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1 Introduction 

1.1 Helicase-catalyzed DNA unwinding 

Double helical DNA is the stable form of most DNAs in vivo; This DNA duplex must be 

unwound transiently to separate the two complementary strands, at least partially, in order to 

form single-stranded (ss) DNA intermediates required for DNA replication, repair and 

recombination (Lohman, 1993). In each of these processes, duplex DNA unwinding is 

catalyzed by enzymes known as helicases, which function to destabilize hydrogen bonds 

between the complementary base pairs (bp) in duplex DNA in reactions that are coupled to 

the binding and hydrolysis of nucleoside 5’-triphosphates (NTP). Intimately linked to the 

DNA unwinding reaction is the requirement for helicases to translocate along the DNA 

filament in order to unwind the DNA duplex processively at rates that can be as fast as 500-

1000 bp s-1.  

DNA helicases appear to be ubiquitous, having been identified in various prokaryotes and 

eukaryotes as well as in bacteriophages and viruses (Egelman, 1998; Lohman, 1992; 

Thommes and Hubscher, 1990; Thommes and Hubscher, 1992). Most organisms encode 

multiple helicases; for example, E. coli encodes at least 12 different helicases (Matson et al., 

1994). An analysis of the yeast genome suggests that there may be as many as 50 different 

helicases (Li et al., 1992; Mewes et al., 1998). Till now, 60 DNA helicases have been 

demonstrated in vitro since their discovery in 1976, although this number is increasing rapidly 

(Abdel-Monem et al., 1976). In addition to functioning in DNA replication, recombination 

and repair, enzymes with DNA helicase activity are components of eukaryotic transcription 

complexes and are important in coupling transcription to DNA repair (Hanawalt, 1994; 

Sancar, 1994). A number of enzymes with demonstrated RNA and RNA/DNA helicase 

activity have been proposed to function during transcription (Steinmetz et al., 1990), 

translation (Ray et al., 1985) and RNA splicing (Company et al., 1991). An increasing 

number of putative helicases have been identified also on the basis of comparisons of their 

primary structures (Hodgman, 1988); however, the extent to which such sequence 

comparisons can identify true helicases is unknown. 

1.1.1 Properties of helicases 

All helicases share common biochemical properties, including nucleic acid binding, NTP 

binding and hydrolysis, and NTP hydrolysis-dependent unwinding of duplex nucleic acids. 
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1.1.1.1 “Polarity” and processivity of duplex DNA unwinding  

Most DNA helicases display a preference for unwinding DNA containing a ssDNA region 

flanking the duplex. Some helicases require ssDNA attached to the 3’ end of the duplex, 

whereas others require ssDNA attached to the 5’ end of the duplex. Determination of this 

preference has generally been made using a partially duplex DNA substrate consisting of a 

linear ssDNA with complementary oligonucleotides annealed to each end as shown in Figure 

1-1 (Yarranton and Gefter, 1979). The “polarity” of unwinding is defined operationally by the 

backbone polarity of the flanking ssDNA that facilitates initiation of DNA unwinding in vitro. 

For example, if a helicase preferentially unwinds duplex A in Figure 1-1, it unwinds with 5’- 

to -3’ polarity (a 5’- to -3’ helicase). If duplex B is unwound preferentially, the helicase is a 

3’- to 5’ helicase. Such studies indicate that the polarity of the ssDNA backbone flanking the 

duplex is an important determinant for the initiation of unwinding, and the polarity can differ 

for different helicases. The polarity of unwinding is undefined for helicases that initiate 

unwinding only on blunt-ended duplex DNA or “forked” duplex DNA. For example, E. coli 

RecBCD, E. coli UvrD (Helicase II), and E. coli RecQ, can initiate DNA unwinding at the 

ends of fully duplex DNA; in fact, initiation of DNA unwinding by RecBCD is inhibited if 

the DNA duplex has ssDNA flanking regions (Lohman and Bjornson, 1996). 

Figure 1-1: Diagram of a DNA substrate used to investigate the “polarity” of DNA unwinding by a 
helicase. Modified from Lohman (1996). 

The processivity of DNA unwinding by a helicase is a measure of the number of base pairs 

unwound for each DNA binding event. At the molecular level this is related to the relative 

probabilities for unwinding a base pair versus dissociation of the helicase (Lohman, 1992). A 

number of helicases, e.g. Rec, helicase I, DnaB and Rep unwind DNA with high processivity. 

The maximum processivity of RecBCD corresponds to the unwinding of an average of about 

25000 bp per binding event. A DNA helicase involved in DNA replication is expected to have 

high processivity, whereas a helicase involved in repair of short patches of DNA may not 

require high processivity. On the other hand, high processivity does not appear to be a 

property of all helicases in vitro. For example, unwinding of duplex DNA by E. coli Helicase 

II appears to be distributive and requires protein in quantities proportional to the extent of 

unwinding (Matson and George, 1987; Runyon et al., 1990). Whether the in vitro processivity 

of a helicase correlates with in vivo activity is difficult to assess, since processivity may be 

A B
5’

5’

5’

3’

3’3’
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modulated by accessory proteins and is may dependent also upon solution conditions in vitro 

(Lohman, 1992). 

1.1.1.2 Oligomeric nature of helicases 

Most proposed mechanisms for helicase-catalyzed DNA unwinding, such as rolling or inch-

worm mechanisms, require the functional helicase to possess at least two DNA binding sites 

(Lohman, 1992; Lohman, 1993). Although multiple DNA binding sites can potentially exist 

within a single polypeptide, all helicases for which the assembly state has been examined in 

detail form an oligomeric structure, usually dimers or hexamers (Chao and Lohman, 1991) 

(Lohman, 1992; Lohman, 1993). The immediate consequence of such oligomeric structures is 

that they provide a simple mechanism for helicases to acquire multiple DNA binding sites. 

Table 1-1 lists DNA helicases for which the assembly state has been characterized in some 

detail, as well as those for which oligomerization has been demonstrated, but the form that is 

active in DNA unwinding is not yet known. With the apparent exception of the RecBCD 

enzyme, these helicases form either homodimers or homohexamers (Daniele et al., 1999). 

Under some conditions, these helicases exist as a mixture of oligomeric states. 

Oligomerization of several helicases is modulated by interaction with other ligands. E. coli 

Rep helicase is monomeric in solution in the absence of DNA, but can dimerize upon binding 

either ssDNA or dsDNA (Chao and Lohman, 1991). 

 

Helicase Assembly state 
Unwinding 

polarity 
E. coli DnaB hexamer (Bujalowski et al., 1994; Donate et al., 2000) 5’ to 3’ 
SV40 large T antigen hexamer (Mastrangelo et al., 1989) 3’ to 5’ 
T4 phage gene 41 hexamer (requires GTP) (Dong, 1995) 5’ to 3’ 
E. coli Tral oligomer (Lahue and Matson, 1988) 5’ to 3’ 
E. coli RecBCD hetero-trimer (Daniele et al., 1999) undefined 
E. coli RecB oligomer (dimer-tetramer) (Boehmer, 1992) 3’ to 5’ 
E. coli Rep dimer (DNA-induced) (Wong and Lohman, 1992) 3’ to 5’ 
HSV-1 helicase/primase hetero-dimer (Bruckner et al., 1991) 5’ to 3’ 

Table 1-1: Oligomeric nature and the unwinding polarity of helicases. 

1.1.1.3 Modulation of DNA binding affinity by nucleotide cofactors 

Helicases, by definition, require ATP (or another nucleoside triphosphate) for function. The 

proposal has been made that binding of ATP, its hydrolysis, and the subsequent release of 

products (ADP and PO4
2-) cycles the helicase through specific conformational (energetic) 

states, thus effecting the unwinding reaction (Hill and Tsuchiya, 1981). All DNA helicases 

appear to possess a consensus NTP binding site, as indicated by the presence of the conserved 
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Walker A and B consensus motifs (motifs I and II) (Gorbalenya AE, 1993). Therefore, homo-

oligomeric helicases possess at least one potential NTP binding site per subunit. 

The relative affinity of these helicases for ss and ds DNA is influenced by the type of 

nucleotide cofactor (ATP or ADP) that is bound to the helicase (Wong et al., 1992; Wong and 

Lohman, 1992).  The NTP-free protein binds well to both ss and dsDNA; however, upon 

binding ATP, the affinity of helicase for dsDNA increases significantly, whereas ADP 

increases its affinity for ssDNA. Figure 1-2 depicts the five states that Rep dimer can form in 

the presence of both ss and ds oligonucleotides. Each subunit of Rep dimer can bind either 

ssDNA (S) or dsDNA (D) to form Rep dimers that are either half saturated (P2S and P2D) or 

fully saturated (P2S2, P2D2, and P2SD). As shown in Figure 1-2, both the binding of ADP and 

AMPP(NH)P, a non-hydrolyzable ATP analogue, influence the ability of a Rep dimer to form 

the different species. ADP stabilizes the Rep dimer species with ssDNA bound to both 

subunits (P2S2), whereas AMPP(NH)P stabilizes the hybrid dimer species, P2SD, in which ss 

and dsDNA are bound to a Rep dimer. This allosteric influence of nucleotide cofactors 

suggests a cycling scheme (“rolling model”) that might be used by Rep dimers to unwind 

duplex DNA (Wong et al., 1992). 

Figure 1-2: Representation of five different states that the Rep dimer can form in the presence of ss- 
and ds-oligonucleotides short enough to allow only one Rep monomer to bind per oligonucleotide. At 
equimolar concentrations of ssDNA, duplex DNA, and Rep monomers, the P2S dimer is favored in the 
presence of Mg2+, the P2S2 dimer is favored in the presence of ADP/Mg2+ and the P2SD dimer is 
favored in the presence of AMPP(NH)P/Mg2+. Modified from Lohman (1993).  

1.1.2 Mechanisms of DNA unwinding and translocation by helicases 

Although all DNA helicases do not appear to unwind DNA by precisely the same mechanism, 

certain features of DNA unwinding and translocation are likely to be common to all helicases. 

In theory, mechanisms of helicase-catalyzed DNA unwinding can be classified as either 

‘passive’ or ‘active’. In an active mechanism, the helicase plays a direct role in destabilizing 

the duplex DNA by breaking the hydrogen bonds between the base pairs. However, in passive 

models, the helicase would facilitate unwinding indirectly by binding to the ssDNA that 

becomes available through transient local internal melting or fraying of the end of the DNA 

Mg2+ ADP/Mg2+ AMPP(NH)P/ Mg2+ 

      P2S         P2D             P2S2      P2D2             P2SD 
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duplex. Direct evidence does not support a passive mechanism indicates that E. coli Rep 

unwinds DNA by an active mechanism, the “rolling” model (Amaratunga and Lohman, 

1993).  

The best-studied DNA helicase with regard to its mechanism of DNA unwinding is the E. coli 

Rep helicase (Lohman, 1992; Lohman, 1993; Wong and Lohman, 1992). In solution in the 

absence of DNA, E. coli Rep helicase exists as a monomer, and binding of either ssDNA or 

dsDNA induces the protein to dimerize. New study showed that Rep monomers are unable to 

initiate DNA unwinding in vitro, and that oligomerization is required for helicase activity 

(Cheng et al., 2001). These data support the “active, rolling” model for DNA unwinding and 

translocation by Rep dimer, which was proposed by Wong and Lohman in 1992 (Figure 1-3). 

A rolling mechanism requires at least two identical DNA binding sites, both of which must be 

able to bind ssDNA as well as dsDNA. This model is based on the observed allosteric effects 

of nucleotide cofactors on the ss and dsDNA binding properties of the E. coli Rep dimer and 

may apply to homo-oligomeric helicases. It is assumed that each subunit of the dimer binds 

ssDNA with defined polarity and the Rep dimer possesses C2 symmetry (Wong and Lohman, 

1992). In the rolling model, one subunit of the Rep dimer is bound always to the 3’ ssDNA at 

the fork, while the other subunit is bound either to the same single strand or to the adjacent 

duplex region ahead of the fork. Figure 1-3 starts with intermediate I in which both subunits 

of the Rep dimer are bound to the 3’ single strand in a P2S2 complex. Due to the binding of 

ATP, the affinity for ssDNA of one subunit of the dimer decreases, forming intermediate II 

(P2S complex). In the meantime, the affinity for dsDNA increases, resulting in the formation 

of intermediate III (P2SD) in which the Rep dimer is bound simultaneously to the duplex 

ahead of the fork as well as to the 3’ ssDNA. In the next step, hydrolysis of ATP induces 

protein conformational changes that destabilize the base pairs within the region to duplex 

DNA bound to one Rep subunit. Therefore, the 5’ single strand is displaced while the Rep 

subunit bound to the 3’ strand resulting a P2S2 complex. The subsequent release of the ADP 

and inorganic phosphate completes the cycle by forming intermediate I’, which is functionally 

equivalent to intermediate I because Rep is a homodimer. 
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Figure 1-3: “Active, rolling” mechanism for dimeric Rep-catalyzed DNA unwinding. The dimeric Rep 
helicase is shown with triangular subunits assumed to be related by C2 symmetry. The two Rep 
subunits are distinguished (open vs stoppled) in order to indicate how the positioning of each subunit 
changes during the unwinding cycle. Modified from Wond and Lohman (1992). 

In the rolling model, the Rep dimer translocates by rolling along the DNA, with translocation 

(step I to III) coupled to ATP binding, whereas DNA unwinding (step III to I’) is coupled to 

ATP hydrolysis. In principle, any oligomeric helicase could operate by a rolling mechanism if 

this helicase possesses at least 2 DNA binding sites that could switch between binding of 

ssDNA and dsDNA (Ganesan and Smith, 1993). 

The dimeric “inch-worm” model suggests a second mechanism how helicases can unwind 

actively dsDNA. In the “inch-worm” model, the same subunit of the dimer acts as the lead 

subunit interacting transiently with the duplex DNA, while the trailing subunit interacts only 

with ssDNA during unwinding and translocation. This is in contrast to the “active, rolling” 

model, where the two subunits alternate in their binding to the duplex DNA at the ss-ds-DNA 

junction to unwind the duplex. All existing data are equally consistent with a dimeric inch-

worm model in which the two Rep dimer subunits do not alternate in their binding to the 

duplex DNA, but rather the same subunit remains as the leading subunit (Yarranton and 

Gefter, 1979). Therefore, both a dimeric inch-worm and a dimeric rolling model need to be 

considered equally as possible mechanisms (Cheng et al., 2001). 

1.1.3 The role of helicases in aging  

More than 30 human proteins have been described to be putative helicases since they contain 

the seven-helicase motifs (I, I1, II, III, IV, V, and VI) (Hall and Matson, 1999). They function 

in fundamental processes of life, including DNA replication, DNA repair, recombination, 

transcription, RNA splicing, and translation. To date, seven human disorders that manifest 

age-related phenotypes have been found to be caused by alterations in five proteins, all 
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containing the seven conserved helicase motifs. These disorders are Xerodermia 

pigmentosum, Cockayne syndrome, trichothiodystrophy, Bloom syndrome, Werner 

syndrome, X-linked α-thalassemia/mental retardation syndrome, and Juberg-Marsisi 

syndrome (Nakura et al., 2000). A decline of probably multiple and fundamental functions of 

helicases in these disorders is, therefore, implied to underlie not only the various age-related 

phenotypes but also the multiple and universal nature of ordinary aging.  

Werner syndrome (WS) has the most similarities to premature aging. WS is a high-ranked 

autosomal recessive segmental progeroid syndrome. The clinical phenotypes of WS patients 

include the early appearance of senility, loss or graying of hairs, increase in irregular 

pigmentation, beaked nose, small mouth and atrophic scleroderma-skin. The WS gene (WRN) 

has been cloned by Yu (1996). It encodes a 1432-amino-acid peptide with homology to RecQ 

related helicases. The WRN protein functions as a 3’ to 5’ DNA helicase (Gray et al., 1997). 

To date, at least 19 mutations have been found in WS patients, all of which truncate the WRN 

protein. The truncated WRN protein fails to translocate into the nucleus due to the absence of 

the nuclear localization signal at the C-terminus of the protein, which results in loss of protein 

function. In WS patients, death occurs at an average age of 47 years, and the major causes of 

death are malignant tumors and myocardial infarction (Nakura et al., 2000). 

It is very interesting to clarify the pathways through which each helicase disorder will 

generate age-related phenotypes. This would lead also to an improved understanding of the 

relationship between the disorders and ordinary aging. 

1.2 Helix-destabilizing proteins catalyze DNA unwinding 

Helix-destabilizing protein (HDP) are essential components in a variety of DNA metabolic 

processes. HDP also has the name “DNA-unwinding protein” or “DNA-melting protein”. The 

more general term “single-stranded DNA binding protein” (SSB) is now used (Chase and 

Williams, 1986). Helix-destabilizing protein is used in this dissertation because this name 

implies a function, i.e. unwinding of partial duplexes of DNA.  

There are many helix-destabilizing proteins in vivo and they are found in eukaryotes, 

prokaryotes and dsDNA viruses (Chase and Williams, 1986; McDougal and Guarino, 1999). 

They bind with high affinity to single-stranded nucleic acids as compared to double-stranded 

nucleic acids. Most of these proteins bind sequence unspecifically and usually cooperatively 

to ssDNA or ssRNA (Lohman et al., 1988). Research to date has shown that helix-

destabilizing proteins serve as accessory factors required for efficient action of replicative 

enzymes, DNA polymerases, and DNA helicases. Helix-destabilizing proteins also participate 

in DNA repair and recombination (Lohman et al., 1988). 
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1.2.1 Properties of helix-destabilizing proteins differing from helicase 

Although helix-destabilizing proteins are capable of unwinding DNA duplexes, these proteins 

do not play an active role in DNA unwinding during replication as seen for DNA helicases, 

which catalyze the unwinding of dsDNA. However, one role of helix-destabilizing proteins is 

to stabilize single-stranded regions generated by DNA helicases (Mikhailov, 2000). The 

properties of helix-destabilizing proteins differ from DNA helicases mainly in three points:  

Firstly, helicases unwind DNA duplex with hydrolysis of ATP or another nucleoside 

triphosphat. Helix-destabilizing proteins unwind DNA duplex in an NTP-independent manner 

(Boehmer and Lehman, 1993; Chase and Williams, 1986). 

“Polarity” in the unwinding of DNA duplex is the second difference between DNA helicases 

and helix-destabilizing proteins. Most known DNA helicases are capable of unwinding DNA 

duplexes in one direction only, from 3’ to 5’ on the leading strand or 5’ to 3’ on the lagging 

strand (Lohman, 1993). Unlike DNA helicases, which translocate unidirectionally on DNA, 

there does not appear to be a strict directionality to the unwinding caused by known helix-

destabilizing proteins (Boehmer and Lehman, 1993; Mikhailov, 2000). For example, the E. 

coli SSB melts both 3’-tailed and 5’-tailed partial duplexes. The DNA unwinding promoted 

by adenovirus DNA-binding protein, DBP, does not proceed with a specific directionality 

(Monaghan, 1994). However, the baculoviral protein LEF-3 produces the polar melting effect 

on duplex DNA only with a 5’-ss tail (Mikhailov, 2000). 

Thirdly, cooperative binding to ssDNA is a common feature of helix-destabilizing proteins 

(Lohman et al., 1988). Cooperativity is the result of protein-protein interactions between 

monomers. In contrast, the oligomeric nature is one characteristic of helicases. Helicases can 

bind ssDNA generally as dimers or hexamers.  If cooperativity between DNA-bound proteins 

is sufficiently high, these proteins can saturate a stretch of single-stranded nucleic acid at low 

concentrations. The ability to saturate a long stretch of ssDNA, which is not possible for 

proteins that bind noncooperatively, is thought to be necessary to protect DNA from the 

action of nucleases and to hold the DNA in a conformation that facilitates the function of 

other replication, recombination or repair enzymes. This property may be necessary for the 

biological function of helix-destabilizing proteins (Mikhailov, 2000; Zijderveld and van der 

Vliet, 1994). 

1.2.2 Mechanism of DNA unwinding by helix-destabilizing proteins 

Multimerization and cooperative DNA binding of helix-destabilizing proteins may be a 

general mechanism of unwinding dsDNA (Dekker et al., 1997). As described above, 
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cooperative binding to ssDNA is a common feature of helix-destabilizing proteins and is 

required to fully saturate the ssDNA and to protect it against nuclease activities.  

The known helix-destabilizing protein bacteriophage T4 gene 32 (gp32) forms oligomers in 

solution (Carroll et al., 1975) and forms protein chains on ssDNA (Kowalczykowski et al., 

1981). ICP8, the single-stranded binding protein of  herpes simplex virus, forms long 

filaments in solution (Boehmer and Lehman, 1993; O'Donnell et al., 1987). It binds ssDNA in 

a highly cooperative fashion and unwinds duplex DNA. Not all helix-destabilizing proteins 

form oligomers in the absence of DNA. Bacteriophage P5 and eukaryotic heterotrimeric RP-

A are monomeric in solution (Kim and Wold, 1995; Soengas et al., 1995). DNA binding is 

cooperative, however, and continuous arrays of proteins are formed on the ssDNA. These 

proteins unwind DNA and it has been suggested that this is driven by cooperativity. 

Therefore, other helix-destabilizing proteins may employ a similar mechanism by which the 

energy required to unwind DNA is provided by strong protein-protein interactions instead of 

ATP hydrolysis as in the case of true DNA helicases. 

1.3 Purαα, a multifunctional single-stranded DNA- and RNA-binding 
protein 

Purα is a ubiquitous, sequence-specific DNA- and RNA-binding protein that is highly 

conserved in eukaryotic cells. The Pur factor was identified originally as a Hela cell nuclear 

protein which binds a sequence element adjacent to a region of stably-bent DNA upstream of 

the human c-myc gene (Bergemann et al., 1992). This element is near the center of a region 

implicated as an initiation zone for chromosomal replication and is found at several 

eukaryotic origins of DNA replication. Purα binds preferentially to purine-rich single-

stranded DNA. In addition to mammalian cells, the Purα gene has been cloned also from 

Drosophila melanogaster, Caenorhabditis elegans, Schistosoma mansoni and Arabidopsis 

thaliana (Gallia et al., 2000). The sequence of Purα is highly conserved among species. 

Between human and mouse Purα, an extraordinary degree of conservation has been reported: 

there are only two single-amino-acid changes between human and mouse Purα. The mouse 

protein lacks Gly49 and includes an Ala306-Thr substitution (Ma et al., 1994). To date, three 

members of the Pur family (Purα, Purβ and Purγ) are known, however the Purα protein is the 

best-studied one. Research on Purα protein is getting more and more interesting in the last 

years because Purα has been implicated in diverse cellular functions, including transcriptional 

activation and repression, translation, and cell growth (Gallia et al., 2000).  
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1.3.1 Structural characteristics Purαα 

The deduced amino acid sequence of Purα reveals a modular repeat structure unique among 

known DNA-binding proteins. There are three repeats of 23-amino-acid motif (class I repeats) 

interspersed with two repeats of 26-amino-acid motif (class II repeats), which composes the 

central region of Purα (Figure 1-4 A). While the sequence between these repeats is not 

conserved, each repeat preserves several identical and conservative substitution of amino acid 

residues (Figure 1-4 B).  

Purα contains structural features of potential importance in addition to the repeat modules, 

denoted in Figure 1-4 A. Near the amino-terminal end of Purα there is a prominent stretch of 

18 glycine residues broken only by a single serine residue. Similar glycine stretches are 

present in proteins serving a wide variety of functions, including helix-destabilizing proteins 

(Haynes et al., 1987). Carboxy terminal to the repeat modules there is a potential α-helical 

region which confers a strongly amphipathic character. This motif is present also in 

transforming proteins of several DNA tumor viruses, as well as in proteins of yeast and 

human cells. The consensus of this motif contains PSY and C, and has been termed the 

‘psycho’ motif. It is necessary for Purα binding to hypophosphorylated Rb protein (pRb). The 

carboxy-terminus of Purα consists of a glutamine-glutamate-rich domain. The entire sequence 

from aa 276 through aa 321 consists of 50% glutamine and glutamate residues. Glutamine–

rich domains have been implicated as transcriptional activation regions in several DNA-

binding proteins (Courey et al., 1989). 
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Basic aromatic repeats
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Figure 1-4: Structural organization of the human Purα protein. (A) Graphic representation of the 
domains and motifs of Purα. The three basic aromatic class I repeats are indicated by heavy horizontal 
lower lines in the central repeat region and the two acidic leucine-rich regions are indicated by light 
horizontal upper lines in the central repeat region. (B) Class I motifs are aligned at the top and class II 
repeat motifs are aligned at the bottom. Solid boxes indicate identical amino acid residues and dotted 
boxed indicate conservative changes. Modified from Bergemann (1992). 

It is interesting that there are three members of the PUR family identified in mammalians to 

date. Purα, Purβ, and Purγ display a high degree of homology. Murine Purα and Purβ possess 

71% sequence identity while human Purα and Purγ possess 54% sequence identity. It is 

unclear if these proteins are expressed differentially and whether they are functionally 

redundant or biologically unique. Several structural features suggest that they may possess 

different functions (Gallia et al., 2000).  

1.3.2 Purαα and gene transcription and replication 

Purα has been implicated in the transcriptional control of many cellular genes. Myelin basic 

protein (MBP) represents the first cellular gene that was shown to be transcriptionally 

regulated by Purα (Haas et al., 1995).  

Myelin basic proteins (MBPs) are major protein components of myelin, comprising more than 

30% of the central nervous system (CNS) myelin protein and about 18% of the peripheral 

nervous system (PNS) myelin protein. MBPs are a class of proteins consisting of multiple 

polypeptides varying in molecular weight from 14 to 21.5kDa. In mice, six isoforms of MBPs 

(14kDa, 17.2kDa, 17.3kDa, 18.5kDa, 20.2kDa and 21.5kDa) have been identified 

(Campagnoni and Skoff, 2001). All isoforms are coded by alternative splicing of a single 

major transcript (Campagnoni and Skoff, 2001; de Ferra et al., 1985; Kamholz et al., 1986; 

Newman et al., 1987; Roth et al., 1986; Roth et al., 1987; Takahashi et al., 1985). The 

expression of MBP is regulated at the transcriptional level (Monuki et al., 1990). A proximal 

element, termed MB1, which contains the Purα binding motif, dictates cell type-specific 

expression of MBP (Mukherjee and Chambon, 1990). In mice, Purα is more abundant in 

B Class I repeats

Ia V D  I Q N K R F Y L D V K Q N A K G R F L K  I

Ib L V R E N R K Y Y N D L K E N Q R G R F L R  I

Ic L T V D N K R F  F F D V G S N K Y G V F M R V

Class II repeats

Ia A V E F R D Y L G D F I  E H Y A  -  Q L G P S Q P P D

Ib L  I  E F R D A L A K L I  D D Y G V  E E E P A E L P E
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brain during and after the period of active myelination. Functionally, Purα stimulates 

transcription of the MBP promoter in glial cells through binding to the MB1 sequence (Haas 

et al., 1995; Tretiakova et al., 1999). Purα also interacts with other cellular regulatory 

proteins, including MyEF-2 and Sp1, further two factors regulating MBP gene transcription. 

The repressor protein MyEF-2 decreases transcription of the MBP gene. It has been suggested 

that Purα and MyEF-2 exert a negative effect on each other’s DNA binding activity. 

Moreover, Purα also associates with the ubiquitous transcription factor Sp1 that interacts with 

the MB1 DNA motif at a region that partially overlaps with the Purα binding site. 

Functionally, the overexpression of Purα and Sp1 in the CNS cells results in a synergistic 

stimulation of the MBP promoter (Tretiakova et al., 1999). 

Purα has been suggested to play a role in the transcriptional regulation of the FE65 gene 

(Zambrano et al., 1997). FE65 is a 90 kDa adapter protein that interacts with the Alzheimer β-

amyloid precursor protein. In Chinese hamster ovary cells, where the activity of the FE65 

promoter is very low, transient overexpression of Purα increases expression from the FE65 

minimal promoter (Zambrano et al., 1997). 

Purα has been implicated also in the transcription of other cellular genes, including murine 

vascular smooth muscle (VSM) α-actin (Becker et al., 2000), neuronal nicotinic acetylcholine 

(nAch) receptor (Du et al., 1997). Moreover, Purα is involved also in regulating several 

human viruses which replicate in the CNS, including JC virus (JCV) (Chen et al., 1995; Chen 

and Khalili, 1995) and HIV-1 (Krachmarov et al., 1996). Purα is capable of stimulating viral 

promoters, including JCV early gene promoter and the HIV-1 long terminal repeat. 

Interestingly, there is a high incidence (4-8%) of the JCV-induced demyelinating disease 

“progressive multifocal leucoencephalopathy” (PML) among individuals with acquired 

immunodeficiency syndrome (AIDS) (Krachmarov et al., 1996), suggesting that the presence 

of HIV in the brains of infected individuals may induce JCV gene transcription and 

replication. In fact, the Tat protein, the transregulatory protein of HIV-1, is capable to activate 

the JCV late gene promoter (Chowdhury et al., 1993; Chowdhury et al., 1992). Tat is a 

transcription activator that can stimulate transcription of the HIV genome (Jones, 1997). It has 

been shown that the Tat responsive sequence of JCV contains a PUR element and Purα and 

Tat activate the JCV late gene promoter synergistically (Krachmarov et al., 1996). 

Pur elements are present at eukaryotic origins of DNA replication. Purα has been shown to 

interact with viral origins of DNA replication, including the JCV and bovine papillomavirus 

(Chang et al., 1996; Jurk et al., 1996). Purα suppresses JC viral DNA replication in human 

glial cells (Chang et al., 1996). It has been suggested that endogenous Purα may exerts a 

negative effect on DNA replication.  
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1.3.3 Purαα and control of cell growth 

Purα seems to play a role in the control of cellular growth and proliferation. This conclusion 

is based on the following observations: (i) The level of Purα fluctuates during the cell cycle. 

(ii) The intracellular localization of Purα alters during the cell cycle. (iii) Purα associates with 

some key cell cycle regulatory proteins and viral oncoproteins (Darbinian et al., 1999; Itoh et 

al., 1998; Johnson et al., 1995; Ma et al., 1995; Stacey et al., 1999).  

Levels of Purα are altered during cells cycle of the CV-1 cells. Just prior to the onset of S 

phase, Purα level drops dramatically and then increases slowly to nearly 8-fold throughout S 

and G2 phase and peaks just after mitosis (Itoh et al., 1998). As observed previously, Purα 

binds the hypophosphorylated retinoblastoma protein, pRb (Johnson et al., 1995), which 

functions as a tumor suppressor and is an integral protein involved in cell cycle progression. 

The pRb interacts with a variety of proteins in the G0 and G1 phase of the cell cycle, 

including transcription factors such as E2F. Hyperphosphorylation of Rb protein results in the 

release of these factors from Rb. The release allows E2F to activate genes necessary for 

progression through G1 and entry into the S phase. The association of Purα and Rb is 

restricted in G1 phase while Purα was coimmunoprecipitated and co-localized with cyclin A 

in S and G2 phase of the cell cycle in the nucleus (Itoh et al., 1998). 

