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CHAPTER I           

GENERAL INTRODUCTION 

1. ABSTRACT 

The range of biopharmaceuticals used for therapy or diagnosis include biotechnologically 

manufactured vaccines, therapeutic enzymes and coagulation factors, numerous hormones, 

as well as monoclonal antibodies. Because of their insufficient oral bioavailability, protein 

pharmaceuticals are typically administered parenterally and can therefore come as aqueous 

solutions or lyophilisates for reconstitution. Proteins show both chemical and physical 

instabilities such as oxidation and hydrolysis, denaturation and aggregation. The selection of 

suitable pH and buffer conditions and adding excipients such as surfactants or sugars 

enables adequate product quality. It is essential to maintain the native conformation for 

both the efficacy and stability, as well as the compatibility of these large molecules. 

Moreover, the combination of different analytical methods enables the necessary 

comprehensive characterization of the protein pharmaceuticals and helps to ensure product 

stability during development, production and storage.   
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2. WHAT ARE BIOPHARMACEUTICALS? 

The term biopharmaceuticals includes pharmaceutical substances based on protein drugs or 

nucleic acids, which are used for the therapy or diagnosis of diseases. Moreover, the 

European Pharmacopeia (Ph. Eur.) defines biopharmaceuticals in a monograph entitled 

“Products of recombinant DNA technology” as Active Pharmaceutical Ingredients (API), 

which are “made from genetic modifications […]” [1]. The first such substance approved for 

therapeutic use was recombinant human insulin (rHI, trade name Humulin®), which was 

marketed in 1982. Since then, the biopharmaceuticals market has witnessed significant 

growth due to increasing prevalence of chronic diseases, rising aging population, but also 

due to technological advancements and increasing Research and Development (R&D) 

investments [2]. In addition, the capability of biopharmaceuticals to approach a particular 

target with high efficacy helps in the treatment of various chronic diseases and disorders. 

Important therapeutic areas of biopharmaceuticals include diabetes (insulins), multiple 

sclerosis, rheumatoid arthritis and hepatitis (immunomodulators), cancer (monoclonal 

antibodies, interferons), metabolic and coagulation disorders (enzymes, coagulation factors) 

and vaccination (e.g. against cervical cancer or hepatitis B) and are listed in figure 1.  

 

Figure 1: Number of authorized biopharmaceuticals in Germany in 2014 by type (Satista 2015) 
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Currently, more than 180 protein pharmaceuticals with 138 different recombinantly 

produced APIs, are approved in Germany; worldwide more than 550 biopharmaceuticals are 

in clinical trials or in the approval process [3]. In 2014, a total of 47 products containing a 

new API or new combinations of known APIs have been approved in Germany. Among these 

new registrations were 14 biopharmaceuticals, including eleven for original products and 

three biosimilars. Thus, biopharmaceuticals constituted 30 % of all new registrations.  Within 

the current development projects monoclonal antibodies (mABs) have the highest share. 

Sales of biopharmaceuticals increased in 2014 compared to 2013 by 7% and amounted to 

around 7.5 billion € [4] (Fig. 2). 

 

 

 

 

 

Figure 2: Sales of biopharmaceuticals in Germany from 2005 to 2014 in € 

 

 

3. STRUCTURE AND ORGANIZATION OF PROTEIN 

MOLECULES 

A protein is primarily defined by its amino acid sequence. Protein pharmaceuticals are much 

larger compared to small molecule drugs and their therapeutic effect is related to their 

complex three-dimensional structure. Hence, proteins are macromolecules and have four 

different structural levels – primary, secondary, tertiary and quaternary. The amino acid 

sequence makes up the primary structure of the protein, and has a considerable impact on 

the properties of the protein, such as conformation, charge and solubility [5]. Sequence 

stretches within a protein molecule have characteristic conformations and the two main 

types of secondary structure are α-helix and ß-sheet. The spatial arrangement of different 

secondary structural elements to each other results in a unique three-dimensional, the so 

called tertiary structure. The quaternary structure, such as in case of hemoglobin, describes 

the structure within macromolecular complexes composed of several protein subunits. The 

preservation of the native structure and therefore the biological activity of a protein is one 

of the main tasks of protein formulation.  

Sales of Biopharmaceuticals 2005 2014 

 7.5 bn €  2.6 bn € 
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4. INSTABILITY REACTIONS OF PROTEIN 

PHARMACEUTICALS  

Under physiological conditions, the protein conformation represents an equilibrium 

between native and denatured (unfolded) state. Exogenous influences during production, 

storage and transportation might cause a shift in this balance. Additionally, protein 

molecules may interact and associate forming aggregates of different size ranging from 

dimers, oligomers and sub-visible particles to visible precipitates [6]. 

Instability reactions of proteins can be divided into chemical and physical instabilities [7]–[9]. 

The latter one can further be differentiated in colloidal and conformational instabilities [10]–

[12]. A chemical instability is defined as a change within the primary structure induced by a 

chemical reaction, whereas a physical instability changes the spatial arrangement of the 

chains towards each other without changes of covalent bonds. The physical stability of a 

protein is mediated by short, specifically van der Waals, hydrogen bonds and hydrophobic as 

well as long range, specifically electrostatic interactions. These interactions on the one hand 

affect the protein secondary and tertiary structure, and on the other hand dictate the 

interactions between individual molecules in solution [13], [14]. Colloidal instability resulting 

from attractive protein-protein interactions can result in the formation of protein 

aggregates. Furthermore, structural changes can trigger aggregation, as hydrophobic 

patches, previously buried in the interior of the molecule, become exposed at the protein 

surface leading to increased hydrophobic interactions [15]–[17]. Table 1 lists some important 

instability reactions of protein molecules. 

 

Table 1: Important instability reactions of proteins in biopharmaceutical formulations 

Chemical Instability Physical Instability 

Oxidation Denaturation 

Hydrolysis Association 

Deamidation Aggregation 

Change in disulfid bonds Precipitation 

Racemization, Isomerization Adsorption on surfaces 

β-Elimination  
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 4.1. Chemical Instabilities 

At many points during e.g. manufacturing and shipping of protein pharmaceuticals the 

problem of instability reactions may be encountered and cause difficulties with respect to 

product quality. Oxidation processes may cause difficulties as next to oxygen also light and 

thermal energy are critical factors directly affecting the conformational stability of protein 

molecules. Amino acids such as cysteine and methionine, as well as aromatic amino acids 

such as tyrosine or histidine, are particularly sensitive to oxidation reactions. Oxidation of 

free mercaptan groups (-SH) to sulfoxides is possible. Additionally new intra- or 

intermolecular disulfide bridges may emerge, whereby the latter results in covalent 

aggregate formation [18]. Peptide bonds are subject to acidic and alkaline hydrolysis, 

particularly aspartic acid and proline are prone to undergo such instability reactions [13]. 

Another typical chemical modification is the deamidation of the chains of asparagine and 

glutamine to the free carboxylic acid. The rate of deamidation processes thereby very much 

depends on the structure of the protein and the pH of the solution [19]. 

 

 4.2. Physical Instabilities 

Typical physical degradation reactions are denaturation, aggregation and adsorption onto 

surfaces. Denaturation renders changes within the spatial structure, whereby in most cases 

the biological function of the protein gets lost. The unfolded state is colloidally less stable 

due to its more hydrophobic state causing the formation of aggregates. Protein aggregates 

can be soluble and insoluble in nature, can be covalent and non-covalent, and can be 

reversible or irreversible. Not only partly or fully unfolded protein molecules, but also native 

molecules can play an important role in the formation of protein aggregates. On the one 

hand, the emergence of small aggregates can induce the formation of larger aggregates by 

agglomeration, on the other hand so-called “large native-like particles” often occur 

spontaneously without continuum from monomer, to dimer to large particles [5]. 
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Figure 3: Some important factors influencing protein stability  

 

Temperature or light effects, solvent properties, mechanical stress, denaturing agents or 

high ionic strength affect protein stability (Fig. 3). Upon heating, non-covalent interactions in 

the molecule break up leading to a spatial arrangement. The temperature at which 50% of 

the molecules are in the native state and 50% in the denatured state is referred to as 

“melting point” (Tm) of a protein. The Tm can be determined by microcalorimetry and 

provides important information on the conformational stability of a protein in a formulation 

[12]. Depending on the pH value, side chains are protonated or deprotonated, which has a 

decisive influence on ionic bonds and conformational stability of the protein [19]. The 

colloidal stability is typically low at the isoelectric point (pI) where the protein carries no net 

charge. At pH values away from the pI, electrostatic repulsion between protein molecules 

increases. However, extreme pH values induce conformational changes due to unfolding 

induced by intramolecular repulsion and chemical degradation [12], [20]. Hence, 

determination of pI, e.g. by isoelectric focusing or by capillary electrophoresis, is essential 

during formulation development. Interactions between the protein molecules, which are 

primarily determined by pH and ionic strength of the formulation, affect the stability of a 

protein solution significantly. Hydrophilic and hydrophobic interaction chromatography (HIC) 

allows to draw conclusions regarding hydrophobicity and isoforms of the protein molecules. 

The osmotic second virial coefficient provides information on the nature and extent of the 

interactions and can be determined e.g. by means of static or dynamic light scattering [12] 

[21], [22].  
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Another physical instability of proteins is adsorption to material surfaces or to the air-water 

interface due to hydrophilic and hydrophobic sections in protein molecules. Protein 

adsorption to containers and stoppers as well as interactions with processing materials or 

auxiliary materials for application, such as tubings and filters, have to be considered carefully 

[23]. The adsorption of protein molecules differs in many aspects from the adsorption of e.g. 

surfactant molecules. Firstly, the adsorption process can accompany the unfolding of protein 

molecules, although this effect depends on the type of protein and only little is known for 

IgGs  [24], [25]. Secondly, other than in the case of surfactant molecules, no real equilibrium 

between adsorption and desorption can be reached, as desorption kinetics are hindered due 

to the emergence of strong intermolecular forces resulting in an interfacial gelation and film 

formation [26]–[29]. This makes it impossible to use common isotherm models as developed 

by Henry or Langmuir for the description of protein layers at the liquid-air interface [30]–

[32]. In particular, liquid-air interfaces have been identified as critical factor for the 

occurrence of large protein particles. Although considerable effort has been put into the 

understanding of protein interfacial behavior, its link to the formation of particles is still 

poorly understood [33], [34]. Hence, shaking or stirring can cause the formation of 

aggregates especially in the case of insufficient protection and absence of surface active 

formulation additives, such as surfactants, in appropriate concentrations [35]–[37]. Most 

protein pharmaceuticals are packaged in pre-filled syringes or vials made of borosilicate 

glass (type I). In recent years, delamination, i.e. detachment of inorganic flakes from the 

inside of vials, and chemical and physical destabilization of the protein by tungsten oxide, 

which can be formed during the placing of the needle during the production of a pre-filled 

syringe, were identified as critical factors in the manufacturing process of protein 

pharmaceuticals [38]. Moreover, the inner wall of a pre-filled syringe is coated with silicone 

oil to ensure the sliding of the syringe plunger. Already in the 1980s, first studies suggested a 

clear link between silicone oil and aggregation of insulin [39]. Current studies prove that 

proteins adsorb to silicone oil-water interfaces in a similar way as to air-water interfaces, 

and give rise to the hypothesis that due to a rupture of the interfacial film protein 

aggregates can occur [33], [34], [40]. 
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5. IMMUNOGENICITY OF PROTEIN PARTICLES  

Immune reactions to protein pharmaceuticals can be due to the possible formation of so-

called “anti-drug antibodies (ADAs), which are antibodies to the therapeutic protein. It is 

already known that the immunogenic potential depends on the properties of the aggregates, 

such as size, solubility and conformation. In particular, chemically modified protein particles 

with non-native conformation were identified as being particularly immunogenic. But also 

undesired immune reactions due to small, soluble protein aggregates have been reported 

[41]. Furthermore, non-proteinogenic impurities, such as silicone oil, may intensify an 

undesired stimulation of the immune system. In case of vaccines this fact is conversely 

utilized via the addition of adjuvants, e.g. aluminum, to amplify the immune response. 

Further efforts are needed to fully understand the coherences between protein aggregates 

and immune response [42].  

 

 

 

 

 

 

 

 

 

Figure 4: Protein solution containing aggregates 

 

6. METHODS FOR THE CHARACTERIZATION OF PROTEIN 

AGGREGATES  

The requirement that injections and infusions must be practically free from visible particles 

as well as the permitted number of non-visible particles, are regulated by the 

pharmacopoeias. Despite particle testing, a differentiation between protein particles and 

non-proteinaceous particles does not take place at this point. Moreover, the particle size 

ranges from a few nanometers in the case of a dimer, up to a few millimeters in the case of 

large visible aggregates. Therefore, a combination of different analytical methods is required 

to cover the entire size range, and to differentiate between protein aggregates and other 

particles. The use of a variety of methods based on different measurement principles, so-
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called orthogonal methods, is also proposed by the European Medicines Agency (EMA) for 

the manufacturing and the quality control of monoclonal antibodies and similar substances. 

When specifying the particle size, the analytical method used should always be considered. 

The standard method for the quantification of small oligomers is size exclusion 

chromatography (SEC). Since SEC results are influenced by interactions of protein molecules 

with the mobile phase and the stationary phase, the use of analytical ultracentrifugation and 

field flow fractionation (FFF) as orthogonal methods is recommended. SDS gel 

electrophoresis is used to identify covalent aggregates and after reduction of the samples it 

can also be used to differentiate between disulfide bonds and other non-reducible linkages. 

For the larger nanometer scale, new processes such as nanoparticle tracking or resonance 

mass measurement have been established [43]. The morphology of a particle may allow the 

differentiation between foreign particles and protein aggregates. Flow imaging techniques 

allow this for particles larger than about 5 µm. For example, the spherical silicone oil 

droplets can easily be distinguished from the irregular and uneven protein aggregates. Below 

5 µm silicone oil droplets and protein particles can be distinguished by determining the 

buoyant mass using resonance mass measurement [44]. Larger particles can also be 

differentiated by means of infrared and Raman spectroscopy. For the detection of chemical 

modifications, various chromatographic methods are frequently used, such as reverse phase 

or ion exchange chromatography, as well as isoelectric focusing, capillary electrophoresis or 

mass spectrometry. Conformational changes can be investigated using infrared 

spectroscopy, circular dichroism, or fluorescence measurements [44]. 

 

7. POSSIBILITIES FOR STABILIZATION 

Aqueous solutions of proteins are usually the most popular because of lower costs and easy 

administration. Alternatively, protein formulations are lyophilized for stability reasons. All 

excipients should be safe and satisfy the definition of the GRAS status (generally recognized 

as safe) by the Food and Drug Administration (FDA). Typical requirements for parenterals, 

such as sterility, isotonicity and absence of particles of course also apply to protein 

formulations. As protein unfolding can already set in at a temperature of 40 °C, and chemical 

instability reactions are accelerated at higher temperatures, storage at 2° to 8 °C and the 

maintenance of the cold chain during transportation are essential for most liquid 

formulations. Moreover, freezing of the aqueous solution has to be avoided, since ice 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
10 

formation and freeze concentration can induce protein aggregation [45]. During storage, 

light protection has to be assured. Preservatives have to be added to multi-dose aqueous 

solutions for injections according to the European Pharmacopoeia. Moreover, single-dose 

aqueous solutions, which are prepared aseptically but which cannot be sterilized in the final 

container, as is the case with protein solutions, may contain preservatives. Benzyl alcohol, 

phenol or cresol, are, inter alia, commonly used preservatives. Recent studies show, 

however, that preserving agents may adversely affect the physical stability of protein 

solutions [46]. 

 

 7.1. Formulation of Liquid Protein Pharmaceuticals  

In the choice of suitable pH value, buffer and ionic strength is crucial for both chemical and 

physical stability of protein pharmaceuticals. The surface characteristics of a protein 

molecule are influenced by the pH value due to the protonation or deprotonation of basic 

and acidic amino acids. Choosing a pH value far away from the isoelectric point (pI) may 

improve the colloidal stabilization due to stronger repulsion of protein molecules but may 

put the conformational stability of the protein as risk by a reduction of attractive 

interactions required for maintenance of the native three-dimensional structure. Typical 

buffering agents include phosphate, acetate or citrate as well as amino acids, such as 

histidine. Furthermore, amino acids can complex heavy metals and thus prevent oxidation, 

but may also introduce impurities [46]. The ionic strength affects the stability of a protein 

solution significantly. With increased ionic strength, repulsion between the protein 

molecules can be decreased due to stronger charge shielding thereby fostering aggregation. 

In contrast, at low ionic strength an increase of the colloidal stability may be observed 

whereby the nature of the ions themselves has a significant impact on their salting-in effect 

as described by the Hofmeister series [47]. Already in the late 1980s Timasheff found that 

the denaturation and aggregation of proteins can be reduced by the addition of excipients 

[48]. Timasheff developed a thermodynamic model which states that the energy difference 

between the native and denatured form of a protein must be as large as possible to maintain 

the intact, native form of the protein. The mechanism of action of common stabilizers is 

based on their preferred exclusion from the protein sphere (so-called “preferential 

exclusion”): while the additives are displaced from the surface of the protein, water is 

preferably attached (so-called “preferential hydration”). For denatured protein molecules, 
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the contact surface with the solvent is larger compared to the native molecule. Hence, the 

process of unfolding is, as a result of an increase in free energy, thermodynamically 

disadvantageous. Therefore, in presence of stabilizing additives, such as sugar alcohols (e.g. 

mannitol) or sugars (e.g. sucrose or trehalose), the equilibrium is shifted in favor of the 

native state. Reducing sugars such as glucose or lactose should be avoided to minimize the 

risk of Maillard reactions. Frequently, surfactants in concentrations slightly above the critical 

micelle concentration (CMC) are added to the formulations, in particular, polysorbate 20 and 

80 or poloxamer 188 [49]. The surfactant molecules compete with the protein molecules for 

the adsorption to the liquid-air interface preventing interface-related protein aggregation. 

However, impurities and degradation products of surfactants can cause chemical changes, 

especially oxidation of protein molecules. Furthermore, fatty acids derived from surfactants 

may form particles [50]. Hence, not only choosing a high quality of the surfactants added, 

but also carefully considering an appropriate concentration is important. In order to prevent 

protein oxidation, antioxidants such as methionine can be added [51].  

 

 7.2. Freeze-Drying as Method of Choice for the                                   

Improvement of Storage Stability 

The process of freeze-drying is divided into the freezing step, followed by primary and 

secondary drying. Moreover, ice formation leads to the concentration of the API and 

excipients in solution. During the subsequent primary drying phase, the ice is removed by 

sublimation. Adsorbed water is removed during secondary drying. Usually, the residual 

moisture content is less than one percent in order to ensure good protein stability. Different 

process parameters such as the freezing rate, the temperature control of the shelves, and 

stabilizing formulation additives can affect product quality significantly. For example, 

differences in the solubilitiy of buffer salts can cause pH shifts during the freezing process 

[52]. In addition, the concentration effect may cause a substantial increase in ionic strength 

affecting protein-protein interactions. Furthermore, the removal of water can be critical for 

the maintenance of the native state of the protein.   
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Figure 5: Lyophilized protein formulation  

 

To preserve the stability of the protein during lyophilization, so-called cryo- and 

lyoprotectors are added to the formulation. Cryoprotectors are substances which contribute 

to the stabilization of the protein during the freezing process itself, whereas lyoprotectors 

help to stabilize the protein in the dry state.  As with many hydroxyl groups, lyoprotectors 

can replace the hydration shell of the protein, which is removed during drying (so-called 

water replacement theory). Therefore, sugars which form amorphous matrices, such as 

sucrose or trehalose, but also polyalcochols, amino acids, or 2-hydroxypropyl-β-cyclodextrin, 

can be used as cryo- and lyoprotectors [52], [53]. The low molecular weight components also 

substantially contribute to the formation of an appealing product cake. The addition of 

surfactants not only improves the wettability for a fast reconstitution, but can also prevent 

undesired denaturation at ice interfaces during freezing. The reconstitution and dilution of 

lyophilized products is a frequent source of error. Strong shaking and foam formation should 

be avoided to minimize the liquid-air interfacial stress to the protein. Healthcare 

professionals and patients must be instructed which solvent has to be used for 

reconstitution or dilution and how dilution has to be performed.In the case of trastuzumab 

(Herceptin®) dilution with 5% glucose solution instead of the recommended 0.9% sodium 

chloride solution causes the formation of large aggregates [54].  
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8. INNOVATIVE PROTEIN PHARMACEUTICALS  

Many pharmaceutical companies explore the broad possibilities which protein drugs 

provide. New protein formats have the potential for improved efficacy and safety compared 

to conventional structures. Bi- and tri-specific antibodies have multiple binding sites and can 

therefore recognize different structures and bind to them with high affinity, specifity and 

potential synergistic effects. In the field of cancer therapy, the first bispecific antibodies have 

already been approved in the United States, many more based on different technologies 

such as BiTE®-, DART®- or DVD®-proteins are in development. Antibody-drug conjugates 

(ADCs) monoclonal antibodies with a covalent coupled to a small molecule. The antibody 

binds specifically to target cells and brings the highly potent drug molecules selectively to 

the target. Currently, two ADCs, Adcetris® and Kadcyla®, are approved in oncology. In 

addition, many candidates are under development or in the approval process. For the 

formulation of ADCs it is not only important to pay attention to the stability of the antibody, 

but also to the linker and the small molecule drug [55]. Further investigation will be needed 

to investigate whether the established formulation strategies are appropriate for standard 

protein formats as well as for these new types of molecules.  

For the high-priced and sensitive protein pharmaceutics, the choice of primary packaging 

materials has become more and more important. Schott presented a novel glass syringe 

(syriQ™ InJentle) which was especially developed for the filling of biopharmaceutics and 

produced without the use of a tungsten pin. Unlike many conventional syringes, the silicone 

oil is baked-on, whereby free silicone and associated particle formation is reduced. 

Moreover, the specifically developed design ensures that the protein drug does not come 

into contact with the needle or the needle adhesive [56].Interest in developing 

subcutaneously administrable formulations is particularly high, with the aim of achieving the 

highest possible user-friendliness. To assure a painless application, the applied volume must 

be small and therefore the protein concentration must be high. However, highly 

concentrated protein solutions often have a viscosity which hardly allows subcutaneous 

injection with conventional injection needles. Therefore, syringe designs with a reduced 

friction of the plug, auto-injectors, or so-called “thin wall”-needles which have a larger inner 

diameter at the same outer diameter, provide good options [57].  
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Furthermore, by adding hyaluronidase, which partly dissolves the extracellular matrix in the 

injection area, the administered volume can be increased [58]. Herceptin® is the first 

combination product of a highly-concentrated protein and hyaluronidase.  

