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Aims of this Work 

Building on the emergence of several effective whole-transcriptome amplification techniques,                   

single-cell RNA sequencing is a rapidly developing novel tool with transformative impact on                         

biology ​(Regev et al. 2017)​. The aims of this work may be subdivided on questions related to                                 

improving the technology of single-cell sequencing and an exemplary application to a                       

biomedical question. 

First, it is unclear how much noise or bias whole-transcriptome amplification introduces into                         

quantitative gene expression profiles measured by RNA-seq and whether these amplification                     

artifacts may be identified and removed computationally. For this aim, low-input RNA-seq                       

datasets were generated and analysed from several protocols, including one with unique                       

molecular identifiers (UMIs). Further investigating RNA-seq technology, the second aim was to                       

establish and compare various newly developed single-cell RNA sequencing methods. To this                       

end, four methods (CEL-seq2/C1, Drop-seq, SCRB-seq and Smart-seq/C1) were established,                   

data from mouse ES cells generated and together with data generated by collaborators with                           

two additional methods (MARS-seq, Smart-seq2) assessed for their sensitivity, accuracy,                   

precision, power to detect differential gene expression and cost-efficiency.  

The computational frameworks for power simulations and data processing that emerged                     

during this study were extended and wrapped up as the applications ​powsimR and ​zUMIs​. Based                             

on the strengths and weaknesses of the benchmarked scRNA-seq methods, we developed a                         

the highly sensitive, powerful and cost-efficient ​mcSCRB-seq​ protocol. 

Lastly, applying single-cell transcriptomics to a biomedical question, the aim was to                       

characterize minimal residual disease cells from acute lymphoblastic leukemia. In order to                       

achieve this, this clinically important cell type was isolated from PDX mouse models and                           

subjected to low-input bulk RNA-sequencing, single-cell RNA sequencing as well as functional                       

characterization.   

11 



 

Summary 

The cell is the fundamental building block of life. With the advent of single-cell RNA                             

sequencing (scRNA-seq), we can for the first time assess the transcriptome of many individual                           

cells. This has profound implications for biological and medical questions and is especially                         

important to characterize heterogeneous cell populations and rare cells. However, the                     

technology is technically and computationally challenging as complementary DNA (cDNA)                   

needs to be generated and amplified from minute amounts of mRNA and sequenceable                         

libraries need to be efficiently generated from many cells. This requires to establish different                           

protocols, identify important caveats, benchmark various methods and improve them if                     

possible. To this end, we analysed amplification bias and its effect on detecting differentially                           

expressed genes in several bulk and a single-cell RNA sequencing methods. We found that                           

correcting for amplification bias is not possible computationally but improves the power of                         

scRNA-seq considerably, though neglectable for bulk-RNA-seq. In the second study we                     

compared six prominent scRNA-seq protocols as more and more single-cell RNA-sequencing                     

are becoming available, but an independent benchmark of methods is lacking. By using the                           

same mouse embryonic stem cells (mESCs) and exogenous mRNA spike-ins as common                       

reference, we compared six important scRNA-seq protocols in their sensitivity, accuracy and                       

precision to quantify mRNA levels. In agreement with our previous study, we find that the                             

precision, i.e. the technical variance, of scRNA-seq methods is driven by amplification bias and                           

drastically reduced when using unique molecular identifiers to remove amplification                   

duplicates. To assess the combined effects of sensitivity and precision and to compare the                           

cost-efficiency of methods we compared the power to detect differentially expressed genes                       

among the tested scRNA-seq protocols using a novel simulation framework. We find that some                           

methods are prohibitively inefficient and others show trade-offs depending on the number of                         

cells per sample that need to be analysed. Our study also provides a framework for                             
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benchmarking further improvements of scRNA-seq protocol and we published an improved                     

version of our simulation framework ​powsimR. It uniquely recapitulates the specific                     

characteristics of scRNA-seq data to enable streamlined simulations for benchmarking both                     

wet lab protocols and analysis algorithms. Furthermore, we compile our experience in                       

processing different types of scRNA-seq data, in particular with barcoded libraries and UMIs,                         

and developed ​zUMIs, ​a fast and flexible scRNA-seq data processing software overcoming                       

shortcomings of existing pipelines.  

In addition, we used the in-depth characterization of scRNA-seq technology to optimize an                         

already powerful scRNA-seq protocol even further. According to data generated from                     

exogenous mRNA spike-ins, this new ​mcSCRB-seq protocol is currently the most sensitive                       

scRNA-seq protocol available. 

Single-cell resolution makes scRNA-seq uniquely suited for the understanding of complex                     

diseases, such as leukemia. In acute lymphoblastic leukemia (ALL), rare                   

chemotherapy-resistant cells persist as minimal residual disease (MRD) and may cause relapse.                       

However, biological mechanisms of these relapse-inducing cells remain largely unclear                   

because characterisation of this rare population was lacking so far. In order to contribute to                             

the understanding of MRD, we leveraged scRNA-seq to study minimal residual disease cells                         

from ALL. We obtained and characterised rare, chemotherapy-resistant cell populations from                     

primary patients and patient cells grown in xenograft mouse models. We found that MRD cells                             

are dormant and feature high expression of adhesion molecules in order to persist in the                             

hematopoietic niche. Furthermore, we could show that there is plasticity between resting,                       

resistant MRD cells and cycling, therapy-sensitive cells, indicating that patients could benefit                       

from strategies that release MRD cells from the niche. Importantly, we show that our data                             

derived from xenograft models closely resemble rare primary patient samples. 
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In conclusion, my work of the last years contributes towards the development of experimental                           

and computational single-cell RNA sequencing methods enabling their widespread application                   

to biomedical problems such as leukemia. 
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Introduction 

Gene Expression 

DNA is the essential biomolecule containing all genetic information being passed on from                         

generation to generation ​(Avery et al. 1944)​. The central dogma of molecular biology ​(Crick                           

1958) describes the directional relationship of genetic information in organisms:                   

self-replication of DNA, transcription of DNA into a transient messenger RNA (mRNA), which                         

is in turn translated into amino-acid sequences by ribosomes. Cells in complex multicellular                         

organisms have to fulfill a wide variety of functions. Thus, each cell type needs a defined set of                                   

proteins to function correctly. However, all nucleated cells of an organism contain the                         

complete DNA sequence including all gene and non-coding sequences, termed genome                     

(Winkler 1920)​. Thus, specific patterns of transcription of certain genes control the proteome                         

and thereby a cell’s identity. Importantly, transcription is not controlled in a binary (on/off)                           

manner but rather mRNA amounts correlate with protein abundance ​(Vogel & Marcotte 2012;                         

Edfors et al. 2016)​. The necessary fine regulation of expression levels is achieved by several                             

major mechanisms: (1) Chromatin state, (2) DNA methylation, (3) transcription factors and                 

(4) enhancers. The first mechanism, chromatin state, describes the status of the packaging of                         

DNA into complex nucleoprotein structures ​(Voss & Hager 2014)​. Second, methylation of                       

cytosine residues, most importantly to 5‑methylcytosine, is an important epigenetic mark                     

controlling the silencing of genes ​(Jones 2012)​. Thirdly, transcription factors are proteins with                         

sequence-specific binding properties that direct the initiation of transcription at promoters                     

upon sequence-specific binding to modulate gene expression ​(Vaquerizas et al. 2009)​. Lastly,                       

enhancers are regulatory sequences that contain transcription factor binding site DNA motifs,                       

leading to an increased transcription level when in proximity to the transcription start site. 

Taken together, these mechanisms provide the capacity to control gene expression in precise                         

patterns that lead to individual cellular function, phenotype or development. Understanding                     
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transcriptional regulation is of high importance, not only to understand biological processes,                       

such as development, but also because misregulation of transcription is associated to a wide                           

range of diseases, such as cancer ​(Vaquerizas et al. 2009)​. 

 

mRNA Quantification 

As the gene expression levels are important to regulate functions and development in cells,                           

tissues and organisms, there is naturally a large interest in quantifying mRNA transcripts.                         

Historically, mRNA quantification began with so-called ”Northern blots” in 1977 ​(Alwine et al.                         

1977)​, for which electrophoretically separated RNA molecules are transferred to paper                     

membranes and detected by radioactively labelled probes. Later, fluorescently labelled DNA                     

probes were used to quantify mRNA ​in-situ by hybridization (“fluorescence in-situ                     

hybridization”, FISH) ​(Pachmann 1987)​. A third technique to quantify mRNA species relies on                         

PCR ​(Mullis et al. 1986) after reverse transcription of mRNA into cDNA. Quantitative                         

information of this “qPCR” technique is achieved by incorporation of a fluorescent dye and                           

measuring fluorescent signals after each amplification round ​(Becker-André & Hahlbrock                   

1989; Weis et al. 1992)​. However, these methods only quantify specific mRNAs and cannot                           

provide an unbiased, genome-wide survey of the transcriptome. Conversely, other techniques                     

such as sequencing cloned cDNA, so-called “expressed sequence tags” (EST) ​(Marra et al. 1998;                           

Adams et al. 1991)​, can survey the transcriptome but without quantitative information. The                         

first methods obtaining global gene expression data with quantitative information were “serial                       

analysis of gene expression” (SAGE) ​(Velculescu et al. 1995) and microarrays ​(Schena et al.                           

1995)​. In SAGE, short fragments of cDNA samples were produced by restriction digests and                           

then concatenated for subsequent Sanger sequencing. The method could measure the                     

expression of thousands of genes but suffered from the ambiguity of the often very short tags                               

(eg. 9 bp) ​(Yamamoto et al. 2001)​. 
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DNA microarrays describe synthetic DNA oligonucleotide probes that are immobilized on a                       

surface called microarray. Initially, oligonucleotides were synthesized and then spotted on the                       

surface in a very fine grid, later on the synthesis of probes was done directly on the surface                                   

(Miller & Tang 2009)​. Importantly, the probes are designed to be complementary to cDNA and                             

each “probe spot” thus corresponds to a specific gene sequence. Next, fluorescently labelled                         

cDNA can be added to the microarray and will hybridize to complementary probes. A                           

fluorescent signal will be produced wherever cDNA was bound, with light intensity                       

proportional to the amount of cDNA hybridized. Because of their relatively easy application,                         

low cost and good data quality, microarrays became a very popular method and are still utilized                               

to date (Figure 1).  

 

 

 

 

Figure 1: Popularity of transcriptomics methods. ​Adapted from Lowe et al. 2017                       

(Lowe et al. 2017)​. The graph shows the number of published articles per year using                             

ESTs, Microarrays, SAGE or RNA-seq in Pubmed since 1990. 
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Further advances in the density of probes on the microarray and improved technology to                           

detect fluorescence signals made the microarray even wider applicable, also for lowly                       

expressed genes ​(Pozhitkov et al. 2007)​. However, microarrays have the major drawback that                         

only known cDNA sequences can be interrogated, as the oligonucleotide probes have to be                           

designed ​a priori​. This prevents discovery of new genes or splicing isoforms and limits the                             

applicability to model organisms with well-resolved transcriptomes, such as mouse and human. 

These limitations were later overcome in the transformative technique known as                     

“RNA sequencing” (RNA-seq), which leverages the advent of next generation/high-throughput                 

sequencing by sequencing large amounts of cDNA fragments to determine global gene                       

expression levels in a given sample ​(Mortazavi et al. 2008)​. 

 

High-Throughput DNA Sequencing 

While determining the first human genome sequence ​(Lander et al. 2001) took a worldwide                           

effort, 20 years to complete and approximately 3 billion dollars in funding, current technology                           

permits the sequencing of a human genome at 30x coverage for only 1000 USD ​(Hayden                             

2014)​. This incredible cost reduction was caused by a rapid development of sequencing                         

techniques ​(Kircher & Kelso 2010) that have considerably higher output than traditional                       

Sanger sequencing ​(Sanger et al. 1977)​. Since 2005, several high-throughput sequencing                     

techniques have been in the spotlight ​(Margulies et al. 2005; Valouev et al. 2008)​, but were                               

superseded by a technology marketed by the company “Illumina”, that currently captures most                         

of the sequencing market worldwide ​(Zimmerman 2014)​. This sequencing method ​(Bentley et                       

al. 2008) is a variant of the sequencing by synthesis strategy using cyclic reversible termination                             

(Turcatti et al. 2008)​. DNA templates used in Illumina sequencing are prepared by adding                           

immobilisation adapters to fragmented DNA. This enables the attachment of DNA templates                       

to flow-cells ​(Fedurco et al. 2006)​. Initially, the attachment was done randomly, but later                           

iterations of the technology utilize patterned nanowell flow-cells to increase template density                       
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(Illumina 2015)​. After binding to the flow-cell surface, each template molecule is amplified in                           

place to clusters consisting of 1000s of clonal copies by a process called “bridge amplification”                             

(Fedurco et al. 2006)​. Here, the number of generated clusters will determine the number of                             

sequenced reads. Next, sequencing-by-synthesis is performed by adding all four bases at the                         

same time. The bases are modified to include a unique fluorophore and a cleavable chain                             

terminator. Thus, only one base will be incorporated at a time. The fluorescence signal from                             

each of the clonal template clusters can then be recorded. Subsequently, both the fluorophore                           

and the chain terminator group is cleaved and the next cycle for sequencing can occur. After a                                 

predetermined amount of sequencing cycles are performed, base-calling can be done from                       

fluorescence data ​(Kircher et al. 2009)​. Initially, read-lengths were limited to 26 bases ​(Kircher                           

& Kelso 2010)​, but continuous technology improvements increased this to 600 bases (300                         

bases paired-end) for some Illumina machines ​(Genohub 2017; Goodwin et al. 2016)​. The                         

major errors encountered are substitutions due to false base incorporation during the SBS                         

reaction. Generally, sequencing errors occur more frequently towards the end of reads, as                         

clusters are prone to phasing when some of the clonal molecules fail to cleave fluorophores or                               

fail to incorporate a base ​(Kircher & Kelso 2010)​.  

It should be noted that unlike the clonal amplification-based short read technologies discussed,                         

two major technologies for true single-molecule real-time detection are currently in fast-paced                       

technological development competition. Pacific Biosciences relies on the detection of DNA                     

synthesis from a single polymerase enzyme fixed in place using fluorescently labelled                       

dNTPs ​(Eid et al. 2009)​. The second technology does not rely on SBS. Oxford Nanopore                           

Technologies sequencing strategy utilizes membrane proteins forming nanopores immobilized                 

on an array ​(Deamer et al. 2016)​. Because each nucleotide of DNA has a slightly different                             

molecular structure, an ionic current through the pore will change accordingly ​(Jain et al.                           

2016)​. Although challenges in the interpretation of signals are currently still large, this method                           

has great potential because it gives the unique opportunity to directly detect                       
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base-modifications, such as 5-mC ​(Simpson et al. 2017) or direct RNA sequencing without                         

prior cDNA synthesis ​(Garalde et al. 2016)​. 

Currently, Illumina sequencers generate large amounts of high-quality data for the lowest                       

per-base price and are thus predominantly used in RNA sequencing studies, as relevant for this                             

work.  

 

RNA Sequencing (RNA-seq) 

Overcoming the limitations of previous transcriptomics approaches, RNA sequencing                 

(RNA-seq) has become the most widely used global gene expression analysis method to date                           

(Figure 1). First published by several groups in 2008 ​(Mortazavi et al. 2008; Nagalakshmi et al.                               

2008; Wilhelm et al. 2008; Marioni et al. 2008)​, RNA-seq leverages high-throughput DNA                         

sequencing technologies to massively parallel sequence cDNA fragments produced from                   

mRNA samples. This comprehensive profiling yields both quantitative and qualitative                   

information on gene expression, without prior design or selection of probe sequences,                       

removing microarrays’ limitations for detection of RNA splice patterns and previously                     

unannotated genes. 

Although a plethora of library preparation methods exist for RNA sequencing ​(Levin et al.                           

2010)​, the general workflow can be summarised in few steps (Figure 2). First, RNA has to be                                 

extracted from the sample of interest. As more than 80% of a cell’s RNA content is                               

uninformative ribosomal RNA (rRNA), all protocols are actively depleting rRNA or enriching                       

for mRNA (eg. selection of polyadenylated RNA species; “poly-A+ mRNA”) ​(Choy et al. 2015)​.                           

Next, mRNA is reverse transcribed into cDNA. Since most of the mRNA present in eukaryotic                             

cells is much longer than the generated sequencing read length and clustering of DNA                           

molecules on the sequencer’s flow-cell is inefficient for molecules larger than ~1 kb, transcripts                         

need to be fragmented prior to analysis. 
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Figure 2: Experimental workflow for RNA sequencing. ​RNA sequencing can be                     

performed from any biological samples after extraction of RNA. After reverse                     

transcription, cDNA is fragmented and barcoded with multiplexing sequences and                   

sequencing adapters. Finally, libraries are subjected to high-throughput sequencing. 

 

This fragmentation step can be performed at the RNA level (heat or chemical fragmentation by                             

RNA hydrolysis ​(Mortazavi et al. 2008)​) or at the cDNA level by sonication ​(Head et al. 2014)                                 

or enzymatic processes ​(Adey et al. 2010; Picelli, Björklund, et al. 2014)​. Furthermore,                         

sample-specific DNA barcodes may be added to facilitate multiplexing of many samples into                         

single sequencing runs ​(Meyer & Kircher 2010; Kircher et al. 2012)​. Subsequently, final                         

sequencing libraries may be amplified in a library PCR ​(van Dijk et al. 2014)​. Finally, sequencing                               

libraries are loaded on high-throughput sequencing machines at defined concentrations                   

(Marioni et al. 2008)​. For Illumina, massively parallel sequencing will typically yield millions of                           

reads per sample in RNA sequencing experiments, with sequencing cost usually being the only                           

limiting factor to read depth ​(Wang et al. 2009; Conesa et al. 2016)​.  
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Figure 3: Computational workflow for RNA sequencing. ​Short reads are                   

demultiplexed according to multiplexing barcode sequenced, mapped against               

reference genome and quantified. 

 

For RNA-seq data analysis (Figure 3), generated reads from the sequencer will first need to be                               

demultiplexed according to the sample-specific multiplexing barcode sequences used ​(Renaud                   

et al. 2015)​. Next, reads will be aligned to the reference genome of the organism analysed to                                 

find out which genomic location they correspond to. This is a computationally complex task                           

further complicated by the fact that most transcripts are spliced from several exons                         

interspersed by long intronic sequences in the reference genome ​(Hayer et al. 2015)​. To                           

overcome this, splice-aware alignment software has been developed to be able to confidently                         

map short reads across annotated and newly discovered splice junctions ​(Engström et al. 2013;                           

Baruzzo et al. 2017)​. After this processing, reads can be quantified in a per-base analysis over                               

the gene body sequence or as gene-/isoform-level count data to obtain expression level                         

estimates. Commonly, there are several quality-control checkpoints in the analysis of RNA                       

sequencing data to ensure reliable high quality results ​(Conesa et al. 2016)​. Briefly, raw reads                             

should be checked for their base-calling quality score distribution (eg. sequencing machine                       

errors), overrepresentation of k-mers (eg. poly-A stretches or low-complexity libraries) and                     

GC content distribution ​(Andrews 2010)​. Next, quality of the mapping step should be                       
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controlled using tools such as RSeQC ​(Wang et al. 2012) or picard. In human and mouse                               

experiments, most (> ~60-80%) of the reads in RNA-seq libraries should typically align to the                             

reference genome. Apart from the fraction of mapped reads, GC bias, uniformity of the read                             

distribution and sequence duplication levels can be indicative for data quality at this stage                           

(Okonechnikov et al. 2016)​. At the stage of quantification, QC parameters are less obvious.                           

Generally, gene expression values of replicates should be reproducible and thus show a high                           

correlation with each other, especially for technical replicates. For biological replicates,                     

acceptable correlation coefficients are dependant on the variance and heterogeneity of the                       

studied biological system ​(Conesa et al. 2016)​. 

After initial data processing and QC, higher level analysis can be performed using RNA                           

sequencing data. This typically includes, but is not limited to: differential gene expression                         

analysis ​(Soneson & Delorenzi 2013; Rapaport et al. 2013; Seyednasrollah et al. 2015)​, gene                           

set enrichment analysis ​(Tarca et al. 2013; Bayerlová et al. 2015)​, co-expression and network                           

analysis ​(Langfelder & Horvath 2008; Ballouz et al. 2015; van Dam et al. 2017)​. 

In summary, RNA sequencing shows clear advantages over previously used transcriptomics                     

methods and provides rich information in a cost-efficient manner. 

 

Single-Cell RNA Sequencing 

Conventional RNA sequencing methods generally require large amounts (100 - 1000 ng) of                         

total RNA as input. However, this can be a limiting factor when samples consisting only of few                                 

cells need to be analysed. In order to access these low-input samples, whole transcriptome                           

amplification methods have been developed ​(Bhargava et al. 2014)​. Nearly all of the presently                           

used low-input protocols feature either exponential PCR amplification ​(Mullis et al. 1986)​,                       

linear in-vitro transcription ​(Milligan et al. 1987) or multiple displacement amplification                     

(Blanco et al. 1989)​. Shortly after RNA-seq became possible whole transcriptome amplification                       

technologies were used to sequence the transcriptomes of individual cells ​(Tang et al. 2009)​.                           
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Further development of this breakthrough technology ​(Nature Methods 2014) has already                     

shown to be transformative to our understanding of biology ​(Shapiro et al. 2013; Sandberg                           

2014; Wagner et al. 2016)​. Single-cell RNA-seq opens the possibility to investigate global                         

patterns of gene expression variability within cell types ​(Deng et al. 2014) or between groups                             

of cells ​(Kolodziejczyk, Kim, Tsang, et al. 2015; Martinez-Jimenez et al. 2017)​. Furthermore,                         

the increased resolution provided by scRNA-seq has allowed researchers to uncover                     

previously unknown subpopulations in various compartments, such as the immune system                     

(Villani et al. 2017; Jaitin et al. 2014)​, liver ​(Halpern et al. 2017)​, pancreas ​(Muraro et al. 2016;                                   

Grün et al. 2015; Baron et al. 2016)​, lung ​(Treutlein et al. 2014)​, retina ​(Macosko et al. 2015;                                   

Shekhar et al. 2016) and brain ​(Tasic et al. 2016; Fuzik et al. 2016; Usoskin et al. 2015; Zeisel et                                       

al. 2015; Lake et al. 2016; Habib et al. 2017)​. In addition, other studies have reconstructed and                                 

uncovered novel dynamics and heterogeneity in developmental processes of embryos ​(Biase et                       

al. 2014; Yan et al. 2013)​, blood ​(Nestorowa et al. 2016; Moignard et al. 2015) and brain ​(La                                   

Manno et al. 2016) by applying single-cell transcriptomics. Importantly, scRNA-seq can not                       

only be used for descriptive understanding of biology but is also applied to large-scale                           

perturbation experiments providing mechanistic insight in molecular networks ​(Dixit et al.                     

2016; Jaitin et al. 2016; Xie et al. 2017; Datlinger et al. 2017)​. Lastly, single-cell transcriptomics                               

is used to investigate heterogeneity in disease states, which is of high relevance for cancer                             

evolution ​(Patel et al. 2014; Tirosh et al. 2016; Venteicher et al. 2017)​.  

Although the exciting opportunities that single-cell RNA sequencing is providing are obvious,                       

neither the experimental technology nor the computational analysis has converged to an                       

optimum yet. In order to generate and interpret data adequately, it is therefore necessary to                             

understand properties, power and limitations of scRNA-seq technologies. 
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Isolation of Single Cells 

The first step of any scRNA-seq workflow is the isolation of single cells or nuclei. Cell isolation                                 

depends on many factors that need to be considered and can also be closely linked to the                                 

chosen scRNA-seq protocol, such as the number of available cells, cell viability and whether                           

subsets of cells need to be enriched. While cell isolation can be relatively straightforward for                             

suspension cells, other cases might require more complex experimental setups. For instance,                       

manual microdissection has been useful to obtain very rare cells, as in studies of early                             

development from zygote to blastocyst ​(Tang et al. 2009; Deng et al. 2014)​. In order to access                                 

solid tissues however, they need to be dissociated into single-cell suspensions. Yet,                       

dissociations are prone to pitfalls ​(Poulin et al. 2016)​, depending on the tissue studied                           

(Figure 4A). First, cells may be damaged or respond to enzymatic digestions of surface proteins                           

leading to decreased capture ​(Huang et al. 2010)​. Second, long handling steps and incubation                           

times can alter gene expression profiles prior to analysis ​(Alles et al. 2017; van den Brink et al.                                   

2017)​. Third, readiness to dissociate is widely variable among cell types, leading to depletion of                             

certain types or enrichment of others (Figure 4A). A well known example is brain tissue, where                             

the dissociation of neurons from their strongly interconnected network is challenging ​(Poulin                       

et al. 2016)​. Further, incomplete dissociation can lead to unwanted doublets or clumps that                           

hinder true single-cell resolution (Figure 4A). Once samples are dissociated into single-cell                     

suspensions, there are several possible ways to capture cells for sequencing (Figure 4B).                       

Specifically designed microfluidic chips can capture 96 or 800 cells ​(Pollen et al. 2014; Wu et al.                                 

2014) and process them in the Fluidigm C1 microfluidic controller. A second application of                         

microfluidics technologies is the use of microdroplets. Here, cells are encapsulated in droplets                         

of defined nanoliter size in a water-in-oil emulsion ​(Macosko et al. 2015; Klein et al. 2015;                               

Zilionis et al. 2017; Zheng et al. 2017)​. Droplet capture of single-cells can be used for unbiased                                 

high-throughput capture of many single cells independent of their cell size. For droplet-based                         
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methods, a major obstacle can be damaged cells which may break and release their RNA. This                               

free RNA can subsequently leak into all droplets, generating a certain background noise and                           

wasting sequencing coverage (Figure 4A). 

In many experiments, preselection of certain cell types is desirable. Usually, this selection may                           

be performed by FACS, in which case single cells may be directly sorted in individual wells of                                 

96- or 384-well plates ​(Kolodziejczyk, Kim, Svensson, et al. 2015; Soumillon et al. 2014; Jaitin                             

et al. 2014; Hashimshony et al. 2016)​. These multiwell plates typically contain lysis buffer to                             

break the cell and release the RNA for subsequent processing. Furthermore, compatible FACS                         

machines can allow “index sorting”, which means fluorescence data for each deposited cell can                           

be associated to the well position ​(Hayashi et al. 2010)​, providing additional data.  

A relatively new alternate approach is the deposition of cells into microfabricated nanowells                         

by limiting dilution ​(H. C. Fan et al. 2015; Gierahn et al. 2017; Hochgerner et al. 2017)​.  

 

 

Figure 4: Isolation of single cells for sequencing. ​A: Illustration of typical issues                         

during single-cell isolation. Dissociation can lead to depletion of certain cell types by                         

damage and cell death. After incomplete dissociation, doublets may be problematic.                     

In droplet-based cell isolation, contaminating free RNA may leak in microdroplets.                     

B: Illustrations of major popular single cell isolation methods. 
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Nanowells methods are coming into focus as they offer high throughput without the need for                             

microfluidic droplet setups. 

Obviously, depending on the experimental parameters (eg. rare/abundant cells,                 

unbiased/preselected cells, suspension/dissociated cells) tradeoffs of different techniques will                 

need to be considered. In all cases, data should be carefully examined to estimate capture and                               

doublet rates. For instance, in a study of pancreatic islet cells using the Fluidigm C1 system, the                                 

doublet rate was found to be 31% due to an issue with the microfluidic chip design by analysing                                   

mutually exclusive hormone-producing genes ​(Xin et al. 2016)​. In order to experimentally                       

validate doublet rates Macosko et al. and Klein et al. first proposed co-isolation of mouse and                               

human cells in one experiment. By mapping the transcriptomes, mixed-species samples can be                         

identified readily and should make up a third of doublets ​(Macosko et al. 2015; Klein et al.                                 

2015)​. After successful cell capture, single-cell RNA is obtained and processed for sequencing. 

Generating scRNA-seq libraries 

After cell capture, each protocol for single-cell RNA sequencing consists of three major steps:                           

(1) reverse transcription of mRNA into cDNA, (2) pre-amplification of cDNA and (3)                         

sequencing library preparation (Figure 5A). Reverse transcription is the essential first step in                       

scRNA-seq after cell lysis is completed. The conversion into cDNA is considered to be                           

especially inefficient, and only an estimated fraction of 10-40 % of mRNA molecules are                           

reverse transcribed ​(Grün et al. 2014; Islam et al. 2014)​. Several studies have reported that                             

small reaction volumes in microfluidic machines may increase the efficiency of this step ​(Wu et                             

al. 2014; Streets et al. 2014; Hashimshony et al. 2016)​. Still, it is important to systematically                               

optimize reaction conditions of this step, as was shown for the Smart-seq2 protocol ​(Picelli et                             

al. 2013)​.  
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Figure 5: Preparation of scRNA-seq libraries. ​A: Typical whole transcriptome                   

amplification strategies are illustrated (left: PCR, right: IVT). B: Illustration of early                       

cell barcoding enabling massively parallel scRNA-seq. 

 

In order to select for the polyadenylated mRNA fraction of the cellular RNA content, virtually                             

all protocols utilize oligo-dT primers to initiate the reverse transcription reaction, with                       

exceptions of protocols specifically aiming to sequence the total RNA transcriptome ​(X. Fan et                           

al. 2015; Sheng et al. 2017)​. Recently developed protocols feature cell-specific barcodes                       

incorporated during the reverse transcription step (Figure 5B) to increase throughput of                     

scRNA-seq methods ​(Islam et al. 2011; Hashimshony et al. 2012; Soumillon et al. 2014; Jaitin                             

et al. 2014; Macosko et al. 2015; Klein et al. 2015; Zheng et al. 2017; Hochgerner et al. 2017)​.                                     

Being able to pool reactions as early as possible is associated with a large drop in reagent costs                                   

and labor time. Because the cell-barcode is usually located in the primer sequence (eg. oligo-dT                             

primer), sequencing is restricted to the end of the transcript (5’ end or 3’ end) to be able to                                     
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associate cDNA fragments with barcode information. However, the increasing throughput of                     

protocols and the association of barcode information to cDNA sequence poses challenges to                         

bioinformatics pipelines for processing such data. After reverse transcription, the minute                     

amounts of cDNA are pre-amplified. Popularly, scRNA-seq protocols use PCR or IVT to                         

achieve this. In the case of PCR, most of the current protocols ​(Ramsköld et al. 2012; Picelli et                                   

al. 2013; Soumillon et al. 2014; Macosko et al. 2015; Rosenberg et al. 2017) rely on the                                 

template-switching mechanism ​(Zhu et al. 2001; Zajac et al. 2013) to place a known primer                             

sequence at the 5’ end of the transcript, in addition to a PCR handle being present at the 3’ end                                       

within the oligo-dT primer (Figure 5A). Much is already known on sequence-specific biases in                         

general sequencing library PCR amplification ​(Aird et al. 2011)​. Since PCR amplification is                         

exponential, any sequence-dependent bias (eg due to GC content, length) can propagate and                         

potentially distort expression profiles ​(Kolodziejczyk, Kim, Svensson, et al. 2015)​. Thus, the                       

number of amplification cycles should be carefully optimized in PCR-based scRNA-seq                     

methods ​(Picelli, Faridani, et al. 2014)​. 

In contrast, the most common alternative pre-amplification method, in-vitro transcription                   

(IVT), is a linear amplification technique and has been used in several important scRNA-seq                           

protocols ​(Hashimshony et al. 2012; Jaitin et al. 2014; Klein et al. 2015; Hashimshony et al.                               

2016; Zilionis et al. 2017)​. Here, amplification biases should be less pronounced than in                           

PCR-based methods. However, IVT-based methods need a second reverse transcription                   

reaction, which increases 3’ bias ​(Kolodziejczyk, Kim, Svensson, et al. 2015)​. Thus, all presently                           

used IVT-based methods selectively sequence 3’ ends.  

Finally, after pre-amplification of single-cell material, library preparation needs to be done to                         

make cDNA compatible with high-throughput sequencing. Since most of the protocols use the                         

Illumina platform for sequencing, the Illumina Nextera kit ​(Adey et al. 2010; Picelli, Björklund,                           

et al. 2014)​ is a popular choice for fragmentation and adapter incorporation. 
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In scRNA-seq, the inefficient capture and amplification of the low starting amounts of mRNA                           

leads to high technical noise, especially for lowly expressed genes ​(Brennecke et al. 2013; Islam                             

et al. 2014; Grün et al. 2014; Kim et al. 2015)​. In order to remove amplification noise, many                                   

protocols include unique molecular identifiers (UMIs; Figure 6). By incorporation of a random                         

sequence during reverse transcription, each initial cDNA molecule will most likely have a                         

unique sequence, given sufficient UMI length. During amplification, several copies of each                       

cDNA with its specific UMI sequence will be made. After sequencing of cDNA fragments                           

together with their UMI, counting of initial cDNA molecules is possible by comparing the                           

number of unique UMI sequences per gene and cell (Figure 6). 
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Figure 6: Illustration of unique molecular identifiers. ​Shown are two schematic                     

cells with transcripts from three genes. During reverse transcription, unique                   

molecular identifiers are incorporated. After amplification and sequencing, reads                 

coming from unique molecules can be distinguished by their UMI sequence, thus                       

removing amplification bias. 
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With the rapid pace of scRNA-seq method development, there is a high need for independent                             

assessment of protocol performance. Ideally, a single-cell RNA sequencing protocol would be                       

(1) compatible with several cell isolation procedures, (2) highly sensitive to capture mRNA                         

molecules, (3) accurately represent absolute expression levels and (4) be precise. First, being                         

flexible to several cell inputs gives a scRNA-seq method broad applicability. Second, high                         

sensitivity to capture and detect mRNA molecules is beneficial to observe gene expression                         

comprehensively including lowly expressed genes and prevent dropout events (Figure 7A).                   

Third, accuracy describes how closely gene expression measurements correspond to actual                     

mRNA concentrations in the cell (Figure 7B). Fourth, precision, describes the technical                     

variation of gene expression measurements, a parameter that is largely driven by amplification                         

noise in RNA sequencing data. In practice, not only the outright performance of a single-cell                             

protocol will decide the choice of method. Rather, practical considerations, such as batch size,                           

available sample and equipment are important considerations. Still, measuring and comparing                     

these technical parameters is an important question in the field. Furthermore, the technical                         

performance of scRNA-seq methods should be seen relative to their cost to inform optimal                           

design of future studies. 

 

Figure 7: Technical parameters of scRNA-seq data. ​A: Sensitivity describes the                     

fraction of single-cell RNA molecules that can be detected and quantified. B:                       

Accuracy describes the correlation of observed expression levels to annotated                   

spike-in mRNA concentrations. C: Precision describes the technical variation of                   

gene expression measurements. 
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Experimental Design 

As mentioned above, single-cell RNA sequencing data is subject to large amounts of technical                           

noise ​(Brennecke et al. 2013; Grün et al. 2014) ​that can vary from batch to batch ​(Tung et al.                            

2017)​. Hence, technical nuisance factors need to be decoupled from biological factors of                         

interest by appropriate experimental design ​(Hicks et al. 2015)​. Early barcoding and                       

multiplexing can help reduce batch effects by handling and processing samples of different                         

conditions in parallel as much as possible ​(Robles et al. 2012)​. A multiplexed workflow should                             

include sequencing samples on mixed lanes ​(Auer & Doerge 2010)​. Because technical variation                         

can never be excluded, it is recommend that cells from all studied conditions are sequenced                             

together in multiple batches to be able to factorize and remove batch-associated variability in                           

the following statistical analysis (Figure 8) ​(Hicks et al. 2015)​. Naturally, practical technological                       

constraints, such as the number of input cell suspensions into a microfluidic device, may pose                             

limits to the accommodation of several factors into a single batch ​(Lun & Marioni 2017)​. Batch                               

effects can be included in the DE modelling as an extra covariate to separate biological and                               

technical effects on gene expression measurements. Furthermore, algorithms that are able to                       

align and integrate data from various batches or technologies are in active development in                           

order to make most use of existing data ​(Butler & Satija 2017)​. 

In summary, when generating scRNA-seq data, batch effects and unwanted variation should be                         

controlled for in the experimental design as much as possible or removed computationally at                           

the analysis stage. 
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Figure 8: Design of scRNA-seq experiments. ​Shown is an exemplary study to                       

detect differences between three cell types. The left side illustrates an                     

experimental design, where cell identity is confounded with cell isolation, library                     

preparation and sequencing batches. The right side illustrates an experiment                   

where cell identity is balanced over technical batches, decoupling technical from                     

biological variance. 
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Acute Lymphoblastic Leukemia 

To illustrate the high practical pertinence of emerging scRNA-seq technologies, this work                       

features an application in acute leukemia, which poses a number of relevant biomedical                         

questions. Leukemia, the tenth most common cancer type ​(Yamamoto & Goodman 2008)​,                       

describes a group of cancer diseases affecting the blood progenitor cells in the bone marrow.                             

Acute leukemias are grouped according to the affected blood progenitor lineage into acute                         

myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) ​(Sawyers et al. 1991)​.                       

Although ALL occurs in both children and adults, over 60% of cases are pediatric, making ALL                               

the most common cancer in children under 15 years of age ​(Inaba et al. 2013)​. With current                                 

treatment options, 90% of patients survive the disease ​(Hunger et al. 2012)​. Still, in some cases                               

a minority of cancer cells survive therapy and cause relapse with poor prognosis ​(Gökbuget et                             

al. 2012; van Dongen et al. 2015)​. Although of high relevance, the biological mechanisms of                             

these relapse-inducing cells remain largely unclear. Relapse-inducing cells have self-renewal                   

and tumor-initiating potential and thus can regrow the tumor after treatment, similar to cancer                           

stem cells ​(Trumpp & Wiestler 2008)​. In addition, tumor-initiating cells are often resistant to                           

chemotherapy ​(Clevers 2011)​. Because of resistance, patients with relapse have especially                     

adverse prognosis ​(Nguyen et al. 2008)​. In ALL, resistance of tumor-initiating cells could be                           

linked to dormancy, as chemotherapy targets proliferating cells. Dormant cells thus may                       

persist as minimal residual disease (MRD) during treatment and give rise to relapses, and has                             

indeed been described recently in ALL ​(Lutz et al. 2013)​. As MRD cells per definition occur at                                 

extremely rare frequencies (less than 1 ALL cancer cell in 10,000 normal cells), biological                           

characterisation of this compartment is extremely difficult and information is limited so far                         

(van Dongen et al. 2015)​. Obstacles in research on MRD cells are the rarity of primary patient                                 

material and the fact that ALL cell cultures are unsuitable to study MRD because of their                               

continuous proliferation. Thus, a promising tool are patient-derived xenograft models, where                     

35 



 

patient leukemia cells grow in immuno-deficient mice, closely mimicking human disease                     

(Castro Alves et al. 2012)​.  

Obtaining as comprehensive as possible characterisation from very rare cells is an ideal                         

application for single-cell RNA sequencing because it enables the genome-wide quantification                     

of gene expression from this rare cell population. Furthermore, potential heterogeneity from                       

subclones ​(Inaba et al. 2013)​ may be detected with single-cell resolution. 
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Results 

Improving Single-Cell RNA Sequencing Technology 
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The impact of amplification on differential expression analyses by                 

RNA-seq 
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The impact of amplification on 
differential expression analyses by 
RNA-seq
Swati Parekh, Christoph Ziegenhain, Beate Vieth, Wolfgang Enard & Ines Hellmann

Currently, quantitative RNA-seq methods are pushed to work with increasingly small starting amounts 
of RNA that require amplification. However, it is unclear how much noise or bias amplification 
introduces and how this affects precision and accuracy of RNA quantification. To assess the effects 
of amplification, reads that originated from the same RNA molecule (PCR-duplicates) need to be 
identified. Computationally, read duplicates are defined by their mapping position, which does not 
distinguish PCR- from natural duplicates and hence it is unclear how to treat duplicated reads. Here, 
we generate and analyse RNA-seq data sets prepared using three different protocols (Smart-Seq, 
TruSeq and UMI-seq). We find that a large fraction of computationally identified read duplicates are 
not PCR duplicates and can be explained by sampling and fragmentation bias. Consequently, the 
computational removal of duplicates does improve neither accuracy nor precision and can actually 
worsen the power and the False Discovery Rate (FDR) for differential gene expression. Even when 
duplicates are experimentally identified by unique molecular identifiers (UMIs), power and FDR are only 
mildly improved. However, the pooling of samples as made possible by the early barcoding of the UMI-
protocol leads to an appreciable increase in the power to detect differentially expressed genes.

High throughput RNA sequencing methods (RNA-seq) are currently replacing microarrays as the method of 
choice for gene expression quantification1–5. For many applications RNA-seq technologies are required to become 
more sensitive, the goal being to detect rare transcripts in single cells. However, sensitivity, accuracy and precision 
of transcript quantification strongly depend on how the mRNA is converted into the cDNA that is eventually 
sequenced6. Especially when starting from low amounts of RNA, amplification is necessary to generate enough 
cDNA for sequencing7,8. While it is known that PCR does not amplify all sequences equally well9–11, PCR ampli-
fication is used in popular RNA-seq library preparation protocols such as TruSeq or Smart-Seq12. However, it is 
unclear how PCR bias affects quantitative RNA-seq analyses and to what extent PCR amplification adds noise and 
hence reduces the precision of transcript quantification. For detecting differentially expressed genes this is even 
more important than accuracy because it influences the power and potentially the false discovery rate.

RNA-seq library preparation methods are designed with different goals in mind. TruSeq is a method of choice, 
if there is sufficient starting material, while the Smart-Seq protocol is better suited for low starting amounts13,14. 
Furthermore, methods using UMIs and cellular barcodes have been optimized for low starting amounts and 
low costs, to generate RNA-seq profiles from single cells7,15. To achieve these goals, the methods differ in a num-
ber of steps that will also impact the probability of read duplicates and their detection (Fig. 1). TruSeq uses 
heat-fragmentation of mRNA and the only amplification is the amplification of the sequencing library. Thus all PCR 
duplicates can be identified by their mapping positions. In contrast, in the Smart-Seq protocol full length mRNAs 
are reverse transcribed, pre-amplified and the amplified cDNA is then fragmented with a Tn5 transposase12.  
Consequently, PCR duplicates that arise during the pre-amplification step can not be identified by their mapping 
positions. UMI-seq also amplifies full-length cDNA, but unique molecular identifiers (UMIs) as well as library 
barcodes are already introduced during reverse transcription before pre-amplification16. This early barcoding 
allows all samples to be pooled right after reverse transcription. The primer sequences required for the library 
amplification are introduced at the 3′  end during reverse transcription. Thus, PCR-duplicates in UMI-seq data 
can always be identified via the UMI. In summary, while PCR-duplicates can be unambiguously identified in 
UMI-seq, for Smart-Seq and TruSeq PCR-duplicates are identified computationally as read duplicates. However, 
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such read duplicates can also arise by sampling independent molecules. The chance that such natural duplicates, 
i.e. read duplicates that originated from different mRNA molecules, occur for a transcript of a given length, 
increases with expression levels and fragmentation bias.

That said, it is unclear whether removing read duplicates computationally improves accuracy and precision by 
reducing PCR bias and noise or whether it decreases accuracy and precision by removing genuine information. 
Here, we investigate the impact of PCR amplification on RNA-seq by analyzing datasets prepared with Smart-Seq, 
TruSeq and UMI-seq as well as different amounts of amplification. We investigate the source of read duplicates 
by analysing PCR bias and fragmentation bias, assess the accuracy using ERCCs - spike-in mRNAs of known 
concentrations17,18 - and assess precision using power simulations using PROPER19.

Results
Selection of datasets. We analyse five different datasets that represent three popular RNA-seq library 
preparation methods. We started with two benchmarking datasets from the literature2 that sequenced five rep-
licates of bulk mRNA using the TruSeq protocol on commercially available reference mRNAs: the Universal 
Human Reference RNA (UHRR; Agilent Technologies) and the Human Brain Reference RNA (HBRR, 
ThermoFisher Scientific). To ensure comparability, we also used UHRR aliquots to produce Smart-Seq and UMI-
seq datasets in house (Table 1). However, we also wanted to include a single cell dataset, representing the most 
extreme and the most interesting case for low starting amounts of RNA. To this end, we chose to reanalyze the 
first published single cell dataset from Wu et al.20 that sequenced the cancer cell line HCT116. The library prepa-
ration method used for the single cell data is also Smart-Seq and thus comparable to our UHRR-Smart-Seq data. 

Figure 1. Schematic of library preparation protocols and datasets. The upper panel details the steps for the 
three sequencing library preparation methods analysed in this study. In the UMI-seq flow-chart red and purple 
tags represent the sample barcodes and the green and yellow tags the UMIs.
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The only drawback that we have to keep in mind for this dataset, is that it also contains true biological variation 
that we cannot control for, whereas the bulk datasets using the reference mRNAs should only show technical 
variation.

All datasets contain ERCC-spike-ins, which allows us to compare the accuracy of the quantification of 
RNA-levels. Furthermore, all datasets except the UHRR-UMI-seq have paired-end sequencing, which should 
provide more information for the computational identification of PCR duplicates.

Natural duplicates are expected to be common. The number of computationally identified paired-end 
read duplicates (PE-duplicates) varies between 6% and 19% for the bulk data and 1% and 59% for the single cell 
data. Since single-end data is commonly used for gene expression quantification, we also consider the mapping of 
the first read of every pair. The resulting fractions of computationally identified duplicates from single-end reads 
(SE-duplicates) are much higher. For the bulk data, it ranges from 36–74% and for the single cell data from 6–94% 
(Table 2, Fig. 2a). Surprisingly, out of the bulk datasets, the UMI-seq data show on average the highest duplicate 
fractions with 66% (Range: 64–68%), whereas all those duplicates are bona-fide PCR-duplicates. In the UHRR 
Smart-Seq data, which is the most similar dataset to the UMI-seq data, we only identified 12% PE-duplicates 
computationally (Fig. 2a). Although these numbers are not strictly comparable due to some differences in the 
library preparation (e.g. 5 more PCR-cycles for the UMI-data see Table 1 and a stronger 3′  bias (Supplementary 
Figure S1)), it nevertheless strongly indicates that many PCR-duplicates in Smart-Seq libraries occur during 
pre-amplification and thus cannot be detected by computational means.

