protein-nucleic acid interaction studies. The last
part will describe the analysis of post translational modifications focusing on identification of pro-
tein phosphorylation by MS.
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1.4.1 Principle of function

MS measures the mass to charge ratio of gas phase charged molecules (ions) which is used to de-
termine the molecular mass of a sample. A mass spectrometer contains three essential parts: an
ionization source, an analyzer and a detector. Mostly biological samples are neutral (uncharged)
and have to be charged for MS analysis. First, the sample is charged by ionization in the ionization
source before being transfered to the gas phase. The analyzer separates the ions by a magnetic or
electric field according to their mass to charge ratios (m/z). Separated ions are recorded by the de-
tector and received signals are used to identify and quantify the ions by computational methods.
The whole system is kept under vacuum to enable hindrance-free flying of the ions for accurate
results. The following section explains the preparation of samples including two MS approaches
and the different parts of a mass spectrometer in more detail.

Top-down and bottom-up approach and sample preparation

To analyze proteins by MS two methods are available, the top-down and the bottom-up approach.
Top-down approach includes the analysis of samples with simple complexity such as purified pro-
teins. This approach allows analysis of full length proteins covering theoretically the full sequence
and splice variants. In comparison, bottom-up approaches are utilized with complex samples such
as cell and tissue lysates. To reduce complexity of these samples they are digested by proteases. For
easy ionization the protease trypsin is used. It cleaves on the C-terminal side of lysine and argin-
ine residues. Both have positive side chains enabling easy ionization and discrimination of at least
double charged peptides. High pressure liquid chromatography (HPLC) allows separation of these
complex peptide mixtures from cell or tissue lysates during chromatography. The resulting less
complex mixtures can be measured by MS [348]. For separation of peptides in the HPLC a reverse
phase material such as C18 is used. Peptides bind to C18 based on their inherent hydrophobicity
allowing high resolution and reproducibility. Elution of peptides is achieved via an increasing gradi-
ent of organic solvents and therefore the analysis of small portions of the complex peptide mixture
is achieved with greater resolution [348]. The ionized short peptides can now be analyzed with
various analyzers.

Mass spectrometer ionization source

There are different possible ionization sources, the major ones used to analyze biomolecules are
matrix assisted laser desorption ionization (MALDI) [349–351] and electrospray ionization (ESI)
[352]. WhileMALDI ionizes samples with the help of a pulsed UV laser beam from a dry crystalline
phase, ESI ionizes samples from a liquid phase [349–352]. Both discoveries and developments were
recognized by the 2002 Nobel Prize in Chemistry [353]. MALDI-mass spectrometer is mainly used
for low complex samples like peptides. ESI instead can be coupled to HPLC [352]. This was one
of the major achievement in the MS field as now complex protein mixtures could be separated on
HPLC and analyzed stepwise after ESI ionization in mass spectrometers.

Mass spectrometer analyzers and detectors

A mass analyzer is based on the principle that ions accelerate directly after the ion source and are
selected and further processed in amagnetic or electric field. There are five commonly used types of
mass analyzers which differ in their application: Time-of-flight (TOF), ion trap, Fourier transform
ion cyclotron resonance (FT-ICR), quadrupole and orbitrap. Some mass analyzers have a detector
already included, such as FT-ICR and orbitrap. The other mass analyzers require a detector. There
are various types of detectors, such as continous dynode, electronmultiplier andmicrochannel plate
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[354]. Mass analyzers can be coupled together in various combinations to enable high sensitivity,
resolution and mass accuracy. Coupled mass analyzers first select specific ions (precursor ions)
from the incoming ions, in a second step isolate the most intense ions, fragment these (product
ions) and finally analyzed their sequence. As the major MS work in this thesis was performed on
a LTQ Orbitrap classic (Thermo), I explain this machine concept in more detail. A LTQ Obitrap
classic (Thermo) is based on a linear ion trap analyzer coupled to an orbitrap analyzer (figure 1.17).
The Orbitrap has superior mass accuracy [355] and is a major tool for proteomics [356].

Figure 1.17: LFQ Orbitrap XL mass analyzer (adapted from [357]).

The first step (MS1 analysis) identifies the precursor ions, whereas the second step (MS2) sequences
the five to ten most intense ions (TOP5-TOP10). MS1 is carried out in the orbitrap and MS2 in
the linear ion trap. Incoming ions are counted within the linear ion trap and collected in a C-trap.
When the required number of ions is reached, the C-trap releases these ions into the orbitrap to
start the MS1 measurement. The orbitrap consists of a spindle shaped part and a surrounding shell.
Within the orbitrap the precursor ions oscillation around an electric field on the spindle shaped
part. Depending on their m/z they have specific oscillation tracks. When reaching consistent os-
cillation tracks, the orbitrap records the signals from the changes in electric current between inner
spindle and outer shell. These signals are calculated to m/z by Fourier transformation. The ions are
discarded. In a second step, the MS2 ions (TOP5-TOP10 depending on the chosen method) with a
selected m/z from the measurement in the orbitrap are analyzed in the linear ion trap. Therefore,
a limited amount of ions having a selected m/z is collected in the linear ion trap. By adding inert
gas, such as helium or argon, to the highly accelerated precursor ions, these ions are fragmented
[358, 359]. Commonly usedmethods to fragment peptides are collision induced dissociation (CID),
higher-energy collisional dissociation (HCD), electron transfer dissociation (ETD) and recently de-
veloped electron-transfer and higher-energy collision dissociation (EThcD) [358–361]. Compared
to CID, HCD allows recovering of low mass ions, whereas EThcD allows additionally recovering
of labile modifications such as some phosphorylation sites [361]. Upon fragmentation, the received
product ions are accelerated again by high voltage dynodes and are analyzed by electron multiplier
detectors. The recorded signals are analog. The ions analyzed in the orbitrap and linear ion trap are
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from the same peak as the peak width is around two seconds and the measurement duration is less
than two seconds.

Bioinformatical analysis and quantification

Finally, the recorded m/z values are bioinformatically analyzed [362]. The identification of ions by
MS depends on four criteria: (1) The sample preparation has to recover the ions; (2) The peptide
has to be reasonable high abundance within the peptide mixture; (3) The ionization ability of the
peptide as only ionized peptides may fly and (4) the dispersibility of the ions as only flying ions
can be detected. These factors make it difficult to quantify the overall detected proteins. There-
fore, several methods were developed to overcome this issue. In earlier times two-dimensional gel
electrophoresis (2D gel) coupled to MS was performed whereas the 2D gel was used for quantific-
ation and MS for identification. To overcome the time consuming procedure of gels, quantifying
MS methods have been developed. Thereby, absolute and relative quantification are differentiated.
Absolute quantification determines protein abundance within a sample. Relative quantification
compares protein amounts in different samples with each other. For both quantification methods
there are labeled and unlabeled methods available. With the focus on applied methods within my
thesis, there are labeled and label-free approaches for relative quantification. A labeled approach
is Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) [363]. Label-free approaches
are spectral counts [364] and intensity based quantification (LFQ) [365, 366]. SILAC is a metabolic
labeling method, enabling the comparison of up to three samples [363]. However, to compare more
samples and to avoid disadvantages of labeling, such as costs and impractical handling (animal,
primary cells), label-free methods are required. Using spectral counts is very accurate when meas-
uring large changes between proteins, however, less accurate when determining small differences.
A more accurate quantification is LFQ. LFQ requires high resolution data, which is achieved by
high resolution separation and high accuracy mass analyzer. Both were achieved by introducing
nano-scale ultra-high performance liquid chromatography (UHPLC) and Orbitrap [355, 367]. The
SILAC approach was applied in this work for measuring translation rates in virus infected mouse
embryonic fibroblast (2.3), whereas the spectral count and intensity-based LFQ approach were used
in the first virus-host protein interaction study publication (2.1) and in the second protein interac-
tion study publication (2.2), respectively.

1.4.2 MS based interaction studies

The analysis of interaction partners of proteins is an important study field. It helps to elucidate
pathways by studying the interaction partners and sites and analyze complexes which are formed
or falling apart upon treatment or virus infection. Compared to other methods to study inter-
actions, such as yeast two-hybrid [368, 369], phage display [370] or western blot analysis after
co-immunoprecipitation (Co-IP) [371], when applying MS the whole cellular environment can be
taken into account. To identify protein interaction partners various methods are established. Based
on the kind of bait and the scientific question the optimal method should be chosen. To analyze
interactions between cellular proteins affinity purification coupled to MS (AP-MS) or recently de-
scribed affinity enrichment coupled to MS (AE-MS) can be applied [372, 373]. As modified nucleic
acids produced during viral infections are not common in the cell as well as viral proteins, they
are introduced into the cellular system, mainly as tagged versions. The workflow for AP-MS with
nucleic acids and viral proteins is displayed in figure 1.18.
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Figure 1.18: AP-MS of viral proteins and nucleic acids.
Description: For analysis of cellular interaction partners for nucleic acids, the nucleic acids are tagged and incubated
with an affinity resin. After incubation unbound nucleic acids are washed away and the resin is incubated with cell lysate.
Followed by several washing steps, to purify the bound complex on the affinity resin, proteins are digested by proteases,
such as Lys-C and trypsin. Digested peptides are used for MS analysis. Compared to nucleic acids, viral proteins mostly
can be expressed in the cell and bound after cell lysis to the affinity resin together with probably interacting proteins.
This saves the preincubation step with the nucleic acids.

AP has some disadvantages: (1) Highly stringent washing steps result in loss of low affinity inter-
action partners. (2) The lysis of the whole cell enables proteins to bind to each other which would
be normally located in separate compartments. (3) Applying AP to the study of protein-protein
interactions with cellular proteins as bait, the overexpression of this bait can modify the interaction
schema. (4) The introduced tag can have effects on the interaction by modulating the folding of
the protein or covering interaction sites. (5) The lysis conditions have to be adjusted if membrane
proteins are analyzed as they require harsher conditions [374]. (6) Finally, bioinformatical analysis
after AP-MS relies on negative controls.

Nevertheless, AP has also several advantages: (1) Most importantly, when AP is coupled toMS spe-
cific binders have to be distinguishable from unspecific binders asMS is more sensitive [375]. Using
tags, especially tandem tags [376], proteins can be purified in two steps eliminating false binders to
one tag. (2) Additionally, tags allow high throughput preparations and all samples as well as con-
trols are treated the in same way. (3) When performing tandem purification steps in most cases
only strong interactions are recovered, thereby losing transient or weak interactions [377]. There-
fore, one should consider using other affinity approaches coupled toMS, such as single purification
steps or labeled samples e.g. SILAC [375]. However, single purification steps requiremore replicates
to distinguish between specific and unspecific binders during bioinformatical analysis. To gain an
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overview of these background binders the CRAPome was analyzed [378]. However, the CRAPome
is not complete yet and differs for utilized mass spectrometers. Moreover it probably requires a
large number of measurements to find truly non-specific binder. In the regard of elucidating true
from false binders, AE-MS might be a solution. Here the sample itself acts as control.

Detection of cellular targets and influences of pathogens are important to elucidate new targets for
fighting diseases. MS gives in this regard the opportunity to analyze more interactions or changes
at once. However, in addition to changes of protein-protein interactions also changes of PTMs alter
the function or proteins and outcome of signaling pathways.

1.4.3 Phosphorylation - a common post translational modification

PTMs are covalent modifications of proteins carried out by enzymes after protein synthesis [379].
Known PTMs on proteins are addition of phosphate groups, acetate groups, methyl groups, amide
groups, ubiquitin-like moieties and carbohydrates groups, formation of disulfides as well as proteo-
lytic cleavage [379]. Many PTMs are highly regulatory and reversible. They can affect the protein
folding, stability and activity as well as the cellular localization and interaction partners. The most
common experimentally observed PTM is phosphorylation [380] which was also the first described
PTM [381]. Addition or removal of phosphate groups can result in alteration of enzymatic activities
or binding partners. This chapter elucidates functions of PTMs with focus on phosphorylation and
how they can be detected by MS.

Protein phosphorylation in eukaryotes can occur on serine, threonine and tyrosine residues (fig-
ure 1.19). These three amino acids have hydroxyl groups. Phosphorylations of protein are gener-
ated by protein kinases which are classified in three groupswith respect to their substrate specificity:
serine/threonine-protein kinases, tyrosine-protein kinases anddual specificity protein kinases [382].
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Figure 1.19: Phosphorylated amino acids.

Examples for protein phosphorylation are NF-κB which is phosphorylated by IKK [383] and STATs
which are phosphorylated by JAK [384, 385]. Phosphorylation of proteins has to be tightly regu-
lated to avoid e.g. uncontrolled activation of proteins. This activation could result in uncontrolled
proliferation and cancer formation [386].

In earlier times phosphorylation of proteins was detected either by radiolabeled phosphates, 2D
gels or specifically raised antibodies [387]. However, to detect specific phosphorylation sites in a
proteome wide and unbiased wayMS is the method of choice [388]. However, the analysis of phos-
phosites is not easily achieved. The three major disadvantages ofMS based analysis are the low stoi-
chiometric abundance of PTMs in general, the liability of attached phosphorylated or glycosylated
groups and the modification of more than one residue within a peptide [389]. To overcome the first
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issue enrichment of the modification is required for analysis. Enrichment can be achieved by an-
tibodies, such as lysine acetylation [390], arginine methylation [345] and tyrosine phosphorylation
[391] or binding to specific domains, such as N-glycosylation with lectins [392] and tyrosine phos-
phorylationwith Scr homology 2 (SH2) domains [393]. A recently describedmethod allows analysis
of phosphorylated peptides after enrichment with titanium oxide (TiO2) [394]. The second issue,
losing phosphate groups while MS fragmentation could be handled by applying other fragment-
ation methods such as ETD and EThcD which allows unambiguous localization of phosphosites
within a peptide containing more than one phosphorylated residue [360, 361].

To summarize, MS is a mainly unbiased method to start understanding cellular signaling networks
by elucidating protein-protein interactions and protein modifications and how they are modified
by pathogens. Additionally, MS helps in elucidating cellular components of the innate immune
response in recognition of PAMPs.
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1.5 Aims of the thesis

Within the last decades a broad range of pattern recognition receptors (PRRs) and downstream sig-
naling pathways have been discovered in the field of innate immunity. Activation of PRRs is critical
to successfully protect the infected host from invading pathogens. In case of viruses, PRR activa-
tion and signaling often involve mitochondria or mitochondrial associated organelles as signaling
hubs. The reason for the involvement of mitochondria is currently not understand but potentially
allows integration of various signals that are originating from this organelle. In this regards PRR
signaling aiming at sensing of viruses and initiating the antiviral immune response could influence
energy metabolism, induction of cell death or the generation/signaling of second messengers such
as reactive oxygen species (ROS). It is well known that these cellular processes play an important
role in cellular defense within innate immunity.

The aim of my thesis was to understand how viruses interfere with host signaling pathways to
achieve their best possible replication. Thereby I took part in the validation of an AP-MS screen,
shedding light on global perturbations of viruses on host’s signaling pathways. Additionally, vir-
uses produce high amounts of ROS and not much is known on subsequent downstream signaling.
Thus, my main project focused on the elucidation of a ROS induced cell death pathway, which I
could show was targeted by several viral proteins. I mainly focused on mitochondrial proteins in
this process. Further, I investigated the consequences of this ROS signaling pathway on cellular and
organismal level. Lastly, I took part in the elucidation of the nucleic sensing selectivity of human
IFIT1 protein.
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This chapter includes the publications I contributed to duringmy PhD. The first publication elucid-
ates how viral proteins interfere with host signaling pathways to use these pathways either for their
own good or perturb them as part of interference with the innate immune signaling. The second
publication identifies a new cell death pathway involved in the antiviral defense, which is targeted
by several viral proteins partly identified in the first study. The last publication investigates the role
of IFIT1 on sequestering viral nucleic acids and inhibit translation of these.

2.1 Viral interference with host signaling pathways

For successful replication, viruses have to counteract with the host defense system and utilize parts
of the host replication machinery. Therefore, hundreds of studies on single viral proteins were
conducted to shed light on virus-host interactions. However, to obtain a systematic view on virus-
host interactions and reveal viral perturbation strategies an AP-MS based screen was performed.

By using viral open reading frames (vORFs) encoding for 70 different proteins of 30 different viruses
from four taxonomic groups a broad spectrum was covered. The chosen viruses were capable to
infect humans andwere either (-)ssRNA, (+)ssRNA, dsRNAor dsDNAviruses. The vORFswere ex-
pressed from the same genetic locus inHEK293 cells. Bioinformatics analysis was applied to identify
common and unique strategies by different viral groups to perturb the human system. Thereby, the
focus was not only on virus interaction with one host protein but with the surrounding host signal-
ing network. By this approach we identified that, compared to the average human proteins, vORFs
are more connected, more central in the networks, involved in more cellular pathways and are at
more central positions within these pathways. Further analysis revealed that viruses were targeting,
according to their taxonomic group, pathways specifically needed for their processing and replic-
ation. This offers scientist the opportunity to detect pharmaceutical targets to interfere with viral
pathogenicity.

Four host proteins targeted by viral proteins were further validated, heterogeneous nuclear ribonuc-
leoprotein U (hnRNP-U), phosphatidylinositol-3-OH kinase (PIK3), the WNK (with-no-lysine)
kinase family and ubiquitin-specific peptidase 19 (USP19). Here I contributed to the validation by
siRNA based knockdowns and TCID50 measurements. Further validations of viral-host interac-
tions and their downstream effect were also performed by other research groups [395–399]

Pichlmair A, Kandasamy K, Alvisi G, Mulhern O, Sacco R, Habjan M, Binder M, Stefanovic A,
Eberle CA,Goncalves A, BürckstümmerT,Müller AC, Fauster A,Holze C, LindstenK,Goodbourn
S, Kochs G, Weber F, Bartenschlager R, Bowie AG, Bennett KL, Colinge J, Superti-Furga G

Viral immunemodulators perturb the humanmolecular network by commonandunique strategies

Nature doi:10.1038/nature11289 (2012)
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Viral immune modulators perturb the human
molecular network by common and unique strategies
Andreas Pichlmair1,2, Kumaran Kandasamy1, Gualtiero Alvisi3, Orla Mulhern4, Roberto Sacco1, Matthias Habjan2,5, Marco Binder3,
Adrijana Stefanovic1, Carol-Ann Eberle1, Adriana Goncalves1, Tilmann Bürckstümmer1, André C. Müller1, Astrid Fauster1,
Cathleen Holze2, Kristina Lindsten6, Stephen Goodbourn7, Georg Kochs5, Friedemann Weber5,8,9, Ralf Bartenschlager3,
Andrew G. Bowie4, Keiryn L. Bennett1, Jacques Colinge1 & Giulio Superti-Furga1

Viruses must enter host cells to replicate, assemble and propagate.
Because of the restricted size of their genomes, viruses have had to
evolve efficient ways of exploiting host cell processes to promote
their own life cycles and also to escape host immune defence
mechanisms1,2. Many viral open reading frames (viORFs) with
immune-modulating functions essential for productive viral
growth have been identified across a range of viral classes3,4.
However, there has been no comprehensive study to identify the
host factors with which these viORFs interact for a global perspec-
tive of viral perturbation strategies5–11. Here we show that different
viral perturbation patterns of the host molecular defence network
can be deduced from a mass-spectrometry-based host-factor survey
in a defined human cellular system by using 70 innate immune-
modulating viORFs from 30 viral species. The 579 host proteins
targeted by the viORFs mapped to an unexpectedly large number of
signalling pathways and cellular processes, suggesting yet unknown
mechanisms of antiviral immunity. We further experimentally
verified the targets heterogeneous nuclear ribonucleoprotein U,
phosphatidylinositol-3-OH kinase, the WNK (with-no-lysine)
kinase family and USP19 (ubiquitin-specific peptidase 19) as
vulnerable nodes in the host cellular defence system. Evaluation
of the impact of viral immune modulators on the host molecular
network revealed perturbation strategies used by individual viruses
and by viral classes. Our data are also valuable for the design of
broad and specific antiviral therapies.

We performed a survey to identify the cellular proteins and asso-
ciated complexes interacting with 70 viORFs inducibly expressed from
an identical genomic locus in a human cell line (HEK293 Flp-In TREx)
competent for innate antiviral programs12,13(Fig. 1a). This set-up allowed
us to gauge the expression levels of the viral proteins and to assess the
formation of endogenous protein complexes under physiological
conditions in human cells14. We selected the viORFs to cover four
groups of viruses representative of ten different families and checked
for their correct expression (Supplementary Figs 1, 2a–c and 3 and
Supplementary Table 1)15 and, in selected cases, immune modulatory
activity (Supplementary Fig. 2d, e)16,17. We isolated interacting cellular
proteins by tandem affinity purification (TAP) and analysed purified
proteins by one-dimensional gel-free liquid chromatography tandem
mass spectrometry (LC–MS/MS) (Supplementary Fig. 4a, b)18. The 70
viORFs specifically interacted with 579 cellular proteins with high
confidence, resulting in 1,681 interactions (Fig. 1a, Supplementary
Fig. 4c and Supplementary Table 1; see Methods for details). To
validate our approach we assessed the impact of viral infection on
the identified viORF–host-protein interactions with the use of several
cognate viruses and found decreased numbers of co-purifying proteins,
probably as a result of decreased cellular viability as well as competition

with the tagged viORF (Supplementary Fig. 5). In addition, treatment
with type I interferon (IFN) (Supplementary Fig. 4d) to simulate a host
immune response had little effect on the interaction pattern of selected
viORFs (Supplementary Fig. 5).

Of the 579 cellular proteins identified as interacting with the 70
viORFs, there was a strong enrichment for proteins associated with
innate immunity, further validating the approach and potentially
revealing additional unknown components of the host antiviral defence
network (overlap with InnateDB database19; P , 2.3 3 10247) (Sup-
plementary Fig. 6a and Supplementary Table 2). There was also a strong
enrichment for ubiquitously expressed proteins20 (P , 2.2 3 102138)
and for evolutionarily conserved proteins (P , 2.2 3 10216) consistent
with the coevolution of virus–host relationships (Supplementary
Fig. 6b–d and Supplementary Table 3).