Thus, many innovations in the field of protein formulation open up new treatment options 

and significantly contribute to an increased product quality. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
15 

9. REFERENCES 

[1] “DNA-rekombinationstechnisch hergestellte Produkte.” Europäisches Arzneibuch, 

Monographie Nr 784. 

[2] I. Krämer, W. Jelkmann, and M. Engelhardt, Rekombinante Arzneimittel - 

medizinischer Fortschritt durch Biotechnologie. Springer Medizin Verlag Heidelberg, 

2008. 

[3] “vfa. Verband forschender Pharmaunternehmen,” www.vfa.de as available on 

30.07.2015, 2015. 

[4] D. Michel and A. Heinemann, “Medizinische Biotechnologie in Deutschland 2009,” 

Bost. Consult. Gr., 2009. 

[5] W. Wang, S. Nema, and D. Teagarden, “Protein aggregation-Pathways and influencing 

factors,” Int. J. Pharm., vol. 390, no. 2, pp. 89–99, 2010. 

[6] J. Brange. Physical stability of proteins. In S. Frokjaer and L. Hovgaards (eds.), 

Pharmaceutical Formulation and Development of Peptides and Proteins, Taylor and 

Francis, London, 2000, pp. 89–112. 

[7] C. J. Roberts, “Protein aggregation and its impact on product quality,” Curr Opin 

Biotechnol, vol. 30, pp. 211–217, 2014. 

[8] R. Tavakoli-Keshe, J. J. Phillips, R. Turner, and D. G. Bracewell, “Understanding the 

relationship between biotherapeutic protein stability and solid-liquid interfacial shear 

in constant region mutants of IgG1 and IgG4,” J. Pharm. Sci., vol. 103, no. 2, pp. 437–

444, 2014. 

[9] J. S. Philo and T. Arakawa, “Mechanisms of protein aggregation.,” Curr. Pharm. 

Biotechnol., vol. 10, no. 4, pp. 348–51, 2009. 

[10] C. Kalonia, V. Tropani, N. Wahome, I. Gabel, C. R. Middaugh, D. Volkin, “Effects of 

Protein Conformation, Apparent Solubility, and Protein-Protein Interactions on the 

Rates and Mechanisms of Aggregation for an IgG1Monoclonal Antibody,” J. Phys. 

Chem. B, vol. 120, no. 29, pp. 7062–7075, 2016. 

[11] E. Chi, S. Krishnan, and B. Kendrick, “Roles of conformational stability and colloidal 

stability in the aggregation of recombinant human granulocyte colony‐stimulating 

factor,” Protein Sci., vol. 12, pp. 903–913, 2003. 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
16 

[12] T. Menzen and W. Friess, “Temperature-ramped studies on the aggregation, 

unfolding, and interaction of a therapeutic monoclonal antibody,” J. Pharm. Sci., vol. 

103, no. 2, pp. 445–455, 2014. 

[13] W. Wang, “Instability, stabilization, and formulation of liquid protein 

pharmaceuticals,” Int. J. Pharm., vol. 185, pp. 129–188, 1999. 

[14] D. Arzenšek, D. Kuzman, and R. Podgornik, “Colloidal interactions between 

monoclonal antibodies in aqueous solutions,” J. Colloid Interface Sci., vol. 384, no. 1, 

pp. 207–216, 2012. 

[15] S. Simon, H. J. Krause, C. Weber, and W. Peukert, “Physical degradation of proteins in 

well-defined fluid flows studied within a four-roll apparatus,” Biotechnol. Bioeng., vol. 

108, no. 12, pp. 2914–2922, 2011. 

[16] J. T. Pelton and L. R. McLean, “Spectroscopic methods for analysis of protein 

secondary structure.,” Anal. Biochem., vol. 277, no. 2, pp. 167–176, 2000. 

[17] L. Wu, J. Zhang, and W. Watanabe, “Physical and chemical stability of drug 

nanoparticles.,” Adv. Drug Deliv. Rev., vol. 63, no. 6, pp. 456–69, May 2011. 

[18] M. Amano, N. Kobayashi, M. Yabuta, S. Uchiyama, and K. Fukui, “Detection of 

histidine oxidation in a monoclonal immunoglobulin gamma (IgG) 1 antibody,” Anal. 

Chem., vol. 86, no. 15, pp. 7536–7543, 2014. 

[19] J. Y. Zheng and L. J. Janis, “Influence of pH, buffer species, and storage temperature 

on physicochemical stability of a humanized monoclonal antibody LA298,” Int. J. 

Pharm., vol. 308, pp. 46–51, 2006. 

[20] D. W. Siderius, W. P. Krekelberg, C. J. Roberts, and V. K. Shen, “Osmotic virial 

coefficients for model protein and colloidal solutions: Importance of ensemble 

constraints in the analysis of light scattering data,” J. Chem. Phys., vol. 136, no. 17, 

2012. 

[21] R. M. Fesinmeyer, S. Hogen, A. Saluia, S. R. Brych, E. Kras, L. O. Narhi, D. N. Brems, Y. 

R. Gokarn., “Effect of Ions on Agitation- and Temperature-induced Aggregation 

Reactions of Antibodies,” Pharm. Res., vol. 26, no. 4, pp. 903–913, 2009. 

[22] G. Yin, Z. Liu, J. Zhan, F. Ding, and N. Yuan, “Impacts of the surface charge property on 

protein adsorption on hydroxyapatite,” Chem. Eng. J., vol. 87, no. 2, pp. 181–186, 

2002. 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
17 

[23] V. Saller, J. Pott, J. Matilainen, U. Grauschopf, K. Bechtold-peters, and W. Friess, 

“Particle Shedding from Silicone Tubing used for Peristaltic Pumping in 

Biopharmaceutical Drug Product Manufacturing,” Pharm. Drug Deliv. Pharm. 

Technol., pp. 2–3, 2015. 

[24] A. Tronin, T. Dubrovsky, S. Dubrovskaya, G. Radicchi, and C. Nicolini, “Role of Protein 

Unfolding in Monolayer Formation on Air/Water Interface,” Langmuir, vol. 12, no. 13, 

pp. 3272–3275, 1996. 

[25] Y. F. Yano, E. Arakawa, W. Voegeli, and T. Matsushita, “Real-time investigation of 

protein unfolding at an air–water interface at the 1 s time scale,” J. Synchrotron 

Radiat., vol. 20, pp. 980–983, 2013. 

[26] R. Wüstneck, J. Krägel, R. Miller, V. B. Fainerman, P. J. Wilde and D. K. Sarker, 

“Dynamic surface tension and adsorption properties of b-casein and b-lactoglobulin,” 

Food Hydrocoll., vol. 10, no. 4, pp. 395–405, 1996. 

[27] A. H. Martin, M. B. J. Meinders, M. A. Bos, M. a C. Stuart, and T. Van Vliet, 

“Conformational Aspects of Proteins at the Air / Water Interface Studied by Infrared 

Reflection - Absorption Spectroscopy,” no. 9, pp. 2922–2928, 2003. 

[28] A. MacKie and P. Wilde, “The role of interactions in defining the structure of mixed 

protein-surfactant interfaces,” Adv. Colloid Interface Sci., vol. 117, no. 1–3, pp. 3–13, 

2005. 

[29] J. T. Petkov, T. D. Gurkov, B. E. Campbell, and R. P. Borwankar, “Dilatational and shear 

elasticity of gel-like protein layers on air/water interface,” Langmuir, vol. 16, no. 8, 

pp. 3703–3711, 2000. 

[30] S. Ghazvini, C. Kalonia, D. B. Volkin, and P. Dhar, “Evaluating the Role of the Air-

Solution Interface on the Mechanism of Subvisible Particle Formation Caused by 

Mechanical Agitation for an IgG1 mAb,” J. Pharm. Sci., vol. 105, no. 5, pp. 1643–1656, 

2016. 

[31] E. A. Vogler, “Protein adsorption in three dimensions,” Biomaterials, vol. 33, no. 5, 

pp. 1201–1237, 2012. 

[32]  A. V. Makievski, V. B. Fainerman, M. Bree, R. Wüstneck, J. Krägel and R. Miller 

“Adsorption of Proteins at the Liquid / Air Interface,” Society, vol. 5647, no. 97, pp. 

417–425, 1998. 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
18 

[33] S. Rudiuk, L. Cohen-Tannoudji, S. Huille, and C. Tribet, “Importance of the dynamics 

of adsorption and of a transient interfacial stress on the formation of aggregates of 

IgG antibodies,” Soft Matter, vol. 8, p. 2651, 2012. 

[34] J. S. Bee, S. K. Schwartz, S. Trabelsi, E. Freund, J. L. Stevenson, J. F. Carpenter and T. 

W. Randolph, “Production of particles of therapeutic proteins at the air–water 

interface during compression/dilation cycles,” Soft Matter, vol. 8, no. 40, p. 10329, 

2012. 

[35] S. Kiese, A. Pappenberger, W. Friess, and H.-C. Mahler, “Equilibrium Studies of 

Protein Aggregates and Homogeneous Nucleation in Protein Formulation,” J. Pharm. 

Sci., vol. 99, no. 2, pp. 632–644, 2009. 

[36] S. Kiese, A. Pappenberger, W. Friess, and H.-C. Mahler, “Shaken, Not Stirred: 

Mechanical Stress Testing of An IgG1 Antibody,” J. Pharm. Sci., vol. 97, no. 10, pp. 

4347–4366, 2008. 

[37] H. C. Mahler, R. Müller, W. Frieß, A. Delille, and S. Matheus, “Induction and analysis 

of aggregates in a liquid IgG1-antibody formulation,” Eur. J. Pharm. Biopharm., vol. 

59, no. 3, pp. 407–417, 2005. 

[38] W. Wang, A. A. Ignatius, and S. V. Thakkar, “Impact of Residual Impurities and 

Contaminants on Protein Stability,” J. Pharm. Sci., vol. 103, no. 5, pp. 1315–1330, 

2014. 

[39] R. Bernstein, “Clouding and Deactivation of Clear (Regular) Human Insulin: 

Association With Silicone Oil From Disposable Syringes?,” Diabetes Care, vol. 10, no. 

6, pp. 786–787, 1987. 

[40] L. S. Jones, A. Kaufmann, and C. R. Middaugh, “Silicone oil induced aggregation of 

proteins,” J. Pharm. Sci., vol. 94, no. 4, pp. 918–927, 2005. 

[41] A. J. Freitag, M. Shomali, S. Michalakis, M. Biel, M. Siedler, Z. Kaymakcalan, J. F. 

Carpenter, T. W. Randloph, G. Winter and J. Engert, “Investigation of the 

Immunogenicity of Different Types of Aggregates of a Murine Monoclonal Antibody 

in Mice,” Pharm. Res., vol. 32, no. 2, pp. 430–444, 2015. 

[42] W. Wang, S. K. Singh, N. Li, M. R. Toler, K. R. King, and S. Nema, “Immunogenicity of 

protein aggregates--concerns and realities.,” Int. J. Pharm., vol. 431, no. 1–2, pp. 1–

11, 2012. 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
19 

[43] D. Weinbuch, S. Zölls, M. Wiggenhorn, W. Friess, G. winter, W. Jiskoot and A. Hawe, 

“Micro-flow imaging and resonant mass measurement (archimedes) - 

complementary methods to quantitatively differentiate protein particles and silicone 

oil droplets,” J. Pharm. Sci., vol. 102, no. 7, pp. 2152–2165, 2013. 

[44] S. Zölls, R. Tantipolphan, M. Wiggenhorn, G. Winter, W. Jiskoot, W. Friess and A. 

Hawe, “Particles in Therapeutic Protein Formulations, Part 1: Overview of Analytical 

Methods,” J. Pharm. Sci., vol. 101, no. 10, pp. 914–935, 2012. 

[45] N. Rathore and R. S. Rajan, “Current perspectives on stability of protein drug products 

during formulation, fill and finish operations,” Biotechnol. Prog., vol. 24, no. 3, pp. 

504–514, 2008. 

[46] P. Heljo,  A. Ross, I. E. Zarraga,  A. Pappenberger, and H.-C. Mahler, “Interactions 

Between Peptide and Preservatives: Effects on Peptide Self-Interactions and 

Antimicrobial Efficiency In Aqueous Multi-Dose Formulations,” Pharm. Res., vol. 32, 

no. 10, pp. 3201–3212, 2015. 

[47] S. Uchiyama, “Liquid formulation for antibody drugs,” Biochim. Biophys. Acta - 

Proteins Proteomics, vol. 1844, no. 11, pp. 2041–2052, 2014. 

[48] S. N. Timasheff, “The Control of Protein Stability and Association by Weak 

Interactions with Water: How Do Solvents Affect These Processes?,” Annu. 

Rev.Biophys.Biomol.Struct, vol. 22, pp. 67–97, 1993. 

[49] T. Serno, E. Härtl, A. Besheer, R. Miller, and G. Winter, “The Role of Polysorbate 80 

and HPβCD at the Air-Water Interface of IgG Solutions,” Pharm. Res., pp. 1–14, 2012. 

[50] B. A. Kerwin, “Polysorbates 20 and 80 Used in the Formulation of Protein 

Biotherapeutics: Structure and Degradation Pathways,” J. Pharm. Sci., vol. 97, no. 8, 

pp. 2926–2935, 2008. 

[51] R. J. Elias, D. J. McClements, and E. a Decker, “Antioxidant activity of cysteine, 

tryptophan, and methionine residues in continuous phase beta-lactoglobulin in oil-in-

water emulsions.,” J. Agric. Food Chem., vol. 53, no. 26, pp. 10248–53, 2005. 

[52] K. Izutsu, S. Kadoya, C. Yomota, T. Kawanishi, E. Yonemochi, and K. Terada, “Freeze-

drying of proteins in glass solids formed by basic amino acids and dicarboxylic acids.,” 

Chem. Pharm. Bull. (Tokyo)., vol. 57, no. 1, pp. 43–48, 2009. 

 



CHAPTER I          GENERAL INTRODUCTION 
___________________________________________________________________________________________ 

 
20 

[53] L. Chang, D. Sheperd, J. sun, D. Quelette, K. L. Grant, X. C. Tang, M. J. Pikal, 

“Mechanism of protein stabilization by sugars during freeze-drying and storage: 

Native structure preservation, specific interaction, and/or immobilization in a glassy 

matrix?,” J. Pharm. Sci., vol. 94, no. 7, pp. 1427–1444, 2005. 

[54] European Medicines Agency, “Scientific Dicussion for the Approval of Herceptin,” 

2005. 

[55] S. K. Singh, D. L. Luisi, and R. H. Pak, Antibody-Drug Conjugates: Design, Formulation 

and Physicochemical Stability, vol. 32, no. 11. 2015. 

[56] Schott AG, syriQ TM InJentle – Innovative Prefillable Staked Needle Syringe Case 

Study. 2014, pp. 1–3. 

[57] A. Allmendinger, S. Fischer, J. Huwyler, H. C. Mahler, E. Schwarb, I. E. Zarraga, R. 

Mueller, “Rheological characterization and injection forces of concentrated protein 

formulations: An alternative predictive model for non-Newtonian solutions,” Eur. J. 

Pharm. Biopharm., vol. 87, no. 2, pp. 318–328, 2014. 

[58] G. I. Frost, “Recombinant human hyaluronidase (rHuPH20): an enabling platform for 

subcutaneous drug and fluid administration,” Expert Opin. Drug Deliv., vol. 4, no. 4, 

pp. 427–440, 2007. 

 

 

 

PARTS OF THIS CHAPTER WERE PUBLISHED:  

Koepf E and Friess W 2016. Proteinformulierung: Vom Molekül zum Medikament, 

Pharmakon, 2:125-133. 



 

 
21 



C 

 
22 



CHAPTER II         OBJECTIVES AND OUTLINE OF THE THESIS 
___________________________________________________________________________________________ 

 
23 

CHAPTER II 

OBJECTIVES AND OUTLINE OF THE THESIS 

The aim of the thesis is to contribute to a better understanding of the physicochemical 

behavior of proteins at the liquid-air interface, and related formulation stability issues. 

Protein pharmaceuticals are exposed to liquid-air interfaces at many points during 

production, manufacturing and transportation. The objectives of this work focus on a 

mechanistic comprehension of how protein particles build up in the context of liquid-air 

interfacial stress exemplarily for antibody molecules. Investigations of the impact of 

different formulation parameters on the liquid-air interfacial characteristics on the one 

hand, and on protein-protein interactions in bulk solution on the other, aim to enable a 

more efficient formulation and process development for protein pharmaceuticals. 

 

As a first objective, novel analytical techniques for the investigation of events and processes 

at the liquid-air interface were identified, which had not been established for the 

characterization of proteins so far. In Chapter III, different surface sensitive methods were 

introduced to elucidate the protein adsorption process, protein conformation at the 

interface, as well as the peculiarities of the interfacial protein film with respect to its 

resistance, homogeneity and thickness. 

 

Although the link between the presence of a liquid-air interface and the emergence of 

protein aggregates has been extensively investigated little is known about the underlying 

mechanisms. As conventional stress by shaking or stirring holds factors such as cavitation, 

turbulent flow, or interactions with material e.g. stopper or stirrer surfaces, a model was 

developed to investigate the stimulation of protein aggregation solely by liquid-air interfacial 

stress (Chapter IV). 

 

Formulation additives, especially surfactants, are added to protein formulations, as it is 

known that this can prevent interface-induced protein aggregation. Chapter V focuses on 

the effect of surface active formulation additives on the interfacial film composition and the 

physicochemical behavior of the film. The surface sensitive analytical techniques established 



CHAPTER II         OBJECTIVES AND OUTLINE OF THE THESIS 
___________________________________________________________________________________________ 

 
24 

before can be used to identify the minimal additive concentration to prevent aggregation. 

The surfactant concentration should be kept low to reduce negative effect of impurities or 

oxidative degradation products on protein stability. 

 

In Chapter VI the focus was set on the impact of pH and ionic strength on the liquid-air 

interfacial protein behavior and the protein aggregation process. The charge and charge 

shielding conditions influence both the colloidal and the conformational stability of a protein 

formulation. The effect of formulation pH and ionic strength on conformational stability and 

interfacial film characteristics was addressed in part 1 of this chapter. The impact of pH and 

ionic on the colloidal stability in terms of protein aggregation were to be investigated in 

part 2. For this purpose, the protein-protein interaction parameter A*
2 was used as a 

measure for intermolecular interactions and contextualized to the aggregation rate 

determined in bulk solution. The combination of these different aspects should enable a 

clearer mechanistic understanding and formulation strategy. 

 

Overall, this thesis is intended to highlight the complex background of liquid-air interface 

related protein aggregation. Understanding of the underlying mechanisms will help to 

improve formulation development, thereby aiming on an increased stability of protein 

pharmaceuticals which is of great interest for the pharmaceutical industry as well as for each 

patient. 
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CHAPTER III 

THE FILM TELLS THE STORY: 

PHYSICOCHEMICAL CHARACTERISTICS OF IGG 

AT THE LIQUID-AIR INTERFACE 

1. ABSTRACT 

The presence of liquid-air interfaces in protein pharmaceuticals is known to negatively 

impact product stability. Nevertheless, the mechanisms behind interface-related protein 

aggregation are not yet fully understood. Little is known about the physical-chemical 

behavior of proteins adsorbed to the interface. Therefore, the combinatorial use of 

appropriate surface-sensitive analytical methods such as Langmuir trough experiments, 

Infrared Reflection-Absorption Spectroscopy (IRRAS), Brewster Angle Microscopy (BAM), and 

Atomic Force Microscopy (AFM) is highly expedient to uncover structures and events at the 

liquid-air interface directly. Concentration-dependent adsorption of a human 

immunoglobulin G (IgG) and characteristic surface-pressure /area isotherms substantiated 

the amphiphilic nature of the protein molecules as well as the formation of a compressible 

protein film at the liquid-air interface. Upon compression, the IgG molecules do not readily 

desorb but form a highly compressible interfacial film.  IRRA spectra proved not only the 

presence of the protein at the interface, but also showed that the secondary structure does 

not change considerably during adsorption or compression. IRRAS experiments at different 

angles of incidence indicated that the film thickness and/or packing density increases upon 

compression. Furthermore, BAM images exposed the presence of a coherent but 

heterogeneous distribution of the protein at the interface. Topographical differences within 

the protein film after adsorption, compression and decompression were revealed using 

underwater AFM.  

The combinatorial use of physical-chemical, spectroscopic and microscopic methods 

provided useful insights into the liquid-air interfacial protein behavior and revealed the 

formation of a continuous but inhomogeneous film of native-like protein molecules whose 

topographical appearance is affected by compressive forces.  
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2. INTRODUCTION 

Protein pharmaceutics are among the fastest growing and most important molecules in 

diagnostics and therapy, and therefore are of significant importance in high-impact areas 

such as autoimmune diseases and cancer [1]. The large size, the compositional variety and 

the distinct three-dimensional structure of protein molecules are causal for their sensitivity 

to undergo degradation processes. 

Proteins undergo both chemical and physical degradation such as oxidation and hydrolysis, 

denaturation and aggregation [2]. Whereas a chemical instability reaction leads to a change 

in the primary structure of the protein, physical instability reactions result in a change of the 

spatial arrangement of the protein structure, without modification of covalent bonds. The 

immunogenic potential of protein pharmaceutics is directly related to the emergence of 

aggregates [3]. So, the maintenance of the native conformation is essential for both the 

efficacy, as well as the safety of a protein drug [4]–[7]. 

Protein aggregation is highly undesirable due to the profound impact on the stability of the 

drug product, which can result in a loss of activity and unwanted immunogenic responses. In 

order to control protein aggregation, it is important to understand the underlying 

mechanisms. The fundamentals of protein aggregation were first described in the 1960s by 

the Lumry–Eyring model and are continually developed further [8]–[11]. 

Under physiological conditions, the three-dimensional structure of a protein represents an 

equilibrium between native and denatured (unfolded) states [8], [12]–[14]. Exogenous 

influences during production, storage and transportation can lead to a shift in this balance. 

