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Summary 

 

A substantial number of psychiatric patients do not benefit from chronic 

antidepressant treatment. To identify biochemical pathways that can stratify 

antidepressant response sub-groups, DBA/2J mice were subjected to paroxetine 

administration for 28 days and classified into drug responder and non-responder 

groups based on floating time during the forced swim test (FST). Hippocampal 

metabolome and proteome profiles were analyzed and integrated to identify 

significant molecular pathway differences between paroxetine-responding and non-

responding animals. I identified metabolites and proteins involved in purine and 

pyrimidine metabolism pathways whose levels were significantly different between 

paroxetine responding and non-responding mice. In addition, the glutamate/ubiquitin 

proteasome system (UPS)-associated pathways were associated with the chronic 

paroxetine treatment response. Specifically, N-Methyl-D-aspartate (NMDA) receptor, 

postsynaptic density protein 95 (PSD-95), and neuronal nitric oxide synthase (nNOS) 

levels significantly correlated with FST floating time suggesting their potential role in 

the antidepressant treatment response. The results from mice were further 

corroborated in human peripheral blood mononuclear cells (PBMCs) of major 

depressive disorder (MDD) patients. Protein signatures including ATIC, CPS2, 

PM2A, sGC-β1 and protein ubiquitination significantly correlated with clinical 

antidepressant treatment response. In my thesis project I have identified affected 

pathways and biomarker candidates related to the heterogeneous antidepressant 

treatment response using integrated -omics analyses combined with sub-group 

stratification based on behavioral phenotyping.  
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1. Introduction 

 

Major depressive disorder (MDD) is one of the most common psychiatric disorders 

which is characterized by persistent decrease/loss of interest and low mood  (Hori et 

al., 2016). The World Health Organization estimates 350 million people suffer from 

MDD. MDD is often associated with suicide attempts and ranked second for glocal 

disease burden (Beautrais et al., 1996; Murray and Lopez, 1997). 

 

1.1. Neuroanatomy of major depressive disorder 

Several brain regions involved in cognitive and emotional processing have been 

shown to be affected in MDD (Figure 1). 

 

 

Figure 1. Brain regions affected in MDD.  

 

The prefrontal cortex is part of the limbic system that controls emotional and 

cognitive functions. The association of prefrontal cortex with mood disorders has 

been extensively studied in animals and humans. Chronic stress has been shown to 

cause dendritic spine atrophy in rodents (Qiao et al., 2016). Prefrontal cortex 

dysfuction has been implicated in depressed patients (Merriam et al., 1999; Murray et 
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al., 2011). Structural atrophy has been shown in the prefrontal cortex of depressed 

patients (Drevets et al., 1997; Bremner et al., 2002). 

Hippocampal volume loss and structural atrophy have been frequently reported in 

MDD patients (Sheline et al., 1996; 1999; Campbell et al., 2004; Opel et al., 2014). In 

the hippocampus adult neurogenesis takes place and this process plays important roles 

in various brain functions including synaptic plasticity, learning and memory, and 

emotional regulation (Jun et al., 2012). Hippocampal adult neurogenesis has been  

associated with MDD pathology and antidepressant treatment response (Malberg et al., 

2000; Anacker et al., 2011; Lee et al., 2013; Mahar et al., 2014; Rotheneichner et al., 

2014). 

Nucleus accumbens (NAc) has also been strongly associated with stress-related 

neuropsychiatric conditions. Chronic mild stress was shown to induce decreased 

dopamine D2 receptor expression in the NAc (Papp et al., 1994). Altered serotonin 

and dopamine turnover was shown in the Flinders sensitive line, a rat model of 

depression (Zangen et al., 1999; 2001). Reduced NAc activity and volume have been 

reported in patients with mood disorders (Baumann et al., 1999; Heller et al., 2009). 

Its extensive functional connectivity with other brain regions including prefrontal 

cortex, hippocampus and amygdala that are also significantly associated with 

depressive disorders implicate a critical role of NAc in MDD pathophysiology 

(Shirayama and Chaki, 2006).  

Volumetric abnormality has been observed in the amygdala of MDD subjects. 

Unmedicated depression patients showed a decrease of amygdala volume compared 

to controls (Hamilton et al., 2008). Depressed female individuals were shown to have 

a smaller amygdala (Hastings et al., 2004) and a hyperactive amygdala has been 

shown in depressed individuals (Drevets et al., 1992; Yang et al., 2010). 

Like other brain regions involved in MDD, a significant volume decrease of the 

thalamus has also been observed in MDD individuals (Nugent et al., 2013). Thalamic 

area hyperactivity was shown to correlate with treatment-resistant depression and 

antidepressant treatment response (Yamamura et al., 2016).  
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1.2. Neurobiology of major depressive disorder 

 

1.2.1. Neurotrophic hypothesis of depression 

Neurotrophic factors are growth factors that are essential for neuronal cell 

proliferation and survival. Based on observations in rodents and depression patients 

low levels of neurotrophic factors have been implicated in the pathobiology of 

depression. They include brain-derived neurotrophic factor (BDNF), nerve growth 

factor (NGF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4). Particularly BDNF 

has been extensively studied and associated with depressive disorders. BDNF level 

alterations have also been found in animal models of chronic stress (Murakami et al., 

2005; Dwivedi, 2009). Antidepressants  increase BDNF expression in brain regions 

including the hippocampus and prefrontal cortex (Lee and Kim, 2010). BDNF was 

shown to produce antidepressant-like effects (Shirayama et al., 2002) implying its 

critical role in the pathology and treatment of depressive disorders. 

 

1.2.2. HPA axis hypothesis of depression 

The hypothalamic-pituitary-adrenal (HPA) axis is a network that spans three 

endocrine systems, hypothalamus, pituitary gland and adrenal gland. In response to a 

stressor, neuropeptides including corticotrophin releasing hormone (CRH) and 

arginine vasopressin (AVP) are secreted from the paraventricular nucleus of 

hypothalamus. This causes adrenocorticotrophic hormone (ACTH) release from the 

anterior pituitary, which stimulates adrenal cortex to synthesize and release 

glucocorticoids into the blood stream. Negative feedback control of the HPA axis is 

mediated by glucocorticoid receptor (Figure 2). HPA axis abnormalities have been 

found in depressive disorders. Depression patients have increased cortisol levels in 

body fluids including saliva, plasma and urine (Nemeroff and Vale, 2005). An 

increased volume of the pituitary (MacMaster and Kusumakar, 2004; MacMaster et 

al., 2006) and adrenal gland (Rubin et al., 1995) have been found in patients with 

depressive disorder reflecting stress-induced HPA axis dysregulation. 

 



                                                                                                                                              1. Introduction 

4 
 

 

Figure 2. Diagram of the HPA axis (adapted from Sandi, 2004).  

 

 

1.2.3. Monoamine hypothesis of depression 

Drugs and agents that increase monoamine neurotransmitter levels and availability in 

the synaptic cleft have been found to be effective for alleviating depressive symptoms 

(Sangkuhl et al., 2009; Dell'Osso et al., 2011). These observations led to the 

hypothesis that monoamine deficiency may cause depressive symptoms. In this regard, 

depressive disorders have been associated with impaired neurotransmission of 

monoaminergic pathways (D'Aquila et al., 2000; Schmidt and Reith, 2005; Popik et 

al., 2006). Conventional antidepressants including TCAs, SSRIs and MAOIs affect 

monoamine levels including serotonin, norepinephrine and dopamine. Drugs of the 

tricyclic antidepressant (TCA) and selective serotonin reuptake inhibitor (SSRI) type 

inhibit monoamine transporters that regulate extracellular monoamine levels by 

reuptake from the synaptic cleft. The resulting increased neurotransmitter levels 

activate post-synaptic monoaminergic pathways. Monoamine oxidase inhibitor 

(MAOI) increases neurotransmitter levels by inhibiting monoamine oxidase (MAO) 

activity that catalyzes the degradation of monoamine neurotranmitters (Figure 3).   
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Figure 3. Monoamine neurotransmission in the synapse. 

 

 

1.2.4. Neuroplasticity theory of depression 

Neuroplasticity defines neuronal adaptation which includes structural and functional 

activity changes. Hippocampal synaptic plasticity in the form of long-term 

potentiation (LTP) persistently strengthens electrical signals in the synapse. Calcium, 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-Methyl-D-

aspartate (NMDA) receptors, cyclic adenosine monophosphate (cAMP), calcium-

calmodulin-dependent kinase II (CaMKII) and cAMP response element binding 

protein (CREB) are important for the regulation of neuronal plasticity (Pittenger and 

Duman, 2008). Stress was shown to impair LTP in the rodent hippocampus (Kim and 

Diamond, 2002). High levels of glucocorticoid, a stress hormone, suppress 

hippocampal LTP (De Kloet, 2004). In the prefrontal cortex, chronic stress not only 

induces pyramidal cell dendrite atrophy (Cook and Wellman, 2004; Radley et al., 

2004), but also leads to glia and endothelial cell number reduction in animal models 

of stress (Banasr et al., 2007). Depressed individuals show decreased neuroplasticity, 

which was measured by motor cortical excitability in response to transient brain 

stimulation (Ford and Erlinger, 2004; Liukkonen et al., 2006; Elovainio et al., 2009; 

Vogelzangs et al., 2012; Player et al., 2013; Valkanova et al., 2013; Hickman et al., 

2014b). 
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1.3. Biomarkers for major depressive disorder 

Research using animal models and patient specimens has resulted in several 

biomarker candidates for major depressive disorder (MDD).  

C-reactive protein (CRP) is an acute phase protein circulating in blood whose 

concentration rises rapidly in response to physiological changes including infection 

and inflammation (Thompson et al., 1999). Several studies have found that elevated 

CRP level are associated with MDD (Ford and Erlinger, 2004; Liukkonen et al., 2006; 

Elovainio et al., 2009; Howren et al., 2009; Vogelzangs et al., 2012; Valkanova et al., 

2013; Hickman et al., 2014a).  

The HPA axis activity has been suggested as a potential biomarker of MDD. The 

dexamethasone suppression test (DST) has been used to test adrenal gland activity. 

Dexamethasone, a synthetic analogue of cortisol, induces negative feedback control to 

the pituitary gland and suppresses cortisol release from the adrenal gland. Plasma 

cortisol levels in response to dexamethasone injection can be used as a measure for 

HPA axis dysfunction (Targum et al., 1983; Dam et al., 1985; Fountoulakis et al., 

2008). 

BDNF serum levels have been proposed as an MDD biomarker in the clinic (Karege 

et al., 2002; Shimizu et al., 2003; Karege et al., 2005). FK506-binding protein 51 

(FKBP51) is a co-chaperone protein that interacts with glucocorticoid receptor and 

regulates its activity. FKBP51 has been found to be a risk factor for stress-related 

neuropsychiatric disorders including MDD (Lekman et al., 2008; Binder, 2009). 

Several FKBP5 gene polymorphisms have been found to be associated with 

depressive disorders (Appel et al., 2011; Szczepankiewicz et al., 2014). Reduced p11 

mRNA and protein expression in NAc and hippocampus have been reported in 

depressed patients and suicide victims (Svenningsson et al., 2006; Anisman et al., 

2008; Alexander et al., 2010). Despite all the promising research findings none of 

these biomarkers have made it to the clinic to guide diagnosis of depressive disorders. 
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1.4. Antidepressant drugs 

 

1.4.1. First generation of antidepressants 

The first generation of antidepressants was developed in 1950s. Isoniazid and 

iproniazid were used as anti-tuberculosis agents and found to be potent inhibitors of 

MAO and to have psycho-stimulant effects (Healy, 2000). The TCA imipramine was 

subsequently developed by the Swiss psychiatrist Ronald Kuhn. Tricyclics were first 

found to inhibit norepinephrine reuptake and  later also shown to block the serotonin 

transporter (López-Muñoz and Alamo, 2009). Hence TCAs act as serotonin-

norepinephrine reuptake inhibitors (SNRIs) resulting in elevated neurotransmitter 

levels in the synaptic cleft. 

 

1.4.2. Second generation of antidepressants 

MAOIs and TCAs mode of action led to the hypothesis that the drugs’ antidepressant 

activities are related to elevated neurotransmitter levels (Pletscher, 1991). Novel 

SSRIs and selective norepinephrine reuptake inhibitors (SNRIs) were subsequently 

developed and introduced on the market. SSRIs and SNRIs have fewer adverse side 

effects compared to other types of antidepressants. Currently they are used as first line 

medications for the treatment of a wide range of psychiatric disorders.  

 

1.4.3. Antidepressant treatment response  

Approximately 50% of MDD patients do not respond adequately to conventional 

antidepressant treatment (Trivedi et al., 2006; Papakostas, 2009). The patients who 

fail to achieve remission after two or more of antidepressant trials are diagnosed to 

have treatment resistant depression (TRD) (Malhi et al., 2005). The development of 

novel more targeted antidepressant drugs has not been very successful. According to 

several meta-analyses with SSRIs, patients' response rate remains at around 47% 

(Nelson, 1998). 

To overcome this high rate of drug non-response, several clinical strategies have been 

conducted. Augmentation therapy uses a second non-antidepressant agent with 

antidepressant medication. Augmentation treatment with lithium has shown a 

significant increase of response rate (de Montigny et al., 1983; Heninger et al., 1983; 
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Schöpf et al., 1989; Joffe and Schuller, 1993; Stein and Bernadt, 1993). Augmentation 

therapies with thyroid hormone and 5-HT2A receptor antagonists such as trazodone 

have been reported to be more effective than antidepressant monotherapy (Maes et al., 

1996; Joffe, 1997). Various other substances including pindolol, omega-3 fatty acids, 

modafinil, buspirone/bupropion and methylphenidate, testerone, mecamylamine and 

inositol have been used for augmentation therapy (Papakostas, 2009). 