Generally, the fraction of read duplicates is expected to depend on library complexity, fragmentation method 
and sequencing depth. Sequencing depth is the factor that gives us the most straight-forward predictions and in 
the case of SE-duplicates they are by in large independent of other parameters such as the fragment size distri-
bution. As expected, we observe a positive correlation between the number of reads that were sequenced and the 
fraction of SE-duplicates (Fig. 2b,c). In order to test to what extent simple sampling can explain the number of 
SE-duplicates, we calculate the expected fraction of SE-duplicates, given the observed number of reads per gene 
and the gene lengths (see Methods, Fig. 2b,c). Note that in the case of Smart-Seq this approach will only evaluate 
the effect of the library PCR, but be oblivious to PCR duplicates that arose during pre-amplification. We find that 
for TruSeq and Smart-Seq the majority of SE-duplicates are expected under this simple model of random sam-
pling (Fig. 2b,c). For the TruSeq data our simple model underestimates the fraction of duplicates on average by 
10% (8.1–13.6%), for the single cell Smart-Seq data by 19% (0.3–67%) and for the bulk Smart-Seq data by 16.6% 
(11.5–22.3%). Thus, irrespective of the library preparation protocol a large fraction of computationally identified 
SE-duplicates could easily be natural duplicates (Fig. 2b,c).

In contrast to this simple sampling expectation for SE-duplicates, fragments produced during 
PCR-amplification after adapter ligation, will necessarily produce fragments with the same 5′  and 3′  end and 
consequently will have identical mapping for both ends. If the sampling was shallow enough so that we would not 
expect to draw the same 5′  end twice by chance, the 3′  end position should also be identical and no reads with 
only one matching 5′  end are expected. If same 5′  ends are more frequent due to biased fragmentation, we expect 
a higher ratio of SE- to PE-duplicates. Thus, the relationship between PE- and SE-duplicates contains information 
about the relative amounts of duplicates produced by fragmentation as compared to amplification. More specifi-
cally, we expect that the fragmentation component of the PE- vs. SE-duplicates should be captured by a quadratic 
fit with an intercept of zero (Fig. 3).

The only dataset for which the quadratic term is not significant is the UHRR-TruSeq dataset. This could be 
seen as an indication of a higher proportion of PCR-duplicates, but it is more likely due to the low sample size 
of only 5 replicates. More importantly, the quadratic term is significant and positive for the HBRR TruSeq, the 
UHRR Smart-Seq and the scHCT116 datasets, supporting the notion that at least for those datasets library PCR 

Study ID GSE-ID Lab
Sample 

size
Reads per sample 

(Mean ± SD million)
Read 

Length
PCR 

cycles
scHCT116 Smart-Seq GSE51254 Quake 96 1.8 ±  1.1 101 21* +  12
UHRR Smart-Seq GSE75823 Enard 10 1.5 ±  1.1 50 10* +  12
UHRR UMI-seq GSE75823 Enard 12 9 ±  1 46 15* +  12
UHRR TruSeq GSE49712 SEQC 5 125 ±  33 101 15
HBRR TruSeq GSE49712 SEQC 5 140 ±  29 101 15

Table 1.  Description of the datasets analysed. *preamplification PCR-cycles.

Study Name
Fraction PE-

duplicates
Fraction SE-

duplicates
HBRR TruSeq 0.06–0.16 0.62–0.71
scHCT116 Smart-Seq 0.013–0.59 0.064–0.94
UHRR Smart-Seq 0.081–0.18 0.36–0.47
UHRR TruSeq 0.087–0.18 0.66–0.74
UHRR UMI-seq 0.65–0.68*

Table 2.  Fraction of duplicates per sample. *Fraction of duplicates based on UMI counts.
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Figure 2. The Fraction of SE-duplicates increases with the total number of reads. In panel (a), we plot the 
fraction of computationally identified SE-duplicates (blue) and PE-duplicates (yellow) per sample. For the 
UMI-seq data, we identify duplicates only based on the experimental evidence provided by the UMIs. The black 
line marks the median for each dataset. If the correlation between sequencing depth and duplicates is due to 
sampling and fragmentation, we can quantify this impact. In (b), we plot the observed SE-duplicate fractions 
(red) and expected fractions (sampling–green, sampling +  fragmentation–blue). (c) The left panel shows the 
two Smart-Seq datasets (UHRR- blue, scHCT116- green) and the right panel the TruSeq data (HBRR- red, 
UHRR- purple). Filled circles represent the observed fraction of SE-duplicates. Open symbols represent 
simulated data: Open diamonds mark the expected fractions of SE-duplicates under a simple sampling model 
and open circles are the expectations for a sampling model with fragmentation bias. The lines are the log-linear 
fits between sampling depth and SE-duplicates per dataset.

Figure 3. The relation between SE- and PE-duplicates. The relation between SE- and PE-duplicates is 
expected to follow a quadratic function, if the majority of duplicates are natural, i.e. due to fragmentation and 
sampling. Here, we show a quadratic fit for the different datasets (UHRR-TruSeq–purple, HBRR-TruSeq–red, 
UHRR-Smart-Seq–blue, scHCT116–green).
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amplification is not the dominant source of duplicates. This is also consistent with our finding that most observed 
SE-duplicates are simply due to sampling (Supplementary Table S1 and Fig. 3).

Fragmentation is biased. The model above assumes that fragmentation does occur randomly. However, 
some sites are more likely to break than others and this might increase the fraction of SE-duplicates. To evaluate 
the impact and nature of fragmentation bias, we analysed ERCC spike-ins because they are exactly the same in all 
datasets. First, we test whether the variance in the frequency of 5′  end mapping positions of ERCCs in one sample 
can explain a significant part of this variance in other samples prepared with the same method. On average, we 
find R2s of 0.77 and 0.85 for the Smart-Seq and TruSeq protocols, respectively. Note, that this high R2 holds for 
samples that were prepared in different labs: for example the R2 between the Smart-Seq samples prepared in our 
lab and the single cell data from the Quake lab ranges between 0.56–0.90. In contrast, if the R2 is calculated for the 
comparison between one TruSeq and one Smart-Seq library, it drops to 0.0012 (Fig. 4a,b). Because the UMI-seq 
method specifically enriches for reads close to the 3′  end of the transcript, we cannot compare fragmentation 
across the entire length of the transcript. However, if we limit ourselves to the 600 most 3′  basepairs, we still 
find that the fragmentation pattern of the UMI-seq data shows a higher concordance with the two other data-
sets prepared also using the Smart-Seq protocol (mean R2 =  0.08) than with the TruSeq data (mean R2 =  0.002; 
Supplementary Figure S2). All in all, this is strong evidence that fragmentation reproducibly prefers the same sites 
given a library preparation protocol and thus read sampling is not random.

Figure 4. The fragmentation patterns of the ERCCs are highly reproducible for different samples 
prepared with the same RNA-seq library method. (a) Here, we plot the fraction of 5′  read ends per position 
of ERCC-00002. Because the TruSeq libries (blue) had read lengths of 100 bases, we do not consider the 
ends (grey dashed lines) for the calculation of the pair-wise R2 values. Also, note that UMI-seq creates a 
stronger 3′  bias. (b) Violin plot of the adjusted R2 of a linear model of 5′  read ends from different samples. 
The reproducibility of fragmentation is highest between Smart-Seq samples (orange), a little lower between 
the TruSeq samples and there is no correlation between samples from one Smart-Seq and one TruSeq sample 
(middle, green).
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To identify potential causes for these non-random fragmentation patterns, we correlated the GC-content of the 
15 bases around a given position with the number of 5′  read ends. This explained very little of the fragmentation 
patterns in the TruSeq-data (median R2 =  0.0064, 59% of the pair-wise comparisons significant with p <  0.05), 
and none in the Smart-Seq data (median R2 =  0.00002, 18% significant with p <  0.05, Supplementary Figure S3a 
and Supplementary Table S2). Next, we built a binding motif for the Transposase21 from our UHRR-Smart-Seq 
data and, unsurprisingly, found that the motif has a very low information content (Supplementary Figure S3b) 
and accordingly a weak effect on the 5′  read end count (median R2 =  0.0019, 48% & 58% significant with p <  0.05 
for scHCT116 & UHRR Smart-Seq, Supplementary Figure S3a and Supplementary Table S2).

Although we could not identify the cause for the fragmentation bias in the sequence patterns around the frag-
mentation site, we can still quantify the maximal impact of fragmentation bias on the number of SE-duplicates, 
simply by adjusting the effective length of the transcripts. For the TruSeq data, we estimate that a fragmentation 
bias that reduces the effective length by ~2-fold gives a reasonably good fit, leaving on average 1% (0.1–3.0%) of 
the SE-duplicates unexplained. For the UHRR-Smart-Seq data, a ~38.5-fold reduction in the effective length is 
needed and leaves only 3% (0.6–5.1%) of the duplicates unexplained. For the single cell data, the fragmentation 
bias that gives overall the best fit is a ~8-fold reduction, however the fit is worse since the fraction of unexplained 
duplicates is still at ~7% and varies between 0.3% and 61% (Fig. 2b,c). In summary, we find that fragmentation 
bias contributes considerably to computationally identified read duplicates and is stronger for Smart-Seq, i.e. for 
enzymatic fragmentation, than for TruSeq, i.e. heat fragmentation.

Removal of duplicates does not improve the accuracy of quantification. To evaluate the impact of 
PCR duplicates on the accuracy of transcript quantification, we use again the ERCC spike-in mRNAs. Although, 
the absolute amounts of ERCC-spike ins might vary due to handling, the relative abundances of these 92 reference 
mRNAs can serve as a standard for quantification. Ideally, the known concentrations of the ERCCs should explain 
the complete variance in read counts and any deviations are a sign of measurement errors. We calculate the R2 val-
ues of a log-linear fit of transcripts per million (TPM) versus ERCC concentration to quantify how well TPM esti-
mates molecular concentrations and compare the fit among the different duplicate treatments. In no instance does 
removing read duplicates improve the fit, but in most cases the fit gets significantly worse (t-test, p <  2 ×   10− 3) 
except for the computational PE-duplicate removal of the UHRR-Smart-Seq and the duplicate removal using 
UMIs (Fig. 5). These results also hold when we use a more complex linear model including ERCC-length and 
GC-content (Supplementary Figure S4).

Removal of duplicates does not improve power. Most of the time we are not interested in absolute 
quantification, but are content to find relative differences, i.e. differentially expressed (DE) genes between groups 
of samples. The extra noise from the PCR-amplification has the potential to create false positives as well as to 
obscure truly DE genes. In order to assess the impact of duplicates on the power and the false discovery rate 
(FDR) to detect DE genes, we simulated data based on the estimated gene expression distributions of the five 
datasets. For comparability, we first equalized the sampling depth by reducing the number of mapped reads to 3 

Figure 5. Removing duplicates does not improve the accuracy of expression quantification as measured 
using the ERCC spike-ins. Expression levels as quantified in transcripts per million reads (TPM) are a good 
predictor of the concentrations of the ERCC spike-ins. The log-linear fit of TPM vs. Molarity for one exemplary 
sample of the UHRR-TruSeq dataset is shown in (a). The most accurate prediction of ERCC molarity is the 
TPM estimator using all reads (grey). Removing duplicates as PE (yellow) makes the fit a little worse and 
removing SE-duplicates (blue) much worse. The adjusted R2 for all samples are summarized in (b), the median 
for each dataset is marked as black line. The R2 of the TPM estimate from the removal of PCR-duplicates using 
UMIs (green) is surprisingly similar to keeping PCR-duplicates (grey).
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million and 1 million for bulk and single cell data, respectively. Next, we estimated gene-wise base mean expres-
sion and dispersion using DESeq222.

There are no big differences in the distributions of mean baseline expression and dispersion estimates from the 
different duplicate treatments for the two Smart-Seq datasets, whereas there is a shift towards lower means and 
higher dispersions, when removing SE-duplicates for the TruSeq datasets. Dispersions shift only to lower values 
if we exclude duplicates based on identification by UMIs (Fig. 6a, Supplementary Figure S5). The empirical mean 
and dispersion distributions are then used to simulate two groups with six replicates for bulk-RNA-seq datasets 
and 45 replicates for the single cell dataset. In all cases we simulate that 5% of the genes are differentially expressed 
with log2-fold changes drawn from a normal distribution with N (0, 1.5)19. We analysed 100 simulations per 
data-set using DESeq2 and calculate FDR and power for detecting DE-genes with a log 2-fold change of at least 
0.5.

Except for the UHRR-UMI-seq dataset, the nominal FDR that we set to α =  5% is exceeded: the means vary 
between 5.4% and 10.1%, whereas the HBRR TruSeq has the lowest and the scHCT116 Smart-Seq data the high-
est FDR (Fig. 6d). Computational removal of SE-duplicates increases the FDR by ~2% in the HBRR-TruSeq and 
the UHRR-TruSeq, has no significant impact on the scHCT116 dataset and, surprisingly, improves the FDR by 

Figure 6. Duplicate removal has little influence on the power and FDR to detect DE-genes in comparison 
to the library preparation method. We estimated the distributions of mean expression and dispersion across 
genes for each dataset using DESeq2 after downsampling the datasets to 3 or 1 million reads. The distributions 
are estimated for the data including all reads (grey), removing PE-duplicates (yellow), removing SE-duplicates 
(blue) and for the UHRR-UMI-seq dataset removing duplicates using UMIs (green). We summarize 
distributions of dispersion/mean in (a). The estimated mean and dispersion distributions served as input for our 
power simulations using PROPER19. We did 100 simulations per dataset, whereas each dataset had two groups 
of six replicates (45 for scHT116) with 5% of the genes being differentially expressed between groups. In panel 
(b), we report the marginal power to detect a log2-fold change of 0.5 and in panel (d) the corresponding FDR, 
whereas the nominal FDR was set to α =  0.05 (dashed line). In panel (c), we plot our estimates of the marginal 
power against the number of PCR-cycles for each dataset. Error bars are standard deviation to the mean 
marginal power over 100 simulations. We find a surprisingly simple linear decline in power with the number 
of PCR-cycles, if we only consider datasets where PCR amplification was done separately for each sample of the 
dataset (violet). To confirm this simple fit we added two other datasets: (1) Bulk Smart-Seq dataset of mouse 
brain bulk RNA amplified using 20 PCR-cycles and (2) Single cell Smart-Seq dataset of 96 mouse embryonic 
stem cells that were amplified using 33 cycles. The only outlier is the UMI-seq dataset for which samples were 
pooled prior to amplification (green).
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1% in the UHRR-Smart-Seq data (Fig. 6d). The computational removal of PE-duplicates harbors less potential for 
harm, in that it leaves the FDR unchanged for both TruSeq datasets and even slightly improves the FDR for the 
Smart-Seq datasets. Again, the only substantial improvement is achieved by duplicate removal using UMIs, which 
reduces the FDR from 7% to 3%. (t-test, p <  1 ×   10− 15).

The differences in the power are more striking. As for the FDR, the major differences are not between dupli-
cate treatments, but between the datasets. For the TruSeq and the UHRR-UMI-seq datasets, the average power 
to detect a log2-fold change of 0.5 is ~80% (Fig. 6b). For those datasets the changes in power due to duplicate 
removal are only marginal and for the computational removal using PE-duplicates it actually decreases the power 
for the TruSeq datasets by 2%, while for the UMI-seq data duplicate removal increases power by 2%. The power 
for the UHRR-Smart-Seq and the scHCT116 Smart-Seq datasets is much lower with 52% and 27%, respectively, 
and duplicate removal increases the power by only 1%.

The large differences in power between the datasets are unlikely to be ameliorated by increasing the number of 
replicates per group. In addition to the 6 and 45 replicates for which the results are reported above, we also con-
ducted simulations for 12 and 90 replicates for bulk and the single cell data, respectively. This doubling in replicate 
number increases the power for the UHRR-Smart-Seq dataset only from 52 to 63% and for the single cell dataset 
from 27 to 34% (Supplementary Figure S6, Supplementary Table 3).

Discussion
RNA-seq has become a standard method for gene expression quantification and in most cases the sequencing 
library preparation involves amplification steps. Ideally, we would like to count the number of RNA molecules in 
the sample and thus would want to keep only one read per molecule. A common strategy applied for amplification 
correction in SNP-calling and ChIP-Seq protocols23,24 is to simply remove reads based on their 5′  ends, so called 
read duplicates. Here, we show that this strategy is not suitable for RNA-seq data, because the majority of such 
SE-duplicates is likely due to sampling. For highly transcribed genes, it is simply unavoidable that multiple reads 
have the same 5′  end, also if they originated from different RNA-molecules. We find that only ~10% (TruSeq) 
and ~20% (Smart-Seq) of the read duplicates cannot be explained by a simple sampling model with random frag-
mentation. This fraction decreases even more, if we factor in that the fragmentation of mRNA or cDNA during 
library preparation is clearly non-random, as evidenced by a strong correlation between the 5′  read positions of 
the ERCC-spike-ins across samples. Because local sequence content has little or no detectable effect on fragmen-
tation, we cannot predict fragmentation, but we can quantify the observed effect. For example, we find that a frag-
mentation bias that halves the number of break points can fit the observed proportion of duplicates for TruSeq 
libraries well. For the Smart-Seq datasets, fragmentation biases would have to be much higher to explain the 
observed numbers of read duplicates. Furthermore, the fit between model estimates and the observed duplicate 
fractions is worse than for the TruSeq data and the model estimates for fragmentation bias are also inconsistent 
between the datasets (38.5 for the UHRR and 8 for the scHCT116).

Since computational methods cannot distinguish between fragmentation and PCR duplicates, the removal of 
read duplicates could introduce a bias rather than removing it. Using the ERCC-spike-ins, we can indeed show 
that removing duplicates computationally does not improve a fit to the known concentrations, but rather makes it 
worse, especially if only single-end reads are available (Fig. 5). This is in line with our observation that most single 
end duplicates are due to sampling and fragmentation. Hence, removing duplicates is similar to a saturation effect 
known for microarrays25–27.

Moreover, the Smart-Seq protocol, which was designed for small starting amounts, involves PCR amplifica-
tion before the final fragmentation of the sequencing library. Thus in the case of Smart-Seq, computational meth-
ods cannot identify PCR duplicates that occur during the pre-amplification step. When we use unique molecular 
identifiers (UMIs), we find that 66% of the reads are PCR duplicates and only 34% originate from independent 
mRNA molecules. In contrast, when using paired-end mapping for a comparable Smart-Seq library, we identify 
13% as duplicates and 87% as unique. This might in part be due to the fact that in UMI-Seq we sequence mainly 
3′  ends of transcripts, thus decreasing the complexity of the library, which in turn increases the potential for 
PCR duplicates for a given sequencing depth (Fig. 4a, Supplementary Figure S1). However, it is unlikely that 
library complexity can explain the 53% difference in duplicate occurrence. This difference is more likely to be due 
to PCR-duplicates that are generated during pre-amplification and thus remain undetectable by computational 
means.

All in all, computational methods are limited when it comes to removing PCR-duplicates, but how much noise 
or bias do PCR duplicates introduce? In other words, we want to know how PCR-duplicates impact the power and 
the false discovery rate for the detection of differentially expressed genes. Both, power and FDR, are determined 
by the gene-wise mean expression and dispersion. Based on simulated differential expression using the empiri-
cally determined mean and dispersion distributions, we find that computational removal of duplicates has either 
a negligible or a negative impact on FDR and power, and we therefore recommend not to remove read duplicates. 
In contrast, if PCR duplicates are removed using UMIs, both FDR and power improve. Even though the effects in 
the bulk data analysed here are relatively small: FDR is improved by 4% and the power by 2%, UMIs will become 
more important when using smaller amounts of starting material as it is the case for single-cell RNA-seq6,28.

The major differences in power are between the datasets with the TruSeq and the UMI-seq data achieving a 
power of around 80%, the UHRR-Smart-Seq 52% and the single cell Smart-Seq data (scHCT116) only 27%. Note 
that this apparently bad performance of the single cell Smart-Seq data is at least in part due to an unfair compar-
ison. While all the other datasets were produced using commercially available mRNA and thus represent true 
technical replicates, the single cell data necessarily represent biological replicates and thus are expected to have a 
larger inherent variance and thus lower power.

However, also the UHRR Smart-Seq bulk data achieves with 52% a much lower power than the other bulk 
datasets. One possible explanation for the differences in power is the total number of PCR-cycles involved in 
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the library preparation. With every PCR-cycle the power to detect a log 2-fold change of 0.5 appears to drop by 
2.4% (Fig. 6c). The only exception is the UMI-seq dataset, that gives a power of 81%, even if duplicates are not 
removed, which is comparable to the power reached with TruSeq data despite the UMI-seq method having 12 
more PCR-cycles. Technically UMI-seq is most similar to the Smart-Seq method. The biggest difference between 
the two methods is that all UMI-seq libraries are pooled before PCR-amplification, suggesting that the PCR-noise 
is due to the different PCR-reactions and not due to amplification efficiency per-se.

We conclude that computational removal of duplicates is not recommendable for differential expression anal-
ysis and if sufficient starting material is available so that only few PCR-cycles are necessary, the loss in power due 
to PCR duplicates is negligible. However, if more amplification is needed, power would be improved if all samples 
are pooled early on, and for really low amounts as for single cell data also the gain in power that is achieved by 
removing PCR-duplicates using UMIs will become important.

Methods
Datasets. We used six datasets representing the TruSeq, Smart-Seq and UMI-seq protocols and varying 
amounts of starting material from bulk RNA or single cell RNA. All analysed datasets contain the ERCCs spike-in 
RNAs. This is a set of 92 artifical poly-adenylated RNAs designed to match the characteristics of naturally occur-
ring RNAs with respect to their length (273–2022 bp), their GC-content (31–53%) and concentrations of the 
ERCCs (0.01–30,000 attomol/µl). The recommended ERCC spike-in amounts result in 5–107 ERCC RNA mole-
cules in the cDNA synthesis reaction.

To reduce biological variation, we used the well-characterized Universal Human Reference RNA (UHRR; 
Agilent Technologies) for the two datasets produced for this study. We downloaded UHRR- and HBRR-TruSeq 
data from SEQC/MAQC-III2. Finally, we also analyse the single cell data published in Wu et al.20, for which the 
colorectal cancer cell-line HCT116 was used (Table 1). The input mostly being commercially distributed human 
samples, we expect all biological samples analysed in this study to have similarly high quality and complexity. All 
data that were generated for this project were submitted to GEO under accession GSE75823.

RNA-seq library preparation and sequencing. For the Smart-Seq libraries, 250 ng of Universal Human 
Reference RNA (UHRR; Agilent Technologies) and ERCC spike-in control mix I (Life Technologies) were used 
and cDNA was synthesized as described in the Smart-Seq2 protocol from Picelli et al.13. However, because we 
used more mRNA to begin with, we reduced the number of pre-amplification PCR cycles to 9 cycles instead of 
the 18–21 recommended in Picelli et al.13. 1 ng of pre-amplified cDNA was then used as input for Tn5 transposon 
tagmentation by the Nextera XT Kit (Illumina), followed by 12 PCR cycles of library amplification. For sequenc-
ing, equal amounts of all libraries were pooled.

For the UMI-seq libraries, we started with 10 ng of UHRR-RNA to synthesise cDNA as described in Soumillon 
et al.16. This protocol is very similar to the Smart-Seq protocol, however the first strand cDNA is decorated with 
sample-specific barcodes and unique molecular identifiers. The barcoded cDNA from all samples was then 
pooled, purified and unincorporated primers digested with Exonuclease I (NEB). Pre-amplification was per-
formed by single-primer PCR for 15 cycles. 1 ng of full-length cDNA was then used as input for the Nextera XT 
library preparation with the modification of adding a custom i5 primer to enrich for barcoded 3′  ends.

Library pools were sequenced on an Illumina HiSeq1500. The Smart-Seq libraries were sequenced using 50 
cycles of paired-end sequencing on a High-Output flow-cell. The UMI-seq libraries were sequenced on a rapid 
flow-cell with paired-end layout, where the first read contains the sequences of the sample barcode and the UMI 
sequence using 17 cycles. The second read contains the actual cDNA fragment with 46 cycles.

Data Processing. For Smart-Seq and TruSeq libraries, the sequenced reads were mapped to the 
human genome (hg19) and the splice site information from the ensembl annotation (GRCh37.75) using 
STAR(version:2.4.0.1)29 with the default parameters, reporting only the best hit per read. The genome index was 
created with –sjdbOverhang ‘readlength-1’. Because the ERCCs are transcript sequences no splice-aware mapping 
is neccessary and therefore we used NextGenMap for the ERCCs30. Except for three parameters, (1) the maxi-
mum fragment size which was set to 10 kb, (2) the minimum identity set to 90% and (3) reporting only the best 
hit per read, we also used the default parameters for NextGenMap. Note that we also included hg19 and did not 
map to ERCC sequences only. The mapped reads were assigned to genes [Ensembl database annotation version 
GRCh37.75] using FeatureCount from the bioconductor package Rsubread31 (see Supplementary text).

For UMI-seq data, cDNA reads were mapped to the transcriptome as recommended in Soumillon et al.16 
using the Ensembl annotation [version GRCh37.75] and NextGenMap30 (Supplementary text). If either the sam-
ple barcode or the UMI had at least one base with sequence quality ≤ 10 or contained ‘N’s the read was discarded. 
Next, we generated count tables for reads or UMIs per gene. Finally, mitochondrial and ambiguously assigned 
reads were removed from all libraries.

Duplicate detection and removal. We defined single-end (SE) read duplicates as reads that map to the 
same 5′  position, have the same strand and the same CIGAR value. Because we cannot determine the exact map-
ping position for 5′  soft clipped reads, we discard them. To flag paired-end duplicates (PE), we used the same 
requirements as for the SE-duplicates, those requirements had just to be fulfilled for both reads of a pair.

Model for the fraction of sampling and fragmentation duplicates. We obtain an expectation for 
the number of reads if duplicates are identified via their 5′  position and only one read per 5′  end position is kept. 
The only input parameters are the observed number of reads per gene (rG) and the effective length of the gene 
(LeG =  L −   2 ×   read-length). Then the expected number of unique reads can be estiamted as
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In order to estimate the level of fragmentation bias, we simply modified the effective length LeG by a factor 

f ×   LeG.

Fragmentation pattern analysis. To compare fragmentation sites across libraries, we counted 5′  read 
starts per position for the ERCCs across all datasets using samtools and in house perl scripts. To avoid edge effects 
in later analyses, we excluded the first and last 100 bases of each ERCC, whereas 100 bases is the maximum read 
length of datasets analysed here.

We generated a Position Weight Matrix (PWM) for the transposase (Tn5) motif by simply stacking up the 30 
bases of the putative Transposase binding sites from all UHRR-Smart-Seq reads. Those 30 bases are identified as 6 
bases upstream of the 5′  read end and the 24 downstream21. The resulting PWM was then used to calculate motif 
scores across the ERCCs using the Bioconductor package PWMEnrich32.

Power evaluation for differential expression. For power analysis, we estimated the mean baseline 
expression and dispersion for all datasets after downsampling them to 3 and 1 million reads for bulk and single 
cell data, respectively. This was done for all three duplicate treatments (keep all, remove SE and remove PE) using 
DESeq222 with standard parameters. Furthermore, genes with very low dispersions (< 0.001) were removed. We 
chose the sample sizes 3, 6 and 12 per condition for the bulk data and 30, 45 and 90 for the single cell dataset, 
because they seemed to be a good representation of the current literature. For the simulations, we use an in-house 
adaptation of the Bioconductor-package PROPER19. As suggested in Wu et al.19, we set the fraction of differ-
entially expressed genes between groups to 0.05 and the log2-fold change for the DE-genes was drawn from a 
normal distribution with N (0, 1.5). We generated 100 simulations per original input data-set and analysed them 
using DESeq2. Next, we calculated the power to detect a log2-fold change of at least 0.5 and the according FDR 
using α =  0.05.
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Figure S1: 3’ bias in fragmentation site is prominent in UMI-seq. The histogram showing distance of
the fragmentation site from 3’ end of the gene measured from ERCC spike-ins of length ⇠ 2kb. Colors represent
library preparation methods, ’blue’ - Smart-Seq, ’orange’ - TruSeq, ’green’ - UMI-seq.
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Figure S2: The fragmentation patterns of the most 3’ 600bp of ERCCs are relatively reproducible

between Smart-Seq and UMI-seq. Violin plots of the adjusted R2 from a linear model between fraction of
5’read ends from different samples. The adjusted R2 are calculated considering full length for Smart-Seq and
TruSeq methods whereas for comparison to UMI-seq the most 3’ 600bp are considered. The reproducibility of
fragmentation is highest within Smart-Seq (orange) and TruSeq samples (blue). Fragmentation reproducibility
between Smart-Seq and UMI-seq samples(green) is higher than compared to TruSeq(green), as both methods use
transposase tagmentation.
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Figure S3: Fragmentation does not appear to have a cutting site preference. Colors of the violin
plots represent library preparation methods, ’blue - Smart-Seq, ’orange’ - TruSeq and dots are colored by the
significance of the fit where ’red’ - pvalue  0.05 and ’black’ - pvalue > 0.05. a) The left panel shows violin plots
of the adjusted R2 of linear model fit between background corrected GC content of 15bases window and fraction
of 5’read ends of the middle base in the window for each ERCC spike-in and the right panel shows the adjusted
R2 of linear model fit between Tn5 motif score calculated for ERCC spike-in RNAs. b) Sequence logo of the Tn5
motif derived from UHRR Smart-Seq dataset.
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Figure S4: Removing duplicates does not improve the accuracy of expression quantification as

measured using the ERCC spike-ins. Expression levels as quantified in transcripts per million reads (TPM)
are considered to be good measure of ERCC spike ins. However, other factors like capture and sequencing
efficiency can not be explained by TPM. One exemplary sample of the UHRR-TruSeq dataset as shown in Figure
5 of the main text is shown in a). The dashed grey line shows the bisecting line. We calculated the log-linear
fit of counts per million (CPM) vs. Molarity also controlling for GC content and length of the transcript. The
adjusted R2 for all samples are summarized in b), the median for each dataset is marked as black line. The
colors represent different duplicates treatment. All reads (grey), removing PE-duplicates (yellow) and removing
SE-duplicates (blue).
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datasets.
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Supplementary text

Detailed commands used for mapping are given below.

STAR genome generate

STAR –runThreadN 10 –runMode genomeGenerate –genomeDir hg19STARindex –genomeFastaFiles hg19.fa –sjdbGTFfile

GRCh37.75.gtf –sjdbOverhang ‘readLen-1‘

STAR mapping

STAR –readFilesIn R1.fastq R2.fastq –runThreadN 10 –outFileNamePrefix samplename –outFilterMultimapNmax 1

–outSAMunmapped Within –outSAMtype BAM SortedByCoordinate –sjdbGTFfile GRCh37.75.gtf –genomeDir hg19STARindex

–sjdbOverhang ‘readLen-1‘ –outFilterType BySJout –outSJfilterReads Unique

NextGenMap mapping

For ERCC spike-ins

ngm.4.12 -1 R1.fastq -2 R2.fastq -t 10 -i 0.9 -X 10000 -r ERCCs.fa -o samplename.sam

For UMI-seq data

ngm.4.12 -q R1.fastq -t 10 -i 0.9 -r GRCh37.75.fa -o samplename.sam

Supplementary tables

Table S1: Summary of squared terms from quadratic fit between PE-dup and SE-dup (PE-dup ⇠ SE-dup+(SE-
dup)2+0)

Study name Beta2 Std. Error t value Pr(> |t|)
scHCT116 Smart-Seq 0.542 0.0302 17.94 0.0000

UHRR Smart-Seq 1.168 0.246 4.739 0.001
UHRR TruSeq 0.840 0.619 1.356 0.268
HBRR TruSeq 1.134 0.338 3.350 0.044

Table S2: Median R2 and percentage of significant ERCCs for the lm fit between GC content/Tn5 motif score
and 5’ read ends

Study name
GC Tn5

R2 %Significant* R2 %Significant*
scHCT116 Smart-Seq -0.00027 16% 0.00112 49%
UHRR Smart-Seq 0.00020 19% 0.00174 59%
UHRR TruSeq 0.00614 57% 0.00077 43%
HBRR TruSeq 0.00657 61% 0.00077 43%
*Percentage of ERCCS with p-value  0.05
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SUMMARY

Single-cell RNA sequencing (scRNA-seq) offers new
possibilities to address biological and medical ques-
tions. However, systematic comparisons of the per-
formance of diverse scRNA-seq protocols are lack-
ing. We generated data from 583 mouse embryonic
stem cells to evaluate six prominent scRNA-seq
methods: CEL-seq2, Drop-seq, MARS-seq, SCRB-
seq, Smart-seq, and Smart-seq2. While Smart-seq2
detected the most genes per cell and across cells,
CEL-seq2, Drop-seq, MARS-seq, and SCRB-seq
quantified mRNA levels with less amplification noise
due to the use of unique molecular identifiers (UMIs).
Power simulations at different sequencing depths
showed that Drop-seq is more cost-efficient for tran-
scriptome quantification of large numbers of cells,
while MARS-seq, SCRB-seq, and Smart-seq2 are
more efficient when analyzing fewer cells. Our quan-
titative comparison offers the basis for an informed
choice among six prominent scRNA-seq methods,
and it provides a framework for benchmarking
further improvements of scRNA-seq protocols.

INTRODUCTION

Genome-wide quantification of mRNA transcripts is highly infor-
mative for characterizing cellular states and molecular circuitries
(ENCODE Project Consortium, 2012). Ideally, such data are
collected with high spatial resolution, and single-cell RNA
sequencing (scRNA-seq) now allows for transcriptome-wide an-
alyses of individual cells, revealing exciting biological and med-
ical insights (Kolodziejczyk et al., 2015a; Wagner et al., 2016).
scRNA-seq requires the isolation and lysis of single cells, the
conversion of their RNA into cDNA, and the amplification of
cDNA to generate high-throughput sequencing libraries. As the

amount of starting material is so small, this process results in
substantial technical variation (Kolodziejczyk et al., 2015a; Wag-
ner et al., 2016).
One type of technical variable is the sensitivity of a scRNA-

seq method (i.e., the probability to capture and convert a
particular mRNA transcript present in a single cell into a
cDNA molecule present in the library). Another variable of in-
terest is the accuracy (i.e., how well the read quantification
corresponds to the actual concentration of mRNAs), and a
third type is the precision with which this amplification occurs
(i.e., the technical variation of the quantification). The combi-
nation of sensitivity, precision, and number of cells analyzed
determines the power to detect relative differences in expres-
sion levels. Finally, the monetary cost to reach a desired level
of power is of high practical relevance. To make a well-
informed choice among available scRNA-seq methods, it is
important to quantify these parameters comparably. Some
strengths and weaknesses of different methods are already
known. For example, it has previously been shown that
scRNA-seq conducted in the small volumes available in the
automated microfluidic platform from Fluidigm (C1 platform)
outperforms CEL-seq2, Smart-seq, or other commercially
available kits in microliter volumes (Hashimshony et al.,
2016; Wu et al., 2014). Furthermore, the Smart-seq protocol
has been optimized for sensitivity, more even full-length
coverage, accuracy, and cost (Picelli et al., 2013), and this
improved Smart-seq2 protocol (Picelli et al., 2014b) has also
become widely used (Gokce et al., 2016; Reinius et al.,
2016; Tirosh et al., 2016).
Other protocols have sacrificed full-length coverage in order

to sequence part of the primer used for cDNA generation. This
enables early barcoding of libraries (i.e., the incorporation of
cell-specific barcodes), allowing for multiplexing the cDNA
amplification and thereby increasing the throughput of scRNA-
seq library generation by one to three orders of magnitude
(Hashimshony et al., 2012; Jaitin et al., 2014; Klein et al., 2015;
Macosko et al., 2015; Soumillon et al., 2014). Additionally, this
approach allows the incorporation of unique molecular identi-
fiers (UMIs), random nucleotide sequences that tag individual

Molecular Cell 65, 631–643, February 16, 2017 ª 2017 Elsevier Inc. 631



mRNA molecules and, hence, allow for the distinction between
original molecules and amplification duplicates that derive from
the cDNA or library amplification (Kivioja et al., 2011). Utilization
of UMI information improves quantification of mRNA molecules
(Gr€un et al., 2014; Islam et al., 2014), and it has been imple-
mented in several scRNA-seq protocols, such as STRT (Islam
et al., 2014), CEL-seq (Gr€un et al., 2014; Hashimshony et al.,
2016), CEL-seq2 (Hashimshony et al., 2016), Drop-seq (Ma-
cosko et al., 2015), inDrop (Klein et al., 2015), MARS-seq (Jaitin
et al., 2014), and SCRB-seq (Soumillon et al., 2014).

However, a thorough and systematic comparison of relevant
parameters across scRNA-seq methods is still lacking. To
address this issue, we generated 583 scRNA-seq libraries from
mouse embryonic stem cells (mESCs), using six different
methods in two replicates, and we compared their sensitivity,
accuracy, precision, power, and efficiency (Figure 1).

RESULTS

Generation of scRNA-Seq Libraries
Variation in gene expression as observed among single cells is
caused by biological and technical variation (Kolodziejczyk
et al., 2015a; Wagner et al., 2016). We used mESCs cultured
under two inhibitor/leukemia inhibitory factor (2i/LIF) condi-
tions to obtain a relatively homogeneous cell population
(Gr€un et al., 2014; Kolodziejczyk et al., 2015b), so that biolog-
ical variation was similar among experiments and, hence, we
mainly compared technical variation. In addition, we spiked
in 92 poly-adenylated synthetic RNA transcripts of known con-
centration designed by the External RNA Control Consortium
(ERCCs) (Jiang et al., 2011). For all six tested scRNA-seq
methods (Figure 2), we generated libraries in two independent
replicates.

Figure 1. Schematic Overview of the Experimental and Computational Workflow
Mouse embryonic stem cells (mESCs) cultured in 2i/LIF and ERCC spike-in RNAs were used to generate single-cell RNA-seq data with six different library

preparation methods (CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2). The methods differ in the usage of unique molecular

identifier (UMI) sequences, which allow the discrimination between reads derived from original mRNA molecules and duplicates generated during cDNA

amplification. Data processing was identical across methods, and the given cell numbers per method and replicate were used to compare sensitivity, accuracy,

precision, power, and cost efficiency. The six scRNA-seq methods are denoted by color throughout the figures of this study as follows: purple, CEL-seq2/C1;

orange, Drop-seq; brown, MARS-seq; green, SCRB-seq; blue, Smart-seq; and yellow, Smart-seq2. See also Figures S1 and S2.
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For each replicate of the Smart-seq protocol, we performed
one run on the C1 platform from Fluidigm (Smart-seq/C1) using
microfluidic chips that automatically capture up to 96 cells (Wu
et al., 2014). We imaged captured cells, added lysis buffer
together with the ERCCs, and we used the commercially avail-
able Smart-seq kit (Clontech) to generate full-length double-
stranded cDNA that we converted into 96 sequencing libraries
by tagmentation (Nextera, Illumina).
For each replicate of the Smart-seq2 protocol, we sorted

mESCs by fluorescence activated cell sorting (FACS) into
96-well PCR plates containing lysis buffer and the ERCCs. We
generated cDNA as described (Picelli et al., 2013, 2014b), and
we used an in-house-produced Tn5 transposase (Picelli et al.,
2014a) to generate 96 libraries by tagmentation. While Smart-
Seq/C1 and Smart-seq2 are very similar protocols that generate
full-length libraries, they differ in how cells are isolated, their re-
action volume, and in that the Smart-seq2 chemistry has been
systematically optimized (Picelli et al., 2013, 2014b). The main
disadvantage of both Smart-seq protocols is that the generation
of full-length cDNA libraries precludes an early barcoding step
and the incorporation of UMIs.
For each replicate of the SCRB-seq protocol (Soumillon et al.,

2014), we also sorted mESCs by FACS into 96-well PCR plates

containing lysis buffer and the ERCCs. Similar to the Smart-
seq protocols, cDNA was generated by oligo-dT priming,
template switching, and PCR amplification of full-length cDNA.
However, the oligo-dT primers contained well-specific (i.e.,
cell-specific) barcodes and UMIs. Hence, cDNA from one plate
could be pooled and then converted into sequencing libraries,
using a modified tagmentation approach that enriches for the
30 ends. SCRB-seq is optimized for small volumes and few
handling steps.
The fourth method evaluated was Drop-seq, a recently devel-

opedmicrodroplet-based approach (Macosko et al., 2015). Here
a flow of beads suspended in lysis buffer and a flow of a single-
cell suspension were brought together in a microfluidic chip that
generated nanoliter-sized emulsion droplets. On each bead,
oligo-dT primers carrying a UMI and a unique, bead-specific bar-
code were covalently bound. Cells were lysed within these drop-
lets, their mRNAbound to the oligo-dT-carrying beads, and, after
breaking the droplets, cDNA and library generation was per-
formed for all cells in parallel in one single tube. The ratio of
beads to cells (20:1) ensured that the vast majority of beads
had either no cell or one cell in its droplet. Hence, similar to
SCRB-seq, each cDNA molecule was labeled with a bead-spe-
cific (i.e., cell-specific) barcode and a UMI. We confirmed that

Figure 2. Schematic Overview of Library Preparation Steps
For details, see the text. See also Table S1.
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the Drop-seq protocol worked well in our setup bymixing mouse
and human T cells, as recommended by Macosko et al. (2015)
(Figure S1A). The main advantage of the protocol is that a high
number of scRNA-seq libraries can be generated at low cost.
One disadvantage of Drop-seq is that the simultaneous inclusion
of ERCC spike-ins is quite expensive, as their addition would
generate cDNA from ERCCs also in beads that have zero cells
and thus would double the sequencing costs. As a proxy for
the missing ERCC data, we used a published dataset (Macosko
et al., 2015), where ERCC spike-ins were sequenced using the
Drop-seq method without single-cell transcriptomes.

As a fifth method we chose CEL-seq2 (Hashimshony et al.,
2016), an improved version of the original CEL-seq (Hashimsh-
ony et al., 2012) protocol, as implemented for microfluidic chips
on Fluidigm’s C1 (Hashimshony et al., 2016). As for Smart-seq/
C1, this allowed us to capture 96 cells in two independent repli-
cates and to include ERCCs in the cell lysis step. Similar to Drop-
seq and SCRB-seq, cDNA was tagged with barcodes and UMIs;
but, in contrast to the four PCR-based methods described
above, CEL-seq2 relies on linear amplification by in vitro tran-
scription after the initial reverse transcription. The amplified, bar-
coded RNAs were harvested from the chip, pooled, fragmented,
and reverse transcribed to obtain sequencing libraries.

MARS-seq, the sixth method evaluated, is a high-throughput
implementation of the original CEL-seq method (Jaitin et al.,
2014). In this protocol, cells were sorted by FACS in 384-well
plates containing lysis buffer and the ERCCs. As in CEL-seq
and CEL-seq2, amplified RNA with barcodes and UMIs were
generated by in vitro transcription, but libraries were prepared
on a liquid-handling platform. An overview of the methods and
their workflows is provided in Figure 2 and in Table S1.

Processing of scRNA-Seq Data
For each method, we generated at least 48 libraries per replicate
and sequenced between 241 and 866million reads (Figure 1; Fig-
ure S1B). All data were processed identically, with cDNA reads
clipped to 45bpandmapped usingSpliced TranscriptsAlignment
to a Reference (STAR) (Dobin et al., 2013) and UMIs quantified
using the Drop-seq pipeline (Macosko et al., 2015). To adjust for
differences in sequencing depths, we selected all libraries with
at least one million reads, and we downsampled them to one
million reads each. This resulted in 96, 79, 73, 93, 162, and 187 li-
braries for CEL-seq2/C1, Drop-seq, MARS-seq, SCRB-seq,
Smart-seq/C1, and Smart-seq2, respectively.

To exclude doublets (libraries generated from two or more
cells) in the Smart-seq/C1 data, we analyzed microscope im-
ages and identified 16 reaction chambers with multiple cells.
For the four UMI methods, we calculated the number of UMIs
per library, and we found that libraries that have more than twice
themean total UMI count can be readily identified (Figure S1C). It
is unclear whether these libraries were generated from two sepa-
rate cells (doublets) or, for example, from one large cell before
mitosis. However, for the purpose of this method comparison,
we removed these three to nine libraries. To filter out low-quality
libraries, we used a method that exploits the fact that transcript
detection and abundance in low-quality libraries correlate poorly
with high-quality libraries as well as with other low-quality li-
braries (Petropoulos et al., 2016). Therefore, we determined

the maximum Spearman correlation coefficient for each cell
in all-to-all comparisons that allowed us to identify low-quality
libraries as outliers of the distributions of correlation coefficients
by visual inspection (Figure S1D). This filtering led to the
removal of 21, 0, 4, 0, 16, and 30 cells for CEL-seq2/C1, Drop-
seq, MARS-seq, SCRB-seq, Smart-seq/C1, and Smart-seq2,
respectively.
In summary, we processed and filtered our data so that we

ended up with a total of 583 high-quality scRNA-seq libraries
that could be used for a fair comparison of the sensitivity, accu-
racy, precision, power, and efficiency of the methods.