In the unfolded state, hydrophobic patches, usually buried in the core, can be exposed to the 

outside of the molecule, and therefore the denatured proteins are more prone to 

aggregation. The protein aggregates can be soluble or insoluble in nature, can be composed 

of covalent and non-covalent bonds, and can be reversible or irreversible [15]. Moreover, 

not only (partially) unfolded, but also native conformations are involved in the formation of 

aggregates [16]. In particular, the formation of so-called “large native-like” particles often 

occurs spontaneously, and no continuous pathway from monomer to dimer and then to 

large particles can be observed [10]. For instance, a self-association of native protein 

molecules has been reported for highly concentrated protein solutions as a result of 

macromolecular crowding-effects [17].  
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The propensity of protein molecules to accumulate and therefore concentrate at phase 

boundaries (e.g. solid-liquid, liquid-liquid, and liquid-air) plays an important role in several 

technological processes, for example during manufacturing and storage of protein 

pharmaceuticals. The migration of proteins from a bulk phase to an interface is similar to the 

adsorption process of small amphiphilic solutes, e.g. surfactants. A major distinction, 

however, is that a small surfactant molecule contains a defined hydrophilic head and 

hydrophobic tail that can easily partition towards the aqueous and non-aqueous regions of 

the interface, respectively. Such straightforward partitioning is not possible in the case of 

proteins. While most of the hydrophilic residues in the tertiary structure of proteins are 

exposed on the surface, not all hydrophobic residues are buried in the interior and some of 

them are exposed on the surface what finally imparts amphiphilicity to protein molecules 

[18]. Therefore, protein molecules adsorb to the liquid-air interface and thereby do not only 

lower interfacial tension but also form continuous gel-like films of highly concentrated 

protein via mainly non-covalent interactions [19], [20]. The substantial differences in the 

surface activity of various proteins must be therefore related to their physical, chemical and 

conformational properties. Apart from intrinsic molecular factors, surface activity is also 

dictated by several extrinsic factors, such as pH, ionic strength, temperature or presence of 

other solution components such as sugars or surfactants. In addition to that, the molecular 

size of globular proteins affects their adsorption to the liquid-air interface [21], [22].  

Interfacial protein gelation and film formation has been identified as important trigger for 

the aggregation of protein pharmaceuticals [23]–[27]. For instance, adsorption of proteins to 

silicone oil, such as in prefilled syringes, can enhance protein aggregation [28]. Moreover, 

particle shedding from silicone tubings in peristaltic dosing pumps has to be considered [29]. 

Protein aggregation is also known to occur under different mechanical stress conditions, 

such as shaking [30], [31]. Eliminating the liquid-air interface by removing the headspace in 

vials prevents agitation-induced aggregation as shown by Kiese et al. [32]. Furthermore, 

several studies suggest a clear connection between the disruption of the highly concentrated 

protein layer at the liquid-air interface and the occurrence of protein particles in the bulk 

solution [33], [34]. Choosing appropriate formulation conditions, such as pH, ionic strength 

and additives (e.g. non-ionic surfactants), can stabilize proteins in pharmaceutical parenteral 

products against adsorption at surfaces and interface-induced aggregation [35]–[38]. 
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In this study, different surface-sensitive analytical methods were applied for the 

characterization of important functional properties, such as adsorption, compressibility, as 

well as structural and topographical features of interfacial protein films. The combinatorial 

use of different physical-chemical methods enables comprehensive insights into the protein 

behavior at the interface. These new findings will not only help to understand how protein 

stability is affected by the events happening at the interface, but also to identify and localize 

liquid-air interface related mechanisms of aggregation. Examination of particle formation by 

liquid-air interfacial stress only is not the subject of this study, but was addressed in separate 

investigations which are to be published soon. 
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3. MATERIALS AND METHODS 

 3.1. Materials 

Human IgG (Beriglobin™, CSL Behring GmbH, Germany) was used for this study. The market 

product contains 159 mg/mL human IgG in 22 g/L Glycine and 3 g/L NaCl buffer at pH 6.8. 

Glycine-NaCl buffer was prepared using highly purified water (ELGA LC134, ELGA LabWater, 

Germany) and pH was adjusted adding NaOH. All diluted solutions were prepared by the 

addition of Glycine-NaCl buffer at pH 6.8 to the human IgG stock solution followed by 

filtration using 0.2 µm sterile PES filters (Sterile Syringe Filter PES, VWR, Germany).  

 

 3.2. Surface Pressure Measurements 

Surface activity was expressed by surface pressure Π, with Π = σ0 – σ, where σ0 and σ are the 

aqueous subphase surface tension and the surface tension of the aqueous protein solution, 

respectively. Surface pressure measurements were performed in a 5.9 x 39.7 cm2 PTFE 

Langmuir trough equipped with a metal alloy dyne probe (Microtrough XS, Kibron Inc., 

Finland). For the determination of equilibrium surface pressures, a 3 x 6 Multiwell Plate (V = 

0.8 mL) was used. Results are given as mean (n=3) and standard deviation. Equilibrium 

adsorption pressure is defined as the maximum surface pressure that is reached by 

adsorption only and stable in a range of +/-0.2mN/m within 0.5 h.  

160 mL sample solution was filled into the trough for the repeated compression-

decompression measurements. The surface area of the trough can be varied by two mobile 

PTFE barriers. Temperature was kept at 20 °C (K6-cc circulation thermostat, Peter Huber 

Kaeltemaschinenbau GmbH, Germany). Compression speed was set to 55 mm/min and 

compression-decompression cycles were conducted from a maximum surface area of Amax = 

210 cm2 to Amin = 52 cm2. Compression was started after the equilibrium adsorption pressure 

was reached. 
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 3.3. FT-IR Spectroscopy 

For FT-IR measurements spectra were recorded using a Tensor 27 (Bruker Optics GmbH, 

Germany) connected to a thermostat (DC30-K20, Thermo Haake GmbH, Germany). For each 

measurement, the protein was formulated at 10 mg/mL in Glycine-NaCl buffer pH 6.8, and 

for each spectrum 100 absorbance scans were collected at a single beam mode with a 

resolution of 4 cm-1. Spectra were analyzed by Opus 7.5 (Bruker Optics GmbH) and displayed 

as vector-normalized second-derivative spectra (calculated with 17 smoothing points 

according to the Savitzky-Golay algorithms [39]). Infrared spectra of the protein in solution 

were recorded using an AquaSpec (transmission cell H2O A741-1) and BioATR (Attenuated 

Total Reflectance) cell™ II or BioATR (Attenuated Total Reflection) respectively, at 20 °C.  

Infrared spectra of the temperature-induced unfolding of the IgG samples were conducted 

using the BioATR cell, as this sample cell can analyze protein samples either in solution or in 

suspension. Reference spectra were recorded under identical conditions with only the buffer 

(Glycine-NaCl buffer pH 6.8) in the cell. Temperature-dependent spectra were acquired 

every 4 °C from 25 – 93 °C with an equilibration time of 120 s. Recorded infrared spectra 

were analyzed by Protein Dynamics for Opus 7.5.  

 

 3.4. Infrared Reflection-Absorption Spectroscopy (IRRAS)  

IRRAS was used to determine the presence and the conformation of the adsorbed protein at 

the soft liquid/air interface. IRRA spectra were recorded using a VERTEX FT-IR spectrometer 

(Bruker Optics GmbH, Germany) equipped with a liquid nitrogen-cooled MCT (mercury 

cadmium telluride) detector. The spectrometer was coupled to a Langmuir trough (Riegler & 

Kirstein GmbH, Germany), placed in a sealed container (external air/water reflection unit XA-

511) to guarantee constant vapor atmosphere. The IR beam was conducted out of the 

spectrometer and focused onto the water surface of the Langmuir trough. A computer 

controlled KRS-5 wire-grid polarizer (thallium bromide and iodide mixed crystal) was used to 

generate perpendicular (s) and parallel (p) polarized light. The angle of incidence was set to 

40° with respect to the surface normal. Measurements were performed using a trough with 

two compartments and a trough shuttle system [40]–[42]. One compartment contained the 

protein solution under investigation (sample), and the other (reference) was filled with the 

pure buffer sub phase. The single-beam reflectance spectrum (R0) from the reference trough 

was taken as background for the single-beam reflectance spectrum (R) of the monolayer in 
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the sample trough to calculate the reflection-absorption spectrum as -log(R/R0) in order to 

eliminate the water vapor signal. IR spectra were collected at 8 cm-1 resolution and a 

scanner speed of 20 kHz. For s‐polarized light, spectra were co‐added over 200 scans, and 

spectra with p‐polarized light were co‐added over 400 scans. To distinguish between the 

influence of increasing concentration and changed orientation on the signal intensity, the 

dichroic ratio DR of the amide I band at 1643 cm-1 was calculated as DR = Ap/As, with As and 

Ap being the maximum absorption obtained with s-polarized light and p-polarized light, 

respectively.  

For the determination of the interfacial film thickness in equilibrium and after compression 

to 30 mN/m, the incidence angle of the IR beam was varied with respect to the surface 

normal between 30° and 72° in steps of 2° or 3°. IRRA spectra were simulated using a 

MATLAB program [43], [44] on the basis of the optical model of Kuzmin and Mikhailov [45], 

[46]. The intensity and shape of a reflection-absorption band depend on the absorption 

coefficient k, the full-width of half-height (fwhh), the orientation of the transition dipole 

moment (TDM) within the molecule α, the molecular tilt angle θ, the polarization and the 

angle of incidence (AoI) of the incoming light, as well as the layer thickness d and its 

refractive index n. Simulated spectra were fitted to the experimental data in a global fit, 

where all spectra recorded at different AoI and different polarizations were fitted in one 

non‐linear least square minimization using the Levenberg‐Marquardt algorithm. The 

polarizer quality was set to Γ = 0.01. The optical constants of the water sub phase were taken 

from Bertie et al. [47], [48]. The layer thickness d was determined from a fit of the OH 

stretching vibrational band (ν(OH)) in the range of 3800–3000 cm–1. Additional experimental 

details are described elsewhere [49]–[52].  
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 3.5. Brewster Angle Microscopy (BAM) 

The morphology of the monolayer was imaged with a Brewster angle microscope, BAM2plus 

from NanoFilm Technologie GmbH (Goettingen, Germany), equipped with a miniature film 

balance from NIMA Technology (Coventry, UK). IgG at 1 mg/mL in Glycine-NaCl buffer at pH 

6.8 was filled into the trough (V = 80 mL). Simultaneous surface pressure measurements 

during adsorption and compression of the IgG in the Langmuir trough enabled a direct 

connection of each image with the corresponding surface pressure during adsorption or 

compression of the protein. The lateral resolution of the BAM was approximately 3 µm. The 

size of the BAM images is 400 x 720 µm2. Detailed information about the BAM method is 

given elsewhere [53]–[55]. 

 

 3.6. Atomic Force Microscopy (AFM) 

For AFM, protein films formed during adsorption to equilibrium adsorption pressure or after 

compression to a desired surface pressure, were transferred by the Langmuir-Schaefer 

deposition (horizontal transfer of the film) using 1 x 1 cm2 mica plates (Mica Sheet V5 

Quality, Science Services GmbH, Germany) attached to a stamp tool. The mica was lowered 

onto the surface and pulled off after 2 s of contact time. The mica was removed from the 

stamp tool and the transferred film was covered with a drop of buffer solution to prevent 

drying of the sample. The transferred films were analyzed by underwater AFM (Bruker / 

Veeco / Digital Instruments MultiMode AFM ) using a cantilever (Arrow™ NCPt, resonance 

frequency 285 kHz, spring constant 42 N/m) in tapping mode (Nano World AG, Switzerland). 

Images were analyzed by NanoScope III 5.12r3 Software (Digital Instruments Inc., US).  

For the determination of interfacial film thickness, the film was transferred onto silica by 

Langmuir-Schaefer technique. A scratch was made using stainless steel tweezers. Film 

thickness was determined by section analysis from an average of 6 measuring points from 

the silica substrate to the film (area unaffected by the scratch).  

 

 

 

 

 

http://www.artisantg.com/Scientific/78254-1/Bruker_Veeco_Digital_Instruments_MultiMode_AFM_2_Atomic_Force_Microscope
http://www.artisantg.com/Scientific/78254-1/Bruker_Veeco_Digital_Instruments_MultiMode_AFM_2_Atomic_Force_Microscope
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4. RESULTS AND DISCUSSION 

 4.1. Time & Concentration Dependent Adsorption of IgG  

Surface pressure measurements were performed to investigate the adsorption kinetics of 

the IgG from bulk solution to the liquid-air interface. IgG reveals a pronounced surface 

activity as shown in Figure 1a. IgG in a concentration 0.01 mg/mL reaches surface pressure 

values of 6.7 mN/m after 300 min, whereas IgG in a concentration of 0.5 mg/mL reaches an 

equilibrium surface pressure value of 18.2 mN/m after about 270 min. In case of a 1 mg/mL 

IgG solution, the equilibrium adsorption pressure is only slightly higher (18.5 mN/m after 

240 min). Although the adsorption of globular proteins such as IgG starts immediately, 

equilibrium adsorption pressures are reached only after several hours and depend on the 

protein itself and on the formulation conditions [21], [22], [56]. Adsorption of small 

surfactants, such as polysorbate 20 or 80, is much faster, and equilibrium adsorption 

pressure values are reached within less than 30 min due to the distinct amphiphilic character 

and the low molecular weight [18], [36], [57].  

 

Figure 1a: Time-dependent adsorption of IgG using different bulk concentrations 
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Figure 1b: Concentration-dependent equilibrium adsorption pressure of IgG 

 

Figure 1b shows the concentration-dependent equilibrium adsorption pressure using protein 

concentrations of 0.001 mg/mL up to 12 mg/mL IgG. At low IgG concentrations in the range 

from 0.01 mg/mL to 0.1 mg/mL, the concentration-dependent change in surface pressure is 

pronounced, whereas concentrations ≥ 1 mg/mL do not lead to any further considerable 

increase in equilibrium adsorption pressure. Therefore, for further experiments a 

concentration of 1 mg/mL was considered to be adequate. This correlation between protein 

concentration and equilibrium adsorption pressure can be interpreted in terms of the 

surface coverage [16], [31]. At protein concentrations ≥ 1 mg/mL IgG, the protein molecules 

may form multilayers, but these structures do not contribute significantly to the surface 

pressure [59]. Moreover, a highly viscous protein film is formed, which can be deformed by 

lifting and lowering the dyne probe (Fig. 2) and is caused by mainly non-covalent interactions 

of the highly concentrated protein layer at the liquid-air interface [60], [61]. 
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 4.2. Repeated Compression-Decompression of Interfacial       

IgG Films 

Repeated compression-decompression was performed to investigate the physical resistance 

of the IgG film at the liquid-air interface. Controlled compression and decompression ensure 

that mechanical stress is applied to the interfacial IgG film only, while simultaneously the 

surface pressure is recorded. Movement of the barriers from maximum surface area (Amax) 

towards the minimum surface area (Amin) results in an increase in surface pressure from the 

equilibrium adsorption pressure of 18.5 mN/m up to 52 mN/m (Fig. 3). The change in surface 

pressure upon compression of the film is 33.5 mN/m after the first cycle and does not 

noticeably change with the following cycles. During the first compression, the slope between 

210 cm2 (Amax) and 140 cm2 is much lower compared to the slope of the isotherm between 

120 cm2 and Amin = 52 cm2 (Amin). This indicates a drastic change in compressibility of the 

protein film. Upon decompression, the surface pressure decreases strongly between 52 cm2 

and 70 cm2, whereas the slope of the isotherm is low between 80 cm2 and Amax. Curve 

progression is nearly identical for each cycle with a slight decrease in the surface pressure at 

Amax in each cycle. The compression of the film causes a compaction of the proteins 

connected with a decrease in molecular area modifying the ordering of the protein 

molecules and the distribution across the interface [62]. This can be connected with an 

increase in film thickness and/or changes in molecule orientation [63]. Moreover, the 

surface pressure increase demonstrates that the protein molecules stay at the interface 

Figure 2: IgG film at equilibrium adsorption pressure deformed by lifting (A) or lowering (B) the dyne probe  

A B 
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upon compression. This non-equilibrium between adsorption and desorption can be traced 

back to the formation of a viscoelastic film where in addition to hydrophobic interactions, 

hydrogen bonds also contribute substantially to the molecular association [64]. 

The steep decrease in the initial phase of decompression (between 52 cm2 (Amin) and 70 cm2) 

can be explained by a short-term rupture of the film followed by re-adsorption or re-

spreading of protein molecules at the interface, ending in a quasi-equilibrium surface 

pressure when decompression is completed. Based on the decrease in surface pressure after 

each cycle compared to the initial value a loss of material from the interface can be assumed 

[33]. The high compressibility and the appearance of a considerable hysteresis upon 

compression and decompression substantiate the formation of a viscous protein network at 

the interface which is in accordance with the film deformation as shown in figure 2. The 

hysteresis indicates that the protein does not desorb upon compression and that the 

interfacial film undergoes physical changes during compression and decompression [41], 

[42], [43].  
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Figure 3: Compression-decompression cycles of IgG in the Langmuir Trough. Compression starts at Amax at 

equilibrium (18.5 mN/m) adsorption pressure and ends at Amin. Decompression starts at Amin and ends at Amax 
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 4.3. Temperature-Induced Unfolding of IgG 

To determine possible changes in the secondary structure, FT-IR spectra were recorded upon 

heating. The melting temperature (Tm) of IgG was identified to be 72 °C using micro 

calorimetry [67]. By increasing the temperature above Tm, changes in the secondary 

structure occurred indicated by changes in the amide I modes (Fig. 4). Starting the 

temperature ramp, IgG exhibited the amide I band maximum at 1639 cm-1 characteristic for 

intramolecular β-sheet structures (Tab. 1). Additionally, bands with wavenumbers centered 

around 1620 cm-1 and 1690 cm-1 assignable to extended strands and to weak intramolecular 

β-sheet or turns, respectively, can be identified. 

Elevation of the temperature resulted in the following spectral changes: the amide I 

absorbance maximum around 1639 cm-1 decreased accompanied by an intensity increase at 

1625 cm-1. Additionally, a peak shift from 1690 cm-1 to 1695 cm-1 occurred representing a 

shift to intermolecular β-sheet structures. The loss of the native intramolecular β-sheet 

structure towards a more unordered structure with distinctive bands of intermolecular β-

sheet structures (1625 cm-1 and 1695 cm-1) is in accordance with the results obtained by 

Matheus et al. [68]. In addition to the formation of intermolecular antiparallel β-sheet 

structures indicated by peak shifts, the presence of new protein interactions after heating 

resulted in gel formation of the cooled samples, which is characteristic for extensive 

intermolecular interactions in protein samples [69]. 

 

Figure 4: Temperature-induced unfolding of IgG [10 mg/mL in Glycine-NaCl pH 6.8] between 25 °C and 93 °C in 

steps of 4 °C using FT-IR spectroscopy (BioATR) 
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 4.4. Presence and Secondary Structure of IgG at the  

Interface  

The presence of the IgG at the liquid-air interface can be confirmed by IRRAS measurements. 

Furthermore, a comparative analysis of secondary structure elements of the IgG in solution 

and at the interface enables conclusions whether the adsorption to the interface and the 

compression of the adsorbed protein film cause conformational changes. 

The appearance of the water band and the amide A, I and II bands prove the formation of a 

IgG adsorption layer at the interface. The amide I band is associated mostly with the C=O 

stretching vibration, and the amide II band results from in-plane NH-bending and CH-

stretching vibrations. The amide A band is due to N-H stretching vibration. This vibrational 

mode does not depend on the backbone conformation but is very sensitive to the strength 

of hydrogen bonds. Wavenumbers between 3225cm-1 and 3280 cm-1 have been found for 

hydrogen bond lengths between 2.69 Å and 2.85 Å [70]. The intensity of the bands increases 

during the adsorption process and also upon compression to surface pressure values above 

the equilibrium adsorption pressure (Figs. 5 and 6). The intensity of the OH-band around 

3600 cm-1 is directly connected with the effective adsorption-layer thickness, because the 

intensity of the water band in the spectrum of the sample trough is reduced in comparison 

to the one from the reference trough since the protein adsorption layer replaces a water 

layer of the same thickness [71]. Therefore the increasing intensity of the bands refers to an 

increasing interfacial protein concentration, film thickness and/or packing density within the 

film [43], [72]. These results are consistent with the surface pressure measurements, where 

compression caused a significant increase in surface pressure due to an interfacial 

compaction of protein material and/or change in molecule orientation.  
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Figure 5: IRRA spectra of IgG with increasing surface pressure (s-polarized light, AoI = 40°) 

 

 
Figure 6: IRRA spectra in the amide I and II regions of IgG with increasing surface pressure (s-polarized light, 

AoI = 40°) 

 
 

With increasing surface pressure, the intensity of the amide bands increases. The maximum 

of the amide I band is observed at 1643 cm-1 and in the amide II region at ~1543 cm-1 (Fig. 6). 

The IRRA spectra indicates an intramolecular β-sheet or unordered random coil 

conformation of the IgG at the interface [73]. The position of the amide I band does not 

change with increasing surface pressure indicating that the secondary structure of the 

adsorbed IgG changes neither during adsorption nor during compression. 
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Figure 7 shows the FT-IR spectrum of the native IgG in solution using the AquaSpec and the 

BioATR measurement cell, respectively. The band positions of the transmission as well as of 

the attenuated total reflection (ATR) spectrum can be assigned to a mostly intramolecular β-

sheet structure of the IgG in solution. Comparison of the two spectra reveals slight 

differences in the band positions with 1639cm-1 for the AquaSpec, and 1636 cm-1 for the 

BioATR cell. This can be explained by the different measurement techniques as the 

AquaSpec records transmission spectra of the aqueous protein solution, and the BioATR 

measures reflectance spectra of a protein film at the silicon crystal. Nevertheless, both 

measurement principles lead to fairly identical structural elements for the IgG. The position 

of the bands determined in FT-IR spectra (1639 cm-1 or 1636 cm-1) and IRRA spectra 

(1643 cm-1) differs only marginally. The peaks of the IRRA spectra are broader compared to 

the FT-IR peaks. This can be explained by the higher resolution of the FT-IR and/or can be 

due to a peak overlapping within the amide I region of the IRRA spectra, containing not only 

the band at 1639 cm-1 but additional bands beside the band at 1690 cm-1, which is also 

present in the FT-IR spectrum, reflecting an intramolecular β-sheet structure.  

 
Figure 7: Comparative FT-IR spectra of IgG in solution (AquaSpec vs. BioATR) 
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Unlike the conformational changes of the IgG induced by heat stress (Fig. 4), where strong 

peak shifts from the native intramolecular β-sheet structure at 1639 cm-1 towards a more 

unordered structure with a distinctive band of intermolecular β-sheet structure at 1625 cm-1 

were observed, the adsorption of the IgG to the interface does not induce considerable 

conformational changes. As no other peaks referring to new structural elements appear, the 

IgG predominantly retains its native structure during adsorption as well as during 

compression.  

