Pyruvate sensing and transport in Escherichia coli

Ivica Krištofičová

Dissertation der Fakultät für Biologie der Ludwig-Maximilians-Universität München

München 6.11.2017

Erstgutachter: Prof. Dr. Kirsten Jung Zweitgutachter: Prof. Dr. Marc Bramkamp Datum der Abgabe: 6.11.2017 Datum der mündlichen Prüfung: 14.12.2017

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir selbstständig und ohne unerlaubte Hilfe angefertigt wurde. Des Weiteren erkläre ich, dass ich nicht anderweitig ohne Erfolg versucht habe, eine Dissertation einzureichen oder mich der Doktorprüfung zu unterziehen. Die folgende Dissertation liegt weder ganz, noch in wesentlichen Teilen einer anderen Prüfungskommission vor.

München, 6.11.2017

Ivica Kristoficova

Statutory Declaration

I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources. As well I declare, that I have not submitted a dissertation without success and not passed the oral exam. The present dissertation (neither the entire dissertation nor parts) has not been presented to another examination board.

München, 6.11.2017

Ivica Kristoficova

Contents

	Abbreviations						
	Publications and manuscripts originating from this thesis						
	Contributions to publications presented in this thesis						
	Summary	xi					
	Zussamenfassung	xiii					
1	Introduction	15					
	1.1 Two-component systems	16					
	1.2 Signal transduction in histidine kinases	17					
	1.3 Signal transmission by response regulators	19					
	1.4 LytS/LytTR-like two-component systems	20					
	1.5 TCS YehU/YehT in <i>Escherichia coli</i>	21					
	1.6 Transporter YjiY of <i>Escherichia coli</i>	24					
	1.7 Role of the TCS YehU/YehT	25					
	1.8 Aims of this thesis	26					
2	Identification of a high-affinity pyruvate receptor in Escherichia coli 2						
3	BtsT - a novel and specific pyruvate/H $^+$ symporter in Escherichia coli	38					
4	A single-cell view of the BtsSR/YpdAB pyruvate sensing network in						
	Escherichia coli and its biological relevance	71					
5	Concluding discussion	85					
	5.1 Role of the TCS BtsS/BtsR upon carbon starvation	86					
	5.2 Function of the histidine kinase BtsS	88					

5.3	Importance of the pyruvate transporter $BtsT$	90
5.4	Role of the TCS BtsS/BtsR	92
5.5	Conclusion and outlook	94
Refe	rences (Chapter 1. and 4.)	104
Supp	olemental Material - Chapter 2	105
Supp	olemental Material - Chapter 3	111
Supp	olemental Material - Chapter 4	125
Ackr	nowledgements	131
Curr	riculum Vitae	132

Abbreviations

- APC amino acid-polyamine-organocation superfamily
- APEC avian pathogenic Escherichia coli
- ATP adenosine- 5'-triphosphate
- CA catalytic and ATP binding domain
- cAMP cyclic adenosine-5'-monophosphate
- CM cytoplasmic membrane
- CP cytoplasm
- DHp dimerization and histidine phosphotransfer domain
- DRaCALA differential radial capillary action of ligand assay
- GAF protein domain in c<u>G</u>MP specific phosphodiesterases, <u>a</u>denylyl cyclases and <u>F</u>hlA
- HAMP protein domain in <u>h</u>istidine kinases, <u>a</u>denylyl cyclases,<u>m</u>ethyl accepting proteins and phosphatases
- HK histidine kinase
- HTH helix-turn-helix motif
- MFS major facilitator superfamily
- OAA oxaloacetate
- OFA oxalate/formate antiporter family

- $PAS \quad \underline{P}er- \underline{A}rnt- \underline{S}im$
- PP periplasm
- REC receiver domain
- RR response regulator
- TCA tricarboxyacid
- TCS two-component system
- TM transmembrane domain
- UPEC uropathogenic Escherichia coli
- wHTH winged helix-turn-helix motif

Publications and manuscripts originating from this thesis

Chapter 2:

Behr, S., **Kristoficova, I.**, Witting, M., Breland, E. J., Eberly, A. R., Sachs, C., Schmitt-Kopplin, P., Hadjifrangiskou, M., Jung, K. (2017). Identification of a high-affinity pyruvate receptor in *Escherichia coli*. Sci Rep, 7, 1388. http://doi.org/10.1038/s41598-017-01410-2

Chapter 3:

Kristoficova, I., Vilhena, C., Behr, S., Jung, K. (2017). BtsT - a novel and specific pyruvate/H⁺ symporter in *Escherichia coli*. J Bacteriol, in press. http://doi.org/10.1128/JB.00599-17

Chapter 4:

Vilhena, C., Kaganovitch, E., Shin, JY., Grünberger, A., Behr, S., **Kristoficova, I.**, Brameyer, S., Kohlheyer, D., Jung, K. (2017). A single-cell view of the BtsSR/YpdAB pyruvate sensing network in *Escherichia coli* and its biological relevance. J Bacteriol, in press. http://doi.org/10.1128/JB.00536-17

Contributions to publications presented in this thesis

Chapter 2:

Stefan Behr, Michael Wittig, Philippe Schmitt-Kopplin, Maria Hadjifrangiskou and Kirsten Jung designed the experiments. Stefan Behr and Corinna Sachs performed in vivo expression studies. Ivica Kristoficova produced the proteins in membrane vesicles as well as right-sideout vesicles, and conducted protein-ligand interaction studies. Michael Wittig carried out the hydrophilic interaction liquid chromatography for determination of compounds concentration. Erin Breland and Allison R. Eberly performed the murine infections. Stefan Behr, Ivica Kristoficova, Maria Hadjifrangiskou and Kirsten Jung wrote the manuscript.

Chapter 3:

Ivica Kristoficova, Cláudia Vilhena, Stefan Behr and Kirsten Jung designed the experiments. Stefan Behr performed comparative genomic studies. Ivica Kristoficova carried out the transport measurements with intact cells and proteoliposomes. Ivica Kristoficova and Cláudia Vilhena conceptually developed experimental conditions for transport assays. Ivica Kristoficova and Kirsten Jung wrote the manuscript.

Chapter 4:

Cláudia Vilhena, Jae Yen Shin, Stefan Behr, and Kirsten Jung designed the experiments. Cláudia Vilhena performed all the experimental work presented on the publication. Cláudia Vilhena and Jae Yen Shin performed statistical analysis of the data. Ivica Kristoficova drew the model. Ivica Kristoficova and Cláudia Vilhena performed reporter assays for the elucidation of the crosstalk between the systems during the development of the manuscript. Eugen Kaganovitch, Alexander Grünberger and Dietrich Kohlheyer help conceptualizing microfluidic experiments during the development of the manuscript. Sophie Brameyer performed plasmid-based experiments during the development of the manuscript. Cláudia Vilhena, Eugen Kaganovitch, Jae Yen Shin, Alexander Grünberger, Stefan Behr, Ivica Kristoficova, Sophie Brameyer, Dietrich Kohlheyer and Kirsten Jung wrote and corrected the manuscript.

We hereby confirm the above statements:

Ivica Kristoficova

Kirsten Jung

Summary

Two-component systems (TCS) represent a prevalent bacterial mechanism to respond to changing environmental conditions. They comprise an often membrane-integrated histidine kinase (HK) and a soluble response regulator (RR), which regulates target genes expression. The TCS YehU/YehT is found in all commensal and pathogenic representatives within the *Enterobacteriaceae*. In *Escherichia coli* the TCS YehU/YehT contributes to carbon scavenging before entry into stationary phase. The system belongs to the LytS/LytTR family and regulates the expression of yjiY, encoding a putative peptide transporter belonging to the CstA family and APC superfamily of secondary transporters. This thesis focuses on the functional characterization of the components involved in the TCS YehU/YehT.

In the first part, the chemical stimulus perceived by the TCS YehU/YehT has been investigated (Chapter 2). It was found out that activation of the TCS YehU/YehT is dependent on the concomitant nutrient starvation and the extracellular availability of pyruvate. Via hydrophilic liquid chromatography, it was demonstrated the extracellular pyruvate is generated from overflow metabolism. Furthermore, the extracellular binding of pyruvate to YehU in vitro was proved by a differential radial capillary action of ligand assay (DRaCALA) and it indeed showed that YehU is a high affinity sensor for extracellular pyruvate.

The second part of the study focused on the identification of the function of the transporter YjiY (Chapter 3). YjiY is composed of 18 transmembrane helices, and no representative of the CstA family has been functionally characterized thus far. Transport studies with intact cells provided first evidence that YjiY is a specific transporter for pyruvate. Furthermore, reconstitution of the purified YjiY into proteoliposomes revealed that YjiY is a pyruvate/H⁺ symporter.

In the third part, we aimed at understanding the biological relevance of the TCS YehU/YehT (Chapter 4). A single-cell analysis of the yjiY activation demonstrated cell-to-cell variability that is influenced by external pyruvate availability upon nutrient limiting conditions. Depending on the demand of the individual cells, the TCS YehU/YehT as a part of a functional network with a TCS YpdA/YpdB, ensures an optimization of the physiological state of all cells within the population to withstand upcoming metabolic stress.

In summary, this thesis identified the TCS YehU/YehT to be involved in pyruvate sensing

and transport in order to optimize the physiological state within the whole population of *E. coli*. To indicate their role, the HK YehU, the RR YehT and the transporter YjiY were renamed to BtsS, BtsR and BtsT, for <u>Brenztraubensäure</u>, respectively.

Zusammenfassung

Zwei-Komponenten-Systeme (TCS) stellen einen weit verbreiteten bakteriellen Signaltransduktion-mechanismus dar, um auf wechselnde Umweltbedingungen zu reagieren. TCSs bestehen meinst aus einer Membran-integrierten Histidinkinase (HK) und einem löslichen Antwortregulator (response regulator, RR), der die Expression von Zielgenen reguliert. Das TCS YehU/YehT ist in allen kommensalen und pathogenen Vertretern innerhalb der *Enterobacteriaceae* vorhanden. In *Escherichia coli* trägt das TCS YehU/YehT vor dem Eintritt in die stationäre Phase zur Aufnahme von Kohlenstoff verbindungen bei. Das System gehört zur LytS/LytTR-Familie und reguliert die Expression von yjiY, welches einen mutmaßlichen Peptidtransporter der CstA-Familie und der APC-Superfamilie von Sekundärtransportern kodiert. Diese Arbeit konzentriert sich auf die Aufklärung der Funktion der beteiligten Komponenten des TCSs YehU/YehT.

Im ersten Teil wurde der durch das TCS YehU/YehT wahrgenommene chemische Reiz untersucht (Kapitel 2). Es wurde gezeigt, dass die Aktivierung des TCS YehU/YehT gleichzeitig von Nährstoffmangel und der extrazellulären Verfügbarkeit von Pyruvat abhängig ist. Mittels hydrophiler Flüssigkeitschromatographie wurde gezeigt, dass das extrazelluläre Pyruvat ein Produkt des Überflussmetabolismus ist. Darüber hinaus wurde die extrazelluläre Bindung von Pyruvat in vitro durch den Liganden-Assay DRaCALA (differential radial capillary action of ligand assay) nachgewiesen, und es zeigte sich tatsächlich, dass YehU ein hochaffiner Sensor für die extrazelluläre Pyruvatkonzentration ist.

Der zweite Teil der Studie konzentrierte sich auf die Aufklärung der Funktion des Transporters YjiY (Kapitel 3). YjiY besteht aus 18 Transmembran-Helices, und bisher wurde noch kein Vertreter der CstA-Familie funktionell charakterisiert. Transportstudien mit intakten Zellen lieferten erste Hinweise darauf, dass YjiY ein spezifischer Transporter für Pyruvat ist. Darüber hinaus zeigte die Rekonstitution des gereinigten YjiY in Proteoliposomen, dass YjiY ein Pyruvat/H⁺ Symporter ist.

Im dritten Teil wollten wir die biologische Relevanz des TCS YehU/YehT (Kapitel 4) verstehen. Eine Einzelzellanalyse der *yjiY*-Aktivierung zeigte eine Zell-zu-Zell-Variabilität, die von der externen Pyruvat-konzentration beeinflusst wird. Das TCS YehU / YehT sorgt als Teil eines funktionellen Netzwerks mit TCS YpdA/YpdB je nach Bedarf der einzelnen Zellen für eine Optimierung des physiologischen Zustands aller Zellen in der Population, um dem anstehenden Stoffwechselstress standzuhalten.

Zusammenfassend wurde in dieser Arbeit festgestellt, dass TCS YehU/YehT am Detektion und Transport von Pyruvate beteiligt ist, um den physiologischen Zustand innerhalb der gesamten Population von *E. coli* zu optimieren. Um die Funktion der HK YehU, des RRs YehT und des Transporters YjiY im Namen zu veranhern, wurden diese Proteine in BtsS, BtsR und BtsT, für <u>Brenztraubensäure</u>, umbenannt.

Chapter 1

Introduction

Bacterial diversity is driven by an almost unlimited number of different environmental habitats where bacteria experience various fluctuations in physical and chemical parameters. In order to colonize, replicate and survive, bacteria need to respond to e.g. limitations of carbon and nitrogen or pH- and osmostress. Hence, bacteria evolved strategies for life-threatening situations by adjusting their metabolism to match the resource availability.

Prokaryotes are capable of persisting in diverse environments thanks to signal transduction systems (Boor, 2006) and fast cellular response mechanisms, e.g. acid (Haneburger *et al.*, 2012) or heat shock (Schumann, 2012). They as well depend on synchronizing processes, like biofilm formation (Njoroge and Sperandio, 2009), bioluminescence (Anetzberger *et al.*, 2012) and the expression of virulence genes (Rumbaugh *et al.*, 2009).

The simplest and the most predominant form of the bacterial signal transduction represent an one-component system (Ulrich *et al.*, 2005). One single protein contains both input and output domains. Another type of the signaling mechanism is an extracytoplasmic function σ factor with its cognate anti σ factor (Staron *et al.*, 2009). Last but not least, the signal transduction is achieved by **two-component systems** (TCS), which comprise an often membrane-integrated histidine kinase (HK) and a soluble response regulator (RR) (Jung *et al.*, 2012). The HK senses an intra- and/or extracellular stimulus and transfers the information to the cognate RR. Upon activation, the RR mediates the cellular reaction, mainly by adjusting a gene expression profile.

1.1 Two-component systems

TCSs are one of the most widespread transducers of extracellular stimuli in prokaryotes and lower eukaryotes. The number of HK/RR systems differs enormously from species to species, and correlates with the genome size (larger genome encode more TCSs) (Beier and Gross, 2006) as well as the number of different environmental and ecological niches (Alm *et al.*, 2006). Thereby, the number of HK/RR ranges from zero in *Mycoplasma genitalium*, an intracellular parasite living in constant environment, over 36/34 in *Bacillus subtilis* to 136/127 in *Myxococcus xanthus*, an extreme case of a bacterium inhibiting rapidly changing environments (Heermann and Jung, 2010; Capra and Laub, 2012). TCSs occur also in eukaryotes, as one TCS has been found in the yeast *Saccharomyces cerevisiae* and four in the plant *Arabidopsis thaliana* (Barrett and Hoch, 1998). Interestingly, TCSs are as a whole absent in the animal kingdom, as yet no gene encoding a HK or a RR is present in the genome of *Drosophila melanogaster*, *Homo sapiens* or any other animal cell (Wolanin *et al.*, 2002).

In the genome of *Escherichia coli*, the most investigated prokaryote, there are described 30 HKs and 30 RRs (**Fig. 1.1**). Recent years have seen an expansion of research about many of these TCSs however some still await characterization of their stimulus or their function. So far the well-characterized TCSs are e.g. a TCS CheA/CheY in the context of the bacterial chemotaxis (Thakor *et al.*, 2011), a TCS KdpD/KdpE with its importance in keeping potassium balance (Schramke *et al.*, 2017) and a TCS NarQ/NarP with its role in nitrate/nitrite sensing (Gushchin *et al.*, 2017).

Since TCSs are highly homologous between organisms (Grebe and Stock, 1999), the research of various TCSs are of a great importance. And so the basic principles of the signal transduction are providing us with further insights into bacterial virulence and pathogenicity (Gotoh *et al.*, 2010). For example, the TCS AgrA/AgrC is involved in regulation of *Staphylococcus aureus* virulence (Novick, 2003). As far as the future perspectives of TCSs are concerned, metabolic engineering would like to use TCSs to develop novel genetic networks (Salis *et al.*, 2009) and pharmacology to produce novel antimicrobial agents (Gotoh *et al.*, 2010).

Figure 1.1: An overview of all two-component systems in *E. coli*. The picture depicts all known histidine kinases, their cognate response regulators, activating stimuli and generated responses. Made by Kristoficova and Vilhena, 2017.

1.2 Signal transduction in histidine kinases

The major role of HKs is to recognize, integrate and amplify the external signals deriving from an environmental or cellular cue. Upon stimulus perception, a HK catalyzes an ATP-dependent autophosphorylation on a conserved histidine residue. Then, the HK transfers the phosphoryl group from His~P to a conserved aspartate residue of the RR.

HKs are prototypically composed of two structurally and functionally distinct parts: a N-terminal sensor domain and a conserved C-terminal transmitter domain (**Fig. 1.2**) (Grebe and Stock, 1999). The N-terminal sensor or so called the input domain is a very diverse part consisting of up to 13 transmembrane domains (TM) (Galperin, 2005). According to the site of the signal perception, HKs are divided into three major categories: (i) periplasmic sensing HKs in which the stimulus is perceived by the large extracellular loop flanked by two TMs, e.g. a C4 dicarboxylate sensor DcuS; (ii) transmembrane sensing HKs that are

usually composed of six TMs recognizing either a membrane interface (DesK) or create a hydrophobic pocket for signal binding (AgrC); (iii) cytoplasmic sensing HKs, both soluble and membrane integrated, responding to an intracellular signal (Krell *et al.*, 2010), (Mascher, 2014).

Figure 1.2: Signal transduction by two-component systems. Histidine kinase (HK) perceives the extra- or intracellular stimulus that results in the autophosphorylation of a conserved histidine residue. The phosphoryl group is then transferred to a conserved aspartate residue of the response regulator (RR) which in turn mediates the cellular response. The picture summarizes the domain architecture of HK (sensor and transmitter (DHp and CA) domain) and RR (receiver (REC) and effector domain). Conserved amino residues are written in an one-letter-code. Figure adopted and modified from (Gao and Stock, 2009).

The C-terminal transmitter domain is composed of a <u>dimerization and <u>histidine phospho</u>transfer domain (DHp, PFAM: HisKA) and the <u>catalytic and ATP</u> binding domain (CA, PFAM:HATPase_c) that are connected by a linker region (**Fig. 1.2**). The DHp domain is usually the site of homodimerization and harbors a conserved histidine residue that represents a phosphorylation site. The CA domain has a catalytic activity to autophosphorylate the HK using the γ -phosphate of ATP. Additionally, CA contains the highly conserved N, D, F and G boxes with corresponding amino acid residues, that are essential in ATP binding, catalysis and phosphotransfer (Stewart, 2010) (Wolanin *et al.*, 2002).</u>

According to all six different amino acid motifs (H, X, N, D, F and G), the histidine kinases can be grouped in 11 families based on a comparative sequence analysis (Grebe and Stock, 1999). Some of these families contain a very distinct sequence similarity that clearly separates them from all other HKs, e.g. chemotaxis kinases. Other families do not show such clear boundaries. Interestingly, the kinase subfamilies tend to group with regulator subfamilies; suggesting an independent co-evolution of different classes of His-Asp phosphorelay systems (Grebe and Stock, 1999).

A signal conversion in HKs is sometimes also achieved by additional domains, like HAMP, PAS, S-helices and GAF. They are located at the C-terminal part directly after the transmembrane region (Mascher, 2014). HAMP domain (present in <u>h</u>istidine kinases, <u>a</u>denylyl cyclases, <u>m</u>ethyl accepting proteins and <u>p</u>hosphatases) mediates the conversion of an extracellular stimulus into the cytoplasmic response by a conformational change (Barakat *et al.*, 2011). PAS (first discovered in proteins <u>Per- Arnt- Sim</u>) and GAF (present in c<u>G</u>MP specific phosphodiesterases, <u>a</u>denylyl cyclases and <u>Fh1A</u> proteins) domains are additional sensor and interaction interfaces (Henry and Crosson, 2011) (Mascher, 2014). Last but not least, Shelices (from signaling helix) are preventing a constitutive activation of downstream signaling domains (Anantharaman *et al.*, 2006).

1.3 Signal transmission by response regulators

The major role of a RR is to transfer the signal received by the HK towards a downstream target, which is in the most cases a promoter sequence of a gene. Thereby, the response regulators usually acts as transcription factors with a DNA binding capability (Mizuno, 1997).

RR harbors two domains, a highly conserved receiver domain (REC) at the N-terminus and a variable effector domain at the C-terminus (**Fig. 1.2**). The REC typically contains the conserved aspartate residue able to acquire the phosphoryl group from the His~P of the HK. The Asp~P mediates a conformational change that subsequently effects the activity of the effector domain. In general, effector domains are very diverse. Most of them regulate the transcription of the genes (25 of 32 RR in *E. coli*) and these can be divided into three families represented by OmpR, NarL and NtrC (Stock *et al.*, 2000) (Mizuno, 1997). The OmpR family is the most abundant one with 14 members in *E. coli* that use a winged helixturn-helix (wHTH) motif to bind DNA. The NarL family consisting of 7 members harbors a typical helix-turn-helix (HTH) motif. The third family, NtrC, has 4 members and its effector part is composed of both an ATPase domain and HTH motif.

1.4 LytS/LytTR-like two-component systems

A detailed understanding of the components, layout and mechanism of bacteria's TCS provides us with an opportunity for bioengineering or disturbing the bacterial pathogenicity. The main advantages of TCSs are a total absence in the animal kingdom, a relatively simple layout and a high degree of homology between organisms. We can therefore focus on constructing novel signaling circuits, e.g to improve production yields or stop the production of virulence factors.

In agreement with this, the search for systems regulating toxin production in several bacterial pathogens started with a genome sequencing. Soon after, an unusual response regulator has been found in *Staphylococcus aureus* and some other pathogens. The RR contains a non-HTH DNA binding domain (rather than HTH or wHTH motif typical in RRs) named as **LytTR** after RR LytT in *B. subtilis* and RR LytR in *S. aureus* (Nikolskaya and Galperin, 2002).

In several bacterial genomes, the gene coding for the LytTR-like RR is in an operon with a gene coding for LytS-like HK (Anantharaman and Aravind, 2003). These HKs harbor a typical 5 TM Lyt domain (called also Lyts-Yhck, PFAM: 5MTR-LYT), with the N-terminal helix located in a periplasm. In addition, the 5TM domain is combined with the C-terminal signaling domain, which very often is GAF. According to a bacterial sequence alignment, LytS-like HKs are part of the HPK8 family **Table 1.1**. They contain the conserved histidine residue in their H-box, however proline is found preceding the H-box rather to be 5 residues downstream of the box. The first residue after the H-box is phenylalanine instead of an acidic residue. In addition, N- and F- boxes are not conserved (Grebe and Stock, 1999).

HK	Organism	Stimulus	RR	Reference
AlgZ	Pseudomonas aeruginosa	unknown	AlgR	(Yu <i>et al.</i> , 1997)
				(Okkotsu <i>et al.</i> , 2014)
LytS	Staphylococcus aureus,	unknown	LytT	(Brunskill and Bayles, 1996)
	Bacillus subtilis			
YehU	Escherichia coli	Peptides or amino acids	YehT	(Kraxenberger <i>et al.</i> , 2012)
YesM	Bacillus subtilis	unknown	YesN	(Fabret <i>et al.</i> , 1994)
YpdA	Escherichia coli	Extracellular pyruvate	YpdB	(Fried <i>et al.</i> , 2013)
YwpD	Bacillus subtilis	unknown		

Table 1.1: Selection of LytS-containing histidine kinases (HKs)

Actually, only around 2.7% proteins of all prokaryotic RRs contain the LytTR motif (Galperin, 2006). Even though this represents just around 1 to 2 proteins per genome, these RRs regulate virulence factors like bacteriocins, fimbriae, toxins and extracellular polysaccharides (**Table 1.2**).

RR	Organism	Regulated process	Reference
AlgR	Pseudomonas aeruginosa	Alginate biosynthesis	(Deretic <i>et al.</i> , 1989)
AgrA	$Staphylococcus \ aureus$	Production of toxins and hemolysins	(Novick <i>et al.</i> , 1995)
CbaR	$Carnobacterium\ piscicola$	Carnobacteriocin A production	(Quadri <i>et al.</i> , 1997)
ComE	$Streptococcus\ pneumoniae$	Competence for genetic transformation	(Pestova <i>et al.</i> , 1996)
EntR	Enterococcus faecium	Enterocin A production	(O'Keeffe <i>et al.</i> , 1999)
FasA	Streptococcus pyogenes	Fibronectin-binding adhesin produc-	(Kreikemeyer <i>et al.</i> , 2001)
		tion	
LytR	$Staphylococcus \ aureus$	Autolysis	(Brunskill and Bayles, 1996)
MrkE	Klebsiella pneumoniae	Expression of type 3 fimbriae	(Allen <i>et al.</i> , 1991)
PlnC	$Lactobacillus\ plantarum$	Plantaricin A production	(Diep <i>et al.</i> , 1996)
SppR	Lactobacillus sakei	Sakacin P production	(Huhne <i>et al.</i> , 1996)
VirR	Clostridium perfringens	Production of perfringolysin O, collage-	(Shimizu et al., 1994)
		nase, hemagglutinin	
YpdB	Escherichia coli	Carbon starvation control	(Behr <i>et al.</i> , 2016)

Table 1.2: Selection of characterized LytTR-containing response regulators (RRs)

All in all, LytS/LytTR TCSs play a significant role in bacterial virulence and represent a good target to decrease bacterial infections. For example, in *S. aureus* a modification of an autoinducing peptide (a stimulus for HK AgrC) resulted in inhibition of the LytTR-like RR AgrA virulent response (Lyon *et al.*, 2000). Unfortunately, still several LytS/LytTR TCSs are not well characterized and their perceived stimuli by HK are unknown.

1.5 TCS YehU/YehT in Escherichia coli

In Gram-negative bacteria, little is known about the LytS/LytTR-like two-component system YehU/YehT in *Escherichia coli*.

The yehU and yehT genes are clustered in an operon localized at 47.638 centisomes in E. coli MG1655 genome (Fig. 1.3A) (Kraxenberger et al., 2012). The genes are 4 bp overlapping. Upstream of the coding region of yehU is mlrA, a regulator responsible of a curli production in E. coli (Brown et al., 2001), yohO coding for a small unidentified protein (Hemm et al., 2008) and an operon of osmF-yehYXW encoding a putative ABC transporter (Checroun and Gutierrez, 2004). Downstream of yehT is yehS, yehR, yehQ, yehP, yehM of unknown function and yehL which defines a MoxR AAA⁺ family (Snider *et al.*, 2006).

Figure 1.3: The YehU/YehT system in *E. coli.* (A) Chromosomal region between 47.48 and 47.77 centisomes around *yehUT operon* in *E. coli* MG1655. Adopted and modified from (Kraxenberger *et al.*, 2012). (B) Domain organization of YehU and YehT. HK YehU contains a 5TM Lyt domain, GAF domain and transmitter domain with conserved boxes (H, N, D*, F, G). D* box of YehU is not complete. YehT is composed of a receiver domain with the conserved aspartate residue and a LytTR effector domain. CM, cytoplasmic domain. The figure was provided by Stefan Behr, adopted and modified.

The HK YehU (561 amino acids, 62.1 kDa) contains the 5TM Lyt-like sensor domain, transmitter domain and an additional GAF domain (**Fig. 1.3B**). The bioinformatic analysis has revealed an additional transmembrane domain at the N-terminus. The RR YehT (289 amino acids, 27.4 kDa) contains a CheY-like receiver domain with the conserved aspartate residue at position 54 and LytTR effector domain (**Fig. 1.3B**). Up to now, the autophosphorylation of HK YehU or the transfer of the phosphoryl group to YehT was not experimentally detected (Yamamoto *et al.*, 2005).

The YehT RR activates the expression of yjiY, which is the only target regulated by the YehU/YehT TCS (Kraxenberger *et al.*, 2012). In *E. coli* MG1655 genome, yjiY is located at 98.87 centisomes disconnected from the yehUT operon. Interestingly, in other bacterial genomes (e.g. *Shewanella*, *Clostridium* and *Vibrio* species), the yjiY is colocalized with the yehUT operon. It was determined that YehT binds with the K_d of 75 nM to the yjiY promoter

within positions -112 and -13 upstream of the transcriptional start site of yjiY. Specifically, the binding occurs at two repeats of the sequence motif ACC(G/A)CT(C/T)A separated by a 13 bp spacer in the promoter of yjiY. The third repeat motif of the same sequence probably stabilize the YehT-DNA complex (Kraxenberger *et al.*, 2012).

In vivo reporter studies revealed that the activation yjiY promoter occurs at the midto late- exponential phase in amino acid rich media, such as LB, peptone and casamino acids (**Fig. 1.4**). Furthermore, the yjiY promoter activation was observed in minimal media containing amino acids, acetate, glucuronic acid, gluconic acid or pyruvate as a carbon source (Kraxenberger *et al.*, 2012). At the same time as activation of the yjiY promoter is observed (OD₆₀₀ = 0.6), the cells initiate production of yjiY mRNAs (Behr *et al.*, 2014).

Figure 1.4: In vivo reporter assay of yjiY promoter activation. E. coli MG1655 (•) and E. coli MG1655 $\Delta yehUT$ (•) transformed with pBBR yjiY-lux were grown in LB, and their growth and luminescence were recorded over time. Figure was adopted from (Kraxenberger *et al.*, 2012).

The expression of yjiY requires cAMP and cAMP receptor protein (CRP). The CRP consensus sequence is upstream of the yjiY promoter. The mutation of this motif or crp deletion reduced the induction of yjiY (Kraxenberger *et al.*, 2012). Additionally, the carbon storage regulator A (CsrA), a protein blocking the ribosome binding to mRNA or influencing mRNA stability, is downregulating the expression of yjiY at the posttranscriptional level (Kraxenberger *et al.*, 2012). The levels of yjiY mRNA are dependent also on the 50S ribosomal protein L4 and the endonuclease RNase E (Singh *et al.*, 2009). Interaction between L4 protein and RNase E on *E. coli* transcripts leads to an increase of yjiY mRNA.

1.6 Transporter YjiY of Escherichia coli

The target gene of the TCS YehU/YehT yjiY codes for a putative transporter with 16 to 18 predicted TMs of yet unknown function.

