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Zusammenfassung

Periodisches Treiben optischer Gitter ist ein vielseitiges Hilfsmittel auf dem Ge-
biet der ultrakalten Atome geworden, da es die Erzeugung neuartiger Bandstruk-
turen ermöglicht, die in statischen Gittersystemen nicht realisierbar sind. Diese
Technik ermöglichte unter anderem die Erzeugung topologischer Bandstrukturen
und künstlicher Magnetfelder für neutrale Atome. Experimente, die mit wechsel-
wirkenden bosonischen Atomen durchgeführt wurden, litten jedoch häufig unter
starkem Heizen, was die Lebenszeit des Systems deutlich reduzierte. Die Kom-
bination von starken Wechselwirkungen und periodischem Treiben ist jedoch von
großem Interesse, da sie die Untersuchung von topologischen Vielteilchensystemen,
wie zum Beispiel gebrochenzahligen Quanten-Hall-Systemen, ermöglichen könnte.
Aus diesem Grund ist ein Verständnis der zugrundeliegenden Heizmechanismen sehr
wichtig, um Strategien entwickeln zu können, die das Heizen in zukünftigen Expe-
rimenten reduzieren.

Diese Arbeit berichtet von experimentell gemessenen Atomzahlverlusten aus
einem wechselwirkenden Bose-Einstein-Kondensat, welches in einem periodisch
getriebenen, eindimensionalen optischen Gitter gefangen ist. Es werden sys-
tematisch die Verlustraten für unterschiedliche Wechselwirkungsstärken und
Schüttelparameter studiert. Ein besonderer Fokus liegt hierbei auf der Analyse
zweier unterschiedlicher Parameterbereiche, die von experimenteller Bedeutung sind:
Für Antriebsfrequenzen, die größer als die Bandbreite des untersten Bandes, aber
dennoch klein im Vergleich zur Resonanzfrequenz zum ersten angeregten Band
sind, wird das Tunnelmatrixelement zwischen zwei benachbarten Gitterplätzen
durch eine Besselfunktion renormiert. Im zweiten betrachteten Regime liegen die
Schüttelfrequenzen in der Bandlücke zwischen dem ersten und dem zweiten an-
geregten Band. In diesem Regime hybridisieren die Bänder sehr stark miteinander,
was zu einer doppelmuldenartigen Dispersionsrelation des untersten Bandes führen
kann. Das erstgenannte Regime kann dazu genutzt werden, künstliche Magnetfelder
und topologische Bandstrukturen zu kreieren, wohingegen das letztgenannte Regime
die Untersuchung symmetriegebrochener Domänen ermöglicht.

Zusätzlich zur experimentellen Bestimmung der Heizraten wird ein theoretisches
Modell entwickelt, welches die zugrundeliegenden resonanten Streuprozesse be-
schreibt. Nach der Identifikation der dominanten Streukanäle können die resul-
tierenden Heizraten des Systems mithilfe Fermis Goldener Regel abgeschätzt wer-
den. Durch den Vergleich von experimentell gemessenen Heizraten und theo-
retisch abgeschätzen Raten findet man heraus, dass das Aufheizen des Systems
reduziert werden kann, wenn resonant gestreute Teilchen direkt die Falle verlassen
können, bevor sie ihre Energie an das System abgeben. Zusätzlich zu den Daten in
einem eindimensionalen Gitter werden vorläufige Messungen von Heizraten in einem
getriebenen hexagonalen Gitter präsentiert. Da die in dieser Arbeit diskutierten
Heizmechanismen mindestens eine schwach eingeschlossene transversale Richtung



benötigen, könnte die Implementierung von Schüttelbewegungen in einer dreidimen-
sionalen Gitterstruktur ein entscheidender Schritt zur Minimierung der Heizraten in
angetriebenen Gittersystemen sein.



Abstract

The periodic driving of optical lattices has become a versatile tool in cold atoms
experiments as it enables the creation of novel band structures not realizable in static
lattice systems. This technique has facilitated both the creation of topological bands
and artificial magnetic fields for neutral atoms. However, experiments conducted
with interacting bosonic particles often suffered from strong heating, which leads to
dramatically reduced lifetimes of the system. The combination of strong interactions
and periodic driving is, however, of large interest as it could enable the study of
topological many-body physics such as fractional quantum Hall systems. Therefore,
it is of vital importance to understand the underlying heating mechanisms in order
to find strategies to reduce this heating in future experiments.

In this thesis, we report on experimentally measured atom number losses from an
interacting Bose-Einstein condensate in a periodically driven one-dimensional opti-
cal lattice. We systematically study the loss rates for different interaction strengths
and shaking parameters. We focus our study on two different shaking regimes that
are of experimental relevance: for driving frequencies that are larger than the band-
width of the lowest band but still small compared to the resonance frequency to
the first excited band, the tunneling matrix element between neighboring lattice
sites is renormalized by a Bessel function. In the second regime, we study shak-
ing frequencies that lie between the band gap of the first and second excited band.
In this regime, the bands strongly hybridize with each other, which can lead to a
double-well-like dispersion relation in the lowest band. While the former regime can
be utilized to create artificial magnetic fields and topological band structures, the
latter facilitates the study of symmetry-broken domains.

In addition to the experimental determination of heating rates, we develop a the-
oretical model that describes the underlying resonant scattering processes. Having
identified the dominant scattering channels, we estimate the resulting heating rates
of the system within a Fermi’s golden rule approach. By comparing the measured
heating rates with theory, we find that heating can be reduced when resonantly scat-
tered particles are allowed to directly leave the trap before dissipating their energy
into the system. In addition to the experiments conducted in a one-dimensional lat-
tice, we also present preliminary data on heating rates in a driven hexagonal lattice.
Since the heating mechanisms discussed in this thesis rely on at least one weakly
confined transverse direction, a crucial step towards minimizing heating in driven
lattice systems might be the implementation of shaking within a three-dimensional
lattice structure.
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Chapter 1

Introduction

Periodically driven systems can exhibit interesting and unintuitive phenomena not
present in static systems. One paradigmatic example in classical physics is the
so-called “Kapitza pendulum”, a rigid pendulum whose pivot point allows for a
periodical drive along the vertical direction [1, 2]. Without driving, the inverted
position above the pivot point is an unstable equilibrium position. This implies
that the smallest perturbation takes the system away from this position and induces
oscillations of the pendulum. Once the oscillations damp out, the system relaxes
to the stable equilibrium position below the pivot point. By carefully choosing
the frequency and amplitude of the external drive, one can transform the inverted
unstable equilibrium position into a stable one. Now, small displacements from
this position will lead to slow oscillations of the pendulum’s bob about this inverted
position. Once these oscillations damp out, the pendulum will return to the inverted
position. This system represents one kind of passive dynamical stabilization, where
otherwise unstable modes can be stabilized by periodically driving the system.

In 1986, Dunlap and Kenkre introduced the concept of controlling a physical
system through periodic driving to lattice structures [3]. They studied on a theo-
retical level how charged particles in a lattice structure behave in the presence of
an external oscillating electric field. In a static system, initially localized particles
spread out over the lattice with time. However, they showed that this spreading can
be slowed down or even completely suppressed by applying a periodic drive with
properly chosen driving parameters. As the particles can neither move nor spread
and remain localized on a single lattice site this phenomenon was termed “dynamic
localization”. This effect is a quantum-mechanical version of the above-mentioned
Kapitza pendulum which shows that time-periodic forcing can stabilize an otherwise
unstable system.

Later theoretical studies showed that this dynamic localization of matter waves
was associated with a suppression of Bloch bands [4–6]. While it was theoreti-
cally shown that this kind of dynamic stabilization also survives in real solid-state
materials where Coulomb interactions between particles play a major role [7], the
experimental observation proved to be challenging. By applying a terahertz electric
field to a semiconductor superlattice, dynamic localization was indirectly observed

1



Chapter 1 Introduction

by measuring a suppressed conductance of the sample [8]. However, this experiment
also had to handle a multitude of additional competing effects that occurred at the
same time. While this experiment showed the suppression of inter-well tunneling
events, it could not show the suppression of Bloch bands.

The advent of ultracold atoms trapped in crystals of light changed this situation
dramatically. By loading a cold gas of sodium atoms into an optical lattice and pe-
riodically modulating its position, it was possible to directly observe a suppression
of Bloch bands [9]. Subsequent studies involving a Bose-Einstein condensate (BEC)
showed the dynamic localization of matter waves as well as the underlying mech-
anism responsible for dynamic localization, the rescaling of the tunneling matrix
element by a Bessel function [10, 11].

This example illustrates that ultracold quantum gases trapped in optical lattices
are a suitable system to simulate condensed matter systems. Compared to real solid
state materials, ultracold quantum gases in optical lattices offer extremely clean
potential landscapes combined with exceptional control possibilities over the system
parameters [12, 13].

The rapid development of quantum simulation with ultracold atoms was made
possible by the creation of the first gaseous BEC in 1995 [14–16] and the first de-
generate Fermi gas in 1999 [17]. By loading ultracold atoms into an optical lattice
created by the interference of multiple laser beams, the Hubbard model can be real-
ized [18]. This model was initially designed to describe strongly-correlated electrons
in condensed matter systems [19] and is characterized by two parameters, the tun-
nel coupling between neighboring lattice sites and the interaction strength between
individual particles. Both of these parameters can be individually manipulated
in ultracold quantum gas experiments with high precision. Interactions between
atoms are typically tuned via Feshbach resonances [20] and the tunnel coupling can
be tuned by changing the lattice depth. This tuning ability allowed optical lattice
experiments to enter the strongly correlated regime, which led to the hallmark ob-
servation of the superfluid to Mott insulator transition in a three-dimensional optical
lattice [21].

Many different lattice structures have been realized in the last decade, ranging
from simple cubic lattices to more exotic lattice structures like the honeycomb and
triangular lattice [22–24], the checkerboard lattice [25] or the Kagome lattice [26].
In addition to an extensive toolbox to manipulate the system, which even extends
down to the single particle level [27], many different detection methods for the many-
body state are also available. Besides the standard absorption and phase contrast
imaging techniques [28], there are also noise correlation measurements [29, 30] and
the imaging of both bosonic and fermionic atoms at the single-particle level available
[31–37].

In recent years, the periodic modulation of optical lattice potentials became a
versatile tool to probe and alter the band structure. Amplitude modulation of the
lattice has mainly been used to probe nearest-neighbor correlations [38] or the ex-
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citation spectrum of the system [39–41]. Other possibilities include photon-assisted
tunneling [42] or algorithmic cooling of the system [43]. Although phase or frequency
modulation of the lattice beams can, in principle, also be used for the same purposes
discussed above, it has been particularly used to engineer novel band structures.

The effects of the spatial modulation of the lattice potential onto the band struc-
ture can be grouped into two experimentally relevant regimes. When shaking with a
frequency close to the energy separation between two bands, the two bands start to
hybridize. If bands with different curvature are hybridized [44], the resulting band
structure can be exploited to study, for example, the formation of symmetry-broken
domains [45, 46]. The other shaking regime is obtained for driving frequencies that
are far above the bandwidth of the lowest band but which are still small compared to
the separation of the lowest two bands. In this regime, the periodic driving renor-
malizes the tunneling matrix element by a Bessel function, as already mentioned
above. It was shown that this renormalization remains effective even if the particles
strongly interact with each other [47]. This tuning ability was later used to cross
the superfluid to Mott insulator transition in a dynamic fashion [48].

Recently, periodic driving has also attracted attention as a possible candidate to
implement artificial gauge fields in cold atoms systems. Many interesting effects
in condensed matter physics, such as the quantum Hall effect [49], rely on charged
particles interacting with magnetic fields via the Lorentz force. Since this interaction
is absent in cold atom systems due to the charge-neutrality of the trapped atoms,
there has been an increasing interest in engineering artificial magnetic or electric
fields. In general, the effect of an external gauge potential on a charged particle
confined in a lattice structure is captured by a complex tunneling phase, the so-
called Peierls phase [50, 51]. This Peierls phase is given by the line integral of the
gauge potential along a lattice bond and the resulting strength of the magnetic field
is hence given by the integral of the Peierls phases over a single plaquette of the
lattice. Therefore, the general strategy to implement artificial gauge fields in lattice
systems is to create complex tunneling phases that lead to a non-trivial magnetic
flux per plaquette.

By choosing an appropriate driving scheme, such complex tunneling phases can be
imprinted. The trapped neutral particles then effectively behave like charged parti-
cles in the presence of an external magnetic field [52–54]. These complex tunneling
phases do not have to be imprinted via spatial lattice shaking. Another technique
exploited laser-assisted tunneling between neighboring lattice sites in order to cre-
ate strong staggered and non-staggered magnetic fields [55–62]. In these schemes,
tunneling between neighboring lattice sites is initially inhibited by employing a mag-
netic field gradient or a superlattice potential. Tunneling with the desired complex
phases is then restored by driving the system with additional lasers at a frequency
that is resonant to the energy offset between neighboring lattice sites.

Periodic driving has also been intensively discussed in the context of engineering
topological band structures [52, 63–67]. By circularly driving a hexagonal lattice
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it was possible to create a topological band structure [68, 69] which resembled the
Haldane model [70]. This toy model demonstrated that the quantum Hall effect can
occur in Bloch band structures even without the need of a strong external magnetic
field if time-reversal symmetry is broken by other means.

Despite the many successes and promising future applications of shaken lattice
systems, they are accompanied by their own set of challenges. One major issue of
periodically driven systems, especially interacting ones, is that they exhibit consid-
erable heating, which leads to a strong reduction of their lifetime. This behavior
is rooted in a general property of periodically driven systems. As the system can
absorb or emit energy from the drive, energy is not conserved anymore. In close
analogy to particles in a spatially periodic potential, where the momentum is only
defined modulo reciprocal lattice vectors, the energy of a driven system is only de-
fined modulo the energy quantum ~ω. Due to this lack of energy conservation, it is
generally assumed that interacting driven systems heat up to an infinite temperature
like state [71, 72].

As many physical effects require strong interactions between particles, as for ex-
ample fractional quantum Hall states [73], it is desirable to combine periodically
driven systems with strong interactions. However, to successfully combine these two
properties, a thorough understanding of the underlying heating mechanisms is nec-
essary because only then can strategies be developed in order to minimize heating
of the system.

In this thesis, we study heating rates of an interacting BEC in a shaken one-
dimensional optical lattice as a function of both driving and interaction strength.
We choose this system due to its inherent simplicity. Apart from determining heat-
ing rates experimentally, we also develop a theoretical model that describes the
dominant heating channels. This theoretical model is based on Fermi’s golden rule,
which was already studied in earlier theoretical work [74–78]. For the quantita-
tive comparison between the theoretically estimated and experimentally measured
heating rates, we choose two different driving frequencies which represent the two
different driving regimes mentioned above. In the regime of low shaking frequencies,
the dominant heating channels are given by resonant collision processes between two
particles during which one- or two-photons from the drive are absorbed. For high
shaking frequencies, the dominant heating channels are given by single-particle mul-
tiphoton excitations, where energy and momentum conservation is satisfied through
a subsequent ordinary collision process between two particles. We find that the
measured heating rates for low shaking frequencies are larger than the theoretically
expected scattering rates. We attribute this discrepancy to secondary collision pro-
cesses that occur when excited particles cannot directly leave the trap. One strategy
to reduce heating in such a scenario would be to implement a trapping configuration
where excited particles can directly leave the trap before dissipating their energy.
Since the presented heating channels require at least one transverse direction, they
should be forbidden in a three-dimensional lattice structure.
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Outline

• Chapter 2: In this chapter, we review the basic theoretical knowledge nec-
essary to understand ultracold atoms trapped in optical lattice structures and
describe how the band energies and eigenstates of single particles can be ob-
tained. In the last part of this chapter we review basic concepts of Floquet
theory, such as the concept of quasienergy. In the course of this discussion we
will give two explicit examples on how the band structure of a one-dimensional
lattice changes under the influence of an external drive.

• Chapter 3: The experimental setup and the procedure to obtain a Bose-
Einstein condensate of 39K atoms are presented in this chapter. Furthermore,
we discuss the utilized detection and manipulation techniques. In the last part
of this chapter, we characterize relevant parameters of the system such as the
total atom number and the momentum spread of the condensate.

• Chapter 4: In chapter 4 we present the general foundation of how heat-
ing rates in a shaken optical lattice can be obtained. In particular, we dis-
tinguish between single-particle heating and interaction-dependent heating.
While single-particle heating only occurs at specific shaking frequencies when
a multiphoton resonance condition to an excited band is fulfilled, interaction
dependent heating occurs at all driving frequencies. We present a general the-
oretical model with which heating rates can be determined by Fermi’s golden
rule and where the density distribution of the atoms is considered within a
local density approximation.

• Chapter 5: A quantitative comparison between the measured and estimated
heating rates is presented for two different driving regimes. For frequencies
larger than the bandwidth of the lowest band but still small compared to the
band gap the dominant heating processes are given by resonant two-particle
scattering. In the second driving regime where the shaking frequency is larger
than the band gap a multitude of different scattering channels appear. In
both regimes we find good agreement between the measured data and the
theoretical estimation.

• Chapter 6: In chapter 6 we conclude this thesis and present future prospects
of the experiment. Additionally, preliminary results on measured heating rates
in a shaken hexagonal lattice are presented.
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Chapter 2

Theoretical background

This chapter summarizes the most important theoretical concepts necessary to un-
derstand ultracold atoms in driven optical lattice systems. We start in section 2.1
by introducing Bose-Einstein condensation. In particular, we will focus on conden-
sates trapped in a harmonic trapping potential. Afterwards, in section 2.2 we will
describe how single particles behave in the presence of an external lattice structure.
We will introduce the concept of energy bands and describe the single-particle wave
function on a single lattice site. We focus our discussion on a one-dimensional opti-
cal lattice, as this lattice structure is used in most parts of this thesis. In addition,
we also give a short introduction of the hexagonal lattice as we will also present
some preliminary measurements in this lattice structure in section 6.1. We conclude
this chapter with a description of Floquet theory in section 2.3.

2.1 Theory of ultracold bosonic particles

In this section, we will introduce the basic theoretical background necessary to
understand ultracold bosonic gases. We will start with a brief introduction of Bose-
Einstein condensation and will then discuss the Gross-Pitaevskii equation as this
equation and derivations from it, like the Thomas-Fermi approximation, will play a
central role in this thesis later on.

2.1.1 Bose-Einstein condensation

Bose-Einstein-condensation (BEC), the macroscopic occupation of a single eigen-
state, was already predicted almost one hundred years ago [79, 80] after which it
took 70 years until the first gaseous condensates were realized in the lab [14, 15]. For
an ideal, non-interacting Bose gas the average occupation number of a single-particle
eigenstate with energy εi is given by the Bose-Einstein distribution [81]

n̄i =
1

e(εi−µ)/(kBT ) − 1
, (2.1)

7



Chapter 2 Theoretical background

where µ is the chemical potential, kB is Boltzmann’s constant and T denotes the
temperature of the system. Since the occupation number must have a positive value,
Eq. 2.1 places a physical constraint on the chemical potential µ being smaller than
the ground state energy of the system ε0. Bose-Einstein condensation occurs in
the limit where µ → ε0. In this regime, the ground state becomes macroscopically
occupied by N0 atoms

N0 ≡
1

e(ε0−µ)/(kBT ) − 1
. (2.2)

One can, therefore, express the total atom number of the system as the sum of atoms
in the ground state and atoms occupying higher-lying energy states

N = N0 +NT , (2.3)

where

NT =
∑
i 6=0

n̄i(T, µ) (2.4)

is also referred to as the thermal background of the gas. For typical experiments the
condensate will be trapped in an external harmonic potential whose energy levels
are given by [82]

εnx,ny ,nz = ~ωx
(
nx +

1

2

)
+ ~ωy

(
ny +

1

2

)
+ ~ωz

(
nz +

1

2

)
, (2.5)

where ωx,y,z is the harmonic trapping frequency and ~ the reduced Planck constant.
In the limit µ = ε0

1 with large particle numbers and a harmonic oscillator level
spacing much smaller than kBT , one can replace the sum in Eq. 2.4 by an integral
leading to

NT =

∫
dnxdnydnz

1

exp[β~(ωxnx + ωyny + ωznz)]− 1
, (2.6)

where β = 1/(kBT ) is the inverse temperature. The critical temperature below
which a macroscopic occupation of the ground state occurs can be obtained by
equating NT with N and is given by [83]

kBTc = ~ω̄
(
N

ζ(3)

)1/3

. (2.7)

1If the temperature is larger than the critical temperature Tc at which Bose-Einstein condensation
occurs, this equation cannot be fulfilled without violating the normalization condition that
NT ≤ N . Hence, for temperatures larger than Tc the lowest energy state is only occupied
microscopically with a negligible contribution to the thermodynamic properties of the system.
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2.1 Theory of ultracold bosonic particles

Here ω̄ = (ωxωyωz)
1/3 is the geometric mean of the trapping frequencies and ζ(x) is

the Riemann function. Depending on the temperature of the system, only a fraction
of atoms condense into the lowest energy state. We can express this condensate
fraction N0/N in terms of the temperature as

N0

N
= 1−

(
T

Tc

)3

. (2.8)

In the case of an ideal condensate at zero temperature, all atoms occupy the lowest
energy state which for an external harmonic oscillator potential is the harmonic
oscillator ground state wave function φ0(r). Thus, the density distribution n0(r) of
the condensate can be described by

n0(r) = N0 |φ0(r)|2 . (2.9)

2.1.2 The Gross-Pitaevskii equation

So far we have assumed an ideal, non-interacting Bose gas. However, a generic
bosonic quantum system will exhibit finite interactions between its particles. We
can describe such an interacting many-body system that is additionally confined by
an external potential V (r), within second quantization by the Hamiltonian [84]

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2M
∇2 + V (r)

]
Ψ̂(r)

+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)Uint(r − r′)Ψ̂(r′)Ψ̂(r). (2.10)

Here M is the mass of the atoms and Ψ̂†(r) and Ψ̂(r) denote the bosonic field oper-
ators that create or annihilate a particle at position r, respectively. The interaction
potential between two particles is given by Uint(r − r′). The exact solution of this
Hamiltonian is generally not possible, especially for systems that contain a large
number of atoms, which is usually the case when studying condensates. To sim-
plify the Hamiltonian defined in Eq. 2.10, we perform a mean-field approximation.
Since a single eigenstate becomes macroscopically occupied in a condensate, the field
operators can be expressed as

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t), (2.11)

where Φ(r, t) ≡ 〈Ψ̂(r, t)〉 is the expectation value of the field operator. Within this
approximation, the condensate density n0(r, t) is given by n0(r, t) = |Φ(r, t)|2. The
operator Ψ̂′(r, t) describes small fluctuations of the condensate density and will be
neglected in the following.

9



Chapter 2 Theoretical background

At the ultracold temperatures present in a BEC, the mean inter-particle distance
in the condensate as well as the de Broglie wavelength of the atoms are much larger
than the range of interactions between particles, which are described by the van
der Waals force [85, 86]. Furthermore, due to the low energy of the atoms, only
s-wave scattering between particles has to be taken into account. With all these
considerations, we can approximate the interaction potential by a contact interaction
potential

Uint(r − r′) ≈ gδ(r − r′), (2.12)

where g = 4π~2a/M and a is the s-wave scattering length and δ(r) is the Dirac
delta function.

Inserting these approximations into Eq. 2.10 we arrive at the Gross-Pitaevskii
equation [87]

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2M
+ V (r) + g |Φ(r, t)|2

)
Φ(r, t). (2.13)

This equation is a non-linear partial differential equation which is generally difficult
to solve. By choosing the stationary state of the condensate wave function to be
given by Φ(r, t) = φ(r) exp(−iµt/~) [81], we can remove the time dependence of
the Gross-Pitaevskii equation. Inserting this condensate wave function which is also
called the order parameter into Eq. 2.13, we obtain the time-independent Gross-
Pitaevskii equation (

−~2∇2

2M
+ V (r) + g |φ(r)|2

)
φ(r) = µφ(r). (2.14)

2.1.3 Thomas-Fermi approximation

The Gross-Pitaevskii equation defined in Eq. 2.14 is still a non-linear Schrödinger
equation, which generally has to be solved numerically. However, in the presence
of an external trap and repulsive interactions, the problem can be further simpli-
fied, and an analytic solution is available. Let us, for simplicity, consider a three-
dimensional symmetric harmonic oscillator potential

V (r) =
1

2
Mω2r2, (2.15)

in which a BEC of spatial extent R is trapped. For non-interacting particles, the
typical cloud size would be given by the harmonic oscillator length [87]

R = rho =

√
~
Mω

. (2.16)
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2.1 Theory of ultracold bosonic particles

Furthermore, the density of particles in a condensate is proportional to n ∝ N/R3

leading to an interaction energy per particle of gN/R3. In the case of repulsive
interactions both the kinetic energy term and the interaction energy term in Eq. 2.14
try to increase the cloud size whereas the potential energy term tries to reduce
it. Since both the kinetic energy term and the interaction term act in the same
direction, we can neglect one of them if one is much larger than the other. From
the relationship between the two terms which is proportional to [84]

Eint
Ekin

∝ Na

rho
, (2.17)

we find that the kinetic energy term can be neglected if Na � rho. This condition
is usually fulfilled for condensates with a large atom number N and a non-vanishing
scattering length2. With all these considerations we arrive at the so-called Thomas-
Fermi approximation (

V (r) + g |φ(r)|2
)
φ(r) = µφ(r). (2.18)

The solution of this equation is given by

|φ(r)|2 = n0(r) =

{ µ−V (r)
g

where V (r) < µ

0 elsewhere.
(2.19)

The density profile of the cloud along the axes of the harmonic trapping potential
is thus given by an inverted parabola. The radius at which the density of the
condensate vanishes is called the Thomas-Fermi radius and is given by

RTF =

√
2µ

Mω2
. (2.20)

In general, the harmonic trapping potential is not isotropic and is given by

V (r) =
1

2
M
(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)
. (2.21)

Inserting this trapping potential into Eq. 2.19, we can express the total number of
condensed atoms N0 as

2In our experiment, this fraction between interaction and kinetic energy is between approximately
150 and 1200 depending on which scattering length is used.

11



Chapter 2 Theoretical background

N0 =

∫
dr n0(r)

=
µ

g

(
2µ

Mω̄2

)3/2 ∫
|r̃|≤1

dr̃ [1− r̃2]︸ ︷︷ ︸
8π/15

, (2.22)

where r̃ = (x̃, ỹ, z̃), with x̃2 = Mω2
xx

2/(2µ) and likewise expressions for ỹ and z̃.
Solving Eq. 2.22 for µ we obtain

µ =
~ω̄
2

(
15N0a

r̄ho

)2/5

, (2.23)

where r̄ho =
√
~/(Mω̄). By inserting Eq. 2.23 into Eq. 2.20 we obtain expressions

for the Thomas-Fermi radii along all three trapping directions

Ri
TF =

(
15N0a

~2ω̄3

M2ω5
i

)1/5

, i = x, y, z. (2.24)

This expression will play a central part in the determination of the total atom
number of our system, see section 3.4.2.

2.2 Ultracold atoms in lattice structures

In this section, we briefly review the single-particle eigenstates and energy bands in
different lattice structures. At first, we will discuss the one-dimensional lattice as
most experiments described in this thesis will be conducted in this lattice structure
due to its inherent simplicity. Afterwards, we will apply the presented techniques
to a hexagonal lattice structure.

2.2.1 Bloch waves and band structure of a 1D lattice

To derive the eigenstates and eigenenergies of particles in a one-dimensional lattice
structure, we will neglect interactions between them. This approximation is justifi-
able since the typical interaction energies between particles are weak compared to
the natural energy scales of the lattice in our system. To further simplify the system
we will assume a homogeneous lattice structure. Within these approximations, the
system is described by the following Schrödinger equation:

Ĥφ(b)
q (x) = E(b)

q φ(b)
q (x) with Ĥ =

p̂2

2M
+ VL(x), (2.25)
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Figure 2.1: Bandstructure of a one dimensional lattice. The plots show the
eigenenergies E

(b)
q of the Bloch states for different quasimomenta q within the first

Brillouin zone for various lattice depths.

where p̂ = −i~∂/∂x is the momentum operator and VL(x) = V0 cos2 (kLx) describes
the lattice potential with lattice depth V0 and wave number kL. According to Bloch’s
theorem [88], the eigenstates of this Hamiltonian read:

φ(b)
q (x) = eiqx/~u(b)

q (x). (2.26)

These so-called Bloch functions are plane waves multiplied by a periodic function
u

(b)
q (x), whose periodicity is the same as the lattice potential. Due to the periodic

structure of u
(b)
q (x) and VL(x), we can express them as discrete Fourier sums

VL(x) =
∑
m

Vme
2ikLmx and u(b)

q (x) =
∑
n

c(b,q)
n e2ikLnx, (2.27)

where m, n are integer numbers. By inserting the expansion of u
(b)
q (x) into Eq. 2.26,

we find that the new wave numbers q/~+ 2kLn, of the Bloch functions are periodic
with a periodicity of 2kL. Due to this periodicity, we can restrict the quasimomentum
q to the first Brillouin zone, which is defined as the interval ]−~kL, ~kL]. The Fourier
expansion of the lattice potential VL(x) is given by

VL(x) =
1

4
V0

(
e2ikLx + e−2ikLx + 2

)
. (2.28)
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Chapter 2 Theoretical background

Inserting the obtained Fourier sums of VL(x) and φ
(b)
q (x) into Eq. 2.25, we can express

this equation in matrix form as:

∑
n′

Hn,n′c
(b,q)
n′ = E(b)

q c(b,q)
n with Hn,n′ =


(2n+ q

~kL
)2Er + V0/2 if |n− n′| = 0

V0/4 if |n− n′| = 1
0 otherwise.