Interestingly, Purα also has been shown to associate directly with E2F-1. E2F-1 is a DNA 

binding transcription factor which, upon interaction with its target DNA sequence, induces 

expression of several S phase specific genes allowing progression of the cell cycle. Its activity 

is modulated by its cellular partner, hypophosphorylated Rb protein (pRb), which binds to 

E2F-1 and inactivate its transcriptional activity. The association of Purα and E2F-1 proteins 

suppresses transcriptional activity of E2F-1 (Darbinian et al., 1999). Purα suppresses the 

transcriptional activity of E2F-1 by inhibiting the interaction of E2F-1 with its target 

sequence. Interestingly, Purα and E2F-1 bind to the same region of Rb, suggesting that the 

association of Purα with Rb may liberate E2F-1. The associations of Purα with Rb, E2F-1 

and cyclin A coupled with its fluctuating levels throughout the cell cycle, position Purα as a 

crucial factor in the cell cycle (Darbinian et al., 1999).  

1.3.4 Pur family and possibly related diseases 

Purα and Purβ proteins belong together to the PUR protein family and possess high sequence 

identity (71% homology in mice). Recently, PURA and PURB gene deletions have been 

shown to occur in many cases of myeloid leukemia and myelodysplastic syndrome (Leozon-

Geyda, 1997; Lezon-Geyda et al., 2001). 
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PURA and PURB, encoding functionally cooperative proteins in the Pur family, are localized 

to chromosome bands 5q31 and 7p13, respectively (Ma et al., 1995). Deletions or monosomy 

of chromosomes 5 and 7 are frequently associated with hematological malignancies, 

particularly myelodysplastic syndromes (MDS) and acute myelogenous leukemia (AML) (Le 

Beau et al., 1993; Pedersen, 1993). One or both of these loci are shown to be hemizygously 

deleted in 60 MDS or AML patients using fluorescence in situ hybridization (FISH). High-

resolution mapping of PURA localizes it approximately 1.1 Mb telomeric to the EGR-1 gene. 

The frequency of PURA deletion and segregation with EGR-1 indicate that PURA is within 

the most commonly deleted segment in myeloid disorders characterized by del(5)(q31). No 

mutations have been detected within the coding sequence of PURA. Concurrent deletions of 

PURA and PURB occur in MDS at a rate nearly 1.5-fold higher than statistically expected 

and in AML at a rate > 5-fold higher (Le Beau et al., 1993; Pedersen, 1993). This novel 

simultaneous deletion of two closely related gene family members may thus have 

consequences related to progression to AML. Purα, an Rb-binding protein, has been 

implicated in cell cycle control and differentiation. Alterations in these genes could affect a 

delicate balance critical in myeloid development. 

1.4 The aim of this study 

Since its initial cloning in 1992 an impressive range of biochemical functions have been 

attributed to the predicted 322 amino acid human Purα protein. Purα binds both single-

stranded and double-stranded DNA in a sequence-specific fashion, showing preference for the 

purine-rich ssDNA repeats (GGN) found in its recognition sequence. Purα activity also partly 

involves interactions with a number of cellular and viral proteins including 

hypophosphorylated pRb, E2F, cyclin A, Sp1, members of the Y-box family of proteins, 

polyomavirus T antigens and HIV-1 Tat. As a result, Purα may be involved in diverse cellular 

functions, including DNA replication, transcription, translation and cell growth control, 

however, many of the underlying molecular mechanisms governing these multiple functions 

remain unclear.  

Although Purα has been the subject of many studies, the exact mechanism of how Purα 

accomplishes its different functions has remained elusive. Recently, a fortuitous observation 

in our laboratory demonstrated that Purα purified from calf thymus is capable of unwinding 

short DNA duplexes in a helicase assay. One aim of this study was to perform helicase assays 

with Purα, from which we hoped to establish a mechanism of how Purα functions in different 

cellular processes like replication and transcription.  Helicase assays should be carried out 

with different substrates and with nucleoside triphosphates. In addition, Purα deletion mutants 

were planned to be generated for mapping of the Purα unwinding and DNA binding domains.  
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The diverse functions of Purα coupled to its highly conserved protein sequence between 

organisms, particularly mouse and man, makes it an ideal candidate paralogue for proteomics 

and rossetta stone mouse models. We therefore decided to bypass further biochemical 

analyses and to concentrate on whole animal models by constructing Purα knock-out mice.  

The second and the main aim of my study was to generate Purα knock-out mice with 

homologous recombination techniques in ES cells to unravel the diverse functions of this 

protein through the phenotype analysis of Purα knock-out (KO) mice. 
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2 Material 

2.1 Cell lines 

NIH3T3 Fibroblast of mouse 

Hela  Human epithelial cell of  

E14  Embryonic stem cell of 129/Ola mouse 

2.2 Bacterial strains 

Bacterial stains XLI Blue, K803, LE392, TOP10F’ and XL1 Blue/MRA/P2 belong to the 

strain collections of the group of Prof. E.-L. Winnacker. 

XLI Blue: recA1, endA1, gyrA96, thi-1, hsdR17, supE44, relA1, lac, [F’ traD36, proAB, 

lacIqZ∆M15, Tn10(tetr)] 

LE392: e14-(mcrA), hsdR514, supE44, supF58, lacY1 or ∆(lacIZY)6, galK2, galT22, 

metB1, trpR55 

K803: F-e14- (mcrA), lacY1 or ∆(lac)6, supE44, galK2, galT22, rfbD1,metB1, mcb1, 

hsdR2(rk
- mk

-) 

TOP10F’: F- (tetrlacIq), mcrA, ∆(mrr-hdsPMS-mcrBC), Φ80lacZ∆M15, ∆lacX74deoR, 

recA1, araD139, ∆(ara-leu)7679, galU galK, rpsL, endA1, nupG 

XL1 Blue/MRA/P2: ∆(mcrA)183, ∆(mcrCB-hsdSMR-mrr)173, endA1, supE44, thi-I 

gryA96, relA1, lac (P2 lysogen) 

 

2.3 Genomic DNA libraries 

Stratagene: 

129/SvJ Mouse Genomic Library, Lambda FIX II Vector 

2.4 Phages 

Lambda phage is from group of Prof. E.-L. Winnacker. 

2.5 Plasmids 

Promega, Biotec, Madison, Wi., USA 

Vector pGEM4Z and pcDNA3 

 

Invitrogen BV, Netherlands 
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Vector pZERO  

 

Pharmacia Fine Chemicals, Freiburg 

pGEX4T1 

pGEMMUT was provided by Dr. Wolfgang Wendler; PKO Scrambler V920, pKO SelectTK 

and pKO SelectNeo V800 were kindly provided by Prof. Mathias Müller, Vienna. 

2.6 Cell-culture 

Gibco BRL, Germany: 

Geneticin; Dulbecco’s MEM with Glutamax-I (with Sodium Pyruvate, 1000 mg/l Glucose, 

and Pyrodoxine); Glucose; L-glutamate; Sodium-pyruvate; MEM nonessential amino acids; 

Antibiotics (penicillin, streptomycin); Fetal Bovine Serum (FCS); Murine Leukimia 

Inhibitory Factor (ESGRO); PBS (without Ca2+ and Mg2) 

 

SIGMA, Munich: 

DMSO (Dimethyl Sulfoxide); β-mercaptoethanol  

2.7 Enzyme 

Roche Diagnostics GmbH, Mannheim: 

Calf intestinal alkaline phosphatase (CIP); DNase I; Restriktion enzymes; RNase A; 

ExpandTM Long Template PCR System; CompleteTM Mini EDTA-free Protease-Inhibitor-

Cocktail (Tablets) 

 

New Englands Biolabs, Schwalbach: 

T4 DNA-ligase; T4 polynucleotide kinase; Klenow DNA-polymerase; Restriction enzymes 

 

Promega Biotec, Madison, Wi., USA: 

RNasin, RNase-free DNase 

2.8 Antibodies 

Purα monoclonal antibody 3C12-1-1 was kindly generated by Dr. Elisabeth Kremmer, GSF, 

Munich. 

Chemicon International, Inc., USA 

Rat anti-myelin basic protein (MBP) (82-87 Region) monoclonal antibody  

 

Dianova, Hamburg 
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Peroxidase-conjungated AffiniPure Goat anti-Rat anti-IgG+M (H+L)  

2.9 Chemical reagents 

Amersham Pharmacia Biotech, USA 

[γ-32P] ATP (3000 Ci/mmol); [α-32P]-dATP, [α-32P]-dGTP, [α-32P]-dTTP, [α-32P]-dCTP 

(3000 Ci/mmol); 35S-Methionine, Hybond N+-Membrane und Hybond N-round filter, 

Hybond-N+ 

 

Bethesda Research Laboratories GmbH, Neu-Isenburg 

Agarose; Ammonium sulfate; bovine serum albumin (BSA); DNA-marker: 123 bp-marker, 1 

Kb-marker; Electrophoresis Sequencing System, Model S2 

 

Biomol Feinchemikalien, GmbH, Hamburg 

Calcium chloride (CaCl2); Dialyze membrane; 3-(N-morpholino)propan sulfonic acid 

(MOPS) 

 

BIO-RAD Lab, Richmond, Calif., USA 

BIO-RAD-Protein assay, Protein standard, prestained Protein standard, MiniProtean II 

 

Boehringer Mannheim GmbH, Mannheim 

Adenosine triphosphate (ATP); Isopropyl-1-thio-β-D-galactoside (IPTG); Random primed 

DNA Labeling Kit; PEG 1500, Tris(hydroxymethyl)- aminomethane (Tris) 

 

Clontech, USA 

ExpressHyb Hybridization Solution 

 

Qiagen GmbH, Düsseldorf 

Qiagen Plasmid Kit 

 

Difco Laboratories, Detroit, Michigan, USA 

Bacto-agar; Bacto-tryptone; Casamino acid; Difco-Minimal-Agar, Fetal calf serum (FCS); 

Yeast Extract 

 

Eppendorf Gerätebau, Hamburg 

Table centrifuge 5415; Reaction tubes 1.5 and 2.2 ml 

 

Fermentas, Lithuania 

λ-DNA 
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Fluka Feinchemikalien, Neu-Ulm 

Chloroform; Formamid; Nonidet®-P40 (NP40); Silicon solution  

 

Greiner GmbH, Nürtingen 

Plastic test tubes 10 and 50 ml; Monolayer flasks for cell culture; Plastic Petri-dishes, ø 9 cm 

and 14 cm 

 

Hybaid Limited, Teddington, UK 

Horizontal gel elektrophoresis system 

 

Eastman Kodak Company, Rochester, N.Y., USA 

X-ray film XAR5, Biomax™MR  

 

Invitrogen, USA 

Easy-DNATM Kit 

 

E. Merck AG, Darmstadt 

Ammonia; Ammonium sulfate; Ammonium persulfate (APS); boric acid; Bromophenol blue; 

Chloroform; Dimethylformamid; Dimethyl sulfoxide (DMSO); Acetic acid; Ethylene 

diamintetraacetic acid (EDTA); Ethanol p.A.; Ethidiumbromid; Formamid; Formaldehyd; 

Glucose; Glycin; Urea; Isoamyl alkohol; Isopropanol; Calcium acetate; calcium chloride; 

calcium hydroxide; Magnesium acetate; Magnesium chloride; Magnesium sulfate; Methanol 

p.A.; Sodium acetate; Sodium chloride; Sodium dihydrogenphosphate; Sodium hydroxide; 

Sodium dodecyl sulfate (SDS); Phenol; hydrochloric acid ; Saccharose; N,N,N',N'-tetra-

methyl-ethylendiamine (TEMED); Triton X-100; Xylencyanol  

Nunc-GmbH, Wiesbaden 

Cryo-Tubes 2 ml; Innoculation loops; Plastic petri-dishes; Flasks for cell culture and cell 

culture dishes 

 

NENTM Science Products, Inc., Boston 

PolyScreen PVDF Transfer Membrane 

 

Pharmacia Fine Chemicals, Freiburg 

Deoxyribonuleoside triphosphate (dATP, dGTP, dCTP, dTTP); DEAE-Sepharose CL6B; 

Ficoll 400; Sequencing Kit; Sephadex G50; Glutathione sepharose 
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Promega, Biotec, Madison, WI, USA 

5-bromo-4-chloro-3-indolyl-1-phosphat (BCIP); TNT® Quick Coupled Transcription/Translation 

Systems; Nitroblue tetrazolium (NBT); Ribonucleoside triphosphate (ATP, CTP, GTP, UTP) 

 

Raytest Isotopenmeßgeräte GmbH 

Fuji BAS 1000 Bio imaging analyzer, Fuji BAS imaging plate UR 

 

Roth, Karlsruhe 

Dithiothreitol (DTT); Glycerol, N-2-hydroxyethylpiperazine-N'-2-ethansulfonic acid 

(HEPES); Polyethyleneglycol (PEG) 6000; Phenol/TE  

 

Sartorius GmbH, Göttingen 

Mini art NML Sterile filter with the pore size 0,2 and 0,45 µm  

 

Schleicher und Schüll, Dassel 

Nitrocellulose filter BA 85, pore size 0,45 µm 

  

Serva, Heidelberg 

Acrylamide; β-Mercaptoethanol; Urea; Silicon solution 

 

Sigma Chemie, Munich 

Ampicillin; Diethylpyrocarbonate (DEPC); Sodium pyrophosphate; Piperazine-N,N'-bis(2-

ethansulfonic acid) (PIPES); Phenylmethylsulfonyl fluoride (PMSF); poly-[d(A-T)]; poly-

[d(I-C)]; Spermidine; Tetracycline; tRNA from yeast; L-amino acid; Trypan blue; Trysin 

Inhibitor from soybean; Leupeptin hemisulfate salt 

 

Tetanal Photowerk, Norderstedt 

Tetanal for film development 

 

Whatman Limited, Springfield Mill, Maidstone, Kentucky, USA 

3MM-Papier 

2.10 Synthetic oligonucleotides 

The oligonucleotides used were synthesized by the group of Dr. G. Arnold in gene center or 

by Metabion, Munich. 
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3 Methods 

3.1 Cloning and propagation of DNA in E. coli 

3.1.1 Bacterial culture 

3.1.1.1 Liquid culture 

E. coli cultures were grown in LB medium supplemented, if necessary, with antibiotics. The 

cultures were grown at 37°C for 12-16 hrs, with shaking at 200 rpm. 

 
LB medium: 

10.0 g Bacto Tryptone 
  5.0 g Yeast extract 
  5.0 g Nacl 
  add 1000 ml H2O bidest. 

 

Addition of antibiotics: 
Ampicillin 50 µg/ml  stock solution 50 mg/ml in H2O   
Kanamycin 25 µg/ml  stock solution 50 mg/ml in H2O  

3.1.1.2 Plate culture 

Autoclaved LB-Agar was cooled to 50°C, antibiotics were added and the agar solution was 

poured into sterile petri dishes. These agar plates were stored at 4°C. 

 
LB-Agar: 

15.0 g  Agar  
  10.0 g Bacto Tryptone 
  5.0 g Yeast extract 
  5.0 g Nacl 
  add 1000 ml H2O bidest. 
 

The bacteria were plated on LB-plates and incubated at 37°C for 12-16 hrs. 

3.1.1.3 Glycerol stocks 

For long-term storage of bacterial strains, bacterial pellet was resuspended in 50% sterile 

glycerol/50% LB and kept at –80°C. 
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3.1.2 Preparation of competent cells 

XL1 Blue and Top10F’ competent cells were prepared as follows: 

A single colony of bacteria was inoculated into 20 ml TYM, grown at 37°C with moderate 

shaking (200 rpm) to an OD600 = 0.2 to 0.8. The culture was inoculated into 100 ml TYM and 

grown to an OD600 = 0.6. 100 ml of the culture was then inoculated into in a sterile 2-liter 

flask containing 400 ml TYM.  As soon as the bacteria reached an OD600 = 0.6, the flask was 

put on ice to cool the bacteria quickly. The bacteria suspension was centrifuged in a GSA-

Rotor for 15 min at 4000 rpm (4°C). The supernatant was discarded, the bacteria pellet was 

resuspended carefully in 100 ml Tfb I and kept on ice for 15 min. After the bacteria were 

centrifuged once more at the same speed, the bacteria pellet was resuspended in Tfb II and 

aliquoted (200 µl aliquots) into ice-cold Eppendorf tubes. The bacteria were frozen in liquid 

nitrogen and stored at  -80°C. 

The competency of the cells was assessed by using 10 ng pGEM4Z to transform 100 µl of 

competent cells. Aliquots (1, 10, 25 µl) of the transformation culture were plated on 

LB/ampicillin plates and incubated at 37°C overnight. Afterwards the transformation 

efficiency (number of transformants per µg DNA) was assessed. 

 
TYM: 

2%  Bacto Tryptone 
 0.5%  Yeast extract 
 0.1 M   NaCl 
 10 mM   MgSO4 

 
 
Tfb I:       Tfb II: 
 30 mM   KOAc     10 mM   MOPS, pH 7.0 
 50 mM  MnCl2     75 mM   CaCl2  
 100 mM CaCl2     10 mM  KCl   
 15%  glycerol    15%  glycerol 
 

3.1.3 Transformation of competent E. coli 

An aliquot of 100 µl of chemical competent E. coli was thawed on ice, 10-20 µl of ligated 

DNA was added to the cells, mixed and kept on ice for 30 min. The cells were exported to a 

heat shock by placing the tubes into a 42°C water bath for 2 min and left on ice for 5 min. 0.9 

ml LB-medium was added to each tube. The tubes were placed on a roller drum at 200 rpm 

for 1 hr at 37°C. Aliquots of transformated cultures were placed on LB/ampicillin or other 

appropriate antibiotic-containing plates, which were incubated at 37°C for 12-16 hrs. 
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3.2 Mammalian cell culture 

All tissue culture procedures described must be carried out under sterile conditions using 

sterile plastic ware and detergent-free glassware.  

3.2.1 Cell culture of NIH3T3 and 293 

NIH3T3 and 293 were cultured in DMEM (Gibco) supplemented with 10% FCS and 

incubated at 37°C in a 5% CO2 incubator. Cell cultures were splitted every 2-4 days, 

whenever they have reached subconfluence or confluence. When splitting, the cells were 

disaggregated by using trypsin. A cell pellet was obtained by centrifuging (1000 rpm), which 

could be used for extraction for genomic DNA or protein extraction. 

3.2.2 Freezing cells 

The cells were trypsinized and a cell pellet was obtained by centrifugation. The cells were 

resuspended in pre-cooled freezing medium and transferred into freezing vials. The freezing 

tubes were quickly placed in a -80°C freezer or the air phase compartment of a liquid nitrogen 

storage vessel. For longer storage, the cells should be kept under liquid nitrogen, where they 

can survive almost indefinitely. 

 
Freezing medium: 
FCS + 15% DMSO (Dimethyl Sulfoxide) 

3.2.3 Transfection of mammalian cells 

3.2.3.1 Transfection of adherent cells 

NIH3T3 and 293 cells were transfected as follows: 

About 1-3 x 105 cells per well were seeded into each well of a 6-well or 35-mm culture plate 

containing 2 ml of complete growth medium. The cells were incubated at 37°C for about 18-

24 hrs until they reached 50-80% confluence. LIPORECTAMINETM Reagent (Gibco BRL) 

was used for transfection of mammalian cells. The following solutions were prepared for each 

transfection: Solution A: 1-2 µg DNA was pipetted into in 100 µl serum-free medium; 

Solution B: 25 µl LIPOFECTAMINE Reagent was diluted in 100 µl serum-free medium. The 

two solutions were combined, mixed well and incubated at room temperature for 15-45 min to 

allow DNA-liposome complexes to form. For each transfection, 0.8 ml of serum-free medium 

was added to the tube containing the complexes. The diluted complex solution was mixed 

gently and overlaid onto the rinsed cells. The cells were incubated with the complexes for 2-

24 hrs at 37°C in a CO2 incubator. Following incubation, 1 ml of growth medium containing 
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twice the normal concentration of serum was added without removing the transfection 

mixture. The medium was replaced with fresh, complete medium 18-24 hrs following the 

beginning of transfection. Finally, cell extracts were assayed for gene activity 24-72 hrs after 

the start of transfection. 

3.2.3.2 DNA transfection for stable expression 

About 72 hrs after transfection, the cells were diluted 1:10 into the selective medium for the 

reporter gene used. In case of PCI Neo transfection, medium should contain Geneticin 

(Gibco). The cells that didn’t containing the reporter gene could not survive in medium 

containing geneticin and died slowly after 3 days. The medium was replaced every two days. 

The cell colonies, which could be identified with the natural eyes, were picked into a 48-well 

culture plate containing 600 µl of selective medium per well. After about 2 days, the colonies 

were trypsinized to a single cell suspension for further improved growth. After the cells 

reached confluence, they were trypsinized and transferred to a 24-well culture plate, thereafter 

to a 6-well plate and finally to a mini-dish to gain enough cells for a protein assay. 

3.2.4 ES cell culture 

3.2.4.1 General condition and ES cell culture media 

For long-term culture and maintenance, ES cells should be grown on monolayers of 

mitotically inactivated feeder cells. Primary embryonic fibroblasts (EMFIS) or STO fibroblast 

cell lines are the most commonly used feeder layers. ES cell lines can also be cultured on 

gelatinized tissue culture plates for single passages in the presence of LIF or media 

conditioned by specific cell lines (i.e. BRL cells). The total substitution of feeder cells by LIF 

alone appears to work reasonable well for some ES cells, but other cell lines differentiate 

excessively without feeder cells. Under certain circumstances, i.e. to obtain genomic DNA 

from the cells, it is not necessary to provide either feeder layers, or LIF, since the 

differentiation of the cells does not impair the growth of the cells. 

ES cell lines were cultured in Dulbecco’s modified Eagle’s medium (DMEM) with high 

glucose (4500 mg/l) (Gibco), supplemented with L-glutamin (Gibco), sodium-pyruvate 

(Gibco), MEM nonessential amino acids (Gibco), β-mercaptoethanol (Sigma), antibiotics 

(penicillin, streptomycin, Gibco), 10-15% of fetal calf serum (FCS) (batch tested and heat 

inactivated), and LIF (200 U/ml -1000 U/ml). 
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Basic medium (500 ml): 
495 ml Dulbecco’s MEM with Glutamax-I (with Sodium Pyruvate, 1000 mg/l Glucose, and   
 Pyrodoxine) 
5 ml MEM Non-essential amino acids (100 x stock) 
5 µl 2-Mercaptoethanol 
  

Growth medium for embryonic fibroblasts (EMFI medium): 
For 100 ml: 
90 ml Basic medium 
10 ml FCS (10%) Fetal Bovine Serum 
  
Growth medium for ES cells (ES cell medium): 
For 100 ml: 
84 ml Basic medium 
15 ml FCS (15%), Fetal Bovine Serum (batch tested) 
1 ml Murine Leukemia Inhibitory Factor (ESGRO) 
Dissolved in DMEM, 105 units 
  

3.2.4.2 Passaging of ES cells   

Trypsinization was performed as follows: ES cells that were grown on plates were washed 

twice with 1 x  PBS (without Ca2+ and Mg2+, GIBCO, Germany). After the aspiration of PBS, 

a proper amount of 0.25% trypsin/EDTA solution (Table 3-1) was added to the cells and 

incubated at 37°C, 5% CO2 for about 5 minutes. The cell suspension was then transferred into 

a Falcon tube containing 10 ml ES cell medium. After centrifugation at 1200 rpm for 4 

minutes at RT, the cell pellet was resuspended in ES medium and was ready for further 

expansion on plates or other purposes. 

 
Types Area (cm2) Amount of medium (ml) Amount of trypsin (ml) 

15-cm dish 145 25 7.5 
10-cm dish 56.7 10 4 
6-cm dish 20.8 6 2 

6-well plate 8.7 2.5 0.5 
24-well plate 1.9 1 0.15 
48-well plate 1 0.2 0.05 

Table 3-1: Parameters of major cell culture plates or dishes 

3.2.4.3 Thawing and expanding of ES cells 

A vial of E14 ES cells (from 129 Ola strain) was quickly thawed in a 37°C water bath and 

then transferred to a falcon tube containing 10 ml ES cell medium. After centrifugation at 

1200 rpm for 5 minutes at RT, the cell pellet was resuspended in 6 ml of ES cell medium, 

then plated onto a 6-cm feeder dish and incubated at 37°C, 5% CO2 overnight. The next day, 
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the cells were re-fed with 6 ml of fresh ES cell medium and again incubated at 37°C, 5% CO2 

for another day. The cells were trypsinized, split onto 3 other feeder dishes and incubated at 

37°C, 5% CO2 for another 2 days. Thereafter, the cells were split again onto three 6-cm feeder 

dishes or gelatinized dishes (Gelatin pre-treatment of dishes was performed by incubation 

with 0.1% gelatin for about 30 minutes, afterward gelatin solution was aspirated and dishes 

were filled up with ES cell medium) for further expansion. After another 2 days, the ES cells 

were ready for electroporation. 

3.2.4.4 Freezing of ES cells 

Many people working with cultured cells take a general rule for granted: cells should be 

frozen slowly and thawed quickly (Matise, 2000; Robertson, 1986).  

To freeze ES cells, they were mixed with freezing medium containing a cryoprotective 

(dimethyl sulphoxide, DMSO) at a final concentration of 10-20%. Again, the cells were 

trypsinized and a cell pellet was obtained by centrifugation. The cells were resuspended in 

pre-cooled freezing medium and transferred into freezing vials. The freezing tubes were 

quickly placed in a -20°C or a -70°C or -80°C freezer or the air phase compartment of a liquid 

nitrogen storage vessel. For longer storage, the cells should be stored under liquid nitrogen, 

where they survive almost indefinitely. The vials stored at -20°C should be transferred to 

lower temperatures after a couple of hours. Cells stored at -80°C are viable for some months 

(6 months) (Matise, 2000). 

 
Freezing medium: 
FCS + 15% DMSO (Dimethyl Sulfoxide, SIGMA, Cat.No. D-5879) 
 

3.2.4.5 Electroporation of ES cells, antibiotic selection, picking, expansion and 

freezing of resistant ES cell clones 

DNA can be introduced into the genome of ES cells by electroporation, an application of a 

high voltage electrical pulse to a suspension of cells and DNA (Potter et al., 1984; Thomas 

and Capecchi, 1987). A high voltage discharge as it is used in this gene transfer technique 

induces cells to fuse via their plasma membranes by creating pores in the cell (Zimmermann 

and Vienken, 1982). Cells are then able to take up and express exogenous (Neumann et al., 

1982). The process of electroporation consists of the same major steps: 
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(a) Preparing ES cells: 

ES cells are thawed and cultured on feeder cells and passaged for at least one time. ES cells 

on the 60 x 15 mm tissue culture dish 36 hrs before electroporation were trpsinized and 

transferred on a 100 x 20 mm dish containing feeder cells.  

(b) Electroporation: 

ES cells are trypsinized from plates with feeder cells and washed with PBS twice. The cells 

were centrifuged and resuspended in PBS. After counting the cells, 7 x 106 cells in 0.8 ml of 

electroporation medium was prepared and mixed well with 20 µg of DNA (the linearized 

targeting vector).  The mix was transferred into electroporation cuvette. The electroporation 

was performed under the condition of 230 V, 500 µF for about 6.0 milli-seconds with Bio Rad 

Gene Pulser. The cuvette was left at room temperature for 5 min and transferred to a 50 ml 

tube containing 17.5 ml ES medium. The whole content of ES medium and cells were 

distributed on 18 100 x 20 mm dishes with feeder cells containing ES cell medium. 

 

(c) Selection: 

The selection was started about 48 hrs after the electroporation with a regular change of the 

medium with ES cell medium following the day after the electroporation. For a positive-

negative selection 450 µg/ml of G418 and 2 µM of ganciclovir were added to the medium; 

The time for selection differs from 6-10 days when individual drug-resistant colonies should 

have appeared, large enough to be picked. The selection time depends on the density of cells, 

the differentiation of the clones, and if one wishes to pick the clones with or without a 

microscope. 

(d) Picking and further passaging of drug-resistant clones: 

Each individual drug-resistant clone deriving from one transfected cell is isolated by picking 

it from the selection plates containing PBS, to a single 96- or 48-well with a drawn-out 

Pasteur pipette or a Gilson pipette (100 µl). The single clones are then trypsinized in the 

individual wells and divided into two portions, one for the screening procedures and one as a 

frozen back-up. The clones can be trypsinized and splitted right after picking or one day later 

by picking them into wells containing a feeder layer. A part of the clones is splitted and 

transferred to either gelatinized 96-, 48-, or 24- well plates for the screening procedures 
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(“screening plates”) and the other part is transferred to either 48- or 24-well plates containing 

feeder cells as a back-up (“back-up plates”) for later procedures. Both plates containing the 

same clones are marked to identify both portions of one clone. The medium in both plates was 

changed until they reach about 80-90% confluence. The DNA from the cells on the “screening 

plates” was isolated and examined. The cells in the “back-up plates” were frozen by either 

replacing the medium with pre-cooled freezing medium or by mixing a cell suspension with 

pre-cooled freezing medium in each individual well. The plates were transferred to a –70°C or 

a –80°C freezer. When a specific clone turns out to be positive for homologous recombination 

in the screening procedures, the corresponding clone on the “back-up plate” can be thawed 

and cultured for further procedures. 

Electroporation medium: 
10 ml EMFI medium 
50 µl 5M NaCl 
 
 
Phospate-buffered saline (PBS), Mg2+ and Ca2+ free: 
1 liter of PBS solution made in H2O contains the following: 
10g NaCl 
0.25g KCl 
1.44g Na2HPO4 
0.25g KH2PO4 
Adjust pH 7.2  

PBS is used routinely for washing embryonic fibroblast and ES cell layers prior to 

trypsinization. 

 
Trypsin – EDTA: 
0.1% trypsin in 0.04% EDTA 
GIBCO BRL, Cat. No. 35400-019 

For routine passaging of EMFIS and ES cells, they were disaggregated by using 0.1% trypsin 

dissolved in Tris-saline/EDTA. After adding the trypsin, the cells were placed in the incubator 

for 5 minutes. 

 
Geneticin: 
G418-Sulphate: 35mg in 100mg ES cell medium  
GIBCO BRL, Cat. No. 066-1811 
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Gancyclovir:  
Gancyclovir -Sodium, Cymeven 
Stock solution: 5.1µl Gancyclovir in 1 ml PBS, stored at –20°C 
 

3.2.4.6 Expansion of positive clones 

After the positive clones were examined by PCR and Southern-blot, the corresponding frozen 

clones in 48-well feeder plates were thawed quickly with warm medium, and expanded 

progressively onto feeder cells in the order of 48-well plates, 24-well plates, 3.5 cm dishes 

and 6 cm-dishes. The cells on 3.5 cm feeder dishes were trypsinized and resuspended in 1 ml 

E14 freezing medium, then transferred into one 1 ml freezing vial (Nunc). The vials were 

immediate transferred to –20°C or –80°C freezer, stored at –80°C for a few days and 

transferred into liquid nitrogen.  

3.3 Plasmid isolation from E. coli. 

3.3.1 Mini-prep DNA isolation 

To check if the isolated single colonies contained the correct plasmid, a mini-prep DNA 

isolation was carried out. 2 ml of cells from mini culture was centrifuged (4500 rpm/10 min 

/RT, Heraeus) and the pellet was resuspended in 300 µl of P1 + RNase A buffer. 300 µl of P2 

buffer was added into each tube. After the addition of 300 µl of P3 buffer into the tube, the 

cellular debris was centrifuged (14000 rpm/40min/RT, Heraeus) and the supernatant of each 

preparation was precipitated with 2.5 volumes of absolute ethanol and 0.1 volumes of   3 M 

sodium acetate. After washing the DNA pellet with 70% ethanol, the DNA pellet was air-

dried and resuspended in 50 µl TE buffer (pH 8.0). 