A bacterial membrane is highly permeable for small molecules (e.g. water, N_2 , O_2) and apolar solutes (e.g. glycerol). However, transporters in *E. coli* play an important role in metabolism due to impermeability of the bacterial membrane for polar solutes and charged molecules (e.g. ions and amino acids (Krämer, 1999)). They maintain balance between availability (influx) and loss (efflux) of the substrates. An energy-independent transport, a facilitated diffusion, is catalyzed by channels. Active transport is driven by cell energy and there are three types: primary (ATP), secondary (ions/solute gradients) and group translocation systems (phosphoryl group).

YjiY belongs to the amino acid-polyamine-organocation (APC) superfamily of secondary transporters (Wong *et al.*, 2012; Vastermark *et al.*, 2014). APC contains 18 families and most of their members exhibit a common 5+5 TMs topology (**Table 1.3**).

Table 1.3:	Established	families in	the APC	superfamily.	Adopted from	(Vastermark	et al.,
2014).							

TC#	Family name	Abbreviation	Topology
2.A.3	Amino Acid-Polyamine-Organocation	APC	5+5+2 TMs
2.A.15	Betaine/Carnitine/Choline Transporter	BCCT	2+5+5 TMs
2.A.18	Amino Acid/Auxin Permease	AAAP	$11 \mathrm{~TMs}$
2.A.21	Solute:Sodium Symporter	SSS	5+5+4 TMs
2.A.22	Neurotransmitter:Sodium Symporter	NSS	5+5+2 TMs
2.A.25	Alanine or Glycine:Cation Symporter	AGCS	$11 \mathrm{~TMs}$
2.A.26	Branched Chain Amino Acid:Cation Symporter	LIVCS	5+5+2 TMs
2.A.30	Cation-Chloride Cotransporter	CCC	$12 \mathrm{TMs}$
2.A.31	Anion Exchanger	AE	$7+7 \mathrm{~TMs}$
2.A.39	Nucleobase:Cation Symporter-1	NCS1	5+5+2 TMs
2.A.40	Nucleobase:Cation Symporter-2	NCS2	$7+7 \mathrm{~TMs}$
2.A.42	Hydroxy/Aromatic Amino Acid Permease	HAAAP	$11 \mathrm{~TMs}$
2.A.46	Benzoate:H ⁺ Symporter	BenE	$7+7 \mathrm{~TMs}$
2.A.53	Sulfate Permease	SulP	8-13 TMs
2.A.55	Metal Ion (Mn^{2+} -iron) Transporter	NRAMP	5+5+2 TMs
2.A.72	K ⁺ Uptake Permease	KUP	5+5+2 TMs
2.A.114	Peptide Transporter Carbon Starvation CstA	CstA	13 - 18 TMs
2.A.120	Putative Amino Acid Permease	PAAP	5+5 TMs

APC is the second largest family of secondary transporters, being smaller only than the Major Facilitator Superfamily (MFS). Functionally characterized transporters of APC superfamily transport amino acids, peptides, inorganic anions or cations (Vastermark *et al.*, 2014).

Furthermore, YjiY belongs to the Peptide Transporter Carbon Starvation CstA family, consisting of proteins of various sizes and topologies. None of them has been biochemically analyzed. Characterized member of this family, the protein CstA, is postulated to be a peptide transporter. The evidence is derived from an observed lower growth rate on peptides of *cstA opp* double mutant compared to *opp* mutant (Schultz and Matin, 1991). In *Campylobacter jejuni*, the *cstA* mutant had a lower growth rate on peptides as nitrogen sources (Rasmussen *et al.*, 2013). In *Salmonella enterica*, the function as a peptide transporter is proposed to both CstA and YjiY (Garai *et al.*, 2015).

1.7 Role of the TCS YehU/YehT

It is worth to mention, that the TCS YehU/YehT is functionally interconnected with the LytS/LytTR-like TCS named YpdA/YpdB (Behr *et al.*, 2014). Both HKs and RRs share the same arrangement of structural domains and their amino acid sequences are over 30% identical (Behr *et al.*, 2017). YpdA/YpdB system responds to media supplemented with pyruvate (Fried *et al.*, 2013). The only target gene of the YpdA/YpdB TCS is *yhjX*, encoding the transporter YhjX, belonging to the the oxalate/formate antiporter (OFA) family and MFS. However, the function of YhjX is not yet elucidated.

It was proposed that these two TCSs, YehU/YehT and YpdA/YpdB, coordinate carbon scavenging and adjustments of bacterial metabolism in preparation for stationary phase (Behr *et al.*, 2014). The transporters YjiY and YhjX replenish carbon resources in order to circumvent the nutrient limitation, e.g. by taking up peptides/amino acids or other carbon sources from available resources. In order to get further insights in the role of both TCSs in *E. coli*, the stimuli of both histidine kinases and function of the regulated transporters need to be addressed. This thesis focuses primarily on the function of the TCS YehU/YehT and its target protein YjiY.

1.8 Aims of this thesis

Two-component systems in prokaryotes and lower eukaryotes have been investigated over 30 years. At the moment, many members in bacterial genomes have been identified, and their molecular details are being described. Despite all the new information, there is still a gap to be filled up. This project focuses on LytS/LytTR-like two component-system YehU/YehT in *E. coli*. The aim is to unravel the function of the TCS YehU/YehT and its target protein YjiY by *in vivo* and *in vitro* studies.

i Characterization of stimulus perceived by HK YehU

Based on the previous *in vivo* studies, it is suggested that YehU is an amino acid sensor. However, it is unclear, if the HK works as a direct sensor, and if so, which ligand is binding to it. After elucidating the stimulus identity by additional *in vivo* studies, a ligand binding assay will be carried out.

ii Identification of the substrate transported by the CstA-like transporter YjiY

The YehU/YehT system controls expression of yjiY, which codes for a transporter belonging to CstA family and APC superfamily of secondary transporters. It is proposed that YjiY is a peptide transporter, however without further characterization. Here, the substrate will be identified and then transport assays will be performed to determine the substrate specificity and mode of energization.

iii Investigation of the biological relevance of the TCS YehU/YehT

The promoter of the target gene yjiY will be analyzed at the single-cell level to obtain further insights into the biological significance of the TCS YehU/YehT. Then the different cellular fates (ranging from growing to dormant persister cells) will be analyzed.

Chapter 2

Identification of a high-affinity pyruvate receptor in Escherichia coli

Behr, S., Kristoficova, I., Witting, M., Breland, E. J., Eberly, A. R., Sachs, C., Schmitt-Kopplin, P., Hadjifrangiskou, M., Jung, K. Sci Rep, 2017, 7:1388 http://doi.org/10.1038/s41598-017-01410-2

SCIENTIFIC REPORTS

OPEN

Received: 25 August 2016 Accepted: 28 March 2017 Published online: 03 May 2017

Identification of a High-Affinity Pyruvate Receptor in *Escherichia coli*

Stefan Behr¹, Ivica Kristoficova¹, Michael Witting², Erin J. Breland³, Allison R. Eberly⁴, Corinna Sachs¹, Philippe Schmitt-Kopplin², Maria Hadjifrangiskou^{104,5} & Kirsten Jung¹

Two-component systems are crucial for signal perception and modulation of bacterial behavior. Nevertheless, to date, very few ligands have been identified that directly interact with histidine kinases. The histidine kinase/response regulator system YehU/YehT of *Escherichia coli* is part of a nutrientsensing network. Here we demonstrate that this system senses the onset of nutrient limitation in amino acid rich media and responds to extracellular pyruvate. Binding of radiolabeled pyruvate was found for full-length YehU in right-side-out membrane vesicles as well as for a truncated, membraneintegrated variant, confirming that YehU is a high-affinity receptor for extracellular pyruvate. Therefore we propose to rename YehU/YehT as BtsS/BtsR, after "Brenztraubensäure", the name given to pyruvic acid when it was first synthesized. The function of BtsS/BtsR was also assessed in a clinically relevant uropathogenic *E. coli* strain. Quantitative transcriptional analysis revealed BtsS/BtsR importance during acute and chronic urinary-tract infections.

Exponential growth of bacteria in complex, nutrient-rich media usually ends when at least one nutrient has been used up. We recently reported that the histidine kinase/response regulator system YehU/YehT of *E. coli*, belongs to the LytS/LytTR family and presumably plays a role in tuning bacterial exploitation of available carbon sources¹. Strikingly, the YehU/YehT system is the most widespread representative of its family found in γ -proteobacteria – and many LytS/LytTR-type systems regulate crucial host-specific mechanisms during infection of human or plant hosts by members of this bacterial clade². This system is conserved in non-pathogenic as well as pathogenic *E. coli*.

Our previous studies on YehU/YehT in *E. coli* identified yjiY as its sole target gene³ (Fig. 1). This gene codes for the putative carbon starvation transporter YjiY, which is homologous (61.1% identity) to CstA⁴ and was found to be expressed in cells that were grown in complex media containing a high content of amino acids, such as LB or CAA (casamino acids), as well as in minimal medium supplemented with certain carbon sources, such as gluconic or glucuronic acid. Studies in *E. coli* revealed that YehT-mediated yjiY transcription is also regulated by the cAMP/CRP complex³ (Fig. 1), and down-regulated in the presence of energetically favorable carbon sources like glucose. Furthermore, YjiY is subject to translational control via the Csr regulatory circuit⁵ (Fig. 1), which synchronizes the output of *E. coli* central carbohydrate metabolism (glycolysis versus gluconeogenesis) with YjiY production^{1,6}. Finally, yjiY transcription is under positive feedback regulation by a second two-component system, YpdA/YpdB, and its gene product YhjX¹ (Fig. 1).

Here, we performed a comprehensive *in vivo* characterization of *yjiY* expression in order to identify the primary stimulus sensed by the histidine kinase YehU. We found that the YehU/YehT system responds to depletion of nutrients specifically serine and the concomitant presence of extracellular pyruvate. Biochemical studies revealed that pyruvate binds specifically to the extracellular side of the membrane-spanning domain of YehU. We therefore renamed the system BtsS/BtsR, for "<u>B</u>renz<u>t</u>rauben<u>s</u>äure", the original name given by Jöns Jakob

¹Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152, Martinsried, Germany. ²Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764, Neuherberg, Germany. ³Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. ⁴Departments of Pathology, Microbiology & Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA. ⁵Departments of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Correspondence and requests for materials should be addressed to K.J. (email: jung@Imu.de)

Figure 1. Schematic depiction of the BtsS/BtsR (YehU/YehT) system in *Escherichia coli*. The scheme summarizes the regulatory network associated with signal transduction by the BtsS/BtsR two-component system, the influence of two-component system YpdA/YpdB and the global regulators CsrA and CRP. Membrane proteins are integrated in the cytoplasmic membrane (CM). Activating (\uparrow) and inhibitory (\bot) effects are indicated. See text for details.

Berzelius to the compound when he first synthesized pyruvic acid in 1835⁷. Finally, we found that the BtsS/BtsR system of uropathogenic *E. coli* may contribute to acute urinary tract infection.

Results

Elucidation of the stimulus for BtsS/BtsR (YehU/YehT) by in vivo yjiY expression analyses. It was previously shown that cultivation of E. coli in amino acid-rich media leads to activation of the BtsS/BtsR system and transient expression of the target gene yjiY in the late-exponential growth phase³. To identify a potential quorum sensing-like molecule, we used a combination of chemical fractionation of the medium and measurements of reporter strain activity. For this purpose, we cultivated *E. coli* MG1655 $\Delta y j i Y / pBBR y j i Y - lux$ in M9-minimal medium with gluconic acid as sole carbon source³. Shortly before the induction of *yjiY* we removed the cells and fractionated the supernatant by high pressure liquid chromatography. All fractions were analyzed for their potential to induce yjiY using reporter strain E. coli KX1468 pBBR yjiY-lux grown in minimal medium and succinate as C-source. After several rounds of fractionation/freeze-drying we found that the fraction with the highest induction potential contained a high concentration of gluconic acid, the initial carbon source (data not shown). This result ruled out the possibility that E. coli produces and senses a quorum sensing-like molecule. Then we quantified yjiY expression as a function of nutrient levels. For this purpose, we cultivated the reporter strain E. coli MG1655/pBBR yjiY-lux in LB medium with decreasing amounts of nutrients (1.0x, 0.5x, 0.4x, 0.3x LB, 0.2x LB and 0.1x LB), keeping the osmolarity of the medium constant. The growth rates (μ) of *E. coli* cells decreased with the dilution of LB medium, and exponential growth ceased at different time points (Table S1). Strikingly, expression of *yjiY* always began shortly before the onset of stationary phase (Fig. S1), and *E. coli* cells grown in 0.1x LB did not express yjiY. These results suggested that BtsS/BtsR somehow responds to nutrient limitation. We reasoned that supplying the relevant nutrient(s) in excess should suppress or postpone $y_{ji}Y$ induction. Therefore, the reporter strain was grown in LB media supplemented with an excess of each individual L-amino acid (Fig. 2A). Particularly, the addition of L-serine delayed the expression of yjiY by almost two doubling periods (Fig. 2A). Subsequently, we tested different concentrations of L-serine in the reporter assay and found a concentration-dependent delay in *yjiY* expression, accompanied by a decrease in peak expression levels (Fig. 2B). The addition of serine does not influence the growth of *E. coli* and does not delay the onset of stationary phase (Fig. 2C). Although L-serine is not a preferred carbon source for E. coli and high external concentrations are actually toxic to the organism, it is the first amino acid to be consumed when mixtures of amino acids are available⁸. These data suggest that BtsS/BtsR responds to depletion of nutrients, specifically serine.

Changes in extracellular serine and pyruvate concentrations during growth of *E. coli*. When *E. coli* is grown in amino acid-rich media, 50.7% of L-serine is converted directly to pyruvate, whereas 36.3% is used for glycine synthesis, 6.5% for cell biomass, and the remainder for other metabolites⁹. Its central role in pyruvate supply provides one explanation for the importance of L-serine in growing *E. coli*¹⁰. We therefore monitored the changes in extracellular serine and pyruvate concentrations during growth in LB medium, and found that extracellular levels of serine decreased at a constant rate (Fig. 3). The starting concentration of serine in the medium (approximately 200 μ M) was completely exhausted after 120 min of growth at the late-exponential growth phase. At the same time, the abundance of extracellular pyruvate peaked (approx. 500 μ M) and shortly after *yjiY* expression reached its maximum level (Fig. 3). It was previously shown that the external pyruvate derives from overflow

Figure 2. Effects of an excess of individual amino acids on the expression of *yjiY*. (**A**) *E. coli* MG1655/pBBR *yjiY-lux* was grown in LB medium supplemented with one of the indicated amino acids (at 20 mM), and growth and luminescence were monitored over time. Maximal *yjiY* expression values are depicted. The open circle provides a benchmark and indicates *yjiY* expression in *E. coli* grown in LB medium. (**B**) Expression of *yjiY* in LB (dotted line) supplemented with increasing L-serine concentrations. (**C**) Corresponding *E. coli* growth curves in LB media supplemented with increasing L-serine concentrations. Experiments were performed at least three times (standard deviation <10%), and results of a representative experiment are shown.

metabolism in *E. coli* during growth in amino acid-rich media¹¹, which was confirmed by monitoring the intracellular concentrations of serine and pyruvate (Fig. S2).

These data reveal that induction of BtsS-dependent *yjiY* expression coincides with the decline of serine in the medium and an extracellular accumulation of pyruvate (Fig. 3).

Extracellular pyruvate triggers *yjiY* **expression under nutrient limitation.** In the next experiment we tested the influence of serine, pyruvate and related metabolites on yjiY expression in E. coli cells growing in low-nutrient environment. Since E. coli harbors a second two-component system, YpdA/YpdB, which responds to high concentrations of extracellular pyruvate (the threshold concentration that leads to induction was determined to be $600\,\mu$ M) and positively regulates the BtsS/BtsR system¹¹, we modified our reporter strain by deleting yhjX, which is sufficient to interrupt the feedback loop¹. The resulting strain was then cultivated in 10-fold diluted (0.1x) LB medium for 1 h. At this time point, cells do not induce expression of $y_{ji}Y$, but experience soon carbon limitation (Fig. 4A, Fig. S1). However, expression of *yjiY* was rapidly triggered upon addition of pyruvate, and the induction level increased linearly with increasing pyruvate concentration (Fig. 4A). Addition of L-serine also induced yjiY expression, but only after a 20-min delay (Fig. 4B). Under these conditions the growth of E. coli did not differ significantly by addition of pyruvate or serine (Fig. S3). Only supplementation of 10 mM serine prolonged the exponential growth phase. Moreover, higher serine concentrations delayed yjiY expression for even longer, and decreased the level of induction attained (Fig. 4B). The threshold concentration of pyruvate required for detectable yjiY expression was 10 µM, and that for L-serine 50 µM. None of the other tested compounds (each of the other 19 amino acids, phosphoenolpyruvate, lactate, oxaloacetate, α -ketoglutarate, valeriate, propionate, acetate, malate) were able to induce yjiY in this context. These results suggest that extracellular pyruvate acts as a direct stimulus for BtsS/BtsR-mediated yjiY expression, whereas delayed yjiY induction in response to L-serine

Figure 3. Determination of changes in extracellular concentrations of serine and pyruvate during growth of *E. coli*. *E. coli* MG1655/pBBR *yjiY-lux* was cultivated in LB medium, and growth (OD_{600}) and luminescence were monitored. At the times indicated, cells were harvested, and serine and pyruvate levels were quantified by hydrophilic interaction liquid chromatography. All experiments were performed in triplicate, and the error bars indicate the standard deviation of the means. The growth phases of *E. coli* are marked as following: lag phase (white), exponential growth (light grey) and stationary phase (dark grey).

Figure 4. Stimulus-dependent *yjiY* expression under nutrient-limiting conditions. *E. coli* MG1655 mutant $\Delta yhjX$ harboring pBBR *yjiY-lux* was cultivated in 0.1x LB medium to establish low nutrient conditions. After 1 h (time point 0), the indicated concentration of pyruvate (**A**), or L-serine (**B**), or the equivalent volume of water was added. Experiments were performed at least three times (standard deviation <10%), and results of a representative experiment are shown.

may depend on uptake of the amino acid, its conversion to pyruvate and excretion of the pyruvate into the culture medium.

The sensor histidine kinase BtsS binds pyruvate with high affinity. BtsS cannot be autophosphorylated, possibly owing to a defective ATP-binding site within the G1 box³ (data not shown). Therefore, we used the method of differential radial capillary action of ligand assays (DRaCALA)¹² to determine whether BtsS physically interacts with pyruvate as ligand. The technique is based on the ability of proteins that have been immobilized on a nitrocellulose membrane to bind a radiolabeled ligand, whereas unbound ligands undergo radial diffusion. DRaCALA allows rapid detection of both the total ligand and the ligand sequestered by proteins. The fraction of ligand bound to the protein, defined as F_B , is calculated from the signal intensity of the area with protein (inner circle) and the total signal intensity of the area (outer circle)¹². For the DRaCALA we used unsealed membrane vesicles prepared from *E. coli* cells overproducing BtsS (MV BtsS) and calculated an F_B value of >0.15 (Fig. 5A). Control membrane vesicles (MV, lacking overproduced BtsS) were used and the low value of F_B (0.05) reflected only minor, non-specific binding. Therefore this assay was judged to be suitable for membrane vesicles, and it clearly indicated binding of radiolabeled pyruvate to BtsS. We also tested ³H-serine binding to BtsS in membrane vesicles using the DRaCALA technique. However, we only observed unspecific binding (data not shown).

Figure 5. Analysis of the interaction of BtsS with selected ligands by DRaCALA. (**A**) A mixture of membrane vesicles (MV) or right-side-out vesicles (RSO) enriched with the corresponding proteins (indicated by graphical representations) and radiolabeled ¹⁴C pyruvate (5μ M) is dropped onto a nitrocellulose membrane, and ligand migration via capillary action is analyzed. (**B**) Competition assays. Binding of radiolabeled pyruvate (5μ M) to BtsS in MVs was analyzed in the presence of various unlabeled competitors (each 50 mM). NC, no competitor. (**C**) Relative efficiency of competition by various carboxylic acids. Binding of radiolabeled pyruvate (5μ M) to BtsS in MVs was analyzed in the presence of various carboxylic acids (each 50 mM). The efficiency of competition by various carboxylic acids (each 50 mM). The efficiency of competition by cold pyruvate was set to 1.00, and the effect of the indicated compounds was calculated accordingly. (**D**) Determination of the dissociation constant (K_d) for pyruvate to BtsS using DRaCALA. For each reaction radiolabeled pyruvate was used at 5μ M. Normalized F_B values [$F_B = (F_{B(NC)} - F_{B(PYT)})/F_{B(NC)}$, see Methods for details] were plotted as function of the pyruvate concentration. The best-fit line was determined by nonlinear regression using the equation $y = B_{max} * x/(K_d + x)$.

In addition, we tested MVs harboring a membrane-integrated truncated variant of BtsS (MV BtsS-TM) lacking its soluble domains, and found that this truncated sensor also binds pyruvate ($F_B > 0.15$). Furthermore, we prepared sealed right-side-out vesicles (RSO BtsS), in which membrane proteins retain their native orientation¹³. BtsS in these vesicles also showed pyruvate binding, and no significant change in binding was observed when these vesicles were fragmented by sonication and had a random orientation (sonicated RSO BtsS) (F_B values of each 0.18) (Fig. 5A). These data reveal that pyruvate binds to the external side of the membrane-spanning domain of BtsS.

The specificity of pyruvate binding to BtsS was then addressed by using a competition assay (Fig. 5B), in which several competitors were added in excess to the reaction mixture. Only unlabeled ("cold") pyruvate was able to prevent binding of radiolabeled pyruvate. L-serine, D-serine or glycine did not interfere with pyruvate binding to BtsS, suggesting that pyruvate binds specifically to BtsS.

Next we investigated the effects of varying the length and side-chain charge on ligand binding by BtsS. Using competition assays, we found that acetate, propionate and butyrate all failed to compete with pyruvate for binding, indicating the importance of the C- α keto group of pyruvate (Fig. 5C). The influence of polarity at the C- α position was then tested by addition of lactate and malate, which contain C- α hydroxyl groups. These molecules were able to decrease pyruvate binding by about 50% suggesting that a negative charge seems to be recognized. It should be noted that these compounds were tested in a 10⁴-fold excess over pyruvate, reducing binding by approximately 50%. In contrast, a positive charge at the C- α position in the form of the amino group in alanine had no effect, reducing pyruvate binding by 1% (Fig. 5C). Notably, none of these compounds were able to induce *yjiY* expression *in vivo*, which emphasizes the specificity of BtsS for pyruvate. The dissociation constant (*K*_d) for pyruvate binding to the histidine kinase was found to be 58.6 ± 8.8 μ M (Fig. 5D).

To our knowledge this is the first application of DRaCALA to measure the interaction between a ligand and a membrane-embedded protein. Moreover, these assays unambiguously demonstrated that pyruvate binds specifically and with high affinity to BtsS.

Figure 6. BtsS/BtsR importance during urinary tract infection. (**A**) The plot indicates the activity of the pBBR *yjiY-lux* reporter fusion in WT UTI89 and the isogenic *btsS/btsR* mutant during growth in LB, and depicts a representative of at least 6 biological replicates. (**B**) Change in the level of the *yjiY* transcript during acute and chronic phases of UTI relative to that measured in samples incubated *in vitro* without agitation. Data shown are the mean values of samples extracted from three different mice per time point. RNA was extracted from dissected bladders for each time point and enriched for bacterial RNA by depleting ribosomal and mammalian RNA as described in Materials and Methods. Profiling was performed using an *yjiY*-specific probe. Expression was normalized to that of the housekeeping gene *gyrB* and compared to expression in cDNA samples corresponding to the starting inoculum (static *in vitro* culture, prepared as described in Materials and methods). Relative fold change was measured using the method described by Pfaffl *et al.*⁵⁴ (hpi, hours post infection; wpi, weeks post infection).

BtsS/BtsR importance during urinary tract infection. To understand the potential implications of BtsS/BtsR for pathogenesis, we therefore turned our attention to uropathogenic *E. coli* (UPEC) that colonize a nutritionally demanding environment – the mammalian bladder. However, responses to nutritional stress are of the utmost importance for the survival of both commensal and pathogenic bacteria within a given host.

UPEC strains are the primary causative agent of urinary-tract infections (UTIs) worldwide, accounting for over 85% of all reported episodes¹⁴. In the bladder, bacteria adhere to the apical surface of the epithelium and are internalized, before replicating to form biofilm-like pods within host bladder cells^{15, 16}. Subsequent to this transient intracellular cascade, adverse outcomes such as chronic colonization can ensue as a result of an aberrant host immune response¹⁷. Previous studies have demonstrated that successful UTI requires aerobic respiration and amino acid utilization^{18–20}. To investigate the significance of BtsS/BtsR in bladder infection, we first created a *btsS/btsR* mutant in the UPEC cystitis isolate UTI89. Using the same reporter fusion, we demonstrated that this strain, unlike the wild-type parental UTI strain, failed to induce transient expression of *yjiY* (Fig. 6A). Both pyruvate and L-serine are present in human and murine urine, and levels are elevated in diabetic populations^{21–23}. Given that BtsS/BtsR responds directly to extracellular pyruvate levels and indirectly to L-serine, we asked whether BtsS/BtsR is active in the bladder lumen during acute and chronic UTI.

Mice were infected with the cystitis isolate UTI89 and RNA samples were extracted from bladder homogenates at 6 h post infection (coinciding with the acute stage of UTI), and at 2 weeks post infection from mice that went on to develop chronic cystitis. At this stage, the majority of bacteria are found on the bladder epithelial surface in the form of an extracellular biofilm¹⁷. Subsequent TaqMan-based qPCR analysis compared the expression of *yjiY* in the corresponding cDNA samples to the expression of *yjiY* in the starting bacterial inoculum. Our results demonstrated robust expression of *yjiY* in both the acute and chronic stages of infection from at least three separate mice per time-point (Fig. 6B). Taken together, these data suggest that, in the murine UTI model BtsS/ BtsR responds to serine/pyruvate fluctuations and could play a role in promoting the infection process.

Discussion

Although numerous studies continue to demonstrate the importance of histidine kinase-mediated signal transduction in bacterial physiology, the natural ligands have been identified for very few histidine kinases²⁴⁻²⁶. This study presents compelling evidence demonstrating that the histidine kinase BtsS is a high-affinity receptor for extracellular pyruvate. Induction of the BtsS/BtsR target gene *yjiY*, which codes for a "carbon starvation" CstA-like transporter, correlates with the depletion of serine in complex medium, explaining the observation that BtsS/BtsR senses low serine. At the same time, while serine is being depleted from LB medium, *E. coli* excretes a substantial amount of pyruvate from overflow metabolism into the medium. Shortly afterwards, the concentration of extracellular pyruvate returns to its basal level (Fig. 3 and ref. 11). In previous studies, we demonstrated activation of a different system, YpdA/YpdB in response to high levels of extracellular pyruvate¹¹ and showed that induction of YpdA/YpdB enhances BtsS/BtsR activation¹. The current work provides a comprehensive characterization of how BtsS/BtsR directly responds to extracellular pyruvate levels and fine-tunes the metabolic fitness of *E. coli* under low-nutrient conditions. Sequence comparison between YpdA and YehU did not identify putative amino acids involved in pyruvate binding. In non-pathogenic *E. coli*, each of these signaling systems induces the expression of exactly one gene, which codes for a transporter. One (YhjX) belongs to the major facilitator superfamily, and is assumed to be a low-affinity carboxylate antiporter²⁷. The other one (YjiY) belongs to the CstA-like transporters, which are characterized by an unusually large number of transmembrane helices (17 in the case of YjiY). Neither transporter has been characterized thus far. It is hypothesized that both are involved in nutrient uptake, but with different affinities. The interconnectivity between the high-affinity pyruvate signaling system BtsS/BtsR with the putative low-affinity pyruvate signaling system YpdA/YpdB by a positive and a negative feedback loop¹ would provide *E. coli* with a network that could tailor pyruvate uptake in each individual cell according to its availability. Switching between low- and high-affinity phosphate transporters based on the needs of the individual cell was recently demonstrated for *S. cerevisiae*²⁸, and seems to be a widely distributed strategy for the maintenance of nutrient homeostasis as stocks of essential nutrients decline²⁹.

Although nutrient sensing is crucial for host-microbe and microbe-microbe interactions, the majority of studies in non-pathogenic *E. coli* strains have focused on metabolic engineering, aiming to understand how processes such as elevated intracellular pyruvate levels affect metabolite distribution^{30, 31} or how central mutations trigger/alter metabolic fluxes³²⁻³⁴. In recent years, technological advances have permitted detailed analyses of *in vivo* metabolism³⁵, revealing its complexity and its influence on virulence and pathogenesis³⁶. These studies have shown pyruvate to be one of the major factors connecting cellular metabolism to cell division³⁷. Moreover, pyruvate levels are thought to reflect the quantitative relationship between carbon and nitrogen availability in the cell, and affect amino acid biosynthesis³⁸.

Investigations of how metabolic decisions determine pathogen fitness within host niches are increasingly uncovering opportunities for the development of robust and pathogen-specific drugs. Different E. coli pathotypes cause various clinical syndromes, depending on their genetic makeup and expression patterns. They obviously differ extensively from each other and from commensal E. coli. For example, uropathogenic and enterohemorragic E. coli differ significantly in genome content, and employ different strategies to infect their niches - the bladder and the gut, respectively. Very recent work has pointed to the need for aerobic respiration and amino acid utilization for optimal colonization of the urinary tract by UPEC^{18–20}. Pyruvate is a crucial molecule required for fueling the aerobic arm of the tricarboxylic acid cycle, which is used by UPEC during infection^{18, 19, 39}. Thus, it is reasonable to postulate that UPEC has the capacity to sense and respond to pyruvate fluctuations within the urinary tract. Here we demonstrate that BtsS/BtsR mediates yjiY expression during infection by a clinically relevant UPEC isolate, which strongly suggests that BtsS/BtsR constitutes part of the metabolic circuitry engaged during UTI. Thus understanding how UPEC can sense the metabolic signature of the bladder lumen, the kidney and the urothelial cell cytosol (in which they form intracellular bacterial communities) will be vital for a complete understanding of pathogen strategies and the design of more effective therapeutics. However, the study in Salmonella enterica Serovar Typhi and Typhimurium showed no detectable effect on the ability of yehUT mutant strain to invade cultured epithelial cells or induce colitis in a murine model⁴⁰.