(2.29)
Here we have introduced the recoil energy Er, the natural unit of the lattice depth
V0, which is defined as

Er =
~2k2

L

2M
. (2.30)

The eigenenergies E
(b)
q and eigenvectors c

(b,q)
n can be determined by numerically diag-

onalizing the Hamiltonian Hn,n′ . To make the numerical evaluation of the Hamilto-
nian tractable, we have to truncate the size of the matrix. As we are only interested
in the lowest three bands of the lattice, we restrict |n| ≤ 123. Figure 2.1 shows the

numerically calculated eigenenergies E
(b)
q for three different lattice depths V0. For

a vanishing lattice depth, the eigenenergies simply correspond to the quadratic dis-
persion relation of free particles reduced to the first Brillouin zone. Upon increasing
the lattice depth, gaps open up between the bands and the bandwidth of the indi-
vidual bands decrease. For very deep lattices the lowest bands become almost flat,
and their energy spacing is given by the harmonic oscillator spacing ~ωon-site. Here
ωon-site describes the on-site frequency for a harmonic approximation of each lattice
well.

By inserting the eigenvectors c
(b,q)
n obtained from the numerical diagonalization of

the Hamiltonian Hn,n′ into Eq. 2.27 and Eq. 2.26, we can determine the Bloch wave
functions. Figure 2.2 (a) shows the obtained Bloch function of the lowest band, in a
11Er deep lattice, for two different quasimomenta q = 0 and q = ±~kL. While the
Bloch function in the center of the Brillouin zone at q = 0 is symmetric, the one at
the zone edges at q = ±~kL is antisymmetric. Figure 2.2 (b) shows the probability

densities |φ(0)
q (x)|2 of these two Bloch functions together with a sketch of the lattice

potential.

2.2.2 Wannier functions of a 1D lattice

To describe interactions between particles on a single lattice site, as will become
relevant later on, the Bloch waves introduced in section 2.2.1 are not the best choice

3In principle, the numerical diagonalization of a Hamiltonian with matrix entries up to an index
|n| ≤ nmax yield results for the first 2nmax bands. The result, however, is most accurate only
for the lowest energy bands.
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Figure 2.2: Bloch functions of a one dimensional lattice. (a) Bloch functions
of the lowest band (b = 0) at q = 0 (light blue) and at q = ±~kL (dark blue) of an
11Er deep lattice. The gray line illustrates the lattice potential. (b) Probability
densities at q = 0 (light blue) and at q = ±~kL (dark blue).

since they are completely delocalized. For such a task it is more convenient to use
an orthonormal basis set of wavefunctions that are localized to individual lattice
sites. The maximally localized Wannier functions form such a basis set. A single
localized particle on lattice site i in the bth band of the lattice can be described by
its Wannier function [88]

wb(x− xi) =
1√
N

∑
q

e−iqxi/~φ(b)
q (x), (2.31)

where the sum runs over all quasimomenta of the first Brillouin zone. Here the
position of the ith lattice site is given by xi andN describes a normalization constant.
Figure 2.3 shows Wannier functions at two different lattice depths. Particularly for
the lower lattice depth one can see that the Wannier function has finite values at
neighboring lattice sites. This means that there is a finite probability to find the
particle on a neighboring lattice site which results in a finite value of the tunnel
coupling between these lattice sites. This tunneling between neighboring lattice
sites i and j can be described by the tunneling matrix element Jb which is given by

Jb =

∫
wb(x− xi)

(
− ~2

2M

∂2

∂x2
+ VL(x)

)
wb(x− xj)dx. (2.32)

Within the Wannier basis, we can describe the interaction matrix element between
two particles on the same lattice site by

Uint =
4π~2a

M

∫
|w0(x)|4 dx. (2.33)

Here we have assumed that both particles are in the lowest band of the lattice.
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Figure 2.3: Wannier functions of lowest band. Wannier function w0(x) of the
lowest band for two different lattice depths of V0 = 11Er (dark blue) and V0 = 2Er
(light blue). The lattice potential is illustrated in gray. For deeper lattices, the
Wannier functions become more and more localized on a single lattice site leading
to smaller tunneling matrix elements Jb.

2.2.3 Tight-binding limit

For deep lattices, the tunneling matrix element between neighboring lattice sites
becomes dominant and one can neglect tunneling events over larger distances than
one lattice site. This approximation is called the tight-binding approximation. In a
one-dimensional lattice it becomes valid for lattice depths that are deeper than ap-
proximately 5Er. At this lattice depth, the next-nearest tunneling element becomes
one order of magnitude smaller than the nearest-neighbor tunneling matrix element.
Within the tight-binding approximation, the dispersion relation of the lowest band
is described by [87]

E(0)(q) = −2J0 cos(dq), (2.34)

where d is the lattice spacing. The corresponding bandwidth of the lowest band is
thus given by 4J0.

2.2.4 The honeycomb lattice

Although most experimental results in this thesis are obtained in a one-dimensional
lattice, the honeycomb lattice plays an important role in balancing the lattice beams,
see section 3.3.3. Furthermore, as the honeycomb lattice is the predominantly used
lattice structure in our lab so far, it will most likely be used for subsequent experi-
ments that combine lattice shaking with this band structure. To this end, we have
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2.2 Ultracold atoms in lattice structures

Figure 2.4: Honeycomb lattice in real space and reciprocal space. (a)
Honeycomb lattice in real space. The lattice is comprised out of two triangular
Bravais lattices A and B with lattice sites marked by red and blue dots, respec-
tively. The distance between neighboring lattice sites of the A and B sublattice
is given by dH . The primitive lattice vectors a1 and a2 are chosen to connect the
lattice sites of the A sublattice. (b) Honeycomb lattice in reciprocal space. The
high symmetry points Γ and M are indicated by black dots whereas the K and
K’ points are indicated by green and yellow dots, respectively, to emphasize their
inequality. The primitive reciprocal lattice vectors b1 and b2 span the Brillouin
zone.
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Chapter 2 Theoretical background

already obtained preliminary measurements of heating rates in a shaken honeycomb
lattice, which can be found in section 6.1. As the honeycomb lattice plays only a
minor role in this thesis, we will only give a short introduction of the most impor-
tant parts of the band structure of the honeycomb lattice. Further information,
especially about the geometric and topological properties of the hexagonal lattice
can be found in references [89, 90] and references therein.

Compared to the one-dimensional lattice, the honeycomb lattice is a two-dimen-
sional lattice. Its real space and momentum space structure are illustrated in Fig. 2.4.
One particularly interesting feature of the honeycomb lattice is that it is comprised
out of two triangular sublattices with lattice sites A and B. The primitive lattice
vectors which are chosen to connect the A sites of the lattice are defined as

a1 =
dH
2

(
3,
√

3
)

a2 =
dH
2

(
3,−
√

3
)
, (2.35)

where dH is the distance between neighboring A and B sites. The associated recip-
rocal lattice is illustrated in Fig. 2.4 (b) and has the same honeycomb like structure
as the real space lattice. The reciprocal lattice vectors bi in momentum space are
related to the real space vectors ai via the relation ai · bj = 2πδij [91], where δij is
the Kronecker delta, and are given by

b1 =
2π

3dH

(
1,
√

3
)

b2 =
2π

3dH

(
1,−
√

3
)
. (2.36)

There are multiple high symmetry points associated with this lattice structure, of
which we will mention the most relevant ones to us. The center of the Brillouin zone
is referred to as the Γ point and the corners of the Brillouin zone are labeled the K
and K’ points. Note that K and K’ are inequivalent since they cannot be connected
by a reciprocal lattice vector. The center point between the K and K’ point on the
edge of the Brillouin zone is labeled the M point.

A hexagonal lattice structure can experimentally be realized by interfering three
running-wave laser beams that intersect each other at an angle of 120◦, for further
details see section 3.1.4. The resulting lattice potential is described by

VL(r) = V1 + V2 + V3 + 2
√
V1V2 cos((b1 − b2)r)

+ 2
√
V1V3 cos(b2r) + 2

√
V2V3 cos(b1r). (2.37)
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Here V1,2,3 are the AC Stark shifts4 created by the individual laser beams with
wave-vectors

k1 = kL(0, 1) (2.38)

k2 = kL

(
−
√

3

2
,−1

2

)
(2.39)

k3 = kL

(√
3

2
,−1

2

)
, (2.40)

where kL = 2π/λ and λ is the wavelength of the laser. The primitive reciprocal
lattice vectors b1 and b2 can be expressed in terms of the wave-vectors as [92]

b1 ≡ k1 − k2 = kL

(√
3

2
,
3

2

)
(2.41)

b2 ≡ k3 − k1 = kL

(√
3

2
,−3

2

)
. (2.42)

In order to calculate the band structure of the honeycomb lattice, we follow the
same route as described in section 2.2.1. As for the 1D lattice we Fourier expand
the honeycomb potential

VL(r) =
∑
K

VKe
iK·r, (2.43)

where the summation runs over all reciprocal lattice vectors K, which themselves
are a linear combination of the primitive reciprocal lattice vectors b1 and b2:

K = l1b1 + l2b2, (2.44)

with integers l1 and l2. From Eq. 2.37 one can see that only linear combinations of
l1,2 = 0, ±1 result in nonzero Fourier components. The Bloch wave function is still
defined according to Eq. 2.26, but due to the two-dimensionality of the honeycomb
potential the scalar x has to be replaced by a vector r. The lattice periodic part
u

(b)
q (r) of the Bloch wave function then becomes

u(b)
q (r) =

∑
K′

c
(b,q)
K′ e

iK′r. (2.45)

4The explanation on the origin of this potential is described in section 3.1.1.
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Figure 2.5: Band structure of the honeycomb lattice. Eigenenergies E
(b)
q of

the lowest six bands of the honeycomb lattice, for different lattice depths. The
band energies are plotted along the high symmetry path q = Γ → M → K → Γ,
illustrated by the red triangle in the inset of the right plot. The s-bands are
illustrated in blue and the p-bands in red.

By inserting the obtained Fourier sums into Eq. 2.25, the Hamiltonian Ĥ can, in
close similarity to the one-dimensional lattice, be written down in matrix form as

HK,K′ =



(
q

~kL
+ l1b1 + l2b2

)2

Er + 3V0 if l1 = l′1 and l2 = l′2
V0 if |l1 − l′1| = 1 and l2 = l′2
V0 if |l2 − l′2| = 1 and l1 = l′1
V0 if l1 − l′1 = 1 and l2 − l′2 = 1
V0 if l1 − l′1 = −1 and l2 − l′2 = −1
0 else.

(2.46)
This matrix can be solved numerically by truncating it at a maximum lmax, such
that −lmax ≤ l1, l2 ≤ lmax. With a matrix of the size lmax, the eigenenergies of the
lowest (2lmax + 1)2 bands can be calculated. Since we are again mostly interested in
the lowest bands we restrict ourselves to lmax = 6.

Fig. 2.5 shows the energies of the lowest six bands along the high symmetry path
from Γ to M to K and back to Γ. Let us first focus on the lowest two bands shown
in blue. These bands always touch each other at the K and K’ points. Due to the
linear dispersion relation around them, they are also referred to as Dirac points [93].
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Their presence is protected by inversion, time-reversal and C3 symmetries of the
lattice which means that the Dirac points must be present at the K and K’ points
even for very shallow lattice depths [94, 95]. The bandwidth of the lowest two
bands decreases with increasing lattice depth, but contrary to the findings in a one-
dimensional optical lattice the separation between the two bands decreases. This
can be understood from the unit cell of the honeycomb lattice. Compared to the 1D
case each unit cell contains two lattice sites which results in a splitting of each band
into two bands. Let us now focus on the group of the four red bands of Fig. 2.5. From
the two atomic unit cell one expects the excited band to split as discussed already
for the lowest band. Due to the two-dimensionality of the honeycomb lattice each
lattice site can be expanded by a 2D isotropic harmonic oscillator potential. For
the harmonic oscillator potential, the first excited band is two-fold degenerate (the
third band is three-fold degenerate and so on) [82]. Therefore, the first excited band
manifold is split into a total of four individual bands. These bands are called the
p-bands in analogy to atomic orbitals. The two lowest bands are hence referred to
as the s-bands.

2.3 Floquet theory

In this section, we will discuss general properties and peculiarities of time-periodic
Hamiltonians. We will show that the eigenenergies in such a driven system are not
uniquely defined anymore, which will, later on, be the central element of our discus-
sion of heating rates in driven optical lattices. Furthermore, we will show that the
time evolution of a state under the influence of a time-periodic Hamiltonian can be
determined by a time-independent Hamiltonian, the so-called Floquet Hamiltonian
if we look at the state evolution in a stroboscopic way. In the last part of this sec-
tion, we will give specific examples on how the driving alters the band structure of
a one-dimensional lattice. This chapter closely follows the ideas and nomenclature
presented in reference [96].

2.3.1 General properties of time-periodic Hamiltonians

Let us consider a system that is described by a time-periodic Hamiltonian
Ĥ(t) = Ĥ(t+ T ), with period T . According to the Floquet theorem the solutions
of the time-dependent Schrödinger equation

i~
∂

∂t
|ψ(t)〉 = Ĥ(t) |ψ(t)〉 (2.47)

are the so-called Floquet states [97–99]

|ψn(t)〉 = e−iεnt/~ |un(t)〉 . (2.48)
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Here, the Floquet modes |un(t)〉 have the same time periodicity as the time-dependent
Hamiltonian Ĥ(t). This structure of the Floquet state shows close similarities to
the Bloch states introduced in Eq. 2.26, which are periodic in space compared to the
here described periodicity in time. By inserting the Floquet state defined in Eq. 2.48
into the Schrödinger equation one obtains the equation

Q̂(t) |un(t)〉 = εn |un(t)〉 . (2.49)

Here we have introduced the quasienergy operator Q̂(t) = Ĥ(t)−i~ ∂
∂t

.5 The eigenen-
ergies εn determined by the solutions of Eq. 2.49 are, however, not uniquely defined.
This becomes evident when multiplying a global phase term to the Floquet modes,
such that

|un,m(t)〉 ≡ e−imωt |un(t)〉 with m ∈ Z. (2.50)

Here ω = 2π/T denotes the frequency of the system. Inserting this expression into
Eq. 2.49 the new eigenenergies are given by

εn,m = εn +m~ω. (2.51)

However, the corresponding Floquet state does not alter by this transformation since

|ψn,m(t)〉 = e−iεn,mt/~ |un,m(t)〉 = e−iεnt/~ |un(t)〉 = |ψn(t)〉 , (2.52)

and hence all solutions given by Eqs. (2.50) and (2.51) are physically equivalent.
Because of this property, the eigenenergies εn are only defined modulo ~ω and are
thus termed quasienergies. Another consequence of this periodicity in quasienergy
is that the spectrum of the quasienergy operator is comprised of an infinite number
of bands extending towards positive and negative quasienergies. In close analogy to
the Brillouin zone introduced in section 2.2.1, we can restrict the quasienergies to
lie within the “Floquet zone” ]− ~ω/2, ~ω/2].

2.3.2 Time-independent treatment of the quasienergy operator

The quasienergy operator as well as the Floquet modes, introduced in the previous
section, still carry a time dependence. However, we can get rid of these time de-
pendencies by extending the Hilbert space to F = H⊗ T [100]. Here H represents
the physical state space and T the space of time-periodic, complex-valued functions
with period T . We shall refer to this new Hilbert space F as the Floquet space.
The scalar product in this new Floquet space is defined by the time-averaged scalar
product of H and reads

5This Hamiltonian is sometimes referred to as the Floquet Hamiltonian in the literature.
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2.3 Floquet theory

〈〈u|v〉〉 =
1

T

∫ T

0

dt 〈u(t)|v(t)〉 . (2.53)

States that are an element of F are indicated by a double ket |u〉〉, whereas the
corresponding state at time t in H is denoted by |u(t)〉. Furthermore, we will mark
operators that act in F by an overbar, to be able to distinguish them from operators
that act in H. The orthogonal basis states |αm〉〉 of F can be constructed from time-
periodic states |α〉 eimωt in H, where |α〉 forms a complete orthogonal basis in H and
m can take any integer value. With these ingredients, one can rewrite Eq. 2.49 in
Floquet space as

Q̄|un,m〉〉 = εnm|un,m〉〉. (2.54)

Now the time-dependent problem of Eq. 2.49 in H is reduced to the eigenvalue
problem of Q̄ in F . This eigenvalue problem can be solved by diagonalizing the
quasienergy operator.

Within the new basis |αm〉〉, the matrix elements of the quasienergy operator are
given by

〈〈α′m′|Q̄|αm〉〉 =
1

T

∫ T

0

dt e−i(m
′−m)ωt 〈α′|Ĥ(t) +m~ω|α〉

= 〈α′|Ĥ(m′−m)|α〉+ δm′mδα′αm~ω. (2.55)

Here

Ĥ(m) =
1

T

∫ T

0

e−imωtĤ(t)dt (2.56)

denotes the mth Fourier component of the Fourier decomposition of Ĥ(t). The
matrix representation of the quasienergy operator has a clear block structure

23



Chapter 2 Theoretical background

〈〈α′m′|Q̄|αm〉〉 =



. . . . . . .

. Ĥ(0) + 2~ω Ĥ(1) Ĥ(2) Ĥ(3) Ĥ(4) .

. Ĥ(−1) Ĥ(0) + ~ω Ĥ(1) Ĥ(2) Ĥ(3) .

. Ĥ(−2) Ĥ(−1) Ĥ(0) Ĥ(1) Ĥ(2) .

. Ĥ(−3) Ĥ(−2) Ĥ(−1) Ĥ(0) − ~ω Ĥ(1) .

. Ĥ(−4) Ĥ(−3) Ĥ(−2) Ĥ(−1) Ĥ(0) − 2~ω .

. . . . . . .


.

(2.57)
The diagonal blocks of this matrix are given by the time-average of the Hamiltonian
Ĥ(t), shifted by integer multiples of ~ω from each other. The off-diagonal blocks
can be regarded as coupling terms between different m-sectors. This Hamiltonian
shows close similarities to the dressed-atom picture of a quantum system driven by
coherent radiation [101]. Due to this similarity, the index m is often referred to
as the photon number and the coupling matrix elements Ĥ(m) are said to describe
m-photon processes. To obtain the quasienergies and Floquet states of Q̄ one can
diagonalize the matrix defined in Eq. 2.57 numerically by truncating the matrix
after a given m-sector. This procedure is similar to the determination of the energy
bands and Bloch waves in an optical lattice, described in section 2.2.1. However,
there is also a different option to determine the quasienergies and Floquet states of
the system which we will discuss in the next sections.

2.3.3 The Floquet Hamiltonian and Floquet engineering

In section 2.3.1, we have seen that the eigenstates of a time-periodic Hamiltonian
with period T are themselves time-periodic with the same periodicity. In general, the
time evolution of a state |ψ(t)〉 = Û(t, t0) |ψ(t0)〉 is described by the time-evolution
operator Û(t, t0). Its general form is given by

Û(t, t0) = T̂ e−
i
~
∫ t
t0

dt′Ĥ(t′)
, (2.58)

where T̂ denotes the time-ordering operator. In the special case where the Hamil-
tonian Ĥ(t) is periodic in time, one can construct an effective, time-independent
Hamiltonian that yields the same time-evolution as Ĥ(t) over the course of one
period. This time-independent Hamiltonian is given by [96]

Ĥeff = Û †eff(t)Ĥ(t)Ûeff(t)− i~Û †eff(t)
˙̂
Ueff(t), (2.59)
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2.3 Floquet theory

where Ûeff(t) = Ûeff(t + T ) is a time-periodic unitary operator with period T . One
can now rewrite the time evolution operator in terms of this effective Hamiltonian
and obtains [98]

Û(t, t0) = Ûeff(t)e−
i
~ (t−t0)ĤeffÛ †eff(t0). (2.60)

This equation illustrates that the time evolution of a Floquet system is composed
of two components. On the one hand, we have the so-called micromotion operator
Ûeff(t), which describes the time evolution within one driving period and on the other
hand, we have the time-independent effective Hamiltonian Ĥeff, which describes the
unitary time evolution of the state for the duration (t− t0).

The micromotion operator, as well as the corresponding effective Hamiltonian, are,
however, not uniquely defined. One can, for example, construct a new micromotion
operator Û ′eff(t) by multiplying an arbitrary time-independent unitary operator from
the right6. By choosing this time-independent operator to be Ûeff(t0), the new
micromotion operator Û ′eff(t) = Ûeff(t)Û †eff(t0) becomes the identity matrix whenever
t = t0 + nT , with n being an integer. Inserting this new micromotion operator into
Eq. 2.59, the newly obtained effective Hamiltonian reads ĤF = Ûeff(t0)ĤeffÛ

†
eff(t0)

and is termed the Floquet Hamiltonian7. With this new micromotion operator the
time evolution operator defined in Eq. 2.60 becomes

Û(t, t0) = Ûeff(t)Û †eff(t0)e−
i
~ (t−t0)ĤF . (2.61)

For the special case, where one is only interested in the time evolution over complete
periods T , such that t = t0 + nT , Eq. 2.61 reduces to

Û(t0 + T, t0) = e−
i
~ ĤFT . (2.62)

This expression is the definition of the time evolution operator for a time-independent
Hamiltonian, which shows the elegance of the concept of the Floquet Hamiltonian.
It reproduces the time evolution generated by the time-dependent Hamiltonian
Ĥ(t) = Ĥ(t+ T ) over one period. Thus, by looking at the system in a stroboscopic
fashion, the system seems to behave as if it is governed by the time-independent
Floquet Hamiltonian.

One can also turn this argument around: by actively shaping the time periodic-
ity of a Hamiltonian one can mimic a Floquet Hamiltonian of desired properties.
This concept is called Floquet engineering. To be able to implement such engi-
neered Hamiltonians, the system, wherein this engineering should take place, needs
to fulfill certain criteria. Most importantly, it needs to allow the implementation of

6Note that the corresponding Floquet states do not change under such transformations since they
are eigenstates of the uniquely defined time-evolution operator.

7As already mentioned before, the term Floquet Hamiltonian is sometimes used to describe the
quasienergy operator Q̂.
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time-periodic driving schemes. In addition, the system should be well isolated from
its environment to reduce dissipative processes while the system is being driven.
Furthermore, it has to be possible to compute the corresponding Floquet Hamilto-
nian, at least within reasonable approximations, and its resulting description of the
system should stay valid on experimentally relevant time scales. The above consider-
ations make ultracold quantum gases an ideal candidate for Floquet engineering, as
they are well isolated from their environment and provide a large toolbox of control
parameters and manipulation schemes.

Within the field of ultracold quantum gases, Floquet engineering already enabled
the creation of Hamiltonians that would not have been possible in static systems.
Some prime examples of such engineered Hamiltonians in optical lattice systems
are the suppression and inversion of tunneling matrix elements in optical lattices
[10], the dynamic control of the superfluid to bosonic Mott insulator transition
[48] or the implementation of kinetic frustration [102]. One of the most intriguing
achievements of this newly emerging field was the creation of artificial gauge fields
for neutral atoms, as well as the creation of topological band structures in optical
lattice systems [53–55, 58–62, 68, 103–106].

These examples show that the field of Floquet engineering holds large prospects
for the future. However, one also has to state that Floquet systems have intrinsic
problems. Even though one can describe the shaken system by an effective static
Hamiltonian, its properties are generally quite different to a “real” static Hamil-
tonian. One prime example is that the energy of a driven system is not uniquely
defined anymore. As a result, energy is not conserved which can eventually lead
to dramatic heating rates of the system. This topic will be discussed in detail in
chapters 4 and 5 where we measure and determine the different kinds of heating
processes that appear in driven optical lattice systems.

2.3.4 Determination of the band structure of a driven lattice
system

In this section, we will describe how one can determine the Floquet Hamiltonian
and the band structure of a shaken one-dimensional optical lattice. Throughout this
thesis, whenever we speak of a shaken lattice, we mean a periodic back and forth
acceleration of the lattice. In the previous section, we have seen that the time evo-
lution of a physical state in a driven system can be described by a time-independent
Floquet Hamiltonian if we look at the time evolution in a stroboscopic fashion.
Looking at Eq. 2.62, we find that the Floquet Hamiltonian itself still depends on
the initial time t0 but as this dependence is based on a unitary transformation, the
spectrum of the Hamiltonian is independent of t0. Consequently, we can set t0 = 0
and write the time evolution operator as
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2.3 Floquet theory

Û(T, 0) ≡ Û(T ) = T̂ e−
i
~
∫ T
0 dt′Ĥ(t′) = e−

i
~ ĤFT . (2.63)

In the case of a shaken one-dimensional optical lattice, one can directly evaluate the
time evolution operator numerically8 as it is defined in the center part of Eq. 2.63.9

The single-particle Hamiltonian of the shaken system is, in the reference frame co-
moving with the shaken lattice, given by

Ĥ(t) =
p̂2

2M
+ V0 cos2(kLx)− F0 sin(ωt). (2.64)

Here the last term describes the external, time-periodic forcing of the lattice. As
this Hamiltonian is periodic in space as well as in time, the corresponding eigen-
states and eigenenergies will be both periodic in momentum as well as in energy,
see Fig. 2.6 (a). Therefore, driven lattice systems are sometimes referred to as spa-
tiotemporal crystals [107]. By using the identity sin(ωt) = 1/(2i)(eiωt − e−iωt) one
can rewrite the Hamiltonian of Eq. 2.64 as

Ĥ(t) =
1∑

m=−1

Ĥme
imωt, (2.65)

where Ĥ0 corresponds to the static lattice Hamiltonian defined in Eq. 2.25 and Ĥ±1 =
±F0/(2i). From section 2.2.1 we know already how to determine the band structure
of the static lattice Hamiltonian numerically. This same technique can be used to
determine the band structure of the driven Hamiltonian. To make the numerical
evaluation of Ĥ(t) tractable, we first restrict ourselves to the lowest n bands of the
static Hamiltonian and project the modulation Hamiltonians Ĥ±1 onto the subspace
of these n bands. By breaking the time evolution over one period into N discrete
steps

0 = t0 < t1 < . . . < tN−1 < tN = T, (2.66)

we can approximate the time evolution operator by

Û(T ) ≈
N∏
i=0

e−
i
~ Ĥ(ti)(ti+1−ti). (2.67)

8This direct numerical evaluation of the time evolution operator is also feasible in the case of a
shaken honeycomb lattice.

9In section 2.3.2 we have shown that one can, in principle, also determine the quasienergies of a
driven system by numerically diagonalizing the quasienergy operator defined in Eq. 2.57. This
picture of the quasienergy operator will become important later on when we determine the
heating channels in the driven lattice system.
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This approximation can get arbitrarily precise for a large number of time steps and is
thus only limited by computational power. According to Eq. 2.63 we can determine
the Floquet Hamiltonian by taking the logarithm of Eq. 2.67

ĤF =
i~
T

log
(
Û(T )

)
. (2.68)

By numerically diagonalizing this equation, the band structure of the driven one-
dimensional lattice can be obtained. Since the complex logarithm is multivalued
[108], one directly regains the property that the quasienergies are only defined mod-
ulo ~ω. This peculiarity is illustrated in Fig. 2.6 (a). The left plot of Fig. 2.6 (a)
shows the lowest three bands of a static lattice with a lattice depth of 11Er. The
right plot shows the same band structure within the Floquet picture, with a driving
frequency of ω = 0.5Er/~ and a vanishing driving force F0. As this band structure is
periodic in energy, we can arbitrarily set its zero point. In order to make the lowest
band of the static Hamiltonian appear as the lowest band in the Floquet picture,
at least in the limit of a negligible driving force, we subtract the energy E

(0)
0 , which

corresponds to the energy of the lowest band in the static lattice at quasimomentum
q = 0, from the right side of Eq. 2.68.

The advantage of determining the band structure with the presented method is
that once the Hamiltonian Ĥ(t) of the system is given, there are no further ap-
proximations involved and one is only limited by computational power. Given a
time-dependent Hamiltonian defined in an n-dimensional Hilbert space, the deter-
mination of its Floquet Hamiltonian with this technique requires the exponentiation
and multiplication of n × n matrices. Each exponentiation has a computational
complexity of O(n3) [109], whereas the multiplication of two matrices has a com-
putational complexity of approximately O(n2) [110]. Depending on the size of the
matrix this approach might not be feasible anymore. However, there are also other
methods available with which one can approximately determine the Floquet Hamil-
tonian. If, for example, the energy scale ~ω of the driving is much larger than the
typical energy scale of the system, one can approximate the Floquet Hamiltonian
within a high-frequency approximation [63, 111–113]

ĤF ≈
µcut∑
µ=1

Ĥ
(µ)
F . (2.69)

The leading orders of this approximation are given by
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Ĥ
(1)
F = Ĥ(0),

Ĥ
(2)
F =

∑
m 6=0

Ĥ(m)Ĥ(−m)

m~ω
,

Ĥ
(3)
F =

∑
m 6=0


[
Ĥ(−m),

[
Ĥ(0), Ĥ(m)

]]
2(m~ω)2

+
∑

m′ 6=0,m

[
Ĥ(−m′),

[
Ĥ(m′−m), ˆH(m)

]]
3mm′(~ω)2

 ,

(2.70)

with Fourier components H(m) as defined in Eq. 2.56. This method has the advan-
tage that no matrix exponents have to be evaluated, which makes the theoretical
evaluation much more practicable. Another type of high-frequency expansion with
which one can approximate the Floquet Hamiltonian is the Floquet-Magnus expan-
sion [114–116], which exhibits similar terms than the high-frequency approximation
described above.