Combination therapy uses multiple antidepressants. The combination of despiramine 

(noradrenergic TCA) with fluoxetine has been shown to be more effective for 

achieving a response in MDD patients (Fava et al., 1994; Nemeroff et al., 1996). 

Using mirtazpine in combination with SSRIs was also found to be effective for TRD 

treatment (Carpenter et al., 1998). The adjunctive effect of mianserin was also found 

superior compared to SSRI monotherapy (Maes et al., 1999; Ferreri et al., 2001).  

Electric and magnetic brain stimulations induce an antidepressant-like effect in TRD 

patients. Deep brain stimulation (DBS) is a surgical method that implants electrodes 

and stimulates certain brain regions (Mayberg et al., 2005; Kennedy et al., 2011). 

Transcranial magnetic stimulation (TMS) applies electro-magnetic fields to stimulate 

a population of nerve cells. Because of its non-invasive and safe nature, TMS is a 

promising therapeutic strategy to treat TRD (George et al., 1995; Pascual-Leone et al., 

1996; Lee et al., 2012). Electroconvulsive therapy is a procedure that applies electric 

current through the brain to induce biochemical and functional activity changes. This 

method has been shown to be effective for the treatment of TRD (Khalid et al., 2008; 

Dierckx et al., 2012; Kellner et al., 2012). 

Novel fast-acting antidepressant-like agents have also been investigated for the 

treatment of TRD. They include scopolamine and ketamine. Scopolamine, an 

antagonist for muscarinic cholinergic receptors has rapid antidepressant-like effects in 

TRD patients (Furey and Drevets, 2006; Drevets et al., 2013; Jaffe et al., 2013). 

Ketamine, an NMDA receptor blocker, also produces a rapid antidepressant effect 

(Murrough et al., 2013; Lally et al., 2014) in TRD patients (Murrough et al., 2013; 

Lally et al., 2014). 

Recent research has delineated potential candidates associated with antidepressant 

treatment resistance. Serotonin transporter (Huezo-Diaz et al., 2009) and serotonin 

autoreceptors (Malagié et al., 2001; Samuels et al., 2015) have been found to be 

critical for the antidepressant response. In addition, alterations and abnormalities of 

the HPA axis have been associated with antidepressant treatment outcome (Binder et 
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al., 2008; Ventura-Juncá et al., 2014). BDNF gene Val66Met polymorphism has been 

also studied with regard to the antidepressant treatment response and was shown to 

result in antidepressant treatment resistance in rodents and humans (Chen et al., 2006; 

Zou et al., 2010a; 2010b; Kocabas et al., 2011). A link between inflammatory 

cytokines and antidepressant response has been documented. Cerebrospinal fluid  IL-

1, IL-6 and TNF-α blood levels in MDD patients were significantly correlated with 

depression severity (Martinez et al., 2012). High cytokine concentrations have been 

found in antidepressant treatment resistant depression patients (Sluzewska et al., 1997; 

Lanquillon et al., 2000; Fitzgerald et al., 2006). 

 

1.5. Personalized medicine strategy 

The high heterogeneity of the antidepressant treatment response requires a tailored 

treatment to improve therapeutic efficacy. Several studies have been conducted to 

identify biological markers that predict and/or evaluate the antidepressant treatment 

response. Genetic polymorphism studies have found polymorphisms in tryptophan 

hydroxylase, serotonin transporter and serotonin 5-HT2 receptor to be statistically 

associated with SSRI treatment outcome (Serretti et al., 2001; Zanardi et al., 2001; 

Arias et al., 2003; Serretti et al., 2006; Ham et al., 2007; Serretti et al., 2007). 

Neuroimaging measurements have identified neurophysiological markers for the 

antidepressant response. Mayberg et al. found that brain region-specific blood glucose 

metabolism changes were observed only in 6-week fluoxetine treatment responder 

MDD patients (Mayberg et al., 2000; 2002). Several studies have reported that a 

decrease of theta cordance from prefrontal electroencephalography during the first 

weeks with either SSRI or SNRI treatment is able to predict symptom improvement 

for the following weeks of continued treatment (Cook et al., 2002; 2005; Bares et al., 

2007). 

Omics data promise to have great potential for the personalized medicine approach in 

psychiatry. Psychiatric patient sub-group stratification based on omics profiling data 

allows a more precise and tailored treatment (Guest et al., 2013; Sethi and Brietzke, 

2015).  
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1.6. Omics analyses 

1.6.1. Quantitative proteomics 

The shotgun proteomics approach has been very successful for the high-throughput 

analysis of complex protein mixtures (Domon and Aebersold, 2010; Meissner and 

Mann, 2014). The method involves enzymatic digestion of proteins into peptides that 

are subjected to tandem mass spectrometry. With the help of stable isotopes 

proteomes can be profiled and compared by quantitative mass spectrometry.  

 

1.6.1.1. Metabolic labeling 

Stable isotopes can be incorporated into proteins during cellular synthesis in vitro and 

in vivo (Figure 4). For the stable isotope labeling of amino acids in cell culture 

(SILAC) method labeled essential amino acids (arginine, lysine and methionine) are 

added to the cell culture medium  (Ong et al., 2002). Due to the mass difference 

between light and heavy isotopes, mass spectrum signals of unlabeled and labeled 

peptides have different mass-to-charge ratio (m/z) values and their intensities can be 

used for quantification. 

Stable isotope labeling in mammals (SILAM) refers to in vivo labeling of the entire 

mammalian proteome with stable isotopes. 
13

C- or 
15

N-containing diets are used for 

partial or full proteome labeling in rodents (Kruger et al., 2008; Zhang et al., 2011b). 

Labeled rodent tissues and organs can serve as reference material to investigate in 

vivo proteome turnover and expression changes (Filiou et al., 2011; Zhang et al., 

2011b; Webhofer et al., 2013). 

 

Figure 4. SILAC and SILAM metabolic labeling methods. 
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1.6.1.2. Post-synthesis labeling 

Chemical probes have been used for post-synthesis labeling of peptides and proteins. 

Whereas metabolic labeling methods require cellular protein synthesis, non-metabolic 

labeling with chemical probes is applied to investigate body fluids. 

Isotope-coded affinity tag (ICAT) consists of three domains, a reactive group for 

labeling amino acids, an isotopically coded linker region and a tag for affinity 

isolation. The ratio of signal intensities between light and heavy ICATs is used for the 

relative quantification of two samples. Four sets of isotope-coded protein label (ICPL) 

probes, ICPL0, ICPL4, ICPL6 and ICPL10, are available for the comparison of four 

different samples. Each probe has a different mass by replacing 
1
H or 

12
C with 

deuterium or 
13

C, respectively.  

Isobaric tags for relative and absolute quantification (iTRAQ) and tandem mass tag 

(TMT) are used for the comparison of multiple biological conditions (Tonack et al., 

2013; Núñez Galindo et al., 2015; Yao et al., 2015). Isobaric tags consist of three 

components, an amine reactive group that allows covalent binding to amino acids, a 

reporter group that includes a differential mass, and balance group between the other 

two components. The different reporter masses from multiple samples can be 

analyzed in one mass spectrometry run. TMT isobaric tags with various combinations 

of 
13

C and 
15

N allow comparison of 10 different samples. 

 

1.6.1.3. Label-free quantitation 

Label-free quantitation is a method based on measuring peptide peak areas, intensities 

or spectral counts. In contrast to protein labeling methods that combine labeled and 

unlabeled samples, during label-free quantitation samples are subjected separately to 

mass spectrometry analysis (Zhu et al., 2010).  

 

1.6.2. Targeted metabolomics 

Metabolomics has been an important method to investigate biological pathway and 

metabolism changes (Sato et al., 2012; Shah et al., 2012; Inoue et al., 2013). It has 

been extensively applied for biomarker research and the identification of affected 

biological pathway (Griffiths et al., 2010; Armitage and Barbas, 2014). 



                                                                                                                                              1. Introduction 

12 
 

Metabolomics analysis has been conducted with several platforms including nuclear 

magnetic resonance, liquid chromatography coupled to mass spectrometry and gas 

chromatography coupled to mass spectrometry. 

Two different strategies can be utilized for metabolomics analysis – untargeted and 

targeted. Untargeted metabolomics assesses all measurable analytes including the 

ones with unknown identity, which requires follow-ups for their identification and 

characterization. Targeted metabolomics captures biochemically characterized small 

molecules. By using internal standards or metabolite signal intensity, targeted 

metabolomics data can be quantitative. Relevant biochemical pathways can be 

enriched by a list of identified metabolites. Quantified metabolite levels also reflect 

pathway activity. 

 

 

1.7. Aim of the thesis 

Using quantitative -omics analyses and in silico data integration this thesis aims at 

identifying biosignatures and molecular pathways relevant for the stratification of 

antidepressant treatment sub-groups and antidepressant efficacy. The study represents 

an attempt to address the high rate of antidepressant non-response, one of the major 

problems in psychiatry, and to bridge the translational gap between preclinical and 

clinical studies.  

The separation of antidepressant responder and non-responder sub-groups is a 

prerequisite for biomarker identification. My –omics analyses were carried out with 

specimens from an animal model that reflects clinical bimodal distribution of patient 

sub-groups, which was established in Prof. Marianne Müllers laboratory during her 

tenure at the Max Planck Institute of Psychiatry. 

Resulting from -omics profiles of the mouse model, protein signatures that are part of 

the identified pathways were further corroborated in mice and MDD patients’ 

peripheral blood mononuclear cells (PBMCs) with the aim of identifying biomarker 

candidates relevant for assessing antidepressant treatment response. 
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2. Materials and Methods 

 

2.1. Animal housing and husbandry  

The experiments were performed with male DBA/2J mice (Charles River 

Laboratories, Chatillon-sur-Chalaronne, France). All animals were between 8-10 

weeks old and single-housed for at least one week prior to the beginning of the 

experiments. Mice were held under normal light and temperature conditions (12 light: 

12 dark light cycle, lights on at 7 pm, temperature at 23 ± 2°C, and humidity at 55 ± 

5%) with standard bedding and nesting material, in polycarbonate cages (21 x 15 x 14 

cm). Water and Altromin 1324 standard mouse chow (Altromin GmbH, Lage, 

Germany) were provided ad libitum. All procedures were carried out in accordance 

with the European Communities Council Directive 2010/63/EU and approved by the 

committee for the Care and Use of Laboratory animals of the Government of Upper 

Bavaria, Germany. 

 

2.2. Drug administration 

Mice were treated with either vehicle or 5 mg/kg paroxetine pills (Paroxetine 

hydrochloride Carbone Scientific, London, UK) for 28 days twice a day. Animals 

were randomly assigned to the vehicle- or paroxetine-treated groups. Either vehicle or 

paroxetine was voluntarily self-administered via customized palatable pellets (40mg 

PQPellets, Phenoquest AG, Martinsried, Germany). Animals that did not take the pills 

properly were excluded from further analyses. 

 

2.3. Mouse brain and blood collection 

Blood was collected at least one month before commencing paroxetine treatment from 

retro-orbital puncture and after 28 days of paroxetine treatment through cardiac 

puncture or trunk blood. On day 29, the animals were subjected to a forced swim test 

(FST) and sacrificed. Trunk blood and brains of the animals were collected and stored 

at -80°C until further use. Blood was centrifuged to separate plasma and erythrocytes 

(1300g, 10 min, 4°C) before storage. 
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2.4. Behavioral analysis 

 

2.4.1. Forced Swim Test  

The forced swim test was performed to evaluate antidepressant-like activity of 

chronic paroxetine treatment in DBA2/J mice, and to further stratify paroxetine-

treated mouse sub-groups based on behavior profiles. After 28 days of paroxetine pill 

administration, mice were subjected to the forced swim test on day 29. Mice were 

placed into a glass beaker (height 24 cm, diameter 13 cm) filled with water (21 ± 1°C) 

up to a height of 15 cm, so that the animals were unable to reach the ground or escape 

for 6 min testing. After the test, animals were immediately dried and returned to 

home cage. Main parameter of interest is floating time scored by an experienced 

observer blind to treatment.  

 

2.4.2. Female urine sniffing test  

The female urine sniffing test was conducted to assess anhedonia-like behavior of 

animals before and after chronic paroxetine treatment. The test was performed prior to 

commencing paroxetine treatment and 28 days after treatment. Mice were habituated 

to a cotton swab inserted into their home cage for 1 h prior to testing. Mice were 

exposed to a sterile cotton swab dipped into water for 3 min and after a 45 min inter 

trial interval. Then they were exposed to a sterile cotton swab dipped in estrous 

female urine from the same strain. Total sniffing time was recorded.  