In summary, this study has uncovered a signal transduction network that responds with exquisite sensitivity to extracellular pyruvate levels and fine-tunes carbon utilization in *E. coli* strains. Furthermore we provide direct evidence for receptor-ligand interactions between BtsS and pyruvate, and demonstrate that BtsS/BtsR mediates *yjiY* expression during UTI. Future studies will focus on understanding the contribution of this system to pathogenic *E. coli* intra-host fitness and dissecting molecular determinants that drive the fine-tuning of bacterial fitness in response to external metabolic cues.

Methods

Strains, plasmids, and oligonucleotides. In this study we used the *E. coli* strains MG1655⁴¹, *E. coli* MG1655 $\Delta y_{hj}X^1$, *B.*21(DE3)⁴², *E. coli* KX1468⁴³ and the cystitis isolate UTI89⁴⁴. Plasmids used in this study include the transcriptional promoter-luciferase fusion construct for P_{yjiY} activity (pBBR yjiY-lux)³. For protein production we used the arabinose-inducible expression vectors pBAD24⁴⁵, pBAD24-yehU³ and pBAD24-yehU-TM (YehU (BtsS) amino acids 1–205). DNA fragments for plasmid construction were amplified from genomic DNA by PCR. Scarless deletion of *btsS/btsR* genes in UTI89 was performed using the method published by Murphy and Campellone⁴⁶, and verified via PCR with oligonucleotides flanking the deleted loci. All oligonucleotide sequences are available on request.

Molecular biological techniques. Plasmid and genomic DNAs were isolated using a HiYield plasmid minikit (Suedlaborbedarf) and a DNeasy blood and tissue kit (Qiagen), respectively. DNA fragments were purified from agarose gels using a HiYield PCR cleanup and gel extraction kit (Suedlaborbedarf). Q5 DNA polymerase (New England BioLabs) was used according to the supplier's instructions. Restriction enzymes and other DNA-modifying enzymes were also purchased from New England BioLabs and used according to the manufacturer's directions.

Growth conditions. All strains were grown overnight in LB medium. After inoculation, bacteria were routinely grown in LB, LB supplemented with the indicated amino acids or diluted LB medium [containing 1% (w/v) NaCl] under agitation (200 rpm) at 37 °C. For solid medium, 1.5% (w/v) agar was added. Where appropriate, media were supplemented with antibiotics (ampicillin sodium salt, 100 µg/ml; kanamycin sulfate, 50 µg/ml). For infection studies in mice, UTI89 was inoculated into 10 ml of LB medium and grown without shaking at 37 °C for 24 h. This culture was used to seed a fresh flask with 10 ml of a 1:1000 dilution, which was incubated for another 24 h to maximize expression of type 1 pili, as previously described⁴⁷. The growth phases of *E. coli* marked in graphs were according to the definition in ref. 48.

In vivo expression studies. *In vivo* expression of $y_{ji}Y$ was quantified by means of luciferase-based reporter-gene assays, using bacteria that had been transformed with plasmid pBBR $y_{ji}Y$ -lux. Cells from an overnight culture were transferred to fresh medium to give a starting optical density at 600 nm (OD₆₀₀) of 0.05, and

incubated under aerobic growth conditions at 37 °C while OD_{600} and luminescence were continuously monitored. The optical density was determined in a microplate reader (Tecan Sunrise) at 600 nm. Luminescence levels were determined in a luminescence reader (Centro LB960; Berthold Technology) for 0.1 s and are reported as relative light units (RLU; counts s⁻¹).

Identification of quorum sensing-like molecule. The cells of *E. coli* MG1655 $\Delta yjiY/pBBR yjiY-lux$ were cultivated in M9-minimal medium supplemented with 20 mM gluconic acid and OD₆₀₀ and luminescence were constantly monitored. Cells were harvested shortly before, at and after the induction of yjiY. The supernatant was sterile filtrated (Stericup[®], Filter Unit Millipore Express[®] PLUS(PES), 0.22 µm and separated by high pressure liquid chromatography (HPLC) using column C18-Hypersil Gold, with the gradient 1–100% (v/v) acetonitrile in 40 min. Fractions were collected, concentrated and used in reporter strain *E. coli* KX1468⁴³/pBBr yjiY-lux grown in M9-minimal medium supplemented with 20 mM succinate. The fraction with the highest induction potential was then analyzed via UPLC-UHR-ToF-MS using a Waters XBridge Amide column.

Production of BtsS-6His in membrane vesicles. *E. coli* BL21(DE3) cells were transformed with the vector pBAD24-*yehU*³, which codes for BtsS-6His, and grown in LB medium at 37 °C to an OD₆₀₀ of 0.5. Recombinant gene expression was induced by addition of 0.2% (w/v) arabinose. After 3 h of further incubation, cells were harvested by centrifugation, disrupted and fractionated. At each step, the pellet was resuspended in buffer consisting of MES/NaOH (pH 6), 10% (v/v) glycerol and 10 mM MgCl₂. To produce BtsS-6His in right-side-out vesicles, cells were cultivated as described before. After harvesting the cells by centrifugation, lysozyme (50 µg/ml) and EDTA (10 mM) were added for 45 min at room temperature to remove the cell wall. After low-speed centrifugation, the spheroplasts were resuspended in buffer consisting of 100 mM MgSO₄, DNase and RNase, and then diluted 100-fold into pre-warmed buffer (100 mM MES/NaOH (pH 6)) to trigger osmotic lysis. After centrifugation, the pellet was resuspended in 100 mM MgCl₂. Formation of spheroplasts and right-side-out vesicles was monitored under the microscope. His-tagged BtsS was detected by Western blot analysis with an anti-His antibody (Qiagen) and an alkaline phosphatase-conjugated anti-mouse antibody as the secondary antibody.

Protein-ligand interactions. Protein-ligand interactions were analyzed via DRaCALA, a method established by Roelofs *et al.*¹². Membrane vesicles enriched for overproduced BtsS-6His were mixed with 5 μ M radiolabeled (3-¹⁴C) pyruvic acid sodium salt (55 mCi mmol⁻¹, Biotrend) or radiolabeled (³H) L-serine (11.0 Ci mmol⁻¹, Hartmann Analytics) and incubated for 5 min at room temperature. Triplicate 5- μ l aliquots were transferred to a nitrocellulose membrane, dried and visualized by a PhosphorImager. Quantification of radioactive signal was done with the software ImageQuant. The fraction bound to protein was calculated according to the signal intensities using an equation defined earlier: $F_B = (I_{inner} - I_{background})/I_{total}^{12}$. For the evaluation the corresponding cold ligand (50 mM) was added to the reaction mixture and incubated for further 3 min. To estimate the K_d value, increasing concentrations of cold pyruvate (0 μ M to 2.5 mM) were used. In this case the F_B value was normalized as follows: $F_B = (F_{B(NC)} - F_{B(pyr)})/F_{B(NC)}$. Here, $F_{B(NC)}$ is calculated from the sample with pure ¹⁴C-labeled pyruvate, and $F_{B(pyr)}$ are all values for mixtures containing ¹⁴C-labeled pyruvate together with increasing concentrations of unlabeled pyruvate was kept constant in all assays.

Extraction and determination of extra- and intracellular metabolites. The reporter strain *E. coli* MG1655/pBBR *yjiY-lux* was cultivated in LB medium, and OD₆₀₀ and luminescence were constantly monitored. At selected time points, cells were harvested and the supernatants were saved. Cells were washed with 10% (v/v) glycerol, and subsequently cell pellets and supernatants were analyzed via hydrophilic interaction liquid chromatography (HILIC). Acetonitrile (ACN), methanol (MeOH), ammonium acetate and ammonium hydroxide (all of LC-MS grade) were obtained from Sigma-Aldrich (Sigma-Aldrich GmbH). Water was purified using a Merck Millipore Integral water purification system to a resistance of 18 M Ω and TOC < 5 ppb. Sodium pyruvate and serine were also obtained from Sigma-Aldrich and dissolved in water at a concentration of 100 mM and further diluted with ACN. Cell pellets were extracted with 200µl ice-cold water/MeOH (50/50, v/v). Samples were vortexed vigorously and lysed in an ice-cold sonic bath for 15 min. After centrifugation at 20,000 × g and 4 °C for 10 min, supernatants were transferred to autosampler vials.

Pyruvate and serine were quantified using a modified version of the method published by Yuan *et al.*⁴⁹. Separation was achieved using a Waters XBridge Amide column $(3.5 \,\mu\text{m}, 100 \,\text{mm} \times 4.6 \,\text{mm} \,\text{ID})$ and an ACN/ water gradient using a Waters Acquity UPLC system coupled to a Bruker maXis UHR-ToF-MS (Bruker Daltonics). Eluent A consisted of 5% (v/v) ACN, 95% (v/v) water, 20 mM ammonium hydroxide, 20 mM ammonium acetate, pH 9.0 and eluent B was pure ACN.

Metabolites were eluted with the following gradient: After 3 min of 85% B, a linear decrease to 2% B over 9 min, isocratic hold for 3 min and return to initial conditions for 1 min and a 7-min re-equilibration time. Sample $(5\,\mu)$ was injected via partial loop injection.

For quantification a calibration curve was generated from different concentrations of standard compounds $(0 \mu M, 0.5 \mu M, 1.0 \mu M, 2.5 \mu M, 5 \mu M, 10 \mu M, 25 \mu M, 50 \mu M, 100 \mu M, 250 \mu M)$. If the concentration of a sample was beyond the range of the calibration curve, it was appropriately diluted with water/MeOH. Quantification was performed with Bruker Quant Analysis.

Murine infections. A cohort (15) of 7- to 8-week old female C3H/HeN mice was infected with strain UTI89 via transurethral catheterization as described in Hung *et al.*⁵⁰. Five mice were sacrificed at 6 h after infection, marking the acute stage of UTI in this murine model⁵¹. Bladders were excised for CFU enumeration and RNA extraction. The remaining 10 mice were monitored for chronic infection using longitudinal urinalysis, as previously described⁵². Mice that consistently shed more than 100,000 CFUs/ml of urine were separated from the

rest of the cohort, and flagged as chronically infected. These mice were sacrificed at 4 weeks post infection and bladders were obtained for CFU enumeration and RNA extraction.

To ensure the proper and humane treatment of animals, all animal studies were carried out in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health, and the Vanderbilt University Medical Center's Institutional Animal Care and Use Committee (IACUC), who approved all protocols. Statistical analyses were performed using two-tailed Mann-Whitney t-test.

RNA extraction, cDNA synthesis and qPCR. RNA extraction and bacterial RNA enrichment were performed as described by Conover *et al.*⁴⁷. DNase treatment, reverse transcription, and real-time quantitative PCR were done as described by Guckes *et al.*⁵³. qPCR analysis was carried out with three concentrations of cDNA (50 ng, 25 ng, 12.5 ng), each in triplicate for each sample, and levels of *gyrB* (DNA gyrase) were used for normalization. The following primers (Integrated DNA Technologies) were used for amplification: *yjiY_*Fwd (5'-GGCACGACGCCGAAACT-3'), *yjiY_*Rev (5'-GCCGTAGCCGATGAAACG-3'), *gyrB_L* (5'-GATGCGCGTGAAGGCCTGAATG-3'), *gyrB_R* (5'-CACGGGCACGGGCAGCATC-3'). The following probes (Applied Biosystems) were used for quantification; *yjiY* (5'FAM-TGGCTAATGAAACCGACGC-MGBNFQ-3'); *gyrB* (5'VIC-ACGAACTGCTG-GCGGA-MGBNFQ-3').

References

- Behr, S., Fried, L. & Jung, K. Identification of a novel nutrient-sensing histidine kinase/response regulator network in *Escherichia coli*. J. Bacteriol 196, 2023–2029, doi:10.1128/JB.01554-14 (2014).
- 2. Galperin, M. Y. Telling bacteria: do not LytTR. Structure 16, 657–659, doi:10.1016/j.str.2008.04.003 (2008).
- Kraxenberger, T., Fried, L., Behr, S. & Jung, K. First insights into the unexplored two-component system YehU/YehT in. *Escherichia coli. J. Bacteriol.* 194, 4272–4284, doi:10.1128/JB.00409-12 (2012).
- Schultz, J. E. & Matin, A. Molecular and functional characterization of a carbon starvation gene of *Escherichia coli. J. Mol. Biol.* 218, 129–140, doi:10.1016/0022-2836(91)90879-B (1991).
- Romeo, T., Vakulskas, C. A. & Babitzke, P. Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. *Environ. Microbiol.* 15, 313–324, doi:10.1111/j.1462-2920.2012.02794.x (2013).
- Sabnis, N. A., Yang, H. & Romeo, T. Pleiotropic regulation of central carbohydrate metabolism in *Escherichia coli* via the gene *csrA*. *J. Biol. Chem* 270, 29096–29104, doi:10.1074/jbc.270.49.29096 (1995).
- 7. Berzelius, J. Ueber die Destillationsproducte der Traubensäure. Ann. Phys 112, 1–29, doi:10.1002/andp.18351120902 (1835).
- Prüss, B., Nelms, J. M., Park, C. & Wolfe, A. J. Mutations in NADH: ubiquinone oxidoreductase of *Escherichia coli* affect growth on mixed amino acids. J. Bacteriol 176, 2143–2150, doi:10.1002/bit.22119 (1994).
- Selvarasu, S. et al. Characterizing Escherichia coli DH5α growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnol. Bioeng. 102, 923–934, doi:10.1002/bit.v102:3 (2009).
- Polzin, S. et al. Growth media simulating ileal and colonic environments affect the intracellular proteome and carbon fluxes of enterohemorrhagic Escherichia coli O157: H7 strain EDL933. Appl. Environ. Microbiol. 79, 3703–3715, doi:10.1128/AEM.00062-13 (2013).
- Fried, L., Behr, S. & Jung, K. Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in *Escherichia coli. J. Bacteriol* 195, 807–815, doi:10.1128/JB.02051-12 (2013).
- Roelofs, K. G., Wang, J., Sintim, H. O. & Lee, V. T. Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. *Proc. Natl. Acad. Sci. USA* 108, 15528–15533, doi:10.1073/pnas.1018949108 (2011).
- 13. Kaback, H. Bacterial Membranes. Methods Enzymol. 22, 99-120, doi:10.1016/0076-6879(71)22015-2 (1971).
- 14. Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol 7, 653–660, doi:10.1038/nrurol.2010.190 (2010).
- Mulvey, M. A. et al. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli. Science 282, 1494–1497, doi:10.1126/science.282.5393.1494 (1998).
- Anderson, G. G. et al. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301, 105–107, doi:10.1126/ science.1084550 (2003).
- Hannan, T. J. et al. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol. Rev. 36, 616–648, doi:10.1111/j.1574-6976.2012.00339.x (2012).
- Alteri, C. J., Smith, S. N. & Mobley, H. L. Fitness of *Escherichia coli* during urinary tract infection requires gluconeogenesis and the TCA cycle. *PLoS Pathog.* 5, e1000448, doi:10.1371/journal.ppat.1000448 (2009).
- Hadjifrangiskou, M. et al. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol. Microbiol 80, 1516–1529, doi:10.1111/j.1365-2958.2011.07660.x (2011).
- Floyd, K. A. et al. Adhesive fiber stratification in uropathogenic Escherichia coli biofilms unveils oxygen-mediated control of type 1 pili. PLoS Pathog. 11, e1004697, doi:10.1371/journal.ppat.1004697 (2015).
- Stec, D. F. et al. Alterations of urinary metabolite profile in model diabetic nephropathy. Biochem. Biophys. Res. Com 456, 610–614, doi:10.1016/j.bbrc.2014.12.003 (2015).
- 22. Bouatra, S. et al. The human urine metabolome. PloS One 8, doi:10.1371/journal.pone.0073076 (2013).
- Kaur, P. et al. Quantitative metabolomic and lipidomic profiling reveals aberrant amino acid metabolism in type 2 diabetes. Mol. BioSyst. 9, 307–317, doi:10.1039/c2mb25384d (2013).
- Reinelt, S., Hofmann, E., Gerharz, T., Bott, M. & Madden, D. R. The structure of the periplasmic ligand-binding domain of the sensor kinase CitA reveals the first extracellular PAS domain. J. Biol. Chem. 278, 39189–39196, doi:10.1074/jbc.M305864200 (2003).
- Cheung, J. & Hendrickson, W. A. Structural analysis of ligand stimulation of the histidine kinase NarX. Structure 17, 190–201, doi:10.1016/j.str.2008.12.013 (2009).
- Gudipaty, S. A. & McEvoy, M. M. The histidine kinase CusS senses silver ions through direct binding by its sensor domain. *Biochim. Biophys. Acta* 1844, 1656–1661, doi:10.1016/j.bbapap.2014.06.001 (2014).
- 27. Pao, S. S., Paulsen, I. T. & Saier, M. H. Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62, 1–34 (1998).
- Wykoff, D. D., Rizvi, A. H., Raser, J. M., Margolin, B. & O'Shea, E. K. Positive feedback regulates switching of phosphate transporters in *S. cerevisiae. Mol. Cell* 27, 1005–1013, doi:10.1016/j.molcel.2007.07.022 (2007).
- Levy, S., Kafri, M., Carmi, M. & Barkai, N. The competitive advantage of a dual-transporter system. Science 334, 1408–1412, doi:10.1126/science.1207154 (2011).
- Yang, Y.-T., Bennett, G. N. & San, K.-Y. The effects of feed and intracellular pyruvate levels on the redistribution of metabolic fluxes in *Escherichia coli. Metab. Eng.* 3, 115–123, doi:10.1006/mben.2000.0166 (2001).
- Sauer, U. & Eikmanns, B. J. The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol. Rev. 29, 765–794, doi:10.1016/j.femsre.2004.11.002 (2005).
- Fischer, E. & Sauer, U. Metabolic flux profiling of *Escherichia coli* mutants in central carbon metabolism using GC-MS. *Eur. J. Biochem.* 270, 880–891, doi:10.1046/j.1432-1033.2003.03448.x (2003).
- Wang, Q., Ou, M. S., Kim, Y., Ingram, L. & Shanmugam, K. Metabolic flux control at the pyruvate node in an anaerobic *Escherichia* coli strain with an active pyruvate dehydrogenase. *Appl. Environ. Microbiol.* 76, 2107–2114, doi:10.1128/AEM.02545-09 (2010).
- Murarka, A., Clomburg, J. M. & Gonzalez, R. Metabolic flux analysis of wild-type *Escherichia coli* and mutants deficient in pyruvatedissimilating enzymes during the fermentative metabolism of glucuronate. *Microbiology* 156, 1860–1872, doi:10.1099/mic.0.036251-0 (2010).
- 35. Eylert, E. et al. Carbon metabolism of Listeria monocytogenes growing inside macrophages. Mol. Microbiol 69, 1008–1017, doi:10.1111/j.1365-2958.2008.06337.x (2008).
- Eisenreich, W., Dandekar, T., Heesemann, J. & Goebel, W. Carbon metabolism of intracellular bacterial pathogens and possible links to virulence. *Nat. Rev. Microbiol.* 8, 401–412, doi:10.1038/nrmicro2351 (2010).
- Göhler, A.-K. et al. More than just a metabolic regulator elucidation and validation of new targets of PdhR in Escherichia coli. BMC Syst. Biol. 5, 197, doi:10.1186/1752-0509-5-197 (2011).
- Chubukov, V., Gerosa, L., Kochanowski, K. & Sauer, U. Coordination of microbial metabolism. *Nat. Rev. Microbiol.* 12, 327–340, doi:10.1038/nrmicro3238 (2014).
- Floyd, K. A. et al. The Ubil (VisC) aerobic ubiquinone synthase is required for expression of type 1 pili, biofilm formation, and pathogenesis in uropathogenic Escherichia coli. J. Bacteriol 198, 2662–2672, doi:10.1128/JB.00030-16 (2016).
- Wong, V. K. et al. Characterization of the *yehUT* Two-Component Regulatory System of Salmonella enterica Serovar Typhi and Typhimurium. PLoS One 8, doi:10.1371/journal.pone.0084567 (2013).
- 41. Blattner, F. *et al.* The complete genome sequence of *Escherichia coli* K-12. *Science* **277**, 1453–1474, doi:10.1126/science.277.5331.1453 (1997).
- Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130, doi:10.1016/0022-2836(86)90385-2 (1986).
- Xavier, K. B. & Bassler, B. L. Regulation of uptake and processing of the quorum-sensing autoinducer AI-2 in Escherichia coli. J. Bacteriol. 187, 238–248, doi:10.1128/JB.187.1.238-248.2005 (2005).
- Schilling, J. D., Mulvey, M. A., Vincent, C. D., Lorenz, R. G. & Hultgren, S. J. Bacterial invasion augments epithelial cytokine responses to *Escherichia coli* through a lipopolysaccharide-dependent mechanism. *J. Immunol.* 166, 1148–1155, doi:10.4049/ jimmunol.166.2.1148 (2001).
- Guzman, L., Belin, D., Carson, M. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose P_{BAD} promoter. J. Bacteriol. 177, 4121–4130, doi:10.1128/jb.177.14.4121-4130.1995 (1995).
- Murphy, K. C. & Campellone, K. G. Lambda Red-mediated recombinogenic engineering of enterohemorrhagic and enteropathogenic *Escherichia coli*. BMC Mol. Biol. 4, 1, doi:10.1186/1471-2199-4-11 (2003).
- Conover, M. S. et al. Metabolic Requirements of Escherichia coli in Intracellular Bacterial Communities during Urinary Tract Infection Pathogenesis. mBio 7, e00104–00116, doi:10.1128/mBio.00104-16 (2016).
- 48. Pörtner, R. Grundlagen der Bioverfahrenstechnik. In Antranikian, G. (Ed.) Angewandte Mikrobiologie Springer-Verlag, Berlin, Heidelberg p. 240 (2006)
- Yuan, M., Breitkopf, S. B., Yang, X. & Asara, J. M. A positive/negative ion-switching, targeted mass spectrometry-based metabolomics platform for bodily fluids, cells, and fresh and fixed tissue. *Nat. Protoc.* 7, 872–881, doi:10.1038/nprot.2012.024 (2012).
- Hung, C.-S., Dodson, K. W. & Hultgren, S. J. A murine model of urinary tract infection. Nat. Protoc. 4, 1230–1243, doi:10.1038/ nprot.2009.116 (2009).
- Justice, S. S. et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc. Natl. Acad. Sci. USA 101, 1333–1338, doi:10.1073/pnas.0308125100 (2004).
- Hannan, T. J., Mysorekar, I. U., Hung, C. S., Isaacson-Schmid, M. L. & Hultgren, S. J. Early severe inflammatory responses to uropathogenic *Escherichia coli* predispose to chronic and recurrent urinary tract infection. *PLoS Pathog.* 6, doi:10.1371/journal. ppat.1001042 (2010).
- Guckes, K. R. et al. Strong cross-system interactions drive the activation of the QseB response regulator in the absence of its cognate sensor. Proc. Natl. Acad. Sci. USA 110, 16592–16597, doi:10.1073/pnas.1315320110 (2013).
- 54. Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res* 29, e45–e45, doi:10.1093/nar/29.9.e45 (2001).

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (Exc114/2, SPP1617, JU270/12-2 to K.J.), by Vanderbilt University Medical Center Academic Professional development funds (to M.H.) by the NIDDK Diabetic Complications Consortium (DiaComp, www.diacomp.org), grant DK076169 (to M.H.), and National Science Foundation Graduate Research Fellowship Program under Grant Number 1445197 (to E.J.B.) and T32 GM07628 (to E.J.B.). We thank Lena Stelzer for excellent technical assistance.

Author Contributions

S.B., M.W., P.S.-K., M.H. and K.J. designed the experiments. S.B., I.K., M.W., E.B., A.E., C.S. performed the experiments. S.B., I.K., M.H., and K.J. wrote the manuscript.

Additional Information

Supplementary information accompanies this paper at doi:10.1038/s41598-017-01410-2

Competing Interests: The authors declare that they have no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017

Chapter 3

BtsT - a novel and specific pyruvate/H⁺ symporter in *Escherichia* coli

Kristoficova, I., Vilhena, C., Behr, S., Jung, K. J Bacteriol, 2017, in press http://doi.org/10.1128/JB.00599-17

- 1 BtsT a novel and specific pyruvate/H⁺ symporter in *Escherichia coli*
- 2 Ivica Kristoficova, Cláudia Vilhena, Stefan Behr^{*}, Kirsten Jung[#]
- 3
- 4 Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology,
- 5 Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
- 6
- 7 Running head: Pyruvate transporter BtsT in Escherichia coli
- 8
- 9 #To whom correspondence should be addressed: Dr. Kirsten Jung, Ludwig-Maximilians-
- 10 Universität München, Department Biologie I, Bereich Mikrobiologie, Großhaderner Str. 2-4,
- 11 82152 Martinsried, Germany. Phone: +49-89-2180-74500; Fax: +49-89-2180-74520; E-mail:
- 12 jung@lmu.de
- 13
- 14 *Present address: Stefan Behr, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg

15 ABSTRACT

16 The CstA (the peptide transporter carbon starvation CstA family; TC# 2.A.114) family of 17 peptide transporters belongs to the second largest superfamily of secondary transporters, the 18 amino acid/polyamine/organocation (APC) superfamily. No representative of the CstA family 19 has previously been characterized either biochemically or structurally, but we have now 20 identified the function of one of its members, the transport protein YjiY of Escherichia coli. 21 Expression of the *yjiY* gene is regulated by the LytS-like histidine kinase BtsS, a sensor of 22 extracellular pyruvate, together with the LytTR-like response regulator BtsR. YjiY consists of 23 716 amino acids, which form 18 putative transmembrane helices. Transport studies with intact 24 cells provided evidence that YjiY is a specific and high-affinity transporter for pyruvate (K_m) 25 16 µM). Furthermore, reconstitution of the purified YjiY into proteoliposomes revealed that 26 YjiY is a pyruvate/ H^+ symporter. It has long been assumed that E. coli possesses 27 transporter(s) for pyruvate, but the present study is the first to definitively identify such a 28 protein. Based on its function, we propose to rename the uncharacterized gene $y_i Y$ as btsT29 (for "Brenztraubensäure" transporter, from the German word for pyruvate).

31 IMPORTANCE

BtsT (formerly known as YjiY) is found in many commensal and pathogenic representatives of the *Enterobacteriaceae*. This study for the first time characterizes a pyruvate transporter in *Escherichia coli*, BtsT, as a specific pyruvate/H⁺ symporter. When nutrients are limiting, BtsT takes up pyruvate from the medium, thus enabling it to be used as a carbon source for the growth and survival of *E. coli*.

37

39 INTRODUCTION

40 YijY belongs to a small family of transporters, named for the peptide transporter CstA 41 (the peptide transporter carbon starvation CstA family; TC# 2.A.114) (1). The CstA family is 42 part of the amino acid/polyamine/organocation (APC) superfamily of secondary transporters 43 (2). The latter is the second largest superfamily of secondary transporters, and its 44 representatives cover a broad substrate spectrum, ranging from amino acids to metal ions and 45 peptides (2). Within the APC transporters, the CstA family displays the highest diversity in 46 sequence and topology. Some members of the CstA family are already characterized: CstA of 47 E. coli (3), CstA of Campylobacter jejuni (4), CstA and YjiY of Salmonella enterica serovar 48 Typhimurium (5). In both species, E. coli and C. jejuni, the gene cstA is upregulated under 49 carbon starvation, and knockout mutants have a lower growth rate in the presence of peptides 50 as nitrogen source (3, 6). Furthermore, a *cstA* or a *yjiY* mutant of S. Typhimurium is impaired 51 in the utilization of several dipeptides (5). However, no representative of CstA family has yet 52 been biochemically analyzed to ascertain the identity of its substrate(s).

Our studies focus on YjiY, which displays high sequence similarity (75.4%) and identity (61.1%) to CstA from *E. coli* (7). The corresponding gene yjiY is the sole target gene of the histidine kinase/response regulator system BtsS/BtsR, and its expression leads to the synthesis of a 716-amino acid protein (7). In the *E. coli* genome yjiY is disconnected from the *yehUT* operon. However, in other bacterial genomes these genes are adjacent to each other (7, 8), which suggests that they might be functionally related (7). Expression of yjiY is additionally regulated by cAMP-CRP and post-transcriptionally modulated by CsrA (7).

It has been hypothesized that YjiY is involved in nutrient uptake, most probably the transport of pyruvate (9). This assumption is supported by proteome studies of *E. coli* under different growth conditions, which demonstrated that levels of YjiY are increased by up to 74fold when cells are grown in minimal medium with pyruvate as a carbon source compared to

cells grown in amino-acid-rich LB medium (10). Additionally, a quantitative fitness screen of 64 65 bar-coded E. coli BW25113 transposon mutants revealed that the yiiY mutant displays 66 reduced fitness when grown in minimal media containing pyruvate as sole carbon source (11). 67 Furthermore, pyruvate is vital to most living cells, both as a source of energy and carbon, 68 since it forms the central node of carbon metabolism (together with phosphoenolpyruvate) in 69 E. coli (12). Under conditions that require increased consumption of organic compounds 70 during exponential growth, Escherichia coli excretes acetate as well as pyruvate via overflow 71 metabolism (13). In later phases of growth, the extracellular pyruvate is then scavenged by the cells (14). It was shown that BtsS/BtsR responds to such external pyruvate by activating the 72 73 expression of $y_{ii}Y$ (9). The histidine kinase BtsS is a high-affinity receptor for extracellular 74 pyruvate (9). It is therefore tempting to speculate that YjiY is a pyruvate transporter.

75 To date, little is known about pyruvate transport in E. coli. It has been shown that a 76 separate transport system for pyruvate exists in E. coli (15), and that cells possess an active 77 uptake system for pyruvate (16). However, pyruvate transport has not been assigned to any 78 specific gene product. A gene located at around 15 centisomes on the E. coli gene map has 79 been suggested to encode an inducible pyruvate transport system (17), but has not been further 80 characterized. Uptake of pyruvate has also been shown in Rhodopseudomonas spheroides 81 (18) and Lactobacillus plantarum (19), but the transport systems responsible have not been 82 defined. MctC in Corynebacterium glutamicum (20), MctP in Rhizobium leguminosarum (21) 83 and TRAP-T in Anabaena sp (22) have all been characterized to function as pyruvate 84 transporters. However, the specificity of these transporters is not restricted to pyruvate. MctC, 85 a transporter that requires the electrochemical proton gradient, prefers acetate and propionate, 86 and has a low affinity for pyruvate ($K_{0.5}$ 250 μ M). MctP, a sodium/solute transporter, has a 87 high affinity for pyruvate (K_m 3.8 μ M), but shows a rather broad substrate specificity (alanine, 88 lactate, pyruvate and probably also propionate, acetate, butyrate and α -hydroxybutyrate). The

89 Trap-T transport system takes up several monocarboxylate 2-oxoacids including pyruvate (K_m 90 67 μ M).

This study represents the first to be devoted to defining the function of YjiY. Analyses with intact cells demonstrated that YjiY is able to transport pyruvate with a high affinity and specificity. In addition, the reconstitution of purified YjiY in proteoliposomes proved that pyruvate transport requires the proton motive force for energization. To indicate its role as a pyruvate transporter in *E. coli* and highlight its functional relationship with the pyruvateresponsive BtsS/BtsR histidine kinase/response regulator system (9), YjiY has been renamed BtsT (for "<u>Brenzt</u>rauben<u>s</u>äure" transporter), and is so referred to in what follows.