We have seen that the determination of the full effective Hamiltonian of a driven
system can be very complex. Especially if the driven system is comprised of many
interacting particles, it might even be impossible to write down an explicit expres-
sion for the effective Hamiltonian. In this sense, if one employs the external driving
to mimic a desired Hamiltonian Ĥdes, the main challenge is to find a driving scheme
where the lowest order(s) of the high-frequency expansion of the real driving Hamil-
tonian correspond(s) to the desired Hamiltonian. The physical properties of the
driven system can thus be regarded as an approximation to the properties of the
desired system and not the other way round.

In the following two sections we will discuss two different shaking regimes in a
one-dimensional lattice. At first, we will look at shaking frequencies much smaller
than the band gap to the first excited band and then at shaking frequencies that
are larger than the band gap. We will see that the resulting band structures exhibit
fundamentally different features in these two shaking regimes.

2.3.5 Driving frequencies well below the band gap

Figure 2.6 (b) shows the resulting band structure of the driven one-dimensional lat-
tice when the shaking frequency is much smaller than the band gap ∆10 between the
lowest band and first excited band. To keep the figures clear, we restrict the band
structure calculation to the lowest two bands. Note that this restriction will lead
to wrong predictions of the band structure for large driving forces but it correctly
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Figure 2.6: Floquet band structure for driving frequencies well below the
band gap. (a) The left plot shows the band structure of a static, one-dimensional
lattice with a lattice depth of 11Er. The right plot shows the band structure
within the Floquet picture in the limit of zero driving strength when the lattice is
shaken with a frequency ω = 0.5Er/~. The band structure is now periodic both
in momentum as well as in energy. (b) Bandstructure for three different driving
strengths α ≡ dF0/(~ω). For reasons of visibility we only take the lowest two bands
of the static lattice into account, when performing the Floquet band structure
calculation. This will, however, lead to wrong results if the driving strength α
becomes large. However, within the range plotted here, the behavior of the lowest
band is reproduced correctly. From left to right one can see that the bandwidth
of the lowest band first decreases and for α > 2.4 the band structure even flips
over. This behavior can be described by a Bessel function renormalization of the
tunneling matrix element of the lowest band.
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shows the structure of how the driving will alter the band structure10.
Let us at this point comment on the future notation of energy bands. We will

refer to the band which is adiabatically connected11 to the lowest band in the static
lattice, as the lowest band in the Floquet picture. However, keep in mind that the
quasienergy in a Floquet system is cyclic and technically speaking, the concept of a
lowest lying energy band does not make sense anymore. However, to avoid lengthy
descriptions, we will use the established notations for static energy bands also in the
Floquet picture. In this sense, the first excited band in the Floquet picture is the
band that is adiabatically connected to the first excited band in the static lattice.

Starting from the left plot of Fig. 2.6 (b), one can see that the lowest band gets
more and more modified the stronger the driving becomes. At first, the bandwidth
of the lowest band decreases before it becomes completely flat and then bends over
such that the lowest band exhibits a maximum at q = 0. To understand this behavior
in an intuitive way, let us consider the following single-particle model. If the band
gap to the first excited band is very large, corresponding to a deep tight-binding
regime, one can assume that the dynamics of the system is restricted to the lowest
band, even in the presence of the external driving. Within this approximation, one
finds that the solutions of the corresponding Schrödinger equation are given by the
so-called Houston states. These states exhibit a time-dependent quasimomentum
q(t) that is described by [11, 118]

q(t) = −F0

~ω
cos(ωt), (2.71)

where we have assumed that the initial quasimomentum at t = 0 was q = 0. As
expected intuitively, the periodic external force leads to a periodically changing
quasimomentum. Since we assumed the lattice to be deep, the tight-binding ap-
proximation applies and we can express the dispersion relation of the lowest band
by

E(0)(q) = −2J0 cos(dq). (2.72)

Inserting the time-dependent quasimomentum of Eq. 2.71 into the above equation
leads to a time-dependent dispersion relation. In the limit where the shaking fre-
quency ω is much larger than the typical energy scale of the lowest band (~ω � J0),
the effective band structure can be obtained by time-averaging the tight-binding
band structure over one driving cycle

10Fig. 2.7 shows the band structure calculation for the lowest five bands, for the same driving
parameters.

11This means that the lowest band in the Floquet picture is the one which is connected to the
lowest band in the static lattice when the shaking amplitude of the drive is ramped up slowly.
Note that due to the quasienergy spectrum such an adiabatic connection is not always possible
[117]. Especially for very large driving strengths, one can observe a strong mixing of bands
which makes an unambiguous assignment of the individual bands impossible.
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Eeff(q) =
1

T

∫ T

0

dt E(0)(q(t)) = −2Jeff cos(dq). (2.73)

Here, we have introduced the effective tunneling matrix element Jeff, which is given
by the bare tunneling matrix element J0 rescaled by the zeroth-order Bessel function
of the first kind J0

Jeff = J0J0

(
dF0

~ω

)
= J0J0(α). (2.74)

From this equation one can see that the amount of rescaling of the lowest band is
governed by the dimensionless forcing strength α ≡ dF0/(~ω), which we will use
throughout the rest of this thesis to characterize the strength of the driving. Fig-
ure 2.7 (c) shows the dependence of the zeroth-order Bessel function on the driving
strength α. With this gained knowledge we can interpret the results we obtained
in Fig. 2.6 (b). For increasing driving strengths α, the tunneling matrix element of
the lowest band decreases, resulting in a smaller bandwidth. At α ≈ 2.4 the Bessel
function becomes zero leading to a flat band as can be observed in the center plot
of Fig. 2.6 (b). By increasing α even further, the Bessel function becomes negative,
leading to a negative tunneling matrix element and thus to an inversion of the lowest
band.

At these large values of α one cannot neglect the impact of higher lying bands
anymore and has to take them into account. Figure 2.7 (a) shows the resulting
Floquet band structure for α = 3.8 at the same driving frequency as in Fig. 2.6,
when taking into account the lowest five bands of the static band structure. Due to
the interplay of the involved bands, the resulting band structure looks much more
complicated than before. The inversion of the lowest band is again nicely visible but,
in addition, also the first excited band has flipped around and exhibits an opposite
curvature compared to the static lattice case. This behavior was not visible in
Fig. 2.6 because higher lying bands were not taken into account. At this driving
strength of α = 3.8, the first excited band is already quite distorted due to strong
couplings to other higher lying excited bands. As the band gap to these higher lying
bands is much smaller than for the lowest band, their coupling to the first excited
band is much stronger. However, if one zooms into the lowest band as shown in
Fig. 2.7 (b), one can also see avoided crossings appearing in the lowest band. At
these avoided crossings, multiphoton-like couplings between the involved bands lead
to strong excitations of atoms into the higher lying band [107]. This typically leads
to strong atom number losses and heating, which eventually reduces the lifetime of
the condensate [119]. We will address this topic of multiphoton excitations in more
detail in chapter 4.

There have already been several experiments that observed the expected Bessel
function rescaling of the tunneling matrix element. The dynamic suppression of
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Figure 2.7: Floquet band structure and Bessel function. (a) Floquet band
structure for a driving frequency of ω = 0.5Er/~, as in Fig. 2.6, and α = 3.8 but
this time taking into account the lowest five bands of the static lattice. One can
see the inversion of the lowest band as already expected from the tight-binding
approximation. Furthermore, one can observe an inversion of the first excited
band, which, however, is already strongly distorted due to strong couplings with
higher lying excited bands. (b) Zoom into the lowest band. One can see multiple
avoided crossings distorting the lowest band. At these avoided crossings strong
excitations to higher lying bands can be expected. (c) Dependence of the zeroth
order Bessel function on the driving strength α. Within a high frequency tight-
binding approximation the tunneling matrix element of the lowest band can be
expressed as Jeff = J0J0(α).
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tunneling when the Bessel function becomes zero was observed in references [9,
10, 44]. It was shown that this rescaling of the tunneling matrix element even
holds true in the strongly correlated regime, where interactions between particles
cannot be neglected anymore [47]. This property enabled the observation of the
superfluid to Mott insulator transition in a shaken optical lattice [48]. Furthermore,
the already mentioned experiments that create artificial gauge fields or topological
band structures work in this driving regime [53–55, 58–62, 68, 103–106]. This type of
Bessel function rescaling of shaken quantum systems is not limited to shaken lattices
but appears for example, also in atoms subject to an off-resonant external rf-field
where the Landé g-factor is altered by the same Bessel function type modification
[120].

2.3.6 Driving frequencies above the band gap

In this section, we will take a closer look at the resulting Floquet band structure
when the shaking frequency is larger than the band gap that separates the lowest
band from the first excited band. Figure 2.8 shows the band structure for three
different driving strengths α at a shaking frequency of ω = 7.5Er/~ (compare to
Fig. 2.6 (a)). One can observe clear differences to the band structure we obtained for
the low-frequency case discussed before. Even for α > 2.4 no inversion of the lowest
band is observed anymore, which means that the Bessel function rescaling of the
tunneling matrix element is not a valid description anymore. One can understand
this new behavior also in an intuitive way. Remember that it was important for the
previous discussion that the dynamics of the atoms is restricted to the lowest band.
However, in the shaking regime we discuss now, the atoms are accelerated so fast
back and forth that one can no longer assume that the atoms stay adiabatically in
the lowest band.

Instead of the Bessel function rescaling one rather observes the appearance of
a quartic point in the lowest band, followed by a double-well-like structure when
α is increased even further. This appearing double-well-like structure is due to a
hybridization between the rather narrow lowest band and the first excited band. The
minima of this structure shift further towards the Brillouin zone edge the larger the
driving strength becomes. At α & 1.4 the minima of the double-well structure merge
with an avoided crossing to an excited band. Increasing the driving strength beyond
this point does not shift the minima further out, but only enhances the coupling to
higher lying excited bands which leads to a heavily distorted lower band. As already
mentioned before, these avoided crossings between bands lead to strong excitations
into higher lying bands and should, therefore, be avoided. As the minima of the
lowest band merge with such an avoided crossings, the driving strength at this
shaking frequency should be restricted to values smaller than approximately 1.4.
One should also note that apart from strong distortions at large values of α, the
shape of the dispersion relation of the excited bands is mostly unaffected by the
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Figure 2.8: Floquet band structure for large driving frequencies. (a) Flo-
quet band structure for a driving frequency of ω = 7.5Er/~ when taking into
account the lowest five bands of the static lattice. The shaking frequency lies in
the band gap between the first and second excited band of the static lattice. From
left to right the driving strength is increased. (b) Zoom into the lowest band. One
can see the appearance of a double-well structure in the lowest band for driving
strengths larger than approximately 0.6. For large values of α the minima po-
sitions of the lowest band merge with an avoided crossing which appears due to
strong couplings to higher lying excited bands. Note the different energy scales in
the plots.
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shaking.
This appearing double-well structure in the lowest band has been observed exper-

imentally [44] and was utilized to study the formation of symmetry-broken domains
[45, 46].
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Chapter 3

Experimental setup

In this chapter, we present an overview of the experimental setup and also introduce
important manipulation techniques with which we can alter certain properties of the
condensate. We start in section 3.1 by describing how far detuned light can be used
to create conservative potentials in which cold atoms can be trapped. Afterwards,
we will discuss properties of the crossed-beam dipole trap and describe how the
two different lattice structures used in the context of this thesis, a one-dimensional
lattice of “pancakes” and a honeycomb lattice, can be created by interfering multiple
laser beams.

In section 3.2, the different cooling stages needed in order to create a BEC are
described. Furthermore, we will show how the interaction strength between atoms
can be tuned via Feshbach resonances.

Different detection techniques are discussed in section 3.3. At first, we will fo-
cus on absorption imaging from which all information about the BEC is obtained.
Afterwards, we will discuss differences in the imaging technique that have to be
considered when imaging the atoms at large magnetic offset fields. To infer infor-
mation about the occupied momentum state of the atoms inside the lattice, two
different detection techniques are available. By suddenly switching off the lattice
potential we can infer the magnitude of the plane wave coefficients of the occupied
Bloch wave of the atoms. This technique can be used to balance the intensities
of the individual lattice beams. When slowly ramping down the lattice beams the
momentum distribution, as well as the Bloch band occupied by the atoms, can be
determined. Concluding this section, we will describe how periodic forcing of the
lattice is implemented by frequency shifting one or multiple lattice beams.

In the last section of this chapter (3.4), we will characterize relevant properties of
our system. We will start by determining the harmonic trapping frequencies followed
by an atom number calibration. Both parameters will be important later on when
we want to compare the measured heating rates in a driven optical lattice to the
theoretical prediction. We will then discuss two techniques to determine the lattice
depth and point out their differences. Lastly, we will show how one can infer the
momentum spread of the condensate in the lattice by performing Bloch oscillations.
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3.1 Optical potentials

Neutral atoms can be captured and trapped in intense light fields. The underlying
effect, the so-called AC-Stark effect, creates a dipole potential through the interac-
tion of the oscillating electric field of the laser light with the induced dipole moment
of the atom. In the first part of this section, we will give a short overview of the
theoretical background of optical dipole potentials. Afterwards, we will discuss the
implementation of a crossed-beam dipole trap and optical lattices. In particular, we
will focus on a one-dimensional optical lattice and a hexagonal lattice.

3.1.1 Optical dipole potentials

The interaction between the oscillating electric field of a laser beam and the induced
dipole moment of the atom results in a dipole potential that is, for Alkali atoms,
given by [121]

Vdip(r) =
πc2

2

(
ΓD2

ω3
D2

2 + PgFmF

∆D2

+
ΓD1

ω3
D1

1− PgFmF

∆D1

)
I(r). (3.1)

Here ΓD1(D2) are the natural line widths of either the D1 or D2 transition, ωD1(D2)

the resonance frequency of the D1 (D2) transition, c the speed of light, I(r) the
intensity of the laser beam, gF the Landé factor, mF the magnetic quantum number
and P characterizes the polarization of the laser beam. Linearly polarized light is
described by P = 0 and σ± polarized light is given by P = ±1. Note that Eq. 3.1 is
only valid for large detunings ∆D1(D2), when the excited state hyperfine structure is
not resolved. In this case, the detunings ∆D1(D2) are given by

1

∆D1(D2)

=
1

ωL − ωD1(D2)

+
1

ωL + ωD1(D2)

(3.2)

where ωL is the laser frequency. Note that for large detunings the second term of the
above equation can usually be neglected within a rotating-wave approximation [122].
If the laser frequency is larger (blue detuned) than the resonance frequency of the
atoms, the dipole potential Vdip(r) becomes positive and hence, due to the repelling
character of the potential, atoms want to sit at the intensity minima of the laser
beam. For red-detuned light, when the laser frequency is smaller than the atomic
resonance frequency, Vdip(r) becomes negative leading to an attractive potential.
When using red-detuned laser light, it is important to increase the detuning as far
as possible to reduce photon scattering events that heat up the atom cloud and
would eventually lead to significant loss rates of atoms. Since the dipole potential
scales like Vdip(r) ∝ 1/∆ and the photon scattering rate scales like Γsc ∝ 1/∆2 [121]
it is favorable to use intense but far-detuned laser beams to create optical potentials.
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Figure 3.1: Dipole trap potential. (a) 2D-plot of the dipole potential resulting
from the overlap of two Gaussian beams. In the center of the trap, the potential
can be approximated by a harmonic oscillator potential. Some areas of the dipole
potential that lie above a certain threshold value have been masked for better
visibility. (b) Trapping potential along the vertical z-direction for three different
intensities of the dipole beams (darker colors represent higher intensity). One can
see that the minimum position of the potential shifts to lower z-values for weaker
intensities. This gravitational sag is dependent on the mass of the trapped atoms,
enabling the selective evaporation of the heavier 87Rb atoms as discussed later
in section 3.2.3. For the dark red curve, the minimum trapping depth along the
vertical direction (Vz) is indicated by the black arrow.

3.1.2 Crossed-beam dipole trap

The optical dipole trap is formed by overlapping two Gaussian laser beams. The
beams propagate in the x-y-plane and intersect each other at an 90◦ angle in their
foci, see Fig. 3.1 (a). One can describe the intensity profile of a Gaussian beam
propagating along the x-direction by

I(x) =
2P

πwy(x)wz(x)
e
−2

(
y2

w2
y(x)
− z2

w2
z(x)

)
, (3.3)

where P is the power of the laser beam and wy(x) and wz(x) are the widths along
the y and z-direction. Their dependence on the x position is given by

wy,z(x) = w0;y,z

√
1 +

(
x

xR;y,z

)
, (3.4)

where w0;y,z is the waist of the beam and
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xR;y,z =
πw2

0;y,z

λ
(3.5)

is the Rayleigh range, a measure of how fast the beam diverges after its focus. To
avoid any interference of the crossing beams their polarizations are set orthogonal to
each other with an additional detuning of several tens of MHz between the beams.
The total intensity profile is hence given by the sum of the individual intensities of
the beams. The beam profiles of the two beams propagating in the x-y-plane are
strongly elliptic with waists of approximately w0;x,y ≈ 300µm and w0;z ≈ 35µm.
In the center of the trap, the resulting Gaussian potential can be approximated
by a harmonic oscillator potential, see Eq. 2.21. The relation between the beam
parameters and the corresponding harmonic trapping frequencies can be obtained
by Taylor expanding the Gaussian potential around the center of the trap which
yields

ωr =

√
4Vdip(0)

Mw2
r

and ωz =

√
8Vdip(0)

Mw2
0;z

, (3.6)

where w0;x = w0;y = wr. Figure 3.1 (a) shows the resulting trapping potential and
Fig. 3.1 (b) a crosscut of the potential along the vertical direction. Along this direc-
tion, not only the dipole potential acts on the atoms but also earth’s gravitational
field, leading to

Vtot(z) = Vdip(z) +Mgz. (3.7)

The gravitational potential leads to a shift of the minimum of Vtot(z), the so-called
gravitational sag and additionally reduces the effective depth of the potential along
the vertical direction, see Fig. 3.1 (b). This reduction of the trap depth is dependent
on the mass of the atoms and will be exploited later on to selectively remove 87Rb
atoms from the dipole trap during evaporation.

3.1.3 Creating the 1D optical lattice

The one-dimensional lattice is created by interfering two free-running, coplanar laser
beams with an out-of-plane polarization that intersect each other at an angle of
θ = 120◦, see Fig. 3.2. Like the dipole trap beams, the lattice beams are strongly
elliptic with waists in the horizontal direction of approximately 400µm and 100µm
in the vertical direction. Since the extent of the lattice beams is much larger than
the size of the BEC one can approximate them as two interfering plane waves with
electric fields E1 ∝ exp(i(ωt + kLx)) and E2 ∝ exp(i((ω + ∆ω)t − kLx)). Here
kL = 2π sin(θ/2)/λ is the projection of the wave vector of the laser beam with
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x

y

z d

Figure 3.2: Sketch of the one-dimensional optical lattice. Two blue-detuned
laser beams with out-of-plane polarization intersect each other at a 120◦ angle
to form a one-dimensional lattice of “pancakes”. Due to the blue-detuned laser
beams, atoms are trapped in the nodes of the interference pattern.

wavelength λ onto the x-axis1. The resulting lattice potential, according to Eq. 3.1,
can thus be expressed as

VL(x) = V0 cos2

(
kLx−

∆ω

2
t

)
. (3.8)

If the two laser beams have equal frequencies, corresponding to ∆ω = 0, one ob-
tains a static one-dimensional optical lattice potential. Due to the finite extent of
the lattice beams the created interference pattern has a “pancake” like shape as il-
lustrated in Fig. 3.2. Later on in section 3.3.5 we will describe how an active control
of ∆ω creates an inertial force on the atoms trapped in the lattice. In our setup
we use laser light at λ = 736.8 nm which is blue-detuned compared to the D1 and
D2 transitions of 39K which results in the atoms sitting at the intensity minima
of the interference pattern. Because of the Gaussian beam profile of the lattice
beams, one obtains a spatially-dependent trapping potential which leads to a weak
anti-confining potential that counteracts the confining part of the dipole trap [123,
124], see section 3.4.1. We have to take this anti-confining effect into account as the
overall harmonic trapping frequencies enter the calculation of interaction dependent
heating rates in chapters 4 and 5. Other experiments have exploited this tuning
method to cancel out the overall horizontal confining potential leading to a homo-
geneous lattice system [125, 126]. Note that this tuning method is not available for
red-detuned lattices where the attractive nature of the potential leads an additional
confinement.
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Figure 3.3: Honeycomb potential. (a) Sketch of the three lattice beams that
interfere with each other under a 120◦ angle to create the honeycomb lattice. The
beams propagate in the x-y-plane with out of plane polarization indicated by the
dashed black arrows. Each of the individual beams is labeled with its wave vector
ki and intensity Ii. (b) Left: Potential landscape when all three beams have
equal intensities. One can clearly observe the hexagonal structure of the potential
minima. Right: Potential landscape for I1 = 0.7I2,3.

3.1.4 The honeycomb optical lattice

To create an optical honeycomb lattice we interfere three free-running, co-planar
laser beams at an angle of 120◦, see Fig. 3.3 (a). The polarization of each beam is
aligned such that it points out of the x-y-plane resulting in the potential landscape
shown in Fig. 3.3 (b). The intensity minima are aligned in a hexagonal pattern
whereas the intensity maxima describe a triangular lattice structure. As for the
one-dimensional lattice, the wavelength is chosen to be λ = 736.8 nm which is blue
detuned to the resonance frequency of 39K. In order to calculate the resulting in-
terference pattern, one can approximate each lattice beam again by a plane wave,
resulting in2

IHC(r) ∝

∣∣∣∣∣
3∑

n=1

√
Ine
−iknr

∣∣∣∣∣
2

. (3.9)

1Since ∆ω � ω the change in frequency of the lattice beam has no effect on the magnitude of
the wave vector.

2Note that we assume a simplified model where all beams are purely s-polarized as indicated in
Fig. 3.3 (a). In general the polarization of the beams can be tilted leading to the generalized
interference pattern I(r) = Is(r) + Ip(r). Here Is(r) is the interference pattern as shown in
Eq. 3.9 and Ip(r) has the same structure as Eq. 3.9 but the plane wave part is shifted by a
phase. By tilting the polarization of the beams, an offset between the A and B lattice sites of
the honeycomb lattice can be created. For more information about the polarization dependent
part of the potential refer to [89, 90].
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Figure 3.4: Cross-cut of the honeycomb potential. (a) Cross-cuts of the
honeycomb potential at y = 0 for three different intensities I1 ≤ I2,3. The potential
barrier between two minima in the balanced honeycomb lattice corresponds to the
potential V0 created by a single beam. For increasing imbalance the positions
of the potential minima shift and the potential barrier increases. For a vanishing
intensity I1 one recovers the one-dimensional lattice. (b) Cross-cuts for intensities
I1 larger than I2,3. Here the minima move closer to each other until they merge at
an imbalance factor of four. In this extreme limit, the lattice structure resembles
that of a rhomboid.

Here r ≡ (x, y) is defined to lie within the x-y-plane and kn are the wave vectors of
the lattice beams which were already mentioned in section 2.2.4

k1 = k (0, 1)

k2 = k

(
−
√

3

2
,−1

2

)

k3 = k

(√
3

2
,−1

2

)
,

with k = 2π/λ. By inserting the intensity pattern of Eq. 3.9 into Eq. 3.1 one obtains
the lattice potential of the honeycomb lattice already mentioned in Eq. 2.37. For
equal beam intensities this equation simplifies to

VHC(r) = 3V0 + 2V0 cos((b1 − b2)r) + 2V0 cos(b2r) + 2V0 cos(b1r), (3.10)

where b1 = k1 − k2 and b2 = k3 − k1 are the primitive reciprocal lattice vectors.
The left plot of Fig. 3.3 (b) shows the real space lattice structure for equal beam

intensities. If the intensity I1 of beam one is lowered (right plot of Fig. 3.3 (b)),
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the potential wells between the individual lattice minima are not equal anymore,
leading to non-isotropic tunneling and the loss of the rotational symmetry of the
lattice. Figure 3.4 (a) shows a cross cut of the potential along the x-direction for
different beam imbalances. If I1 < I2,3, the lattice minima move further apart from
each other. In the extreme case of I1 = 0, one recovers the one-dimensional lattice
discussed in the previous section. On the other hand, if I1 > I2,3, the potential
minima move closer to each other until they merge, see Fig. 3.4 (b), leading to a
rhombic lattice structure.

3.2 Creation of a BEC

In this section, we will give a brief overview of the different cooling steps necessary
to create a BEC in our apparatus. Since the vacuum setup and all cooling stages
have already been described in great detail, in whole or in part in the following
references [89, 90, 124, 127, 128], we will only focus on the most relevant topics in
order to present a comprehensible overview of the setup.

3.2.1 Magneto-optical trap

The initial cooling stage for 39K and 87Rb is a shared dual-species 2D+ magneto-
optical trap (MOT) [129–131]. After this precooling stage, the atoms enter a 3D-
MOT [132] through a differential pumping section. We load the 87Rb MOT for 8 s
almost to saturation while the 39K MOT is only turned on during the last 0.6 s of the
MOT phase. Figure 3.5 shows the hyperfine level structure of 39K and 87Rb together
with the relevant transitions used in the experiment. Note that the hyperfine split-
ting of the excited state manifold of 39K is much smaller than for 87Rb. In fact, the
typical detunings of the cooling transition of 39K exceed the hyperfine splitting of
the entire excited state manifold3, which therefore remains unresolved. Hence, the
cooling transition for 39K cannot be regarded as closed and the distinction between
a cooling and a repump transition for 39K is somewhat arbitrary since both of them
are red detuned compared to the excited state manifold.

At the end of the MOT phase, we compress the MOT [133] by increasing the
quadrupole gradient and changing the detunings of the lasers in order to increase
the density of the two atom clouds. Afterwards, the quadrupole field is switched
off and the atoms undergo polarization gradient cooling [132] to reach sub-Doppler
temperatures. Due to the small hyperfine splitting in the excited states of 39K,
sub-Doppler cooling is not very efficient [134]. To increase the efficiency of the 39K
molasses the repump and cooling intensities are reduced during the molasses phase
compared to the MOT phase [135, 136]. Another concept to increase the efficiency

3The optimal value for the detuning of the cooling transition F = 2 → F ′ = 3 for 39K is
approximately 40 MHz in our setup.

44



3.2 Creation of a Bose-Einstein condensate

F=1

F=2

F’=0
F’=1

F’=2

F’=3

72 MHz

6835 MHz

157 MHz

267 MHz

78
0.

24
 n

m

52S1/2

52P3/2

C
oo

lin
g

R
ep

um
p

Im
ag

in
g

S
p

in
 p

ol

87Rb

F=1

F=2

F’=0
F’=1

F’=2

F’=3

Im
ag

in
g

S
p

in
 p

ol

462 MHz

3.3 MHz

9.4 MHz

21.1 MHz

76
6.

70
 n

m

42S1/2

42P3/2

39K

R
ep

um
p

C
oo

lin
g

Figure 3.5: Hyperfine level structure of the D2 lines of 87Rb and 39K.
The arrows depict the utilized transitions for 39K and 87Rb. Due to the small
hyperfine splitting of the excited state manifold of 39K, both the repump and
cooling transitions are red detuned. The data was taken from [138] and [139].

of the molasses would be the implementation of a gray molasses scheme [137]. After
the molasses we spin-polarize the atoms into their |F = 2,mF = 2〉 hyperfine state
to be able to trap them efficiently in a quadrupole trap and transport them into the
science cell.

3.2.2 Magnetic transport and microwave evaporation

Neutral atoms in a magnetic-sensitive mF state experience a Zeeman energy shift
in the presence of an external magnetic field. For weak magnetic fields B(r), this
potential energy is given by

EZ(r) = µBgFmF |B(r)| , (3.11)

where µB is Bohr’s magneton. This energy shift can be exploited to trap atoms
in a magnetic quadrupole field which is created by two coils in the anti-Helmholtz
configuration [140]. To be able to trap the atoms in the center of the quadrupole
field, they need to be in a weak field seeking state which increases its energy with
increasing magnetic field strength. To this end, we trap both 87Rb and 39K in their
|F = 2,mF = 2〉 state since this state experiences the largest Zeeman energy shift
and thus a tighter confinement of the atoms can be achieved at a fixed magnetic
field strength. This property can additionally be exploited to remove unwanted
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87Rb atoms in the |F = 2,mF = 1〉 state that have not been transferred by the spin
polarization pulse.

After the molasses, atoms are recaptured in a quadrupole field whose gradient
is low enough such that only 87Rb atoms in the mF = 2 state stay trapped. This
cleaning method does, however, not work for 39K due to its much lighter mass and
we have to rely on a good efficiency of the spin polarization pulse for 39K. In fact,
we found that the spin polarization efficiency of 39K dramatically changed during
the day due to polarization drifts of the spin polarization beam which were induced
by the acousto-optic modulator (AOM) that switches the power of the beam. We
found that these polarization drifts heavily depend on the temperature of the AOM,
leading to strong fluctuations in the resulting 39K atom number. We circumvented
this problem by actively stabilizing the power of the spin polarization pulse on the
experimental table with a standard closed-loop PID controller.

After the spin polarization pulse, the atoms are transported into the science cell
by a magnetic transport [141]. During this transport, we lose about 80% of the 87Rb
atoms and more than 90% of the 39K atoms. Most atoms get lost while entering the
differential pumping section between the MOT chamber and the science cell. This is
most likely due to the small radius of the differential pumping section together with
a small mismatch between the centers of the differential pumping section and the
quadrupole trap. Nevertheless, we can transport enough atoms to get large BECs
of both 87Rb and 39K4.