To obtain a more comprehensive view of how viORFs influence
host cell processes, we used quantitative information from the mass
spectrometry data to compute the strength of impact of each viORF on
its cellular targets, and used these quantitative parameters in all sub-
sequent analyses. We also incorporated data from the human protein–
protein interactome (humPPI) assembled from public databases, to
analyse the protein network associated with the viORF-interacting
cellular targets. We found that in comparison with an average human

1CeMM ResearchCenter for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria. 2Innate Immunity Laboratory, Max Planck Institute of Biochemistry, 82152 Martinsried/Munich,
Germany. 3Department of Infectious Diseases, Molecular Virology, Heidelberg University, 69120 Heidelberg, Germany. 4School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute,
Trinity College Dublin, Dublin 2, Ireland. 5Department of Virology, University of Freiburg, 79104 Freiburg, Germany. 6Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm,
Sweden. 7Division of Basic Medical Sciences, St George’s, University of London, London SW17 0RE, UK. 8Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs-Universität Freiburg, 79108
Freiburg, Germany. 9Institute for Virology, Philipps-University Marburg, 35043 Marburg, Germany.
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2.1 Viral interference with host signaling pathways

protein, the average viral target was distinct in four ways: it was sig-
nificantly more connected to other proteins; it was in a more central
network position; it participated in more cellular pathways; and it was
more likely to be engaged in central positions within these pathways
(Fig. 1b and Supplementary Fig. 6d, e). These properties are consistent
with a strong influence on pathways and effective control of biological
networks21, which is in line with the parsimonious use of viral genetic
material, and coevolution of the virus with the host organism.

Our large host-factor survey using a defined cellular set-up offers the
unique opportunity to identify host-cell perturbation strategies
pursued by individual viruses, families and groups. On the basis of
the humPPI, 70% of the viORF-interacting cellular factors formed a
coherent protein–protein interaction network (Supplementary Fig. 7a).
When mapped on the entire humPPI, viral targets seemed to occupy
central positions (Supplementary Fig. 7b). We also grouped the cellular
targets on the basis of their interaction with viORFs from single-
stranded (ss) or double-stranded (ds) RNA or DNA viruses and found
that about half of the viORF targets linked to a single viral group, and
the rest interacted with viruses of more than one group (Fig. 2a).
Statistically significant enrichment for individual gene ontology (GO)
terms, representing categories of biological processes, could be iden-
tified for each subnetwork. Proteins targeted by ssRNA(2) viORFs
were enriched for processes related to protection of the viral genome
and transcripts from degradation or detection by the host, and for those
promoting efficient viral RNA processing (Fig. 2a). This is illustrated
by the interaction between NS1 of influenza A virus (FluAV) with the
59R39 exoribonuclease XRN2, and among the NSs protein of Rift

Valley fever virus, the mRNA export factor RAE1 and the nuclear pore
complex protein NUP98. In contrast, dsRNA virus targets were
enriched for protein catabolic processes (Fig. 2a) with both rotaviruses
and reoviruses (NSP1 and s3) engaging SKP1–CUL1–F-box protein
complexes (containing FBXW11, Cullin-3, and Cullin-7 and Cullin-9,
respectively), which mediate protein degradation.

To determine which cellular signalling pathways are targeted by
viORFs and to look for differences between DNA and RNA viruses,
we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) anno-
tations (Supplementary Table 4). Clear distinctions in preferences were
observed between the different viral groups, with viORFs of RNA
viruses targeting the JAK–STAT and chemokine signalling pathways,
as well as pathways associated with intracellular parasitism, and viORFs
of DNA viruses targeting cancer pathways (glioma, acute myeloid
leukaemia and prostate cancer) (Supplementary Table 4). Among the
viral targets that are involved in multiple cellular pathways were two
catalytic and three regulatory subunits of the phosphatidylinositol-3-
OH kinase family, identified with the FluAV NS1 protein and with the
TLR inhibitory protein A52 of vaccinia virus (VACV) (Supplementary
Fig. 8a)4. We functionally validated these interactions and identified a
critical role for one of the catalytic subunits (PIK3CA) in TRIF-
mediated IFN-b promoter activation (Supplementary Fig. 8b–d).

The higher probability of viORFs targeting cellular proteins that link
different pathways (Fig. 1b and Supplementary Fig. 6d) prompted us to
map which of these pathway connections were preferentially targeted
and thus were probably disrupted (Fig. 2b), and to compare the
disruption patterns brought about by viORFs from DNA viruses with
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2 Results

those from RNA viruses. About one-third of the connections between
specific cellular processes were hit by both viral types, suggesting a
similar mechanism of perturbing the host cells. viORFs from DNA
viruses preferentially targeted proteins linking the cell cycle with either
transcription or chromosome biology, possibly reflecting the necessity
of uncoupling viral replication from cellular growth. In contrast, RNA
viruses targeted proteins involved in RNA metabolism and also
protein and RNA transport, while preferentially disrupting the link
between signalling and immunity-related processes (Fig. 2b).

To integrate our viORF–host-protein interaction data sets with
intracellular events occurring after viral infection we compared our
viORF interaction proteomic profile with the transcriptional profile
obtained after infection of the cells with hepatitis C virus (HCV)
(Supplementary Table 5). The protein-processing pathway in the
endoplasmic reticulum (ER) (Supplementary Fig. 9a) was the most
affected process. The HCV viORFs specifically targeted six ER-
associated proteins. To analyse the broader implications of this target-
ing on the cell, we identified the cellular proteins known to bind to
these six ER targets and analysed their functions bioinformatically
(Supplementary Fig. 9b). Of the 80 cellular protein interactors, 42 were
enriched in either cell-cycle or apoptosis functions (Supplementary
Fig. 9c). Ubiquitin-specific peptidase 19 (USP19), a deubiquitinating
enzyme involved in the unfolded protein response22, interacted with
the viORF NS5A. To study the biological relevance of this interaction,
we analysed the localization of USP19 after HCV infection and found
that it relocalized to HCV replication compartments in replicon-
containing cells, probably disrupting its cellular function (Supplemen-
tary Fig. 10a, b). Indeed, NS5A inhibited the ability of USP19 to rescue
destabilized green fluorescent protein (GFP) that was degraded by the
proteasome (Fig. 3a). In addition, infection of cells with wild-type
HCV decreased cell growth23, whereas infection with recombinant
virus lacking the NS5A–USP19 interaction site, which mapped to 50
amino acids in domain III (Supplementary Fig. 10c–g), did not (Fig. 3b
and Supplementary Fig. 10h). Thus, the cell-proliferation-inhibitory
properties of NS5A are probably mediated by its inhibition of USP19,
which is known to promote cell growth24, and implicates the targeting
of ER-resident proteins and proteostasis as an important viral per-
turbation strategy.

The heterogeneous ribonucleoprotein hnRNP-U was among the
most frequently targeted cellular proteins in the analysis (Supplemen-
tary Figs 11 and 12a and Supplementary Table 6) and has previously
been reported to restrict growth of HIV25. Overexpression of hnRNP-
U inhibited the polymerase activity of FluAV and the growth of
vesicular stomatitis virus (VSV) (Supplementary Fig. 12b and data
not shown). This inhibitory effect was alleviated by coexpression of
NS1 (FluAV), establishing a functional link to hnRNP-U (Fig. 3c). We
mapped the NS1 interaction site on hnRNP-U to the carboxy-terminal
Arg-Gly-Gly (RGG) domain (Fig. 3d and Supplementary Fig. 12c)26.
The RGG domain bound viral RNA in infected cells (Supplementary
Fig. 12d), and an hnRNP-U mutant lacking this domain was defective
in antiviral polymerase inhibition (Fig. 3e), suggesting that hnRNP-U
inhibits the replication of RNA-viruses through viral RNA interaction.
Collectively, the analysis highlights hnRNP-U as an important
antiviral protein and a hotspot of viral perturbation strategies.

Of the 70 viORFs used in the study, only K7 of VACV27 interacted
with members of the WNK family (Supplementary Figs 11 and 13a–e
and Supplementary Table 6), which are regulators of ion transport and
are implicated in cancer28. Subsequent analyses on the potential role of
this protein family in the antiviral immune response revealed that
WNK1 and WNK3, but not WNK2 or WNK4, synergized with
interleukin-1 (IL-1)-stimulated activation of the p38 kinase (Sup-
plementary Fig. 13f), and activated a NF-kB reporter construct
alone or in combination with IL-1 (Fig. 3f), which was inhibited by
coexpression of K7 (Fig. 3g). Expression of WNK3 stimulated IL-8
production alone or in combination with IL-1 (Supplementary Fig. 13g).
Short interfering RNA (siRNA)-mediated knockdown of various

WNK family members resulted in increased growth of VSV (Fig. 3h
and Supplementary Fig. 13h). These results illustrate the value of our
proteomics data set by revealing a previously unknown role for WNK
kinases in the antiviral immune response.

Proteomic profiling of such a large group of viral regulators of cell
function offers the opportunity to explore kinship in their mode of
action and, by inference, the perturbation strategy of the viruses that
encode them. We defined a notion of kinship distance by incorporat-
ing shared targets, proximity in the humPPI of non-shared targets, and
their strength of interactions. viORFs from the same viral family had
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2.1 Viral interference with host signaling pathways

short average kinship distances (Supplementary Fig. 14), consistent
with their evolutionary relationship. Notable exceptions were viORFs
from paramyxoviruses, which had an average distance even larger than
randomized viral target profiles, possibly reflecting a particularly
pleiotropic mechanism of action. We generated a dendrogram that
showed the kinship distance of the individual viORFs as a proxy for
the perturbation strategy of the cognate virus (Fig. 4). Roughly half of
the viORFs clustered in a central, rather dense part of the tree, reflect-
ing overlapping strategies, whereas the other half was more distant,
probably indicating more unique targeting strategies. Many clusters
represented viORFs from evolutionarily related viruses, which are
more likely to exercise comparable perturbation strategies. For
example, most influenza A virus NS1 proteins and all NSs proteins
from bunyaviruses clustered together. A few viORFs did not cluster
according to their genome group, which was evocative of some degree
of evolutionary convergence with the proteins of other viruses on
shared pathways, or more distinctive routes of action, possibly as part
of a combined attack with another ORF of the same virus. This is best
illustrated by the five viORFs from VACV, which were found scattered
in the tree and were likely to have evolved to fulfil specific, comple-
mentary functions.

Our results demonstrate that viruses have evolved to exploit a variety
of cellular mechanisms, and suggest that the host cell relies on the
proper homeostatic regulation across these diverse cellular processes
to detect, alert to and counteract pathogen interference. In addition, the
study provides a rationale for considering or excluding the targeting of

specific intracellular pathways for pan-viral or virus-specific antiviral
therapy.

METHODS SUMMARY
Complementary DNA of tandem affinity-tagged viORFs was amplified by
polymerase chain reaction and cloned into the pTO-SII-HA-GW vector by using
Gateway recombination (Invitrogen). The resulting plasmids were used to
generate hygromycin-selected stable isogenic HEK293 Flp-In TREx cell lines,
and viORF expression was stimulated by doxycycline12. Protein complexes isolated
by tandem affinity purification using Strep-II and haemagglutinin (HA)-affinity
reagents were analysed by LC–MS/MS with an LTQ Orbitrap XL, an LTQ
Orbitrap Velos or a QTOF mass spectrometer. The data were searched against
the human SwissProt protein database, using Phenyx and Mascot. The humPPI
was generated using public interaction databases. Recombinant HCVs (strain JC1)
with mutations in domain III of NS5A were generated by transfecting full-length
genomic RNA with targeted deletions in the NS5A region. Subcellular localization
of proteins was performed on a Leica SP2 confocal microscope. The influenza virus
replicon assay was performed as described previously12.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Figure 4 | Similarities of viORF actions. Dendrogram of viORF relationships
based on the kinship distance, which integrates the number of shared targets and
the network distance in the humPPI of the distinct targets. The virus genotype
that the individual viORF derives from is shown in a colour code in the circle
around the dendrogram. EBOV, Ebola virus; hCMV, human cytomegalovirus;
HCV, hepatitis C virus; HeV, Hendra virus; HSV, herpes simplex virus; HSV1,
herpes simplex virus 1; KSHV, Kaposi’s sarcoma-associated herpesvirus; LaCV,
La Crosse virus; LCMV, lymphochoriomeningitis virus; MARV, Marburg virus;
MCMV, murine cytomegalovirus; MeV, measles virus; NDV, Newcastle disease
virus; NiV, Nipah virus; PIV2, parainfluenza virus 2; ReoV, reovirus; RotaV,
rotavirus; SFSV, sandfly fever sicilian virus. viORFs from VACV are indicated
with a star.
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2.1 Viral interference with host signaling pathways

METHODS
Plasmids, viruses and reagents. Expression constructs were generated by PCR
amplification of viORFs followed by Gateway cloning (Invitrogen) into the
plasmids pCS2-6myc-GW, pCMV-HA-GW and pTO-SII-HA-GW. pCAGS-
Flag-hnRNP-U and mutants thereof were provided by S. Nakagawa. Ub-R–GFP
and Myc–USP19 were published previously22. pHA-PIK3R2 was from Oliver
Hantschel. GFP–NS5A domain mutants were published previously30. Recombinant
HCV variants with mutations in domain III of NS5A were generated by replacing
the NS5A fragment in pFK-Jc1-NS5A-HA, containing the full-length HCV
chimaeric Jc1 genome31 in which a HA tag is inserted in frame within NS5A
and in pFK-JcR-2a containing Renilla luciferase fused amino-terminally with
the 16 N-terminal amino-acid residues of the core protein and C-terminally with
the foot-and-mouth disease 2A peptide coding region, enabling direct quantifica-
tion of viral replication by measuring Renilla luciferase activity32. All viruses were
produced by transient transfection of Huh7.5 cells with RNA transcribed in vitro.
Recombinant RVFV (Rift valley fever virus)33 expressing tandem affinity-tagged
(GS-TAG) versions of NSs proteins were generated by replacing the RVFV NSs
open reading frame with GS-tagged versions of NSs that were generated by PCR
amplification. The FluAV minireplicon system to measure FluAV polymerase
activity34, IFN-b–luciferase, NF-kB-luciferase and the Renilla luciferase control
plasmid (pRL-TK; Promega) were described previously35.

Streptavidin beads were from IBA (Strep-Tactin agarose); HA–agarose (clone
HA7) was from Sigma. Antibody against b-tubulin (anti-b-tubulin; clone DM1A)
was from Abcam, anti-b-actin (catalogue number AAN01) was from
Cytosceleton. IRDye-conjugated anti-c-Myc (catalogue number 600-432-381)
and anti-rabbit (catalogue number 611-732-127) secondary reagents were from
Rockland. Alexa Fluor 680-conjugated goat anti-mouse (catalogue number
10524963) were from Molecular Probes. Reagents for quantitative RT–PCR were
from Qiagen. Poly(dA)Npoly(dT) were from Sigma and transfected with
Lipofectamine 2000 (Invitrogen) or Polyfect (Qiagen). Stimulatory PPP-RNA
was described previously12. MG132 was from Sigma. IFN-b and IFN-a2a were
from PBL Interferonsource. Tumour necrosis factor-a and IL-1b were from
Pierce. IL-8 was measured by enzyme-linked immunosorbent assay (BD).
Lymphochoriomeningitis virus (Armstrong strain), FluAV (A/PR/8/34), VSV
(Indiana strain) and VSV-M2 (mutant VSV with M51R substitution of the matrix
protein, leading to IFN-a/b induction; originally called AV3) have been described
previously12. Virus titres were measured by determining the half-maximal infec-
tious dose (TCID50) on Vero cells, or on Huh7.5 cells for HCV.
Cells, co-immunoprecipitations and imaging. HEK293 Flp-In TREx cells that
allow doxycycline-dependent transgene expression were from Invitrogen.
HEK293, 293T, HeLa S3 (ref. 12), Lunet, Lunet-Neo-sgNS5A(RFP), Huh7/5.2
and Huh7.5 cells have been described previously30. Highly permissive Huh7.5 or
Huh7.5 FLuc, stably expressing firefly luciferase introduced by lentiviral transduc-
tion32, were used for HCV infection experiments. Fibroblasts were kept in DMEM
medium (PAA Laboratories) supplemented with 10% (v/v) FCS (Invitrogen) and
antibiotics (100 U ml21 penicillin and 100mg ml21 streptomycin). For inducible
transgene expression, HEK293 Flp-In TREx cells were treated for 24–48 h with
doxycycline (1mg ml21), depending on cellular density to just about reach con-
fluence. For siRNA-mediated knockdown, if not stated otherwise in figure legends,
5 nmol of siRNA pool (Supplementary Table 7) was mixed with HiPerfect
(Qiagen) and added to 105 HeLa S3 cells. After 48 h, cells were used for experi-
ments. For co-immunoprecipitations 293T cells were transfected with expression
plasmids for 24–48 h and lysates were used for affinity purification in TAP buffer12

using anti-HA–agarose or anti-c-Myc-coated beads. For protein detection in
western blot analysis a Li-Cor infrared imager was used. Confocal images were
acquired with a Leica SP2 confocal microscope.
Affinity purification, mass spectrometry and transcriptome analysis. HEK293
Flp-In TREx cells and isolation of protein complexes by TAP and peptide analysis
by LC–MS/MS have been described previously18. Proteins identified by this
method can be found in a complex but do not necessarily bind directly to each
other. In brief, five subconfluent 15-cm dishes of cells were stimulated with 1mg
ml21 doxycycline for 24–48 h. Protein complexes were isolated by TAP using
streptavidin agarose followed by elution with biotin, and a second purification
step using HA–agarose beads. Proteins were eluted with 100 mM formic acid,
neutralized with triethylammonium bicarbonate (TEAB) and digested with
trypsin, and the peptides were analysed by LC–MS/MS 36. For bunyavirus NSs
proteins, recombinant viruses33 containing GS-tagged NSs proteins were generated.
Protein complexes were denatured in Laemmli buffer37 and separated by one-
dimensional SDS–PAGE; entire lanes were excised and digested in situ with trypsin
and the resultant peptides were analysed by LC–MS/MS. Mass spectrometric
analysis was performed for gel-free and gel-based samples, respectively, on a
hybrid LTQ Orbitrap XL, an LTQ Orbitrap Velos mass spectrometer (both from
ThermoFisher Scientific) or on a quadrupole time-of-flight mass spectrometer

(QTOF Premier; Waters) coupled to an 1100/1200 series high-performance liquid
chromatography system (Agilent Technologies). Data generated by LC–MS/MS
were searched against the human SwissProt protein database (v. 2010.09, plus
appended viral bait proteins) with Mascot (v. 2.3.02) and Phenyx (v. 2.6). One
missed tryptic cleavage site was allowed. Carbamidomethyl cysteine was set as a
fixed modification, and oxidized methionine was set as a variable modification. A
false-positive detection rate of less than 1% on the protein groups was imposed
(Phenyx z-score more than 4.75 for single peptide identifications, z-score more
than 4.2 for multiple peptide identifications; Mascot single peptide identifications
ion score more than 40, multiple peptide identifications ion score more than 14).

To measure gene expression, Huh7/5-2 cells were left uninfected or infected
with HCV (strain JC1) at a MOI of 5, and RNA was isolated using Trizol
(Invitrogen) after 4, 12, 24, 48 and 72 h. Gene expression analysis was performed
in duplicate using an Affymetrix platform (Affymetrix Human Genome U133A
2.0 Array).
Bioinformatic analysis. Data filtering. All proteins identified in the GFP negative
controls (51 proteins) were removed.

Data normalization. Affinity-purification MS experiments were performed
with two biological replicates and two technical replicates for each; that is, four
replicates. We first normalized individual replicates according to the NSAF pro-
cedure29. The replicates of each viORF normalized data element were then
assembled in a table with 0 for missing detection, and each viral target was assigned
the average NSAF value across the replicates. On the basis of a robust estimate
(MAD) of the coefficient of variation (Supplementary Fig. 15a) we further penalized
highly variable targets by applying a reduction factor between 1 (modest variability)
and 0.5 (high variability) (Supplementary Fig. 15b). Direct normalization through a
division by the standard deviation was excluded because of the limited number of
replicates available. For a given viORF v and a viral target p, the weight given to the
interaction v–p was hence computed as

strengthv,p 5 mean(NSAFv,p,i)reduction[CV(NSAFv,p,i)]

where i accounts for the replicates. The distribution of strength values is shown in
Supplementary Fig. 15c.

Human interactome. We integrated human physical protein–protein
interactions (humPPI) obtained from public databases (IntAct, BioGRID,
MINT, HPRD and InnateDB19) and thereby obtained an interactome (largest
connected component) comprising 13,350 proteins and 90,292 interactions.

Human central proteome. A list of commonly expressed human proteins was
assembled by merging a previous study20 with mapped (orthologues) mouse
proteins found in the intersection of six mouse tissues38 and genes expressed in
all except four or fewer tissues from SymAtlas. The resulting list included 4,276
proteins and is provided as Supplementary Table 8.

Network topological measures. We retained two classical measures: the con-
nectivity (degree)—that is, the number of interactions of one protein in the PPI—
and the relative betweenness centrality, which is equal to the relative number of
shortest paths between any two proteins that go through a given protein.

MS-weighted measures. To compute a weighted characteristic of the targeted
host proteins, for example connectivity in the human PPI, of one viral modulator
vm we used

weighted_connectivity(vm) 5
P

pgT(vm)apconnectivity(p)

where T(vm) is the set of all human proteins targeted by vm; ap were proportional
to the estimated interaction strength, and sum to 1. When the same viral modu-
lator was considered in several viruses (for example NS1 of FluAV), we computed
the weights for each interacting protein taking the maximum of the strengths
found in different viruses to avoid any bias by over-represented viral modulators;
that is, ap / maxvgNS1_virusesstrengthv,p. Null distributions were generated by
assigning actual weights to random proteins 10,000 times, thereby obtaining a
histogram of 10,000 random weighted characteristics, which was fitted with a
gamma distribution to estimate P values (Supplementary Fig. 15d).

Weighted functional annotation analysis. We performed GO and KEGG
pathways analysis integrating the interaction strengths of viORF targets by
summing all the above normalized (sum equal to 1) ap weights found in a GO
term or a pathway to obtain a score. This score was then compared with a null
distribution modelled by a gamma fit on 1,000 random scores to estimate a P value.
Random scores were obtained by assigning the weights to random proteins and
summing those that fell in the GO term or pathway.

Perturbation map and relative position along a pathway. These two computa-
tions were performed in accordance with published methods20. Pathways were
taken from NCI-PID39, and the perturbation map algorithm (GO fluxes in ref. 20)
was modified to use the interaction strengths between viORFs and their targets as
weights in scoring interaction between GO terms instead of constant weights. For
simplification, GO terms were reduced to 14 categories (Supplementary Table 9).
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Perturbation map null distributions were obtained with 250 randomized
annotated networks that respected the original network connectivity distribution
and GO term frequencies.