 
Buffer P1 (Resuspension buffer):   P1+ RNase A: 
 50 mM  Tris-Hcl, pH 8.0   100 µg / ml RNase A 
 10 mM  EDTA, pH 8.0 
 
Buffer P2 (Lysis buffer):    Buffer P3 (Neutralization buffer): 
 200 mM NaOH     2.55 M KOAc, pH 4.8 
 1%  SDS 
 
RNase A stock solution: 
 10 mg / ml RNase A 
 10 mM  Tris-Hcl, pH7.5 
 15 mM  NaCl 
The solution was boiled for 15 min, cooled slowly at RT and then aliquoted. 
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3.3.2 Maxi-prep DNA with Qiagen Plasmid Maxi Kits 

A single colony was picked from a freshly streaked selective plate and inoculated in 500 ml 

LB medium containing the appropriate selective antibiotic. The culture was incubated at 37°C 

overnight with vigorous shaking (200 rpm). On the next day, the bacterial cells were 

harvested by centrifugation at 4500 rpm for 15 min at 4°C. The bacterial pellet was 

resuspended in 10 ml of buffer P1. 10 ml of buffer P2 were added and mixed well but 

thoroughly by inverting the tubes 4-6 times. 10 ml of chilled buffer P3 was given to the cells 

and mixed gently by inverting 4-6 times and incubated on ice for 20 min. The suspension was 

centrifuged twice at 4500 rpm for 40 min and the supernatant containing the plasmid DNA 

was removed promptly to a fresh tube.  

The Qiagen-Tip 500 column was equilibrated by applying 10 ml buffer QBT and allowing the 

column to empty by gravity flow. The supernatant was applied on the column and allowed to 

enter the resin by gravity flow. The column was washed twice with 30 ml buffer QC and 

eluted with 15 ml buffer QF. The DNA was precipitated by adding 10.5 ml (0.7 volumes) 

room-temperature isopropanol to the eluted DNA. The solution was mixed well and 

centrifuged at 4500 rpm for 20 min at room temperature. The DNA pellet was washed once 

with 70% ethanol and centrifuged at 4500 rpm for 10 min. The DNA pellet was air-dried for 5 

min and re-dissolved in a suitable volume of TE. 

 
Buffer QBT (Equilibration buffer):   Buffer QC (Wash buffer):   
 750 mM NaCl    1M  NaCl 
 50 mM  MOPS, pH 7.0   50 mM  MOPS, pH 7.0 
 15%  isopropanol   15%  isopropanol 
 0.15%  Triton X-100 
 
Buffer QF (Elution buffer): 
 1.25 M  NaCl 
 50 mM  MOPS, pH 8.5 
 15%  isopropanol 

3.4 Analysis and enzymatic digestion of DNA 

3.4.1 DNA purification through phenol extraction and ethanol precipitation 

The DNA to be purified was dissolved in TE, treated twice with an equal volume of 

phenol/chloroform/isoamylalcohol (25:24:1) and finally with 1 vol. chloroform/isoamyl 

alcohol (24:1) to remove any reamining phenol in the watery phase. The upper TE phase was 

precipitated with 2.5 volumes of absolute ethanol and 0.1 volumes of 3 M sodium acetate(pH 

5.2) at –80°C for 30-60 min. The pellet obtained after centrifugation at 14000 rpm for 20 min 

was air-dried and resuspended in 50 µl TE. 
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3.4.2 Measurement of DNA concentration 

The concentration of a DNA solution in TE can be calculated through measuring DNA at 

OD260. TE was used as the blank value. DNA concentration was calculated according to the 

following formula: 
 
1 OD260 = 50 µg / ml DNA. 
 
Concentration of oligonucleotides was measured at OD260 and calculated as follows: 
 
ε260 (A) = 15.0 
ε260 (G) = 1.8 
ε260 (C) = 8.8 
ε260 (T) = 7.4     
 
∑ε260 (oligonucleotide) = 1 µmol/µl 

3.4.3 Agarose gel electrophoresis of DNA 

1% agarose gel in TBE buffer was used to separate DNA. Agarose was suspended in TBE 

buffer and boiled in a microwave stove until the agarose was totally dissolved in the buffer.  

0.5 µg/ml ethidiumbromid was added to the agarose solution at about 60°C. The gel solution 

was poured into a appropriate gel form and left to cool and solidify. 6 x loading buffer was 

given to DNA dissolved in H2O or TE and the DNA was loaded on the gel. The gel was run at 

5-10 V/cm (length of the gel) in TBE buffer. The separated DNA bands were visible at a 

wavelength of 366 nm because of the inlay of ethidiumbromid into DNA. 

 
TBE-buffer:     6 x loading buffer: 
 89 mM  Tris base   10 mM  Tris-HCl, pH 8.0 
 89 mM   boric acid   50 mM  EDTA, pH 8.0 
 2 mM  EDTA    10%  ficoll   
       10%   glycerol 
       0.01%  bromophenol blue 

3.4.4 Elution of DNA from agarose gel 

3.4.4.1 Electro-elution of DNA 

Large amounts of DNA were purified from agarose gel by electro-elution. The apparatus used 

for electro-elution from Colora consists of 2 separate chambers connected with a special 

connector, which had two pieces of dialysis membranes on its both ends. The two chambers 

and the connector were filled with 1 x TBE buffer. An agarose gel slice was placed in the one 

end of the connector. Due to the electricity field between the two chambers the DNA ran to 
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another end of the connector, where DNA was collected and could be pippeted out. DNA was 

then precipitated and dissolved in suitable volume of TE. 

3.4.4.2 Elution of DNA with QIAquick Gel Extraction Kit 

The DNA fragment was excised from the agarose gel with a clean, sharp scalpel. The gel slice 

was weighed in a colorless tube and 3 volumes of buffer QG were added to 1 volume of gel 

(100 mg ∼ 100 µl). The tube was incubated at 50°C for 10 min (or until the gel slice was 

completely dissolved). The gel was dissolved by vortexing the tube every 2 – 3 min during 

the incubation (After the gel slice has dissolved completely, the color of the mixture should be 

yellow). 1 volume of isopropanol was added and and the tube was mixed well.  A QIAquick 

spin column was placed in a provided 2-ml collection tube. The sample was applied to the 

column to let DNA bind to it and centrifuged for 1 min (3000 rpm). The flow-through was 

discarded and the column was placed on the same tube again. To wash the column, 0.75 ml of 

buffer PE was added and the column in tube was centrifuged for 1 min. The flow-through was 

discarded and the column was centrifuged for an additional 1 min. The column was then 

placed in a clean 1.5-ml tube. 50 µl of elution buffer EB (10 mM Tris-Hcl, pH 8.5) or H2O 

was added to the center of column and the column was centrifuged for 1 min at maximum 

speed. Alternatively, for high DNA concentration, 30 µl of elution buffer was added to the 

center of the column and the column was centrifuged at maximum speed for 1 min.    

3.4.5 Sequencing double-stranded DNA 

Double-stranded DNA was sequenced by “thermo Sequenase Radiolabeled Terminator Cycle 

Sequencing Kit”(Usb), which is based on the principle that chain stops due to the addition of 

dideosoxynucleotide during chain alongation from DNA-polymerase I. 

a) Termination mixes: The termination mixes were prepared on ice. 2 µl of nucleotide master 

mix and 0.5 µl of [α-33P] ddNTP (G, A, T, or C, one of each per sequence) were mixed to 

produce a termination mix for each ddNTP. Four tubes (G, A, T, and C) with 2.5 µl of each 

termination mix were labeled, filled and capped. 

b) Reaction mixture: For multiple reactions with different primers and/or templates, a n+1 

batch of reaction buffer, water and polymerase were prepared and aliquoted; Then the unique 

primer and the template in the appropriate concentration and volume were added to the 

aliquotes. 

c) Cycling termination reactions 
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4.5 µl of reaction mixture was transferred to each termination tube (G, A, T, and C) from step 

(a) and mixed well. The mixture was overlaid with 10-20 µl of mineral oil (if need). The tube 

was placed in a thermal cycling instrument. 

d) Cycling programm: The specific cycling parameters depend on the primer sequence and 

the amount and purity of the template DNA. Normally, 25-250 fmol of primer were used, and 

the reaction runs 36 cycles as follows: 
 
95°C/30 s 
55°C/30 s 
72°C/60-120 s  

x 36 cycles 

e) Termination of the reactions: 4 µl of stop solution was added to each of the reactions and 

mixed well. The samples were kept on ice until they were loaded onto a gel. 

f) Loading of the gel: Before loading, the samples have to be denatured at 70°C for 2-10 min. 

3.0-5.0 µl of each sample was immediately loaded on the gel.  

3.4.6 Polyacrylamid sequence gel electrophoresis 

3.4.6.1 Gel preparation  

Glass plates must be clean and free of dried gel and soap residues. To remove residues, both 

plates were cleaned with ethanol. To ensure that the gel will not stick to the glass plates they 

were coated with Gel Slick or silicone. Glass plates were assembled with two 0.2 mm-spacers 

on the sequencing apparatus (Electrophoresis Sequencing System, Model S2). A 5% Long 

Ranger gel mixture was prepared: 

 
5% Long Ranger gel mixture: 

10 ml  Long RangerTM gel solution (FMC) 
  10 ml  10 x TBE 
  36 g  urea 
  52 ml  H2O 

The solution was mixed well and then filtered through a 0.45 µm Membrane filter 

(MilliporeTM). 600 µl of APS and 60 µl of TEMED were added to the mixture and mixed 

well. The solution was poured between the plates of the gel apparatus and a comb was 

inserted between the plates. The gel was left to polymerize for 2 hrs. The comb was removed 

and the wells and top surface were rinsed with TBE buffer. The gel cassette was mounted 

onto the sequencing apparatus. 
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3.4.6.2  Electrophoresis 

The anodal and cathodal chambers were filled with 1 x TBE buffer. The gel was pre-run at 

about 45 mA/80 Watt until it reached a temperature of 50°C. The comb was inserted between 

the plates and the samples were loaded onto the gel. The run time was monitored with the 

marker dyes bromophenol blue and xylene cyanol. After the run was finished, the sequencing 

apparatus was disconnected and the gel was transferred onto a Whatman 3 MM filter paper. 

The gel was dried and exposed to an X-ray film.  

3.4.7 Restriction endonuclease digestion 

Purified DNA was digested by restriction enzymes with their corresponding buffers. If 

necessary, BSA was added to the digestion. The digest was incubated at 37°C for 1-2 hrs and 

loaded onto an agarose gel after adding 6 x loading buffer. 

3.4.8 Fill in of 5’ overhanging ends with Klenow DNA-polymerase 

5’-overhanging ends of DNA fragment can be filled in by Klenow fragment (big fragment of 

E. coli DNA polymerase) to generate blunt ends. After treatment, a 5’-overhanging DNA 

fragment can be cloned into a vector or labeled radioactively at the 5’ end.   

DNA was incubated with 20 – 40 µM desoxynuleotidtriphosphats (pH 7.0) with 1-5 units of 

Klenow fragment for 1 h at room temperature. The reaction was stopped by heating the 

mixture at 65°C for 15 min. Excessive dNTP should be given in the reaction to inhibit 

exonuclease activity of the Klenow DNA-polymerase.  

3.4.9 Generation of blunt ends with T4 DNA-polymerase 

5’- and 3’-overhanging ends of DNA can be treated with T4 polymerase to generate blunt 

ends due to its 5’-3’ DNA-polymerase activity and 3’-5’ exonuclease activity. 

1 µg DNA was incubated with 1 U T4 DNA-polymerase, 1 x T4 DNA-polymerase buffer and 

50 µM dNTPs in 20 µl for 1 hr at 37°C. The reaction was stopped by heating at 65°C for 15 

min.   
 
5 x T4-buffer: 

250 mM Tris-Hcl, pH 8.8 
  75 mM   (NH4)2SO4 
  35 mM   MgCl2 
  0.1 mM   EDTA 
  50 mM   β-mercaptoethanol 
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3.4.10 Dephosphorylation of DNA with alkaine phosphatase 

The restriction-cloning vector was dephosphorylated (Manitatis, 1982) with calf intestinal 

alkaline phosphatase (CIP; Boehringer-Mannheim). 10 µg linearized plasmid DNA was 

dissolved in 90 µl 50 mM Tris-Hcl (pH 8.0) and incubated with CIP (0.1 units/µg) for 1 hr at 

37°C. Afterwards 1.0 µl of 0.5 M EDTA was added and the reaction was inactivated at 75°C 

for 10 min. The dephosphorylated DNA was then purified from agarose gel (3.4.4). 
 
10 x CIP buffer: 

10 mM  ZnCl2 
  10 mM   MgCl2 
  100 mM  Tris-Hcl, pH 8.0 

3.5 Isolation of genomic DNA and enzymatic digestion 

3.5.1 Preparation of genomic DNA from 48-well plates and enzymatic digestion 

Genomic DNA from mice ES cells was isolated from 48-well plates directly (Ramirez-Solis 

et al., 1992).  The ES cells were allowed to grow on gelatin-coated plates until the medium 

turned yellow. When the cells were ready for DNA extraction procedure, the wells were 

rinsed with cold PBS and 100 µl lysis buffer were added to per well. The plate was incubated 

overnight at 50°C in a humid atmosphere. This was easily achieved by incubating the plate 

inside a closed Tupperware container with paper towels in a convenient 50°C oven. The next 

day, the plate was shortly centrifuged at 2500 rpm. For DNA precipitation, 200 µl of 

NaCl/ethanol mix (150 µl of 5M NaCl to 10 ml of cold absolute ethanol) was added to every 

well using a multichannel pipette. The 48-well plate was shook for 30 min at room 

temperature. During this time, the nucleic acids precipitated as a filamentous network. The 

plate was centrifuged again and carefully inverted to discard the solution while the nucleic 

acids remained attached to the plate. The plate was rinsed 3 times by rinsing each well with 

300 µl of 70% ethanol using a multichannel pipette. The plate was shortly centrifuged and the 

ethanol was discared by inversion. After the final wash, the plate was inverted and allowed to 

dry on the bench. 50 µl of TE were added to each well. The plate was incubated at 37°C 

overnight to let the genomic DNA dissolve well.  

25 µl of genomic DNA was digested with a restriction enzyme the next day. A restriction 

digestion mix was prepared as follows: 1 x restriction buffer, 100 µg/ ml RNase and 50 units 

of restriction enzyme. 25 µl of the mixture were added to 25 µl DNA and mixed well. The 

digestion reaction was incubated at 37°C overnight. 
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Lysis-buffer: 
  10 mM  Tris-Hcl, pH 7.5 
  10 mM  EDTA, pH 8.0 
  10 mM  NaCl 
  0.5%  Sacrosyl 
  1 mg/ml Proteinase K (add prior to use) 

3.5.2 Isolation of genomic DNA from a 10 cm-dish  

A big amount of genomic DNA from mammalian cells was isolated with Easy–DNATM Kit           

(Invitrogen). 

103 to 107 of cells were pelleted and resuspended in 200 µl 1 x PBS. 350 µl Solution A was 

added to the cell suspension, vortexed in second intervals until it evenly dispersed, and then 

incubated at 65°C for 10 min. 150 µl Solution B were added and vortexed vigorously until the 

precipitate moved freely in the tube, and the sample was uniformly viscous (10 sec to 1 min). 

500 µl chloroform was added and vortexed until viscosity decreases and the mixture is 

homogeneous (10 sec to 1 min). The tube was centrifuged at maximum speed for 10-20 min 

at 4°C to separate phases and form the interface. The upper phase was transferred into a fresh 

microcentrifuge tube. 1 ml of 100% ethanol (-20°C) was added to the DNA solution and 

vortexed briefly. The tube was incubated on ice for 30 min and then centrifuged at maximum 

speed for 10-15 min. The ethanol was removed from the pellet with a drawn-out Pasteur 

pipette. The DNA pellet was washed with 80% ethanol and centrifuged once more at the 

maximum speed. The DNA pellet was air-dried and resuspended in 100 µl TE. 2 µl of RNase 

(2 mg/ml) was added and the DNA was incubated at 65°C for 30 min.  

30 µl of genomic DNA was digested with restriction enzyme overnight at 37°C as described 

in 3.4.7. 

3.5.3 Isolation of genomic DNA from mice tails 

Genomic DNA of mouse tails was isolated according to the protocol from Laird (Laird et al., 

1991). 

500 µl of lysis buffer was added into a tube containing a mouse tail, which was cut by a sterile 

scalpel to about 2 mm length. The tube was incubated with rocking at 55°C for at least 3 hrs 

or overnight. The tube was then centrifuged at maximum speed for 30 min. The supernatant 

was transferred carefully to a prelabeled tube containing 0.5 ml isopropanol and mixed well 

by inversion until DNA precipitation was completed. The sample was centrifuged at 

maximum speed for 15 min at room temperature and washed with 80% ethanol. The DNA 

pellet was dissolved in 60 µl TE. Complete dissolution of DNA may require several hours of 
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agitation at 37°C or 55°C. It is important that the DNA is completely dissolved to ensure the 

reproducible removal of aliquots for analysis. 

30 µl of genomic DNA were digested with restriction enzyme overnight at 37°C as described 

in 3.4.7. 
 
 
Lysis buffer: 
  100 mM  Tris-Hcl, pH 8.5 
  5 mM  EDTA, pH 8.0 
  0.2%  SDS 
  200 mM NaCl 
  100 µg/ml Proteinase K (add right before use) 

3.5.4 A quick method for the isolation of unpurified genomic DNA from ES 

cells for PCR 

Direct lysis of ES cells on from 48-well plates with Kawasaki buffer (Kawasaki, 1990) 

simplifies the genomic DNA purification process. Genomic DNA gained by this method can 

be directly used in PCR, but is not suitable for a Southern-blot.  

ES cells on 48-well plate were rinsed twice with 1 x PBS. 80 µl of Kawasaki buffer and 10 µl 

of 1 mg/ml Proteinase K were added to per well. The plate was incubated at 60°C for 1 hr in a 

humid atmosphere and further incubated at 95°C for 20 min to inactive Proteinase K. The 

plate was centrifuged at 1200 rpm for 5 min to spin down the cell debris.  The gomic DNA in 

the supernatant was used directly for PCR. 
 
Kawasaki buffer: 
  20 mM   Tris-Hcl, pH 8.3 
  1.5 mM   MgCl2 
  25 mM    KCl 
  0.5%   Tween 

3.6 Amplification of DNA-fragments by Polymerase chain reaction 
(PCR) 

3.6.1 Screening positive homologous recombined ES cell clones by PCR 

PCR with plasmid DNA, with purified genomic DNA from ES cells (3.5.1 and 3.5.2) or mice 

tails (3.5.3) and unpurified genomic DNA from ES cells (3.5.4) were performed with Biotag 

DNA polymerase (10 Units/µl) and corresponding buffer. Biotag DNA Polymerase is a 94 

kDa heat-stable DNA Polymerase purified from Thermus aquaticus and is especially suitable 

for GC-rich PCR. For ES cells clone screening, primers P11M1 and Neo-primer (primer pair 
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1) were used. As a control PCR, P11M2 and Neo-primer (primer pair 2) were used to amplify 

a relative longer PCR product compared to the first primer pair. 

20 ng of plasmid DNA, 100 ng purified genomic DNA (3.5.1, 3.5.2 and 3.5.3) or 2.0 µl of 

unpurified genomic DNA (3.5.4) were mixed with 4 pmol primers, 2.0 µl of 10 x reaction 

buffer, 0.05 mM dNTP, 2.5 mM MgCl2, ddH2O and 1 Unit of diluted Biotag DNA 

polymerase to an end volume of 20 µl. The PCR machine was prewarmed to 96°C and the 

PCR tubes were placed into the machine. The PCR was performed as followed:  

 
96°C / 5min        1 cycle 
96°C / 1min, 56°C / 1min, 72°C / 1 min 30 sec    36 cycles 
72°C / 10min        1 cycle 
4°C / ∞ 

PCR products were analyzed by electrophoresis on a 1% agarose gel. If no specific bands 

could be seen, the gel was blotted and hybridized with a specific radioactively labeled probe.   
 
Biotag-Dilution buffer: 
  20 mM    Tris-Hcl, pH 8.0 
  0.1 mM   EDTA, pH 8.0 
  100 mM  KCl 
  1 mM    DTT 

0.5% (v/v)  Tween 
  0.5% (v/v)  NP40 
  50% (v/v)  glycerol 
 
10 x reaction buffer: 

677 mM   Tris-HCl, pH 8.8 
166 mM   (NH4)2SO4 

0.1%   Tween 20 

3.6.2 Amplification of Purαα cDNA fragments of different length by PCR 

Purα-cDNA fragments of different length were amplified by PCR. pcDNA3-Purα.ext plasmid 

containing full-length Purα cDNA was used as a template in PCR.  

 
PCR reaction: 
pcDNA3-Purα.ext plasmid   60 ng 
10 µM Primer 1   2.0 µl 
10 µM Primer 2   2.0 µl 
4 mM dNTPs     2.5 µl 
10 x Pwo-buffer (with Mg2+)   5.0 µl 
25 Units Pwo     0.5 µl 
Add H2O to 50 µl 

The PCR was performed as follows:   
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94°C / 5min       1 cycle 
94°C / 1min, 50-54°C / 1min, 72°C / 1 min 40 sec  36 cycles 
72°C / 10min       1 cycle 
4°C / ∞ 
 
Annealing temperature should be changed according to different primers. 

3.6.3 Amplification of homologous arms for the target vector 

ExpandTM Long Template PCR System (Rosch) was used to amplify homologous arms of the 

targeting vector. ExpandTM Long Template PCR System is composed of an unique enzyme 

mix containing thermostable Taq and Pwo DNA polymerases. This powerful polymerase 

mixture is designed to give a high yield of PCR products from episomal and genomic DNA. It 

amplifies fragments from human genomic DNA of up to 27 kb. 

Genomic DNA of murine E14K ES cells was used as a template for this amplification.  

 
PCR reaction: 
E14K genomic DNA    100 ng 
50 µM Primer 1   2.0 µl 
50 µM Primer 2   2.0 µl 
4 mM dNTPs     4.4  µl 
10 X buffer (with 1.75 mM Mg2+)  5.0 µl 
Enzymes mix     0.75 µl 
Add H2O to 50 µl total volume 

The PCR was performed as follows: Annealing temperature should be changed according to 

different primers. 

 
94°C / 2min        1 cycle 
94°C / 15 sec, 47°C / 30 sec, 72°C / 1 min 30 sec   10 cycles 
94°C / 15 sec, 47°C / 30 sec, 72°C / 1 min 30 sec (cycle  
elongation for more yield of 20 sec for each cycle)   20 cycles 
72°C / 7min        1 cycle 
4°C / ∞ 

3.7 Radioactive labeling of DNA 

3.7.1 5’ end labeling with T4-polynuleotide kinase 

T4 polynucleotide kinase catalyzed the transfer of terminal phosphate of ATP (γ) to the 5’-

hydroxyltermini of DNA and RNA. This reaction is very efficient; hence it is the general 

method for labeling 5’ ends or phosphorylating oligonucleotides. 
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2-10 pmol of oligonuleotides was incubated with 10-50 µCi (3.3 to 16.5 pmol) [γ-32P]-ATP, 

1U T4 polynucleotidkinase and 10 x kinase-buffer for 1hr at 37°C. The labeled 

oligonucleotide was separated from unincorporated [γ-32P]-dATP through a Sephadex G-50 

column. 
 
Kinase-buffer: 

50 mM  Tris-HCl, pH 8.0 
  10 mM  DTT 
  20 mM  MgCl2 
  0.2 mM  spermidin 
  0.2 mM  EDTA 

3.7.2 DNA labeling with Random prime kit 

25 ng DNA was diluted with H2O to an end volume of 23 µl and denatured by heating at 95°C 

for 5 min, then chilled rapidly in an ice bad. 15 µl of random-primers-buffer was added into 

the tube and mixed well. Subsequently, 2 µl dCTP, 2 µl dGTP and 2 µl dTTP were given to 

the mixture. At the end, 5 µl (50 µCi) [α-32P]-dATP and 3 Units of Klenow–fragment were 

added. The mixture was incubated for 1 hr at 25°C and stopped by adding 5 µl 0.5 M EDTA. 

The labeled DNA was purified through a Sephadex G-50 column. 

3.7.3 Removal of unincorporated dNTPs with a Sephadex G- 50 column 

A small glass ball was placed on the bottom of a Pasteur pipette. The sephadex G-50 resin 

suspended in TE was filled onto this pipette and enough space of about 200 µl was left for the 

the loading of the radioactively labeled DNA sample. The column was washed with 5 

volumes of TE, loaded with the radioactive sample and eluted with TE. Unincorporated 

dNTPs bind to the column whereas labeled DNA can be found in the flow-through.  

3.8 Southern-blot analysis 

Southern-blotting is the transfer of DNA fragments from an electrophoresis gel to a 

membrane. The transfer results in immobilization of the DNA fragments, therefore the 

membrane carries a semi-permanent reproduction of the banding pattern of the gel. After 

immobilization, the DNA can be subjected to hybridization analysis, enabling the 

identification of bands with sequence similarity to a labeled probe.  

3.8.1 Transfer of DNA on Nylon- or Nitrocellulose membrane 

Hybond N+-membrane, a positively charged nylon membrane, is ideally used for 

hybridization. 
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The agarose gel was rinsed in distilled water and placed in a clean glass dish containing 10 

gel volumes of 0.25 M HCl where it was shaken slowly for 6 min at room temperature. HCl 

was discarded and the gel was rinsed with distilled water. The gel was then shaken in 10 

volumes of 0.4 M NaOH for 40 min to denature the DNA. 

A sponge, with a size slightly larger than the gel, was placed in a plastic dish. The dish was 

filled with enough 0.4 M NaOH to leave the soaked sponge about half-submerged in buffer. 

Three pieces Whatman paper were cut and placed on the sponge. The gel was transferred onto 

the Whatman paper and air bubbles were squeezed out by rolling a glass pipet over the 

surface. A piece of Hybond N+-membrane was placed on the gel and 3 pieces of Whatman 

papers were put on the membrane. It was confirmed that there were no air bubbles between 

the membrane and the gel. Paper towels were piled up on Whatman papers and a glass plate 

on top of the pile. A weight was placed on the top to hold everything in place. It was left 

overnight, disassembled and the membrane was rinsed with 2 x SSC the next day. 

3.8.2 Hybridization of oligonucleotides 

The protocol from Woods et al (1982) was slightly changed as following: 

 The membrane was prehybridized overnight at 42°C with pre-hybridization-buffer containing 

100 µg/ml yeast-tRNA to inhibit unspecific binding of the oligonucleotides onto the 

membrane. According to different container used for hybridization, variable amounts of pre-

hybridization-buffer were used. After prehybridization, an appropriate quantity of 

hybridization solution with 100 µg/ml yeast-tRNA was added into the container. 2-10 µl 

radioactive labeled oligonucleotides were given into the hybridization tube and hybridization 

was performed overnight at 42°C. 

The membrane was washed with 6 x SSC + 0.05% Na4P2O7, twice to three times at room 

temperature and then twice at 45°C. The wash process is variable according to different 

situations. The blot was covered with plastic wrap immediately. 

The membrane was placed on a Phosphor Image Screen, which was scanned by Phosphor 

Image. 
 
Pre-hybridization-buffer: 
  6 x  SSC     
  5 x  Denhardt-solution   
  0.05%  Na4P2O7     
  0.5%  SDS     
  100 µl /ml yeast-tRNA (addition before use) 
 
 
 



Methods 

 

 

 

42 

Hybridization-buffer: 
6 x  SSC 
5 x   Denhardt-solution 
0.05%  Na4P2O7 

100 µl /ml yeast-tRNA (addition before us ) 
  
 
20 x SSC: 

3 M  NaCl     
0.3 M   Sodium citrate, pH 7.2   

        
100 x Denhardt–solution: 

10 g   Ficoll 400 
10 g  Polyvinylpyrrolidon 
10 g  BSA 
add 50 ml H2O bidest. 

3.8.3 Hybridization with Church solution 

According to Church and Gilbert ‘s protocol (1984), the membrane was hybridized with 10 

ml hybridization buffer at 65°C for 1 h. An appropriate amount of the radioactive DNA-

fragment was denatured by heating at 95°C for 5 min, chilled on ice, added to 10 ml of fresh 

hybridization buffer, and mixed well. The fresh hybridization buffer containing the DNA 

probe was given onto the membrane and hybridized at 65°C overnight.  

The membrane was washed with low-stringency-buffer at 65°C for 5-10 min, then with high-

stringency-buffer for several times at 65°C. The blot was covered with plastic wrap 

immediately. 

The membrane was placed on a Phosphor Image Screen, which was scanned by Phosphor 

Image. 
 
Hybridization-buffer: 
  1 mM  EDTA 
  0.5 mM  NaHPO4, pH 7.2 
  1%  BSA, crystal 
  7%  SDS 
 
Low-stringency-buffer:  
  1 mM  EDTA     
  40 mM  NaHPO4, pH 7.2   
  0.5%  BSA, crystal    
  5%  SDS 
 
High-stringency-buffer:  

1 mM  EDTA 
40 mM  NaHPO4, pH 7.2 
1%  SDS 
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3.8.4 Hybridization with ExpressHybTM Hybridization Solution 

A specific single copy gene was detected in Southern-blots with ExpressHybTM Hybridization 

Solution (Clontech) because of its high sensitivity and low background. 

ExpressHybTM Hybridization Solution was pre-warmed and stirred well at 60°C to be 

completely dissolved. A 10 x 10-cm membrane was prehybridized in a total volume of 

minimal 5 ml of ExpressHybTM Hybridization Solution with continuous shaking at 60°C for 

30 min. The radioactively labeled DNA probe was denatured at 95-100°C for 2-5 min and 

chilled on ice. The recommended radioactive labeled probe concentration is 2-10 ng/ml or 1-2 

x 106 cpm/ml. The radioactively labeled probe was added to 5 ml ExpressHyb and mixed 

well. Replace the ExpressHyb Solution with the fresh solution containing the radiolabeled 

DNA probe. Be sure that all of the air bubbles were removed from the container and the 

ExpressHyb solution was evenly distributed over the entire blot. The hybridization was 

performed with shaking at 60°C for 1 hr. 

The blot was rinsed several times in wash solution 1 at room temperature, while washing for 

30-40 min with continous agitation and replacing the wash solution several times. Thereafter, 

the blot was washed in wash solution 2 with continous shaking at 50°C for 40 min with one 

change of fresh solution. The blot was covered with plastic wrap immediately. 

The membrane was placed on a Phosphor Image Screen, which was scanned by Phosphor 

Image. 
 
Wash-solution 1:    Wash-solution 2: 
 2 x  SSC    0.1 x  SSC 
 0.05%  SDS    0.1%  SDS 

3.8.5 Removing the radiolabeled DNA probe from the blot 

To re-hybridize a blot with other DNA probes, the radiolabeled DNA on the blot can be 

removed from the blot as follows: 

A hybridization tube was fully filled with 0.1 x SSC/0.1% SDS solution and heated to 90-

100°C. The plastic wrap was removed from the blot and immediately placed in the heated 

solution without exposure to air. The solution containing the blot was shaken and incubated 

for 10 min at 95°C. The solution was discarded and the blot was slipped into a plastic bag and 

stored at –20°C until further use. 
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3.9 Screening recombinant DNA libraries 

A 129/SvJ mouse genomic DNA bank in lambda phage was screened. The titer of this bank is 

about 108 pfu/ml. The bacteria strain for lambda phage is XL1 Blue/MRA/P2. 