99 **RESULTS**

100 CstA-like proteins in Enterobacteriaceae. BtsT belongs to the CstA family, which consists of 10 members in the Transporter Classification Database (www.tcdb.org), all which 101 102 share a high degree of sequence conservation (1). We were interested in elucidating the 103 relationship between the BtsT homologs found among the Enterobacteriaceae by comparative 104 genomics. For this purpose, we performed a local alignment search based on the full-length 105 amino acid sequences using Protein BLAST (23). Based on the alignment of 1,617 106 individually identified sequences, we generated a phylogenetic tree and grouped the 107 corresponding proteins (Dataset S1). The tree possesses three distinct branches, which were 108 named BtsT-like, CstA1-like and CstA2-like (Fig. 1), taking the two known BtsT and CstA 109 proteins in E. coli as branch markers. Within the Enterobacteriaceae, 43.5% of all sequences 110 were assigned to the BtsT-like branch of the tree, and 40.8%, including E. coli CstA, to the 111 CstA1-like branch. Surprisingly, the remaining 15.8% of the identified sequences formed an 112 additional, distinct branch, named CstA2-like. The genus Escherichia contained examples of 113 both BtsT and CstA1, while other genera like *Dickeya* and *Serratia* possess representatives of 114 both the CstA1 and CstA2 branches. No single genus contained representatives of all three 115 branches. Although the amino acid sequences show an extraordinarily high level of identity 116 (e.g. 61.1% between BtsT and CstA in E. coli), CstA sequences differ sufficiently to be 117 attributed to separate branches. Furthermore, the frequent presence of more than one CstA 118 representative within the same species suggests that members of different branches might 119 have different functions within the Enterobacteriaceae.

Since BtsT of *S. enterica* was proposed to function as peptide transporter (5), we compared the sequences of BtsT of *E. coli* and *S. enterica* using a consensus-based approach. A consensus derived from 148 BtsT sequences of *E. coli* was aligned to a consensus of 122 BtsT sequences of *S. enterica* (Fig. S1). The sequence identity was determined to be 97%.

Most of the deviating amino acids are located in the loops of BtsT. Although the difference in 124 125 sequence identity is rather small, a single amino acid substitution might be sufficient to alter 126 the substrate specificity. It is worth mentioning, that there are differences in the metabolic 127 behavior of these two species. While E. coli excretes pyruvate during growth in an amino 128 acid-rich medium as part of an overflow metabolism, S. enterica did not excrete pyruvate to 129 the same extent (24). In addition, in E. coli the histidine kinase/response regulator system 130 BtsS/BtsR (its target gene is *btsT*) forms together with the histidine kinase/response regulator 131 system YpdA/YpdB a regulatory network (25). The YpdA/YpdB system is not encoded in S. 132 enterica. Here, we elucidate the function of BtsT, whose expression is controlled by the 133 BtsS/BtsR histidine kinase/response regulator system.

134

135 Secondary structure model of BtsT. CstA family members contain 13 to 18 136 transmembrane domains (TMs), which are organized into two central 5-TM repeat units with 137 1 to 4 extra TMs on each side. The first helix of the second repeat unit (helix 10 in Fig. 2) 138 contains a conserved motif CG-x(2)-SG of unknown function (2). The structural similarity between BtsT and secondary transporters of the APC superfamily (TMs 4-17) was confirmed 139 140 by Phyre2, a protein homology/analogy recognition engine (26). Furthermore, hydropathy 141 analyses of BtsT with UniProt predicted that the membrane-integrated portion contains 17 142 putative TMs, while CstA displays 18 TMs (Fig. S2) (27).

Since the C-terminus of BtsT is located on the cytoplasmic side of the membrane (28), the odd number of domains implied that the N-terminus of BtsT should extend into the periplasm. Because a periplasmically located N-terminus is uncommon among integral membrane proteins, we investigated its location in BtsT by using the MalE fusion strategy (29). Native MalE is a periplasmic maltose-binding protein (MBP), and it contains a leader sequence that enables it to be translocated through the cytoplasmic membrane. MalE without

149 the leader sequence is produced as cytoplasmic protein (30). We fused *malE* with or without a 150 leader sequence to the 5' end of btsT to code either for a periplasmically located MBP 151 (MBP_P-BtsT) or a cytoplasmically located MBP (MBP_C-BtsT). We predicted that only a 152 correctly folded hybrid protein would be inserted into the cytoplasmic membrane. We 153 individually overproduced both hybrid proteins in E. coli and determined the level and 154 localization of each by Western blot. The MBP_C-BtsT was predominantly found in the 155 membrane fraction (Fig. S3A). The level of MBP_P-BtsT was low, and no hybrid protein was 156 detectable in any cellular subfraction (Fig. S3B). In addition, we performed complementation 157 studies using the MBP-deficient E. coli mutant MM39, which only grows with maltose as a 158 sole carbon source, when it produces a periplasmically located MBP (Fig. S4). E. coli MM39 159 producing either MBP_P-BtsT or MBP_C-BtsT was unable to grow, corroborating previous 160 results (Fig. S3). These results revealed that only BtsT with a cytoplasmically fused MBP is 161 correctly integrated into the cytoplasmic membrane, and therefore suggest that the N-terminus 162 of BtsT is located on the cytoplasmic side of the membrane.

Then we compared the predicted secondary structures for BtsT and CstA, and found a long loop between TM11 and TM12 in BtsT (**Fig. S2A**). According to PSIPRED secondary structure prediction (31), amino acids 417-437 in this loop should have a high propensity to form a helix and therefore a TM. Based on the experimental evidence for the location of the N-terminus and the structure prediction for CstA, we propose a secondary structure model of BtsT with an intracellular N-terminus and 18 TMs (**Fig. 2**).

169

BtsT activity in intact cells. Since pyruvate is an important metabolite of central carbon metabolism, and other pyruvate transport systems in *E. coli* are yet unknown, we started to work with a mutant strain deficient in *btsT* only to analyze BtsT activity in intact cells. It is important to note that there were no growth defects for mutant MG1655 $\Delta btsT$

174 neither in LB medium (Fig. S5A) nor in M9 minimal medium supplemented with pyruvate (Fig. S5B). Uptake of ¹⁴C-pyruvate into intact cells of *E. coli* MG1655 $\Delta btsT$ (25) 175 176 transformed with either pBAD24-btsT (7) or pBAD24 (32) was analyzed by a rapid filtration assay. An initial experiment showed that measurements of ¹⁴C-pyruvate are difficult due to 177 178 extremely fast uptake and/or metabolization (data not shown). Therefore, all subsequent assays were performed at 15°C. At this lower temperature, the rate of uptake of ¹⁴C-pyruvate 179 180 by E. coli MG1655 $\Delta btsT$ containing the control plasmid pBAD24 was approximately linear 181 for 60 seconds (Fig. 3). Cells transformed with pBAD24-btsT displayed a 6-fold higher linear 182 uptake rate for 30 s and reached 4-fold higher steady state (0.5 nmol/mg of protein) at about 183 40 s. Transport rates in intact cells of E. coli MG1655 ΔbtsT transformed with pBAD24-btsT 184 were also measured at various external pH values (Fig. S6). The highest pyruvate uptake rate 185 was found at pH 7.5, the pH-value of the buffer used in all the subsequent experiments. The 186 pyruvate uptake rate decreased at pH 6, no transport was detected at pH of 4.5 and 3.0.

187 In addition, we tested pyruvate uptake by BtsT in intact cells, which have a decreased 188 pyruvate metabolism. For this purpose, we used E. coli strain YYC202, which harbors 189 deletions in the pyruvate metabolizing pathways aceEF, pflB, poxB and pps, and therefore 190 cannot convert pyruvate into either acetyl-CoA, phosphoenolpyruvate (PEP) or acetate (33). Uptake of ¹⁴C-pyruvate into intact cells of *E. coli* YYC202 transformed with either pBAD24-191 192 *btsT* or pBAD24 was measured, and we observed a pattern of pyruvate uptake very similar to 193 that in E. coli MG1655 $\Delta btsT$ transformed with these plasmids (Fig. S7). Therefore, 194 accumulation of pyruvate could not be increased in this mutant, since it is impossible to 195 completely block its metabolization. It is important to state here that expression of 196 chromosomally encoded *btsT* is tightly controlled by the BtsS/BtsR system, and therefore 197 requires specific environmental conditions (9).

Characterization of pyruvate transport by BtsT in intact cells. Previous 199 200 observations based on the effects of electron transport chain inhibitors on pyruvate transport 201 in E. coli K-12 suggested that the process is driven by the proton motive force (16). To test 202 this hypothesis, we used the hydrophobic protonophores 2,4-dinitro-phenol (DNP) and 203 carbonyl cyanide m-chlorophenyl hydrazone (CCCP) (Fig. 4A). Both reagents abolished 204 substrate accumulation by BtsT, suggesting active transport of pyruvate by BtsT. To 205 determine whether pyruvate transport by BtsT is accompanied by the movement of other ion 206 species, several ionophores were tested. Valinomycin is a highly selective ionophore for K^+ (34), while nonactin forms complexes with K^+ , Na^+ , NH_4^+ and some other cations with lower 207 affinity (35). Nigericin acts mainly as a potassium-proton antiporter, but can also transport 208 209 Pb^+ and H^+ into the cytosol (36). Pyruvate uptake by BtsT was not affected by any of these 210 ionophores (Fig. 4A).

211 Additionally, the specificity of BtsT was tested by assaying several compounds with 212 shared structural similarity for the ability to act as competitive inhibitors for the pyruvate 213 binding site when provided in a 100-fold access (Fig. 4B). Br-pyruvate is a synthetic analogue 214 of pyruvate, and was found to act as a competitive inhibitor of BtsT, which is in agreement 215 with earlier studies in E. coli K-12 (16). None of the other compounds used - L-malate and 216 lactate (both configurations) with a C- α hydroxyl group, phosphoenolpyruvate with a C- α 217 phosphoryl group, or L-alanine with a positively charged C- α amino group – reduced the rate 218 of pyruvate uptake. We also tested monocarboxylates (acetate and propionate), a 219 dicarboxylate (succinate) and amino acids (L-serine, L-glycine), but the uptake rate was 220 significantly reduced only in the presence of pyruvate or its synthetic analog Br-pyruvate, indicating the narrow specificity of the transporter. In order to determine the K_m for pyruvate 221 222 uptake, we quantified the initial rate of pyruvate uptake by BtsT at different concentrations of 223 pyruvate (Fig. 4C). Pyruvate can enter the cells by diffusion (Fig. S8). Therefore, the uptake

rates were corrected by the values determined for pure diffusion. The K_m of the transporter BtsT for pyruvate measured in intact cells was $16.5 \pm 6.4 \mu M$.

226

227 Effects of $\Delta \tilde{\mu}_{H+}$, $\Delta \Psi$ and ΔpH on BtsT-mediated pyruvate transport. Energization of 228 pyruvate transport by BtsT was studied in detail in *E. coli* proteoliposomes by determining the 229 consequences for pyruvate transport of an imposed electrical potential ($\Delta \Psi$) across the 230 liposome membrane or a difference in proton concentration (ΔpH) between the interior of the 231 liposomes and the external medium, or a combination of both, thus generating a 232 transmembrane electrochemical proton gradient ($\Delta \tilde{\mu}_{H+}$). To this end, BtsT was first expressed 233 at high levels under the control of the pBAD promoter, affinity-purified and integrated into 234 proteoliposomes preloaded with potassium phosphate buffer, pH 7.6 (37) (Fig. S9). The 235 proteoliposomes were then diluted 200-fold, in the presence of valinomycin, with either 236 potassium phosphate buffer pH 5.8 (ΔpH), potassium-free buffer pH 7.6 ($\Delta \Psi$), potassium-free 237 buffer pH 5.8 ($\Delta \tilde{\mu}_{H^+}$) or sodium phosphate buffer pH 7.6 ($\Delta \tilde{\mu}_{Na^+}$), and the rates of ¹⁴C-238 pyruvate transport were measured.

239 From the results, it is clear that the presence of an electrochemical H⁺ gradient ($\Delta \tilde{\mu}_{H^+}$) is associated with the accumulation of ¹⁴C-pyruvate in proteoliposomes, and that uptake is 240 241 markedly reduced in the absence of such a gradient (dilution in potassium phosphate buffer 242 pH 7.6; Fig. 5A). Thus, the initial rate of uptake of pyruvate by BtsT in the presence of $\Delta \tilde{\mu}_{H+}$ 243 is 27.7 nmol per mg of protein, and the steady state is achieved after about 1 min (Fig. 5B). 244 Imposition of ΔpH decreased the initial rate by two-fold and a lower steady state (relative to 245 $\Delta \tilde{\mu}_{H^+}$) was reached after 1 min. In the presence of a $\Delta \Psi$, we observed a similar initial rate of 246 pyruvate accumulation as in the presence of ΔpH , but it continued to rise for the (10-min) duration of the experiment. ¹⁴C-Pyruvate was also accumulated upon the application of $\Delta \tilde{\mu}_{Na+}$ 247

248 although the Na⁺ ions did not stimulate uptake beyond the level seen with ΔpH alone (Fig. 249 5A).

Pyruvate could potentially cross the *E. coli* plasma membrane in its protonated form by simple diffusion (38). In the experiments where a pH gradient is generated (Δ pH, interior alkaline, exterior acidic), the ¹⁴C-pyruvate is added to an extracellular environment with a low pH. Therefore, ¹⁴C-pyruvate might be protonated and transported by diffusion. To rule out this possibility, liposomes without BtsT were prepared as a control (**Fig. S10**). Using these liposomes, we observed only a slight pyruvate accumulation. Therefore, the protonation of pyruvate at low pH does not significantly affect the outcome of these experiments (**Fig. S10**).

Lastly, we confirmed the functionality of the transporter BtsT in proteoliposomes in a 257 258 counterflow assay. In this case, we preloaded the proteoliposomes with a high internal 259 concentration (10 mM) of unlabeled ("cold") pyruvate and subsequently diluted them 200fold in the same buffer containing a low concentration of 14 C-pyruvate (4.7 μ M). If pyruvate 260 261 was indeed transported, exchange of the internal (unlabeled) substrate and external (labeled) pyruvate should lead to the accumulation of ¹⁴C-pyruvate in the vesicles due to the 262 concentration gradient across the membrane. We observed such an accumulation of ¹⁴C-263 pyruvate via BtsT in proteoliposomes, which was low (0.28 nmol x mg⁻¹ x min⁻¹), but 264 265 significant in light of the competitive inhibition by unlabeled pyruvate (Fig. 5C). In the 266 control experiment, proteoliposomes preloaded with 10 mM unlabeled lactate exhibited no ¹⁴C-pyruvate accumulation. These experiments thus demonstrate that BtsT-mediated uptake 267 268 of pyruvate can occur against a concentration gradient.

269 **DISCUSSION**

Pyruvate plays a central role in carbon metabolism. Nevertheless, little is known about how intracellular levels of the compound are regulated in *E. coli*. It has been suggested that pyruvate uptake is driven via specific active transporters (16, 17), but until now their molecular identities have remained unknown.

However, interest in pyruvate transporters is growing, primarily as a result of increasing evidence for their roles in biological fitness and virulence of *Enterobacteriaceae*. The pyruvate-tricarboxylic acid cycle node was identified as a focal point for controlling the host colonization and virulence of *Yersinia pseudotuberculosis* (39). *Y. pseudotuberculosis* secretes high amounts of pyruvate when grown in minimal medium with glucose as carbon source. However the pyruvate exporter or importer in *Y. pseudotuberculosis* has not yet been characterized.

Metabolic engineering is also focusing its attention on pyruvate in efforts to achieve optimized metabolite production in *E. coli, Corynebacterium glutamicum* or *Bacillus subtilis* (40). However, to control the carbon flux between glycolysis and the TCA cycle, further insights into the regulation and characterization of the enzymes and other proteins relevant to the PEP-pyruvate-oxaloacetate node are still required.

286 Here, we were principally interested in elucidating the role of the pyruvate transporter 287 in E. coli. It is known that pyruvate overflow occurs under conditions of carbon excess during 288 exponential growth. At the end of the exponential phase, cells experience nutrient limitation 289 and initiate the rapid re-uptake of previously excreted metabolic intermediates, including 290 pyruvate (13). This extracellular pyruvate is sensed by the two-component system BtsS/BtsR, 291 which consequently activates the expression of btsT encoding the putative pyruvate 292 transporter BtsT (7, 9). BtsT belongs to the APC superfamily of secondary transporters (2, 293 41). Comparative genomic studies clearly separate BtsT from CstA, and it has been proposed 14 that the two have different functions (**Fig. 1**). Since the histidine kinase BtsS responds to extracellular pyruvate (9), we hypothesized that BtsS/BtsR triggers the production of BtsT transporter to enable cells to take up pyruvate as a scavenging strategy to cope with carbon limitation. Here, we have shown that BtsT indeed serves as a pyruvate transporter in *E. coli* and thus assigned a function to a representative of the CstA family for the first time.

299 First we studied the function of BtsT in intact cells and characterized the protein as a 300 highly specific pyruvate transporter with a K_m of 16 μ M (Fig. 4). Furthermore, we showed 301 that the pronophores CCCP and DNP had a significant inhibitory effect on pyruvate transport 302 rates, indicating involvement of a $\Delta \Psi$ and/or ΔpH . In comparison, both valinomycin and 303 nigericin did not cause inhibition of pyruvate uptake by BtsT even though these compounds 304 dissipate either $\Delta \Psi$ or ΔpH , respectively. Likewise, valinomycin had no effect on pyruvate 305 transport by L. plantarum cells (19). The lack of an inhibitory effect of valinomycin suggests 306 that intact cells somehow circumvent inhibition by a thus far unknown mechanism. Elimination of all the influences from intact cells is therefore required to obtain reliable 307 308 insights into the energization of pyruvate transport.

309 It is worth mentioning that E. coli probably harbors at least one additional pyruvate 310 transporter, based on the observed background pyruvate accumulation by intact cells of an E. 311 *coli* $\Delta btsT$ strain (Fig. 3), which cannot be solely attributed to diffusion (Figs. S6 and S8). It 312 was previously suggested that E. coli uses one export and two uptake transporters to modulate 313 the level of intracellular pyruvate (17). Unfortunately, we were unable to identify other 314 pyruvate transporters based on the BtsT sequence, and contrary to a previous suggestion (17), 315 we could find no BtsT-like coding sequence near the 15 centisome position in the E. coli 316 genome.

Further insights into the mode of action of BtsT were obtained by incorporating the protein into *E. coli* proteoliposomes. In these experiments, a suspension of proteliposomes

harboring BtsT was assayed for ¹⁴C-pyruvate transport under conditions known to generate 319 either $\Delta \tilde{\mu}_{H^+}$, $\Delta \Psi$ or ΔpH (Fig. 5). From the results, it is obvious that simultaneous imposition 320 321 of a membrane potential and a proton gradient ($\Delta \tilde{\mu}_{H^+}$, interior negative and alkaline) is 322 required to drive pyruvate uptake into E. coli proteoliposomes. In the presence of either $\Delta \Psi$ 323 (interior negative) or ΔpH (interior alkaline), the rate of transport was halved in comparison to 324 that observed in the presence of $\Delta \tilde{\mu}_{H^+}$. The two gradients most likely contribute with their 325 actual extent to the energization of uptake (Fig. 5). Therefore, it seems that the secondary 326 transport of pyruvate by BtsT is coupled to both the influx of protons and the movement of 327 electric charges. Hence, BtsT acts as a pyruvate/H⁺ symporter. Although the exact 328 $pyruvate/H^+$ coupling stoichiometry is still unknown, the results suggest a ratio of more than 329 one proton per transported pyruvate.

330 In summary, BtsT is the first identified pyruvate transporter in E. coli and the first 331 characterized representative of the CstA family. This study opens the possibility to search for 332 the pyruvate-binding site in BtsT as well as to elucidate the 3D structure of this transporter. It 333 will be interesting to determine which of the 18 putative TMs in BtsT are essential for the 334 recognition and transport of pyruvate. Currently, we can only speculate that the two conserved 335 5-TM repeat units found in members of the CstA family (2) are crucial for this function. BtsT 336 contains 8 additional TMs (4 TMs each before and after the repeat unit) which might perhaps 337 interact with the histidine kinase BtsS (25) or have other regulatory or structural functions.

338

340 MATERIALS AND METHODS

341 Bacterial strains and plasmids. In this study we used the previously described E. coli strains 342 LMG194 [F⁻ $\Delta lacX74$ galE galK thi rpsL $\Delta phoA \Delta ara714$ leu::Tn10] (32), MG16555 $\Delta btsT$ 343 (previously termed MG1655 $\Delta y_{ji}Y$) (25), MM39 (araD, lacI, $\Delta U1269$ and malE444) (29) and 344 YYC202 ($\Delta aceEF$, $\Delta pflB$, $\Delta poxB$, and Δpps) (33), and constructed two new plasmids: 345 pMAL_p-btsT and pMAL_c-btsT. The corresponding btsT-6His gene was isolated from plasmid 346 pBAD24-*btsT* (previously known as pBAD24-*yjiY* (7)) by cleavage with EcoRI and XbaI, and 347 ligated into the cognate sites in vectors pMAL-p2X and pMAL-c2X (New England Biolabs). 348 For transport studies we used the arabinose-inducible vector pBAD24-btsT (7), which codes 349 for BtsT-6His, and pBAD24 (32) as control.

350

Growth conditions. All strains were grown overnight in LB medium (10 g/l tryptone, 5 g/l yeast extract, 10 g/l NaCl) or M9 minimal medium containing 0.5% [wt/vol] maltose or 20 mM pyruvate. Cells from the overnight culture were then transferred to corresponding fresh medium. When appropriate, media were supplemented with ampicillin (sodium salt, 100 μ g/ml) and/or streptomycin (50 μ g/ml). After inoculation, bacteria were grown under agitation (200 rpm) at 37°C and growth was monitored over time by measuring the optical density at 600 nm (OD₆₀₀).

358

Production of MBP hybrid proteins. Cells were grown to an OD₆₀₀ of 0.5 as described above. Recombinant gene expression was induced by addition of 0.2% (w/v) arabinose. After 3 h of further incubation, cells were harvested by centrifugation, disrupted [using a high pressure cell disrupter (Constant Systems)] and fractionated. At each step, the pellet was resuspended in a buffer consisting of 50 mM Tris/HCl buffer (pH 7.5), 10% (v/v) glycerol, 1 mM DTT, 1 mM PMSF and DNase. His-tagged BtsT was detected by Western blot analysis 17 with an anti-His antibody (Abcam) and an alkaline phosphatase-conjugated anti-rabbitantibody (Rockland) as the secondary antibody.

367

368 Comparative genomic studies. BtsT-like proteins were identified by Protein BLAST search 369 within the Enterobacteriaceae (taxid: 543) using the full-length amino acid sequence of 370 E. coli BtsT to query the RefSeq protein database (23). In order to cover a huge amount of 371 highly diverse proteins an Expect (E) value was kept at < 10. An amino acid length tolerance 372 was set to 10% as default parameter resulting in 1,617 sequences. To elucidate the 373 relationship between the BtsT homologs, all sequences were aligned and a phylogenetic tree 374 was generated using CLC Main Workbench 7 (CLC Bio Qiagen). BtsT and CstA of E. coli 375 were used as branch markers. Comparison of BtsT conserved in different species, E. coli and 376 S. enterica, was done via a consensus alignment. For this purpose, a total of 148 sequences of 377 BtsT in E. coli (or 122 in S. enterica) was retrieved from the branch BtsT of the phylogenetic 378 tree. The consensus sequence was derived from their alignment using CLC Main Workbench 379 7 software.

380

381 **Transport measurements with intact cells.** E. coli strain MG1655 $\Delta btsT$ (25) was 382 transformed with pBAD24 (32) or pBAD24-btsT (7). Cells grown in LB medium in the 383 absence of arabinose (the leaky expression of *btsT* was suitable for complementation) were 384 harvested in the mid-log phase. Cells were washed twice and resuspended in 100 mM 385 Tris/MES buffer (pH 7.5) containing 5 mM MgCl₂, thereby adjusting the total protein 386 concentration to 0.35 mg/ml. In the experiments performed at different external pH values, 387 the cells were washed and resuspended in buffers: Tris/MES buffer (pH 6), 5 mM MgCl₂ or 100 mM citrate buffer (pH 3 / pH 4.5), 5 mM MgCl₂. Uptake of ¹⁴C-pyruvate (50-60 mCi 388 mmol⁻¹, Biotrend) was measured at a total substrate concentration of 10 µM at 15°C. At 389 18

390 various time intervals, transport was terminated by the addition of 100 mM potassium 391 phosphate buffer (pH 6.0) and 100 mM LiCl (stop buffer) followed by rapid filtration through 392 membrane filters (MN GF-5 0.4 µm, Macherey-Nagel). The filters were dissolved in 5 ml of 393 scintillation fluid (MP Biomedicals) and radioactivity was determined in a Liquid Scintillation 394 Analyzer (Perkin-Elmer). Effects of the cold substrates on pyruvate uptake by BtsT were tested by simultaneous addition of cold compound (1 mM) and 14 C-pyruvate (10 μ M). The 395 396 effects of protonophores and ionophores were tested after pre-incubation of cells in Tris/MES 397 buffer (pH 7.5) supplemented with 2 mM DNP or 20 µM CCCP, 6 µM nigericin, 10 µM 398 nonactin or DMSO (as control) at 25°C for 30 min. An ionophore valinomycin was pre-399 incubated in 100 mM potassium phosphate buffer, pH 7.5 at 25°C for 30 min. In experiments where the pyruvate concentration was varied, the amount of ¹⁴C-pyruvate was kept constant 400 401 (9 nmol).

402

403 Transport measurements with proteoliposomes. E. coli LMG194 cells were transformed 404 with pBAD24-btsT (7), and BtsT-6His was produced as described above. At each step, the 405 pellet was resuspended in 100 mM potassium phosphate buffer (pH 7.6) containing 5 mM 406 MgCl₂, 5% (v/v) glycerol, 1 mM DTT, 1 mM PMSF and DNase. For BtsT solubilization, 407 1.5% (w/v) *n*-dodecyl β -D-maltoside (Glycon Biochemicals) was added while stirring on ice for 30 min, and the sample was centrifuged at 244,000 x g for 45 min at 4°C. Ni²⁺-NTA resin, 408 409 which had been pre-incubated with buffer W [100 mM potassium phosphate buffer (pH 7.6), 410 5 mM MgCl₂, 5% (v/v) glycerol and 1 mM DTT], was then added to the supernatant and the 411 mixture was incubated for 1 h with gentle shaking at 4°C. Unbound protein was removed by 412 washing with buffer W containing 30 mM imidazole. Subsequently, BtsT was eluted with 413 buffer W containing 300 mM imidazole. Purified BtsT was reconstituted into preformed liposomes prepared from an acetone-ether-washed E. coli polar lipid extract as described 414

415	before (42). Prior to reconstitution, the liposomes were destabilized by the addition of 0.12%
416	(w/v) Triton X-100, and then mixed with purified protein at a ratio 100:1. Detergents were
417	removed by adding Bio-Beads SM-2 (Bio-Rad) at a bead/detergent ratio of 5:1. Fresh Bio-
418	Beads were added after 1 h and 2 h, and the mixture was gently stirred at 4°C overnight. Bio-
419	Beads were removed by filtration through glass wool, and the proteoliposome suspension was
420	dialyzed twice against buffer A [100 mM potassium phosphate buffer (pH 7.6), 5 mM $MgCl_2$
421	and 5% (v/v) glycerol], and centrifuged at 160,000 x g for 1 h. The pellet was resuspended in
422	buffer A and stored in liquid N2. Proteins were visualized by silver-staining and His-tagged
423	BtsT was detected by Western blot analysis as described before. After thawing, samples were
424	extruded through a 400-nm filter (Avestin) to obtain unilamellar proteoliposomes of
425	homogeneous size, and adjusted to 4 mg/ml of protein in buffer A. Aliquots of
426	proteoliposomes were diluted (1:200) into buffers A-E containing 80 μ M valinomycin and 40
427	μ M ¹⁴ C-pyruvate to initiate pyruvate transport, and at defined times (25°C) the entire sample
428	was filtered through 0.2- μ m Millipore filters [buffer B (Δ pH): 100 mM potassium phosphate
429	buffer (pH 5.8) and 5 mM MgCl ₂ , buffer C ($\Delta\Psi$): 100 mM Tris/MES buffer (pH 7.6) and 5
430	mM MgCl ₂ , buffer D ($\Delta \tilde{\mu}_{H^+}$): 100 mM Tris/MES buffer (pH 5.8) and 5 mM MgCl ₂ , buffer E
431	($\Delta \tilde{\mu}_{Na+}$): 100 mM Tris/MES (pH 5.8), 5 mM MgCl ₂ and 50 mM NaCl]. For the counterflow
432	assay, proteoliposomes were preloaded with 10 mM pyruvate or lactate at 4°C overnight. The
433	resulting suspension was diluted 200-fold into buffer A containing ¹⁴ C-pyruvate at a
434	concentration of 4.7 μ M (final external pyruvate concentration of 54.7 μ M). At defined times
435	(25°C) the entire sample was filtered, and the radioactivity of the sample was analyzed as
436	described above.

438 Statistical analysis. All experiments were repeated at least three times with independently
439 prepared samples. Statistical analysis was carried out using GraphPad Prism (version 5.03 for

Windows). Data was assessed for significance between tested groups by using one-way
analysis of variance (ANOVA) followed by Tukey's multiple comparison post-hoc test. Error
bars represent standard errors of the mean.

444 ACKNOWLEDGEMENTS

445 We thank Prof. Dr. Heinrich Jung for insightful comments on the methodology applied

- 446 (Ludwig-Maximilians-Universität München, Germany). This work was supported by the
- 447 Deutsche Forschungsgemeinschaft (Exc114/2, SPP1617, JU270/13-2 to K.J.)