 

2.5. Paroxetine measurements 

Mouse whole brains were homogenized in a fivefold volume of phosphate buffered 

saline containing protease inhibitor cocktail tablets (Roche, Penzberg, Germany) 

using a Dispomix Drive (Medic Tools AG, Zug, Switzerland). All samples were 

prepared using Ostro protein precipitation and phospholipid removal plates (Waters, 

Eschborn, Germany). Plasma and brain homogenates were analyzed by liquid 

chromatography-electrospray tandem mass spectrometry (LC-MS/MS) using an 

Agilent 1100 Series (Agilent, Waldbronn, Germany) liquid chromatograph interfaced 

with an Applied Biosystems API 4000 (ABSciex, Darmstadt, Germany) triple 

quadrupole mass spectrometer. Deuterated paroxetine (Paro-D6) was used as internal 
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standard. Five µl samples were loaded and gradient eluted from an Accucore RP-MS 

2.6 µm column (2.1 x 50 mm, Thermo Scientific, Dreieich, Germany) at a flow rate of 

0.3 ml/min and 30°C (eluent A: methanol, 10 mM ammonium formate, 0.1% formic 

acid eluent B: 10 mM ammonium formate, 0.1% formic acid). Gradient: 0-0.5 min 20% 

A, 0.5-2 min 20- 90% A, 1 min held at 90% A, 3-3.5 min 90-20% A and 3.5-8 min 20% 

A. The ion source was operated in positive mode at 500°C and multiple reaction 

monitoring collision-induced dissociation was performed using nitrogen collision gas. 

The collision energy was set to 29 V for paroxetine and 33 V for Paro-D6. The 

transitions monitored during analysis were m/z 330 → 192 for paroxetine and m/z 336 

→ 198 for Paro-D6. 

 

2.6. Omics analyses 

 

2.6.1. Proteomics analysis  

Mouse hippocampus was homogenized in a buffer containing 2M NaCl, 10mM 

HEPES/NaOH, 1mM EDTA and protease inhibitor cocktail tablets (Roche 

Diagnostics, Mannheim, Germany) and phosphatase inhibitors (Sigma, St. Louis, MO, 

USA). Homogenates were sonicated with an ultra-sonicator (Branson, Danbury, CT, 

USA) and centrifuged (16100g, 20 min, 4°C). The protein concentration was 

quantified by Bradford assay. 

Protein extracts were mixed with equal amounts of 
15

N-labeled DBA/2 mouse 

hippocampal protein extract (Sato et al., 2012; Shah et al., 2012; Inoue et al., 2013). 

Fourty µg of 
14

N- 
15

N hippocampal protein mixture was separated in a 10% SDS-

PAGE gel and stained with Coomassie Brilliant Blue R-250 (BioRad, Hercules, CA, 

USA) overnight. After destaining and cutting the gel lane into slices, gel bands were 

further destained 3 times with 25 mM NH4HCO3/50% acetonitrile (Merck, Darmstadt, 

Germany). The gel slices were then reduced with 10 mM dithiothreitol (BioRad, 

Hercules, CA, USA) for 30 min at 56°C and carboxyadminomethylated with 50 mM 

iodoacetamide (Biorad, Hercules, CA, USA) for 30 min at room temperature, 

followed by additional twice of washing with with 25 mM NH4HCO3/50% 

acetonitrile. The gel slices were subjected to tryptic digestion to produce peptides 

(overnight, 37°C). Tryptic peptides were extracted with 2% formic acid/50% 
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acetonitrile (Merck, Darmstadt, Germany) with shaking. The peptides were 

lyophilized and dissolved in 1% formic acid (Merck, Darmstadt, Germany). The 

extracted peptides were analyzed by LC-MS/MS using a nanoflow HPLC-2D system 

(Eksigent, Dublin, California) coupled online to an LTQ-Orbitrap mass spectrometer 

(Thermo Fisher Scientific, Bremen, Germany). Proteins were identified by Sequest 

(Thermo Fischer, Scientific, Bremen, Germany) search using a decoy Uniprot mouse 

protein 
14

N and 
15

N database. Peptide search results were filtered and combined with 

the help of Trans-Proteomic Pipeline (TPP). Based on protein group detection data 

from TPP, protein quantitation was carried out using ProRata software (version 1.0). 

 

2.6.2. Metabolomics analysis 

A 30-fold excess (w/v) of 80% cold methanol was added to the hippocampus and 

prefrontal cortex. Brain tissues were homogenized (1200 min
-1

, 2 min, Potter-S 

homogenizer, Sartorius, Göttingen, Germany) on ice and centrifuged (14000g, 10 

min, 4°C). Supernatants were transferred and a 6-fold excess (w/v) of 80% cold 

methanol was added to the pellets. Pellets were sonicated to further extract 

metabolites and combined with the previous supernatants. Combined samples were 

vortexed, centrifuged (14000g, 10 min, 4°C) and lyophilized.  

Mouse plasma metabolites were extracted with a 4-fold excess (v/v) of 100% cold 

methanol. After vortexing for 2 min, samples were incubated on dry ice for 2 h and 

centrifuged (2053 g, 10 min, 4°C). Supernatants were filtered using a 0.22 μm 

ultrafiltration tube (1105g, 2 min, 4°C) and the filtrates were lyophilized. The 

lyophilized metabolites were stored at -80°C until further use. Samples were 

dissolved in 20 μl liquid chromatography-mass spectrometry grade water. Ten 

microliters were injected and analyzed using a 5500 QTRAP triple quadrupole mass 

spectrometer (AB/SCIEX, Framingham, MA, USA) coupled to a Prominence UFLC 

high-performance liquid chromatography system (Shimadzu, Columbia, MD, USA) 

via selected reaction monitoring of a total of 280 endogenous water-soluble 

metabolites for steady-state analyses of samples. Samples were delivered to the mass 

spectrometer via normal phase chromatography using a 4.6-mm i.d × 10 cm Amide 

Xbridge HILIC column (Waters, Milford, MA, USA) at 350 μl min
−1

. Gradients were 

run starting from 85% buffer B (high-performance liquid chromatography grade 

acetonitrile) to 42% B from 0 to 5 min 42% B to 0% B from 5 to 16 min 0% B was 
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held from 16 to 24 min 0% B to 85% B from 24 to 25 min 85% B was held for 7 min 

to re-equilibrate the column. Buffer A comprised 20mM ammonium 

hydroxide/20mM ammonium acetate (pH = 9.0) in 95:5 water:acetonitrile. Some 

metabolites were targeted in both positive and negative ion modes for a total of 291 

selected reaction monitoring transitions using positive/negative polarity switching. 

Electrospray ionization voltage was +4900 V in positive ion mode and − 4500 V in 

negative ion mode. The dwell time was 4ms per selected reaction monitoring 

transition and the total cycle time was 1.89 s. Approximately 9–12 data points were 

acquired per detected metabolite. Peak areas from the total ion current for each 

metabolite-selected reaction monitoring transition were integrated using the 

MultiQuant v2.0 software (AB/SCIEX). Animals from the same cohort were used for 

all metabolomics analyses. Animals from the same cohort were used for all 

metabolomics analyses.  

 

2.7. Molecular techniques 

 

2.7.1. qRT-PCR 

Hippocampal total RNA was isolated with TRIzol reagent (Invitrogen, Karlsruhe, 

Germany) as previously described (Schmidt et al., 2010). RNA levels were quantified 

using NanoPhotometer (IMPLEN, Munich, Germany). One ug of RNA was subjected 

to reverse transcription using Omniscript RT kit according to manufacturer’s protocol 

(Quiagen, Santa Clarita, CA, USA). QuantFast SYBR Green PCR kit (Quiagen, Santa 

Clarita, CA, USA) was used for Quantitative Reverse Transcription Polymerase 

Chain Reaction (qRT-PCR). The reaction was performed using LightCycler 480 

(Roche Diagnotics, Penzberg, Germany). The cycling condition used was as follows: 

denaturation step at 95°C for 10min, followed by 45 cycles of amplification step 

(95°C for 10sec, 60°C for 30sec, for each cycle). Each set of primer was used for 

detection of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), nNOS, NR1, 

NR2A, NR2B and PSD95 (Eurofins MWG Operon, Ebersberg, Germany) (Table 1). 

Each sample was analyzed in duplicate and normalized with GAPDH level. Relative 

quantitation was performed based on crossing points value (Pfaffl, 2001).  
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Table 1. List of primers used for qRT-PCR analysis. 

 

2.7.2. Immunoprecipitation  

Hippocampal proteins were extracted and immunoprecipitated using Pierce Direct IP 

kit (Thermo Fisher Scientific, Rockford, IL, USA). Mouse hippocampus was 

homogenized with IP lysis/wash buffer containing 2% SDS (Sigma, St. Louis, MO, 

USA), protease inhibitor cocktail tablets (Roche Diagnostics, Mannheim, Germany) 

and phosphatase inhibitors (Sigma, St. Louis, MO, USA). Lowry assay was 

performed to measure protein concentration with DC Protein Assay kit (Bio-Rad 

Laboratories, Munich, Germany). 10ug of Ub antibody (Santa Cruz, Dallas, TX, USA) 

was covalently bound to the resin according to manufacturer’s protocol. 500ug of 

hippocampal lysates were boiled (95°C, 10 min) and diluted with 5 volumes of IP 

lysis/wash buffer containing 2% Triton X-100, protease inhibitor cocktail tablets 

(Roche Diagnostics, Mannheim, Germany) and phosphatase inhibitors (Sigma, St. 

Louis, MO, USA). The lysates were incubated with Ub antibody-coupled resin (4°C, 

overnight). The resin was washed three times with IP lysis/wash buffer and was 

boiled with 1×SDS loading buffer for elution (95°C, 10 min). Immunoprecipitates 

were separated in a 10% SDS-PAGE gel, and Western blot analysis was performed 

with NR1, NR2A and PSD-95 antibodies. Ubiquitinated protein levels were 

normalized by total ubiquitination intensity. 
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2.7.3. Western blot analysis 

Mouse hippocampus, prefrontal cortex and erythrocytes were homogenized with the 

same buffer used for proteomics sample preparation, or RIPA buffer containing 

protease inhibitor cocktail tablets (Roche Diagnostics, Mannheim, Germany) and 

phosphatase inhibitors (Sigma, St. Louis, MO, USA). Patient PBMCs were 

homogenized with RIPA buffer containing protease and phosphatase inhibitors. 

Homogenates were sonicated and centrifuged (16100g, 20 min, 4°C). Bradford assay 

was used to quantify extracted protein concentration. Proteins were separated in 10-15% 

gradient SDS-PAGE gels. Subsequently, they were transferred to a PVDF membrane 

(Millipore, Billerica, MA, USA). After blotting, the membrane was blocked with 5% 

skim milk solution for 1 h at room temperature and incubated with β-actin (1:4000, 

Sigma, St.Louis, MO, USA), aminoimidazole-4-carboxamide ribonucleotide 

transformylase/IMP cyclohydrolase (ATIC) (1:500, Santa Cruz, Dallas, TX, USA),  

Ca
2+

/calmodulin-dependent protein kinase (CaMK) II (1:2000, Abcam, Cambridge, 

UK), carboxy-terminal PDZ ligand of nNOS (CAPON) (1:500, Santa Cruz, Dallas, 

TX, USA), carbamoyl phosphate synthase 2 (CPS2) (1:500, Santa Cruz, Dallas, TX, 

USA), extracellular signal-regulated kinase (ERK) (1:1000, Cell Signaling, Danvers, 

MA, USA), glutamate dehydrogenase 1 (GDH1) (1:1000, Aviva System Biology, San 

Diego, CA, USA), glutamine synthetase (GS) (1:1000, Sigma, St.Louis, MO, USA), 

glycogen synthase kinase-3β (GSK-3β) (1:1000, Cell Signaling, Danvers, MA, USA), 

soluble guanylate cyclase-β1 (sGC-β1) (1:500, Santa Cruz, Dallas, TX, USA), 

hypoxanthine-guanine phosphoribosyltransferase (HPRT) (1:500, Sigma, St. Louis, 

MO, USA), mitochondrial aspartate transaminase (mAST) (1:500, Sigma, St.Louis, 

MO, USA), mitogen-activated protein kinase kinase (MEK) (1:1000, Cell Signaling, 

Danvers, MA, USA), neuronal nitric oxide synthase (nNOS) (1:1000, Cell Signaling, 

Danvers, MA, USA), N-Methyl-D-aspartate (NMDA) receptor subunit (NR) 1 (1:500, 

Santa Cruz, Dallas, TX, USA), NR2A (1:500, Santa Cruz, Dallas, TX, USA), NR2B 

(1:500, Santa Cruz, Dallas, TX, USA), phospho-CaMKII (P- CaMKII) (1:1000, Cell 

Signaling, Danvers, MA, USA), phospho-ERK (P-ERK) (1:1000, Cell Signaling, 

Danvers, MA, USA), phospho-GSK-3β (Ser9) (P-GSK-3β) (1:1000, Cell Signaling, 

Danvers, MA, USA), phospho-MEK (P-MEK) (1:1000, Cell Signaling, Danvers, MA, 

USA), phospho-NR1 (P-NR1) (1:500, Santa Cruz, Dallas, TX, USA),  phospho-

NR2A (P-NR2) (1:500, Santa Cruz, Dallas, TX, USA),  phospho-NR2B (P-NR2B) 
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(1:500, Santa Cruz, Dallas, TX, USA), postsynaptic density protein 95 (PSD-95) 

(1:1000, GeneTex, Irvine, CA, USA), proteasome subunit α type-2 (PMSA2), 

synapsin (1:1000, Cell Signaling, Danvers, MA, USA), synaptic vesicle glycoprotein 

2A (SV2A), synaptojanin 1 (SYNJ1), syntaxin binding protein1 (STXBP1) or 

ubiquitin (Ub) (1:500, Santa Cruz, Dallas, TX, USA) antibody at 4°C overnight. 