The increase in the intensity of the IRRA bands as well as the increase in surface pressure 

upon compression can be attributed to an increase in the adsorbed protein amount either 

due to an increase in film thickness or to changes in the molecule orientation allowing higher 

packing densities. In order to discriminate between those two effects, the dichroic ratio (DR) 

was calculated. In figure 8, the DR values at 1643 cm-1 are plotted as a function of surface 

pressure at two different IgG concentrations. No change in DR is observed during adsorption 

or compression, therefore the molecule orientation does not change with increasing surface 

pressure. Hence, the increase in surface pressure upon compression and the increase in the 

intensity of the IRRA bands can be solely explained by an increase in packing density and/or 

film thickness.  

 

Figure 8: Dichroic Ratio of amide I at 1643 cm
-1

 (p/s-polarized light, AoI = 40°) as a function of surface pressure 

at two different IgG concentrations  
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 4.5. Structural and Morphological Characterization of the  

Liquid-Air Interfacial Film 

BAM was used to visualize the liquid-air interfacial protein film. At the Brewster angle, p-

polarized light is not reflected, and the bare buffer surface appears dark. In the case of 

protein adsorption, the Brewster condition is altered by the presence of the protein film 

with a different refractive index, indicated by an overall increased brightness as a part of the 

incident light is reflected (Fig. 9). Areas which appear dark in the BAM images are formed by 

a thinner but homogeneous film compared to brighter areas. Although the protein covers 

the entire interface, flickering domains are present immediately as adsorption starts 

representing differences in packing density. During adsorption, the surface appearance does 

not change. Moreover, even compression of the film does not affect the BAM images. Areas 

of increased brightness represent areas of increased packing density and film thickness [60], 

[74]. The island-like structures demonstrate that the protein is not homogeneously 

distributed across the interface.  

    

Figure 9: BAM images of IgG during adsorption (A: 𝝅 = 6.2 mN/m, B: 𝝅 = 18.5 mN/m) and compression (C: 𝝅 = 

25.0 mN/m, D:  𝝅 = 35.0 mN/m) 

 

 

 4.6. Changes in Film Topography Caused by  

Compression  

Underwater Atomic Force Microscopy (AFM) was used to further elucidate the topographical 

properties of the interfacial protein film on a different scale compared to BAM. The film 

deposited after adsorption to equilibrium surface pressure confirms the presence of the IgG 

at the interface (Fig. 10 A). Individual IgG molecules cannot be detected due to the flattening 

effect during AFM measurements in liquid medium [75]. Nevertheless, as in the BAM 

images, an inhomogeneous distribution of the protein after adsorption can be confirmed. 

Bright areas in the deflection image are considered to be protein material that protrudes 

A B C D 
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above the protein layer with a height of 15 nm. The determined film roughness of 1.0 nm 

after adsorption is in accordance with literature values for other globular proteins [15], [49].  

Upon compression, areas of telescoped material appear (Fig. 10 B) wherein the protein film 

forms wrinkles that protrude with a height of 18 nm from the remaining part of the compact 

film. However, a recent study by Ghazvini et al. [77] described similar findings for a dried film 

of an IgG1 after compression. The presence of those areas of increased film thickness after 

compression can be explained as follows: compression first increases the packing density in 

the adsorption layer leading to an increase in surface pressure and the OH- and amide-bands 

intensities in the IRRA spectra. Some material will be partially excluded from the well-packed 

film into the subphase during compression. 

After decompression, the areas of telescoped material cannot be recognized any more 

(Fig. 10 C). Thus, decompression results in a decrease of the overall height of the interfacial 

film, a steep decrease in surface pressure as well as a decrease in surface pressure after each 

compression-decompression cycle. This can be traced back to a loss of material from the 

interface [33], [34], [77]. 

 

   

Figure 10: Underwater AFM images in tapping mode (image size: 10 x 10 µm
2
) of IgG after adsorption to 

equilibrium surface pressure (A: 18.5 mN/m), compression (B: 30 mN/m) and after decompression of the film 
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 4.7. Interfacial Film Thickness in Equilibrium and after  

Compression 

Interfacial film thickness of the IgG film in equilibrium at 18.5 mN/m and after compression 

to 30 mN/m was determined by angle-dependent Infrared Reflection Absorption 

Spectroscopy (IRRAS) measurements and compared to the values obtained by underwater 

AFM of the films after Langmuir-Schaefer transfer.  

The increase in the intensity of the OH-stretching vibration around 3600 cm-1 indicates an 

increase in film thickness upon compression. The two types of polarized light (s and p) have 

dramatically different reflectivity properties around the Brewster angle (~53.1°) with a 

minimized intensity of the reflected p-polarized light. As shown in figure 11, the reflectance-

absorbance (RA) in the region of the OH-stretching vibration changes continuously for s-

polarized light as a function of the angle of incidence (AoI), whereas RA of p-polarized light 

exhibits a discontinuity around the Brewster angle. The IRRA spectra taken with p- and s-

polarized light have been compared with the corresponding simulated spectra with the OH-

stretching vibration ν(OH) and the amide A band (Fig. 11).  

In figure 12, the maxima of the RA intensities of experimental and simulated spectra at 

different AoI have been compared. The best fit of the simulated to the experimental data 

allows the determination of the layer thickness, assuming a refractive index of the protein 

layer. The presented simulation is based on a refractive index (n) of the protein solution 

using experimental data. As the refractive index n of the protein solution directly depends 

on the concentration and packing density, it was set to 1.45 in the adsorption layer at 

equilibrium with a linearly increasing increment of 0.024 depending on the protein 

concentration. Therefore, the calculated interfacial film thickness after adsorption to an 

equilibrium surface pressure amounted to 1.97 nm and increases upon compression to 

2.61 nm. Since in the compressed protein layer the concentration is larger, a larger refractive 

index (1.49) has been used in a second fit.  

Moreover, as the secondary structure does not considerably change either during adsorption 

or during compression, the tertiary structure of the protein could be affected upon 

adsorption and contribute to a lower interfacial film thickness compared to the dimensions 

of the molecule in bulk solution. Comparison of the RA intensities in equilibrium to the ones 

after compression shows a clear increase in the RA intensity of the OH band (see Fig. 12). 
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Figure 13 shows the AFM images with a scratch of the film in equilibrium and after 

compression to 30 mN/m. Comparable to fig. 10, the images display a coherent film 

containing some areas of increased height representing agglomerated protein material (Figs. 

13 A + B). Compression caused wrinkling and the formation of a telescoped protein film 

(Figs. 13 C + D). Section analysis of the AFM height measurements resulted in a mean film 

thickness of (6.41 ± 2.05) nm in equilibrium and of (5.56 ± 2.94) nm after compression. 
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Figure 11: IRRA spectra of the OH-stretching vibration and the amide A band of IgG in equilibrium at 

18.5 mN/m at different angles of incidence (AoI) from 30° – 72° (from black via grey to green) in steps of 2°, 

top: experimental spectra (left: p-polarized light, right: s-polarized light), bottom: the corresponding simulated 

IRRA spectra 
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Figure 12: Experimental (dots) and simulated (solid lines) RA intensities using p-polarized (black) and s-

polarized (green) light at the maximum position of the OH-stretching vibration. Top left: data obtained at the 

equilibrium surface pressure, top right: data after compression to 30 mN/m. Top row: a refractive index of 

1.45 has been taken for the equilibrium as well as for the compressed layer. Bottom row: An increased 

refractive index of 1.49 has been taken for the compressed film  
 

 

    

Figure 13: Underwater AFM images incl. scratch for determination of film thickness in tapping mode (image 

size: A + C: 30 x 30 µm
2
, B + D: 10 x 10 µm

2
) of IgG after adsorption to equilibrium surface pressure (A and B: 

18.5 mN/m) and after compression (C and D: 30 mN/m) 
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5. SUMMARY & CONCLUSION 

The use of a Langmuir film balance in combination with IRRAS, BAM and AFM is a novel 

approach for the characterization of films formed by protein biopharmaceuticals at the 

liquid-air interface. The IgG investigated in this study shows a pronounced amphiphilic 

behavior. It adsorbs to the liquid-air interface in a time- and concentration-dependent 

manner, reaching a maximum equilibrium adsorption pressure after about 4 hours at 

concentrations ≥1 mg/mL. An additional concentration dependent measurement series 

indicated that identical equilibrium surface pressure values were reached at concentrations 

of 1 mg/mL IgG and above (Fig. 1b).  

Adsorption of the IgG results in the formation of a highly viscous protein film wherein the 

protein covers the entire interface, while showing an inhomogeneous distribution as 

demonstrated by BAM and AFM. The overall increased brightness in BAM images can be 

attributed to the presence of the protein film at the interface. The presence of island 

structures is related to the inhomogeneous IgG adsorption by forming areas of increased 

thickness or packing density [27], [60]. After adsorption, AFM images reveal a continuous 

protein film with island structures of condensed protein material similar to BAM but on a 

smaller scale. The appearance of the OH-vibrational band and amide bands in the IRRA 

spectra substantiate the presence of the protein at the interface [41], [78], [79]. Therefore, 

the accumulation of IgG at the interface was demonstrated by the different methods.  

Compression of the film causes a considerable increase in surface pressure above 

equilibrium values. Not only during adsorption, but all the more upon compression the 

intensity of the IRRA bands increases. This signifies an increase in interfacial film thickness 

[43], [80], [81]. The orientation of the IgG molecules does not change during adsorption or 

compression as the dichroic ratio does not change with increasing surface pressure. As the 

dichroic ratio was recorded at different surface pressures during adsorption as well as during 

compression, possible changes, e.g. in telescoped regions of the compressed film, are 

considered on average. 

During compression, the appearance of the BAM images does not change. In contrast, the 

AFM images reveal substantial changes of the film topography upon compression. The 

appearance of telescoped protein material with an increased height compared to the 

adsorbed film evince that the interfacial film is directly affected by compressive forces [33], 

[77]. Hence, the protein tends to be trapped at the interface and does not readily desorb 
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upon compression [82] but forms instead protuberances if the packing density is too high. As 

secondary structure and molecule orientation were not considerably affected neither by 

adsorption nor compression, changes in the tertiary structure of the protein could be 

causative for the compressibility of the interfacial film and the related impeded desorption 

of protein molecules from the interface. 

The IRRA spectra enable not only conclusions about the presence and film thickness of the 

IgG at the interface, but also about the protein secondary structure elements. For different 

types of proteins unfolding upon adsorption to the liquid-air interface has been reported 

[25], [75], [83], [84]. In contrast to this, our results do not indicate considerable changes in 

the secondary structure of IgG after adsorption and compression. This can be explained by 

the fact that IgG molecules belong to the most stable protein types [68], [85]. As no new 

structural elements show up compared to the native secondary structure in solution the IgG 

remains in a native-like secondary structure.  According to literature, IR methods cover 

changes of ≥ 2 – 10 % in sensitivity [73], [86]. Minor structural perturbations, however, are 

not detected and cannot be excluded.  

The interfacial film thickness was determined from the analysis of the IRRAS intensity of the 

OH-stretching band as a function of angle of incidence. At equilibrium adsorption pressure 

(18.5 mN/m), the film thickness amounts to 1.97 nm (n = 1.45), and compression to 30mN/m 

caused an increase in film thickness to 2.61 nm assuming the same refractive index of 1.45 

or to 2.4 assuming a higher refractive index of 1.49 for the compressed layer. These values 

are clearly smaller compared with the ones determined by AFM for the equilibrium film, but 

in good agreement with the AFM results of the compressed film. The fact, that the 

calculated film thickness (1.97 nm) is only 30 % of the hydrodynamic radius of the molecule 

(6.9 nm) can be explained by the loose packing in the equilibrium film. This film contains a 

substantial amount of water. Algorithms have been devised for estimating the amount of 

bound water from the amino acid sequence, although these generally do not distinguish 

between exposed and buried residues. The first ones bind water and the second ones do 

not. This substantial amount of water in the protein layer leads to the underestimation of 

the film thickness by IRRAS using the experimentally determined OH-band. Therefore, the 

thickness of the transferred film determined by AFM is closer to the value of the 

hydrodynamic radius. On the other hand, it has been stated that IgG molecules 

preferentially adsorb in flat orientations, which can explain reduced interfacial film 
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thicknesses compared to the values of hydrodynamic radius measured in solution [87], [88]. 

Erickson [89] determined the minimal radius of a sphere that could contain a protein with 

100 kDa to 3.05 nm and for 200 kDa to 3.84 nm. Additionally, they stated the average 

separation of molecules (center to center) to be 6.9nm [89]. If the film is compressed to 

30 mN/m, some water will be squeezed out and the protein film might change to be flatter. 

Therefore, the thickness of this more densely packed film determined by IRRAS is in good 

agreement with the value determined by AFM. Although the optical properties could only be 

estimated from values measured in bulk solution, a qualitative statement on the change in 

film thickness (packing density) and a differentiation between the film thickness at 

equilibrium adsorption pressure and after compression can be clearly made.  

Compression-decompression cycles reveal compressibility of the protein film [33], [77], [90] 

indicating a non-equilibrium state of the adsorption layer and therefore drastically reduced 

desorption kinetics. The considerable hysteresis indicates physical changes within the film as 

the packing density and film thickness change with compression and decompression. 

Furthermore, each subsequent cycle ended up in slightly lower surface pressures indicating a 

loss of material from the interface which is in accordance with the morphology of the 

protein film exhibiting protrusions after compression. These areas of protein material which 

are formed by compression and visualized by AFM are no longer present after 

decompression. Decompression results in a smoother surface compared to adsorption or 

compression indicated by a decrease in the mean roughness of the film. The decrease in 

mean roughness also substantiates the assumption for partial loss of material from the 

interface and compaction of the film by reorganization of the protein molecules, what is in 

agreement with the results obtained by the surface pressure measurements [33], [34], [77], 

[91], [92]. 

Altogether, the combination of physical-chemical, spectroscopic, and microscopic methods 

for surface characterization provides useful insights into the behavior of proteins at the 

liquid-air interface. Further investigations will show what impact not only the IgG itself, but 

also different formulation parameters such as pH and the presence of additives have on the 

liquid-air interfacial behavior and the tendency of an antibody to aggregate as a measure of 

protein stability. Moreover, it has already been shown that continuous compression and 

decompression of an interfacial protein film causes compaction followed by aggregation 
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[33], [77]. Thus, physical changes within the protein film can be causative for liquid-air 

interface-related protein aggregation [33], [93].  

In conclusion, during adsorption to the soft liquid-air interface IgG forms a continuous but 

inhomogeneous film of native-like protein molecules whose topographical appearance is 

affected by compressive forces. As protein pharmaceuticals are exposed to liquid-air 

interfaces at many points during development, production and storage [94], this 

comprehensive understanding of the underlying mechanisms is of great importance, as it 

can help to improve protein stability by choosing appropriate formulation, processing and 

packing conditions [95], [96]. 
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CHAPTER IV 

NOTORIOUS BUT NOT UNDERSTOOD:  

HOW LIQUID-AIR INTERFACIAL STRESS 

TRIGGERS PROTEIN AGGREGATION 

 

1. ABSTRACT 

Protein aggregation is a major challenge in the development of biopharmaceuticals as it 

negatively impacts product quality. The mechanisms and pathways of protein aggregation 

are manifold. Therefore, good understanding of the factors that influence, control and 

prevent protein aggregation are essential for a successful formulation development. In 

particular, the presence of liquid-air interfaces has been identified to trigger the formation 

of large protein particles. This study focused on the analysis of the physical-chemical 

behavior of two monoclonal antibodies (IgGs) at the liquid-air interface. In addition, a Mini-

trough model was developed what allows a direct comparison of the interfacial film 

characteristics studied in a Langmuir trough with the impact of interfacial stress only on 

protein particle formation. Surface pressure measurements exhibited the formation of a 

highly compressible interfacial film. Moreover, an inhomogeneous protein distribution 

across the interface with areas of increased packing density and film thickness were 

discovered by Brewster-Angle microscopy. Repeated compression and decompression of the 

interfacial film resulted not only in a considerable hysteresis, but also in significantly 

elevated numbers of particles compared to the controls. Furthermore, the extent and speed 

of compression directly affected the mechanical properties of the film as well as the number 

of particles formed. Particularly, compression by a critical factor above 3 was identified to 

cause a significant increase in particle formation. Above that, with increasing compression 

speed the number of particles increased, too. Infrared reflection-absorption spectroscopy 

did not indicate considerable changes in secondary structure compared to FT-IR spectra in 

solution. Hence, it was proven that the IgG remains in a native-like conformation at the 

interface.  
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Consequently, the physical-chemical methods applied in combination with the newly-

designed Mini-trough provided substantial indications of the mechanisms of interface-

related protein aggregation. The characterization of not only the interfacial film but also the 

aggregation process itself by a trough method exclusively has not been described before but 

provides additional understanding and enables testing of different formulations under 

controlled stress conditions. 
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2. INTRODUCTION 

Protein aggregation is a major challenge in the development of protein pharmaceuticals. 

Particularly, interfacial stress as encountered during manufacturing, filling and shipping 

directly affects protein stability and can result in the formation of protein particles.   

Protein aggregates can be soluble or insoluble in nature, can be a result of intermolecular 

covalent or non-covalent bonds and can be reversible or irreversible [1]. On the one hand, 

the emergence of small aggregates can induce the formation of larger aggregates by further 

association, thereby exceeding the solubility limit and leading to protein precipitates. On the 

other hand, so-called “large native-like particles” can occur spontaneously without 

continuum from monomer to dimer to large particles [2]. Hence, not only (partly) unfolded, 

but also native molecules can play an important role in the formation of protein aggregates 

[3], [4]. Due to their partly amphiphilic nature, protein molecules exhibit a certain surface 

activity and therefore have a high propensity to adsorb to interfaces, e.g. to container 

surfaces or to the liquid-air interface [5]–[9]. Choosing appropriate formulation conditions, 

such as pH and ionic strength as well as the addition of surfactants can stabilize proteins 

against adsorption to surfaces and interface-induced aggregation [10]–[14]. 

Using the pendant drop technique, Beverung et al. described the time dependent adsorption 

of several proteins, including ovalbumin, β-casein, lysozyme, and bovine serum albumin 

(BSA) into 3 regimens: after an induction period where the molecules diffuse to the 

subsurface with a minimal reduction in surface tension only, a steep decrease in interfacial 

tension is caused by a saturation of the interface with protein molecules. Subsequently, the 

final regime is characterized by a relaxation of the adsorbed layer and the formation of a 

multi-layer, viscoelastic interfacial film [15]. Hill et al. state that the adsorption of proteins at 

interfaces is an irreversible process as no desorption is detected upon dilution of the bulk 

phase [16]. This can be attributed to a prohibitively high energy barrier for desorption from 

an interface. Furthermore, interfacial electrostatic interactions appear to play a particularly 

important role regarding structure and properties of interfacial protein layers [17]. 

Liquid-air interfaces are particularly present in protein pharmaceuticals as air bubbles or 

headspace in solution vials or syringes [18]. It has been stated, that the adsorption process 

causes protein unfolding and as a consequence results in aggregation [19]–[21]. In contrast, 

other studies suggest that protein molecules remain in a native-like conformation at the 

interface [22]–[24]. So-called soft proteins with low structural stability exhibit a stronger 
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tendency to unfold and on the contrary, so-called hard proteins show structural rigidity [20], 

[25]. Makievsky et al. state that human serum albumin (HSA) does not undergo any 

significant denaturation at the liquid-air interface [26]. However, unfolding of lysozyme was 

observed using IRRAS [27] and x-ray reflectivity [19]. The conformation of adsorbed proteins 

has been reported to be mainly β-sheet. Thus, protein molecules with mainly α-helix or 

random structure in the native state, such as lysozyme, may be more prone to unfolding 

upon adsorption to hydrophobic interfaces than e.g. β-sheet rich β-lactoglobulin [28]–[30].  

Different stress conditions, such as shaking or stirring, are known to cause the formation of 

different types and sizes of protein particles [31]–[33]. Kiese et al. demonstrated that 

eliminating the liquid-air interface by removing the headspace in vials prevents agitation-

induced aggregation [13]. During shaking, however, not only interfacial stress, but additional 

effects such as cavitation, flow dynamics and contact materials can affect the aggregation 

process [34]–[37]. Proteins have been shown to form a compressible viscoelastic adsorbed 

layer at the interface [38].  Moreover, the protein layer thickens and crumples with 

increasing surface pressure, and eventually the protein network fails and is displaced from 

the interface [5], [38]. Martin et al. hypothesized that compression to high surface pressures 

may cause a collapse of the protein film thereby leading to a gradual displacement of protein 

molecules from the interface [39]. Similarly, Ghazvini et al. claimed that interfacial stress 

initiates protein aggregation at the liquid-air interface, and the presence of protein particles 

in bulk is the result of mechanical perturbance of the interface [24]. Therefore, mechanical 

stress by substantial compression and decompression of a concentrated protein film was 

assumed to result in rupture and loss of material from the interface, and thus in the 

formation of protein particles [40]. Whereas many studies hypothesized an involvement of 

the liquid-air interface in the protein aggregation process [24], [40], [41], Lin et al. were able 

to directly prove that interfacial dilatational deformation accelerates particle formation in 

monoclonal antibody solutions [42].  

So, although considerable efforts have been made to elucidate the mechanisms behind 

protein interfacial behavior and its direct link to protein aggregation, it is still not thoroughly 

understood [4], [40], [43]. Especially, a direct connection of the physical-chemical properties 

of the interfacial film and the emergence of large protein particles in solution is an obvious, 

but not well-understood issue. Therefore, it is essential to localize and analyze the liquid-air 

interface-related protein aggregation process. In this study, different surface-sensitive 
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analytical methods were applied to characterize the liquid-air interfacial protein film of two 

different monoclonal antibodies (IgGs). Infrared Reflection-Absorption Spectroscopy (IRRAS) 

was used to identify the protein secondary structure at the interface and compared to 

spectra in solution using FT-IR. Brewster-Angle Microscopy (BAM) was applied to uncover 

topographical properties of the liquid-air interfacial film. Above that, a model was developed 

to study the formation of particles by continuous compression and decompression of the 

interfacial film only. Additionally, this newly designed test model allows an evaluation of the 

impact of compression rate and speed on the formation of protein particles.  

The localization of the aggregation process, the identification of critical factors, as well as the 

analysis of the secondary structure of the protein are of high importance for a detailed 

mechanistic understanding of how large protein aggregates emerge upon interfacial stress. 