Single-Cell Libraries Are Sequenced to a Reasonable
Level of Saturation at One Million Reads
For all six methods, >50% of the reads could be unambiguously
mapped to the mouse genome (Figure 3A), which is comparable
to previous results (Jaitin et al., 2014; Wu et al., 2014). Overall,
between 48% (Smart-seq2) and 30% (Smart-seq/C1) of all reads
were exonic and, thus, were used to quantify gene expression
levels. However, the UMI data showed that only 14%, 5%,
7%, and 15% of the exonic reads were derived from indepen-
dent mRNA molecules for CEL-seq2/C1, Drop-seq, MARS-
seq, and SCRB-seq, respectively (Figure 3A). To quantify the
relationship between the number of detected genes or mRNA
molecules and the number of reads in more detail, we down-
sampled reads to varying depths, and we estimated to what
extent libraries were sequenced to saturation (Figure S2). The
number of unique mRNA molecules plateaued at 56,760 UMIs
per library for CEL-seq2/C1 and 26,210 UMIs per library for
MARS-seq, was still marginally increasing at 17,210 UMIs per li-
brary for Drop-seq, and was considerably increasing at
49,980 UMIs per library for SCRB-seq (Figure S2C). Notably,
CEL-seq2/C1 and MARS-seq showed a steeper slope at low
sequencing depths than both Drop-seq and SCRB-seq, poten-
tially due to a less biased amplification by in vitro transcription.
Hence, among the UMI methods, CEL-seq2/C1 and SCRB-seq
libraries had the highest complexity of mRNA molecules, and
this complexity was sequenced to a reasonable level of satura-
tion with one million reads.
To investigate saturation also for non-UMI-based methods,

we applied a similar approach at the gene level by counting
the number of genes detected by at least one read. By fitting
an asymptote to the downsampled data, we estimated that
!90% (Drop-seq and SCRB-seq) to 100% (CEL-seq2/C1,
MARS-seq, Smart-Seq/C1, and Smart-seq2) of all genes pre-
sent in a library were detected at one million reads (Figure 3B;
Figure S2A). In particular, the deep sequencing of Smart-seq2 li-
braries showed clearly that the number of detected genes did not
change when increasing the sequencing depth from one million
to five million reads per cell (Figure S2B).
All in all, these analyses show that scRNA-seq libraries were

sequenced to a reasonable level of saturation at one million
reads, a cutoff that also has been suggested previously for
scRNA-seq datasets (Wu et al., 2014). While it can be more
efficient to invest in more cells at lower coverage (see our power
analyses below), one million reads per cell is a reasonable
sequencing depth for our purpose of comparing scRNA-seq
methods.
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Smart-Seq2 Has the Highest Sensitivity
Taking the number of detected genes per cell as a measure of
sensitivity, we found that Drop-seq andMARS-seqhad the lowest

sensitivity, with a median of 4,811 and 4,763 genes detected per
cell, respectively, while CEL-seq2/C1, SCRB-seq, and Smart-
seq/C1 detected a median of 7,536, 7,906, and 7,572 genes per
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Figure 3. Sensitivity of scRNA-Seq Methods
(A) Percentage of reads (downsampled to one million per cell) that cannot be mapped to the mouse genome (gray) are mapped to regions outside exons (orange)

or inside exons (blue). For UMI methods, dark blue denotes the exonic reads with unique UMIs.

(B) Median number of genes detected per cell (countsR1) when downsampling total read counts to the indicated depths. Dashed lines above one million reads

represent extrapolated asymptotic fits.

(C) Number of genes detected (countsR1) per cell. Each dot represents a cell and each box represents the median and first and third quartiles per replicate and

method.

(D) Cumulative number of genes detected as more cells are added. The order of cells considered was drawn randomly 100 times to display mean ± SD (shaded

area). See also Figures S3 and S4.
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cell (Figure3C).Smart-seq2detected thehighestnumberofgenes
per cell with a median of 9,138. To compare the total number of
genes detected across many cells, we pooled the sequence
data of 65 cells per method, and we detected !19,000 genes for
CEL-Seq2/C1, !17,000 for MARS-seq, !18,000 for Drop-seq
and SCRB-Seq, !20,000 for Smart-seq/C1, and !21,000 for
Smart-seq2 (Figure 3D). While the majority of genes (!13,000)
were detected by all methods, !400 genes were specific to
each of the 30 countingmethods, and!1,000 geneswere specific
to each of the two full-length methods (Figure S3A). This higher
sensitivity of both full-length methods also was apparent when
plotting the genes detected in all available cells, as the 30 counting
methods leveled off below 20,000 genes while the two full-length
methods leveledoff above20,000genes (Figure3D). Suchadiffer-
ence could be caused by genes that have 30 ends that are difficult
tomap.However,we found that genes specific toSmart-seq2and
Smart-seq/C1map as well to 30 ends as genes with similar length
distribution that are not specifically detected by full-length
methods (Figure S3B). Hence, it seems that full-length methods
turn a slightly higher fraction of transcripts into sequenceablemol-
ecules than 30 counting methods and are more sensitive in this
respect. Importantly, method-specific genes are detected in
very few cells (87% of genes occur in one or two cells) with very
low counts (mean counts < 0.2, Figure S3C). This suggests that
they are unlikely to remain method specific at higher expression
levels and that their impact on conclusions drawn from scRNA-
seq data is rather limited (Lun et al., 2016).

Next, we investigated how reads are distributed along the
mRNA transcripts for all genes. As expected, the 30 counting

methods showed a strong bias of reads mapped to the 30 end
(Figure S3D). However, it is worthmentioning that a considerable
fraction of reads also covered other segments of the transcripts,
probably due to internal oligo-dT priming (Nam et al., 2002).
Smart-seq2 showed a more even coverage than Smart-seq,
confirming previous findings (Picelli et al., 2013). A general differ-
ence in expression values between 30 counting and full-length
methods also was reflected in their strong separation by the first
principal component, explaining 37% of the total variance, and
when taking into account that one needs to normalize for gene
length for the full-length methods (Figure S4E).
As an absolute measure of sensitivity, we compared the prob-

ability of detecting the 92 spiked-in ERCCs, for which the num-
ber of molecules available for library construction is known (Fig-
ures S4A and S4B). We determined the detection probability of
each ERCC RNA as the proportion of cells with at least one
read or UMI count for the particular ERCC molecule (Marinov
et al., 2014). For Drop-seq, we used the previously published
ERCC-only dataset (Macosko et al., 2015), and for the other
five methods, 2%–5% of the one million reads per cell mapped
to ERCCs that were sequenced to complete saturation at that
level (Figure S5B). A 50% detection probability was reached at
!7, 11, 14, 16, 17, and 28 ERCC molecules for Smart-seq2,
Smart-seq/C1, CEL-seq2/C1, SCRB-seq, Drop-seq, and
MARS-seq, respectively (Figure S4C). Notably, the sensitivity
estimated from the number of detected genes does not fully
agree with the comparison based on ERCCs. While Smart-
seq2 was the most sensitive method in both cases, Drop-seq
performed better and SCRB-seq and MARS-seq performed
worse when using ERCCs. The separate generation and
sequencing of the Drop-seq ERCC libraries could be a possible
explanation for their higher sensitivity. However, it remains un-
clear why SCRB-seq and MARS-seq had a substantially lower
sensitivity when using ERCCs. It has been noted before that
ERCCs can be problematic for modeling endogenous mRNAs
(Risso et al., 2014), potentially due to their shorter length, shorter
poly-A tail, and their missing 50 cap (Gr€un and van Oudenaarden,
2015; Stegle et al., 2015). While ERCCs are still useful to gauge
the absolute range of sensitivities, the thousands of endogenous
mRNAs are likely to be a more reliable estimate for comparing
sensitivities as we used the same cell type for all methods.
In summary, we find that Smart-seq2 is the most sensitive

method, as it detects the highest number of genes per cell and
the most genes in total across cells and has the most even
coverage across transcripts. Smart-seq/C1 is slightly less sensi-
tive per cell and detects almost the same number of genes
across cells with slightly less even coverage. Among the 30

counting methods, CEL-seq2/C1 and SCRB-seq detect about
as many genes per cell as Smart-seq/C1, whereas Drop-seq
and MARS-seq detect considerably fewer genes.

Accuracy of scRNA-Seq Methods
To measure the accuracy of transcript level quantifications, we
compared the observed expression values (counts per million
or UMIs per million) with the known concentrations of the 92
ERCC transcripts (Figure S5A). For each cell, we calculated the
coefficient of determination (R2) for a linear model fit (Figure 4).
Methods differed significantly in their accuracy (Kruskal-Wallis
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Figure 4. Accuracy of scRNA-Seq Methods
ERCC expression values (counts per million reads for Smart-seq/C1 and
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(adjusted R2 of linear regression model) across methods. Each dot represents
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See also Figure S5.
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test, p < 2.2e"16), but all methods had a fairly high R2 ranging
between 0.83 (MARS-seq) and 0.91 (Smart-seq2). This suggests
that, for all methods, transcript concentrations across this broad
range can be predicted fairly well from expression values. As ex-
pected, accuracy was worse for narrower and especially for
lower concentration ranges (Figure S5C). It is worth emphasizing
that the accuracy assessed here refers to absolute expression
levels across genes within cells. This accuracy can be important,
for example, to identify marker genes with a high absolute mRNA
expression level. However, the small differences in accuracy
seen here will rarely be a decisive factor when choosing among
the six protocols.

Precision of Amplified Genes Is Strongly Increased
by UMIs
While a high accuracy is necessary to compare absolute expres-
sion levels, one of the most common experimental aims is to
compare relative expression levels to identify differentially ex-
pressed genes or different cell types. Hence, the precision (i.e.,
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Figure 5. Precision of scRNA-Seq Methods
We compared precision among methods using

the 13,361 genes detected in at least 25% of all

cells by any method in a subsample of 65 cells per

method.

(A) Distributions of dropout rates across the

13,361 genes are shown as violin plots, and me-

dians are shown as bars and numbers.

(B) Extra Poisson variability across the 13,361

genes was calculated by subtracting the ex-

pected amount of variation due to Poisson sam-

pling (square root of mean divided by mean)

from the CV (SD divided by mean). Distributions

are shown as violin plots and medians are

shown as bars and numbers. For 349, 336, 474,

165, 201, and 146 genes for CEL-seq2/C1, Drop-

seq, MARS-seq, SCRB-seq, Smart-seq/C1, and

Smart-seq2, respectively, no extra Poisson vari-

ability could be calculated. See also Figures S6

and S7.

the reproducibility of the expression-level
estimate) is amajor factor when choosing
a method. As we used the same cell type
under the same culture conditions for all
methods, the amount of biological varia-
tion should be the same in the cells
analyzed by each of the six methods.
Hence, we can assume that differences
in the total variation among methods
are due to differences in their technical
variation. Technical variation is substan-
tial in scRNA-seq data primarily because
a substantial fraction of mRNAs is lost
during cDNA generation and small
amounts of cDNA get amplified. There-
fore, both the dropout probability and
the amplification noise need to be
considered when quantifying variation.

Indeed, a mixture model including a dropout probability and a
negative binomial distribution, modeling the overdispersion in
the count data, have been shown to represent scRNA-seq
data better than the negative binomial alone (Finak et al., 2015;
Kharchenko et al., 2014).
To compare precision without penalizing more sensitive

methods, we selected a common set of 13,361 genes that
were detected in 25% of the cells by at least one method (Fig-
ure S6A). We then analyzed these genes in a subsample of 65
cells per method to avoid a bias due to unequal numbers of cells.
We estimated the dropout probability as the fraction of cells with
zero counts (Figure 5A; Figure S6B). As expected from the num-
ber of detected genes per cell (Figure 3C), MARS-seq had the
highest median dropout probability (74%) and Smart-seq2 had
the lowest (26%) (Figure 5A). To estimate the amplification noise
of detected genes, we calculated the coefficient of variation (CV,
SD divided by the mean, including zeros), and we subtracted the
expected amount of variation due to Poisson sampling (i.e., the
square root of the mean divided by the mean). This was possible
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for 96.5% (MARS-seq) to 98.9% (Smart-seq2) of all the 13,361
genes. This extra Poisson variability includes biological variation
(assumed to be the same across methods in our data) and tech-
nical variation, and the latter includes noise introduced by ampli-
fication (Brennecke et al., 2013; Gr€un et al., 2014; Stegle et al.,
2015). That amplification noise can be a major factor is seen
by the strong increase of extra Poisson variability when ignoring
UMIs and considering read counts only (Figure 5B, left; Fig-
ure S7A). This is expected, as UMIs should remove amplification
noise, which has been described previously for CEL-seq (Gr€un
et al., 2014). For SCRB-seq and Drop-seq, which are PCR-
based methods, UMIs removed even more extra Poisson vari-
ability than for CEL-seq2/C1 and MARS-seq (Figure 5B), which
is in line with the notion that amplification by PCR is more noisy
than amplification by in vitro transcription. Of note, Smart-seq2
had the lowest amplification noise when just considering reads
(Figure 5B, left), potentially because its higher sensitivity requires
less amplification and, hence, leads to less noise.

In summary, Smart-seq2 detects the common set of 13,361
genes in more cells than the UMI methods, but it has, as ex-
pected, more amplification noise than the UMI-based methods.
How the different combinations of dropout rate and amplification
noise affect the power of themethods is not evident, neither from
this analysis nor from the total coefficient of variation that ignores
the strong mean variance and mean dropout dependencies of
scRNA-seq data (Figure S7B).

Power Is Determined by aCombination of Dropout Rates
and Amplification Noise and Is Highest for SCRB-Seq
To estimate the combined impact of sensitivity and precision on
the power to detect differential gene expression, we simulated
scRNA-seq data given the observed dropout rates and variance
for the 13,361 genes. As these depend strongly on the expres-
sion level of a gene, it is important to retain the mean variance
and mean dropout relationships. To this end, we estimated the
mean, the variance (i.e., the dispersion parameter of the negative
binomial distribution), and the dropout rate for each gene and
method. We then fitted a cubic smoothing spline to the resulting
pairs of mean and dispersion estimates to predict the dispersion
of a gene given its mean (Figure S8A). Furthermore, we applied a
local polynomial regression model to account for the dropout
probability given a gene’s mean expression (Figure S8B).
When simulating data according to these fits, we recovered dis-
tributions of dropout rates and variance closely matching the
observed data (Figures S8C and S8D). To compare the power
for differential gene expression among the methods, we simu-
lated read counts for two groups of n cells and added log-fold
changes to 5%of the 13,361 genes in one group. Tomimic a bio-
logically realistic scenario, these log-fold changes were drawn
from observed differences between microglial subpopulations
from a previously published dataset (Zeisel et al., 2015). Simu-
lated datasets were tested for differential expression using
limma (Ritchie et al., 2015), and the true positive rate (TPR) and
the false discovery rate (FDR) were calculated. Of note, this
does include undetected genes, i.e., the 2.5% (SCRB-seq) to
6.8% (MARS-seq) of the 13,361 genes that had fewer than two
measurements in a particular method (Figure S6B) and for which
we could not estimate the variance. In our simulations, these

genes could be drawn as differentially expressed, and in our
TPR they were then counted as false negatives for the particular
method. Hence, our power simulation framework considers the
full range of dropout rates and is not biased against more sensi-
tive methods.
First, we analyzed how the number of cells affects TPR and

FDR by running 100 simulations each for a range of 16 to 512
cells per group (Figure 6A). FDRs were similar in all methods
ranging from 3.9% to 8.7% (Figure S9A). TPRs differed consid-
erably amongmethods and SCRB-seq performed best, reaching
a median TPR of 80% with 64 cells. CEL-seq2/C1, Drop-seq,
MARS-seq, and Smart-seq2 performed slightly worse, reaching
80% power with 86, 99, 110, and 95 cells per group, respec-
tively, while Smart-seq/C1 needed 150 cells to reach 80%power
(Figure 6A). When disregarding UMIs, Smart-seq2 performed
best (Figure 6B), as expected from its low dropout rate and its
low amplification noise when considering reads only (Figure 5B).
Furthermore, power dropped especially for Drop-seq and
SCRB-seq (Figure 6B), as expected from the strong increase in
amplification noise of these two methods when considering
reads only (Figure 5B). When we stratified our analysis (consid-
ering UMIs) across five bins of expression levels, the ranking of
methods was recapitulated and showed that the lowest expres-
sion bin strongly limited the TPR in all methods (Figure S9B). This
ranking also was recapitulated when we analyzed a set of 19
genes previously reported to contain cell-cycle variation in the
2i/LIF culture condition (Kolodziejczyk et al., 2015b). The vari-
ance of these cell-cycle genes was clearly higher than the vari-
ance of 19 pluripotency and housekeeping (ribosomal) genes
in all methods. The p value of that difference was lowest for
SCRB-seq, the most powerful method, and highest for Smart-
seq/C1, the least powerful method (Figure S10D).
Notably, this power analysis, as well as the sensitivity, accu-

racy, and precision parameters analyzed above, includes the
variation that is generated in the two technical replicates
(batches) per method that we performed (Figure 1). These esti-
mates were very similar among our technical replicates, and,
hence, ourmethod comparison is valid with respect to batch var-
iations (Figures S10B–S10D). In addition, as batch effects are
known to be highly relevant for interpreting scRNA-seq data
(Hicks et al., 2015), we gauged the magnitude of batch effects
with respect to identifying differentially expressed genes. To
this end, we used limma to identify differentially expressed genes
between batches (FDR < 1%), using 25 randomly selected cells
per batch andmethod. All methods had significantly more genes
differentially expressed between batches than expected from
permutations (zero to four genes), with a median of 119 (Drop-
seq) to !1,135 (CEL-seq2/C1) differentially expressed genes
(Figure S10A). Notably, genes were affected at random across
methods, as there was no significant overlap among them
(extended hypergeometric test [Kalinka, 2013], p > 0.84). Hence,
this analysis once more emphasizes that batches are important
to consider in the design of scRNA-seq experiments (Hicks et al.,
2015). While a quantitative comparison of the magnitude of
batch effects among methods would require substantially more
technical replicates per method, the methods differ in their flex-
ibility to incorporate batch effect into the experimental design,
which is an important aspect to consider as discussed below.
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As a next step, we analyzed how the performance of the six
methods depends on sequencing depth. To this end, we per-
formed power simulations as above, but we estimated the
mean dispersion and mean dropout relationships from data
downsampled to 500,000 or 250,000 reads per cell. Overall,
the decrease in power was moderate (Figure 6C; Table 1) and
followed the drop in sensitivity at different sequencing depths
(Figure 3B). While Smart-seq2 and CEL-seq2/C1 needed just
1.3-fold more cells at 0.25 million reads than at one million reads
to reach 80% power, SCRB-seq and Drop-seq required 2.6-fold
more cells (Table 1). In summary, SCRB-seq is themost powerful
method at one million reads and half a million reads, but CEL-
seq2/C1 is the most powerful method at a sequencing depth
of 250,000 reads. The optimal balance between the number of
cells and their sequencing depth depends on many factors,
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Figure 6. Power of scRNA-Seq Methods
Using the empirical mean/dispersion and mean/

dropout relationships (Figures S8A and S8B), we

simulated data for two groups of n cells each for

which 5% of the 13,361 genes were differentially

expressed, with log-fold changes drawn from

observed differences between microglial sub-

populations from a previously published dataset

(Zeisel et al., 2015). The simulated data were then

tested for differential expression using limma

(Ritchie et al., 2015), from which the average true

positive rate (TPR) and the average false discov-

ery rate (FDR) were calculated (Figure S9A).

(A) TPR for one million reads per cell for sample

sizes n = 16, n = 32, n = 64, n = 128, n = 256, and

n = 512 per group. Boxplots represent the median

and first and third quartiles of 100 simulations.

(B) TPR for one million reads per cell for n = 64 per

group with and without using UMI information.

Boxplots represent the median and first and third

quartiles of 100 simulations.

(C) TPRs as in (A) using mean/dispersion

and mean/dropout estimates from one million

(as in A), 0.5 million, and 0.25 million reads. Line

areas indicate the median power with SE from

100 simulations. See also Figures S8–S10 and

Table 1.

including the scientific questions ad-
dressed, the experimental design, or the
sample availability. However, the mone-
tary cost is certainly an important one,
and we used the results of our simula-
tions to compare the costs among the
methods for a given level of power.

Cost Efficiency Is Similarly High for
Drop-Seq, MARS-Seq, SCRB-Seq,
and Smart-Seq2
Given the number of cells needed to
reach 80% power as simulated above
for three sequencing depths (Figure 6C),
we calculated the minimal costs to
generate and sequence these libraries.

For example, at a sequencing depth of one million reads,
SCRB-seq requires 64 cells per group to reach 80% power.
Generating 128 SCRB-seq libraries costs!260$ and generating
128 million reads costs !640$. Note that the necessary paired-
end reads for CEL-seq2/C1, SCRB-seq, MARS-seq, and Drop-
seq can be generated using a 50-cycle sequencing kit, and,
hence, we assume that sequencing costs are the same for all
methods.
Calculating minimal costs this way, Drop-seq (690$) is the

most cost-effective method when sequencing 254 cells at a
depth of 250,000 reads, and SCRB-seq (810$), MARS-seq
(820$), and Smart-seq2 (1,090$) are slightly more expensive at
the same performance (Table 1). For Smart-seq2 it should be
stressed that the use of in-house-produced Tn5 transposase
(Picelli et al., 2014a) is required to keep the cost at this level, as
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was done in our experiments. When instead using the Tn5 trans-
posase of the commercial Nextera kit as described (Picelli et al.,
2014b), the costs for Smart-seq2 are 10-fold higher. Even if one
reduces the amount of Nextera transposase to a quarter, as done
in the Smart-seq/C1 protocol, the Smart-seq2 protocol is still
four times more expensive than the early barcoding methods.
CEL-seq2/C1 is fairly expensive due to the microfluidic chips
that make up 69% of the library costs, and Smart-seq/C1 is
almost 13-fold less efficient than Drop-seq due to its high library
costs that arise from the microfluidic chips, the commercial
Smart-seq kit, and the costs for commercial Nextera XT kits.

Of note, these calculations are the minimal costs of the exper-
iment and several factors are not considered, such as labor
costs, costs to set up the methods, costs to isolate cells of inter-
est, or costs due to practical constraints in generating a fixed
number of scRNA-seq libraries with a fixed number of reads. In
many experimental settings, independent biological and/or tech-
nical replicates are needed when investigating particular factors,
such as genotypes or developmental time points, and Smart-
seq/C1, CEL-seq2/C1, and Drop-seq are less flexible in distrib-
uting scRNA-seq libraries across replicates than the other three
methods that use PCR plates. Furthermore, the costs are
increased by unequal sampling from the included cells as well
as from sequencing reads from cells that are excluded. In our
case, between 6% (SCRB-seq) and 32% (Drop-seq) of the reads
came from cell barcodes that were not included. While it is diffi-
cult to exactly calculate and compare these costs among
methods, it is clear that they will increase the costs for Drop-
seq relatively more than for the other methods. In summary,
we find that Drop-seq, SCRB-seq, and MARS-seq are the
most cost-effective methods, closely followed by Smart-seq2,
if using an in-house-produced transposase.

DISCUSSION

Here we have provided an in-depth comparison of six prominent
scRNA-seq protocols. To this end, we generated data for all six
compared methods from the same cells, cultured under the
same condition in the same laboratory. While there would be
manymore datasets andmethods for a comparison of the sensi-
tivity and accuracy of the ERCCs (Svensson et al., 2016), our
approach provides a more controlled and comprehensive com-

parison across thousands of endogenous genes. This is impor-
tant, as can be seen by the different sensitivity estimates that
we obtained for Drop-seq, MARS-seq, and SCRB-seq using
the ERCCs. In our comparison, we clearly find that Smart-seq2
is the most sensitive method, closely followed by SCRB-seq,
Smart-seq/C1, and CEL-seq2/C1, while Drop-seq and MARS-
seq detect nearly 50% fewer genes per cell (Figures 3B and
3C). In addition, Smart-seq2 shows themost even read coverage
across transcripts (Figure S3D), making it the most appropriate
method for the detection of alternative splice forms and for ana-
lyses of allele-specific expression using SNPs (Deng et al., 2014;
Reinius et al., 2016). Hence, Smart-seq2 is certainly the most
suitable method when an annotation of single-cell transcrip-
tomes is the focus. Furthermore, we find that Smart-seq2 is
also themost accurate method (i.e., it has the highest correlation
of known ERCC spike-in concentrations and read counts per
million), which is probably related to its higher sensitivity. Hence,
differences in expression values across transcripts within the
same cell predict differences in the actual concentrations of
these transcripts well. All methods do this rather well, at least
for higher expression levels, and we think that the small differ-
ences among methods will rarely be a decisive factor. Impor-
tantly, the accuracy of estimating transcript concentrations
across cells (relevant, e.g., for comparing the total RNA content
of cells) depends on different factors and cannot be compared
well among the tested methods as it would require known con-
centration differences of transcripts across cells. However, it is
likely that methods that can use UMIs and ERCCs (CEL-seq2/
C1, MARS-seq, and SCRB-seq) would have a strong advantage
in this respect.
How well relative expression levels of the same genes can be

compared across cells depends on two factors. First, how often
(i.e., in how many cells and from how many molecules) it is
measured. Second, with how much technical variation (i.e.,
with how much noise, e.g., from amplification) it is measured.
For the first factor (dropout probability), we find Smart-seq2 to
be the best method (Figure 5A), as expected from its high gene
detection sensitivity. For the second factor (extra Poisson vari-
ability), we find the four UMI methods to perform better (Fig-
ure 5B), as expected from their ability to eliminate variation intro-
duced by amplification. To assess the combined effect of these
two factors, we performed simulations for differential gene

Table 1. Cost Efficiency Extrapolation for Single-Cell RNA-Seq Experiments

Method TPRa FDRa (%) Cell per Groupb Library Cost ($) Minimal Costc ($)

CEL-seq2/C1 0.8 !6.1 86/100/110 !9 !2,420/2,310/2,250

Drop-seq 0.8 !8.4 99/135/254 !0.1 !1,010/700/690

MARS-seq 0.8 !7.3 110/135/160 !1.3 !1,380/1,030/820

SCRB-seq 0.8 !6.1 64/90/166 !2 !900/810/1,080

Smart-seq/C1 0.8 !4.9 150/172/215 !25 !9,010/9,440/11,290

Smart-seq2 (commercial) 0.8 !5.2 95/105/128 !30 !10,470/11,040/13,160

Smart-seq2 (in-house Tn5) 0.8 !5.2 95/105/128 !3 !1,520/1,160/1,090

See also Figure 6.
aTrue positive rate and false discovery rate are based on simulations (Figure 6; Figure S9).
bSequencing depth of one, 0.5, and 0.25 million reads.
cAssuming $5 per one million reads.
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expression scenarios (Figure 6). This allowed us to translate the
sensitivity and precision parameters into the practically relevant
power to detect differentially expressed genes. Of note, our po-
wer estimates include the variation that is caused by the two
different replicates per method that constitutes an important
part of the variation. Our simulations show that, at a sequencing
depth of one million reads, SCRB-seq has the highest power,
probably due to a good balance of high sensitivity and low ampli-
fication noise. Furthermore, amplification noise and power
strongly depend on the use of UMIs, especially for the PCR-
based methods (Figures 5B and 6B; Figure S7). Notably, this is
due to the large amount of amplification needed for scRNA-
seq libraries, as the effect of UMIs on power for bulk RNA-seq
libraries is negligible (Parekh et al., 2016).
Perhaps practically most important, our power simulations

also allow us to compare the efficiency of the methods by calcu-
lating the costs to generate the data for a given level of power.
Using minimal cost calculations, we find that Drop-seq is the
most cost-effective method, closely followed by SCRB-seq,
MARS-seq, and Smart-seq2. However, Drop-seq costs are likely
to be more underestimated, due to lower flexibility in generating
a specified number of libraries and the higher fraction of reads
that come from bad cells. Hence, all four UMI methods are in
practice probably similarly cost-effective. In contrast, for
Smart-seq2 to be similarly cost-effective it is absolutely neces-
sary to use in-house-produced transposase or to drastically
reduce volumes of commercial transposase kits (Lamble et al.,
2013; Mora-Castilla et al., 2016).
Given comparable efficiencies of Drop-seq, MARS-seq,

SCRB-seq, and Smart-seq2, additional factors will play a
role when choosing a suitable method for a particular ques-
tion. Due to its low library costs, Drop-seq is probably prefer-
able when analyzing large numbers of cells at low coverage
(e.g., to find rare cell types). On the other hand, Drop-seq in
its current setup requires a relatively large amount of cells
(>6,500 for 1 min of flow). Hence, if few and/or unstable cells
are isolated by FACS, the SCRB-seq, MARS-seq, or Smart-
seq2 protocols are probably preferable. Additional advantages
of these methods over Drop-seq include that technical varia-
tion can be estimated from ERCCs for each cell, which can
be helpful to estimate biological variation (Kim et al., 2015;
Vallejos et al., 2016), and that the exact same setup can be
used to generate bulk RNA-seq libraries. While SCRB-seq is
slightly more cost-effective than MARS-seq and has the
advantage that one does not need to produce the transposase
in-house, Smart-seq2 is preferable when transcriptome anno-
tation, identification of sequence variants, or the quantification
of different splice forms is of interest. Furthermore, the pres-
ence of batch effects shows that experiments need to be
designed in a way that does not confound batches with bio-
logical factors (Hicks et al., 2015). Practically, plate-based
methods might currently accommodate complex experimental
designs with various biological factors more easily than micro-
fluidic chips.
We find that Drop-seq, MARS-seq, SCRB-seq, and Smart-

seq2 (using in-house transposase) are 2- to 13-fold more cost
efficient than CEL-seq2/C1, Smart-seq/C1, and Smart-seq2
(using commercial transposase). Hence, the latter methods

would need to increase in their power and/or decrease in their
costs to be competitive. The efficiency of the Fluidigm C1 plat-
form can be further increased bymicrofluidic chips with a higher
throughput, as available in the high-throughput (HT) mRNA-seq
integrated fluidic circuit (IFC) chip. While CEL-seq2/C1 has
been found to more sensitive than the plate-based version of
CEL-seq2 (Hashimshony et al., 2016), the latter might be
more efficient when considering its lower costs. Our finding
that Smart-seq2 is themost sensitive protocol also hints toward
further possible improvements of SCRB-seq and Drop-seq. As
these methods also rely on template switching and PCR ampli-
fication, the improvements found in the systematic optimization
of Smart-seq2 (Picelli et al., 2013) also could improve the sensi-
tivity of SCRB-seq and Drop-seq. Furthermore, the costs of
SCRB-seq libraries per cell can be halved when switching to
a 384-well format (Soumillon et al., 2014). Similarly, improve-
ments made for CEL-seq2 (Hashimshony et al., 2016) could
be incorporated into the MARS-seq protocol. Hence, it is clear
that scRNA-seq protocols will become even more efficient in
the future. The results of our comparative analyses of six
currently prominent scRNA-seq methods may facilitate such
developments, and they provide a framework for method eval-
uation in the future.
In summary, we systematically compared six prominent

scRNA-seq methods and found that Drop-seq is preferable
when quantifying transcriptomes of large numbers of cells
with low sequencing depth, SCRB-seq and MARS-seq is pref-
erable when quantifying transcriptomes of fewer cells, and
Smart-seq2 is preferable when annotating and/or quantifying
transcriptomes of fewer cells as long one can use in-house-
produced transposase. Our analysis allows an informed
choice among the tested methods, and it provides a frame-
work for benchmarking future improvements in scRNA-seq
methodologies.
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Reinius, B., Mold, J.E., Ramsköld, D., Deng, Q., Johnsson, P., Micha€elsson, J.,

Frisén, J., and Sandberg, R. (2016). Analysis of allelic expression patterns in

clonal somatic cells by single-cell RNA-seq. Nat. Genet. 48, 1430–1435.

Renaud, G., Stenzel, U., Maricic, T., Wiebe, V., and Kelso, J. (2015). deML:

robust demultiplexing of Illumina sequences using a likelihood-based

approach. Bioinformatics 31, 770–772.

Risso, D., Ngai, J., Speed, T.P., and Dudoit, S. (2014). Normalization of RNA-

seq data using factor analysis of control genes or samples. Nat. Biotechnol.

32, 896–902.

Ritchie, M.E., Phipson, B., Wu, D., Hu, Y., Law, C.W., Shi, W., and Smyth, G.K.

(2015). limma powers differential expression analyses for RNA-sequencing

and microarray studies. Nucleic Acids Res. 43, e47.

Soumillon, M., Cacchiarelli, D., Semrau, S., van Oudenaarden, A., and

Mikkelsen, T.S. (2014). Characterization of directed differentiation by high-

throughput single-cell RNA-seq. bioRxiv. http://dx.doi.org/10.1101/003236.

Stegle, O., Teichmann, S.A., and Marioni, J.C. (2015). Computational and

analytical challenges in single-cell transcriptomics. Nat. Rev. Genet. 16,

133–145.

Svensson, V., Natarajan, K.N., Ly, L.-H., Miragaia, R.J., Labalette, C.,

Macaulay, I.C., Cvejic, A., and Teichmann, S.A. (2016). Power analysis of sin-

gle cell RNA-sequencing experiments. bioRxiv. http://dx.doi.org/10.1101/

073692.

Tirosh, I., Izar, B., Prakadan, S.M., Wadsworth, M.H., 2nd, Treacy, D.,

Trombetta, J.J., Rotem, A., Rodman, C., Lian, C., Murphy, G., et al. (2016).

Dissecting the multicellular ecosystem of metastatic melanoma by single-

cell RNA-seq. Science 352, 189–196.

Vallejos, C.A., Richardson, S., and Marioni, J.C. (2016). Beyond comparisons

of means: understanding changes in gene expression at the single-cell level.

Genome Biol. 17, 70.

Wagner, A., Regev, A., and Yosef, N. (2016). Revealing the vectors of cellular

identity with single-cell genomics. Nat. Biotechnol. 34, 1145–1160.

Wu, A.R., Neff, N.F., Kalisky, T., Dalerba, P., Treutlein, B., Rothenberg, M.E.,

Mburu, F.M., Mantalas, G.L., Sim, S., Clarke, M.F., and Quake, S.R. (2014).

Quantitative assessment of single-cell RNA-sequencing methods. Nat.

Methods 11, 41–46.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Esgro recombinant mouse LIF Millipore ESG1107

CHIR99021 Axon Med Chem 1386

PD0325901 Axon Med Chem 1408

2-Mercaptoethanol Sigma-Aldrich M3148

FBS Sigma-Aldrich F7524

Penicillin/Streptomycin Sigma-Aldrich P4333

MEM non-essential amino acids Sigma-Aldrich M7145

L-glutamine Sigma-Aldrich G7513

Dulbecco’s modified Eagle’s medium Sigma-Aldrich D6429

Perfluoroctanol Sigma-Aldrich 370533

Maxima H- Reverse Transcriptase Thermo Fisher Scientific EP0753

SuperScript II Life Technologies 18064071

Exonuclease I New England Biolabs M0293L

RNAprotect Cell Reagent QIAGEN 76526

RNase inhibitor Promega N2515

RNase inhibitor Lucigen 30281-2-LU

Phusion HF buffer New England Biolabs B0518S

Proteinase K Ambion AM2546

KAPA HiFi HotStart polymerase KAPA Biosystems KAPBKK2602

Phusion HF PCR Master Mix Thermo Fisher Scientific F531L

dNTPs New England Biolabs N0447L

Triton X-100 Sigma-Aldrich T8787

SDS Sigma-Aldrich L3771

Tn5 transposase Picelli et al., 2014a N/A

Critical Commercial Assays

C1 Single-Cell System Fluidigm N/A

C1 IFC for Open App (10-17 mm) Fluidigm 100-8134

C1 IFC for mRNA-seq (10-17 mm) Fluidigm 100-6041

Nextera XT DNA Sample Preparation Kit Illumina FC-131-1096

SMARTer Ultra Low RNA Kit for Fluidigm C1 Clontech 634833

MinElute Gel Extraction Kit QIAGEN 28606

Deposited Data

single-cell RNA-seq data This paper GEO: GSE75790

Drop-seq ERCC data Macosko et al., 2015 GEO: GSE66694

Experimental Models: Cell Lines

J1 mouse embryonic stem cells Li et al., 1992 N/A

Sequence-Based Reagents

Nextera XT Index Kit Illumina FC-121-1012

SCRB-seq P5 primer, AATGATACGGCGACCACCG

AGATCTACACTCTTTCCCTACACGACGCTCTTC

CG*A*T*C*T, * PTO bond

IDT N/A

SCRB-seq oligo-dT primer, Biotin-ACACTCTTTCCCT

ACACGACGCTCTTCCGATCT[BC6][N10][T30]VN

IDT ‘‘TruGrade Ultramer’’

(Continued on next page)
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CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the corresponding author
Wolfgang Enard (enard@biologie.uni-muenchen.de).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

J1 mouse embryonic stem cells (Li et al., 1992) were maintained on gelatin-coated dishes in Dulbecco’s modified Eagle’s medium
supplemented with 16% fetal bovine serum (FBS, Sigma-Aldrich), 0.1mM b-mercaptoethanol (Sigma-Aldrich), 2mML-glutamine, 1x
MEM non-essential amino acids, 100 U/ml penicillin, 100 mg/ml streptomycin (Sigma-Aldrich), 1000 U/ml recombinant mouse LIF
(Millipore) and 2i (1 mM PD032591 and 3 mM CHIR99021 (Axon Medchem, Netherlands). J1 embryonic stem cells were obtained
from E. Li and T. Chen and mycoplasma free determined by a PCR-based test. Cell line authentication was not recently performed.

METHOD DETAILS

Published data
Drop-seq ERCC (Macosko et al., 2015) data were obtained under accession GEO: GSE66694. Raw fastq files were extracted using
the SRA toolkit (2.3.5). We trimmed cDNA reads to the same length and processed raw reads in the same way as data sequenced for
this study.

Single cell RNA-seq library preparations
CEL-seq2/C1
CEL-seq2/C1 libraries were generated as previously described (Hashimshony et al., 2016). Briefly, cells (200,000/ml), ERCC spike-
ins, reagents and barcoded oligo-dT primers (Sigma-Aldrich) were loaded on a 10-17 mm C1 Open-App microfluidic IFC (Fluidigm).
Cell lysis, reverse transcription, second strand synthesis and in-vitro transcription were performed on-chip. Subsequently, harvested
aRNA was pooled from 48 capture sites. After fragmentation and clean-up, 5 ml of aRNA was used to construct final libraries by
reverse transcription (SuperScript II, Thermo Fisher) and library PCR (Phusion HF, Thermo Fisher).

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SCRB-seq template-switch oligo, iCiGiCACACTCTTTCC

CTACACGACGCrGrGrG

Eurogentech N/A

Drop-seq P5 primer, AATGATACGGCGACCACCGAGA

TCTACACGCCT GTCCGCGGAAGCAGTGGTATCAACG

CAGAGT*A*C, * PTO bond

IDT N/A

Drop-seq oligo-dT primer beads, Bead–Linker-

TTTTTTTAAGCAGTGGTATCAAC

GCAGAGTAC[BC12][N8][T30]

Chemgenes MACOSKO-2011-10

Drop-seq template-switch oligo, AAGCAGTGGTATCA

ACGCAGAGTGAATrGrGrG

IDT N/A

CEL-seq2 oligo-dT primer, GCCGGTAATACGACTCACTATA

GGGAGTTCTACAGTCCGACGATC[N6][BC6][T25]

Sigma-Aldrich N/A

ERCC RNA Spike-In Mix Ambion 4456740

Software and Algorithms

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR

Drop-seq tools Macosko et al.,

2015

http://mccarrolllab.com/dropseq/

featureCounts Liao et al., 2013 https://bioconductor.org/packages/release/

bioc/html/Rsubread.html

R N/A www.r-project.org

Other

Drop-seq PDMS device Nanoshift Drop-seq

2% E-Gel Agarose EX Gels Life Technologies G402002
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Drop-seq
Drop-seq experiments were performed as published (Macosko et al., 2015) and successful establishment of the method in our lab
was confirmed by a species-mixing experiment (Figure S1A). For this work, J1 mES cells (100/ml) and barcode-beads (120/ml, Chem-
genes) were co-flown in Drop-seq PDMS devices (Nanoshift) at rates of 4000 ml/hr. Collected emulsions were broken by addition of
perfluorooctanol (Sigma-Aldrich) and mRNA on beads was reverse transcribed (Maxima RT, Thermo Fisher). Unused primers were
degraded by addition of Exonuclease I (New England Biolabs). Washed beads were counted and aliquoted for pre-amplification
(2000 beads / reaction). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with a custom P5 primer (IDT).
MARS-seq
To construct single cell libraries from polyA-tailed RNA, we appliedmassively parallel single-cell RNA sequencing (MARS-Seq) (Jaitin
et al., 2014). Briefly, single cells were FACS-sorted into 384-well plates, containing lysis buffer and reverse-transcription (RT) primers.
The RT primers contained the single cell barcodes and unique molecular identifiers (UMIs) for subsequent de-multiplexing and
correction for amplification biases, respectively. Spike-in transcripts (ERCC, Ambion) were added, polyA-containing RNA was con-
verted into cDNA as previously described and then pooled using an automated pipeline (liquid handling robotics). Subsequently,
samples were linearly amplified by in vitro transcription, fragmented, and 30 ends were converted into sequencing libraries. The li-
braries consisted of 48 single cell pools.
SCRB-seq
RNA was stabilized by resuspending cells in RNAprotect Cell Reagent (QIAGEN) and RNase inhibitors (Promega). Prior to FACS
sorting, cells were diluted in PBS (Invitrogen). Single cells were sorted into 5 ml lysis buffer consisting of a 1/500 dilution of Phusion
HF buffer (New England Biolabs) and ERCC spike-ins (Ambion), spun down and frozen at "80#C. Plates were thawed and libraries
prepared as described previously (Soumillon et al., 2014). Briefly, RNA was desiccated after protein digestion by Proteinase K (Am-
bion). RNA was reverse transcribed using barcoded oligo-dT primers (IDT) and products pooled and concentrated. Unincorporated
barcode primers were digested using Exonuclease I (New England Biolabs). Pre-amplification of cDNA pools were done with the
KAPA HiFi HotStart polymerase (KAPA Biosystems). Nextera XT libraries were constructed from 1 ng of pre-amplified cDNA with
a custom P5 primer (IDT).
Smart-seq/C1
Smart-seq/C1 libraries were prepared on the Fluidigm C1 system using the SMARTer Ultra Low RNA Kit (Clontech) according to the
manufacturer’s protocol. Cells were loaded on a 10-17 mm RNA-seq microfluidic IFC at a concentration of 200,000/ml. Capture site
occupancy was surveyed using the Operetta (Perkin Elmer) automated imaging platform.
Smart-seq2
mESCswere sorted into 96-well PCR plates containing 2 ml lysis buffer (1.9 ml 0.2%Triton X-100; 0.1 ml RNase inhibitor (Lucigen)) and
spike-in RNAs (Ambion), spun down and frozen at"80#C. To generate Smart-seq2 libraries, priming buffermix containing dNTPs and
oligo-dT primers was added to the cell lysate and denatured at 72#C. cDNA synthesis and pre-amplification of cDNA was performed
as described previously (Picelli et al., 2014b, 2013). Sequencing libraries were constructed from 2.5 ng of pre-amplified cDNA using
an in-house generated Tn5 transposase (Picelli et al., 2014a). Briefly, 5 ml cDNA was incubated with 15 ml tagmentation mix (1 ml of
Tn5; 2 ml 10x TAPS MgCl2 Tagmentation buffer; 5 ml 40% PEG8000; 7 ml water) for 8 min at 55#C. Tn5 was inactivated and released
from the DNA by the addition of 5 ml 0.2% SDS and 5 min incubation at room temperature. Sequencing library amplification was per-
formed using 5 ml Nextera XT Index primers (Illumina) that had been first diluted 1:5 in water and 15 ml PCR mix (1 ml KAPA HiFi DNA
polymerase (KAPA Biosystems); 10ml 5x KAPA HiFi buffer; 1.5 ml 10mM dNTPs; 2.5ml water) in 10 PCR cycles. Barcoded libraries
were purified and pooled at equimolar ratios.

DNA sequencing
For SCRB-seq and Drop-seq, final library pools were size-selected on 2% E-Gel Agarose EX Gels (Invitrogen) by excising a range of
300-800 bp and extracting DNA using the MinElute Kit (QIAGEN) according to the manufacturer’s protocol.

Smart-seq/C1, CEL-seq2/C1, Drop-seq and SCRB-seq library pools were sequenced on an Illumina HiSeq1500. Smart-seq2
pools were sequenced on Illumina HiSeq2500 (Replicate A) and HiSeq2000 (Replicate B) platforms. MARS-seq library pools were
sequenced on an Illumina HiSeq2500 using the Rapid mode. Smart-seq/C1 and Smart-seq2 libraries were sequenced 45 cycles sin-
gle-end, whereas CEL-seq2/C1, Drop-seq and SCRB-seq libraries were sequenced paired-end with 15-20 cycles to decode cell
barcodes andUMI from read 1 and 45 cycles into the cDNA fragment. MARS-seq libraries were paired-end sequencedwith 52 cycles
on read 1 into the cDNA and 15 bases for read 2 to obtain cell barcodes and UMIs. Similar sequencing qualities were confirmed by
FastQC v0.10.1 (Figure S1B).