Distance of viORFs. Given two viORFs x and y, the distance d(x,y) is defined as
follows. Let S be the union of all x and y targets, Dx the targets unique to x, and Dy

those unique to y. A preliminary distance c is computed by summing all the human
interactome shortest path distances from individual targets in Dx and Dy with the
targets unique to the other viORF, considering interaction strengths to penalize
differences on strong different targets and minimize the impact of weaker distinct
targets. Thus,

c 5
P

agDx
strengthx,a 3 shortest(a,Dy) 1

P
agDy

strengthy,b 3 shortest(b,Dx)

Finally, c is normalized to take into account the number of distinct targets com-
pared with the total number of targets: d(x,y) 5 c(jDx<Dyj)/jsj, where j...j denotes
set cardinality—that is, the number of elements.

The random distance distributions were obtained as follows: for each viORF, its
targets were replaced by a random selection of the same number of proteins from
the humPPI such that the same pairs of (random) distances could be computed.
The overall procedure was repeated 100 times and in the case of the HEK293
selection the human proteins randomly chosen were restricted to the humPPI and
to proteins identified by mass spectrometric analysis of the HEK293 proteome20.
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2.2 Cell death as host response to viral infections

2.2 Cell death as host response to viral infections

Viruses have been shown to produce increased amount of ROS which can have detrimental effects
when reaching a certain threshold. Cells promote their own cell death upon high amounts of ROS
to save the organism from DNA mutations and malfunction proteins. However, as viruses require
a host for replication they try to avoid its early cell death. Various cell death pathways are inhibited
to a certain extent by different viruses. This highlights the importance of cell death for the immune
response of an organism to reduce viral load. To elucidate in detail howROS is sensed by the cell and
subsequently induces cell death I investigated the downstream signaling of a known ROS sensor,
KEAP1.

By identifying KEAP1 as required protein in ROS mediated cell death I performed AP-MS with
KEAP1 as bait to identify interactors involved in cell death. By revealing an interaction between
KEAP1 and cell death associated protein PGAM5 as well as between PGAM5 and cell death ex-
ecuting protein AIFM1 I could describe a new cell death pathway which is triggered upon ROS.
Additionally, I characterized a new phosphorylation site on AIFM1 serine 116 which was only de-
scribed in MS based phosphoproteomic approaches before, being targeted by PGAM5 upon ROS
and viral infections. The importance of this pathway is highlighted by the fact that this pathway
is targeted by at least five viral proteins from viruses of different viral families. Furthermore, one
of the proteins, PGAM5, is required for viability upon viral infection of the ROS inducing virus
influenza A (strain SC35M) in vivo. These mouse experiments were performed in cooperation with
Peter Staeheli in Freiburg.

This study reveals that viruses target among the commonly known cell death pathways also this
newly identified pathway. This supports not only the investigation in the field of virus based im-
munology but could also be helpful for further clinical applications in the field of cancer and trans-
plantations, as ROS is induced in both leading either to no cell death or to unwanted cell death,
respectively.

Holze C, Haas DA, Hubel P, Benda C, Leung DW, Amarasinghe GK, Staeheli P, Pichlmair A

A ROS-induced cell death pathway through KEAP1, PGAM5 and AIFM1 is involved in antiviral
defense

Cell host and microbe submitted manuscript (2016)
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Abstract 

Reactive oxygen species (ROS) are generated under physiological conditions as well as in the course of 

infection with pathogens. It is only marginally understood how cells distinguish physiological ROS levels 

from pathological ROS levels to either initiate protective gene expression or induce cell death, 

respectively. Here we show that KEAP1 serves as a bi-active regulator that protects cells from low levels 

of ROS but flips its activity to mediate cell death through a caspase independent mechanism. This cell 

death pathway involves the serine/threonine protein phosphatase phosphoglycerate mutase family 

member 5 (PGAM5), which dephosphorylates mitochondrial Apoptosis inducing factor 1 (AIFM1). 

Proteins derived from distantly related viruses target KEAP1, PGAM5 and AIFM1, suggesting 

evolutionary convergence of pathogens to modulate this pathway and emphasizing its importance for 

antiviral immunity. Indeed, cells derived from Pgam5 deficient mice show impaired cell death induction 

after infection with influenza A virus. This inability translates into severe disease in Pgam5 deficient mice 

challenged with influenza A virus.  

Our work shows that besides its life-saving activities, KEAP1 plays a central role in activating a signaling 

cascade that leads to cell death. This pathway is operational in many cell types and plays a critical role in 

physiological and pathological conditions. Indeed, this cell death pathway attributes to an antiviral 

strategy which is targeted by several viruses and proposes that it is constituting an important line of 

defense against infectious diseases. 
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Introduction 

Reactive nitrogen and oxygen species (RNS and ROS) such as H2O2, .O2 and .OH are generated as natural 

by-products of the normal oxygen metabolism. ROS play an important role in cell signaling by regulating 

cell proliferation and survival (Nakamura Hajime et al., 1997; Suzuki et al., 1997; Sauer Heinrich et al., 

2001). Intracellular ROS are produced during physiological processes, such as oxidative phosphorylation, 

fatty acid β-oxidation, photorespiration, nucleic acid and polyamine catabolism and ureide metabolism 

(Sandalio et al., 2013). However, increased protein folding load, elevated fatty acid oxidation and energy 

metabolism can result in pathological accumulation of ROS in the endoplasmic reticulum, peroxisomes 

and mitochondria (Shimizu Yuichiro and Hendershot Linda M., 2009; Rosca et al., 2012; Sandalio et al., 

2013). Since ROS can cause irreversible conformational changes on proteins and lipids as well as DNA 

mutations (Lü et al., 2010) several enzymatic and non-enzymatic mechanisms evolved to protect cells 

from detrimental accumulation of ROS.  

A main intracellular sensor that continuously monitors ROS levels is Kelch-like ECH-associated protein 1 

(KEAP1), which is primarily known for its ability to regulate expression of cytoprotective genes during 

oxidative stress (Taguchi et al., 2011). Under physiological conditions KEAP1 ubiquitinates and degrades 

the transcription factor Nuclear Factor-E2-related factor 2 (NRF2), a regulator of cytoprotective gene 

expression. Increase of ROS leads to oxidation of cysteine residues in KEAP1, resulting in its 

conformational change and the inability to mediate NRF2 ubiquitination and degradation. NRF2 

accumulates and translocates into the nucleus to regulate expression of genes with promoters containing 

antioxidant response elements (AREs), such as NAD(P)H dehydrogenase (quinone 1) (NQO1), heme 

oxygenase (decycling) 1 (HOX1) and thioredoxin (TXN)
 
(Song et al., 2002; Zhang and Hannink, 2003; 

D'Autréaux and Toledano, 2007; Kaspar et al., 2009; Bryan et al., 2013). Permanent or high oxidative 

stress levels however, do not induce sufficient expression of cytoprotective proteins and can result in 

considerable cell damage or cell death (Circu and Aw, 2010).  
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Exogenous stimuli such as ultraviolet light (UV), heat or inflammatory cytokines have been shown to 

increase intracellular ROS that contribute to the severity of pathological disorders (Yang Dongli et al., 

2007; Uttara et al., 2009; Hroudová et al., 2014). Furthermore, infection with viruses can increase 

intracellular ROS levels due to perturbation of the cellular metabolism (Li et al., 2007; Ano et al., 2010). 

However, in case of virus infection, ROS-induced cell death can contribute to limit virus spread and 

dissemination (Olagnier et al., 2014). In case of persistent virus infection, ROS contribute to organ 

damage and exacerbate disease progression. Intriguingly, some viruses evolved mechanisms to avoid 

detrimental ROS functions in order to promote cell survival, thus facilitating viral proliferation. For 

instance, Dengue virus (DENV) (Olagnier et al., 2014), Human herpes virus 8 (HHV-8) (Bottero et al., 

2013) and Encephalomyocarditis virus (EMCV) (Ano et al., 2010) evolved distinct mechanisms to 

modulate ROS-mediated cell death pathways for their own benefit. Conversely, other viruses, such as 

Marburg virus (MARV), specifically perturb stress responses by promoting cytoprotective programs 

(Edwards et al., 2014).  

Despite the apparent importance of ROS in physiological and pathological processes, relatively little is 

known about their sensors and downstream signaling pathways that lead to cell death in response to 

oxidative stress. It is known that ROS-induced cell death can involve caspase dependent as well as 

caspase independent mechanisms. We hypothesized on the existence of devoted proteins that link ROS 

sensing to execution of cell death. Such proteins would be of central importance for a wide range of 

diseases.   
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Results 

Caspase independent ROS-induced cell death via KEAP1 

High levels of ROS are produced by various cellular processes and can be induced by exogenous stimuli 

such as cytokines and infection with pathogens. To mimic high ROS levels, we exogenously added 

hydrogen peroxide (H2O2) to HeLa or Jurkat T-cells. As expected, this treatment induced cell death. The 

pan-caspase inhibitor Z-VAD-FMK was not able to rescue the cells, suggesting a caspase independent 

process (Fig 1A). A dedicated intracellular sensor that directly links H2O2 sensing to cell death is 

currently not known. However, a well-known sensor of ROS is KEAP1, which changes its conformation 

after ROS engagement and releases NRF2 to regulate expression of cytoprotective genes in order to 

counterbalance oxidative stress (Kobayashi et al., 2004). We aimed to establish an assay that allows us 

studying cells with different sensitivity towards ROS treatment. We transiently depleted KEAP1 in HeLa 

cells and tested cell survival rates upon treatment with cytotoxic doses of H2O2. As expected, KEAP1 

depleted cells showed significantly less cell death after treatment with high amounts of H2O2 as compared 

to control cells (Fig 1B). Previous studies have shown that KEAP1 depletion triggers increased 

expression of cytoprotective genes through stabilization of NRF2. Surprisingly, co-depletion of KEAP1 

and NRF2, which we expected to increase sensitivity towards H2O2 treatment, also rescued cells from 

H2O2 induced cell death (Fig 1B). Control experiments indicated successful depletion of NRF2, ruling out 

de novo transcription of cytoprotective genes through NRF2 (Fig 1B, C). Indeed, expression of 

cytoprotective genes was comparable in KEAP1/NRF2 and control knockdown cells (Fig 1C). Altogether 

these data suggested that KEAP1 plays an active role in a ROS-dependent, caspase-independent cell death 

pathway and that depletion of KEAP1 protects from ROS-induced cell death in an NRF2-independent 

manner.  

KEAP1 utilizes PGAM5 to induce ROS-induced cell death 
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We next sought to identify potential interaction partners of KEAP1 that could convey signals leading to 

cell death. Using affinity purification followed by tandem mass spectrometry (AP-LC-MS/MS) we 

identified 32 proteins significantly enriched in KEAP1 purifications as compared to an unrelated control 

protein (Fig 1D). Among these 32 proteins were14 known binding partners of KEAP1 (Fig 1D, brown 

dots), including NRF2. Only a single protein was previously associated with cell death pathways: 

mitochondrial serine/threonine protein phosphatase phosphoglycerate mutase family member 5 (PGAM5) 

(Fig 1D, green dot). PGAM5 has previously been identified as a convergence point of multiple necrotic 

death pathways and has been shown to be involved in ROS-induced cell death (Wang et al., 2012). 

PGAM5 bears an N-terminal mitochondrial localization signal and a transmembrane domain. 

Furthermore, PGAM5 interacts with KEAP1to tether it to the mitochondrial membrane (Lo and Hannink, 

2006). We validated association of KEAP1 and PGAM5 by co-immunoprecipitation of StrepII-HA-

tagged (SII-HA) KEAP1 with endogenous PGAM5 (Fig 1E) and confirmed the amino acids 69 to 89 of 

PGAM5 as critical residues for its KEAP1 interaction (Supplementary Fig 1) (Lo and Hannink, 2006). 

To functionally assess whether PGAM5 is involved in ROS-mediated cell death we next used siRNA-

mediated knockdown of PGAM5 and tested for cell survival after graded doses of H2O2 treatment. At 

high levels (0.5mM) of H2O2 control cells died, whereas cells lacking PGAM5 showed more than 60% 

survival (Fig 2A). Depletion of PGAM5 has been reported to result in NRF2-dependent gene expression 

(Lo and Hannink, 2008), which could lead to protective effects against ROS-induced cell death after 

PGAM5 knockdown. Interestingly, as already observed for KEAP1 knockdown, co-depletion of PGAM5 

and NRF2 also rescued cells from H2O2 induced cell death (Fig 2B), suggesting a direct involvement of 

PGAM5 in ROS-induced cell death, independent of NRF2-driven expression of cytoprotective genes. 

KEAP1 releases NRF2 after exposure to ROS. We therefore tested whether the interaction between 

KEAP1 and PGAM5 may be similarly regulated by ROS levels. Indeed, in the presence of 0.5 mM H2O2, 

binding of KEAP1 to PGAM5 was significantly reduced (Fig 2C). Importantly, low levels of H2O2, which 

do not result in induction of cell death (Fig 1B, 2A), did not affect the interaction between KEAP1 and 
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PGAM5 (Fig 2C). KEAP1 and PGAM5 localize to mitochondria under steady state conditions (Fig 2D) 

(Lo and Hannink, 2008). However, in the presence of 0.5 mM H2O2, only KEAP1 loses mitochondrial 

association, whereas PGAM5 remains associated to mitochondrial structures (Fig 2D). Collectively, these 

data suggest that the ROS sensor KEAP1 is binding to PGAM5 under steady state conditions and that this 

association is lost in the presence of oxidative stress.  

Cell death induction through AIFM1 

PGAM5 has previously been proposed to be of central importance to transmit cell death signals (Wang et 

al., 2012); however both its molecular partners and the mechanistic details governing these interactions 

are not known. To identify proteins that associate with PGAM5, and may be involved in downstream 

signaling, we performed AP-LC-MS/MS using PGAM5 as bait. We identified 8 high confidence 

interactors that showed specific enrichment in PGAM5 as compared to control precipitates (Fig 3A). As 

expected, PGAM5 associated with KEAP1 (Fig 3A, brown dot). Furthermore, PGAM5 co-precipitated 

proteins of the Translocase of the inner membrane (TIM) complex (TIMM50, TIMM8A and TIMM13) 

which facilitates the transport of proteins to the inner mitochondrial membrane (Ceh-Pavia et al., 2013). 

Only HCLS1-associated protein X-1 (HAX1) and Apoptosis inducing factor 1 mitochondrial (AIFM1) 

were previously associated with cell death pathways (Fig 3A, green dots). While HAX1 was shown to 

inhibit caspase-3 and -9 and has been involved in activation of pro-survival, cytoprotective programs 

(Simmen, 2011), AIFM1 has previously been implicated in caspase-independent cell death (Susin et al., 

1999). Thus, AIFM1 represented an ideal effector to mediate ROS-induced cell death downstream of 

PGAM5. We validated the PGAM5 - AIFM1 interaction by co-precipitation followed by western blotting 

and LUMIER assays (Fig 3B, C). AIFM1 mutants that lacked the N-terminal MLS and TM domain 

(AIFM1 ∆2-103) lost PGAM5 association while C-terminal truncations of AIFM1 did not affect PGAM5 

binding (Fig 3C). Intriguingly, binding of AIFM1 to PGAM5 was reduced when cells were treated with 

H2O2 (Fig 3D). Binding could be rescued by the ROS-scavenger N-acetylcysteine (NAC) (Fig 3D), 

suggesting involvement of this interaction in ROS-modulated cellular processes.  
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To test whether AIFM1 serves as a downstream target of PGAM5, we depleted HeLa cells for AIFM1 or 

PGAM5 and monitored for cell survival after stimulation with H2O2 or the mitochondrial ROS-inducer 

tert-Butylhydroquinone (tBHQ). As expected, control cells were highly sensitive to H2O2 and tBHQ 

treatment. Notably, cells that were depleted for AIFM1 or PGAM5 exhibited superior survival rates after 

H2O2 and tBHQ treatment (Fig 3E). Similar results were obtained upon H2O2 treatment in the 

neuroblastoma cell line SKN-BE2 (Fig 3F), suggesting that PGAM5-AIFM1-dependent signaling is 

operating in multiple cell types.  

PGAM5 dephosphorylates AIFM1 on S116 

PGAM5 was previously reported to possess serine/threonine-protein phosphatase activity (Wang et al., 

2012), and several studies have shown that processed substrates often lose interactions with their 

modifying enzymes (Carpino et al., 2004; Lo and Hannink, 2006; Mikhailik et al., 2007; Sadatomi et al., 

2013). To identify the molecular mechanism regulating PGAM5-AIFM1 interaction, we initially assessed 

whether the phosphorylation status of AIFM1 itself was critically required for PGAM5 binding. To this 

end, we repeated the AIFM1-PGAM5 co-precipitation and intentionally omitted phosphatase inhibitors 

during the whole affinity purification procedure. Notably, binding between PGAM5 and AIFM1 was 

significantly reduced in the absence of phosphatase inhibitors, hinting towards a requirement of 

phosphorylated residues for efficient interaction (Fig 4A). To decipher further the functional implications 

of PGAM5 enzymatic activity on PGAM5-AIFM1 interaction, we next performed structure-guided 

mutagenesis of PGAM5 (Chaikuad, A., Alfano, I., Picaud, S., Filippakopoulos, P., Barr, A., von Delft, F., 

Arrowsmith, C.H., Edwards, A.M., Weigelt, J., Bountra, C., Takeda, K., Ichijo, H., Knapp, S., 2010), 

Supplementary Fig S2A) to generate a phenylalanine 244 to aspartic acid mutant (F244D) that cannot 

dimerize (Supplementary Fig S2B) and is therefore predicted to lose phosphatase activity (Wilkins et al., 

2014). SII-HA-tagged wt PGAM5 and a transmembrane domain deleted version (PGAM5∆2-29) 

precipitated from HEK293T cells showed phosphatase activity when incubated with a phospho-serine 

peptide (Fig 4B). However, precipitated PGAM5[F244D] was inactive in this assay (Fig 4B). Based on 
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these results, we generated highly purified His-tagged PGAM5∆2-28 and PGAM5∆2-28[F244D] for 

further functional experiments (Fig 4C) and verified integrity of the recombinant proteins (Supplementary 

Fig S2C-E). Size exclusion chromatography confirmed homodimer formation of PGAM5∆2-28 in a 

F244D dependent manner (Fig 4D). We tested both recombinant proteins for their ability to 

dephosphorylate peptides bearing phosphorylated threonine and serine residues. PGAM5∆2-28 was able 

to release phosphates from phospho-serine but not when phospho-threonine peptides were used as a 

substrate (Fig 4E). PGAM5∆2-28[F244D] was inactive (Fig 4E), confirming specificity in this assay. 

Additional evidence for specific phosphatase activity was obtained through phosphatase inhibitors. 

PGAM5-dependent dephosphorylation could be inhibited by the phosphatase inhibitor sodium 

orthovanadate (Van), but not by sodium fluoride (NaF) (Fig 4E). Collectively these data suggest that 

PGAM5 preferentially dephosphorylates serine residues. 

To identify residues in AIFM1 that may be a target of PGAM5 and are required for the interaction 

between both proteins, we selected one threonine and three serine residues in the N-terminal region of 

AIFM1 that were reported three or more times at phosphosite.org. We mutated these residues to alanine 

and tested the ability of the resulting constructs to co-precipitate with endogenous PGAM5. Mutation of 

AIFM1 serine 116 to alanine (S116A) impaired binding to PGAM5, whereas other residues did not affect 

PGAM5 association (Fig 4F). Sequence alignment analysis revealed a remarkable conservation for 

AIFM1 S116 and surrounding amino acid residues within mammals (Fig 4G, Supplementary Fig S3A). 

Particularly interesting in this region are two glutamic acid residues located three and five amino acids C-

terminal of S116 which contribute negative charges to this region (Fig 4G, Supplementary Fig S3A). 

Such contribution of negative charges has been reported to support binding of substrates to the positively 

charged phosphatase active site of PGAM5 (Wilkins et al., 2014), further pointing to AIFM1 phospho (p) 

S116 as potential target of PGAM5 phosphatase activity. A custom raised antibody against pS116 of 

AIFM1, indicated that AIFM1 S116 is phosphorylated under steady state conditions (Fig 4H, 

Supplementary Fig S3B). Strikingly, treatment of cells with H2O2 led to pS116 dephosphorylation, 
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indicating that a dynamic regulation of pS116-AIFM1 during oxidative stress (Fig 4H). Moreover, 

recombinant PGAM5∆2-28 spiked into cell lysates led to AIFM1 pS116 dephosphorylation, suggesting 

that PGAM5 directly targets AIFM1 S116 (Fig 4I). In agreement with the phosphatase inhibitor 

sensitivity of PGAM5 (Fig 4E), this process could be inhibited with vanadate, while sodium fluoride had 

no effect. Additionally, the PGAM5∆2-28[F244D] mutant protein did not exhibit dephosphorylation 

activity on AIFM1 pS116, further confirming pS116 as a specific PGAM5 substrate (Fig 4I).  

In sum, these data indicate that AIFM1 pS116 is dephosphorylated during oxidative stress and that 

PGAM5 has the ability to mediate this dephosphorylation.  

Virus interference with KEAP1-PGAM5-AIFM1 pathway 

Induction of cell death is an effective mechanism to limit virus spread and is an essential part of the 

cellular defense system against viruses. However, premature induction of cell death is not in the interest 

of viral pathogens and many viruses therefore actively interfere with cell death pathways. Recently, we 

conducted a mass spectrometry based interaction screen using as baits viral proteins that are associated 

with viral pathogenicity (Pichlmair et al., 2012). Mining this dataset revealed four viral proteins from 

segmented (La Crosse Virus (LaCV) and non-segmented negative strand (-)ssRNA viruses (Marburg 

virus, Measles virus) and a DNA virus (Human Herpes virus-8 (HHV-8)) that interacted with either 

KEAP1, PGAM5 or AIFM1 (Fig 5A). In additional AP-LC-MS/MS experiments using the Non-structural 

protein 2 (NS2) of Respiratory syncytial virus (RSV) (non-segmented (-)ssRNA virus) as bait we 

identified AIFM1 as a cellular target (Fig 5A, B). These interactions are functionally relevant, as 

evidenced by recent studies that showed that VP24 of Marburg virus disrupts KEAP1-NRF2 binding to 

initiate transcription of NRF2 regulated genes (Edwards et al., 2014; Page et al., 2014). We proceeded to 

also functionally test interactors of K3 (HHV-8) and PGAM5. AP-LC-MS/MS and co-

immunoprecipitation experiments using K3 as bait confirmed the interaction between PGAM5 and K3 

(Fig 5C, D). Binding of PGAM5 to K3 required amino acids 29-69 in PGAM5 (Supplementary Fig S4A), 

a region that has previously been identified to be important for full PGAM5 functionality (Wilkins et al., 
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2014). This prompted us to test the activity of PGAM5 in the presence of K3. Precipitates of PGAM5 

from cells co-expressing K3 showed reduced phosphatase activity (Fig 5E), confirming a functional 

interaction between PGAM5 and K3. We further validated interactions between viral proteins and AIFM1 

by co-immunoprecipitation and LUMIER assay. AIFM1 co-precipitated with Non-structural protein small 

(NSs) of LaCV (Fig 5A, F, G) and NS2 of RSV (Fig 5A, B, H). Further analysis of the binding region in 

AIFM1 needed for interaction with NS2 revealed requirement of amino acids 2-55 (Supplementary Fig 

4B), which are also mandatory for PGAM5 interaction (see Fig 3C). Collectively, these data indicate that 

distantly related viruses, such as DNA and ssRNA viruses, share their ability to bind KEAP1, PGAM5 or 

AIFM1, suggesting evolutionary pressure to target this pathway.  