Consequently, the physical-chemical methods applied to characterize the interfacial film in 

connection with the Mini-trough studies represent a valuable tool to screen different 

formulation candidates for their propensity to undergo interface-related protein aggregation 

processes. 
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3. MATERIALS AND METHODS 

 3.1. Materials 

Two monoclonal antibodies (mAB1 126 mg/mL pH 6.0 in 20 mM Histidine buffer, and mAB2 

94 mg/mL pH 5.3 in 15 mM Histidine buffer) were provided by AbbVie Deutschland GmbH & 

Co. KG, Ludwigshafen am Rhein, Germany. Solutions were prepared using highly purified 

water (ELGA LC134, ELGA LabWater, Germany) and pH was adjusted with 1 mM NaOH and 

1 mM HCl, respectively. All samples were filtrated using 0.2 µm sterile polyethersulfone 

(PES) syringe filters (Sterile Syringe Filter PES, VWR, Germany).  

 

 3.2. Surface Pressure Measurements 

Surface pressure measurements and compression-decompression experiments were 

performed in a 59 x 397 mm2 PTFE Langmuir trough equipped with a metal alloy dyne probe 

(Kibron Inc., Finland). The trough was filled with a 160 mL sample solution.  The surface area 

can be adjusted by two mobile PTFE barriers with a maximum area of 234 cm2. Temperature 

was set to 20 °C by connecting the trough to a K6-cc circulation thermostat (Peter Huber 

Kaeltemaschinenbau GmbH, Germany). Compression speed was set to 55 mm/min at a 

compression factor (cf) of 8.3. Three cycles of continuous compression and decompression 

were performed. For the compression-decompression experiments, the mAb concentration 

was set to 1 mg/mL in 15 mM Histidine buffer at pH 6.0. Equilibrium surface pressure was 

defined as the maximum surface pressure that is reached by adsorption and changes less 

than 0.1 mN/m within 0.5 h. Results are given as mean and standard deviation (SD). 

 

 3.3. Agitation Studies  

Agitation studies were performed on a horizontal orbital shaker [GfL 3017, Gesellschaft für 

Labortechnik mbH, Germany) at 100 rpm for 48 h. Each vial (vial size: 6 mL - 6R) was filled 

with 4 mL or without headspace, respectively. mAb concentration was set to 1 mg/mL in 

15 mM Histidine buffer at pH 6.0 for all measurements. The stoppers (without and with 

needle) are in-house products and made of borosilicate glass (glass type I). The glass needle 

was generated by manual pull out of the glass stoppers after heating the glass until 

deformable (in-house production).   
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The vials were sealed using a viton O-ring (DuPont - E. I. du Pont de Nemours and Company, 

U.S.) and spring steel clips or conical joints KCM (Keck™ by Schott Medica, Germany). Tests 

were performed in triplicates and analyzed for turbidity and by LO, MFI.  

 

Figure 1: 6R vials with glass stopper sealed by a viton O-ring and spring steel clip, and glass stopper with needle 

 

 3.4. Mini-Trough Studies 

The so-called “Mini”-trough was designed and built in-house. It consists of a PTFE trough 

with same proportions and functionality as the Kibron Langmuir trough already described 

(see Materials and Methods: Surface Pressure Measurements) without a surface pressure 

measurement unit. Automated and continuous compression-decompression cycles can be 

performed to stress the liquid-air interface only. In relation to the Langmuir trough, the 

dimensions of the Mini-trough are reduced by a factor of 8.7 with a maximum area Amax = 

27.0 cm2. This results in a trough length of 9.0 cm, a width of 3.0 cm and a depth of 0.5 cm. 

To maximize contact between the sample surface and the barriers, the trough was slightly 

overfilled and therefore the sample volume was set constant to 14.5 mL for all experiments.  

Particle contamination was minimized by washing with ethanol (commercial grade, absolute) 

and repeated washing with highly purified water. A plastic enclosure covers the PTFE trough 

and the barriers (Fig. 2). mAb concentration was set to 1 mg/mL in 15 mM Histidine buffer at 

pH 6.0 for all measurements. The samples were stressed by 100 cycles started after an 

equilibration time of 2.5 h. 

  
Figure 2: Mini-Trough for repeated compression-decompression experiments 
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 3.5. Compression Speed (cspeed)  

The Mini-trough enables the adjustment of compression speed (cspeed). One compression-

decompression cycle describes a bidirectional barrier movement by 2 x 39.6 mm. 

Compression speeds of 25, 55, 95 or 115 mm/min have been used.   

 

 3.6. Compression Factor (cf)  

Compression factor (cf) is defined as the ratio between the maximum and minimum surface 

area. It can by varied by manual setting of the barriers end positions as illustrated in 

figure 2.2. To investigate the impact of the compression factor, compression speed was kept 

constant at 55 mm/min.  

            

Figure 3: Schematic illustration of barrier movement and related area restriction from maximum surface area 

(Amax) to the minimum surface area (Amin) dependent on compression factor (cf) for cf = 8.3 and cf = 3 
 

Table 1 lists some compression factors chosen and the corresponding barrier movement and 

cycling times. 

 

Table 1: Compression factors (cf) and related area, barrier movement and cycling time 

cf Amin [cm
2
] Barrier Movement [cm] Time for 100 cycles [h] 

2 13.5 4.5 1.4 

3 9.0 6.0 1.8 

5 5.4 7.2 2.2 

8.3 3.2 7.7 2.4 

11 2.5 8.2 2.5 
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 3.7. Particle Analysis 

 3.7.1. Visual Inspection and Photo-documentation 

Samples were analyzed for particles by visual inspection in a box with a blackboard equipped 

with a white light lamp for 5 s each and recorded by photo-documentation (Nikon D5300 SLR 

digital camera, Nikon Corporation, Japan). Each sample was categorized according to table 2. 

 

 Table 2: Four Categories for visual inspection (following Ph. Eur. 2.9.19) 

0 1 2 3 

Free from particles Practically free from particles Several particles Many particles 

 

 3.7.2. Turbidity 

Samples were analyzed for turbidity according to Ph. Eur. 2.2.1. A sample volume of 1.8 mL 

was analyzed using a Nephla turbidimeter (Dr. Lange, Duesseldorf, Germany). Data is given 

as formazine nephelometric units (FNU). 

 

 3.7.3. Light Obscuration 

Samples were analyzed for particles in the micrometer range by light obscuration (in analogy 

to USP 788 and Ph. Eur. 2.9.19. requirements) with a SVSS-C instrument (PAMAS, 

Partikelmess- und Analysesysteme GmbH, Rutesheim, Germany). After a pre-run volume of 

0.5 mL, each sample was analyzed in triplicates of 0.3 mL at a filling and emptying rate of 10 

mL/min. Before each run, the system was rinsed with at least 5 mL of highly purified water. 

Data was collected using PAMAS PMA Program V 2.1.2.0. Results are given as mean and SD. 

 

 3.7.4. Micro-Flow Imaging 

Particle size and number were additionally measured using a micro-flow imaging (MFI) 

system DPA4100 from Brightwell Technologies Inc. (Ottawa, Canada) equipped with a high-

resolution 100 μl flowcell and the MFI™ View Application Software. Pre-run volumes of 0.3 

mL and sample volumes of 0.65 mL were drawn through the flow cell by a peristaltic pump 

at a flow rate of 0.1 mL/min. To optimize illumination and to provide a clean baseline the 

system was rinsed with highly purified water before and after the measurements. Results 

are given as mean and SD. 
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 3.7.5. Statistical Significance 

A t-test was performed with * for p ≤ 0.05, ** for p ≤ 0.01 and *** for p ≤ 0.001. 

 

 3.8. FT-IR Spectroscopy 

FT-IR spectra of 10 mg/mL mAB in 15mM Histidine buffer pH 6 were recorded using a Tensor 

27 (Bruker Optik GmbH, Ettlingen, Germany) equipped with an AquaSpec (transmission cell 

H2O A741-1) or a BioATR (Attenuated Total Reflectance) cell™ II (Harrick) at 20 °C connected 

to a thermostat (DC30-K20, Thermo Haake). For each spectrum, a 100 scan interferogram 

was collected at a single beam mode with a 4 cm-1 resolution. Recorded spectra were 

analyzed by Opus 7.5 (Bruker Optik GmbH) and displayed as vector-normalized second-

derivative amide I spectra (calculated with 17 smoothing points according to the Savitzky-

Golay algorithms [26]).  Infrared spectra of the temperature-induced unfolding of the IgG 

samples were conducted using the BioATR measurement cell as the sample cell. 

Temperature-dependent spectra were acquired every 4 °C from 25 – 93 °C with an 

equilibration time of 120 s. Recorded infrared spectra were analyzed by the software Protein 

Dynamics for Opus 7.5.  

 

 3.9. Infrared Reflection-Absorption Spectroscopy (IRRAS)  

Infrared spectroscopy was used to determine the presence and the conformation of 

adsorbed protein. IRRA spectra were recorded using a VERTEX FT-IR spectrometer (Bruker, 

Germany). The spectrometer was coupled to a Langmuir trough (R&K, Germany), placed in a 

sealed container to guarantee constant vapor atmosphere. The IR beam was conducted out 

of the spectrometer and focused onto the water surface of the Langmuir trough. A 

computer- controlled KRS-5 wire-grid polarizer was used to generate perpendicular (s) 

polarized light. The angle of incidence was set to 40° with respect to the surface normal. 

Measurements were performed using a trough with two compartments and a trough shuttle 

system. One compartment contained the protein solution under investigation (sample), 

while the other (reference) was filled with the pure subphase. The single-beam reflectance 

spectrum of the reference trough was ratioed as background to the single beam reflectance 

spectrum of the sample to calculate the reflection absorption spectrum as -log(R/R0). IR 

spectra were collected at 4 cm-1 resolution using 200 scans.  
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 3.10. Brewster-Angle Microscopy (BAM) 

A Langmuir trough (KSV NIMA, Finland) was connected to a KSV NIMA Brewster Angle 

Microscope to enable image measurements at the Brewster-Angle (53.06°, p-polarized light). 

mAB at 0.1 mg/mL in 15mM histidine buffer was filled into the trough (V = 80 mL). 

Simultaneous surface pressure measurements in the Langmuir trough enabled a direct 

allocation of each image to a certain adsorption or compression state of the protein film. 

The BAM images covered an area of 400 x 720 µm2. 
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4. RESULTS AND DISCUSSION 

 4.1. Adsorption of IgGs to the Liquid-Air Interface 

The surface activity of the two mABs was investigated by surface pressure measurements. 

The surface pressure does not depend on the geometry of the trough as a continuous 

protein film is formed, and the surface tension is considered to be uniform across the 

interface [45].  

The adsorption to the liquid-air interface ends up in concentration and time-dependent 

equilibrium surface pressure values as a result of molecule arrangement within the adsorbed 

film [46]. mAB1 reached a maximum equilibrium surface pressure of 13.5 mN/m at 

concentrations ≥ 1 mg/mL (Fig. 4), and mAB2 a maximum equilibrium surface pressure of 

14.4 mN/m at ≥ 1 mg/mL, respectively. Moreover, at bulk concentrations of ≥ 1 mg/mL no 

further increase in surface pressure was observed. This can be explained by a saturation of 

the interface with protein molecules [5], [42]. Other proteins, such as human serum albumin 

(HSA) and β-lactoglobulin reach similar surface pressure values of 18.8 mN/m [26] and 

24.0 mN/m, respectively [47]. Absolute surface pressure values have been reported to be 

affected by molecular size as well as by the relative affinity to the liquid-air interface [47]. 

Upon adsorption, protein molecules get enriched at the interface resulting in a thin layer of 

concentrated solution [17].  Consequently, the antibody molecules adsorb irreversibly are 

not only kinetically trapped at the interface but rather stabilized by protein-protein 

interactions what results in the formation of an interfacial, viscoelastic film network [17], 

[48]–[50].  

 

 

 

 
Figure 4: Concentration-dependent equilibrium surface pressure values of A: mAB1, B: mAB2  
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 4.2. Physical Resistance of Interfacial Protein Films  

Controlled compression and decompression of the liquid-air interfacial film and 

simultaneous recording of surface pressure was performed to investigate the impact of 

mechanical stress on the physical resistance of the film. Movement of the barriers from Amax 

to Amin resulted in an increase of surface pressure (Fig. 5). Measurements were started after 

equilibrium surface pressure was reached and set to zero. Upon compression, the protein 

molecules do not desorb upon compression but form a coherent and compressible film 

indicated by an increase in surface pressure [51]. Furthermore, the distribution and ordering 

of the molecules changes as the area per molecule decreases and a densely-packed 

adsorption layer is formed. Hence, surface pressure depends on the occupation rate of 

molecules within the adsorption layer as well as on the film thickness [52], [53]. The 

formation of a strong network capable of enduring considerable stresses is probably due to a 

complex interplay of hydrophobic interactions, hydration, and hydrogen bonds [45].  
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Figure 5: Surface pressure during repeated compression and decompression of mAB1 at a cspeed of 55 mm/min 

at a cf of; A: 3, B: 4.5, C: 8.3, D: Impact of cf on surface pressure over time after compression to Amin without 

decompression 
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Compression of the interfacial film leads to stronger protein-protein interactions and this 

cohesion between the molecules can be partially irreversible and clusters of protein 

molecules might be formed [54].  Decompression caused an initial steep decrease in surface 

pressure. The ascending line during compression and the descending line during 

decompression differ from each other forming a characteristic hysteresis [40]. As a result, 

upon decompression the surface pressure initially drops drastically presumably due to a 

rupture of the film. Similarly, Grasso et al. showed that changes in the surface electrostatics 

affected the hysteresis of an insulin monolayer [55]. The way a protein film responds to 

compression has been described to be determined by the deformability (hardness) of the 

adsorbed species [30], [39], [56].  

The influence of the compression factors from the maximum surface area (Amax = 26.9 cm2) 

towards the minimum surface area (Amin = 6.0 cm2) on the change in surface pressure upon 

compression and decompression was examined at a constant cspeed of 55 mm/min (Fig. 5). 

The maximum change in surface pressure at cf = 3 of 18.3 mN/m was much lower compared 

to 34.7 mN/m at cf = 4.5, and 39.4 mN/m at cf = 8.3.Moreover, at cf = 3 no considerable 

hysteresis was detected whereas with increasing compression factor the hysteresis area 

increased. The protein molecules in the compressed film can relax which requires substantial 

time and is directly dependent on the compression factor. Hence, compression without 

decompression resulted in a decrease in surface pressure although surface pressure values 

remain elevated compared to those of the uncompressed state. Furthermore, compression 

by a high compression factor of 8.3 resulted in an increased quasi-equilibrium surface 

pressure compared to less compression by factor 3. Similar findings obtained by Bee et al. 

lead to the assumption of a change in the phase behavior of the interface as indicated by a 

characteristic kink in the surface pressure versus area isotherm, that were observed around 

35 mN/m during compression and around 25 mN/m during decompression [40]. 

Compression was performed by a reduction in surface area from 260 cm2 to 30 cm2, 

meaning a compression factor of 8.67, and a compression speed of around 30 mm/min. 
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Figure 6: Surface pressure during repeated compression and decompression of mAB1 [1  mg/mL] at cf 4.5 at a 

cspeed of A: 25 mm/min, B:  55 mm/min, C: and 95 mm/min, D: Impact of cspeed on surface pressure over time of 

mAB1 after compression to Amin with 55 mm/min without decompression 

 

The impact of different speeds of barrier movement (cspeed) at a constant cf of 4.5 on the 

interfacial film behavior was analyzed. Upon compression at a cspeed of 25 mm/min a 

maximum change in surface pressure Δπmax of 56.2 mN/m resulted (Fig. 6A).  At a higher 

compression speed of 55 mm/min the maximum change in surface pressure of 

Δπmax = 35.7 mN/m was lower compared to the one resulting at slower compression speed. 

This could be explained by the fact that faster compression does not allow the molecules to 

reorder to the same degree, hence packing density is lower, resulting in a lower maximum 

surface pressure change. Figure 6D shows the progression of surface pressure over time in 

the compressed state. Independent from cspeed the surface pressure decreased by about 20 

mN/m within 3 h which can be explained by a decreasing amount of protein material within 

the film. Furthermore, high compression speeds above 55 mm/min did not further affect the 

film properties as the curve progression of 55 mm/min and 95 mm/min largely overlap.  The 

persisting elevated surface pressure compared to the equilibrium surface pressure reached 

A B 

C 
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after adsorption indicates the presence of a more concentrated and densely packed film 

similar as described for the effect of different compression factors. 

Overall, the curve progression of each subsequent cycle was almost identical but ended up 

at marginally lowered quasi-equilibrium surface pressure values after each cycle at Amax. This 

can be due to a loss of material from the interface due to a rupture of the protein film upon 

decompression. Furthermore, Petkov et al. described a high degree of reproducibility and 

symmetry between separate compressions and expansions of a β-lactoglobulin film at the 

liquid-air interface [45]. However, compression was performed at a much lower speed of 

0.5 mm/s and the interfacial area was compressed by 2% only [45].  

Consequently, compression of the interfacial film caused a pronounced increase in surface 

pressure, particularly at compression by a factor above 3. In addition, slower compression 

below 55 mm/min resulted in a much higher surface pressure increase compared to faster 

compression.  

 

 4.3. Presence and Secondary Structure of the IgG at the  

Interface  

A comparison of secondary structural elements of the antibodies investigated by FT-IR in 

solution and by IRRAS at the interface allows conclusions about possible changes during 

adsorption and subsequent compression. The amide bands in the IRRA spectra of mAB1 and 

mAB2 (Fig. 7A-D) gave evidence for the presence of the proteins at the liquid-air interface. 

The amide bands of mAB2 appear more distinctive compared to mAB1. The position of the 

amide bands does not differ considerably between the two mABs. The strongest amide I 

contributions are observed at 1639 cm-1 and 1659 cm-1, and in the amide II region around 

1551 cm-1 and at 1531 cm-1 for mAB1 and at 1535 cm-1 for mAB2. This indicates that the 

mABs adopt mainly intramolecular β-sheet and unordered random coil conformations at the 

interface [57]. The intensity, in particular of the OH-stretching vibration around 3580 cm-1, 

increased upon compression of the interfacial film. This intensity increase as well as that of 

the amide bands upon compression indicates an increase in interfacial protein concentration 

and effective film thickness [5], [58]–[60]. The position of the amide I band and thus the 

mAB secondary structure did not change during compression of the film. 
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Figure 7: IRRA spectra of mAB1 after adsorption to equilibrium surface pressure Π=13.5 mN/m (solid line) and 

after compression by 15 mN/m (broken line), A: entire mAB1 IRRA spectra; B: mAB1 amide I and II region, and I 

of mAB2 after adsorption to equilibrium surface pressure Π=14.4 mN/m (solid line) and after compression by 

15 mN/m (broken line), C: entire mAB2IRRA spectra; D: mAB2 amide I and II region 

 

FT-IR spectra of mAB1 and mAB2 in solution revealed a maximum of the amide I band at 

1639 cm-1 indicating a high intramolecular β-sheet contribution (Fig. 8). The IRRA spectra 

after adsorption and compression do not demonstrate new peaks referring to new structural 

elements. In contrast, conformational changes induced by heat stress are connected with 

strong peak shifts from the native intramolecular β-sheet structure towards a more 

unordered structure. Thus, adsorption and compression of the two mABs investigated in this 

study did not cause measurable changes in secondary structure compared to bulk solution. 

According to literature, IR methods cover changes of ≥ 2 – 10 % in sensitivity [57], [61]. 

Minor structural perturbations, however, cannot be excluded. Damonodaran et al. stated 

that globular proteins essentially remain in the globular shape at the liquid-air interface [47]. 

Similarly, Roach et al. described the high surface curvature to be causative for the stabile 
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structure of the globular albumin [62]. In contrast, fibrinogen, being rather rod like, gets 

distorted by wrapping around surface curvature thereby inducing secondary structure loss. 

Hence, structural rearrangements have been shown to be protein-specific [28]. 

Finally, the mABs investigated in this study remain in a native-like conformation with a 

distinctive band of intermolecular β-sheet structure.  
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Figure 8: Temperature-induced unfolding of A: mAB1 and B: mAB2 from 25 – 93 °C in steps of 4 °C using FT-IR 

spectroscopy   

 

 4.4. Structural and Morphological Characterization of the  

Liquid-Air Interfacial Protein Film 

Brewster-Angle Microscopy in connection to a Langmuir trough was used to additionally 

visualize and analyze the interfacial protein film morphology. The buffer control yields no 

signal and the surface appeared dark as no light is reflected at the Brewster angle [66], [67]. 

Island-like structures appeared during adsorption and indicate an inhomogeneous 

distribution of protein across the interface. Both mABs did not reveal considerable changes 

in film morphology with increasing surface pressure during adsorption and compression. For 

mAB1, a heterogeneous distribution of the protein across the interface can be assumed, as 

clods of increased brightness indicating densely packed protein material exist next to darker 

areas representing regions of a homogeneous and thin protein film (Fig. 9). In contrast, mAB2 

showed an overall increased grey level with less pronounced island-like structures, and line-

type structures suggest protein layers of different packing density or film thickness being 

aligned next to each other (Fig. 10). BAM images did not reveal considerable differences in 

the interfacial film structure upon compression or decompression. Overall, BAM 
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demonstrates that protein material accumulates at the interface resulting in 

inhomogeneously distributed clusters. The observed areas of increased packing density or 

film thickness might represent an early stage of protein particles when brought into solution 

by e.g. interfacial stress. This is in accordance with previous studies where heterogeneous 

structures and regions with different thickness were visualized in a liquid-air interfacial film 

of soy protein and the existence of large regions of agglomerated protein at the interface 

was assumed [66]. Particularly, interactions between protein molecules have been ascribed 

to be responsible for the formation of clusters of different proteins at interfaces [68]. 
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Figure 9: BAM images of mAB1 during adsorption and compression (with increasing surface pressure from 
left to right) 
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Figure 10: BAM images of mAB2 during adsorption and compression with increasing surface pressure from 
left to right) 
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 4.5. Particle Formation by Agitation  

Agitation studies were performed to evaluate the impact of mechanical stress by shaking on 

the emergence of protein particles, as it is typically performed during formulation 

development.  Shaking renders a repeated compression and decompression of the interface, 

in a way similar to Langmuir measurements. However, a less aging of the interface has to be 

considered as this directly affects the interfacial film characteristics as well as particle 

formation [5], [42].  Furthermore, effects such as turbulent flow by overturning of liquid or 

cavitation may result in additional mechanical stresses that impact protein particle 

formation [14], [34], [35].  Shaking studies in vials sealed with a glass stopper to minimize 

the impact of contact materials caused significantly elevated numbers of particles. After 

48 hours of shaking, the visual particles with a mean value of 1.3 of categories 0 – 3 and 

around 50,000 particles > 1µm / mL were formed, accompanied by an increase in turbidity 

(Figs. 11, 12).  Moreover, in vials filled without headspace and therefore in absence of liquid-

air interfaces no particle were formed what is in good accordance with studies by Kiese et al. 