PMSA2, SYNJ1, STXBP1 and SV2A antibodies were provided by the Human Protein 

Atlas (HPA) program (Albanova University Center, Royal Institute of Technology, 

Sweden). 

The membranes were washed and then incubated with horseradish peroxidase (HRP) 

conjugated-secondary antibodies. The blots were developed with Luminata
TM

 Forte 

Western HRP Substrate (Millipore, Billerica, MA, USA). Images were acquired by 

ChemiDoc
TM

 MP imaging system (Bio-Rad Laboratories, Munich, Germany). 

Densitometric data analyses were carried out with ImageJ software (National Institute 

of Health, USA). 

 

2.8. Patient samples 

For in vivo and ex vivo studies, two distinct PBMC batches from different individuals 

were chosen. PBMCs obtained from 17 participants of the Munich Antidepressant 

Response Signature (MARS) study were included for assessing protein expression 

levels (Table 2). PBMCs from 32 individuals were subjected to ex vivo cultivation 

and paroxetine treatment (Table 3). Diagnosis was conducted according to DSM-IV 

criteria, and all participants were diagnosed as having MDD. Depression severity was 

evaluated using the 21-item Hamilton Depression Rating Scale (HDRS). Responder 

and non-responder patients were classified based on clinical antidepressant treatment 

response corresponding to minimal 50% reduction in HDRS score between baseline 

(T0) and after 6 weeks of admission (T6). The Munich Antidepressant Response 

Signature (MARS) project was approved by the ethics committee of the Medical 

Faculty at Ludwig Maximilians University of Munich, Germany (submission number 

318/00). Participants included in the study gave oral and written consents after 

receiving a complete description of the study. 
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Table 2. Demographic features of antidepressant treatment responder and non-

responder patients. 

 

 

 

Table 3. Demograhic and clinical characteristics of antidepressant responders 

and non-responders included in ex vivo PBMCs cultivation and paroxetine 

treatment. 

 

2.8.1. Paroxetine treatment of PBMCs  

Blood of patients with MDD was collected between 08:00 and 09:00 h within 5 days 

after admittance. PBMCs were prepared as described previously (Gassen et al., 2014). 

Blood was collected from depression patients via venepuncture, and centrifuged 

(800g, 20 min) to separate PBMCs. Using Biocoll separating solution, PBMCs were 

enriched and washed with ice-cold PBS. PBMCs were plated at 4×10
5
 cells/cm

2
. 

After 6 hours, cells were treated with 120ng/ml paroxetine for 2 days according to the 

consensus guidelines for therapeutic drug monitoring in psychiatry (Lotrich and 

Pollock, 2005; Hiemke et al., 2011). 
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2.8.2. Protein level quantitation in cultivated PBMCs 

In ex vivo cultivated PBMCs, ATIC, CPS2, HPRT and β-actin protein levels were 

detected and quantitated with an automated capillary immunoassay system, Simple 

Western
TM

 (ProteinSimple, Santa Clara, CA, USA). PBMCs lysates were prepared 

according to manufacturer’s instruction. Fluorescent master mix was prepared with 

400mM DTT, 5× fluorescent master mix solution and biotinylated protein ladder. 

Protein lysates were incubated with master mix solution and denatured at 95°C for 5 

min. Protein samples, primary and secondary antibodies were loaded on 96 well plate. 

All following steps were fully automated. Protein levels were quantified using 

antibodies for β-actin (1:150, Sigma, St.Louis, MO, USA), ATIC (1:25, Santa Cruz, 

Dallas, TX, USA) and CPS2 (1:50, Santa Cruz, Dallas, TX, USA). Protein 

quantitation data were normalized with β-actin. Quantitative analysis was performed 

using Compass software (ProteinSimple, Santa Clara, CA, USA). 

 

2.9. Statistical Analysis 

Hierarchical clustering analysis (HCA) was performed to separate paroxetine-treated 

sub-groups of mice, using SPSS (SPSS version 21, IBM SPSS Inc., Chicago, IL, 

USA). Statistical analysis of behavioral data (FST and FUST) and covariates were 

performed with GraphPad Prism 5 (GraphPad Software, Inc., La Jolla, CA, USA). 

Student t-test, one-way or two-way ANOVA was used to evaluate statistical 

significance between groups. Pearson correlation coefficients (r) with p values were 

used to evaluate correlation between floating time and body weight gain. For the 

identification of significantly altered metabolites, metabolite peak intensities were 

median and auto-scaled normalized. Metabolites with missing values, 30 for the 

hippocampus and 27 for the prefrontal cortex in all replicates, were excluded from 

data analysis. Significant analysis of microarrays (and metabolites) (SAM) method 

was used to identify significantly altered metabolites (q < 0.05, FDR < 0.1). 

Significantly altered metabolites were subjected to pathway enrichment analysis of 

MetaboAnalyst (http://www.metaboanalyst.ca) to identify differentially affected 

pathways between the PLF and PSF groups. Pathways with Holm adjusted p < 0.05 

and FDR < 0.05 were considered significantly affected. To identify sub-pathways 

interacting with a differentially affected pathway between the PLF and PSF groups, 

correlates of each SAM signature were combined and used to enrich relevant 
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metabolic pathways using MetaboAnalyst (Pearson correlation coefficients (r) > 0.7, 

FDR < 0.1). Pathways with Holm adjusted p < 0.05 and FDR < 0.05 were considered 

significant. Proteomics pathway enrichment was performed using DAVID 

bioinformatics resources 6.7 according to a Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database (Huang et al., 2007). Enriched pathways were considered 

significant at Bonferroni adjusted p < 0.05 and FDR < 0.01. Proteins common to 

several pathways were further extracted from the enriched pathways using a Venn 

diagram comparison. Protein interaction network was created using STRING database. 

Western blot data were analyzed with GraphPad Prism 5. Two-tailed t-test was used 

to evaluate the difference between the groups. Data were expressed as the mean ± the 

standard error of the mean (SEM).  Correlations between pathway protein levels and 

FST floating time/HDRS change were assessed using Pearson correlation coefficients 

(r) with p values. Statistical data were considered significant at p < 0.05. D’Agostino 

& Pearson omnibus normality test was used to check normal distribution. 
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3. Results 

 

Figure 5 shows a schematic overview of the workflow. 

 

 

 

Figure 5. A schematic overview of the workflow. 
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3.1. Sub-grouping of paroxetine responder and non-

responder mice 

DBA/2J mice were administered with vehicle or paroxetine pills (2 x 5 mg/kg/day) 

for 28 days. The paroxetine-treated group (PAR) showed significantly reduced FST 

floating time compared to vehicle-treated (VEH) mice (t = 13.90, df = 143, p < 

0.0001) (Figure 6).  

 

 

 

Figure 6. The effect of chronic paroxetine treatment on FST floating time. Male DBA/2J mice 

received paroxetine (5 mg/kg, twice a day, 28 days) and floating time was recorded for 6 min. 

PAR mice displayed significantly shorter floating time compared to vehicle-treated group 

(VEH). n(VEH/PAR)=50/95. Data are expressed as mean ± SEM. **** p < 0.0001 (two-tailed 

t-test). 

 

I was able to separate paroxetine-treated mice into long-time floating (PLF) and short-

time floating (PSF) groups according to their FST floating time using hierarchical 

cluster analysis (HCA) (F = 159.5, df = 144, p < 0.001) (Figure 7). PSF mice floating 

time was significantly lower than for VEH mice (p < 0.001) while no floating time 

difference was observed between PLF and VEH mice. During the female urine 

sniffing test (FUST) PLF and PSF mice did not show differential sniffing time prior 

to paroxetine treatment (F(5,192) = 104.5, p > 0.05) (Figure 8a). A slightly different 

sniffing time became apparent after 28 days of paroxetine treatment (p = 0.052). The 

time for sniffing female urine was longer for PSF mice compared to VEH and PLF 

mice (F(5,192) = 84.24, df = 197, p < 0.0001) (Figure 8b). Two-way ANOVA identified 

no interaction between time points and treatment. 
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Figure 7. Sub-grouping of paroxetine-treated mice. Dendrogram of paroxetine-treated mice. 

Mice treated with paroxetine were separated into PLF and PSF groups using hierarchical 

clustering analysis (HCA). n(VEH/PLF/PSF)=50/9/86. Data are expressed as mean ± SEM. 

***p < 0.001 (one-way ANOVA with Tukey’s test for multiple comparisons). 

 

 

Figure 8. The effect of chronic paroxetine treatment on female urine sniffing test (FUST). The 

effect of chronic paroxetine treatment on female urine sniffing test (FUST). Sniffing time at (a) 

baseline and (b) after 28 days of paroxetine treatment. Chronic paroxetine treatment induced a 

slightly significant difference of sniffing time between paroxetine-treated long- time floating 

(PLF) and paroxetine-treated short-time floating (PSF) groups. n(VEH/PLF/PSF) = 43/22/34. 

*p < 0.05 (two-tailed t-test), ***p < 0.001 (one-way ANOVA with Tukey’s test for multiple 

comparisons).   
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3.2. Covariate analysis 

Covariates that may be relevant for paroxetine treatment response were examined. 

Paroxetine concentrations in whole brain and plasma did not differ between groups (p 

> 0.05) and did not correlate with FST floating time (r = 0.26, p = 0.387) (Figure 9a 

and b). I also analyzed mouse age and body weight gain. A significant age effect on 

FST floating time was not observed (F(4,81) = 2.184, p > 0.05) (Figure 10).  

 

 

Figure 9. Paroxetine levels in (a) whole brain and (b) plasma. PLF and PSF groups did not 

show significant paroxetine level differences, n(PLF/PSF)=5/8. Pearson correlation coefficients 

(r) with P values are indicated in the correlation graphs. 

 

 

Figure 10. The effect of age on FST floating time, n(VEH/PLF/PSF)=50/9/86. *p < 0.05 (one-

way ANOVA with Tukey’s test for multiple comparisons).  

 

Body weight gain did not vary between PLF and PSF mice. Both groups had a 

significantly higher body weight gain after chronic paroxetine treatment compared to 

VEH mice (F(2,42) = 29.51, p < 0.0001). Correlation between body weight gain and 

FST floating time was not significant (VEH: r = - 0.02, p = 0.876 PLF: r = - 0.32, p = 

0.405 PSF: r = - 0.15, p = 0.169) (Figure 11). 
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Figure 11. The effect of body weight gain on FST floating time, n(VEH/PLF/PSF)=50/9/86. 

Data are expressed as the mean ± SEM. *p < 0.05, ***p < 0.001 (one-way ANOVA with 

Tukey’s test for multiple comparisons). Pearson correlation coefficients (r) with P values are 

indicated in the correlation graphs. 

 

3.3. Identification of purine and pyrimidine metabolism 

After clustering paroxetine-treated mice into long-floating and short-floating groups, I 

performed metabolomics and proteomics analyses of the hippocampus. Both -omics 

analyses showed purine/pyrimidine metabolites and proteins with significant 

differences between the two groups (log2|FC| > 0.3, -log10(p value) > 1.3) (Figure 12).  

 

Figure 12. A volcano plot of hippocampal metabolome and proteome. Metabolites and proteins 

with log2|FC| > 0.3 and –log10(p value) > 1.3 were considered significant. Purine/pyrimidine 
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metabolites and metabolism-related proteins were found to be significantly different between 

the sub-groups, n=3-5/group.  

 

In metabolomics analysis, significant analysis of microarrays (and metabolites) (SAM) 

and SAM-driven correlation analysis revealed that chronic paroxetine treatment 

differentially affected the hippocampal metabolome of the PLF and PSF mice (Figure 

13).  

 

 

Figure 13. A heat map with combined profiles of SAM signatures (q < 0.05, FDR < 0.1) and 

their significant correlates (r > 0.7, p < 0.05). Heat map colors denote normalized metabolite 

intensity, n=5/group.  
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Sixteen metabolites were differentially regulated showing significantly higher levels 

in PSF compared to PLF mice (q < 0.05, FDR < 0.1). In addition, I found significant 

correlations with 42 other hippocampal metabolites (r > 0.7, FDR < 0.1) (Figure 14).  

 

 

Figure 14. Hippocampal SAM metabolites (q < 0.05, FDR < 0.1) and their significant correlates 

(r > 0.7, p < 0.05) 

 

In proteomics analysis, I found that purine/pyrimidine metabolism proteins including 

S-adenosyl-L-homocysteine hydrolase (AdoHcyase), S-adenosyl-L-homocysteine 

hydrolase 2 (AdoHcyase 2), guanine deaminase (GDA), inosine triphosphate 

pyrophosphatase (ITPase), purine nucleoside phosphorylase (PNP) and UMP-CMP 

kinase (UMP/CMPK) were differentially expressed between the PLF and PSF groups  

(Figure 15).  

 



                                                                                                                                                      3. Results 

31 
 

 

Figure 15. Identification of purine and pyrimidine metabolism pathway proteins in proteomics 

analysis. 266 and 264 proteins were found to be up- and down-regulated between PLF and PSF 

mice. Purine and pyrimidine metabolisms protein levels were significantly different between the 

PLF and PSF mice (p < 0.05), n=3/group. Data are expressed as the mean ± SEM. **p < 0.01, 

***p < 0.001, ****p < 0.0001 (two-tailed t-test).  

 

The pyrimidine metabolism pathway was enriched with four metabolites from 

hippocampal SAM analysis (carbamoyl phosphate, dihydroorotate, orotate and 

thymidine). Eight correlates of SAM signatures (adenine, adenosine 5-phosphosulfate, 

ADP, dGDP, glutamine, IDP, ppGpp, xanthosine) enriched the purine metabolism 

pathway (Holm adjusted p < 0.05, FDR < 0.05) (Figure 16).  