QUANTIFICATION AND STATISTICAL ANALYSIS

Basic data processing and sequence alignment
Smart-seq/C1/Smart-seq2 libraries (i5 and i7) and CELseq2/C1/Drop-seq/SCRB-seq pools (i7) were demultiplexed from the Illumina
barcode reads using deML (Renaud et al., 2015). MARS-seq library pools were demultiplexed with the standard Illumina pipeline. All
reads were trimmed to the same length of 45 bp by cutadapt (Martin, 2011) (v1.8.3) and mapped to the mouse genome (mm10)
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including mitochondrial genome sequences and unassigned scaffolds concatenated with the ERCC spike-in reference. Alignments
were calculated using STAR 2.4.0 (Dobin et al., 2013) using all default parameters.
For libraries containing UMIs, cell- and gene-wise count/UMI tables were generated using the published Drop-seq pipeline (v1.0)

(Macosko et al., 2015). We discarded the last 2 bases of the Drop-seq cell and molecular barcodes to account for bead synthesis
errors. For Smart-seq/C1 and Smart-seq2, features were assigned and counted using the Rsubread package (v1.20.2) (Liao
et al., 2013).

Power Simulations
We developed a framework in R for statistical power evaluation of differential gene expression in single cells. For each method, we
estimated the mean expression, dispersion and dropout probability per gene from the same number of cells per method. In the read
count simulations, we followed the framework proposed in Polyester (Frazee et al., 2015), i.e., we retained the observed mean-vari-
ance dependency by applying a cubic smoothing spline fit to capture the heteroscedasticity observed. Furthermore, we included a
local polynomial regression fit for the mean-dropout relationship. In each iteration, we simulated count measurements for the 13,361
genes for sample sizes of 24, 25, 26, 27, 28 and 29 cells per group. The read count for a gene i in a cell j is modeled as a product of a
binomial and negative binomial distribution:

Xij ! Bðp= 1" p0Þ & NBðm; qÞ:

Themean expressionmagnitude mwas randomly drawn from the empirical distribution. 5 percent of the genes were defined as differ-
entially expressed with an effect size drawn from the observed fold changes betweenmicroglial subpopulations in Zeisel et al. (Zeisel
et al., 2015). The dispersion q and dropout probability p0 were predicted by above mentioned fits.
For each method and sample size, 100 RNA-seq experiments were simulated and tested for differential expression using limma

(Ritchie et al., 2015) in combination with voom (Law et al., 2014) (v3.26.7). The power simulation framework was implemented in
R (v3.3.0).

ERCC capture efficiency
To estimate the singlemolecule capture efficiency, we assume that the success or failure of detecting an ERCC is a binomial process,
as described before (Marinov et al., 2014). Detections are independent from each other and are thus regarded as independent Ber-
noulli trials. We recorded the number of cells with nonzero and zero read or UMI counts for each ERCC per method and applied a
maximum likelihood estimation to fit the probability of successful detection. The fit line was shaded with the 95%Wilson score con-
fidence interval.

Cost efficiency calculation
We based our cost efficiency extrapolation on the power simulations starting from empirical data at different sequencing depths
(250,000 reads, 500,000 reads, 1,000,000 reads; Figure 6C). We determined the number of cells required per method and depth
for adequate power (80%) by an asymptotic fit to the median powers. For the calculation of sequencing cost, we assumed 5V
per million raw reads, independent of method. Although UMI-based methods need paired-end sequencing, we assumed a 50 cycle
sequencing kit is sufficient for all methods. We used prices in Euro as a basis and consider an exchange course of 1:1 for the given
prices in USD.

DATA AND SOFTWARE AVAILABILITY

The accession number for the raw and analyzed scRNA-seq data reported in this paper is GEO: GSE75790.
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Supplementary Figures

Figure S1
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Figure S2
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CEL−seq2 / C1 Drop−seq MARS−seq

SCRB−seq Smart−seq / C1 Smart−seq2
0

2500

5000

7500

10000

0

2500

5000

7500

10000

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Sequencing depth (million reads)

N
um

be
r o

f g
en

es
 d

et
ec

te
d

3000

6000

9000

0 1 2 3 4 5
Sequencing depth (millions of reads)

N
um

be
r o

f g
en

es
 d

et
ec

te
d

CEL−seq2 / C1 Drop−seq

MARS−seq SCRB−seq
0

25,000

50,000

75,000

100,000

0

25,000

50,000

75,000

100,000

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Sequencing depth (millions of reads)

U
M

Is
 p

er
 c

el
l

a

b

c

A

B

C



Figure S3
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Figure S4
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Figure S5
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Figure S6
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Figure S9
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Supplementary Figure Legends

Figure S1 (related to Figure 1) | Quality control and filtering. A Drop-seq species mixing 
experiment using human and murine T-cells. For each cell-barcode human- and mouse read 

numbers are plotted. B Per-base quality scores were summarized using FastQC. Lines 
indicate median Phred quality score with upper and lower quartile shaded. C Total UMI 

content per cell, with the filter cutoff (two times mean) shown as black lines. Violin plots 
indicate the density of the UMI content distribution per replicate. D Nearest-neighbor filtering 

based on the maximum pairwise Spearman’s rho for each cell. Violin plots indicate the 
density of rho distribution per replicate. Black lines indicate the employed cutoffs.

Figure S2 (related to Figure 1) | Downsampling of scRNA-seq libraries. A Detected genes 

(>= 1 count) in relation to indicated sequencing depths. The ranges of the boxes indicate the 
upper and lower quartiles of cells and horizontal bars indicate the medians. B Boxplots of 

the number of detected genes in high-depth sequencing of Smart-seq2 libraries, showing a 
plateau above 1 million reads. C Boxplots of the number of detected UMIs per cell in relation 

to indicated sequencing depths.

Figure S3 (related to Figure 3) | Sensitivity A The overlap of detected genes (>= 1 count) 
between methods for 65 random cells is displayed as a barplot. Colors indicate the level of 

overlap: Green (detected in all methods), dark blue (detected in five methods) ,yellow 
(detected in four methods), orange (detected in three methods), light blue (detected in two 

methods), grey (method-specific detection). B Gene body coverage (left to right equalling 5’ 
to 3’) of ~3000 genes detected by Smart-seq/C1 and/or Smart-seq2 (right panel) versus a 

random control set of 3000 genes detected by all methods. C Method-specific detected 
genes are shown as scatter plots with their rate of detection and mean counts over all cells. 

D For genes and their transcript variants of at least 2 kb length, we calculated the fraction of 
reads mapping to positions relative to the 3’ end. For each method, we show mapping 

positions and a fit line per replicate. The dashed line indicates theoretical even distribution of 
reads across the 2.5 kb window. (E) Gene expression values were normalized as transcripts 

per million TPM or UMIs per million UPM. Principal component analysis was performed on 
the 1000 most variable genes to display the major variance between single cells. The 200 

genes with the highest loading for PC1 were analysed and neither showed significant 
enrichment in GO categories (GOrilla) nor in technical properties such as gene length or GC 

content.



Figure S4 (related to Figure 3) | Detection probabilities were estimated from ERCC 

dropouts, where the RNA molecule number is known. A Thick lines indicate the maximum-
likelihood estimate of the detection probability with the thin lines showing the 

95% confidence interval of the fit. B Shown are per-method maximum-likelihood estimates of 
mRNA detection probabilities. C Sensitivity per method estimated as the 50% probability to 

detect a transcript. The 95% confidence interval of estimate is displayed as error bars.

Figure S5 (related to Figure 4) | A Exemplary correlations of ERCC expression values 
(transcripts per million TPM or UMIs per million UPM) with annotated concentrations. For 

each method, we chose a representative cell/bead with a linear model correlation coefficient 
close to the median of all cells. B Detection of ERCC genes (>= 1 count) in relation to 

sampling depth. Each boxplot represents the median, upper and lower quartile of all cells 
within each method. C Accuracy of scRNA-seq methods. ERCC expression values were 

correlated to their annotated molarity. Shown are the distributions of correlation coefficients 
(adjusted R2 of linear regression model) across methods for for bins of ERCC molarity. Each 

boxplot represents the median, first and third quartile for the R2 in the indicated bin.

Figure S6 (related to Figure 5) | Gene detection sparsity. A For all detected genes (>= 1 
CPM) per method, we calculated the rate of detection. Histograms show this measure for 

detection sparsity. Filled bars represent the genes detected in at least 25% of cells of each 
method along with the number of these reproducibly detected genes. B For genes detected 

in at least 25% of cells of any method, we calculate the rate of detection in 65 random cells.

Figure S7 (related to Figure 5) | Variation in scRNA-seq data. A Gene-wise mean and 
coefficient of variation from all cells are shown as scatterplots for all methods. The black line 

indicates variance according to the poisson distribution. The two populations of genes seen 
for read-count data are unamplified genes (close to Poisson, one or very few reads per UMI) 

and amplified genes (higher CV for a given mean, several reads per UMI). B Gene-wise 
coefficient of variation (CV) of scRNA-seq data were calculated for all cells including 

detection dropouts. Violin plots are shown for UMI and read-count based quantification 
indicating the density of the distribution.

Figure S8 (related to Figure 6) | A-B Power simulation parameters estimated from 1 million 

reads per cell. A Mean expression and size parameters were estimated for each method 
and their functional relation was approximated by a smooth spline fit. B The dropout 

probability p0 was calculated per gene and shown in relation to mean expression levels. We 



fitted this relationship using a local polynomial regression. C-D Validation of power 

simulation framework. C Gene-wise Extra-Poisson Variability was calculated from empirical 
data and simulated data without addition of differentially expressed genes. Shown are the 

distributions with the black line indicating the median. D Gene-wise dropout rate distributions 
are shown from empirical data and simulated data. The black line indicates the median 

dropout rate.

Figure S9 (related to Figure 6 and Table 1) | A FDR. Simulations were performed using 
empirical mean, dispersion and dropout relationships (see Figure S8). For variable sample 

sizes of n=16, n=32, n=64, n=128, n=256 and n=512, we show points representing the mean 
FDR of 100 simulations with standard error. B | Stratified analysis of power. Shown are TPR 

for 1 million reads per cell for sample sizes n=16, n=32, n=64, n=128, n=256 and n=512 per 
group. Genes are grouped in five percentiles of mean expression with lines representing the 

median TPR of 100 simulations.

Figure S10 (related to Figure 6) | A-D Batch effects A For each method, we test for 
differential expression between random subsets of 25 cells per group (left box) and subsets 

of 25 cells of each batch (right box) in 20 permutations using limma. Shown are the number 
of significantly differentially expressed genes (FDR <0.01) as boxplots. B Sensitivity is 

shown as the number of detected genes (>= 1 count) per batch. C Accuracy is shown per 
batch as the correlation coefficient of observed expression (TPM/UPM) to annotated ERCC 

molecule numbers. D Precision is shown per batch as the Extra-Poisson Variability for the 
common 13,361 genes. For 3’ counting methods, UMI quantification is shown. The 

distribution was only shown between values of 0 and 3 to make differences more visible. D 
Cell cycle analysis. For each method, we show the coefficient of variation (CV) for a set of 

19 cell cycle genes previously found to be variable in 2i/LIF cultured mESCs (Kolodziejczyk, 
2015) (left violin) compared to 19 ribosomal and pluripotency genes. Numbers above the 

violins indicate p-values of a t-test between the two groups.  



Supplementary Tables

Table S1 (related to Figure 2): Overview of single-cell RNA-seq methods.  
* in-house produced Tn5 / commercial Tn5  

Method CEL-seq2/C1 Drop-seq MARS-seq SCRB-seq Smart-seq/C1 Smart-seq2

Single-cell 

isolation

automated in 

the C1 

system

droplets FACS FACS automated in 

the C1 

system

FACS

ERCC  
spike-ins

yes no yes yes yes yes

UMI 6 bp 8 bp 8 bp 10 bp no no

Full-length 

coverage

no no no no yes yes

1st strand 
synthesis

oligo-dT oligo-dT oligo-dT oligo-dT oligo-dT oligo-dT

2nd strand 

synthesis

RNAseH / 

DNA Pol

template 

switching

RNAseH / 

DNA Pol

template 

switching

template 

switching

template 

switching

Amplification IVT PCR IVT PCR PCR PCR

Imaging of 
cells possible

yes no no no yes no

Protocol 

usable for 

bulk

yes no yes yes yes yes

Sequencing paired-end paired-
end

paired-end paired-end single-end single-end

Library  
cost /cell

~9.5€ ~0.1€ ~1.3€ ~2€ ~25€ ~3/30*
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Abstract

Summary: Power analysis is essential to optimize the design of RNA-seq experiments and to as-
sess and compare the power to detect differentially expressed genes in RNA-seq data. PowsimR is
a flexible tool to simulate and evaluate differential expression from bulk and especially single-cell
RNA-seq data making it suitable for a priori and posterior power analyses.
Availability and implementation: The R package and associated tutorial are freely available at
https://github.com/bvieth/powsimR.
Contact: vieth@bio.lmu.de or hellmann@bio.lmu.de
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

RNA-sequencing (RNA-seq) is an established method to quantify

levels of gene expression genome-wide (Mortazavi et al., 2008).

Furthermore, the recent development of very sensitive RNA-seq

protocols, such as Smart-seq2 and CEL-seq (Hashimshony et al.,

2012; Picelli et al., 2014) allows transcriptional profiling at single-

cell resolution and droplet devices make single cell transcriptomics

high-throughput, allowing to characterize thousands or even mil-

lions of single cells (Klein et al., 2015; Macosko et al., 2015; Zheng

et al., 2017).

Even though technical possibilities are vast, scarcity of sample

material and financial consideration are still limiting factors

(Ziegenhain et al., 2017), so that a rigorous assessment of experi-

mental design remains a necessity (Auer and Doerge, 2010; Conesa

et al., 2016). The number of replicates required to achieve the

desired statistical power is mainly determined by technical noise and

biological variability (Conesa et al., 2016) and both are considerably

larger if the biological replicates are single cells. Crucially, it is com-

mon that genes are detected in only a subset of cells and such drop-

out events are thought to be rooted in the stochasticity of single-cell

library preparation (Kharchenko et al., 2014). Thus dropouts in

single-cell RNA-seq are not a pure sampling problem that can be

solved by deeper sequencing (Bacher and Kendziorski, 2016). In

order to model dropout rates it is absolutely necessary to model the

mean-variance relationship inherent in RNA-seq data. Even though

current power assessment tools use the negative binomial or similar

models that have an inherent mean-variance relationship, they do

not explicitly estimate and model the observed relationship, but ra-

ther draw mean and variance separately (reviewed in Poplawski and

Binder, 2017).

In powsimR, we have implemented a flexible tool to assess

power and sample size requirements for differential expression

(DE) analysis of single cell and bulk RNA-seq experiments.

Even though powsimR does not evaluate clustering of cells, we

believe that powsimR can provide information also for RNA-seq

experiment with unlabeled cells: The power for cluster ana-

lysis should be proportional the power to detect differentially ex-

pressed genes. For our read count simulations, we (i) reliably

model the mean, dispersion and dropout distributions as well as

the relationship between those factors from the data. (ii) Simulate

read counts from the empirical mean-variance- and dropout rela-

tions, while offering flexible choices of the number of differen-

tially expressed genes, effect sizes and DE testing method.

(iii) Finally, we evaluate the power over various sample sizes. We

use the embryonic stem cell data from Kolodziejczyk et al. (2015)

to illustrate powsimR’s utility to plan and evaluate RNA-seq

experiments.
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2 powsimR

2.1 Estimation of RNA-seq characteristics
An important step in the simulation framework is the reliable repre-

sentation of the characteristics of the observed data. In agreement

with others (Grün et al., 2014; Lun et al., 2016; Mi et al., 2015), we

find that the read distribution for most genes is sufficiently captured

by the negative binomial. We analyzed 18 single cell datasets using

unique molecular identifiers (UMIs) to control for amplification du-

plicates and 20 without duplicate control. The negative binomial pro-

vides an adequate fit for 54% of the genes for the non-UMI-methods

and 39% of the genes for UMI-methods, while the zero-inflated nega-

tive binomial was only adequate for 2.8% of the non-UMI-methods.

In contrast, for the UMI-methods a simple Poisson distribution fits

well for some studies (Soumillon et al., 2014; Ziegenhain et al., 2017)

(Supplementary File S2). Furthermore, when comparing the fit of the

other commonly used distributions, the negative binomial was most

often the best fitting one for both non-UMI (57%) and UMI-methods

(66%), while the zero inflated negative binomial improves the fit for

only 19% and 1.6% (Supplementary Fig. S4). Therefore the default

sampling distribution in powsimR is the negative binomial (Fig. 1),

however the user has also the option to choose the zero-inflated nega-

tive binomial.

2.2 Simulation of read counts and differential
expression
Simulations in powsimR can be based on provided data or on user-

specified parameters. We first draw the mean expression for each

gene. The expected dispersion given the mean is then determined

using a locally weighted polynomial regression fit of the observed

mean-dispersion relationship and to capture the variability of the

observed dispersion estimates, a local variability prediction band

(r¼1.96) is applied to the fit (Fig. 1A). Note, that using the fitted

mean-dispersion spline is the feature that critically distinguishes

powsimR from other simulation tools that draw the dispersion

estimate for a gene independently of the mean. Our explicit model

of mean and dispersion across genes allows us to reproduce the

mean-variance as well as mean-dropout relationship observed

(Supplementary Fig. S2, Supplementary File S2).

To simulate DE genes, the user can specify the number of genes

as well as the fraction of DE genes as log2 fold changes (LFC). Here,

we assume that the grouping of samples is correct. For the

Kolodziejczyk data, we found that a narrow gamma distribution

mimicked the observed LFC distribution well (Supplementary Fig.

S3). The set-up for the expression levels and differential expression

can be re-used for different simulation instances, allowing an easier

comparison of experimental designs.

Finally, the user can specify the number of samples per group as

well as their relative sequencing depth and the number of simula-

tions. The simulated count tables are then directly used for DE ana-

lysis. In powsimR, we have integrated 8 R-packages for DE analysis

for bulk and single cell data (limma (Ritchie et al., 2015), edgeR

(Robinson et al., 2010), DESeq2 (Love et al., 2014), ROTS

(Seyednasrollah et al., 2015), baySeq (Hardcastle, 2016), DSS (Wu

et al., 2013), NOISeq (Tarazona et al., 2015), EBSeq (Leng et al.,

2013)) and five packages that were specifically developed for single-

cell RNA-seq (MAST (Finak et al., 2015), scde (Kharchenko et al.,

2014), BPSC (Vu et al., 2016), scDD (Korthauer et al., 2016), mon-

ocle (Qiu et al., 2017)). For a review on choosing an appropriate

method for bulk data, we refer to the work of others e.g. Schurch

et al. (2016). Based on our analysis of the single-cell data from

Kolodziejczyk et al. (2015), using standard settings for each tool we

found that MAST performed best for this dataset given the same

simulations as compared to results of other DE-tools.

2.3 Evaluating statistical power
Finally, powsimR integrates estimated and simulated expression dif-

ferences to calculate marginal and conditional error matrices. To

calculate these matrices, the user can specify nominal significance

levels, methods for multiple testing correction and gene filtering

schemes. Amongst the error matrix statistics, the power (True

Positive Rate; TPR) and the False Discovery Rate (FDR) are the

most informative for questions of experimental design. For easy

comparison, powsimR plots power and FDR for a list of sample size

choices either conditional on the mean expression (Wu et al., 2014)

or simply as marginal values (Fig. 1). For example for the

Kolodziejczyk data, 384 single cells for each condition would be suf-

ficient to detect>80% of the DE genes with a well controlled FDR

of 5%. Given the lower sample sizes actually used in Kolodziejczyk

et al. (2015), our power analysis suggests that only 60% of all DE

genes could be detected.

Fig. 1. powsimR schematic overview. (A) The mean-dispersion relationship is estimated from RNA-seq data, which can be either single cell or bulk data. The user

can provide their own count tables or one of our five example datasets and choose whether to fit a negative binomial or a zero-inflated negative binomial. The

plot shows the mean-dispersion estimated, assuming a negative binomial for the Kolodziejczyk-data, the red line is the loess fit, that we later use for the simula-

tions. (B) These distribution parameters are then used to set-up the simulations. For better comparability, the parameters for the simulation of differential expres-

sion are set separately. (C) Finally, the TPR and FDR are calculated. Both can be either returned as marginal estimates per sample configuration (top), or stratified

according to the estimates of mean expression, dispersion or dropout-rate (bottom)
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3 Conclusion

In summary, powsimR can not only estimate sample sizes necessary

to achieve a certain power, but also informs about the power to detect

DE in a dataset at hand. We believe that this type of posterior analysis

will become more and more important, if results from different stud-

ies are compared. Often enough researchers are left to wonder why

there is a lack of overlap in DE-genes when comparing similar experi-

ments. powsimR will allow the researcher to distinguish between ac-

tual discrepancies and incongruities due to lack of power.
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1 Determining the best fitting distribution per gene

To determine the best fitting distribution to the observed RNA-seq count data, we compare the theoretical

fit of the Poisson, negative binomial (NB), zero-inflated Poisson (ZIP) and zero-inflated negative binomial

(ZINB) and Beta-Poisson (BP) distribution to the empirical RNA-seq read counts [2, 8, 3]. We used the

following statistics to evaluate which distribution fits best:

• goodness of fit (GOF) statistics based on Chi-square statistic using residual deviances and degrees of

freedom (Chi-square test).

• Akaike Information Criterium (AIC).

• Likelihood Ratio Test (LRT) for nested models, i.e. testing whether estimating a dispersion parameter

in the NB models is appropriate.

• Vuong Test (VT) for non-nested models, i.e. testing whether assuming zero-inflation results in a better

fit.

• Comparing the observed dropouts to the zero count prediction of the models.

Note that the goodness of fit statistics could not be calculated for the BP, however, since it already the

AIC statistic suggested that the BP fit worse than the other distributions and could neither predict the

dropouts correctly (Figure S1, Supplementary File S2), we did not follow this further.

We analyzed 8 published single cell RNA-seq studies ([1, 9, 11, 6, 7, 14, 13, 15]) produced using 9 di↵erent

RNA-seq library preparation methods (Smart-seq/C1, Smart-seq2, MARS-seq, SCRB-seq, STRT, STRT-

UMI, Drop-seq, 10XGenomics, CEL-seq2). For illustrative purposes, we focus on Kolodziejczk et al. (2015)

[9], but the distribution analysis for all can be found in Supplementary File S2.

For the Kolodziejczk et al. (2015) data, we found that the NB distribution is an adequate fit (Figure

S1): The Chi-Square test indicates that the NB is appropriate for at least 40 % of the genes (Figure S1 A).

Moreover, the AIC suggests that the NB is in 60% of the cases better than the Poisson, ZIP, ZINB and BP

(Figure S1 B). The ZINB is the only of the commonly used distributions that comes close, providing the best

fit for 40% of all compared genes, however this di↵erence is only significant for 6% (Figure S1D).

One of the major di↵erences between the methods is the use of Unique Molecular Identifiers (UMIs) that

allow for confident removal of PCR-duplicates [5, 15]. For all protocols considered, we evaluated the fit of

the 5 di↵erent distributions, and for the vast majority the NB would be the distribution of choice (Figure

S2). This is especially true for the UMI-methods: Here no zero-inflation is needed for modeling the gene

expression distribution. On the contrary, also a simple Poisson often provides the best fit (Figure S4).

Next, we assess the fit of the dropout rate by comparing expected and predicted zero counts per gene.

Interestingly, even though the negative binomial does not model dropouts explicitly, the deviation of predicted

zero counts from the expected under the NB distribution is relatively small (Figure S1 C). The ZINB only gives

1



a small advantage with respect to dropouts. The comparison of models by LRT and VT illustrates the small

improvement of the model fit by assuming a ZINB distribution (10%) (FigureS1 D) for the Kolodziejczk

data, which is comparable to the average for non-UMI methods, and much lower for the UMI-methods

(<5%)(Figure S4 and Figure S3).

We thus refrain from using a mixture distribution, however for some of the protocols that do not utilize

UMIs, such as e.g. Smart-Seq2, the ZINB might provide a better fit and should be used as a sampling

distribution in the power simulations.

None

Zero−Inflated 
Poisson

Poisson

Zero−Inflated 
Negative Binomial

Negative 
Binomial

0% 25% 50% 75% 100%
Percentage

Di
st

rib
ut

io
n

Goodness of fit statisticA

Lowest
AIC

Lowest
AIC + 
GOF 

p >0.05

0% 25% 50% 75% 100%

Negative 
Binomial

Zero−Inflated 
Negative Binomial Poisson Zero−Inflated 

Poisson Beta−Poisson

Akaike Information CriterionB

Beta−Poisson

Zero−Inflated 
Poisson

Poisson

Zero−Inflated 
Negative Binomial

Negative 
Binomial

−250 0 250
Observed − Predicted Zeros

Di
st

rib
ut

io
n

DropoutsC

Zero−Inflated Negative Binomial 
> Zero−Inflated Poisson

Zero−Inflated Poisson 
> Poisson

Negative−Binomial 
> Poisson

Zero−inflated Negative−Binomial 
> Negative−Binomial

0% 25% 50% 75% 100%
Percentage

Te
st

Model ComparisonsD

Figure S1: A) Goodness of fit of the model per gene assessed with a Chi-square test based on residual
deviance and degrees of freedom. B) The fraction of genes for which the respective distribution has the
lowest AIC and additionally the distribution with the lowest AIC as well as not rejected by the goodness of
fit statistic. C) Observed versus predicted dropouts per distributional model and gene. D) Model assessment
per gene based on Likelihood Ratio Test for nested models and Vung Test for non-nested models.
The same plot representing other datasets can be found in Supplementary File S2.
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Figure S2: The negative binomial gives the best fit for the majority of genes (i.e. lowest AIC) for all
UMI datasets. For protocols that do not account for PCR duplicates, the zero-inflated negative binomial
often has a lower AIC, however this is mainly due to genes that cannot be fitted very well in general (GOF
p-value<=0.05).

2 Read Count Simulation Framework

We have implemented a read count simulation framework assuming an underlying negative binomial distri-

bution. To predict the dispersion ✓ given a random draw of an observed mean expression value µ, we apply a

locally weighted polynomial regression fit. Furthermore, to capture the variability of the observed dispersion

estimates, a local variability prediction band is applied (R package msir [12]). The read count for gene i in

sample j is then given by:

Xij ⇠ NB(µ, ✓) (1)

The mean, dispersion and dropout rates of an example read count simulation closely resembles the observed

estimates for the Kolodziejczk data set (Figure S5).

For bulk RNA-seq experiments, the negative binomial alone is not able to capture the observed number

of dropouts appropriately. Here, we predict the dropout probability (p0) using a decreasing constrained

B-splines regression (CRAN R package cobs [10]) of dropout rate against mean expression to determine the

mean expression value µDP5, where the dropout probability is expected to fall below 5%. For all genes with
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MARS−seq SCRB−seq Smartseq/C1
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Figure S3: Model assessment per gene based on likelihood ratio test for nested models and Vuong test for
non-nested models shows that zero-inflated negative binomial significantly improves the fit for maximally
25% of the genes (STRT protocol).

µi < µDP5 we do not estimate a gene specific dropout probability, but sample the dropout probability from

all genes with < µDP5. With these parameters, the read count for a gene i in a sample j is modeled as a

product of a negative binomial multiplied with an indicator whether that sample was a dropout or not, which

is determined using binomial sampling:

Xij ⇠ I ⇤NB(µ, ✓),where I 2 {0, 1} (2)

P (I = 0) = B(1� p0) (3)

The necessity of this apparently unintuitive zero inflation for bulk data is illustrated by the dataset from

Eizirik et al. 2012 [4]. Note that dropouts occur across genes with di↵erent mean expression levels so that

there is only a very weak relationship between mean expression and dropout probabilities (Figure S6).

For the simulations of expression changes, the user can freely define a distribution, a list of log2-fold

changes or simply a constant. We recommend to simulate with a realistic log2-fold change distribution, which

we determined for the Kolodziejczyk et al. (2015) [9] as a narrow �(↵,�)- distribution plus �1 ⇥ �(↵,�)

(Figure S7).
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Figure S4: 6 UMI-protocols (STRT-UMI, Cel-SEq2, Drop-seq, MARS-seq, SCRB-seq,10XGenomics) are
compared to 3 protocols not using UMIs (Smartseq/C1, SmartSeq2, STRT), showing that zero-inflation is
only relevant for non-UMI-methods. A) The fraction of genes for which the respective distribution has the
lowest AIC and additionally the distribution with the lowest AIC is not to rejected by the goodness of fit
statistic. D) Model assessment per gene based on likelihood ratio test for nested models and Vuong test for
non-nested models.

Figure S5: A) Dispersion versus mean. B) Dropout versus mean.
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Figure S6: For bulk RNA-seq, the simulations include dropout sampling to better mimic the observed
mean-dropout relation. A) Dispersion versus mean with locally weighted polynomial regression fit (orange
line) and variability prediction band (dashed orange line). B) Dropout versus mean with red box indicating
genes with < µDP5 from which the dropout probability will be sampled from.
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Figure S7: Log2 fold changes between serum+LiF and 2i+LiF cultured cells (Kolodziejczk et al. 2015).
Red line indicates the density of a theoretical narrow gamma distribution (shape and rate equal to 3).
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3 Included RNA-seq Experiments

We provide raw count matrices for several published single cell data sets (Table S1 on github (https://github.

com/bvieth/powsimRData). Furthermore, the vignette gives an example on how to access RNA-seq datasets

in online repositories such as recount (https://jhubiostatistics.shinyapps.io/recount/).

Table S1: Key properties of the example data-sets included in powsimR.

Study Accession Species No.

Cells

Cell-

type*

Library

prepara-

tion

UMI Remarks

1 Kolodziejczk et al.

(2015) [9]

E-MTAB-

2600

Mouse 869 ESC Smart-seq

C1

no di↵erent growth me-

dia

2 Islam et al. (2011)

[6]

GSE29087 Mouse 48 ESC STRT-seq no -

3 Islam et al. (2014)

[7]

GSE46980 Mouse 96 ESC STRT-seq

C1

yes -

4 Buettner et al.

(2015) [1]

E-MTAB-

2805

Mouse 288 ESC Smart-seq

C1

no FACs-sorted for

cell-cycle

5 Soumillon et al.

(2014) [13]

GSE53638 Human 12,000 adipo-

cytes

SCRB-

seq

yes time-series

* ESC - embryonic stem cells
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Abstract

RNA sequencing is increasingly performed with less starting material and at a higher

sample throughput, e.g. to analyse single-cell transcriptomes. In this context, unique

molecular identifiers (UMIs) are used to reduce amplification noise and sample-specific

barcodes are used to track libraries. Here, we present a fast and flexible pipeline to

process data from such RNA-seq protocols.

Availability: https://github.com/sdparekh/zUMIs

1 Introduction

The recent development of sensitive protocols allows to generate RNA-seq libraries

of single cells [1]. The throughput of such scRNA-seq protocols is rapidly increasing,

enabling the profiling of tens of thousands of cells [2, 3] and opening exciting possibilities

to analyse cellular identities [4, 5]. As the required amplification from such low starting

amounts introduces substantial amounts of noise [6], many scRNA-seq protocols incor-

porate unique molecular identifiers (UMIs) to label individual cDNA molecules with a

random nucleotide sequence before amplification [7]. This allows to computationally

remove amplification noise and thus increases the power to detect expression differences

[8, 9]. To increase the throughput, many protocols also incorporate sample-specific

barcodes (BCs) to label all cDNA molecules of a single cell with a nucleotide sequence

before library generation [10, 2]. Additionally, for cell types such as neurons it has
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Name Reference Open Quality Mapper intron Down-
Source UMI/BC counting sampling

CellRanger [2] no no STAR no yes
Drop-seq [10] no yes STAR no no
CEL-seq [13] yes yes bowtie2 no no
umis [14] yes no Kallisto no no
zUMIs This work yes yes STAR yes yes

Table 1. Pipelines handling UMI expression data

proven to be more feasible to isolate RNA from single nuclei rather than whole cells

[11, 12]. This decreases mRNA amounts further, so that it has been suggested to count

intron-mapping reads as part of nascent RNAs. However, the few bioinformatic tools that

process RNA-seq data with UMIs and BCs have limitations with respect to availability,

mapping, quality assessment and/or can not consider intronic reads (Table 1). Here, we

present zUMIs, a fast and flexible pipeline to overcome such limitations.

2 zUMIs

zUMIs is a pipeline that processes paired fastq files containing the UMI and BC in one

read and the cDNA sequence in the other read, filters out reads with bad BCs or UMIs

based on sequence quality, maps reads to the genome and outputs count tables of unique

UMIs or reads per gene (Figure 1). To allow the quantification of intronic reads that are

generated from unspliced RNAs especially when using nuclei as input material, three

separate count tables for exons, introns and exon+introns are provided. Another unique

feature of zUMI is that it allows for downsampling of reads before summarizing UMIs

per feature, which is recommended for cases of highly different read numbers per sample

[15]. zUMIs is flexible with respect to the length and sequences of the BC and UMIs,

making it compatible with a large number of protocols [16, 17, 10, 13, 3, 2].
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Figure 1. zUMIs schematic overview.

A Each of the grey panels from left to right depicts a step of the zUMIs pipeline. First, paired fastq

files are filtered according to user-defined BC and UMI quality thresholds. Next, the remaining cDNA

reads are mapped to the reference genome using STAR. Then gene-wise read and UMI count tables are

generated for exon, intron and exon+intron overlapping reads. To obtain comparable library sizes, reads

can be downsampled to a desired range during the counting step. Optionally, zUMIs also generates data

and plots for several quality measures, such as the number of detected Genes/UMIs per barcode and

distribution of reads into mapping feature categories (Supplementary Figure 3).

2.1 Processing pipeline

The input for zUMIs is a pair of fastq files, whereas one file contains the cDNA sequences

and the other one the read containing the BC and UMI. The exact location and length

of UMI and BC are specified by the user. Note that both fastq files need to be ordered

by read name, which is usually the case if unprocessed files are used. The first step

in our pipeline is to filter reads where the BC or the UMI fails a user-defined quality

threshold. This helps to eliminate spurious BCs and is expected to reduce noise. The

cleaned-up reads are then mapped to the genome using the splice-aware aligner STAR

[18]. The user is free to adapt the STAR options to their data, however zUMIs requires

that only one mapping position per read is reported. Next, reads are assigned to genes

and to exons or introns based on the provided gtf file, whereas introns are defined as not

overlapping with any exon. Rsubread featureCounts [19] is used to first assign reads

to exons and afterwards to check whether the remaining reads fall into introns. The

resulting output is then read into R using data.table [20] and count tables for UMIs and

reads are generated. zUMIs tabulates the UMIs/gene either for user-specified BCs or

for the n BCs with the highest read counts.

3/6

. CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/153940doi: bioRxiv preprint first posted online Jun. 22, 2017; 



2.2 Output and statistics

zUMis outputs three UMI and three read count tables: one for traditional exon mapping

gene-wise counts, one for intron and one for intron+exon counts. If a user chooses

the downsampling option, 6 additional count-tables are provided in which samples

with an excess of reads are downsampled and samples with too few reads are dismissed

(Supplementary Figures 4). We highly recommend to use this option, because normalizing

across samples with vastly different library sizes does not work well [15, 21]. zUMIs

also reports descriptive statistics. To evaluate library quality zUMIs summarizes the

fractions of unmapped, ambiguously mapped, exon and intron mapped reads and to

evaluate library complexity, the numbers of detected genes and UMIs per sample are

provided (Supplementary Figures 2,3).

We processed 227 million reads with zUMIs and quantified expression levels for

exonic and intronic counts on a unix machine using up to 16 threads, which took barely

3 hours. Increasing the number of reads increases the processing time approximately

linearly, whereas filtering, mapping and counting each take up roughly one third of the

total time (Supplementary Figure 1).

3 Conclusions

zUMIs is a fast and flexible pipeline to process raw reads to count tables for RNA-seq

data using UMIs. To our knowledge it is the only open source pipeline that has a barcode

and UMI quality filter, allows intron counting and has an integrated downsampling

function (Table 1). These features ensure that zUMIs is applicable for most experimental

designs of RNA-seq data, such as single-nuclei sequencing techniques [11, 12, 22], droplet

based methods where the BC is unknown and the library sizes can vary a lot as well as

plate-based UMI-methods with known BCs.
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Availability

The pipeline is freely available at https://github.com/sdparekh/zUMIs.
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1 Characterization of zUMIs

To demonstrate the utility of zUMIs, we processed data generated from 96 HEK cells using the SCRB-seq

protocol [2, 3].

227 million read-pairs of sequencing data were processed on a linux workstation running at light load using

up to 16 threads. The processing was complete after 173 minutes (Figure S1). We observe that runtime for

zUMIs scales linearly, as does RAM usage. The peak RAM usage for processing datasets of 227, 500 and

1000 million pairs was 42 Gb, 89 Gb and 172 Gb, respectively.
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Figure S1: zUMIs runtime for three datasets with 227, 500 and 1000 million read-pairs. The
runtime is divided in the main steps of the zUMIs pipeline: Filtering, Mapping, Counting and Summarizing.
Each dataset was processed using up to 16 threads (”-p 16”).
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2 zUMIs example dataset

At the end of each run, zUMIs optionally generates statistical output and plots. Shown here are the generated

plots for the exemplary HEK cell dataset (Figure S2 and S3).
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Figure S2: Reads per barcode. Bars show the number of reads assigned to each sample barcode.
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Figure S3: Summary statistics. The boxplot in the left panel shows number of genes (left) and number of
UMIs(right) detected per barcode while considering only intronic/exonic counts and intornic+exonic counts.
The horizontal relative barplot in the middle indicates total fraction of reads assignment to each feature in
the dataset and the boxplot in the lower panel colored by features show fraction of reads assigned in each
category where each data point is one cell.
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3 Downsampling

zUMIs has inbuilt functionality for downsampling datasets to a user-specified number of reads. When the

option ”-d” is set, zUMIs will attempt to downsample all sample barcodes to the specified number. In case

the requested read number is not available for some of the barcodes, only those barcodes will be reported that

fulfilled the requirement. In any case, the full data will be output alongside the downsampled data. This basic

downsampling is useful to make the often hugely varying library sizes for single cell data more comparable

[1]. Another application of the downsampling function is to evaluate whether the current sequencing depth

was su�cient to reach saturation of gene and UMI detection. To illustrate the downsampling functionality,

we sample several fixed read depths for our exemplary HEK dataset and display the number of detected

genes at given depth per cell (Figure S4).
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Figure S4: Downsampling. Cells were downsampled to six depths from 100,000 to 3,000,000 reads.
For each sequencing depth the reads detected per cell is shown. Here the increase in the number of genes
detected using 1 million as compared to 3 million reads is small, suggesting that 1 million reads per sample
are su�cient.
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Summary 

Single-cell RNA sequencing (scRNA-seq) has emerged as the central genome-wide method           

to characterize cellular identities and processes. While performance of methods is           

improving, an optimum in terms of sensitivity, efficiency and flexibility has not been reached              

yet. Among the flexible plate-based counting methods, “Single-Cell RNA-Barcoding and          

Sequencing” (SCRB-seq) is one of the most sensitive and efficient ones. Based on this              

protocol, we systematically evaluated reverse transcriptases, buffer modifications and PCR          

polymerases and found that the addition of polyethylene glycol increased the sensitivity            

considerably. Based on this and other improvements, we developed molecular crowding           

SCRB-seq (mcSCRB-seq), a fast, cost-efficient and sensitive protocol. By analyzing mouse           

embryonic stem cells and ERCC spike-ins we show that mcSCRB-seq is the most sensitive              

scRNA-seq ​ ​method ​ ​to ​ ​date. 
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Introduction 

Whole transcriptome single-cell RNA sequencing (scRNA-seq) is a transformative tool with           

wide applicability to biological and biomedical questions ​(Wagner, Regev, and Yosef 2016)​.            

In the last few years, many new scRNA-seq protocols have been developed to overcome the               

challenge of isolating, reverse transcribing and amplifying the small amounts of mRNA in             

single cells to generate high-throughput sequencing libraries ​(Macaulay and Voet 2014;           

Kolodziejczyk, Kim, Svensson, et al. 2015)​. An idealized protocol would be able to generate              

one cDNA library molecule for each mRNA molecule in the cell. Such a protocol would be                

100 % sensitive as all mRNAs would be turned into sequenceable cDNA fragments, 100 %               

accurate as the concentration of mRNAs would fully correlate with the number of sequenced              

cDNA fragments and 100% precise as the measurement error would only depend on the              

sampling error of sequencing reads. The lower the cost per cell for generating and              

sequencing a library the more efficient the protocol would be. Furthermore, cells would need              

to come from independent replicates and hence how flexible different numbers of cells from              

different biological samples could be combined would also be a relevant property of the              

protocol. Obviously such an optimal, one-size-fits all protocol does not exist and probably will              

never exist as real protocols are likely to have inherent trade-offs and hence, optimal              



 

protocols will differ for different research questions. While many improvements have been            

made to scRNA-seq protocols, it is likely that further improvements are still possible. Given              

the importance of scRNA-seq method ​(Regev et al. 2017)​, it is also likely that further               

improvements​ ​of​ ​sensitivity,​ ​efficiency​ ​and/or​ ​flexibility​ ​are ​ ​worth ​ ​the ​ ​effort. 

The sensitivity of scRNA-seq methods is limited by the effectiveness of the reverse             

transcription and the subsequent second strand synthesis. Protocols have improved this           

step by optimizing enzymes, buffers and reaction volumes, resulting in conversion rates of             

mRNA into cDNA of 10-20% for sensitive protocols (Grün, Kester, and van Oudenaarden             

2014; Svensson et al. 2017; Hashimshony et al. 2016). Amplification of the resulting minute              

amounts of cDNA leads to bias and noise when quantifying gene expression levels and              

hence reduce the accuracy and the precision of a scRNA-seq protocol. By incorporating             

random nucleotides - so called unique-molecular identifiers (UMIs) (Kivioja et al. 2012) - into              

the primers used for generating cDNA, amplification bias and noise can be removed by only               

counting cDNA fragments of a gene that have different UMIs. This increase in precision              

leads to a substantial increase in the power to detect differentially expressed genes in              

scRNA-seq protocols ​(Parekh et al. 2016; Ziegenhain et al. 2017)​. In most protocols the UMI               

is incorporated either in the oligo-dT primer or in the primer used for the second-strand               

synthesis (see ​(Sheng et al. 2017) for an - albeit expensive - exception of internal priming                

with UMIs). Hence, the use of UMIs results in a 5’ or 3’ tag counting method and sacrifices                  

full transcript coverage. While this can be a severe drawback when splicing and/or sequence              

information across the entire transcript is required, it is usually sufficient when quantifying             

gene expression levels to identify cell types or regulatory processes. An additional and             

decisive advantage when reading information from the incorporated primers is that           

cell-specific barcodes can be incorporated during cDNA generation. This “early-barcoding”          

reduces costs tremendously and has allowed to develop scRNA-seq approaches that           

efficiently can generate libraries of tens or even hundreds of thousands of cells, especially              

when combined with microdroplet isolations ​(Macosko et al. 2015; Klein et al. 2015; Zheng              

et al. 2017)​. Hence, by incorporating early barcoding and UMIs, counting methods have             

made scRNA-seq protocols more precise and more efficient. Notably, higher amplification           

noise and bias still decreases the efficiency of the protocol, as more sequencing is              

necessary​ ​to ​ ​obtain ​ ​the ​ ​same ​ ​information.  

 

Comparing protocols would ideally involve to compare the “bang for the buck”, i.e. to              

compare the costs of protocols at a given power to detect differentially expressed genes              

and/or cell types for a given amount of money spent ​(Ziegenhain et al. 2017; Vieth et al.                 



 

2017)​. This is challenging, especially because there are no standardized cells with known             

concentrations of mRNAs available. The next best proxy are 92 standardized mRNAs known             

as ERCC spike-ins ​(Baker et al. 2005) that are used in many protocols. Recently, this ERCC                

data has been used to compare 19 different protocols, showing that median sensitivity,             

measured as the 50% detection probability, differs from 2.2 to >302 molecules ​(Svensson et              

al. 2017)​. Accuracy, assessed as the correlation coefficient of the known ERCC            

concentrations and measured expression signal in a cell, differs less, but is also difficult to               

interpret as it reflects a combination of sensitivity, accuracy and precision and how this              

translates into the power to detect differentially expressed genes is not clear. A further              

limitation of using ERRCs to compare scRNA-seq protocols is that it has been questioned              

whether the 92 ERCC transcripts really are representative mRNAs as they are shorter, have              

smaller poly-A tails, do not represent the relevant concentration range with enough            

transcripts and are purified ​(Tung et al. 2017; Risso et al. 2014)​. Indeed, it seems that some                 

protocols are more sensitive for ERCCs than for real mRNAs and vice versa ​(Ziegenhain et               

al. 2017)​. An alternative approach to compare methods is to use the same cells in the same                 

lab with different methods and compare their power to detect differentially expressed genes             

using simulations ​(Ziegenhain et al. 2017; Vieth et al. 2017)​. However, this is approach is               

expensive and difficult to realize for more than a handful of methods, especially if fresh cells                

are used. From these two comparisons ​(Ziegenhain et al. 2017; Svensson et al. 2017) , as                

well as from an earlier study ​(Wu et al. 2014) it has emerged that protocols differ                

considerably in their sensitivity and that low reaction volumes, as available in Fluidigm’s             

microfluidic chips, increase sensitivity. However, the efficiency of Fluidigm chips is low due             

to their high costs and methods that are even more sensitive like Smart-seq2 and SCRB-seq               

are possible also in microliter volumes of plate-based methods. Microdroplet methods like            

Drop-seq, inDrop or 10x do currently not reach the sensitivity of these plate-based methods,              

but are very efficient due to their low costs to generate libraries, especially when large               

numbers of cells per sample are analyzed. Indeed, when comparing the costs at 80% power               

to detect differentially expressed genes, the most efficient method was found to be             

SCRB-seq ​(Ziegenhain et al. 2017)​, a plate-based method using barcoded, UMI-containing -            

oligodT primers, template switching and PCR amplification to generate scRNA-seq libraries           

(Soumillon et al. 2014)​. Here, we set out to systematically further improve the sensitivity and               

efficiency of SCRB-seq. Based on these evaluations, we developed molecular crowding           

SCRB-seq (mcSCRB-seq), a highly flexible, efficient, plate-based protocol with low set-up           

costs​ ​that​ ​is​ ​the ​ ​most​ ​sensitive ​ ​scRNA-seq ​ ​protocol ​ ​to ​ ​date. 