Influenza A virus infection triggers PGAM5-dependent cell death 

Viruses are well known for their ability to induce elevated levels of ROS (Gonzalez-Dosal et al., 2011; 

Bottero et al., 2013), which could lead to ROS-mediated cell death. We used influenza A virus as model 

virus that, to our knowledge, does not modulate the activity of KEAP1, PGAM5 and AIFM1. HeLa cells 

infected with Influenza A virus (FluAV; strain SC35M) induced accumulation of intracellular ROS (Fig 

6A) and expression of cytoprotective genes that are under control of the transcription factor NRF2 (Fig 

6B). FluAV infection led to reduced AIFM1 pS116 levels as compared to uninfected cells (Fig 6C), 

indicating activation of PGAM5 after virus infection.  

To study the involvement of PGAM5 in virus induced cell death we used mouse embryonic fibroblasts 

(MEF) generated from Pgam5 deficient mice (Fig 6D). To first establish that PGAM5 is also required for 

ROS-induced cell death in mice, we treated MEFs with H2O2 and studied cell survival. As expected, H2O2 

treatment led to cell death of wild-type (Pgam5
+/+

) and heterozygous (Pgam5
+/-

) MEFs (Fig 6E). 

However, Pgam5 knockout MEFs (Pgam5-/-) showed higher resistance to H2O2 (Fig 6E). To analyze the 

involvement of PGAM5 in cell death after treatment with a ROS inducing pathogen, we infected MEFs 

with FluAV. Remarkably, Pgam5 deficient cells showed superior survival after infection with FluAV, 

compared to wt and heterozygous control cells (Fig 6F). 
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Altogether these data demonstrate that the KEAP1-PGAM5-AIFM1 signaling pathway is conserved 

among species and leads to a cell death process initiated in response to virus infections.  

Lack of Pgam5 in vivo renders mice highly susceptible to FluAV infection 

Targeting of KEAP1-PGAM5-AIFM1 by viral pathogenicity factors and the dynamic regulation of 

AIFM1 S116 phosphorylation during virus infection suggested that these cellular proteins play an 

important role in antiviral immunity. To test this, we used Pgam5 deficient mice to study virus 

pathogenicity in the absence of this pathway in vivo. Pgam5 knockout mice bred to normal Mendelian 

ratio and, unlike suggested recently (Moriwaki et al., 2016), showed no sex-dependent weight differences 

(data not shown). We infected wild-type (wt, Pgam5
+/+

), heterozygous (Pgam5
+/-

) and homozygous 

(Pgam5
-/-

) knockout mice with 1,500 pfu of FluAV. Infections at this dose of FluAV only caused 10% 

mortality in wt and heterozygous (Pgam5
+/-

) mice (Fig 6G). In contrast, Pgam5 deficient mice showed a 

markedly increased mortality rate since 78% of animals succumbed to FluAV infection until the end of 

the experiment at 14 days after infection (Fig 6G).  

Collectively, these experiments suggest that PGAM5 is important to protect from virus infection in vivo 

and highlights sensing of ROS as protective antiviral strategy.  
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Discussion 

Frequently cells have to make critical decisions how to respond to physiological and pathological levels 

of ROS. Increased levels of ROS initiate protective mechanisms that aim to minimize damage induced by 

oxidative stress. Pathogens, inflammatory cytokines and other environmental cues can raise ROS levels to 

pathological concentrations, which is eventually detrimental to cells (Medvedev et al., 2016; Ren et al., 

2016). 

It is well established that oxidative stress can critically contribute to cell death via RIP3 kinase signaling 

or caspase-dependent pathways (Shindo et al., 2013; Alfonso-Loeches et al., 2014; Okinaga et al., 2015). 

In the presence of caspase inhibitors or in RIP3 kinase deficient systems, oxidative stress still induces cell 

death suggesting the existence of additional caspase independent pathways. However, it is currently not 

clear how intracellular ROS levels are sensed in the cell and at what stage a decision whether to live or 

die is made. A well-established ROS sensor is KEAP1 that mediates ubiquitination and degradation of the 

transcription factor NRF2, a known regulator of cytoprotective genes. After ROS-mediated oxidation of 

cysteine residues in KEAP1, NRF2 is released and mediates expression of a cytoprotective transcriptional 

program. Surprisingly, KEAP1 and NRF2 co-depletion renders cells more resistant to ROS treatment 

suggesting the existence of a cell death pathway regulated by KEAP1. Using AP-LC-MS/MS approaches 

we identified PGAM5 as only cell-death related protein binding to KEAP1. PGAM5 has been proposed to 

function on a convergence point of multiple caspase-independent cell death pathways (Wang et al., 2012). 

Notably, cell death stimuli reported to signal through PGAM5, such as TNF-α, H2O2, t-butyl hydroxide 

(TBH) and A23187, have all been shown to generate intracellular ROS (Kajitani Noriko et al., 2007; 

Blaser et al., 2016). Therefore, the ability of PGAM5 to integrate many diverse cell death signals may to 

large extend be attributed to its involvement in ROS-dependent cell death signaling. After oxidative 

stress, KEAP1 loses its mitochondrial localization and its ability to interact with PGAM5, which resides 

in the mitochondria after ROS treatment. Therefore, similar to the regulation of NRF2 activity, PGAM5 

appears to be released from KEAP1 upon reaching a specific oxidative stress threshold. ROS levels 
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required to perturb the interaction between PGAM5 and KEAP1 are much higher than those required to 

perturb NRF2 and KEAP1. This difference likely explains the dual character of KEAP1 to regulate cell 

protection at low levels of ROS, through the release of NRF2 followed by expression of cytoprotective 

genes, while mediating the induction of cell death, through the release of PGAM5 at high levels of 

oxidative stress. Such threshold models are well known as regulatory mechanisms in biology and are 

essential to regulate diverse cellular functions ranging from cell cycle progression to neurotransmission 

(Edgar et al., 2014; Olson et al., 2016).  

Signaling downstream of PGAM5 to induce cell death remained enigmatic. AP-LC-MS/MS analysis 

identified AIFM1 as a PGAM5 binding partner. Although AIFM1 has been linked to ROS-dependent cell 

death induction, its regulation has so far remained unclear (Joza et al., 2001). We identified S116 in 

AIFM1 as critical residue that is changing its phosphorylation status upon treatment with H2O2 or after 

virus infection. Here we show that recombinant PGAM5 is able to dephosphorylate AIFM1 pS116 in cell 

lysates, indicating a functional role for this protein-protein interaction.  

Based on these data we propose the existence of a caspase-independent cell death pathway that consists of 

KEAP1-PGAM5-AIFM1 and is relevant for ROS-induced cell death. KEAP1 has been reported to be 

tethered to the outer membrane of mitochondria through PGAM5 engagement (Lo and Hannink, 2008). 

Conversely, the same mechanism could mediate retention of PGAM5 at the outer mitochondrial 

membrane in order to spatially dissociate it from its phosphatase target AIFM1, which is localized in 

mitochondria. PGAM5 translocation into mitochondria could be mediated through the engagement of 

TIMM8/-13 that are known to be involved in regulating protein import into mitochondria. Release of 

PGAM5 by KEAP1 during oxidative stress may be part of an activation process that allows 

internalization of PGAM5 into the mitochondria in order to dephosphorylate its target AIFM1. However, 

additional signals are required to induce cell death since KEAP1 depletion alone is not detrimental to 

cells.  
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Imbalanced ROS levels have been linked to various diseases such as viral infections. Indeed, FluAV 

induces ROS and cell death through PGAM5 in vitro. On organismal level, PGAM5 is important to 

control pathogenicity of influenza virus, since Pgam5 deficient mice are highly susceptible to FluAV 

infection. This clearly indicates a prominent protective function of PGAM5 in antiviral immunity against 

fulminant virus infections. However, PGAM5 activation may be disadvantageous during persistent virus 

infection. In this case, virus induced cytokines mediate increased ROS levels followed by liver damage 

(Bhattacharya et al., 2015), a pathway likely operating through PGAM5. Additional evidence for PGAM5 

being involved in antiviral immunity comes from multiple distinct viruses that evolved mechanisms to 

target KEAP1, PGAM5 or AIFM1 (Fig 5A). This pathway may not only be important for antiviral 

immunity but could also be involved in other diseases, such as cancer. Cancer cells are known for their 

high basal levels of ROS (Szatrowski and Nathan, 1991). Additional stimulation by ROS-inducing agents 

or viral infection, such as used in oncolytic viral therapy, may fuel this ROS-dependent cell death 

pathway. Notably, it has been shown that treatment of tumors with ROS-inducing agents such as 

BZL101, an extract of the plant Scutellaria barbatae, induces cell death in an AIFM1-dependent manner 

(Marconett et al., 2010). HHV-8 as the causative agent for Karposi’s sarcoma could, in principle, impair 

the ability to execute such a cell death program through the activity of its K3 protein.  

Our study identified a cell death pathway that is of central importance for multiple diseases that are 

functionally related by their involvement with altered ROS levels. Similar to viral interference with 

KEAP1, PGAM5, or AIFM1, we propose that targeting this pathway through therapeutic intervention 

may constitute a means to modulate disease progression. 
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Figure legends 

Figure 1. ROS induced cell death induction through KEAP1 

(A) Viability of HeLa and Jurkat cells after hydrogen peroxide (H2O2) treatment. Cells were left untreated 

or treated with 20 µM Z-VAD-FMK for 2 h, followed by 21 h treatment with 0.5 mM hydrogen peroxide 

(H2O2). Cell titers were determined by Resazurin-based cell viability assay. The plot shows the mean ± 

S.D. of six individual treatments. One representative experiment of three is shown. (B) as in (A) but HeLa 

cells were transfected with siRNAs against KEAP1, KEAP1 and NRF2 or control (siScr). The plot shows 

the mean ± S.D. of four individual treatments. One representative experiment of six is shown. 

Knockdown efficiency was confirmed by western blotting against indicated proteins (right panel). (C) 

Expression of NRF2 regulated target genes after siRNA mediated knockdown of KEAP1, KEAP1 and 

NRF or siScr in HeLa cells 48 h after siRNA treatment. (D) Proteins enriched by affinity purification 

using as baits SII-HA-tagged KEAP1 and THYN1 as control (ctrl) expressed in HeLa FlpIn cells. 

Associated proteins were analyzed by LC-MS/MS. Volcano plots show the average degree of enrichment 

by KEAP1 over control (ratio of label-free quantitation (LFQ) log 2 transformed protein intensities; x-

axis) and –log 10 transformed p-values (t-test; y-axis) for each identified protein. Significantly enriched 

proteins (FDR < 0.00001, s0 100) are separated from background proteins by a hyperbolic curve (dotted 

line). Red dot: KEAP1, brown dots: known KEAP1 interactors (based on Biogrid), green dot: protein 

associated with cell death. Four independent affinity purifications (AP) were performed for both baits. (E) 

Binding of PGAM5 to KEAP1. Western blot analysis of precipitates after affinity purification (AP) with 

SII-HA-KEAP1 or SII-HA-THYN1 (ctrl).  

Figure 2. Functional interaction of KEAP1 and PGAM5 during oxidative stress 

(A, B) Viability of PGAM5 knockdown in HeLa cells after H2O2 treatment. Cells were treated with 

siPGAM5 or siScr for 48 h, followed by 21 h treatment with the indicated concentrations of H2O2. Cell 

titre was determined by Resazurin-based viability assay. The plot shows the mean ± S.D. of four 

67



2 Results

Holze et al.  

Page 19 

 

individual treatments. One representative experiment of six is shown. Knockdown efficiency was 

confirmed by western blotting against indicated proteins 48 h after knockdown (right panel). (B) as in (A) 

but siRNAs against PGAM5, NRF2 and control have been used. The plot shows the mean ± S.D. of four 

individual treatments. One representative experiment of six is shown. Knockdown efficiency was 

confirmed by western blotting against indicated proteins (right panel). (C) SII-HA-KEAP1 expressing 

HeLa Flp-In cells were treated with H2O2 for 8 h followed by SII affinity purification (AP) and western 

blotting. (D) Representative confocal images of HeLa cells left untreated or treated for 12 h with 0.5 mM 

H2O2 and stained for DAPI (blue), the mitochondrial marker COX IV (green) and PGAM5 or KEAP1 

(red), respectively. Overlays are shown in yellow. 

Figure 3. PGAM5 interacts with AIFM1 

(A) Proteins enriched with SII-HA-PGAM5 and THYN1 (ctrl) from HeLa FlpIn cells were analyzed by 

LC-MS/MS. Volcano plots show the average degrees of enrichment by KEAP1 over control (ratio of 

label-free quantitation (LFQ) protein intensities; x-axis) and p-values (t-test; y-axis) for each protein. 

Significantly enriched proteins (FDR 0.001, s0.2) are separated from background proteins by a hyperbolic 

curve (dotted line). Red dot: PGAM5, green dots: proteins known to be involved in cell death. Four 

independent affinity purifications were performed for both baits. (B) Binding of endogenous AIFM1 to 

PGAM5. Western blot analysis of SII-HA-PGAM5 or SII-HA-ctrl precipitates and input lysate. (C) Top 

panel: domain structure of AIFM1 including MLS (2-55), TM domain (55−103) and C-terminal domain 

(480-613). Bottom panel: AP of indicated Renilla-tagged AIFM1 deletion mutants with SII-HA-PGAM5 

followed by Renilla assay. Western blot shows precipitated SII-HA-PGAM5. (D) AIFM1-SII-HA Hela 

FlpIn cells were treated for 1 h with 2 mM N-Acetylcysteine (NAC) followed by 10 h 0.5 mM H2O2 

treatment. Western blot analysis of precipitates after SII-AP. (E, F) Viability of HeLa (e) and SKN (f) 

cells treated with siRNA against PGAM5, AIFM1 and siScr after 21 h H2O2 or tert-Butylhydroquinone 

(tBHQ) treatment. Cell titers were determined by Resazurin-based viability assay. The plot shows the 

mean ± S.D. of four individual treatments. One representative experiment of two is shown.  
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Figure 4. PGAM5 dephosphorylates AIFM1 

(A) PGAM5 precipitated with SII-HA-AIFM1 in the presence or absence of phosphatase inhibitors 

(Phosinh) followed by western blotting. (B) Phosphatase activity of PGAM5 and PGAM5 mutants 

carrying an N-terminal (N) or C-terminal (C) tag precipitated from cell lysates. The plot shows the mean 

± S.D. of one AP with three independent measurements. One representative experiment of three is shown. 

(C) Coomassie gel of purified recombinant proteins. (D) Size exclusion chromatography analysis of His-

PGAM5 ∆2-28 wt and [F244D] mutant for dimer and monomer formation. (E) Phosphatase activity of 

recombinant PGAM5 and PGAM5 mutants. The plot shows the mean ± S.D. of three independent 

measurements. One representative experiment of three is shown. (F) Binding of PGAM5 to the indicated 

AIFM1-SII-HA mutant proteins expressed in HEK293R1 AIFM1 knockout cells. Western blot analysis of 

precipitates after AP with SII-beads. (G) Sequence logo of AIFM1 S116 and surrounding amino acids in 

13 mammalian species. (H) Western blot analysis of Jurkat cells that were left untreated or were treated 

with 0.5 mM H2O2 for 2 h. (I) HeLa cell lysate was treated with 11 µg recombinant His-PGAM5∆2-28 or 

His-tagged PGAM5[F244D]∆2-28 mutant for 30 min at 30°C and subjected to western blot analysis. (H, 

I) one representative experiment of three is shown.  

Figure 5. Virus proteins interfere with KEAP1-PGAM5-AIFM1 signaling pathway 

(A) Schematic representation of viral proteins identified in 33 to bind KEAP1, PGAM5 or AIFM1. (B, C) 

AP-LC-MS/MS experiments using SII-HA-tagged Non-structural protein 2 (NS2) of respiratory syncytial 

virus (RSV) or non-expressing controls (B) or K3 of Human Herpes virus 8 (HHV-8) and SII-HA-

THYN1 (ctrl) (C) as baits. Volcano plots show the average degrees of enrichment (ratio of label-free 

quantitation (LFQ) protein intensities; x-axis) and p-value (t-test; y-axis) for each identified protein. 

Significantly enriched proteins (FDR: 0.01, S0=1) are separated from background proteins by a 

hyperbolic curve (dotted line). Baits are marked in red, AIFM1 and PGAM5 are highlighted in green. 

Four independent APs were performed for all baits. (D) Ren-K3 or Ren-ctrl were co-transfected with SII-
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HA-PGAM5 into HEK293T cells and Renilla activity measured in input lysate or after SII precipitation. 

(E) HEK293R1 PGAM5 knockout cells were co-transfected with the indicated plasmids for 24 h and 

phosphatase activity of SII-precipitated proteins measured. (F) AP of Ren-AIFM1 using Flag tagged 

Non-structural protein S (NSs) of La Crosse virus (LaCV) or Flag-(ctrl) (∆Mx) as baits followed by 

Renilla assay. (G) AP of endogenous AIFM1 in HEK cells using transfected Flag-NSs or Flag-ctrl (∆Mx) 

as baits followed by western blot analysis. (H) AP of Ren-NS2 (RSV) and Ren-ctrl (THYN1) using SII-

HA-AIFM1 as bait followed by Renilla assay. (D-H) Representative of experiments of at least 3 

independent replicates. Histograms show mean +/-SD of triplicate measurements. 

Figure 6. KEAP1-PGAM5-AIFM1 pathway is involved in antiviral defense 

(A) HeLa cells were treated with 0.5 mM H2O2 (3h) or infected with FluAV (strain SC35M) MOI 3 for 

3 h and 24 h. Abundance of mitochondrial ROS was examined by staining with CM-H2DCFDA followed 

by FACS analysis. (B) Influence of FluAV infection on NRF2 regulated gene transcription in HeLa cells 

tested by RT-qPCR. (C) Western blot analysis for indicated proteins of Jurkat cells infected with FluAV 

for 24 h. (D) Characterization of Pgam5 knockout MEFs by genotyping (PCR) (bottom) and 

quantification of Pgam5 mRNA levels by RT-qPCR (top). (E) Viability of MEF with the indicated 

genotypes after H2O2 treatment for 21 h by Resazurin-based viability assay. The plot shows the mean ± 

S.D. of six individual treatments. One representative experiment of three is shown. (F) Viability of MEF 

cells after infection with FluAV (MOI 3) for 21 h tested by Resazurin-based viability assay. The plot 

shows the mean ± S.D. of three individual treatments. One representative experiment of two is shown. 

(G) Survival of littermate Pgam5
(+/+)

 (n=9), Pgam5
(+/-)

 (n=42) and Pgam5
(-/-)

 (n=20) mice infected with 

FluAV (1.5x10
3
 pfu/animal). Mice were monitored for 14 days and euthanized when they lost >25% of 

their initial body weight. Kaplan Meier curve shows pooled data from two independent experiments.  

Supplementary Figure S1. PGAM5 and KEAP interaction 
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Binding of endogenous KEAP1 to PGAM5 deletion mutants. Expression of SII-HA-tagged PGAM5 wild-

type (wt) and deletion mutants lacking MLS and TM domain (∆2-29), lacking MLS, TM domain and 

phosphatase activity modulating region (PAMR) (∆2-69) and lacking MLS, TM domain, PAMR and 

KEAP1 binding site (∆2-89) in HEK293T cells. Western blot analysis of input lysates and SII-AP. 

Supplementary Figure S2. Characterization of recombinant PGAM5 

(A) Zoom of crystal structure of PGAM5 dimer interface (PDB 3MXO). One monomer is highlighted in 

black, the other in grey. Left panel shows the wild-type (wt) protein, right panel shows the modeled 

mutant PGAM5[F244D]. Side chains of Phenylalanine (F) 244 and, after mutation, aspartic acid (D) 244 

are highlighted in purple (carbon) and red (oxygen). (B) Binding of Ren-PGAM5, Ren-PGAM5[F244D] 

or Ren-ctrl (THYN1) to SII-HA-PGAM5 in HEK293T cells. Renilla assay of cell lysates or SII 

precipitates. (C) MS analysis of recombinant His-tagged PGAM5∆2-28 and His-PGAM5[F244D]∆2-28. 

(D) Dynamic light scattering (DLS) analysis of recombinant His-tagged PGAM5∆2-28 and His-

PGAM5[F244D]∆2-28 to test sample homogeneity and globular size. (E) CD spectroscopy of His-

PGAM5∆2-28 and His-PGAM5[F244D]∆2-28 to test comparability of secondary structures and overall 

integrity of both recombinant proteins. 

Supplementary Figure 3. S116 in AIFM and characterization of AIFM1-pS116 antibody 

(A) Sequence alignment of AIFM1 amino acids 109-122 of the indicated species. (B) Selectivity of 

AIFM1 pS116 antibody. HeLa cell lysates were treated for 15 min with or without calf intestine alkaline 

phosphatase (CIAP) and subjected to western blot stained for AIFM1 pS116 and AIFM1. 

Supplementary Figure 4. Binding of K3 to PGAM5 and NS2 to AIFM1 

(A) AP of Ren-K3 with SII-HA-PGAM5 mutant proteins. 293R1 PGAM5 knockout cells were co-

transfected with the indicated SII-HA-tagged PGAM5 constructs or SII-HA-ctrl (THYN1) and Renilla-

tagged K3. After 24h Renilla activity was measured in lysate and SII precipitates. Western blot shows 
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expression of bait proteins in cell lysates. (B) Interaction of SII-HA-AIFM1 and AIFM1 mutant proteins 

and SII-HA-ctrl (THYN1) with co-expressed Ren-NS2 in HEK293T cells. Renilla activity was tested in 

cell lysates and after SII precipitation.  