[13]. To evaluate this in comparison with protein films formed at the interface, shaking was 

additionally performed in presence of a glass needle. Upon disturbance of the interface 

during shaking a high number of visible (category 3) and subvisible particles built up with 

around 200,000 particles > 1µm / mL accompanied by an increase in turbidity up to 7.6 FTU. 

In case the vials including the glass needle were filled without any headspace no 

considerable particle formation occurred. This again can be traced back to the fact that with 

the absence of headspace also the presence of a liquid-air interface was excluded what ruled 

out protein accumulation and therefore also any interfacial disturbance [13]. 

 

A B C 

   
 

Figure 11: Photo documentation and results of the visual inspection after 48 h shaking of mAB1 with different 

stopper types; A: Glass Stopper, B: Glass Stopper + Needle, C: Glass Stopper + Needle without headspace 

2 1 1 1 1 0 3 3 3 
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In a similar way, Rudiuk et al. showed that upon transient breakage of the liquid-air interface 

by a stainless steel needle large protein particles are released from the interface. 

Furthermore, they stated that so-called primary surface aggregates stay at the interface and 

do not penetrate into the bulk in the absence of external triggers [22]. Similar findings were 

reported by Metha et al. who showed that rupture of the viscoelastic gel formed at the 

silicone oil–water interface resulted in particle formation [48], [69]. Gerhardt et al. showed 

that without movement of an air bubble, the protein gel layer formed at the silicone oil–

water interface was not disrupted and no particle formation took place [23]. A study by Maa 

et al. pointed out that shear, induced by using a nitrogen bubbling method, in presence of a 

liquid-air interface caused aggregation of recombinant human growth hormone (rhGH) and 

aggregation was found to increase with increasing protein concentration and interfacial area 

[70].  

Although the presence of the interface was shown to be involved in the aggregation process 

in all cases, a direct localization and evaluation of impact factors that contribute to the 

underlying mechanisms is not given. Ultimately, only the use of a physical-chemical 

characterization of the IgG at the liquid-air interface in direct combination with controlled 

interfacial stress at the interface exclusively will allow a mechanistic understanding of 

interface-induced protein aggregation. Therefore, a model was developed to investigate the 

effect of liquid-air interfacial stress only on protein particle formation. 
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 4.6. Particle Formation in the Mini-Trough by Liquid-Air  

Interfacial Stress Only 

A Mini-trough with identical dimensions as the Langmuir trough but on a smaller scale was 

developed to investigate whether automated, repeated compression and decompression of 

the interfacial film only can cause the formation of particles. Above that, the Mini-trough 

enables to analyze the influence of compression speed and factor on the extent of particle 

formation.  

Only very low numbers of particles were detected in unstressed protein solutions by LO and 

MFI. In contrast, 100 compression-decompression cycles of a 1 mg/mL mAB1 solution after 

reaching equilibrium surface pressure caused the formation of significant amounts of 

particles amounting to around 6000 particles >1 µm/mL (Fig. 13A). Furthermore, repeated 

compression and decompression was performed at different cf and cspeed. Figure 13B 

demonstrates that the number of particles formed was strongly dependent on cf. 

Compression by a factor of 2 (at a constant cspeed of 55 mm/min) did not cause substantial 

particle formation. Significant particle formation set in at a cf of 3 and increased up with 

increasing compression factor reaching a plateau at cf values of 8.3 and above. Also, cspeed 

was proven to directly influence the number of particles formed. Already at a cspeed of 25 

mm/min (at a constant cf of 8.3) a pronounced number of particles formed upon repeated 

compression and decompression. However, figure 13C reveals less particle formation at a 

cspeed of 25 mm/min compared to higher cspeed. No considerable differences were noticeable 

at compression speeds higher than 55 mm/min where the number of particles overall 

ranged between 6000-8000 particles >1 µm/mL. Therefore, both cf and cspeed substantially 

affected not only the interfacial film behavior as indicated by the surface pressure 

measurements, but also the formation of particles by interfacial stress only.  

Thus, a rupture of the highly concentrated film, especially during decompression, can result 

in the release of clustered protein material into bulk solution. The island-like distribution of 

protein observed in the BAM images goes in line with this hypothesis.  Furthermore, this 

assumption is supported by findings of van Aken et al. where interfacial compression in a 

Langmuir trough, equipped with a computer-controlled barrier transport system, caused an 

increase in surface pressure [71]. Depending on the rate of compression and the type of 

protein (β-casein, β-lactoglobulin, BSA), sudden drops of the surface pressure were observed 

during compression that were described to arise from tearing or wrinkling of the adsorbed 
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protein layer [71]. Using a custom-built bubble tensiometer, Lin et al. investigated the effect 

of continuous contraction of a mAB adsorbed to the liquid-air interface [42]. Deformation of 

the interface caused a reduction in surface area and forced the adsorbed protein molecules 

into close proximity of each other. Further contraction provided visual evidence to 

eventually cause ejection of large, protein aggregates from the interface [42]. Bee et al. 

applied a cyclic compression of an IgG1 antibody adsorbed to the liquid-air interface where 

similar findings were observed with regard to hysteresis and compression decompression 

behavior [40]. Moreover, 6.5 hours of continuous periodic compressions/dilations trough 

resulted in a very slight increase in visible proteinaceous particles. More comprehensively, 

however, interface-related aggregation was investigated using rotating vials, meaning an 

end-over-end rotation where the interface passed through a geometrical maximum and 

mimimum area what resulted in protein particle formation. Therefore, it was  hypothesized 

aggregation takes place at the interface followed by detachment into the bulk solution [40].  

The compression ratio was varied via the selection of vial dimensions and ranged between a 

ratio of 2.9 : 0.78 (= 3.72) to 8.0 : 0.77 (= 10.39). The rotation rate was set to 3–14 rpm, 

resulting in a period of about 4 to 20 s per rotation. Therefore, at comparable compression 

factors, compression speed was chosen much higher compared to the experiments in the 

Mini-trough. Above that, the Mini-trough allows repeated compression-decompression of 

the interfacial film only without interface turnover.  

Certainly, using the Mini-trough method the aggregation process can be localized and 

ascribed to liquid-air interfacial stress only. Therefore, it represents a valuable tool to screen 

different proteins and formulations for their propensity to undergo interface related-

aggregation as a measure of compression factor and speed.  
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Figure 12: A: Number of particles >1 µm/mL in the Mini-trough investigated by LO and MFI, cf = 8.3. Stressed 

buffer: buffer after 100 cycles; Unstressed sample: mAB1 without barrier movement; Stressed sample: mAB1 

after 100 cycles; and number of particles ≥1 µm/mL formed for mAB1 after 100 compression-decompression 

cycles, B: impact of cf at a cspeed of 55 mm/min, C: impact of cspeed at a cf of 8.3 
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5. SUMMARY & CONCLUSION 

Different methodologies to characterize the liquid-air interfacial film characteristics and 

related aggregation processes of two IgG molecules were used. The IgGs adsorb to the 

liquid-air interface in a time- and concentration-dependent manner, thereby forming a 

coherent but inhomogeneous interfacial protein film. Clusters of protein material were 

detected by BAM which may represent preliminary stages of protein aggregates emerging at 

the liquid-at interface already during the adsorption process. Compression caused 

compaction and concentration within the film as it became obvious by a pronounced 

hysteresis. The compressibility of the interfacial film was directly affected by the speed and 

extent of compression. The steep decrease in surface pressure as well as the decreasing 

surface pressure values with each cycle, indicate a rupture of the film and a potential loss of 

protein material from the interface. This hypothesis was ascertained not only by a shaking 

study, but also by controlled compression and decompression of the interfacial film only by a 

newly designed Mini-trough setup. Thus, a clear connection between interfacial stress and 

protein particle formation was proven as compression by a factor above 3 and by a speed of 

25 mm/min and above resulted in significant particle formation. Consequently, the Mini-

trough method is a highly expedient method for the localization and characterization of 

protein particle formation by liquid-air interfacial stress only. As no major effect on 

secondary structure was observed by IRRAS, the IgGs are assumed to remain in a native-like 

conformation. Therefore, we conclude that a major cause of the emergence of large native-

like protein particles is a compaction of protein material accompanied by increased protein-

protein-interactions, followed by a rupture of the interfacial protein film.  

Although considerable effort has been put to gain better understanding of how protein films 

are characterized and how they behave upon interfacial stress, whether unfolding takes 

place or not, and how large particles emerge in the bulk, the mechanistic details have not 

been generally answered to date. Particularly, previous approaches used different and 

heterogeneous analytical tools to characterize the physicochemical behavior at the interface 

on the one hand and interface-induced aggregation on the other.  The characterization of 

not only the interfacial film but also the interface-related aggregation process itself by a 

trough method exclusively has not been described before.  

Finally, this approach allows a direct correlation of interfacial stress only and the formation 

of protein particles. In addition, the Mini-trough method represents a useful tool to screen 
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different formulations, as it can be directly analyzed whether the condition or additive 

chosen has a protective effect on interface-related protein aggregation, which is one of the 

major challenges in the development of protein pharmaceuticals. 
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CHAPTER V 

MOVE ALONG PLEASE! 

HOW FORMULATION ADDITIVES AFFECT 

LIQUID-AIR INTERFACE RELATED PROTEIN 

INSTABILITY 

 

1. ABSTRACT 

The addition of formulation additives is a popular option to protect protein formulations 

against interface-based stress. However, the addition of surfactants is connected with 

concerns regarding their variable quality, analytics, and possible negative effects on protein 

stability. Understanding the behavior of both the protein and the additive at the interface is 

mandatory for the decision whether and which one to add. In this study, polysorbate 80 

(PS 80), poloxamer 188 (P 188), as well as hydroxypropyl-β-cyclodextrin (HP-β-CD) were 

investigated. Surface pressure measurements combined with studying the interfacial film 

compressibility allowed conclusions about its composition. Whilst IgG films were highly 

compressible, compression of an additive solution did not result in a considerable increase in 

surface pressure. The mixtures exhibit either IgG- or additive-like characteristics depending 

on the mixing ratio. The appearance of amide bands in Infrared-Reflection-Absorption (IRRA) 

spectra proved the presence of IgG at the interface in case of mixtures with PS 80 present at 

concentrations of 0.001 mg/mL and below, and therefore below the critical micellar 

concentration (CMC). In formulations with 0.01 mg/mL PS 80, 0.01 mg/mL P 188, or 

0.349 mg/mL HP-β-CD and above, no amide bands were detected indicating that the 

interface is fully occupied by the additive molecules. Additive solutions did not supply any 

signal in Brewster Angle Microscopy (BAM). Therefore, island-like bright domains can be 

traced back to the presence of IgG clusters at the interface. BAM images demonstrated the 

presence of IgG molecules at high PS 80 concentrations above CMC (0.01 mg/mL and 

higher). Similarly, residual IgG clusters were detected in mixtures of IgG with 1 mg/mL P 188 

or 34.9 mg/mL HP-β-CD. Clusters of telescoped protein material were detected after 
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compression of IgG films in Atomic Force Microscopy (AFM) images. In contrast, PS 80 

solutions formed smooth and flat films which were not affected by compressive forces. 

Moreover, at a very low PS 80 concentration of 0.00005 mg/mL bright domains of increased 

height representing agglomerated protein emerged upon compression. Furthermore, a 

drastically increased particle formation both upon agitation as well as in repeated 

compression-decompression experiments was observed. The presence of PS 80 0.01 mg/mL 

and above, or P 188 0.1 mg/mL and above prevented agitation induced aggregation 

effectively. Also, HP-β-CD successfully inhibited aggregation at concentrations of 3.49 mg/mL 

and above, although to a lesser extent. Thus, the combination of the different surface 

sensitive methods with interfacial stress studies provided new insights into the complex 

behavior of IgG molecules and formulation additives at the liquid-air interface and a better 

understanding of interface related protein aggregation. 
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2. INTRODUCTION 

Both chemical and physical stability of protein drugs have to be assured to demonstrate the 

quality of a drug product [1]. Different to typical small molecule drugs, protein 

pharmaceuticals are susceptible to physical changes, such as adsorption to hydrophobic 

interfaces, denaturation and aggregation [2]. Therefore, the successful development of a 

protein pharmaceutical requires careful assessment of the various possible degradation 

pathways and a thorough understanding of the mechanisms behind protein aggregation. To 

overcome these challenges, pH and ionic strength adjustment as well as the addition of 

excipients are typical strategies for protein stabilization [3]–[6]. In general, formulation 

additives are frequently utilized as they are known to successfully inhibit surface-induced 

protein aggregation. Nevertheless, little is known so far about the underlying mechanisms of 

stabilization [7].  Surfactants, specifically polysorbate 20 (PS 20) and 80 (PS 80) or poloxamer 

188 (P 188), belong to the most commonly used additives to stabilize against interface-

related mechanical stress [8]. As surfactant molecules exhibit a pronounced surface activity 

and are much smaller in size, adsorption at interfaces is much faster compared to the 

proteins. Proteins form a strong viscoelastic network at interfaces. In these films the protein 

molecules are rather immobilized, tend to stay at the interface and do not readily desorb 

upon compression [9]. In contrast, surfactants have a high degree of mobility at interfaces 

[10]. Surfactants can therefore stabilize protein formulations by preferential adsorption to 

the liquid-air interface, thereby excluding the protein molecules from the interface. By this, 

PS 80 can suppress aggregation e.g. upon agitation [11]–[13]. Whereas protein molecules 

tend to strongly interact with one another, surfactants rather move in the direction of the 

surface tension gradient, as described by the Gibbs–Marangoni effect [14]. Polysorbates 

were found to prevent protein adsorption by sterically inhibiting proteins from associating 

with the interface, although no significant surfactant–protein association is assumed to 

occur in solution [7]. Poloxamers with their collapsed polypropylene oxide (PPO) block form 

unimeric micelles and higher ordered aggregates and show complex association behavior in 

solutions [15]. The CMC was found to vary over a wide concentration range depending on 

temperature and molecular weight [16], [17]. As mechanism of action, poloxamers are 

thought to form surfactant–protein complexes in solution, independent of their affinity for 

the interface thereby inhibiting protein adsorption to the interface [15]. Moreover, 

association into protein-surfactant complexes has been reported for P 188 preventing 
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proteins from adsorption to surfaces and aggregation. Poloxamers are not expected to form 

micelles in water except at very high concentrations [7], [18]. 

Although the inclusion of surfactants in protein formulation brings benefits, they might also 

come along with some destabilizing effects. For instance, surfactants can stimulate the 

oxidation of protein molecules, and fatty acids derived from surfactants may induce protein 

aggregation [19]. Therefore, cyclodextrins, specifically hydroxypropyl-β-cyclodextrin (HP-ß-

CD), may present an alternative to surfactants [20], [21]. Their ability to suppress 

aggregation is explained by their ability to bind to exposed hydrophobic amino acid residues 

on proteins, thereby not only reducing the surface hydrophobicity of the protein but also 

blocking potential protein-protein interactions [21]. Also a surfactant-like mechanism of 

stabilization against aggregation has been reported [8], [22]. For example, a stabilizing effect 

comparable to PS 80 was shown for HP-ß-CD upon shaking of a protein solution [23]. In 

addition, sugar-like effects, particularly based on water replacement, have to be considered 

[20], [22], [24]. Typically, the critical micellar concentration (CMC) serves as a first reliable 

hint for the surfactant concentration required to achieve a sufficient stabilization. However, 

the CMC does not completely describe the surfactant effect on surface-active protein drugs. 

If the surfactant stabilizes protein molecules by direct binding, the effective surfactant 

concentration would be related to the molar ratio of surfactant to protein, rather than the 

CMC [25]. 

This study aims on the characterization of mixed protein-additive films at the liquid-air 

interface for different additives and at different mixing ratios. Specifically the question will 

be addressed whether and if so at which concentration the additive entirely replaces the 

protein from the interface. This is of importance, particularly for the identification of 

sufficiently high additive concentrations as well as to better understand and address protein 

instability at the liquid-air interface. Characterization of the interfacial film composition and 

its properties is an important prerequisite. A combination of physicochemical investigations 

and interfacial stress studies was performed using PS 80, P 188 and HP-ß-CD in mixtures with 

a human immunoglobulin (IgG). Surface pressure and compression-decompression 

experiments allow conclusions about the qualitative composition of the liquid-air interfacial 

film and thus its mechanical behavior. In combination with Infrared Reflectance-Absorbance 

spectroscopy (IRRAS), these results provide useful information about whether protein 

molecules are present at the interface. The topographical features of the liquid-air interfacial 
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film were analyzed by Brewster Angle microscopy (BAM) as well as by Atomic Force 

Microscopy (AFM). The effect of the additives at different concentration on protein particle 

formation was investigated in shaking stress studies as well as by continuous compression-

decompression of the interface in a Mini-Trough. Consequently, this study should enable not 

only to draw conclusions about the impact of formulation additives on the interfacial protein 

behavior, but may also provide useful insights into interface-related protein aggregation. 
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3. MATERIALS AND METHODS 

 3.1. Materials 

Human IgG (Beriglobin™, CSL Behring GmbH, Germany) was used for this study. The market 

product contains 159 mg/mL human IgG in 22 g/L Glycine and 3 g/L NaCl buffer at pH 6.8. 

Glycine-NaCl buffer was prepared using highly purified water (ELGA LC134, ELGA LabWater, 

Germany) and pH was adjusted adding NaOH. All diluted solutions were prepared by the 

addition of Glycine-NaCl buffer at pH 6.8. Polysorbate 80 (PS 80) was obtained from Sigma-

Aldrich Chemie GmbH, Germany. The CMC of PS 80 and P 188 was determined to be 

0.0026 mg/mL and 0.21 mg/mL in Glycine-NaCl buffer at 20 °C, respectively. Solutions were 

prepared by dilution in Glycine-NaCl buffer pH 6.8. Solutions of Poloxamer 188 from BASF, 

Switzerland as well as hydroxypropyl- ß -cyclodextrin (HP-ß-CD) from Wacker Fine Chemicals, 

Germany were prepared accordingly. All samples were filtered using 0.2 µm sterile PES 

filters (Sterile Syringe Filter PES, VWR, Germany). 

 

 3.2. Surface Pressure Measurements 

Surface activity was expressed by surface pressure Π, with Π = σ0 – σ, where σ0 and σ are the 

aqueous subphase surface tension and the surface tension of the aqueous protein solution, 

respectively. Surface pressure measurements were performed in a 5.9 x 39.7 cm2 PTFE 

Langmuir trough equipped with a metal alloy dyne probe (Microtrough XS, Kibron Inc., 

Finland). For the determination of equilibrium surface pressures a 3 x 6 Multiwell Plate (V = 

0.8 mL) was used. Results are given as mean (n=3) and standard deviation. Equilibrium 

adsorption pressure is defined as the maximum surface pressure that is reached by 

adsorption only and stable in a range of ±0.2 mN/m within 0.5 h.  

160 mL sample solution was filled into the trough for the repeated compression-

decompression measurements. The surface area of the trough can be varied by two mobile 

PTFE barriers. Temperature was kept at 20 °C (K6-cc circulation thermostat, Peter Huber 

Kaeltemaschinenbau GmbH, Germany). Compression speed was set to 55 mm/min and 

compression-decompression cycles were conducted from a maximum surface area of 

Amax = 210 cm2 to Amin = 52 cm2. Compression was started after the equilibrium adsorption 

pressure was reached. 
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 3.3. Agitation Studies 

Agitation studies of IgG at 1 mg/mL were performed on a horizontal orbital shaker (GFL 

3017, GFL, Germany) at 100 rpm for 48 h. Each vial (6R) was filled with 4 mL or filled without 

headspace. Borosilicate stoppers (without and with needle) are of in-house production. The 

needle was made by glassblowing work and therefore pulled from the center the hot glass 

plate in a way that it forms 3.5 cm ( ±0.3 cm) glass fibers of 0.2 cm (±0.05 cm) diameter (all in 

one piece). The vials were sealed using a Viton o-ring and spring steel clips KCM (Keck™ by 

Schott Medica, Germany).  

 

 3.4. Mini-Trough 

The “Mini-Trough” was designed and manufactured in-house. It consists of a PTFE trough 

with same proportions and functionality as the Kibron Langmuir trough for bidirectional 

barrier movement described above, but was reduced in size by a factor of 4.5 (and without 

surface pressure measurement unit). Automated and continuous compression-

decompression cycles can be performed to stress the liquid-air interface only. A sample 

volume of 14.5 mL was used. A plastic enclosure covers the PTFE trough and the barriers 

(see Fig.1) to avoid dust and entry. 100 cycles were started after an equilibration time of 

2.5 h each. Compression speed (cspeed) and compression factor (cf) were kept constant to 

55 mm/min and 4.5, accordingly. 

 

 3.5. Particle Analysis 

 3.5.1. Visual Inspection and Photo-documentation 

Samples after shaking and after continuous compression-decompression in the Mini-Trough 

were investigated for particles by visual inspection with photo-documentation (Nikon D5300 

SLR digital camera, Nikon Corporation, Japan). The Ph. Eur. monograph for parental 

preparations in conjunction with the visual particles monograph (Ph. Eur. 2.9.19) requires 

parenteral preparations (which are not administered using a final filter) to be practically free 

from (visible) particles. Ph. Eur. monograph ‘Monoclonal antibodies for human use’ requires 

the formulations to be practically free from particulates that could be detected visually. All 

samples were categorized according to table 1. 
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 Table 1: Four Categories for visual inspection (following Ph. Eur. 2.9.19) 

0 1 2 3 

Free from particles Practically free from particles Several particles Many particles 

 

 3.5.2. Turbidity 

Samples were analyzed for turbidity according to Ph. Eur. 2.2.1 based on the scatter of 

860 nm light by the sample at an angle of 90°. A sample volume of 1.8 mL was analyzed 

using a Nephla turbidimeter (Dr. Lange, Duesseldorf, Germany). Data is given as formazine 

nephelometric units (FNUs). 

 

 3.5.3. Light Obscuration 

Samples were analyzed for particles in the micrometer range by light obscuration (in analogy 

to USP 788 and Ph Eur 2.9.19) with a SVSS-C instrument (PAMAS, Partikelmess-und 

Analysesysteme GmbH, Rutesheim, Germany). After a pre-run volume of 0.5 mL, each 

sample was analyzed in triplicates of 0.3 mL at a filling and emptying rate of 10 mL/min. 

Before each run, the system was rinsed with at least 5 mL of highly purified water. Data was 

collected using PAMAS PMA Program V 2.1.2.0. 