Once the atoms arrive in the science cell, we further cool them down by forced
microwave evaporation in a plugged quadrupole trap. To prevent Majorana losses,
the center of the quadrupole trap is plugged with a blue-detuned laser beam [15,
142]. Owing to the large differences in the hyperfine splitting between the |F = 2〉
and |F = 1〉 ground state manifold of 39K and 87Rb, see Fig. 3.5, we can selec-
tively remove 87Rb atoms from the quadrupole trap by driving the microwave
transition between the trapped |F = 2,mF = 2〉 state and the anti-trapped state
|F = 1,mF = 1〉. The 39K atoms are sympathetically cooled by the 87Rb atoms
during this part of the evaporation. As the inter-species scattering length is rather
small with aRb-K = 36a0, where a0 is Bohr’s radius, the evaporation becomes ineffi-
cient when reaching the low µK regime [143]. Additionally, this small inter-species
scattering length demands a slow evaporation ramp, of in our case 11 s, to keep both
species in thermal equilibrium.

3.2.3 Evaporative cooling in an optical dipole trap

At the end of the microwave evaporation, we transfer the atoms into a crossed-beam
dipole trap at a wavelength of λD = 1064 nm. The loading of the dipole trap is done

4We were also able to create a degenerate Fermi gas of approximately 3 × 105 40K atoms at a
temperature of T ∼ 0.15TF , where TF is the Fermi temperature. For more details see [89]
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by slowly increasing the power of the dipole beams and lowering the gradient of the
quadrupole trap at the same time. To ensure that the atoms remain spin-polarized
in the dipole trap we turn on a weak offset field of 1G along the vertical direction,
before completely turning off the quadrupole trap. To avoid inelastic spin-changing
collisions during the evaporation in the dipole trap, we transfer both species into
their absolute ground state |F = 1,mF = 1〉 via a microwave sweep for 87Rb and a
RF-sweep for 39K. To remove atoms that have not been transferred into the F = 1
manifold, we shine in a light pulse that is resonant on the F = 2→ F ′ = 3 transition.

Compared to the quadrupole trap one has the advantage that one can tune the
interactions between 87Rb and 39K in the dipole trap via a broad Feshbach resonance
at around 318G [144], see Fig. 3.6 (a) and section 3.2.4. We increase the scattering
length between 87Rb and 39K to aRb-K ∼ 90 a0 and continue the evaporation by
lowering the intensities of the dipole beams. As 87Rb is almost twice as heavy as 39K,
it experiences a shallower trapping potential than 39K and we can again selectively
remove 87Rb atoms from the trap. Once almost all 87Rb atoms are evaporated from
the trap we change the magnetic field to address the Feshbach resonance for 39K
atoms at around 400G [145], see Fig. 3.6 (a). In the last step of the evaporation,
we increase the scattering length to aK-K = 150 a0 and continue the evaporation
with 39K alone. Since during most parts of the evaporation 39K is sympathetically
cooled by 87Rb only a comparatively small amount of 39K atoms are lost during the
evaporation.

At the end of the evaporation, we reduce the scattering length to aK-K = 45 a0

to avoid unnecessary losses while holding the atoms in the shallow dipole trap. To
make the trapping potential along the horizontal directions more homogeneous and
less sensitive to the overlap between the two other dipole beams, we ramp up the
intensity of a third beam that propagates along the vertical direction. This beam has
a waist of approximately 130µm. After a hold time of 550 ms in the shallow dipole
trap we ramp the scattering length in 50 ms to its desired value. We have checked
that this ramping duration is long enough to not induce any breathing motions of
the BEC [146, 147]. Furthermore, we have verified that no atoms are lost during
the ramp of the Feshbach field. Finally, after having set the scattering length of the
atoms, we adiabatically ramp up the lattice beams in 100 ms to the desired lattice
depth. Afterwards, the atoms occupy the lowest energy band of the lattice at zero
quasimomentum.

3.2.4 Feshbach resonances

Feshbach resonances are a useful tool for cold atoms experiments to tune the scat-
tering length a and thus the interaction strength between atoms [148, 149]. The
underlying physical concept of a Feshbach resonance is illustrated in Fig. 3.6 (b).

Consider two different molecular potential curves that describe the interaction be-
tween two particles. The lower lying curve represents the so-called open or entrance
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Figure 3.6: Feshbach resonance. (a) Calculated scattering lengths between
87Rb and 39K in their absolute ground state |F = 1,mF = 1〉 are shown by the blue
line. The red line shows the calculated intraspecies scattering lengths between 39K
atoms in their absolute ground state. (b) Two molecular potentials are illustrated
in orange and blue for the closed and open channel, respectively. At ultracold
temperatures, the total energy of the colliding atoms lies just above the asymptotic
value of the open channel and is illustrated by the red dashed line. The closed
channel potential can be moved relative to the open channel via a magnetic offset
field. If the energy of a bound state in the closed channel approaches the total
energy of the scattering atoms, a strong coupling between the two channels arises
which leads to an enhanced scattering length.
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channel, which asymptotically connects to two free atoms for large interatomic sepa-
rations. Since the kinetic energy of two ultracold colliding atoms is very small, their
total energy will lie just above the asymptotic value of the open channel. The other
potential curve represents the so-called closed channel, whose asymptotic energy lies
above the total energy of the colliding atoms. Suppose that this channel possesses
bound molecular states close to the asymptotic value of the open channel. If the
spin arrangement of the two atoms in this channel is different to the one in the open
channel but has the same total projection onto the quantization axis, it will possess
a different magnetic moment than the open channel. Thereby, one can shift the
energy levels of the bound molecular levels and the continuum level with respect to
each other by applying an external homogeneous magnetic field.

A Feshbach resonance occurs whenever the energy of a bound molecular level
in the closed channel matches the energy of the colliding atoms [150]. In this case,
even a weak coupling between the two channels leads to a strong enhancement of the
scattering length which diverges directly on resonance [151, 152]. For a magnetically
tunable Feshbach resonance, the dependence of the s-wave scattering length on the
applied magnetic field is described by [153]

a(B) = abg

(
1− ∆

B −B0

)
, (3.12)

where abg is the background scattering length, ∆ is the width of the resonance and
B0 is the position of the resonance.

3.3 Detection and manipulation techniques

In order to obtain information about the atoms, one needs to take an image of
them. At first, we will describe the absorption imaging technique were one images
the shadow that is cast by the atoms on a camera. Afterwards, we will describe
what one has to consider when imaging atoms at a large magnetic offset field. We
continue by showing two different methods with which one can determine the state
of the atoms in the lattice. Concluding this section, we will delineate how atoms
can be moved within the band structure by accelerating the lattice structure.

3.3.1 Absorption imaging

To determine the spatial density distribution of a BEC one has to take an image
of the atoms. One of the most common imaging techniques is absorption imaging
[28], where a resonant light beam is shone onto the atoms and the shadow cast by
the illuminated BEC is imaged by a charge-coupled-device (CCD) camera. If the
intensity of the imaging beam is much weaker than the saturation intensity IS of
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the chosen atomic transition, one can describe the intensity profile of the imaging
beam after having passed through the BEC by the Lambert-Beer law [154]

I(x, y) = I0e
−σ0

∫
n(x,y,z)dz

= I0e
−σ0ncol(x,y). (3.13)

Here we have assumed that the imaging beam propagates along the z-direction and
that the density of the condensate is described by n(x, y, z). For a two-level atom,
the resonant scattering cross section is given by σ0 = 3λ2/2π. Thus, the local column
density ncol(x, y) is given by

ncol(x, y) = − 1

σ0

ln
If (x, y)

Ii(x, y)
. (3.14)

To extract the column density a total of four images are taken with the CCD camera.
In the first image I1, the atoms are present and the imaging beam is on. Afterwards,
we take a second picture I2, where we only turn on the imaging beam but no atoms
are present. In addition, we take two dark images where we do not turn the imaging
beam on. These dark images are then subtracted from their corresponding images
I1 and I2 to be able to remove any stray light from the pictures that might fall onto
the camera. After the subtraction of the stray light, the images exhibit the intensity
distributions If (x, y) with atoms and Ii(x, y) without atoms.

As we will see in chapter 3.4.2, it is sometimes necessary to image the atoms with
intensities much larger than the saturation intensity. In this case, the local column
density defined in Eq. 3.14 gets modified and reads [155]

ncol(x, y) = −α ln
If (x, y)

Ii(x, y)
+
Ii(x, y)− If (x, y)

IS
. (3.15)

Here, the dimensionless quantity α accounts for multiple corrections of the resonant
scattering cross section σ0. These corrections include experimental imperfections, as
for example impurities of the polarization of the imaging beam but also takes into
account that the level structure of the atom in the ground as well as in the excited
state manifold of the optical transition is more complicated than a two-level atom.

As the camera only counts the number of photons that reach the CCD chip one
can recast Eq. 3.15 in terms of the counts C per pixel as

ncol(x, y) = −α∗ ln
Cf (x, y)

Ci(x, y)
+ β∗(Ci(x, y)− Cf (x, y)). (3.16)

A thorough determination of the absolute values of α∗ and β∗ is tedious and great
care has to be taken in calibrating filters and photon number losses in the imaging
path [155]. However, this calibration can be simplified when imaging a cloud of
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Figure 3.7: Calibration of high intensity imaging. (a) Sum of pixel values
when analyzing the data according to Eq. 3.14. Even though the actual atom
number is constant for all imaging intensities, one obtains different numbers of
counts for different imaging intensities. (b) Sum of pixel values when analyzing
the data according to Eq. 3.16. Now the number of measured counts stays constant
when varying the imaging intensity. Counts in (a) and (b) have been scaled to lie
within the same interval. Error bars indicate the standard error of the mean from
at least three measurements per data point and the solid line is a guide to the eye.

well-known density [156]. The main purpose of high-intensity imaging for us is the
determination of the atom number from in-situ measurements, see section 3.4.2,
where it is important to keep the imaging duration as short as possible. Since we
only need the correct cloud shape but not the absolute value of the column density
to extract the atom number it is sufficient to determine the fraction α∗/β∗.

The correct ratio of α∗/β∗ leads to an imaging intensity independent value of
ncol(x, y) and is determined by imaging the atomic cloud with different intensities
of the imaging beam. This calibration technique requires that the total number of
scattered photons needs to be small to not heat or push the cloud. To this end
we keep the imaging duration below 4.5µs where the diffusive expansion of the
cloud (see also section 3.4.2 and Fig. 3.14) is still well below the resolution limit of
approximately 1µm of our objective [89]. Figure 3.7 (a) shows the measured counts
of pixel values when evaluating the pictures according to the low intensity expression
defined in Eq. 3.14. By taking into account the high intensity corrections according
to Eq. 3.16 the number of pixel counts stays constant for different imaging intensities,
see Fig. 3.7 (b).

Depending on which quantity we want to extract from the images, there are two
main options on when to take the image of the atoms. One can either image them
in-situ or one can release them from all trapping potentials and image them after a
certain time-of-flight (TOF), during which the atoms can expand freely. The former
method can be used to determine the real space density distribution of the BEC
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inside the trap which has been exploited to study, for example, the incompressibility
of fermionic or bosonic Mott insulators [157, 158]. In-situ imaging has also been
used to measure density-density correlation functions [31, 159–161] or to extract
various equations of state [162–164]. We use in-situ imaging to determine the atom
number of the condensate from a measurement of the Thomas-Fermi radius, see
section 3.4.2. Whilst the resolution of approximately 1µm of our imaging system is
too small to resolve single lattice sites, other experiments have been realized already
a few years ago where single-site resolution of bosonic atoms is feasible [31, 32, 165].
Recently, only within a few months, several experiments also succeeded to image
fermionic atoms on the single-site level [33–37].

TOF pictures, on the other hand, exhibit the momentum distribution of the cloud.
For a sufficiently long TOF, the cloud width directly reveals the momentum distri-
bution of the BEC inside the trap. This so-called far-field is reached once the cloud
width in TOF is large compared to the initial cloud size inside the trap. For the
typical TOF used in this thesis, this condition is not fulfilled and the resulting
absorption image will be a convolution between real space and momentum space.
Nevertheless, TOF imaging is used later on to reliably differentiate between con-
densed atoms with a quasimomentum close to q = 0 and excited thermal atoms
which have a quasimomentum that is usually much larger than zero, see chapter
5. Other application areas of TOF imaging in our experiment are for example the
calibration of the lattice depth, see section 3.4.3, or the balancing of the lattice beam
powers, see section 3.3.3.

3.3.2 High magnetic field imaging

To determine the atom number of our system, see chapter 3.4.2, we take in-situ
images of the condensate in the dipole trap and measure its Thomas-Fermi radius
for different scattering lengths. This measurement requires that one has to image
the atoms in the presence of a large magnetic offset field of B ∼ 400 G. For weak
magnetic fields, the coupling between the total electron angular momentum Ĵ and
nuclear angular momentum Î results in the total atomic angular momentum F̂ =
Ĵ + Î. The magnitude of F̂ can take values between

|J − I| ≤ F ≤ J + I (3.17)

where F , J and I are the quantum numbers associated with the operators F̂ , Ĵ and
Î. For weak magnetic fields, where F is still a good quantum number, the energy
shift of the different mF sublevels is given by Eq. 3.11. However, for large magnetic
fields, when the energy shift becomes larger than the hyperfine energy shift5 [138]

5Note that we will neglect terms proportional to the magnetic quadrupole constant and higher
lying terms since they are at least two orders of magnitude smaller than the magnetic dipole
constant [139].
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Figure 3.8: Level scheme of 39K in an external magnetic field. (a) Ground
level hyperfine structure of 39K in an external magnetic field. For small magnetic
fields, the levels are grouped according to their F value. Blue colors correspond to
states in the F = 1 manifold and red colors to states in the F = 2 manifold. The
lightness of the curves illustrate the different mF sublevels. For large magnetic
fields in the hyperfine Paschen-Back regime, the levels group according to their
mJ value. (b) Laser lock detunings for two relevant states from the ground state
manifold to states in the excited state manifold. Since the imaging light keeps
the nuclear angular momentum unaffected, only states with ∆mJ = 0,±1 can
be addressed by the imaging light with respective polarizations of π, σ±. The
color coding is the same as in (a) with the blue lines corresponding to the state
|F = 1,mF = 1〉 (repumper transition at zero field) and the red lines to the state
|F = 2,mF = 2〉 (imaging transition at zero magnetic field). The three branches
show the detunings for different laser light polarizations. In the experiment, we
use the lowest (σ−) blue branch for imaging since it addresses a cyclic transition.
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∆Ehfs =
1

2
Ahfs(F (F + 1)− I(I + 1)− J(J + 1)), (3.18)

with Ahfs being the magnetic dipole constant, F will not be a good quantum number
anymore. In this regime, the electron and nuclear angular momenta decouple and
the good quantum numbers are given by J and I. The energy shift is now given by
the (hyperfine) Paschen-Back formula [138]

EPB(B) = AhfsmJmI + µB(gJmJ + gImI)B. (3.19)

For intermediate magnetic field strengths, the energy shift cannot, in general, be
calculated easily. However, in the case of J = 1/2, which applies to the 42S1/2

ground state manifold of 39K, there exists an analytical expression of the energy
shift, the so-called Breit-Rabi formula [166]

EBR = −Ahfs

4
+ gIµBmFB ±

Ahfs(I + 1/2)

2

(
1 +

4mFX

2I + 1
+X2

)1/2

, (3.20)

with the sign convention mF = mI ±mJ and

X =
(gJ − gI)µBB
Ahfs(I + 1/2)

. (3.21)

Figure 3.8 (a) shows the level structure of the ground state manifold of 39K in the
relevant magnetic field range of our experiment. For large magnetic fields, one can
see that the states regroup according to their electron angular momentum.

As we have seen in section 3.2.3, the 39K atoms are prepared in their abso-
lute ground state |F = 1,mF = 1〉. At large magnetic fields this state is rep-
resented by |mJ = −1/2,mI = +3/2〉. Since the imaging light does not change
the nuclear angular momentum of the atoms, only states in the 42P3/2 ex-
cited state manifold with mJ = −3/2,±1/2 and mI = +3/2 can be addressed
by the imaging light. Figure 3.8 (b) shows the corresponding lock detunings of
the imaging laser (negative lock detunings) and repump laser (positive lock de-
tuning) compared to the reference laser of 39K. The blue lines show the nec-
essary laser detunings to address atoms originally in the |F = 1,mF = 1〉 mani-
fold. For high-field imaging, we use the lowest branch which is addressed by laser
light with σ− polarization. This has two advantages: first of all the transition
|mJ = −1/2,mI = +3/2〉 → |m′J = −3/2,m′I = +3/2〉 is cyclic since atoms from the
excited state manifold can only decay back into the state |mJ = −1/2,mI = +3/2〉
whereas the other possible decay into |mJ = +1/2,mI = +3/2〉 in the ground state
manifold is dipole forbidden. For completeness, the lock frequencies for this state are
shown in red, see Fig. 3.8 (b). Setting up a beam that addresses the transition from
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Figure 3.9: Beam power balancing. The images show TOF pictures of the
condensate after a sudden shut-off of all confining potentials. (a) For balanced

lattice beam intensities at the atoms position, the plane wave coefficients c
(b,q)
n for

each pairwise combination of beams have the same magnitude, leading to equal
populations in each Bragg peak. The different pairs of Bragg peaks, resulting from
the interference of their corresponding lattice beams, are encircled with different
colors. (b) If for example, beam 3 is stronger, indicated by the darker colored
arrow than the other two beams, the pairs of Bragg peaks which include contribu-
tions from beam 3 will be more pronounced than the Bragg peaks resulting from
the interference of beams 1 and 2. (c) Vice versa, a lower intensity of beam 3 will
lead to less pronounced Bragg peaks.

|mJ = +1/2,mI = +3/2〉 to |mJ = −1/2,mI = +3/2〉 in the excited state manifold
could serve as a possible repump beam if needed in the future. The second and
rather technical advantage of using σ− polarized light is that we can directly use
the imaging beam to address the atoms without the need of an additional repump
laser. For imaging the atoms at zero magnetic field the atoms first have to be
pumped into the F = 2 manifold by a repump laser since the imaging happens on
the F = 2→ F ′ = 3 transition, see Fig. 3.5.

3.3.3 Lattice detection: free-space projection and power
balancing

In section 2.2.1 we have shown that the eigenstates of a single particle in a lattice
structure are given by Bloch states as defined in Eq. 2.26. In a simplified picture, we
can assume that a condensate occupies such a single Bloch state in the lattice. When
suddenly switching off all trapping potentials this Bloch state gets projected onto the
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real space momentum states which are given by plane waves. Consequently, as the
Bloch state is composed of a sum of plane waves shifted by reciprocal lattice vectors,
when imaging the atoms after a certain TOF one only observes atoms at distinct
momenta that are separated from each other by a reciprocal lattice vector6. The
fractional number of atoms in each momentum peak, which are commonly referred
to as Bragg peaks, directly represents the magnitude of the plane wave coefficients
c

(b,q)
n of the Bloch wave, defined in Eq. 2.27.

This property can be used to balance the intensities of the lattice beams at the
position of the atoms. For all experiments conducted in this thesis, it is desirable
to work in a well-balanced lattice structure. This means that the intensity profiles
of all lattice beams at the atoms positions should be equal. The correct balancing
between all three lattice beams can be determined by adiabatically loading the BEC
into the honeycomb lattice at q = Γ, followed by a sudden shut-off of all trapping
potentials. If the lattice is well balanced, the plane wave coefficients have the same
magnitude for all pairs of lattice beams, which consequently results in Bragg peaks
of equal magnitude. If one beam is weaker than the other two beams the plane wave
decomposition will not be symmetric anymore. The lattice potential created by
the interference of the two stronger beams will be deeper than the lattice potential
created by the interference of the stronger beams with the weaker beam. Hence, the
two Bragg peaks resulting from the interference of the stronger beams will have a
larger magnitude than the other four Bragg peaks, see Fig. 3.9. With this method,
a power imbalance between the beams of more than 5% can reliably be detected.
The lattice is rebalanced every day to compensate for slow drifts in the pointing of
the lattice beams.

Keep in mind that the plane wave decomposition of the Bloch states was for-
mulated for single particles. Hence, the Bragg peaks are only visible for a phase
coherent BEC that macroscopically occupies a single particle eigenstate. For very
deep lattices each lattice site can be regarded as isolated from its environment and
the phase coherence of atoms on different lattice sites will get lost, resulting in the
vanishing of the Bragg peaks. This property was used to probe the superfluid to
Mott insulator transition [21] or generally probe the phase coherence of a lattice
system [167, 170–172].

6Note that this simplified picture does not take into account the real space distribution of the BEC.
To intuitively understand how the real space extent of the BEC will affect the Bragg peaks
one can compare this situation to the well-known interference pattern created by a grating
illuminated by a laser beam. The envelope of the interference pattern is given by the slit size of
the grating, whereas the sharpness of each interference peak will increase for larger beam sizes
or consequently an increasing number of illuminated slits of the grating. The analogon of the
slit size is the extent of the Wannier function in the lattice, whereas the analogon of the laser
beam size is the real space extent of the BEC. More information on how the real space extent
of the BEC affects the Bragg peaks can be found, for example, in [167, 168]. For a complete
description of the TOF pattern also the finite TOF has to be taken into account, analogously
to the near-field diffraction regime in optics [169].
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3.3.4 Lattice detection: band mapping

Another detection technique for atoms trapped in an optical lattice is called band
mapping. Here the power of the lattice beams is ramped down slowly compared
to the band gap to higher lying bands but fast compared to the tunneling matrix
element of the band the atoms are occupying [170, 173]. These conditions ensure
that no atoms are transferred between individual bands during the band mapping
process and that atoms have no time to redistribute their quasimomentum within
the band they are occupying. Hence, the band structure of the lattice is adiabatically
transferred to the free space dispersion relation. Atoms with a quasimomentum q
that are initially located in the bth band of the lattice are mapped onto a state
with real space momentum |p| = |q| + ~kL(b− 1) in the bth Brillouin zone which is
illustrated in Fig. 3.10. Thus, the band mapped pictures directly show which band
and what quasimomentum the atoms were occupying the lattice. However, there
is also a caveat as some momentum states in different bands are mapped onto the
same free space momentum state and are thus indistinguishable from each other, see
Fig. 3.10. Another limitation is the real space extent of the BEC which is illustrated
in Fig. 3.10 (c). Due to the rather short TOF of only 3.5 ms, which was chosen here
to be able to resolve multiple Brillouin zones at once, the real space extent of the
BEC almost covers half of the Brillouin zone. Whereas it was sufficient in this case
to reliably determine between atoms in the different bands, a proper determination
of the actual quasimomentum of the particles within the Brillouin zone is hampered.
To resolve the quasimomentum distribution within a single band, a longer TOF has
to be chosen which increases the resolution in momentum space.

Band mapping together with a long TOF of 15 ms is our standard technique to
determine the remaining atom number in the condensate after a certain shaking
duration, see section 4.3.1. At this TOF the spatial extent of the first Brillouin zone
is on the order of the chip size of the CCD camera.

3.3.5 Lattice manipulation: homogeneous force and periodic
driving

In section 3.1.3 we have shown how a one-dimensional optical lattice potential can
be created by interfering two free-running laser beams. If the two laser beams
have equal frequencies one obtains a static lattice potential. For a fixed frequency
difference between the two beams, the lattice potential will move with a constant
velocity in space. From Eq. 3.8 one can see that the lattice potential will have
moved by the lattice spacing d, whenever the phase difference between the two
beams becomes ∆ωt/2 = π. Consequently, the lattice is moving with a constant
velocity of

vL = d
∆ω

2π
= d∆ν, (3.22)
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Figure 3.10: Band mapping. (a) The left plot shows two condensates, indicated
by the red and blue spheres, occupying two different momentum states in an
optical lattice. While the blue atoms sit at a quasimomentum q = 0 in the
second band, the red atoms sit at a quasimomentum q > 0 with some additional
population in the second and third band, indicated by the smaller red spheres.
When band mapping these atoms, they are adiabatically transferred to the free-
particle momentum states (right plot). (b) Extended zone scheme of the free space
dispersion relation of (a). One can see that atoms initially in the first excited band
are mapped onto the second Brillouin zone in the extended zone scheme whereas
atoms initially in the second excited band are mapped onto the third Brillouin
zone. However, the mapping is not always unambiguous, as can be seen for the
blue atoms. Whereas their momentum is well-defined one cannot distinguish if
the atoms were initially in the second or third band. (c) Absorption image of
a BEC with a similar quasimomentum and band occupation as indicated by the
red spheres in (a) and (b). The image has been taken after 3.5 ms TOF. The
dashed lines mark the Brillouin zone edges. One can clearly distinguish between
atoms in the first, second and third band even though the real space extent of the
condensate still dominates over its momentum distribution.
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with ∆ν = 2π∆ω. We can tune the frequency of each lattice beam via individual
acousto-optic modulators7. If the frequency difference between the beams is linearly
changing in time, the lattice is accelerated with a constant acceleration. In this case,
the atoms will feel a constant force along the lattice direction in the reference frame
co-moving with the lattice. To understand the origin of this force, let us write down
the Hamiltonian in the lab frame as

Ĥ(t) =
p̂2

2M
+ VL(x̂− x(t)). (3.23)

Here p̂ and x̂ are the momentum and position operators, respectively and VL(x) is
the lattice potential at t = 0 with x(t) = vLt. To project the Hamiltonian into the
frame co-moving with the lattice, one has to perform a unitary transformation with

Û(t) = e−iMẋ(t)x̂/~eix(t)p̂/~. (3.24)

This transformation takes into account that both the position as well as the momen-
tum of the atoms are changing. The wave function in the frame co-moving with the
lattice is then given by ψ̃ = Ûψ obeying the time-dependent Schrödinger equation

i~ ˙̃ψ = H̃ψ̃. The Hamiltonian H̃ is given by

H̃ = ÛĤÛ † + i~ ˙̂
UÛ † =

p̂2

2M
+ VL(x) +Mẍ(t) · x̂− Mẋ(t)2

2
. (3.25)

Here the last term Mẋ(t)2/2 describes the energy offset arising from the kinetic
energy of the atoms in the moving lattice and the term Fx(t) = −Mẍ(t) describes
the force the atoms experience in the frame co-moving with the lattice. Hence,
we can write down the magnitude of the force the atoms experience due to the
accelerating lattice as

F (t) = M
∂vL
∂t

= Md
∆ν

∆t
. (3.26)

Since the momentum of the atoms is restricted to values within the first Brillouin
zone one can observe Bloch oscillations in momentum space when applying a con-
stant force F [174]. We will use these Bloch oscillations later in section 3.4.4 to
determine the momentum spread of the condensate. Note that the detection of the
atoms after a certain TOF happens in the lab frame and not in the frame co-moving
with the lattice. Therefore, the atoms seem to stay stationary in the images at first
until they acquire a momentum large enough to get Bragg reflected at the Brillouin
zone edge, see Fig. 3.11. This can be understood by looking at Eq. 3.25 again. The
force the atoms feel inside the accelerated lattice Fx(t) = −Mẍ(t) is opposite to
the movement of the lattice. Since their real space momentum is a combination of
their quasimomentum and the momentum they acquire due to the moving lattice

7For details on the lattice setup refer to [89].
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Figure 3.11: Bloch oscillations. (a) Adiabatic Bloch oscillations in a one-
dimensional lattice. The images are obtained by band mapping the atoms and
image them after TOF. The first Brillouin zone is highlighted by the gray shading
and the borders are illustrated by the black lines. For quasimomenta q smaller
than ~kL the atoms seem stationary as the lattice acceleration moves the Brillouin
zone. Once the atoms reach the zone edge they get Bragg reflected (second and
third picture). Afterwards, they seem stationary again until they reach the next
zone edge. (b) Non-adiabatic Bloch oscillations in a honeycomb lattice. The im-
ages are obtained by band mapping the atoms. By changing the frequencies of
beam 1 and 3 in opposite directions one can accelerate the atoms towards the M
point. The lattice beams are depicted as dark blue arrows in the left picture. The
acceleration was chosen such that a large fraction of the condensate gets excited
to the second band in the vicinity of the Brillouin zone edge.

they seem stationary until they reach the Brillouin zone edge. There the atoms get
Bragg reflected to the opposite zone edge which results in a sudden change of the
real space momentum which can be detected in TOF images. Now the atoms seem
stationary again until they reach the next Brillouin zone edge.

The discussion so far focused on a constant acceleration of the lattice. To shake
the position of the lattice, the frequency difference between the beams is periodically
modulated by ∆ν = ν0 sin(ωt), where ν0 is the frequency amplitude of the drive.
Hence the atoms will feel a periodic force

Fx(t) = Mdν0ω cos(ωt) = F0 cos(ωt) (3.27)

In section 2.3.5 it was shown that the relevant parameter which determines the
effect of the shaking on the band structure is the driving strength α. In terms of
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the experimental shaking parameters it is given by

α =
Md2ν0

~
=

~π2

2Er
ν0. (3.28)

Creating a force on the atoms via lattice acceleration also works in the honeycomb
lattice. Here, the acceleration will be along the propagation direction of the beam
whose frequency is modulated in time. By changing the frequency of two beams
simultaneously one can accelerate the atoms in any arbitrary direction in the lattice
plane. For example by changing the frequency of beam 1 as fast as for beam 3
but in the opposite direction the atoms get accelerated towards the M point, see
Fig. 3.11 (b). Furthermore, by sinusoidally changing the frequency of two beams
with a phase offset of 60◦ to each other one can shake the atoms along a circular
path.