3.9.1 Preparation of phage competent bacteria 

A single colony of bacteria was inoculated into 20 ml TYM, and the suspension was 

incubated at 37°C with moderate shaking (200 rpm). 5 ml of the culture was inoculated into 

100 ml TYM and left to grow to an OD600 = 0.6 to 0.8. The bacterial cells were centrifuged at 

3500 rpm and the cell pellet was resuspended in sterile SM solution (to an end concentration 

of 1010 bacteria/ml). 1 OD corresponded to 8 x 108 bacteria/ml. After storage at 4°C for 2 hrs, 

the bacteria cells were ready to be infected with the phages. The further usage of these cells 

depends on the different strain of phage competent bacterial cells: XLI Blue should be used in 

the same day whereas K803 and LE392 could be stored at 4°C for up to 1 week. 
 
 
NZCYM:      λ-Dilution: 
 0.5%  NaCl    50 mM  Tris-Hcl, pH 7.5 
 0.2%  MgSO4    100 mM NaCl  

 0.5%  Yeast extract   10 mM   MgSO4 
 1.0%  NZ Amin    
 0.1%  Casamino acid      
 adjust to pH 7.5  
     
SM solution: 
 0.1% Gelatine in λ- Dilution  

3.9.2 Titration of recombinant λλ-phage 

Phage stock solution or lysate were serially diluted (10-2-10-8) with λ-Dilution solution. 10 µl 

of the diluted phage were added to 100 µl of prepared bacteria cells (1 x 1010 / ml). The 

phages were incubated with the bacteria at 37°C for 20 min. 8 ml of molten top agar were 

given to the suspension, mixed by inverting quickly and poured onto LB plates pre-warmed to 

37°C. The top agar was allowed to harden and the plates were then incubated inverted at 37°C 

overnight.  

The number of the plagues was counted on the next day and the titer of the phage was 

calculated. 
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Top agar: 
  0.5%  NaCl  
  0.2%  MgSO4 

  0.5%  Yeast extract 
  1.0%  NZ Amin 
  0.1%  Casamino acid 
  1.5%  Bacto-agar 
  adjust to pH 7.5  

3.9.3 Absorption of phages into host bacteria 

Bacteriophages were plated onto agar plates at high density for the screening of 1 million 

different plaques. The bacteriophage plaques were then transferred to nitrocellulose- or 

Hybond-filters, denatured, and baked. The filters were then hybridized with a specific 

radiolabeled DNA probe. 

5 x 104 pfu were added to 100 µl of prepared bacteria cells (1 x 1010/ml). The phages were 

incubated with bacteria at 37°C for 20 min. 8 ml of molten top agar were given, mixed by 

inverting quickly and poured onto LB plates pre-warmed to 37°C. 12 plates were generated. 8 

ml of molten top agar was given to the suspension, mixed by inverting quickly and poured 

onto LB plates pre-warmed to 37°C. The top agar was allowed to harden and the plates were 

then incubated inverted at 37°C overnight.  

3.9.4 Phage blotting and identification of positive phages  

The 12 plates generated were incubated at 4°C for at least 2 hrs prior to the application of the 

filters. Two pieces of Hybond N+ membranes (Amersham Pharmacia Biotech, UK) were 

prepared for each plate. The membranes were labeled with a ballpoint pen and applied face 

down (ink side up) on cold plates bearing bacteriophage plaques without air bubbles between 

the membrane and the plate. The membranes were left on the plates for 1 min to allow the 

transfer of phage particles onto the membranes. During the transfer period the orientation of 

the membrane to the plate was recorded by stabbing a needle through the filter into the agar at 

several asymmetric points around the edge of the plate. The second membrane was placed 

onto the plate for another blotting of 2 min. Remove the membrane slowly from the plates 

with blunt, flat forceps and transfer them into denature buffer. After 2 min, they were 

transferred into neutral buffer for 5 min. The membranes were shortly washed in 6 x SSC and 

then placed face up on Whatman paper to dry on air. Finally, the membranes were baked at 

80°C for 4 hrs to fix the DNA. 

The membranes were followed hybridized with a DNA probe with Church solution according 

to 3.8.3. A film was placed on every membrane and developed after storage at –80°C 

overnight. 
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3.9.5 Screening phage library for Purαα genomic DNA  

Phage plates were correctly oriented to the autograph film to identify positive plaques. The 

plagues which showed positive signals on both membranes from the same plate were 

considered to be the plagues of interest. A plug of agarose (about 0.5 cm2) was picked from 

the primary plate, placed in Eppendorf tubes containing 300 µl of λ-Dilution. This solution 

was incubated for 3 hrs at room temperature with gentle shaking. A secondary phage library 

was plated with this solution. The plaques on the secondary plates were transferred onto 

nitrocellulose filters and hybridized with the same DNA probe. An isolated positive plaque 

was picked, placed in Eppendorf tubes containing 300 µl of λ-Dilution. With this solution a 

third phage library was generted. This process was repeated until the desired single plaque 

was purified.  

The secondary and following screenings were carried out as the primary screening, with the 

difference that more diluted phages were plated out, and smaller surrounding areas of positive 

plaques were picked up from the original plates each time. Generally, 3-4 rounds of screening 

were required for the isolation of the identical phages. 

3.9.6 Purification of λλ-phage DNA 

3.9.6.1 Liquid lysate of λλ-phage 

A single phage plaque was picked from an agar plate and transferred into a tube containing 

500 µl of SM solution. The tube was placed at 4°C overnight. 100 µl of competent bacterial 

cells and 10-20 µl of phage plaque elute were inoculated in 50 ml NZCYM medium and 

incubated at 37°C for 8-10 hrs until the bacterial cells were totally lysed. 5 ml of chloroform 

was given to the culture. After centrifugation at 4500 rpm for 15 min, the supernatant 

including the phages was transferred into a new sterile tube. To this phage lysate, 30 µl of 

DNase (10 mg/ml) and 30 µl of RNAse (10 mg/ml) were added and incubated at 37°C for at 

least 2 hrs or overnight. The phage lysate was centrifuged at 28000 rpm (SW 28 Rotor) at 4°C 

for at least 2 hrs. Phage DNA was isolated from the phage pellet.  

3.9.6.2 Isolation of λλ-phage DNA 

The bacteriophage pellet was resuspended in 700 µl of TE, 150 µl of 1 M NaCl, 100 µl of 

10% SDS and 50 µl of Proteinase K (10mg/ml). The suspension was incubated at 55°C for at 

least 2 hrs or overnight. 

1 ml of Phenol/TE was added, mixed and incubated at 55°C for 15 min with gentle shaking. 

The emulsion was transferred into a new tube and centrifuged at 1400 rpm for 5 min at room 
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temperature. The supernatant was treated with an equal volume of phenol/chloroform/ 

isoamyl alcohol (25:24:1) twice and then with 1 volume of chloroform/isoamyl alcohol (24:1) 

to remove the remaining phenol in the watery phase. The upper phase was precipitated with 1 

volume of isopropanol and 70 µl of 3 M sodium acetate, pH 5.2 at –20°C for 30 min. The 

pellet obtained after centrifugation at 14000 rpm for 20 min at room temperature, was 

washed, air-dried, and resuspended in 50-100 µl TE. 

3.10 Analysis of proteins  

3.10.1 Preparation of cellular protein extracts from mammalian cells 

Cellular extracts from NIH3T3 and 293 cells were prepared. Approximately 1 x 106 cells were 

resuspended in 500 µl lysis buffer and lysed on ice for 30 min. The lysates were cleared by 

centrifugation. The protein concentration of the supernatant was determined using the Bio-

Rad reagent. 
 
 
Lysis buffer: 
  50 mM  Hepes, pH 7.9 
  1 mM  DTT 
  400 mM  NaCl 
  1 mM  EDTA 
  0.5%  NP40 
  10%   glycerol 
  1 mM  PMSF 

1:1000  Aprotinin (10 µg/µl) 
  1:500  Leupeptin 

3.10.2 Measurement of Protein concentration by Bradford assay 

Protein quantitation was performed by using the Bradford (Bradford, 1976) reagent supplied 

by Bio-rad. 1 µl of protein sample was mixed with water and analyzed in a final volume of 

800 µl. 200 µl of Bradford reagent was added and the solution was gently mixed and left at 

room temperature for 5 min to allow color development. The protein concentration in the 

samples was measured by spectrophotometry at A595. H2O was used as a standard and BSA 

was used for a calibrate-curve. 

 
Bradford reagent: 
  0.01%  Coomasie Brilliant Blue G 250 
  8.5%  phosphoric acid 
  5%  methanol 
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3.10.3 Preparation of protein extracts from mice tissues and measurement of 

protein concentration 

1) Extraction of proteins from tissues  

Tissue samples stored at - 80°C were weighed, placed in 5 ml plastic tubes and homogenized 

in protein extraction buffer with a tissue homogenizer for 1 min. 500 µl of extraction buffer 

was added to each 20 mg tissue. The homogenizer was washed with PBS after each sample. 

 
Protein extraction buffer:   

20 mM  Tris-HCl, pH 7.5   
  1%  Triton X-100     

1 x   laemmli buffer  
   

The samples were stored on ice, transferred to 1.5 ml centrifuge tubes and centrifuged at 

12000 rpm at 4°C for 5 min. An aliquot was removed for the determination of protein 

concentration and samples were stored at - 20°C. 

 

2) Determination of protein concentration 

The protein content in the samples was estimated by the bicinchoninic acid (BCA) protein 

assay. A set of protein standards of known concentrations was prepared by serially diluting a 

bovine serum albumin (BSA) stock solution (4 mg/ml) in PBS. 50 µl of the standards and of 

the samples of unknown concentration (diluted 1:10 in PBS) were pipetted into 96-well plates 

and 200 µl of a mixture of BCA and 4% CuSO4 (50:1) were added to each well and mixed. 

The plate was incubated at 37°C for 30 min and the absorbance was measured at 562 nm. A 

standard curve was prepared by plotting the absorbance of the standards versus protein 

concentrations. The protein concentration of the samples was determined using the standard 

curve. 

3.10.4  SDS-polyacrylamid gel eletrophoresis (SDS-Page) 

This gel system uses the method described by Laemmli (1970). In this technique, the protein 

sample is denatured and coated with detergent by heating in the presence of SDS and a 

reducing agent. The SDS coating gives the protein a high net negative charge that is 

proportional to the length of the polypeptide chain. The sample is loaded on a polyacrylamid 

gel and high voltage is applied, causing the protein components to migrate toward the positive 

electrode (anode). Since all of the proteins have a net negative charge that is in proportion to 
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their size, the proteins are separated solely on the basis of their molecular mass, a result of 

sieving effect of the gel matrix. The molecular mass of the protein can be estimated by 

comparing the mobility of a band with protein standards. Shape banding of the protein 

components is achieved by using a discontinuous gel system, which is composed of stacking 

and separating gel layers that differ in either salt concentration or pH or both. 

Resolving and stacking mini-gel solutions for the preparation of two 7 x 10 cm gels with a 

thickness of about 0.75-1.00 mm were prepared. 10% ammonium persulfate (APS) and 

TEMED were added just prior to pouring the gel. The resolving gel mix was poured into 

assembled gel plates, leaving sufficient space at the top for the stacking gel to be added later. 

The gel mix was gently overlaid with isopropanol and the gel was allowed to polymerize for 

at least 15-30 min. After polymerization, the isopropanol layer was removed and the surface 

of the resolving gel was rinsed with water. The remaining space was filled with the stacking 

gel solution and the comb was inserted immediately. After the stacking gel had polymerized, 

the comb was removed and the wells were rinsed with water to remove unpolymerized 

acrylamid. At least 1 cm of stacking gel should be present between the bottom of the loading 

wells and the resolving gel. 

0.02 –25 µg of protein with 5 x loading buffer were heated at 95°C for 5 min and loaded onto 

the gel with a protein standard marker beside it. The gel was run in SDS gel running buffer at 

200 V. 
 
Acrylamid solution: 
 30%  Acryamid 
 0.8%  N,N’-Methylen-Bisacrylamid 
 
 
Stacking gel solution:      
 1 ml  Acrylamid solution (30+0.8)  
 0.75 ml 1 M  Tris-Hcl, pH 6.8   
 65 µl   10% SDS    
 4.1 ml  H2O     
 100 µl  10% APS    
 7 µl  TEMED (N,N,N’,N’-Tetramethylethylenamine) 
 
Resolving Gel solution: 
 5 ml  Acrylamid solution (30+0.8) 
 4.75 ml  1 M  Tris-Hcl, pH 8.8  
 125 µl   10% SDS 
 3.0 ml  H2O 
 150 µl  10% APS 
 15 µl  TEMED (N,N,N’,N’-Tetramethylethylenamine) 
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SDS gel running buffer:   5 x loading buffer: 
 25 mM  Tris    10%  SDS 
 192 mM  glycin    25%  β-Mercaptoethanol 
 0.1%   SDS    30%  glycerol 
       312.5 mM Tris-Hcl, pH 6.8 
       0.01%  bromophenol blue 
       0.01%  xylencyanol 

3.10.5 In gel staining of proteins  

3.10.5.1 Coomassie blue staining  

Detection of protein bands in a gel by Coomassie Blue staining can be achieved due to 

nonspecific binding of a dye, coomassie Brillant Blue R, to the proteins. The detection limit is 

20 ng to 1 µg/protein band.  

After the SDS gel was run, the gel was shaken in Coomassie Blue staining solution for 15 min 

to 16 hrs depending on the amount of protein. Coomassie Blue turned the entire gel blue and 

the gel should be destained by detaining solution. After destaining, the blue protein bands 

appeared against a clear background. The gel could be stored in acetic acid or water or was 

photographed or dried to maintain a permanent record. 

 
Coomassie Blue staining solution: 
 50% (v/v) methanol  
 0.05% (v/v) Coomassie brilliant blue R-250  
 10%  acetic acid 
 40%  H2O 
 
Destaining solution: 
 5%   methanol 
 7%  acetic acid 
 88%   H2O 

3.10.5.2 Rapid Coomassie blue staining 

Roti-Blue (Roth) was used for rapid protein staining. Roti-Blue stains the protein bands after 

30 min with very little background even after 15 hrs of staining, because the dye in Roti-Blue 

binds specifically to the protein but not to the gel matrix. The detection limit is almost the 

same as Silver staining (< 30 ng/protein). Gel was shook in Roti-Blue staining solution and 

then destained. The gel could be stored in acetic acid or water or was photographed or dried to 

maintain a permanent record. 
 
Destaining solution: 
 25%  methanol 
 75%  H2O 
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3.10.6 Western-blot 

The Western-blot Chemiluminescence Reagent Plus (NENTM Life Science Products) was 

used, which is based on the enhanced version of a chemiluminescence reaction in which the 

enzyme horeradish peroxidase (HRP) catalyzes light emission from the oxidation of luminol. 

Western-blots can be used to separate 0.0005-25 µg of complex mixtures of proteins. A 

PVDF membrane was shaken shortly in absolute ethanol, washed in H2O and incubated in 

Western-blot buffer for 15 min with gentle continuous shaking. The gel was incubated in 

renature buffer for at least 30 min to renature the proteins. Then the gel was blotted onto a 

PVDF membrane using Miniprotean II (Biorad) at 60 V for 1 hr. The membrane was air-dried 

for at least 20 min and incubated in TBST buffer containing 5-10% FCS for 1 hr with gentle 

shaking to block unspecific bindings of antibody. Specific primary antibody was given to the 

blot and incubated for 1 hr with gentle shaking. Depending on the antibody’s specificity and 

affinity, the antibody was diluted to 1:100 to 1:1000 in TBST containing 10% of FCS. After 

the membrane was washed for 3 times with TBST, the secondary antibody, peroxidase 

conjugated anti-IgG (mouse, rabbit, peroxidase-conjugated, Sigma) diluted to 1:5000-1:10000 

in TBST containing 10% FCS was given and incubated for 1 hr with gentle shaking. The blot 

was washed with TBST for four times. The Western-blot Chemiluminescence Reagent was 

prepared by mixing 5 ml of the solutions from bottle1 and bottle 2 and immediately given to 

membrane. The Chemiluminescence Reagent was incubated with the membrane for 1 min at 

room temperature. Use at least 0.125 ml per cm2 membrane and incubate with shaking. The 

membrane was shortly drained between Whatman papers and placed between the covers of a 

polypropylene sheet. A film was laid on the membrane and exposed for 15 seconds and then 

developed. Repeat the film exposure, varying the time as needed for optimal detection. 

 
Alkaline phosphatase buffer:    TBST buffer: 
 100 mM Tris-HCl, pH 9.5  10 mM  Tris-HCl, pH 8.0 
 100 mM NaCl    150 mM NaCl 
 5 mM  MgCl2    0.05%  Tween 
 
 
Renature buffer: 
 50 mM  Tris-HCl, pH 7.5 
 20%  glycerol 

3.10.7 Eletro mobility shift assay – EMSA 

The mobility shift assay was developed by Schneider et al (1994) on the basis of the 

observation from Fried and Crother (1981). In native polyacrylamid gel, the protein-DNA-
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complex keeps stabile and runs differently from free protein or free DNA. Protein-DNA-

complex runs slowly than protein alone but faster than the free DNA. 

The washed glass plates and 1.5 mm spacers were assembled for casting the gel, which was 

16cm x 16cm x 1.5mm big. The 8% polyacrylamid gel solution was poured between the 

plates. Let the gel polymerize for at least 1 hr. The gel was prerun at 90V for 1hr.  

10-50 fmol 32P-labeled oligonucleotide was incubated shortly on ice with the protein in 

binding buffer in the presence of 1-2 µg poly-[d(I-C)] and 10-20 µg of BSA. 10 x loading 

buffer was given before loading. 

The electrophoresis was conducted in TBE buffer at 150 V for 4 hrs before the bromphenol 

blue approached the bottom of the gel. A phosphor Image was laid on the gel and followed 

scanned by Phosphor Image. 

 
Binding buffer:      10 x loading buffer: 
50 mM  Hepes, pH 7.9    625 mM Hepes, pH 7.9 
10 mM  MgCl2     100 mM DTT 
150 mM NaCl     25%  glycerol 
1 mM  DTT     0.05%  bromphenol blue 
1 mM  EDTA     0.05%  xylencyanol 
10%  glycerol 
 
8% gel solution: 
13.3 ml  30% Acryamid, 0.8% N,N’-Methylen-Bisacrylamid 
5 ml  10 x TBE 
H2O add to 50 ml 
Polymerization through addition of 120 µl of 10% APS and 100 µl of TEMED 

3.10.8 Antibody supershift assay 

Supershift assay is a useful variation of the mobility shift assay using antibodies to identify 

proteins present in the protein-DNA complex (Kristie and Roizman, 1986a; Kristie and 

Roizman, 1986b). Addition of a specific antibody to a binding reaction can have one of 

several effects. If the protein recognized by the antibody is not involved in complex 

formation, addition of the antibody should have no effect. If the protein that forms the 

complex is recognized by the antibody, the antibody can either block complex formation, or it 

can form an antibody-protein-DNA ternary complex and thereby specifically result in a 

further reduction in the mobility of the protein-DNA complex (supershift). 

10 µl of anti-Purα antibodies was added to the binding reaction (described in 3.10.7). The 

mixture was incubated shortly on ice. A nonspecific antibody was needed as a negative 
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control. Thereafter, the reaction was stopped by adding 10 x loading buffer and loaded on a 

8% polyacrylamid gel  as described in 3.10.7. 

3.10.9 Immunprecipitation 

Protein G-sepharose was used for inmunprecipitation. All of the anti-Purα antibodies used 

were monoclonal and from rat. Protein G-sepharose beads were equilibrated with 1 ml of 

PBS, mixed and centrifuged (1000rpm/1min). This process was repeated five times and the 

beads were resuspended in 1 ml 1 x PBS. 

Most of the anti-Purα antibodies are not IgG, which can directly bind to protein G-sepharose. 

Therefore, 2 µg of “ Goat anti Rat unconjungated (IgG + IgM)” was coupled at first with 30 

µl of equilibrated protein G-sepharose on the Vibrax (1000rpm) for about 1 hr at room 

temperature. Thereafter, 1 ml of anti-Purα antibody was given and incubated on vibrax (1000 

rpm) for an additional 1 hr. The beads were washed twice with 5 ml of PBS containing 

5mg/ml BSA. After each wash, the mixture was centrifuged at 1000 rpm for 1min. The 

supernatant was carefully aspirated with a fine-tipped Pasteur pipet and 100 µl of fluid above 

the pellet was left. The tube was placed on ice for 5 min and all of the processes followed 

were performed at 4°C or in cold room. Protein crude extract (500-1000 µg) was given and 

incubated on Vibrax (1000 rpm) for 1 hr. The beads was followed washed four times with 5 

ml of ice cold PBS and centrifuged. After each wash, the mixture was centrifuged at 1000 

rpm for 1min. The supernatant was carefully aspirated with a fine-tipped Pasteur pipet and 

100 µl of fluid above the pellet was left. The pellet was resuspended in 20 µl of 1 x SDS 

loading buffer. The supernatant was loaded on 12% SDS gel after heating at 95°C for 5 min. 

After the gel was run, the gel was blotted onto a PVDF membrane and detected with Western-

blot analysis. 

3.10.10 In vitro transcription and translation 

The TNT Quick Coupled Transcription/Translation System (Promega) was used to 

synthesize [35S]-labeled Purα protein in vitro. The TNT Quick Coupled 

Transcription/Translation System (minus Methionine) is convenient single-tube, coupled 

transcription/translation reactions for eukaryotic in vitro translation. It is available for 

transcription and translation of genes cloned downstream from the T7 or SP6 RNA 

polymearse promoters. To use this system, 0.2 – 2.0 µg of either circular or linear DNA and 

4.0 µl of RedivueTML-[35S] methionine (10 mCi /ml) is added to an aliquot of TNT Quick 

Master mix, which was removed from the freezer and allowed to thaw on ice before using. 

TNT Quick Master mix contains TNT rabbit reticulocyte lysate, TNT reaction buffer, 

TNT RNA polymearse, amino acid mixture minus methionine, and RNasin ribonuclease 
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inhibitor. The reaction was then incubated in a 50 µl volume for 60-90 minuets at 30°C. The 

synthesized protein was analyzed by SDS-polyacrylamid gel electrophoresis (SDS-PAGE) 

and autoradiography. 

3.10.11 Pull-down assay 

30 µl of glutathione-sepharose beads were washed with 1.0 ml of binding buffer twice for 

every reaction. 10 µl of in vitro translated [35S]-labeled Purα protein was added to 5 µg of 

GST-Purα in binding buffer to an end volume of 200 µl and incubated on ice for 30 min. The 

mixture was transferred into the tube containing the washed glutathione-sepharose beads. The 

tube was shaken at 4°C for 1 hr. After centrifugation at 1000 rpm for 1 min, the glutathione-

sepharose beads were washed with 1 ml of binding buffer five times. After the last wash, 15 

µl of 2 x SDS loading buffer was added to every tube to elute the proteins immobilized on 

glutathione-sepharose beads. The proteins were then analyzed by SDS-polyacrylamid gel 

electrophoresis (SDS-PAGE) and autoradiography. 

 
Binding buffer: 

50 mM   Hepes, pH 7.9     
10 mM   MgCl2      

150-300 mM  NaCl      
1 mM   DTT      
1 mM   EDTA      
10%   glycerol 
0.1%   NP40 

3.10.12 Expression and purification of GST- fusion proteins 

PGEX vectors can be used in bacterial systems to express foreign polypeptides as fusions 

with glutathione-S-transferase (GST). In general, such fusion proteins are soluble and are 

easily purified from lysed cells under nondenaturing conditions by absorption with 

glutathione-sepharose beads, followed by elution in the presence of free glutathione. 

3.10.12.1 Induction of expression of GST-fusion proteins 

A colony of the pGEX transformant was inoculated into 100 ml LB/ampicillin medium and 

incubated at 37°C overnight with shaking (200 rpm). The culture was diluted 1:10 into 1 liter 

of fresh LB / ampicillin medium, incubated at 37°C with shaking for about 1 hr until its OD600 

= 0.5. IPTG (100 µM) was given and the culture was incubated at 37°C for an additional 3 

hrs. The culture was centrifuged (4500 rpm/10 min, room temperature). The bacterial pellet 

was washed three times with 50 mM Tris-Hcl, pH8.0 / 100 mM NaCl, resuspended in 10 ml 

lysis buffer on ice and lysed using a sonicator (15 impulses, 30% output and repeat for 3 
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times, Branson Sonifier 250). After sonication, the suspension was centrifuged  (20000 

rpm/30 min/ 4°C, Heraeus HFA 22.50). The GST-fusion protein was purified from 

supernatant by incubating with glutathione-sepharose beads. 
 
 
Lysis buffer: 

50 mM  Hepes, pH 7.9 
  500 mM NaCl 
  1 mM  EDTA 
  5 mM  DTT 
  0.5%  Nonidet 
  0.1%  Triton X-100 

3.10.12.2 Purification of GST-fusion proteins 

Glutathione-sepharose beads (Pharmacia) were washed and equilibrated twice with wash 

buffer. The supernatant from above was incubated with 300-400 µl of equilibrated 

glutathione-sepharose beads at 4°C for at least 1 hr with gentle shaking. The mixture was 

centrifuged (2000 rpm/2min/4°C, Heraeus, RS5315). The sepharose pellet was washed with 

wash buffer for 5 times, it is necessary to incubated the beads with wash buffer for 5 min on 

ice to destroy the unspecific interactions with the beads. GST-fusion protein was eluted three 

times by adding the same volume of the elution buffer, mixing well at 4°C for 5 min and 

centrifuging (2000 rpm/2min/4°C, Heraeus, RS5315).  Each Fraction was analyzed by SDS-

PAGE. Stored the eluted protein in aliquots containing 10% glycerol at –70°C. 
 
 
 
Wash buffer: 
  50 mM  Hepes, pH 7.9 
  1000 mM NaCl 
  1 mM  EDTA 
  5 mM  DTT 
  1%  Triton X-100 
 
Elution buffer: 
  150 mM Hepes, pH 7.9 
  500 mM NaCl 
  1 mM  EDTA 
  5 mM  DTT 
  1%  Nonidet 
  1%  Triton X-100 
  100 mM glutathione 

3.10.12.3 Regeneration of glutathione-sepharose beads 

To regenerate glutathione-sepharose beads, the beads were washed with 5 volumes of 

regeneration buffer and equilibrated with wash buffer. 



Methods 

 

 

 

56 

 
Regeneration buffer: 
  50 mM  Hepes, pH 7.9 
  3000 mM NaCl 
  1 mM  EDTA 
  5 mM  DTT 
  1%  Triton X-100   

3.10.12.4 Dialysis of GST-fusion protein  

Slider-A-Lyzer Dialysis Cassette was used to dialyze GST-fusion protein. Low molecular 

weight contaminant removal, buffer exchange, desalting and concentration can be 

accomplished with this device. Dialysis was performed in dialysis buffer at 4°C overnight. 

 
Dialysis buffer: 
  25 mM  Mes, pH 6.5 
  0.1 mM  EDTA 
  50 mM  NaCl 
  20%  glycerol 
  5 mM  MgCl2 
  1 mM  DTT  
 

3.10.13 Unwinding assay 

3.10.13.1 Generation of different substrates 

3.10.13.1.1 Preparation of 5’-labeled unwinding substrate 

The DNA substrate used in unwinding assays consists of 32P labeled complementary 

oligodeoxynucleotide annealed to single-stranded M13mp19 phage DNA to create a partial 

duplex. The oligodeoxynucleotide (17-mer) was mainly used except as otherwise stated 

(Tuteja et al., 1994; Tuteja et al., 1990). A total of 10 pmol of oligonucleotide was labeled at 

the 5’-end with T4 polynucleotide kinase and [γ32P]-ATP. After 1 hr of incubation at 37°C, 

the reaction was stopped by heating at 95°C for 20 min. 7.5 µl of M13mp19 DNA and 3.0 µ 

of annealing buffer were given to the reaction. The mixture was heated at 95°C for 5 min to 

denature the oligonucleotide and M13mp19. After short centrifugation, it was transferred to a 

60°C water bath, slowly cooled and hybridized overnight. Non-hybridized oligonucleotide 

was removed by gel filtration through a sepharose 4B (Pharmacia) column with elution 

buffer. 
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Annealing buffer:     Elution buffer: 
 400 mM  Tris, pH 7.5   10 mM  Hepes, pH7.4 
 100 mM  MgCl2    100 mM  NaCl 
 1000 mM  NaCl    1 mM  EDTA 
 10 mM   DTT  

3.10.13.1.2 Preparation of blunt ended duplex and small linear DNA unwinding substrate 

For the preparation of blunt ended duplex DNA substrate,10 pmol of 17-mer was 

radioactively labeled and annealed to 40 pmol of complementary 17-mer. Small linear 

substrates were prepared by labeling 10 pmol of 17-mer and annealing it with 20 pmol of 101-

mer.  

A total of 10 pmol oligonucleotide (17-mer) was labeled at the 5’-end with T4 polynucleotide 

kinase and [γ32P]-ATP. After 1 hr of incubation at 37°C, the reaction was stopped by heating 

at 95°C for 20 min. 20 pmol of oligonucleotide (101-mer) or 40 pmol of oligonucleotide 

(complementary 17-mer) and 3.0 µl of annealing buffer were given to the reaction. The 

mixture was heated at 95°C for 5 min to denature the oligonucleotide and M13mp19. After 

short centrifugtion, it was transferred to a 60°C water bath, which was then turned off. The 

hybridization was performed overnight. 

Non-hybridized oligonucleotide was removed by gel filtration through a sepharose 4B 

(Pharmacia) column with elution buffer. 

3.10.13.2 DNA Unwinding assay  

The unwinding assay measures the unwinding of a γ 32P labeled DNA fragment from a partial 

duplex DNA molecule. The assays were performed in a final volume of 20 µl containing 200 

mM Mes (pH 6.5), 10 mM MgCl2, 10 mM DTT, about 200 ng of GST-Purα or truncated 

GST-Purα and 32P-labeled unwinding substrate. The reaction was incubated at 37°C for 30 

min and terminated by adding 4.0 µl of 5 x loading buffer. The product was separated by 

electrophoresis on a 12% nondenaturing polyacrylamid gel. A phosphor Image Screen was 

laid on the gel and followed scanned by Phosphor Image. 

 
5 x loading buffer: 
  75 mM  EDTA 
  2.25%  SDS 
  37.5%  glycerol 
  0.3%  bromophenol blue 
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3.10.13.3  Generation of point-mutations in a Purαα deletion mutant 

Point mutation of Purα cDNA was made using QuickChangeTM Site-Directed Mutagenesis 

Kit (Stratagene). QuickChangeTM Site-Directed Mutagenesis Kit allows site-specific mutation 

in virtually any double-stranded plasmid and requires no specialized vectors, unique 

restriction sites, or multiple transformations. 