Supplementary Table 1. AP-LC-MS/MS experiments 

HeLa FlpIn cells were genetically engineered to stably express (A) KEAP1, (B) PGAM5, (C) K3 (HHV-

8) and (D) NS2 (RSV) and were used for AP LC-MS/MS experiments as described in material and 

methods. Table contains log2 transformed label-free quantification (LFQ) intensities of all identified 

proteins. Missing values were imputed as described in material and methods. Significantly enriched 

proteins, p values and mean differences from t-test based analyses are indicated. 
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Methods 

Plasmids 

Expression constructs were generated by PCR amplification of plasmids from ImaGenes cDNA Library 

(MPI core Facility) and a cDNA library obtained from HeLa cells followed by Gateway cloning 

(Invitrogen) into the plasmids pcDNA3-Ren-GW and pTO-SII-HA-GW (Pichlmair et al., 2012; Habjan et 

al., 2013). Mutations and truncations were introduced by PCR, respectively. pI.18_3xFlag_NSs (LaCV) 

and pI.18_3xFlag_DMx_1xFlag were kindly provided by Friedemann Weber. Sequences were verified by 

Sanger sequencing. 

 

Cells, reagents and viruses 

HeLa S3 (CCL-2.2) and Vero E6 cells (CRL-1586) were purchased from ATCC. Jurkat cells were a gift 

from Felix Meissner (MPI of Biochemistry, Munich). SKN-BE2 cells were kindly provided by Rüdiger 

Klein (MPI of Neurobiology, Munich). HeLa FlpIn cells (a gift from Andrea Musacchio, MPI of Cell 

Biology, Dresden) stably expressing SII-HA-tagged human PGAM5, AIFM1, KEAP1 K3, NS2 and 

THYN1 under control of the same promoter were generated by hygromycin selection. MEFs were 

isolated from 13.5 day old Embryos from a heterozygous breeding pair. 

All cell lines were maintained in DMEM (PAA Laboratories) containing 10% fetal calf serum (GE 

Healthcare) and antibiotics (100 U/ml penicillin, 100 µg/ml streptomycin). Streptavidin-agarose beads 

were obtained from Novagen. Resazurin, Sodium Fluoride, Malachite green and N-Acetylcysteine were 

from Sigma, Polyethylenimine linear MW 25.000 from Polysciences, ortho-Vanadate from Alfa Aesar. 

Primary antibodies used in this study were as follows: PGAM5, HA-tag (Sigma: HPA036978, H6533), 

Renilla-tag (Millipore: MAB4410), and KEAP1, AIFM1, NRF2 (Cell Signaling: 8047, 5318, 12721). 

Antibodies against actin (Santa Cruz; sc-47778), His-tag (Santa Cruz; sc-8036), and secondary antibodies 

detecting mouse or rabbit IgG (Jackson ImmunoResearch, Dako) were horseradish peroxidase (HRP)-

coupled. CM-H2DCFDA, 4',6-diamidino-2-phenylindole (DAPI) and secondary antibodies used for 
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immunofluorescence were purchased from Invitrogen. Recombinant influenza virus (Flu SC35M wt) 

described previously (REF). 

 

RNAi-mediated knockdown 

Duplex siRNAs were transfected using the Neon Transfection System (Invitrogen). Transfection was 

performed according to the manufacturer´s instructions for HeLa and SKN-BE2 cells. Briefly, we 

transfected 1 nmol of siRNA per 1 × 10
6
 cells. Duplex siRNAs were either purchased from Qiagen, 

Dharmacon or synthesized by the Core Facility at the MPI of Biochemistry. siRNA target sequences were 

as follows: human PGAM5 [#1: 5`-CCCGCCCGTGTCTCATTGGAA-3`, #2: 5`-

TCCAAGCTGGACCACTACAAA-3`, #3: 5`-CTCGGCCGTGGCGGTAGGGAA-3`], human AIFM1 

[#1: 5`-GAACATCTTTAACCGAATG-3`; #2: 5`-GCATGAAGATCTCAATGAA-3`; #3: 5`-

CAAGGAAGATCATTAAGGA-3`; #4: 5`-GGTAGAAACTGACCACATA-3`], human KEAP1 [#1: 5`-

GGACAAACCGCCTTAATTC-3`; #2: 5`-CAGCAGAACTGTACCTGTT-3`; #3: 5`-

GGGCGTGGCTGTCCTCAAT-3`; #4: 5`-CGAATGATCACAGCAATGA-3`], human NFE2L2 [#1: 5`-

TAAAGTGGCTGCTGAGAAT-3`; #2: 5`-GAGTTACAGTGTCTTAATA-3`; #3: 5`-

TGGAGTAAGTCGAGAAGTA-3`; #4: 5`-CACCTTATATCTCGAAGTT-3`] and scrambled [5`- 

AAGGTAATTGCGCGTGCAACT-3]. 

 

Cell viability assay 

To test cell viability a Resazurin-based cell viability assay was used. Resazurin (100 µg/mL) was 

dissolved in PBS and added to each well of a 96well plate. Cells were incubated 30 min @37°C, followed 

by measurement of fluorescence (535/590 nm) using an Infinite 200 PRO series micro plate reader 

(Tecan). 

 

Immunofluorescence 
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For immunofluorescence, HeLa cells were grown on coverslips and fixed with 4% (w/v) 

paraformaldehyde for 10 minutes, permeabilized with 0.1% (v/v) Triton X-100 for 7 minutes and washed 

three times with blocking buffer (1 × PBS containing 0.1% fetal calf serum (w/v)). Immunofluorescense 

analysis was performed as described previously (Habjan et al., 2013). Confocal imaging was performed 

using a LSM780 confocal laser scanning microscope (ZEISS, Jena, Germany) equipped with a Plan-APO 

63x/NA1.46 oil immersion objective (ZEISS). 

 

Affinity purifications and quantitative LC-MS/MS  

Cell lysates were prepared by lysing cells for 5 min on ice in TAP lysis buffer (50 mM Tris pH 7.5, 100 

mM NaCl, 5% (v/v) glycerol, 0.2 % (v/v) Nonidet-P40, 1.5 mM MgCl2 and protease inhibitor cocktail 

(EDTA-free, cOmplete; Roche)) or Cell Signaling IP buffer (20 mM TrisHCl pH 7.5, 150 mM NaCl, 1 

mM Na2EDTA, 1 mM EGTA, 1 % Triton and protease inhibitor cocktail (EDTA-free, cOmplete; Roche). 

Were indicated, phosphatase inhibitor cocktail (PhosSTOP; Roche) or NaF and Van were added. For 

affinity-purification with HA-SII-tagged proteins, streptavidin affinity resin was incubated with cell lysate 

in either TAP lysis buffer or CellSignaling IP buffer for 60 min at 4°C on a rotary wheel. Beads were 

washed four times with TAP lysis buffer, followed by two times with TAP wash buffer [lacking 0.2 % 

(v/v) Nonidet-P40] or five times with Cell Signaling IP buffer, boiled in 2x Cell Signaling SDS buffer for 

5 min at 95°C and subjected to SDS-PAGE and Western Blot analysis. For LUMIER experiments cell 

lysates (1:10 diluted in TAP wash buffer) or beads were resuspended in TAP wash buffer and transferred 

in 4x 20 µL aliquots to white well plate (Nunc) and mixed with 2x Renilla reagent (100 mM K3PO4, 500 

mM NaCl, 1 mM EDTA, 25 mM Thiourea, freshly added 30 µM Coelenterazine) and luminescence was 

measured using an Infinite 200 PRO series micro plate reader (Tecan). 

To detect and quantify proteins bound to HA-SII-tagged bait proteins by affinity purification and mass 

spectrometry, samples were prepared as described above. After the final four washes in TAP lysis buffer, 

samples were in addition washed four times with TAP wash buffer to remove residual detergent. Four 
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independent affinity purifications were performed for each bait. Sample preparations and LC-MS/MS 

analysis was performed as described previously (Habjan et al., 2013). Briefly, samples were sequentially 

digested with LysC (Wako Chemicals USA) and Trypsin (Promega), acidified with 0.1% TFA, desalted 

with C18 stage tips and analyzed by liquid chromatography coupled to mass spectrometry on an Orbitrap 

XL platform (Thermo Fisher Scientific). 

For analysis of interaction proteomics data, mass spectrometry raw files were processed with MaxQuant 

version 1.3.0.5 or 1.4.0.6 (Cox and Mann, 2008) using the built-in Andromeda engine to search against 

human proteome (UniprotKB, release 2012_06) containing forward and reverse sequences. In MaxQuant 

the label-free quantitation (LFQ) algorithm (Cox et al., 2014) and Match Between Runs option were used 

as described previously (Habjan et al., 2013). Only proteins identified on the basis of at least two peptides 

and a minimum of three quantitation events in at least one experimental group were considered. LFQ 

protein intensity values were log-transformed and missing values filled by imputation. Specific 

enrichment was determined by multiple equal variance t-tests with permutation-based false discovery rate 

(FDR) statistics, performing 250 permutations. FDR thresholds and S0 parameters were empirically set to 

separate background from specifically enriched proteins. Results were plotted using R (www.R-

project.org). 

 

In vivo experiments using Pgam5 knockout mice 

Heterozygous mice were obtained from the European Mouse Mutant Archive (EMMA). Mice were bred 

at the MPI of Biochemistry animal facility. All animal experiments have been performed according to 

animal welfare regulations and have been approved by the responsible authorities (Freiburg, G-12/46). 

Primer sequences for genotyping were as follow L3f_6764 5’-AGGCTGGATCACTATAAGGC-3’ and 

L3r_6765 5’-CTGGAGACATTGTGACCATC-3’. 

 

Real-time RT-PCR 
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RNA was reverse transcribed with PrimeScript
TM

 RT Master Mix (TAKARA) and quantified by real-time 

RT-PCR using the QuantiFast SYBR Green RT-PCR Kit (Qiagen) and a CFX96 Touch Real-Time PCR 

Detection System (BioRad). Each cycle consisted of 10 sec at 95°C and 30 sec at 60°C, followed by 

melting curve analysis. Primer sequences were as follows: huGAPDH (5’-

GATTCCACCCATGGCAAATTC-3’ and 5’-AGCATCGCCCCACTTGATT-3’), hTBP (5’-

GTTCTGAATAGGCTGTGGGG-3’ and 5’-ACAACAGCCTGCCACCTTAC-3’), KEAP1 (5’-

GCTGATGAGGGTCACCAGTT-3’ and 5’-CCAACTTCGCTGAGCAGATT-3’), NRF2 (5’- 

GCTCATACTCTTTCCGTCGC-3’ and 5’- ATCATGATGGACTTGGAGCTG-3’), NQO1 (5’-

GCATAGAGGTCCGACTCCAC-3’ and 5’-GGACTGCACCAGAGCCAT-3’), TXN (5’-

AATGTTGGCATGCATTTGAC-3’ and 5’-CCTTGCAAAATGATCAAGCC-3’),  

 

Cloning and expression of recombinant proteins 

N-terminal His-tagged PGAM5 (pNIC28-Bsa4-PGAM5(D2-28)) was a kindly provided by Apirat 

Chaikuad and Stefan Knapp. For solubility reasons the recombinant protein carried a deletion from amino 

acid 2-28. Mutation F244D in PGAM5 was introduced by site directed mutagenesis. Sequences of all 

cloning primers are available on request. Expression of recombinant proteins was induced over night at 

18°C in E. coli strain Rosetta(DE3) using 0.5 mM IPTG (Thermo). Cells were lysed in lysis buffer (50 

mM Tris-HCl pH 8.5, 500 mM NaCl, 10% glycerol, 40 mM imidazole, 1 mM DTT and protease inhibitor 

cocktail (EDTA-free, cOmplete; Roche)) using an Emulsiflex-C3 homogenizer and cleared lysate was 

used for protein purification using a HisTrap HP column (GE Healthcare; 17-5247-01) and further 

purified by gel filtration (mobile phase: 30 mM Tris-HCl pH 8.5, 300 mM NaCl, 10% glycerol, 1 mM 

DTT). Identity of recombinant PGAM5 and mutant PGAM5 was confirmed by mass spectrometry. Far 

ultraviolet (UV) circular dichroism (CD) spectra of wild type and a mutant version of PGAM5 were 

recorded on a Jasco J-810 CD-Photometer at room temperature in 20 mM sodium phosphate buffer pH 

7.4 and 50 mM NaF. For each sample and the buffer (baseline), four scans were recorded and averaged. 
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The averaged baseline spectrum was subtracted from the averaged sample spectra and the resulting 

spectra were smoothed using an FFT filter (as part of the software package). Measurements were only 

made down to wavelengths where the instrument dynode voltage indicated the detector was still in its 

linear range (190 nm). Spectra are shown as the mean residue elipticity. Secondary structure compositions 

were estimated using the CONTINLL program (Provencher and Glockner, 1981). 

 

Phosphatase assay 

Proteins were incubated in PGAM5 phosphatase buffer (50 mM imidazole pH 7.2, 0.2 mM EGTA, 0.02 

% β-mercaptoethanol, 0.1 mg/ml BSA) and 50 µM phosphorylated peptide (peptide sequences: 

RRA(pT)VA and AAL(pS)ASE) for 20 minutes at 30°C. The reaction was stopped by addition of 

Malachite Green Reagent as described before (Sherwood et al., 2013). After 15 minutes incubation at 

room temperature absorbance at 630 nm was measured using an Infinite 200 PRO series micro plate 

reader (Tecan). 

 

FACS analysis 

The production of H2O2 was detected by CM-H2DCFDA staining assay. Cells were treated as indicated 

and 30 min prior analysis cells were incubated with 1 µM CM-H2DCFDA in the dark. Cells were fixed 

and analyzed by FACS machine. 

 

Generation of Sequence logo 

Sequence logo was generated with WebLogo, a web based application (Crooks et al., 2004). List of 

sequences used (starting all at amino acid 109 from N-terminus): Homo sapiens (Human, O95831) 

KQKKAALSASEGEE; Macaca mulatte (Rhesus macaque, F7C7I3) KQKKAALSASEGEE; Bos taurus 
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(Bovine, E1BJA2) KQKRATSSALEGEP; Cavia porcellus (Guinea pig, H0VP14) 

KQRRAALSASAGEQ; Equus caballus (Horse, F6WXF6) KQKRATSSAPEGEP; Myotis lucifugus 

(Little brown bat, G1PCN7) KQKRAALSAPEGEP; Oryctolagus cuniculus (Rabbit, G1SIM3) 

KQKRATASAPEGEP; Pan troglodytes (Chimpanzee, K7BTY6) KQKKAALSASEGEE; Sus scrofa 

(Pig, A0A068CA64) KQKRATSSAPEGEP; Ovis Aries (Sheep, W5Q1F6) KQKRATSSALEGEP; 

Ictidomys tridecemlineatus (Thirteen-lined ground squirrel, I3MBI5) KQRRATSSAPEGEP; Mus 

musculus (Mouse, Q9Z0X1) KQRRAIASATEGGS; Rattus norvegicus (Rat, Q9JM53) 

KQRRAIASAAEGGS 
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Figure 3
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2 Results

Figure 5
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Figure 6
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2 Results

Supplementary Figure S1

input

S
II
-H

A
-c

tr
l

w
t

∆
2
-2

9

KEAP1

HA

AP: SII

KEAP1

HA

∆
2
-6

9

∆
2
-8

9

SII-HA-PGAM5

90
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Supplementary Figure S2
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2 Results

Supplementary Figure S3
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Supplementary Figure S4
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2 Results

2.3 Host immune response to viral nucleic acids

By recognition of microbial structures such as unusual viral nucleic acids the innate immune sys-
tem is activated. Upon viral infection, activation of IFN signaling increases the expression of ISGs
and thereby plays a pivotal role. Daffis et al showed that viruses producing 2’O unmethylated
capped RNA (cap-RNA) are sensitive to IFN and showed nearly no effect on IFIT1-/- mice [400].
This gave hints that IFIT1 might be involved in binding of Cap-RNA besides its role in binding
5’triphosphorylated-RNA (5’PPP-RNA) [160].

By using AP-MS with 2’O-unmethylated cap-RNA as bait we could identify the big IFIT complex
(IFIT1, 2 and 3), which also is identified when using PPP-RNA as bait. By performing affinity
purification with cap-RNA and Renilla-tagged cellular expressed IFIT proteins and His-tagged re-
combinant IFIT proteins, we could show that IFIT1 binds directly to cap-RNA. As IFIT1 reduc-
tion increased virulence of viruses lacking 2’O methyltransferase we tested if this binding affects
replication of viruses. By assaying transcription and translation rates of viral RNAs and proteins
we elucidated that IFIT1 binding to cap-RNA inhibits viruses on transcriptional and subsequently
translational level without affecting cellular protein levels.

My part in this project was the synthesis andmodification of various RNAs by in vitro transcription.
Additionally, I performed translation assays in cell culture with HeLa and mouse cells depleted
in IFIT1. In addition, I established affinity purification with Renilla-tagged proteins in the lab to
quantify relatively interactions of proteins to nucleic acids or other proteins.

This study underlines the importance to identify inhibitors for viral 2’-Omethyltransferases. These
inhibitors would allow IFIT1 detection of viral nucleic acids and subsequently inhibition of viral
replication and reduction in viral load by the innate immune system.
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Viruses that generate capped RNA lacking 29O methylation on the first ribose are severely affected by the antiviral activity of
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Introduction

Effective control of viral infection by host organisms requires

sensing of pathogens and activation of appropriate defence

mechanisms [1–3]. One component commonly sensed by the host

is viral genetic material, whether DNA delivered to the cytoplasm

through viral infection or viral RNA bearing motifs not commonly

found on eukaryotic RNAs [4,5]. Most cellular cytoplasmic RNAs

are single-stranded, and bear a 59monophosphate (rRNAs and

tRNAs), or an N7 methylated guanosine cap (mRNAs) linked via a

59-to-59 triphosphate bridge to the first base. In higher eukaryotes,

mRNA is further methylated at the 29O position of the first ribose

[6,7]. Viruses, in contrast, can form long double-stranded RNA

(dsRNA) and generate RNAs bearing 59triphosphosphates (PPP-

RNA) or RNAs lacking methylation [8–10]. All these distinct

features of viral as opposed to cellular RNAs have been shown to

activate the innate immune system and elicit synthesis of antiviral

cytokines including Type I interferons (IFN-a/b), which ultimately

restrict virus growth [11–14]. Among the proteins that sense viral

RNA and are linked to IFN-a/b synthesis are retinoic acid-inducible

gene I (RIG-I) and melanoma differentiation-associated gene 5

(Mda-5), which form the family of RIG-like receptors (RLRs) [5]. A

further set of host proteins appears to bind virus-derived RNAs to

directly inhibit virus production [8]. Several of these proteins are

highly expressed upon stimulation of cells with cytokines like IFN-a/

b and their antiviral effects become apparent only after binding to

virus-derived nucleic acid. Prominent examples for such proteins are

dsRNA binding proteins such as dsRNA-activated protein kinase R

and 29-59 oligoadenylate synthetase, and proteins that bind PPP-

RNA, like interferon-induced proteins with tetratricopeptide repeats

(IFIT) 1 and -5 [3,15,16]. Little is known about the repertoire of

cellular proteins that recognise unmethylated cap structures,

although replication of viruses with inactive RNA 29O methyltrans-

ferase is strongly inhibited by IFN-a/b in vitro and in vivo [11,15].

Some of this antiviral activity has been genetically linked to Ifit1 and

-2 in mice [17–19]. Here, we used an unbiased mass-spectrometry-

based approach to identify cellular proteins that bind to 59

unmethylated and methylated capped RNA, and explored their

contribution to antiviral host responses.

Results

Identification of human and mouse proteins that bind
capped RNA

To identify proteins that interact with 59 capped RNA we used

a proteomics approach based on affinity purification and mass
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spectrometry (AP-MS) [16]. RNA bearing terminal 59 hydroxyl

(OH-RNA), 59 triphosphate (PPP-RNA), an unmethylated cap

(CAP-RNA), a guanosine-N7 methylated cap (CAP0-RNA), or a

guanosine-N7 methylated cap and a ribose-29O methylated first

nucleotide (CAP1-RNA) was coupled to agarose beads. The beads

were then incubated with lysates of naı̈ve HeLa cells or HeLa cells

treated with IFN-a to increase the abundance of antiviral proteins

(Fig. 1a, Fig. S1). By employing liquid-chromatography coupled to

tandem mass spectrometry (LC-MS/MS) followed by quantitative

interaction proteomics analysis, we identified 528 proteins that

interacted with unmodified or RNA-coated beads (Fig. S2a, Table

S1). While a large number of proteins were equally well

represented in the bound fractions obtained with all RNAs (Fig.

S2a), 68 proteins were found to be significantly enriched in

samples recovered with 59modified RNA compared to OH-RNA

(Fig. S2b). As expected, the PPP-RNA binding proteins RIG-I

(DDX-58), the IFIT1, -2, -3 complex and IFIT5 were enriched in

PPP-RNA affinity purifications of IFN-a-treated HeLa cell lysate

(Fig. 1b), validating the approach and confirming previous data

[16]. Using unmethylated CAP-RNA as bait, we significantly

enriched for proteins known to associate with cellular capped

RNA (12 of 16 proteins) (Fig. 1c, Fig. S2b, Table S1). However, an

important feature of cellular mRNAs is methylation on the N7

position of the guanosine cap and the ribose-29O position of the

first nucleotide (CAP1). N7 methylation is known to increase the

affinity of the cap structure for proteins such as EIF4E and other

cap-binding proteins [6,7]. A methylation-dependent increase in

protein binding was also evident in our AP-MS analysis when

unmethylated CAP-RNA and methylated CAP1-RNA were used

as baits (16 vs. 27 identified proteins), as the latter captured a

higher number of significantly enriched proteins and, overall, these

were enriched to a greater degree, as measured by label-free

quantification (Fig. 1c–d, Table S1). Notably, we identified IFIT1,

-2 and -3 among the uncharacterised CAP-RNA binding proteins,

suggesting that the IFIT complex binds to RNA in a cap-

dependent manner (Fig. 1c). IFIT5, which shows 57.2%

aminoacid sequence identity and 75.6% similarity to IFIT1 and

has recently been shown to form a tight binding pocket that

specifically accommodates PPP-RNA [20], was not detected in

fractions that bound capped RNA. When we compared our AP-

MS dataset with transcriptome data of interferon-stimulated cells

[21], IFITs were the only interferon-induced proteins found to be

specifically enriched in CAP-RNA purifications, suggesting a

predominant role of IFITs in innate immune responses directed

against CAP-RNA (Fig. 1c, Fig. S2b). To analyse whether the set

of proteins that binds to 59modified RNA is conserved in other

species, we performed the same AP-MS analysis on lysates of naı̈ve

and IFN-a-treated mouse embryonic fibroblasts (MEFs) (Fig. S3a,

b, Table S2). Surprisingly, although PPP-RNA specifically

enriched for Ifit1, the abundance of Ifit2 and Ifit3 was not

increased (Fig. 1e). Instead we found enrichment of Ifit1c (also

known as Gm14446), an uncharacterised IFIT protein that is

strongly induced by IFN-a/b or virus infection (Fig. S4),

suggesting that the architecture of the murine IFIT complex

differs from that of its human counterpart. Significant enrichment

for Ifit1 and Ifit1c could also be achieved with unmethylated CAP-

RNA, but not with methylated CAP1-RNA, despite the fact that

the latter bait captured more proteins with higher enrichment

scores (Fig. 1f, g). We concluded from these analyses that, in both

human and mouse, the IFIT complex is the only IFN-induced

component that shows significant affinity for capped RNA.