3.4 Characterization of the experimental setup

In this section, we will characterize the most important properties of our system.
We start by measuring the harmonic trapping frequencies in the dipole trap, as
they will be a necessary ingredient in the determination of the total atom number
in our system. By taking in-situ images of the condensate we can determine the
Thomas-Fermi radius of the cloud from which we can infer the total atom number.
We will then show different methods to determine the lattice depth. In the last part
of this section, we will describe how the momentum spread of the condensate can
be measured via Bloch oscillations.

3.4.1 Determination of the harmonic trapping frequencies

The harmonic trapping frequencies of the dipole trap will play a crucial part in
the method used to determine the atom number of our system, see section 3.4.2.
Furthermore, the trapping frequencies in the presence of the one-dimensional lattice
will be crucial in the calculation of the theoretically expected scattering rates in a
periodically driven optical lattice, see section 4.2.4.

In section 3.1.2 we saw that the central part of the dipole trap potential can be
approximated by a harmonic oscillator potential, which in turn is characterized by
its harmonic trapping frequencies. We can measure these trapping frequencies by
exciting a sloshing motion of the BEC inside the dipole trap. To this end we slowly
ramp up the power of one of the two dipole beams, effectively creating an elliptic
trapping potential. Then, by quickly ramping the power of the beam back to its
normal value, which results in an almost sudden change in the trapping geometry,
the atoms experience a kick and start oscillating in the potential. We observe this
oscillating motion by taking TOF pictures of the BEC for different hold durations
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Figure 3.12: Calibration of the harmonic trapping frequencies. (a) Mea-
sured position of the BEC along the x-axis after giving it a kick within the dipole
trap. By fitting the data with a sinusoidal function, one can extract the harmonic
trapping frequencies of the dipole trap. (b) Oscillations along the z-axis after
giving the atoms a kick in the dipole trap. Due to the ellipticity of the dipole trap
beams the trapping frequency along the vertical direction is almost a factor of 10
larger than in the horizontal plane.

in the dipole trap. Figure 3.12 (a) shows the obtained data along the horizontal x-
direction. We measure frequencies of ωx = 2π×24.2(1) Hz and ωy = 2π×27.6(4) Hz.
The trapping frequency along the vertical direction is measured by imaging the
atoms from the side. Due to the large asymmetry of the trapping potential, the
trapping frequency along the vertical direction is almost a factor of ten larger than
in the horizontal direction and we measure a frequency of ωz = 2π × 204(3) Hz, see
Fig. 3.12 (b).

To calculate the theoretically expected scattering rates in a shaken one-dimensional
lattice, see section 4.2.4, one needs to determine the harmonic trapping frequencies
in the presence of the optical lattice. Due to the anti-confinement induced by the
spatially-dependent lattice potential, the harmonic trapping frequencies in the pres-
ence of the lattice will be smaller than the ones in the dipole trap alone. However,
the technique of kicking the atoms to determine the harmonic trapping frequencies
only works for the vertical direction, where no lattice potential is present. In this di-
rection we measure a frequency of ωz = 2π×186(3) Hz. In the horizontal directions,
the induced oscillations damp very quickly which makes it impossible to extract the
trapping frequencies reliably. To determine the horizontal trapping frequency per-
pendicular to the lattice direction, we model the anti-confinement induced by the
lattice. In the center of the trap, the spatial dependence of the lattice depth can be
described by

V (y) = V0e
−2y2/w2

L,y , (3.29)
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where wL,y is the projection of the waists of the two lattice beams onto the y-axis,
see inset Fig. 3.13 (b). Figure 3.13 (a) shows the spatial dependence of the energies of
the lowest two bands along the y-axis for an 11Er deep lattice. One can see that the
bandwidth increases away from the trap center due to the decreasing lattice depth
induced by the Gaussian beam shape of the lattice beams. This effect leads to an
effective anti-confinement. To visualize this anti-confining effect, also the pure dipole
trap potential is plotted in Fig. 3.13 (a). Note that this type of anti-confinement
appears for red and blue-detuned lattices. However, in a red-detuned lattice, atoms
sit at the intensity maxima and therefore experience an additional confining dipole
potential which is much stronger than the anti-confining effect due to the finite size
of the lattice beams. In a blue-detuned lattice, atoms sit at the intensity minima
where the transverse dipole potential vanishes and therefore the effect of the anti-
confinement is noticeable. However, if the intensities of the two lattice beams are
not perfectly equal, there will be no perfect destructive interference at the nodes of
the standing wave potential, leading to an additional anti-confinement. The anti-
confinement induced by this dipole potential is, however, even for large intensity
mismatches of 10% between the beams, more than an order of magnitude smaller
than the anti-confinement induced by the spatially dependent lattice depth.

By modeling the trapping potential with the measured waists of the dipole and
lattice beams, we can estimate the trapping frequency along the y-direction in the
presence of the lattice to be ωy = 2π × 26.5 Hz. The trapping frequency along
the x-direction is inferred by taking in-situ images of the BEC inside the lattice.
According to Eq. 2.24, the fraction between Ry

TF and Rx
TF is given by

Ry
TF

Rx
TF

=
ωx
ωy

(3.30)

which should be constant over the whole range of scattering lengths measured. Fig-
ure 3.13 (b) shows that the fraction is indeed constant and one can extract a ratio
between the trapping frequencies of ωx ∼ 0.737ωy. Hence, we estimate the trapping
frequency along the x-direction in the presence of the lattice to be ωx = 2π×19.5 Hz.

3.4.2 Atom number calibration

In section 2.1.3 we have seen that the density distribution of a BEC inside a harmonic
trap can be described by the Thomas-Fermi density distribution. Solving Eq. 2.24
for the atom number N one obtains

N =
(Ri

TF )5M2ω5
i

15a~2ω̄3
, with i = x, y, z. (3.31)

Since the harmonic trapping frequencies can be precisely determined as shown in
section 3.4.1, the atom number can be obtained by carefully measuring the Thomas-
Fermi radius for various scattering lengths. To this end, we image the BEC in the
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Figure 3.13: Spatial dependence of the band structure. (a) Spatial depen-
dence of the bandwidth of the lowest two bands along the y-direction perpendicular
to the lattice. The energies of the lowest band are illustrated in light blue and the
energies of the first excited band in red. Due to the Gaussian shape of the lattice
beams, the bandwidth of the individual bands increases further away from the
center of the trap. The dark blue line illustrates the pure dipole potential. One
can see that the presence of the lattice leads to a reduced overall confinement. (b)
Fraction of the Thomas-Fermi radii along the x- and y-axis. The horizontal line
indicates the mean value of the measured fractions Ry

TF/R
x
TF . Error bars indicate

the standard error of the mean from four measurements per data point, respec-
tively. The inset shows the two lattice beams in light blue. The arrow indicates
the effective waist of the lattice beams along the y-axis.
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dipole trap in-situ. To reliably determine the Thomas-Fermi radius one has to keep
in mind that the imaging pulse increases the size of the BEC due to photon scattering
events. For atoms initially at rest, the velocity in the horizontal x-y-plane, after n
photon scattering events, is given by [132]

vxy = vrec

√
n. (3.32)

Here vrec = h/(Mλ) is the recoil velocity which atoms acquire after a scattering
event with a photon of wavelength λ. From Eq. 3.32 it becomes clear that the total
number of scattered photons has to be small and, at the same time, the imaging
duration needs to be short to be able to reliably determine the size of the conden-
sate. This poses a technical challenge in our setup. To properly resolve the BEC
in-situ, the magnification of the imaging system is, with approximately 16, quite
large. Therefore, the atoms have to be imaged with high intensities such that each
pixel of the CCD camera collects enough photons that a workable image can be
retrieved from the camera. This results in an imaging intensity I that is far above
the saturation intensity (here I ∼ 600Isat) and hence the column density ncol(x, y)
is given by Eq. 3.15. Note that by properly determining the parameter α∗, the atom
number could also be directly determined from the fits of the BEC. Since we are only
interested in the Thomas-Fermi radius and not the absolute height of the column
density the lack of knowledge of the absolute value of α∗ poses no problem for us.
Figure 3.14 shows the measured Gaussian standard deviation of the condensate for
different imaging durations. The solid line shows the theoretically expected spread
of the condensate width in the horizontal plane according to

sxy = s0 +

∫
vxy(t)dt = s0 + vrec

√
Γ/2 · t, (3.33)

where s0 is the initial Gaussian standard deviation of the BEC. We get very good
agreement between the measured and expected widths for imaging durations smaller
than 10µs. The discrepancy for larger imaging durations can be explained by the
velocity of the atoms getting closer to the Doppler off-resonant velocity vd = 2πΓ/λ,
leading to a reduced photon scattering rate.

For the atom number calibration we choose an imaging duration of 3µs which
turned out to be a good compromise between the signal to noise ratio of the image
and the BEC not increasing notably in size, yet. Figure 3.15 (a) shows the measured
Thomas-Fermi radii along the x- and y-direction for different scattering lengths. The
solid lines show a fit to the data according to Eq. 3.31. The cloud exhibits a slight
asymmetry due to different trapping frequencies along the x- and y-direction. The
fits yield atom numbers of 4.2(1)×105 and 3.8(2)×105, respectively. Figure 3.15 (c,d)
show two crosscuts of the BEC at scattering lengths of 40 a0 and 140 a0 together
with a Thomas-Fermi density distribution fit to the data. One can see that the
Thomas-Fermi approximation describes the density profile of the condensate very
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Figure 3.14: In-situ size versus imaging duration. The Gaussian standard
deviations of the BEC for 2 a0 (light blue) and 160 a0 (dark blue) are plotted for
different imaging durations. Error bars depict the standard deviation of the mean
from at least three individual measurements per data point. For increasing imaging
durations the condensate starts to expand in the horizontal plane due to the
absorption of photons. The solid lines show the expected size of the condensate.
For longer imaging pulse durations the increasing discrepancy between theory and
the measured values can be explained by a reduced photon scattering rate because
the imaging light becomes off-resonant.

well.
To double check this atom number calibration, we additionally determine the atom

number from a Gaussian variational ansatz. This ansatz is reasonable because the
dipole trap can be approximated by a harmonic oscillator potential, whose ground
state wavefunction is a Gaussian. Since the interaction energy of the BEC is still
weak in the dipole trap, the density profile of the condensate is reasonably well
described by a Gaussian density profile. This is illustrated in Fig. 3.15 (c,d) where
the crosscuts of the BEC are shown together with a Gaussian fit.

As a starting point of the variational ansatz let us assume that the wave function
of the condensate is given by

Ψ(x, y, z) =

√
N0√

π3/2σxσyσz
e
− x2

2σx
− y2

2σy
− z2

2σz . (3.34)

Hence, the number of condensed atoms N0 is given by

N0 =

∫
dx dy dz |Ψ(x, y, z)|2 . (3.35)

The widths σx,y,z of the condensate can be determined by minimizing the total energy
Etot = Ekin + Epot + Eint. The respective expression for the individual energies are
given by
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Figure 3.15: Atom number calibration. (a) In-situ Thomas-Fermi radius for
different scattering lengths. Since the trapping potential is slightly asymmetric,
the condensate is not perfectly round but elliptic. By fitting Eq. 3.31 to the data
we can extract the atom number of the BEC. Error bars indicate the standard
deviation of the mean for six individual measurements per data point. (b) Gaus-
sian fits to the same data as in (a). The solid lines are the numerically estimated
Gaussian widths σx,y for a condensate of N0 = 4 × 105 atoms. We get excellent
agreement between the data points and the theoretical prediction. (c) Crosscut
of the condensate for a scattering length of 40 a0. The solid red line is the cor-
responding Thomas-Fermi fit to the data and the blue line a Gaussian fit. (d)
Crosscuts and fits for a scattering length of 140 a0.
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Ekin = − ~2

2M

∫
dx dy dzΨ(x, y, z)∇2Ψ(x, y, z),

Epot =

∫
dx dy dz

(
1

2
Mω2

xx
2 +

1

2
Mω2

yy
2 +

1

2
Mω2

zz
2

)
|Ψ(x, y, z)|2 ,

Eint =
4π~2a

M

∫
dx dy dz |Ψ(x, y, z)|4 . (3.36)

Solving these equations individually, one obtains that the total energy of the con-
densate is given by

Etot =
~2N0

(
σ2
yσ

2
z + σ2

x

(
σ2
y + σ2

z

))
4Mσ2

xσ
2
yσ

2
z

+
1

4
MN0

(
ω2
xσ

2
x + ω2

yσ
2
y + ω2

zσ
2
z

)
+

2~2aN2
0√

2πMσxσyσz
. (3.37)

By minimizing the total energy for the different widths of the cloud

∂Etot

∂σx,y,z
= 0, (3.38)

one obtains three expressions for the individual widths of the BEC which are of the
form

4a~2N2

√
2πσxσyσz

= NM2σ2
x,y,zω

2
x,y,z −

~2N

σ2
x,y,z

. (3.39)

These expressions can be solved numerically. Figure 3.15 (b) shows the measured
Gaussian widths of the BEC together with the numerically expected widths for a
condensate with N0 = 4 × 105 atoms. We get excellent agreement between the
data and the numerical prediction. This method based on a Gaussian variational
ansatz corroborates the atom number we already obtained from the Thomas-Fermi
approximation.

3.4.3 Lattice depth calibration

The lattice depth can be determined via multiple different techniques. For a one-
dimensional lattice, we mainly use the technique of lattice diffraction since it is
straightforward to implement and conduct and only requires a rough knowledge of
the expected lattice depth. One can also calibrate the lattice depth by shaking
the lattice and measuring the amount of excitations to higher lying bands. This
technique was used to confirm the lattice depth obtained via lattice diffraction. In
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Figure 3.16: Lattice depth calibration via lattice diffraction. The fraction of
atoms in the first order Bragg peaks is plotted for different lattice hold times. The
solid line is a sinusoidal fit to the data. The fitted frequency of 43.4(2) kHz can
be compared to a numerical band structure calculation, yielding a lattice depth
of 6.93(6)Er.

the following sections, we will describe each technique in detail and will illuminate
their individual (dis-)advantages.

Lattice depth calibration via lattice diffraction

After evaporation in the dipole trap, the atoms condense in a state with zero mo-
mentum, which can be approximated by a plane wave state |ψ(t = 0)〉 = |q0〉, where
q0 = 0. By pulsing on the lattice potential, the free-space momentum state |q0〉
is projected onto the Bloch state basis |φ(b)

q 〉 defined in section 2.2.1. After the
projection, the time evolution of the state |ψ(t)〉 is determined by

|ψ(t)〉 =
∞∑
b=1

|φ(b)
q0
〉 〈φ(b)

q0
|q0〉 e−iE

(b)
q0
t/~. (3.40)

Due to parity conservation only Bloch states with odd band number index can be
occupied when pulsing on the lattice. Additionally, for small lattice depths, only
Bloch states of the first and third band have a significant overlap with the initial
plane wave state |q0〉 and contributions from higher lying bands can be neglected
[175].

After a certain hold time th in the lattice, we suddenly switch it off again, re-
sulting in the wave function being projected back onto the free-space momentum
states |q0 + 2kLi〉, where i = 0,±1. By varying the hold time in the lattice the
contributions of each plane wave component oscillates according to Eq. 3.40 with
an oscillation frequency νB = E

(2)
0 − E

(0)
0 /h, that is given by the energy difference

between the lowest Bloch band and second excited Bloch band at q = 0. This oscil-
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Figure 3.17: Lattice depth calibration via lattice shaking. By periodically
modulating the lattice, atoms can be transferred to the first excited band when the
shaking frequency coincides with the band gap. To keep the band structure unaf-
fected from the modulation, a driving strength of α = 0.01 is chosen. The fitted
center frequency of νc = 41.49(4) kHz corresponds to a lattice depth of 10.94(3)Er.
The lattice depth was calibrated beforehand with the lattice diffraction technique
at 7ER and the lattice beam powers were scaled accordingly to yield a lattice
depth of 11Er.

lation can be observed experimentally by imaging the atoms after a certain TOF, see
Fig. 3.16. By fitting a sinusoidal function to the data, one can extract the oscillation
frequency and can compare the result to a numerical band structure calculation.

In a one-dimensional lattice, we usually calibrate the lattice depth in a 7Er deep
lattice where the occupation of higher lying bands with b ≥ 4 is negligible. From this
measurement, we obtain a calibration value between the programmed lattice beam
powers and the corresponding lattice depth. By simply scaling the beam powers
according to this calibration value we can set the lattice depth to any desired value.
Most experiments in this thesis were conducted in a one-dimensional lattice with
a lattice depth of 11Er. We have verified independently via frequency modulation
spectroscopy, see the following chapter, that the scaling of the lattice beam power
works as expected.

This diffraction of atoms by an optical lattice is also referred to as the Kapitza-
Dirac effect [176].

Lattice depth calibration via periodic modulation

Another method from which one can infer the lattice depth is by periodically driving
the lattice at the resonance frequency to the first excited band. This modulation
excites atoms from the lowest band to the first excited band via a single-photon
transition. These excitations can be measured by imaging the atoms after a certain
TOF using the band mapping technique. However, great care has to be taken to
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Figure 3.18: Momentum spread. The data points show the fraction of con-
densate atoms that got Bragg reflected at the Brillouin zone edge. To obtain
this data, we constantly accelerate the condensate for a variable time. By fit-
ting an error function to the data, we can extract the momentum spread of cloud
of ∆q = 0.21(1)~kL. The measurement was performed at a scattering length of
120 a0.

keep the driving strength α as low as possible. In section 2.3.6 it was shown that
the Floquet bands will start to repel each other for increasing driving strengths,
leading to a double-well-like structure in the lowest band which would compromise
the measurement. Furthermore, avoided crossings to other higher lying bands could
occur which would negatively affect the measurement. To this end we set the driving
strength to α = 0.01, essentially leaving the static band structure unaffected. Fig-
ure 3.17 shows a measurement of the lattice depth with this method. Right before
this measurement we calibrated the beam powers with the lattice diffraction tech-
nique introduced in the previous section and scaled the beam powers such that we
obtain an 11Er deep lattice. We get excellent agreement between the two measure-
ment techniques. Since the periodic modulation technique is more time-consuming
and requires a rough knowledge of the expected lattice depth, it was only used to
validate the results obtained from the lattice diffraction technique.

3.4.4 Determination the condensate’s momentum spread

As the real space extent of the BEC exceeds its momentum spread even for the
longest accessible TOF in our current setup, we cannot directly infer the momentum
spread from TOF pictures. Therefore, we estimate the momentum spread differently
by performing Bloch oscillations in the lattice. In section 3.3.5, we have described
that accelerated atoms get Bragg reflected once they reach the edge of the Brillouin
zone. This Bragg reflection results in a sudden change of the real space momentum,
which can be clearly observed in band mapped TOF images, see Fig. 3.11. To
initiate the Bloch oscillations, we constantly accelerate the one-dimensional lattice
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by linearly changing the frequency of one lattice beam. Furthermore, we make sure
that we keep the acceleration slow enough, such that no atoms get excited to the
second band close to the band edge. For the analysis of the data, we assume that the
momentum distribution of the condensate is given by a Gaussian function. With this
assumption, the increase of the Bragg reflected fraction of atoms can be described
by an error function. Figure 3.18 shows the measured fraction of Bragg reflected
atoms at the Brillouin zone edge together with an error function fit. From this
fit, we obtain a momentum spread of the condensate of ∆q = 0.21(1)~kL. For the
subsequent part of this thesis, we will assume that the condensate has a momentum
spread of ∆q = 0.2 ~kL inside the lattice.
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Theoretical and experimental
background to determine heating
rates

Floquet engineering has become a versatile tool to engineer novel band structures.
However, many of the experiments conducted so far have suffered from strong heat-
ing [10, 11, 58, 60, 61]. Whenever possible, interactions between particles have been
reduced to minimize the heating rates as for example in the experiments conducted
in [45, 68]. In this chapter, we will delineate how heating rates in a driven optical
lattice system can be estimated. We focus the analysis on a one-dimensional op-
tical lattice with two weakly confined transverse directions. Our findings can also
be extended to a two-dimensional lattice like the honeycomb lattice where only one
transverse direction is present. In a three-dimensional lattice structure, the heating
processes described here should be absent due to the lack of a transverse direction.
We start this chapter by establishing a general formalism from which heating rates
in optical lattices with transverse directions can be estimated. In the second part,
we will describe the experimental sequence and procedures to determine the shaking
induced heating rates experimentally.

4.1 Heating and loss mechanisms in Floquet band
structures

In section 2.3 it was shown that the energy of a Floquet system is only defined
modulo ~ω, where ω is the driving frequency of the system. This property of Floquet
systems enables the resonant coupling between energetically distant states, leading
to a lack of energy conservation. Therefore, it is generally expected that many-
body Floquet systems heat up and approach an infinite temperature state in the
long-time limit [71, 72, 74–78, 113, 177–185]. It was predicted [186–188] and recently
shown in an experiment [189] that heating can be suppressed in many-body localized
(MBL) systems for properly chosen driving frequencies. However, it is unclear if
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such a strategy based on MBL can be used to stabilize strongly correlated phases
such as fractional quantum Hall phases. The main consensus, therefore, is to find
experimental setups and/or driving schemes in which heating appears on a long
enough time-scale [180, 182, 183, 190–192].

There are two main heating mechanisms present in shaken optical lattice sys-
tems: single-particle heating and interaction dependent two-particle heating. Single-
particle heating occurs whenever the shaking frequency ω fulfills the resonance con-
dition for an l-“photon” transition

l~ω ≈ ε(b)(q)− ε(0)(q), (4.1)

where l is an integer. Within the Floquet picture, this resonance condition is equiv-
alent to the band energies ε

(0)
l (q) = ε(0)(q) + l~ω and ε

(b)
0 (q) = ε(b)(q) becoming

(almost) degenerate1. These multiphoton transitions to higher lying excited bands
conserve the quasimomentum of the particles and can happen even for driving fre-
quencies that are much smaller than the band gap ∆b0 to the bth band in the static
lattice. Multiphoton resonances have already been studied both theoretically [181]
and experimentally [119] and it was shown that they are exponentially suppressed
for large numbers of photons l if the driving strength stays below a certain thresh-
old value. As these transitions only occur at specific shaking frequencies, they form
sharp resonance features where the lifetime of the system is strongly reduced. There-
fore, single-particle multiphoton transitions can easily be avoided by either choosing
shaking frequencies that lie between individual multiphoton resonances or by choos-
ing frequencies that are very small compared to the band gap to the first excited
band.

The other form of heating in shaken optical lattice systems appears due to in-
teraction dependent (two-particle) scattering processes. This two-particle heating
mechanism is not restricted to specific shaking frequencies and is always present
for systems with finite interactions. In the following sections we will describe the
underlying physics of interaction driven heating in Floquet systems.

4.2 General formalism for heating with interaction
effects

In the absence of single-particle heating processes, the dominant heating channels are
given by interaction induced resonant scattering processes between different Floquet-
Bloch states. Such resonant excitation processes have already been studied theo-
retically [74–78, 179] and will be the basis for our theoretical estimation of heating

1Note that the two bands do not have to be perfectly degenerate but can exhibit a small detuning.
Multiphoton resonances occur as long as this detuning is smaller or comparable to the coupling
matrix element that couples states from these two bands.
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rates in a driven one-dimensional optical lattice. First, we will introduce the Hamil-
tonian that describes our shaken lattice system and present the notation for the
following sections. After introducing the system, we will derive a general form of
the scattering rate of particles out of the condensate by employing Fermi’s golden
rule. At first, we will neglect the external potential of the dipole trap and consider
a translationally invariant system. The trap is subsequently included by using a
local-density approximation based on the Thomas-Fermi approximation.

4.2.1 The Hamiltonian of the system

The Hamiltonian of weakly interacting bosonic particles in a driven optical lattice is
given by the sum of the single particle Hamiltonian Ĥ0(t) and the time-independent
interaction Hamiltonian Ĥint

Ĥ(t) = Ĥ0(t) + Ĥint. (4.2)

The single particle Hamiltonian is defined as

Ĥ0(t) =

∫
dr Ψ̂†(r)h(r, t)Ψ̂(r), (4.3)

with Ψ̂(r) and Ψ̂†(r) being the bosonic field operators that annihilate or create a
boson at position r and

h(r, t) = − ~2

2M
∇2 + VL(r)− F (t) · r + Vdip(r). (4.4)

Here VL(r) = V0 cos2(kLx) is a one-dimensional lattice potential, Vdip(r) describes
the external trapping potential of the dipole trap and F (t) = −F0 cos(ωt)ex =
−Mdν0ω cos(ωt)ex

2 is a time-periodic force that arises due to the shaking of the
lattice. The interaction Hamiltonian Ĥint is given by

Ĥint =
2π~2a

M

∫
dr Ψ̂†(r)Ψ̂†(r)Ψ̂(r)Ψ̂(r). (4.5)

As already mentioned before, we will initially neglect the external trapping potential
from the dipole trap and instead consider a translationally invariant system of linear
extent L in all three directions together with periodic boundary conditions. Since
the lattice potential is only along the x-direction, the single-particle Hamiltonian
can be spatially separated. Along the lattice direction, the Hamiltonian reads

hx(t) = −~2∂2
x

2M
+ V0 cos2(πx/d) + F0 cos(ωt). (4.6)

2See section 3.3.5 for the derivation of this relation
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From section 2.2.1 we know that the eigenstates of the static lattice system are given
by Bloch states |b, kx〉. Due to the finite extent L of the system, the quasimomen-
tum wave number kx can only take discrete values kx = 2πξx/L, with integers ξx
such that −π < dkx ≤ π. Note that in the previous sections we always labeled
quasimomentum by q. As we will now have to consider also scattered atoms that
have different quasimomenta than the BEC and to avoid confusion later on, we will
use q solely for the initial quasimomentum of the condensate in the lattice. In terms
of the quasimomentum wave number kx, the Bloch waves can be expressed as

〈x|b, kx〉 = u
(b)
kx

(x)eikxx, (4.7)

with the lattice periodic part u
(b)
kx

(x) = u
(b)
kx

(x + d) and b = 0, 1, 2, . . . indicating
the band index. To describe interactions between particles that happen on a single
lattice site, it is convenient to switch to the Wannier basis |b, j〉. Within this basis
the Bloch waves can be expressed as

|b, kx〉 =

√
d

L

L/d∑
j=1

eikxjd |b, j〉 . (4.8)

As was already shown in section 2.2.2 the Wannier wave function 〈x|b, j〉 = wb(x−jd)
is exponentially localized on a single lattice site j and obeys the relation wb(−x) =
(−1)bwb(x).

Along the transverse directions r⊥ = (y, z), the eigenstates of the single particle
Hamiltonian are given by plane waves

〈r⊥|k⊥〉 =
1

L
eik⊥·r⊥ . (4.9)

Due to the finite extent of the system, the momentum wave numbers k⊥ = (ky, kz)
can again only take discrete values ki = 2πξi/L, with ξi being an integer. The
eigenenergies of the single particle Hamiltonian along the transverse direction are
given by

E⊥(k⊥) =
~2k2

⊥
2M

. (4.10)

The scattering processes, described further below, predominantly involve the low-
est two bands of the lattice. Since all measurements were performed in an 11Er
deep lattice, the lowest two bands are well approximated by a tight binding model.
The dispersion relation of the static lattice can thus be approximated by

Eb(kx) ' εb − 2Jb cos(dkx), (4.11)

where Jb denotes the tunneling matrix element of the bth band and εb denotes the
band center energy. For bands with odd (even) band index b, one finds that the
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tunneling matrix element Jb is positive (negative). Due to the large lattice depth,
we can neglect the interaction between particles at different lattice sites. Therefore,
we can write down the bosonic annihilation operator Ψ̂(r) within the Wannier basis
as

Ψ̂(r) =
∑
b,k

φ
(b)
k (r)âb,k, (4.12)

where âb,k is the annihilation operator for the single-particle state |b,k〉 and

φ
(b)
k (r) = 〈r|b,k〉 =

√
d

L3
eik⊥·r⊥

L/d∑
j=1

eikxjdwb(x− jd). (4.13)

Thus, by taking into account only on-site interactions, the interaction Hamiltonian
is expressed as

Ĥint =
g

2L3

∑
{b,k}

′
ζ{b}â

†
b4,k4

â†b3,k3
âb2,k2 âb1,k1 , (4.14)

where the prime at the sum indicates that both momentum and quasimomentum
have to be conserved and

ζ{b} ≡ ζb4b3b2b1 = d

∫
dxwb4(x)wb3(x)wb2(x)wb1(x). (4.15)

Due to on-site parity conservation, ζb4b3b2b1 vanishes whenever b1 + b2 − b3 − b4 is
odd. To avoid unnecessary lengthy notations, we abbreviate ζ0000 ≡ ζ.

4.2.2 Definition of heating within the Floquet picture

Recall from chapter 2.3 that the time evolution generated by the time-periodic
Hamiltonian Ĥ(t) = Ĥ(t + T ) over one period T can be described by an effective
Hamiltonian Ĥeff which is independent of time. This property of periodically driven
systems is the cornerstone of Floquet engineering. Thus, by designing special driv-
ing schemes one can create effective Hamiltonians with properties that might not
be implementable in static systems. However, for a driven many-body system, it
is generally not possible to exactly calculate the effective Hamiltonian. In order to
approximate the effective Hamiltonian, one can perform a suitable gauge transfor-
mation with a unitary operator Û(t) = Û(t+ T ) on the Hamiltonian Ĥ(t) resulting
in

Ĥ ′(t) = Û †(t)Ĥ(t)Û(t)− i~Û †(t) ˙̂
U(t) =

∑
m

Ĥ ′(m)eimωt. (4.16)
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The gauge transformation is chosen in such a way that the Fourier components Ĥ ′(m)

with m 6= 0 can be neglected on experimentally relevant timescales

Ĥeff ≈ Ĥapp ≡ Ĥ ′(0). (4.17)

Recall from section 2.3.2 that the matrix elements of the quasienergy operator are
given by

〈〈α′,m′|Q̄|α,m〉〉 = 〈α′|Ĥ ′(m′−m)|α〉+ δm′mδα′αm~ω. (4.18)

In the Floquet space picture, the approximation of neglecting Fourier components
with m 6= 0 implies that we only keep the diagonal terms of the quasienergy operator
Q̄.