 

Design 

As described above, there is the possibility and the need to improve scRNA-seq methods in               

terms of sensitivity and efficiency. Among plate-based methods that are efficient when            

processing many samples and isolating cells via FACS, SCRB-seq has been shown to be              

very efficient ​(Ziegenhain et al. 2017)​. However, sensitivity and amplification bias are still             

worse for SCRB-seq than for Smart-seq2, a methodologically similar protocol that allows to             

generate full-length scRNA-seq libraries, but is less precise and more costly due to the lack               

of UMIs and early barcoding. As the Smart-seq2 protocol has been developed by optimizing              

conditions for cDNA generation ​(Picelli et al. 2013)​, this suggested that sensitivity and             

efficiency could also be increased for SCRB-seq. Hence, we systematically and robustly            

assessed how different reverse transcriptases, buffer and primer modifications impact cDNA           

yield from low amounts of the standardized universal human reference RNA (UHRR)            

(SEQC/MAQC-III Consortium 2014)​. We then combined the most promising improvements,          

in particular the addition of polyethylene glycol, and could show by sequencing the             

generated UHRR libraries that the new molecular crowding SCRB-seq protocol represents a            

x-y fold increase in the number of transcripts detected compared to prior versions of              

SCRB-seq ​(Soumillon et al. 2014; Ziegenhain et al. 2017)​. To further improve the efficiency              

of the new protocol by reducing the PCR amplification bias, we tested two PCR enzymes               

that had generated sufficient cDNA yield (KAPA HiFi and Terra) and found Terra to              

approximately double the library complexity at read depths below complete saturation. We            

then compared this optimized protocol mcSCRB-seq directly to a previous SCRB-seq           

version ​(Ziegenhain et al. 2017) using mouse ES cells and ERCC spike-ins and find that it is                 

twice as powerful to detect differentially expressed genes than the previous SCRB-seq            

protocol and with a 50% detection probability for 2.2 transcripts the most sensitive protocol              

among all ERCC benchmarked protocols today. Together with a low cost per sample and              

minimal hands-on time, our optimizations led to the highly flexible, sensitive and efficient             

mcSCRB-seq ​ ​protocol. 

 

Results 

A​ ​streamlined​ ​assay​ ​for ​ ​cDNA​ ​yield  
In order to easily quantify the effects of changes to our protocol on reverse transcription               

(RT), second strand synthesis and PCR amplification, we first developed a streamlined            



 

assay to use cDNA yield as a proxy for sensitivity (Figure 1). To quantify changes to the                

protocol independent of biological noise, we used 1 ng or less of universal human reference               

RNA (UHRR) as template ​(SEQC/MAQC-III Consortium 2014)​, as single-cells also from           

homogenous cell populations show biological variation ​(Kolodziejczyk, Kim, Tsang, et al.          

2015; Grün, Kester, and van Oudenaarden 2014)​. To accommodate additions to the cDNA             

generation reaction more easily, we increased its volume from 2 µl ​(Soumillon et al. 2014) to               

10 µl and confirmed that this change did not influence cDNA yield (data not shown). To                

quantify the cDNA yield of a single reaction, we omitted the pooling, clean-up and              

Exonuclease I digestion step. Instead, we heat-inactivated the reverse transcriptase enzyme           

and directly proceeded with PCR amplification. We measured the resulting cDNA yield by             

fluorometry and the cDNA length-distribution for a subset of samples by a Bioanalyzer             

system. 

 

cDNA​ ​yield ​ ​is​ ​highest​ ​with​ ​​Maxima ​ ​H- 
First, we optimized the reverse transcription reaction. In the SCRB-seq protocol, RNA is             

desiccated prior to reverse transcription ​(Soumillon et al. 2014)​. Our change to 10 µl reverse               

transcription volume allowed us to omit this step. Furthermore, we include barcoded oligo-dT             

primers in the lysis buffer, saving a time-consuming pipetting step in the critical phase of any                

scRNA-seq protocol before reverse transcription of RNA into more stable cDNA. Together,            

these ​ ​changes​ ​resulted ​ ​in ​ ​a ​ ​small ​ ​(~10%)​ ​increase ​ ​in ​ ​yield ​ ​(Figure ​ ​2A). 

Similar to many scRNA-seq protocols ​(Ramsköld et al. 2012; Picelli et al. 2013; Islam et al.                

2014; Macosko et al. 2015)​, our method relies on oligo-dT priming to initiate reverse              

transcription and a template switching reaction at the 5’ end to incorporate a priming site for                

preamplification. As enzyme sensitivity and processivity may be highly variable, we           

compared the performance of nine moloney murine leukemia virus (MMLV) reverse           

transcriptase enzymes with described template-switching properties at . When analyzing the           

reaction yield in response to input amounts of RNA, Maxima H- (Thermo Fisher) and              

SmartScribe (Clontech) performed best (Figure 2B). Furthermore, non-MMLV reverse         

transcriptase enzymes (SunScript, SuperScript IV and PrimeScript II) did not yield           

satisfactory cDNA quality (data not shown). Notably, SuperScript II (Thermo Fisher)           

performed significantly worse in our experiments, contrary to other protocols ​(Picelli et al.             

2013;​ ​Hashimshony​ ​et​ ​al.​ ​2016)​. 
Since pooling of cells can only occur after incorporation of cell-specific barcodes by reverse              

transcription, the costs for this step are a major factor in overall costs. In order to reduce                 

enzyme costs, we showed that lowering RT enzyme to 20 units per reaction (20% reduction)               



 

does not measurably affect cDNA yield (Supplementary Figure 1A). Similarly, oligo-dT          

primer amounts can be reduced by 80% without repercussions (Supplementary Figure 1B).           

Lastly, we showed that an unblocked template-switching oligo is cheaper while retaining the             

same ​ ​performance ​ ​without​ ​primer​ ​artefacts​ ​(Supplementary​ ​Figure 1C,D). 

 

Molecular​ ​crowding​ ​significantly​ ​increases​ ​cDNA​ ​yield 
To explore additional optimizations of the RT reaction, we evaluated additives that had led to               

the increased sensitivity of the Smart-seq2 protocol in a previous study ​(Picelli et al. 2013)​.               

Both SCRB-seq and Smart-seq2 use oligodT priming and template switching to generate            

cDNA, but surprisingly the additives that have improved cDNA yield for Smart-seq2 do not              

improve SCRB-seq: In our experiments, the addition of MgCl ​2 prevented the generation of             

full-length transcripts, while additives Betaine and Trehalose did not increase yield           

(Supplementary Figure 2A). What had not been explored so far for scRNA-seq protocols is             

adding agents such as polyethylene glycol that mimic macromolecular crowding and can            

drastically increase reaction rates (see ​(Rivas and Minton 2016) for a recent review). This              

effect is largely attributed to excluding solvent volume and thereby increasing the effective             

concentrations of reacting molecules. This can lead e.g. to more efficient ligation reactions             

(Zimmerman and Pheiffer 1983) and as a small reaction volume has been shown to increase               

the sensitivity of scRNA-seq protocols ​(Wu et al. 2014; Hashimshony et al. 2016; Svensson              

et al. 2017)​, we hypothesized that molecular crowding could increase the sensitivity of             

reverse transcription. Indeed, we observed that adding polyethylene glycol (PEG 8000)           

increased cDNA yield in a concentration-dependent manner (Supplementary Figure 2B).         

Because negative controls showed unspecific products at higher PEG-concentrations, we          

chose 7.5% PEG 8000 as an optimal concentration balancing yield and high specificity             

(Supplementary Figure 2C). With the addition of PEG 8000, yield increased dramatically,           

making ​ ​it​ ​possible ​ ​to ​ ​detect​ ​RNA​ ​inputs​ ​under​ ​1 ​ ​pg ​ ​(Figure ​ ​2C). 

Increases​ ​in ​ ​cDNA​ ​yield ​ ​translate ​ ​to ​ ​increased​ ​sensitivity 
In order to demonstrate that our increases in cDNA yield correspond to increases in              

sensitivity, we constructed libraries from eight replicates of 10 pg total RNA input with four               

protocol variants (Supplementary Table 1). Variant 1 (“Soumillon”) corresponds to the           

original SCRB-seq protocol ​(Soumillon et al. 2014)​, variant 2 (“Ziegenhain”) corresponds to            

the SCRB-seq protocol substituted with KAPA HiFi ​(Ziegenhain et al. 2017)​, variant 3             

(“SmartScribe”) uses SmartScribe and KAPA HiFi, while variant 4 (“molecular crowding”)           

combined ​ ​Maxima ​ ​H-,​ ​7.5%​ ​PEG​ ​8000 ​ ​and ​ ​KAPA​ ​HiFi. 



 

Here, the molecular crowding protocol yielded the most cDNA, while variant 1 yielded the              

least, confirming our systematic optimization (Figure 3A). Interestingly, variant 2 clearly           

outperformed variant 3, substantiating that Maxima H- is the most sensitive reverse            

transcriptase enzyme evaluated here. Next, we pooled all 32 libraries and sequenced           

81 million reads. We used ​zUMIs ​(Parekh et al. 2017) to process and downsample             

sequencing data to one million reads per sample (Supplementary Figure 3), which has been             

suggested to correspond to reasonable saturation for single-cell RNA-seq experiments          

(Svensson et al. 2017; Ziegenhain et al. 2017)​. Libraries that did not obtain 1 million reads                

were excluded from the analysis. Taking the number of detected (>= 1 UMI) genes per               

sample (Figure 3B) as a first proxy for sensitivity confirmed that the molecular crowding              

method is the most sensitive protocol (p = ​7 x 10 ​-7​, Welch Two Sample t-test, compared to                 

variant 2) with 7,898 genes on average, while variants 1-3 detected only 3,938, 5,542, 3,805               

genes,​ ​respectively.  

As our data contained UMIs, we could then use the number of total detected molecules per                

sample as a second measure of sensitivity (Figure 3C). Although more variable, this             

corroborated our findings on detected genes. Next, we asked whether the increase in             

sensitivity translates not only in more detected genes but also in more reproducible detection              

of genes. For this, we calculated the dropout probabilities of genes, excluding stochastically             

detected genes (<0.2 UMIs mean expression) ​(Lun, Bach, and Marioni 2016a)​. Confirming            

our previous findings, molecular crowding markedly improved detection rates. Clearly visible,           

genes had lower overall dropout probabilities and a significantly larger number of genes was              

detected ​ ​in ​ ​all ​ ​samples​ ​(Figure ​ ​3D). 

 

Terra ​ ​polymerase​ ​retains​ ​library​ ​complexity​ ​during​ ​PCR 
Single-cell RNA sequencing methods rely on amplification of very low amounts of input             

material. It is well established that noise and bias may be introduced during library PCR,               

depending on the number of cycles, reaction conditions and polymerases ​(Parekh et al.             

2016; Quail et al. 2012)​. While UMIs can largely correct the effects of noise and bias, it still                  

requires more reads to reach the same information, resulting in a higher efficiency of              

scRNA-seq methods that have less amplification noise and bias ​(Ziegenhain et al. 2017;             

Sasagawa et al. 2017)​. To optimize PCR conditions we first evaluated the effect of various               

high fidelity polymerases in the amplification step on the cDNA yield. In total, twelve              

enzymes from eight vendors were examined. Three polymerases (KAPA HiFi, SeqAmp and            

Terra) yielded significantly more amplified cDNA after 18 PCR cycles (Supplementary           

Figure 4A) than the enzyme used by our baseline protocol SCRB-seq (Advantage2)           



 

(Soumillon et al. 2014)​. We discarded SeqAmp because of a decreased median length of              

the amplified cDNA molecules (Supplementary Figure 4B) and compared amplification and          

noise of the KAPA and Terra polymerases by generating libraries from single mouse             

embryonic stem cells (mESCs) using our optimized molecular crowding protocol to generate            

cDNA. We pooled cDNA from 32 cells and amplified cDNA using either KAPA or Terra               

polymerase. After sequencing both library pools, we processed the data and downsampled            

each transcriptome to the same number of raw reads to exclude bias from varying coverage               

(Parekh et al. 2017)​. Taking the number of detected UMIs per cell as a measure, we found                 

that PCR amplification using the Terra polymerase yielded twice as much library complexity             

than with KAPA HiFi (Supplementary Figure 4C). Thus, we chose Terra polymerase for the             

mcSCRB-seq protocol in order to retain as much as possible of the initial transcriptome              

complexity through preamplification. Importantly, the higher yield of the molecular crowding           

reverse transcription allowed us to reduce the number of PCR cycles further reducing             

amplification ​ ​bias​ ​​(Parekh ​ ​et​ ​al.​ ​2016)​.  

 

Sensitivity​ ​in ​ ​mouse ​ ​embryonic​ ​stem​ ​cells​ ​is​ ​increased​ ​2.5-fold 
In order to assess the improvements of the molecular crowding SCRB-seq protocol            

(Supplementary Table 2) for single-cell transcriptomics, we sequenced further single          

mESCs. To provide quantitative information relative to previous benchmarking of scRNA-seq           

protocols ​(Ziegenhain et al. 2017)​, we prepared libraries from mESCs using the ​Ziegenhain             

et al. and mcSCRB-seq protocols. We used a single sample of mESCs and sorted two               

plates containing 96 and 48 cells for each of both methods. Libraries were prepared on the                

same ​ ​day​ ​and ​ ​multiplexed ​ ​for​ ​sequencing ​ ​in ​ ​order​ ​to ​ ​avoid ​ ​batch ​ ​effects.  

Following sequencing, we filtered cells by excluding doublets identified from the distribution            

of per-cell total UMI counts ​(Ziegenhain et al. 2017)​. Furthermore we discarded broken cells              

and failed libraries by inspecting nearest-neighbor correlation of gene expression values           

(Petropoulos et al. 2016)​, yielding 249 high-quality libraries (Supplementary Figure 5).          

Importantly, the mcSCRB-seq protocol showed a high rate of reads mapping to the genome,              

allowing to quantify gene expression from most of the sequenced reads           

(Supplementary Figure 6). 

Next, we assessed the sensitivity and library complexity relative to sequencing coverage.            

We used the ​zUMIs pipeline ​(Parekh et al. 2017) to downsample reads of each cell to fixed                 

depths. Interestingly, libraries were not yet sequenced to saturation at a million reads             

(Supplementary Figure 7A). Still, already at low sequencing coverages, the mcSCRB-seq         



 

protocol clearly outperformed SCRB-seq, detecting on average over 2.5 times as many            

unique molecules per cell at sequencing depths above 200,000 reads (Figure 4A).           

Furthermore, at the gene level mcSCRB-seq detected ~1,500 genes more per cell            

(Supplementary Figure 7B). In order to judge the absolute sensitivity of mcSCRB-seq, we           

used ERCC spike-ins to estimate the RNA content per cell by dividing the number of               

detected transcriptomic UMIs by the fraction of ERCC UMIs detected from the annotated             

molecule number (Supplementary Figure 8). Fitting with previous reports ​(Islam et al. 2014)​,            

the median mRNA content of our mouse ES cells was 227,467 molecules. Using this              

estimate, we could then convert the number of transcriptomic UMIs detected to the fraction              

of the cellular mRNAs that was observed (Figure 4B). At high sequencing depths,            

mcSCRB-seq could detect above 50% of the cellular mRNA content, far exceeding            

estimated ​ ​efficiency​ ​of​ ​previous​ ​protocols​ ​​(Grün,​ ​Kester,​ ​and ​ ​van ​ ​Oudenaarden ​ ​2014)​. 
Furthermore, the higher sensitivity of mcSCRB-seq lead to the detection of a larger geneset              

overall when pooling cells (Supplementary Figure 9A). Similarly, dropout rates for detected           

genes were higher in the original SCRB-seq protocol (Supplementary Figure 9B). This           

shows that mcSCRB-seq outpowers its source method not only for sensitivity but also for              

consistency, as transcripts are detected more reliable in the different cells. Lastly, we could              

also confirm that the optimization of the preamplification enzyme yielded more uniform            

amplification, because amplification bias measured as extra-poisson variability was lower in           

the mcSCRB-seq protocol (Supplementary Figure 9C,D). Although both methods use UMIs          

to remove PCR bias (Supplementary Figure 9D), the reduction of the preamplification            

variance ​ ​leads​ ​to ​ ​higher​ ​information ​ ​content​ ​at​ ​the ​ ​same ​ ​sequencing ​ ​depth.  

 

mcSCRB-seq ​ ​is​ ​the ​ ​most​ ​sensitive ​ ​protocol ​ ​as​ ​determined​ ​by​ ​ERCCs 
After the characterisation of mcSCRB-seq relative to the original SCRB-seq protocol, we            

proceed to analyze the absolute sensitivity using ERCCs ​(Baker et al. 2005)​. For this, we               

spiked ERCC Mix 1 at 1:80,000 dilution to mouse ES cells, equaling to a total number of                 

77,923 spiked mRNA molecules per cell. Next, we use a binomial logistic regression to              

compute sensitivity as the probability for detection of ERCC genes relative to their spiked-in              

molecule number, as proposed by others (Figure 5A) ​(Svensson et al. 2017)​. In our             

mcSCRB-seq dataset, 50% detection probability was reached on average from 2.2           

molecules input (Figure 5A). Because of the large spread in copy numbers of ERCC genes,              

the capture of low abundance mRNA species was only possible with high sequencing depth.              

Thus, the absolute sensitivity estimation depends on the number of sequenced reads but             



 

stabilizes after 1-2 million reads (Figure 5B). Because of the wealth of single-cell RNA             

sequencing protocols that have become available in the recent years, method comparisons            

are important for users to make an informed choice. Here, we place our new mcSCRB-seq               

protocol into the context of other protocols by integrating ERCC spike-in data from the two               

major independent protocol comparisons ​(Svensson et al. 2017; Ziegenhain et al. 2017) and             

additional important protocols such as the Quartz-seq2 protocol ​(Sasagawa et al. 2017) and             

the 10x Genomics Chromium chemistry ​(Zheng et al. 2017)​. For each method, we either             

used the published detection limits for ERCC molecules ​(Svensson et al. 2017) or computed              

them using the binomial logistic regression described above. Here, mcSCRB-seq needed           

the lowest number of ERCC molecules for a 50% detection probability, making it the most               

sensitive ​ ​protocol ​ ​to ​ ​date,​ ​followed ​ ​by​ ​CEL-seq/C1 ​ ​and ​ ​Smart-seq/C1. 

 

mcSCRB-seq ​ ​combines​ ​high ​ ​power,​ ​fast​ ​processing​ ​and ​ ​low ​ ​costs 
After characterizing the increased sensitivity of mcSCRB-seq, we quantify these          

improvements in regard to the detection of differentially expressed genes. For this, we utilize              

scRNA-seq simulations ​(Vieth et al. 2017) of two-group comparisons with varying sample            

sizes. As expected, our newly developed mcSCRB-seq protocol increased the true positive            

rate significantly (Figure 6A). Importantly, the increase in statistical power was very large (up             

to ~2x higher TPR) at very small sample sizes, proving that mcSCRB-seq extracts most of               

the information of each sequenced cell. In order to reach a power level of 80%,               

mcSCRB-seq needed only 192 cells per group, while SCRB-seq needed roughly 384 cells.             

The false discovery rate (“FDR”) was well controlled in all conditions below the nominal level               

of 10% (Figure 6A). Furthermore, mcSCRB-seq showed higher consistency, as batch effects           

between the two processed plates were greatly reduced (Supplementary Figure 10A). As           

with SCRB-seq, data quality is excellent and features minimal GC or length bias             

(Supplementary Figure 10B,C) ​(Phipson, Zappia, and Oshlack 2017)​. In our recent protocol           

comparison ​(Ziegenhain et al. 2017)​, SCRB-seq was already the most powerful and            

cost-efficient protocol for single-cell RNA sequencing studies. mcSCRB-seq not only further           

improves upon this high efficiency by larger statistical power, but also by significantly             

reduced costs. Considering all relevant cost factors including enzymes, kits and plasticware,            

library preparation costs are below 60 cents per cell, down from 2 Euro, when performed in                

96-well plates (Figure 6B, Supplementary Table 3). Due to the pooling of barcoded            

transcriptomes after reverse transcription, experiments conducted in 384-well plates         

increase cost efficiency even further. Moreover, owing to an optimized workflow, we could             



 

drastically reduce the working time required to complete the protocol making it possible to              

create sequencing-ready libraries in one working day with minimal hands-on time           

(Figure 6C, Supplementary Table 4). Taken together, we show that the mcSCRB-seq           

protocol presented here greatly increases sensitivity and power while reducing amplification           

bias,​ ​costs​ ​and ​ ​processing ​ ​time. 

 

 

 

 

Discussion 

Here, we have presented an optimized and improved protocol for highly efficient single-cell             

RNA sequencing (key characteristics listed in Supplementary Table 3). We have shown that            

molecular crowding using polyethylene glycol can strongly increase the efficiency and yield            

of reverse transcription reactions (Figure 2,3). Presumably, the molecular crowding reduces          

the effective accessible volume of the reaction, similar to the biophysical properties of cells              

where 20-30% of the volume is occupied by macromolecules ​(Han and Herzfeld 1993)​. This              

volume exclusion can increase the rate of reactions significantly ​(Ellis 2001)​, as            

demonstrated previously for DNA ligation ​(Zimmerman and Pheiffer 1983)​. Furthermore, the           

optimized reaction conditions in reverse transcription allowed us to decrease the amount of             

required enzyme leading to a decrease in costs for the most expensive step (Figure 6B).              

Although others ​(Picelli et al. 2013; Hashimshony et al. 2016) have presented systematically             

optimized scRNA-seq protocols as well, improvements found in these methods did not            

necessarily translate to the SCRB-seq method. This is especially surprising for the case of              

Smart-seq2, which also relies on template-switching and PCR amplification. Consequently,          

there seem to be complex interactions of primers, enzymes and reaction conditions that             

necessitate individual optimization of each protocol. It will be interesting to see whether the              

molecular crowding described here is a general enough mechanism to be a useful             

improvement​ ​for​ ​a ​ ​large ​ ​variety​ ​of​ ​other​ ​scRNA-seq ​ ​protocols. 

Judging the performance of mcSCRB-seq relative to the large number of protocols already             

described in the literature ​(Svensson et al. 2017; Ziegenhain et al. 2017)​, analysis of ERCC               

spike-in data showed that it is the most sensitive molecule-counting protocol to date             

(Figure 5C). Although ERCC spike-ins have been criticized for poorly modelling endogenous           

mRNA molecules for instance due to short poly-A tails and lack of cap-structure ​(Stegle,              



 

Teichmann, and Marioni 2015; Grün and van Oudenaarden 2015)​, they are still a valuable              

tool ​ ​to ​ ​easily​ ​compare ​ ​sensitivity​ ​amongst​ ​protocols​ ​​(Svensson ​ ​et​ ​al.​ ​2017)​. 
Furthermore, we found that a higher yield and larger transcriptome complexity after reverse             

transcription could reduce PCR bias as less amplification was now necessary. In addition,             

we show that using Terra polymerase for amplification reduces PCR noise even further. This              

is crucial in order to retain maximum cDNA complexity throughout amplification. Importantly,            

less amplification bias leads to a larger fraction of unique molecular counts detected per raw               

sequencing coverage, especially for low sequencing depths ​(Sasagawa et al. 2017)​. This            

higher slope of UMI detection makes our mcSCRB-seq protocol even more cost-efficient in             

practice and large amounts of information per cell can be extracted already from low              

sequencing depths. When sequencing to higher coverages, we show that mcSCRB-seq is            

able to measure a large fraction of the cellular mRNA molecules (Figure 4B) and is thus                

ideally suited for studying rare cells in depth. Taken together, mcSCRB-seq is a fast,              

inexpensive, powerful and highly flexible protocol that is equally as useful for the survey of               

large numbers of cells isolated by FACS sorting as for the high resolution analysis of few                

cells. 

 

Limitations 
In order to incorporate unique molecular identifiers and cellular barcodes, mcSCRB-seq is            

limited to sequencing 3’ ends of transcripts. Thus, most splicing information will be missed              

by our method. While other methods, especially those based on droplet microfluidics or             

combinatorial indexing ​(Macosko et al. 2015; Klein et al. 2015; Zheng et al. 2017; Cao et al.                 

2017; Rosenberg et al. 2017)​, feature higher massively parallel throughput, our plate-based            

mcSCRB-seq protocol can still produce medium to high amounts of data in short amount of               

time ​ ​at​ ​very​ ​competitive ​ ​low​ ​costs.  



 

STAR ​ ​Methods 

Key​ ​Resources​ ​Table 
 
Reagent/Resource Source Identifier 

Chemicals,​ ​Peptides,​ ​recombinant​ ​proteins 

2-Mercaptoethanol ​ ​(50 ​ ​mM) Thermo ​ ​Fisher 21985-023 

AccuPrime ​ ​Pfx Invitrogen 12344-024 

AccuStart​ ​Taq ​ ​HiFi Quantabio 1706-25-BL 

Advantage ​ ​2 Clontech 639207 

Betaine ​ ​5M Sigma-Aldrich B0300-5VL 

CHIR99021 Sigma-Aldrich SML1046-25MG 

Clontech ​ ​Lysis​ ​Buffer Clontech ST0361 

D(+)-Trehalose ​ ​Dihydrate Sigma-Aldrich 90210-50G 

dNTPs​ ​(100 ​ ​mM​ ​each) Thermo ​ ​Fisher R0182 

Dulbecco’s​ ​modified ​ ​Eagle ​ ​medium Thermo ​ ​Fisher 41965062 

EDTA Sigma ​ ​Aldrich E7889 

EnzScript Biozym 280560 

Esgro ​ ​recombinant​ ​mouse ​ ​LIF Millipore ESG1107 

Ethanol,​ ​absolute Carl ​ ​Roth 9065.4 

Exonuclease ​ ​I​ ​(20 ​ ​U/uL) Thermo ​ ​Fisher EN0582 

Exonuclease ​ ​I​ ​Reaction ​ ​Buffer​ ​(10x) Thermo ​ ​Fisher EN0582 

Fetal ​ ​bovine ​ ​serum Thermo ​ ​Fisher 10500-064 

FideliTaq Affymetrix 71156 

Gelatin ​ ​(from​ ​porcine ​ ​skin) Sigma ​ ​Aldrich G1890-1KG 

GoScript Promega A5003 

Guanidine ​ ​Hydrochloride Sigma-Aldrich G3272 

Igepal ​ ​CA-630 Sigma-Aldrich I8896 

KAPA​ ​HiFi ​ ​2x​ ​ReadyMix KAPA​ ​Biosystems KR0370 

L-Glutamine Thermo ​ ​Fisher 25030-024 

Magnesium​ ​Chloride ​ ​Solution Sigma-Aldrich M1028 

Maxima ​ ​H-​ ​Reverse ​ ​Transcriptase Thermo ​ ​Fisher EP0753 

Maxima ​ ​RT​ ​Buffer​ ​(5x) Thermo ​ ​Fisher EP0753 



 

M-MLV​ ​Reverse ​ ​Transcriptase,​ ​RNase ​ ​H 
Minus,​ ​Point​ ​Mutant 

Promega M3682 

Nonessential ​ ​Amino ​ ​Acids​ ​(NEAA) Thermo ​ ​Fisher 11140-035 

NucBlue ​ ​Live Molecular​ ​Probes R37605 

PBS Gibco 10010-023 

PD0325901 Sigma-Aldrich PZ0162-25MG 

Penicillin-Streptomycin ​ ​(Pen-Strep) Thermo ​ ​Fisher 157070-063 

Phusion ​ ​Flash Thermo ​ ​Fisher F-548S 

Phusion ​ ​HF​ ​Buffer New​ ​England ​ ​Biolabs B0518 

PicoMaxx Agilent 600650 

Platinum​ ​SuperFi Thermo ​ ​Fisher 12358-010 

Polyethylene ​ ​glycol Sigma-Aldrich 89510 

Precisor BioCat 1706-25-BL 

Proteinase ​ ​K Ambion AM2546 

ProtoScript​ ​II New​ ​England ​ ​Biolabs M0368 

Q5 New​ ​England ​ ​Biolabs M0493L 

RLT​ ​Plus​ ​Buffer Qiagen 1053393 

RevertAid ​ ​Reverse ​ ​Transcriptase Thermo ​ ​Fisher EP0441 

RevertUP​ ​II​ ​Reverse ​ ​Transcriptase Biozym 350400501 

RNAprotect​ ​Cell ​ ​Reagent Qiagen 76526 

SeqAmp Clontech 638504 

SmartScribe Clontech 639537 

Sodium​ ​Azide ​ ​Reagent​ ​Plus​ ​99.5% Sigma-Aldrich S2002-100G 

Sodium​ ​Chloride ​ ​(NaCl) Sigma-Aldrich S5150-1L ​ ​T2694 

SuperScript​ ​II Thermo ​ ​Fisher 18064-014 

Terra ​ ​PCR​ ​Direct​ ​Polymerase ​ ​Mix Clontech 639271 

Triton ​ ​X-100 Sigma ​ ​Aldrich T8787 

Trizma ​ ​hydrochloride ​ ​solution Sigma-Aldrich T2694 

Trypsin ​ ​/​ ​EDTA Thermo ​ ​Fisher 25200-056 

UltraPure ​ ​Distilled ​ ​Water Invitrogen 10977-049 

   

Critical ​ ​Commercial ​ ​Assays 

Clean ​ ​&​ ​Concentrator-5 ​ ​Kit Zymo ​ ​Research D4013 

High ​ ​Sensitivity​ ​DNA​ ​Analysis​ ​Kits Agilent 5067-4626 



 

MinElute ​ ​Gel ​ ​Extraction ​ ​Kit Qiagen 28606 

Nextera ​ ​XT​ ​DNA​ ​Sample ​ ​Preparation ​ ​Kit Illumina FC-131-1096 

Quant-iT​ ​PicoGreen ​ ​dsDNA​ ​Assay​ ​Kit Thermo ​ ​Fisher P7589 

   

Deposited ​ ​data 

Chromium​ ​ERCC​ ​data Zheng ​ ​et​ ​al.,​ ​2017 http://support.10xgen
omics.com/single-cell
/datasets 

Comparative ​ ​scRNA-seq ​ ​ERCC​ ​data Ziegenhain ​ ​et​ ​al.,​ ​2017 GEO:​ ​GSE75790 

ERCC​ ​binomial ​ ​regression ​ ​data ​ ​(15 
protocols Svensson ​ ​et​ ​al.,​ ​2017 nmeth.4220-S3 

Quartz-seq2 ​ ​ERCC​ ​data Sasagawa ​ ​et​ ​al.,​ ​2017 GEO:​ ​GSE99866 

Single-cell ​ ​RNA-seq ​ ​data This​ ​paper GEO:​ ​GSE103568 

UHRR​ ​RNA-seq ​ ​data This​ ​paper GEO:​ ​GSE103568 

   

Experimental ​ ​Models:​ ​Cell ​ ​Lines 

J1 ​ ​mESCs Li ​ ​et​ ​al.,​ ​1992 129S4/SvJae 

JM8 ​ ​mESCs Pettitt​ ​et​ ​al.,​ ​2009 C57BL/6N 

 
  

Sequence-Based ​ ​Reagents 

Universal ​ ​Human ​ ​Reference ​ ​RNA 
(UHRR) Agilent 740000 

ERCC​ ​RNA​ ​Spike-In ​ ​Mix Ambion 4456740 

Nextera ​ ​XT​ ​i7 ​ ​Index​ ​primer IDT "TruGrade ​ ​Ultramer" 

SCRB-seq ​ ​P5 ​ ​primer, 
AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGACGCTCTTCC
G*A*T*C*T,​ ​* ​ ​PTO​ ​bond 

IDT NA 

SCRB-seq ​ ​oligo-dT​ ​primer, 
Biotin-ACACTCTTTCCCTACACGACGCT
CTTCCGATCT[BC6][N10][T30]VN 

IDT "TruGrade ​ ​Ultramer" 

SCRB-seq ​ ​template-switch ​ ​oligo, 
iCiGiCACACTCTTTCCCTACACGACGCr
GrGrG 

Eurogentec NA 

mcSCRB-seq ​ ​template-switch ​ ​oligo IDT HPLC 



 

unblocked, 
ACACTCTTTCCCTACACGACGCrGrGrG 

SCRB-seq ​ ​SINGV6 ​ ​PCR​ ​primer, 
Biotin-ACACTCTTTCCCTACACGACGC 

IDT NA 

   

Software ​ ​and ​ ​Algorithms 

R​ ​(v​ ​3.4.0) R​ ​Development​ ​Core 
Team,​ ​2008 

https://cran.r-project.
org 

RStudio ​ ​(v​ ​1.1.364) RStudio ​ ​Team,​ ​2015 https://www.rstudio.c
om 

STAR​ ​(v​ ​2.5.3a) Dobin ​ ​et​ ​al.,​ ​2013 
https://github.com/ale
xdobin/STAR 

zUMIs Parekh ​ ​et​ ​al.,​ ​2017 
https://github.com/sd
parekh/zUMIs/ 

powsimR​ ​(v​ ​0.0.905) Vieth ​ ​et​ ​al.,​ ​2017 
https://github.com/bvi
eth/powsimR 

MASS​ ​(v​ ​7.3-47) Venables​ ​&​ ​Ripley​ ​2002 

https://cran.r-project.
org/web/packages/M
ASS/ 

   

Other 

2%​ ​E-Gel ​ ​Agarose ​ ​EX​ ​Gels Life ​ ​Technologies G402002 

Sera-Mag ​ ​Speed ​ ​Beads Thermo ​ ​Fisher 65152105050250 

   

 

Optimization ​ ​experiments 
For all optimization experiments, universal human reference RNA (UHRR; Agilent) was           

utilized to exclude biological variability. Unless otherwise noted, 1 ng of UHRR was used as               

input per replicate. Additionally, Proteinase K digestion and desiccation were not necessary            

prior to reverse transcription. In order to accommodate all reagents into the reaction, the              

total volume for reverse transcription was increased to 10 µl. While all concentrations were              

kept the same, we added the same total amount of reverse transcriptase (25 U), with its                

concentration thus lowering from 12.5 U/µl to 2.5 U/µl. After reverse transcription, no pooling              

was performed, rather preamplification was done per replicate. For each sample, we            

measured the cDNA concentration using the Quant-iT PicoGreen dsDNA Assay Kit (Thermo            

Fisher). 



 

Comparison ​ ​of​ ​reverse ​ ​transcriptases  

Nine reverse transcriptases, Maxima H- (Thermo Fisher), SMARTScribe (Clontech), Revert          

Aid (Thermo Fisher), EnzScript (Biozym), ProtoScript II (New England Biolabs), Superscript           

II (Thermo Fisher), GoScript (Promega), Revert UP II (Biozym), M-MLV Point Mutant            

(Promega), were compared to determine which enzyme resulted in the largest cDNA yield.             

Several dilutions ranging from 10 to 1000 pg of universal human reference RNA (UHRR;              

Agilent)​ ​were ​ ​used ​ ​as​ ​input​ ​into ​ ​the ​ ​RT​ ​reactions.  

 

RT reactions contained final concentrations of 1x M-MuLV reaction buffer (NEB),           

1 mM dNTPs (Thermo Fisher), 1 µM E3V6NEXT barcoded oligo-dT primer (IDT), and           

1 µM E5V6NEXT template-switching oligo (IDT). For reverse transcriptases with unknown         

buffer conditions, the provided proprietary buffers were used. Reverse transcriptases were           

added ​ ​for​ ​a ​ ​final ​ ​amount​ ​of​ ​25 ​ ​U​ ​per​ ​reaction.  

 

Effect​ ​of​ ​reaction ​ ​enhancers  

In order to improve the efficiency of the RT, we tested the addition of reaction enhancers,                

including MgCl ​2​, betaine, trehalose, and polyethylene glycol (PEG 8000). The final reaction            

volume ​ ​of​ ​10 ​ ​µL ​ ​was​ ​maintained ​ ​by​ ​adjusting ​ ​the ​ ​volume ​ ​of​ ​H​2​O.  

For this, we added increasing concentrations of MgCl ​2 (3, 6, 9, and 12 mM; Sigma-Aldrich) in                

the RT buffer in presence or absence of 1 M betaine (Sigma-Aldrich). Furthermore, the             

addition of 1 M betaine and 0.6 M trehalose (Sigma-Aldrich) was compared to the standard             

RT protocol. Lastly, increasing concentrations of PEG 8000 (0, 3, 6, 9, 12, 15 % W/V) were                 

also ​ ​used.  

Comparison ​ ​of​ ​PCR​ ​DNA​ ​polymerases  

The following twelve DNA polymerases were evaluated in preamplification: KAPA HiFi           

HotStart (KAPA Biosystems), SeqAmp (Clontech), Terra direct (Clontech), Platinum SuperFi          

(Thermo Fisher), Precisor (Biocat), Advantage2 (Clontech), AccuPrime Taq (Invitrogen),         

Phusion Flash (Thermo Fisher), AccuStart (QuantaBio), PicoMaxx (Agilent), FideliTaq         

(Affymetrix), Q5 (New England Biolabs). For each enzyme, at least three replicates of 1 ng               

UHRR were reverse transcribed using the optimized molecular crowding reverse          

transcription in 10 µl reactions. Optimal concentrations for dNTPs, reaction buffer,           

stabilizers, and enzyme were determined using manufacturer’s recommendations. For all          

amplification reactions, we used the original SCRB-seq PCR cycling conditions ​(Soumillon et            

al.​ ​2014)​. 



 

 

Cell ​ ​culture ​ ​of​ ​mouse ​ ​embryonic​ ​stem​ ​cells 

J1 ​(Li, Bestor, and Jaenisch 1992) and JM8 ​(Pettitt et al. 2009) mouse embryonic stem cells                

were cultured under feeder-free conditions on gelatine-coated dishes in high-glucose          

Dulbecco’s modified Eagle’s medium (Thermo Fisher) supplemented with 15% fetal bovine           

serum (FBS, Thermo Fisher), 100 U/ml penicillin, 100 μ g/ml streptomycin (Thermo Fisher),             

2 mM L-glutamine (Thermo Fisher), 1x MEM non-essential amino acids (NEAA, Thermo            

Fisher), 0.1 mM β-mercaptoethanol (Thermo Fisher), 1000 U/ml recombinant mouse LIF           

(Merck Millipore) and 2i (1 μM PD032591 and 3 μM CHIR99021 (Sigma-Aldrich)). mESCs             

were ​ ​routinely​ ​passaged ​ ​using ​ ​0.25%​ ​trypsin ​ ​(Thermo ​ ​Fisher). 

mESC cultures were confirmed to be free of mycoplasma contamination by a PCR-based             

test​ ​​(Young ​ ​et​ ​al.​ ​2010)​. 

SCRB-seq ​ ​cDNA​ ​synthesis  
Cells were dissociated using trypsin and resuspended in 100 µL of RNAprotect Cell Reagent              

(Qiagen) per 100 000 cells. Directly prior to FACS sorting, the cell suspension was diluted               

with PBS (Gibco). Single cells were sorted into 96-well DNA LoBind plates (Eppendorf)             

containing lysis buffer using a Sony SH800 sorter (Sony Biotechnology; 100 µm chip) in              

“Single Cell (3 Drops)” purity. Lysis buffer consisted of a 1:500 dilution of Phusion HF buffer                

(New​ ​England ​ ​Biolabs).​ ​After​ ​sorting,​ ​plates​ ​were ​ ​spun ​ ​down ​ ​and ​ ​frozen ​ ​at​ ​-80 ​ ​°C.  

Libraries were prepared as described previously ​(Ziegenhain et al. 2017; Soumillon et al.             

2014)​. Briefly, proteins were digested with Proteinase K (Ambion) followed by desiccation to             

inactivate Proteinase K and reduce the reaction volume. RNA was then reverse transcribed             

in a 2 µL reaction at 42°C for 90 min. Unincorporated barcode primers were digested using                

Exonuclease I (Thermo Fisher). cDNA was pooled using the Clean & Concentrator-5 kit             

(Zymo Research) and PCR amplified with the KAPA HiFi HotStart polymerase (KAPA            

Biosystems)​ ​in ​ ​50 ​ ​µL ​ ​reaction ​ ​volumes.  

 

mcSCRB-seq ​ ​cDNA​ ​synthesis 
Cells were dissociated using trypsin and resuspended in PBS. Single cells were sorted into              

96-well DNA LoBind plates (Eppendorf) containing 5 µl lysis buffer using a Sony SH800              

sorter (Sony Biotechnology; 100 µm chip). Lysis buffer consisted of a 1:500 dilution of              

Phusion HF buffer (New England Biolabs), 1.25 µg/µl Proteinase K (Clontech) and 0.4 µM              

barcoded oligo-dT primer (E3V6NEXT, IDT). After sorting, plates were immediately spun           



 

down and frozen at -80 °C. For libraries containing ERCCs, 0.1 µl of 1:80,000 dilution of                

ERCC​ ​spike-in ​ ​Mix​ ​1 ​ ​was​ ​used. 

Before library preparation, proteins were digested by incubation at 50 °C for 10 minutes.              

Proteinase K was then heat-inactivated for 10 minutes at 80 °C. Next, 5 µl reverse               

transcription master mix consisting of 20 units Maxima H- enzyme (Thermo Fisher),            

2x Maxima H- Buffer (Thermo Fisher), 2 mM each dNTPs (Thermo Fisher), 4 µM            

template-switching oligo (IDT) and 15 % PEG 8000 (Sigma-Aldrich) was dispensed per well.             

cDNA synthesis and template-switching was performed for 90 minutes at 42 °C. Barcoded             

cDNA was then pooled in 2 ml DNA LoBind tubes (Eppendorf) and cleaned-up using SPRI               

beads. Purified cDNA was eluted in 17 µl and residual primers digested with Exonuclease I               

(Thermo Fisher) for 20 min at 37 °C. After heat-inactivation for 10 min at 80 °C, 30 µl PCR                   

master mix consisting of 1.25 U Terra direct polymerase (Clontech) 1.66x Terra direct buffer              

and 0.33 µM SINGV6 primer (IDT) was added. PCR was cycled as given: 3 min at 98 °C for                 

initial denaturation followed by 15 cycles of 15 sec at 98°, 30 sec at 65 °C, 4 min at 68 °C.                     

Final ​ ​elongation ​ ​was​ ​performed ​ ​for​ ​10 ​ ​min ​ ​at​ ​72 ​ ​°C. 

Library​ ​Preparation 
 
Following preamplification, all samples were purified using SPRI beads at a ratio of 1:0.8              

with a final elution in 10 µL of H​2​O (Invitrogen). The cDNA was then quantified using the                 

Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher). Size distributions were checked on            

High-Sensitivity DNA chips (Agilent Bioanalyzer). Samples passing the quantity and quality           

controls​ ​were ​ ​used ​ ​to ​ ​construct​ ​Nextera ​ ​XT​ ​libraries​ ​from​ ​0.8 ​ ​ng ​ ​of​ ​preamplified ​ ​cDNA.  

During library PCR, 3’ ends were enriched with a custom P5 primer (P5NEXTPT5, IDT).              

Libraries were pooled and size-selected using 2% E-Gel Agarose EX Gels (Life            

Technologies), cut out in the range of 300-800 bp, and extracted using the MinElute Kit               

(Qiagen)​ ​according ​ ​to ​ ​manufacturer’s​ ​recommendations. 

 

Sequencing  
Libraries were paired-end sequenced on high output flow cells of an Illumina HiSeq 1500              

instrument. 16 bases were sequenced with the first read to obtain cellular and molecular              

barcodes and 50 bases were sequenced in the second read into the cDNA fragment. When               

several libraries were multiplexed on sequencing lanes, an additional 8 base i7 barcode read              

was​ ​done. 



 

Primary​ ​Data​ ​Processing  
All raw fastq data was processed using zUMIs together with STAR to efficiently generate              

expression profiles for barcoded UMI data ​(Parekh et al. 2017; Dobin et al. 2013)​. For UHRR                

experiments, we mapped to the human reference genome (hg38) while mouse cells were             

mapped to the mouse genome (mm10) concatenated with the ERCC reference. Gene            

annotations were obtained from Ensembl (GRCh38.84 or GRCm38.75). Downsampling to          

fixed numbers of raw sequencing reads per cell were performed using the “-d” option in               

zUMIs. 

 

Filtering ​ ​of​ ​scRNA-seq ​ ​libraries  
After initial data processing, we filtered cells by excluding doublets and identifying failed             

libraries. For doublet identification, we plotted distributions of total numbers of detected UMIs             

per​ ​cell,​ ​where ​ ​doublets​ ​were ​ ​readily​ ​identifiable ​ ​as​ ​multiples​ ​of​ ​the ​ ​major​ ​peak. 

In order to discard broken cells and failed libraries, spearman rank correlations of expression              

values were constructed in an all-to-all matrix. We then plotted the distribution of             

“nearest-neighbor” correlations, ie. the highest observed correlation value per cell. Here,           

low-quality​ ​libraries​ ​had ​ ​visibly​ ​lower​ ​correlations​ ​than ​ ​average ​ ​cells. 

 

Estimation ​ ​of​ ​cellular​ ​mRNA​ ​content 
For the estimation of cellular mRNA content in mouse ES cells, we utilized the known total                

amount of ERCC spike-in molecules added per cell. First, we calculated a “detection             

efficiency” as the fraction of detected ERCC molecules by dividing UMI counts to total spike               

ERCC molecule counts. Next, dividing the total number of detected cellular UMI counts by              

the ​ ​“detection ​ ​efficiency”​ ​yields​ ​the ​ ​number​ ​of​ ​estimated ​ ​total ​ ​mRNA​ ​molecules​ ​per​ ​cell. 