IFIT1 is the only IFIT that binds capped RNA
Since human IFIT1, -2 and -3 associate with each other to form

a multiprotein complex, we wished to determine which of them

was responsible for tethering the IFIT complex to unmethylated

CAP-RNA. We overexpressed each of the IFIT proteins, tagged

with Renilla luciferase, in 293T cells and performed affinity

purifications using OH-RNA, PPP-RNA and CAP-RNA. Re-

markably, only human and murine IFIT1 were detected when

CAP-RNA was used as bait (Fig. 2a, b), suggesting that IFIT1

mediates binding of the IFIT complex to CAP-RNA. Consistent

with the MS analysis, IFIT5 exclusively bound to PPP-RNA but

not to CAP-RNA. To exclude contribution of cellular factors to

the interaction between IFIT1 and CAP-RNA we used recombi-

nant human IFIT proteins for RNA precipitations which

confirmed a direct interaction of IFIT1 with capped RNA

(Fig. 2c). A structure-based modelling approach using IFIT5

[20] as template suggested that the RNA-binding cavity of IFIT1

is ,700 Å3 larger than that of IFIT5 (Fig. S5) – implying that

IFIT1 has slightly different RNA-binding properties. However, a

lysine at position 151 and an arginine at position 255 of IFIT1,

two residues involved in binding the terminal 59 triphosphate

group on PPP-RNA by IFIT5 and IFIT1 [20], were also required

for binding of IFIT1 to capped RNA (Fig. 2d), indicating an

overall similar mode of binding.

To provide additional evidence that binding of IFIT1 is indeed

responsible for associating the IFIT complex to CAP-RNA, we

performed AP-MS experiments on wild-type (Ifit1+/+) and mutant,

Ifit1-deficient (Ifit12/2) MEFs. The overall precipitation efficiency

was comparable in both cell types, as evidenced by equal

enrichment of the RNA-binding protein Syncrip and the cap-

binding protein Ncbp1 (Fig. 2e and Fig. S4b). Ifit1c was not

enriched in precipitates from Ifit12/2 MEFs, which is consistent

with the notion that the murine Ifit complex binds to CAP-RNA

through Ifit1. These results show that the specific binding

properties of IFIT1 are essential for recruitment of the human

and murine IFIT complexes to their RNA targets.

IFIT1 binding depends on the methylation status of the
RNA cap

To identify proteins that bind capped RNA in a methylation-

dependent manner we used unmethylated CAP-RNA and fully

Author Summary

Cellular messenger RNAs of higher eukaryotes are capped
with a methylated guanine and, in addition, methylated at
the 29O position of the first ribose. Viruses unable to
methylate their RNA at the 29O position of the cap and
viruses generating uncapped RNA with 59 triphosphate
groups are inhibited by an antiviral complex of different
IFIT proteins. How IFIT proteins restrict viruses lacking 29O
methylation at the RNA cap remained unclear. We used a
mass spectrometry-based approach to identify proteins
binding to capped RNA with different methylation states.
We found that IFIT1 directly binds to capped RNA and that
this binding was dependent on the methylation state of
the cap. Having identified IFIT1 as being central for
recognition of 29O-unmethylated viral RNA we further
examined the mode of action of IFITs in vitro and in vivo.
Our experiments clearly show that the antiviral mechanism
of IFIT1 is based on sequestration of viral RNA lacking cap
29O methylation, thereby selectively preventing translation
of viral RNA. Our data establish IFIT1 as a general sensor for
RNA 59 end structures and provide an important missing
link in our understanding of the antiviral activity of IFIT
proteins.

IFIT1 Sequesters 29O-Unmethylated Viral RNA
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Figure 1. Mass spectrometry-based identification of human and murine interactors of capped RNA. (a) Schematic depiction of the
experimental approach used for mass spectrometry (MS)-based identification of cellular RNA binding proteins. Biotinylated RNA with different 59 end
structures (OH, PPP, CAP, CAP0, CAP1) was coupled to streptavidin beads, and incubated with lysates obtained from cells that had been left
untreated or treated with 1000 U/ml IFN-a for 16 h. Bound proteins were denatured, alkylated and directly digested with trypsin. The resulting
peptides were subjected to shotgun liquid chromatography-tandem MS (LC-MS/MS). Three independent experiments were performed for each RNA
bait, and the data were analysed with the MaxQuant software [37] using the label-free quantification algorithm [38]. (b–d) Proteins obtained from
lysates of IFN-a-treated HeLa cells using the indicated biotinylated RNA baits were analysed by LC-MS/MS. Volcano plots show the degrees of
enrichment (ratio of label-free quantitation (LFQ) protein intensities; x-axis) and p-values (t-test; y-axis) by PPP-RNA (b), CAP-RNA (c), and CAP1-RNA
(d) baits as compared to OH-RNA. Significantly enriched interactors (see Materials and Methods) are separated by a hyperbolic curve (dotted line)
from background proteins (blue dots), known cap-binding proteins (dark-green), and proteins known to associate with capped RNA (light green).
Interferon-induced proteins [21] detected in the significantly enriched fractions (IFIT1-3 and 5, DDX58) are highlighted (red triangles). (e–g) As in (b–
d) but for lysates of IFN-a-treated mouse embryo fibroblasts (MEFs). The interferon-induced proteins Ifit1 and Ifit1c [42] in significantly enriched and
non-enriched fractions are highlighted.
doi:10.1371/journal.ppat.1003663.g001
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Figure 2. Human and mouse IFIT1 bind directly to unmethylated capped RNA. (a) Isolation of luciferase-tagged human IFIT (hIFIT) proteins
from transfected 293T cells with beads coated with 250 ng RNA bearing 59 OH, PPP or CAP. The graphs show luciferase activity after affinity
purification (AP) with PPP-RNA and CAP-RNA (normalized to OH-RNA) and the activity of 10% of the input lysates. (b) Data obtained (as in a) for
luciferase-tagged murine Ifit (mIfit) proteins affinity purified with PPP-RNA and CAP-RNA. (c) Recombinant His-tagged hIFIT1, -2, -3, and -5 were
incubated with beads only or beads coated with OH-RNA or CAP-RNA. Bound proteins were detected by western blotting. Input shows 1/10th of the
amount incubated with beads. (d) Purification of luciferase-tagged wild-type (WT) and hIFIT1 mutants with CAP-RNA-coated beads. The graphs show
luciferase activity after affinity purification and the activity of 10% of the input lysates. (e) Ratios of LFQ intensities of proteins identified by mass
spectrometry in precipitates of CAP-RNA vs. OH-RNA in IFN-a-treated MEFs from wild-type (Ifit1+/+, grey bars) and Ifit1-deficient (Ifit12/2, black bars)
C57BL/6 mice. Error bars indicate means (6SD) from three independent affinity purifications. Asterisks indicate ratios with negative values.
doi:10.1371/journal.ppat.1003663.g002
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methylated CAP1-RNA as baits with IFN-treated HeLa cell

lysates and quantified the captured proteins by LC-MS/MS. As

expected [6,7], most cellular proteins were significantly enriched in

the CAP1-RNA bound fraction (Fig. 3a, Fig. S2c). The most

notable exceptions were IFITs and the cellular 29O-methyltrans-

ferase FTSJD2, both of which clearly favoured CAP-RNA (Fig. 3a,

Fig. S2c and Fig. 1 c, d and f, g). We confirmed the MS data by a

series of RNA precipitations followed by western blotting for

endogenous proteins. Proteins associating to RNA in a 59

independent manner, such as ILF3, precipitated similarly well

regardless of the RNA used (Fig. 3b). Cap N7 methylation

increased the association of EIF4E to RNA and methylation of the

29O position did not impair precipitation efficiency. In accordance

with the MS results, IFIT1 bound well to unmethylated CAP-

RNA and CAP0-RNA (N7 methylated cap) but revealed reduced

binding to CAP1-RNA (N7 methylated cap and 29O methylated

first ribos).

We next tested the contributions of individual cap methylation

sites to IFIT1 binding. To this end, we measured binding of

luciferase-tagged human and murine IFIT1 with either CAP-,

CAP0- or CAP1-RNA. The unmethylated CAP-RNA bait

captured more human or murine IFIT1 than either of the

methylated RNAs (Fig. 3c). Furthermore, the analysis suggested

that N7 methylation on the cap and 29O methylation of the first

ribose both contributed to the reduced binding of IFIT1 to RNA.

Similarly, the precipitation efficiency of recombinant human and

murine IFIT1 was reduced when capped in vitro transcribed RNAs

were enzymatically methylated at the N7 and 29O position (Fig. 3d)

or when chemically synthesised RNAs with the same modifications

were used (Fig. 3e). This was in contrast to EIF4E that showed

prominent binding when CAP0- or CAP1-RNA was used (Fig. 3d,

e). Collectively, these data suggest that human and murine IFIT1

have the capability to directly sense the methylation state of

capped RNA.

Antiviral activity of IFIT1 against 29O methyltransferase-
deficient viruses

Having established that IFIT1 binds directly to capped RNA

and that methylation on the 29O position of the first ribose

markedly reduces binding, we tested the impact of IFIT1 on virus

replication. Probably as a result of evolutionary pressure, most

viruses that infect higher eukaryotes have evolved mechanisms to

generate RNA that is methylated on both the N7 position of the

guanosine cap and the 29O position of the first ribose [9]. We

therefore used wild-type human coronavirus (HCoV) 229E (229E-

WT), which generates CAP1-RNA, and a mutant variant that has

a single amino acid substitution (D129A) in the viral 29O

methyltransferase that is part of non-structural protein 16 (229E-

DA), and consequently only produces CAP0-RNA [11]. IFN-a-

treated HeLa cells infected with the 229E-DA mutant expressed

significantly reduced levels of viral RNA and protein relative to

those exposed to 229E-WT (Fig. 4a, b). Moreover, this effect was

strictly dependent on IFIT1, since the two viruses replicated

equally well in HeLa cells treated with siRNA against IFIT1

(Fig. 4a, b). Similar effects were observed in an analogous mouse

model. Thus, when IFN-a treated macrophages (MWs) from

C57BL/6 (Ifit +/+) mice were infected with a wild-type murine

coronavirus (mouse hepatitis virus strain A59; MHV-WT) and a

mutant strain carrying the equivalent amino acid substitution

(D130A) in its 29O methyltransferase [11,17] (MHV-DA), the

latter produced 100-fold less viral RNA and comparably reduced

levels of viral protein (Fig. 4c, d). In contrast, when Ifit1-deficient

MWs were infected, no significant virus-dependent differences

were observed, again pointing to a critical role for Ifit1 in

restricting replication of MHV-DA. Note that the presence of Ifit1

itself did not increase IFN-a/b production (Fig. S6), suggesting a

direct antiviral effect of Ifit1. We next assessed the impact of Ifit1

on virus growth in vivo. MHV-WT grew to high titres in the spleens

of infected Ifit1+/+ mice, whereas no viral replication could be

detected upon infection with MHV-DA (Fig. 4e). In agreement

with the in vitro data, growth of MHV-DA was partially restored in

Ifit1-deficient animals. These data suggest that IFIT1 has a central

role in restraining the growth of 29O methyltransferase-deficient

coronaviruses in vitro and in vivo, which is compatible with the

greater affinity of IFIT1 for non-29O-methylated RNA cap

structures. The data further imply that this role is conserved in

mouse and human.

IFIT1 specifically regulates the translation of 29O
unmethylated capped viral RNA

RNA capping is essential for a variety of cellular functions. The

presence of a 59 cap regulates mRNA export from the nucleus,

protects RNAs from degradation and is necessary for efficient

translation [7,22]. An involvement of IFIT1 in nuclear-cytoplas-

mic transport is unlikely, given the exclusively cytoplasmic

localisation of IFIT proteins and their negative effect on

coronaviruses, which replicate in the cytoplasm. We therefore

measured the stability of the RNAs generated by MHV-WT or

MHV-DA in MWs that had been stimulated with IFN-a. Since

MHV-WT replicates significantly better than the mutant virus, we

blocked virus replication by adding cycloheximide (CHX) shortly

after infecting MWs with the two viruses (Fig. 5a). CHX inhibits de

novo synthesis of the viral polymerase, a prerequisite for

transcription of viral RNA and thereby allows to normalise for

viral transcripts in coronavirus infected cells. The abundance of

viral transcripts 4 h and 8 h after infection was indistinguishable in

CHX treated cells infected with MHV-WT and MHV-DA

(Fig. 5b), suggesting that 29O methylation of the first ribose does

not affect the stability of the viral RNA within the timeframe of

this experiment.

Many cellular antiviral defence mechanisms generally block

translation of mRNA, thereby also severely inhibiting virus

growth. To assess the global impact of Ifit1 on the translation

machinery, we used pulsed stable isotope labelling in cell culture

(SILAC) [23]. In pulsed SILAC, unlabelled cells are transferred to

SILAC growth medium containing 13C- and 15N-labelled arginine

(Arg10) and lysine (Lys8). Newly synthesized proteins incorporate

the heavy label and pre-existing proteins remain in the light form,

which allows to measure relative changes in the translation of

individual proteins, regardless of the absolute amount of RNA

present. We pulsed Ifit1+/+ and Ifit12/2 MWs infected for 5K h

with either MHV-WT or MHV-DA for 2 h with SILAC medium

(Fig. 5c) and analysed infected cells by whole-proteome shotgun

LC-MS/MS. We could reliably quantify 721 proteins in terms of

heavy/light ratios in all three biological replicates tested. Heavy/

light ratios of cellular proteins were comparable in Ifit1+/+ and

Ifit12/2 MWs, irrespective of the virus used for infection (Fig. 5d,

boxes), suggesting that neither the presence of Ifit1 nor infection

with MHV-DA affected the overall rate of translation in the cells.

The expression profiles of individual proteins known to be

important in innate immune responses against viruses, such as

the pattern recognition receptor RIG-I (DDX58), signalling

molecules (STAT1, -2, -3), interferon-induced proteins (Ifi205b,

Ifi35, Gvin1) and components of the major histocompatibility

complex (H2-K1, H2-D1, Cd74), were similar in both cell types

infected with either virus (Fig. S7). However, translation of viral

nucleocapsid and membrane proteins was selectively reduced in

Ifit1+/+ MWs infected with MHV-DA (Fig. 5d and Fig. S7).

IFIT1 Sequesters 29O-Unmethylated Viral RNA
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Variation in large datasets can be best evaluated by principal-

component analysis, which computes the variable with the greatest

effect in a given dataset. This analysis revealed that Ifit1+/+ MWs

infected with MHV-DA showed the highest variation (Component

1 accounting for 55.9% of variation) as compared to all other

conditions tested (Fig. 5e), and among all identified proteins,

MHV proteins were mainly responsible for this variation (Fig. 5f).

Taken together, these data indicate that synthesis of proteins

encoded by viral RNAs lacking 29O methylation on the first ribose

is specifically inhibited by IFIT1. Expression of proteins encoded

by fully methylated RNA, such as cellular mRNA or 29O

methylated viral RNA, is not affected by the activity of IFIT1.

IFIT1 and translation factors compete for mRNA
templates

Translation of cellular capped mRNA requires binding of the

cap-binding protein EIF4E, which has a high affinity for

Figure 3. IFIT1 binds capped RNA in a methylation state-dependent manner. (a) Ratio of LFQ intensities of proteins identified by LC-MS/MS
as significantly enriched in CAP1-RNA relative to CAP-RNA affinity purifications from IFN-treated HeLa cells, after filtering against the set of proteins
that showed enrichment relative to 59 OH-RNA(see Fig. S2b). Error bars indicate means (6SD) from three independent affinity purifications. (b)
Precipitation of endogenous proteins from lysates of IFN-a treated HeLa cells with biotinylated RNA bearing 59 OH, PPP, CAP, CAP0 or CAP1
structures. Human IFIT1 (hIFIT1), EIF4E and ILF3 in precipitates were detected by western blotting. Input shows 1/10th (mIFIT1, EIF4E) and 1/30th

(hIFIT1) of the amount incubated with beads. (c) Affinity purification of luciferase-tagged human (hIFIT1) and murine (mIfit1) IFIT1 expressed in 293T
cells on beads bearing 59 OH, CAP, CAP0, or CAP1 RNA. (d) Binding of recombinant IFIT1 to capped RNAs. As in (c), but RNA-coated beads were
incubated with recombinant His-tagged mouse Ifit1 (His-mIfit1), human His-hIFIT1 or human His-EIF4E and bound protein was quantified by western
blotting. (e) Binding of recombinant His-tagged hIFIT1 and EIF4E to chemically synthesized, biotinylated RNA oligomers. Synthetic triphosphorylated
RNAs with (CAP1) or without (CAP0) 29O-methyl group on the first ribose were capped in vitro using recombinant vaccinia virus capping enzyme (see
Materials and Methods). As control we used a synthetic RNA harbouring a 59 hydroxyl group (OH). Synthetic RNAs were coupled to beads, incubated
with recombinant proteins and bound proteins detected by western blotting. Input shows 1/10th of the amount incubated with beads.
doi:10.1371/journal.ppat.1003663.g003

IFIT1 Sequesters 29O-Unmethylated Viral RNA

PLOS Pathogens | www.plospathogens.org 6 October 2013 | Volume 9 | Issue 10 | e1003663

100



2.3 Publication: XY

methylated cap structures [7,22]. Therefore, we tested whether

IFIT1 could compete with EIF4E for binding to RNA template.

We coupled limiting amounts of unmethylated CAP-RNA, N7-

methylated CAP0-RNA and fully methylated CAP1-RNA to

beads and tested whether the binding ability of recombinant

EIF4E is altered by the presence of recombinant IFIT1. When we

used CAP-RNA or CAP0-RNA, EIF4E binding to the beads was

reduced by addition of IFIT1, suggesting that the two proteins

compete for the RNA target (Fig. 6a). In contrast, when

methylated CAP1-RNA was used the amount of EIF4E recovered

was not affected by the presence of IFIT1. Competition between

Eif4e and Ifit1 for capped RNA was also seen when total lysates of

IFN-a-stimulated MEFs were used as inputs for experiments.

Unmethylated CAP-RNA captured considerably more Eif4e from

Figure 4. IFIT1 inhibits viral RNA and protein synthesis in cells infected with 29O methyltransferase-deficient coronavirus. (a–b) HeLa
cells were cotransfected for 48 h with an expression construct for the HCoV-229E receptor, human aminopeptidase N, and siRNAs targeting IFIT1 or
the green fluorescent protein (GFP). Cells were then treated with 20 U IFN-a and infected with wild-type HCoV-229E (229E-WT; grey bars) or the 29O
methyltransferase-deficient HCoV-229E (D129A) mutant (229E-DA; red bars). Total RNA and protein were harvested 24 h post infection and analysed
by quantitative RT-PCR (a) and western blotting (b), respectively. Quantitative RT-PCR data are from one of three representative experiments showing
means 6SD for HCoV-229E nucleoprotein (229E-N) RNA after normalization to cyclin B (CycB) mRNA. (c–d) Bone marrow-derived macrophages (Mw)
derived from C57BL/6 (Ifit1+/+) and Ifit1-deficient (Ifit12/2) mice were treated or not with 50 U of IFN-a for 2 h and infected with wild-type MHV (WT;
grey bars) or 29O methyltransferase-deficient MHV (DA; red bars). RNA and protein were harvested 8 h post infection and analysed by quantitative RT-
PCR (c) and western blotting (d). Quantitative RT-PCR results are from one of three representative experiments, showing means 6SD for MHV
nucleoprotein (MHV-N) RNA after normalization to the TATA-binding protein (TBP) mRNA. (e) Ifit1+/+ and Ifit12/2 mice were infected intraperitoneally
with 5,000 plaque-forming units of MHV WT (grey bars) or DA (red bars). Viral titers in the spleens of 12 mice per condition were measured 48 h after
infection. Data are shown as Tukey box-whisker plots (ND, not detectable; outlier indicated as black dot).
doi:10.1371/journal.ppat.1003663.g004
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Figure 5. IFIT1 specifically blocks translation of 29-O-unmethylated capped viral RNA. (a) Experimental design used to assess the stability
of MHV RNA in infected cells. Bone marrow-derived macrophages (Mw) from C57/BL6 mice were treated with 50 U of IFN-a for 2 h prior to infection
with wild-type MHV (WT) or 29O methyltransferase-deficient MHV (DA) at 4uC for 1 h. Directly after infection, cells were treated with 100 mg/ml
cycloheximide (CHX) or DMSO. Total RNA was harvested at 0, 4, and 8 h post infection and analysed by quantitative RT-PCR. (b) MHV nucleoprotein
(MHV-N) RNA in cells infected with MHV WT (grey) or DA mutant (red), treated with DMSO (solid lines) or CHX (dashed lines). Data from one
representative experiment of three are depicted, showing means 6SD after normalization to a known amount of in vitro transcribed Renilla luciferase
RNA (Ren) added to cell lysates. (c) Experimental design for pulsed SILAC coupled to mass spectrometry to determine relative changes in protein
translation during infection. Macrophages from C75/BL6 (Ifit1+/+) and Ifit1-deficient (Ifit12/2) mice grown in normal growth medium containing light
(L) amino acids were infected at 4uC for 1 h with wild-type MHV (WT) or 29O methyltransferase-deficient MHV (DA). Five hours post infection cells
were incubated with starvation medium (lacking Lys and Arg) for 30 min, then SILAC medium containing heavy (H) labelled amino acids (Lys8, Arg10)
was added, and 2 h later total protein lysate was prepared and subjected to LC-MS/MS analysis. (d) Translation rates for 721 cellular proteins, as
determined by heavy (H) to light (L) ratios from LC-MS/MS, were plotted as box-whisker plots (whiskers from 10th to 90th percentile). Individual ratios
for the MHV nucleoprotein (MHV-N) and membrane protein (MHV-M) in WT- (grey) and DA-infected (red) Ifit1+/+ (circles) and Ifit12/2 (triangles)
macrophages are plotted separately. Data are from three independent experiments. (e,f) Principal Component Analysis based on valid H/L ratios of
all measurements from (d) showing clustering of the individual samples of the entire dataset (e). Panel (f) shows all proteins plotted for their
contribution to the variation in components 1 and 2. MHV proteins are indicated in blue.
doi:10.1371/journal.ppat.1003663.g005
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lysates of IFN-a treated Ifit12/2 MEFs than from lysates of Ifit1+/+

MEFs (Fig. 6b). This difference disappeared when methylated

CAP1-RNA was used as bait (Fig. 6b). We therefore conclude that

IFIT1 competes with cellular translation initiation factors for

mRNA, thereby selectively regulating translation based on the 59

methylation status of the RNA templates present (Fig. 6c).