 

 3.5.4. Micro-Flow Imaging 

Particle size and number was additionally measured using a micro-flow imaging (MFI) system 

(DPA4100, Brightwell Technologies Inc., Ottawa, Canada) equipped with a high-resolution 

100 μl flow-cell and the MFI™ View Application Software. Pre-run volumes of 0.3 mL and 

sample volumes of 0.65 mL were drawn through the flow cell by a peristaltic pump at a flow 

rate of 0.1 mL/min. To optimize illumination and to provide a clean baseline the system was 

rinsed with highly purified water before and after the measurements. 

 

 3.5.5. Statistical Significance 

For LO and MFI data a t-test was performed with * for p ≤ 0.05, ** for p ≤ 0.01 and *** for 

p ≤ 0.001. 
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 3.6. Infrared Reflectance Absorbance Spectroscopy  

(IRRAS) 

Infrared spectroscopy was used to determine the presence of the protein and the additives 

adsorbed at the liquid-air interface. Moreover, secondary structure of the IgG was analyzed. 

IRRA spectra were recorded using a VERTEX FT-IR spectrometer (Bruker Optics GmbH, 

Germany) equipped with a liquid nitrogen-cooled MCT (mercury cadmium telluride) 

detector. The spectrometer was coupled to a Langmuir trough (Riegler & Kirstein GmbH, 

Germany), placed in a sealed container (external air/water reflection unit XA-511) to 

guarantee constant vapor atmosphere. The IR beam was conducted out of the spectrometer 

and focused onto the water surface of the Langmuir trough. A computer controlled KRS-5 

wire-grid polarizer (thallium bromide and iodide mixed crystal) was used to generate 

perpendicular (s) and parallel (p) polarized light. The angle of incidence was set to 40° with 

respect to the surface normal. Measurements were performed using a trough with two 

compartments and a trough shuttle system [26]–[28]. One compartment contained the 

protein solution under investigation (sample), and the other (reference) was filled with the 

pure buffer subphase. The single-beam reflectance spectrum (R0) from the reference trough 

was taken as background for the single-beam reflectance spectrum (R) of the monolayer in 

the sample trough to calculate the reflection-absorption spectrum as -log(R/R0) in order to 

eliminate the water vapor signal. IR spectra were collected at 8 cm-1 resolution and a 

scanner speed of 20 kHz. For s‐polarized light, spectra were co‐added over 200 scans, and 

spectra with p‐polarized light were co‐added over 400 scans. 
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 3.7. Brewster Angle Microscopy (BAM) 

The morphology of the monolayer was imaged with a Brewster angle microscope, BAM2plus 

from NanoFilm Technologie GmbH (Goettingen, Germany), equipped with a miniature film 

balance from NIMA Technology (Coventry, UK). IgG at 1 mg/mL in Glycine-NaCl buffer at pH 

6.8 was filled into the trough (V = 80 mL). Simultaneous surface pressure measurements 

during adsorption and compression of the IgG in the Langmuir trough enabled a direct 

connection of each image with the corresponding surface pressure during adsorption or 

compression of the protein. The lateral resolution of the BAM was approximately 3 µm. The 

size of the BAM images is 400 x 720 µm2. Detailed information about the BAM method is 

given elsewhere [29]–[31]. 

 

 3.8. Atomic Force Microscopy (AFM) 

For AFM, protein films formed during adsorption to equilibrium adsorption pressure or after 

compression to a desired surface pressure, were transferred by the Langmuir-Schaefer 

deposition (horizontal transfer of the film) using 1 x 1 cm2 mica plates (Mica Sheet V5 

Quality, Science Services GmbH, Germany) attached to a stamp tool. The mica was lowered 

onto the surface and pulled off after 2 s of contact time. The mica was removed from the 

stamp tool and the transferred film was covered with a drop of buffer solution to prevent 

drying of the sample. The transferred films were analyzed by underwater AFM (Bruker / 

Veeco / Digital Instruments MultiMode AFM ) using a cantilever (Arrow™ NCPt, resonance 

frequency 285 kHz, spring constant 42 N/m) in tapping mode (Nano World AG, Switzerland). 

Images were analyzed by NanoScope III 5.12r3 Software (Digital Instruments Inc., US).  

  

http://www.artisantg.com/Scientific/78254-1/Bruker_Veeco_Digital_Instruments_MultiMode_AFM_2_Atomic_Force_Microscope
http://www.artisantg.com/Scientific/78254-1/Bruker_Veeco_Digital_Instruments_MultiMode_AFM_2_Atomic_Force_Microscope
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4. RESULTS AND DISCUSSION 

 4.1. Competitive Adsorption  

 4.1.1. Equilibration Time 

IgG molecules exhibit a certain surface activity because of their partly amphiphilic character. 

Due to their larger size and less amphiphilic character they adsorb much slower at interfaces 

compared to the surfactant type formulation additives. An assessment of the time until a 

stable equilibrium surface pressure is reached therefore provides a first hint on the 

interfacial film properties. For this purpose, the equilibration time (teq) was defined as time 

until a maximum surface pressure is reached by adsorption which changes less than 

± 0.2 mN/m within 0.5 h. 

In case of the IgG, an equilibrium surface pressure was only reached after 3.9 h. Moreover, 

teq decreased with increasing protein concentration (Tab. 1). For all mixtures, teq was reached 

much faster (0.1-0.2 h). Additionally, concentration did not have a considerable impact on 

teq. For the mixtures, teq increased with higher amounts of IgG (Tab. 2). In case of PS 80 at a 

mixture ratio of 2000:1 [cIgG: cPS 80], in which the surfactant is present well below CMC, teq 

was reached after 1.3 h (Fig. 1A, Tab. 2). In contrast, teq was reached after 0.2 h at high PS 80 

concentrations as in case of a ratio of 1:1 [cIgG: cPS 80]. The IgG molecules compete with the 

much smaller amphiphiles for the adsorption to the interface as teq drastically decreases with 

increasing additive concentration. At PS 80 concentrations well below CMC, but also at 

higher surfactant concentrations, teq was elevated for all mixtures compared to pure PS 80 

solution (Tab. 2, 3). In mixtures with IgG, the behavior of surfactants can be altered and the 

apparent CMC values have been described to be increased compared to the CMC values of 

the surfactants alone [15]. 

Mixtures of IgG and P 188 revealed highest teq with up to 1.9 h (e.g. 100:1 ratio of cIgG: cP188). 

Thus, adsorption kinetics depended on the protein concentration as well as the IgG-additive 

mixing ratio. P 188 and mixtures of IgG with P 188 revealed the slowest adsorption kinetics 

which can be traced back to the higher molecular weight of P 188 compared to the other 

additives investigated. Moreover, the complex behavior of P 188 needs to be considered, as 

it is known to show a divers aggregation behavior and micelle formation, although the 

detailed mechanism remains unclear to date [17], [18], [32].  
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Different to polysorbates, the CMC of poloxamers varies over a broad concentration range 

depending on temperature and molecular weight ratios of the polymer blocks. We 

determined a CMC of 0.21 mg/mL which compares well to literature values of 0.334 mg/mL 

and 0.743 mg/mL [33], [34]. 

 

Table 2: Mixing ratios of IgG with P 80, P 188 and HP-β-CD 

 IgG    +   Polysorbate 80 

c [mg/mL] Mixing Ratio [cIgG: cPS 80] 

0.1    +    0.00005 2000:1 

0.1    +    0.001 100:1  

0.1    +    0.01 10:1  

0.1    +    0.1 1:1  
 

 IgG    +   Poloxamer 188 

c [mg/mL] Mixing Ratio [cIgG: cP188] 

0.1    +    0.001 100:1 

0.1    +    0.01 10:1 

0.1    +    0.1 1:1 

0.1    +    1 1:10 
 

 IgG    +    Hydroxypropyl-β-cyclodextrin 

c [mg/mL] Mixing Ratio [cIgG: cHP-β-CD] 

0.1    +    0.349 0.29:1 

0.1    +    3.49 0.029:1 

0.1    +    34.9 0.0029:1 

0.1    +    69.8 0.000143:1 

 

Similar to PS 80 and P 188, also the equilibration time of the IgG in mixtures with HP-β-CD in 

a concentration range of 0.349 mg/mL up to 34.9 mg/mL was analyzed. At HP-β-CD 

concentrations of 3.49 mg/mL and above, teq was reached only 0.5 h. In case of the lowest 

concentration of 0.349 mg/mL, equilibrium surface pressure was reached after 1.1 h, 

suggesting a contribution of the IgG to the adsorption process.  

Cyclodextrins have been reported to bind to exposed hydrophobic residues on proteins 

causing a shielding of exposed hydrophobic spots thereby inhibiting protein adsorption [21].  

Hence, these physicochemical investigations are highly valuable as they give a first hint on 

the interfacial film characteristics. 
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Table 3: Equilibration times (teq) of pure solutions of IgG, PS 80, P 188 and HP-β-CD 

IgG Polysorbate 80 Poloxamer 188 HP-β-CD 

c [mg/mL] teq [h] c [mg/mL] teq [h] c [mg/mL] teq [h] c [mg/mL] teq [h] 

0.0005 3.1 0.0005 0.2 0.001 0.2 0.349 0.2 

0.001 3.6 0.001 0.1 0.01 0.2 3.49 0.2 

0.01 3.8 0.01 0.1 0.1 0.1 34.9 0.1 

0.1 3.9 0.1 0.1 1 0.1 69.8 0.1 

 

Table 4: Equilibration times (teq) of mixtures of IgG +PS 80, IgG + P 188 and IgG + HP-β-CD  

IgG + Polysorbate 80 IgG + Poloxamer 188 IgG + HP-β-CD 

c [mg/mL] teq [h] c [mg/mL] teq [h] c [mg/mL] teq [h] 

0.1    +   0.00005 1.3 0.1    +   0.001 1.9 0.1    +  0.349 1.1 

0.1    +   0.001 0.7 0.1    +   0.01 1.2 0.1    +   3.49 0.4 

0.1    +   0.01 0.5 0.1    +   0.1 0.4 0.1    +   34.9 0.2 

0.1    +   0.1 0.2 0.1    +   1 0.1 0.1    +   69.8 0.1 

 

 

 4.1.2. Equilibrium Surface Pressure 

Nonionic surfactants evolve their protein stabilizing features by either interfacial 

competition and / or by direct protein - surfactant interaction [15]. Hence, surface pressure 

experiments provide evidence about not only the adsorption process but also the interfacial 

film assembly. The concentration dependent equilibrium surface pressure values (πeq) of IgG 

mixtures with the additives are shown in figure 1A-C. For IgG, πeq increased with increasing 

concentration reaching a maximum surface pressure (πmax) of 18.5 mN/m at 1 mg/mL. A πmax 

of 31 mN/m was obtained for PS 80 above CMC (determined as 0.0026 mg/mL). The 

mixtures of IgG and PS 80 behaved similar to pure PS 80 at higher concentrations. At PS 80 

concentrations below 0.01 mg/mL, the additional presence of the IgG caused an increase in 

surface pressure and therefore both surfactant and protein molecules are present at the 

interface. The 𝜋eq of P 188 was determined to 23 mN/m at concentrations of 1 mg/mL and 

above (Fig. 1B). Different to the results obtained for PS 80, the presence of IgG resulted in 

higher 𝜋eq at all P 188 concentrations, also above the CMC of 0.21 mg/mL. Surface pressure 

values of IgG - P 188 mixtures with the P 188 present at concentrations above the CMC were 

overall higher compared to pure P 188. This indicates an additional presence of IgG 

molecules at the interface. HP-β-CD also exhibited a pronounced surface activity reaching a 

surface pressure value of 20 mN/m (Fig. 1C). Different to the non-ionic surfactants described 
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before, no steady state as defined in this study (see materials and methods) was reached. An 

increase in HP-β-CD concentration caused an increase in surface pressure consistently up to 

concentrations of 69.8 mg/mL. IgG and HP-β-CD reached comparable surface pressure 

values and thus, no considerable differences were detectable for the mixtures. 

Due to their strong amphiphilic character and smaller molecular weight, surfactants adsorb 

much faster compared to IgG [35]. Therefore, the IgG can either occupy interspaces which 

are not accessible by other PS 80 or P 188 molecules, or the IgG competes with the 

surfactant for the adsorption to the interface. Moreover, it has been stated that poloxamers 

can inhibit protein adsorption via the formation of protein–surfactant complexes of low 

adsorption affinity and not by its preferential location at the interface [7]. For the HP-β-CD, 

no conclusion about the presence of IgG at the interface is possible at this point. 

 

Figure 1A: πeq [mN/m] of IgG and PS 80 and of mixtures of both at different concentrations  
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Figure 1B: πeq [mN/m] of IgG and P 188 and of mixtures of both at different concentrations  

 
 

Figure 1C: πeq [mN/m] of IgG and HP-β-CD and of mixtures of both at different concentrations  
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Continuous compression-decompression cycles of the liquid-air interfacial film were 

performed and surface pressure was recorded simultaneously. Compression of the IgG film 

caused a substantial increase in surface pressure at a compression factor of 8.3 (Fig. 2A) and 

the change in surface pressure amounted to 44.9 mN/m. Decompression led to a marked 

decrease in surface pressure. A substantial hysteresis resulted upon repeated compression 

and decompression. The equilibrium surface pressure slightly decreased with each cycle. 

Compression of the liquid-air interface of a PS 80 solution did result in a much less 

pronounced increase in surface pressure (Fig. 2D). At Amin, a maximum change in surface 

pressure (πmax) of 14.1 mN/m was reached. Compression and decompression of mixed IgG 

and PS 80 films revealed a mixture depended compressibility behavior. In case PS 80 was 

present at a concentration well below CMC, compressibility was protein-like reaching a πmax 

of 38.5 mN/m (Fig 2B). In case the PS 80 was present in concentrations above CMC πmax 

reached 23.3 mN/m (Fig. 2C). 
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 Figure 2: Change in surface pressure [mN/m] vs. total area [cm
2
] of three continuous compression-

decompression cycles of IgG and/or PS 80 at different concentrations. A: IgG 0.1mg/mL, B: IgG 0.1mg/mL + 

PS 80 0.00005 mg/mL, C: IgG 0.1 mg/mL + PS 80 0.001 mg/mL, D: PS 80 0.1 mg/mL 
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The compressibility of P 188 films was lower compared to PS 80 (πmax of 3.2 mN/m) (Fig. 3). 

Moreover, mixtures containing P 188 below CMC (Fig. 3B) and above CMC (Fig. 3C) did not 

differ much in compressibility with a πmax of 4.5 mN/m and 3.8 mN/m respectively. 

Compared to pure IgG, compressibility was very low indicating that the film predominantly 

consists of P 188 molecules with only some IgG molecules present at the interface. 

Nevertheless, although added in concentrations below CMC compression-decompression 

showed a surfactant-like behavior of the interfacial film. At comparable mixing ratio the 

difference in πmax between the mixed and pure surfactant films was more substantial for 

PS 80 (9.2 mN/m) compared to P 188 (1.3 mN/m). This could be attributed to the complex 

association behavior of poloxamers forming not only micelles of various geometries but also 

oligomers and large clusters which occupy a larger surface area compared to polysorbates 

[16]. Compression did not cause a considerable increase in surface pressure in case of a HP-

β-CD solution (πmax = 2.4 mN/m) as shown in Fig 4. Additional presence of the IgG in 

mixtures resulted in similar outcomes with πmax = 1.7 mN/m and πmax = 3.2 mN/m, 

respectively. Therefore, no significant differences in the interfacial behavior were 

recognizable between the mixtures and pure HP-β-CD solutions. 
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 Figure 3: Change in surface pressure [mN/m] vs. total area [cm
2
] of three continuous compression-

decompression cycles of IgG and/or P 188 at different concentrations. A: IgG 0.1mg/mL, B: IgG 0.1mg/mL + 

P 188 0.01 mg/mL, C: IgG 0.1 mg/mL + P 188 1mg/mL mg/mL, D: P 188 1 mg/mL 
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Figure 4: Change in surface pressure [mN/m] vs. total area [cm

2
] of three continuous compression-

decompression cycles of IgG and/or HP-β-CD at different concentrations. A: IgG 0.1mg/mL, B: IgG 0.1mg/mL + 

HP-β-CD 0.349 mg/mL, C: IgG 0.1 mg/mL + HP-β-CD 3.49 mg/mL mg/mL, D: HP-β-CD 34.9 mg/mL 

 

 

 4.3. Presence and Secondary Structure of IgG at the  

Interface 

Infrared-Reflectance Absorbance Spectroscopy (IRRAS) was used to determine the presence 

and secondary structure of the IgG at the liquid-air interface. Figure 5 shows IRRA spectra of 

IgG during adsorption to equilibrium surface pressure and during compression up to 

35 mN/m. During adsorption as well as during compression the intensity of the OH-stretch 

vibration around 3600 cm-1 was increasing, as well as the amide I and II bands around 

1650 cm-1 and 1550 cm-1. This increase can be assigned to an increasing effective film 

thickness. Moreover, the position of the amide I band at 1643 cm-1 in the IRRA spectrum can 

be assigned to an intramolecular β-sheet structure of the IgG. Compression did not cause 

considerable changes in the band position and the slight shift of the amide II band from 1543 

cm-1to 1547 cm-1 is within measurement accuracy.   
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The FT-IR spectrum of the IgG in solution (Fig. 6) reveals a peak maximum at 1639 cm-1 and 

comparison with the IRRA spectra proves that the IgG remains in a native-like conformation 

at the interface as no other peaks referring to new structural elements appear.  
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Figure 5: IRRA spectra of IgG [1 mg/mL] with increasing surface pressure during adsorption to 

πeq = 18.5 mN/m and compression up to π = 35 mN/m, A: full spectra, B: Amide I and II band region  
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Figure 6: FT-IR spectrum of the amide I region of IgG [10 mg/mL] in solution (AquaSpec) 

 

 

 4.4. IRRA Spectra of Mixed Protein-Additive Films 

IRRAS provide evidence about the interfacial film composition via an identification of 

characteristics bands that can be assigned to functional groups of the molecules 

investigated. Figure 7 shows IRRA spectra of IgG, PS 80 and mixtures of both after adsorption 

and after compression. PS 80 did not reveal characteristic bands but only weak bands 

around 2964-2878 cm-1 which can be assigned to the CH2-groups of the lipid chains.  

The mixture of IgG 0.1 mg/mL and PS 80 0.001 mg/mL showed distinct amide bands 

indicating that some protein molecules must be present at the interface. Compression to 

30 mN/m caused a considerable increase, not only of the OH-band but also the amide bands. 

A B 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
118 

In contrast, for the mixture of IgG 0.1 mg/mL and PS 80 0.01 mg/mL (above CMC) no amide 

bands were detectable and compression did not cause any change in the band intensities 

indicating that the interfacial film predominantly consisted of surfactant molecules. In case 

of P 188, next to weak CH2-bands of the fatty acid at 2870 cm-1 distinctive bands around 

1070 cm-1 appeared which can be assigned to ether elements (C-O-C) of the polyoxyethylen 

and polyoxypropylen units (Fig. 8). Ether bands but no amide bands are clearly discernible in 

the spectra of mixtures of IgG 0.1 mg/mL and P 188 at 1 or 0.1 mg/mL. Thus the interface is 

mainly covered by P 188, as compression does neither cause an increase in surface pressure 

nor in band intensity. The pronounced bands within the range of 1200-1020 cm-1 in the 

spectrum of HP-β-CD can be attributed to the C-O stretching band (Fig. 9). Figures 11A and B 

make clear that no amide bands can be identified for both mixtures investigated thereby 

suggesting that the HP-β-CD fully occupies the interface and prevents the IgG from the 

adsorption to the interface.  
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Figure 7: IRRA spectra of IgG and PS 80 and mixtures of both in two different concentrations after adsorption to 

πeq (solid line) and after compression to π = 30 mN/m (dashed line), A: full spectra, B: amide I and II band 

region and peak assignment 
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Figure 8: IRRA spectra of IgG and P 188 and mixtures of both in two different concentrations after adsorption 

to πeq (solid line) and after compression to π = 30 mN/m (dashed line), A: full spectra, B: amide I and II band 

region and peak assignment 
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Figure 9: IRRA spectra HP-β-CD of IgG and mixtures of both in two different concentrations after adsorption to 

πeq (solid line) and after compression to π = 30 mN/m (dashed line), A: full spectra, B: amide I and II band 

region and peak assignment 
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 4.5. Interfacial Film Structures 

 4.5.1. Brewster Angle Microscopy 

Brewster Angle Microscopy (BAM) was used to visualize the interfacial film of PS 80, P 188 

and HP-β-CD solutions. The Brewster condition was satisfied as the excipient molecules are 

small and adsorb homogeneously and therefore the interface appeared homogeneously 

dark (Figs. 11A, 12A, 13A). In contrast, IgG adsorbed inhomogeneously and formed clusters 

of condensed protein material indicated by bright areas within a continuous film (Fig. 10). In 

case of IgG-PS 80 mixtures, BAM images appear protein-like in case the surfactant was 

added in concentrations around or well below CMC (Fig.11C, D). In case the PS 80 was 

present at a concentration above the CMC (0.01-0.1 mg/mL), the overall grey level was 

decreased and the film appearance surfactant-like (Fig. 11B). In mixtures of IgG, even at the 

lowest tested concentration of P 188 at 0.01 mg/mL and HP-β-CD at 0.349 mg/mL, BAM 

images on the one hand revealed dark areas referring to regions where no IgG molecules are 

present. On the other hand, even at the highest additive concentrations some protein 

clusters are present at the interface (Figs. 11B, 12B, 13B). Similarly, not only IgG but also 

different proteins such as β -conglycinin and β-casein form flickering domains with increased 

brightness [9], [36]. The fact, that even at high surfactant concentrations above the CMC 

some protein clusters are present at the interface indicates that protein adsorption cannot 

be entirely inhibited. Thus, not necessarily the addition of surfactant at a concentration 

slightly above CMC is enough to reach maximum stabilization of protein formulations against 

mechanical stress. 