 

 

Figure 16. Metabolic pathway anlaysis in the hippocampus. Metabolomics analysis identified 

purine and pyrimidine metabolisms as sub-pathway and affected pathway, respectively (Holm 

adjusted p < 0.05, FDR < 0.05).  

 



                                                                                                                                                      3. Results 

32 
 

Average levels of purine and pyrimidine metabolites were significantly higher in PSF 

than PLF mice and were strongly correlated with FST floating time (Figures 17a and 

b).  

 

Figure 17. Purine and pyrimidine metabolite average levels and correlation with FST floating 

time. (a) Average level difference of purine and pyrimidine metabolites between PLF and PSF 

group was shown by box plots with whiskers min to max. (b) Average purine and pyrimidine 

pathways metabolite levels were strongly correlated with FST floating time. Data are expressed 

as the mean ± SEM. ****p < 0.0001 (two-tailed t-test). Pearson correlation coefficients (r) with 

p values are indicated under the correlation graphs. 

 

 

Figure 18. Levels of hippocampal metabolites that are part of pyrimidine metabolism pathway 

and correlation with FST floating time. n = 5/group. Bars represent mean ± SEM. **p < 0.01, 

***p < 0.001 vs PLF (two-tailed t-test). Pearson correlation coefficients (r) with p values are 

indicated in the correlation graphs. 
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Purine and pyrimidine metabolite levels were higher in the PSF compared to PLF 

groups and with the exception of adenine and adenosine phosphosulfate showed a 

significant negative-correlation with FST floating time (Figures 18 and 19). 

Metabolomics analysis of the prefrontal cortex did not result in any metabolite and 

pathway differences distinguishing the PLF and PSF groups. 

 

 

 

Figure 19. Levels of hippocampal metabolites that are part of purine metabolism pathway and 

correlation with FST floating time. n = 5/group. Bars represent mean ± SEM. *p < 0.05, **p < 0.01 vs 
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PLF (two-tailed t-test). Pearson correlation coefficients (r) with p values are indicated in the correlation 

graphs. 

 

Figure 20. The effect of chronic paroxetine treatment on ATIC, CPS2 and HPRT protein 

expressions in the mouse hippocampus and prefrontal cortex. (a) Western blot and densitometry 

analyses of the pathway protein levels in the hippocampus and prefrontal cortex. Hippocampal 

ATIC, CPS2 and HPRT proteins showed significant expression level differences between the 

PLF and PSF groups, n=5/group. (b) Correlation of hippocampal CPS2 and HPRT protein 

levels with FST floating time was significant in the hippocampus. ATIC protein level showed 

moderate correlation with FST floating time.  n=15. (c) Correlation of FST floating time with 

the pathway protein levels in the prefrontal cortex. None of the pathway protein showed 

significant correlation with FST floating time. n=15. Protein expression levels were normalized 

with β-actin. Data are expressed as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (two-



                                                                                                                                                      3. Results 

35 
 

tailed t-test). Pearson correlation coefficients (r) with p values are indicated in the correlation 

graphs. 

 

Aminoimidazole-4-carboxamide ribonucleotide transformylase/IMP cyclohydrolase 

(ATIC), carbamoyl phosphate synthase 2 (CPS2) and hypoxanthine-guanine 

phosphoribosyltransferase (HPRT) protein expression in the hippocampus and 

prefrontal cortex were assessed to validate differentially affected pathways between 

the PLF and PSF groups (Figure 20a). In the hippocampus, ATIC, CPS2 and HPRT 

protein levels showed significant differences between groups. Compared to the PLF 

group the PSF group had significantly reduced ATIC, CPS2 and HPRT protein 

expression levels (ATIC: t = 3.304, df = 8, p < 0.05, CPS2:  t = 1.702, df = 8, p < 

0.001, HPRT: t = 3.488, df = 8, p < 0.01). In the prefrontal cortex protein expression 

showed no difference between the two groups. FST floating time significantly 

correlated with CPS2 and HPRT protein expression levels in the hippocampus, but 

not in the prefrontal cortex. Correlation between FST floating time and ATIC protein 

levels also showed strong tendency in the hippocampus (Figures 20b and c). 

 

3.4. Metabolomics analysis of mouse plasma  

To delineate peripheral metabolome changes related to chronic paroxetine treatment 

response, plasma metabolite levels were investigated in the PLF and PSF groups at 

baseline (T0) and following 28 days of drug treatment (T4). While metabolomic 

profiles between PLF and PSF groups showed no significant differences both at T0 

and T4, the PSF group exhibited profound differences with 43 significant metabolite 

level changes between T0 and T4 and another 71 metabolites that were strongly 

correlated (r > 0.7, FDR < 0.1) (Figure 21a). In the PSF group pyrimidine metabolism 

was enriched with 6 metabolites (carbamoyl phosphate, CMP, dTMP, thymine, UDP, 

UMP) and another 7 metabolites (adenosine, AMP, GMP, guanine, hypoxanthine, 

IMP, uric acid) enriched the purine metabolism pathway (Holm adjusted p < 0.05, 

FDR < 0.05) (Figure 22). The PLF group exhibited smaller metabolome changes 

compared to the PSF group. Only 4 metabolites were significantly altered after 

chronic paroxetine treatment according to SAM with another 32 metabolites highly 

correlated (r > 0.7, FDR < 0.1) (Figure 21b). While SAM signatures revealed no 

significantly affected pathways for the PLF group, glycine, serine and threonine 
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metabolism was enriched for 5 correlates (choline, dimethylglycine, guanidoacetic 

acid, serine and threonine) (Holm adjusted p < 0.05, FDR < 0.05) (Figure 23).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Significant plasma metabolite level changes after chronic paroxetine treatment. Plasma 

SAM metabolites (q < 0.05, FDR < 0.1) and their significant correlates (r > 0.7, p < 0.05) in (a) 

PSF and (b) PLF groups. 
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Figure 22. Chronic paroxetine treatment induced differential metabolome alterations in PSF 

mouse plasma. (a) Heat maps and (b) identified pathways of PSF groups comparing 

metabolome at baseline (T0) and following 28 days of treatment (T4). Purine and pyrimidine 
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metabolisms were the only affected pathways in the PSF group (Holm adjusted p < 0.05, FDR < 

0.05). Heat map colors denote normalized metabolite intensity, n=5/group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. (a) Heat maps and (b) identified pathways of PLF groups comparing metabolome at 

baseline (T0) and following 28 days of treatment (T4). Correlates of SAM signatures identified 

glycine, serine and threonine metabolism as a sub-pathway (Holm adjusted p < 0.05, FDR < 

0.05). Heat map colors denote normalized metabolite intensity, n=5/group. 
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Figure 24. Plamsa metabolite average level changes in the identified pathways. Chronic 

paroxetine treatment induced average level changes of (a) purine and (b) pyrimidine pathways 

metabolites in the PSF group, and (c) glycine/serine/threonine pathway metabolites in PLF 

group between T0 and T4, n=5/group. Metabolite levels are expressed with Box plots with 

whiskers min to max. ****p < 0.0001 (two-tailed paired t-test). 

 

Plasma metabolite levels of identified pathways were significantly altered after mice 

had been treated chronically with paroxetine. Purine and pyrimidine metabolism 

pathway average levels were significantly upregylated by chronic paroxetine 

treatment in PSF mouse plasma (Figures 24a and b). In PLF mouse plasma, glycine, 

serine and threonine metabolism pathway was significantly downregulated by chronic 

paroxetine treatment (Figure 24c). Significant purine and pyrimidine metabolite level 

changes between T0 and T4 were observed only in the PSF mice. In PSF mice, 

chronic paroxetine treatment induced significant upregulation of pyrimidine pathway 

metabolites (carbamoyl phosphate, CMP, dTMP, thymine, UDP, UMP, Figure 25) 

and purine pathway metabolites (adenosine, AMP, GMP, guanine, hypoxanthine, IMP, 

uric acid, Figure 26). Glycine, serine and threonine pathway metabolite level changes 

occurred both in PLF and PSF mice (Figure 27). Plasma levels of 2,3-

dihydroxzbenzoic acid, aminoadipic acid, choline, pantothenate, taurine, threonine 

and uracil were found to be regulated to a similar extent in both PLF and PSF groups 

(Figure 28). 
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Figure 25. Plasma pyrimidine pathway metabolite levels. The metabolite levels in the PSF 

group were elevated by chronic paroxetine treatment. The PLF and PSF groups exhibited 

similar metabolite levels both at T0 and T4. n = 5/group. *p < 0.05, **p < 0.01, ***p < 0.001, 

****p < 0.0001 (two-tailed paired t-test). 

 

 

Figure 26. Plasma purine pathway metabolite levels. The metabolite levels in the PSF group 

were elevated by chronic paroxetine treatment. The PLF and PSF groups exhibited similar 
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metabolite levels both at T0 and T4. n = 5/group. *p < 0.05, **p < 0.01, ***p < 0.001 (two-

tailed paired t-test). 

 

 

 

Figure 27. Plasma glycine, serine and threonine metabolism pathway metabolite levels. Glycine, 

serine and threonine metabolite levels in PLF and PSF mice. Both PLF and PSF mice showed 

that glycine, serine and threonine metabolite levels were significantly down-regulated by 

chronic paroxetine treatment. n = 5/group. *p < 0.05, **p < 0.01 (two-tailed paired t-test). 

 

 

 

Figure 28. Common plasma SAM signatures between the PLF and PSF groups. q value < 0.05 

in either PLF or PSF groups, FDR < 0.1. 
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For validation of peripheral pathways identified in plasma, erythrocytes were chosen 

as source. Interestingly, erythrocytic ATIC, CPS2 and HPRT proteins were 

differentially expressed between the PLF and PSF groups. Erythrocytic ATIC and 

CPS2 protein expression in the PSF mice was 1.2-fold and 2.4-fold higher than in the 

PLF mice, respectively (ATIC: t = 4.991, df = 8, p < 0.01, CPS2: t = 4.484, df = 8, p 

< 0.01). HPRT protein levels were 1.7-fold higher in the PSF compared to the PLF 

group (t = 3.145, df = 8, p < 0.05) (Figure 29a). Furthermore, CPS2 and HPRT 

protein levels were significantly correlated to FST floating time. Correlation between 

FST floating time and ATIC protein levels showed tendency (Figure 29b). 

 

 

Figure 29. The effect of chronic paroxetine treatment on ATIC, CPS2 and HPRT protein 

expressions in the mouse erythrocytes. (a) Western blot and densitometry analyses of CPS2 and 

HPRT protein levels in the erythrocytes. Erythrocytic ATIC, CPS2 and HPRT proteins showed 

significant expression level differences between the PLF and PSF groups, n=5/group. (b) 

Correlation of the pathway protein levels with FST floating time. CPS2 and HPRT protein 

levels with FST floating time was significant. ATIC protein moderately correlated with FST 

floating time, n=15. Protein expression levels were normalized with β-actin. Data are expressed 

as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001 (two-tailed t-test). Pearson correlation 

coefficients (r) with p values are indicated in the correlation graphs. 
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3.5. Analysis of peripheral patient specimens  

Next, I sought to corroborate my findings on pyrimidine and purine metabolism in 

patients chronically treated with antidepressants. For this purpose I carried out 

experiments with PBMCs isolated from patients. 

First, the same pyrimidine and purine pathway proteins analyzed in mice, ATIC, 

CPS2 and HRPT, were assessed in PBMCs obtained from antidepressant responder 

and non-responder patients of the MARS study. In PBMCs collected after 4-6 weeks 

of antidepressant treatment, ATIC and CPS2 protein levels were significantly 

correlated with clinical antidepressant treatment response (ATIC: r = 0.52, p = 0.034 

CPS2: r = - 0.69, p = 0.002 HPRT: r = - 0.23, p = 0.365) (Figure 30a). 

To further investigate pharmacological effects of paroxetine I also performed ex vivo 

experiments with patients’ PBMCs. Cells collected from patients upon admittance 

were cultivated and treated with paroxetine for 2 days. As had been the case for the in 

vivo PBMCs analysis, ATIC and CPS2 protein levels also significantly correlated 

with patients’ clinical antidepressant response when their cultured PBMCs were 

treated with paroxetine (ATIC: r = - 0.37, p = 0.048 CPS2: r = - 0.39, p = 0.029 

HPRT: r = 0.05, p = 0.789) (Figure 30b).  

 

 

Figure 30. Correlation of ATIC, CPS2 and HPRT protein levels with clinical antidepressant 

treatment response. (a) Depression patients’ PBMCs collected after 4-6 weeks of antidepressant 



                                                                                                                                                      3. Results 

44 
 

treatment were analyzed for ATIC, CPS2 and HPRT protein expression. ATIC and CPS2 

protein levels significantly correlated with clinical antidepressant response, n=17. (b) PBMCs 

from inpatients with depression were collected at admission. Cells were ex vivo cultivated and 

treated with paroxetine for 2 days. After treatment, ATIC and CPS2 protein levels significantly 

correlated with clinical antidepressant response, n=32. Pearson correlation coefficients (r) with 

p values are indicated in the correlation graphs. 