1) Setting up the PCR reaction: 

Two complementary oligonucleotides containing the desired mutation, flanked by unmodified 

nucleotide sequence were designed. The reaction was prepared as below: 
 
5 µl of 10 x reaction buffer 
50 ng of pGPurα 
12.5 pmol oligonucleotide primer 1 
12.5 pmol oligonucleotide primer 2 
0.5 mM dNTP mix 
ddH2O to a final volume of 50 µl 
1 µl of Turbo Pfu DNA polymerase (2.5 U / µl) 

Each reaction was overlaid with 30 µl of mineral oil.  

2) Running PCR: 
 
95°C / 1min       1 cycle 
95°C / 1min, 65°C / 1min, 68°C / 8 min    16 cycles 
68°C / 10min       1 cycle 
4°C / ∞ 

3) Digestion of the products: 

1.0 µl of Dpn I restriction enzyme (10 U/µl) was directly added to each amplification reaction 

below the mineral oil overlay using a small, pointed pipette tip. The mixtures were incubated 

at 37°C for 1 hr to digest the parental supercoiled dsDNA. 

4) After PCR products were transformed into XLI Blue Competent Cells, plasmid DNA was 

isolated from the cells and sequenced to check the point mutation. 
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4 Results 

SPSF I and II were purified from calf thymus by Dr. Marion Jurk during her Ph.D work in our 

laboratory. Both proteins bind specifically to ssDNA. Peptide sequences derived from 

purified SPSF I and II revealed the identity of SPSF I protein with the so-called Hela Purα 

factor. The DNA binding properties of the Pur protein to single-stranded oligonucleotides of 

different lengths and sequences were quantified by determination of DNA-binding constants. 

Hela Purαα cDNA was isolated from a Hela cDNA library and cloned successfully in our 

laboratory (Jurk et al., 1996). 

This dissertation is divided into two parts concentrating on the analysis of Purα’s function. 

Since Purα has been implicated in diverse cellular functions, including transcriptional 

activation and repression, translation and cell growth, we decided to generate Purα knock-out 

(KO) mice to analyze its function in vivo. Thus, the first part of this dissertation reports the 

generation and characterization of Purα KO mice. While analyzing Purα enzymatic activities, 

we found accidentally that Purα displayed helicase activity in vitro. Therefore, the second 

part of this work reports this new property of Purα and the characterization of its function as a 

DNA unwinding enzyme. 

4.1 The generation of Purαα knock-out mice 

For the generation of knock-out mice, two essential prerequisites must be fulfilled: (i) The 

gene to be deleted should be a single copy gene; (ii) the corresponding genomic sequence of 

this gene locus have to be known. Recent work has shown that mouse Purα is a single copy 

gene, however, the genomic DNA sequence of Purα is unknown. Thus, this work was started 

by an analysis of the structure of Purα genomic DNA. 

4.1.1 Structure of Purαα genomic DNA 

For the generation of a Purα targeting vector for homologous recombination in ES cells, two 

homologous regions are needed. A Hela Purα cDNA fragment was used to screen a mouse 

genomic DNA library, since the Purα protein is highly conserved among eucaryotic 

organisms.   

4.1.1.1 Isolation of Purαα genomic DNA  

To isolate the mouse Purα genomic DNA, a 129/SvJ Mouse Genomic Library in Lambda FIX 

II vector (Stratagene) was used for screening.  



Results 

 

 

 

60 

The phages were propagated in phage competent bacteria prepared as described in 3.9.1.1-3. 

Lambda phages on plates were blotted onto membranes and hybridized (3.8.3) with a 777 bp 

human Purα cDNA fragment, which was radioactively labeled as described in 3.7.2. The 

positive plaques were isolated and used for the second screening (3.9.5). Three cycles of 

screening were performed. Thereafter a few single plaques were isolated from phage plates. 

Large scale lambda DNA of positive phage was prepared as described in 3.9.6.  

DNA of the isolated plaques was digested with different restriction enzymes. To ensure the 

complete digestion of phage DNA, the reactions were carried out at 37°C overnight. Different 

restriction enzymes digested lambda DNA in different patterns. For analysis of the digestions, 

the reactions were loaded on a 1% agarose gel. According to the digestion patterns, two 

different independent phages were isolated containing mouse Purα genomic DNA. They were 

designated p5/1 and p14/2.  

Both phages were used to analyze the genomic structure of the Purα gene by restriction 

mapping and partial sequencing. 

4.1.1.2 Analysis of phage p5/1 

In 129/SvJ Mouse Genomic Library, inserts of genomic DNA were cloned into a XhoI site, 

however, this site is not able to be recreated. Insert of genomic DNA can be excised by NotI. 

Therefore, the whole insert of genomic DNA can be isolated by NotI digestion of the phage 

clone, provided that the genomic DNA does not contain NotI restriction sites. Mouse Purα 

cDNA contains two NotI restriction sites at position 135 and 1007. It is not clear, if Purα 

genomic DNA has further NotI restriction sites. PstI cleaves mouse Purα cDNA twice, too. 

Therefore, the mapping was started with NotI and PstI digestion. 

DNA of p5/1 was digested by NotI or PstI separately. From NotI digestion a 2.1 kb fragment 

was seen instead of the expected 832 bp fragment of Purα cDNA, suggesting the presence of 

an intron between the two NotI restriction sites. The 2.1 kb NotI fragment was subcloned into 

the EagI site of the pGMUT vector. A 4.5 kb fragment of the PstI digestion was subcloned 

into pGEM4Z vector linearized by PstI. Plasmids pG26 and pG3 were identified as correct 

plasmids according to the digestion patterns. DNA of both plasmids were isolated and 

sequenced from both sites. PG26 contained a part of Purα cDNA to position 1007 (NotI) 

while pG3 contained Purα cDNA downstream of the PstI restriction site (1456). Both DNA 

was digested with different enzymes and 6 fragments were subcloned into pGEM4Z. The 

sequencing analysis showed that subclone pZ14-9 with a 1.5 kb XhoI/NruI fragment 

contained a part of the Purα cDNA sequence from position 389 to 394. The sequence of the 

Purα cDNA before position 388 was not found on this subclone, suggesting that mouse Purα 

genomic DNA might be composed of at least two exons. From the restriction map of murine 
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Purα cDNA, subclones of pG26, pG3 and some other subclones, a partial restriction site map 

of phage p5/1 was derived (Figure 4-1). 

Figure 4-1: Partial of restriction map of p5/1. Purα cDNA already mapped is illustrated by a box. The 
numbers in parentheses shows the nucleotide position of the restriction site of the respective enzymes 
in Purα cDNA. 

PstI 450 bp and HindIII 450 bp fragments were used as probes for further mapping of Purα 

genomic DNA. Therefore, both fragments were subcloned into pGEM4Z. PstI and HindIII 

fragments were excised from the plasmids, purified from agarose gel with QIAquick Gel 

Extraction Kit (3.4.4.2) and labeled radioactively (3.7.2).  

For the further analysis of Purα genomic sequence, DNA of phage p5/1 and p14/2 was 

digested with the following combinations of enzymes: NotI/HindIII, NotI/PstI, NotI/EcoRI, 

NotI/XbaI, NotI/SmaI, NotI/BamHI, NotI/EcoRV, NotI/BglII, NotI/SalI and NotI. The 

restriction reactions were loaded onto a 1% agarose gel and blotted onto a Hybond N+-

membrane. The membrane was then hybridized with the 450 bp HindIII fragment isolated and 

labeled as described above. The blot was stripped (3.8.5) and then hybridized with the 450 bp 

PstI fragment.  

Figure 4-2 shows the blot of p5/1 hybridized with 450 bp PstI or HindIII fragments. The sizes 

of the DNA fragments obtained in the Southern-blots are listed in the appendix (Table 8-1). 

From these two Southern-blots, a more detailed restriction map for p5/1 was derived as shown 

in Figure 4-3. 

 

 

 



Results 

 

 

 

62 

 

Figure 4-2: p5/1 DNA was digested with different enzyme combinations: N (NotI), H (HindIII), P 
(PstI), E (EcoRI), X (XbaI), S (SmaI), B (BamHI), Ev (EcoRV), Bg (BglII), Sa (SalI). The blot was 
hybridized with 450 bp PstI or HindIII fragments. 

Figure 4-3: Partial restriction map of p5/1: N (NotI), H (HindIII), P (PstI), E (EcoRI), Xh (XhoI), Ev 
(EcoRV), Bg (BglII), Nu (NruI). The approximate size of the Pur locus is represented by the scale 
shown beneath the diagram. 

The large fragment (>>7.0 kb) from the NotI/EcoRI digestion of p5/1 DNA was subcloned 

into a pZERO vector linearized with NotI/EcoRI. The resulting plasmid was pZ4-21, which 

was digested with HindIII and some other enzymes to get more information about restriction 

sites. From subclone pZ4-21 and the partial restriction map of p5/1, a more refined restriction 

map of p5/1 was obtained as shown in Figure 4-4. 
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Figure 4-4: The complete restriction map of p5/1: N (NotI), H (HindIII), P (PstI), E (EcoRI), Xh 
(XhoI), Ev (EcoRV), Bg (BglII), Nu (NruI), B (BamHI). The approximate size of the Pur locus is 
represented by the scale shown beneath the diagram. 

From the whole restriction mapping and sequencing analysis of p5/1, the following can be 

concluded: A) p5/1 contains about 17.5 kb genomic DNA of the Purα locus. B) The murine 

Purα gene consists of at least 2 exons, the second one contains the whole open reading frame 

of Purα. C) Sequencing analysis of the subclone pZ14-9 confirmed that the second exon 

begins at 389 bp of Purα cDNA.  

4.1.1.3 Analysis of phage p14/2 

Blot p14/2 was hybridized with the 450 bp PstI or HindIII fragments as described for blot 

p5/1. The sizes of the DNA bands obtained are presented in the appendix (Table 8-2). From 

these Southern-Blots and the murine Purα cDNA sequence, a partial restriction map of p14/2 

was derived as shown in Figure 4-5. 

The 7.0 kb NotI fragment was subcloned into pZERO linearized with NotI, yielding plasmid 

pZ2-12. Sequencing analysis showed that pZ2-12 starts at nucleotide 135 and ends at 

nucleotide 1007 of Purα cDNA and includes the 6.0 kb intron between nucleotides 388 and 

389. Taken together, these data revealed the genomic structure of the Purα as shown in Figure 

4-6. 

 

0 2.0 3.0 4.0 5.0 7.0 17.5 kb9.0kb1.0

P P

Bg

Xh H

E

H

Bg

PEv N
Purαα
ExonII B

12.010.0 14.0

HN

pZ14-9

P
(1456)

P
(679)N  

(1007)
Nu  
(394)



Results 

 

 

 

64 

Figure 4-5: The partial restriction map of p14/2: N (NotI), H (HindIII), P (PstI), E (EcoRI), Xh (XhoI), 
Ev (EcoRV), Bg (BglII), Nu (NruI), B (BamHI), X (XbaI). The approximate size of the Pur locus is 
represented by the scale shown beneath the diagram. 

 

Figure 4-6: The Purα gene contains at least two exons, which are represented by black boxes. The 
complete open reading frame (519-1485) is located in the second exon. The two exons are separated 
by an intron of about 6.0 kb. The numbers under the box indicate nucleotide positions in Purα cDNA. 

As already mentioned the Purα cDNA has two NotI restriction sites located at positions 135 

and 1007. As described above, the digestion of Purα genomic DNA with NotI did not show a 

band of 872 bp, indicating the existence of at least one intron between nucleotide position135 

and 1007. Restriction analysis and sequencing confirmed the presence of a 6.0 kb intron 

between the two exons. The first exon contains nucleotides 135 to 388 as confirmed by 

sequencing. However, it remains unclear whether further intron(s) is present between position 

1 and 135 of the first exon. 

To answer this question, two oligonucleotides were designed for further mapping of intron-

exon junction. P2M1 represents nucleotides 94-119 of mouse Purα cDNA and P2M2 is 

homologous to 346-369. The p14/2 blot was stripped and hybridized with P2M2. The blot 

was stripped again and then hybridized with P2M1. The lengths of DNA bands obtained from 

the Southern-blot are listed in the appendix (Table 8-2). From these two blots, a complete 

restriction map for p14/2 was derived as followed in Figure 4-7. 
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Figure 4-7: The complete restriction map of p14/2: N (NotI), H (HindIII), P (PstI), E (EcoRI), Xh 
(XhoI), Ev (EcoRV), Bg (BglII), Nu (NruI), X (XbaI) B (BamHI), Sa (SalI), S (SmaI). The 
approximate size of the Pur locus is represented by the scale shown beneath the diagram. 

A 2.5 kb NotI/XbaI fragment was subcloned into pZERO linearized with NotI and HindIII. 

Sequence analysis of the resulting subclone pZ6-16 identified the first 135 bp of Purα cDNA 

ending at the NotI restriction site. There were no additional intron in these 135 bp. Therefore, 

we conclud that the Purα gene contains two exons, the first spanning 388 bp of the 5’ UTR 

while the second exon comprising the remaining part of the 5’ UTR, the translational start 

site, and the complete open reading frame followed by 113 bp of the 3’ UTR, as found in the 

mouse cDNA. The intron present in the mouse Purα gene is approximately 6.0 kb long. The 

complete Purα genomic structure is shown in Figure 4-8. 

Figure 4-8: Schematic genomic structure of the Purα gene. The Purα gene contains two exons, which 
are represented as black boxes. The whole open reading frame (519-1485) is located in the second 
exon. Between the two exons is an intron of about 6.0 kb, which is represented as gray box. The 
numbers indicate the positions in Purα cDNA. 

4.1.1.4 Genomic structure of the Purαα locus 

About 25 kb of genomic Purα sequence were analyzed with different restriction enzymes and 

partially sequenced. There is about 6.0 kb overlapping sequence between these two phage 

fragments. The overlapping region is from XhoI restriction site to PstI restriction site. P5/1 
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contains the 5’-UTR with a 6.0 kb intron while the p14/2 contains the 3’-UTR. Figure 4-9 

shows the structure of the inserts of phage p5/1 and p14/2. 

For the complete restriction mapping, a few fragments were excised from phage DNA and 

subcloned into plasmids. These cloned fragments and the corresponding subclones are shown 

in Figure 4-11, which represents the Pur locus schematically with detailed restriction sites. In 

addition, the DNA probes used for phage screening are also indicated in this figure. 

Figure 4-9: Schematic representation of the genomic inserts of phage p5/1 and p14/2. The two phage 
clones contain about 25 kb genomic Purα and overlaps for about 6.0 kb . Exons are illustrated by 
black boxes. The open area within the boxes is the open reading frame (ORF) of Purα. The restriction 
maps show the position of the restriction enzymes sites. X (XbaI), E (EcoRI), N (NotI), Sa (SalI), Xh 
(XhoI), P (PstI), Nu (NruI), H (HindIII), B (BamHI), Ev (EcoRV). The approximate size of Pur locus 
is indicated by the scale shown beneath the diagram. 

4.1.1.5 The exon/intron junction of the Purαα gene 

Finally, the exon/intron junctions of the Purα gene were determined. There are two exons and 

one intron. The intron is located within the 5’-UTR after 388 bp of the cDNA. Exon II 

contains the remaining part of the 5’-UTR, the translational start site, the ORF and the 3’-

UTR. Figure 4-10 shows the nucleotide composition at the junctions of exon I and exon II. 

Figure 4-10: Nucleotide composition of the Purα gene at the junctions of exon I and II. The gt, ag 
splice sites of the donor and acceptor sequences of the intron are shown in bold. Boxed sequences 
represent the end of the first exon and the beginning of the second exon. 
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4.1.2 The targeting constructs for the generation of Purαα knock-out mice  

A targeting vector is designed to recombine with and thereby mutate a chromosomal locus. 

The minimal components of such a vector are sequences which are homologous with the 

desired chromosomal integration site, a positive selection marker and a plasmid backbone. 

Since both the transfection efficiency and targeting frequency of such a vector usually are 

low, it is desirable to include other components in the vector such as additional positive and 

negative selection markers which provide strong selection for the targeted recombination 

product. The positive marker in a targeting vector may serve two functions. Firstly, it 

provides a selection marker to isolate rare transfected cells that have stably integrated DNA 

(which occurs at a frequency of about one in every 104 treated cells); Secondly, it replaces 

essential sequences of the target gene which leads to its inactivation upon homologous 

recombination. Two distinct vector designs can be used for targeting in mammalian cells, 

replacement and insertion vectors. Replacement vectors (Figure 4-12) are the most widely 

used vector type, whose fundamental elements are homology to the target locus, a positive 

selection marker, bacterial plasmid sequences, and a linearization site outside of the 

homologous sequences of the vector. In some cases a additional negative selectable marker 

may be used to enrich the transfected cells against random integration events (A.L.Joyner, 

1999).  

Figure 4-12: Replacement vector. Thick lines represent sequences homologous to the target locus, thin 
lines represent bacterial plasmid, line of intermediate thickness represents the target locus in the 
chromosome. Black rectangle represents an exon. Positive selection marker, a box that contains a ‘+’, 
negative marker, a box containing a ‘-’. The positive selection marker deletes and replaces a part of 
the coding region of the target gene. The replacement vector is linearized outside the target homology 
prior to electroporation. Gene targeting results in a simple gene replacement product. 
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4.1.2.1 Design of the targeting vector for deleting Purαα locus 

The genomic structure of the murine Purα gene described in 4.1.1 was used to design the 

Purα-KO targeting vector. 

To obtain a targeted disruption of Purα gene, we decided to use the positive-negative 

selection strategy (Mansour et al., 1988). This strategy enriches for homologous 

recombination events by simultaneously selection for Neo-resistance and against a herpes 

simplex virus thymidine kinase (HSV-TK) gene placed at the 3’ end of the targeting 

sequence. The Purα targeting vector was constructed by insertion of a PGK-Neo cassette into 

exon II thereby replacing the whole ORF. “Neo” encodes neomycin phosphotransferase 

whose expression is driven by the human PGK (phosphoglycerate kinase) promoter. ES cells 

with this antibiotic resistance gene have the ability to survive in the presence of the neomycin 

derivative geneticin (G418). The HSV-TK gene was placed at the 3’ end of the targeting 

sequence. In ES cells, in which the targeting construct is inserted at the correct locus, the TK 

gene is deleted during homologous recombination. Therefore, these cells can survive in the 

presence of gancyclovir (GANC), while the ES cells, where the construct was inserted 

randomly still contain the TK gene and cannot survive in the presence of GANC (Thomas and 

Capecchi, 1987).  

The homologous sequences in the vector should be derived from genomic libraries isogenic 

with the specific murine ES cells used in the targeting experiment. The number and extent of 

polymorphic variation between two mouse strains in any given locus is usually unknown and 

may vary from gene to gene (A.L.Joyner, 1999). For the restriction map of the Purα gene a 

129/SvJ Mouse Genomic Library was used. The ES cells used for electroporation in our 

laboratory are derived from mouse strain 129/Ola. Further complications arose from the 

recent finding that 129/SvJ, which is the source of several commonly used genomic libraries, 

is a genetically contaminated substrain containing genomic regions of non-129 origin 

(Threadgill et al., 1997). Therefore, to ensure the highest possible homologous recombination 

frequency, the two homologous arms for the targeting vector were amplified by PCR from 

genomic DNA of E14 ES cells.  

Amplification of the left homologous arm (1.2 kb PCR fragment: F40):  A 1.2 kb 

fragment was amplified by PCR using a sense primer P11M2 and an antisense primer P7M1E 

as shown in Figure 4-13. Both primers contain linker sequences to introduce SmaI recognition 

sites into the amplified fragment. PCR was carried out as described in 3.6.1. The DNA 

fragment was excised from agarose gel and purified with QIAquick Gel Extraction Kit (see 

3.4.4.2). The fragment F40 was achieved after digestion with SmaI and subcloned into the 

pKO vector. 
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Amplification of the right homologous arm (7.0 kb PCR fragment: F39): A 7.0 kb 

fragment was amplified by PCR using a sense primer P10M1A and antisense primer P10M2 

as shown in Figure 4-13. Both of the primers contain linker sequences to introduce XhoI 

recognition sites into the amplified fragment. PCR was performed as described in 3.6.3. The 

DNA fragment was isolated from agarose gel and purified with QIAquick Gel Extraction Kit 

(see 3.4.4.2). The fragment F39 was achieved after digestion with XhoI was then subcloned 

into pKO vector. 

The two homologous arms synthesized by PCR for targeting vector and the corresponding 

PCR primers are shown in Figure 4-13. 

Figure 4-13: Location of the homologous arms for the targeting vector. Locations of the primers are 
indicated by bold black lines. After PCR amplification and enzyme digestion, the left homologous arm 
F40 and the right homologous arm F39 were achieved. 

4.1.2.2 Generation of the targeting vector for deletion of the Purαα locus 

To generate the Purα targeting vector, the plasmid pKO Scrambler V920 (Lexicon Genetics 

Incorporated) was used. The PGK-Neo cassette was released from pKO SelectNeo (Lexicon 

Genetics Incorporated) with AscI. The pMC1-TK cassette was excised from plasmid pKO 

SelectTK (Lexicon Genetics Incorporated) with RsrII. 

Subcloning of the PGK-Neo, pMC1-TK and two homologous arms into pKO vector: The 

PGK-Neo-cassette was first subcloned into the AscI restriction site of pKO in antisense 

direction. Then the pMC1-TK cassette was subcloned into pKO at the RsrII site. Finally, the 

two homologous arms were ligated into SmaI and XhoI sites. The process to generate the Purα 

targeting vector is shown in Figure 4-14. The correct orientation of the fragments was verified 

by restriction analysis and sequencing. 
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Figure 4-14: Cloning steps to generate Purα targeting vector. The targeting vector Purα-KO contains 
PGK-Neo cassette, pMC1-TK cassette and two homologous arms. Purα-KO could be linearized by 
SalI. 
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4.1.3 Generation of Purαα knock-out mice 

100 µg of the Purα-KO targeting vector (Figure 4-14) were completely linearized by SalI 

digestion. 20 µg of the linear DNA were electroporated into E14 mouse embryonic stem (ES) 

cells. After geneticin G418 and gancyclovir selection, resistant colonies were visible and 480 

single colonies were picked into 48 well feeder plates and expanded on 48 well feeder plates 

for freezing. Replicate gelatinized plates were produced for late screening analysis.  

To confirm that the ES cell clones surviving selection with G418 and gancyclovir are the 

results of homologous targeting events and not from random insertion, it is necessary to 

further characterize these cell lines by either polymerase chain reaction (PCR) or Southern-

blot analysis.  

4.1.3.1 Screening of positive ES clones by PCR 

ES cells on 48-well plates were directly lysed with Kawasaki buffer (Kawasaki, 1990) (3.5.4). 

Using this method, the isolated genomic DNA can be directly used in PCR, but is not suitable 

for a Southern-blot. For the screening PCR one primer anneals to the novel sequences, e.g. the 

positive selection marker which replaces the targeted gene. The second primer lies just 

upstream of the homologous sequences of the shorter arm used for the vector. In this way, a 

correctly sized PCR product is only generated when the knock-out construct has been 

integrated by homologous recombination at the correct locus in the genome. PCR reaction 

was carried out as described in 3.6.1. The PCR screening strategy of ES cell clones targeted at 

the Purα gene locus is shown in Figure 4-15.  

The screening PCR with primer P11M1 and Neo-primer yields a 1.2 kb DNA fragment in ES 

cell clones mutated by homologous recombination. This 1.2 kb PCR fragment was only seen 

in correctly targeted clones (KO) but not in wild type cells (Figure 4-15, lane 1 and 2). The 

control PCR with primers P11M1 and P7M1E yields a slightly shorter product in all clones 

confirming integrity of DNA (Figure 4-15, lane 3). It is necessary to blot the PCR gel on 

membrane, if the PCR quality is not good enough. The blot could be hybridized with the 450 

bp PstI fragment (Figure 4-1). 
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Figure 4-15: PCR screening strategy of ES cell clones targeted at the Purα gene locus. (a) Targeting 
vector and homologous recombination at the Purα locus. The targeting vector contains a neomycin 
cassette replacing exon II. The mutant gene locus shows the predicted map of the mutated Purα allele 
following homologous recombination with the targeting vector. (b) PCR screening strategy. The 
screening PCR with primer P11M1 (within the region of homology) and Neo-primer yields a 1.2 kb 
DNA fragment in ES cell clones mutated by homologous recombination. The control PCR with 
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primers P11M1 and P7M1E yields a slightly shorter fragment in all ES cells. (c) PCR results. With 
screening primers P11M1 and Neo-Primer, a 1.2 kb PCR fragment in targeted clones (KO) was seen 
but not in wild type cells (lane 1 and 2). The control PCR with primers P11M1 and P7M1E yields a 
slightly shorter product in all clones (lane 3). 

4.1.3.2 Screening of positive ES clones by Southern-blot 

The PCR screening of positive ES clones is simple and the process to carry out PCRs is quick. 

But this method is not reliable because PCR quality is unstable and should always be blotted 

onto a membrane and hybridized with a DNA probe. In contrast, the screening of positive 

clone by Southern-blot is much more trustworthy although the process is relatively 

complicated.  

To perform a Southern-blot analysis, it is necessary to design the vector in a way that the 

digestion with appropriate restriction enzymes allows unambiguous identification of targeted 

clones. The wild-type and the targeted alleles must therefore be readily distinguishable. In 

case of a replacement vector, Southern-blot analysis is performed with a probe that is not 

present in the target vector (external probe) and a restriction enzyme is used, with which 

correctly targeted ES clones can be distinguished from the wild type or random integration 

clones (Thomas and Capecchi, 1987). As shown in Figure 4-16, at the Purα gene locus, one 

BamHI restriction site is located in exon I and another one lies downstream of exon II, both 

sites are not present in the targeting vector. However, there is an additional BamHI site in the 

targeting vector between the first exon and the Neo cassette. Therefore, wild type and targeted 

ES clones show different BamHI digestion patterns. To avoid false negative results, Southern-

blot analysis should be performed with several restriction enzymes and different probes. It is 

also important to analyze both the 5’ and 3’ ends of the targeted locus by using external 

probes from flanking sequences. Moreover, an internal probe which hybridizes to the 

selectable marker can be used to distinguish between a unique gene replacement and random 

integration events. 

After the positive ES clone was confirmed by PCR, the corresponding frozen clone in 48 well 

plates was thawed quickly at 37°C in a water bath, and expanded progressively on feeder cells. 

The cells on 10 cm feeder dishes were used for preparation of genomic DNA as described in 

3.5.2. 10-15 µg of genomic DNA was digested with BamHI and used for Southern-blot. 

A part of the ES cell clones on 48 well plates were directly screened by Southern-blot because 

of its inherent reliability. Genomic DNA from ES cells was isolated as described in 3.5.1. 10-

15 µg of genomic DNA was digested with BamHI overnight at 37°C, separated on a 0.8% 

agarose gel, and blotted as described in 3.8.1. The blot was hybridized with a 5’ or 3’ probe 

located outside the targeting vector as described in 3.8.4. 
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Figure 4-16: Southern-blot analysis screening strategy of ES cell clones targeted at the Purα gene 

locus. (a) The mutant Purα gene locus shows the predicted map of the mutated Purα allele after 

homologous recombination with the targeting vector. Restriction sites are indicated by vertical lines 
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and enzyme designation above the vector. Black boxes show the probes used for Southern-blot. 5’-

probe was used for screening for correct recombination of the left arm, 3’-probe was used for correct 

recombination of the right arm, and neo-probe for confirmation of possible simple integration. (b) 

Southern-blot strategy. (c) Southern-blot results. With the 5’-probe, restriction digest with BamHI 

resulted in a 13.5 kb fragment from the wild type gene locus and an additional 6.4 kb fragment from 

the mutant gene locus. With the 3’-probe, restriction digest with BamHI resulted in a 13.5 kb fragment 

from the wild type gene locus and an additional 7.1 kb fragment from the mutant gene locus. Figure 4-

16 shows the localization of the probes for Southern-blot. The 5’ external probe to screen the mutant 

ES clone is a 500 bp XhoI/EcoRV fragment excised from pZ1-4 (Figure 4-11). The 3’ external probe 

to screen the mutant ES clone is a 400 bp HindIII/BamHI fragment excised from pZ4-21 plasmid 

(Figure 4-11). The Neo-probe is a 400 bp SphI fragment excised from pKO-Select-Neo.  

The Southern-blot screening strategy of ES cell clones targeted at the Purα gene locus is 

shown in Figure 4-16. According to PCR and Southern-blot analysis ES clone 248 was 

confirmed to be the sole positive clone out of 2400 ES clones tested. The 5’ external probe (a 

500 bp XhoI/EcoRV fragment) resulted in a 13.5 kb fragment in wild-type clones and a 6.4 kb 

fragment in KO clone. The 3’ external (a 400 bp HindIII/BamHI fragment) resulted in a 13.5 

kb fragment in wild-type clones and a 7.1 kb fragment in KO clones. It was essential to 

hybridize the blot with a Neo-probe to check for possible multiple integrations into the 

genome to avoid unknown disruption of the other genes. With the Neo-probe only a 7.1 kb 

band was detected as expected (data not shown). Therefore, ES KO248 was confirmed to be 

the sole clone out of 2400 ES clones tested that contains the mutated Purα locus. 

4.1.3.3 Generation of chimeras and germ line transmission 

After screening for correct homologous recombinants, KO248 was thawed and injected into 

BALB/c mouse derived blastocysts. The E14 ES cell is originally derived from mouse strain 

129/Ola with agouti color of fur, while BALB/c is albino. Therefore, the chimeric mice 

produced from these combinations will be a color mix of agouti/white and the percentage of 

chimerism was evaluated on the basis of the coat color of the chimeras. Eight chimeras with 

30-95% chimerism were born, one chimera was found dead after birth. One male chimera and 

one female with 30-70% chimerism gave agouti color of pups. 

4.1.3.4 Generation and detection of Purαα heterozygous knock-out mice 

F1 generation was got by breeding the male and female chimeras or breeding the chimeras 

with BALB/c mice. Altogether there were 23 F1 mice born. Southern-blot was carried out to 

detect if some of them are Purα heterozygous KO mice. The genomic DNA was prepared 

from mice tails (3.5.3). 10-15 µg of genomic DNA was digested with BamHI overnight at 
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37°C and loaded onto a 0.8% agarose gel. The gel was blotted as described in 3.8.1. The blot 

was hybridized with the 5’ probe (3.8.4), which is located outside the targeting vector. 12 of 

22 F1 offspring carried the heterozygous Purα KO locus, 2 of which were female and 10 were 

male. Figure 4-17 shows one of the Southern-blots. 

Figure 4-17: Southern-blot analysis of F1 mice. 

4.1.3.5 Generation and detection of Purαα homozygous knock-out mice 

By mating male and female heterozygous Purα KO mice, 168 F2 animals were born. 

Southern-blots were carried out (as described in 4.1.3.4) to detect if some of them are 

homozygous for the Purα KO locus. 2 mm tail clips was used for preparation of genomic 

DNA (3.5.3). 45 of 168 F2 offspring were confirmed as homozygous Purα KO mice and 81 

F2 offspring were confirmed as Purα heterozygous KO mice while 42 F2 offspring were wild 

type mice. Figure 4-18 shows one of the Southern-blots. 

Figure 4-18: Southern-blot analysis of F2 mice. 