Two effects arise if we take into account the off-diagonal terms with m 6= 0.
The first effect leads to corrections of the approximate effective Hamiltonian Ĥapp.
These corrections result from a perturbative admixture of states within the subspaces
with m 6= 0 to states within the subspace m = 0. Here the states in the different
m-subspaces are quasienergetically distant to each other. These perturbative ad-
mixtures lead to a correction Ĥcorr to the approximate effective Hamiltonian and
can be calculated, for example, within a high-frequency expansion [63, 113].

The second effect that arises if we take into account the off-diagonal terms of
the effective Hamiltonian is heating. Here states from different subspaces m couple
resonantly to each other. These resonant couplings lead to a hybridization of states
from the m subspace with states from subspaces m′ = m − l 6= 0, where l >
0 corresponds to the number of absorbed photons. Since such resonant coupling
processes correspond to dissipative processes where the system changes its energy
by l~ω, they cannot be taken into account by adding a correction to the effective
Hamiltonian and must be considered as heating.

4.2.3 Coupling matrix elements via perturbation theory

To be able to estimate the scattering rate of particles out of the condensate, we
have to determine the matrix elements that resonantly couple states from different
m-subspaces. These coupling matrix elements can be determined via perturbation
theory in Floquet space. For this purpose let us define |n〉 as an eigenstate of Ĥ ′(0)

with energy εn

Ĥ ′(0) |n〉 = εn |n〉 , (4.19)

and assume that the system is initially prepared in the ground state |0〉 of Ĥ ′(0).
In Floquet space, the corresponding basis states of |n〉 are given by |n,m〉〉. When
we neglect the off-diagonal terms of the quasienergy operator, the states |n,m〉〉
become eigenstates of the quasienergy operator with corresponding quasienergies
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εn,m = εn + m~ω. According to the definition in the previous section, heating
requires that there exists an excited state with energy εn modulo ~ω that is almost
degenerate to the ground state with energy ε0

εn = ε0 + l~ω + δ. (4.20)

It is necessary that the detuning |δ| is small compared to the coupling matrix element

C
(l)
n,0 that couples the state |0,m〉〉 and the excited state |n,m − l〉〉 via a l-photon

process. For simplicity let us assume that the system is initially prepared in the
ground state |0, 0〉〉. The matrix element for a direct coupling process is then given
by

C
(l)1st
n,0 = 〈〈n,m|Q̄|0, 0〉〉 = 〈n|Ĥ ′(m)|0〉 , (4.21)

where m = −l. However, it is also possible to couple the two states |0, 0〉〉 and |n,m〉〉
indirectly via virtual intermediate states. For a single intermediate state |n1,m1〉〉
the coupling matrix element can be obtained via degenerate perturbation theory in
2nd-order and reads

C
(l)2nd
n,0 =

∑
n1,m1

′ 〈n|Ĥ ′(m−m1)|n1〉 〈n1|Ĥ ′(m1)|0〉
ε0 − (εn1 +m1~ω)

. (4.22)

The prime at the sum indicates that we only sum over intermediate states that
are quasienergetically well separated from the initial state |0, 0〉〉 and the final state
|n,m〉〉. Furthermore, we have assumed that the detuning δ is much smaller than
the energy in the denominator and can thus be neglected. In general, a pth-order
process that happens via p − 1 intermediate states |ni,mi〉〉 is given by a matrix
element of order

C
(l)pth
n,0 ∼

∑
{ni,mi}

′ 〈n|Ĥ ′(m−mp−1)|np−1〉 · · · 〈n1|Ĥ ′(m1)|0〉
(ε0 − εnp−1 −mp−1~ω) · · · (ε0 − εn1 −m1~ω)

. (4.23)

4.2.4 Determination of scattering rates

After having determined the coupling matrix elements between different Floquet
states, we can calculate the scattering rate of atoms out of the condensate. To this
end, let us assume that we start with an almost pure condensate of N0 atoms. The
condensate is initially prepared in the minimum of the lowest Floquet-Bloch band3

and is described by the single-particle Floquet-Bloch state |b = 0, q〉. Note that

3We remark again that technically speaking there is no lowest Floquet-Bloch band due to the
periodicity of the quasienergies. However, in order to simplify notation we will refer to the
lowest Floquet-Bloch band as the one that is adiabatically connected to the lowest band in the
static lattice system.
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depending on the driving strength α and driving frequency ω, the minimum of the
lowest Floquet-Bloch band will be at q 6= 0 and hence atoms will condense into a
state of finite quasimomentum. This state will be the initial state from which we
will compute the coupling matrix elements. A general l-photon scattering process
will transfer two atoms from the condensate into their new Floquet-Bloch states
|b, q + k〉 and |b′, q − k〉, respectively, where k = (kx,k⊥). This process is described

by the coupling matrix element C
(l)
b′b(k, q). Due to the free space along the perpen-

dicular directions and since the interactions between particles are given by contact
interaction, the matrix elements C

(l)
b′b(k, q) will be independent of the transverse

momenta k⊥. From section 4.2.1 we know that the interactions are proportional to
N0g/L

3. With this knowledge, we can express the coupling matrix element as

C
(l)
b′b(k, q) ≡ C

(l)
b′b(kx, q) ≡

N0g

L3
c

(l)
b′b(kx, q), (4.24)

where c
(l)
b′b(kx, q) is a dimensionless factor that is independent of the system size. As

the total energy of the system must be conserved during a l-photon scattering event,
only states that obey the energy conservation condition

εb(q + kx) + εb′(q − kx) + 2E⊥(k⊥)− 2ε0(q)− l~ω = 0 (4.25)

are accessible. Due to the continuum of transverse modes k⊥, the transverse energy
E⊥(k⊥) can take any arbitrary non-negative value leading to the inequality

εb(q + kx) + εb′(q − kx)− 2ε0(q)− l~ω < 0. (4.26)

For convenience we define that c
(l)
b′b(kx, q) = 0 whenever this resonance condition is

not fulfilled.
With all these ingredients and by employing Fermi’s golden rule, we can define

the scattering rate Γl of particles out of the condensate resulting from an l-photon
process as

Γl = 2
1

2

∑
kx

∑
b,b′

2π

~

∣∣∣C(l)
b′b(kx, q)

∣∣∣2 ρ⊥. (4.27)

The prefactor two accounts for the fact that particles are always scattered pair-
wise out of the condensate whereas the prefactor 1/2 takes into account that the
interchange (b, kx) ↔ (b′,−kx) does not lead to a new target state. Furthermore,
ρ⊥ = ML2/(2π~2) describes the 2D density of states for the transverse momenta
[193]. By replacing the sum in Eq. 4.27 by an integral

∑
kx

→ L

2π

∫ π/d

−π/d
dkx, (4.28)
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we obtain the general form of the l-photon scattering rate

Γl = 32N0n2Da
2Er
~
γl. (4.29)

Here n2D = dN0/L
3 denotes the density of atoms in the 2D planes of the lattice.

Furthermore, we have introduced the dimensionless scattering parameter

γl =
∑
b,b′

d

2π

∫ π/d

−π/d
dkx

∣∣∣c(l)
b′b(kx)

∣∣∣2 . (4.30)

So far we have neglected the external trapping potential created by the dipole
trap. In a first step, we will replace the simplified homogeneous density of atoms
n2D by a Thomas-Fermi approximation. Compared to the Thomas-Fermi model
introduced in section 2.1.3, we now have to take into account that the atoms are
additionally trapped in a lattice. Due to the large lattice depth, we assume that
the wave functions of the individual atoms are well described by Wannier functions
in the lowest band. Within this approximation, we can assume that the order
parameter of the condensate on the jth lattice site is given by ψj =

√
nj(y, z),

where nj(y, z) denotes the two-dimensional condensate density in the jth minimum
of the lattice. As before, we assume that interactions happen only on-site. With
these considerations, the potential energy of the system is given by

E =
∑
j

∫
dydz

(
g̃

2d
nj(y, z) + Vdip(x, y, z)− µ

)
nj(y, z). (4.31)

Here µ is the chemical potential and g̃ = gζ denotes the effective interaction of the
atoms within the lattice and Vdip = 1/2M(ω2

xx
2 + ω2

yy
2 + ω2

zz
2) is the harmonic

approximation of the dipole potential, where the harmonic trapping frequencies
ωx,y,z are the ones we determined in the presence of the lattice potential. Since the
size of the BEC is much larger than the lattice spacing, with the BEC occupying
approximately 100 to 150 lattice sites, it is convenient to approximate the site index
j by the continuous position x = dj. Within this approximation, we can replace the
sum ∑

j

1

d
→
∫

dx (4.32)

and define the three-dimensional density of the condensate as n(r) = nx/d(y, z)/d.
With these approximations we can determine the density distribution of the con-
densate according to the Thomas-Fermi approximation
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n(r) =


µ−Vdip(r)

g̃
where Vdip(r) < µ,

0 elsewhere.
(4.33)

By integrating over the density profile (compare to section 2.1.3) we determine the
chemical potential to be

µ =

(
15π

8
ζ
a

d

(
~ω̄
Er

)3

N0

)2/5

Er, (4.34)

where ω̄ denotes the geometric mean of the trapping frequencies. According to
Eq. 4.29, the scattering rate per volume Γl/L

3 scales like

Γl
L3

= 32γlda
2Er
~

(
N0

L3

)2

. (4.35)

Thus, within a local-density approximation and by replacing the homogeneous den-
sity N0/L

3 by the Thomas-Fermi density distribution defined in Eq. 4.33, the total
l-photon scattering rate is given by

ΓLDA
l = 32γlda

2Er
~

∫
drn2(r)

=
128

105
ζ−3/5

(
15π

8

a

d
N0

)7/5(~ω̄
Er

)6/5
Er
~
γl. (4.36)

This equation is the basic equation from which we will infer the heating rates later
on. Its general form is independent of the driving regime and the only variable
that depends on the driving frequency and driving strength is the dimensionless
scattering parameter γl, which we will determine later on when we take a closer
look at the scattering processes in two different shaking regimes.

4.3 General experimental considerations

In this section, we will describe the experimental procedure from which we infer the
heating rates of our system. We will show that the Thomas-Fermi approximation is
indeed a valid approximation during most parts of the loss process induced by the
shaking of the lattice. This property is a necessary ingredient to be able to compare
the measured heating rates with the theoretically estimated scattering rates. Fur-
thermore, we will introduce a fit function that directly allows us to extract the loss
rates that solely originate from the shaken lattice. In the last subsection, we will
determine the positions of the multiphoton single-particle resonances.
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Figure 4.1: Sketch of the experimental sequence. The schematic shows the
Feshbach field, lattice depth, dipole trap and the frequency modulation of one of
the lattice beams over the course of the experimental sequence. The thick black
line indicates the time at which the condensate is being imaged. For further details
see text.

4.3.1 Experimental sequence

An overview of the general experimental sequence is given in Fig. 4.1. After having
prepared a BEC of approximately 4 × 105 39K atoms in the dipole trap, we ramp
the interaction of the atoms in 50 ms to its desired value. We have verified that
this ramp time is long enough to be adiabatic and not induce any breathing modes
within the BEC or even lead to atom number losses.

After having prepared the BEC at the desired interaction strength we ramp up
the power of the lattice beams in 100 ms such that we reach a final lattice depth of
11Er. Directly after the loading into the lattice is completed, we start shaking the
lattice by modulating the frequency of one of the two lattice beams via an AOM. In
order to not create any initial excitations of the condensate, we always linearly ramp
up the shaking amplitude in 10 ms to its final value. While longer ramp up durations
might be favorable for extreme shaking parameters, we tried to keep the ramp up
duration as short as possible to be able to perform reliable lifetime measurements
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Chapter 4 Theoretical and experimental background to determine heating rates

even when the BEC is short lived. We have checked that this ramp up duration
is long enough to not create any strong, non-adiabatic excitations to higher bands
even for the strongest forcing parameters used below.

After the ramp up of the modulation, we continue to shake the atoms for a variable
duration. To determine the induced heating and losses of condensed atoms, we
suddenly stop the modulation after an integer number of driving cycles. Immediately
afterwards, we perform bandmapping in the static system and image the atoms after
15 ms TOF. This TOF is long enough to dilute any created thermal background such
that we can reliably determine the remaining number of atoms in the condensate.
For the first 10 ms of TOF we keep the Feshbach field at the value used during the
shaking procedure, such that the BEC can expand at a fixed scattering length. This
procedure is necessary as the background scattering length of 39K is negative and a
direct switch off of the Feshbach field would lead to distorted images. After 10 ms of
TOF, the cloud has already expanded so much that the switch off of the magnetic
field has no impact on the atoms anymore.

To count the remaining number of condensed atoms, we sum the pixel values of
the image within a region of interest (ROI). This ROI is kept constant for all images
in order to avoid counting possible artifacts that might arise from different ROIs.
After 15 ms TOF any created thermal background is already strongly diluted and
can be assumed to be almost homogeneous in the vicinity of the condensate. To
avoid counting thermal atoms, we choose a second ROI, the so-called background
ROI, that lies close to the main ROI. We then subtract the mean pixel value of this
background ROI from every pixel value within the main ROI. The remaining number
of condensed atoms is then extracted from the sum of pixel values by multiplying it
by a scaling factor. This scaling factor is obtained by comparing the sum of pixel
values of a condensate directly released from the dipole trap with the known total
atom number obtained via the atom number calibration described in section 3.4.2.

4.3.2 Validity of the Thomas-Fermi ansatz

In section 4.2.4 we deduced a general form of interaction dependent scattering rates
that occur in shaken optical lattices. There we assumed that the condensate is
described by a Thomas-Fermi density distribution during (most parts of) the shaking
process. This assumption is equivalent to the assumption that the condensate stays
in a global thermal equilibrium with its environment throughout the heating process.
According to the Thomas-Fermi density distribution this means that the ratio Ri =
Ri
TF/N0(t)1/5, with i = x, y, z, stays constant. We verify this behavior by measuring

the in-situ Thomas-Fermi radius for various shaking durations. Directly afterwards,
we repeat the same measurement but this time determine the remaining number of
condensed atoms from TOF images. Figure 4.2 shows two exemplary measurements
of Ri in two different shaking regimes. Note that we cannot measure the in-situ size
of the condensate along the vertical direction. Thus, we have to assume that the
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Figure 4.2: Validity of Thomas-Fermi approximation. (a) The ratio Ri =
Ri
TF/N0(t)1/5 is plotted versus shaking duration. Due to the asymmetry of the

trapping potential, the Thomas-Fermi radii and therefore also Ri have slightly
different values along the x-direction (dark blue points) and the y-direction (light
blue points). The shaking frequency is ω = 2π×3.5 kHz with a driving strength of
α = 0.44 and a scattering length of a = 140 a0. The solid lines indicate the mean
value of Ri over all shaking durations. (b) Ri for ω = 2π × 53 kHz, α = 1.3 and
a = 40 a0. Here, due to the large scattering of some data points, the solid lines
are a guide to the eye. For both shaking parameters, the cloud is well described
by a Thomas-Fermi density approximation, indicating thermal equilibrium during
most parts of the loss process.
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behavior in this direction is equivalent to the behavior in the horizontal directions.
In Fig. 4.2 (a) we chose a shaking frequency of ω = 2π×3.5 kHz with a weak driving
strength of α = 0.44 and a scattering length of a = 140 a0. With these shaking
parameters, the lifetime of the condensate in the shaken lattice is almost as long as
the lifetime in the static lattice. Hence, we expect the system to stay in a global
thermal equilibrium which is confirmed by the measurement as Ri stays constant
during the shaking process. Figure 4.2 (b) shows a more extreme example. Here the
shaking frequency is set to ω = 2π × 53 kHz4 with a strong driving of α = 1.3. For
these shaking parameters, the lifetime of the condensate is already heavily reduced
compared to the static case. Furthermore, we choose a scattering length of a = 40 a0

and thus thermalization processes due to collisions between particles take more time.
Even for these more extreme shaking parameters, the system stays in global thermal
equilibrium.

These measurements confirm that the system stays in a thermal equilibrium dur-
ing most part of the shaking process and that the Thomas-Fermi density distribution
is a valid approximation during the shaking process.

4.3.3 Extracting the loss rate

There are two different loss mechanisms occurring in our system. On the one hand,
we have a background heating rate that defines the natural lifetime of the conden-
sate. This heating comes from collisions with the hot background gas and also from
three-particle recombination processes [194] which are enhanced in the vicinity of
a Feshbach resonance [195]. We can observe this effect by a slightly reduced 1/e
lifetime of the condensate from about 4.2 s at a scattering length of 20 a0 to a life-
time of around 3.2 s at a scattering length of 160 a0. The atom number losses due
to these background heating channels are well described by the differential equation
Ṅ0 = −κbgN0.

The other heating mechanism stems from the shaking of the lattice. From the
theoretically expected scattering rate defined in Eq. 4.36 we expect a particle-number
independent loss rate κ. The loss of condensed particles can accordingly be described
via the differential equation Ṅ0 = −κN7/5

0 . As a good approximation, we can
assume that these two loss mechanisms are independent of each other. Hence,
the total loss rate of condensed particles is described by the differential equation
Ṅ0 = −κbgN0 − κN7/5

0 , whose solution is given by

N0(t) = N0(0)
e−t/τ

(1 +N0(0)2/5κτ (1− e−2t/(5τ)))
5/2
. (4.37)

Here τ = 1/κbg is the lifetime of the condensate in the static lattice. As this static
lifetime changes with scattering length we measure it for every scattering length

4For details on why these shaking frequencies were chosen refer to section 4.3.4
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Figure 4.3: Exemplary atom number decay versus shaking duration. An
example of a decay rate measurement. The driving strength is α = 1 at a shaking
frequency of ω = 2π × 53 kHz and a scattering length of a = 80 a0. The solid
line is a fit to the data according to Eq. 4.37 with N0(0) and κ being the only fit
parameters. The inset shows the same data on a logarithmic scale.

used further below. Therefore, the only fit parameters in Eq. 4.37 are the initial
number of condensed atoms N0(0) and the driving induced loss rate κ.

Fig. 4.3 shows an exemplary decay rate measurement from which we infer the loss
rate κ.

4.3.4 Single-particle multiphoton resonances

In section 4.1 we have seen that single-particle multiphoton resonances occur at
specific shaking frequencies whenever the resonance condition

l~ω ≈ εb(q)− ε0(q), (4.38)

is fulfilled. These single-particle resonances are independent of the interaction of
the system and result in sharp resonance features, where the lifetime of the conden-
sate in the shaken lattice is dramatically reduced [119, 181]. As we are interested
in interaction dependent heating effects, it is crucial to avoid these single-particle
resonances as they would spoil the measurements. To do so, we perform a frequency
scan over a wide range of shaking frequencies. Therefore, we load a weakly interact-
ing condensate with a scattering length of a = 60 a0 into the 11Er lattice and start
shaking the lattice with a driving strength of α ' 0.9.

Figure 4.4 shows the normalized atom number after shaking the lattice for a fixed
duration of 100 ms for driving frequencies below 0.7ω10 and 50 ms for shaking fre-
quencies above 0.7ω10. Here ω10 = 2π × 41.6 kHz denotes the first interband exci-
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Figure 4.4: Frequency scan. Normalized atom number after shaking the lattice
for 50 ms (for ω/ω10 > 0.7, marked in dark blue) or 100 ms (for ω/ω10 < 0.7,
marked in light blue) with variable frequency at a driving strength of α ' 0.9.
Error bars indicate the standard error of the mean from four measurements per
data point. The solid blue line shows the theoretically expected single-particle ex-
citations to higher bands. Thin lines mark the resonance positions of multiphoton
transitions with photon number l to higher lying bands b labeled by (b, l). Green
dashed lines mark the frequencies used to study interaction dependent heating.
In the frequency region from roughly 0.7ω10 to 1.1ω10 we observe a splitting of
the BEC due to two degenerate minima in the lowest dressed band. This effect is
included in the theory curve. The insets show raw quasimomentum images of the
BEC.
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Figure 4.5: Frequency scan at low shaking frequencies. Zoom into the regime
of small driving frequencies of Fig. 4.4 but with an increased driving strength of
α = 2.2 and a longer shaking duration of 200 ms to be able to better resolve
multiphoton resonances with a large photon number l. The green dashed line
marks the position at which we measure the interaction dependent heating rates.
This shaking frequency lies well below the first observable multiphoton resonance
at about ω ≈ 0.13ω10.

tation frequency from b = 0 to b′ = 1 at zero momentum in the static lattice. To
get a better resolution of the resonance positions we reduce the shaking duration
for ω > 0.7ω10 due to the overall larger heating rates in this regime. The solid blue
line shows the result of a numerical single-particle simulation assuming a Gaussian
width of the condensate in momentum space of ∆q = 0.2π/d, see section 3.4.4. In
the numerical simulation, the single-particle time evolution is integrated over time
starting from the undriven Bloch state of the lowest band. The plotted line cor-
responds to the minimal encountered probability for remaining in this Bloch state
during the time evolution. To include the momentum spread of the BEC, the result
is averaged over a group of quasimomenta kx representing the measured momentum
distribution of the condensate. For a more detailed description of this numerical
simulation refer to [119, 181].

At this driving strength of α ' 0.9, we can observe clear resonance features that
correspond to multiphoton excitations up to fifth order, see Fig. 4.4. For small shak-
ing frequencies these multiphoton excitations are exponentially suppressed. There-
fore, we perform a second frequency scan at low shaking frequencies with an in-
creased driving strength of α = 2.2. This driving strength is slightly larger than
the largest α used later on in section 5.2. Figure 4.5 shows the frequency scan at
this driving strength. We can observe a first multiphoton resonance appearing at
around 0.13ω10.

For our future analysis of interaction induced heating rates, we choose shaking
frequencies of ωl = 2π × 3.5 kHz = 0.084ω10 and ωh = 2π × 53 kHz = 1.27ω10.
Both of these frequencies are reasonably far away from multiphoton resonances and
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represent the two different driving regimes introduced in sections 2.3.5 and 2.3.6. For
the low shaking frequency ωl, the tunneling matrix element of the lowest band gets
renormalized by a Bessel function resulting in, for example, dynamic localization
[3, 10, 196]. For the high shaking frequency ωh, the dispersion relation acquires a
double minimum for strong enough driving, which can be exploited to study, for
example, the formation of symmetry-broken domains [45, 46].
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Chapter 5

Heating rates in a 1D lattice

In this chapter, we will determine the dimensionless scattering parameter γl for both
shaking regimes that we found in the previous section. Having determined γl, one
can then calculate the total theoretically expected scattering rate Γtot and compare
it to the experimentally measured heating rate κ.

In a first step to calculate γl we have to find suitable gauge transformations Û(t)
for the two different shaking regimes, such that the transformed Hamiltonian Ĥ ′(t)
takes the desired form discussed in section 4.2.2, where Fourier components with
m 6= 0 of Ĥ ′(t) are small. This property of Ĥ ′(t) is necessary in order to employ
perturbation theory, as discussed in section 4.2.3, to calculate the matrix elements
C

(l)
b′b from which we can then determine the scattering parameter γl.
Furthermore, these transformations will be chosen such that the transformed

Hamiltonian Ĥ ′(t) can be decomposed as

Ĥ ′(t) = Ĥbs +
∑
m

(
Ĥ(m)

sp + Ĥ
(m)
tp

)
eimωt. (5.1)

Here Ĥbs describes the time-independent single-particle band structure

Ĥbs =
∑
b,k

ε′b(k)â†b,kâb,k, (5.2)

where âb,k is the bosonic annihilation operator for a boson in the single-particle state
|b,k〉′. The total energy of the particles is given by the sum of the energy within the
Floquet band structure ε′b(kx) and the energy in the perpendicular lattice directions
E⊥(k⊥)

ε′b(k) = ε′b(kx) + E⊥(k⊥). (5.3)

All other (time-dependent) single-particle terms are collected in the Hamiltonian

Ĥsp(t). The Fourier components Ĥ
(m)
sp of this Hamiltonian are given by

Ĥ(m)
sp =

∑
k

∑
b,b′

A
(m)
b′b,kâ

†
b′,kâb,k. (5.4)

91



Chapter 5 Heating rates in a 1D lattice

Similarly, we express the Fourier components of the interaction dependent Hamil-
tonian Ĥtp(t), which describes two-particle scattering processes, as

Ĥ
(m)
tp =

∑
{b,k}

B
(m)
{b,k}â

†
b4,k4

â†b3,k3
âb2,k2 âb1,k1 . (5.5)

Furthermore, the matrix elements B
(m)
{b,k} will be zero if (quasi)momentum is not

conserved, modulo reciprocal lattice vectors, during such two-particle scattering
processes.

A further prerequisite necessary to calculate the matrix elements C
(l)
b′b via pertur-

bation theory are the eigenstates |n〉 of Ĥ ′(0). We approximate them in the basis of
Fock states

|n〉 =
∏
b,k

(
â†b,k
)nb,k√
nb,k!

|vac〉 , (5.6)

where nb,k is the occupation number of the Bloch state |b,k〉′ and |vac〉 denotes the
vacuum state. The energy of the Fock state |n〉 is given by

εn =
∑
b,k

nb,kε
′
b(k). (5.7)

Lastly let us remark on the future notation of some important states. We will
denote the ground state of the condensate as |0〉. This state is given by all particles
occupying the condensate mode in the lowest band |b = 0,k = q〉′. Furthermore,
we need a Fock state where two particles occupy the excited states |b1,k1〉′ and
|b2,k2〉′, while all other particles remain in the ground state of the condensate. We
shall denote this state by |2(b1,k1; b2,k2)〉.

5.1 The scattering parameter for small shaking
frequencies

In this section, we will describe the gauge transformations for shaking frequencies
much smaller than the band gap that transform the shaking Hamiltonian H(t) into
the desired form discussed in the previous sections. We will give a detailed descrip-
tion of the general path on how the scattering parameter γl can be determined but
will skip technical parts in between that give no further insight into the general
strategy on how γl can be determined.
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5.1 The scattering parameter for small shaking frequencies

5.1.1 The rotating frame

The periodic forcing of the lattice leads to a periodic modulation of the quasimomen-
tum of the condensate in the lattice. For the low shaking frequency case discussed
here, this modulation eventually leads to the Bessel function renormalization of the
tunneling matrix element of the lowest band as discussed in detail in section 2.3.5.
In general, the effect of the drive on the (quasi)momentum of the atoms can be
described by a wave number

v(t) =
1

~

∫ t

0

dt′F (t′) = −α
d

sin(ωt), (5.8)

where F (t) = −F0 cos(ωt) = −α~ω/d cos(ωt) is the external forcing and α ≡
dF0/(~ω) is the dimensionless forcing strength introduced in section 2.3.5.

For the lower driving frequency, where multiphoton resonances to higher lying
bands are exponentially suppressed, the dynamics of the system is restricted to the
lowest band. Hence, the translation in quasimomentum can be described by the
time-periodic unitary operator

U1(t) =
∑
b,kx

|b, kx + v(t)〉 〈b, kx| = exp

(
idv(t)

∑
b,j

j |b, j〉 〈b, j|

)
, (5.9)

that conserves the band index b. Within the Fock space notation this transformation
takes the form

Û1(t) = exp

(
idv(t)

∑
b,j

jâ†b,j âb,j

)
. (5.10)

Using this operator, we perform a gauge transformation on the single-particle Hamil-
tonian defined in Eq. 4.4. Within the notation of second quantization and neglecting
the external trapping potential Vdip(r), the transformed Hamiltonian reads

Ĥ ′0(t) =
∑
b,k

(
Eb(k + v(t))â†b,kâb,k + F0d cos(ωt)

∑
b′ 6=b

ηb′bâ
†
b′,kâb,k

)
. (5.11)

Here we have introduced the dimensionless interband coupling parameter ηb′b. Since
the shaking frequency is very low, only interband couplings between the lowest band
b = 0 and the first excited band b = 1 have to be taken into account. For these
two bands, the wave function of the atoms in the lattice is well described by a
Wannier function. As the lattice depth of 11Er is already in the tight binding
regime, the Wannier functions are well localized on a single lattice site and we can
neglect interband couplings between different lattice sites. With these ingredients
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we can approximate the interband coupling term in Eq. 5.11 by

ηb′b(kx, t) ' η10 =
1

d

∫
dxw1(x)xw0(x). (5.12)

Note that the interaction Hamiltonian as defined in Eq. 4.14 is not affected by this
shift in quasimomentum imposed by the gauge transformation as it is independent of
quasimomentum. In a next step we Fourier decompose the time-dependent energies
Eb(k + v(t)) appearing in Eq. 5.11. As we can spatially separate the Hamiltonian
and since the time-dependence only appears along the lattice direction, the Fourier
decomposition of the band energies reads

Eb(kx + v(t)) =
∞∑

m=−∞

E
(m)
b (kx)e

imωt. (5.13)

Due to the large lattice depth, we can assume that the kinetics of the lowest band(s)
is governed only by nearest-neighbor tunneling and we obtain

E
(m)
b (kx) =

1

T

∫ T

0

dt e−imωt[εb − 2Jb cos(dkx − α sin(ωt))]

= εbδm,0 − JbJm(α)
(
(−1)meidkx + e−idkx

)
, (5.14)

where εb denotes the band-center energy.
In a last step, in order to get rid of the time-dependence of the diagonal terms ∝

â†b,kâb,k in Eq. 5.11, we perform a second gauge transformation where we integrate out
the time-periodic part of the band energies Eb(kx+v(t)). This gauge transformation
has the form

Û ′1(t) = exp

[
i
∑
b,k

∑
m 6=0

χ
(m)
b,k e

imωtâ†b,kâb,k

]
, (5.15)

with

iχ
(m)
b,k = −E

(m)
b (kx)

m~ω
. (5.16)

As the execution of this last transformation is rather technical and provides no
further insight into the general scheme on how the scattering rates in a driven lattice
system can be calculated, we will only present the result of this transformation and
refer the reader who is interested in the intermediate steps to the supplemental
material of reference [197].