 

3.6. Identification of glutamatergic and ubiquitin proteasome 

system (UPS) pathways 

Mice were treated with paroxetine (5 mg/kg, twice a day) for 28 days. Three animal 

sub-groups, paroxetine-treated long floating (PLF), paroxetine-treated intermediate 

floating (PIF) and paroxetine-treated short floating (PSF) groups were identified 

according to FST floating time (F(3,141) = 132.1, p < 0.0001) (Figure 31).  

 

Figure 31. Sub-grouping of mice treated with paroxetine. Paroxetine-treated mice were 

categorized into PLF, PIF and PSF groups based on FST floating time, 

n(VEH/PLF/PIF/PSF)=50/9/14/72. Data are expressed as the mean ± SEM. ***p < 0.001 (two-

tailed t-test). 
##

p < 0.01 vs. PLF, 
###

p < 0.001 vs. PLF and PIF (one-way ANOVA with Tukey’s 

test). 

To investigate the systemic effect of chronic paroxetine treatment on hippocampal 

molecular pathways, proteomic analyses were performed of the two extreme groups 

(PLF and PSF groups), which resulted in significant protein expression differences. 

Significantly affected pathways related to Amyotrophic lateral sclerosis (ALS), 

Alzheimer’s disease, Huntington’s disease and long-term potentiation commonly 

enriched NR1, NR2A and NR2B proteins. Based on the common protein signatures, 
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glutamate receptors, glutamate metabolism and transport, and synapse and vesicle 

trafficking pathways were also altered (Figure 32). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 32. Proteomics profiles and enriched pathways between the PLF and PSF groups. The 
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common protein signatures among pathways were obtained using Venn diagram analysis and 

further subjected to protein interaction network analysis. In the heatmap, colors denote log2 ratio. 

In the interaction pathway map, colors denote fold difference between the two groups. Proteins 

with |log2FC| > 0.3 and adjusted p value < 0.05 were considered significant, n=5/group. 

Hippocampal metabolite profiling data showed altered levels of relevant NMDA 

receptor modulators and metabolites that are part of the glutamate metabolism 

pathway (Figure 33). All metabolites were at significantly higher levels in PSF 

compared to PLF mice (Figure 34).  

 

Figure 33. A volcano plot comparing PLF and PSF metabolomes. Metabolites with |log2FC| > 

0.3 and –log10(p value) > 1.3 were considered significant, n=5/group. 

 

Figure 34. Glutamate-related metabolite differences between PLF and PSF mice, n=5/group. 
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Data are expressed as the mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 

(two-tailed t-test). 

Altered levels of citrulline whose conversion from arginine is catalyzed by nNOS 

protein were detected as well (Figure 35).  Integration of proteomic and metabolomic 

data sets identified systemic metabolite-protein network differences between the PLF 

and PSF groups (Figure 36). 

 

Figure 35. Arginine and citrulline levels in PLF and PSF mice, n=5/group. Data are expressed 

as the mean ± SEM. **p < 0.01 (two-tailed t-test). 

 

Figure 36. Affected protein-metabolite network following chronic paroxetine treatment. 

Upward-pointing red arrow indicates higher biosignature level in PSF compared to PLF mice. 

Downward-pointing blue arrow indicates lower biosignature level in PSF compared to PLF 

mice. 
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3.7. Validation of glutamatergic and UPS pathways 

Hippocampal NRs and their phosphorylation levels were compared between PLF and 

PSF mice. Except for P-NR1/NR1 and P-NR2B/NR2B ratios, all NRs and P-NRs 

levels were significantly different between the two groups (Figure 37). In addition, 

NR levels were significantly correlated with FST floating time (Figure 38). 

 

Figure 37. NR protein level differences between the sub-groups, n=5/group. Data are expressed 

as the mean ± SEM. *p < 0.05, ***p < 0.001 vs. PLF (two-tailed t-test). 

 

 

 

Figure 38. Correlation of NR protein levels with FST floating time, n=15. Pearson correlation 

coefficients (r) with p values are indicated in the correlation graphs.  
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Hippocampal NMDA receptor signaling proteins and their phosphorylation status 

were also investigated between PLF and PSF groups. Especially, P-ERK, CaMK2 and 

GSK3β levels were significantly different between the two groups (Figure 39) and 

correlated with FST floating time (Figure 40). 

 

Figure 39. NMDA receptor signaling protein level differences between the sub-groups, 

n=5/group. Data are expressed as the mean ± SEM. *p < 0.05, ***p < 0.001 vs. PLF (two-tailed 

t-test). 

 

 

 

Figure 40. Correlation of NMDA receptor signaling protein levels with FST floating time, 

n=15. Pearson correlation coefficients (r) with p values are indicated in the correlation graphs. 
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Nitric oxide (NO) production-related proteins were also significantly different 

between PLF and PSF mice (Figure 41). PSD-95, nNOS and CAPON protein levels 

showed significant correlation with FST floating time (Figure 42). 

 

 

Figure 41. Differential effect of chronic paroxetine treatment on PSD-95/nNOS complex. PSD-

95, nNOS, CAPON and sGC-β1 protein level differences between PLF and PSF mice, 

n=5/group. Data are expressed as the mean ± SEM. *p < 0.05, **p < 0.01 vs. PLF (two-tailed t-

test).  

 

 

 

 

Figure 42. Correlation of PSD-95/nNOS complex with FST floating time. PSD-95, nNOS, 

CAPON and sGC-β1 protein levels with FST floating time, n=15. Pearson correlation 

coefficients (r) with p values are indicated in the correlation graphs. 

 

Glutamate metabolism-related protein levels between PLF and PSF mice were further 

investigated in the hippocampus. Particularly GDH1 showed significant level 

differences between the two groups and correlated with FST floating time (Figures 43 

and 44). 
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Figure 43. Glutamate metabolism protein level differences between PLF and PSF mice, 

n=5/group. Data are expressed as the mean ± SEM. **p < 0.01 vs. PLF (two-tailed t-test). 

 

 

Figure 44. Correlation of glutamate metabolism protein levels of FST floating time, n=15. 

Pearson correlation coefficients (r) with p values are indicated in the correlation graphs. 

 

Synapse and vesicle trafficking-associated protein level differences were also 

assessed. Only SYNJ1 protein was found to be significantly different between the 

groups, and correlated with FST floating time (Figures 45 and 46). 

 

 

Figure 45. Synapse and vesicle trafficking-associated protein level differences between PLF 

and PSF mice, n=5/group. Data are expressed as the mean ± SEM. ***p < 0.001 vs. PLF (two-

tailed t-test). 
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Figure 46. Correlation of Synapse and vesicle trafficking-associated protein levels with FST 

floating time, n=15. Pearson correlation coefficients (r) with p values are indicated in the 

correlation graphs. 

 

Since I did not see any NRs, PSD-95 and nNOS transcript level differences between 

PLF and PSF groups (Figure 47) I next examined the possible involvement of the 

UPS protein degradation pathway in the observed protein expression differences. 

Whereas no ubiquitinated NR1, NR2A and PSD-95 differences were detected (Figure 

48), PSF mice showed greater PM2A and ubiquitination levels compared to PLF mice 

(Figure 49), which correlated with FST floating time (Figure 50). 

 

 

Figure 47. qRT-PCR data of NRs, PSD95 and nNOS. No transcription differences were found 

between PLF and PSF groups, n=6/group. Data are expressed as the mean ± SEM. 
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Figure 48. Ubiquitinated NR1, NR2A and PSD-95 protein level differences between PLF and 

PSF groups. No differences were found between PLF and PSF groups, n=3/group. Data are 

expressed as the mean ± SEM. 

 

 

Figure 49. PM2A and ubiquitination level differences between PLF and PSF mice, n=5/group. 

 Data are expressed as the mean ± SEM. *p < 0.05 vs. PLF (two-tailed t-test). 

 

 

 

 

Figure 50. Correlation of PM2A and ubiquitination levels with FST floating time, n=15. 

Pearson correlation coefficients (r) with p values are indicated in the correlation graphs. 
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3.8. Candidate biomarker validation in human PBMCs from 

MDD patients 

To investigate the relevance of the identified biosignatures, sGC- β1, PM2A and 

ubiquitination levels were analyzed in MDD patients’ PBMCs (Figures 51 and 52). 

All three proteins were differentially expressed between the antidepressant responder 

and non-responder patient groups, especially 6 weeks after admission (T6) (Figure 

52a). Whereas sGC-β1 protein levels were significantly reduced in both groups at T6, 

PM2A protein levels were significantly reduced only in responder patients’ PBMCs at 

T6. Ubiquitination levels were not altered by chronic antidepressant treatment in 

either group. However, they were lower in responder compared to non-responder 

patients. All three protein levels significantly correlated with clinical antidepressant 

response at T6 (Figure 52b). Only PM2A protein level changes between baseline (T0) 

and T6 samples significantly correlated with the clinical antidepressant treatment 

response (Figure 52c). 

 

 

 

Figure 51. Western blot anlaysis in MDD patient’s PBMCs. 
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Figure 52. sGC-β1, PM2A and ubiquitination levels in human PBMCs from antidepressant 

responder and non-responder patients. (a) sGC-β1, PM2A and ubiquitination level differences 

between antidepressant non-responder (NR) and responder patients (R) at baseline (T0) and 

after 6-weeks treatment (T6), n=17. (b) Correlation of protein levels at T6 with clinical 

antidepressant treatment response, n=17. (c) Correlation of protein level changes (between T0 

and T6) with clinical antidepressant treatment response, n=17. *p < 0.05, **p < 0.01 vs. NR 

(two-tailed t-test). 
##

p < 0.01, 
###

p < 0.001, 
####

p < 0.0001 vs. T0 (two-tailed paired t-test). Data 

are expressed as the mean ± SEM. Pearson correlation coefficients (r) with p values are 

indicated in the correlation graphs. 
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4. Discussion 

 

4.1. Purine and pyrimidine metabolism pathway 

In my thesis project I have attempted to integrate quantitative proteomics and 

metabolomics data to improve our understanding of biological pathway changes 

relevant for the antidepressant treatment response. Integrated -omics data coupled 

with in silico analysis has delineated several molecular pathways and biomarker 

candidates involved in the differential antidepressant treatment response in mice, 

which were further validated in human MDD patients’ PBMCs.  

Using an inbred mouse strain I was able to stratify paroxetine response sub-groups 

based on animals’ behavioral phenotype. For the unbiased separation of paroxetine 

responder and non-responder mice, I carried out HCA based on FST floating time. 

The HCA has been a method to build and split different hierarchies of clusters. It has 

been applied to identify sub-groups of cells and animals based on marker protein 

expression or behavioral parameters (Droy-Dupré et al., 2015; Muehlmann et al., 

2015). 

The FST is a behavioral test commonly used to evaluate antidepressant-like effects in 

mice (Webhofer et al., 2011; Doucet et al., 2013; Kaster et al., 2013; Weckmann et al., 

2014). I submit that paroxetine-treated mice that exhibit no FST floating time 

difference compared with vehicle-treated mice are drug non-responders. My results 

indicate that 15-40% of the mice are antidepressant non-responders, similar to what is 

observed for MDD patients. 

To further characterize the PLF and PSF sub-groups I also assessed female urine 

sniffing time, a behavioral parameter pertinent to evaluate SSRI treatment effect in 

mice (Malkesman et al., 2010; Wagner et al., 2012). While the PLF and PSF groups 

did not show any difference of female urine sniffing time prior to being treated with 

paroxetine, chronic paroxetine treatment induced a differential behavioral effect 

between the groups. This finding indicates that the different behavior between mice is 

not inherent, but is the result of chronic paroxetine treatment. 

Stratification of sub-groups and tailored treatment has been suggested to result in a 

more favorable outcome and increased treatment efficiency (O'Donnell, 2013; 

Landeck et al., 2016). Sub-group stratification of patients with multifactorial diseases 
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like psychiatric and neurodegenerative disorders need to be assessed for molecular 

and phenotypic signatures. In the current study I only took FST floating time into 

account for the stratification to simplify data processing and interpretation. Including 

other behavioral parameters such as FST swimming and struggling time may add 

further information with regard to the heterogeneous individual response to chronic 

antidepressant treatment. Associated physiological signatures can also be used 

towards this goal. ACTH, corticosterone, CRH and other biomolecules associated 

with psychiatric disorders and treatment, as well as phenotypic markers including 

cognitive function, specific brain region activity and body mass index (BMI) would 

qualify in this regard. Integration of other biological dimensions such as the 

microbiome, lipidome and glycome can also be informative to enhance the systemic 

understanding of depressive disorders and determine sub-groups more precisely. 

To examine the relevance of covariates, drug levels, age and body weight gain were 

assessed. Paroxetine concentrations in whole brain and plasma were analyzed to 

check for a possible association of drug levels with antidepressant-like activity. 

Previous studies have reported a significant relationship between plasma levels and 

therapeutic response towards paroxetine (Yoshimura and Nakano, 2009). An 

association of genetic variants of CYP2D6 and ABCB1, which are involved in drug 

metabolism and permeability, with hetereogenous paroxetine treatment response has 

been suggested previously (Gex-Fabry et al., 2008; Preskorn, 2014). In my study I did 

not find any paroxetine concentration differences between PLF and PSF mice in 

either whole brain or plasma and drug levels did not correlate with FST floating time. 