449 **REFERENCES**

- Saier MH, Reddy VS, Tamang DG, Vastermark A. 2014. The transporter classification
 database. Nucleic Acids Res 42:251–258.
- 452 2. Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. 2014. Expansion of the APC
 453 superfamily of secondary carriers. Proteins 82:2797–2811.
- 454 3. Schultz JE, Matin A. 1991. Molecular and functional characterization of a carbon
 455 starvation gene of *Escherichia coli*. J Mol Biol 218:129–140.
- 456 4. Cordwell SJ, Len ACL, Touma RG, Scott NE, Falconer L, Jones D, Connolly A,
 457 Crossett B, Djordjevic SP. 2008. Identification of membrane-associated proteins from
 458 *Campylobacter jejuni* strains using complementary proteomics technologies.
 459 Proteomics 8:122–139.
- Garai P, Lahiri A, Ghosh D, Chatterjee J, Chakravortty D. 2016. Peptide-utilizing
 carbon starvation gene *yjiY* is required for flagella-mediated infection caused by *Salmonella*. Microbiology 16:100–116.
- 463 6. Rasmussen JJ, Vegge CS, Frøkiær H, Howlett RM, Krogfelt KA, Kelly DJ, Ingmer H.
 464 2013. *Campylobacter jejuni* carbon starvation protein A (CstA) is involved in peptide
 465 utilization, motility and agglutination, and has a role in stimulation of dendritic cells. J
 466 Med Microbiol 62:1135–1143.
- Kraxenberger T, Fried L, Behr S, Jung K. 2012. First insights into the unexplored twocomponent system YehU/YehT in *Escherichia coli*. J Bacteriol 194:4272–4284.
- 469 8. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T,
- 470 Stark M, Muller J, Bork P, Jensen LJ, von Mering C. 2011. The STRING database in
- 471 2011: functional interaction networks of proteins, globally integrated and scored.
 472 Nucleic Acids Res 39:561–568.

- 473 9. Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Schmitt-Kopplin P,
 474 Hadjifrangiskou M, Jung K. 2017. Identification of a high-affinity pyruvate receptor in
 475 *Escherichia coli*. Sci Rep 7:1388.
- 476 10. Schmidt A, Kochanowski K, Vedelaar S, Ahrné E, Volkmer B, Callipo L, Knoops K,
 477 Bauer M, Aebersold R, Heinemann M. 2016. The quantitative and condition-dependent
 478 *Escherichia coli* proteome. Nat Biotechnol 34:104–110.
- Wetmore KM, Price MN, Waters RJ, Lamson JS, He J, Hoover CA, Blow MJ, Bristow
 J, Butland G, Arkin AP, Deutschbauer A. 2015. Rapid quantification of mutant fitness
 in diverse bacteria by sequencing randomly bar-coded transposons. Mbio 6:e00306-15.
- 482 12. Postma PW, Lengeler JW, Jacobson GR. 1993. Phosphoenolpyruvate: carbohydrate
 483 phosphotransferase systems of bacteria. Microbial Rev 57:543–594.
- Paczia N, Nilgen A, Lehmann T, Gätgens J, Wiechert W, Noack S. 2012. Extensive
 exometabolome analysis reveals extended overflow metabolism in various
 microorganisms. Microb Cell Fact 11:122.
- 487 14. Fried L, Behr S, Jung K. 2013. Identification of a target gene and activating stimulus
- 488 for the YpdA/YpdB histidine kinase/response regulator system in *Escherichia coli*. J
 489 Bacteriol 195:807–15.
- 490 15. Kornberg HL, Smith J. 1967. Genetic control of the uptake of pyruvate by *Escherichia*491 *coli*. Biochim Biophys Acta 148:591–592.
- 492 16. Lang VJ, Leystra-Lantz C, Cook RA. 1987. Characterization of the specific pyruvate
 493 transport system in *Escherichia coli* K-12. J Bacteriol 169:380–385.
- 494 17. Kreth J, Lengeler JW, Jahreis K. 2013. Characterization of pyruvate uptake in
 495 *Escherichia coli* K-12. PLoS ONE 8:e67125.
- 496 18. Gibson J. 1975. Uptake of C4 dicarboxylates and pyruvate by *Rhodopseudomonas* 24

497 *spheroides*. J Bacteriol 123:471–480.

- Tsau J, Guffanti A a., Montville TJ. 1992. Pyruvate is transported by a proton symport
 in *Lactobacillus plantarum* 8014. Curr Microbiol 25:47–50.
- Jolkver E, Emer D, Ballan S, Krämer R, Eikmanns BJ, Marin K. 2009. Identification
 and characterization of a bacterial transport system for the uptake of pyruvate,
 propionate, and acetate in *Corynebacterium glutamicum*. J Bacteriol 191:940–948.
- 503 21. Hosie AHF, Allaway D, Poole PS. 2002. A monocarboxylate permease of *Rhizobium*504 *leguminosarum* is the first member of a new subfamily of transporters. J Bacteriol
 505 184:5436–5448.
- 506 22. Pernil R, Herrero A, Flores E. 2010. A TRAP transporter for pyruvate and other
 507 monocarboxylate 2-oxoacids in the cyanobacterium *Anabaena* sp. strain PCC 7120. J
 508 Bacteriol 192:6089–6092.
- Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997.
 Gapped BLAST and PSI-BLAST: a new generation of protein database search
 programs. Nucleic Acids Res 25:3389–3402.
- 512 24. Behr S, Brameyer S, Witting M, Schmitt-Kopplin P, Jung K. 2017. Comparative
 513 analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ514 proteobacteria. PLoS One 12:e0182993.
- 515 25. Behr S, Fried L, Jung K. 2014. Identification of a novel nutrient-sensing histidine
 516 kinase/response regulator network in *Escherichia coli*. J Bacteriol 196:2023–9.
- 517 26. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJE. 2015. The Phyre2 web
 518 portal for protein modeling, prediction and analysis. Nat Protoc 10:845–858.
- 519 27. The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic
 520 Acids Res 45:158–169.

- 521 28. Daley DO, Rapp M, Granseth E, Melen K, Drew D, Heijne G Von. 2005. Global
 522 topology analysis of the *Escherichia coli* inner membrane proteome. Science
 523 308:1321–3.
- Jung K, Odenbach T, Timmen M. 2007. The quorum-sensing hybrid histidine kinase
 LuxN of *Vibrio harveyi* contains a periplasmically located N terminus. J Bacteriol
 189:2945–2948.
- 527 30. Ueguchi C, Ito K. 1990. *Escherichia coli* sec mutants accumulate a processed immature
 528 form of maltose-binding protein (MBP), a late-phase intermediate in MBP export. J
 529 Bacteriol 172:5643–5649.
- 530 31. Jones DT. 1999. Protein secondary structure prediction based on position-specific
 531 scoring atrices. J Mol Biol 292:195–202.
- 532 32. Guzman L, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and
 533 high-level expression by vectors containing the arabinose P_{BAD} promoter. J Bacteriol
 534 177:4121–4130.
- 33. Zelić B, Gerharz T, Vasić-Racki D, Bott M, Wandrey C, Takors R. 2003. Fed-batch
 process for pyruvate production by recombinant *Escherichia coli* YYC202 Strain. Eng
 Life Sci 3:299–305.
- S38 34. Rose L, Jenkins ATA. 2007. The effect of the ionophore valinomycin on biomimetic
 solid supported lipid DPPTE/EPC membranes. Bioelectrochemistry 70:387–393.
- 540 35. Kusche BR, Smith AE, McGuirl MA, Priestley ND. 2009. The alternating pattern of
 541 stereochemistry in the nonactin macrocycle is required for antibacterial activity and
 542 efficient ion binding. J Am Chem Soc 131:17155–17165.
- 543 36. Hamidinia SA, Tan B, Erdahl WL, Chapman CJ, Taylor RW, Pfeiffer DR. 2004. The 544 ionophore nigericin transports Pb^{2+} with high activity and selectivity: a comparison to

- 545 monensin and ionomycin. Biochemistry 43:15956–15965.
- 546 37. Jung H, Buchholz M, Clausen J, Nietschke M, Revermann A, Schmid R, Jung K. 2002.
- 547 CaiT of *Escherichia coli*, a new transporter catalyzing L-carnitine/γ-butyrobetaine
 548 exchange. J Biol Chem 277:39251–39258.
- 549 38. Benning C. 1986. Evidence supporting a model of voltage-dependent uptake of auxin
 550 into *Cucurbita* vesicles. Planta 169:228–237.
- 39. Bücker R, Heroven AK, Becker J, Dersch P, Wittmann C. 2014. The pyruvatetricarboxylic acid cycle node: a focal point of virulence control in the enteric pathogen *Yersinia pseudotuberculosis*. J Biol Chem 289:30114–30132.
- Sauer U, Eikmanns BJ. 2005. The PEP-pyruvate-oxaloacetate node as the switch point
 for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794.
- Wong FH, Chen JS, Reddy V, Day JL, Shlykov MA, Wakabayashi ST, Saier Jr MH.
 2012. The amino acid-polyamine-organocation superfamily. J Mol Microbiol
 Biotechnol 22:105–113.
- Jung H, Tebbe S, Schmid R, Jung K. 1998. Unidirectional reconstitution and
 characterization of purified Na⁺/proline transporter of *Escherichia coli*. Biochemistry
 37:11083–11088.
- 562 43. Omasits U, Ahrens CH, Muller S, Wollscheid B. 2014. Protter: interactive protein
 563 feature visualization and integration with experimental proteomic data. Bioinformatics
 564 30:884–886.
- 565

567 FIGURE LEGENDS

Figure 1. Phylogenetic tree of BtsT-like proteins in *Enterobacteriaceae*. The tree was constructed based on the alignment of 1,617 individual BtsT-like sequences, and visualized with CLC Main Workbench 7. The lengths of the branches represent the relative amount of evolutionary divergence between any two sequences in the tree.

572

Figure 2. Schematic model of the secondary structure of *E. coli* **BtsT.** The model is based on the results of an analysis carried out by the Uniprot program (27), coupled with the experimental evidence for the cytoplasmic location of the N-terminus and the alignment with CstA. The secondary structure of BtsT was visualized using the Protter tool (43). Transmembrane domains (TMs) are numbered. The conserved motif CG-x(2)-SG within CstA homologs is marked in yellow (2). PP, periplasm; CM, cytoplasmic membrane; CP. cytoplasm.

580

Figure 3. Time course of pyruvate uptake by *E. coli* **MG1655** $\Delta btsT$. Rates of ¹⁴C-pyruvate uptake by the BtsT-producing strain *E. coli* MG1655 $\Delta btsT$ pBAD24-*btsT* (green) and the control strain *E. coli* MG1655 $\Delta btsT$ pBAD24 (gray) were measured at a final pyruvate concentration of 10 µM at 15°C. Standard deviations are estimated from three biological replicates.

586

Figure 4. Characterization of BtsT-mediated pyruvate uptake by intact *E. coli* **cells.** ¹⁴Cpyruvate uptake was analyzed in freshly grown cells expressing *btsT* from pBAD24-*btsT*. Initial uptake rates were measured at a pyruvate concentration of 10 μ M. (A) Effects of the indicated protonophores and ionophores on pyruvate uptake by BtsT. Cells were pre591 incubated at room temperature with the inhibitors for 30 min. (B) Effects of the indicated 592 substrates on pyruvate uptake by BtsT. Each individual compound (1 mM) was added simultaneously with ¹⁴C-pyruvate. ANOVA was used to calculate the statistical significance 593 in panels A and B (P values are denoted as * $P \le 0.05$, ** $P \le 0.01$). Standard deviations (A 594 595 and B) are estimated from three biological replicates with no background correction. (C) The K_m value was determined by quantification of the initial rate of pyruvate uptake by BtsT in the 596 597 presence of various concentrations of the substrate. The values were corrected by the 598 determined diffusion rates (Fig. S8). The best-fit line was determined by nonlinear regression 599 using the equation y = Bmax * x / (Kd + x). Error bars represent standard error of the mean.

600

601 Figure 5. Influence of $\Delta \tilde{\mu}_{H+}, \Delta \Psi, \Delta pH$ and $\Delta \tilde{\mu}_{Na+}$ on BtsT-mediated pyruvate uptake into proteoliposomes of E. coli. Uptake of ¹⁴C pyruvate was analyzed using proteoliposomes 602 603 reconstituted with purified BtsT. Uptake rates were measured at a pyruvate concentration of 604 40 μ M. (A) Time course of pyruvate uptake in the presence of artificially imposed $\Delta \tilde{\mu}_{H+}$ (green), $\Delta \Psi$ (orange), ΔpH (red) or $\Delta \tilde{\mu}_{Na^+}$ (brown), or in the absence of any gradient (gray). 605 606 (B) Initial rates of pyruvate uptake by BtsT calculated using linear regression during the linear uptake phase. (C) Counterflow experiment. Uptake of ¹⁴C-pyruvate into proteoliposomes 607 608 preloaded with pyruvate (green). In the control experiment proteoliposomes were preloaded with lactate (gray). ANOVA was used to calculate the statistical significance (P values in B 609 610 are denoted as * $P \le 0.05$, ** $P \le 0.01$, *** $P \le 0.001$). Standard deviations are estimated 611 from three technical replicates.

FIG 2

FIG1

FIG 5

Time (min)

Chapter 4

A single-cell view of the BtsSR/YpdAB pyruvate sensing network in *Escherichia coli* and its biological relevance

Vilhena, C., Kaganovitch, E., Shin, JY., Grünberger, A., Behr, S., Kristoficova, I., Brameyer, S., Kohlheyer, D., Jung, K. (2017).
J Bacteriol, 2017, in press
http://doi.org/10.1128/JB.00536-17

A Single-Cell View of the BtsSR/YpdAB Pyruvate Sensing Network in *Escherichia coli* and Its Biological Relevance

Cláudia Vilhena,^a Eugen Kaganovitch,^b Jae Yen Shin,^{a*} Alexander Grünberger,^{b*} Stefan Behr,^{a*} Ivica Kristoficova,^a Sophie Brameyer,^{a*} Dietrich Kohlheyer,^{b,c} Kirsten Jung^a

^aMunich Center for Integrated Protein Science, Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany

^bInstitute for Bio- and Geosciences (IBG-1), Department of Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany

^cRWTH Aachen University-Microscale Bioengineering (AVT.MSB), Aachen, Germany

Journal of

MICROBIOLOGY Bacteriology

AMERICAN SOCIETY FOR

ABSTRACT Fluctuating environments and individual physiological diversity force bacteria to constantly adapt and optimize the uptake of substrates. We focus here on two very similar two-component systems (TCSs) of Escherichia coli belonging to the LytS/LytTR family: BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB. Both TCSs respond to extracellular pyruvate, albeit with different affinities, typically during postexponential growth, and each system regulates expression of a single transporter gene, yjiY and yhjX, respectively. To obtain insights into the biological significance of these TCSs, we analyzed the activation of the target promoters at the single-cell level. We found unimodal cell-to-cell variability; however, the degree of variance was strongly influenced by the available nutrients and differed between the two TCSs. We hypothesized that activation of either of the TCSs helps individual cells to replenish carbon resources. To test this hypothesis, we compared wild-type cells with the btsSR ypdAB mutant under two metabolically modulated conditions: protein overproduction and persister formation. Although all wild-type cells were able to overproduce green fluorescent protein (GFP), about half of the btsSR ypdAB population was unable to overexpress GFP. Moreover, the percentage of persister cells, which tolerate antibiotic stress, was significantly lower in the wild-type cells than in the btsSR ypdAB population. Hence, we suggest that the BtsS/BtsR and YpdA/YpdB network contributes to a balancing of the physiological state of all cells within a population.

IMPORTANCE Histidine kinase/response regulator (HK/RR) systems enable bacteria to respond to environmental and physiological fluctuations. *Escherichia coli* and other members of the *Enterobacteriaceae* possess two similar LytS/LytTR-type HK/RRs, BtsS/BtsR (formerly YehU/YehT) and YpdA/YpdB, which form a functional network. Both systems are activated in response to external pyruvate, typically when cells face overflow metabolism during post-exponential growth. Single-cell analysis of the activation of their respective target genes *yjiY* and *yhjX* revealed cell-to-cell variability, and the range of variation was strongly influenced by externally available nutrients. Based on the phenotypic characterization of a *btsSR ypdAB* mutant compared to the parental strain, we suggest that this TCS network supports an optimization of the physiological state of the individuals within the population.

KEYWORDS histidine kinase, nutrient limitation, overflow metabolism, persister cells

Typical two-component systems (TCSs) consist of a membrane-bound histidine kinase (HK), which perceives a stimulus, and a cytoplasmic response regulator (RR), which triggers an appropriate response (1, 2). *Escherichia coli* contains 30 TCSs in all.

Accepted manuscript posted online 16 October 2017 Citation Vilhena C, Kaganovitch E, Shin JY,

Received 5 September 2017 Accepted 9

October 2017

Grünberger A, Behr S, Kristoficova I, Brameyer S, Kohlheyer D, Jung K. 2018. A single-cell view of the BtsSR/YpdAB pyruvate sensing network in *Escherichia coli* and its biological relevance. J Bacteriol 200:e00536-17. https://doi.org/10 .1128/JB.00536-17.

Editor Thomas J. Silhavy, Princeton University Copyright © 2017 American Society for Microbiology. All Rights Reserved.

Address correspondence to Kirsten Jung, jung@Imu.de.

* Present address: Jae Yen Shin, Max Planck Institute of Biochemistry, Martinsried, Germany; Alexander Grünberger, Multiscale Bioengineering, Bielefeld University, Bielefeld, Germany; Stefan Behr, Roche Diagnostics GmbH, Penzberg, Germany; Sophie Brameyer, University College London, London, United Kingdom.

FIG 1 Model of the nutrient-sensing BtsS/BtsR and YpdA/YpdB network in *E. coli*. The scheme summarizes the signal transduction cascades triggered by the BtsS/BtsR and YpdA/YpdB systems and the influence of other regulatory elements. Activating (\rightarrow) and inhibitory (\vdash) effects are indicated. PP, periplasm; CM, cytoplasmic membrane; CP, cytoplasm. See the text for details.

Members of the LytS/LytTR family make up one prominent class of TCSs, representatives of which are found in many microorganisms. Examples include AgrC/AgrA from Staphylococcus aureus, which is involved in the transition from the persistent, avirulent state to the virulent phenotype (3), while FsrC/FsrA from Enterococcus faecalis is responsible for the production of virulence-related proteases (4), and VirS/VirR from Clostridium perfringens induces the synthesis of exotoxins and collagenase (5, 6). In our laboratory, we are studying the only two known members of the LytS/LytTR family in E. coli: BtsS/BtsR (previously YehU/YehT) and YpdA/YpdB (7-10). These two TCSs not only share the same domain structure, they also display over 30% identity at the amino acid sequence level (9). BtsS/BtsR activation leads to the expression of yjiY, YpdA/YpdB activation results in yhjX expression (Fig. 1). Both target genes code for transporters, which belong to different transporter families: YjiY is a member of the CstA family, and YhjX has been assigned to the oxalate/formate antiporter (OFA) family (7, 8, 11). In addition, the cyclic AMP (cAMP) receptor protein (CRP) complex (CRP-cAMP) uprequlates yjiY at the transcriptional level (7), whereas the carbon storage regulator A (CsrA) upregulates yhjX and downregulates yjiY at the posttranscriptional level.

In previous studies we found functional interconnectivity of the two TCSs (9). Deletion of either component of the TCS or its target gene influences the level of expression of the target gene regulated by the other TCS and vice versa (9). In addition, *in vivo* protein-protein interaction assays suggested that the two systems form a single, large signaling unit (Fig. 1). Moreover, when *E. coli* was grown in tryptone-based (LB) medium, both systems are activated at the onset of the post-exponential growth phase (9). A more refined study revealed that the BtsS/BtsR system is activated in the presence of extracellular pyruvate (at a threshold concentration of 50 μ M) under nutrient-depleted conditions (10). Biochemical studies confirmed that BtsS is a high-affinity pyruvate receptor ($K_d = 58.6 \ \mu$ M) (10). Recently, the corresponding YjiY transporter was characterized as a high-affinity pyruvate, albeit at a higher threshold concentration of 600 μ M (8).

The biological significance of the BtsS/BtsR and YpdA/YpdB network is still unclear. To explore this issue, we determined the activation states of the two systems at the single-cell level in *E. coli* populations. Using separate fluorescence reporter strains for each system, we found a correlation between the available nutrient resources and the degree of heterogeneity in the transcriptional responses of the target gene promoters in individual cells. Based on this finding and further phenotypic analyses, we suggest that the BtsS/BtsR and YdpA/YpdB systems play a role in optimization of the physiological status of the individual cells within the population.

FIG 2 Single-cell analysis of P_{yhjX} and P_{yjiY} activation during growth in LB medium. *E. coli* cells expressing *gfp* under the control of the *yhjX* or *yjiY* promoter, respectively, were grown in LB medium, and fluorescence micrographs were taken before (exponential growth phase) and after activation (post-exponential growth phase) of the two TCSs. Representative fluorescence and phase-contrast images of P_{yhjX} *gfp* and P_{yjiY} *gfp* reporter strains are shown in panels A and C, respectively. The corresponding distributions of the fluorescence intensity of the P_{yhjX} *gfp* and P_{yjiY} *gfp* reporter strains are shown in cativation, and filled bars refer to values prior to activation, and filled bars refer to values observed after activation. Dashed lines represent the threshold of activation for each of the reporter strains. A total of 200 cells were analyzed in each experiment, and frequency refers to the percentage of cells with the indicated intensity (see Materials and Methods for details). The continuous curves represent Gaussian fits based on the histograms of the fluorescence intensity. PH, phase contrast; AU, arbitrary units. Scale bar, 2 μ m. Experiments were performed independently three times.

RESULTS

Heterogeneous activation of P_{yhjx}-gfp and P_{yjjy}-gfp. For the BtsS/BtsR and YpdA/ YpdB systems, population-based studies have shown that the promoters of their respective target genes, $y_{ij}Y$ and $y_{hj}X$, are activated in cells which face nutrient limitation and sense the presence of external pyruvate (9, 10). Since both systems are linked to form a network, we analyzed the activation of these two promoters at the single-cell level. We constructed fluorescent reporter strains by fusing the promoter regions of yhjX and yjiY to gfp and introduced each fusion separately into the genome of E. coli MG1655 via single homologous recombination at the native locus. Using this strategy, the regulatory inputs to the native promoters of yjiY and yhjX were maintained (9), as the promoter fused to gfp is inserted upstream of the original one (13). The fluorescence intensity of green fluorescent protein (GFP) was used to quantify the activity of the two promoters, thus allowing us to study the transcriptional activation of y_{ij} and y_{hj} in single cells. The growth rates in LB medium of strains containing a chromosomal copy of either promoter fusion (from now on referred to as P_{vhix}-gfp and P_{viiv}-gfp) were similar to that of the MG1655 wild-type strain (see Fig. S1 in the supplemental material).

From population studies it is known that in cells grown in LB medium, which is rich in amino acids and leads to the overflow of pyruvate, both promoters are activated at the onset of the post-exponential growth phase (9). Hence, as expected, at the single-cell level neither P_{yhjx} -gfp nor P_{yjiy} -gfp showed any activity during the exponential growth phase (Fig. 2A and C, before activation) in LB medium. However, when cells reached the end of the exponential growth phase, we observed activation of the yhjX

FIG 3 Effects of different external pyruvate concentrations on P_{yhjx} -gfp activation at the single-cell level. *E. coli* cells expressing gfp under the control of the P_{yhjx} promoter were grown in M9 minimal medium containing increasing concentrations of pyruvate (supplemented with succinate; final carbon concentration, 20 mM) and analyzed by fluorescence microscopy. A total of 200 cells was analyzed in each experiment at the time point of maximal expression, and frequency refers to the percentage of cells with the indicated intensity (see Materials and Methods). Histograms of the fluorescence intensities of cells were fitted using a Gaussian distribution (solid line). The dashed line represents the threshold of activation for the reporter strain. AU, arbitrary units. Experiments were performed independently three times.

promoter, as indicated by a shift of the distribution of fluorescence intensities to higher levels (Fig. 2A and B, after activation) in the majority of the population, albeit with a high degree of cell-to-cell variability as seen in the width of the Gaussian distribution (noise value [standard deviation divided by the mean] = 0.27). Less than 4% of the population was found to be nonfluorescent and therefore did not respond (the threshold of activation is marked by the dashed line in Fig. 2B). To differentiate these cells from dead cells, we stained cells with propidium iodide and found that dead cells made up only 0.4% of the population (data not shown).

Cells of the P_{yjiY} -gfp strain cultivated in LB medium also showed heterogeneous activation upon entry into the post-exponential growth phase. These strains exhibited an even higher noise value of 0.52 and a higher percentage of nonresponding cells (9%) (Fig. 2D) (the percentage of dead cells was determined to be 0.6%).

To determine the basal noise level of a promoter in cells at this growth phase, we performed a control experiment, in which *gfp* expression is controlled by a synthetic vegetative promoter (pXGSF). Cells harboring the vector pXGSF activate this promoter at the post-exponential growth phase (R. Hengge, unpublished data). In this experiment the promoter was activated in all the cells, and the variability was lower (i.e., 0.13) than that observed for either P_{yjiY} -*gfp* or P_{yhjX} -*gfp*. Taken together, these results indicate a heterogeneous, almost unimodal pattern of transcriptional activation for each of the two target genes of the BtsS/BtsR and YpdA/YpdB systems at the end of the exponential phase, when cells are grown in LB medium.

The degree of heterogeneity of P_{yhjx} -gfp activation depends on the external pyruvate concentration. Although the exact nature of the primary stimulus for the YpdA/YpdB system remains elusive, we know from previous studies that P_{yhjX} is activated in cells which are exposed to extracellular pyruvate concentrations greater than 0.6 mM (9). Aiming to further explore the single-cell behavior of this promoter activity, we analyzed the pyruvate dependence of the activation of YpdA/YpdB by determining the fluorescence intensities of P_{yhjX} -gfp reporter cells cultivated in M9 minimal medium supplemented with increasing concentrations of pyruvate (succinate was added to keep the total carbon concentration constant at 20 mM) (Fig. 3). As expected, a pyruvate concentration below the threshold (0.3 mM) failed to activate the YpdA/YpdB system in single cells. At pyruvate concentrations above the threshold, all

FIG 4 Effects of different external pyruvate concentrations on $P_{yjiv} gfp$ activation at the single-cell level. *E. coli* cells expressing gfp under the control of the P_{yjiv} promoter were grown in a nutrient-poor environment (0.1× LB medium) for 1 h. The medium was then supplemented with 20 mM pyruvate (A) or with increasing pyruvate concentrations (B), and the cells were subsequently analyzed by fluorescence microscopy. A total of 200 cells were analyzed for each experiment, and frequency is represented as a percentage of the cells (refer to Materials and Methods for a detailed explanation). Histograms of the fluorescence intensities of cells were fitted using a Gaussian distribution (solid line). Dashed lines represent the threshold of activation for the reporter strain. AU, arbitrary units. Experiments were performed three independent times. For further details, see the legends to Fig. 2 and 3.

cells in the population homogenously activate the *yhjX* promoter. The presence of 0.6 mM pyruvate in the medium generated a low, but detectable P_{yhjX} -gfp signal in the cells and the presence of 1 mM pyruvate shifted the expression level toward higher values. Interestingly, the response was markedly less heterogeneous (noise value of 0.18) in cells grown under these conditions than in the cells grown in LB medium (noise value of 0.27). Further increases in the external pyruvate concentration (2 and 10 mM) boosted the signal intensities, while the variability further decreased (to 0.09 and 0.07, respectively) (Fig. 3). These results reveal a correlation between external pyruvate availability and P_{yhjX} -gfp activation.

The degree of heterogeneity of P_{yjiY}-gfp activation is influenced both by the external pyruvate level and the metabolic state of the cells. As previously described, growth of cells in M9 minimal medium with pyruvate as sole carbon source (20 mM) is not sufficient to activate the P_{vii} promoter, because both extracellular pyruvate and nutrient limitation are needed to trigger BtsS/BtsR activation (10). Therefore, our reporter strain had first to be exposed to nutrient limitation (growth in 0.1× LB medium for 1 h) before pyruvate was added. Under these conditions, no activation of Pviirg-gfp was detected (data not shown), in accordance with our previous studies (10). Pyruvate was then added to the cell culture at a final concentration of 20 mM, and cells were analyzed by fluorescence microscopy at various time points. Cells responded within 70 min and exhibited a higher average gfp intensity than cells grown in LB medium, which confirmed the strong response of the BtsS/BtsR system to pyruvate after exposure of cells to nutrient limitation (Fig. 4A). Remarkably, in this case activation of P_{viiv} -gfp remained heterogeneous (noise value of 0.27) in spite of the abundance of pyruvate. Subsequently, we tested five different pyruvate concentrations to assess the pyruvate concentration dependence of BtsS/BtsR activation (Fig. 4B). Below the threshold of 50 μ M (0.01 mM) to which BtsS/BtsR responds, there was no detectable P_{vii}-gfp signal. As expected, only a few cells produced a weak GFP signal in an environment containing 0.05 mM pyruvate. Starting at a concentration of 0.1 mM pyruvate, P_{viiv} activation was found in all cells, but with a high degree of cell-to-cell variability (noise value of 0.27). At higher pyruvate concentrations, the signal intensity increased, but the noise values were unchanged. The broad Gaussian distribution found at 1 mM pyruvate resembled the profile found for cells at 20 mM pyruvate (Fig. 4A). A t test was performed on the mean values of the two distributions, and the P value was determined to be 0.88. This value revealed that there is no significant difference between the cellular responses at 1 and 20 mM pyruvate. These results confirmed at the single-cell level that BtsS/BtsRmediated activation of Pviir-gfp is not only dependent on the pyruvate concentration but is also influenced by internal nutrient limitation.

FIG 5 In the absence of the BtsSR/YpdAB network, *rrnB* P1 promoter activity is low and bistable. Wild-type *E. coli* MG1655 (blue) or mutant *btsSR ypdAB* (red) cells harboring a chromosomally encoded *rrnB* P1-*gfp* fusion were grown in LB medium and examined by fluorescence microscopy. For further details, see the legends to Fig. 2 and 3. A total of 200 cells were analyzed for each experiment at the post-exponential growth phase, and frequency is represented as a percentage of the cells (refer to Materials and Methods for detailed explanation). Histograms of the fluorescence intensities of cells were independent times.

Cellular physiology in the post-exponential growth phase. We have shown thus far that transcriptional activation of both target genes of the BtsS/BtsR and YpdA/YpdB network occurs heterogeneously. Furthermore, their activation is influenced by the availability of external pyruvate, albeit with different thresholds.

Since the two systems are activated in the post-exponential growth phase in LB medium, we decided to explore the impact of the BstS/BtsR and YpdA/YpdB systems on the overall physiological state of *E. coli* during this growth phase. In order to do so, we investigated individual cells of both *E. coli* MG1655 (the wild-type [WT] strain) compared to a strain lacking both systems: MG1655 $\Delta btsSR \ \Delta ypdAB$ (abbreviated as the *btsSR ypdAB* mutant).