ERCC ​ ​Analysis 
In order to estimate sensitivity from ERCC spike-in data, we modeled the probability of              

detection in relation to the number of spiked molecules. An ERCC transcript was considered              

as detected from 1 UMI. For each cell, we fitted a binomial logistic regression model to the                 

detection of ERCC genes given their input molecule numbers. Using the MASS R-package,             

we ​ ​determined ​ ​the ​ ​molecule ​ ​number​ ​necessary​ ​for​ ​50%​ ​detection ​ ​probability.  

For public data from ​Svensson et al ​., we used their published molecular abundances             

calculated using the same logistic regression model obtained from “Supplementary Table 2”            



 

(​https://www.nature.com/nmeth/journal/v14/n4/extref/nmeth.4220-S3.csv​) ​(Svensson et al.    

2017)​. For Quartz-seq2 ​(Sasagawa et al. 2017)​, we obtained expression values for ERCCs             

from Gene Expression Omnibus (GEO; GSE99866), sample GSM2656466; for Chromium          

(Zheng ​ ​et​ ​al.​ ​2017)​​ ​we ​ ​obtained ​ ​expression ​ ​tables​ ​from​ ​the ​ ​10x Genomics​ ​webpage 

(​https://support.10xgenomics.com/single-cell-gene-expression/datasets/1.1.0/ercc​) and for   

SCRB-seq, Smart-seq2, CEL-seq2/C1, MARS-seq and Smart-seq/C1 ​(Ziegenhain et al.         

2017)​, we obtained count tables from GEO (GSE75790). For these methods, we calculated             

molecular​ ​detection ​ ​limits​ ​given ​ ​their​ ​published ​ ​ERCC​ ​dilution ​ ​factors. 

 

Power​ ​Simulations 
For power simulation studies, we used the ​powsimR package ​(Vieth et al. 2017)​. Parameter              

estimation of the negative binomial distribution was done using scran normalized counts            

(Lun, Bach, and Marioni 2016a)​. Next, we simulated two-group comparisons with 10%            

differentially expressed genes. Log2 fold-changes were drawn from a normal distribution           

with mean of 0 and a standard deviation of 1.5. In each of the 25 simulation iterations, we                  

draw equal sample sizes of 24, 48, 96, 192 and 384 cells per group and test for differential                  

expression using ROTS ​(Seyednasrollah et al. 2015) and scran normalization ​(Lun, Bach,            

and ​ ​Marioni ​ ​2016b)​. 

Batch ​ ​Effect​ ​Analysis 
In order to detect genes differing between batches of one scRNA-seq protocol, data were              

normalized using scran ​(Lun, Bach, and Marioni 2016a)​. Next, we tested for differentially             

expressed genes using limma-voom ​(Ritchie et al. 2015; Law et al. 2014)​. Genes were              

labelled as significantly differentially expressed between batches with Benjamini-Hochberg         

adjusted ​ ​p-values​ ​<​ ​0.01.  
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Figure ​ ​Legends 
 
Figure ​ ​1:​ ​Schematic ​ ​overview.  
A) Low amounts of universal human reference RNA (UHRR) were used in optimization             
experiments. We assessed library preparation components affecting reverse transcription         
and PCR amplification in regards to cDNA yield, cDNA quality and sensitivity. At the stage of                
reverse transcription, 9 reverse transcriptase enzymes, reaction enhancers and primer         
modifications were investigated. At the stage of DNA amplification, we benchmarked           
12 high-fidelity​ ​polymerases​ ​(see ​ ​methods). 
B) Overview of the mcSCRB-seq protocol workflow. Single cells are isolated via FACS in              
multiwell plates containing lysis buffer comprising barcoded oligo-dT primers and          
Proteinase K. Reverse transcription and template-switching is carried out in the presence of            
PEG 8000 to induce molecular crowding. After pooling of barcoded cDNA using magnetic             
SPRI​ ​beads,​ ​optimized ​ ​PCR​ ​amplification ​ ​is​ ​performed. 
C) ​Sequencing data of mcSCRB-seq libraries is processed using the zUMIs pipeline ​(Parekh             
et al. 2017)​. After filtering of cells, we benchmark the protocol’s performance in terms of               
sensitivity​ ​and ​ ​power​ ​to ​ ​detect​ ​differential ​ ​gene ​ ​expression ​ ​​(Vieth ​ ​et​ ​al.​ ​2017)​.  
 
 
Figure ​ ​2:​ ​Optimizing​ ​reverse ​ ​transcription​ ​sensitivity.  
A) cDNA yield (ng) after reverse transcription and amplification using oligo-dT primers            
already in the lysis buffer (“in Lysis”; blue) or separately added before reverse transcription              
(“in RT”). Each dot represents a replicate and each box represents the median and first and                
third ​ ​quartiles.  
B) cDNA yield dependent on the absence (grey) or presence of 7.5 % PEG 8000 (blue)                
during reverse transcription. Each dot represents a replicate. Lines represent a linear model             
fit​ ​of​ ​the ​ ​data.  
C) cDNA yield (ng) dependent on UHRR input using 9 different RT enzymes. Each dot               
represents​ ​a ​ ​replicate ​ ​and ​ ​fit​ ​lines​ ​were ​ ​created ​ ​using ​ ​​local ​ ​regression ​ ​of​ ​data ​ ​points. 
 
 
Figure ​ ​3:​ ​Molecular ​ ​crowding​ ​increases ​ ​sensitivity.  
A-D) RNA-seq libraries were generated from 10 pg of UHRR using four protocol variants              
(see ​ ​Supplementary​ ​Table 1). 
A) cDNA yield (ng) after PCR amplification per method. Each dot represents a replicate and               
each ​ ​box​ ​represents​ ​the ​ ​median ​ ​and ​ ​first​ ​and ​ ​third ​ ​quartiles​ ​per​ ​method.  
B) Number of genes detected (>1 UMI) per replicate. Each dot represents a replicate and               
each ​ ​box​ ​represents​ ​the ​ ​median ​ ​and ​ ​first​ ​and ​ ​third ​ ​quartiles​ ​per​ ​method. 
C) Number of unique molecular identifiers per replicate. Each dot represents a replicate and              
each ​ ​box​ ​represents​ ​the ​ ​median ​ ​and ​ ​first​ ​and ​ ​third ​ ​quartiles​ ​per​ ​method.  
D)​​ ​Gene ​ ​dropout​ ​probability​ ​(0-1)​ ​over​ ​all ​ ​replicates​ ​for​ ​each ​ ​method. 
 
 



 

Figure ​ ​4:​ ​mcSCRB-seq​ ​detects ​ ​large ​ ​fractions ​ ​of​ ​the ​ ​cellular ​ ​transcriptome. 
A) Relative increase in the median of detected UMIs dependent on raw sequencing depth              
(reads) using mcSCRB-seq compared to SCRB-seq. Each point represents the median over            
all cells at the given sequencing depth. The size of each point depicts the number of cells                 
that were considered to calculate the median. The 95 % confidence interval of a ​local               
regression ​ ​model ​ ​​is​ ​depicted ​ ​by​ ​the ​ ​shaded ​ ​area ​. 
B) Percentage of cellular mRNA content than can be detected with SCRB-seq (green) or              
mcSCRB-seq (blue) dependent on the sequencing depth (reads). Each box represents the            
median ​ ​and ​ ​first​ ​and ​ ​third ​ ​quartiles​ ​per​ ​sequencing ​ ​depth ​ ​and ​ ​method. 
 
 
Figure ​ ​5:​ ​mcSCRB-seq​ ​is ​ ​the ​ ​most​ ​sensitive ​ ​protocol​ ​using​ ​ERCC​ ​spike-ins. 

A-C) Detection of ERCC spike-in transcripts was modeled using a binomial logistic            
regression ​ ​relative ​ ​to ​ ​the ​ ​input​ ​molecule ​ ​number. 
A) Shown is the detection of the 92 ERCC transcripts in an average mcSCRB-seq cell at                
2 million reads coverage. Points and solid line represent the ERCC genes with their logistic              
regression model. Dashed lines and label indicate the number of ERCC molecules required             
for​ ​a ​ ​detection ​ ​probability​ ​of​ ​50 ​ ​%. 
B) Number of ERCC molecules required for 50 % detection probability dependent on the              
sequencing depth (reads) for mcSCRB-seq. Each dot represents an outlier and each box             
represents the median and first and third quartiles of cells per sequencing depth. A              
non-linear​ ​asymptotic​ ​fit​ ​is​ ​depicted ​ ​as​ ​a ​ ​solid ​ ​black​ ​line.  
C) Number of ERCC molecules required for 50 % detection probability for various library              
preparation protocols. Per-cell distributions are shown using violin plots, vertical lines and            
labels​ ​depict​ ​the ​ ​median ​ ​per​ ​protocol. 
 
 
Figure ​ ​6:​ ​mcSCRB-seq​ ​is ​ ​highly ​ ​powerful​ ​and​ ​efficient. 

A) Power simulations were performed using the powsimR package ​(Vieth et al. 2017)​. For              
SCRB-seq and mcSCRB-seq, we simulated ​n ​-cell two-group differential gene expression          
experiments with 10% differentially expressed genes. Shown are true positive rate (“TPR”)            
and false discovery rate (“FDR”) for sample sizes n = 24, n = 48, n = 96, n = 192 and n = 384                        
per​ ​group.​ ​Boxplots​ ​represent​ ​the ​ ​median ​ ​and ​ ​first​ ​and ​ ​third ​ ​quartiles​ ​of​ ​25 ​ ​simulations. 
B) Library preparation costs per cell were calculated for 96-well or 384-well scenarios.             
Colors​ ​indicate ​ ​the ​ ​consumable ​ ​type.​ ​(see ​ ​Supplementary​ ​Table 3) 
C) Library preparation time for one plate of mcSCRB-seq libraries were measured for bench              
times (“Hands-on”) and incubation times (“Hands-off”). Colors indicate the library preparation           
step.​ ​The ​ ​total ​ ​time ​ ​was​ ​7.5 ​ ​hours.​ ​(see ​ ​Supplementary​ ​Table 4) 



Figure 1 

B A

C
~~~~ A

A
A

A
TTTT [UM

I] [BC] [PCR]

TTTTT~~~~~~
TTTTT~~~~~~

TTTT [UM
I] [BC] [PCR]

10bp 6bp

~~~~ AAAA

~~~~ AAAA

~~~~ AAAA

Cell Isolation

Lysis
M

olecular Crow
ding 

Reverse Transcription

Pooling
PCR 

Am
plification

PEG
8000

Proteinase K

}

BC+UM
I Reads

cDN
A

 Reads

zUM
Is

Data 
Processing

Cell 
Filtering

Universal H
um

an 
Reference RN

A

9 RT enzym
es

Reverse 
Transcription

RT Enzym
es

Reaction Enhancers

Prim
er M

odifications
Prim

er concentration
& m

odifications
rG

rG
rG

rG
rG

rG

PCR 
Am

plification

DN
A

  
Polym

erases

Analysis 0

100

200

300

100
1000

10000
0 20 40 60

0
10

20
30

40
50

cDNA yield (ng)

cDN
A

 Yield
cDN

A
 Q

uality

Soum
illon

Ziegenhain
Sm

artScribe
m
olecular

100000

150000

200000

3000

4000

5000

6000

7000

8000

Density

Soum
illon

Ziegenhain
Sm

artScribe
m
olecular Sensitivity

24 vs 24

48 vs 48

96 vs 96

192 vs 192

384 vs 384

0.00

0.25

0.50

0.75

Pow
er

Sensitivity

pow
sim

R

ER
C

C
 spike−in m

olecules

0.0

2.5

5.0

7.5

10.0

12.5

0  
1 M

2 M
3 M

4 M

RN
A Input

cDNA Yield

Length

Fluorescence

Protocol
Protocol

Genes

UMIs

Sequencing Depth
Sam

ple Size
Detection Limit

True Positives



Figure 2 300

350

400

in Lysis
in R

T

cDNA yield (ng)
A

0 20 40 60

0
10

20
30

40
50

U
H

R
R

 input (ng)

cDNA yield (ng)

0%
 PEG

7.5%
 PEG

C

G
oScript

R
evertU

P II
M

M
LV Point M

utant

EnzScript
ProtoScript II

SuperScript II

M
axim

a H
−

SM
A

RTScribe
R

evertA
id

10
1000

10
1000

10
1000

1

1001

1001

100

U
H

R
R

 input (pg)

cDNA yield (ng)

B



Figure 3 

# detected U
M

Is

# detected genes

cD
N

A yield (ng)

Soum
illon

et al., 2014
Ziegenhain
et al., 2017

Sm
artScribe

m
olecular

crow
ding

0 20 40 60

3000

4000

5000

6000

7000

8000

100000

150000

200000

Soumillon
et al., 2014

Ziegenhain
et al., 2017SmartScribemolecular

crowding

0
0.25

0.5
0.75

1

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

D
ropout Probability

ABC

D



Figure 4 

1.0

1.5

2.0

2.5

3.0

3.5

10 k
50 k

100 k
500 k

1 M
5 M

Sequencing depth (reads)

Relative increase in 
 median UMI counts

N
um

ber of cells considered
50

100
150

200
A

0 25 50 75

100

10 k
50 k

100 k
500 k

1 M
5 M

Sequencing depth (reads)

% of cellular mRNA detected

SC
B

R
−seq

m
cSC

R
B
−seq

B



Figure 5 

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

2.2 m
olecules

0.00

0.25

0.50

0.75

1.00

0.1
1

10
100

1,000
ER

C
C

 spike−in m
olecules

Detection success

A

0.0

2.5

5.0

7.5

10.0

12.5

0  
1 M

2 M
3 M

4 M
Sequencing depth (reads)

ERCC molecules for 
 50% detection probability

B

6.2

42.2

11.2

2.3

15.1

247.2

9.3

8.5

302.4

30.5

3.7

297.4

25.9

2.2

414.4

4.1

93.9

2.7

7.4

48.8

22.1

145.6

346.6

9.5

G
em

C
ode

M
AR

S−seq

C
hrom

ium

STRT/C
1

Sm
art−seq2

Sm
art−seq/C

1

SU
PeR

−seq

C
EL−seq

G
&T−seq

M
AR

S−seq

Sm
art−seq2/C

1

C
EL−seq2/C

1

SC
R

B−seq

C
EL−seq2

Tang

C
hrom

ium

D
rop−seq

Sm
art−seq/C

1

BAT−seq

Sm
art−seq2

Q
uartz−seq2

inD
rops

STRT−seq

Sm
art−seq/C

1

C
EL−seq2/C

1

m
cSC

R
B−seq

0.1
1

10
100

1000
10000

ER
C

C
 m

olecules for 
 50%

 detection probability

D
ataset

Sasagawa et al., 2017
Svensson et al., 2017
This work

Zheng et al., 2017
Ziegenhain et al., 2017

C



Figure 6 

FDR
TPR

24 vs 24

48 vs 48

96 vs 96

192 vs 192

384 vs 384

24 vs 24

48 vs 48

96 vs 96

192 vs 192

384 vs 384

0.00

0.25

0.50

0.75

0.00

0.05

0.10

N
um

ber of cells

Rate
m

cSCRB−seq
SCRB−seq

A

96−well plate

384−well plate0
20

40
60

Library preparation cost/cell (cents)

Clean−up / quantification   
Nextera XT Kit
O

ligonucelotides

PCR am
plification

Plasticware
Reverse Transcription  

B

Hands−on

Hands−off0
100

200
300

Preparation tim
e (m

inutes)

cDNA synthesis
Clean−up / quantification

Nextera XT
PCR am

plification

C



Supplementary Figure 1 

Optimization of reverse transcription conditions 
A-C) Shown are relative cDNA yields after reverse transcription and PCR amplification of 
1 ng UHRR per replicate using: 
A) varying amounts of reverse transcriptase enzyme (15-25 units, Maxima H-),  
B) varying amounts of oligo-dT primer (E3V6),  
C) blocked or unblocked Template switching oligo (TSO, E5V6).  
D) Relative primer dimer yield using blocked or unblocked Template switching oligo (TSO, 
E5V6). 
All values are relative to the median of the condition used in the original SCRB-seq protocol 
(Soumillon et al. 2014), which is indicated by a dashed horizontal line. Each dot represents a 
replicate and each box represents the median and first and third quartiles method. Numbers 
above boxes indicated p values (Welch Two Sample t-test). Conditions selected for the 
mcSCRB-seq protocol are marked in blue. 
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Supplementary Figure 2 

Reverse transcription yield is increased by molecular crowding  
A-C) cDNA yield (top) as well as representative length distributions (capillary gel 
electrophoresis, bottom) using different indicated reverse transcription enhancers. Each dot 
represents a replicate. 
A) Influence of MgCl2 and Trehalose on yield was investigated. Boxes represent median and 
first and third quartiles per condition. Numbers above boxes indicate p-values (Welch Two 
Sample t-test). 
B) Concentration-dependant influence of PEG on cDNA yield was investigated. Lines 
represent the median per concentration. 
C) Effect of 7.5 % PEG8000 in reverse transcription was investigated. Boxes represent 
median and first and third quartiles per condition. Numbers above boxes indicate p-values 
(Welch Two Sample t-test). 
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Figure 3.4: Comparison of Reverse Transcription Enhancers
(A) The addition of MgCl2 (12 mM) and betaine (1 M) significantly decreased
the cDNA yield (p-value = 0.0001, Wilcoxon test). The cDNA distribution
was also greatly impacted as evident by the Bioanalyzer plots. The addition
of trehalose (0.6 M) and betaine (1 M) also significantly decreased the cDNA
yield (p-value = 0.02, Wilcoxon test). The cDNA distribution, however, was
not greatly impacted. (B) Concentration curve of 0-15% PEG used as an RT
enhancer. As PEG was increased, cDNA yield increased. However, high concen-
trations of PEG increased unspecific products, as evident in the Bioanalyzer plots.
(C) Comparison of 0% PEG and 7.5% PEG with 16 replicates, showing that
7.5% PEG significantly increases cDNA yield, while producing cDNA fragments
of ideal lengths (p-value = 9.1 x10≠5, Wilcoxon test).

was examined, however, unspecific products were found at higher concentrations

of PEG. Therefore, a concentration of 7.5% was chosen as the cDNA yield was still

increased and specificity was retained (Figure 3.3 B and Figure 6.2). When 7.5%

PEG as an RT enhancer was further tested, cDNA yield was significantly increased

(p-value = 9.1 x10≠5, Wilcoxon test) (Figure 3.4 C).

3.6 KAPA and SeqAmp Improve cDNA Yield in

Pre-amplification

Pre-amplification is a necessary step in scRNA-seq, as there is a very low amount of

RNA in the input material. Although essential, amplification can cause biases and

noise (Parekh et al., 2017). By optimizing pre-amplification, the total cycle number

can be reduced, which would alleviate some bias.

3.6 KAPA and SeqAmp Improve cDNA Yield in Pre-amplification 29



Supplementary Figure 3 

Sequencing of UHRR samples 
Libraries were generated from 10 pg of UHRR input in four protocol variants (Supplementary 
Table 1). Shown are the percentage of sequencing reads that cannot be mapped to the 
human genome (red), mapped to ambiguous genes (brown), mapped to intergenic regions 
(orange), inside introns (teal) or inside exons (blue).  
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Supplementary Figure 4 
 

Optimization of PCR amplification 
A) Relative cDNA yield after reverse transcription and amplification using different 
polymerase enzymes or ready mixes.  All values are relative to the median of KAPA HiFi 
which is indicated by a dashed vertical line, as this was used in the SCRB-seq protocol 
variant of Ziegenhain et al., 2017. Solid vertical lines indicate the median for each 
polymerase. 
B) Top: Representative length quantification of cDNA libraries amplified with Kapa HiFi 
(green) or SeqAmp (purple) as quantified by capillary gel electrophoresis (Agilent 
Bioanalyzer). Solid vertical lines depict the ranked mean length for each library within the 
region marked with dashed vertical lines. Bottom: Depiction of time length model (spline fit) 
used to analyze capillary gel electrophoresis via the ladder. Each dot represents a ladder 
peak with known length (bp) and measurement time (sec). 
C) Relative amount of detected UMIs using KAPA-HiFi or Terra for cDNA amplification. For 
both conditions, molecular crowding reverse transcription was used. Each dot represents a 
replicate and each horizontal line indicates the median per polymerase. 
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Supplementary Figure 5 

Library quality of JM8 mESC samples 
A) Scatter plots showing FACS data with forward (FSC) and backward (BSC) scatter 
intensities of JM8 mESCs. Each point represents an event. Coloured points represent 
events that were sorted for scRNA-seq libraries. Library batches are depicted as facets. 
B) UMI counts for each cell by method (SCRB-seq/mcSCRB-seq) and replicate (48 cells/96 
cells) are shown in their respective position in 96-well plates. Point sizes indicate the number 
of detected UMIs. Colouring indicates whether a cell passed (green) or failed (red) the 
Quality Control (QC) as described (see Methods).  
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Supplementary Figure 6 
 

Feature distribution of JM8 mESC samples 
Percentage of reads from mESC based experiments that cannot be mapped to the human 
genome (red) are mapped ambiguously(brown), are mapped to intergenic regions (orange), 
inside introns (teal) or inside exons (blue). Each box represents the median and first and 
third quartiles of cells per method. 
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Supplementary Figure 7 
 

Sensitivity of SCRB-seq and mcSCRB-seq protocols 
A) Number of detected UMIs dependent on sequencing depth (reads). Each box represents 
the median and first and third quartiles per sequencing depth and method. Sequencing 
depths are scaled logarithmically (base 10). 
B) Number of detected genes per cell and method (SCRB-seq/mcSCRB-seq) at a 
sequencing depth of 500,000 reads per cell (downsampled). Each dot represents a cell and 
each box represents the median and first and third quartiles. 
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Supplementary Figure 8 

 

Estimation of cellular mRNA content 
For each cell, cellular mRNA content was estimated using ERCC spike-ins (see methods). 
Shown is the distribution of estimated mRNA counts over all cells. 
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Supplementary Figure 9 

Descriptive statistics for mESC-based experiments at 500,000 reads 
A) Number of detected genes dependent on the number of cells considered. 
B) Gene detection reproducibility is displayed as the fraction of cells detecting a given gene. 
Dashed line and label indicate the median of the distribution. 
C) Extra Poisson variability across 12086 reliably detected genes (detected in > 10% of 
cells) was calculated by subtracting the expected amount of variation due to Poisson 
sampling from the coefficient of variation (CV) measured in read-count quantification. 
Distributions are shown as violin plots and medians are shown as bars. 
D) Gene-wise mean and coefficient of variation from all cells are shown as scatterplots for all 
methods based on UMI counts. The black line indicates variance according to the poisson 
distribution. 
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Supplementary Figure 10 
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Minimal batch effects and biases in mcSCRB-seq. 
A) Volcano plots show differentially expressed genes between plates for each method.  
Points in red depict significantly differentially expressed genes (limma-voom; FDR < 0.01). 
Red labels show the number of differentially expressed genes between batches. 
B-C) Each dot represents an outlier and each box represents the median and first and third 
quartiles. 
B) Average detected gene-wise expression levels (log normalized UMI) dependent on GC 
content of each transcript. Transcripts are grouped in 7 bins of GC content. 
C) Average detected gene-wise expression levels (log normalized UMI) dependent on 
transcript length. Transcripts are grouped in 7 bins of length. 



Supplementary Table 1 

Table S1 (related to Figure 3): Overview of used enzymes and enhancers in UHRR based 
experiments. 

protocol variant Soumillon Ziegenhain SmartScribe molecular 
crowding

Reverse 
transcriptase

Maxima H- Maxima H- SmartScribe Maxima H-

Buffer enhancer none none none 7.5% PEG

PCR polymerase Advantage2 KAPA HiFi KAPA HiFi KAPA HiFi



Supplementary Table 2 

Table S2 (related to Figure 4/5/6): Overview of the key differences between SCRB-seq as 
used in Ziegenhain et al., 2017 and mcSCRB-seq (this work).  

SCRB-seq mcSCRB-seq

Lysis Phusion HF Phusion HF + Proteinase 
K + oligo-dT primers

Cell suspension RNAprotect PBS

Proteinase K Ambion Clontech

oligo-dT concentration 1 µM 0.2 µM

reverse transcription 
volume

2 µl 10 µl

RT amount 25 U 20 U

RT enhancer none 7.5% PEG

TSO modification 5’-blocking none

TSO concentration 1 µM 2 µM

Pooling Zymo Clean & 
Concentrator

magnetic beads

PCR polymerase KAPA HiFi Terra direct

PCR cycles 18-21 13-15

Protocol speed 2 days 1 day

Cost per cell 1-2 € 0.4-0.6 €



Supplementary Table 3 

Table S3 (related to Figure 6): Detailed overview of costs for mcSCRB-seq. 

consumable price/unit # 96 plates # 384 plates price/96 plate price/384 plate

Barcode oligo-dT 24.000,00 € 20000 5000 1,20 € 4,80 €

TSO 
E5V6unblocked 453,40 € 200 50 2,27 € 9,07 €

Maxima RT 355,00 € 20 5 17,75 € 71,00 €

Exonuclease I 310,00 € 1000 1000 0,31 € 0,31 €

Clontech Terra 500,00 € 800 800 0,63 € 0,63 €

Nextera XT 1.900,00 € 96 96 19,79 € 19,79 €

dNTPs 927,00 € 500 125 1,85 € 7,42 €

Beads 20,00 € 10 10 2,00 € 2,00 €

Picogreen 233,00 € 400 400 0,58 € 0,58 €

PCR Seal 375,00 € 1000 1000 0,38 € 0,38 €

PCR Plate/96 116,00 € 25 0 4,64 € 0,00 €

PCR Plate/384 162,00 € 0 25 0 6,48 €

Tips/96 36,50 € 10 0 3,65 € 0,00 €

Robotic tips/384 290,00 € 0 10 0 29,00 €

Total 55,05 € 151,45 €

Total/cell 0,57 € 0,39 €



Supplementary Table 4 

Table S4 (related to Figure 6): Detailed overview of hands-on and hands-off time necessary 
to create a sequenceable mcSCRB-seq library from one single cell plate. 

Task
Hands-on 
(min)

Hands-off 
(min)

suggested 
start time Stopping point? Note

Prepare workplace 10 09:00

Proteinase K digest 10 10 09:10

Meanwhile 
prepare RT 
Master-Mix

Dispense RT Mix 5 09:30

RT 90 09:35

Pool + Clean-up 35 10 11:05 <72h @ 4°C

ExoI 30 11:50

PCR set-up 5,00 12:20

PCR 100 12:25

PCR clean-up 20,00 14:05

1 week @ 4°C or 
long-term @ -20 
°C

Quantify cDNA 5,00 14:25

Nextera: Transposition + 
PCR set-up 20 10 14:30

Nextera XT PCR 40 15:00

PCR clean-up 15,00 15:40

1 week @ 4 °C or 
long-term @ -20 
°C

Gel-excision & clean-up 25 10 15:55

1 week @ 4 °C or 
long-term @ -20 
°C

16:30

total time 150 300
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SUMMARY

Tumor relapse is associatedwith dismal prognosis, but responsible biological principles remain incompletely
understood. To isolate and characterize relapse-inducing cells, we used genetic engineering and prolifera-
tion-sensitive dyes in patient-derived xenografts of acute lymphoblastic leukemia (ALL). We identified a
rare subpopulation that resembled relapse-inducing cells with combined properties of long-term dormancy,
treatment resistance, and stemness. Single-cell and bulk expression profiling revealed their similarity to pri-
mary ALL cells isolated from pediatric and adult patients at minimal residual disease (MRD). Therapeutically
adverse characteristics were reversible, as resistant, dormant cells became sensitive to treatment and
started proliferatingwhen dissociated from the in vivo environment. Our data suggest that ALL patientsmight
profit from therapeutic strategies that release MRD cells from the niche.

Significance

After initially successful chemotherapy, relapse frequently jeopardizes the outcome of cancer patients. To improve the
prognosis of ALL patients, treatment strategies that eliminate tumor cells at minimal residual disease (MRD) and prevent
relapse are required. Toward a better understanding of the underlying biology, we established preclinical mouse models
mimicking MRD and relapse in patients. Primary and surrogate MRD cells shared major similarities in expression profiles,
demonstrating the suitability of our model. MRD cells revealed major functional plasticity in vivo and treatment resistance
was reversible; MRD cells became sensitive toward treatment once released from their in vivo environment. Effective ther-
apeutic strategies might aim at dissociating persistent cells from their protective niche to prevent relapse in ALL patients.

Cancer Cell 30, 849–862, December 12, 2016 ª 2016 The Author(s). Published by Elsevier Inc. 849
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).



INTRODUCTION

Relapse represents a major threat for patients with cancer. After
initially successful treatment, rare tumor cells might survive and
re-initiate the malignant disease with dismal outcome. Acute
lymphoblastic leukemia (ALL) is associated with poor prognosis
in infants and adult patients and is the most frequent malignancy
in children (Inaba et al., 2013). In many patients, the majority of
ALL cells respond to chemotherapy but a minority display resis-
tance, survive therapy, and cause relapse with poor outcome
(Gokbuget et al., 2012).

Despite its clinical importance, basic biologic conditions
underlying relapse remain partially elusive. For example, it is un-
clear whether relapse-inducing cells exist before onset of treat-
ment or develop as result of therapy, and whether permanent
or reversible characteristics determine relapse-inducing cells
(Kunz et al., 2015). Of translational importance, understanding
basic mechanisms opens perspectives for effective therapies
to eradicate relapse-inducing cells.

Relapse-inducing cells, by their clinical definition, self-renew
and give rise to entire tumors indicating tumor-initiating poten-
tial, a typical characteristic of cancer stem cells (Essers and
Trumpp, 2010). In numerous tumor entities including acute
myeloid leukemia, cancer stem cells were identified as a bio-
logically distinct subpopulation that displays specific surface
markers, has leukemia-inducing potential in mice, and gives
rise to a hierarchy of descendant cells that lack such properties
(Bonnet and Dick, 1997; Visvader and Lindeman, 2008). In ALL,
however, many different subpopulations display stem cell prop-
erties; neither a stem cell hierarchy nor phenotypic markers
defining stem cells could be identified (Kong et al., 2008; le Vi-
seur et al., 2008; Rehe et al., 2013). Thus, up to now, stemness
represents an insufficient criterion to define the subpopulation
of relapse-inducing cells in ALL.

An additional feature of relapse-inducing cells is their treat-
ment resistance, as, again by definition, they survive chemo-
therapy and eventually give rise to relapse with decreased
chemosensitivity. Resistance against chemotherapy is closely
related to dormancy as chemotherapy mainly targets prolifera-
tion-associated processes that are inactive in dormant cells
(Clevers, 2011; Zhou et al., 2009). Dormant cells, by definition,
do not divide or divide very slowly over prolonged periods of
time, might survive chemotherapy, persist in minimal residual
disease (MRD), and give rise to relapse (Schillert et al., 2013;
Schrappe, 2014). Indeed, an increased frequency of non-
dividing tumor cells has been described in patients after chemo-
therapy for defined subtypes of ALL (Lutz et al., 2013).

So far, technical obstacles have hampered characterizing
phenotypic and functional features of relapse-inducing cells in
ALL in detail. Established ALL cell lines represent inappropriate
models as they display continuous proliferation. In patients,
relapse-inducing cells are very rare and defining cell surface
markers that reliably identify these rare ALL cells from the multi-
plicity of normal bone marrow cells remains intricate, at least in
certain ALL subtypes (Hong et al., 2008; Ravandi et al., 2016).
Moreover, primary ALL cells do not grow ex vivo, disabling their
amplification in culture.

An attractive possibility to experimentally study patients’
tumor cells in vivo is the patient-derived xenograft (PDX) model,

which uses immuno-compromised mice to expand tumor cells
from patients (Kamel-Reid et al., 1989). As shown previously,
PDX ALL cells retain important characteristics of primary ALL
cells (Castro Alves et al., 2012; Schmitz et al., 2011; Terziyska
et al., 2012). While PDX models are mostly used for preclinical
treatment trials (Gao et al., 2015; Townsend et al., 2016), we
used them here to study relapse-inducing cells in ALL.

RESULTS

To characterize the challenging subpopulation of relapse-in-
ducing cells in ALL, we used the individualized xenograft mouse
model as a preclinical model, molecular cell marking as an
unbiased approach, and in vivo dormancy as a functional bench-
mark. To mimic the heterogeneity of ALL, samples from nine
different ALL patients were studied including children and adults,
B cell precursor-ALL and T-ALL, first diagnosis, and relapse
(Table S1).

Molecular Marking Allows Unbiased, Sensitive Isolation
of Rare PDX ALL Cells
To study ALL growth starting very early after disease onset in the
PDX mouse model, the technical challenge consisted in reliably
enriching very low numbers of human ALL cells from mouse
bone marrow. As expression levels of endogenous surface anti-
gens across potentially relevant, but yet undefined, subpopula-
tions are unknown, we used lentiviral transduction for unbiased
molecular marking and in vivo imaging (Figure 1A).
PDX ALL cells were lentivirally transduced to express a

luciferase for in vivo imaging (Terziyska et al., 2012), an artificial
antigen (truncated nerve growth factor receptor [NGFR]) for
magneto-activated cell sorting (Fehse et al., 1997) and a red
fluorochrome for cell sorting by flow cytometry (Figures S1A
and S1B). Transgenes allowed effective and reliable enrichment
of minute numbers of PDX cells from mouse bone marrow in
this two-step procedure. Quantification of PDX cells isolated
with the magnetic-activated cell sorting (MACS)/fluorescence-
activated cell sorting approach closely correlated with other
methodsmonitoring leukemic proliferation, such as in vivo imag-
ing and flow cytometry-based quantification of leukemia cells
(Figure S1C). Quality controls showed that the procedure was
highly efficient and reliable with minor cell loss (Table S2).
The procedure enabled addressing basic questions with

translational potential in ALL biology. Homing capacity of PDX
cells to mouse bone marrow differed by more than two orders
of magnitude between the nine samples studied (Figure 1B).
Homing efficiency decreased significantly when smaller cell
numbers were injected (Figure S1D). These data argue in favor
of sample-specific characteristics determining homing, and
against the presence of a preformed, fixed number of leukemia
homing sites within the niche. Spontaneous growth of PDX
ALL cells in mouse bone marrow was logarithmic over the first
2 weeks of in vivo growth (Figures 1C and S1C). Growth slowed
down thereafter and as early as at 10% blasts in bone marrow,
when space restriction appears unlikely to be causative. Model
selection indicated overall logistic growth which is typical for
insufficient nutrient supply (Figure S1E). Thus, PDX ALL cells
show sample-specific homing followed by logistic growth in
mouse bone marrow.

850 Cancer Cell 30, 849–862, December 12, 2016



CFSE Staining Allows Reliable Monitoring of PDX ALL
Growth in Mice
Proliferation-dependent dyes such as bromodeoxyuridine (BrdU)
and carboxyfluorescein diacetate succinimidyl ester (CFSE)
remain stable in mice over several months, enabling the charac-
terization of a heterogeneous growth pattern in normal hemato-
poiesis (Takizawa et al., 2011). We adapted the use of these
dyes in PDX tumor models. As BrdU staining requires the perme-
abilization and destroying of cells, fluorescent CFSE was mainly
used as it allows flow cytometric enrichment of living cells for
functional experiments including re-transplantation. Loss of
CFSE was used to distinguish subpopulations of slowly and
rapidly growing cells (Figures 1D and S1F) that were called la-
bel-retaining cells (LRC) and non-label-retaining cells (non-LRC),
respectively (Takizawa et al., 2011). LRC were defined as those
cells that had undergone at most three CFSE bisections resem-
bling cell divisions (see the Supplemental Experimental Proced-
ures for details). Loss of CFSE tightly correlated with increase in
PDX cell numbers and loss of BrdU (Figures 1E and S1G) and
confirmed that PDX ALL cells grow in vivo, but not ex vivo (Fig-
ure S1H). Thus, CFSE staining represents a reliable approach to
monitor proliferation of PDX ALL cells in mice.

Figure 1. CFSE Staining Allows Reliable
Monitoring of PDX ALL Growth in Mice
(A) Experimental procedure of generating PDX

ALL cells expressing several transgenes, staining

with CFSE, and enriching rare transgenic, CFSE-

stained PDX cells from mouse bone marrow.

(B) Of each PDX sample, 107 triple transgenic PDX

cells were injected intravenously into mice and re-

isolated from the bone marrow 3 days later; each

dot represents data from onemouse, except that a

mean of eight mice plus SE is shown for samples

ALL-199 and ALL-265.

(C) 107 CFSE-stained PDX cells/mouse were in-

jected and PDX cells were quantified in up to 11

mice per time point; shown is mean and SE.

(D) Gating strategy defining LRC, non-LRC, and

others. MFI of CFSE at the start of the experiment

(3 days after cell injection) was divided by factor 2

to model bisections; upon no more than three bi-

sections, cells were considered as LRC, upon

more than seven bisections as non-LRC; inter-

mediate cells were considered as others.

(E) Similar experiment as in (C), except that the

donor mouse was fed with BrdU in the last 7 days

before cell harvesting. Each dot represents data

from one mouse.

See also Figure S1, Tables S1, and Table S2.

A Rare, Long-Term Dormant
Subpopulation Exists in ALL PDX
Cells
Importantly, CFSE staining disclosed the
existenceofa rare fractionofPDXALLcells
that hardly divided over prolonged periods
of time (Figure 2A). LRC, by definition, had
undergone no more than three cell divi-
sions within 21 days, during which the leu-
kemia burden had risen by several orders

of magnitude so that mice would succumb to leukemia within a
fewdays. Inall ninePDXALL samples studied, LRCwere identified
after prolonged periods of leukemic growth; (Figures 2B and S2A).
Thus, similarly to normal hematopoiesis (Trumpp et al., 2010),

PDX ALL contains a rare subpopulation of LRC. LRC might
resemble the dormant tumor cells described in ALL patients
(Figure S2B) (Lutz et al., 2013). As an advantage over work
with primary cells, our preclinical approach allows repetitive
work on pure, vivid LRC, which gave us the chance to function-
ally and phenotypically characterize this interesting population.

LRCLocalize to theEndosteum, butAreNot Enriched for
Stem Cells
Both normal hematopoietic stem cells and leukemia stem cells
were reported to preferentially localize close to the endosteum,
where a supportive niche might exist (Morrison and Spradling,
2008). We also found that LRCs preferentially localized close
to the endosteum (Figures 3A–3C and S3), suggesting that
they might use the same niche as normal hematopoietic stem
cells and cancer stem cells.
We therefore asked whether LRCmight resemble cancer stem

cells. To compare leukemia-initiating potential between LRC and
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non-LRC, we performed limiting dilution transplantation assays
and monitored engraftment by bioluminescence in a total of 83
mice (Table S3). To our surprise, we found highly similar stem
cell frequencies in LRC and non-LRC and similar engraftment
rates after transplantation of, e.g., ten cells per mouse (Fig-
ure 3D). The 95% confidence interval of the estimated frequency
of leukemia-inducing cells ranged between 1/19 and 1/84 cells
for LRC and between 1/40 and 1/179 cells in non-LRC of ALL-
265 (Table S3). Similar findings were obtained for ALL-199 (Table
S3). Thus, although only LRC display typical characteristics of
stem cells such as reduced proliferation rate and localization
close to the endosteum, LRC and non-LRC exhibited similar
leukemia-initiating potential.

LRC Survive Systemic Drug Treatment In Vivo
Dormant cells are known for their resistance against drug treat-
ment, complicating elimination by anti-cancer therapy (Essers
and Trumpp, 2010). We compared in vivo drug response of
LRC and non-LRCby transplanting CFSE-labeled PDXALL cells,
treating mice with systemic chemotherapy on day 7 and
analyzing surviving LRC and non-LRC on day 10 (Figure 4A).
Chemotherapy reduced the overall leukemic burden by over
90% (Figures 4B and S4A) and eradicated most non-LRC. As a
prominent difference, most LRC survived chemotherapy so
that LRC increased in relative proportions (Figures 4C–4E and
S4B–S4D). A 10- to 100-fold less efficient elimination of LRC
compared with non-LRC became obvious across all PDX ALL

A 

B 

ALL-199 
2nd relapse 

ALL-435 
initial diagnosis 

T-ALL 

ALL-363 
initial diagnosis 

BCP-ALL, pediatric BCP-ALL, adult 

ALL-256 
initial diagnosis 

ALL-230 
initial diagnosis 

day 20 day 17 day 21 
150K 

0 
0 102 103 

LRC 

150K 

0 
0 102 103 104 

LRC 

S
S

C
-H

 

CFSE 

day 17 

103 104 105 

120K 

0 

LRC non-LRC non-LRC 

0 
0 102 103 104 

LRC 

150K 

non-LRC 
323 850 5,070 3,630 

150K 

0 
102 103 104 105 

LRC 
126 

day 15 

time [days after injection] 

LR
C

 [l
g]

 

4 

3 

2 

1 
10 15 20 0 

102 

103 

non-LRC non-LRC 

Figure 2. A Rare, Long-Term Dormant Subpopulation Exists in ALL PDX Cells
(A) 107 CFSE-stained PDX ALL-265 cells were injected into each of six mice; bioluminescence in vivo imaging was performed prior to quantifying LRC in one

mouse per time point; LRC numbers are indicated and summarized in the line graph as a mean of up to ten mice ± SE.

(B) Identification of LRC in PDX cells from all different ALL patients. Experiments were performed as in (A).

See also Figure S2.
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samples tested that were derived from either primary disease or
relapse, suggesting that this phenomenon is not restricted to a
certain disease stage. Treatment-surviving LRC harbored leuke-
mia-initiating potential as they gave rise to leukemias upon re-
transplantation at a kinetic similar to that of untreated LRC
(Figures 4F and S4E).
Taken together, LRC share the most important functional fea-

tures that impede the cure of cancer: (1) dormancy, (2) in vivo
drug resistance, and (3) leukemia-initiating potential. LRC might
thus serve as preclinical surrogate for relapse-inducing cells
in ALL.

Expression Profile of LRC Shows Distinct Changes to
Non-LRC
Wethenevaluatedwhether LRCadequately resemble challenging
cells in patients. For a broad, unbiased comparison between LRC
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Figure 3. LRC Localize to the Endosteum, but
Are Not Enriched for Stem Cells
(A) Immunohistochemistry of consecutive mouse bone

marrow femur sections 10 days after injection of CFSE-

stained PDX ALL-265 cells; mCherry (red; left panel)

indicates all PDX cells, CFSE (green; right panel)

indicates LRC.

(B) All sections from day 10 were quantified defining

the endosteal region as less than 100 mm from bone

matrix; shown is the median with upper/lower quartile

and maximum/minimum of two to three sections from

two femurs in two mice per data point; ***p < 0.001,

****p < 0.0001 by two-tailed unpaired t test.

(C) Kinetic for ALL-265 as mean ± SE; ***p < 0.01 by

two-tailed unpaired t test.

(D) Ten LRC or non-LRC were injected into each of 39

mice and engraftment was determined by in vivo im-

aging at day 75; each dot represents one mouse;

dashed line represents detection threshold (5 3 105

photons s!1); ns: not significant as determined by two-

tailed unpaired t test.

See also Figure S3 and Table S3.

and non-LRC, RNA sequencing (RNA-seq)
wasperformedonsingle cells andbulkpopula-
tions (Figure 5A). Data from single cells corre-
lated with data from bulk populations and
different ALL PDX samples showed similar
expression profiles (Figures S5A and S5B).
Preliminary expression arrays on pools of 40
LRC and non-LRC showed mainly similar re-
sults (data not shown).
Single LRC differed consistently from single

non-LRC as revealed by clustering differently
expressed genes (Figures 5B and Table S4)
and by a principle component analysis of the
most variable genes (Figure 5C). Single LRC
also had an overall reduced RNA content (Fig-
ure S5C), indicating a less active metabolism
that is a prerequisite of dormant cells. We
combined single-cell and bulk data of all six
sample pairs to identify differently expressed
genes (Table S5). Enrichment analysis re-
vealed that genes expressed less in LRC

were most strongly enriched in cell cycle and DNA replication
and that genes more expressed in LRC were most strongly en-
riched in cell adhesion (Figures 5D, S5D, and Table S6). Hence,
expression profiling of single cells and in bulk confirmed the
quiescent state of LRC and an LRC signature of at least 2-fold
differently expressed genes ranked by their significance (Figures
5E and Table S5) was used for further comparisons.

LRC Resemble MRD Cells in the PDX Mouse Model
Relapse often results from treatment-resistant tumor cells that
survive chemotherapy and persist at MRD. MRD cells contain
a major fraction of dormant tumor cells (Lutz et al., 2013).
Here, we hypothesized that LRC might represent surrogates
for MRD cells.
To experimentally test this hypothesis, we established a pre-

clinical model ofMRD for ALL-265 and ALL-199.When untreated
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control samples were harvested at advanced leukemia, they
contained a leukemic burden of "30% human blasts in mouse
bone marrow, mimicking the situation at diagnosis. Remaining
mice received a systemic treatment with conventional chemo-
therapeutic drugs over 2–3weeks (Figure 6A), which needs care-
ful dosing as supportive therapy is mainly unfeasible in mice. A
combination treatment of vincristine and cyclophosphamide
reduced tumor burden substantially according to in vivo imaging
(Figures 6B, 6C, and S6A). Postmortem analysis revealed that
chemotherapy had reduced leukemic burden by more than two
orders of magnitude to "0.1% leukemia cells in bone marrow.
This resembled not only complete morphologic, but also com-
plete molecular remission criteria (Figures 6D and S6B). MRD
cells revealed relapse-inducing potential as they re-grew in
mice when treatment was stopped (Figure S6C).