This suggests that paroxetine levels in whole brain and plasma are irrelevant for the 

observed differential drug treatment response in our long-term treatment setting. I 

also considered animal age and its relationship with paroxetine response. Age-

dependent outcome of SSRI treatment has been assessed with regard to adverse 

effects of drug treatment by comparing antidepressant-induced behavioral response of 

juvenile or adolescent and adult rodents (Olivier et al., 2011; Mitchell et al., 2013). In 

the current study all mice reached adulthood prior to being subjected to experiments 

(> 8 weeks). Although significant FST floating time differences were observed for 

mice between 18 and 20 weeks of age, no general age effect on FST floating time was 

detected. The relationship between body weight gain and chronic paroxetine treatment 

response was also investigated. Chronic paroxetine treatment induced a significant 
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increase of body weight. However, body weight gain and drug treatment response for 

each group did not correlate significantly. 

My integrated metabolomics and proteomics data showed a differential effect of 

chronic paroxetine treatment on mouse hippocampal purine and pyrimidine 

metabolism. Purine and pyrimidine metabolites and their receptors have previously 

been shown to be associated with various neuropsychiatric disorders. The anti-

purinergic drug suramin was found to reverse autism-like behaviors and metabolism 

in mice (Naviaux et al., 2014). Polymorphisms of the P2RX7 gene, which encodes a 

purinergic ion channel, have been associated with the development of MDD (Lucae et 

al., 2006). In addition, low brain purine levels were found in female depressed 

patients responding to treatment with the SSRI fluoxetine (Renshaw et al., 2001). 

Pyrimidines such as cytidine and uridine have been shown to have antidepressant-like 

activities in mice (Carlezon et al., 2002; 2005). 

Hippocampal metabolome profiling also implicated other metabolites with elevated 

levels in PSF mice that have antidepressant-like activity. Folate has been shown to 

have an antidepressant-like effect in mice (Brocardo et al., 2008) and low folate levels 

were found to be associated with MDD (Gilbody et al., 2007). L-Methylfolate, the 

active metabolite of folate is used for patients with MDD who partially respond or do 

not respond to SSRIs (Papakostas et al., 2012). Myo-inositol has been identified as a 

potential biomarker of SSRI treatment response and innate anxiety disorder (Zhang et 

al., 2011a; Webhofer et al., 2013; Zhao et al., 2015) and has been shown to have 

anxiolytic and antidepressant-like effects in both animals and humans (Wurglics and 

Schubert-Zsilavecz, 2006; Herrera-Ruiz et al., 2011) Flavones are also known to have 

an antidepressant-like effect (Wurglics and Schubert-Zsilavecz, 2006; Herrera-Ruiz et 

al., 2011). The elevated levels of folate, myo-inositol and flavones that I found in the 

hippocampus of PSF mice might be of relevance for the favorable paroxetine 

response. 

I also compared the plasma metabolome of the two mouse sub-groups, PLF and PSF, 

at baseline and after 28 days of treatment (T0 and T4) with the aim of identifying 

differentially affected pathways and potential biomarker candidates in the periphery. 

Plasma metabolome changes over time resulted in group-specific profiles. Major 

metabolite level alterations and elevation of purine and pyrimidine metabolites were 

observed in the PSF group. In contrast, the plasma metabolome was minimally 

affected by chronic paroxetine treatment in the PLF group. Despite the fact that the 
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glycine, serine and threonine metabolism pathway was specifically enriched as a sub-

pathway of PLF group, significant metabolite level changes were observed in both 

sub-groups. I also found plasma metabolite biosignatures commonly regulated 

between the PLF and PSF groups. In particular, levels of choline and threonine that 

are part of the glycine, serine and threonine metabolism pathway were significantly 

changed both in the PLF and PSF groups after chronic paroxetine treatment. 

Metabolites of glycine, serine and threonine metabolism may thus constitute 

confounding biosignatures. 

In contrast to hippocampal purine/pyrimidine metabolites, plasma metabolite level 

changes were not correlated with FST floating time. Small plasma metabolite level 

differences between the PLF and PSF groups might be responsible for non-significant 

correlation. Despite non-significant correlation between plasma metabolite level 

changes and chronic paroxetine treatment response, group-specific analysis showed 

PSF-group specific pathway enrichment and significant metabolite changes. 

Based on my integrated -omics data that implicate purine and pyrimidine metabolism 

pathways to be involved in paroxetine response I next wanted to corroborate these 

findings through the analysis of proteins that are part of these pathways. Based on the 

observed differences of carbamoyl phosphate and IMP levels between the PLF and 

PSF groups, ATIC, CPS2 and HPRT protein levels were analyzed. CPS2 catalyzes 

early steps of carbamoyl phosphate synthesis in the pyrimidine biosynthesis pathway. 

ATIC and HPRT play a central role in synthesis and conversion of inosine 

monophosphate (IMP), the end product of the purine biosynthesis pathway. For 

pathway validation I chose hippocampus, prefrontal cortex and erythrocytes and 

compared ATIC, CPS2 and HPRT protein levels between the PLF and PSF groups. 

Western blot analyses revealed that hippocampal and erythrocytic ATIC, CPS2 and 

HPRT proteins were differentially expressed between the two groups while prefrontal 

cortex protein expression showed no difference. Hippocampal and erythrocytic ATIC, 

CPS2 and HPRT protein levels were also highly correlated with FST floating time 

while no significant correlation was observed in the prefrontal cortex. This indicates 

that different purine and pyrimidine metabolism pathway activities between PLF and 

PSF groups might be specific for the hippocampus.  

Interestingly, I observed an inverse relationship between hippocampal and 

erythrocytic protein expression for the three proteins. Inconsistent biosignature 

expression patterns in brain and peripheral tissues have been found in other cases 
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related to psychiatric disorders. Brain and blood BDNF levels were inversely 

correlated in a genetic rat model of depression (Elfving et al., 2010). Brain and white 

blood cell p11 protein levels also showed an inverse relationship (Svenningsson et al., 

2014). Inverse myo-inositol levels between hippocampus and plasma were also 

reported previously in mice chronically treated with paroxetine (Webhofer et al., 

2013). In the current study we found that carbamoyl phosphate and IMP levels have 

an inverse correlation between hippocampus and plasma. This might be caused by the 

observed inverse relationship of ATIC, CPS2 and HPRT enzyme expression levels 

between hippocampus and erythrocytes (Figure 53). 

 

 

 

Figure 53. Correlation between hippocampus and plasma metabolite levels. Carbamoyl 

phosphate and IMP metabolite levels showed inverse relationships between hippocampus and 

plasma. Pearson correlation coefficients (r) with P values are indicated in the correlation graphs.  

 

Lower expression of hippocampal ATIC, CPS2 and HPRT in the PSF group might be 

caused by negative feedback regulation in response to elevated pathway metabolite 

levels. Higher erythrocytic protein levels in the PSF mice might reflect PSF group-

specific activation of purine and pyrimidine metabolisms. 

To address the question whether the pathways for antidepressant response identified 

in the mouse are also relevant for patients’ response, PBMCs from antidepressant 

responder and non-responder patients were analyzed for ATIC, CPS2 and HPRT 

protein expressions. PBMCs collected after 4-6 weeks of antidepressant treatment 

showed significant correlation between ATIC and CPS2 protein expression levels and 

HDRS score change between baseline and following chronic antidepressant treatment. 

Whereas PBMCs ATIC protein expression showed a similar pattern as the one 
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observed in mouse erythrocytes, PBMCs CPS2 protein expression resembled that of 

mouse hippocampus.  

In ex vivo experiments, PBMCs ATIC protein levels were negatively correlated with 

clinical antidepressant response. The observed discrepancy between in vivo and ex 

vivo PBMCs ATIC protein expression could be due to different treatment conditions 

(chronic vs. subchronic) and exposure to multiple types of drugs. PBMCs’ CPS2 

protein expression consistently showed negative correlation with mouse hippocampal 

protein expression both in in vivo and ex vivo. ATIC and CPS2 proteins may thus 

represent candidate biomarkers to determine clinical antidepressant treatment 

response. For HPRT protein, I failed to determine a significant correlation between 

clinical antidepressant response and PBMCs protein levels both in vivo and ex vivo.  

Previously obtained data by Webhofer et al. revealed altered energy metabolism upon 

chronic paroxetine treatment in DBA/2OlaHsd mice when compared to vehicle-

treated control mice (Webhofer et al., 2011; 2013). The previous and current studies 

are not directly comparable since the studies were performed under different 

conditions (groups, dosage and route of paroxetine administration, mouse strain). In 

the current study, energy metabolism-related pathways including glycolysis, Krebs 

cycle and glycogen metabolism that came up in the previous study were not enriched 

when PLF and PSF groups were compared. The current -omics analyses were 

performed to compare PLF and PSF mouse groups and identified purine and 

pyrimidine metabolisms as the main distinguishing pathways. However, based on 

ATP/ADP and NAD
+
/NADH ratios found in the current study I can not exclude that 

energy metabolism might also distinguish the PLF and PSF groups (Figure 54). 

 

Figure 54. Energy-related metabolite ratios in the hippocampus. ATP/ADP and NAD+/NADH 

ratios in the hippocampus in the PLF and PSF group (n = 5/group). Bars represent mean ± SEM. 

*p < 0.05 (two-tailed t-test).  
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Hippocampal neurogenesis is known to be caused by the action of antidepressants 

(Malberg et al., 2000, Santarelli et al., 2003, Gundersen et al., 2013). Since purine and 

pyrimidine metabolites are critical for cell proliferation, increased purine/pyrimidine 

metabolism activity in PSF mice may also result in neurogenesis in these animals. 

Based on evidence from the literature microRNAs (miRNAs) may be also relevant for 

the distinct regulation of purine/pyrimidine metabolisms in the PLF and PSF mouse 

groups. Feng et al have shown that miR-1 and miR-133a-3p regulate purine and 

pyrimidine metabolic pathways (Feng et al., 2015) and the purine metabolism gene 

GART is regulated by 16 miRNAs (Li et al., 2014). Since SSRIs impact miRNA 

levels (Hansen and Obrietan, 2013) this may explain the observed differences in the 

purine and pyrimidine metabolisms upon chronic paroxetine treatment. 

Based on these data a pharmacological study with an inhibitor of the folate pathway 

that also regulates purine and pyrimidine metabolism could shed light on the 

functional relevance of the pathways in chronic antidepressant treatment response. 

The current study used wild-type stress naïve DBA/2J mice to investigate the 

pharmacological heterogeneity of the antidepressant response. Wild-type stress naïve 

rodents have been used previously to evaluate antidepressant-like effects (Guzzetti et 

al., 2008; Gurbuz Ozgur et al., 2015; Taguchi et al., 2016). An extension of our 

studies using an animal model with a depression-like phenotype would further 

validate the identified pathways affected by the antidepressant treatment response and 

add relevant information for the antidepressant treatment of patients. 

 

4.2. Glutamatergic pathway 

My results also suggest that proteins and metabolites associated with the 

glutamatergic pathway are affected by chronic antidepressant treatment which became 

apparent with the categorization of a paroxetine-treated intermediate floating (PIF) 

group. 

The glutamatergic pathway has previously been associated with MDD pathobiology 

and antidepressant response. In depressed patients, significantly elevated serum, 

plasma and cerebrospinal fluid glutamate levels were found (Kim et al., 1982; 

Altamura et al., 1993; Mauri et al., 1998; Levine et al., 2000; Mitani et al., 2006). A 

single nucleotide polymorphism (SNP) in metabotropic 7 glutamate receptor was 

shown to be involved in the onset of the clinical antidepressant effect (Fabbri et al., 
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2013). Glutamate release decreases with chronic fluoxetine, desipramine, reboxetine, 

venlafaxine or agomelatine treatment (Bonanno et al., 2005; Musazzi et al., 2010). 

Numerous studies have shown that chronic antidepressant treatment regulates 

glutamatergic receptor expression in rodent hippocampus (Boyer et al., 1998; 

Skolnick, 1999; Martinez-Turrillas et al., 2002; Barbon et al., 2006; Pittaluga et al., 

2007; Wieronska et al., 2007; Ryan et al., 2009; Calabrese et al., 2012; O' Connor et 

al., 2013). The current study also indicates that NRs and P-NRs expression levels 

were differentially affected in paroxetine-treated sub-groups.  

We also observed different levels of proteins downstream of the glutamate receptor 

(CaMKII, GSK-3β, P-ERK), which might be a reflection of differential NMDA 

receptor activity. CaMKII has been linked to neurotransmitter release and synaptic 

plasticity (Lotrich and Pollock, 2005), which has been associated with 

neuropsychiatric disorders and antidepressant treatment effects (Pavlides et al., 2002; 

Holderbach et al., 2007; Wang et al., 2008). Our observation of a lower CaMKII 

expression level in PSF mice suggests a regulatory mechanism that prevents synaptic 

connections becoming too strong as has been suggested by Robison et al (Robison et 

al., 2014). 

Accumulating evidence has implicated GSK-3 in the pathogenesis of bipolar disorder 

and major depressive disorder (Gould et al., 2004; Lovestone et al., 2007) as well as 

the antidepressant treatment response. Tsai et al., reported that polymorphisms in 

GSK-3β gene were associated SSRI treatment response (Tsai et al., 2008). Paroxetine 

and lithium treatments were shown to regulate GSK-3β phosphorylation which also 

predicts clinical improvement of depressive patients (Gassen et al., 2016). Joaquim et 

al. showed that long-term treatment with sertraline induces increased expression and 

decreased phosphorylation of GSK-3β in MDD patient platelets (Joaquim et al., 2012). 