Discussion

We previously identified IFIT1 as a nucleic acid-binding protein

that recognises the 59triphosphosphate present on genomes and

transcripts of most negative-strand RNA viruses [16]. Here we

show that, in addition, IFIT1 binds mRNAs that lack 29O

methylation on the first ribose, such as those produced by RNA

viruses that replicate in the cytoplasm and are deficient in RNA

cap-specific ribose-29-O methyltransferase activity. This suggests

that IFIT1 has a unique ability to recognize 59 RNA modifications

that are present on viral nucleic acids. Co-purification experiments

with human IFIT proteins clearly show formation of a multi-

protein complex comprising IFIT1, -2 and -3. Overexpression of

single IFIT proteins, including IFIT1, only marginally affects viral

growth [16,17], suggesting that the cooperative action of IFIT

proteins is required for full antiviral action. This is supported by

loss-of-function experiments in cell culture and in vivo that show a

requirement for Ifit2, which by itself does not bind CAP-RNA, to

restrict viruses lacking 29O methyltransferase activity [17,18].

IFIT2 is known to bind to components of the cytoskeleton [24],

which could allow intracellular trafficking of the IFIT complex to

its sites of action. While some IFITs possess conserved biological

activities in different species, e.g. human and murine IFIT1 which

bind to PPP-RNA and unmethylated CAP-RNA, others appear to

have evolved in a species-specific manner. We showed here that

the yet uncharacterised murine interferon-induced Ifit1c binds to

RNA-coated beads in an Ifit1-dependent manner, and we

therefore propose that a corresponding Ifit complex with a

different protein composition exists in mice.

Residues previously identified to be important for binding of the

triphosphate moiety are also required for binding of unmethylated

CAP-RNA by IFIT1, suggesting a conserved mechanism of RNA

binding. In this context it is of interest to note that crystallographic

analysis indicates that PPP-RNA binding to IFIT5, which shows

high similarity to IFIT1, occurs in a fashion that is reminiscent of

CAP-RNA binding by cap-binding proteins, in that the first two

nucleotides are stacked by an aromatic phenylalanine [20].

However, the higher affinity of IFIT1 for unmethylated relative

to fully methylated capped RNA is unusual among cellular

Figure 6. Competition between IFIT1 and translation factor EIF4E for mRNA templates. (a) Recovery of recombinant human EIF4E based
on RNA affinity binding in the presence or absence of IFIT1. Streptavidin beads were coupled to 250 ng of the indicated RNA and mixed with 5 mg of
recombinant His-tagged hIFIT1 and/or His-tagged EIF4E, as indicated. Bound proteins were analysed by western blotting with antibodies directed
against the His-tag. (b) As in (a), except that RNA-coated beads were incubated with lysates of interferon-treated Ifit1+/+ and Ifit12/2 mouse embryo
fibroblasts. Bound proteins were analysed by western blotting with antibodies directed against murine Eif4e and mIfit1. (c) Proposed model for IFIT1-
mediated translational inhibition of 29O-unmethylated viral RNA. Capped and 29O-methylated cellular and viral RNA is bound by EIF4E to initiate
translation. Viral mRNA lacking 29O methylation at the first ribose is recognized by IFIT1 which prevents binding of cellular factors required for
efficient translation. The model is based on data presented here and elsewhere [16,17,19,20].
doi:10.1371/journal.ppat.1003663.g006
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proteins since 59 methylation has so far been reported to increase

the affinity of cellular proteins for RNA [7], a notion clearly

supported by our RNA AP-MS data. Like its specific antiviral

activity, this property of IFIT1 may only become apparent during

infections with viruses that produce non-methylated RNA 59 ends

[25,26]. We propose that IFIT1 acts as a molecular switch that

allows selective translation based on the 59 methylation state of the

mRNA. The phenomenon of translational control by IFIT1 based

on its differential affinity for the capped RNA is reminiscent of the

4E homologous protein (4EHP) in Drosophila and mice, which

has been found to control translation by competing with EIF4E for

the RNA cap structure, thereby regulating development-specific

gene expression [27,28]. Similarly, in our hands, IFIT1 does not

associate directly with the translation machinery ([16] and data

not shown), which again suggests that it perturbs translation

through sequestration of viral RNA. Such a model is consistent

with the high expression levels of IFIT proteins resulting from

infections with viruses or treatment with IFN-a/b.

Rather than mediating general inhibition of translation, IFIT1

shows high selectivity for mRNAs that lack 59 methylation. This is

supported by pulsed SILAC experiments showing specific, IFIT1-

dependent inhibition of translation of capped RNAs lacking 29O

methylation at the first ribose, such as those generated by MHV

and HCoV mutants expressing inactive 29O methyltransferase.

Lower eukaryotes and viruses that infect them lack 29O

methylated CAP RNA [29–31], and the latter should be

susceptible to the antiviral activity of IFITs. Consequently, the

IFIT defence system is likely to contribute to a species barrier that

puts selective pressure on viruses to generate 59 methylated RNA.

Our data provide a mechanistic rationale for why most viruses

make considerable effort and dedicate part of their coding capacity

to produce genomic and subgenomic RNAs with 59-terminal ends

that perfectly mimic those of cellular mRNAs, including fully

methylated 59-cap structures [9,31–33]. Other viruses have

evolved specific mechanisms to hide their uncapped/unmethy-

lated 59 ends, for example, by covalent binding of viral proteins to

the 59 end of viral RNAs and use of alternative strategies for

translation initiation, thereby escaping IFIT1-based surveillance,

which is centred on RNA 59 end structures. Despite these viral

strategies to generate host-like mRNAs, IFIT1 remains active

against viruses that generate 59 triphosphate RNA, most likely

through translation-independent mechanisms. The ability of

IFIT1 to target viral RNAs selectively allows the cell to specifically

fight virus infections while pursuing an antiviral program aimed at

destroying the intruding pathogen.

Materials and Methods

Ethics statement
All animal experiments were performed in accordance with

Swiss federal legislation on animal protection and with the

approval of the Animal Studies Committee of the Cantonal

Veterinary Office (St. Gallen, Switzerland), license nr. SG 11/03.

Reagents, cells and viruses
Interferon-a (IFN-a A/D) was a kind gift from Peter Stäheli.

Expression constructs for human and murine IFIT proteins

[16,20] and the human aminopeptidase N (APN) were described

previously. Products tagged with Renilla luciferase were expressed

from constructs obtained by Gateway cloning into pCDNA-REN-

NT-GW (a kind gift from Albrecht v. Brunn). For expression in

bacteria, human EIF4E cDNA was cloned into pETG10A-GW

[16]. Recombinant IFIT proteins and human EIF4E were

expressed in E. coli and purified using HisPur Ni-NTA resin

(Thermo Scientific). Streptavidin-agarose beads were obtained

from Novagen. Polyclonal antibodies directed against human and

mouse IFIT1 were described previously [16]. The antibody

against MHV nucleoprotein (MHV-N556) was kindly donated by

Stuart Siddell. Primary antibodies against ILF-3 (Sigma;

HPA001897), the nucleoprotein of HCoV-229E (Ingenasa; mAb

1H11) and EIF4E (Cell Signaling; C46H6) were obtained from

commercial sources. For western blot analysis we used horseradish

peroxidase (HRP)-coupled antibodies specific for actin (Santa

Cruz; sc-47778), the His-tag (Santa Cruz; sc-8036) or the c-Myc-

tag (Roche; 1667149), and HRP-coupled secondary antibodies

(Jackson ImmunoResearch). All cell lines used (293T, HeLa, Vero-

E6, Huh7, L929, 17Clone1, and Ifit1+/+ and Ifit12/2 mouse

embryonic fibroblasts) were described previously [11,16], and

were maintained in DMEM (PAA Laboratories) containing 10%

fetal calf serum (PAA Laboratories) and antibiotics (100 U/ml

penicillin, 100 mg/ml streptomycin). DMEM medium containing

antibiotics, 10 mM L-glutamine, 10% dialyzed fetal calf serum

(PAA Laboratories) and 84 mg/L 13C6
15N4 L-arginine and

146 mg/L 13C6
15N2 lysine (Cambridge Isotope Laboratories) was

used for SILAC experiments. Murine bone marrow-derived

macrophages were generated in vitro by cultivating bone marrow

from mouse femur and tibia in DMEM supplemented with 10%

(v/v) fetal calf serum, 5% (v/v) horse serum, 10 mM HEPES

pH 7.4, 1 mM sodium pyruvate, 10 mM L-glutamine and 20%

(v/v) L929 cell-conditioned medium (containing macrophage

colony-stimulating factor) for 6 days. Reagents for transfection

with plasmid DNA (Nanofectin) or siRNA duplexes (siRNA Prime)

were obtained from PAA Laboratories. Wild-type and 29-O-

methyltransferase-deficient recombinant coronaviruses [mouse

hepatitis virus strain A59 (MHV) and human coronavirus 229E

(HCoV-229E) [11]], Sendai virus, RVFV Clone13 [34] and VSV-

M2 (mutant VSV with the M51R substitution in the matrix

protein) [35] have been described previously. Duplex siRNAs

targeting human IFIT1 [sense#1: r(CAUGGGAGUUAUC-

CAUUGA)dTdT; antisense#1: r(UCAAUGGAUAACUCC-

CAUG)dTdA; sense#2: r(CCUUGGGUUCGUCUA-

CAAA)dTdT, antisense#2: r(UUUGUAGACGAACCCAA-

GG)dAdG] and the green fluorescent protein [sense: 59 r(AAG-

CAGCACGACUUCUUCAAGU)dT 39; antisense 59 r(CUU-

GAAGAAGUCGUGCUGCUUU)dT 39] were synthesized by the

Core Facility at the MPI of Biochemistry.

Capping and methylation of in vitro transcribed RNA
Triphosphorylated PPP-RNA was synthesized by in vitro

transcription with SP6 or T7 polymerase (RiboMAX Large Scale

RNA Production Systems; Promega), in the presence or absence of

biotin-16-UTP (Enzo), from plasmids encoding antisense 7SK

RNA (7SK-as) [13] or Renilla luciferase (pRL-SV40; Promega),

and purified by ammonium-acetate isopropanol precipitation.

Aliquots of PPP-RNA were then mock-treated, dephosphorylated

with alkaline phosphatase (FastAP; Fermentas), or modified with

different 59 cap structures using the ScriptCap 29-O-Methyltrans-

ferase and m7G Capping System (CellScript) according to the

manufacturer’s instructions. Briefly, 20-mg samples of RNA were

heat-denatured at 65uC for 5 min, cooled on ice, then incubated

with ScriptCap Buffer in the presence of 500 mM GTP, 100 mM

SAM, 100 U 29-O-methyltransferase (VP39), 10 U Vaccinia

Capping Enzyme (VCE) and 40 U RNase inhibitor for 1 h at

37uC. Capped RNAs were further treated with FastAP to

dephosphorylate any residual PPP-RNA, and then column-

purified using the NucleoSpin RNA II kit (Macherey-Nagel). To

add radioactively labelled methyl groups to in vitro transcribed

RNA, 500 ng of each RNA was incubated with 100 U 29-O-
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methyltransferase or 10 U of VCE in 0.5 mM S-adenosylmethi-

onine and 1.4 mM S-[3H-methyl]-adenosylmethionine (78 Ci/

mmol; Perkin-Elmer) for 1 h at 37uC. Reactions were purified on

SigmaSpin Post-Reaction Clean-Up columns (Sigma) and eluates

were mixed with 2 ml Ultima Gold scintillation fluid for

measurement of 3H incorporation with a Packard Tri-Carb liquid

scintillation counter (Perkin Elmer).

Generation and capping of chemically synthesized RNA
oligomers

Capped m7Gppp-oligoribonucleotides matching the first 22

nucleotides of the 59 untranslated region of Severe Acute

Respiratory Syndrome Coronavirus HKU-39849 were prepared

by adding N7-methylated cap structures to chemically synthesized

RNA oligomers with a 39-terminal C6 amino linker. A tripho-

sphorylated RNA oligomer [PPP-r(AUAUUAGGUUUUUAC-

CUACCC)-NH2) and a corresponding 29O-ribose methylated

RNA-oligomer [PPP-r(AmUAUUAGGUUUUUACCUACCC)-

NH2] were ordered from ChemGenes Corporation (Wilmington,

MA, USA) and capped as described above using the m7G

Capping System (CellScript). Capped RNA oligomers were then

HPLC-purified, biotinylated with biotin-N-hydroxysuccinimide

ester (Epicentre) according to the manufacturer’s instructions and

again HPLC-purified. As control we used a corresponding 39-

terminal biotinylated and HPLC-purified oligoribonucleotide

harbouring a 59 hydroxyl group [OH-r(AUAUUAG-

GUUUUUACCUACCCU)-biotin].

Identification and quantitation of RNA-binding proteins
For quantitative purification of RNA-binding proteins, strepta-

vidin affinity resin was first incubated with 1-mg aliquots of biotin-

labelled OH-RNA, PPP-RNA, CAP-RNA, CAP0-RNA or CAP1-

RNA (all 7SK-antisense) in TAP buffer [50 mM Tris pH 7.5,

100 mM NaCl, 5% (v/v) glycerol, 0.2% (v/v) Nonidet-P40,

1.5 mM MgCl2 and protease inhibitor cocktail (EDTA-free,

cOmplete; Roche)] in the presence of 40 U RNase inhibitor

(Fermentas) for 60 min at 4uC on a rotary wheel. Control or

RNA-coated beads were then incubated with 2-mg samples of

HeLa cell lysate for 60 min, washed three times with TAP buffer,

and twice with TAP buffer lacking Nonidet-P40 to remove

residual detergent. Three independent affinity purifications were

performed for each RNA. Bound proteins were dentatured by

incubation in 6 M urea-2 M thiourea with 1 mM DTT (Sigma)

for 30 min and alkylated with 5.5 mM iodoacetamide (Sigma) for

20 min. After digestion with 1 mg LysC (WAKO Chemicals USA)

at room temperature for 3 h, the suspension was diluted in 50 mM

ammonium bicarbonate buffer (pH 8). The beads were removed

by filtration through 96-well multiscreen filter plates (Millipore,

MSBVN1210), and the protein solution was digested with trypsin

(Promega) overnight at room temperature. Peptides were purified

on stage tips with three C18 Empore filter discs (3M) and analyzed

by mass spectrometry as described previously [36]. Briefly,

peptides were eluted from stage tips and separated on a C18

reversed-phase column (Reprosil-Pur 120 C18-AQ, 3 mM,

15060.075 mm; Dr. Maisch) by applying a 5% to 30%

acetonitrile gradient in 0.5% acetic acid at a flow rate of

250 nl/min over a period of 95 min, using an EASY-nanoLC

system (Proxeon Biosystems). The nanoLC system was directly

coupled to the electrospray ion source of an LTQ-Orbitrap XL

mass spectrometer (Thermo Fisher Scientific) operated in a data

dependent mode with a full scan in the Orbitrap cell at a

resolution of 60,000 with concomitant isolation and fragmentation

of the ten most abundant ions in the linear ion trap.

Affinity purification of luciferase-tagged and
recombinant proteins

N-terminally Renilla luciferase-tagged proteins were transiently

expressed in 293T cells. Three micrograms of each construct were

transfected into 66106 cells using 9.6 ml nanofectin (PAA

Laboratories) in 10-cm dishes according to the manufacturer’s

instructions. After 24 h, the medium was removed, and cells were

lysed in ice-cold TAP lysis buffer. An aliquot (10%) of the lysate

was removed to determine input luciferase activity. The rest was

added to streptavidin-agarose beads coated with 250 ng of RNA

as described above, and incubated on a rotary wheel at 4uC for

60 min. Beads were washed three times and resuspended in 50 ml

TAP buffer. Luciferase activities present in the suspension and in

the input lysate were assayed in Renilla reaction buffer (100 mM

K3PO4, 500 mM NaCl, 1 mM EDTA, 25 mM thiourea)

containing 10 mM coelenterazine as substrate. The reactions were

performed in triplicate and results were quantified using an

Infinite 200 PRO series microplate reader (Tecan). For affinity

purification of recombinant proteins with different RNAs, 50 to

250 ng of biotinylated RNA were coupled to streptavidin-agarose

beads for 60 min at 4uC. Beads were washed three times with TAP

buffer and incubated with recombinant His-tagged proteins for

60 min at 4uC. After three washes beads were boiled in Laemmli

buffer for 10 min at 95uC and subjected to SDS-PAGE and

Western Blot analysis.

Real-time RT-PCR
Total RNA was isolated using the NucleoSpin RNA II kit

(Macherey-Nagel), including on-column DNase digestion, and 200

to 500 ng of RNA was reverse transcribed with the RevertAid H

Minus First Strand cDNA Synthesis Kit (Fermentas). RNA levels

were then quantified by real-time RT-PCR using the QuantiTect

SYBR Green RT-PCR kit (Qiagen) and a CFX96 Touch Real-

Time PCR Detection System (BioRad). Each cycle consisted of

15 sec at 95uC, 30 sec at 50uC and 30 sec at 72uC, followed by

melting curve analysis. Primer sequences were as follows: Renilla

luciferase (59-CGAAAGTTTATGATCCAGAAC-39 and 59-

AATCATAATAATTAATAAATG-39), hCycB (59-CAGCAA-

GTTCCATCGTGTCATCAAGG-39 and 59-GGAAGCGCT-

CACCATAGATGCTC-39), mTBP (59-CCTTCACCAAT-

GACTCCTATGAC-39 and 59- CAAGTTTACAGCCAA-

GATTCA-39), mIFN-b (59-ATGGTGGTCCGAGCAGAGAT-

39 and 59-CCACCACTCATTCTGAGGCA-39), MHV-N (59-

GCCTCGCCAAAAGAGGACT-39 and 59- GGGCCTCTC-

TTTCCAAAACAC-39), 229E-N (59-CAGTCAAATGGGCT-

GATGCA-39 and 59- AAAGGGCTATAAAGAGAATAAGG-

TATTCT-39), mIfit1 (59- CCATAGCGGAGGTGAATATC-39

and 59- GGCAGGACAATGTGCAAGAA-39), mIfit1c (59-AAT-

CAGAAGAGGCAGCCATC-39 and 59-CATGGCTTCACT-

TGTGTTCC-39), mIfit2 (59-TCAGCACCTGCTTCATCCAA-

39 and 59-CACCTTCGGTATGGCAACTT-39), and mIfit3 (59-

GCTGCGAGGTCTTCAGACTT-39 and 59-TGGTCATGT-

GCCGTTACAGG-39).

Virus infection experiments in cell culture and in vivo
C57BL/6 mice were obtained from Charles River Laboratories

(Sulzfeld, Germany), and Ifit12/2 mice have been described

[16,17]. Mice were maintained in individually ventilated cages and

used at 6 to 9 weeks of age. All animal experiments were

performed in accordance with Swiss federal legislation on animal

protection and with the approval of the Animal Studies

Committee of the Cantonal Veterinary Office (St. Gallen,

Switzerland). Wild-type and Ifit12/2 mice (kindly provided by
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Michael Diamond) were injected intraperitoneally with 5,000

plaque-forming units of MHV. Virus titers in samples of spleens

removed and frozen 48 h post infection were assessed by standard

plaque assay on L929 cells. Bone marrow-derived macrophages or

mouse embryo fibroblasts (1 to 56105 cells) were treated or not

with IFN-a and infected with the indicated viruses at a multiplicity

of infection (MOI) of 5. For synchronised infection, cells were

infected with virus on ice and pre-warmed DMEM growth

medium was added 1 h later. To quantify the effects of siRNA-

mediated knockdown of IFIT1, aliquots of 105 HeLa cells that had

been transfected for 48 h with 15 pmol siRNA and 500 ng

expression plasmid for human APN using the siRNA Prime

reagent (PAA Laboratories) according to the manufacturer’s

instructions, were pretreated with IFN-a as indicated and infected

with HCoV-229E at an MOI of 1 for 24 h.

Pulsed SILAC and mass spectrometry
For pulsed SILAC, mouse macrophages labelled with heavy

isotopes (see above) were lysed in SDS lysis buffer (50 mM Tris

pH 7.5, 4% sodium dodecyl sulfate). The lysate was then heated

for 5 min at 95uC, sonicated for 15 min with a Bioruptor

(Diagenode) and centrifuged for 5 min at 16,0006 g at room

temperature. Protein concentration was determined by Lowry

assay (DC Protein Assay, BioRAD), and 50-mg aliquots were

reduced with 10 mM DTT for 30 min, alkylated with 55 mM

IAA for 20 min at room temperature, and precipitated with 80%

acetone for 3 h at 220uC. After centrifugation for 15 min at

16,0006g at 4uC, pellets were washed with 80% acetone, dried for

30 min at room temperature and dissolved in 6 M urea-2 M

thiourea. Proteins were digested with LysC and trypsin at room

temperature and peptides were purified on stage tips and analysed

by LC-MS/MS using a Easy nano LC system coupled to a Q

Exactive mass spectrometer (Thermo Fisher Scientific). Peptide

separation was achieved on a C18-reversed phase column

(Reprosil-Pur 120 C18-AQ, 1.9 mM, 20060.075 mm; Dr. Maisch)

using a 95-min linear gradient of 2 to 30% acetonitrile in 0.1%

formic acid. The mass spectrometer was set up to run a Top10

method, with a full scan followed by isolation, HCD fragmentation

and detection of the ten most abundant ions per scan in the

Orbitrap cell.