MRD cells were isolated from mouse bone marrow using ex-
pressed transgenes as above, and RNA sequencing of single
cells and bulk samples was performed. Resulting transcriptomes
showed marked differences between MRD and untreated con-
trol cells (Figure S6D). Enrichment analysis revealed significantly
reduced expression of MYC and E2F target genes in MRD
compared with untreated cells. Genes expressed less in MRD
cells were most strongly enriched in cell cycle and DNA replica-
tion, while genes expressed more in MRD cells were most
strongly enriched in cell adhesion (Figures 6E andS6E). This sug-
gests a dormant phenotype of MRD cells similar to the dormant
phenotype seen in LRC (Figure 5D). KEGG pathway analysis

Figure 4. LRC Survive Systemic Drug Treat-
ment In Vivo
(A) Each mouse was injected with 107 CFSE-

stained ALL-265 PDX cells and treated with buffer,

etoposide (ETO, 50 mg/kg, intraperitoneally [i.p.]),

or cyclophosphamide (Cyclo, 150 mg/kg, i.p.)

on day 7. Mice were euthanized on day 10; LRC

were analyzed and re-transplanted into secondary

recipients.

(B) Living PDX cells from mice in (A) were quan-

tified and presented as mean of each group (n =

4–5) ± SE.

(C) Original data for one representative mouse per

treatment.

(D) Mean of all four to five mice per treatment,

depicted as relative drug effect on LRC compared

with non-LRC (100%) ± SE; ****p < 0.0001 by two-

tailed unpaired t test.

(E) Mean relative proportion of LRC of total PDX

cells.

(F) LRC isolated were re-transplanted and mice

monitored by in vivo imaging; mean of each group

(n = 1–2) ± SE.

See also Figure S4.

highlighted that MRD cells were of
dormant nature and expressed increased
adhesion molecules (Figure S6E). Indeed,
single MRD cells clustered together with
single LRC in a principal component
analysis separated from non-LRC and
cells from untreated mice (Figure S6F).
Accordingly, the LRC signature (Figure 5E

and Table S5) was strongly enriched in MRD cells and genes in
MRD and LRC cells were similarly regulated compared with their
respective controls (Figure 6F). This suggests that LRC mimic
MRD cells in our preclinical mouse model.

LRC Resemble Primary MRD Cells from Patients
To relate these findings to the clinical situation, expression pro-
files from primary tumor cells from five children and two adults
with B cell precursor (BCP) ALL were profiled at diagnosis and
at MRD (Figure 7A and Table S7). Children and adults were
treated according to the BFM-2009 and GMALL-0703 protocols,
respectively, and MRD cells were enriched by flow cytometry at
days 33 and 71 of treatment, respectively. In adults, we chose
BCR-ABL-positive ALL and enriched the subpopulation of
StemB cells at MRD, as Lutz et al. (2013) had shown that these
cells exhibit a dormant phenotype. As dormancy in StemB cells
might have persisted for a long period during treatment in pa-
tients, LRC might especially resemble StemB cells at MRD. We
could obtain single-cell transcriptomes from one patient and
one bulk transcriptome from another patient. K-means clustering
and principal component analysis revealed that single StemB
cells clustered together with single LRC and MRD cells, while
single non-LRC clustered together with single untreated control
cells (Figures 7B and 7C). The bulk StemB sample was distinct
from diagnostic tumor cells of untreated adult patients with
BCR-ABL-positive ALL (Figure S7A). Although limited by small
cell and sample numbers, the data indicate that LRC resemble
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Figure 5. Expression Profile of LRC Shows Distinct Changes to Non-LRC
(A) Fifteen days after transplantation, ALL-265 LRC or non-LRC were isolated and single-cell mRNA-seq was performed in 15 LRC and 35 non-LRC.

(B) Hierarchical clustering and gene expression heatmap across the 500 most differentially expressed genes (false discovery rate [FDR] <0.01) in 15 LRC and 35

non-LRC single cells. Values are plotted relative to the average of non-LRC.

(C) Principal component analysis of the 500 most variable genes in all 50 single cells.

(D) Significantly enriched KEGG pathways (FDR <0.05) as determined by fixed network enrichment analysis (FNEA); bars show the number of significantly up- or

downregulated genes in the corresponding pathway and are ordered according to the enrichment score (ES).

(E) LRC signature genes (FDR < 0.05 and log2 fold-change >1) were derived from integrated bulk and single-cell RNA-seq analysis from six animals carrying either

ALL-265 or ALL-199 and are shown ranked by fold-change and colored by significance.

See also Figure S5, Tables S4, S5, and S6.
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Figure 6. LRC Resemble MRD Cells in the PDX Mouse Model
(A) 107 ALL-199 cells were injected into 19 mice; when 30% of bone marrow cells were human, PDX cells were enriched from five mice and used as untreated

control samples; cells of one mouse were subjected to single-cell sequencing; the remaining mice received buffer, vincristine (VCR, 0.25 mg/kg; n = 5),

cyclophosphamide (Cyclo, 100 mg/kg; n = 3), or a combination thereof (VCR + Cyclo; n = 6) weekly for 2 weeks; when VCR + Cyclo combination treatment had

reduced tumor burden to MRD (<1% human cells in bone marrow), PDX cells were enriched and cells of one VCR + Cyclo mouse were subjected to single cell

mRNA-seq.

(B) In vivo imaging data of three representative mice per group.

(C) Mean of each group ± SE; *p < 0.05, ***p < 0.001 by two-tailed unpaired t test; mice receiving buffer had to be euthanized after 1 week of treatment due to end-

stage leukemia.

(D) Percentage of PDX ALL cells in mouse bone marrow as determined by flow cytometry postmortem as mean ± SE; **p < 0.01, ***p < 0.001, ****p < 0.0001 by

two-tailed unpaired t test.

(E) MRD cells show reduced expression of MYC- and E2F-target genes in gene set enrichment analysis (GSEA) (Liberzon et al., 2015).

(legend continued on next page)
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the dormant subpopulation of StemB cells in adult ALL patients
at MRD.
This is also supported when comparing the LRC profiles with

further published transcriptomes. Genes differently expressed
in CD34-positive chronic myeloid leukemia cells (Graham et al.,
2007), in leukemia stem cells (Saito et al., 2010), in hematopoietic
stem cells (Eppert et al., 2011; Georgantas et al., 2004), as well
as in pediatric ALL cells with high risk of relapse (Kang et al.,
2010) were all significantly enriched in LRC versus non-LRC cells
(Figures 7D, S7B, and S7C).
To further analyze the similarity of LRC to MRD cells from

patients, we generated bulk transcriptomes of primary samples
from five children with BCP-ALL before the onset of treatment
and three matched MRD samples collected 33 days after the
onset of treatment. Expression profiles differed significantly be-
tween diagnosis and MRD (Figure 7E and Table S8) and MRD
cells regulated genes in the same direction as LRC compared
with their respective controls, as revealed by a significant
overlap of up- and downregulated genes (hypergeometric test,
p = 1.9 3 10!23) and by a significant enrichment of the LRC
signature (p < 0.001; Figure 7F). Finally, we combined these tran-
scriptomes with all bulk samples isolated from the LRC andMRD
mouse models and analyzed them unsupervised in a principal
component analysis (Figure 7G). The first principal component
separated all dormant and drug-resistant cells (PDX-LRC,
PDX-MRD, and primary MRD) from all control cells (PDX-non-
LRC, PDX untreated, and primary diagnosis).
In summary, we show that a distinct subpopulation of LRC

exists in our ALL PDXmodel that combines the unfavorable char-
acteristics of stemness, drug resistance, and dormancy. These
LRC show high similarities to MRD cells in our mouse model
and to MRD cells in ALL patients. Hence, LRC might represent
preclinical surrogates for relapse-inducing cells in patients and
could be used to develop therapeutic strategies to prevent
relapse.

Release from the Environment Induces Proliferation
in LRC
As the first step toward therapies, we studied whether unfavor-
able drug resistance and dormancy represented permanent or
reversible features in LRC. Dormancy and drug resistance might
exist as genuine, constant biological characteristics of a special
ALL subpopulation or as reversible functional phenotypes of
putatively every ALL cell depending on the context.
To address this question, LRC and non-LRC were dissociated

from their environment, isolated, and re-transplanted into recip-
ient mice (Figures 8A and S8A). When non-LRC were re-stained
with CFSE and re-transplanted at high numbers, they gave rise
to an identical LRC population as re-transplanted bulk cells (Fig-
ures 8B and S8A); transplantation of high cell numbers of LRC
was impossible, as only low numbers of LRC can be recovered
from mice. When low cell numbers were re-transplanted, LRC,
non-LRC, and bulk cells initiated identical leukemic growth in
mice as monitored by bioluminescence in vivo imaging (Figures

8C and S8A). These data indicate that dormancy represents a
reversible feature of LRC, as LRC lose their dormant nature
once they are retrieved from their specific environment and
transferred into a different surrounding.

Release from the Environment Sensitizes LRC and MRD
Cells for Drug Treatment
As dormancy emerged as a reversible phenotype, we asked
whether drug resistance might be equally reversible. Isolated
LRC and non-LRC or MRD and previously untreated cells from
the PDX mouse model were treated ex vivo with common ALL
chemotherapy drugs or drug controls. Here, the technical chal-
lenge lay in the very minor cell numbers of LRC and MRD that
can be isolated frommice and used for ex vivo experiments (Fig-
ure S8B). Co-culture with feeder cells resembling bone marrow
stroma reduced drug response in all samples, suggesting the in-
fluence of the bonemarrow environment on drug resistance (Fig-
ures S8C–S8F) (Tesfai et al., 2012). Ex vivo, neither LRC norMRD
cells displayed increased drug resistance compared with their
respective controls (Figures 8D and S8G).
Taken together, LRC and MRD cells showed a marked gain in

drug sensitivity ex vivo compared with in vivo after isolation from
the bone marrow environment. Both LRC and MRD cells lost
their enhanced drug resistance, distinguishing them from non-
LRC or untreated cells, once theywere retrieved from their in vivo
environment and cultured ex vivo (Figure 8E). Dormancy was
reversible in LRC and drug resistance was reversible in both
LRC and MRD cells. As LRC might represent surrogates for
relapse-inducing cells in patients, our data suggest that the inter-
action between LRC and their environment represents an attrac-
tive therapeutic target for preventing relapse. Relapse-inducing
cells might gain sensitivity toward treatment once mobilized
from their in vivo environment.

DISCUSSION

The present work aimed at a better understanding of the cells
that induce relapse in ALL and thereby limit prognosis of pa-
tients. We identified a rare, long-term dormant subpopulation
termed LRC exhibiting the adverse characteristics of dormancy,
in vivo drug resistance, and leukemia-initiating properties. LRC
highly resemble primary MRD cells from adult and pediatric pa-
tients with ALL. MRD cells require preferential eradication by
anti-leukemia treatment. LRC in preclinical models can now be
used as surrogates for relapse-inducing cells in patients for
developing therapies to prevent relapse. Upon removal from
their in vivo environment, LRC lost dormancy and drug resis-
tance, suggesting a reversible nature of adverse characteristics
and an important role for the interaction between ALL and the
environment. The data suggest that drug resistance and
dormancy are linked and represent an acquired stem-like
phenotype. Our data imply developing treatment approaches
that dissociate ALL cells from their protective niche to sensitize
them toward anti-leukemia treatment.

(F) GSEA was performed comparing LRC signature with transcriptomes of MRD versus untreated cells (mean of data for ALL-199; left panel). Scatterplot of fold-

changes for genes differentially expressed (FDR < 0.05) between both LRC versus non-LRC and MRD versus untreated control cells; grey area indicates LRC

signature (right panel).

See also Figure S6.
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Figure 7. LRC Resemble Primary MRD Cells from Patients
(A) Adult or pediatric ALL patients were treated according to GMALL-0703 or BFM-2009 protocols for 71 or 33 days, respectively; atMRD, the subgroup of StemB

cells (in samples from adults) or all remaining ALL cells (in samples from children) were enriched out of normal bone marrow; cells at diagnosis and at MRD were

subjected to RNA-seq.

(B) K-means clustering of gene expression values of 167 highly differentially expressed genes (FDR < 0.001) of all data from single cells.

(C) Principal-component analysis (PCA) of single cell transcriptomes using all shared expressed genes; each symbol indicates a single cell.

(D) GSEA comparing the LRC signature with signatures of leukemia stem cells (Saito et al., 2010) and dormant CD34-positive chronic myeloid leukemia (CML)

(Graham et al., 2007).

(legend continued on next page)
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Here, we provide a preclinical tool to study dormant human
ALL cells in vivo and show that long-term resting cells exist in
ALL. This fact was previously unknown, as primary patients’
samples allow quantifying non-cycling cells in a snapshot at a
given moment, but fail to distinguish between short- and long-
term resting cells (Lutz et al., 2013). As monitoring functionally
defined cellular subpopulations such as LRC in longitudinal
studies is still impossible in patients, our preclinical model en-
ables the gaining of insights into ALL biology that cannot be ob-
tained in patients: here the presence of long-term resting cells in
ALL. Beyond its use in preclinical treatment trials, PDX models
harbor major potential in basic research and enable unique in-
sights into disease biology.

The emergence of relapse is a complex process involving ge-
netic and non-genetic factors. Early relapse might be caused by
a putatively pre-existing clone with additional mutations respon-
sible for drug resistance, especially in adult patients. The genetic
stability of most cases of ALL suggests that many relapses may
not be mediated by mutational mechanisms. Late relapse might
be caused by persisting, dormant tumor cells in the absence of
additional mutations, and relapse cells often respond to the iden-
tical drugs used to treat the primary disease. LRC represent sur-
rogates for late relapse and relapse in the absence of additional
mutations, as often seen in children.
The fact that LRC exist might explain why ALL patients benefit

from maintenance therapy, even in prognostically favorable,

(E) All genes differentially expressed (padj < 0.05) between primary samples from five children before onset of treatment to three matched MRD samples 33 days

after onset of treatment.

(F) Scatterplot of fold-changes for genes differentially expressed between both LRC versus non-LRC and primary MRD versus primary diagnostic cells, grey area

indicates LRC signature (left panel); GSEA comparing the LRC signature with differentially expressed genes between primary MRD and primary diagnostic cells

(right panel).

(G) PCA of bulk samples transcriptomes using all shared expressed genes; each symbol indicates a single sample.

See also Figure S7, Tables S7, and S8.

Figure 8. Release from the Environment In-
duces Proliferation in LRC and Sensitizes
LRC and MRD Cells toward Drug Treatment
(A) From a first recipient mouse carrying CFSE-

stained ALL-199 cells, LRC, non-LRC, and bulk

cells were obtained at day 10; bulk cells and non-

LRC were re-labeled with CFSE, re-transplanted in

second recipient mice at high numbers, and re-

analyzed at day 10 using flow cytometry; bulk cells,

LRC, and non-LRC were re-transplanted at low

numbers into groups of mice and leukemia growth

was monitored over time.

(B) CFSE staining at day 10 in secondary recipient

mice receiving high cell numbers.

(C) Growth curve in secondary recipients;

mean ± SE; ns, no statistical significance by Kruskal-

Wallis test and Dunn’s multiple comparison test.

One out of two independent experiments is shown.

(D) Fourteen days after transplantation, LRC or non-

LRC were isolated and 500–800 cells treated ex vivo

for 48 hr with daunorubicin (DAU; 250 nM), mitox-

antrone (MITO; 675 nM), amsacrine (AMSA; 18 nM),

or etoposide (ETO; 300 nM). Spontaneous cell death

in the absence of cytotoxic drugs was 60%; a mean

of eight data points from three independent experi-

ments in triplicates or duplicates is shown for DAU

andMITO and one experiment in triplicates is shown

for AMSA and ETO. Four thousand untreated cells

and MRD cells were treated ex vivo for 48 hr with

15 mM ETO, 450 mM MITO, 300 nM VCR, or 500 nM

DOX. Cell death was measured by flow cytometry;

spontaneous cell death in the absence of cytotoxic

drugs was 33%; shown is one experiment in tripli-

cate; mean ± SE; ns, not significant, ***p < 0.001 by

two-tailed unpaired t test.

(E) Summary of ALL-265 data from Figure 4C (n = 5),

S6 (n = 3), and 8D (n = 3); ns, not significant, *p < 0.05

and ****p < 0.0001 by two-tailed unpaired t test.
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chemo-sensitive ALL subtypes. ALL patients are routinely treated
with oral low-dose chemotherapy from end of intensive chemo-
therapy until, e.g., 2 years after diagnosis, and maintenance ther-
apy improves patients’ prognosis (Schrappe et al., 2000). Low-
dose maintenance therapy might act by removing LRC-type
ALL cells with relapse-inducing potential that remained quiescent
over prolonged periods of time and turned on their cell cycle at
late time points in the months following intensive chemotherapy.

Tumor cells often display both dormancy and drug resistance.
It is unclear whether either dormancy or drug resistance is pivotal
in respect to the other, so that dormancy is a consequence of
resistance or vice versa (Blatter and Rottenberg, 2015). Our
two complementary mouse models show that LRC were defined
by their dormant nature and displayed drug resistance, while
MRD cells were defined by their ability to survive drug treatment
and displayed a dormant phenotype. Thus, both characteristics
might be equally sufficient to determine each other and coincide
interdependently.

Our study shows that ALL consists of functionally heteroge-
neous cells regarding proliferation rate and drug resistance,
similar to the functional heterogeneity shown in other tumor
entities (Kreso et al., 2013). As LRC did not substantially
participate in proliferation during growth of leukemia over
weeks, in our model LRC existed before onset of therapy
and were not developed as a consequence of treatment. As
both LRC and non-LRC contain similar amounts of stem cells,
but show different sensitivity toward drug treatment in vivo,
our data imply that stemness and drug resistance are not
directly connected in ALL.

So how does a rare subpopulation acquire the three clinically
challenging features dormancy, resistance, and stemness? LRC
might represent a cell subpopulation with genuinely different
biology harboring distinct intrinsic, constant characteristics, or
being an LRCmight represent a reversible, temporary, functional
phenotype depending on circumstances. In the first case, LRC
and non-LRC might be organized in a hierarchical way similar
to the known stem cell hierarchy existing in many tumors
including AML (Kreso and Dick, 2014). In the second case, ALL
cells might mimic the phenotypic reversibility of normal hemato-
poiesis, where long-term dormant hematopoietic stem cells start
cycling in response to stress for a defined period of time and turn
back into dormancy later (Trumpp et al., 2010).

Our data favor the second scenario as LRC exhibit their
specific characteristics as reversible, temporary, transient func-
tional phenotypes. Re-transplantation experiments showed that
formerly dormant LRC started proliferating as soon as they were
dissociated from their in vivo environment and transferred into
next recipient mice. Upon re-transplantation, LRC converted
into non-LRC, while certain non-LRC converted into LRC. Both
LRC and non-LRC thus harbored plasticity to switch between
slow and rapid proliferation depending on the current context.
This fact might explain the area of overlap between LRC and
non-LRC detected in single-cell RNA sequencing.

Besides proliferation, drug resistance also proved to be a tran-
sient characteristic. Drug-treatment experiments showed that
LRC lost their in vivo drug resistance upon ex vivo culture. The
discrepancy between drug sensitivity ex vivo and in vivo might
at least partly explain the limited predictability of ex vivo drug-
screening tests for the outcome of cancer patients (Wilding

and Bodmer, 2014). Thus, localization of LRC to the bone
marrow niche influences both dormancy and drug resistance.
These insights have translational implications. For diagnostics,

as LRC lose their clinically relevant characteristics upon release
from their niche, rapid sample processingmight becritical for reli-
able profiling, which represents a challenge in clinical routine
(Bacher et al., 2010). Our data at least in part explain the limited
power of in vitro assays using, e.g., proliferating cell lines, for
studies on MRD cells or primary leukemia cells for drug testing
in the absenceof feeders.Most importantly for putative treatment
strategies, the transient nature of the adverse characteristics of
LRCsuggests aiming at removingMRDcells from their protective
environment to sensitize them toward treatment (Essers et al.,
2009; Essers and Trumpp, 2010). The interaction between
MRD cells and their bone marrow niche represents a promising
target for therapeutic approaches to prevent relapse. Beyond
the tumor cell itself, its interaction with the environment repre-
sents a suitable therapeutic target. As a caveat, a persistent ther-
apeutic inhibition of the bone marrow niche might be required
over prolonged periods of time, as in principle each and every re-
maining non-LRC ALL cell could convert into a drug-resistant
LRC, as soon as it gets access to the protective niche.
At this point, we can only speculate which signals might deter-

mine whether an ALL cell behaves like an LRC or a non-LRC. In
theory, external as well as internal factors or conditions might be
influential; stimuli might be sent or received either stochastically
or within a well-regulated process. As our studies were restricted
to bonemarrow, the bonemarrow niche is a likely candidate for a
regulatory function and requires investigatory work (Raaij-
makers, 2011). Further research is required to address these
important questions. Obvious candidates for therapeutic inter-
vention are cell surface molecules expressed on LRC, the
inhibition of which might release cells from their environment.
Similarly, niche cells could be targeted to aim at reducing envi-
ronmental support.
Our study shows that ALL growing in vivo contains a rare

subpopulation of LRC that exhibits typical challenging adverse
characteristics of relapse induction, which proved to be of a
reversible nature. Our model might help to develop future anti-
leukemia treatment strategies allowing the eradication of the
precarious subpopulation of drug-resistant stem cells to prevent
relapse and improve the prognosis of patients with ALL.

EXPERIMENTAL PROCEDURE
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The study was performed in accordance with the ethical stan-
dards of the responsible committee on human experimentation
(written approval by Ethikkommission des Klinikums der Lud-
wig-Maximilians-Universit€at M€unchen, Ethikkommission@med.
unimuenchen.de, April 15, 2008, number 068-08) and with the
Helsinki Declaration of 1975, as revised in 2000.
All animal trials were performed in accordance with the current

ethical standards of the official committee on animal experimen-
tation under thewritten approvals by Regierung vonOberbayern,
poststelle@reg-ob.bayern.de, May 10, 2007 number 55.2-1-54-
2531-2-07 and August 8, 2010 number 55.2-1-54-2531-95-10.
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Enriching and Quantifying PDX and LRC from Mouse
Bone Marrow
PDX ALL cells were genetically engineered as described using
lentiviruses (Terziyska et al., 2012; Vick et al., 2015) to express
the transgenes’ truncated NGFR, a red fluorochrome, and lucif-
erase; cells were stained with BrdU and/or CFSE before re-
transplantation of fresh cells into mice.
For determining the fraction of dormant PDX ALL cells, mouse

bonemarrowwas harvested from numerous bones and enriched
for human PDX ALL cells using NGFR for MACS and the red fluo-
rochrome for flow cytometry cell sorting. LRC were discrimi-
nated from non-LRC using CFSE staining as shown in Figure 1D.
CFSE mean fluorescence intensity (MFI) was measured at day 3
after injection, when bleaching had ceased, and defined cells
before the onset of proliferation (‘‘0 divisions’’). Day 3 CFSE
MFI was divided by factor 2 to calculate CFSE bisections
mimicking cell divisions. Seven CFSE MFI bisections or more
were defined as entire loss of the CFSE signal characterizing
non-LRC. The LRC gate was set to include all cells harboring
high CFSE signal of below three bisections of the maximum
CFSE MFI (Schillert et al., 2013) (Figure 1D).

PDX Single-Cell RNA-Seq Library Construction
Single cells were isolated at 4#C and processed on the Fluidigm
C1 platform. In brief, 500 cells were loaded on the 10–17 mm
mRNA-seq IFC (Fluidigm) with External RNA Controls Con-
sortium spike-in controls. Cell lysis, reverse transcription, and
pre-amplification of cDNAwas done on-chip using the SMARTer
Ultra Low RNA Kit for C1 (Clontech). Harvested cDNA libraries of
the samples (2.5 mL) were used as input for tagmentation with the
Nextera XT Sample Preparation Kit (Illumina) at half the volume of
Illumina’s protocol. Barcoding PCRwas performed for 12 cycles.
Equal amounts of libraries were pooled.

RNA-Seq
Single-cell Smart-seq and bulk Smart-seq2 libraries were
sequenced at 1 3 50 bases on an Illumina HiSeq1500. SCRB-
seq and UMI-seq libraries were sequenced paired-end with 16
cycles on the first read to decode sample barcodes and unique
molecular identifiers and 50 cycles on the second read into the
cDNA fragment.
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Figure S1, related to Figure 1.
CFSE staining allows reliable monitoring of PDX ALL growth in mice.

(A) Lentiviral construct for equimolar expression of 3 transgenes; arrow indicates start of transcription; EF1α =

elongation factor 1-alpha promoter; mKate = red fluorescent protein cloned from sea anemone Entacmaea

quadricolor; NGFR = human low affinity nerve growth factor receptor lacking the intracellular signaling domain.

(B) Quality controls on enriched transgenic PDX ALL-265 or ALL-199 cells by flow cytometry or

bioluminescence in vivo imaging.

(C) 107 ALL-265 cells were injected into groups of mice and one mouse was sacrificed at each time point. In

vivo imaging was performed directly before cell harvesting and quantifying PDX cells by flow cytometry with

and without prior MACS selection; mean of each group +/- standard error.

(D) Different cell numbers of ALL-199 cells were injected in mice at and re-isolated after 3 days; each dot

indicates data from one animal.

(E) The measured numbers of PDX cells and the measured mean fluorescence intensities of CFSE were fitted

with three mechanistic ordinary differential equation models assuming: exponential growth; logistic growth

caused by a decreased rate of cell division at higher cell densities; and logistic growth caused by a increased

rate of cell death at higher cell densities. The measured data (red circles and crosses), the best fit (gray line)

and the noise related uncertainty intervals (gray shaded area) are depicted.

(F) No cells devoid of CFSE labeling are found in the LRC gate; flow cytometry analysis at day 0 of unlabeled

ALL-265 PDX cells.

(G) Controls for BrdU and CFSE stainings; BrdU indicates feeding of mice and cells with BrdU; BrdU-ab

indicates that cells were stained with the anti-BrdU antibody; “+” and “-” indicate that the procedures were

performed or not, respectively.

(H) To compere behavior of PDX cells in vivo and ex vivo, 107 ALL-265 cells were injected into groups of mice

and one mouse was sacrificed at each time point to isolate PDX cells (left panel); 107 fresh CFSE labeled ALL-

265 PDX cells per ml were cultured on MS-5 feeder cells ex vivo (right panel).



BCP=B-cell precursor; *when the primary ALL sample was obtained; §time of passaging through

mice refers to the time from injection of the sample until mice had to be sacrificed due to end stage

leukemia

sample
type of

ALL

disease 

stage*

age*

[years]
sex cytogenetics

passaging 

time§

[days]

ALL-199
BCP-ALL

pediatric

2nd

relapse
8 F

somatic trisomy 21; leukemic 

homozygous 9p deletion 
42

ALL-233
BCP-ALL

pediatric

initial 

diagnosis
<1 M t(2;15)(p13;q15) 76 

ALL-265
BCP-ALL

pediatric
1st relapse 5 F

hyperploidy with additional 6, 13, 

14, 17, 18, 21, X chromosome
43

ALL-435
BCP-ALL

pediatric

initial 

diagnosis
<1 M MLL-ENL, t(11;19) 40

ALL-50
BCP-ALL

pediatric

initial 

diagnosis

7
F BCR/ABL positive 45

ALL-177
BCP-ALL

pediatric

initial 

diagnosis
8 F TEL/AML1 positive 130

ALL-230
T-ALL

pediatric

initial 

diagnosis
4 M

t(11;14)(p32;q11);  

rearrangement of TAL1-gene 

with the T-cell receptor locus

35

ALL-256
BCP-ALL

adult

initial 

diagnosis
41 F

trisomy 8; BCR/ABL positive 

t(9;22)(q34;q11)
75

ALL-363
BCP-ALL

adult

initial 

diagnosis
65 M

BCR-ABL positive 

t(9;22)(q34,q11)
60

Table S1, related to Figure 1.
Clinical data of patients donating diagnostic ALL cells for
xenotransplantation and sample characteristics.



*1x108 mouse bone marrow cells were mixed with different numbers of ALL-265 PDX cells

expressing NGFR and mKate; MACS-based enrichment targeting NGFR-expressing cells was

followed by flow cytometry-based enrichment targeting mKate-expressing cells; §enrichment factor

was calculated as ratio from “number of mouse bone marrow cells” and “recovered number of cells”

mixed* recovered

mouse bone marrow 
cells

PDX cells number of cells % recovery enrichment 
Factor§

1x108 1,250 1,234 99 81,000

1x108 12,500 10,262 82 9,700

1x108 37,500 34,679 92 2,666

Table S2, related to Figure 1.
Two step procedure allows enrichment of minute numbers of
PDX cells from mouse bone marrow.
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BCP-ALL, pediatric
initial diagnosis

ALL-50
BCP-ALL, pediatric
initial diagnosis

ALL-177
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initial diagnosis

ALL-230
T-ALL, pediatric
initial diagnosis

ALL-256
BCP-ALL, adult
initial diagnosis
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BCP-ALL, adult
initial diagnosis S

S
C

-H

CFSE

0 102 103 104

150K

0

150K

0

0 102 103 104

LRC

day 3

LRC

day 21

day 3

LRC

day 7

day 15

LRC

day 7

LRC

day 3

LRC

LRC

day 3 day 20

LRC

150K

0

150K

0

150K

0

150K

0

150K

0

150K

0

150K

0

0 102 1030 102 103

102 103 104 105102 103 104 105

0 102 103 1040 102 103 1040 102 103 104

ALL-199
BCP-ALL, pediatric
2nd relapse

ALL-233
BCP-ALL, pediatric
initial diagnosis

150K

0

0 102 103 104

day 7

LRC

LRC

day 3

LRC

day 10

LRC

day 14
120K

0

120K

0

LRC

day 17
120K

0
102 103 104 105

102 103 104102 103 104

120K

0
102 103 104

LRC

day 7
120K

0
102 103 104 105

LRC

day 4
120K

0
102 103 104 105

323

20

620

5,070

3,630

150K

0

102 103 104 105

LRC
126

day 15

A

150K

0

0 102 103 104

day 3

LRC

150K

0

0 102 103 104

day 17

LRC
850

day 3

LRC

150K

0

0 102 103 104

day 7

LRC

150K

0

0 102 103 104

150K

0

0 102 103 104

day 13

LRC
70

LRC

B



Figure S2, related to Figure 2.
A rare, long-term dormant subpopulation exists in ALL PDX cells
growing in mice.

(A) 107 CFSE labeled ALL-199 cells/mouse were injected into 3 mice and PDX cells were enriched from

bone marrow of 1 mouse at each time point using MACS sorting targeting NGFR and FACS sorting

targeting mKate; LRC and non-LRC were quantified by flow cytometry. One representative out of at least

10 independent experiments is shown. All further PDX samples did not express transgenes. Here, 10% of

the entire bone marrow isolate was analyzed without a prior MACS enrichment step. Unstained cells

represent mouse bone marrow cells and non-LRC. Day = number of days after injection of CFSE-labeled

cells.

(B) Immunohistochemistry was performed using TdT to visualize all ALL blasts and Ki-67 to visualize

proliferating cells in the diagnostic BM biopsy from one 69 years old female patient with BCR/ABL positive

normal karyotype ALL; double staining (lowest panel) indicates frequent dormant ALL blasts as TdT

positive, Ki-67 negative cells. Hemalum staining was used for nuclei; scale bar represents 50 µm.



A

Figure S3, related to Figure 3.
LRC localize to the endosteum in ALL-199.

(A) Immunohistochemistry of consecutive murine bone marrow femur sections 10 days after injection of
CFSE-stained PDX ALL-199 cells; mCherry (red) indicates all PDX cells, CFSE (green) indicates LRC.
(B) Kinetic for ALL-199; mean +/- standard error; * p<0.05; ** p<0.01 by two-tailed unpaired t-test.

DAPI mCherry (all PDX) DAPI CFSE (LRC)

non-LRC

B

day 3      day 7     day10 day10

100

80

60

40

20

0

ce
lls

cl
o
se

to
e
n
d
o
st

e
u
m

[%
]

**

**

LRC



*LRC and non-LRC obtained 14 days after injection of CFSE labeled ALL-265 or ALL-199 cells

were transplanted into secondary recipient mice in limiting dilutions at numbers indicated;

bioluminescence in vivo imaging was performed repetitively at the indicated time points to

determine engraftment; LIC frequency was calculated using the ELDA software; CI = confidence

interval

sample
number of cells 
injected per mouse*

time [days after injection]

20 28 41 48 62 75

ALL-265

LRC 333 0/2 0/2 0/2 0/2 2/2 2/2

100     0/5 0/5 0/5 0/5 2/5 3/5

10 8/19

LIC frequency 1/40 (CI = 95%; lower = 1/84, upper = 1/19)

non-LRC 3333 0/3 1/3 3/3 3/3 3/3 3/3

1000 0/5 0/5 2/5 4/5 5/5 5/5

333 0/5 0/5 0/5 0/5 4/5 4/5

100 0/5 0/5 0/5 0/5 2/5 2/5

10 8/20

LIC frequency 1/85 (CI = 95%; lower = 1/179, upper = 1/40)

ALL-199

number of cells 
injected per mouse

time [days after injection]

35 42 49 56 69 77

LRC 333 0/3 0/3 0/3 0/3 2/3 3/3

100     n.d. 0/4 0/4 0/4 1/4 3/4

LIC frequency 1/69 (CI = 95%; lower = 1/209, upper = 1/23)

non-LRC 1000 1/5 3/5 5/5 5/5 5/5

333 0/3 2/3 2/3 3/3 3/3 3/3

100 0/4 1/4 1/4 3/4 4/4 4/4

LIC frequency 1/100 or higher

Table S3, related to Figure 3.
LRC and non-LRC harbor similar numbers of leukemia
initiating cells (LIC).
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Figure S4, related to Figure 4.
LRC survive systemic drug treatment in vivo.

Mice were injected with 107 CFSE-labeled ALL PDX cells/mouse, were treated on day 7 and sacrificed on

day 10; LRC and non-LRC were analyzed and re-transplanted into 1-2 secondary recipient mice at 2,000-

5,000 LRC per mouse.

(A) Numbers of PDX cells isolated from mice with and without prior systemic drug treatment; mean of each

group (n=8-11) +/- standard error.

(B) For ALL-199, a second relapse, 11 mice were treated with a single application of vincristine (VCR, 1.5

mg/kg i.v.), 8 mice were treated with a single application of etoposide (ETO, 75 mg/kg i.p.) and 8 control

mice received buffer; shown are original data of representative mice.

(C) Quantification in all mice per group depicted as mean of relative drug effects on LRC compared to non-

LRC (100%) +/- standard error. For ALL-50, a sample obtained at initial diagnosis, drugs were applied daily

over 3 days and 2 mice were treated with cytarabine (AraC, 150 mg/kg i.p.), 2 mice with ETO (33 mg/kg

i.p.), 2 mice with amsacrine (Amsa, 25 mg/kg i.p.) and 2 mice with epirubicine (EPI, 25 mg/kg i.p., single

application). For ALL-435, another sample obtained at initial diagnosis, drugs were applied daily over 3

days and 2 mice were treated with ETO (33 mg/kg, i.p.), 2 mice with Amsa (25 mg/kg i.p.) and one mouse

with EPI (25 mg/kg i.p., single application). ** p< 0.01, *** p<0.001, **** p<0.0001 by two-tailed unpaired t-

test.

(D) Mean relative proportion of LRC in total PDX cells with and without treatment.

(E) To study their stem cell potential, LRC of ALL-199 LRC were isolated after treatment, re-transplanted

and growth monitored by in vivo imaging mean of each group (n=1-2) +/- standard error. Imaging pictures

from dpi 60 (ctrl, VCR) and dpi 108 (ETO).
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Figure S5, related to Figure 5.
Expression profile of LRC shows distinct changes to non-LRC.

15 days after transplantation of CFSE labeled PDX cells, LRC and non-LRC were subjected to RNA

sequencing. For ALL-265, high quality single cell mRNA seq profiles were obtained from 15 LRC and 35

non-LRC cells. To combine single-cell and bulk RNA-seq data, median count data of single-cell

experiments were summarized as a single expression profile for each LRC and non-LRC.

(A) Hierarchical clustering and gene expression heatmap across the 500 most differentially expressed

genes comparing LRC and non-LRC in ALL-199 (p < 0.01).

(B) Comparison of Transcript Per Million (TPM) expression values between bulk versus single-cell ALL-265

(upper) and ALL-265 versus ALL-199 (lower).

(C) Quantification of expressed genes per cell (TPM > 1) in LRC versus non-LRC according to single-cell

RNA-seq of ALL-265; shown is the median with upper/lower quartile and maximum/minimum, outliers are

shown as dots.

(D) Gene set enrichment analysis for indicated KEGG pathways and the genes differentially regulated in

LRC versus non-LRC.

LRC non-LRC



Table S4, related to Figure 5.
List of 500 most differentially expressed genes between LRC
and non-LRC in single cell RNA sequencing of ALL-265

Provided as an Excel file.

Table S5, related to Figure 5. Integrated LRC signature.

Provided as an Excel file.

Table S6, related to Figure 5.
KEGG pathways enriched with LRC versus non-LRC
differentially expressed genes in combined analysis

Provided as an Excel file.
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Figure S6, related to Figure 6.
Characterization of cells at minimal residual disease.

(A-B) 107 ALL-265 cells were injected into 28 mice; when 40 % of bone marrow cells were human, therapy

was started using vincristine (VCR, 0.25 mg/kg; n=4) or cyclophosphamide (Cyclo, 100 mg/kg; n=4) or a

combination thereof (VCR+Cyclo; n=12), weekly for 3 weeks; VCR+Cyclo combination treatment had

reduced tumor burden to minimal residual disease (MRD; < 1% human cells in bone marrow).

(A) Mean of each group +/- standard error; * p<0.05, **** p<0.0001 by two-tailed unpaired t-test; mice

receiving buffer had to be sacrificed after two weeks of treatment due to end stage leukemia.

(B) Percentage of PDX ALL cells in mouse bone marrow as determined by flow cytometry post mortem as

mean +/- standard error; * p<0.05, ** p<0.01, **** p<0.0001 by two-tailed unpaired t-test.

(C) To study their behavior after release of treatment pressure, ALL-199 cells were injected into 4 mice per

group which were repetitively monitored by in vivo imaging; at substantial tumor burden, mice were treated

with Vincristine (VCR) 0.4 mg/kg and left untreated thereafter; mean of each group +/- standard error.

(D-F) ALL-199 cells were injected into 19 mice; when 30 % of bone marrow cells were human, 5 untreated

samples were harvested and one mouse were subjected to single cell sequencing; remaining mice

received either buffer or vincristine (VCR, 0.25 mg/kg; n=5) or cyclophosphamide (Cyclo, 100 mg/kg; n=3)

or a combination thereof (VCR+Cyclo; n=6) weekly for 2 weeks; when VCR+Cyclo combination treatment

had reduced tumor burden to minimal residual disease (MRD; < 1% human cells in bone marrow), cells

from the 6 VCR+Cyclo mice were isolated and one mouse were subjected to single cell sequencing.

(D) Hierachical clustering and gene expression heatmap across the 500 most differentially expressed

genes between MRD cells and untreated cells in ALL-199 single cell RNA sequencing (MRD cells n=90;

untreated cells n=32; p < 0.01; for gene annotation see Table S7).

(E) Significantly enriched KEGG pathways (p < 0.05) in MRD cells versus untreated cells as determined by

geneset enrichment analysis.

(F) Principle component analysis of transcriptomes of 32 untreated control ALL-199 single cells and 90

MRD cells together with single cell data from LRC and non-LRC as in Figure 5C.
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Figure S7, related to Figure 7.
LRC resemble primary MRD cells from patients.

(A) Principal component analysis of the bulk adult StemB sample compared to 3 bulk diagnosis samples of adult

patients with BCR-ABL positive ALL.

(B) Gene set enrichment analysis of genes differentially expressed in LRC versus non-LRC and published

signatures; HSC signature I = Georgantas et al., 2004; HSC signature II = Eppert et al., 2011 (left panel).

Principal component analysis (PCA) of ALL-265 single cells on the basis HSC marker genes (Eppert et al., 2011)

(right panel).

(C) Geneset enrichment analysis for a published gene signature prognostic for ALL with high risk of relapse

(Kang et al., 2010).
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sample age# sex
multi-
center 
study

genetic
subtype

flow 
RG

proto-
col 
RG&

stage
after 

induc-
tion II

day of
MRD

measure-
ment§

BM 
blasts 

at 
MRD 
(%)$

sort

1  38 F
GMALL 

0703
BCR-
ABL

na VHR CR 71 0.24 StemB*

2 39 M
GMALL 

0703
BCR-
ABL

na VHR CR 71 0.32 StemB*

1 4 F
BFM 
2009

ETV6/
RUNX1

MR MR na na na
CD19+, 

CD10+++, 
CD20-

2 3 F
BFM 
2009

ETV6/
RUNX1

MR SR na na na
CD19+,

CD99bright, 
CD10+++

3 5 M
BFM 
2009

HD MR HR na 33 0.69
CD19+, 
CD10+, 
CD123+

4 18 M
BFM 
2009

B 
OTHER

MR HR na 33 1.10
CD19+, 
CD10++, 
CD45-/dim

5 3 F
BFM 
2009

HD MR MR na 33 0.13
CD19+, 
CD10++, 
CD20dim

#age at diagnosis in years; F=female; M=male; GMALL=German Multicenter ALL Study Group;

BFM=Berlin-Frankfurt-Münster; HD=high hyperdiploid karyotype; RG=risk group; na=not

applicable; MR=medium risk; VHR=very high risk; SR=standard risk; HR=high risk; &therapy

risk group (RG) assignment; §days after onset of treatment; BM=bone marrow; $in BCR-ABL

positive samples, MRD was quantified by PCR using the BCR-ABL/ABL ratio; *StemB cells are

CD19+, CD34+, CD38-/low according to Lutz et al., 2013; Hong et al., 2008; Castor et al., 2005

Table S7, related to Figure 7.
Clinical data from BCP ALL patients of transcriptomes at
diagnosis and/or MRD.

Table S8, related to Figure 7.
List of most significantly differentially expressed genes
between primary samples from 5 primary ALL diagnosis and 3
MRD samples after 33 days of treatment.

Provided as an Excel file.
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Figure S8, related to Figure 7.
Identical growth behavior upon re-transplantation and identical ex vivo
drug sensitivity in LRC versus non-LRC.

(A) Upper panel shows experimental procedure; ALL-265 cells were amplified in donor mice, CFSE labeled, re-

transplanted into primary recipients and re-isolated after 14 days (left lane). Cells were separated into LRC

(middle lane) and non-LRC (right lane) and re-transplanted into secondary recipients which were imaged after 62

days (lower row). non-LRC were additionally re-labeled with CFSE and re-transplanted at high numbers which

was unfeasible for LRC due to their minor abundance (middle panel).

(B) 500 or 100,000 freshly isolated non-LRC (ALL-265) were stimulated ex vivo for 48 hours with the following

cytotoxic drugs: amsacrine (AMSA; 18 µM), daunorubicine (DAU; 250 nM); etoposide (ETO; 30 µM) and

mitoxantrone (MITO; 675 nM); shown is one experiment in triplicates +/- standard error; ns = not significant by

two-tailed unpaired t-test. Specific cell death was determined by DAPI staining and specific cell death calculated

thereof.

(C-F) Freshly isolated PDX cells were seeded in triplicates in the presence or absence of irradiated MS-5 cells

expressing the blue fluorochrome mtagBFP. Cells were stimulated for 48-72 hours and all cells per well were

removed by trypsin digestion and analyzed by flow cytometry. * p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001

by two-tailed unpaired t-test. SCD = spontaneous cell death in the absence of cytotoxic drugs.

(C) Feeder cells were excluded by gating on non-blue/mtagBFP-expressing cells; living cells were quantified in

absolute and relative amounts using either forward/side scatter analysis or propidium iodide staining with similar

results.

(D, E) 700-1,900 fresh LRC or non-LRC were stimulated with the following drugs: Etoposide (ETO; 3 µM) or

mitoxantrone (MITO; 0.45 µM) for ALL-265 and etoposide (ETO; 15 µM) or doxorubicine (DOX; 0.5 µM) for ALL-

199. E shows results obtained by forward sideward scatter analysis, F shows results obtained by propidium

iodide (PI) staining as well as absolute number of surviving cells as estimated in forward/side scatter analysis.

Shown are mean of up to 3 independent experiments; +/- standard error.

(F) 100,000 unsorted PDX ALL-265 were stimulated with vincristine (VCR; 0.3 µM), daunorubicine (DAU; 0.25

µM), doxorubicine (DOX; 0.5 µM), mitoxantrone (MITO; 0.45 µM), epirubicine (EPI; 0.4 µM) and etoposide

(ETO; 3 µM) for 48 hours; 100,000 unsorted PDX ALL-199 were stimulated with vincristine (VCR; 0.03 µM),

daunorubicine (DAU; 0.25 µM), doxorubicine (DOX; 0.5 µM), mitoxantrone (MITO; 0.25 µM), epirubicine (EPI;

0.4 µM) and etoposide (ETO; 3 µM) for 72 hours; mean of 9 data points from 3 independent experiments in

triplicates is shown; +/- standard error; Welch’s correction war required in two-tailed unpaired t-test for ALL-265

and DAU stimulation in ALL-199.

(G) 14 days after transplantation, LRC or non-LRC were isolated and 500-800 cells stimulated ex vivo for 48

hours with the following cytotoxic drugs: doxorubicine (DOX; 500 nM), epirubicine (EPI; 500 nM); etoposide

(ETO; 30 µM) and vincristine (VCR; 300 nM). Specific cell death was determined after 48h by forward-side

scatter and by DAPI staining and specific cell death calculated thereof; mean of 6 data points from 2 independent

experiments in triplicates is shown +/- standard error; ns = not significant by two-tailed unpaired t-test.