Our chronic paroxetine treatment did not induce significantly different inhibition of 

GSK-3β activity, which is evident from Ser9-P-GSK-3β protein levels. As GSK-3 

protein suppresses Ca
2+

-current and neurotransmitter release by inhibiting calcium 

channels and soluble NSF attachment protein receptor (SNARE) complex interaction 

(Wildburger and Laezza, 2012), low levels of GSK-3β total protein in PSF mice 

might result in greater synaptic transmission and a more favourable antidepressant 

treatment outcome.  

Several lines of evidence have also associated ERK with MDD and the antidepressant 

treatment response. Post-mortem brains of depressed suicide subjects showed reduced 
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ERK expression suggesting a role of the protein in MDD pathophysiology (Dwivedi 

et al., 2001). Antidepressant treatment increases ERK phosphorylation levels in 

rodent hippocampus (Gourley et al., 2008; Qi et al., 2008). Different P-ERK levels 

between PLF and PSF mice implicate a potential role in the heterogeneous 

antidepressant treatment response. 

We also observed significantly different GDH1 and SYNJ1 protein levels between 

PLF and PSF groups. GDH1 has been associated with glutamatergic transmission and 

synaptic activity in the hippocampus (Bao et al., 2009; Michaelis et al., 2011). In 

addition, SYNJ1 gene expression, which is required for vesicle recycling and synaptic 

transmission (Cremona et al., 1999; Lüthi et al., 2001; Kim et al., 2002; Mani et al., 

2007) was reported to be significantly altered by imipramine and St John’s wort, an 

herbal product with antidepressant activities (Wong et al., 2004). GDH1 and SYNJ1 

protein level alterations may indicate different synaptic transmission activity between 

PLF and PSF groups.  

My results were further corroborated by metabolite profiling data. GDH1 catabolizes 

glutamate and its elevated levels may be caused by the low GDH1 protein expression 

I found in PSF mice. Alternatively, high glutamate levels might induce a 

compensatory feedback regulation of GDH1 protein expression to prevent pathway 

over-activation. Altered NR levels are consistent with the observed glutamate levels 

in the PLF and PSF mice. More glutamate and other NMDA receptor modulators 

could result in reduced NMDA receptor expression as previously reported in studies 

with L-trans-pyrrolidine-2,4-dicarboxylate, a high-affinity glutamate reuptake 

inhibitor (Cebers et al., 1999; 2001).  

In particular PSD-95 and nNOS, which functionally interact with NMDA receptor 

(Bredt and Snyder, 1989; Vallebuona and Raiteri, 1994; Fedele et al., 2001) and 

produce NO, are of great interest with regard to the heterogeneous antidepressant 

response. Hippocampal nNOS was found to mediate glucocorticoid-induced 

depressive behavior in mice (Zhou et al., 2011) and the number of nNOS-

immunoreactive neurons in post-mortem hippocampus samples was higher in MDD 

and bipolar disorder patients compared to the control group (Oliveira et al., 2008). 

Plasma NO metabolite levels were higher in MDD patients compared to healthy 

controls, which was reversed by 8 week paroxetine treatment (Chrapko et al., 2006).  

NO has also been implicated to play a role for the function of antidepressant-like 

agents tramadol, bupropion and lithium (Dhir and Kulkarni, 2007; Ghasemi et al., 
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2008; Jesse et al., 2008). Serotonergic antidepressants including citalopram, 

imipramine, paroxetine and tianeptine have been shown to decrease hippocampal 

NOS activity in vitro and in vivo (Finkel et al., 1996; Wegener et al., 2003). Based on 

these findings targeting the NO system is a potential therapeutic strategy for major 

depressive disorders. Doucet et al., reported that a single administration of PSD-

95/nNOS interface inhibitors, IC87201 and ZL006, produced an antidepressant-like 

effect in the FST and tail suspension test (TST) (Doucet et al., 2013). In addition, 

nNOS inhibitors like Nω-Propyl-L-Arginine, 7-nitroindazole and aminoguanidine 

have been shown to produce antidepressant-like effects (Joca and Guimarães, 2006; 

Zhou et al., 2007; Hiroaki-Sato et al., 2014; Tomaz et al., 2014). I found that the 

hippocampal NMDA receptor/PSD-95/nNOS protein complex was expressed at 

significantly different levels between PLF and PSF mice, implying that it has an 

important role in the chronic antidepressant treatment response. 

We also investigated CAPON and sGC-β1, proteins associated with the NO pathway, 

to further corroborate the differential activity of the NMDA receptor/PSD-95/nNOS 

protein complex between PLF and PSF groups. CAPON has been shown to disrupt 

the interaction between nNOS and postsynaptic proteins including PSD-95, which 

prevents NMDA receptor-mediated NO release (Xu et al., 2005). I found high levels 

of hippocampal CAPON protein in PSF mice which may contribute to a favorable 

antidepressant treatment response, possibly by suppressing nNOS activity.  

sGC-β1 protein levels between PLF and PSF mice were not significantly different, 

which is in line with results from Reierson et al. who reported that 8-weeks of SSRI 

fluoxetine treatment did not change sGC-β1mRNA levels in rat hippocampus 

(Reierson et al., 2009). It has been also shown that sGC-β1mRNA levels were not 

affected in human schizophrenic prefrontal cortex post-mortem samples that had 

higher nNOS mRNA levels compared to controls (Baba et al., 2004). Although I did 

not find sGC-β1protein expression level differences, I cannot exclude the possibility 

that sGC enzymatic activity might be different between PLF and PSF groups. 

Consistent with nNOS protein levels, citrulline levels between PLF and PSF mice 

were alos altered after 28 days of paroxetine treatment. Since nNOS catalyzes the 

production of NO and citrulline from arginine, lower levels of citrulline in PSF mouse 

hippocampus may indicate lower enzymatic nNOS activity. 

Hippocampal metabolome profiling also supported differential NMDA receptor 

activity between the two groups. Alanine and citrate are known to regulate NMDA 
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receptor activity. (Westergaard et al., 1995; Popescu et al., 2010) Glutathione is an 

NMDA receptor agonist (CHUEH, 2006; Rosa et al., 2013) and sarcosine is an 

NMDA receptor co-agonist (Zhang et al., 2009; Huang et al., 2013). The role of 

serine as a potent co-agonist of NMDA receptor has been demonstrated.(Mothet et al., 

2000; Panatier et al., 2006) In addition, taurine is suggested to interact directly with 

NMDA receptor and regulates its function (Suárez and Solís, 2006).  

Maes et al. found that low serum levels of asparagine, serine and taurine levels 

characterized non-responder patients after 5-weeks of antidepressants treatment 

(Maes et al., 1998). In addition, glutathione, sarcosine and taurine administration have 

antidepressant-like effects suggesting the here found elevated levels might be relevant 

for the favorable paroxetine response (Huang et al., 2013; Rosa et al., 2013; Toyoda 

and Iio, 2013). 

The different glutamatergic pathway activity is also reflected in MDD patients’ 

PBMCs by the observed sGC-β1 protein levels, which is downstream of the 

glutamatergic pathway. 

Taken together, my study suggests that monitoring glutamatergic pathway protein and 

metabolite levels can be used to determine whether paroxetine-treated patients with 

depressive disorders are responding to the drug.   

 

4.3. Ubiquitin-proteasome system pathway 

No significant mRNA level differences for NRs, PSD-95 and nNOS were found 

between PLF and PSF groups suggesting that post-translational modifications might 

be relevant instead. Supporting this notion I found proteomics signatures involved in 

the UPS pathway that significantly differed between the two groups. While my data 

indicate that ubiquitination is not associated with differential protein expression levels 

in paroxetine-treated mice, PM2A protein and total ubiquitination level differences 

suggest potential roles in the antidepressant treatment response.  

Protein analyses of PBMCs showed that UBS pathway components including PM2A 

and ubiquitination can separate antidepressant treatment responder/non-responder 

patients. Especially PM2A levels were significantly lower at T6 only in 

antidepressant responder patients and could be used to monitor and determine the 

antidepressant treatment response. In addition, ubiquitination at baseline may be used 
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to predict the response to antidepressant treatment, as its levels stayed low in 

antidepressant responder patients at T0 and T6 compared to non-responder patients. 

Evidence from other studies suggests that the UPS may be linked to MDD treatment. 

In this regard, it has been shown that SNPs in proteasome subunit α7 (PSMA7), 

proteasome 26S non-ATPase subunit 9 (PSMD9) and proteasome 26S non-ATPase 

subunit 13 (PSMD13) are associated with clinical antidepressant response (Wong et 

al., 2008; Gragnoli, 2014). Data from my thesis project suggest that UPS protein 

signatures such as PM2A and ubiquitination levels could be used to assess 

antidepressant treatment outcome. Especially ubiquitination levels at baseline may be 

able to predict the response to antidepressant treatment. As stressful events are known 

to alter the UPS pathway (Ryan et al., 2006; Karssen et al., 2007; Minelli et al., 2015), 

higher ubiquitination levels in antidepressant non-responder patients might be a 

reflection of that. Despite the fact that data from the present study failed to show a 

significant correlation between baseline ubiquitination levels and clinical 

antidepressant treatment response (Figure 55), the inclusion of larger sample size may 

increase predictability power of the analysis.   

 

 

Figure 55. Correlation between baseline ubiquitination levels and clinical antidepressant 

response. Baseline ubiquitintion levels did not show significant correlation with HDRS score 

changes after treatment. Pearson correlation coefficients (r) with P values are indicated in the 

correlation graphs. 

 

UPS was shown to be involved in the regulation of various neuronal pathways 

including synaptic formation and function (Yi and Ehlers, 2007). In light of this, 

significant differences of PM2A and ubiquitination levels between antidepressant 

responder and non-responder mice and humans implicate a potential involvement of 

systemic molecular pathways. For example, UPS has been shown to mediate NMDA 



                                                                                                                                                4. Discussion 

68 
 

receptor degradation (Kato et al., 2005; Yi and Ehlers, 2007; Tsai, 2014). Tai et al. 

reported that NMDA treatment of cultured hippocampal neurons decreases UPS 

activity, suggesting an interaction between glutamatergic and proteasome pathways 

(Tai et al., 2010). This is in agreement with my data, which also point towards an 

involvement of both pathways in the different response of the PLF and PSF mouse 

groups. Although my results indicate that ubiquitination does not seem to be 

associated with the regulation of NMDA receptor/PSD-95 protein levels in the 

paroxetine-treated mice, my proteomics analysis significantly enriched the UPS 

pathway (Figure 56). The relationship of UPS and glutamatergic pathways is of 

interest and should be further explored in the future.  

 

 

Figure 56. A heatmap of hippocampal UPS pathway proteins comparing PLF and PSF groups. 

In the heatmap, colors denote log2 ratio. Proteins with adjusted p value < 0.05 were considered 

significant, n=5/group. 

 

Kaminsky and Kosenko showed that MK-801, an NMDA receptor blocker, and 

sodium nitroprusside, an NO donor, were able to modulate brain purine metabolism 

activity suggesting a functional involvement of NMDA receptor and nitric oxide in 

purine metabolism pathway (Kaminsky and Kosenko, 2009). GDA, which catalyzes 

conversion of guanine to xanthine in the purine metabolism pathway (Yuan et al., 

1999; Paletzki, 2002), was found to be important for neuronal dendrite branching by 

regulating postsynaptic trafficking of PSD-95 protein, a major component of the 

glutamatergic synapse (Firestein et al., 1999). Antidepressant-like and neuroprotective 

effects of pyrimidines including cytidine and uridine have been linked to the 
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regulation of glutamatergic neurotransmission  (Mir et al., 2003; Hurtado et al., 2005; 

Radad et al., 2007; Yoon et al., 2009). In this context, illuminating the crosstalk 

between purine/pyrimidine metabolism and glutamatergic pathways may aid in an 

improved understanding of their functions in the pathobiology of MDD and its 

treatment. 

Whether the pathways I have identified in the mouse will qualify as predictive 

biosignatures for the antidepressant treatment response in patients and routine use in 

the clinic remains to be further investigated. Eventually biomarkers for the 

antidepressant treatment response will enable patient sub-group stratification and will 

render clinical decision making more objective to realize a personalized psychiatry 

approach.  

 

4.4. Outlook 

This study aimed at the molecular delineation of the chronic antidepressant treatment 

response in mice, and validation in MDD patients’ PBMCs. While my integrated -

omics analyses of the hippocampus revealed novel pathways and biomarker 

candidates, additional analyses of other brain regions that are implicated in 

neuropsychiatric disorders may provide a more systemic understanding related to the 

antidepressant response heterogeneity. 

As shown in previous reports several metabolites seem to play a role in the regulation 

of mood status and have potential to be used as supplements in treating psychiatric 

disorders (Papakostas et al., 2012; Foster and McVey Neufeld, 2013; Slyepchenko et 

al., 2014). Based on the dynamic changes of the metabolome in response to 

antidepressant treatment, the effect of nutritional supplements are also of great 

interest. 

Conventional mental disorder diagnosis systems may benefit from Research Domain 

Criteria (RDoC), a new research framework initiated by the U.S. National Institute of 

Mental Health. Integration of multi-dimensional data from genomics to clinical 

reports can reduce the gap between molecular research and clinical practice, and 

therefore is expected to provide new evidence and perspectives on classification and 

treatment decision of neuropsychiatric disorders. 
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