Fast-growing cells express high levels of 16S RNA from the *rrnB* P1 promoter (14). Cells with an inactive *rrnB* P1 promoter are likely to be dormant, antibiotic-tolerant persisters (14, 15). Recently, the strength of *rrnB* P1 promoter activation was shown to correlate with intracellular ATP levels (16). We therefore fused the ribosomal *rrnB* P1 promoter to *gfp* as previously described (14) and integrated this construct into the genomes of the two strains as a marker for their physiological states.

As expected, *E. coli* MG1655 WT *rrnB* P1-*gfp* showed a Gaussian distribution of GFP signal intensities, with a mean fluorescence value of 510 arbitrary units (AU) and noise level of 0.16 (Fig. 5). In contrast, the *btsSR ypdAB rrnB* P1-*gfp* mutant had a lower overall *rrnB* P1-*gfp* activity (average fluorescence intensity of 398 AU), which indicates a lower rate of ribosome synthesis within the population. Most strikingly, a bistable distribution of the signal was observed. These results suggest that, in the absence of both systems, the population differentiates into two subpopulations, one with a normal and another with a reduced ribosome synthesis rate.

The BtsSR/YpdAB network promotes protein overproduction. To test the idea that BtsS/BtsR and YpdA/YpdB systems together act to optimize the physiological state of cells within the population, we set out to metabolically challenge the *btsSR ypdAB* mutant and compare its response to that of the parental *E. coli* MG1655 WT strain. Interestingly, *E. coli* C41 (DE3), also known as the Walker strain, has been optimized for maximal overproduction of membrane and globular proteins (17). Subsequently, the genome of this strain was sequenced and, among other mutations, a point mutation in *btsS* was found that led to constitutive expression of *yjiY* (18). Based on these data, we hypothesized that the BtsS/BtsR and YpdA/YpdB systems might help cells to cope with the metabolic burden of protein overproduction.

In order to test this hypothesis, both strains (WT and the *btsSR ypdAB* mutant) were transformed with the overexpression vector pBAD24-*gfp*, which carries *gfp* under the

FIG 6 The BtsSR/YpdAB network promotes homogeneous protein overproduction in all cells. Wild-type (WT) or *btsSR ypdAB* mutant cells harboring the overproduction vector pBAD24-*gfp* were grown in LB medium. Samples were taken before and after the addition of the inducer arabinose (Ara) (0.2% [wt/vol]). The cells were analyzed by fluorescence microscopy and flow cytometry. Distributions of fluorescence ell counts and representative views of WT cells before and after addition of arabinose are shown in panels A and B, while the corresponding data for the *btsSR ypdAB* mutant are depicted in panels C and D. About 2,000 events were recorded for each plot. Cell counts represent the numbers of cells, and fluorescence intensity is expressed in arbitrary units (AU). Scale bar, 2 μ m. Experiments were performed independently three times.

control of an arabinose-inducible promoter. Before induction with arabinose, fluorescence microscopy of single WT and *btsSR ypdAB* mutant cells showed no apparent GFP signals, and flow cytometry confirmed that the maximal fluorescence intensity of green cells (~750 AU) was low (Fig. 6A and C), indicating little or no GFP expression. One hour after induction with 0.2% (wt/vol) arabinose, cells of the WT population were producing GFP, which was clearly detected as an increase in the maximum fluorescence observed by flow cytometry (to ~1,100 AU). This result was corroborated by the detection of labeled single cells with fluorescence microscopy (Fig. 6B). In contrast, flow cytometric analysis of the mutant under inducing conditions detected two peaks: one at 1,100 AU, as in the WT, and a second at 750 AU. The accompanying micrographs revealed the presence of fluorescent and nonfluorescent cells (Fig. 6D). Therefore, the low-intensity peak in the flow cytometer represents cells that are unable to produce GFP in large amounts. The C41 (DE3) strain was also tested and was found to be capable of a homogeneously high protein overproduction, as expected (data not shown).

We also tested the overproduction of (i) GFP under the control of the IPTG (isopropyl- β -D-thiogalactopyranoside)-inducible *lac* promoter (pCOLA-P_{*lac*}-gfp), (ii) the periplasmic protein DppA fused to the Tat translocation sequence (19) and under the control of the arabinose promoter (pBAD24-RR-gfp-dppA), and (iii) the membrane protein LysP fused to a different fluorophore and under the control of an arabinose-inducible promoter (pBAD33-*lysP*-*mcherry*) (see Table S1 in the supplemental material). The results obtained for the IPTG-inducible GFP reporter were similar to those for the arabinose-controlled system. The *btsSR ypdAB* mutant was hardly able to overproduce the periplasmic DppA or the membrane protein LysP. In summary, the BtsS/BtsR and YpdA/YpdB sensing network helps *E. coli* to cope with the additional metabolic burden imposed by protein overproduction.

FIG 7 The BtsSR/YpdAB network reduces the proportion of persister cells in populations. Either WT (blue lines) or mutant *btsSR ypdAB* (red lines) cells were grown in LB medium. Before (exponential growth phase) (A) and after (B) activation (post-exponential growth phase) of the systems, the cells were exposed to ampicillin (200 μ g/ml). Samples were taken and analyzed for CFU. Three independent experiments were performed, and error bars indicate the standard deviations of the means.

The BtsSR/YpdAB network limits the proportion of persister cells in WT populations. We hypothesized that the heterogeneous distribution of the capacity for protein overproduction among the btsSR ypdAB mutant population might be related to the presence of a subpopulation of cells that are unable to sense nutrient limitation and consequently fail to activate transporters to acquire needed resources. Persister cells survive exposure to antibiotics owing to their altered metabolic activity and low growth rate, but they can subsequently resume growth to form an antibiotic-sensitive population (20). We were interested to know whether the BtsS/BtsR and YpdA/YpdB network has an influence on persister cell formation. To address this question, we performed population-based studies by exposing growing WT or btsSR ypdAB mutant cells to ampicillin and determining the number of CFU. Only cells able to recover from the stress will form CFU. We subdivided a growing culture and exposed cells to ampicillin before and after the natural activation of the signaling systems, namely, at an optical density at 600 nm (OD₆₀₀) of 0.4 (exponential growth phase) and 1.2 (post-exponential growth phase) (9). After treatment with ampicillin a biphasic time-dependent killing curve was observed, which is typical for persister formation (Fig. 7) (20). When cells were exposed to ampicillin prior to activation of the signaling systems, the two strains exhibited almost identical patterns of response, characterized by a steep initial decrease in CFU, followed by a slower killing rate, revealing persister cells (Fig. 7A). Ampicillin treatment of cells after activation of the signaling systems resulted in a considerably higher level of persister cells in the mutant (2.15%) than the WT (0.14%) population (Fig. 7B).

In parallel, the minimum time taken to kill 99% of the population (MDK_{99}) (21) was determined for both strains after exposure to ofloxacin. The value for the WT was determined to be 0.49 h, and for the *btsSR ypdAB* mutant it was 1.98 h, which is compatible with the higher fraction of persisters in the mutant population (see Fig. S2 in the supplemental material).

These results reveal a novel role for the BtsS/BtsR and YpdA/YpdB signaling network in reducing the percentage of persister cells in a growing population. They are also in accordance with the idea of a contribution of both systems to help individual cells to replenish nutrient resources.

DISCUSSION

BtsS/BtsR (formerly YehU/YehT) is one of the most widespread TCSs in bacteria and is found in many human and plant pathogens. Although most gammaproteobacteria contain this system, some, including *Escherichia*, *Citrobacter*, and *Serratia*, have a second homologous system, YpdA/YpdB (22). Both belong to the LytS/LytTR family. Previous systematic studies failed to identify a function for these TCSs (23, 24). We have now identified the HK BtsS as a high-affinity pyruvate receptor ($K_d = 58.6 \ \mu$ M) and YpdA/YpdB as a system that responds to higher levels (>0.6 mM) of the same compound (8, 10). The target genes regulated by the two systems code for the high-affinity pyruvate/H⁺ symporter YjiY (recently renamed BtsT [12]) and a transporter of unknown function, YhjX. However, the biological significance of the BtsS/BtsR and YpdA/YpdB systems has remained unclear.

Therefore, we first investigated the activation of the target genes of each system at the single-cell level using promoter fusions. We found that in clonal populations the chromosomally integrated copies of either P_{yjiY} -gfp or P_{yhjX} -gfp were heterogeneously activated when grown in LB medium, which is rich in amino acids (Fig. 2), and that induction of P_{yjiY} -gfp was slightly more variable than that of P_{yhjX} -gfp. In both cases, a predominantly unimodal Gaussian distribution of activation levels was observed, and only a very small percentage of cells remained in the OFF state. This pattern of activation differs markedly from the "all-or-nothing," switch-like gene expression described for the *lac* or *ara* promoter (25, 26). However, the heterogeneous, but unimodal activation of yhjX and yjiY can, in principle, be explained by the multiple factors known to affect their expression: (i) binding of the respective transcriptional activators BtsR and YdpB (27), (ii) the influence of the cAMP/CRP protein (P_{yjiY}), (iii) fine-tuning by the carbon starvation regulator CsrA (Fig. 1), and (iv) variations in the physiological state between cells (see below).

YpdA/YpdB-mediated activation of P_{yhjx} was found to be dependent on the concentration of pyruvate in the medium and became homogenous when cells were grown in minimal medium containing pyruvate (20 mM) as the sole carbon source (Fig. 3). In contrast, under all tested conditions BtsS/BtsR-mediated activation of P_{yjiY} was characterized by high cell-to-cell variability, which was virtually unaffected by the amount of pyruvate in the medium (Fig. 4). It is important to note that the BtsS/BtsR systems, whose target gene codes for a high-affinity pyruvate transporter, is only activated by external pyruvate when cells concurrently face nutrient limitation (Fig. 4) (10). The high degree of heterogeneity might reflect variations in the nutritional state of individual cells and differing needs for the high-affinity pyruvate transporter YjiY. Therefore, the BtsS/BtsR system responds only when cells are in need of a high-affinity uptake transporter to scavenge traces of available nutrients, e.g., pyruvate.

It has been proposed that cellular metabolism is both inherently stochastic and a generic source of phenotypic heterogeneity (28). In this general context, the results of our single-cell studies can be accommodated by the following model for the role of the two Lyts/LytTR-type systems in *E. coli*. Under certain conditions, e.g., during growth in LB medium, cells excrete pyruvate due to overflow metabolism. Subsequently, other nutrients are depleted, and cells sense the availability of pyruvate. Depending on the external pyruvate concentration and their particular nutritional needs, individual *E. coli* cells activate either the high-affinity BtsS/BtsR and/or the low-affinity YpdA/YpdB system upon entry into the post-exponential growth phase. The interplay between transporters with different affinities for the same substrate has already been described, and this seems to be a successful strategy under nutrient limitation (29).

By using a reporter for the rate of ribosome synthesis, we found that only populations of reporter cells harboring the nutrient-sensing network exhibited unimodal activation of the *rrnB* P1 promoter, whereas the *btsSR ypdAB* mutant was characterized by a bimodal expression pattern (Fig. 5). The heterogeneous activation of either P_{yjiY} or P_{yhjX} in individual WT cells allows uptake of nutrients, e.g., pyruvate, according to the individual requirement of the cells. This results in a unimodal distribution of the activation level of the *rrnB* P1 promoter characteristic of growing cells. It should be noted that previous physiological studies revealed that *E. coli* has more than one pyruvate transporter (30), although only YjiY has thus far been characterized as high-affinity pyruvate transporter (12). Therefore, we assume that individuals within the population of the *btsSR ypdAB* mutant can cope with the lack of the sensing/transport of pyruvate and have normal ribosome synthesis. In addition, we imposed a metabolic burden by forcing cells to overproduce particular proteins. This is a natural scenario, since many pathogens have to produce virulence factors, excenzymes, siderophores,

TABLE 1 Bacterial strains and plasmids used in this study

Strain or plasmid	Relevant genotype or description ^a	Source or reference
E. coli strains		
MG1655	$F^- \lambda^-$ ilvG rfb50 rph-1	35
ST18	S17lpir ΔhemA	36
DH5 <i>a</i>	fhuA2 lac Δ U169 phoA glnV44 ϕ 80' lacZ Δ M15 gyrA96 recA1	37
	relA1 endA1 thi-1 hsdR17	
MG 35	MG1655 ΔbtsSR ΔypdAB	This study
MG 2	MG1655 $\Delta yehUT = \Delta btsSR$	7
MG 20	MG1655 <i>DypdAB</i>	8
MG1655 P _{vhiX} -gfp	Integration of P _{vhix} -gfp at the native locus in E. coli MG1655	This study
MG1655 P _{yii} y-gfp	Integration of P _{viir} -gfp at the native locus in E. coli MG1655	This study
MG1655 P _{rrnB P1} -gfp	Integration of P_{rrnBP1} -gfp at the native locus in E. coli MG1655	This study
MG 35 P _{rrnB P1} -gfp	Integration of P _{rrnB P1} -gfp at the native locus in E. coli MG 35	This study
Plasmids		
pRed/ET	λ -RED recombinase in pBAD24; Amp ^r	Gene Bridges
pCP20	FLP-recombinase, λcl 857 ⁺ , λpR Rep ^{ts} ; Amp ^r Cm ^r	38
pNPTS138-R6KT	mobRP4 ⁺ ori-R6K sacB, suicide plasmid; Kan ^r	13
pNPTS138-R6KT-P _{yhjx} -gfp	300 bp of P _{yhjx} fused to <i>gfp</i> and cloned into EcoRI/PspOMI sites of pNPTS138-R6KT; Kan ^r	This study
pNPTS138-R6KT-P _{yjiY} -gfp	300 bp of P _{yjiV} fused to <i>gfp</i> and cloned into EcoRI/PspOMI sites of pNPTS138-R6KT; Kan ^r	This study
pNPTS138-R6KT-P _{rrnBP1} -gfp	300 bp of P _{rmB P1} fused to <i>gfp</i> and cloned into EcoRI/PspOMI sites of pNPTS138-R6KT; Kan ^r	This study
pXGSF	gfp under the control of a vegetative synthetic promoter	G. Klauck and R. Hengge, unpublished data
pBAD24	Arabinose-inducible P _{BAD} promoter, pBR322 ori; Amp ^r	39
pBAD24- <i>gfp</i>	gfp cloned in the EcoRI and Ncol sites of pBAD24	26
pBAD24-RR-gfp	<i>gfp-mut2</i> cloned in the Nhel and HindIII sites of pBAD24 (p8754 derivative)	19
pBAD24-RR-gfpmut-dppA	<i>dppA</i> cloned in the HindIII site of pBAD24-RR- <i>gfpmut2</i>	This study
pCOLA Duet-1	Expression vector, ColA ori; Kan ^r	Merck
pCOLA-P _{lac} -gfp	<i>gfp</i> under the control of the IPTG-inducible <i>lac</i> promoter	This study
	cloned in the BamHI and HindIII sites of pCOLA-Duet-1	
pBAD33- <i>lysP</i>	lysP in pBAD33; Cm ^r	40
pBAD33-lysP-mcherry	mcherry cloned in the Xbal and Sall sites of pBAD33-lysP; Cm ^r	This study

^aCm^r, chloramphenicol resistance; Kan^r, kanamycin resistance; Amp^r, ampicillin resistance.

etc., in large amounts. Although all WT cells managed to cope with this burden, about 50% of the mutant cells failed to overproduce the test protein, GFP, a pattern which we also observed for the activation of the *rmB* P1 promoter (Fig. 6). It should be noted that the evolved *E. coli* C41(DE3) strain, which has been optimized for protein overproduction, has a point mutation in *btsS* that leads to stimulus-independent expression of *yjiY* (18). In light with the results presented here, the constitutive expression of the high-affinity pyruvate transporter YjiY in strain C41 guarantees a sufficient uptake of pyruvate in all cells independent from external or internal factors. Finally, a population-based persister assay revealed that *btsSR ypdAB* populations contain a higher percentage of antibiotic-tolerant persister cells (dormant cells) than do WT populations (Fig. 7).

Taking these results into account, the model described above can be further extended. Sensing of external pyruvate by the BtsS/BtsR and YpdA/YpdB systems and the tight regulation of expression of the two transporters YjiY and YhjX depending on the needs of the individual cell ensures an optimization of the physiological state within the whole population to withstand upcoming metabolic stress. These findings are important not only in light of the host colonization of pathogenic species and their persistence but also for metabolic engineering.

MATERIALS AND METHODS

Bacterial strains and growth conditions. The *E. coli* strains, including their genotypes, and the plasmids used in this study are listed in Table 1. Mutants were constructed using an *E. coli* Quick-and-Easy gene deletion kit (Gene Bridges) and a BAC modification kit (Gene Bridges), as previously reported (31). Both kits rely on the Red/ET recombination technique (31). The oligonucleotide sequences are available on request.

E. coli MG1655 strains (Table 1) were grown overnight in lysogeny broth (LB; 10 g/liter NaCl, 10 g/liter tryptone, 5 g/liter yeast extract). After inoculation, bacteria were routinely grown in LB medium under agitation (200 rpm) at 37°C. For solid medium, 1.5% (wt/vol) agar was added. Where appropriate, media were supplemented with antibiotics (kanamycin sulfate, 50 μ g/ml; ampicillin sodium salt, 100 μ g/ml). For the "low-nutrient environment" experiments, cells from an overnight culture in LB were inoculated into 0.1× diluted LB at a starting OD₆₀₀ of 0.05 and grown for 1 h. Pyruvate was then added to the cultures to a final concentration of 0.01, 0.05, 0.1, 0.2, 1, or 20 mM.

E. coli MG1655 strains were also grown overnight in M9 minimal medium with 0.5% (wt/vol) glucose as sole carbon source. Bacteria were then inoculated into M9 minimal medium supplemented with increasing concentrations of pyruvate (0.3, 0.6, 1, 2, and 10 mM), and the total carbon source concentration was adjusted to 20 mM using succinate. The conjugation strain *E. coli* ST18 was grown in the presence of 50 μ g/ml 5-aminolevulinic acid.

Construction of fluorescence reporters. Molecular manipulations were carried out according to standard protocols (32). Plasmid DNA and genomic DNA were isolated using a HiYield plasmid minikit (Sued-Laborbedarf) and a DNeasy blood and tissue kit (Qiagen), respectively. DNA fragments were purified from agarose gels using a HiYield PCR cleanup and gel extraction kit (Sued-Laborbedarf). Q5 DNA polymerase (New England BioLabs) was used according to the supplier's instructions. Restriction enzymes and other DNA-modifying enzymes were also purchased from New England BioLabs and used according to the manufacturer's directions. Replicative plasmids were transferred into *E. coli* strains using competent cells prepared as described previously (33).

For construction of the promoter-*gfp* fusions, 300-bp segments of the region immediately upstream of the coding sequence were amplified using oligonucleotide pairs containing EcoRI/PspOMI restriction sites. The resulting promoter fragments were ligated into the γ -origin-dependent vector pNPTS138-R6KT-*gfp* after restriction with EcoRI/PspOMI. Chromosomal insertions of promoter-*gfp* into the designated *E. coli* strains were achieved by integrating the resultant suicide vectors pNPTS138-R6KT-P_{*yijγ*}*gfp* and pNPTS138-R6KT-P_{*yijγ*}*gfp* via RecA-mediated single homologous recombination as described previously (13). The donor strain *E. coli* ST18, containing the required plasmids, was cultivated together with the recipient *E. coli* MG1655 strain in LB medium, supplemented with additives as described, to an OD₆₀₀ of about 0.8. Recombination-positive clones were selected on kanamycin plates, and correct chromosomal integration was checked by PCR and sequencing. To prevent duplication instability, the reporter strains were always cultivated in the presence of kanamycin.

Single-cell fluorescence microscopy and analysis. To measure promoter activity in individual cells of the reporter strains, cells were cultivated as described above in a rotary shaker. Samples were taken (10 μ I) and analyzed on an agarose pad (0.5% [wt/vol] agarose in phosphate-buffered saline [PBS; pH 7.4]), which was placed on a microscope slide and covered with a coverslip.

Images were taken on a Leica microscope (DMI 6000B) equipped with a Leica DFC 365 Fx camera (Andor, 12 bit). An excitation wavelength of 460 nm and a 512-nm emission filter with a 75-nm bandwidth were used for visualization of GFP fluorescence, and an excitation wavelength of 546 nm and a 605-nm emission filter with the same bandwidth were used for visualization of red fluorescence. At least 200 cells per condition were analyzed. The digital images were analyzed using Fiji (34), and statistical analysis was performed using Prism version 5.03 for Windows (GraphPad Software, La Jolla, CA). The background fluorescence was subtracted from each field of view.

The noise was calculated by dividing the standard deviation by the mean. The higher the noise value the more heterogeneous the distribution. The percentage of dark cells was determined from the number of cells whose fluorescence levels overlapped with the negative control (before activation) and the total number of cells quantified. The frequency distributions depict the fraction of values which lie within the range of values that define the bin. The bin range was kept constant at 20 AU. Propidium iodide (Invitrogen, Eugene, OR) was added to the cell cultures at a final concentration of 5 μ M to stain dead cells (red fluorescence).

Overproduction experiments. Overnight cultures of *E. coli* MG1655 transformed with the plasmid pBAD24-*gfp* were diluted 100-fold in 20 ml of fresh LB medium supplemented with 100 μ g/ml of ampicillin sodium salt and incubated aerobically at 37°C until an OD₆₀₀ was reached 0.6 (early exponential phase). The cells were induced with L-arabinose 0.2% (wt/vol) for 1 h. Before and after induction, 100- μ l samples were taken, diluted 1:1,000 in PBS, and analyzed in a BD Accuri C6 flow cytometer equipped with a solid-state laser (488-nm emission; 20 mW). The green fluorescence emission from GFP was collected by the FL1 filter (BP 533/30 filter). Forward-angle light scatter (FSC) and side-angle light scatter (SSC) were collected in the FSC detector and SSC filter (BP 488/10 filter), respectively. The detection threshold was adjusted for FSC to eliminate noise, and the gate was set on the FSC-SSC dot plot to exclude debris. The sheath flow rate was 14 μ l/min, and no more than 100 events/s were acquired. For each sample run, a maximum of 2,000 events were collected. Analysis of data was carried out using Cytospec software (http://www.cyto.purdue.edu/Purdue_software).

Persister cell assay. To determine the number of persister cells, the number of CFU per ml was measured after exposure of the culture to 200 μ g/ml ampicillin. Overnight cultures were diluted 100-fold in 20 ml of fresh LB medium and incubated aerobically at 37°C until the OD₆₀₀ reached 0.4 or 1.2. Aliquots were then transferred to a new 100-ml flask (final OD₆₀₀ = 1), and the antibiotic was added. Every hour during antibiotic treatment, samples were taken, serially diluted in PBS, plated on LB agar, and incubated at 37°C for 16 h. CFU were counted as a measure of surviving persister cells. Persisters were calculated as the surviving fraction by dividing the number of CFU per milliliter in the culture after incubation with the antibiotic by the number of CFU per milliliter in the culture before addition of the antibiotic. Each experiment was repeated on three different days.

For calculation of the minimum duration of killing (MDK₉₉), the procedure described above was performed using ofloxacin (at a final concentration of 5 μ g/ml) as the antibiotic. The MDK₉₉ value corresponds to the time (in hours) needed to kill 99% of the initial population.

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/JB .00536-17.

SUPPLEMENTAL FILE 1, PDF file, 0.2 MB.

ACKNOWLEDGMENTS

We thank Nicola Lorenz and Tobias Bauer for strain construction and Lena Stelzer for excellent technical assistance. We thank Regine Hengge and Gisela Klauck for providing plasmids.

This study was financially supported by the Deutsche Forschungsgemeinschaft grants SPP1617 and Exc114/2 and projects JU270/13-2 (K.J.) and KO 4537/1-2 (D.K.).

The funders had no role in study, design, data collection and interpretation, or the decision to submit the work for publication.

REFERENCES

- 1. Mascher T, Helmann JD, Unden G. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910–938. https://doi.org/10.1128/MMBR.00020-06.
- Stock AM, Robinson VL, Goudreau PN. 2000. Two-component signal transduction. Annu Rev Biochem 69:183–215. https://doi.org/10.1146/ annurev.biochem.69.1.183.
- Sidote DJ, Barbieri CM, Wu T, Stock AM. 2008. Structure of the Staphylococcus aureus AgrA LytTR domain bound to DNA reveals a beta fold with an unusual mode of binding. Structure 16:727–735. https://doi.org/ 10.1016/j.str.2008.02.011.
- 4. Qin X, Singh KV, Weinstock GM, Murray BE. 2000. Effects of *Enterococcus faecalis fsr* genes on production of gelatinase and a serine protease and virulence. Infect Immun 68:2579–2586. https://doi.org/10.1128/IAI.68.5 .2579-2586.2000.
- Shimizu T, Shima K, Yoshino K, Yonezawa K, Shimizu T, Hayashi H. 2002. Proteome and transcriptome analysis of the virulence genes regulated by the VirR/VirS system in *Clostridium perfringens*. J Bacteriol 184: 2587–2594. https://doi.org/10.1128/JB.184.10.2587-2594.2002.
- Rood JI. 1998. Virulence genes of *Clostridium perfringens*. Annu Rev Microbiol 52:333–360. https://doi.org/10.1146/annurev.micro.52.1.333.
- Kraxenberger T, Fried L, Behr S, Jung K. 2012. First insights into the unexplored two-component system YehU/YehT in *Escherichia coli*. J Bacteriol 194:4272–4284. https://doi.org/10.1128/JB.00409-12.
- Fried L, Behr S, Jung K. 2013. Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in *Escherichia coli*. J Bacteriol 195:807–815. https://doi.org/ 10.1128/JB.02051-12.
- Behr S, Fried L, Jung K. 2014. Identification of a novel nutrient-sensing histidine kinase/response regulator network in *Escherichia coli*. J Bacteriol 196:2023–2029. https://doi.org/10.1128/JB.01554-14.
- Behr S, Kristoficova I, Witting M, Breland EJ, Eberly AR, Sachs C, Schmitt-Kopplin P, Hadjifrangiskou M, Jung K. 2017. Identification of a highaffinity pyruvate receptor in *Escherichia coli*. Sci Rep 7:1388. https://doi .org/10.1038/s41598-017-01410-2.
- 11. Pao SS, Paulsen IT, Saier MH. 1998. Major facilitator superfamily. Microbiol Mol Biol Rev 62:1–34.
- Kristoficova I, Vilhena C, Behr S, Jung K. 2017. BtsT: a novel and specific pyruvate/H⁺ symporter in *Escherichia coli*. J Bacteriol https://doi.org/10 .1128/JB.00599-17.
- Fried L, Lassak J, Jung K. 2012. A comprehensive toolbox for the rapid construction of *lacZ* fusion reporters. J Microbiol Methods 91:537–543. https://doi.org/10.1016/j.mimet.2012.09.023.
- Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K. 2006. Persisters: a distinct physiological state of *Escherichia coli*. BMC Microbiol 6:53. https://doi.org/10.1186/1471-2180-6-53.
- Bartlett MS, Gourse RL. 1994. Growth rate-dependent control of the *rrnB* P1 core promoter in *Escherichia coli*. J Bacteriol 176:5560–5564. https:// doi.org/10.1128/jb.176.17.5560-5564.1994.

- Shan Y, Gandt AB, Rowe SE, Deisinger JP, Conlon BP, Lewis K. 2017. ATP-dependent persister formation in *Escherichia coli*. mBio 8:1–14. https://doi.org/10.3391/mbi.2017.8.1.01.
- Miroux B, Walker JE. 1996. Overproduction of proteins in *Escherichia coli*: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol 260:289–298.
- Schlegel S, Genevaux P, de Gier JW. 2015. De-convoluting the genetic adaptations of *Escherichia coli* C41(DE3) in real time reveals how alleviating protein production stress improves yields. Cell Rep 10:1758–1766. https://doi.org/10.1016/j.celrep.2015.02.029.
- Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of *Escherichia coli* and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276:8159–8164. https://doi.org/10.1074/ jbc.C000833200.
- Lewis K. 2010. Persister cells. Annu Rev Microbiol 64:357–372. https:// doi.org/10.1146/annurev.micro.112408.134306.
- Brauner A, Fridman O, Gefen O, Balaban NQ. 2016. Distinguishing between resistance, tolerance, and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330. https://doi.org/10.1038/nrmicro.2016.34.
- Behr S, Brameyer S, Witting M, Schmitt-Kopplin P, Jung K. 2017. Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ-proteobacteria. PLoS One 12:e0182993. https://doi.org/10 .1371/journal.pone.0182993.
- Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T. 2002. Transcriptome analysis of all two-component regulatory system mutants of *Escherichia coli* K-12. Mol Microbiol 46:281–291. https://doi.org/10.1046/j.1365-2958.2002.03170.x.
- Zhou L, Lei X-H, Bochner BR, Wanner BL. 2003. Phenotype microarray analysis of *Escherichia coli* K-12 mutants with deletions of all twocomponent systems. J Bacteriol 185:4956–4972. https://doi.org/10 .1128/JB.185.16.4956-4972.2003.
- Ozbudak EM, Thattai M, Lim HN, Shraiman BI, Van Oudenaarden A. 2004. Multistability in the lactose utilization network of *Escherichia coli*. Nature 427:737–740. https://doi.org/10.1038/nature02298.
- Megerle JA, Fritz G, Gerland U, Jung K, R\u00e4dler JO. 2008. Timing and dynamics of single cell gene expression in the arabinose utilization system. Biophys J 95:2103–2115. https://doi.org/10.1529/biophysj .107.127191.
- Behr S, Heermann R, Jung K. 2016. Insights into the DNA-binding mechanism of a LytTR-type transcription regulator. Biosci Rep 36: e00326. https://doi.org/10.1042/BSR20160069.
- Kiviet DJ, Nghe P, Walker N, Boulineau S, Sunderlikova V, Tans SJ. 2014. Stochasticity of metabolism and growth at the single-cell level. Nature 514:376–379. https://doi.org/10.1038/nature13582.
- Levy S, Kafri M, Carmi M, Barkai N. 2011. The competitive advantage of a dual-transporter system. Science 334:1408–1412. https://doi.org/10 .1126/science.1207154.