After the implementation of the gauge transformation presented in Eq. 5.15, the
Hamiltonian is of the desired form Ĥ ′(t) = Ĥbs + Ĥsp(t) + Ĥtp(t). We find that the

94



5.1 The scattering parameter for small shaking frequencies

single particle matrix elements A
(m)
b′b,k are proportional to

A
(±|m|)
b′b,k ∝ (Jb′ − Jb)ηb′b

α|m|

|m|!
for |m| ≥ 2. (5.17)

As it requires a large number of photons l = −m to excite atoms to the first excited
band, resonant scattering process between single-particles and l photons are strongly
suppressed. Therefore, the single particle terms A

(m)
b′b,k can safely be neglected in this

driving regime.
For the two particle matrix elements B

(m)
b,k one can again neglect scattering events

to excited bands and we can restrict ourselves to resonant intraband scattering pro-
cesses. The corresponding matrix element for a zero-photon (ordinary collision)
process reads

B
(0)
0,k '

gζ

L3
. (5.18)

Inserting this expression into Eq. 5.5, we find that the interaction Hamiltonian Ĥint '
Ĥ

(0)
tp . For m 6= 0 we find the matrix elements to be given by

B
(m)
0,k '

gζ

L3

Jm(α)

m

J0

~ω



[cos(dkx1) + cos(dkx2)

− cos(dkx3)− cos(dkx4)] for even |m|

[
1
i

sin(dkx1) + 1
i

sin(dkx2)

−1
i

sin(dkx3)− 1
i

sin(dkx4)
]

for odd |m| .

(5.19)

One can see that the zero-photon matrix element B
(0)
0,k is larger than the matrix

elements defined in Eq. 5.19 where m 6= 0. Therefore, zero-photon scattering events
between two particles which lead to a thermalization of the system are faster than
resonant m-photon scattering events. Hence, also from the theoretical side, we
expect the system to stay in a global thermal equilibrium at this shaking frequency.

5.1.2 Scattering rate for small shaking frequencies

To finally determine the total scattering rate Γtot of atoms out of the condensate,
we assume that all atoms initially occupy the lowest band at zero quasimomentum
q = 0. Since the dominant heating process is resonant intraband scattering, a pair
of condensate atoms initially in the condensate mode |0,0〉 is scattered into the ex-
cited Bloch states |0,k〉 and |0,−k〉, such that (quasi)momentum is conserved. The
dominant scattering process would be a single-photon scattering process described
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ba

π/d-π/d 0 q

є

b=0
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c

Figure 5.1: Sketch of the dominant scattering channels. (a) The dispersion
relation of the lowest two bands b = 0 and b = 1 is sketched in solid black lines.
Floquet modes of these bands that are shifted by −~ω (m = −1) are indicated by
the dashed lines. The condensate is represented by the large blue sphere, whereas
scattered particles are indicated by the small spheres. The pair of yellow wiggly
arrows denote a two-photon scattering process, which is the dominant scattering
channel for a condensate with zero momentum spread when the shaking frequency
is well below the band gap. Here, both particles each absorb a single photon
during a collision event. Note that the matrix element C

(2)
00 describes a two-

photon scattering process but does not differentiate how these absorbed photons
are distributed between the scattered atoms. Therefore, the process depicted in
(b) is equivalent to the process in (a). (b) Same process as in (a) but this time the
scattered particle on the right absorbs two photons and ends up in the Floquet
mode shifted by −2~ω indicated by the dashed-dotted line. The other scattered
particle remains in the Floquet mode with m = 0. Both processes in (a) and (b)
are equivalent. (c) Due to the finite momentum spread of the condensate, single-
photon scattering processes are also allowed and are illustrated by the green wiggly
arrows.
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5.1 The scattering parameter for small shaking frequencies

by B
(1)
0,k. However, this matrix element vanishes for atoms initially at q = 0 due to

the sinusoidal dependence of the odd matrix elements defined in Eq. 5.19. Hence,
the dominant scattering process is resonant two-photon scattering, which is illus-
trated in Fig. 5.1. As there are no virtual intermediate states present during such a
scattering process, the scattering matrix elements C

(l)
b′b(k, q) for a resonant l-photon

process are obtained via first order perturbation theory and read

C
(l)
00 (k, 0) = 〈2(0k, 0− k)|Ĥ(−l)

tp |0〉 = N0B
(−l)
0k,0−k,00,00 (5.20)

' −N0g

L3

ζJ0

~ω
Jl(α)

l/2
[1− cos(dkx)]. (5.21)

To calculate the dimensionless scattering rate γl we have to differentiate between
two cases. As long as the total absorbed energy l~ω from the drive is larger than
twice the width of the lowest dressed band 8J0J0(α) all modes kx will contribute to
the integral1

γl =

(
2ζJ0Jl(α)

l~ω

)2
d

2π

∫ π/d

−π/d
dkx [1− cos(dkx)]

2︸ ︷︷ ︸
3/2

. (5.22)

However, if

sl ≡
l~ω

8J0J0(α)
< 1, (5.23)

only modes with |kx| ≤ kmax, where [1 − cos(dkmax)] = 2sν , can fulfill the energy
conservation condition for a scattering process defined in Eq. 4.26. In order to obtain
a general formula for γl we define the function

g(sl) ≡
2

3

d

2π

∫ kmax

−kmax

dkx [1− cos(dkx)]
2

=

(
1

2
− 1

π
arcsin(1− 2sl)

)
− 2sl + 6

3π

√
sl(1− sl). (5.24)

Furthermore, we define that g(sl) = 1 for sl ≥ 1. With these definitions, the general
form of the dimensionless scattering parameter γl for driving frequencies far below
the band gap is given by

1In the described heating channel two particles are always excited out of the condensate. Hence,
the total energy necessary to excite both particles into the mode at kx = π/d is twice the energy
associated with the bandwidth.

97



Chapter 5 Heating rates in a 1D lattice

γl = 6g(sl)

(
ζJ0Jl(α)

l~ω

)2

. (5.25)

So far we have assumed that the condensate is described by a single quasimomen-
tum wavenumber and thus has zero momentum spread. However, Fig. 3.18 shows
that the condensate has an estimated momentum spread of about ∆q = 0.2 ~kL
and therefore the odd matrix elements in Eq. 5.19 cannot be entirely neglected any-
more. The largest of these matrix elements describes a single-photon scattering
event, which is depicted in Fig. 5.1 (c). We take the finite momentum spread of the
condensate into account by describing the initial state of the condensate by

|0〉 =
1√
N0!

(∑
q

fqâ
†
q︸ ︷︷ ︸

â†c

)N0

, (5.26)

where fq describes the quasimomentum distribution of the condensate, which can be
approximated by a Gaussian. With this definition the scattered state |2(b1,k1; b2,k2)〉
can be described by

|2(0,k1; 0,k2)〉 = â†0,k1
â†0,k2

â2
c√

N0(N0 − 1)
|0〉 . (5.27)

By inserting this expression into the matrix elements C
(l)
00 (k, 0) defined in Eq. 5.20,

we can determine the dimensionless scattering parameter γl for arbitrary momentum
spreads of the condensate. The resulting scattering parameter only differs by a
numerical factor u(q) from the one defined in Eq. 5.25 and reads

γl = 6g(sl)u(q)

(
ζJ0Jl(α)

l~ω

)2

. (5.28)

For the measured momentum spread of our system, the numerical factor reads u(q =
0.2~kL) = 0.75 for processes with even l and u(0.2~kL) = 0.15 for odd l. By inserting
this expression of γl into Eq. 4.36 we can calculate the expected scattering rate ΓLDA

l

of particles out of the condensate. The total scattering rate Γtot is given by summing
the individual scattering rates ΓLDA

l . In the case of low shaking frequencies, as
discussed here, we include scattering processes up to l = 4.
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Figure 5.2: 2D map of heating rates at ωl = 2π× 3.5 kHz. Scaled loss rate
κ̃ = κN0(0)2/5 for different driving strengths and scattering lengths. Each dot
corresponds to a single lifetime measurement.

5.2 Comparison of theory and experiment for small
shaking frequencies

To compare the theoretically estimated interaction dependent scattering rates with
the experimentally measured heating rates, we choose for the regime of low shaking
frequencies, a shaking frequency of ω = 2π × 3.5 kHz = 0.084ω10, see section 4.3.4.
This frequency is far away from the first observable multiphoton resonance, as can
be seen from Fig. 4.5, and hence only interaction driven heating should occur. Fig-
ure 5.2 shows a 2D map of the measured heating rates for various scattering lengths
and driving strengths α. One can observe the expected behavior that stronger
driving and larger scattering lengths increase the heating rate of the system quite
dramatically. We observe that, depending on the driving regime, the heating rates
change by almost three orders of magnitude! This impressively demonstrates the
possible detrimental effect lattice shaking can have on a condensate. To present
the measured loss rate κ in more intuitive units, we plot the data in Fig. 5.2 in
units of the scaled loss rate κ̃ ≡ κN0(0)2/5. With this definition of κ̃, the initial
driving-induced losses scale as Ṅ0 ∝ κ̃N0(0).

In order to be able to compare the measured heating rates quantitatively with the-
ory, we will have to take into account that scattered particles cannot directly leave
the trapping potential at this driving frequency and initially stay trapped. This is
the case because the depth of the trapping potential is around Vver ≈ h × 20 kHz
and therefore much deeper than the absorbed energy single atoms can maximally
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Figure 5.3: Thermal background. Three raw images of the BEC after different
shaking durations t, at a driving frequency of ωl = 2π × 3.5 kHz. The images are
obtained by band mapping and subsequent 5.5 ms TOF, such that the thermal
background is not strongly diluted, yet. One can clearly see the occurrence of a
strong thermal background for increasing shaking durations. In the right image,
the edges of the first Brillouin zone are indicated by the two vertical lines. This
illustrates that the thermal background is distributed over the entire Brillouin
zone.

acquire during a scattering process at this shaking frequency2. This effect mani-
fests itself also in the TOF images. Figure 5.3 shows raw images of the BEC for
different shaking durations. One can clearly see the occurrence of a strong thermal
background. As these thermal atoms are still trapped and spatially overlapped with
the condensate, they will rapidly dissipate their absorbed energy into the system.
In the following section, we will estimate the detrimental effect of these additional
collisions on the condensate.

5.2.1 Additional losses through thermalization

To estimate the additional losses of condensed atoms originating from ordinary colli-
sions between thermal and condensed atoms, we assume that the system equilibrates
immediately3. The depletion N ′ = N − N0 of an ideal Bose gas, with density of
states g(E) ≡ cEγ [198], where c and γ are system dependent constants, is given by

N ′ =

∫ ∞
0

dEg(E)
1

eβE − 1
=
cΓ(γ + 1)ζ(γ + 1)

βγ+1
. (5.29)

Here β is the inverse temperature of the system and Γ(x) and ζ(x) are the Gamma
and Zeta function, respectively. The total energy of the system is given by

2If a single atom absorbs both photons during a scattering event its energy increases by maximally
2~ω = 2π~× 7 kHz.

3In Fig. 4.2 we already saw that the system stays in a global thermal equilibrium as the BEC is well
described by a Thomas-Fermi distribution during most parts of the driving. This observation

is corroborated by the fact that the zero photon scattering matrix element B
(0)
0,k defined in

Eq. 5.18 is larger than B
(2)
0,k so that the assumption of a thermal equilibrium is reasonable.
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E =

∫ ∞
0

dE ′g(E ′)
E ′

eβE′ − 1
=
cΓ(γ + 2)ζ(γ + 2)

βγ+2
. (5.30)

By employing the property Γ(γ + 1)/Γ(γ + 2) = γ + 1, we find that the absorption
of an energy amount E changes the depletion of the condensate by

dN ′

dE
=

1

γ + 2

ζ(γ + 1)

ζ(γ + 2)
β ≡ fβ. (5.31)

A homogeneous, three-dimensional ideal Bose gas is described by γ = 1/2 which
results in a factor f ≈ 0.78. On the other hand, a three-dimensional harmonic oscil-
lator would be described by γ = 2 which would yield f ≈ 0.28. Note that the system
is not described correctly by the ideal Bose gas or the harmonic oscillator. Especially
for the low-energy states present in our system, the excited particles see a potential
that is given by a combination of the trapping potential and a central repulsive
potential bump which originates from the repulsive interaction with the condensate.
Therefore, we use the factor f originating from the ideal three-dimensional Bose gas,
which is also in the spirit of the local density approximation that we used earlier to
determine the scattering rate ΓLDA

l . Despite the uncertainty of the actual value of
f , we can safely assume that it is of order one.

During a l-photon scattering event, two particles of the condensate absorb the
energy l~ω from the drive, which is then immediately dissipated into the system.
Therefore, the depletion increases by about lfβ~ω/2 for each scattered atom and
we can express the total loss rate of condensate atoms by

Ṅ0 = −fβ~ω
∑
l>0

l

2
ΓLDA
l . (5.32)

5.2.2 Heating rates versus scattering length

From the theoretically estimated scattering rates, we expect that the driving induced
losses scale with the scattering length as Ṅ0 ∝ a7/5. This scaling is reproduced by the
data as can be seen from Fig. 5.4, demonstrating that the dominant loss processes are
indeed interaction driven and that the Thomas-Fermi local-density approximation
is consistent with our data. To overlap the theory lines with the measured data
points, a factor fβ~ω = 10 has been chosen. From this factor and assuming an
ideal homogeneous Bose gas, as discussed in the previous section, we can provide a
lower bound of the temperature of the condensate of about T ≈ 15 nK. However,
typical temperatures of our BEC will likely be slightly higher. For a homogeneous
ideal Bose gas the condensate fraction is given by [199]

N0

N
= 1−

(
T

Tc

)3/2

. (5.33)
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Figure 5.4: Loss rate versus scattering length. Effective loss rate κ̃ for dif-
ferent scattering lengths at a driving frequency of ωl = 2π × 3.5 kHz. Error
bars indicate fit uncertainties. The theory lines are scaled by eye with a factor
fβ~ω = 10 to overlap with the data.

In the static system we cannot detect any thermal background when taking TOF
images of the condensate. Thus we can conservatively infer a condensate fraction of
at least 90%. Inserting this condensate fraction into Eq. 5.33 gives an upper bound
of the temperature of the BEC of around T < 60 nK. This temperature would yield
fβ~ω > 2 which is compatible with the measured factor of approximately ten. Note
that due to the approximations made above, we do not expect a perfect match be-
tween the observed and estimated factor between theory and the experimental data.
Furthermore, an additional heating mechanism will come into play which we have
neglected so far. Since the trapped thermal atoms have a finite quasimomentum in
the lattice (see Fig. 5.3) resonant single photon scattering events are not suppressed
anymore and become the dominant scattering channel. Since the matrix element
of this scattering channel is larger than the two-photon scattering matrix element,
thermal atoms absorb energy from the drive at an even faster rate than condensed
atoms.

5.2.3 Heating rates versus driving strength

Figure 5.5 (a) shows the measured loss rates for three different scattering lengths
versus the driving strength α. One can see a good agreement between the scaled
theory with fβ~ω = 10 and the measured data for small and intermediate scattering
lengths. At the largest measured scattering length, the theoretical prediction has
the least overlap with the data. We assume that the lower than expected heating
rates at small driving strengths might come from an interplay between the actual
heating rate that stems from the lattice shaking and continuous evaporation in the
dipole trap. Since the absolute heating rates in this regime are rather small and
the lifetime of the condensate is on the order of seconds for all scattering lengths,
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Figure 5.5: Loss rate for different driving strengths. (a) Effective loss rate
κ̃ for different driving strengths α at a fixed shaking frequency ωl. For moderate
interaction strengths and scattering lengths, the theoretical description fits the
data quite well. Solid theory lines are scaled by fβ~ω = 10. Error bars indicate
fit errors. (b) Loss rates for a wide range of driving strengths α. We observe clear
peaks in the effective loss rate whenever the effective tunneling Jeff = J0J0(α)
goes to zero (dashed lines). The insets sketch the dispersion relation of the lowest
band together with the equilibrium positions of the BEC (blue dots). Error bars
indicate fit errors.

a slight increase in the photon scattering rate might partly be compensated by the
more efficient evaporation from the dipole trap for stronger interacting condensates.

In the data of Fig. 5.5 (a) one can further observe a larger discrepancy between
the measured loss rates and the theoretical prediction at large driving strengths α.
We can attribute this effect to the very small bandwidth in this driving regime.
As the bandwidth becomes negligibly small, zero-photon scattering processes are
allowed. This effect is clearly visible when scanning the driving strength over a wide
range shown in Fig. 5.5 (b). Here we observe clear maxima in the loss rate whenever
the effective bandwidth of the lowest band is close to zero. Interestingly, after
each zero crossing of the bandwidth, the loss rates decrease again even though the
driving strength is increasing. This observation strongly supports the assumption
that zero-photon scattering events become an additional important heating channel
for bandwidths close to zero.

5.2.4 Heating rates for different shaking frequencies

When the total amount of absorbed energy l~ω from the drive is smaller than twice
the effective bandwidth 8J0J0(α) of the lowest band, we expect the heating rates to
drop, as fewer modes kx can be occupied along the lattice direction, see section 5.1.2.
As one- and two-photon scattering processes are the dominant heating channels for
small driving frequencies we expect to see this drop at two and one times the effective
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Figure 5.6: Loss rate for different shaking frequencies. Loss rates for a fixed
driving strength of α = 1.1. We observe peaks in the loss rate when the shaking
frequency coincides with one or two times the effective bandwidth of the lowest
band, indicated by the dashed black lines. When shaking below these frequencies,
the number of accessible scattering states becomes reduced for two and single
photon scattering processes, respectively. This reduction in target states leads to
a reduced loss rate of condensed atoms. The solid line shows the theory scaled by
fβ~ω for a temperature of T = 13 nK. The green dashed line marks the shaking
frequency used in the previous sections.

bandwidth, as can clearly be seen in Fig. 5.6.
For frequencies larger than twice the bandwidth the heating rates decrease again

according to the 1/ω2 scaling of the scattering rates defined in Eq. 5.28. The the-
oretical estimate of the heating rate is plotted as a solid line. To calculate the
theoretical heating rates, we assume a temperature of T = 13 nK of the condensate,
which gave us the scaling factor fβ~ω = 10 for a shaking frequency of ω = ωl.
We see a generally good agreement between the measured heating rates and the
theoretical expectation.

To conclude this section: we have observed a good agreement between the mea-
sured data and the theoretical prediction even though many approximations have
been made in order to make the theoretical estimation tractable. The expected
scaling with the interaction strength is in good agreement with the local-density
Thomas-Fermi approximation. Furthermore, we also found good agreement in the
behavior versus driving strength even though the measured loss rates show a richer
structure than the predicted heating rates which should come at no surprise as many
approximations have been made to estimate the loss rates. A further important im-
pact on the heating rates is that excited atoms typically cannot directly leave the
trap and therefore dissipate their entire energy into the system leading to heating
rates that are an order of magnitude larger than expected. A powerful strategy to
reduce heating rates in this shaking regime would, therefore, be a trapping config-
uration in which excited atoms can quickly leave the atom cloud before dissipating
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their energy.

5.3 The scattering parameter for high shaking
frequencies

Having determined the dimensionless scattering parameter for small shaking fre-
quencies, we will now look at shaking frequencies that are larger than the band
gap. In this shaking regime, scattering events that involve a single particle and
one or more photons are not exponentially suppressed anymore but detuned, lead-
ing to entirely different heating channels as for the low-frequency case. We will
start again by introducing a gauge transformation that brings the time-dependent
Hamiltonian into the desired form introduced in Eq. 5.1. We will then describe the
dominant heating channels and determine the scattering rate of particles out of the
condensate.

5.3.1 The rotating frame

In section 2.3.6 we showed that for large driving frequencies ω, the lowest band(s)
are not renormalized by a Bessel function, in contrast to the case for low shaking
frequencies discussed in the previous sections. Instead, we find that below a critical
driving strength α, the band structure remains more or less unaffected by the drive.
Above this critical driving strength, the lowest band starts to exhibit a double-
well-like structure as can be seen in Fig. 2.8. Furthermore, the approximation that
the dynamics of the atoms are restricted to the lowest band is not valid anymore.
Inspired by these observations, we employ a gauge transformation with the unitary
operator

U2(t) = exp (iv(t)x) , (5.34)

which describes a translation in momentum rather than in quasimomentum. Here
v(t) is again the wave number defined in Eq. 5.8. Employing this transformation on
the single particle Hamiltonian defined in Eq. 4.4, and again neglecting the external
trapping potential, we obtain within the notation of second quantization

Ĥ ′′0 (t) =
∑
{b,k}

Eb(k)â†b,kâb,k +
∑
{b′b,k}

Vb′b(kx, t)â
†
b′,kâb,k. (5.35)

Here â†b,k is the creation operator that creates a particle in the undriven Bloch state
|b,k〉 whose energy is given by Eb(k). The matrix elements Vb′b(kx, t) in Eq. 5.35
describe the effect of the periodic driving and are given by
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Vb′b(kx, t) =
~2

2M

(
2v(t)pb′b(kx) + v2(t)δb′b

)
. (5.36)

Here we have introduced

pb′b(kx) = 〈b′, kx| − i∂x|b, kx〉 = kxδb′b +
2π

d
βb′b(kx), (5.37)

with

βb′b(kx) =
∑
β

u∗b′,β(kx)βub,β(kx), (5.38)

where ub,β(kx) = 〈β, kx|b, kx〉 is the overlap between the momentum eigenstate |β, kx〉
and the Bloch state |b, kx〉. As for the case of low shaking frequencies, this gauge
transformation does not affect the interaction Hamiltonian defined in Eq. 4.14. In a
next step we again Fourier-decompose the time-dependent diagonal energies of the
Hamiltonian defined in Eq. 5.35. As before, we can remove this time-dependence
by employing a second gauge transformation with a unitary operator of the form
defined in Eq. 5.15 and Eq. 5.16. After this transformation the Hamiltonian takes the
desired form Ĥ ′′(t) = Ĥbs + Ĥsp(t) + Ĥtp(t). By Fourier decomposing the obtained

single particle Hamiltonian Ĥsp(t) and two particle Hamiltonian Ĥtp(t) we obtain

the matrix elements A
(m)
b′b,k and B

(m)
{b,k}. In the limit of small driving strengths where

αEr/~ω is small, we find the single-particle matrix elements to be

A
(0)
b′b,k(k) = 0, (5.39)

A
(±1)
b′b,k(k) ' −Er

2α

π
βb′b(kx), (5.40)

A
(±2)
b′b,k(k) ' ±E

2
r

~ω

(
2α

π

)2

βb′b(kx)[βb′b′(kx)− βbb(kx)]. (5.41)

For the two-particle matrix elements we find

B
(0)
{b,k} '

g

2L3
ζ{b,k}, (5.42)

B
(±1)
{b,k} ' ±i g

2L3

Er
~ω

2α

π
ζ{b,k}

[
kx1 + kx2 − kx3 − kx4

+ βb1b1(kx1) + βb2b2(kx2)− βb3b3(kx3)− βb4b4(kx4)
]
. (5.43)

With these matrix elements we have all the necessary ingredients to calculate the
matrix elements C

(l)
b′b(k, q).
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5.3.2 Scattering rate for high shaking frequencies

To estimate the dimensionless scattering rate γl for high driving frequencies, we
first have to identify the most dominant scattering processes. Compared to the low-
frequency case, where the single-particle matrix elements A

(m)
b′b,k could be neglected,

the determination of the dominant heating processes in the regime of high shaking
frequencies is slightly more involved. We choose the dominant heating processes
according to the following rules:

(i) We will only consider terms that involve the dominant matrix elements defined
in Eq. 5.40 and Eq. 5.42, which describe single-photon interband transitions
and zero-photon scattering (ordinary collisions) between particles, respectively.

(ii) We will assume that zero-photon scattering (ordinary collisions) events are
slow compared to single-particle interband transitions, gN0/L

3 � Erα. There-
fore, within nth order perturbation theory we will only take into account a
single zero-photon scattering process and n− 1 single-particle interband pro-
cesses.

(iii) We will only take into account processes that include virtual intermediate
states which are detuned by a quasienergy much smaller than ~ω.

According to these rules, the dominant heating processes which appear in second-
order perturbation theory are depicted in Fig. 5.7 (a,b). Note that in this shaking
regime, scattering processes that do not involve any virtual intermediate states, like
the ones discussed in section 5.1.2, which would be treated in first order perturba-
tion theory, are orders of magnitude lower than the dominant scattering channels
depicted in Fig. 5.7 and can, therefore, be safely neglected. The two processes de-
picted in Fig. 5.7 (a,b) contribute to the matrix element C

(1)
10 (k, q). Note that as be-

fore, only one photon number m is associated with the whole system, meaning that
mirror-inverted processes are equivalent to the processes shown in Fig. 5.7. From the
resonance condition defined in Eq. 4.26 we can determine how much energy has to
be transferred in the transverse direction. Furthermore, since E⊥(k1 ⊥) ≥ 0 we can

ignore the matrix element A
(1)
b′b,k as it would correspond to a process where energy

from the transverse direction would be converted into a photon during a collision
process. The resulting scattering matrix element from the two processes depicted in
Fig. 5.7 (a,b) reads

C
(1)
10 (kx, q) =

N0g

L3

α

π

[
− 4Erβ10(q)ζ1010(kx, q)

~ω −∆10(q)

+
2Erβ10(q + kx)ζ0000(kx, q)

~ω −∆10(q + kx)

]
, (5.44)
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Figure 5.7: Dominant heating channels for high shaking frequencies. (a,b)
Leading excitation channels in the regime of high driving frequencies. The disper-
sion relation of the lowest band is sketched by the solid black line. The Floquet
mode of the second band shifted by −~ω (m = −1) is depicted by the dashed line
and the Floquet mode of the third band shifted by −2~ω by the dashed-dotted
line. The condensate is illustrated by the large blue sphere and scattered parti-
cles by the small spheres. The solid blue arrow indicates a single-photon interband
transition described by the matrix element A

(−1)
b′b,k and the red wiggly arrows denote

a zero-photon scattering process described by B
(0)
{b,k}. Faint blue spheres indicate

the virtual intermediate state. The zero-photon scattering process, during which
excess energy gets transferred into the transverse directions, is possible as the
virtual intermediate state is still spatially overlapped with the BEC. (c) As the
processes in (a) and (b) attenuate each other, sub-dominant processes like the
one indicated here will become important, although it violates the third selection
principle. The larger spaced dashed lines indicate Floquet modes shifted by ~ω
(m = 1). (d) Same process as pictured in (a) but plotted within a quantum optics
like picture instead of the Floquet picture. One atom of the condensate absorbs
a photon from the drive, as indicated by the blue arrow. This excitation into the
virtual intermediate state, depicted by the faint blue sphere, is off-resonant. To
reach an allowed energy state within the band structure, the excited atom has to
scatter with another atom from the condensate. During this scattering process,
depicted by the wiggly red arrow, excess energy gets transferred into the transverse
directions.
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which has the property that C
(1)
10 (kx, q) = C

(1)
10 (−kx, q). In Eq. 5.44 we have intro-

duced ∆b′b(q) ≡ εb′(q) − εb(q), where εb(q) denotes the energy of the bth Floquet
band at quasimomentum q. Note that for driving strengths α ≥ 0.75 the lowest
band starts to exhibit a double minimum and hence the condensate occupies a state
with finite quasimomentum q. Furthermore, we find that the contributions from the
processes depicted in Fig. 5.7 (a,b) have opposite sign and additionally have almost
the same absolute value. As a result of this mutual attenuation of the dominant
scattering processes, sub-dominant processes will become important. One of these
processes is depicted in Fig. 5.7 (c). Compared to the processes in (a) and (b) it
violates the third selection principle as the virtual intermediate state has a large
detuning. Nevertheless, it leads to a significant correction of the matrix element
C

(1)
10 (kx, q) which reads

N0g

L3

α

π

2Erβ01(q − kx)ζ1100(kx, q)

~ω + ∆10(q − kx)
. (5.45)

Two-particle scattering processes that include the absorption of a single photon,
which are described by the matrix element B

(−1)
1q+k,0q−k,0q,0q, can safely be neglected

when calculating the matrix elements C
(1)
10 (kx, q). This is the case because they only

acquire a non-zero value due to interaction processes between nearest neighboring
lattice sites.

So far we only discussed matrix elements that appear in second order pertur-
bation theory. However, matrix elements Cb′b(kx, q) that result from third order
perturbation theory and therefore include two virtual intermediate states cannot be
neglected and contribute a significant amount to the total scattering rate Γtot. The
dominant scattering processes that appear in third order perturbation theory are
sketched in Fig. 5.8.