Supplemental Experimental Procedures 
 
The NSG mouse model of individual ALL 
ALL blasts were obtained from children and adults treated within clinical multicenter studies. NSG mice (NOD/scid, 
IL2 receptor gamma chain knockout mice) were obtained from The Jackson Laboratory (Lund, Sweden). The animal 
model was performed as described (Liem et al., 2004). Briefly, fresh primary ALL cells were isolated by Ficoll 
gradient centrifugation from peripheral blood or bone marrow aspirates that had been obtained from leftovers of 
clinical routine sampling before onset of therapy. 10 million ALL cells were injected into 6-12 weeks old NSG mice 
via the tail vein. Engraftment was monitored by 2-weekly flow cytometry measurement of human cells in peripheral 
blood starting at week 6. ALL-265 was first engrafted by Jean Pierre Bourquin and Beat Bornhäuser in Zurich. Mice 
were sacrificed at first clinical signs of disease, as measured by quantification of human cells in peripheral blood or 
by in vivo imaging. From engrafted mice, PDX ALL cells were harvested from enlarged spleens and either directly 
re-injected or frozen at -190 °C and re-injected after thawing. Accuracy of sample identity was verified by repetitive 
finger printing using PCR of mitochondrial DNA (Hutter et al., 2004).  
 
Cloning 
The construct encoding for all 3 transgenes (Figure S1A) was generated by cloning a synthesized DNA-fragment 
(Eurofins Scientific, Luxembourg) encoding for mKate and a truncated form of the human nerve growth factor 
receptor lacking any intracellular signaling domain (NGFR; construct -mKateT2A-NGFR) into the pCDH-EF1α-
extGLucT2A-copGFP Vector (Terziyska et al., 2012), leaving membrane anchored Gaussia luciferase and replacing 
copGFP gene using BamHI and SalI; T2A or P2A self-cleaving peptides enabled equimolar expression of the 
transgenes. For immunohistochemistry, cells were additionally transduced with a construct expressing mCherry 
which was obtained by amplifying mCherry from the pSicoR-U6-EF1a-mCherry Vector (addgene, Cambridge, MA, 
USA) and cloning it into the pCDH-EF1α-extGluc-T2A-copGFP Vector replacing the copGFP gene using BamHI 
and SalI.  
 
Lentiviral transduction of ALL PDX cells and enrichment of transgenic cells 
ALL-199 and ALL-265 were transduced using pCDH-EF1α-extGlucT2A-mKate-NGFR. Third generation packaging 
plasmids pMDLg/pRRE, pRSV-Rev and pMD2-G (Dull et al., 1998) were kindly provided by T. Schroeder. High-
titer vesicular stomatitis virus (VSV) G protein-pseudotyped lentivector was prepared by transient 4-plasmid 
transfection of 293T cells using TurboFect Transfection Reagent (Thermo Scientific, Waltham, MA, USA) and 
supernatant concentration as described (Klier et al., 2008; Terziyska et al., 2012). The functional titer of virus was 
determined by transduction of NALM-6 B-ALL cell line cells with serial dilutions of the vector stock, followed by 
analysis of transgene positive cells using flow cytometry. 
Generation of transgenic PDX cells was performed as previously described (Terziyska et al., 2012). In brief, PDX 
cells were transduced over night with lentivirus at MOI > 10 in the presence of 8 µg/ml polybrene. The next day, 
cells were washed thoroughly and injected into mice. After passaging, cells expressing the transgenes were enriched 
in two consecutive rounds by flow cytometry using FACSAriaIII (BD Biosciences) and gating on the red 
fluorochrome before cell re-amplification in mice. Although lentiviral transduction could in principle alter cells due 
to the transduction process or genomic integration, we could not detect adverse effects so far in comprehensive 
quality controls (Terziyska et al., 2012).  
 
Bioluminescence in vivo imaging 
For bioluminescence in vivo imaging mice were anesthetized with isoflurane and D-Luciferin (BIOMOL GmbH, 
Hamburg, Germany) dissolved in sterile PBS was used as substrate. Immediately after intravenous tail vein injection 
of 150 mg/kg of native D-Luciferin per mouse, mice were imaged for 30 seconds or up to 2 minutes using a field of 
view of 12.5 cm with binning 8, f/stop 1 and open filter setting using the IVIS Lumina II Imaging System (Perkin 
Elmer, MA, USA). The Living Image software 4.x (Perkin Elmer, MA, USA) was used for data acquisition and 
quantification of light emission using a scale with a minimum of 1.8×104 photons per second per cm2 per solid angle 
of 1 steradian (sr) (Terziyska et al., 2012). Mice were considered positive for engraftment, if light emission by the 
entire mouse exceeded 5x105 photons s-1 and positive signals were detected at typical sites at the lower extremities. 
 
Reagents 
For flow cytometry, analysis of NGFR, mKate, mCherry, BrdU, Annexin V, DAPI and PI was performed by flow 
cytometry, using BD LSRFortessa and BD FACSAriaIII (BD Biosciences, Heidelberg, Germany). The following 
antibodies were used: NGFR-PerCP-Cy5.5 (Biolegend, CA, USA), BrdU-APC, Annexin V-FITC detection kit (both 



 

 

from BD Biosciences, Heidelberg, Germany). Mouse CD45-APC-Cy7 (Biolegend, San Diego, CA, USA) was used 
to exclude mouse cells. 
BrdU incorporation was detected using the BrdU Flow Kit (BD Biosciences, Heidelberg, Germany). For analysis of 
cell viability, DAPI and/or PI were added to the cells at a concentration of 1µg/ml. All antibodies and reagents were 
used according to the manufacturer’s instructions. 
For chemotherapy treatments in vivo and ex vivo vincristine (VCR; Merck, Darmstadt, Germany), etoposide (ETO; 
Sigma Aldrich, St. Louis, USA), cyclophosphamide (Cyclo; Baxter, USA), epirubicine (EPI; Sigma Aldrich, St. 
Louis, USA), amsacrine (Amsa, Sigma Aldrich, St. Louis, USA), cytarabine (Ara-C; cell pharm GmbH, Bad Vilbel, 
Germany), daunorubicin (DAU; Sigma Aldrich, St. Louis, USA), mitoxantrone (MITO; Sigma Aldrich, St. Louis, 
USA) or doxorubicin (DOX, Sigma Aldrich, St. Louis, USA) were used. 
 
Labeling of PDX cells with BrdU and CFSE 
To label PDX cells with BrdU, donor mice were fed with BrdU (VWR, Radnor, PA, USA) during the 7 last days 
before cell isolation, at approximately 0.8 mg/kg/d BrdU using BrdU-containing drinking water. Freshly isolated 
PDX cells were labeled with CFDASE (Life Technologies, Carlsbad, CA, USA) according to manufacturer’s 
instructions. Cells were washed and directly injected into recipient mice. The procedures resulted in both BrdU and 
CFSE positivity of well above 98% of PDX cells, as validated by flow cytometry. As PDX ALL cells are 
heterogeneous in size, loss of CFSE appears as continuum in flow cytometry devoid of the distinct peaks known 
from normal lymphocytes.  
 
Enriching human PDX ALL cells from murine bone marrow 
The aim was to isolate and enrich minute numbers of human PDX ALL cells out of a major excess of murine bone 
marrow cells. The procedure was designed according to published protocols for isolating normal mouse 
hematopoietic stem cells from murine bone marrow (Takizawa et al., 2011). Our studies concentrated on the first 3 
weeks of ALL growth in mice, when low tumor burden is mainly restricted to bone marrow without major 
involvement of further organs (data not shown). 
Isolation of bone marrow cells from mice 
To collect as many bone marrow cells as possible from each mouse, the hip, femura, tibiae, spine and sternum were 
isolated and crushed in a porcelain mortar. The suspension was washed with cold PBS, filtered through a 70 µm cell 
strainer, washed again with PBS and re-suspended in cold PBS at 1x107 cells/ml.  
 
Step 1: Enriching NGFR expressing PDX cells from the bone marrow suspension 
A first enrichment step consisted in magnetic cell separation (MACS) of NGFR-expressing PDX ALL cells from the 
entire mouse bone marrow isolated. 20 µl per 1x107 cells of anti-human NGFR MicroBeads (Miltenyi Biotech, 
Bergisch Gladbach, Germany) were added to the isolated mouse bone marrow cell suspension and incubated 10 
minutes at 4°C. A maximum of 2x108 cells were loaded onto a LS column (Miltenyi Biotech, Bergisch Gladbach, 
Germany), prepared according to manufacturer’s instructions. Cells were recovered from the column according to 
manufacturer’s instructions and washed with PBS.  
 
Step 2: Enriching and quantifying fluorochrome expressing PDX cells from NGFR-expressing cells 
The second consecutive enrichment step consisted in flow cytometry enrichment of red fluorochrome expressing 
cells out of the cell suspension obtained after MACS enrichment. Cells obtained after MACS enrichment were 
stained with DAPI to exclude dead cells and with anti-muCD45-APC-Cy7 (anti-mouse CD45) to exclude murine 
hematopoietic cells. Cells were quantified and sorted using a BD FACSAriaIII (BD Biosciences, Heidelberg, 
Germany), gating (i) on the lymphocyte gate in forward/side scatter, (ii) the negative gate for both mouse CD45 and 
DAPI and ultimately (iii) the positive gate for the red fluorochrome.  
Alternatively and to quality control for the MACS enrichment step, 10% of the entire population of bone marrow 
cells was directly analyzed by flow cytometry without prior MACS enrichment and with the identical staining 
procedure (Figure S1D). The disadvantage of this procedure lies in the prolonged periods of time required for flow 
cytometric cell enrichment disabling measuring more than 10% of all cells. 
 
Enriching dormant cells (LRC) from human PDX ALL cells 
Step 3: Separating PDX ALL cells into LRC and non-LRC  
Separating PDX ALL cells into LRC and non-LRC was performed within the flow cytometry enrichment step 
described above (Step 2) by addition of a 4th gating strategy. Additionally to gating on (i) the lymphocyte gate in 



 

 

forward/side scatter, (ii) the negative gate for both mouse CD45 and DAPI and (iii) the positive gate for the red 
fluorochrome, gating (iv) on CFSE was used to discriminate LRC and non-LRC as shown in Figure 1D. To set gate 
4, CFSE intensity was measured at day 3 after injection when major bleaching had stopped; maximum CFSE MFI 
was used to define start of any cell proliferation (“0 divisions”). Maximum CFSE MFI was divided by factor 2 to 
calculate CFSE bisections mimicking cell divisions. 7 CFSE MFI bisections or more were defined as entire loss of 
the CFSE signal characterizing non-LRC. The LRC gate was set to include all cells harboring high CFSE signal of 
below 3 bisections of the maximum CFSE MFI (Schillert et al., 2013) (Figure 1D). All further analyses were done 
and analyzed with the same instrument settings and gates as determined using the sample on day 3 sample of the 
experiment.  
Ex vivo culture of PDX cells 
PDX cells were cultured in RPMI medium supplemented with 20% FSC, 1% pen/strep, 1% gentamycin, 6 mg/l 
insulin, 3 mg/l transferrin, 4 µg/l selenium (ITS-G, Gibco, San Diego, CA, USA), 2 mM glutamine, 1 mM sodium 
pyruvate, 50 µM α-thioglycerol (Sigma-Aldrich, St. Louis, MO, USA). 
 
Limiting dilution transplantation assay (LDTA) 
For LDTAs, NSG mice were injected intravenously with different amounts of PDX cells from ALL-265 or ALL-
199. Development of leukemia was monitored by bioluminescence in vivo imaging every 7 to 14 days after cell 
injection. LIC frequencies were determined according to Poisson statistics, using the ELDA software application 
(http://bioinf.wehi.edu.au/software/elda/) (Hu and Smyth, 2009). 
 
Drug stimulation ex vivo 
500 LRC and 500 or 100,000 non-LRC were cultured in 100 µl medium in 96-well plates, in cell concentrations of 
5,000 cells/ml or 106 cells/ml. Cytotoxic drugs were added in triplicates at the clinically relevant concentrations 
described in each Figure legend. Cell death was measured after 48h by forward-side scatter and DAPI or propidium 
iodide staining in a flow cytometer. Specific cell death induced by each drug was calculated as follows: specific cell 
death = [(cell death(stimulated) – cell death(control) / (100 – cell death(control))] * 100. 
For co-cultures, MS-5 cells stably expressing mtagBFP as blue fluorochrome were irradiated in suspension with 60 
Gy and seeded at 104 per well in a 96 well plate; 700 - 1,900 freshly isolated PDX cells were incubated with and 
without feeder cells in 100 µl medium for 24-48h stimulated with conventional cytotoxic drugs at clinically relevant 
concentrations; entirely all cells of each well were removed using trypsin digestion and stained with propidium 
iodide; feeder cells were excluded by gating on non-blue-expressing cells independently from CFSE or propidium 
iodide staining; absolute numbers of living PDX cells were measured using forwardside scatter analysis and cell 
death was additionally measured by propidium iodide staining in flow cytometry. 
 
In vivo treatment of mice 
For treatment of LRC, NSG mice were injected i.v. with 1x107 PDX cells. 7 days after cell injection, control animals 
received physiological salt solution i.p., while treatment group mice were injected with chemotherapeutic drugs as 
indicated in Figure legends. Mice were taken down 3 days later, bone marrow was collected, and PDX cells were 
isolated and analyzed for CFSE label retention. For calculation of relative drug effect on LRC compared to non-LRC 
(Figure 4D), first absolute number of control LRC or non-LRC were divided by the absolute number of treated LRC 
or non-LRC, respectively. In a second step, relative cell reduction in non-LRC was set to 100% and cell reduction in 
LRC was calculated relative to non-LRC. A maximum of 4 animals could be included into the same experiment as a 
maximum of 4 animals could be analyzed for CFSE distribution at the same day. 
To obtain cells at minimal residual disease, 1x106 ALL-199 or ALL-265 were injected into 19 NSG mice and 
leukemic growth was followed by weekly in vivo imaging. Treatment was started at an average of 1x1011 photons s-1, 
when untreated cells were recovered from 5 mice. Mice were divided into different treatment groups which were 
treated as indicated in Figures legends. 
 
Immunostaining of bone marrow sections 
Mouse femurs were fixed in zinc formalin fixative for 1 day at 4°C. Bones were washed with PBS and decalcified 
with Osteosoft (Merck) for 3 days at 4°C, infiltrated with 30% sucrose for 1 day at 4°C, embedded in O.C.T. 
compound (Sakura) and stored at -80°C. Cryosections of decalcified bones were obtained by using the CryoJane tape 
transfer system (Leica). For immunostaining, sections were permeabilized and blocked with 5% goat serum and 
0.1% Tween-20 serum in PBS for 45 min at room temperature. Primary antibodies were applied for 1 day at 4°C and 



 

 

followed by secondary antibody incubation for 45 min at room temperature. Sections were finally stained with 10 
mg/ml DAPI for 15 min and the slides were mounted with prolong gold (Invitrogen). Washing in between each 
staining steps was performed. Primary antibodies were rabbit-anti-FITC (ThermoFisher; 1:100) and rabbit-anti-
mCherry (Abcam; 1:100) and goat-anti-rabbit with Alexa 594 (Invitrogen) was used as secondary antibody. Images 
were acquired on a Leica SP5 confocal microscope and analyzed with ImageJ. CFSE signal intensity was adapted to 
the mCherry signal by adjusting the 8 bit threshold for quantification of the LRC population based on FACS data. 
The endosteal region was defined as less than 100 µm from bone matrix (Nombela-Arrieta et al., 2013). Cells of 
interests were counted semi-automatically by the program ImageJ. Relative endosteal cells were calculated as 
absolute cell numbers in the endosteal region divided by absolute cell numbers in entire bone marrow section. Mean 
and standard error were calculated from at least 3 sections of each femur from 2 independent mice.  
For immunhistology of primary bone marrow biopsies, bone marrow biopsies were fixed and stained using the 
avidin-biotin-peroxidase complex (ABC) method (Hsu et al., 1981) and anti-TdT antibody (Leica, Germany) and 
anti-Ki-67 antibody (Dako, Germany).  
 
Flow cytometric cell enrichment of StemB cells from BCR-ABL positive ALL 
Thawed mononuclear bone marrow cells were handled on ice and stained with CD3-FITC, CD19-PE, CD34-APC, 
CD38-PECy7 (all Becton Dickinson) and DAPI 0.1 µg/ml; StemB cells expressing CD3- CD34+ CD38-/low CD19+ 

cells were enriched using the FACSAriaTM (Becton Dickinson) according to (Castor et al., 2005; Hong et al., 2008; 
Lutz et al., 2013). 
 
Flow cytometric cell enrichment of diagnostic and MRD pediatric BCP-ALL cells 
Thawed mononuclear bone marrow cells were handled on ice and stained using antibodies appropriate for minimal 
residual disease (MRD) detection against CD10, CD19, CD20, CD34, CD38, CD45, CD58, CD99, and CD123. 
Leukemic blasts were enriched to >95% purity using a FACSAria™ Fusion cell sorter equipped with an automatic 
cell deposition unit (ACDU; Becton Dickinson); data analysis was performed using the FACSDiva™ software 
(Becton Dickinson).  
 
Bulk RNA sequencing library construction 
PDX LRC and non-LRC cell populations were sorted into lysis buffer composed of 0.2 % Triton X-100 (Sigma) and 
2 U/µl of RNAse Inhibitor (Life Technologies). ERCC spike-in controls (Life Technologies) were added to the cell 
lysis mix at 1:5,000 dilution. RNA was cleaned-up from the crude lysate with Agencourt RNAclean XP SPRI beads 
(Beckman-Coulter). cDNA was synthesized and pre-amplified from 5 µl of lysate according to the Smart-seq2 
protocol (Picelli et al., 2013).  
For each pediatric ALL MRD and PDX MRD sample, 2000 cells were sorted into TCL buffer (Qiagen). RNA was 
cleaned up using Agencourt RNAclean XP SPRI beads from half of the lysate and used to generate UMI-seq 
libraries as previously described (Parekh et al., 2016). 
For all libraries, 1 ng of pre-amplified cDNA was used as input for tagmentation by the Nextera XT Sample 
Preparation Kit (Illumina), where a second amplification round was performed for 12 cycles.  
 
RNA sequencing library construction of primary StemB single cells 
Single adult StemB cells were deposited in 96-well plates containing 5 µl lysis buffer composed of a 1:500 dilution 
of Phusion HF buffer (NEB).  Single-cell RNA-seq libraries were constructed using the SCRB-seq method according 
to (Soumillon et al., 2014).  
 
RNA-seq analysis 
All sequencing reads were demultiplexed from the Nextera (i5 and i7) indices. 
For Smart-seq libraries, demultiplexed reads were aligned to the human genome (hg19) and ERCC reference using 
NextGenMap (Sedlazeck et al., 2013). Count data was generated from mapped reads using featureCounts (Liao et al., 
2014) on ENSEMBL gene models (GRCh38.74). 
For UMI-seq and SCRB-seq libraries, read pairs were processed by tagging the cDNA read with barcode and UMI 
sequences using the Drop-seq tools pipeline (Macosko et al., 2015). Tagged reads were aligned to the human genome 
(hg19) using STAR (Dobin et al., 2013) and sample-wise count tables generated using Drop-seq tools.  
 
To remove noise from lowly expressed genes, count data sets were subjected to data-driven gene filtering using the 
HTSFilter R package (Rau et al., 2013). For PDX single cell sequencing libraries, only those cell data sets were used 



 

 

which came from viable cells, obtained at least 1 million reads and detected at least 3000 genes (TPM > 1). For 
combined bulk (1x ALL-265; 4x ALL-265) and single cell (1x ALL-265) analysis (Figure 5), filtered single cell 
datasets were included summarized by gene-wise median read count as one LRC and non-LRC replicate. Differential 
expression (DE) analysis was done in the DESeq2 R package (Love et al., 2014) using the Wald test. 
A combined LRC signature (ALL-265 & ALL-199; 250 genes; FC > 1; padj < 0.05) was obtained from this data.  
Overrepresentation of significantly differentially expressed genes in KEGG pathways was tested by a fixed network 
enrichment analysis (FNEA) implemented in the neaGUI R package (Alexeyenko et al., 2012). 
We applied hierarchical clustering gene-wise and sample-wise with complete linkage based on Euclidian distances of 
variance stabilized counts of DE genes (500 genes with lowest padj, FDR adjustment  (Benjamini and Hochberg, 
1995)) and plotted as heatmap. The reference expression value is the expression average of non-LRC cells. 
Principal Component Analysis (PCA) of LRC PDX cells was performed on variance stabilized counts of the 500 
most variable genes to display the main variance of the samples. 
To analyse combined data from all obtained single-cells, count data was normalized accounting for batch effects 
using SCONE (Risso et al., 2014). PCA and k-means clustering of combined single-cell data was performed on all 
shared detected genes. 
Gene set enrichment analysis was performed using GSEA Desktop Application. For ranking all genes, a metric score 
was calculated by multiplying their log fold changes with the –log10(p_adj) values and submitted to the Pre-Ranked 
GSEA tool. The statistical significance was determined by 1000 gene set per mutations (Subramanian et al., 2005). 
 
Dynamical modelling 
The growth behavior of ALL cells in bone marrow has been analyzed using mechanistic ordinary differential 
equation models describing the population growth and the CFSE dilution. To gain insights into the in vivo growth 
behavior of ALL cells, we compared three alternative models. The first model assumed exponential growth, the 
second model assumed logistic growth caused by a decreased rate of cell division at higher cell densities, and the 
third model assumed logistic growth caused by an increased rate of cell death at higher cell densities. 
The state variables of all three models are the cell number n(t) and the mean fluorescence intensity m(t). The 
governing equations for n(t) and m(t), 

dn/dt = (α(n)-β(n)) n, N(0) = n0,  
dm/dt = - (α(n)+k) m, m(0) = m0, 

have been deduced from existing partial differential equation models (Hasenauer et al., 2012). In this governing 
equations α(n) denotes the rate of cell division, β(n) denotes the rate of cell death, and k denotes the rate of CFSE 
degradation. 
The three model alternatives only differed in the parameterization of rates of cell division and cell death, α(n) and 
β(n). For the exponential growth model all rates were constant, α(n) = α0 and β(n) = β0. For the logistic growth 
model with decreasing cell division at higher cell densities α(n) = α0 (1-n/nα) and constant β(n) = β0 were used. For 
the logistic growth model with increasing cell death at higher cell densities constant α(n) = α0 and β(n) = β0 (1+n/nβ) 
were used. As the measurement of the mean intensity induced by CFSE is corrupted by the cell’s autofluorescence, 
we measure m’(t) = m + ma, in which ma denotes the average autofluorescence. 
The parameters of the three models were determined from measurement of n(t) and m’(t) using maximum likelihood 
estimation, assuming normally distributed measurement noise. For model comparison the Akaike information 
criterion (AIC) was used. 
 
Statistics 
All statistical analyses were calculated using GraphPad Prism 6 software. Two-tailed unpaired t-test was applied to 
evaluate differences after drug treatment. F-test was applied to compare standard deviations; in cases, when standard 
deviations differed significantly, Welch’s correction was applied. LIC frequencies were calculated according to 
Poisson statistics using the ELDA software application (http://bioinf.wehi.edu.au/software/elda) (Hu and Smyth, 
2009). 
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Discussion 

Whole-transcriptome amplification introduces noise 

Single-cell RNA sequencing is a novel tool with a multitude of applications in biology and                             

biomedical sciences ​(Wagner et al. 2016)​. Determining the global state of gene expression in a                             

given cell gives a rich and powerful view of a cell’s identity. Furthermore, scRNA-seq reveals                             

implications of molecular circuitry within cells for development, fate decisions or disease                       

processes. Being an emerging technology, there are a large number of newly developed                         

experimental and computational strategies. Importantly for further work, power, biases and                     

limitations of scRNA-seq approaches need to be better understood. 

In order to access the small quantities of mRNA contained in single cells, whole transcriptome                             

amplification prior to library construction and sequencing is a necessity. Investigating how                       

amplification affects data quality, we analysed bulk and single-cell datasets from three                       

protocols: Smart-seq, TruSeq and UMI-seq ​(Parekh et al. 2016)​.  

First, we analysed whether duplicates stemming from amplification can be identified                     

computationally. Commonly, duplicates are identified by their mapping position, e.g. prior to                       

SNP-calling ​(DePristo et al. 2011)​. Comparing rates of duplication for single-end and                       

paired-end data, we found that single-end duplicates are much more common but can be easily                             

explained by a sampling model. Depending on the expression level of a gene, there is a certain                                 

probability for the same mapping position being sampled from different RNA-molecules.                     

Furthermore, we identified that fragmentation is biased and fragmentation patterns are highly                       

reproducible within library preparation methods. Thus, considering mapping position for the                     

removal of duplicates disqualifies because not every position of the transcript has an equal                           

chance to be a read start position. Furthermore, methods like Smart-seq or SCRB-seq perform                           

fragmentation only after pre-amplification of full-length cDNA. Thus, only the duplicates                     

arising from the subsequent library PCR could have been found by looking at read start                             
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positions. Confirming this notion, power simulations using the PROPER framework ​(Wu et al.                       

2015) showed a reduction in power for simulated RNA sequencing data when removing                         

duplicates. 

The only instance where removing duplicates increased power was the UMI-seq dataset.                       

Importantly, here we removed duplicates on the basis of the UMI instead of considering read                             

mapping positions. Interestingly, the UMI-seq dataset showed ~65% duplicates, although it                     

was constructed from a bulk of 10 ng total RNA. It can be expected that duplication fractions                                 

would be even higher from the small starting RNA amount of a single-cell. 

Indeed, our paper comparing various single-cell RNA sequencing methods ​(Ziegenhain et al.                       

2017) showed that, depending on the protocol used, as much as 98% of reads per cell are                                 

amplification duplicates when analysing UMI libraries sequenced to one million reads.  

In order to provide descriptive statistics on amplification noise, we leveraged the fact that the                             

drawing of read counts can be described as a poisson process. Thus, under the poisson                             

distribution, the variation of counts can be predicted from the mean. Any variation above the                             

poisson expectation, such as variation stemming from amplification noise can be expressed as                         

Extra-Poisson variability. We show that methods containing UMIs show lower Extra-Poisson                     

variability than methods without UMIs, or when disregarding UMI information. This illustrates                       

how UMIs are indeed capable of removing amplification noise. When performing power                       

simulations on single-cell data containing UMIs, the increase in power by removing duplicates                         

is much more pronounced than for the UMI-seq bulk dataset, indicating that larger amounts of                             

amplifications lead to more amplification noise. Similarly, within the comparison of single-cell                       

RNA sequencing methods, less sensitive methods generally showed less power than more                       

sensitive methods, when not considering UMI information. Comparing several strategies for                     

whole-transcriptome amplification, IVT (linear amplification) and PCR (exponential               

amplification), one can clearly see that amplification noise is more pronounced in PCR-based                         

methods, as biases can propagate exponentially ​(Ziegenhain et al. 2017)​. 
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In conclusion, it is recommended to eliminate amplification noise by the inclusion of UMIs                           

when performing whole-transcriptome amplification, especially in single-cell RNA sequencing                 

applications, to avoid a loss in power.  

 

Technical performance of scRNA-seq methods varies widely and               

can be improved 

High sensitivity is a necessity to obtain sequencing data from the limited quantities of RNA of a                                 

single cell. Because of this, a large focus of scRNA-seq method development has been on                             

improving sensitivity. Still, single-cell RNA sequencing methods are significantly less sensitive                     

than single molecule fluorescence in-situ hybridisation (smFISH) ​(Raj et al. 2008; Torre et al.                           

2017)​. Reverse transcription is regarded as the a major limiting step for sensitivity ​(Picelli et al.                               

2013) and the absolute efficiency of scRNA-seq methods to detect a given RNA molecule in a                               

cell is estimated to be between 12% (determined by comparison to smFISH) and 48%                           

(determined by ERCC spike-in UMI counts) ​(Grün et al. 2014; Islam et al. 2014)​. In this work,                                 

we could for the first time directly compare relative sensitivities of six major single-cell RNA                             

sequencing protocols because we generated data from the same cell type and culture                         

condition. Using the number of detected genes per cell as a proxy, we show that Smart-seq2 is                                 

the most sensitive protocol, outperforming the microfluidics-based Smart-seq/C1 method.                 

Among UMI-based methods, SCRB-seq and CEL-seq2/C1 are significantly more sensitive than                     

MARS-seq and Drop-seq. In our comparative analysis, all cells were sequenced and                       

downsampled to exactly one million reads to exclude influence of varying sequencing depths.                         

In many practical applications, however, it will not be economical to sequence cells to                           

saturation. Thus, library complexity at low sequencing coverage and how quickly saturation of                         

libraries is reached are important parameters. We show that the slope of gene detection                           

(sensitivity) relative to the number of sequenced reads is variable between protocols.                       
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Importantly, this slope is largely dependent on amplification bias where methods with in-vitro                         

amplification feature a steeper slope and thus contain more of their total information at lower                             

sequencing coverages. Moreover, there are also clear differences among PCR-based methods                     

that correlate with difference in amplification bias measured as Extra-Poisson Variability.                     

Hence, although amplification bias can be removed by unique-molecular identifiers, low bias is                         

crucial for large information content at low sequencing coverage and hence crucial for                         

cost-efficiency. 

Based on insights gained from this comparison, we set out to systematically optimize the                           

sensitivity and amplification bias of the already efficient SCRB-seq method ​(Soumillon et al.                         

2014)​. Counterintuitively, our data indicates that the systematic optimizations applied to the                       

sensitive Smart-seq2 protocol ​(Picelli et al. 2013) can not be directly transferred to SCRB-seq,                           

although both methods employ PCR amplification of full-length cDNA after                   

reverse-transcriptase template switching. Thus, there may be complex interactions of                   

enzymes, buffers and additives that can lead to method-specific increases in sensitivity. In our                           

case we find that adding polyethylene glycol greatly increases cDNA yield and sensitivity,                         

probably due to molecular crowding leading to higher chances of interactions between reverse                         

transcriptase and mRNA molecules in the crowded environment. Another important                   

improvement was the use of a different PCR polymerase that generates less amplification bias                           

and hence increases the efficiency. Together with several more minor modifications, we                       

established “molecular crowding SCRB-seq” (mcSCRB-seq) (Bagnoli et al., 2017). In order to                       

show the relative increase in sensitivity to the original SCRB-seq protocol, we again generated                           

comparable scRNA-seq data from the same cells in the same batch. Thus, we can quantify that                               

the mcSCRB-seq protocol detects 2.5x more unique RNA molecules than SCRB-seq, which                       

represent a large fraction of the cellular transcriptome. In other studies lacking comparative                         

data, ERCC spike-ins are often used to experimentally determine sensitivity ​(Islam et al. 2014;                           

Liu et al. 2016; Genshaft et al. 2016)​. ERCCs consist of 92 synthetic poly-adenylated mRNA                             

218 



 

transcripts divided into four groups of 23 transcripts each, represented at known                       

concentrations spanning a 10​6​-fold range ​(Baker et al. 2005; Jiang et al. 2011)​. To not only                               

compare the mcSCRB-seq protocol to the SCRB-seq protocol, we modeled detection of ERCC                         

transcripts in relation to their concentration using a binomial logistic regression, as proposed                         

by others ​(Marinov et al. 2014; Svensson et al. 2017)​. This enables us to integrate the results of                                   

another recently published study comparing technical performance of various scRNA-seq                   

protocols based on the analysis of ERCC spike-ins ​(Svensson et al. 2017)​. ​Svensson et al.                             

focussed only on spike-ins to try to integrate large amounts of public data from 15 protocols                               

generated from different cell types in many labs and varying sequencing depth. Although of                           

broad relevance, this large collection of datasets may also contain pitfalls. For instance, the                           

data shown for Smart-seq2 varied in three discrete populations over a 10​3 detection limit                           

range, showing that in this case other underlying factors have to drive the variance observed,                             

not the protocol itself. 

Indeed, ERCC spike-ins have recently been criticized for various reasons as they may be                           

subject to different technical effects stemming from library preparation than endogenous                     

genes in certain conditions ​(Risso et al. 2014)​. Furthermore, physical properties, such as length                           

(range 250 to 2000 nucleotides), GC content (5–51%), short poly-A tails and lack of 5’ cap                               

structure do not model endogenous transcripts perfectly ​(Grün et al. 2014; Stegle et al. 2015;                             

Svensson et al. 2017)​. Still, ​Svensson et al. generally confirm our results in the data generated                               

from their own laboratory, where Smart-seq2 was the most sensitive method, while a                         

high-throughput droplet method, in their case 10x Genomics ​(Zheng et al. 2017)​, was the least                             

sensitive. When analyzing ERCC spike-in data generated using the mcSCRB-seq protocol, we                       

can show that it is now the most sensitive protocol available. 

In conclusion, high sensitivity relative to sequencing depth is a decisive factor for single-cell                           

RNA sequencing in order to extract as much information per cell as possible, but varies widely                               

among methods. Currently, the extensively optimized Smart-seq2 protocol is the most                     
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sensitive full-length method available, while mcSCRB-seq is the most sensitive method                     

featuring unique molecular identifiers.  

 

Power simulations inform scRNA-seq studies 

In practice, the power to detect differential gene expression is at the heart of many analyses of                                 

RNA sequencing data, but it is not intuitive how the empirical parameters discussed so far, eg.                               

sensitivity and amplification noise, effect this power. In order to be able to judge power, we                               

developed a simulation framework for single-cell RNA sequencing data. Previously reported                     

power simulation tools for RNA sequencing ​(Poplawski & Binder 2017) suffer from limitations                         

regarding the integrated analysis tools (e.g. PROPER ​(Wu et al. 2015)​), consideration of                         

sequencing depth (e.g. RNASeqPower Calculator ​(Ching et al. 2014)​) or the input of                         

user-specified pilot data (e.g. RSPS). Moreover, none of the previously published frameworks is                       

able to work with the special characteristics of single-cell RNA sequencing data. Especially for                           

sparse data (e.g. droplet-based methods with low sensitivity), we found that it is necessary to                             

consider a dropout rate ​(Kharchenko et al. 2014)​. The dropout rate (p​0​) describes the chance of                               

missing a gene expression value for a certain gene in any given cell due to technical limitations                                 

of scRNA-seq protocols ​(Bacher & Kendziorski 2016)​. Thus, our power simulations integrate                       

the modelling of mean-variance and mean-dropout relationship to reliably recapitulate                   

characteristics of scRNA-seq count data ​(Ziegenhain et al. 2017; Vieth et al. 2017)​. We                           

furthermore overcome previous limitations by implementing twelve tools for differential gene                     

expression analysis, consideration of sequencing depth (library size) factors and easy                     

user-defined input of empirical pilot data and fold-change distributions.  

Power analyses have high importance to inform researchers in several stages of a given study.                             

First, in order to obtain optimal experimental design, assessment of expected power is helpful.                           

Here, statistical power should be considered together with sample material limitations and                       

financial constraints, given the scRNA-seq technology of choice. By this, the practically feasible                         
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number of replicates and sequencing depth can be determined along with an expectation of                           

how much of the differences between analysed populations may be found.  

Even after experiments have been conducted, powsimR can help in ​a posteriori power                         

evaluation. Thus, researchers can get an estimate on how many of the differences between                           

populations have been found and quantify whether major effects may have been missed. 

Furthermore, power simulations are valuable for computational and experimental method                   

development, which is dynamically ongoing in the field of single-cell transcriptomics. 

Indeed, powsimR has already been used by others to conduct a comparison of differential                           

testing algorithms ​(Soneson & Robinson 2017)​. In line with our findings, the authors find that,                             

after pre-filtering of lowly/stochastically detected genes ​(Lun et al. 2016)​, limma/voom ​(Ritchie                       

et al. 2015) and MAST ​(Finak et al. 2015) have high sensitivity to call truly differentially                               

expressed genes while controlling FDR appropriately. Furthermore, ​Soneson et al. ​characterise                 

biases and computational time requirements for the various algorithms, which has implications                       

for the application to high-throughput scRNA-seq. 

In addition to analysis of differential gene expression testing algorithms, we have applied an                           

early version of ​powsimR to our comparative data generated from six important single-cell                         

RNA sequencing methods ​(Ziegenhain et al. 2017)​. Assuming that all protocols were powerful                         

enough to detect big effects already with rather small sample sizes, we chose to draw empirical                               

fold-changes from the more moderate differences of two microglial subpopulations described                     

by ​Zeisel et al. ​(Zeisel et al. 2015)​. Indeed, at small sample sizes (16 cells per group) power to                                     

detect differential gene expression was generally low but increased with larger sample sizes.                         

Of all scRNA-seq protocols present in the comparison, SCRB-seq needed the smallest sample                         

size (64 cells per group) to reach 80% power. Likely, this high power is owed to the favorable                                 

combination of fairly high sensitivity and low noise due to the use of UMIs. Additionally,                             

powsimR allowed us to investigate power in relation to sequencing depth. Overall, lowering                         

sequencing to 500,000 or 250,000 reads per cell reduced power modestly. However, we could                           
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observe that methods featuring in-vitro amplification (ie. CEL-seq2 and MARS-seq) were less                       

affected by downsampling, because the lack of PCR bias leads to better sampling of the                             

transcriptome at lower coverages. Clearly, IVT-based methods are at an advantage for lower                         

coverage sequencing, but there are also significant differences in the amount of bias between                           

PCR-based methods, as discussed above. Thus, optimizing protocols towards uniform                   

amplification is an important factor for maximizing the information obtained per number of                         

reads ​(Sasagawa et al. 2017, Bagnoli et al., 2017)​. 

Determining the optimal balance between replication and sequencing depth for a given                       

experiment will thus depend on availability of samples or whether lowly expressed genes are                           

of interest. It should be highlighted that a thorough assessment of power for high throughput                             

transcriptomic profiling of single-cells (eg > 100,000 cells) ​(Zheng et al. 2017) with more and                             

more sparse sequencing depths (as low as 10,000 - 20,000) reads per cell has not been done                                 

yet. This would constitute a particularly important and timely contribution to the field, as the                             

sequencing costs are substantial at this scale. For instance, doubling the sequencing depth of                           

100,000 cells from 50,000 to 100,000 reads, which is still fairly low by conventional                           

scRNA-seq standards, would cost approximately 18,000 € using the popular NextSeq550                     

sequencer. 

Another important area of development in the field of scRNA-seq concerns the requirement                         

for fresh live cells. Single cell RNA sequencing is currently being used in many applications                             

from diverse sources, but fresh cells are not always available due to practical, logistical or                             

ethical constraints - especially in studies involving human tissue.  

Overcoming this limitation, cryopreservation strategies can be applied ​(Guillaumet-Adkins et                   

al. 2017)​. In this study, the authors showed that cryopreservation of cell lines and tissues                             

yielded good single-cell RNA-seq data and did not alter transcriptional profiles of cells using                           

both full-length and a 3’-counting scRNA-seq methods. Important technical performance                   

parameters, such as number of detected genes (i.e. sensitivity) and genebody coverage (i.e.                         
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transcript degradation) were indistinguishable from scRNA-seq data of fresh cells.                   

Furthermore, cells always clustered according to cell type instead of by freezing/thawing                       

condition, confirming that transcriptomes were largely unchanged. 

For more short-term preservation of primary tissues, whole tissues can be stored at 4 °C for                               

several days in organ transplant solution ​(Wang et al. 2017)​. This enables to process preserved                             

tissues by dissociation and single-cell isolation for RNA-seq in the same way as fresh tissue.                             

Similar to ​Guillaumet-Adkins et al., ​the authors characterized technical parameters such as                       

successful cDNA synthesis, sensitivity and transcript degradation at several timepoints of                     

storage. Storage of tissues for up to three days was possible with only minor decrease in                               

technical performance. However, this study was only performed with one single-cell RNA-seq                       

protocol, limiting the broad applicability of the findings. 

Both of the discussed preservation techniques rely on the conservation of live, intact                         

single-cells that can be processed similar to freshly obtained cells. Additionally, several other                         

approaches use cell fixation to decouple sampling and library preparation. For instance,                       

formaldehyde fixation has been used in conjunction with downstream reverse-crosslinking and                     

library preparation in a plate-based method ​(Thomsen et al. 2016)​. Furthermore, methanol                       

fixation has been demonstrated to be compatible with droplet-based single-cell RNA                     

sequencing ​(Alles et al. 2017)​. Another innovative method, SPLiT-seq, relies on formaldehyde                       

fixation and leverages the cell itself as the vessel for in-situ reverse transcription ​(Rosenberg                           

et al. 2017)​. Together with combinatorial barcoding, this method is able to process large                           

numbers of fixed cells. Thus, SPLiT-seq can be used to access precious fixed material, for                             

instance from human brain biobanks. 

In summary, single-cell RNA sequencing technology is rapidly evolving, becoming more and                       

more widely applicable. Additionally, there are considerable further steps to be made. The                         

presented comparative data and the ​powsimR simulation framework constitute an excellent                     

resource for benchmarking ongoing developments. It will become increasingly important in the                       
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future to judge the power of the quickly growing number of scRNA-seq protocols available to                             

chose the most appropriate methods.  

 

scRNA-seq enables characterization of rare leukemia cells 

Acute lymphoblastic leukemia (ALL) is of high relevance, as it is the most common pediatric                             

malignancy. Although modern chemotherapy treatments are able to cure most patients,                     

further research needs to be done to prevent relapse with adverse outcome. Research on                           

leukemia cells is challenging because it is not possible to culture patient cells ​in vitro​, likely due                                 

to a lack of microenvironment-dependent factors ​(Vick et al. 2015)​. Although short-term                       

culture models with various cytokine factors and immortalized cell lines exist, these are often                           

disadvantageous because of alterations in important functional characteristics occur                 

frequently ​(Pan et al. 2009)​. Furthermore, primary patient material is rare and can obviously                           

not be studied in the absence of treatments. To overcome these limitations, our study                           

leverages patient-derived xenograft models ​(Kamel-Reid et al. 1989)​, i.e. primary patient cells                       

transplanted in immunocompromised mice. This allows us to obtain and perturb leukemia cells                         

over time. Crucially, we can track cancer cells by the integration of transgenes or stainings. In                               

patients, relapse with dismal outcome is one of the biggest reason for mortality ​(van Dongen et                               

al. 2015)​. So far, conflicting evidence on the mechanism of relapses exists. On the one hand,                               

some studies suggest that genetically heterogeneous and therapy-resistant subclones may                   

exist at onset of disease that populate relapse ​(Irving et al. 2014)​, yet, there is currently no                                 

evidence that a majority of ALL incidences are genetically complex ​(Pal et al. 2016)​. On the                               

other hand, microenvironment-mediated resistance is one of the discussed mechanisms for                     

persistence of ALL cells ​(Meads et al. 2009)​. Here, it is thought that the close communication                               

between ALL cells and bone marrow cells leads to expression of genes conferring increased                           

resistance to treatment ​(Polak et al. 2015)​.  
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In order to better understand the biology of rare persistent and relapse-inducing cells, we                           

generated the first single-cell RNA sequencing data from acute lymphoblastic leukemia (ALL)                       

cells. Leveraging our patient-derived xenograft model, we could identify and sequence RNA                       

from a rare, persistent cell population at minimal residual disease. We can show that these cells                               

feature greatly downregulated cell-cycle genes and are thus dormant. Furthermore, persistent                     

cells highly express a number of cell adhesion factors, indicating they must be located in the                               

hematopoietic niche. Importantly, functional characterization showed that these cells were                   

indeed treatment-resistant. In conclusion, our findings confirm the notion that blasts can                       

modulate the microenvironment to form a protective niche ​(Duan et al. 2014)​. Additionally, we                           

show that this niche-association is strongly linked to dormancy. Thus, persistence and                       

treatment-resistance seem to consist of two joint mechanisms: niche-adherence and                   

dormancy. Furthermore, we present evidence that there is plasticity between the cycling blast                         

phenotype and the resting persistent phenotype, which dispels the notion that a fixed                         

genetically distinct population of cells is responsible for driving relapse. 

In conclusion, leveraging the power of single-cell RNA sequencing has allowed us to access and                             

characterize this rare and clinically important cell population, furthering the understanding of                       

how  ALL cells persist to cause relapse. 
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Conclusion and Outlook 

In this work focussing on single-cell RNA sequencing, I investigated the current state of                           

technology, developed method improvements and applied it to a relevant biomedical question. 

Because of the dynamic nature of the field and the growing interest in the technique,                             

scRNA-seq has matured in few years from an expensive niche method to a key approach in                               

diverse fields of biology. Still, the technology has converged neither for wet lab protocols nor                             

for computational analysis tools. Here, we made contributions to both aspects of method                         

development by introducing our own highly sensitive molecule-counting protocol ​mcSCRB-seq​,                   

our fast and flexible data processing pipeline ​zUMIs and our statistical power analysis                         

framework ​powsimR​. We aim to provide easily implemented tools that make it possible for                           

more molecular biology labs to start using the power of single-cell transcriptomics and enable                           

its application to more and more research questions as we did to elucidate persistence and                             

dormancy in ALL.  

Today, single-cell analyses have generated enough buzz to spark the Human Cell Atlas                         

initiative, an international consortium with the ambitious goal of mapping all cells of the human                             

body ​(Regev et al. 2017)​. From this initiative that is driven by the development of novel wet-lab                                 

technologies and computational analysis techniques, we will learn more about what defines                       

cell types, states and their transitions. Furthermore, we will be able to better distinguish                           

diseased cells from healthy ones, determine molecular signatures for diagnosis and even                       

discover targets for therapeutic intervention. 

Such a comprehensive single-cell molecular map of the human body is unprecedented and will                           

be a truly revolutionary resource for researchers of virtually all areas in biology and medicine. 

In conclusion, single-cell RNA sequencing will continue to revolutionize the way we see and                           

understand the life’s building blocks: the cell. 
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