Bioinformatic analysis
Raw mass-spectrometry data were processed with MaxQuant

software versions 1.2.7.4 and version 1.3.0.5 [37] using the built-in

Andromeda search engine to search against human and mouse

proteomes (UniprotKB, release 2012_01) containing forward and

reverse sequences, and the label-free quantitation algorithm as

described previously [36,38]. In MaxQuant, carbamidomethyla-

tion was set as fixed and methionine oxidation and N-acetylation

as variable modifications, using an initial mass tolerance of 6 ppm

for the precursor ion and 0.5 Da for the fragment ions. For SILAC

samples, multiplicity was set to 2 and Arg10 and Lys8 were set as

heavy label parameters. Search results were filtered with a false

discovery rate (FDR) of 0.01 for peptide and protein identifica-

tions. Protein tables were filtered to eliminate the identifications

from the reverse database and common contaminants.

In analyzing mass spectrometry data from RNA affinity

purifications, only proteins identified on the basis of at least two

peptides and a minimum of three quantitation events in at least

one experimental group were considered. Label-free quantitation

(LFQ) protein intensity values were log-transformed and missing

values filled by imputation with random numbers drawn from a

normal distribution, whose mean and standard deviation were

chosen to best simulate low abundance values. Significant

interactors of RNAs with different 59 end structures were

determined by multiple equal variance t-tests with permutation-

based false discovery rate statistics [39]. We performed 250

permutations and the FDR threshold was set between 0.02 and

0.1. The parameter S0 was empirically set between 0.2 and 1, to

separate background from specifically enriched interactors.

For data analysis from pulsed SILAC experiments, we used

log-transformed heavy to light protein ratios. Only proteins with

valid values were considered for analysis, and normalized by

dividing by the row median. Profile plots were generated using

LFQ intensities of log-transformed heavy-labelled protein

intensities. We excluded proteins containing less than 10 valid

values in all 12 measurements, and missing values were filled by

imputation. LFQ intensities were then normalized by dividing

by the row median.

Results were plotted using R (www.R-project.org) and Graph-

Pad Prism version 5.02. Multiple sequence alignments were

generated with ClustalW (http://www.ebi.ac.uk/Tools/msa/

clustalw2/).

Structural modelling
A homology model of human IFIT1 was obtained with

MODELLER [40] using the X-ray structure of human IFIT5

(4HOQ) as a structural template [20]. A pairwise sequence

alignment was generated with ClustalW (http://www.ebi.ac.uk/

Tools/msa/clustalw2/) and further refined with MODELLERs

align2d. Human IFIT1 and IFIT5 share approximately 75.6%

sequence similarity, with 57.2% of all residues being identical.

Cavity volumes in both structures were calculated in a two-step

process with the rolling probe method using 3V [41]. First, a

solvent-excluded volume was calculated for each structure using a

probe radius of 1.5 Å (corresponding to water). A larger probe size

of 5 Å was used to calculate so-called ‘‘shell volumes’’. The

solvent-accessible cavity volumes were obtained by subtraction of

each solvent-excluded volume from the corresponding shell

volume.

Supporting Information

Figure S1 Generation of 59end modified in-vitro tran-
scribed RNA. (a) Schematic overview of synthesis of the

biotinylated RNA used in this study. 59 triphosphorylated (PPP-)

7SK-antisense RNA obtained by in vitro transcription with SP6

polymerase was modified enzymatically at the 59 end by

incubating with alkaline phosphatase (AP) to remove 59 phos-

phates (OH-RNA), with recombinant Vaccinia virus capping

enzyme (VCE) to produce unmethylated capped RNA (CAP-

RNA), with VCE in the presence of S-adenosyl methionine (SAM)

to generate N7-methylated capped RNA (CAP0-RNA), or with

VCE and recombinant Vaccinia virus 29O methyltransferase

(VP39) in the presence of SAM to generate N7-methylated capped

RNA methylated at the 29O position of the first ribose (CAP1-

RNA) [43],[44]. (b) Agarose gel image showing 200 ng of in vitro

transcribed, biotinylated RNA following the enzymatic treatments

depicted in (a). (c) Evaluation of the N7- and 29O-methylation

efficiency of recombinant Vaccinia virus enzymes. Capped RNAs

produced as in (a) were incubated either with VCE or VP39 in the

presence of 3H-labeled SAM, and the incorporation efficiency was

measured by scintillation counting. 3H-labeled methyl groups were

transferred from SAM only if the RNA had not previously been

methylated (N7-methylation of CAP-RNA, and 29O methylation

of CAP0-RNA), showing that methylation of RNA by both VCE

and VP39 was maximally efficient.

(TIF)
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2.3 Publication: XY

Figure S2 RNA affinity purifications from HeLa cell
lysates. (a) Heatmap of all proteins identified in RNA affinity

purifications from HeLa cell lysates. Hierarchical clustering of

proteins was performed on logarithmic LFQ protein intensities

using Euclidean distances. The colour code represents LFQ

intensities in rainbow colours (see colour scale). (b) Heatmap

showing hierarchical clustering (Euclidean distances) of interactors

that were significantly enriched (see Materials and Methods) in

fractions bound by at least one RNA with a modified 59 end

structure (compared to OH-RNA). The plot shows means of Z-

score transformed logarithmic LFQ intensities. Blue colours

indicate Z-score ,0, red colours indicate Z-score .0, white

indicates Z-score = 0. The saturation threshold is set at -2.25 and

+2.25. Asterisks indicate the IFIT complex. (c) Volcano plots

showing enrichment (ratio of LFQ protein intensities; x-axis) and

p-values (t-test; y-axis) of CAP1-RNA to CAP-RNA. Data are

from three independent affinity purifications. Significantly en-

riched interactors (see Materials and Methods) are separated from

background proteins (blue dots) by a hyperbolic curve (dotted line).

Among the significant interactors, IFIT proteins and FTSJD2 (red)

are highlighted.

(TIF)

Figure S3 RNA affinity purifications from lysates of
mouse embryo fibroblasts. (a–b) As in Fig. S2, but showing

proteins identified in RNA affinity purifications from mouse

embryo fibroblasts. In (b) the saturation threshold is set at 21. 5

and +1. 5. The asterisk indicates the Ifit complex.

(TIF)

Figure S4 Characterisation of the murine IFIT complex.
(a) Expression of Ifit genes in wild-type (Ifit1+/+) and Ifit1-deficient

(Ifit12/2) mouse embryonic fibroblasts (MEFs). MEFs were left

untreated, treated with 1000 U/ml IFN-a, or infected with Rift

Valley fever virus Clone13 or a mutant version of vesicular

stomatitis virus (VSV-M2) at a multiplicity of infection of 1 or

0.01, respectively. Sixteen hours later RNA was analysed by

quantitative RT-PCR for mIfit1, mIfit1c, mIfit2 and mIfit3. In

each case, one representative experiment of three is shown, with

means 6SD after normalization to the TATA-binding protein

(TBP) mRNA. (b) Heatmap of selected proteins identified in RNA

affinity purifications from cell lysates of Ifit1+/+ and Ifit12/2

MEFs. The plot shows the means of log-transformed label-free

quantitation protein intensities in rainbow colours (see colour

scale). (c) Alignment of murine and human IFIT proteins using

ClustalW. (d) Matrix showing amino acid similarity (based on

ClustalW alignment) of all murine and human IFIT proteins.

Percent similarity is indicated as color coded from white to red,

and the exact similarity is shown within each element of the

matrix.

(TIF)

Figure S5 Comparison of the RNA binding cavities of
IFIT5 and IFIT1. Sections of surface representations of the

solvent-accessible surfaces of IFIT5 (top) and IFIT1 (bottom)

are shown, with PPP-RNA bound as in IFIT5 (stick

representation, superimposed on IFIT1), and the correspond-

ing cavity volumes V calculated as described in Materials and

Methods. In our calcuations, the main RNA-binding cavity in

IFIT5 has volume of 11881 Å3. The calculated volume of the

corresponding cavity of the modelled IFIT1, at 12627 Å3, is

about 700 Å3 larger.

(TIF)

Figure S6 Induction of interferon-b in wild-type and
Ifit1-deficient mouse cells. Interferon-stimulated bone mar-

row-derived macrophages (MWs) from C57/BL6 (Ifit1+/+) or Ifit1-

deficient (Ifit12/2) mice were left untreated, or infected with wild-

type MHV (WT), 29O-methyltransferase-deficient MHV (DA), or

Sendai virus (SeV). Twelve hours later total RNA was harvested

and analysed by quantitative RT-PCR for interferon b (IFN-b)

mRNA. Data from three independent experiments showing fold

change relative to untreated cells (mean 6SD) after normalization

to the TATA-binding protein (TBP) mRNA.

(TIF)

Figure S7 Translation profiles of individual proteins in
MHV-infected macrophages. Translation profiles based on

pulsed SILAC of macrophages from C75/BL6 (Ifit1+/+) and Ifit1-

deficient (Ifit12/2) mice infected with wild-type MHV (WT) or

29O methyltransferase-deficient MHV (DA) as shown in Fig. 5.

The profile plot shows normalized LFQ intensities of heavy

proteins, representing a total number of 451 proteins labelled

during the 2 h pulse period. Data show average LFQ intensities

from three independent replicates. Selected profiles are coloured

and represent MHV proteins and cellular proteins involved in

immune responses.

(TIF)

Table S1 Quantitative MS data from RNA affinity
purifications with HeLa cell lysates. Proteins identified by

LC-MS/MS from lysates of HeLa cells upon affinity purification

with different RNA baits. Table contains log-transformed and

imputed label-free quantification (LFQ) intensities of all identified

proteins. Significantly enriched proteins, p values and mean

differences from t-test based analyses are indicated.

(XLSX)

Table S2 Quantitative MS data from RNA affinity
purifications with MEF lysates. Proteins identified by LC-

MS/MS from lysates of mouse embryo fibroblasts (MEF) upon

affinity purification with different RNA baits. Table contains log-

transformed and imputed label-free quantification (LFQ) intensi-

ties of all identified proteins. Significantly enriched proteins, p

values and mean differences from t-test based analyses are

indicated.

(XLSX)
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3 Concluding remarks and outlook

The battle between viruses and hosts led to the co-evolution of sophisticated and effective viral
attack strategies and host defense mechanisms. Since virus lack own replication mechanisms, they
are strictly depend on the host and evolved strategies to modulate cellular pathways to serve its
needs. However, the host evolved numerous defense mechanisms to detect and clear viruses. As
main barrier for viruses, hosts make use of the innate immune system. The full repertoire of the
innate immune system is not yet known, thus additional information could reveal novel therapeutic
approaches for antiviral treatments. In this thesis, I identified novel aspects of the ancient battle
between viruses and their hosts.

In the first project of my thesis we set out to gain a global picture of the influence of viral proteins on
the host signaling network. We applied affinity-purification coupled tomass spectrometry (AP-MS)
based analysis of viral proteins to identify interacting host proteins. We revealed novel host targets
clearly showing that viruses from different classes target the host immune defense by various sig-
naling pathways. My second and main project focused on the identification of a cell death pathway
which is activated upon ROS. By studying protein-protein interactions I could identify a pathway
that link viral ROS production to caspase-independent cell death. Functional experiments sup-
port the notion that cell death is a powerful tool to clear virus infections. Additional data from the
first project and new interaction data revealed a number of viral proteins targeting this cell death
pathway. The third project elucidates cellular proteins which binds RNA, which is normally not
common in the host, such as viral RNA lacking 2’O-methylation. By AP-MS experiments and work
with recombinant proteins, IFIT1 was identified as direct interactor of this viral RNA. Further ana-
lysis revealed a selective inhibitory function of IFIT1 on translation of this type of viral RNA. Thus,
IFIT1 inhibits viruses lacking mechanisms or enzymes that mediate 2’O methylation of their RNA.
Such viruses are commonly found in lower eukaryotes and thus the IFIT1 system may contribute
to protect us from a wide variety of different viruses that could cross the species barrier.

Those studies all together revealed new virus-host interactions and partly their particular function
for the host to clear viral infections. By investigating how viruses modulate the host by their viral
proteins and avoid detection by adapting their viral nucleic acid to host nucleic acids, we can identify
potential proteins that could be therapeutically exploited to modulate viral replication.

Within the following chapter I briefly touch the future potential of AP-MS in the field of virus
infection research and therapeutic studies. Furthermore, I am going to focus on the conclusions
and possible future questions which can be derived from my main project, the ROS-induced cell
death pathway and its role in antiviral defense.

Applications for interaction studies and optimized methods

AP-MS can be applied in a wide range of biological applications. It can be used as tool to identify
potential host targets of viral proteins. These targets can be further analyzed by biochemical meth-
ods, which help to gain a faster and broader overview on possible interactions. Furthermore, by
identifying essential residues or peptides for interactions new targets of peptide based drugs can be
elucidated. Peptide based drugs are a new emerging field for modulation of a wide range of diseases
[401, 402]. Additionally, the binding of peptide based drugs could be analyzed by AP-MS, to study
at an early stage on unwanted interaction with other cellular proteins. More recent developments,
such as BAC-aided recombination andCRISPR-technology, now allow expression of tagged cellular
proteins under their own promoter. Thereby side effects, such as diversity in cellular localization
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3 Concluding remarks and outlook

due to overexpression, may be reduced. Another option that will further help identifying inter-
actors, is crosslinking coupled to MS (XL-MS) [403]. Thereby, interacting proteins are covalently
bound by chemical crosslinks [404, 405]. XL-MS could allow detection of transient interactions,
such as kinases or phosphatases with their substrate. However, this method is used with purified
protein complexes [404, 406] andwas applied recently as well in vivo to investigate the globalmem-
brane protein interactome [407]. In the future, conditions, such as viral-host interactions, could be
analyzed during different time points after infection. This could shed light on different steps while
a viral infection. Another interaction study method, named BioID [408], could as well help to
identify new targets of enzymes while various infection phases in the cell. By tagging the protein of
interest with a biotin ligase, the close interactors of this protein are biotinylated by this ligase and
can be analyzed after AP-MS. However, the tag could still interfere with physiological interactions.
A tag-free option could be a technique called protein correlation profiling (PCP) [409]. By size
exclusion chromatography (SEC) protein complexes can be separated and the different fractions
analyzed by MS, which could reveal protein complexes co-elution in the same fraction [410].

All those methods give options to study viral components and infections in a cellular context, but
still leave a broad field for further optimization. In addition to the knowledge of interaction between
viral and host proteins it would be of interest if these interactions also modulate post-translational
modifications of the host proteins. This could help to understand the global picture of viruses mod-
ulating their host and hosts dealing with viral attacks.

Importance of ROS induced cell death pathways

Viral and host strategies to fight each other co-evolved overmanymillion years. Viruses often target
the host replication machinery to utilize it and the immune system to perturb it. One major viral
target in the host innate immune system is the IFN response to avoid an antiviral state in cells,
which could eliminate the virus. Another major viral target are processes related to programmed
cell death (PCD). PCD utilized in most cases mitochondrial proteins, highlighting the function
of mitochondria for the innate immune system. Focusing on my main project, I revealed a novel
cell death pathway, which involves mitochondrial localized proteins. Additionally, it is targeted
by several viral proteins, emphasizing its role in antiviral immunity. PCD is a central option for
individual cells to save the whole organism from virus spreading. Elucidating PCD pathways in
particular are of importance to identify pathways that may support the host to help aid antiviral
defense [411]. The focus on ROS as cell death inducer is emphasized by the increasing number of
known pathogenic viruses to produce ROS during infection [336, 412, 413]. ROS production and
scavenging is of great importance for viruses. This is evidenced by a large number of studies on
mechanisms of how ROS-inducing viruses influence expression levels of ROS scavenging pathways
and enzymes, such as KEAP1-NRF2 and the superoxide dismutase (SOD) family [322, 414].

Upon release from KEAP1, NRF2 translocates to the nucleus and induces the expression of cyto-
protective genes [415–417]. Activation of NRF2 is beneficial for the host against several viruses,
such as RSV, HIV and influenza virus [418–420]. Many viruses, resulting in persistent infections,
induce NRF2 activation [421–423]. In these cases an activation of the KEAP1-PGAM5-AIFM1 cell
death pathway would be beneficial for the host. This could be accomplished by either inhibition
of NRF2 or direct activation of PGAM5. KSHV (HHV-8) induces ROS and activates NRF2 dur-
ing initial infection [424]. In addition, to allow a persistent infection, KSHV probably avoids early
cell death by inhibiting PGAM5 phosphatase activity by K3 protein, as shown in the second part
of this thesis (2.2). Viruses leading to pathogenic and acute infections may activate in addition to
the novel KEAP1-PGAM5-AIFM1 cell death pathway other cell death pathways resulting in death
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of the organism. We were using influenza A virus (FluAV, strain SC35M) [425], which induced ROS
but failed to inhibit NRF2. We hypothesize that this in sum, resulting in viability of the whole or-
ganism, probably due to selective death of infected cells. This was impaired in the Pgam5 deficient
mice. ROS-mediated cell death is regulated by viruses. For instance by controlling ROS scavenging
via SOD enzymes [322]. Viruses target SODs again with the aim to either save the cell by inducing
SODs, or promoting cell death by inhibiting SOD enzymes. The SOD family contains three mem-
bers, the cytosolic SOD1 (Cu, Zn-SOD), the mitochondrial SOD2 (Mn-SOD) and the extracellular
SOD3 (Cu, Zn-SOD). ROS induction can increase the expression levels of SOD1 and SOD2, latter
seems to be a target gene of the KEAP1-NRF2 pathway [426]. Examples for viruses influencing
SODs are highly pathogenic influenza A virus strains, which decrease cytosolic SOD1 [336] and
Zika virus, which upregulates mitochondrial SOD2 [427]. In addition, it was shown that LCMV,
another ROS inducing virus [428], had detrimental effects in cells and mice depleted for SOD1
[429]. The importance of ROS for the innate immune signaling and its tight control was shown
by Dengue virus infection. A lack of ROS induction lead to dampened innate immune response
[335]. This points out, how central the level of oxidative stress is to control antiviral and cell death
response in the host [335]. A switch, such as KEAP1, could decide if a cell should survive or die.
It was already shown for SOD1, being a ROS sensor, to directly modulate cancer signaling [430].
This fact supports the hypothesis of KEAP1 acting as well as sensing and signaling protein within
the cell. Moreover, this is emphasized by the fact that viruses not only target scavenging pathways
but as well cell death pathways such as this new ROS-induced KEAP1-PGAM5-AIFM1 cell death
pathway with the aim to either avoid or promote cell death upon increased ROS.

All together several publications reveal that viruses produce ROS most likely by different mechan-
isms. It would be of common interest, which mechanisms viruses use to induce ROS and if they
do it either on purpose or accidentally. Additionally, in many cases viruses try to control ROS
amounts to prevent recognition by the innate immune system, establishment of an antiviral state
and early cell death. Therefore, viruses can control mitochondrial or cytosolic produced ROS and
this ROS-induced cell death pathway. Amitochondrial anchored protein facing to the cytosol, such
as KEAP1, is a perfectly located sensor for cytosolic ROS and ROS leaking from mitochondria. By
linking ROS sensing with mitochondrial related cell death mechanisms I could shed light on the
complex cell death system involved in the innate immune defense. Further steps should elucidate
detailed mechanisms how those viral proteins, K3 (KSHV), NSs (LaCV) and NS2 (RSV), influence
the KEAP1-PGAM5-AIFM1 cell death pathway. In addition further studies on related viral proteins
from the initial virus-host-interactom study (2.1) would emphasize the role of this ROS-induced
cell death pathway for antiviral immunity. Viral proteins, which have connecting signaling path-
ways to the already tested proteins, are VP35 (EBOV), S3 (ReoV), A52 (VACV) and NSs proteins
(SFSV, HCV, RVFV, MCMV).

Further roles of PGAM5 and AIFM1 in programmed cell death

Besides their role in the here described PCD pathway, PGAM5 and AIFM1 are involved in other
cellular processes related to cell death and oxidative processes. PGAM5 was described being in-
volved in two other cell death related processes. One is mitochondrial fission required for intrinsic
apoptosis [431, 432] and the other one is necroptosis [141]. Mitochondrial fission is required for
cytochrom c release during intrinsic apoptosis and is dependent on DRP1 [219]. DRP1 is a substrate
of PGAM5 phosphatase activity [432]. Necroptosis requires RIP kinase 3 (RIPK3) and ROS both
are essential to fulfill cell death [204]. However, it was shown that TNF-induced necroptosis does
not directly require PGAM5 [433], indicating that PGAM5 is most likely essential for ROS-induced
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cell death, which could have similar molecular characteristics as necroptosis. Most assays in my
studies were performed in cells naturally deficient in RIPK3 [434], excluding influence of RIPK3 on
the here described ROS-induced cell death pathway. AIFM1 has two functional domains, one as-
sociated with caspase-independent PCD, called parthanatos, and the other bearing oxidoreductase
activity [247]. The latter is described to affect complex I in the OxPhos system [435]. Keeping in
mind that KEAP1 is a cytosolic ROS sensor, PGAM5 dephosphorylation of AIFM1 is probably no
effect of mitochondrial ROS increase or an effect of AIFM1 on complex I activity. This underlines
the influence of AIFM1 on the proposed novel caspase-independent PCD pathway.

Application in clinical settings

Besides the antiviral aspect of this ROS-induced cell death pathway, it probably plays as well a signi-
ficant role in oxidative stress induced neurodegenerative diseases. Oxidative stress is important in
the pathogenicity of neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease,
Huntington’s disease and amyotrophic lateral sclerosis [436]. Here again, the influence of ROS-
induced PCD is emphasized by the fact, that mice deficient in Pgam5 or reduced Aifm1 levels show
signs of neurodegenerative diseases. In particular Pgam5 deficient mice have Parkinson’s disease
like moving disorders after 12 month of age [437]. Harlekin mice, reduced in Aifm1, show neuro-
degenerative disorders probably due to an impaired OxPhos system [438]. It has not been shown
whether ROS is specifically invovled in pathogenicity in these mouse models. However, the con-
nection between PGAM5 and AIFM1 may suggest ROS-induced programmed cell death pathways
[439, 440]. This newly identified PCD pathway may not only play an essential role in antiviral im-
munity, but as well in the field of cancer and transplantations. ROS is induced in both of these
situations, leading either to no cell death or to unwanted cell death, respectively. Further research
of this PCD pathway in the field of cancer and transplantation could elucidate new therapeutic
opportunities. Especially, when elucidating the mechanisms of viral proteins on the pathway. Bio-
active peptides of these viral proteins could serve as novel pharmaceuticals to treat ROS-associated
diseases.

Together, the presented studies in my thesis demonstrate howMS can support the identification of
new cellular targets of viruses and howMS can be used to elucidate cellular pathways. Both aspects
may help to develop successful treatments in the future. Additionally, I could show the critical
control of ROS levels within the cell to regulate antiviral immunity by programmed cell death.
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