- Kreth J, Lengeler JW, Jahreis K. 2013. Characterization of pyruvate uptake in *Escherichia coli* K-12. PLoS One 8:6–12. https://doi.org/10.1371/ journal.pone.0067125.
- Heermann R, Zeppenfeld T, Jung K. 2008. Simple generation of sitedirected point mutations in the *Escherichia coli* chromosome using Red(R)/ET(R) Recombination. Microb Cell Fact 7:14. https://doi.org/10 .1186/1475-2859-7-14.
- 32. Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York, NY.
- Inoue H, Nojima H, Okayama H. 1990. High-efficiency transformation of Escherichia coli with plasmids. Gene 96:23–28. https://doi.org/10.1016/ 0378-1119(90)90336-P.
- 34. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A. 2012. Fiji: an opensource platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019.
- Blattner FR, Plunkett G, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete genome

sequence of *Escherichia coli* K-12. Science 277:1453–1462. https://doi .org/10.1126/science.277.5331.1453.

- Thoma S, Schobert M. 2009. An improved *Escherichia coli* donor strain for diparental mating. FEMS Microbiol Lett 294:127–132. https://doi.org/10 .1111/j.1574-6968.2009.01556.x.
- Taylor RG, Walker DC, McInnes RR. 1993. E. coli host strains significantly affect the quality of small-scale plasmid DNA preparations used for sequencing. Nucleic Acids Res 21:1677–1678. https://doi.org/10.1093/ nar/21.7.1677.
- Cherepanov PP, Wackernagel W. 1995. Gene disruption in *Escherichia coli*: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9–14. https://doi.org/10.1016/0378-1119(95)00193-A.
- 39. Guzman LM, Belin D, Carson MJ, Beckwith J. 1995. Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol 177:4121–4130. https://doi.org/10 .1128/jb.177.14.4121-4130.1995.
- Tetsch L, Koller C, Haneburger I, Jung K. 2008. The membrane-integrated transcriptional activator CadC of *Escherichia coli* senses lysine indirectly via the interaction with the lysine permease LysP. Mol Microbiol 67: 570–583. https://doi.org/10.1111/j.1365-2958.2007.06070.x.

Chapter 5

Concluding discussion

Bacteria are living in constantly fluctuating environments in which they need to keep balance of important nutrients. For this purpose they evolved TCSs to sense various stimuli and respond by rapid alteration of gene expression.

Under carbon limitation, *E. coli* monitors extracellular concentration of pyruvate by the TCS BtsS/BtsR (previously named YehU/YehT) (**Chapter 2**). It was biochemically shown, that the HK BtsS is as a specific receptor for extracellular pyruvate. The activation of BtsS/BtsR leads to upregulation of the transporter BtsT (previously named YjiY). Transport assays with intact cells and proteolisomes demonstrated that BtsT is a specific and high-affinity pyruvate/ H^+ symporter (**Chapter 3**).

Overall the TCS BtsS/BtsR fine tunes pyruvate uptake by BtsT to match its demand. These results led us to formulate the biological role of the TCS BtsS/BtsR. Together with the TCS YpdA/YpdB, which also responds to extracellular pyruvate with different affinity, they contribute to a balanced physiological state of the individual cells within a population (Chapter 4).

5.1 Role of the TCS BtsS/BtsR upon carbon starvation

During exponential growth in a nutrient rich environment, $E. \ coli$ can utilize many available carbon sources. To avoid the carbon accumulation in fast growing cells, several intermediates (mainly acetate and pyruvate) are released into the environment, by the process named as overflow metabolism or Crabtree effect (Paczia *et al.*, 2012). Acetate overflow especially occurs under conditions of high glucose concentrations in comparison to pyruvate overflow, which is mainly derived from amino acid metabolism. Extracellular accumulation of pyruvate or acetate is later on followed by a decline of an intracellular nutrient concentration in bacteria. To survive prolonged periods of starvation, $E. \ coli$ coordinates nutrient scavenging and retrieves excreted by-products as alternative substrates (Peterson *et al.*, 2005). When $E. \ coli$ depletes all available carbon sources, bacterial growth rate decelerates and soon enter a stationary phase.

E. coli grown in mixtures of amino acids consumes serine as the first amino acid (Prub et al., 1994). It was shown that the TCS BtsS/BtsR responds to such depletion (**Chapter 2**). Concomitantly, the HK BtsS senses the extracellular pyruvate (step 1) and activates BtsR (step 2) to induce expression of btsT (step 3), which codes for the pyruvate transporter BtsT (steps 4,5). BtsT is therefore very advantageous for circumventing the carbon limitation by taking up pyruvate (step 6). Collectively these findings establish a comprehensive model of pyruvate sensing and transport by the TCS BtsS/BtsR in *E. coli* (steps 1-6 in **Fig. 5.1**).

The regulatory role at the transition from exponential to stationary phase has been also described for the LytS/LytTR-like TCS AgrC/AgrA in *Staphylococcus aureus*. To adapt to an environment that does not support anymore a fast growth, bacteria can autoactivate synthesis of signaling molecules (AIP). After a threshold concentration of AIP in the environment, bacteria will regulate expression of virulence genes by the TCS AgrC/AgrA (Novick and Geisinger, 2008).

In addition, the growth of E. coli is limited not just by carbon, but also nitrogen and phosphorus. The ratio between all three elements is different in each environment. For all these types of starvation, E. coli developed scavenging strategies. However, if scavenging is insufficient, bacteria enter the stationary phase (Peterson *et al.*, 2005). The regulatory role

Figure 5.1: Fine-tuning of pyruvate levels in *E. coli* by BtsS/BtsR two-component system. The scheme summarizes the perception of pyruvate by BtsS under nutrient limitation (4), signal transduction within the TCS BtsS/BtsR, an influence of global regulators CsrA and CRP, and a symport of pyruvate/H⁺ by BtsT. CM, cytoplasmic membrane.

of TCSs during nutrient scavenging is well described. A TCS PhoR/PhoB surveys inorganic phosphate levels by a Pst transport system. Upon diminished activity of the Pst transporter, the TCS PhoR/PhoB activates sRNA transcription to stimulate translation of rpoS mRNA (Wanner, 1990). RpoS is a master regulator of general stress response, which regulates under direct or indirect control up to 10% of the *E. coli* genes (Weber *et al.*, 2005). On the other hand the TCS NtrB/NtrC analyzes the nutrient status of *E. coli* through the intracellular metabolite glutamine and thus monitors the levels of the nitrogen starvation. However, if and how the TCS NtrB/NtrC regulates RpoS is unclear (Peterson *et al.*, 2005).

It has been shown that the TCS BtsS/BtsR responds to carbon limitation (Chapter 2) however how it surveys the carbon levels is unknown. It was proposed that the TCS

BtsS/BtsR senses a low intracellular serine concentration since serine is able to delay response to activate promoter of btsT in growing *E. coli*. However, the effect was shown to be indirect by *in vivo* btsT expression studies under nutrient-limiting conditions (**Chapter 2**). Furthermore, it remains unclear if the TCS BtsS/BtsR serves just for pyruvate uptake or also initiate the stationary phase if carbon scavenging is insufficient for the cells. The possibility that BtsS/BtsR affects transcription of *rpoS* should be addressed in order to fully understand the role of the TCS BtsS/BtsR upon carbon starvation in *E. coli*.

5.2 Function of the histidine kinase BtsS

Based on biochemical studies, it has been revealed that BtsS is a high-affinity sensor for pyruvate (**Chapter 2**). Pyruvate binding has been observed to an external side of the transmembrane domain of BtsS. The pyruvate binding to BtsS is very specific with a dissociation constant of 58 μ M.

These protein-ligand interaction results have been obtained by a rapid method differential radial capillary action of ligand assay (DRaCALA) (Roelofs *et al.*, 2011). Since BtsS is a membrane protein, DRaCALA is a very advantageous method enabling usage of membrane vesicles with overproduced BtsS, with no requirement of further protein solubilization.

The identification of pyruvate as a substrate sensed by BtsS may bring insights into stimuli perceived by the whole family of LytS-like HKs. Recently, another LytS/LytTR-like TCS, LytS/LytT in *B. subtilis*, has also been shown to be essential for growth on pyruvate (van den Esker *et al.*, 2017). DRaCALA can be as well used for proving the pyruvate binding to the HK LytS in *B. subtilis*. It is worth to mention that the TCS LytS/LytT is proposed to have similar function as the TCS BtsS/BtsR. In nutrient rich environments both *B. subtilis* and *E. coli* release pyruvate into the environment, in the process of overflow metabolism. It is possible that pyruvate receptors in bacteria monitor the external pyruvate levels and such bacteria reflect an available growth condition. Additionally, it is suggested that LytT regulates *ysbA* transcription to produce YsbA, a putative transporter for pyruvate (van den Esker *et al.*, 2017).

The putative binding site for pyruvate in BtsS was not yet elucidated (Chapter 2). Actually, pyruvate was once copurifed and crystallized with an extracytoplasmic domain of KinD in *B. subtilis* however its relevance was not yet understood (Wu *et al.*, 2013). A comparison of the structures of KinD in complex with pyruvic acid to a predicted structure of BtsS did not detect any similarities (unpublished observation). Further research should concentrate on determining the pyruvate binding site of BtsS.

In addition, the understanding of how BtsS perceives external pyruvate might help to gain insights into how BtsS generates an intracellular response. Up to now in vitro phosphorylation of BtsS has not been observed (Kraxenberger et al., 2012). The reason why is often attributed to an incomplete ATP-binding domain of BtsS lacking amino acids that are usually conserved in other LytS-like HKs in E. coli (BtsS lacks the first region of characteristic DxGxG and GxG motif for nucleotide binding) (Kraxenberger *et al.*, 2012). Therefore, it has been hypothesized that the signalling within the TCS BtsS/BtsR is mediated by proteinprotein interactions. Indeed it was proved that BtsS interacts with the RR BtsR by in vivo protein-protein interaction assays (Behr et al., 2014). For some TCSs, e.g. AmiC/AmiR in P. *aeruginosa*, the signal transduction is achieved via a ligand-induced release of the RR AmiR rather than usual phosphorylation (O'Hara *et al.*, 1999). Therefore, it could be speculated, that also pyruvate has an effect on the strength of protein-protein interactions between BtsS and BtsR, and thus we could get further insights into the signal transduction within the TCS BtsS/BtsR. A ligand influencing the regulatory interplay has already been reported in E. *coli.* Here, lysine is transferred from a co-sensor LysP to a pH sensor CadC and thus induces lysine-dependent adaptation under acidic stress (Rauschmeier et al., 2014).

Last but not least, the HK BtsS might have another ligand binding site. It is possible that a ligand binds to an intracellular site of BtsS, which might answer the question of how the TCS BtsS/BtsR monitors levels of carbon starvation. Such dual sensor has already been observed in *E. coli* to balance extracellular and intracellular K^+ concentration (Schramke *et al.*, 2016). However, for this purpose the method DRaCALA is not suitable. A limitation of DRaCALA is the requirement of radioactive ligand, which does not enable rapid screening of unknown ligands related to the stationary phase or carbon metabolism. For this reason, e.g. thermofluor-based binding assay (Ericsson *et al.*, 2006) should be used to identify if the HK BtsS also contains the intracellular binding site for a specific ligand. It has been proposed that a GAF domain of BtsS might be involved in such binding, since in other proteins the GAF is capable to bind amino acids, ions and nucleotides (Zoraghi *et al.*, 2004).

5.3 Importance of the pyruvate transporter BtsT

The transporter BtsT has been extensively investigated for its transport activity (**Chapter 3**). Based on the transport studies in intact cells, BtsT is a specific pyruvate transporter with an apparent K_m of 16 μ M. Reconstitution of a purified BtsT into *E. coli* proteoliposomes revealed that BtsT functions as a pyruvate/H⁺ symporter.

BtsT represents the first pyruvate transporter to be identified in *E. coli*. The characterization of other pyruvate transporters in *E. coli* might be tricky since pyruvate is located in a central node of a carbon metabolism and its cellular concentration is tightly controlled (Vemuri *et al.*, 2006). Pyruvate plays an important role in amino acid catabolism (**Fig. 5.2**). During aerobic growth, pyruvate is converted to acetyl-CoA, which enters tricarboxylic acid (TCA) cycle. In addition, pyruvate is a precursor for amino acids (Ala, Ile, Leu and Val). Under anaerobic conditions, pyruvate is converted to lactate and ethanol.

Figure 5.2: Central role of pyruvate in *E. coli* carbon metabolism. Figure summarizes import of peptides by *E. coli* into the cytoplasm, their degradation into amino acids. Amino acids alanine, cysteine, glycine, serine, threenine and tryptophan are directly converted to pyruvate. Under aerobic conditions, pyruvate is degraded to acetyl-CoA, which enters the tricarboxylic acid cycle. Pyruvate is also a precursor for synthesis of amino acids: alanine, isoleucine, leucine and valine. OAA, oxaloacetate, PP, periplasm, CP, cytoplasm.

Pyruvate transport systems have been predicted since it was shown that bacteria excrete and then retrieve pyruvate under several growth conditions (Kodaki *et al.*, 1981). Considering that pyruvate is an acid of pK_a of 2.5, under physiological conditions the deprotonated molecule cannot diffuse through a bacterial membrane and requires an active transporter. Transport assays in intact cells of *E. coli* claimed that there are active transporters however without their further characterization (Lang *et al.*, 1987). Later on, the knowledge about pyruvate transporters have been expanded by a research suggesting two importers and one exporter in *E. coli* yet also lacking their identification (Kreth *et al.*, 2013).

Since BtsT is the pyruvate transporter, it could help to identify other transporters in E. coli. A mutation of BtsT can decrease the pool of pyruvate inside E. coli and thus enable easier identification of other systems. Further studies of BtsT should also be focused on the elucidation of the pyruvate binding site, that might help to bioinformatically find possible candidates of other pyruvate transporters.

In addition, BtsT contains putative 18 TM domains and it is unknown which contribute for pyruvate uptake. Currently, we can only speculate that the two conserved 5-TM repeat units in members of the CstA family are essential for this function (Vastermark *et al.*, 2014) (**Fig. 5.3**). Furthermore, in the first TM of the second repeat has been identified a motif (CG-x(2)-SG) in the CstA family, which might be essential for function of these transporters (Vastermark *et al.*, 2014). BtsT contains 8 additional TMs, which can have other structural and/or regulatory function.

It is worth to mention that pyruvate transporters are of increasing physiological importance, mainly in biological fitness and virulence of *Enterobacteriaceae*. In *Yersinia pseudotuberculosis*, the high rate of glycolysis induces pyruvate overflow due to a metabolic bottleneck. It is suggested that high rates of nutrient uptake of easily metabolizable compounds, like pyruvate, provides a competitive advantage with other organisms in the gut environment (Bucker *et al.*, 2014). However, the pyruvate exporter or importer in *Y. pseudotuberculosis* has not yet been elucidated.

Even metabolic engineering is focusing its attention on pyruvate in order to achieve optimized metabolite production in *E. coli*, *C. glutamicum* or *B. subtilis* (Sauer and Eikmanns, 2005). The identification of carbon monocarboxylic acid transporters e.g. for pyruvate might gain further insights into metabolic adjustments within the PEP-pyruvate-oxaloacetate node.

Figure 5.3: Topological prediction of BtsT in *E. coli* and CstA homologues in 6 different bacterial species. The CstA family exhibit 5 TM repeat unit and N- or C- terminal TMs. The I, U, V labels physically look like mentioned letters in 3D structures of APC superfamily proteins and refer to TMs 1, 2-3, 4-5, respectively, in each repeat unit. The location of the CG-x(2)-SG motif is shown. Adopted from (Vastermark *et al.*, 2014).

Indeed, the pyruvate transporter has been identified and characterized in *C. glutamicum*. Biochemical studies revealed that monocarboxylic acid transporter MctC actively take up acetate, propionate and with low affinity pyruvate ($K_{0.5}$ 250 μ M) (Jolkver *et al.*, 2009). For *B. subtilis* nothing is known about pyruvate transport. The function of pyruvate transporter is suggested for YsbA, however, the transporter still awaits its characterization (van den Esker *et al.*, 2017). Nonetheless, to control the carbon flux between the glycolysis and the TCA cycle, further insights into the regulation and characterization of the enzymes and other relevant proteins of the mentioned node are still required.

5.4 Role of the TCS BtsS/BtsR

The TCS BtsS/BtsR plays a role in a nutrient sensing network of *E. coli* and in host colonization.

The TCS BtsS/BtsR forms a functional network with the TCS YpdA/YpdB, which also responds to pyruvate but with a lower affinity (Behr *et al.*, 2014). Single-cell analysis of the activation of their corresponding target genes, btsT and yhjX, respectively, showed cellto-cell variability. Comparing the wild-type strain with the btsSR ypdAB mutant revealed differences under two metabolically modulated conditions. The btsSR ypdAB mutant was impaired in protein production and had higher percentage of persister cells in a growing population (**Chapter 4**). It suggests, that the mentioned nutrient sensing network in *E. coli* maintain the optimal carbon supply for each individual cell. The similar mechanism is also proposed for other two TCSs. The RRs NarL and NarP regulate two operons depending on the nitrate concentration (Wang and Gunsalus, 2003). Here, a dual adjustment is used to fastly react to environmental changes in levels of nitrate and formate.

The importance of the TCS BtsS/BtsR for pathogenesis has been observed in uropathogenic *E. coli* (UPEC) that colonizes a mammalian bladder. This pathogen accounts for over 85% of urinary-tract infection worldwide (Foxman, 2010). In the UPEC cystitis isolate UTI89, a btsS/btsR mutant failed to induce expression of btsT however in the wild-type strain btsTwas transiently expressed. In addition, it was elucidated that BtsS/BtsR is active during both the acute and chronic stages of urinary tract infections (**Chapter 2**).

Actually the bladder of mammals is a nutritionally demanding environment that also contains pyruvate (Foxman, 2010). Metabolic breakdown products, mainly amino acids are degraded to pyruvate or other TCA cycle intermediates (**Fig. 5.2**). Pyruvate is further degraded to acetyl-CoA, which enters the TCA cycle. Both the TCA cycle as well as gluconeogenesis have been shown to be required for UPEC *in vivo* fitness (Foxman, 2010). Therefore, pyruvate plays a central role in UPEC metabolism. It seems like that the TCS BtsS/BtsR responds to pyruvate fluctuations and plays a role in promoting the infections process.

Furthermore, btsT was expressed in avian pathogenic *E. coli* (APEC) during the infection in chicken liver and spleen (Tuntufye *et al.*, 2012). This pathogen leads to extraintestinal infections in poultry that cause several diseases known as colibacillosis. During infection, APEC must coordinate genes relevant in virulence, metabolism and regulation. Studies focusing on the influence of BtsS/BtsR in APEC should be carried out to elucidate its importance in pathogenesis.

Last but not least, pyruvate sensing might provide also an advantage in an enteric environment, in intestines. This environment contains high amounts of amino acids (proline, alanine and serine), but also pyruvate (Nagata *et al.*, 2003; Nagata *et al.*, 2007). Therefore, monitoring pyruvate levels can propagate a succesful host colonization of enteric bacteria, e.g. *E. coli, S. typhimurium* and *Shigella*, in intestines (Bearson *et al.*, 1997).

5.5 Conclusion and outlook

In this thesis, it was demonstrated how *E. coli* senses and transports pyruvate. Based on several *in vivo* and *in vitro* studies, it was discovered that pyruvate is recognized by the high-affinity HK BtsS of the TCS BtsS/BtsR. Furthermore, it was found out that the target gene of this TCS, BtsT, is a specific pyruvate/H⁺ symporter. Under nutrient limitation, such pyruvate sensing and transport are crucial in carbon scavenging before entry into the stationary phase. Lastly, it was identified that the individual cells use the TCS BtsS/BtsR to optimize their carbon requirements within the population and thus withstand upcoming metabolic stress.

Nevertheless, there are still open questions for future research. Solved structures of BtsS and BtsT, e.g. by 3D-crystallization might bring insights into structural arrangements of pyruvate binding and elucidate the function of other HKs of the LytS family or other transporters of the CstA family, respectively. It is also required to address if the HK BtsS contains an additional binding site for carbon compound and thus monitors carbon limitation. Last but not least, the function of the TCS YpdA/YpdB components should be addressed to fully understand the nutrient sensing network of the TCS BtsS/BtsR and the TCS YpdA/YpdB.

References (Chapter 1. and 4.)

- Allen, B. L., Gerlach, G. F., and Clegg, S. (1991). Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae. J Bacteriol., 173(2):916–920.
- Alm, E., Huang, K., and Arkin, A. (2006). The evolution of two-component systems in bacteria reveals different strategies for niche adaptation. *PLoS Comput. Biol.*, 2(11):1329– 1342.
- Anantharaman, V. and Aravind, L. (2003). Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria. *BMC Genomics*, 4(1):34.
- Anantharaman, V., Balaji, S., and Aravind, L. (2006). The signaling helix: a common functional theme in diverse signaling proteins. *Biol. direct*, 1:25.
- Anetzberger, C., Schell, U., and Jung, K. (2012). Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals. BMC Microbiol., 12(1):209.
- Barakat, M., Ortet, P., and Whitworth, D. E. (2011). P2CS: a database of prokaryotic two-component systems. Nucleic Acids Res., 39:771–776.
- Barrett, J. F. and Hoch, J. A. (1998). Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob. Agents Chemother., 42(7):1529–1536.
- Bearson, S., Bearson, B., and Foster, J. W. (1997). Acid stress responses in enterobacteria. *FEMS Microbiol. Lett.*, 147(2):173–180.

- Behr, S., Brameyer, S., Witting, M., Schmitt-Kopplin, P., and Jung, K. (2017). Comparative analysis of LytS/LytTR-type histidine kinase/response regulator systems in γ -proteobacteria. *PLoS One*, 12(8):1–14.
- Behr, S., Fried, L., and Jung, K. (2014). Identification of a novel nutrient-sensing histidine kinase/response regulator network in *Escherichia coli. J. Bacteriol.*, 196(11):2023–2029.
- Behr, S., Heermann, R., and Jung, K. (2016). Insights into the DNA-binding mechanism of a LytTR-type transcription regulator. *Biosci. Rep.*, 36(2):e00326.
- Beier, D. and Gross, R. (2006). Regulation of bacterial virulence by two-component systems. Curr. Opin. Microbiol., 9(2):143–152.
- Boor, K. J. (2006). Bacterial stress responses: What doesn't kill them can make them stronger. *PLoS Biol.*, 4(1):0018–0020.
- Brown, P. K., Dozois, C. M., Nickerson, C. a., Zuppardo, A., Terlonge, J., and Curtiss, R. (2001). MlrA, a novel regulator of curli (AgF) and extracellular matrix synthesis by *Escherichia coli* and *Salmonella enterica* serovar Typhimurium. *Mol. Microbiol.*, 41(2):349–363.
- Brunskill, E. W. and Bayles, K. W. (1996). Identification and molecular characterization of a putative regulatory locus that affects autolysis in *Staphylococcus aureus*. J. Bacteriol., 178(3):611–618.
- Bucker, R., Heroven, A. K., Becker, J., Dersch, P., and Wittmann, C. (2014). The pyruvatetricarboxylic acid cycle node. A focal point of virulence control in the enteric pathogen *Yersinia pseudotuberculosis. J. Biol. Chem.*, 289(43):30114–30132.
- Capra, E. J. and Laub, M. T. (2012). The evolution of two-component signal transduction systems. Annu Rev Microbiol., 66:325–347.
- Checroun, C. and Gutierrez, C. (2004). σ s-dependent regulation of *yehZYXW*, which encodes a putative osmoprotectant ABC transporter of *Escherichia coli*. *FEMS Microbiol*. *Lett.*, 236(2):221–226.

- Deretic, V., Dikshit, R., Konyecsni, W. M., Chakrabarty, A. M., and Misra, T. K. (1989). The algR gene, which regulates mucoidy in *Pseudomonas aeruginosa*, belongs to a class of environmentally responsive genes. J. Bacteriol., 171(3):1278–1283.
- Diep, D. B., Havarstein, L. S., and Nes, I. F. (1996). Characterization of the locus responsible for the bacteriocin production in *Lactobacillus plantarum* C11. J. Bacteriol., 178(15):4472.
- Ericsson, U. B., Hallberg, B. M., DeTitta, G. T., Dekker, N., and Nordlund, P. (2006). Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem., 357(2):289–298.
- Fabret, C., Feher, V. A., and Hoch, J. A. (1994). Two-component signal transduction in Bacillus subtilis: How one organism sees its world. Anal. Biochem., 217(2):220–230.
- Foxman, B. (2010). The epidemiology of urinary tract infection. Nat Rev Urol, 7(12):653–660.
- Fried, L., Behr, S., and Jung, K. (2013). Identification of a target gene and activating stimulus for the YpdA/YpdB histidine kinase/response regulator system in *Escherichia coli. J Bacteriol*, 195(4):807–15.
- Galperin, M. Y. (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. *BMC Microbiol.*, 5:35.
- Galperin, M. Y. (2006). Structural classification of bacterial response regulators: diversity of output domains and domain combinations. J. Bacteriol., 188(12):4169–4182.
- Gao, R. and Stock, A. M. (2009). Biological insights from structures of two-component proteins. Annu Rev Microbiol., 63:133–154.
- Garai, P., Lahiri, A., Ghosh, D., Chatterjee, J., and Chakravortty, D. (2015). Peptide utilizing carbon starvation gene yjiY is required for flagella mediated infection caused by Salmonella. Microbiology, 162:100–116.
- Gotoh, Y., Eguchi, Y., Watanabe, T., Okamoto, S., Doi, A., and Utsumi, R. (2010). Twocomponent signal transduction as potential drug targets in pathogenic bacteria. *Curr. Opin. Microbiol.*, 13(2):232–239.

- Grebe, T. W. and Stock, J. B. (1999). The histidine protein kinase superfamily. Adv. Microb. Physiol., 41:139–227.
- Gushchin, I., Melnikov, I., Polovinkin, V., Ishchenko, A., Yuzhakova, A., Buslaev, P.,
 Bourenkov, G., Grudinin, S., Round, E., Balandin, T., Borshchevskiy, V., Willbold,
 D., Leonard, G., Büldt, G., Popov, A., and Gordeliy, V. (2017). Mechanism of transmembrane signaling by sensor histidine kinases. *Science*, 356(1043).
- Haneburger, I., Fritz, G., Jurkschat, N., Tetsch, L., Eichinger, A., Skerra, A., Gerland, U., and Jung, K. (2012). Deactivation of the *E. coli* pH stress sensor CadC by cadaverine. *J. Mol. Biol.*, 424(1-2):15–27.
- Heermann, R. and Jung, K. (2010). Stimulus perception and signaling in histidine kinases. In Krämar, R. and Jung, K., editors, *Bacterial signalling*, pages 135–161. WILEY-VCH.
- Hemm, M. R., Paul, B. J., Schneider, T. D., Storz, G., and Rudd, K. E. (2008). Small membrane proteins found by comparative genomics and ribosome binding site models. *Mol. Microbiol.*, 70(6):1487–1501.
- Henry, J. and Crosson, S. (2011). Ligand binding PAS domains in a genomic, cellular, and structural context. Annu Rev Microbiol, 65:261–286.
- Huhne, K., Axelsson, L., Holck, A., and Krockel, L. (1996). Analysis of the sakacin P gene cluster from *Lactobacillus sake* Lb674 and its expression in sakacin-negative *Lb. sake* strains. *Microbiology*, 142(6):1437–1448.
- Jolkver, E., Emer, D., Ballan, S., Krämer, R., Eikmanns, B. J., and Marin, K. (2009). Identification and characterization of a bacterial transport system for the uptake of pyruvate, propionate, and acetate in *Corynebacterium glutamicum*. J. Bacteriol., 191(3):940–948.
- Jung, K., Fried, L., Behr, S., and Heermann, R. (2012). Histidine kinases and response regulators in networks. *Curr Opin Microbiol*, 15(2):118–24.
- Kodaki, T., Murakami, H., Taguchi, M., Izui, K., and Katsuki, H. (1981). Stringent control of intermediary metabolism in *Escherichia coli*: pyruvate excretion by cells grown on succinate. J Biochem., 90(5):1437–1444.

- Krämer, R. (1999). Multiple roles of prokaryotic cell membranes. In Lengeler, J., Drews, G., and Schlegel, H., editors, *Biology of the prokaryotes*, pages 68–87. London: Blackwell Science Inc.
- Kraxenberger, T., Fried, L., Behr, S., and Jung, K. (2012). First insights into the unexplored two-component system YehU/YehT in *Escherichia coli*. J Bacteriol, 194(16):4272–4284.
- Kreikemeyer, B., Boyle, M. D. P., Buttaro, B. A., Heinemann, M., and Podbielski, A. (2001). Group A streptococcal growth phase-associated virulence factor regulation by a novel operon (Fas) with homologies to two-component-type regulators requires a small RNA molecule. *Mol. Microbiol.*, 39(2):392–406.
- Krell, T., Lacal, J., Busch, A., Silva-Jiménez, H., Guazzaroni, M.-E., and Ramos, J. L. (2010). Bacterial sensor kinases: diversity in the recognition of environmental signals. *Annu. Rev. Microbiol.*, 64:539–559.
- Kreth, J., Lengeler, J. W., and Jahreis, K. (2013). Characterization of pyruvate uptake in Escherichia coli K-12. PLoS One, 8(6):6–12.
- Lang, V. J., Leystra-lantz, C., and Cook, R. A. (1987). Characterization of the specific pyruvate transport system in *Escherichia coli* K-12. J. Bacteriol., 169(1):380–385.
- Lyon, G. J., Mayville, P., Muir, T. W., and Novick, R. P. (2000). Rational design of a global inhibitor of the virulence response in *Staphylococcus aureus*, based in part on localization of the site of inhibition to the receptor-histidine kinase, AgrC. *Proc. Natl. Acad. Sci. U. S. A.*, 97(24):13330–13335.
- Mascher, T. (2014). Bacterial (intramembrane-sensing) histidine kinases: signal transfer rather than stimulus perception. *Trends Microbiol.*, 22(10):559–565.
- Mizuno, T. (1997). Compilation of all genes encoding two-component phosphotransfer signal transducers in the genome of *Escherichia coli*. DNA Res., 4(2):161–168.
- Nagata, K., Nagata, Y., Sato, T., Fujino, M. A., Nakajima, K., and Tamura, T. (2003). L-serine, D- and L-proline and alanine as respiratory substrates of *Helicobacter pylori*:

correlation between *in vitro* and *in vivo* amino acid levels. *Microbiology*, 149(8):2023–2030.