To simplify the detection of heterozygous and homozygous Purα KO animals, a PCR method 

was established. In Purα homozygous mice the Neo-cassette replaces exon II of Purα while 

Purα heterozygous mice contain the Neo-cassette on one allele and the normal exon II of 

Purα on the other allele. Wild type mice do not have a Neo-cassette. A pair of neo-primers 

(neo2a and neo2b) and a pair of Purα-primers (HeM4 and HeM5, see Figure 4-38) from exon 

II were designed to amplify a 349 bp Purα fragment and a 450 bp neo Fragment. Neo-primers 

will amplify genomic DNA from Purα homozygous mice while Purα primers should not yield 

a fragment. DNA from heterozygous animals should produce products with both sets of 

primers while in wild type mice only the Purα primers give an amplification product. 
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Two PCRs were carried out separately using Neo primers or Purα primers (3.6.1). PCR 

products were analyzed on an agarose gel as shown in Figure 4-19. 

Figure 4-19: PCR analysis of F2 mice. 

4.1.3.6 Purαα Western-blot  

Purα was found to be widely expressed in the mouse brain, especially abundant in the 

cerebral cortex and cerebellum (Osugi et al., 1996). To analyze Purα expression in both 

heterozygous and homozygous Purα KO mice, protein extracts were prepared from the brain 

stems. The brain stems were homogenized in lysis puffer and protein concentrations were 

measured (3.10.3). 30 µg of protein were electrophoresed through a pre-poured 12.5% SDS 

gel and electroblotted onto a PVDF membrane. Western-blot detection was carried out as 

described in 3.10.6. The blot was immunoprobed with a primary monoclonal antibody 3C12 

against Purα followed by goat anti-rat peroxidase conjugated anti-IgG+IgM (Sigma) and 

enhanced Chemiluminescence detection.  

As shown in Figure 4-20, wild type mice (lane 5 and 6) show a Purα protein band, which was 

not present in Purα deficient mouse (lane 1 and 2). Heterozygous Purα KO mice express 

about half the amount of Purα (lane 3 and 4) as wild type mice.  

Figure 4-20: Detection of Purα by Western-blot. 30 µg of protein prepared from the mice brain stems 
were loaded on a 12.5% SDS gel. Lane 1 and 2: homozygous Purα KO mice; Lane 3 and 4: 
heterozygous Purα KO mice; Lane 5 and 6: Wild type mice. 
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4.1.4 Primary phenotypic analysis of Purαα knock-out mice 

Purα KO mice were live born with normal size and weight. At birth and for the following 10-

12 days no phenotype other than wild type was apparent with either heterozygous or 

homozygous Purα null mutants. From postnatal day 11-14 (p11-14) an increasingly severe 

and continuous tremor phenotype commenced in the homozygous Purα KO mice, continuing 

unabated until the animals were sacrificed or natural death occurred. Purα KO mice could not 

walk normally as their hind limbs apparently are too weak. These KO animals also showed a 

hyperexcitability on noise and tactile stimulus (contact with humans) resulting in 

uncontrollable movements of the KO mice. To confirm the genotype of the mice, Southern-

blot analysis was performed. All mice showing the tremor phenotype were homozygous for 

the Purα knock-out. Mice identified to be heterozygous for the Purα knock-out displayed no 

obvious phenotype.  

An additionally visible characteristic of the most homozygous KO mice is the crossing 

incisors beginning from different postnatal day. Normally, the mice incisors are maintained at 

a suitable length since they are ground by eating. Thus, the crossing of the incisors resulted 

not only in their continuous growth but also the reduced food intake. The incisors had to be 

cut if needed depending on their length. Additionally, to confirm proper food uptake, special 

soft cakes were fed to the KO animals. 

With the onset of the tremor phenotype of Purα KO mice, whether due to severe shaking, 

mis-positioned teeth, some other unknown factor, or a combination of these, the mice showed 

a reduced food intake and they started to lose weight from this time (Figure 4-22 A and B). In 

order to keep the KO animals alive some of them were injected with glucose once or more. 

While wild type and heterozygous mice showed continuous weight increase, KO mice 

showed significant slower weight increase until day 20-25 postnatally (p20-25). From p25 on 

KO mice recovered from weight loss resulting in the same weight as wild type at about p50 

(female) or p70 (male) (Figure 4-21). Strikingly, the female KO mice displayed a more 

significant increase of weight than the males. KO females were always heavier than KO males 

whereas the male wild type mice were heavier than females (Figure 4-22 A and B). While 

wild type mice stabilize weight at the age of 2-3 months, body weight of KO mice increased 

continuously, becoming progressively more obese (Figure 4-21). 
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Figure 4-21: Purα KO mice are bigger than their wild type littermates from postnatal day 70 because 
of obesity. (See color picture in page 136) 

The weight loss of the male KO mice just after the onset of tremor at p11-15 was more severe 

than females and their weight recovery lasted longer than females until they reached the same 

weight as the wild type (Figure 4-22 A and B). Unlike heterozygous and wild type mice, 

whose weight reached a steady status after an increase phase, the weight of KO mice 

increased continuously until about day 120 postnatally and decreased shortly before they died 

(Figure 4-22 A, B, D and F).   

Compared to the Purα KO mice, the heterozygous KO mice did not display any visible 

phenotypes, such as tremor or the crossing incisors. The weight of the young heterozygotes 

did not decreased between postnatal days 12-14 as KO mice but increased continuously and 

evidently exceeded that of the wild type mice from day 30-40 postnatally (Figure 4-22 A and 

B). 
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Figure 4-22: Weight tables of the Purα KO, heterozygous and wild type mice. (See color diagrams in 
page 137) 
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4.1.5 Dissection of Purαα knock-out mice 

In 16-day-old mice, optical and weight analyses of the organs revealed no obvious differences 

in lungs, heart, liver etc, however significant differences were observed in 60-66 days old 

mice. 

Firstly, the organ to body weight ratio of the brain was significantly higher in KO mice than 

that in wild type (see Table 4-1). The brain was visibly enlarged and the weight was increased 

by 30% compared to wild type (Figure 4-23 A). According to the enlarged and heavier brains 

of Purα KO mice, the brains from KO and wild type mice of 48 days postnatally (p48) were 

prepared and cerebrum, cerebellum, brain stem, hippocampus, and sensoric cortex were 

weighed separately. Detailed brain analysis showed brain stem enlarged and significantly 

heavier (about 3 times as heavy as those of the normal mice) (Figure 4-23 B), while the 

hippocampus and sensoric cortex were enlarged but lighter in KO mice. The enlargement of 

the cerebral cortex is accompanied by an increased surface, which can be seen in Figure 4-23 

C. 

Figure 4-23: (A) The whole brain of Purα KO and wild type mice (p48). (B) The brain stem and 
hippocampus prepared from the brains of the KO and wild type mice. (C) HE staining of the brains of 
the KO and wild type mice. (see the color picture in page 136) 

Secondly, as shown in Table 4-1, both male and females had increased abdominal and 

subcutaneous fat layers but interestingly, female mice have much more fat than male mice. 

Heterozygotes, although showing no phenotypic changes, had brain weights and amounts of 
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subcutaneous fat that lay exactly between homozygous KO and wild type levels (Table 4-1). 

Bones and muscle mass of homozygous KO mice were clearly lighter. Thus, overall increased 

animal weight was apparently due to fat deposits, while they seemed to have weaker 

musculature (see carcasse to body weight ratio in Table 4-1). The bones of the homozygous 

KO mice were also more fragile, and less elastic, for example the skull not only appeared 

thinner but also splintered easily upon dissection. 

Investigations of mice at postnatal day 16 (p16) did not reveal any detectable changes in the 

brain at this stage, when the tremor phenotype was already manifest. Enlargement of the brain 

appears to be a developmental problem, possible a trial compensate for some other yet 

unknown defects.  

Dissections of heterozygous and homozygous Purα KO mice of all other organs did not 

display any abnormality. 

 

Mouse 
Nr. 

Geno-
type 

Sex Age 
(days) 

Total 
weight   

(g) 

Length  
(nose-tail 
end) (cm) 

Brain  
(g) 

Abdominal 
fat (g) 

Subcutaneous fat 
(g) (%) 

Carcasse            
(g) (%) 

1 WT m 63 18,7 8,1 0,5532 0,2714 0,0581  (0.3%) 8,3085  (44%) 
2 WT m 59 22,9 8,7 0,4395 0,8966 0,3348  (1.4%) 9,2336  (40%) 
3 WT f 66 16,5 7,8 0,4552 0,9419 / 7,8828  (47%) 
4 WT f 66 18,0 8,1 0,4779 1,0435 / 8,6373  (48%) 
5 +/- m 63 24,8 9,2 0,649 0,4574 0,3805  (1.5%) 10,489  (42%) 
6 +/- f 59 23,6 8,9 0,5395 1,0949 1,1625  (4.9%) 9,0301  (38%) 
7 +/- f 59 19,5 8,9 0,54 0,7005 0,8073  (4.1%) 7,8392  (40%) 
8 K.O. f 66 29,5 9,2 0,6905 3,0804 3,505  (11.8%) 10,7601(36%) 
9 K.O. f 66 23,0 8,7 0,6636 2,4072 1,7595  (7.6%) 9,2584  (40%) 

10 K.O. f 59 19,0 8,3 0,7536 1,0112 1,1018  (5.8%) 6,5386  (34%) 
11 K.O. f 59 15,9 7,9 0,6971 0,623 0,6856  (4.3%) 5,6863  (35%) 
12 K.O. m 57 14,8 8,2 0,6916 0,2971 0,4906  (3.3%) 5,6377  (38%) 
13 K.O. m 63 14,8 7,2 0,7208 0,4888 0,7702  (5.2%) 5,1619  (34%) 

Table 4-1: Weight of mice organs. (% means the organ to body weight ratio.) 

4.1.6 Clinical investigations 

Clinical chemistry with the blood serum was performed with 60-66 day old wild type, 

heterozygous and homozygous KO mice. While most parameters were unchanged, 

triglycerides levels and glucose levels were strongly reduced but alkaline phosphatase levels 

were elevated. Surprisingly, although obesity was observed, there was no increase in 

cholesterol level while triglycerides level was decreased (Table 4-2).  
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The blood of 60-day-old wild type (1 female and 2 males), heterozygous (2 females and 2 

males) and homozygous KO (2 females and 1 male) mice were analysed by blood smears. 

These blood smears showed an increased amount of lipid droplets in heterozygotes and 

homozygotes; however, this phenotype was more severe in homozygotes. Moreover, the 

degree of lipid droplets in female KO mice is more severe than male KO mice. 

 

WT +/- K.O. 
Parameter Unit 

X s X s X s 
NA mmol / l 137,33 1,15 137,00 1,41 136,40 3,29 
K mmol / l 5,00 0,50 4,80 0,00 4,94 0,51 
Ca mmol / l 2,20 0,10 2,40 0,00 2,42 0,15 
CL mmol / l 89,33 1,15 90,00 0,00 85,60 3,29 

PHOS mmol / l 2,63 0,12 2,65 0,35 2,72 0,31 
TP g / dl 5,07 0,23 5,00 0,28 4,96 0,43 

CREA mg / dl 0,27 0,06 0,25 0,07 0,24 0,05 
HST mg / dl 44,67 6,43 29,00 7,07 23,20 4,87 
HSR mg / dl 1,53 0,81 0,90 0,14 0,92 0,41 

CHOL mg / dl 157,33 17,24 121,00 7,07 158,00 38,94 
TG mg / dl 130,67 74,57 168,00 2,83 87,60 35,76 
CK U / l 620,00 675,43 127,00 1,41 403,20 570,53 

GPT U / l 10,67 1,15 8,00 2,83 12,80 3,03 
GOT U / l 45,33 20,13 25,00 4,24 52,80 20,96 
AP U / l 247,33 33,84 360,00 53,74 489,00 139,62 

AMY U / l 3371,33 354,21 3101,00 151,32 3321,60 406,95 
GLUC/S mg / dl 172,00 19,08 176,00 2,83 117,20 23,05 

Table 4-2: Parameters measured using the blood serum. NA: sodium; K: potassium; Ca: calcium; CL: 
chloride; PHOS: anorganic phosphate; TP: total protein; CREA: creatinine; HST: urea; HSR: uric acid; 
CHOL: cholesterol; TG: triglycerides; CK: creatinine kinase; GPT: glutamic-pyruvic transaminase; 
GOP: glutamic-oxaloacetic transaminase; AP: alkaline phosphatase; AMY: α-amylase; GLUC: 
glucose.  

4.1.7 Shorter life span of Purαα knock-out mice 

Normally, a mouse can live up to 1-2 years. In our study it has been shown that the 

homozygous Purα KO mice have shorter life span than the heterozygous and wild type mice. 

It was observed that 10 out of 45 Purα KO mice went to natural death at different postnatal 

day while the heterozygotes and wild type animals lived normally. 6 KO mice died between 

postnatal days 20-25, which suggests this period just after the onset of tremor phenotype is a 

critical phase for the survive of KO mice. Many of KO mice in this phase had to be injected 
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with glucose once or more to help them survive. After this period, 3 other KO mice died 

between postnatal days 40-65. The two oldest female KO mice died between 5-6 months, still 

persistently shaking. However, no wild type and heterozygous mice have died. Up to now, the 

reason for the shorter life span is not yet clear. 

4.1.8 Histological staining 

Cryostat sections of paraformaldehyde perfused brains from a Purα KO and a wild type 

mouse were analyzed using three different histological stainings: HE staining (labels nuclei 

and plasma), Sudan black (lipid staining), and myelin sheaths staining. Micrographes were 

taken from three areas: anterior commissure, facial nerve, and pyramidal tract. 

As shown in Figure 4-24 (see color pictures in page 138 - 140), HE staining did not show any 

difference between KO and wild type mice. Interestingly, Sudan black staining displayed 

stronger labeling of brain tissue of KO mice, especially the myelin. In addition, labeling of 

myelin sheaths resulted in a slightly reduced staining of myelin in KO brain tissue. The 

increased Sudan black staining in combination with the slightly reduced labeling of the 

myelin sheaths suggests the presence of more lipids in the brains of KO animals.  

4.1.9 Detection of MBP levels in Purαα knock-out mice 

Mice mutated for the myelin basic protein (MBP) displayed a severe tremor phenotype 

beginning at day 11-15 postnatally, which is comparable to that of Purα knock-out mice. In 

addition, Purα has been shown to be able to increase transcription of the MBP promoter both 

in vitro and in vivo (Haas et al., 1995). Therefore, the level of MBP was detected by Western-

blot analysis using mice of 16 days postnatally. The mice were divided into male and female 

groups. For every group, brain stems from wild type, heterozygous, and homozygous Purα 

KO mice were prepared for protein extractions (3.10.3).   

0.05 µg of whole protein extract were loaded on a 15% SDS gel, which was blotted on a 

PVDF membrane with blot buffer at 30 V for 12 hrs. The blot was immunoprobed with a 

primary monoclonal anti-MBP antibody followed by goat anti-rat peroxidase conjugated anti-

IgG+IgM (Sigma) and enhanced Chemiluminescence detection. In the meantime, a 12% SDS 

gel was loaded with 30 µg of whole protein extract for a Purα Western-blot. As shown in 

Figure 4-25, the MBP level in KO mice is about half of that in heterozygous and wild type 

mice, independently of the sex. The corresponding Purα Western-blots show the genotypes of 

the mice. 
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Figure 4-25: Detection of MBP level of 16-day-old mice by Western-blot. Lane 1 and 2: KO mice, 
lane 3 and 4: heterozygous mice, lane 5 and 6: wild type mice. The upper panel shows MBP Western-
blots and the bottom panel shows Purα Western-blots. Left Western-blots of the female mice group 
are shown and right of the male mice group. 
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Figure 4-26: Detection of MBP level of 60-day-old mice by Western-blot. Lane 1 and 2: KO mice, 
lane 3 and 4: heterozygous mice, lane 5 and 6: wild type mice. The upper panel shows MBP Western-
blots and the bottom panel shows Purα Western-blots. Left Western-blots of the female mice group 
are shown and right of the male mice group. 

Thereafter, the MBP level in 60-day-old mice was detected as above, to see if the adult mice 

have also a decreased MBP level. As shown in Figure 4-26, the MBP level of KO, 

heterozygous and wild type mice are indistinguishable, which suggests the restoration of 

MBP levels between postnatal days 16-60.  

4.2 Biochemical characterization of Purαα  

Accidentally, Purα was identified as a DNA helicase in our laboratory. Therefore, the detailed 

analysis to characterize its helicase activity was carried out. 

4.2.1 DNA unwinding activity of Purαα purified from calf thymus 

Purα protein was purified from calf thymus in our lab as described by Jurk et al (1996). After 

elution from the fourth column (DNA affinity chromatography) the Purα fraction was nearly 

homogen.  The protein was dialyzed (3.10.11.4) and tested in unwinding assay.  

For the unwinding assay substrate Hel1/M13 was generated as described in 3.10.12.1.1. Hel1 

is a 17-mer oligonucleotide, which was radioactively labeled and annealed to single-stranded 

M13mp19 phage DNA to create a partial duplex. A total of 10 pmol of oligonucleotide was 

labeled at the 5’-end with T4 polynucleotide kinase. 1.875 µg of M13mp19 ssDNA was 

annealed to the labeled 17-mer overnight. Non-hybridized oligonucleotide was removed by 

gel filtration through a Sepharose 4B column. 

For the unwinding reaction about 40 ng of purified Purα protein was incubated with the 

substrate in a reaction mix containing ATP and Mg2+ ions. As controls, substrate was 

incubated without protein (no unwinding, Figure 4-27 lane 1) and loaded directly on the gel or 

heated 5 min at 98°C prior to loading (complete unwinding, lane 3). The unwinding reactions 

were subjected to a 12% native PAA gel to separate the free, unwound 17-mer 

oligonucleotide from the annealed partial duplex. Signals were detected using a Phosphor 

Image. 

As shown in Figure 4-27, native Purα purified from calf thymus is capable to unwind at least 

a 17 bp duplex DNA. For further analysis of Purα DNA unwinding assay we decided to use in 

E. coli expressed GST-Purα fusion protein, particularly because GST protein can be 

expressed in high amounts and purified easily. 
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Figure 4-27: (A) Scheme of a DNA unwinding assay. (B) Helicase assay with purified Purα from calf 
thymus. dsDNA unwinding reaction was carried out for 30 min at 37 oC with 40 ng of purified Purα 
and 32P labeled 17-mer/M13 DNA substrate. Reaction mix contains 2.5 mM ATP, 1.0 mM MgCl2, 1.0 
mM DTT. Reaction was terminated by adding 4 µl of 5 x buffer (see 3.10.13.2). The products were 
separated on a 12% native polyacrylamid gel. The ‘control‘ lane corresponds to a reaction without 
enzyme and the ‘denatured‘ lane to heat denatured substrate. 

4.2.2 Cloning Purαα cDNA in the expression vector pGEX4T1 

A very simple and fast method to get high amount of a protein is to express it as fusion 

protein with Schitosoma japonicum Glutathion-S-Transferase (Smith et al., 1986). For the 

expression of a GST-fusion protein, different pGEX-vectors were developed by Smith and 

Johnson (1988), each of them contains an open reading frame encoding GST, followed by 

unique restriction endonulease sites for EcoRI, BamHI and so on for in frame cloning, 

followed by termination codons in all three frames.  

To clone human Purα cDNA into pGEX4T1, a PCR was carried out using primers HelM2-A 

and HelM1-C1 to amplify Purα cDNA from 1-322 aa. To simplify the cloning process, both 

of the primers were designed containing a link sequence to introduce a restriction site into the 

amplified PCR fragment. HelM2-A contains an EcoRI recognition site and HelM1-C1 a SalI 

recognition site. After PCR (3.6.2), PCR fragments were digested directly with these two 

enzymes and cloned into pGEX4T1, without changing the open reading frame. The plasmid 

was proved by sequencing analysis and was ready for expression and purification of GST-

Purα fusion protein.  
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4.2.3 Expression of GST-Purαα fusion protein in E. coli and its purification 

The purification of Purα from calf thymus is a complicated and time-consuming process. To 

get a big amount of Purα protein, GST-Purα was expressed and purified from E. coli. 

For the expression of GST-Purα fusion protein, the E. coli culture in logarithm growth was 

induced with 100 µM IPTG for 3 hrs (see 3.10.11.1). The bacterial pellet was washed, 

resuspended in 10 ml lysis buffer on ice and lysed using a sonicator. After centrifuging, the 

GST-fusion protein was purified from supernatant through incubated with pre-equilibrated 

glutathione-sepharose beads.  

Binding of glutathione-S-transferase to glutathione-sepharose is very strong and firm; 

therefore the glutathione-sepharose could be washed with high volumes of wash buffer 

containing 1 M NaCl to wash away any unspecific bound proteins. (3.10.12.2). The GST-

Purα was eluted 3 times with 100 mM glutathione, which competes for the binding of the 

fusion protein to glutathione-sepharose. Figure 4-28 shows the purified fusion protein and 

GST as a control. GST has a molecular weight of 27.5 kDa, and Purα of 42 kDa. The fusion 

protein was dialyzed with Mes 6.5 dialyze-buffer overnight at 4°C (3.10.12.4). It was 

important to aliquot the protein in small volume and stored at –80°C. The protein should not 

be thawed more than 3 times. 

Figure 4-28: SDS polyacrylamid gel electrophoresis of purified GST fusion protein. M is protein 
standard (Biorad). The first two lanes show 200 ng of purified GST-Purα. As a control, purified GST 
protein was loaded in the Lane 3, and 1:10 diluted GST was loaded in lane 4, which shows the same 
amount as the purified GST-Purα.  

The molecular mass of GST-Purα fusion protein is 69.5 kDa. In fact, the main band of GST-

Purα on a SDS gel ran at about 70 kDa (lane 1 and 2).  Co-purification of small amounts of 
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partially degraded GST-Purα could not be avoided and a few degradation bands could always 

be seen on the SDS gel. Since GST alone was expressed much more efficient than GST-Purα. 
Before using it as a control in DNA unwinding assays, the GST protein was diluted 1:10 

(Figure 4-28).  

4.2.4 DNA-binding activity of GST-Purαα 

To test whether the GST-Purα protein can be purified in an active form, we tested its DNA 

binding activity. Therefore, EMSAs were performed to test if GST-Purα is capable of binding 

to single-stranded oligonucletide Ori-1 coding for the lower strand of the origin of replication 

of the Bovine Papilloma Virus. Oligo nucleotide Ori-1 was end labeled (see 3.7.1). 25 fmol of 

purified Ori-1 was incubated with 200 ng of GST-Purα protein (see 3.10.7).  All binding 

assays were performed with a vast excess of unlabeled poly(dI-dC) to eliminate nonspecific 

DNA binding.  Identical amount of purified GST was used as a negative control.  Figure 4-29 

shows the protein/DNA-complex formed exclusively by GST-Purα, whereas GST alone 

displayed no DNA binding activity at all.  

Figure 4-29: DNA-binding activity of GST-Purα. The GST-Purα protein was incubated with 25 fmol 
5’-end-labeled oligonucleotide Ori-1 in binding buffer (3.10.7). Lane 1and 4: no protein added; Lane 
2: GST-Purα; Lane 3: GST as a negative control. 

4.2.5 dsDNA unwinding activity of GST-Purαα  

To analyze DNA unwinding activity of GST-Purα protein, 17-mer/M13 was generated and 

used as substrate (3.10.13.1). Unwinding reaction was carried out as described in 3.10.13.2. 

As shown in Figure 4-30, purified GST-Purα was capable of unwinding the 17-mer/M13 

complex. Only incubation with the recombinant GST-Purα protein resulted in the appearance 
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of free oligonucleotide whereas incubation of the substrate with comparable amounts of GST 

alone did not result in any DNA unwinding. 

Therefore we concluded, that the GST-Purα protein expressed in E. coli displayed identical 

DNA binding and unwinding activity compared to native Purα and can be used for further 

analysis of Purα enzymatic activity.  

Figure 4-30: Unwinding reaction was carried out for 30 min at 37°C with 200 ng of purified GST-
Purα and 32P labeled 17-mer/M13. Lane 2 is GST-Purα, and lane 3 is GST as negative control. The 
‘control’ lane corresponds to a reaction without enzyme and the ‘denatured’ lane to that with a 
substrate heated at 95°C for 5min.  

4.2.6 Titration of amount of GST-Purαα for maximal unwinding activity 

The amount of GST-Purα was increased in the unwinding reaction to identify the optimal 

amount of fusion protein in the unwinding assay. 50 ng to 1500 ng GST-Purα were used. 

Figure 4-31 shows that at least 150 ng of GST-Purα is necessary to detect its unwinding 

activity. 
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Figure 4-31: Titration of the amount of GST-Purα required for maximal unwinding activity. The panel 
shows the autoradiograghical evaluation of the experiment. The amount of GST-Purα is indicated at 
the top of each lane. Percentage of unwinding for every lane is indicated at the bottom. 

4.2.7 dsDNA unwinding activity with various substrates 

To further characterize Purα DNA unwinding activity we generated different DNA substrates 

(3.10.13.1). As shown in Figure 4-32, Purα was tested with different substrates in unwinding 

assay. We constructed substrates containing a poly(dT)15 overhang at the 3’ or 5’-end of the 

17-mer respectively, thereby forming a fork-like structure. GST-Purα was capable of 

unwinding both types of substrates with no significant higher efficiency compared to the tail-

less 17-mer (Figure 4-32 D and E). However, unwinding capacity of Purα decreased 

dramatically if the hybrid region of tail-less substrate was increased to 25 bp (Figure 4-32 B). 

While 90% of the 17-mer substrate was unwound, the same amount of protein could only 

unwind 7% of a substrate containing a 25-mer. If the duplex was increased to 32 bp, no 

unwinding was detected. 

In addition, we used a linear substrate to test the unwinding capacity of Purα. A 17-mer was 

annealed to the 5’ or 3’ end of a 101 bp single-stranded oligonucleotide to generate a duplex 

region with a blunt end and a 5’ or 3’ overhanging end respectively. A third 17-mer was 

annealed to the middle of the 101 bp oligonucleotide resulting a duplex with 5’ and 3’ 

overhanging ends. Purα was capable of unwinding all three different substrates with no 

obvious differences (Figure 4-32 F-H). However, a duplex 17-mer with both sides blunt 

ended was not unwound by Purα (Figure 4-32 I). Assuming that Purα is not capable of 
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unwinding duplexes starting from a blunt end, the unwinding experiments using substrates of 

Figure 4-32 F and H indicates that Purα has no directionality for strand displacement. 

Figure 4-32: DNA unwinding assay with various substrates. The star indicates the labeled end. In all 
experiments, 200 ng of GST-Purα was used. Lane 1and 4: no protein added; Lane 2: GST-Purα; Lane 
3: GST as a negative control. 

4.2.8 Purαα DNA Unwinding activity is not influenced by ATP or Mg2+ 

concentration 

The results obtained in the unwinding assay described above raised evidence that Purα might 

display a DNA helicase activity. All helicases known are dependent on DNA binding and 

hydrolysis of a nucleoside 5’-triphosphates (NTP or dNTP). Therefore, ATP, CTP, GTP, 

TTP, dATP, dCTP and dUTP were tested in unwinding assay. Strikingly, GST-Purα could 

unwind the double-stranded DNA without hydrolyzing NTPs or dNTPs (Figure 4-33).  
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To verify this result that Purα DNA unwinding activity is independent on NTPs or dNTPs, the 

experiment was repeated twice and always led to the same result.  

Figure 4-33: Effect of NTP and dNTP on DNA unwinding activity. GST-Purα was dialyzed to 25 mM 
MES (pH 6.5), 0.1 mM EDTA, 50 mM NaCl, 1.0 mM DTT, 5 mM MgCl2 prior to use. NTPs and 
dNTPs were added to 5 mM. Percentage of unwinding is shown in the bottom. 

To avoid experimental artifacts GST-Pur was dialyzed against a buffer containing no Mg2+ 

ions and ATP. The dialyzed fraction was used in DNA binding and DNA unwinding assays, 

supplemented with Mg2+ and/or ATP or lacking Mg2+ and ATP. Strikingly, adding Mg2+ ions 

to 5 mM to the DNA binding reaction resulted in a slight decrease in DNA binding activity 

(Figure 4-34 A, lane 1 and 2), while addition of ATP to 5 mM significantly increased DNA 

binding activity of the Purαα protein (Figure 4-34 A. lane 3). If ATP and Mg2+ were added 

together, only a slight effect on DNA binding was observed (Figure 4-34 A, lane 4). In 

contrast, addition of Mg2+ ions, ATP, or Mg2+ and ATP only poorly influenced DNA 

unwinding activity of Purα (Figure 4-34 B, lane 1-4).  

These results indicate a mechanism that Purα DNA unwinding activity is independent of any 

dNTP and NTP hydrolysis. 
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Figure 4-34: Influence of Mg2+ and ATP on GST-Purα DNA binding and unwinding activity. (A) 
Influence of Mg2+ and ATP on GST-Purα DNA binding activity. GST-Purα was dialyzed to 25 mM 
MES (pH 6.5), 0.1 mM EDTA, 50 mM NaCl, 1.0 mM DTT prior to use. Dialysis buffer did not 
contain Mg2+ and ATP. Binding reaction was adjusted to 150 mM NaCl. MgCl2 and ATP were added 
as indicated. (B) Influence of Mg2+ and ATP on GST-Purα DNA unwinding activity. GST-Purα was 
dialyzed as described in (A). DNA unwinding reactions were performed in a buffer containing 20 mM 
MES (pH 6.5), 1.0 mM DTT. MgCl2 and ATP were added to the reaction as indicated. 

4.2.9  Purαα unwinding activity can be inhibited by specific oligonucleotides  

Purα binds single-stranded DNA in a sequence-specific manner. One of the bound 

oligonucleotide is PUR1, which contains a purine rich motif originally identified by 

Bergemann and Johnson (1992). Purα does not bind the unrelated oligonucleotide Mage11-2. 

To test whether Purα strand displacement activity can be inhibited by its binding to specific 

oligonucleotides, we performed unwinding assays in the presence of specific or unspecific 

oligonucleotides. Addition of 2 pmol PUR1 oligonucleotide completely abolished DNA 

unwinding activity whereas addition of an identical amount of unspecific Mage11-2 

oligonucleotide did not influence unwinding activity (Figure 4-35). These results indicated 

that the unwinding activity of Purα is coupled with the DNA binding activity and could be 

abolished by an excess of oligonucleotides containing sequences specifically bound by Purα.  
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Figure 4-35: Specific oligonucleotides inhibit Purα unwinding activity. Unwinding reaction was 
performed as described in Figure 4-27. 2 pmol competitor oligonucleotides were added to the reaction 
mix prior to addition of the protein. Lane 1: 200 ng of GST-Purα, no competitor added; Lane 2: 200 
ng of GST-Purα, 2 pmol PUR1 added; Lane 3: 200 ng of GST-Purα, 2 pmol Mage11-2 added.  

4.2.10 Generation of different GST-Purαα deletion mutants  

As shown in Figure 4-36, Purα is composed of several modular domains (Bergemann et al., 

1992; Bergemann, 1992). The central region contains three aromatic and basic repeats (class 

I) interspersed with two acidic leucine-rich repeats (class II). In addition to this central repeat 

region, Purα possess an amino terminal glycine-rich region, an amphipathic α-helix, and a 

glutamate-glutamine rich region near the carboxy terminus. To identify the regions 

responsible for DNA binding and dsDNA unwinding activity, a series of N- and C-terminal 

deletion mutants fused to GST were generated and tested in DNA binding and dsDNA 

unwinding assays. 