The processes depicted in Fig. 5.8 (a-d) contribute to the matrix element C
(2)
11 (kx, q)

whereas the processes in Fig. 5.8 (e-h) contribute to C
(2)
20 (kx, q). Both of these matrix

elements scale quadratically with the driving strength α. Due to the increasing com-
plexity of defining and calculating the matrix elements Cb′b(kx, q) in higher orders
of perturbation theory, we are not going to take matrix elements into account that
result from fourth or even higher orders of perturbation theory. Matrix elements
from fourth order perturbation theory would scale as α3 and would become domi-
nant for large driving strengths α. According to Eq. 4.36, we can estimate the total
scattering rate of particles out of the condensate as

Γtot ≈ ΓLDA
1 + ΓLDA

2

=
128

105
ζ−3/5

(
15π

8

a

d
N0

)7/5(~ω̄
Er

)6/5
Er
~

(γ1 + γ2), (5.46)
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Figure 5.8: Dominant heating channels in third order perturbation the-
ory. (a-d) Dominant scattering processes that include two single-photon pro-
cesses and one zero-photon process which contribute to the matrix element
C

(2)
11 (kx, q). (e-f) Dominant scattering processes that contribute to the matrix

element C
(2)
20 (kx, q).
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Figure 5.9: 2D map of heating rates at ωh = 2π× 53 kHz. Scaled loss rate
κ̃ = κN0(0)(2/5) for different driving strengths and scattering lengths. Each dot
corresponds to a single lifetime measurement.

with dimensionless scattering parameters

γ1 =
d

2π

∫ π/d

−π/d
dkx (|c(1)

10 (kx, q)|2 + |c(1)
01 (kx, q)|2) and (5.47)

γ2 =
d

2π

∫ π/d

−π/d
dkx (|c(2)

11 (kx, q)|2 + |c(2)
20 (kx, q)|2 + |c(2)

02 (kx, q)|2), (5.48)

where c
(l)
b′b(kx, q) = 1/n2DC

(l)
b′b(kx, q).

5.4 Comparison of theory and experiment for high
shaking frequencies

As discussed in section 4.3.4, we choose a shaking frequency of ωh = 2π × 53 kHz
to compare the experimentally measured heating rates with the theoretically esti-
mated ones. This frequency was chosen because it lies in the middle of the band gap
between the first and second excited band and is thus detuned from trivial single-
particle multiphoton resonances. Therefore, interaction-driven heating as discussed
in the previous sections should be the dominant heating process. Figure 5.9 shows an
overview of the measured heating rates for various driving strengths and scattering
lengths. This figure shows very close similarities to Fig. 5.2 although the scattering
processes that lie at the heart of the heating processes are very different in the two
shaking regimes. Another significant difference to the case of low shaking frequen-
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Figure 5.10: Thermal background at large shaking frequencies. (a) Three
raw images of the BEC after different shaking durations t at a scattering length
of a = 40 a0 and driving strength α = 1.1. The images have been obtained after
band mapping the atoms and imaging them after 5.5 ms TOF. This TOF is short
enough that the thermal background is not strongly diluted, yet. Compared to
the low frequency case in Fig. 5.3 there is no thermal background visible here. (b)
Same as in (a) but with a larger scattering length of a = 140 a0. Here, a faint
thermal background is visible which we attribute to the mean free path of the
atoms becoming on the order of the size of the condensate. For more details see
text.

cies discussed before is that the absorbed energy ~ωh is typically large enough to
directly remove scattered atoms from the trap. Because of this property we expect
no thermal background to appear in this driving regime which is confirmed by TOF
pictures shown in Fig. 5.10 (a). Since scattered particles directly leave the trap, we
can assume that the measured heating rate coincides with the scattering rate

Ṅ0 = −
∑
l>0

Γl. (5.49)

5.4.1 Heating rates versus scattering length

Figure 5.11 shows the measured loss rates together with the calculated scattering
rates for a driving frequency of ωh = 2π × 53 kHz. As the theoretically estimated
scattering rate should coincide with the measured loss rate in this frequency regime,
no additional scaling with fβ~ω is applied, as was the case for low shaking frequen-
cies. In Fig. 5.11 (a) we can see that the loss rates scale again as Ṅ0 ∝ a7/5 demon-
strating that the measured loss rates are again interaction driven. However, we can
see an increasing discrepancy from the a7/5 scaling for scattering lengths larger than
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Figure 5.11: Loss rate versus scattering length. (a) Scaled loss rate κ̃ versus
scattering length at a shaking frequency ωh = 2π×53 kHz. The solid lines show the
theoretically estimated heating rates which agree quite well with the measured loss
rates. Especially for weaker driving strengths, one can observe a distinctive kink
in the measured loss rates for scattering lengths larger than approximately 130 a0.
We attribute this kink to additional collisions between excited and condensed
atoms which are not captured by the theoretical description. (b) Zoom into the
region around 130 a0 for weaker driving strengths α. Due to the largely enhanced
heating rates for stronger driving strengths, the effect of the secondary collisions
on the heating rate becomes less important for large α.

' 130a0. This effect is predominantly visible for small driving strengths where the
overall heating rate is small. Figure 5.11 (b) shows a zoom into the aforementioned
regime. The increasing discrepancy between theory and experiment can be explained
by the mean free path lf = 1/n̄σ of the atoms becoming on the order of the size of
the BEC, see Fig. 5.12. Here n̄ = N0/V denotes the mean density of the condensate
where the volume of the BEC can be approximated by V = 4π/3Rx

TFR
y
TFR

z
TF and

σ = 8πa2 is the scattering cross-section of the atoms [85]. Consequently, as the
mean free path is similar to the size of the condensate, scattered atoms have a finite
probability to collide with condensed atoms while leaving the cloud. In Fig. 5.10 (b)
one can indeed see the occurrence of a faint thermal background for condensates
with larger scattering lengths. This supports the assumption that excited atoms
can scatter with condensed atoms while leaving the cloud. After such a collision
event, the typical energy of the particles is not high enough to leave the trap any-
more and therefore the atoms stay trapped and form a thermal background. Due to
the initially high energy of excited atoms, the amount of energy that can be dissi-
pated into the system is considerably higher than in the low shaking frequency case
discussed earlier. This means that already a few of these collision events between
excited and condensed atoms can increase the heating rate significantly. However,
the influence on the total heating rate of these secondary collisions is predominantly
important for weak driving strengths α. For large α they become less important as
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Figure 5.12: Mean free path. Estimated mean free path of the atoms. For
scattering lengths larger than approximately 130a0 the mean free path becomes
on the order of the size of the BEC in the horizontal direction, leading to a finite
collision probability between excited and condensed atoms.

the single-particle matrix elements A
(m)
b′b,k become very large compared to the colli-

sion matrix element B
(0)
{b,k} and therefore these secondary collisions have almost no

effect on the overall heating rate anymore.
Furthermore, we observe an increasing discrepancy between the theoretical pre-

diction and the measured loss rates in Fig. 5.11 for larger driving strengths. We
attribute this behavior to the fact that we have neglected scattering channels that
include the absorption of more than two photons per scattering event. As already
mentioned before, these processes will become more and more important for larger
driving strengths.

5.4.2 Heating rates versus driving strength

Figure 5.13 shows crosscuts of the measured and calculated loss rates versus the
driving strength α. The theory lines show a distinctive kink at a driving strength
of α ' 0.7. At this driving strength a double minimum occurs in the lowest band,
resulting in the BEC condensing at finite values of q. Due to the finite momentum
spread of the condensate, this kink gets washed-out and is not visible in the measured
data. For increasing values of α, the minima of the lowest band move to larger values
of q, which is for example depicted in Fig. 2.8. For driving strengths larger than
α ' 1.4, the minima of the lowest band approach an avoided crossing to higher lying
excited bands which makes a theoretical determination of the minimum position
impossible, see Fig. 2.8 (b). Therefore, we cannot determine a theoretical loss rate
for α > 1.4. Due to the appearance of a single-particle multiphoton resonance, the
heating rates in this regime would in any case only be partly interaction driven.
Experimentally, it is only possible to reliably determine loss rates for α > 1.4 for
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Figure 5.13: Loss rate versus driving strength. Scaled loss rate for different
interactions versus driving strength α. The kink in the solid theory lines is due
to the shift of the minima position of the lowest band to finite values of q when
the driving strength exceeds a value of α ' 0.7. For increasing α, a discrepancy
between theory and experiment can be observed which we attribute to neglected
scattering channels in the theoretical description. For driving strengths larger than
α ' 1.4 the minimum position of the lowest band cannot be calculated anymore
due to the appearance of a single-particle multiphoton resonance. The dashed
yellow line shows an α6 fit to the data at large driving strengths.

weakly interacting systems with a small scattering length. Figure 5.13 shows some
additional points in this driving regime for a scattering length of a = 40 a0. As
discussed already briefly in the previous section, we can see an increasing discrepancy
between the measured data and the theoretical estimation for larger values of α. We
attribute this to the neglected matrix elements that include scattering processes
with more than two photons. Nonetheless, despite the increased complexity of
scattering channels we still get good agreement between the data and the theoretical
description. Including the next higher order term in the theoretical description
would reveal an α6 scaling of the loss rate which would become dominant for larger
values of α. The data for a = 40 a0 shows indeed a scaling with α6 for driving
strengths larger than approximately 0.8, which is indicated by the dashed yellow
line in Fig. 5.13. This scaling seems to reproduce the data also for driving strengths
α > 1.4 where single-particle multiphoton resonances become important.
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Chapter 6

Conclusion and Outlook

In this thesis, we have reported on the systematic study of interaction dependent
heating rates of a BEC in a driven one-dimensional optical lattice. Apart from the
experimental determination of heating rates, we have also developed a theoretical
model based on Fermi’s golden rule, to estimate loss rates of condensed particles for
different driving strengths and shaking frequencies. By employing a Thomas-Fermi
local-density approximation, we also took the density distribution of the trapped
atoms into account. We focused our study on two frequency regimes which are
experimentally most relevant for Floquet engineering and where interaction-induced
scattering processes are the dominant heating channel.

The first considered regime is characterized by driving frequencies well below the
band gap to the first excited band but above the bandwidth of the lowest band. Here
the tunneling matrix element of the lowest band(s) get effectively renormalized by
a Bessel function. Amongst others, this tuning possibility can be utilized for the
dynamic localization of particles [9, 10, 44] or to induce the superfluid to Mott
insulator transition in a dynamic way [48]. Furthermore, this shaking regime is also
used for the creation of topological band structures [68, 69]. As the driving frequency
is much smaller than the band gap, the dominant heating processes are resonant
intraband scattering events. We found that the two most important heating channels
are given by collision processes between two condensed particles during which one
or two photons from the drive are being absorbed. These processes lead to loss
rates Ṅ0 that scale with the driving strength α like J1(α)2 and J2(α)2, respectively.
Furthermore, we found that scattered particles usually have not acquired enough
energy to leave the trap directly and therefore dissipate their energy into the system.
This effect and presumably additional heating channels that appear for thermal
atoms at finite quasimomentum lead to a measured heating rate that is roughly a
factor of ten larger than the theoretically estimated scattering rate. In agreement
with the local-density Thomas-Fermi approximation, we found that the heating rates
scale with the scattering length as a7/5.

The second regime we investigated concerns driving frequencies that lie in the
band gap between the first and second excited band. In this regime, a double min-
imum emerges in the lowest band for strong enough driving. This control over the
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band structure has been used to study for example the formation of symmetry-
broken domains [45, 200] or the dynamics of bosonic particles across a quantum
phase transition [201]. As the driving frequency is larger than the band gap, the
dominant heating processes are resonant interband scattering events. During such a
scattering event a single particle absorbs up to l photons from the drive and energy
conservation is granted through an ordinary collision process with a second particle
from the condensate. Through this collision process excess energy gets transferred
into the transverse directions. We found the dominant heating channels to be single-
and two-photon scattering events which scale with the driving strength as α2 and
α4, respectively. By comparing the experimental data and the theoretical estima-
tion, we find generally good agreement for small driving strengths and scattering
lengths. For larger interactions, we find an increasing discrepancy which we at-
tribute to secondary collision events between excited and condensed atoms. These
secondary collisions occur because the mean free path of excited atoms becomes on
the order of the size of the condensate. For larger driving strengths the increas-
ing discrepancy can be explained by the negligence of higher order processes that
include the absorption of more than two photons. These processes were not taken
into account due to the increasing complexity to calculate their scattering matrix
elements. Furthermore, the amount of energy that gets absorbed from the drive
during a scattering event is typically large enough for scattered atoms to leave the
trap directly. As a result, no further scaling of the theoretically estimated scattering
rates has been applied.

From the relatively good agreement between theory and experiment at large driv-
ing frequencies, we assume that our model adequately estimates scattering rates in
a driven system. As the measured heating rates for small shaking frequencies are an
order of magnitude larger than the estimated scattering rates with a major differ-
ence to the high shaking frequency case being that scattered atoms remain trapped,
we deduce that the dissipation of absorbed energy into the system is a significant
heating source. Therefore, a strategy to decrease heating rates in driven lattice
systems is a trapping configuration where scattered atoms, even at small driving
frequencies, can directly leave the trap. By doing so, one can assume to reduce the
heating rates for low shaking frequencies up to a factor of about ten. As this direct
“evaporation” process of excited particles already happens to a large extent in the
regime of high shaking frequencies, this strategy cannot significantly reduce heating
in this regime. A further possibility to reduce heating might be the use of a three-
dimensional lattice structure. As in all our considered scattering processes excess
energy gets transferred into transverse directions these heating channels should be
forbidden in a three-dimensional lattice [76, 77]. Another possibility is the use of
non-ergodic systems such as many-body localized systems [186–188]. It was already
shown experimentally that heating in these systems can be suppressed for properly
chosen driving frequencies [189].
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6.1 Outlook

So far our analysis of heating rates focused on the one-dimensional optical lattice.
This system was chosen due to its inherent simplicity. It enabled the derivation of
analytical expressions for the heating rates and simplified the identification of the
dominant heating processes. A next step would be to extend our knowledge to more
complicated two- or even three-dimensional lattice structures. As our experimental
setup is predominantly designed to work with a hexagonal lattice structure [89, 90],
a logical next step is to determine the heating rates in this system.

In particular, a primary interest of our team is to explore topological band struc-
tures and, in preparation to this, different methods have been developed to measure
the band geometry and topology [23, 202]1. However, the so far conducted experi-
ments in our lab were performed in topologically trivial bands. Combining periodic
driving with hexagonal lattices would enable the creation of topologically non-trivial
bands and the study of interesting topological phases that span from a quantum Hall
effect without Landau levels [68, 70] over Majorana-Fermions [205] to Floquet topo-
logical or Floquet spin-Hall insulators [52, 206, 207] and fractional Chern insulators
[208] to mention a few.

Many of the above-mentioned proposals require the combination of periodic driv-
ing with strong interactions. Therefore, it is important to study interaction depen-
dent heating rates in the hexagonal lattice. In the following section, we will present
preliminary data on heating rates obtained in a shaken honeycomb lattice.

6.1.1 Heating rates in a hexagonal lattice

To determine the positions of single-particle multiphoton resonances, we perform
a frequency scan as we did for the one-dimensional lattice. Since the honeycomb
lattice is comprised of two lattice sites per unit cell, the bands are grouped together,
compare to Fig. 2.5, and we, therefore, expect an increased number of multiphoton
resonances compared to the one-dimensional case.

We perform the frequency scan in a 4Er deep lattice2, where we ramp up the
driving amplitude ν0 within 10 ms to a final value of ν0 = 10 kHz. Here the recoil
energy is defined as Er = ~2k2

L/(2M), where kL = 2π/λ. From the definition of the
driving strength α in Eq. 3.28 one can see that the same absolute shaking amplitude
ν0 results in a weaker driving strength compared to the one-dimensional lattice. This

1 Apart from these and similar interferometric techniques [203] other groups have developed
measurement techniques to determine the topology of the band structure by measuring the
Hall drift of accelerated wave packets [60, 68], projection onto flat bands [104] or by charge
pumping [105, 106, 204].

2As the honeycomb lattice is created by three individual lattice beams which are derived from the
same laser source and the tunneling barrier between neighboring lattice sites is only a single
beam light shift, see Fig. 3.4, the maximum experimentally reachable lattice depth is much
smaller than for the one-dimensional optical lattice.
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is the case because the lattice spacing of the honeycomb lattice is smaller than the
lattice spacing of the one-dimensional lattice. The chosen shaking amplitude of ν0 =
10 kHz corresponds to a driving strength of α = 0.53. We perform frequency scans
both for linear shaking where only one of the lattice beams is modulated and circular
shaking, where two lattice beams are modulated out of phase with a phase difference
of π/3. Figure 6.1 shows the normalized atom number after a shaking duration of
300 ms at a scattering length of 5 a0. At a lattice depth of 4Er, the resonance
frequency to the first excited (s-)band is at ω10 = 2π×9.5 kHz. Compared to the case
of a one-dimensional optical lattice one can observe broad frequency regions below
ω10 where multiphoton resonances strongly reduce the lifetime of the condensate.
However, one can see a wide frequency region above ω10 where no resonances are
observed. This can be explained by the larger band gap of ω20 = 2π × 36.5 kHz
between the lowest s-band and the first p-band in the static lattice system.

In the case of circular shaking, the multiphoton excitation spectrum looks slightly
different compared to the linearly shaken case. This observation can be explained
by a different Floquet band structure as indicated in Fig. 6.2. Here we have only
plotted the lowest two bands in order to obtain a better visibility of the band
structure. Although circular shaking can yield topological band structures due to
time-reversal-symmetry breaking, we mainly focus on linear shaking to have a more
direct comparison to the data obtained in a one-dimensional optical lattice. The
dashed green lines in Fig. 6.1 mark the positions at which we measure interaction
dependent heating rates for linear shaking.

Figure 6.3 shows the measured heating rates at a red-detuned shaking frequency
of ωl = 2π × 6 kHz ≈ 0.6ω10 for different driving strengths and scattering lengths.
We assume that the loss mechanisms in the honeycomb lattice are similar to the
one-dimensional lattice and therefore determine the experimental loss rates with
the same fit function as introduced in section 4.3.3. One can clearly see that the
measured heating rates in the honeycomb lattice are dramatically higher than in the
one-dimensional lattice. We attribute this partly to an increased density of atoms
on a single lattice site as the atoms are now stronger confined than in the one-
dimensional lattice. This increased density enhances collision rates between atoms,
which is already visible in the static lattice system. Whereas we had 1/e lifetimes
of about 3-4 s in the one-dimensional lattice, the lifetime in the honeycomb lattice
is reduced to about 1-2 s, depending on the scattering length of the condensate.
Furthermore, as can be seen in Fig. 6.3 (a), the scaling with the driving strength α
is only quadratic as indicated by the dashed red line. This can be explained by the

3Due to the geometry of the honeycomb lattice even linear shaking results in a modification
of all tunneling matrix elements. In the case of red-detuned linear shaking, the tunneling
matrix element along the shaking direction gets modified by a Bessel function according to
Jeff = J0J0(α) = J0J0(Md2

Hν0/~). From simple geometric considerations, we find that the
other two tunneling matrix elements are modulated by J ′

eff = J0J0(α/2). Similarly we find
that the driving strength α for circular shaking is given by α =

√
3Md2

Hν0/(2~).
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Figure 6.1: Frequency scan in the honeycomb lattice. Normalized atom
number after a constant shaking duration of 300 ms with variable frequency at
a shaking amplitude of ν0 = 10 kHz. In the case of linear shaking, this shaking
amplitude results in a driving strength of α = 0.5. For circular shaking, this
shaking amplitude leads to a reduced driving strength of α ≈ 0.43. The blue
data points show a frequency scan for linear shaking, where the frequency of
only one lattice beam is modulated. The red data points show a frequency scan
for circular shaking where two lattice beams are modulated out of phase. Both
driving schemes show a large number of multiphoton resonances when the shaking
frequency is smaller than ω10 and a wide frequency regime above ω10 where no
multiphoton resonances can be observed. In the case of circular shaking additional
resonances appear that are not present for linear shaking. The green dashed lines
mark the positions at which we measure interaction-dependent heating rates for
linear shaking.
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Figure 6.2: Floquet band structure. Left: Bandstructure of the lowest two
bands of a honeycomb lattice with a lattice depth of 4Er along the high symmetry
path Γ→ M→ K→ Γ, see inset. Center: Floquet band structure of the lowest
two bands for linear shaking with a driving frequency of ω = ωl = 2π× 6 kHz and
a shaking amplitude of ν0 = 4.5 kHz. Higher bands have been omitted for clarity
reasons. The color coding is kept from the left figure to emphasize that the new
Floquet bands are a mixture of both static bands. One can see a gap opening
at the band crossing along the shaking direction. Right: Floquet band structure
for the same shaking parameters as in the middle plot but for circular instead of
linear driving. One can see a band gap opening at all band crossings including the
Dirac points. This driving scheme yields a topological band structure [209, 210].
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Figure 6.3: Heating rates for red-detuned shaking. (a) Effective loss rate κ̃
versus driving strength α. The gray data points show the measured data obtained
in an 11Er deep one-dimensional lattice, see section 5.2.3. Note that these data
points represent the strongest heating rates measured in the 1D lattice system!
The heating rates obtained in a 4Er deep hexagonal lattice are dramatically higher
than for the one-dimensional lattice and show a weaker scaling with α than the
data obtained in the 1D lattice. The dashed yellow line is a guide to the eye and
indicates a linear scaling with α, whereas the dashed dark red line is a guide to the
eye which scales as α2. The lighter red data points show heating rates obtained in
a circularly shaken lattice and show slightly increased heating rates compared to
the linear shaken case. (b) Heating rates versus scattering length. As for the 1D
lattice, the heating rates scale as a7/5, indicated by the dashed orange line, which
is consistent with a Thomas-Fermi description of the condensate.

fact that apart from intraband scattering also single-photon scattering processes to
the first excited band which scale with α2 are allowed at this shaking frequency,
which is slightly larger than the bandwidth of the lowest band. This property,
that both intraband and interband scattering processes are available, could serve
as an additional explanation for why the measured heating rates are dramatically
higher compared to the one-dimensional lattice. The data for 40 a0 even shows a
linear scaling with α for driving strengths below α = 0.5. This linear scaling might
indicate that even coherent processes, like Rabi oscillations between two states that
scale linearly with the driving strength, could play a role in the heating of the
system.

We also measured heating rates for circular driving at this shaking frequency
which showed comparable results to the linear case. For similar shaking parameters,
the measured heating rates for circular shaking are slightly higher than for linear
shaking. To keep Fig. 6.3 clear, we only plot one exemplary data set for circular
shaking.

Figure 6.3 (b) shows the measured heating rates versus scattering length. The data
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Figure 6.4: Heating rates for blue-detuned shaking. (a) Effective loss rate
κ̃ versus driving strength α. Compared to the 1D lattice (gray data points) the
loss rates are enhanced in the honeycomb lattice. The measured scaling of κ̃ is
weaker than in a one-dimensional optical lattice. The orange dashed line is a
guide to the eye with a scaling ∝ α2. (b) When plotting the data versus the
interaction between atoms one can see a stronger scaling than expected. The
yellow dashed line indicates a quadratic scaling with the scattering length which
is slightly stronger than the usual a7/5 scaling observed before. This might suggest
that the Thomas-Fermi approximation is not valid anymore in this driving regime.

is consistent with an a7/5 scaling which was already obtained in the one-dimensional
lattice. This scaling indicates that the measured heating rates are indeed interaction
driven and not singe-particle like.

In a next step, we also determine heating rates for shaking frequencies above
the band gap. This driving regime can also be employed to create topological band
structures which was demonstrated in reference [68]. We choose a shaking frequency
of ωh = 2π × 12.5 kHz ≈ 1.3ω10 indicated by the dashed green line in Fig. 6.1. As
for the low-frequency case, the heating rates are dramatically increased compared
to the 1D lattice as can be seen in Fig. 6.4. However, one can also see that the
difference between the heating rates in the two different lattice structures is not as
extreme anymore. Whereas heating rates were around three orders of magnitude
larger for comparable shaking parameters for ωl, the heating rates for the larger
driving frequency ωh are only two orders of magnitude larger than in the 1D case.
This indicates that shaking with frequencies larger than the band gap might be
favorable in the honeycomb lattice.

Like in the the low-frequency case, we find a weaker scaling with α than in the 1D
lattice. The dashed orange line is a guide to the eye with a quadratic scaling indi-
cating that single-photon processes are the dominant heating channel. Figure 6.4 (b)
shows the measured heating rates versus the scattering length of the atoms. One can
again observe a clear increase in the heating rates with scattering length. However,
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the scaling is quadratic as indicated by the dashed yellow line, pointing out that the
Thomas-Fermi approximation might not be valid anymore in this driving regime.

To conclude, the presented data in the honeycomb lattice shows dramatically
increased heating rates compared to the one-dimensional lattice. To give an intuitive
understanding of the measured loss rates let us look at the following example of
an interacting condensate with a scattering length of a = 160 a0. For a shaking
frequency of ωh and after having ramped up the driving strength in 10 ms to its
final value of α ' 0.5, all atoms are lost within just 20 ms. This corresponds to
only 250 shaking cycles. While it might be possible to conduct experiments with
non-interacting atoms, the more interesting regime that combines periodic driving
with strong interactions is, at least with the current setup, not accessible.

6.1.2 Next steps

While it might be possible to study shaking induced topological band structures with
non-interacting particles, the interesting realm that combines strong interactions
with topology will be inaccessible in the current setup. However, our study of heating
rates was conducted in lattice systems that exhibit at least one weakly confined
transverse direction. This weak transverse confinement enables the off-resonant
absorption of energy from the drive, as excess energy can always be transferred in
the transverse direction. By tightly confining atoms in a three-dimensional lattice all
interaction induced heating channels discussed in this thesis should be forbidden or
at least strongly suppressed. It is generally believed that a deep three-dimensional
lattice structure should reduce the observed heating rates for shaking frequencies
away from single-particle resonances as they were discussed in reference [119] and
section 4.3.4. To this end, we started to build an additional lattice that tightly
confines the atoms along the vertical direction. Future studies have to show whether
this additional lattice can effectively reduce the heating rates as desired.

Another possibility to reduce heating rates could be to change to fermionic 40K
which is also present in our experimental setup [89]. As typical densities for degener-
ate Fermi gases are much lower than for condensates, and for a spin-polarized Fermi
gas s-wave scattering events are forbidden by Pauli blocking, the heating channels
discussed in this thesis should be strongly suppressed. Measurements presented
in reference [68] show indeed only a moderate increase in the heating rates in the
shaken lattice compared to the static case.

Despite the many disadvantages heating has on shaken lattice systems, it was
recently shown that shaking induced heating can be utilized to measure the topology
of a system [211]. This technique can be readily implemented in our system.
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6.1.3 Future prospects

The additional lattice along the vertical direction will allow the tuning of its lattice
spacing and will, therefore, facilitate the study of three-dimensional lattice structures
as well as the study of single or coupled two-dimensional lattice systems and the
study of strongly correlated phases. One paradigmatic example of such a strongly
correlated phase is the interaction driven phase transition into a topological Mott
insulator state in the honeycomb lattice [212]. Moreover, loading interacting atoms
into the p-bands of the hexagonal lattice, which exhibit flat bands, enables the study
of interesting and exotic many-body states as, for example, Wigner crystals [213–
215]. In combination with artificial gauge fields, these flat bands become topological
and enable the realization of fractional quantum Hall states [216–218]. These states
exhibit quasiparticles with fractional charges [73] that neither obey bosonic nor
fermionic exchange statistics and are therefore called anyons [219].

Furthermore, by properly tuning the vertical lattice potential, only two layers of it
can be loaded with atoms. By coupling these two planes with each other, the system
resembles that of bilayer graphene which exhibits different properties than mono-
layered graphene [220]. In particular, bilayered graphene exhibits even-denominator
fractional quantum Hall states in the lowest Landau level [221, 222] where at least
one of these states is expected to exhibit non-Abelian topological order [223]. Hence,
this state exhibits non-Abelian anyons which are a key ingredient for the creation
of fault-tolerant topological quantum computers [224].
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Annales scientifiques de l’cole Normale Suprieure 12, 47–88 (1883) (cit. on
p. 21).

[98] J. H. Shirley, “Solution of the Schrödinger Equation with a Hamiltonian
Periodic in Time”, Phys. Rev. 138, B979–B987 (1965) (cit. on pp. 21, 25).

[99] S. H. Autler and C. H. Townes, “Stark Effect in Rapidly Varying Fields”,
Phys. Rev. 100, 703–722 (1955) (cit. on p. 21).

[100] H. Sambe, “Steady States and Quasienergies of a Quantum-Mechanical Sys-
tem in an Oscillating Field”, Phys. Rev. A 7, 2203–2213 (1973) (cit. on p. 22).

134

http://dx.doi.org/10.1103/RevModPhys.71.1
http://dx.doi.org/10.1103/PhysRevA.50.5173
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/PhysRevB.75.155424
http://dx.doi.org/10.1103/PhysRevB.75.155424
http://dx.doi.org/10.1103/RevModPhys.89.011004
http://eudml.org/doc/80895
http://dx.doi.org/10.1103/PhysRev.138.B979
http://dx.doi.org/10.1103/PhysRev.100.703
http://dx.doi.org/10.1103/PhysRevA.7.2203


Bibliography

[101] C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Inter-
actions: Basic Processes and Applications, A Wiley-Interscience publication
(Wiley, 1998) (cit. on p. 24).
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