- Nagata, Y., Sato, T., Enomoto, N., Ishii, Y., Sasaki, K., and Yamada, T. (2007). High concentrations of D-amino acids in human gastric juice. Amino Acids, 32(1):137–140.
- Nikolskaya, A. N. and Galperin, M. Y. (2002). A novel type of conserved DNA-binding domain in the transcriptional regulators of the AlgR/AgrA/LytR family. *Nucleic Acids Res.*, 30(11):2453–9.
- Njoroge, J. and Sperandio, V. (2009). Jamming bacterial communication: new approaches for the treatment of infectious diseases. *EMBO Mol. Med.*, 1(4):201–210.
- Novick, R. P. (2003). Autoinduction and signal transduction in the regulation of staphylococcal virulence. *Mol. Microbiol.*, 48(6):1429–1449.
- Novick, R. P. and Geisinger, E. (2008). Quorum sensing in staphylococci. Annu Rev Genet, 42:541–564.
- Novick, R. P., Projan, S. J., Kornblum, J., Ross, H. F., Ji, G., Kreiswirth, B., Vandenesch, F., Moghazeh, S., and Novick, R. P. (1995). The agr P2 operon: an autocatalytic sensory transduction system in *Staphylococcus aureus*. Mol. Gen. Genet. MGG, 248(4):446–458.
- O'Hara, B. P., Norman, R. A., Wan, P. T. C., Roe, S. M., Barrett, T. E., Drew, R. E., and Pearl, L. H. (1999). Crystal structure and induction mechanism of AmiC-AmiR: A ligand-regulated transcription antitermination complex. *EMBO J.*, 18(19):5175–5186.
- O'Keeffe, T., Hill, C., and Ross, R. P. (1999). Characterization and heterologous expression of the genes encoding enterocin A production, immunity, and regulation in *Enterococcus* faecium DPC1146. Appl. Environ. Microbiol., 65(4):1506–1515.
- Okkotsu, Y., Little, A. S., and Schurr, M. J. (2014). The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front. Cell. Infect. Microbiol., 4(June):82.

- Paczia, N., Nilgen, A., Lehmann, T., Gätgens, J., Wiechert, W., and Noack, S. (2012). Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms. *Microb. Cell Fact.*, 11(1):122.
- Pestova, E. V., Håvarstein, L. S., and Morrison, D. A. (1996). Regulation of competence for genetic transformation in *Streptococcus pneumoniae* by an auto-induced peptide pheromone and a two-component regulatory system. *Mol. Microbiol.*, 21(4):853–862.
- Peterson, C. N., Mandel, M. J., and Silhavy, T. J. (2005). *Escherichia coli* starvation diets: essential nutrients weigh in distinctly. 187(22):7549–7553.
- Prub, B. M., Nelms, J. M., Park, C., and Wolfe, A. J. (1994). Mutations in NADH:ubiquinone oxidoreductase of *Escherichia coli* affect growth on mixed amino acids. J. Bacteriol., 176(8):2143–2150.
- Quadri, L. E. N., Kleerebezem, M., Kuipers, O. P., De Vos, W. M., Roy, K. L., Vederas, J. C., and Stiles, M. E. (1997). Characterization of a locus from *Carnobacterium piscicola* LV17B involved in bacteriocin production and immunity: evidence for global inducermediated transcriptional regulation. *J. Bacteriol.*, 179(19):6163–6171.
- Rasmussen, J. J., Vegge, C. S., Frøkiær, H., Howlett, R. M., Krogfelt, K. A., Kelly, D. J., and Ingmer, H. (2013). *Campylobacter jejuni* carbon starvation protein A (CstA) is involved in peptide utilization, motility and agglutination, and has a role in stimulation of dendritic cells. *J. Med. Microbiol.*, 62(Pt 8):1135–1143.
- Rauschmeier, M., Schüppel, V., Tetsch, L., and Jung, K. (2014). New insights into the interplay between the lysine transporter LysP and the pH sensor CadC in *Escherichia coli. J. Mol. Biol.*, 426(1):215–229.
- Roelofs, K. G., Wang, J., Sintim, H. O., and Lee, V. T. (2011). Differential radial capillary action of ligand assay for high-throughput detection of protein-metabolite interactions. *Proc. Natl. Acad. Sci. U. S. A.*, 108(37):15528–33.
- Rumbaugh, K. P., Diggle, S. P., Watters, C. M., Ross-Gillespie, A., Griffin, A. S., and West, S. A. (2009). Quorum sensing and the social evolution of bacterial virulence. *Curr. Biol.*, 19(4):341–345.

- Salis, H., Tamsir, A., and Voigt, C. (2009). Engineering bacterial signals and sensors. Contrib. Microbiol., 16:194–225.
- Sauer, U. and Eikmanns, B. J. (2005). The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. *FEMS Microbiol. Rev.*, 29(4):765–794.
- Schramke, H., Laermann, V., Tegetmeyer, H. E., Brachmann, A., Jung, K., and Altendorf, K. (2017). Revisiting regulation of potassium homeostasis in *Escherichia coli*: the connection to phosphate limitation. *Microbiologyopen*, 6(3):1–16.
- Schramke, H., Tostevin, F., Heermann, R., Gerland, U., and Jung, K. (2016). A dual-sensing receptor confers robust cellular homeostasis. *Cell Rep.*, 16(1):213–221.
- Schultz, J. E. and Matin, A. (1991). Molecular and functional characterization of a carbon starvation gene of *Escherichia coli*. J. Mol. Biol., 218(1):129–140.
- Schumann, W. (2012). Thermosensorsy stems in eubacteria. In López-Larrea, C., editor, Sensing in nature, pages 1–16. Springer US, New York, NY.
- Shimizu, T., Ba-Thein, W., Tamaki, M., and Hayashi, H. (1994). The virR gene, a member of a class of two-component response regulators, regulates the production of perfringolysin O, collagenase, and hemagglutinin in *Clostridium perfringens*. J. Bacteriol., 176(6):1616– 1623.
- Singh, D., Chang, S.-J., Lin, P.-H., Averina, O. V., Kaberdin, V. R., and Lin-Chao, S. (2009). Regulation of ribonuclease E activity by the L4 ribosomal protein of *Escherichia coli*. *Proc. Natl. Acad. Sci. U. S. A.*, 106(3):864–869.
- Snider, J., Gutsche, I., Lin, M., Baby, S., Cox, B., Butland, G., Greenblatt, J., Emili, A., and Houry, W. A. (2006). Formation of a distinctive complex between the inducible bacterial lysine decarboxylase and a novel AAA⁺ ATPase. J. Biol. Chem., 281(3):1532–1546.
- Staron, A., Sofia, H. J., Dietrich, S., Ulrich, L. E., Liesegang, H., and Mascher, T. (2009). The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family. *Mol. Microbiol.*, 74(3):557–581.

- Stewart, R. C. (2010). Protein histidine kinases: assembly of active site and their regulation in signaling pathways. *Curr Opin Microbiol*, 13(2):133–141.
- Stock, A. M., Robinson, V. L., and Goudreau, P. N. (2000). Two-component signal transduction. Annu Rev Biochem, 69:183–215.
- Thakor, H., Nicholas, S., Porter, I. M., Hand, N., and Stewart, R. C. (2011). Identification of an anchor residue for CheA-CheY interactions in the chemotaxis system of *Escherichia coli. J. Bacteriol.*, 193(15):3894–3903.
- Tuntufye, H. N., Lebeer, S., Gwakisa, P. S., and Goddeeris, B. M. (2012). Identification of avian pathogenic *Escherichia coli* genes that are induced *in vivo* during infection in chickens. *Appl. Environ. Microbiol.*, 78(9):3343–3351.
- Ulrich, L. E., Koonin, E. V., and Zhulin, I. B. (2005). One-component systems dominate signal transduction in prokaryotes. *Trends Microbiol.*, 13(2):52–56.
- van den Esker, M. H., Kovacs, A. T., and Kuipers, O. P. (2017). YsbA and LytST are essential for pyruvate utilization in *Bacillus subtilis. Environ. Microbiol.*, 19(1):83–94.
- Vastermark, A., Wollwage, S., Houle, M. E., Rio, R., and Saier, M. H. (2014). Expansion of the APC superfamily of secondary carriers. *Proteins*, 82(10):2797–2811.
- Vemuri, G. N., Altman, E., Sangurdekar, D. P., Khodursky, a. B., and Eiteman, M. a. (2006). Overflow metabolism in *Escherichia coli* during steady-state growth: transcriptional regulation and effect of the redox ratio. *Appl. Environ. Microbiol.*, 72(5):3653–3661.
- Wang, H. and Gunsalus, R. P. (2003). Coordinate regulation of the *Escherichia coli* formate dehydrogenase *fdnGHI* and *fdhF* genes in response to nitrate, nitrite, and formate: roles for NarL and NarP. J. Bacteriol., 185(17):5076–5085.
- Wanner, B. L. (1990). Phosphorus assimilation and control of the phosphate regulan. In Hauska, G. and Thauer, R. K., editors, *The molecular basis of bacterial metabolism*, pages 152–163. Springer Berlin Heidelberg.

- Weber, H., Polen, T., Heuveling, J., Wendisch, V. F., and Hengge, R. (2005). Genome-wide analysis of the general stress response network in *Escherichia coli*: σS -dependent genes, promoters, and sigma factor selectivity. J. Bacteriol., 187(5):1591 – 1603.
- Wolanin, P. M., Thomason, P. A., and Stock, J. B. (2002). Histidine protein kinases: key signal transducers outside the animal kingdom. *Genome Biol.*, 3(10).
- Wong, F. H., Chen, J. S., Reddy, V., Day, J. L., Shlykov, M. A., Wakabayashi, S. T., and Saier, M. H. (2012). The amino acid-polyamine-organocation superfamily. J Mol Microbiol Biotechnol, 22(2):105–113.
- Wu, R., Gu, M., Wilton, R., Babnigg, G., Kim, Y., Pokkuluri, P. R., Szurmant, H., Joachimiak, A., and Schiffer, M. (2013). Insight into the sporulation phosphorelay: crystal structure of the sensor domain of *Bacillus subtilis* histidine kinase, KinD. *Protein Sci.*, 22(5):564–576.
- Yamamoto, K., Hirao, K., Oshima, T., Aiba, H., Utsumi, R., and Ishihama, A. (2005). Functional characterization *in vitro* of all two-component signal transduction systems from *Escherichia coli*. J. Biol. Chem., 280(2):1448–1456.
- Yu, H., Mudd, M., Boucher, J., Schurr, M. J., and Deretic, V. (1997). Identification of the algZ gene upstream of the response regulator algR and its participation in control of alginate production in *Pseudomonas aeruginosa*. J. Bacteriol., 179(1):187–193.
- Zoraghi, R., Corbin, J. D., and Francis, S. H. (2004). Properties and functions of GAF domains in cyclic nucleotide phosphodiesterases and other proteins. *Mol. Pharmacol.*, 65(2):267–278.

Supplemental Material - Chapter 2

Supplementary Material:

Identification of a High-Affinity Pyruvate Receptor in Escherichia coli

Stefan Behr^a, Ivica Kristoficova^a, Michael Witting^b, Erin J. Breland^c, Allison R. Eberly^d, Corinna Sachs^a, Philippe Schmitt-Kopplin^b, Maria Hadjifrangiskou^{d,e}, Kirsten Jung^{a*}

^a Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany

^b Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, 85764 Neuherberg, Germany

^e Departments of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^{d,e} Departments of Pathology, Microbiology & Immunology ^d and Urologic Surgery ^e, Vanderbilt University Medical Center, Nashville, TN 37232, USA

* To whom correspondence should be addressed: Dr. Kirsten Jung, Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Großhaderner Str. 2-4, 82152 Martinsried, Germany. Phone: +49-89-2180-74500; Fax: +49-89-2180-74520; E-mail: jung@lmu.de

Fig. S1. Characterization of *yjiY* expression in different concentrations of LB medium. *Escherichia coli* MG1655 / pBBR *yjiY*-lux was cultivated under aerobic conditions and growth and luminescence were measured over time. Expression of *yjiY* over growth of *E. coli* cells in 1.0x, 0.5x, 0.4x, 0.3x, 0.2x and 0.1x diluted LB. The growth phases of *E. coli* are marked as following: lag phase (white), exponential growth (light grey) and stationary phase (dark grey).

Fig. S2. Determination of changes in intracellular concentrations of serine and pyruvate during growth of *E. coli*. *E. coli* MG1655/pBBR *yjiY-lux* was cultivated in LB medium, and growth (OD600) and luminescence were monitored. At the times indicated, cells were harvested, and serine and pyruvate levels were quantified by hydrophilic interaction liquid chromatography. All experiments were performed in triplicate, and the error bars indicate the standard deviation of the means. The growth phases of *E. coli* are marked as following: lag phase (white), exponential growth (light grey) and stationary phase (dark grey).

Fig. S3. Corresponding *E. coli* growth curves under nutrient-limiting conditions. *E. coli* MG1655 mutant $\Delta yhjX$ harboring pBBR *yjiY-lux* was cultivated in 0.1x LB medium. After 1 h (time point 0), the indicated concentration of pyruvate (A), or L-serine (B), or the equivalent volume of water was added. Growth was monitored over time.

Table S1. Summary of growth and *yjiY* expression data from *E. coli* cells grown in LB and diluted LB medium Growth rates for each time point (t(x)) were determined with $\mu = [\ln (OD600 (x)) - \ln (OD600 (x-1))] / [t(x) - t(x-1)].$

Medium	Growth rate μ	max OD ₆₀₀	OD ₆₀₀ at max. <i>yjiY</i> expression	max. <i>yjiY</i> expression [RLU/OD ₆₀₀]
1.0x LB	1.27 h ⁻¹	4.96	1.13	36,009
0.5x LB	1.18 h ⁻¹	3.36	0.76	31,272
0.4x LB	0.95 h ⁻¹	2.53	0.62	21,629
0.3x LB	1.05 h ⁻¹	0.62	0.39	12,315
0.2x LB	0.75 h ⁻¹	0.3	0.28	4,536
0.1x LB	0.63 h ⁻¹	0.24	not detectable	no expression

Supplemental Material - Chapter 3

BtsT - a novel and specific pyruvate/H $^{\!\!+}$ symporter in Escherichia coli

Ivica Kristoficova, Cláudia Vilhena, Stefan Behr^{*}, Kirsten Jung[#]

Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany^a

- # To whom correspondence should be addressed: Dr. Kirsten Jung, Ludwig-Maximilians-Universität München, Department Biologie I, Bereich Mikrobiologie, Großhaderner Str. 2-4, 82152 Martinsried, Germany. Phone: +49-89-2180-74500; Fax: +49-89-2180-74520; E-mail: jung@lmu.de
- * Present address: Stefan Behr, Roche Diagnostics GmbH, Nonnenwald 2, 82377 Penzberg

E.coli	MDTKKIFKHI	PWVILGIIGA	FCL <mark>A</mark> VVALRR	GEH VSALWIV	VAS VS VYL VA	50
S.enterica	MDTKKIFKHI	PWVILGIIGA	FCL <mark>S</mark> VVALRR	GEH VSALWIV	VAS VS VYL VA	50
E.coli	YRYYSLYIAQ	K V M K L D P T R A	T P A VINN D G L	N Y VP TN R Y VL	F GH H F AA I AG	100
S.enterica	YRYYSLYIAQ	K V M K L D P T R A	T P A VINN D G L	N Y VP TN R Y VL	F GH H F AA I AG	100
E. coli	AGPLVGPVLA	AQMGYLPGTL	WLLAGVVLAG	AVQD FM VL F I	SSRRNGASLG	150
S. enterica	AGPLVGPVLA	AQMGYLPGTL	WLLAGVVLAG	AVQD FM VL F I	SSRRNGASLG	150
E.coli	E M I KE E M G P V	PGTIALFGCF	LIMIIILAVL	AL I VVKALAE	S PWG VFT VC S	200
S.enterica	E M I KE E M G T V	PGTIALFGCF	LIMIIILAVL	AL I VVKALAE	S PWG VFT VC S	200
E.coli	T VP I AL F M G I	YMRF IRPGRV	GEVSVIGIVL	LVAS IYFGGV	I AH D P YWGP A	250
S.enterica	T VP I AL F M G I	YMRF IRPGRV	GEVSVIGIVL	LVAS IYFGGV	I AH D P YWGP A	250
E.coli	L T F KD T T I T F	AL IGYAFVSA	LLP WULILAP	RD YL AT FLK I	G V I VG L A L G I	300
S.enterica	L T F KD T T I T F	AL IGYAFVSA	LLP WULILAP	RD YL AT FLK I	G V I VG L A L G I	300
E. coli	V	AMTQYIDGTG	P L W K G A L F P F	L F I T I AC G AV	S G F H A L I S S G	350
S. enterica		ALTQYVDGTG	P L W K G A L F P F	L F I T I AC G AV	S G F H A L I S S G	350
E. coli	T T P K L L A N E T	D ARFIGYGAM	L M E S F V A I M A	L VAASIIEPG	L YF AMNT PP A	400
S. enterica	T T P K L L A C E T	D ARFIGYGAM	L M E S F V A <mark>V</mark> M A	L VAASIIEPG	L YF AMNT PP A	400
E.coli	G L G I T M P N L H	E M G G E N A P I I	M AQ L KD VT AH	AAAT VS SWGF	VISPEQILQT	450
S.enterica	G L G I T M P N L H	E M G G E N A P L I	M AQ L KD VT AH	AAAT VS SWGF	VISPEQILQT	450
E.coli	AKD I GE P S V L	N R AGGAPTLA	VGIAHVFHKV	L P M AD M G F W Y	H F G I L F E A L F	500
S.enterica	AKD I GE P S V L	N R AGGAPTLA	VGIAHVFHKV	L P M AD M G F W Y	H F G I L F E A L F	500
E.coli	ILTALDAGTR	SGRFMLQDLL	G N F <mark>I</mark> P F L K K T	D S L V AG I I GT	AGC VGLWGYL	550
S.enterica	ILTALDAGTR	SGRFMLQDLL	G N F <mark>V</mark> P F L K K T	D S L V AG I I GT	AGC VGLWGYL	550
E.coli	L YQ G V VD P L G	G VK S L WP L F G	ISNQMLAAVA	LVLGTVVLIK	MKRTQYIWVT	600
S.enterica	L YQ G V VD P L G	G VK S L WP L F G	ISNQMLAAVA	LVLSTVVLIK	MQRTKYIWVT	600
E.coli	V V P A VWL L I C	T T WALGLKLF	STNPQMEGFF	YM ASQYKEK I	ANGTDLTAQQ	650
S.enterica	V I P A VWL L I C	T T WALGLKLF	SANPQMEGFF	YM AN LYKEK I	ANGTNLTAQQ	650
E. coli	I AN MN H I VVN	N YTN AGLSIL	FLIVVYSIIF	YG F K TWLAVR	N SD KR TD KE T	700
S. enterica	I AN MN H I VVN	N YTN AGLSIL	FLVVYSIIF	YG F T TWMK VR	N SD KR TD KE T	700
E.coli S.enterica	P YVP I P E G G V P YVP <mark>V</mark> P E G G V	KISSHH 716 KISSHH 716				

Figure S1. Comparison of the BtsT consensus sequences of *E. coli* and *S. enterica*. A consensus-based approach sequence comparison was used. 148 sequences of BtsT of *E. coli* and 122 sequences of BtsT of *S. enterica* were aligned and consensus sequences for each bacterium were generated by using the CLC Main Workbench software. Subsequently, both consensus sequences were aligned. The amino acids were colored based on their polarity (red - acidic and polar; blue - basic and polar; green - neutral and polar; black - neutral and nonpolar). Red background color was used to highlight deviating amino acids.

Figure S2. Schematic models of the secondary structure of (A) E. coli BstT and (B) E. coli CstA. Both models are based on the analysis of the secondary structure using the Uniprot program (1) and visualized with the Protter tool (2). Transmembrane domains (TMs) are numbered with numerals. The conserved motif CG-x(2)-SG with a high degree of sequence

conservation within CstA homologues is marked in yellow (3). PP periplasm, CM cytoplasmic membrane, CP cytoplasm.

Figure S3. Localization of maltose-binding protein (MBP) hybrids. *malE* without or with leader sequence was fused to the 5' end of *btsT* encoding hybrid proteins with either a putative cytoplasmically located MPB (MBP_C-BtsT) (A) or a periplasmically located MBP (MBP_P-BtsT) (B), respectively. Cells with overproduced hybrids were fractionated to separate cytoplasm (CP) and membrane vesicles (MVs). Both fractions were adjusted to the same volume and separated by 12.5% (w/v) SDS-polyacrylamide gel electrophoresis and immunoblotted using a penta-His antibody for detection. The arrow indicates MBP_C-BtsT (about 120 kDa).

Figure S4. Complementation of *E. coli* MM39 with different MBP-BtsT hybrid proteins. *malE* deficient *E. coli* MM39 cells were transformed with plasmids pMAL-p2x (solid line), $pMAL_P$ -*btsT* (dotted line) and $pMAL_C$ -*btsT* (dashed line), and their growth was monitored over time on maltose as the sole carbon source.

Figure S5. Growth of *E. coli* MG1655 and the *bstT* mutant in different media. *E. coli* MG1655 (green line) and *E. coli* MG1655 $\Delta btsT$ (dotted black line) were cultivated in LB medium (A) or in M9 minimal medium supplemented with pyruvate as carbon source (20 mM) (B). Samples were taken and analyzed every 5 min (A) or 2 hours (B).

Figure S6. Rates of ¹⁴C-pyruvate uptake by BtsT-producing strain *E. coli* MG1655 Δ*btsT* **pBAD24-***btsT* **at various external pH values.** ¹⁴C pyruvate was added at a final concentration of 10 μM.

Figure S7. Time course of pyruvate uptake by *E. coli* **YYC202.** ¹⁴C-Pyruvate uptake was determined at a final pyruvate concentration of 10 μM at 15°C. Rates of uptake accumulation: BtsT producing strain *E. coli* YYC202 pBAD24-*btsT* (green), control strain *E. coli* YYC202 pBAD24 (grey). Standard deviations are estimated from three biological replicates.

Figure S8. Pyruvate diffusion in intact *E. coli* cells. Uptake of ¹⁴C-pyruvate by *E. coli* MG1655 $\Delta btsT$ transformed with pBAD24 was determined in the presence of increasing pyruvate concentrations. The best-fit line was determined by linear regression. Error bars represent standard error of the mean.

Figure S9. Purification of His-tagged BtsT. Membrane vesicles were prepared from *E. coli* cells after overproduction of BtsT-6His. Membrane proteins were then solubilized with 1.5% (w/v) n-dodecyl β -D-maltoside. The His-tagged BtsT was purified as described in Materials and Methods. El, BtsT eluted from the column with 300 mM imidazole (8.75 µg of protein). Lip, BtsT reconstituted into *E. coli* liposomes (10 µg of protein). Proteins were separated using 12.5% (w/v) SDS-polyacrylamide gel electrophoresis and stained with silver (A) or immunodetected by using a penta-His antibody (B). The arrows indicate BtsT-6His. In both images, non-relevant lanes were omitted for clarity.

Figure S10. Pyruvate diffusion in *E. coli* liposomes. ¹⁴C-pyruvate (40 μ M) diffusion was analyzed in liposomes (in the absence of protein). Time course of pyruvate uptake in the presence of artificially imposed $\Delta \tilde{\mu}_{H^+}$ (green), $\Delta \Psi$ (orange), ΔpH (red), $\Delta \tilde{\mu}_{Na^+}$ (brown) or in the absence of any gradient (grey).

REFERENCES

- The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res 45:158–169.
- Omasits U, Ahrens CH, Muller S, Wollscheid B. 2014. Protter: interactive protein feature visualization and integration with experimental proteomic data. Bioinformatics 30:884– 886.
- Vastermark A, Wollwage S, Houle ME, Rio R, Saier MH. 2014. Expansion of the APC superfamily of secondary carriers. Proteins 82:2797–2811.

Supplemental Material - Chapter 4

SUPPLEMENTARY MATERIAL

A single-cell view of the BtsSR/YpdAB pyruvate sensing network in *Escherichia coli* and its biological relevance

Cláudia Vilhena,^a Eugen Kaganovitch,^b Jae Yen Shin,^{a*} Alexander Grünberger,^{b*} Stefan Behr,^{a*} Ivica Kristoficova,^a Sophie Brameyer,^{a*} Dietrich Kohlheyer,^b Kirsten Jung,^a#

Munich Center for Integrated Protein Science (CIPSM) at the Department of Microbiology, Ludwig-Maximilians-Universität München, Martinsried, Germany^a; Institute for Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany^b

Running Head: Phenotypic heterogeneity in E. coli

#Address correspondence to Kirsten Jung, jung@lmu.de

^{*}Present address: Alexander Grünberger, Multiscale Bioengineering, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld; Stefan Behr, Roche Diagnostics GmbH, Nonnenwald 2 82377 Penzberg; Jae Yen Shin, MPI of Biochemistry, Am Klopferspitz 18 82152 Martinsried; Sophie Brameyer, University College London, Gower Street, WC1E 6EA London

FIG S1 Growth of reporter strains. *E. coli* cells expressing *gfp* under the control of P_{yhjX} or P_{yjiY} and the MG1655 strain (WT, without promoter-*gfp* fusion) were grown in LB medium.

FIG S2 Determination of the minimum duration of killing (MDK) after of loxacin treatment. *E. coli* cells of either WT (blue line) or mutant $\Delta btsSRypdAB$ (red line) were grown in LB-medium. At the post-exponential growth phase cells were challenged with of loxacin (5 µg/ml). Samples were taken and analyzed for colony forming units (CFUs). The MDK₉₉ value was taken as the time needed to kill 99% of the initial population. Experiments were performed three independent times and error bars indicate the standard deviations of the means.

	- INDU	CER	+ INDU	JCER
STRAINS	Cells OFF	(%) ON	Cells OFF	(%) ON
WT GFP (IPTG)	92.7	7.3	3.1	96.9
btsSRypdAB GFP (IPTG)	97.8	2.2	51.0	49.0
WT GFP-DppA (Arabinose)	94.9	5.1	24.4	75.6
btsSRypdAB GFP-DppA (Arabinose)	98.1	1.9	99.4	0.6
WT LysP-mCherry (Arabinose)	97.7	2.3	33.4	66.6
btsSRypdAB LysP-mCherry (Arabinose)	98.2	1.8	98.5	1.5

TABLE S1 The BtsSR/YpdAB network promotes overproduction of proteins. *E. coli* cells of either WT or the *btsSRypdAB* mutant harboring an overproduction vector with IPTG inducible promoter for the overproduction of GFP; an arabinose inducible promoter for the overproduction of DppA-GFP and an arabinose inducible promoter for the overproduction of LysP-mCherry were grown in LB medium. Samples were taken before (- inducer) and after (+ inducer) the addition of the inducer. Flow cytometry was used to count fluorescent cells (maximum of 2000

events), and the percentages of OFF (non-fluorescent cells) and ON cells (fluorescent cells) were calculated from the raw data. Experiments were performed three independent times and standard deviations were below 10%.

Acknowledgements

Looking back almost 4 years since I came to Munich, it was an amazing experience! I would like to thank all people who supported my research and made this thesis possible.

First, I would like to acknowledge the contribution of Prof. Kirsten Jung, who gave me the opportunity of doing scientific research in AG K Jung and for all the patient advice. Thanks goes to my TAC committee members, Prof. Marc Bramkamp and Prof. Jürgen Soll, for all their contribution and help to bring my PhD to its final form. Special thanks also to my thesis committee members, Prof. Wolfgang Enard, Prof. Jörg Nickelsen and Prof. Boshart for generously offering their time to examine my PhD thesis. I would also like to thank Prof. Heinrich Jung for all insightful conversations, and to Francisca Mende and all the members of LSM graduate school.

I am so glad for meeting so many interesting people over 4 years. Thanks to all YehUT team members, Stefan, Florian and all our students, my office mates Wolfram, Ralph and Felix and of course, my friends Ana, Bruno, Yang and Kim. It was an amazing time with you all. I would like to specially thank Cláudia, my YehUT team colleague, office mate, reviewer, secretary, business partner but most importantly, my best friend.

Last but not least, I consider myself very fortunate for all the support of my parents. And my last thanks goes to Stanislav, the one who was there for me all the time.

lvica Krištofičová

Curriculum Vitae

Education

2014-Present PhD in Microbiology, Ludwig Maximilians University, Munich, Germany.

- Student of The Graduate School Life Science Munich (LSM)
- Supervisor:
 - Prof. Kirsten Jung
- PhD. Project:
 - Biochemical characterisation of a two-component system BtsS/BtsR by in vivo and in vitro studies in *Escherichia coli*.
- Publications:
 - Identification of a High-Affinity Pyruvate Receptor in Escherichia coli Sci Rep 2017

2011–2013 Masters of Biochemistry, Charles University in Prague, Prague, Czech Republic.

- Supervisors:
 - Marek Ingr PhD.
 - Doc. Jan Konvalinka
- Diploma thesis:
 - Study of the cleavage kinetics of Gag polyprotein from HIV-1 virus by the viral protease.

2008–2011 Bachelor of Biochemistry, Comenius University, Bratislava, Slovakia.

- Supervisor:
 - Prof. Jozef Nosek
- Bachelor thesis:
 - Quorum Sensing communication of bacteria and its application in synthetic biology.

Work

2011–2013 **Scientist**, *Institute of Organic Chemistry and Biochemistry*, Prague, Czech Republic.

I have joined there a research group under the supervision of Doc. Jan Konvalinka, that deals with the analysis, structure, activity and inhibition of proteases and other enzymes that are medically important.

Awards

- 2016 Annual Conference 2016 of VAAM at Jena, Germany, Best Poster Presentation
- 2009–2010 Comenius University, Scholarship for excellent study results (top 10 % of students) 2008 Comenius University, Scholarship for excellent study results (top 5 % of students)

Skills

- Certificates Purification and Characterization of proteins, Malvern Instruments (2016), Hands-on training course NGS data analysis (2016), Workshop on "Sensory and regulatory RNAs in prokaryotes" (2016), MicroCal Course Advanced Isothermal Titration Calorimetry (2015)
 - Soft skills Workshop "Presentation skills (Natural sciences and medical research)" (2015), Workshop "Writing and publishing of papers, reviews and theses in the life sciences" (2015), Workshop " Leadership Skills" (2015)
 - Other LATEX, Adobe Illustrator

Academic Meetings

- 2017 Attended SPP1617-progress report meeting in München, Germany
- 2017 Talk at the VAAM conference in Würzburg, Germany
- 2016 Attended SPP1617-progress report meeting in Düsseldorf, Germany
- 2016 Poster at the VAAM conference in Jena, Germany
- 2015 Poster at the 77th Harden Conference: Two Component Signalling in Bacteria: Integrating Approaches and Science in Warwick, UK
- 2015 Attended CAS Conference Synthetic Biology II in München, Germany
- 2015 Poster at the VAAM conference in Marburg, Germany
- 2015 Poster at the Blast XIII conference in Tucson, USA

Languages

Mothertongue	Slovak
Advanced	English, Czech
Intermediate	German

Interests

- Literature
- Movies
- Driving (B category)

- Travelling
- Taking pictures