Figure 4-36: Schematic structure of Purα. 
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Firstly, according to the Purα cDNA sequence, different pairs of primers were designed, with 

which different long Purα cDNA fragments were amplified. Most of the primers have a 

annealing temperature of 54°C, therefore different primer combinations could be used to 

amplify different Purα cDNA fragments. Sense primers contain an additional EcoRI 

recognition site, and antisense primers an additional SalI recognition site. Addition of these 

two restriction sites ensured the correct orientation of the PCR-fragments cloned into the 

pGEX4T1 vector without changing the Purα reading frame. Purα cDNA is 1049 bp long and 

consists of 322 amino acids. pCDNA3-Purα.ext plasmid containing full length of Purα cDNA 

was used as a template to amplify truncated Purα cDNA fragments. PCR was performed as in 

3.6.2. Altogether 16 truncated human Purα cDNA variants were amplified using 16 pairs of 

primers (see Table 8-4 in appendix). The schematic representation of the truncated Purα 

cDNA fragments is shown in Figure 4-38. 

The different Purα fragments were cloned into the EcoRI and SalI restriction sites of the 

vector pGEX4T1 resulting in in-frame fusion of the truncated Purα cDNAs to GST sequence. 

Correct cloning of the fragments was verified by sequencing. 

Figure 4-37: Various GST-Purα deletion mutants were purified from bacteria E. coli TOP10F’ and 
analyzed on SDS-PAGE. Purα amino acids fused to GST are indicated at the top of the lanes. 

Various truncated GST-Purα proteins were expressed in E. coli TOP10F’ and purified as 

described in 3.10.12. The purified proteins were dialyzed with Mes (pH 6.5) buffer overnight 

at 4°C (3.10.12.4) and the correct size of the fusion proteins was confirmed by SDS-page. 

Figure 4-37 shows nine truncated GST-Purα variants after purification from E. coli. It was 

necessary to aliquot the proteins in small volumes and store at –80°C. The proteins should not 

be thawed more than 3 times; otherwise, they lost their unwinding activity. N-terminal 

truncated GST-Purα, for example, GST-Purα 54−322, and 74-322 are not stable at 4°C and 
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began to degrade 4 days after dialyze. After one week at 4°C, the proteins could not be 

detected on a SDS gel any more. 

Figure 4-38: Schematic representation of the various human Purα cDNA fragments. 

GST-Purαα ( 1-322 )

GST-Purαα ( 54 -322 )

GST-Purαα ( 107-322 )

GST-Purαα ( 54 - 314 )

GST-Purαα ( 87-314 )

GST-Purαα ( 54-215 )

GST-Purαα ( 87-215 )

GST-Purαα ( 1-314 )

54

107

31454

87 314

215

87 215

314

54

GST-Purαα ( 107-314 )

GST-Purαα ( 107-215 )

GST-Purαα ( 74--322 )

GST-Purαα ( 74--314 )

GST-Purαα ( 87--322 )

GST-Purαα ( 1-215 ) 215

GST-Purαα ( 74--215 ) 21574

87

74

74

314

107

107

314

215

GST-Purαα ( 54-189 )

GST-Purαα ( 54-203 )

54

54

189

203

1

Glycine-rich
7-53

Glutamine-rich
282-303

NH2 COOH

Psycho motif
251-278

Glutamate-rich
304-322

66  88 148  170

107  131 195  220

224  246100 200

322

322

322

322

322

1

1

1



Results 

 

 

 

99

4.2.11 DNA binding activity with different deletion mutants 

The series of deletion mutants described above was utilized to determine protein domains 

involved in binding to the Purα recognition element.  The same amount of proteins was used 

in the assays to compare their activities.  

 

 

 

 

 

Figure 4-39: Autoradiography of a gel band-shift analysis carried out on an 8% polyacrylamid gel. 
Purified GST-Purα mutants were used in DNA binding assays as described in 3.10.7 using 32P labeled 
oligonucleotide Ori-1. 

As shown in Figure 4-39, deletion of eight C-terminal amino acids (Purα 1-314) led to greatly 

increased DNA binding activity of Purα  as compared to the full-length protein (Purα 1-322) 

(Figure 4-39, lanes 7 and 8). Purα 1-215, deleted for 107 C-terminal amino acids, still 

displayed significant DNA binding activity (Figure 4-39, lane 9). However, the most 

prominent complex formed by Purα 1-215 and the Purα/oligonucleotide migrated slower as 

compared to wild-type, indicating that this deletion protein formed a multimeric complex on 

the DNA. Deletion of 53 N-terminal amino acids (Purα 54-322) did not affect DNA binding 

activity of Purα  (Figure 4-39, lane 6), but deletion of these 53 N-terminal aa in the protein 

missing the eight C-terminal aa (Purα  54-314) seemed to increase tendency to multimeric 

complexes, since a weak, slower migrating band is visible in this lane (Figure 4-39, lane 5). If 

the N-terminus was truncated for 86 aa in this context (Purα 87-314), only a very slowly 

migrating complex was detectable (Figure 4-39, lane 3). Deletion of 106 N-terminal aa of the 

full-length protein (Purα 107-322) almost completely abolished DNA binding activity (Figure 

4-39, lane 1). To define the domain of Purα  essential for DNA binding, we combined N- and 

C-terminal truncations. While Purα 87-215 displayed no DNA binding activity (Figure 4-39, 

lane 2), Purα 54-215 showed significant DNA binding (Figure 4-39, lane 4), although the 

formed complex migrated slowly, indicating formation of a multimeric complex. Some more 

truncated GST-Purα proteins (Purα 74-215, Purα 74-322, Purα 74-314, Purα 87-322, Purα 

107-314, Purα 107-215, Purα 54-189, Purα 54-203) were also tested in EMSAs (data not 
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shown) and the results were summarized in Table 4-3. From the data described above it can 

be concluded that the core domain of Purα for DNA binding is from aa 54 to 215. Further aa 

deletion resulted in the complete loss of DNA binding. 

4.2.12 dsDNA unwinding activity with different deletion mutants 

The same set of truncated GST-Purα mutants was used in dsDNA unwinding assays. For 

these unwinding assays the 17-mer/M13 substrate was used and about equal amount of the 

truncated proteins were added to the unwinding reactions. 

Figure 4-40: Autoradiogragh of an unwinding assay carried out on a 12% polyacrylamid gel. Purified 
GST-Purα mutants were used in DNA binding assays as described in 3.10.13.2 using 17-mer/M13 
substrate. 

The results of the DNA unwinding assays are shown in Figure 4-40. Strikingly, it was found 

that DNA binding and unwinding activity correlated exactly: all truncated Purα mutants 

displaying DNA binding activity also unwound the 17-mer/M13 substrate. Increased DNA 

binding capacity resulted in increased unwinding activity (Figure 4-40). This was most 

obvious for GST-Purα 1-314 (Figure 4-40, lane 8), that unwind 82% of the substrate while 

full-length GST-Purα 1-322 (Figure 4-40, lane 7) could only unwind 6.3% of the duplex in 

this assay. The shortest protein still displaying DNA unwind capacity was GST-Purα 54-215 

(Figure 4-40, lane 4). The dsDNA unwinding activity of the different truncated Purα versions 

is summarized in Table 4-3. These results suggested that domain 54-215 be essential not only 

for DNA binding but also for the unwinding activity. Therefore, we concluded that DNA 

unwinding capacity of Purα depends on its DNA binding ability. 

_ _
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4.2.13 Self-Association of Purαα 

It has been described that Purα is able to self-associate (Gallia et al., 1999; Muralidharan et 

al., 1997). To investigate if DNA binding/unwinding activity is dependent on the self-

association of Purα, pull-down assays were carried out.  

[35S]-labeled full-length Purα protein was synthesized in vitro using the TNT® Quick Coupled 

Transcription/Translation Systems (Promega) as described in 3.10.10. The plasmid pCDNA3 

Purα.ext containing a T7 promotor and the complete Purα cDNA was used as template. The 

synthesized [35S]-labeled Purα protein is shown in Figure 4-41 (Figure 4-41, lane 2).  

Figure 4-41: SDS-PAGE of in vitro transcribed and translated Purα-S35. Lane1: no DNA added; Lane 
2: 1.0 µg of pCDNA3 Purα.ext added. 

In the pull-down assay, [35S]-labeled full-length Purα protein was in vitro synthesized as 

described above. Full-length or truncated GST-Purα proteins were immobilized on 

glutathione-sepharose and incubated with [35S]-labeled full-length Purα protein. After 

incubation, the glutathione-sepharose beads were washed as described in 3.10.11. The 

proteins immobilized on glutathione-sepharose were eluted with 2 x SDS gel loading buffer 

and analyzed by SDS-PAGE and autoradiography. As controls GST alone and GST-PrpC 

fusion protein were used. 

Firstly, a pull-down assay was performed using the full-length GST-Purα protein. As it can be 

seen in Figure 4-42 (lane1), full-length Purα was able to self-associate. The negative controls 

GST alone or GST-PrpC could not associate with the full-length Purα (Figure 4-42, lane 6, 7, 

12 and 13), indicating that interaction of 35S labeled Purα with GST-Purα was specific. 

Thereafter, to investigate which domain of Purα is essential for its self-association, the same 

set of truncated GST-Purα proteins used in DNA binding and unwinding assays were tested in 

pull-down assays. The results are shown in Figure 4-42. The smallest protein displaying self-

association activity was GST-Purα 54-215. This domain also was essential for DNA binding 

and unwinding activity. Moreover, all truncated proteins displaying DNA binding and 
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unwinding activity were able to self-associate. The DNA binding and unwinding activity and 

self-association ability of various GST-Purα mutants were summarized in Table 4-3.  

Figure 4-42: Localization of the Purα self-association region. [35S]-labeled Purα synthesized by in 
vitro transcription and translation was incubated with GST, GST-PrpC, GST-Purα, or various 
truncated GST-Purα proteins immobilized on glutathione-sepharose. The bound proteins were 
fractionated by SDS-PAGE and visualized by autoradiography. 

The functional studies of the Purα deletion mutants clearly indicated that the ability to bind 

DNA and the DNA unwinding activity of the protein could not be separated. In addition, self-

association capacity seem to correlate with DNA-binding and DNA unwinding ability which 

might suggest that self-association should be an essential feature for DNA binding and 

unwinding. 
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Nr. GST-Purαα  deletion 

mutants 

DNA binding 

activity 

DNA unwinding 

activity 

Pull-down 

1 GST-Purα ( 107-322 ) no no no 
2 GST-Purα ( 87-215 ) no no no 
3 GST-Purα ( 87-314 ) +     ( m.a. ) + yes 
4 GST-Purα ( 54-215 ) ++   ( m.a. ) +++ yes 
5 GST-Purα ( 54-314 ) +++ +++ yes 
6 GST-Purα ( 54-322 ) + ++ yes 
7 GST-Purα ( 1-322 ) ++ ++ yes 
8 GST-Purα ( 1-314 ) ++++ ++++ yes 
9 GST-Purα ( 1-215 ) ++   ( m.a. ) +++ yes 

10 GST-Purα ( 74--215 ) no no / 
11 GST-Purα ( 74--322 ) +    ( m. a ) + / 
12 GST-Purα ( 74--314 ) +    ( m. a ) + / 
13 GST-Purα ( 87--322 ) +    ( m. a ) + / 
14 GST-Purα ( 107-314 ) no no / 
15 GST-Purα ( 107-215 ) no no / 
16 GST-Purα ( 54-189 ) no no / 
17 GST-Purα ( 54-203 ) no no / 

 (m.a. means mutimeric aggregates; “/” means no test) 

Table 4-3: Summary of the DNA binding activities, unwinding activities and dimerization ability of 
various GST-Purα mutants. 
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5 Discussion 

As known, Purα is a 39 kDa sequence specific single-stranded DNA/RNA-binding protein 

with the ability to modulate transcription of several genes containing the Pur element in their 

promotor region. Purα has been implicated in diverse cellular functions, including 

transcriptional activation, DNA replication and cell growth.  

In this study, two independent sets of experiments were carried out to analyze its biological 

functions: (i) Purα KO mice were generated and the phenotypes were characterized; (ii) Purα 

was at the first time characterized as a dsDNA unwinding enzyme. 

5.1 The generation of Purαα knock-out mice 

Gene knock-out techniques have been used widely to study the functions of gene products. 

This procedure replaces a gene with another piece of DNA (usually a selection marker) by 

homologous recombination in pluripotent embryonic stem cells. Embryonic stem cells in 

which homologous recombination has occurred are injected into blastocysts or 8-cell stage 

embryos to produce chimeric mice. Homozygous mice in which the desired gene has been 

disrupted can be obtained by breeding and interbreeding. 

To generate the Purα knock-out construct, the isolation and characterization of the murine 

Purα genomic DNA was firstly performed. A 129/SvJ Mouse Genomic Library in Lambda 

FIX II vector was used to isolate the Purα genomic DNA. Two independent phages p5/1 and 

p14/2 were found. About 25 kb of genomic Purα sequence were analyzed with different 

restriction enzymes and sequenced partially. Murine Purα is composed of two exons and one 

intron, which is located within the 5’-UTR after bp 388 from the 5’- end of the gene. Exon II 

contains the remaining 5’-UTR, the translational start site, the ORF and the 3’-UTR. The 

open reading frame located on the second exon from nucleotides 519 to 1485. Thereafter, in 

comparison with murine Purα cDNA sequence, exon/intron junctions were also determined. 

Figure 4-11 shows the nucleotide composition of the Purα gene at the junctions of exon I and 

exon II. A restriction map for murine Purα genomic structure was generated as shown in 

Figure 4-10, which was taken as the basis for designing and generating a targeting vector for 

homologous recombination. These results are in agreement with the Purα genomic structure 

published subsequently by Muralidharan (Muralidharan et al., 2000).  

On the basis of the known Purα genomic structure, a replacement vector for homologous 

recombination was designed. In order to increase the targeting frequency we decided to use 

the positive-negative selection strategy (Mansour et al., 1988), which enriches for 

homologous recombination events by simultaneously selection for Neo-resistance and against 
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a hepes simplex virus thymidine kinase (HSV-TK) gene placed at the 3’ end of the targeting 

sequence. Moreover, it has been shown that the length and sequence of the homologous 

sequences in the vector will affect the targeting frequency (A.L.Joyner, 1999). The 

homologous sequences in the vector ranging from 5-8 kb can increase the targeting frequency. 

Furthermore, the design of such a replacement vector should also consider the screening 

strategy: The screening by PCR requires the selection marker to be inserted at an asymmetric 

location near one end of the homologous sequence, creating vectors with one long arm and 

one short arm. To guarantee sufficient homology for formation of a cross-over, the minimum 

sequence of homology of the short arm has to be about 0.5-2.0 kb (A.L.Joyner, 1999). 

According to the principles outlined above, the replacement vector for deleting Purα in mice 

was generated. Its structure is shown in Figure 4-14. This replacement vector consists of two 

homologous arms, a Neo cassette for positive selection and a TK cassette for negative 

selection. In vivo, exon II containing the whole Purα open reading frame should be replaced 

by the neo gene due to homologous recombination. Thus, the Purα KO mice generated with 

such a vector will not express a truncated Purα protein. The left homologous arm is 1.2 kb 

long, which allows screening of the positive ES clones by PCR. The right arm is 7.0 kb, 

which is long enough to ensure high targeting rates.   

Another key factor for efficient homologous recombination is the use of isogenic DNA to 

generate the targeting vector. Isogenic DNA results in a four to five times higher 

recombination rate (Deng and Capecchi, 1992) and a 25-fold higher efficiency at the targeting 

locus as compared to constructs generated from non-isogenic DNA (van Deursen and 

Wieringa, 1992). In our laboratory, E14 ES cells derived from mouse strain 129/Ola were 

used for electroporation. It was reported recently and after the characterization of the genomic 

Purα locus that the mouse strain 129/SvJ is a genetically contaminated substrain (Threadgill 

et al., 1997). Therefore, to ensure the highest possible homologous recombination frequency, 

the two homologous arms of the targeting vector were amplified by PCR from genomic DNA 

of E14 ES cells.  

Since not all ES cells are transfected and the frequency of homologous recombination is low, 

it was necessary to enrich for cells with homologous recombination. The neomycin 

phosphotransferase (neo) gene driven by the phosphoglycerate kinase-1 (Pgk-1) promoter can 

be selected by geneticin (G418) (positive selection) (Mansour et al., 1988), which was applied 

for cells that had integrated the targeting vector in their genome. In the second step, the herpes 

simplex virus tymidine kinase (HSV-tk) gene can be used in a selection employing 

gancyclovir (GNAC) (negative selection). This selection was exerted against cells with a 

random insertion of the construct (Mansour et al., 1988). 
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To confirm that the ES cell clones surviving both selections were the results of homologous 

targeting events and not of random insertion, it is necessary to characterize these cell lines by 

either PCR or Southern-blot analysis. 

Out of 2400 ES cell clones tested, 1900 were screened by PCR. PCR with genomic DNA did 

not work sometimes, maybe due to the impure genomic DNA obtained from ES cells. 

Therefore, the PCR products on agarose gel were always blotted onto membranes and then 

hybridized with a DNA probe for further analysis. The remaining 500 ES clones were 

screened directly by Southern-blot analysis. One positive ES clone (ES clone 223) was 

identified by PCR analysis and one positive ES clone (ES clone 248) was identified by 

Southern-blot analysis. The corresponding two positive ES cell clones were thawed and 

Southern-blot analysis with the 5’-, 3’- and Neo probes was carried out separately. Both ES 

clones showed the expected two bands (WT band 13.5 kb and KO band 6.4 kb) with the 5’- 

probe. In addition, ES clone 248 displayed the correct two bands (WT band 13.5 kb and KO 

band 7.1 kb) with the 3’- probe while ES clone 223 only displayed the 13.5 kb band 

corresponding to the wild type allele (Figure 4-16). Moreover, the aberrant ES clone 223 

displayed two bands with the Neo probe, indicating two integration events of the targeting 

vector while the correct positive ES clone 248 displayed only one band with the correct size 

(data not shown). Thus, ES clone 223 was unsuitable for further use. Analysis of ES clone 

223 clearly shows the importance of analyzing both, the 3’- and 5’- aspects of the target locus 

using external probes from sequences flanking both ends of the vector. An internal Neo probe 

which hybridized to the selectable marker was used to distinguish between a single gene 

replacement and multiple integration events of the entire vector. 

Mutated ES clones created by gene targeting in vitro can be transmitted through the germ-line 

of a chimera since ES cells correspond closely to the cells of the inner cell mass (ICM) of the 

blastocysts (Beddington and Robertson, 1989) and differentiate in association with normal 

mouse embryos, participating in the formation of all tissues of chimeras, including the 

gametes (Bradley, 1990). There exist several different techniques to introduce ES cells into 

pre-implantation embryos, such as blastocyst injection, morula injection, morula aggregation, 

and aggregation with tetraploid cells (A.L.Joyner, 1999). In our laboratory the E14 ES cells, 

which have the chinchilla (Tyrc-ch) alleles at the albino locus were injected routinely into 

albino BALB/c mice. Eight chimeras (7 female mice and 1 male mouse) with 30-95% 

chimerism were born. One chimera was found dead after birth. The live born chimeras did not 

show any abnormality upon eye inspection. The female chimeras were mated with male 

chimera separately and only the male chimera gave agouti color of pups, which might indicate 

germ line transmission. 50% of the agouti mice should be heterozygous mice, which were 

detected by Southern-blot or PCR analysis. Heterozygous mice were then intercrossed to 



Discussion 

 

 

 

107

generate mice homozygous for the targeted allele (KO). Genotype analysis of 132 offspring 

analyzed at 2 months of age revealed the expected 2:1:1 ration between heterozygous, wild 

type, and homozygous KO mice, which confirmed to classical Mendelian inheritance 

(Capecchi, 1989). 

As a final proof for the correct targeting of the Purα locus, Western-blot analysis for Purα 

expression in wild type, heterozygous and homozygous KO mice was carried out. Purα was 

found to be expressed widely in the mouse brain, especially abundant in the cerebral cortex 

and cerebellum although it is also found in many other cells and tissues (Osugi et al., 1996). 

Immunohistochemical studies demonstrated Purα protein expression in the Purkinje neurons 

and granular cells of the mouse cerebellum (Osugi et al., 1996). In addition, in the Purkinje 

neurons, Purα was located in both the nucleus and cytoplasm of the cells. According to its 

distribution, total protein extractions were prepared from the cerebral cortex of wild type, 

heterozygous and homozygous mice and analyzed by Western-blot using anti-Purα 

monoclonal antibody. Purα was not detected in homozygous KO mice while the level of Purα 

in heterozygous mice was approximately 50% as compared to wild type mice (Figure 4-20). 

5.2 Analysis of the phenotypes of Purαα knock-out mice 

Purα KO mice were normal at birth but developed various abnormalities later in life. At 

postnatal day 12-14 (p12-14) a severe and continuous tremor phenotype was observed in KO 

mice, while the heterozygous mice did not show this phenotype. The tremor phenotype 

continued until the mouse was sacrificed or natural death occurred. The brains of Purα KO 

mice were significantly enlarged and the brain weight obviously increased. In addition, Purα 

KO mice possessed more fat layers than wild type mice.  

The following sections will introduce and discuss the most notable phenotypes of Purα KO 

mice, namely: 

1) Why do the Purα KO mice display a tremor phenotype? 

2) Analysis and explanation of the enlarged brains of Purα KO mice.   

5.2.1 Decreased MBP levels in 16-day-old Purαα KO mice - The explanation of 

tremor phenotype? 

As mentioned above, Purα KO mice display a severe and continuous tremor phenotype. This 

tremor phenotype is very similar to the shiverer (shi) mice that lack myelin basic protein 

(MBP). Significantly, in addition to many other genes, Purα is involved in developmental and 

cell-specific transcriptional control of MBP (Haas et al., 1995). In mice, six isoforms of 
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MBPs (14kDa, 17.2kDa, 17.3kDa, 18.5kDa, 20.2kDa and 21.5kDa) have been identified 

(Campagnoni and Skoff, 2001).  

MBP is a major component of the myelin sheath in the central nervous system (CNS) 

(Campagnoni and Macklin, 1988). The primary cell biological function of MBPs is to 

maintain the structure of the myelin sheath (Campagnoni and Skoff, 2001). The myelin sheath 

is a multilamellar, spirally wrapped extension of the plasma membrane of oligodendrocytes in 

the central nervous systems (CNS) and of Schwann cells in the peripheral nervous systems 

(PNS). The development of the mature myelin structure in both CNS and PNS is 

fundamentally similar and myelin serves as an insulator to facilitate the conduction of 

neuronal impulses along the axon. MBPs are considered to be located at the major dense line 

of myelin. Due to their localization, MBPs are thought to play an important role in the 

compaction of the myelin sheath. The deletion of the MBP gene in mouse leads to severe 

dysmyelination and a severe tremor phenotype. 

The expression of MBP is controlled both cell- and stage-specific during brain development 

(Kristensson et al., 1986; Sorg et al., 1987; Verity and Campagnoni, 1988). In the CNS, 

myelin formation and MBP gene expression occur in oligodendrocytes, whereas in the PNS, 

Schwann cells are responsible for myelin formation and expression of the MBP gene 

(Mikoshiba et al., 1991). Myelin formation occurs postnatally in the mouse, such that the 

MBP mRNA is first detected at the end of the first postnatal week, increases dramatically to 

peak at 18-21 days, and decreases to about 20% of the peak levels in mature animals (Carson 

et al., 1983). Earlier studies have indicated that programmed expression of MBP is regulated 

at the level of transcription (Shiota et al., 1991; Zeller et al., 1984). Functional dissection of 

the MBP regulatory sequence had led to the identification of a regulatory motif, named MB1, 

which spans from nucleotide –14 to –50 with respect to the transcription start site (Mukherjee 

and Chambon, 1990). Analysis of nuclear proteins derived from mouse brain identified a 39 

kDa protein that forms a nucleoprotein complex with a DNA fragment containing the MB1 

sequence. This protein was identified as Purα. Purα was shown to be able to recognize the 

GGC/GGA rich sequences within MB1 DNA and functionally increase transcription of the 

MBP promoter both in vitro and in vivo (Haas et al., 1995).  

Purα interacts also with MyEF-2, which is a single-stranded DNA-binding protein and binds 

to the MB1 sequence, thereby down-regulating the transcription of MBP (Muralidharan et al., 

1997). The interaction between Purα and MyEF-2 was shown to determine the binding of 

these proteins to their target DNA sequences within the MB1 motif. There is no evidence for 

the association of MyEF-2 and Purα, suggesting that transient communication of these two 

cellular proteins with each other, or together with their target DNA sequence may determine 

their interaction with the myelin basic protein promoter element. These observations may 
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have a functional significance in the programmed expression of the MBP gene during brain 

development. Of interest, Purα binding activity to the MB1 sequence occurs in a 

developmental stage-specific manner that coincides with the pattern of MBP transcription 

(Haas et al., 1995). It was indicated that at the early stage of brain development (day 3-7, 

postnatally), the level of Purα association with MB1 is extremely low, whereas during the 

phase of myelination (18-20 days) and in adult (day 30), its binding activity to MB1 is 

increased drastically. It was noted that the levels of Purα increase at day 10 and remained 

virtually constant thereafter (Tretiakova et al., 1998). It was also demonstrated that the peak 

of MyEF-2 expression is detected at the early stages of brain development (7 days postnatal), 

decreases during the phase of myelination, and remains at low level throughout the animal’s 

life (Muralidharan et al., 1997). Therefore, a model was generated by Muralidharan, in which 

the association of MyEF-2 with MB1 at the early phase of brain development when the level 

of Purα is low suppresses myelin basic protein gene transcription. At a later stage increased 

level of Purα then displaces MyEF-2 and results in stimulation of the MBP gene (Figure 5-1).  

Figure 5-1: Proposed model for involvement of Purα and MyEF-2 in programmed transcription of the 
MBP promoter. Before myelination, the binding of MyEF-2 to its target DNA sequence within the 
MBP promoter exerts negative effects on transcription of the MBP gene. During the phase of 
myelination, which is concomitant with high level of expression of Purα, Purα binding to its motif 
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within the MB1 dissociates MyEF-2 from the promoter sequence and augments transcription of the 
MBP gene. 

The shiverer mouse, a natural formed mutant, lacks MBP completely. Similar to Purα KO 

mice shiverer mice display a more sever tremor phenotype starting at day 12-15 postnatally. 

Different from the Purα KO mice, shiverer mice developed convulsions and died between 50-

100 days (Chernoff, 1981). However, Purα KO mice did not have convulsion and was able to 

live to about 5-6 months. The MLD mouse which is deficient in MBP due to a natural 

occurred recombination creating an antisense copy of the MBP gene, have a similar 

phenotype, but live somewhat longer (Mikoshiba et al., 1991). Interestingly, transgenic 

shiverer mice provide a adequate amount of myelin sufficient for a behavioural rescue (Popko 

et al., 1987; Readhead et al., 1987). Here the transgene is inserted at random therefore only 

being expressed at about 25% of normal levels, but this was enough to relieve all clinical 

phenotypes.  

According to the above described model, Purα protein seems to stimulate the transcription of 

the MBP gene upon binding to the MB1 motif and results in the dissociation of MyEF-2 from 

the MB1 sequence. Therefore, deletion of Purα might result in a lack of stimulation of MBP 

expression and thereby in a decrease in MBP level in the brain of the Purα KO mice. To 

analyse whether the tremor phenotype of the Purα KO mice maybe caused by a dramatic 

decrease of MBP concentration as described for shiverer or MLD mice, we investigated MBP 

levels in Purα KO mice brains. 

It was shown that MBPs levels in the brain stem of 16-days–old homozygous Purα KO mice 

were significantly reduced, but not in heterozygous and wild type mice (Figure 4-25). Both 

male and female Purα KO mice displayed the same reduced MBP expression pattern. These 

results indicate that Purα affects the expression of MBPs in 16-day-old mice. The mechanism 

of Purα regulation of MBP expression remains unclear. We have not yet studied whether the 

transcripts of MBPs in Purα KO mice are decreased. According to the model above, it is 

suggested that the transcription of MBPs may be reduced and thus result in the decreased 

MBPs expression levels. Surprisingly, there was no difference of MBPs levels between 60-

day-old KO mice and wild type mice (Figure 4-26), indicating that the MBP expression was 

restored between 16-60 days postnatally.  

Also correlating with developmentally regulated MBP expression is the synergistic action of 

Purα and the ubiquitous DNA binding transcription factor Sp1, which also binds to the MB1 

DNA motif at a region partially overlapping the Purα binding site (Tretiakova et al., 1999). 

Immunoprecipitation study showed the association of Sp1 and Purα in nuclear extracts from 

mouse brain. However, Purα:Sp1:MB1 complexes have not been detected. In Purα KO mice, 
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Sp1 might compensate the function of Purα and stimulate the expression of MBP in the 

absence of Purα. 

Although the MBP level in 16-day-old Purα KO mice was decreased as compared to 

heterozygous and wild type mice, we cannot conclude that the tremor phenotype of Purα KO 

mice is due to the decreased MBP level. In fact, transgenic shiverer mice, which express 25% 

of the normal amount of MBP, provide an adequate amount of myelin sufficient for a 

behavioural rescue (Popko et al., 1987; Readhead et al., 1987). A comparable result has been 

obtained with a MBP cDNA construct in transgenic mice, suggesting that one (14K) MBP 

isoform may be sufficient to serve most of the structural function of the entire protein family 

(Kimura et al., 1989). Although Purα KO mice show a comparable tremor phenotype to 

shiverer mice and display reduced MBP level at young age, they still possess 60-70% of wild 

type amount of MBP. Based on the data described above, this decreased amount of MBP in 

Purα KO mice should not lead to tremor phenotype. Our data suggest that the tremor 

phenotype of Purα KO mice should not be caused by slightly reduced MBP level but due to 

some other reasons, which remain unclear.  

5.2.2 Brain development of Purαα knock-out mice 

Apart from the tremor phenotype, the most significant difference between Purα KO and wild 

type mice is the brain abnormalities: Brains of Purα KO mice were visibly enlarged and the 

weight was increased by 30% as compared to wild types. This is mainly due to the enlarged 

brain stem, whose weight increased by 200% according to the detailed brain analysis of Purα 

KO mice. Hippocampus and sensoric cortex of Purα KO mice were also enlarged but their 

weights decreased as compared to wild types. The enlargement of the cerebral cortex is 

accompanied by an increased surface. 

A comparable phenotype has not been observed in any dysmyelination mutant mice, 

including shiverer or MLD mice. Moreover, the MLD mice displayed a normal but slightly 

reduced brain weight compared to wild type (Matthieu et al., 1984). However, such 

phenotype of enlarged brain is also observed in some other mice models: for example, 

megencephaly mice, IGF-1 (Insulin-like growth factor I) transgenic mice and the bcl-2 

transgenic mice.  

The reason for such an enlarged brain can be different, for example, the megencephaly mouse 

is characterized by an overall hypertrophy of the brain, and not by hyperplasia of particular 

cell types or by hypertrophy of a singular tissue compartment. Megencephaly also occurs in 

several acquired and inherited human diseases including Sotos syndrome, Ribinow syndrome, 

Canavan’s diseases, and Alexander disease. This defect can be distinguished from 

macrocephaly, an enlarged head, which usually occurs as a consequence of congenital 
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hydrocephalus. Compositional analysis of the brains of the megencephaly mice showed the 

water as a percentage of brain weight was not different between the two genotypes, excluding 

edema. Moreover, the ventricles of megencephaly mice were not dilated, ruling out 

hydrocephalus. Thus, larger brains in the megencephaly mutants are a consequence of 

increased cell size only. However, the enlarged brains of Purα knock-out mice are resulted 

from the increased cell mass as indicated by our new analysis (data not shown). Actually, this 

enlargement is only a local event, different from the situation in megencephaly mouse. 

The IGF-1 transgenic mice have brains that are 55% larger than controls by approximately 2 

months of age, with most brain structures affected. However, the increased brain size in 

transgenic mice results from both increased cell size and increased cell number (Carson et al., 

1993). The overexpression of IGF-1 in Purα KO mice is not possible, since the largement in 

the brains of Purα KO mice is not correlated with increased cell number.  

The brain size of bcl-2 transgenic mice increased by 50% as compared to wild type animals 

(Martinou et al., 1994). The bcl-2 gene has a powerful inhibitory action on naturally 

occurring cell death (NOCD) or apoptosis, which is a prominent feature of the developing 

nervous system. During this process, the expression of bcl-2 in neurons may determine 

whether a neuron dies or survives. bcl-2 overexpression reduces neuronal loss during the 

NOCD period, which leads to increased cell number of the nervous system. For instance, the 

facial nucleus and the ganglion cell layer of the retina had, respectively, 40% and 50% more 

neurons than normal. The structures most obviously enlarged are the brain stem and optic 

nerves (Martinou et al., 1994). These stems in the enlarged brains resemble those in Purα KO 

mice where the increased cell number is nonetheless not observed. 

Our study shows that a deletion in a single gene, Purα, can have a dramatic effect on brain 

size and weight. It was shown that such an enlarged brain is due to the increased cell size but 

not increased cell number. However, Edema or hydrocephalus cannot be excluded. 

The data of fresh wet brain weights showed: (i) The brains of the 60-66 day old Purα KO 

mice were significantly heavier than those of wild type; (ii) the brain weight of the 

heterozygotes resided exactly between the brain weights of the KO and wild type mice. 

However, the brain weights of 16-day old mice did not differ among the three genotypes. 

These results indicate that Purα KO mice demonstrate a significant increase in brain weight 

beginning from 16 days of age and continuing throughout at least to 66 days of age, while the 

normal adult brain weight in mice is achieved at approximately 2 weeks of age (Belknap et 

al., 1992). The further measurement of the brain weight after 66 day postnatally is not carried 

out and a further continuously increase in brain weight of the KO mice cannot be excluded.  
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We can also conclude that the tremor phenotype of the Purα KO mice is not due to the 

enlarged brain since the onset of tremor begins at postnatal day 12 (p12) while the enlarged 

brain forms definitively after postnatal day 16 (p16). Moreover, the heterozygotes also have 

enlarged brains but do not display tremor phenotype. These data suggest that the tremor 

phenotype might be independent of the enlarged brain and must be due to some other reasons, 

which are still unclear. 

Histological staining of three areas (anterior commissure, facial nerve and pyramidal tract) of 

the brain of Purα KO mouse revealed increased lipid staining (Sudan black staining) as 

compared to wild type. This observation suggests an increased lipid level in the brains of 

Purα KO animals. If specific lipids are enriched in brain is unclear. The increased lipid level 

might be the reason of the brain hypertrophy of the Purα KO mice. Moreover, histological 

staining also showed slightly reduced labeling of the myelin sheaths in the brain of KO 

mouse. Whether it is caused by the reduced level of MBP in the beginning of myelination 

remains unclear. Altogether, the reduced myelin sheath and increased lipid level in brain 

suggest an possible changed compositions of the brains and this increased lipid level might 

affect signal transduction in nervous system, which possibly can lead to the tremor phenotype 

of the KO mice.  

5.2.3 Weight development of Purαα KO mice  

The weight development significantly differed among the homozygous, heterozygous Purα 

KO and wild type mice. The weight loss of the KO animals began with the onset of their 

tremor phenotype (postnatal day 12-14) and was independent on the sex of the animals. While 

wild type and heterozygous mice showed continuous weight increase, KO mice showed 

significant slower weight increase until day 20-25 postnatally (p20-25) (See Figure 4-22). 

From then on KO mice recovered from weight loss and KO mice reached the same weight as 

wild type at about p50 (female) or p70 (male). Then homozygous KO males and females 

started over-proportional weight gain and only lose weight before they died. 

Dissection of Purα KO mice showed that both male and females had increased abdominal and 

subcutaneous fat layers but interestingly, female mice had much more fat than male mice. 

Bones and muscle mass of homozygous KO mice were clearly decreased. Moreover, the 

ration of carcasse to body weight of the KO mice proved also the badly developed muscle as 

compared to wild type. Thus, overall increased animal weight was apparently due to fat 

deposits, while they seemed to have weaker musculature (see the ration of carcasse to body 

weight in Table 4-1). Strikingly, the female KO mice displayed a more significant increase of 

weight than the males. The KO females were heavier than KO males whereas the wild type 

male mice were always heavier than females (see Figure 4-22). Heterozygotes, although 
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showing no tremor phenotype, had amounts of subcutaneous fat and brain weight that lay 

exactly between homozygous KO and wild type levels (Table 4-1).  

There are certain clues that indicate a metabolism disturbance in Purα KO mice. The clinical 

chemistry did not display an increased cholesterol level but a decreased triglyceride level. 

Macroscopically, the blood smear analysis of the Purα KO mice displayed an increase in fat 

droplets as compared to the wild type. The degree of such increased fat droplets of the KO 

females was more severe than that of KO males. The deletion of Purα in mice might lead to 

the abnormality of the lipid metabolism in an unknown way, which might also be the reason 

of the enlarged brain of Purα KO mice. 

Currently available data suggest that Purα KO mice may have a shorter life span than wild 

type mice. The two oldest KO mice died between 5-6 months, still shaking persistently. 6 

Purα KO mice died between p20-25 and 3 Purα KO mice died between p40-65. The shorter 

life span of Purα KO mice suggests that Purα may play a very important role in mouse 

development.  

In summary, the multi-phenotypes of the Purα KO mice suggest that Purα should act as a 

transcription factor that seems to participate in regulating the expression of some genes which 

are important not only for postnatal brain development but also for basic metabolism. 

5.3 Helix destabilizing activity of Purαα  

Besides the generation of Purα KO mice, a second important part of this Ph.D thesis was an 

enzymatic and biochemical characterization of the Purα protein.  

Purα protein purified from calf thymus was accidentally found to be able to unwind 17-

mer/M13 DNA duplex, therefore, the detailed dsDNA unwinding assays were carried out. 

In order to obtain large amounts of Purα protein for functional studies, Purα cDNA was 

fusioned with GST, so that it could be expressed and purified from E. coli (Figure 4-27). The 

GST-Purα protein displayed identical DNA binding and unwinding activity as compared to 

native Purα and therefore could be used for further analysis of Purα enzymatic activity. 

Purα was able to unwind 17-mer/M13 with high activity but displayed dramatically reduced 

activity on 25-mer/M13. If the duplex region was increased to 36 bp, no unwinding activity 

was observed. Moreover, Purα displayed no preference for fork like structure but was not able 

to unwind blunt ended 17-mer ds oligonucleotide even at high concentration (see Figure 4-

31). Surprisingly, it was found that the DNA unwinding activity of Purα was independent on 

nucleoside hydrolysis since Purα displayed DNA unwinding activity in the presence or in the 

absence of nucleosides (see Figure 4-33). 
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Although the majority of proteins with DNA unwinding properties function as helicases, there 

are some proteins that act as helix destabilizing proteins in an energy independent manner. 

Many of them are viral proteins like the adenoviral DNA binding protein, DBP (Zijderveld 

and van der Vliet, 1994) and the Herpex Simplex Virus protein ICP8 (Boehmer and Lehman, 

1993). These proteins have been shown to be able to unwind dsDNA without ATP hydrolysis. 

They miss directionality in their helix destabilizing activity.   

Similar to DBP and ICP8, Purα cannot be described as a helicase since it lacks most of the 

features common to all helicases (for review see (von Hippel and Delagoutte, 2001)) but can 

be characterized as helix destabilizing protein (HDP), also called DNA unwinding protein or 

single-stranded DNA binding protein. All helicases share common biochemical properties, 

including nucleic acid binding, NTP binding and hydrolysis and NTP hydrolysis-dependent 

unwinding of duplex nucleic acids (Lohman, 1993). Purα catalyzed unwinding of dsDNA 

substrates is energy independent whereas helicase reactions are driven by the hydrolysis of 

ATP or other nucleosides. Another aspect that distinguishes Purα  from helicases is the lack 

of directionality. Most helicases have a preferred direction of unwinding. Purα  unwinds 

substrates containing one blunt and a 3´ or 5´ overhanging end, respectively. Since Purα 

cannot unwind blunt-ended duplex DNA, these data indicate that Purα displays no 

directionality of unwinding (Figure 4-32).  

Purα needs single-stranded ends for its function since the protein is not able to unwind a 

double-stranded 17-mer with no single-stranded overhang (Figure 4-32). The single strand 

extensions are most likely necessary for binding of the protein to the substrate. Unwinding of 

the 17-mer/M13 requires binding of Purα to the substrate since Purα helix destabilizing 

activity can be inhibited specifically with an oligonucleotide that binds Purα with very high 

affinity (Bergemann et al., 1992; Jurk et al., 1996). Once Purα has bound to its preferred 

sequence, it can no longer perform its DNA unwinding activity on nonspecific substrates. 

DNA unwinding affinity is not affected by the presence of a non-specific competitor 

oligonucleotide (Mage 11-2).  

It has been reported that Purα can self-associate (Gallia et al., 1999; Muralidharan et al., 

1997). Various Purα deletion mutants, which were generated by PCR and fusioned with GST, 

were analyzed to identify the regions responsible for DNA binding, dsDNA unwinding 

activity and self-association. All the truncated proteins that are able to self-associate still 

display DNA binding and dsDNA unwinding activity. We could not identify a truncated 

protein unable to bind DNA but still display DNA unwinding activity. The mapping of the 

DNA unwinding domain of the Purα protein showed that this domain cannot be separated 

from the DNA binding activity (Figure 4-40 and Figure 4-41). As shown in Figure 4-35, the 

Purα  protein consists of several domains within its 322 amino acids. The N-terminus 
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contains a glycine-rich region (aa 7-53) followed by a region containing five repeats which 

can be subdivided into two classes. The C-terminus of the proteins consists of a glutamine 

rich region (282-303) followed by a glutamate rich domain (304-322) (for review see (Gallia 

et al., 2000)). Although glycine rich domains have been implicated in RNA binding and helix 

destabilizing activities (Haynes et al., 1990; Haynes et al., 1987; Steinert et al., 1991), the N-

terminal, glycine rich region of the Purα protein can be removed without affecting DNA 

binding and unwinding activity of the protein. Deletion of the first 106 amino acids decreases 

its activity significantly. The deletion mutant GST-Purα 107-322 displays only a very weak 

DNA binding activity and no detectable DNA unwinding activity (reviewed in Table 4-3). 

Recently, it has been shown that a Purα mutant truncated for 166 N-terminal amino acids and 

fused to GST displays a dramatically reduced but detectable DNA binding activity (Johnson 

et al., 1995). The fact that the GST-Purα 107-322 binds with even less affinity to DNA may 

be due to sterical interference within the GST fusion protein.  

The C-terminal region of the protein does not seem to be essential for DNA binding and 

unwinding capacity since deletion of up to 106 amino acids (GST-Purα 1-215) does not 

interfere with these activities. However, it is interesting to note that deletion of only eight C-

terminal aa in GST-Purα 1-314 results in a significant increase in Purα DNA binding and 

unwinding efficiency. This is in contrast to data published recently where a similar mutant 

GST-Purα protein displays significantly reduced DNA binding activity (Johnson et al., 1995). 

However, Johnson et al. mentioned that eight C-terminal aa had been deleted and 14 other aa 

had been added. Therefore, the C-terminus may have a regulatory function for Purα activity. 

Further experiments are necessary to verify, if the inhibitory effect of the eight C-terminal 

amino acids is due to the GST fusion context or if they are an intrinsic feature of the Purα 

protein. 

The three basic features of the Purα protein, DNA binding, DNA unwinding, and self-

association activity are all located in the central region of the protein containing three class I 

and two class II repeats. Our data indicate that four of these repeats are sufficient for all Purα 

function since deletion of one class I repeat (Purα 1-215, Purα 87-322, Purα 54-215) does not 

abolish any of its activities. However, deletion of two repeats (Purα 87-215) abolishes 

measurable Purα activity completely. From theses data we conclude that the DNA unwinding 

activity localizes to the central core domain of Purα and depends on at least four of the five 

repeat regions within this domain. DNA binding activity also maps to this part of the protein 

(Figure 4-41, Figure 4-42) (Chen and Khalili, 1995; Johnson et al., 1995). Considering the 

inhibitory effect of oligonucleotides specifically bound by Purα on DNA unwinding activity 

these results strongly suggest that DNA binding and DNA unwinding are not separable. DNA 

binding seems to be prerequisite for DNA unwinding.  
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Purα efficiently unwinds short dsDNA regions. However, increasing the DNA duplex from 

17 to 25 bp results in a dramatically drop of unwinding activity. Moreover, there is no 

detectable DNA unwinding activity if a 36-mer is annealed to M13 DNA (Figure 4-32). This 

may be due to missing co-factors not present in the recombinant protein. On the other hand, 

there may be no need for Purα to perform extensive unwinding of long double stranded 

regions in the cell. Purα could just function to destabilize very short double stranded regions 

in mainly single stranded DNA, e.g. stem loops or hair pins. This destabilizing activity could 

then facilitate the access and/or function of other regulatory proteins. This explanation would 

be in agreement with the notion that Purα may not only recognize specific sequences but also 

secondary structures that tend to be present in single stranded DNA and RNA (Jurk et al., 

1996) and Marion Jurk, unpublished observation).  

Purα has been shown to bind specifically to sequences found in promoter regions and origins 

of replication in eukaryotic and viral genomes. Helix-destabilizing proteins serve as accessory 

factors required for efficient action of replicative enzymes, DNA polymerases, DNA 

helicases, and also participate in DNA repair and recombination. The binding of Purα to PUR 

elements in promoter regions and origins of replication might result in a destabilized and 

partially unwound DNA duplex, which could be essential for the recruitment of other factors 

involved in transcription or replication. The finding that Purα unwinds short regions of double 

stranded DNA is the first step in understanding the mechanism of how Purα interferes with 

many different cellular processes. 

5.4 Cellular Purαα function 

The ability of Purα to interact with a GC/GA-rich motif (PUR element) found near the center 

of a region implicated as an initiation zone for chromosomal DNA replication and the ability 

of Purα to unwind short dsDNA suggest a regulatory role of Purα in the process of DNA 

replication. However, the data from the Purα knock-out mice make this speculation 

improbable. Purα has also been shown to interact with viral origins of DNA replication, 

including the JC virus (JCV) and bovine papillomavirus (Chang et al., 1996; Jurk et al., 

1996). It has been shown that Purα can suppress JC viral DNA replication in human glial 

cells (Chang et al., 1996). The possible explanation is Purα binds to the PUR element on the 

replication origins and therefore changes the DNA conformation, which perhaps leads to 

enhanced or decreased DNA replication. 

It has been demonstrated that Purα binds to the hypophosphorylated form of the pRb protein, 

which is required for cell differentiation (Johnson et al., 1995). Several results indicate that 

pRb is involved in the development of the nervous system and indeed high levels of the 

hypophosphorylated form of pRb are associated with neuronal differentiation. Gene KO 
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experiments help us to understand the universal role for Rb in the cell cycle control of DNA 

replication. Homozygous Rb-/- fetal mice develop apparently normally until day 12-14 of 

embryogenesis, at which point they die (Clarke et al., 1992; Lee et al., 1992). At death, 

defects are found in development of both the hematopoietic system and the hindbrain. 

Transfer of the human retinoblastoma (Rb) mini-transgene into the mutant mice corrects the 

developmental defects. Thus, Rb is essential for normal mouse development. However, the 

Purα KO mice display normal embryogenesis and early postnatal development, which 

indicates Purα is not involved in the embryonic developmental of mice. It can be speculated 

that the function of Purα might be redudant due to the presence of other PUR family proteins, 

Purβ and Purγ. 

Moreover, the presence of the PUR element near the transcription start sites of several cellular 

genes (Haas et al., 1995; Thatikunta et al., 1997) and viral genes (Chen et al., 1995; Chen and 

Khalili, 1995; Chepenik et al., 1998) suggests a regulatory role for Purα in transcription by 

altering the DNA duplex structure which facilitates association of transcription factors and the 

synthesis of RNA. It has been shown that Purα functionally stimulates transcription of MBP 

promoter in glial cells (Tretiakova et al., 1998), and the GC/GA motif in the MBP promoter 

region is necessary for binding of Purα. In this work, it was also shown that Purα KO mice, 

which shows multi-phenotypes, displayed decreased MBP level in the young mice (p16). We 

can speculate that in the early stage of brain development, the transcription of MBP gene may 

be decreased because Purα is not present to unwind dsDNA duplex for the transcription of 

MBP. 

Interestingly, many lines of evidence indicate that Purα may play an important role in the 

central nervous system since it can regulate not only the transcription of MBP, but also two 

other cellular genes related to the nervous system, neuron-specific FE65 gene and neuronal 

nicotinic acetylcholine (nAch) receptor (Zambrano et al., 1997) (Du et al., 1997).  

Rat brain nuclear extracts show three major DNA-protein complexes with the transcriptional 

control and start site of the neuron specific FE65 gene, which encodes for an adapter protein 

that interacts with the Alzheimer β-amyloid precursor protein (Zambrano et al., 1997). Two 

of the DNA-protein complexes contained Purα, the third the transcription factor YY1. FE65 

is almost exclusively expressed in neurons of several regions of the mouse nervous system, 

mainly in gangliar structures of somatic, visceral and sense organ systems, and in the brain, 

particularly in the cortex and hippocampus (Simeone et al., 1994). Regulation of its 

transcription is a key element in the generation of differentiated phenotypes in both neural and 

non-neuronal tissues, and this regulation apparently involves either Purα, or YY1 (Zambrano 

et al., 1997). It is possible that the loss of Purα gene affects the expression of FE65. Thus, an 

investigation of FE65 expression in Purα KO mice could be quite interesting. 
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Taken together, the Purα knock-out mice have opened an important access to the 

understanding of Purα function. 
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6 Summary 

Purα is a ubiquitous DNA- and RNA-binding protein that is highly conserved in eukaryotic 

organisms. Purα binds preferentially to purine-rich single-stranded DNA. To date, 

biochemical analyses of Purα have indicated that this protein might be involved in diverse 

cellular functions, including DNA replication, transcription, translation and cell growth 

control (Gallia et al., 2000). However, the function of Purα in vivo remains unclear.  

In this study, Purα knock-out mice (KO) were generated using homologous recombination 

techniques in ES cells. The Purα gene locus was isolated from 129/SvJ Mouse Genomic 

Library and partially sequenced. A targeting vector using positive and negative selection was 

generated for homologous recombination and was finally electroporated into E14 ES cells for 

five times. Out of 2400 ES cell clones only one positive ES cell clone (KO 248) was 

identified by Southern-blot analysis.  

Purα KO mice generated from ES cell clone KO 248 displayed multiple phenotypes. 

Apparently, they were normal when born, but developed assorted abnormalities. 12-14 days 

after birth they developed a severe and continuous tremor phenotype similar to shiverer mice 

that lack myelin basic protein (MBP) (Chernoff, 1981). This tremor phenotype continued 

unabated until natural death occurred. Purα KO mice seemed to have a shorter life span since 

none of the Purα KO mice lived longer than 6 months while the wild type mice lived 

normally. Purα has been shown to be involved in developmental and transcriptional control of 

MBP (Haas et al., 1995), therefore the MBP levels in the brain stems of Purα KO mice were 

investigated. It could be shown that MBP levels in 16-day-old Purα KO mice were decreased 

by 30-40% as compared to heterozygotes and wild type. However, MBP levels of the 63-day-

old Purα KO, heterozygous and wild type mice did not show significant difference. Although 

Purα KO mice showed a tremor phenotype comparable to shiverer mice and displayed 

reduced MBP levels at the beginning of brain myelination, they still possessed 60-70% of 

normal amounts of MBP, which has been shown to be sufficient to rescue the tremor 

phenotype in transgenic shiverer mice. These data suggest that the tremor phenotype of Purα 

KO mice may be due to some other reasons, which are still unclear.  

Strikingly, 70-day-old Purα KO mice displayed a steadily increasing obesity and significantly 

enlarged brain size with increased lipid content, suggesting aberrant fat metabolism or 

homeostasis, although the underlying cause(s) are as yet unknown. Brain stems of Purα KO 

mice were significantly enlarged and were about three times as heavy as those of the normal 

mice. The hippocampus and sensoric cortex of Purα KO mice were also enlarged but had 

decreased weight. Moreover, more lipids were observed not only in the brain of Purα KO 

mice but also in blood according to blood smear analysis. It has also been shown that female 
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Purα KO mice had more fat droplets in blood than males. Apart from the phenotypes 

described above, Purα KO mice displayed a different weight development curve as compared 

to normal mice: With the onset of tremor phenotype, Purα KO mice started to loose their 

weight; the weight loss of the male KO mice beginning from postnatal day 11-15 was more 

severer than females and their weight recovery lasted longer than females; the female Purα 

KO mice are heavier than males while normal male mice are heavier than females, suggesting 

that this obesity effect may also be influenced by animal gender. These results indicate that 

Purα may influence or regulate the metabolism of fat in an unknown mechanism. 

In the second part of this study, a new, yet uncharacterized in vitro enzymatic activity of Purα 

was investigated. Purα displayed a helix destabilizing activity by unwinding a labeled 17-mer 

oligonucleotide annealed to ssM13 DNA. This activity was independent of ATP or any other 

nucleosides and lacks any directionality, distinguishing it therefore from common helicase 

activities. 16 truncated GST-Purα were generated by PCR for mapping of the domain 

responsible for the DNA unwinding activity. It was revealed that the central part of the 

protein from amino acids 54-215 was essential for this feature of Purα. The identical part of 

Purα was sufficient and essential for DNA binding activity. Therefore, DNA binding could 

not be separated from DNA unwinding capacity. In addition, from pull-down assays, it was 

shown that the same part of the protein was also sufficient and necessary for Purα self-

association. Since Purα  has been shown to influence many important cellular processes, the 

DNA unwinding activity of the protein may establish a mechanism of how Purα functions in 

different cellular processes, such as replication and transcription. 
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8 Appendix  

8.1 Southern-blots of p5/1 and p14/2 

p5/1 Blot: 

Nr Enzyme HindIII 450 bp PstI 450bp 
1 NotI/HindIII 450 bp 2.1 kb 
2 NotI/PstI 4.5 kb 450 bp 
3 NotI/EcoRI >>7.0 kb 2.1 kb 
4 NotI/XbaI 4.5 kb 2.1 kb 
5 NotI/SmaI >>7.0 kb 1.7 kb 
6 NotI/BamHI 7.0 kb 2.1 kb 
7 NotI/EcoRV 6.0 kb 2.1 kb 
8 NotI/BglII 2.4 kb 1.3 kb 
9 NotI/SalI >>7.0 kb 2.1 kb 

10 NotI >>7.0 kb 2.1 kb 

Table 8-1: Size of DNA fragments got from blot p5/1 hybridized with HindIII 450 bp fragment or PstI 
450bp fragment. 

 

P14/2 Blot: 

Nr Enzyme HindIII 450 bp PstI 450bp 
1 NotI/HindIII 450 bp 5.8 kb 
2 NotI/PstI 4.5 kb 450 bp 
3 NotI/EcoRI 3.0 kb 4.2 kb 
4 NotI/XbaI 4.2 kb 2.8 kb 
5 NotI/SmaI 5.0 kb 7.0 kb 
6 NotI/BamHI >5.0 kb >7.0 kb 
7 NotI/EcoRV 3.5 kb 2.6 kb 
8 NotI/BglII 2.3 kb 1.3 kb 
9 NotI/SalI 2.5 kb 6.0 kb 

10 NotI >>5.0 kb >7.0 kb 

Table 8-2: The size of DNA fragments got from blot p14/2 hybridized with HindIII 450 bp fragment 
or PstI 450bp fragment. 
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P14/2 Blot: 

Nr Enzyme   P2M1     P2M2 
1 NotI/HindIII 2.5 kb 1.2 kb 
2 NotI/PstI 1.1 kb 4.2 kb 
3 NotI/EcoRI 1.3 kb 1.8 kb 
4 NotI/XbaI 2.5 kb 3.3 kb 
5 NotI/SmaI / / 
6 NotI/BamHI 300 bp 7.0 kb 
7 NotI/EcoRV / 4.0 kb 
8 NotI/BglII 1.1 kb 4.5 kb 
9 NotI/SalI 2.5 kb 950 bp 
10 NotI 2.5 kb 7.0 kb 

Table 8-3: The size of DNA fragments got from blot p14/2 hybridized with P2M1 and P2M2. 

8.2 The oligonucleotides used in this study 

8.2.1 Oligonucleotides used for generation of Purαα knock-out mice 

The oligonucleotides p11M1 to p10M2 are from murine Purα genomic DNA sequence.  

p11M1 

5’- CGTACGCCCGGGGCTCTCATTGATACTTGCTAATTTTCTGGG -3’ 

p11M2  

5’-  CGTACGCCCGGGGTAAAGGGGTAAGTGAACCTGGTTTAATG -3’ 

P7M1E 

5’- GATCGCCCCGGGCAGACGAGACCCGGTAACAGG -3’ 

P10M1A 

5’- CGTACGCTCGAGACAATGTTAAATATGAGGTGACCG -3’ 

P10M1B 

5’- CGTACGCTCGAGTGTGCATTTTCCCATTGTTTCC -3’ 

P10M2 

5-' CGCTAGCTCGAGGCTCATATTTATAAAGAATTTTATGGGC -3’  

Neo.primer  

5’- GGATGCGGTGGGCTCTATGGCTTCTGAGG -3’  

Neo2a 

5’- GATCTCCTGTCATCTCACCTTGC  -3’ 
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Neo2b 

5’- TGGCAACTAGAAGGCACAGTCG  -3’ 

8.2.2 Oligonucleotides used for the generation of truncated Purαα mutants 

The oligonucleotides HeM1-A to HeM10 are derived from Hela Purα cDNA. The letters 

written in small are the linker sequence containing a restriction site and the following 

sequence in capital letters is derived from Hela Purα cDNA. 

 

Primers for PCR Nr. GST-Purα deletion 

mutants sense-primer        antisense-primer 

Annealing  

Temp (°C)           

Size of PCR                    

fragment (bp) 
1 GST-Purα ( 107-322 ) HeM5 HeM1-C1 54°C 756 bp 
2 GST-Purα ( 87-215 ) HeM7 HeM4 54°C 411 bp 
3 GST-Purα ( 87-314 ) HeM7 HeM2-C2 54°C 716 bp 
4 GST-Purα ( 54-215 ) HeM1-A HeM4 54°C 512 bp 
5 GST-Purα ( 54-314 ) HeM1-A HeM2-C2 54°C 815 bp 
6 GST-Purα ( 54-322 ) HeM1-A HeM1-C1 54°C 855 bp 
7 GST-Purα ( 1-322 ) HeM2-A HeM1-C1 54°C 1011 bp 
8 GST-Purα ( 1-314 ) HeM2-A HeM2-C2 54°C 971 bp 
9 GST-Purα ( 1-215 ) HeM2-A HeM4 54°C 668 bp 

10 GST-Purα ( 74--215 ) HeM6 HeM4 54°C 449 bp 
11 GST-Purα ( 74--322 ) HeM6 HeM1-C 54°C 794 bp 
12 GST-Purα ( 74--314 ) HeM6 HeM2-C2 54°C 754 bp 
13 GST-Purα ( 87--322 ) HeM7 HeM1-C1 54°C 756 bp 
14 GST-Purα ( 107-314 ) HeM5 HeM2-C2 54°C 652 bp 
15 GST-Purα ( 107-215 ) HeM5 HeM4 54°C 349 bp 
16 GST-Purα ( 54-189 ) HeM1-A HeM8 50°C 478 bp 
17 GST-Purα ( 54-203 ) HeM1-A HeM9 50°C 439 bp 

Table 8-4: Various truncated Purα cDNA generated fragments with different primer pairs.  

heM1-A 

5’- tacggaattcatGCTGCAGCACGAGACG -3’ 

heM2-A 

5’- tacggaattcATGGCGGACCGAGAC -3’  

heM1-C1  

5’-  ctaggtcgacGGGGGTTTCATTCTGTTTGA -3’ 

heM2-C2  

5’- ctaggtcgactcaACCCTGCAGTAGCAGAG -3’ 
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heM3  

5’- tacggaattcatGTGGAGTTCCGCGAC -3’ 

heM4  

5’- ctaggtcgacCGGCTCCTCCTCCAC -3’ 

heM5  

5’- tacggaattcatgGTGGAGTTCCGCGAC -3’ 

heM6   

5’- tacggaattcatgCTGGACGTGAAGCAGAAC -3’  

heM7  

5’- tacggaattcatgATCGCCGAGGTGGGCG -3’ 

heM8 

5’- ctaggtcgactcaCAGCGCAATGGTCTGG -3’ 

heM9 

5’- ctaggtcgactcaGGCCAGAGCGTCACG -3’ 

heM10  

5’- tacggaattcATGGCGGACCGAGACAG -3’  

pGEX-4T1 Primer (antisense) 

5’- GCGACATCGTATAACGTTAC -3’ 

8.2.3 Oligonucleotids used for the DNA binding assay 

Ori-1 

5’-AGCTCACCGAAACCGGTAAGTAAAGACTATGTATTTTTTCCCAGTGAATAATT 

GTTGTTAACAATAATCACACCATCACCGTTTTTTCAAGCGGGAAAAAA -3’ 

PUR1 

5’- GGAGGTGGTGGAGGGAGAGAAAAG -3’ 

Mage 11-2 

5’- GGGAAAAGGACTCAGGGTCTATC -3’ 
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9 Appendix of Color Figures   

Figure 4-21: Purα KO mice are bigger than their wild type littermates from postnatal day 70 because 
of obesity.  

Figure 4-23: (A) The whole brain of Purα KO and wild type mice (p48). (B) The brain stem and 
hippocampus prepared from the brains of the KO and wild type mice. (C) HE staining of the brains of 
the KO and wild type mice.  
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Figure 4-22: Weight tables of the Purα KO, heterozygous and wild type mice. 
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Figure 4-24: A) Histological staining of the anterior commissure of the mice brains: Brains from a 
Purα KO and a wild type mouse were analyzed using three different histological stanings: HE staining 
(labels nuclei and plasma), Sudan black (lipid staining), and myelin sheaths staining.  



Appendix of Color Figures 

 

 

 

139

Figure 4-24: B) Histological staining of the facial nerve of the mice brains: Brains from a Purα KO 
and a wild type mouse were analyzed using three different histological stanings: HE staining (labels 
nuclei and plasma), Sudan black (lipid staining), and myelin sheaths staining.  
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Figure 4-24: C) Histological staining of the pyramidal tract of the mice brains: Brains from a Purα KO 
and a wild type mouse were analyzed using three different histological stanings: HE staining (labels 
nuclei and plasma), Sudan black (lipid staining), and myelin sheaths staining.  
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