 

    

Figure 10: BAM images of IgG 0.1 mg/mL during adsorption and compression 
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Figure 11: BAM images during adsorption and compression of A: PS 80 0.1 mg/mL, B: IgG 0.1 mg/mL + PS 80 0.01 

mg/mL, C: IgG 0.1 mg/mL + PS 80 0.001 mg/mL, and D: IgG 0.1 mg/mL + PS 80 0.00005 mg/mL  
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Figure 12: BAM images during adsorption and compression of A: P 188 1 mg/mL, B: IgG 0.1 mg/mL + P 188 

1 mg/mL, C: IgG 0.1 mg/mL + P 188 0.1 mg/mL, and D: IgG 0.1 mg/mL + P 188 0.01 mg/mL in Glycine-NaCl buffer 

pH 6.8 
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Figure 13: BAM images during adsorption and compression of A: HP-β-CD 34.9 mg/mL, B: IgG 0.1 mg/mL + HP-β-

CD 34.9 mg/mL, C: IgG 0.1 mg/mL + HP-β-CD 3.49 mg/mL in Glycine-NaCl buffer pH 6.8, and D: IgG 0.1 mg/mL + HP-

β-CD 0.349 mg/mL  

 

 4.5.2. Atomic Force Microscopy 

For the visualization of the interfacial film submersed Atomic Force Microscopy (AFM) was 

used. Similar to BAM, although on a different scale, AFM demonstrated that IgG adsorption 

to equilibrium resulted in a coherent protein film with some agglomerates of increased 
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with 0.3 nm compared to the 5 nm of the IgG film (Fig. 15). Compression of the 

PS 80 solution did not cause a substantial increase in maximum height (1.2 nm). In a mixture 

with 0.00005 mg/mL PS 80, the film formed upon compression exhibited similar properties 

as the film of a surfactant - free IgG solution with a maximum thickness of 8 nm and a mean 

Adsorption Compression 

Adsorption Compression 

Adsorption Compression 

Adsorption Compression 

A 

B 

C 

D 
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roughness of 5 nm (Fig. 16A, B). Separated bright domains representing agglomerated 

protein material appeared and the maximum height increased to values of 23 nm after 

compression (Fig. 16B), comparable to the pure protein film. This is in accordance with a 

study by Mackie et al. [37] where the competitive displacement of β-lactoglobulin by SDS 

was investigated. They stated that the surfactant displaced the protein from the interface 

during adsorption as the protein film showed many holes. Wilde et al. [14] stated that the 

presence of sodium-dodecylsulfate (SDS) in mixed films with β-lactoglobulin caused 

crumpling of the protein network as indicated by an increase in film thickness. It has also 

been stated that short-range repulsive interactions between protein and additive can 

enhance local phase separation [38]. Hence, AFM images provide direct information on the 

film properties and composition based on height and roughness after equilibrium adsorption 

and compression. 

 

                                         

Figure 14: IgG 0.1 mg/mL after A: Adsorption to Πeq (mean rougness: 1nm) and B: Compression to 30 mN/m 

(mean roughness: 5 nm) 

 

                                         

Figure 15: IgG 0.1 mg/mL + PS 80 0.01 mg/mL after A: Adsorption to Πeq = 24.8 mN/m (mean roughness 0.2 nm 

and B: Compression to 30 mN/m (mean roughness: 0.3 nm) 

A 

A B 

B 
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Figure 16: IgG 0.1 mg/mL + PS 80 0.00005 mg/mL after A: Adsorption to Πeq = 21.3 mN/m (mean roughness 

0.7 nm) and B: Compression to 30 mN/m (mean roughness: 5 nm) 

 

 

 4.6. Impact of the IgG-Additive Mixture Ratio on Particle  

Formation 

 4.6.1. By Agitation 

Shaking studies were performed to investigate the aggregation behavior of the IgG in 

presence of the different additives. The number of particles per mL was determined using 

light obscuration (LO) and micro-flow imaging (MFI). Moreover, a visual inspection including 

photo documentation as well as turbidity measurements were performed. After 48 h of 

shaking, the pure IgG solution resulted in the formation of around 200 000 particles 

>1 µm / mL, whereas the buffer control showed negligible amounts of particles (around 800 

particles >1 µm / mL) (Fig. 17A). Similarly, the number of particles of a stressed solution of 

PS 80 solution remained below 800 particles >1 µm / mL. The mixtures of IgG and PS 80 

showed less particle formation upon agitation compared to the surfactant free IgG solution. 

Addition of 0.1 mg/mL PS 80 caused a complete inhibition of protein aggregation. With 

decreasing PS 80 concentration the number of particles increased resulting in the formation 

of around 9000 particles > 1 µm / mL at the lowest PS 80 concentration of 0.0001 mg/mL 

(below CMC). Figure 17B shows that the addition of P 188 also prevented agitation induced 

aggregation effectively, although in a less concentration-dependent manner compared to PS 

80. A reduction of the P 188 concentration by factor 10 from 1 mg/mL to 0.1 mg/mL did not 

have a considerable effect on the absolute number of particles formed.  

 

B A 
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Figure 17: Number of particles >1 µm / mL of 1 mg/mL IgG in Glycine-NaCl buffer with addition of A: PS 80, B: 

P 188, C: HP-β-CD after 48 h of horizontal shaking in vials determined by LO and MFI (including controls) 

 

HP-β-CD also prevented protein particle formation upon shaking considerably at the two 

concentrations tested (Fig. 17C). At the highest HP-β-CD concentrations tested higher 

numbers of particles formed compared to the formulations containing PS 80 or P 188. This 

supports the assumption that the occupation of the interface by the additive molecules is an 

important factor to stabilize proteins against interfacial stress. Because the surface activity 

of HP-ß-CD is less pronounced compared to PS 80 and P 188, also its stabilizing effect might 

be lower accordingly. 
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 4.6.2. By Liquid-Air Interfacial Stress (Mini-Trough) 

To investigate the impact of only liquid-air interfacial stress on the particle formation, 

continuous compression-decompression cycles were performed in the Mini-Trough and 

analyzed for particle formation. PS 80 had a similar concentration dependent effect as 

described for the agitation study (Fig. 18). The presence of very low PS 80 concentrations 

below CMC resulted in even higher numbers of particles compared to the IgG solution 

without surfactant. In case PS 80 was present in a concentration of 0.00005 mg/mL around 

11 000 particles >1 µm / mL built up. In case the pure IgG solution was stressed around 6 500 

particles >1 µm / mL were formed only. This destabilizing effect of PS 80 at concentrations 

well below CMC has been previously reported [35], [37], [39]. Accordingly, P 188 successfully 

inhibited particle formation at all tested concentrations. Moreover, also HP-β-CD prevented 

the IgG from interface-induced aggregation although not as effectively as the non-ionic 

surfactants. Hence, these results point out that the investigated additives all evolve protein 

stabilizing properties at the liquid-air interface directly. 

 

 

Figure 18: Number of particles >1 µm / mL after 100 continuous compression-decompression cycles  of 

1 mg/mL IgG in Glycine-NaCl buffer with and without addition of PS 80 in different concentrations 
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5. SUMMARY & CONCLUSION 

Formulation additives, such as non-ionic surfactants, are known to successfully inhibit 

surface-induced protein aggregation. Nevertheless, little is known about the underlying 

mechanisms of stabilization [7]. In this study surface-sensitive physicochemical analytical 

tools were used to evaluate the effect of PS 80, P 188 and HP-β-CD on the interfacial film 

when co-adsorbed with an IgG. Additionally, the effect of the additives on protein particle 

formation upon stressing the interface by agitation and in a Mini-trough by compression and 

decompression was investigated. These approaches aim to improve targeted formulation 

development by better understanding of the liquid-air interface behavior of protein-additive 

mixtures. 

The IgG investigated in this study shows a pronounced amphiphilic behavior. It adsorbs to 

the liquid–air interface in a time-dependent manner, reaching a maximum equilibrium 

adsorption pressure after about 4 hours. In equilibrium, a surface pressure of 

πeq= 18.5 mN/m was reached. Adsorption of the additives occurred much faster (0.1-0.2 h), 

due to their lower molecular weight and the more distinct amphiphilic character [18]. A 

maximum surface pressure of 31 mN/m was reached for a 0.1 mg/mL PS 80 solution. The 

mixture of IgG with 0.00005 mg/mL PS 80 reached an equilibrium surface pressure of 

15.2 mN/m after 1.3 h indicating a considerable contribution of the IgG. The mixtures with 

P 188 at concentrations of 0.1 mg/mL and above and HP-β-CD at 3.49 mg/mL and above 

reached equilibrium surface pressure already within 0.4 h. Additive and protein molecules 

compete for the adsorption to the interface, and the composition of the interfacial film 

depends on the mixing ratio [10], [35], [40]. The investigation of the interfacial film 

compressibility revealed that the IgG forms a highly compressible film different to the 

additives tested. During compression, the distribution and ordering of the molecules 

changes resulting in a densely-packed layer [9]. The IgG molecules rather stay at the 

interface and do not desorb easily upon compression as proven by the increase in surface 

pressure up to 44.9 mN/m [41], [42]. This effect is promoted by the formation of a strong 

protein network due to marked short-range protein-protein interactions [43], [44]. 

Decompressions initially lead to a pronounced decrease in surface pressure, followed by a 

re-adsorption phase. Therefore, compression must cause an increase in interfacial film 

thickness and / or packing density. Equilibrium surface pressure slightly decreased with each 

cycle which can been related to a loss of material from the interface into the bulk phase [41], 
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[45]. Mixtures of IgG and PS 80 at 0.01 mg/mL and above ended up at identical πmax as pure 

PS 80 solutions. Adsorption of the small, strongly amphiphilic PS 80 molecules is kinetically 

favored and therefore is much faster compared to the large IgG molecules. In the IgG - PS 80 

mixture at a surfactant concentration below CMC of 0.00005 mg/mL, the reduction of πmax 

by 7.4 mN/m compared to the pure IgG indicates the additional presence of PS 80 molecules 

in the IgG film. Below the CMC, IgG molecules must be present at the interface in mixtures 

as πmax was 8.9 mN/m higher compared to the pure PS 80 film. Lu and Rhodes described 

similar findings, with compression of PS 80 films yielding a maximum surface pressure 

change of 20 mN/m [46]. Overall, the change in surface pressure also depends on the 

compression speed and compression factor which can explain the deviation of the absolute 

values obtained in this study from literature [45]. The compressibility can be assigned to the 

hydrophobic side chains of surfactants, such as sorbitan esters, which can be condensed and 

therefore compressed to higher surface pressure values [46]. With this increase in surface 

pressure polysorbate molecules are also forced into the subphase due to their substantial 

water solubility [35]. 

Compared to pure IgG, the compressibility of mixed IgG-P 188 films was very low indicating 

that the film predominantly consists of poloxamer molecules for all concentrations tested. At 

a mixture ratio of 1:100, the difference in πmax of the mixtures compared to pure surfactant 

was more pronounced for PS 80 (9.2 mN/m) compared to P 188 (1.3 mN/m). We determined 

a CMC of P 188 of 0.21 mg/mL although there is controversy about whether or not a clear 

CMC can be ascribed to poloxamers [17], [18], [32]. Poloxamers have been reported to 

occupy larger surface areas compared to polysorbates at comparable concentrations [7], 

[38], [47]. Hence, P 188 may be superior to PS 80 in inhibiting protein adsorption also due to 

a potential direct interaction with protein molecules in solution [48]. Also HP-β-CD rather 

effectively prohibited the protein from interface adsorption. At all concentrations 

investigated films of HP-ß-CD-IgG mixtures did not show any protein-like behavior and the 

compression-decompression did not result in the formation of a considerable hysteresis. 

Serno et al. showed that 0.28 mg/mL to 1.4 mg/mL HP-β-CD can protect an IgG from liquid-

air interface related aggregation [23]. Therefore, the investigated concentration range of 

0.349 mg/mL to 34.9 mg/mL might have been chosen too high to identify possible protein 

effects. Different hypothesis for the effect of HP-ß-CD have been presented and it was 

suggested that mixtures of IgG and HP-β-CD can coexist at the interface [49], [50]. The 
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surface activity of both HP-ß-CD and the two surfactants PS 80 and P 188 was proven here 

and appears to be an important prerequisite for their mechanism of action. 

IRRAS was used to prove the interfacial film composition. Except for the spectra of pure IgG 

and the IgG-PS 80 mixture with 0.00005 mg/mL PS 80, no amide bands referring to the IgG 

were detected. Rather CH2-groups that can be assigned to the lipid chains gave evidence 

about the presence of PS 80 at the interface. The presence of P 188 was proven next to the 

weak CH2-bands also by distinctive bands which can be assigned to ether elements (C-O-C) of 

the polyoxyethylen and polyoxypropylen units. HP-β-CD at the interface caused the 

appearance of pronounced bands that can be attributed to C-O stretching. 

Although AFM and BAM have been extensively used to look at lipid films [51]–[54], little is 

known about the complex interplay of antibodies and pharmaceutically relevant formulation 

additives. The increased brightness in BAM images can be attributed to the presence of a 

protein film at the interface, as it was the case for IgG. For all IgG-additive mixtures with low 

additive concentration, BAM images revealed the typical protein island-like structures which 

did not change considerably during compression. As the additive solutions alone do not 

supply any signal, bright domains are caused by the presence of IgG. Bright, demarcated 

areas within the film were present even in mixtures with high surfactant concentrations 

above CMC (PS 80 0.01mg/mL, P 188 1 mg/mL) demonstrating that IgG is still present. Also, 

mixed films of IgG with HP-β-CD at a concentration of 34.9 mg/mL still showed flickering 

areas indicating the presence of some protein clusters at the interface. Consequently, all 

additives cannot entirely prevent IgG adsorption at the interface, even at high 

concentrations. 

Although at a smaller scale compared to BAM, AFM revealed the formation of a continuous 

film with some inhomogeneities for the pure IgG solution. Substantial changes within the 

film topography upon compression could be visualized as areas of telescoped protein 

material with an increased height appeared. AFM images of the IgG-PS 80 mixture with PS 80 

present above CMC at a concentration of 0.01 mg/mL resulted in a very smooth and thin film 

similar to pure surfactant films. Compression did not affect the film appearance. The 

presence of 0.00005 mg/mL PS 80, a concentration below CMC led to a film which exhibited 

areas of agglomerated protein material of increased height with thin and flat regions in 

between. Compression caused an increase not only in size but also in height of the 

agglomerates. It has been stated that in mixtures with protein, surfactant molecules adsorb 
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at defects in the protein network [35]. Thereby, the surfactant molecules are compressing 

the interfacial protein network and, upon increasing surface pressure, surfactant molecules 

desorb. Accordingly, the addition of small quantities of surfactant has been reported to 

result in strong clustering of protein material. Additionally, low surfactant concentrations 

were shown to promote increased particle formation and to rather destabilize protein 

formulations against mechanical stress [18], [35]. At higher additive concentrations, this 

effect was not observed as already during adsorption only few protein molecules found their 

way to the surface [18], [55]. 

The formation of protein particles upon agitation is related to the mechanical stress of the 

interfacial film by continuous compression-decompression. Compression leads to the 

formation of a condensed film with potentially pronounced protein-protein interactions [56], 

[57]. Clusters of protein material are formed upon adsorption as identified using BAM and 

AFM. Upon interfacial stress, rupture of the film results in a release of protein material from 

the interface  [12], [41], [45]. Depending on the extent of protein-protein interactions, the 

protein clusters can sustain and appear as particles or disintegrate [45]. Therefore, the 

surface-sensitive methods applied here give a strong hint on the presence of the protein at 

the interface, as it directly depends on the type and concentration a surface-active additive 

is present in a formulation. In addition, a strong coherence between the number of particles 

formed and the type and mixing ratio of the additive with the IgG was observed. Mixtures 

with PS 80 present below CMC exhibited increasing numbers of particles with decreasing 

PS 80 concentration. This supports the findings obtained by BAM and AFM that additive 

concentrations below CMC effect protein stability negatively. Although the addition of PS 80 

above CMC reduced particle formation efficiently, it was shown that still some protein is 

present at the interface. Thus, even the addition of surfactant at a concentration above CMC 

was shown not to be enough to reach full stabilization of proteins formulations against 

mechanical stress. 

Interestingly, in mixtures with IgG P 188 revealed a strong protective effect as all 

physicochemical investigations at the interface were dominated by the presence of the 

surfactant. Also, all P188 concentrations tested prevented the IgG from interface-related 

stress and aggregation. The results obtained in this study therefore evinced that P 188 had 

the most pronounced stabilizing effect on the protein when compared to PS 80 and HP-β-CD 
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However, also HP-β-CD was proven to have a surface-related stabilizing effect. HP-β-CD not 

only successfully prevented protein adsorption but also aggregation upon interfacial stress, 

although to a lower extent when compared to PS 80 and P 188. Therefore, HP-β-CD 

represents a valuable alternative to non-ionic surfactants as disadvantages of non-ionic 

surfactants may not be encountered.  

Consequently, the different surface-sensitive techniques applied in combination with 

interfacial-stress studies provided valuable insights into the liquid-air interfacial film 

characteristics that help to better understand how formulation additives affect interface 

related protein instability. 
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6. SUPPLEMENTAL INFORMATION 

 6.1. Visual Inspection and Photodocumentation  

 

 

 

 

 

 

 

 

 

 

Glycine NaCl buffer IgG 1 mg/mL IgG 1 mg/mL +  

PS 80 0.1 mg/mL 

 

IgG 1 mg/mL +  

PS 80 0.0001 mg/mL 

PS 80 0.1 mg/mL 

Figure 19: Visual Inspection and photodocumentation of IgG and IgG – PS 80 mixtures after 48h shaking 
 

 

 

 

 

 

 

 

 

 

 

Glycine NaCl buffer IgG 1 mg/mL IgG 1 mg/mL +  

P188 1 mg/m 

 

IgG 1 mg/mL +  

P188 0.01  mg/mL 

P188 1 mg/mL 

Figure 20: Visual Inspection and photodocumentation of IgG and IgG – P 188 mixtures after 48h shaking 
 

 

 

 

 

 

 

 

 

 

 

Glycine NaCl buffer IgG 1 mg/mL IgG 1 mg/mL +  

HPβCD 34.9 mg/mL 

 

IgG 1 mg/mL +  

HPβCD 3.49 mg/mL 

HPβCD 3.49 mg/mL 

Figure 21: Visual Inspection and photodocumentation of IgG and IgG – HP-β-CD mixtures after 48h shaking 
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 6.2. Turbidity 
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Figure 22: Turbidity during 48 h of horizontal shaking in vials determined by LO and MFI. Vials contained IgG in a 

concentration 1 mg/mL in Glycine-NaCl buffer in absence and presence of different additive concentrations. Glycine-NaCl 

buffer and additive only in the given concentration in Glycine-NaCl buffer served as controls, A: PS 80, B: P 188, C: HP-β-CD 

 

 

 

 

 

 

 

 

 

 

 

A B 

C 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
135 

7. REFERENCES 

[1] C. J. Roberts, “Protein aggregation and its impact on product quality,” Curr. Opin. 

Biotechnol., vol. 30, pp. 211–217, 2014. 

[2] S. J. Shire, “Formulation and manufacturability of biologics,” Curr. Opin. Biotechnol., 

vol. 20, no. 6, pp. 708–714, 2009. 

[3] J. Y. Zheng and L. J. Janis, “Influence of pH, buffer species, and storage temperature on 

physicochemical stability of a humanized monoclonal antibody LA298,” Int. J. Pharm., 

vol. 308, pp. 46–51, 2006. 

[4] W. Wang, S. Nema, and D. Teagarden, “Protein aggregation-Pathways and influencing 

factors,” Int. J. Pharm., vol. 390, no. 2, pp. 89–99, 2010. 

[5] A. Hawe and W. Friess, “Formulation development for hydrophobic therapeutic 

proteins.,” Pharm. Dev. Technol., vol. 12, pp. 223–237, 2007. 

[6] N. Rathore and R. S. Rajan, “Current perspectives on stability of protein drug products 

during formulation, fill and finish operations,” Biotechnol. Prog., vol. 24, no. 3, pp. 

504–514, 2008. 

[7] H. L. Kim, A. McAuley, B. Livesay, W. D. Gray, and J. McGuire, “Modulation of protein 

adsorption by poloxamer 188 in relation to polysorbates 80 and 20 at solid surfaces,” 

J. Pharm. Sci., vol. 103, no. 4, pp. 1043–1049, 2014. 

[8] T. Serno, E. Härtl, A. Besheer, R. Miller, and G. Winter, “The Role of Polysorbate 80 

and HPβCD at the Air-Water Interface of IgG Solutions,” Pharm. Res., pp. 1–14, 2012. 

[9] E. Koepf, R. Schroeder, G. Brezesinski, and W. Friess, “The film tells the story: Physical-

chemical characteristics of IgG at the liquid-air interface,” Eur. J. Pharm. Biopharm., 

vol. 119, pp. 396–407, 2017. 

[10] V. B. Fainerman, S. A. Zholob, M. Leser, M. Michel, and R. Miller, “Competitive 

adsorption from mixed nonionic surfactant/protein solutions,” J. Colloid Interface Sci., 

vol. 274, pp. 496–501, 2004. 

 

 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
136 

[11] B. A. Kerwin, “Polysorbates 20 and 80 Used in the Formulation of Protein 

Biotherapeutics: Structure and Degradation Pathways,” J. Pharm. Sci., vol. 97, no. 8, 

pp. 2926–2935, 2008. 

[12] S. Kiese, A. Papppenberger, W. Friess, and H. C. Mahler, “Shaken, not stirred: 

Mechanical stress testing of an IgG1 antibody,” J. Pharm. Sci., vol. 97, no. 10, pp. 

4347–4366, 2008. 

[13] A. Hawe, V. Filipe, and W. Jiskoot, “Fluorescent molecular rotors as dyes to 

characterize polysorbate-containing IgG formulations,” Pharm. Res., vol. 27, no. 2, pp. 

314–326, 2010. 

[14] P. Wilde, A. Mackie, F. Husband, P. Gunning, and V. Morris, “Proteins and emulsifiers 

at liquid interfaces,” Adv. Colloid Interface Sci., vol. 108–109, pp. 63–71, 2004. 

[15] T. A. Khan, H.-C. Mahler, and R. S. Kishore, “Key interactions of surfactants 

intherapeutic protein formulations: A review,” Eur. J. Pharm. Biopharm., vol. 97, pp. 

60–67, 2015. 

[16] H. J. Lee, A. McAuley, K. F. Schilke, and J. McGuire, “Molecular origins of surfactant-

mediated stabilization of protein drugs,” Adv. Drug Deliv. Rev., vol. 63, no. 13, pp. 

1160–1171, 2011. 

[17] U. Adhikari, A. Goliaei, L. Tsereteli, and M. L. Berkowitz, “Properties of poloxamer 

molecules and poloxamer micelles dissolved in water and next to lipid bilayers: 

Results from computer simulations,” J. Phys. Chem. B, vol. 120, no. 26, pp. 5823–5830, 

2016. 

[18] H. L. Kim, A. McAuley, and J. McGuire, “Protein effects on surfactant adsorption 

suggest the dominant mode of surfactant-mediated stabilization of protein,” J. Pharm. 

Sci., vol. 103, no. 5, pp. 1337–1345, 2014. 

[19] M. T. Yasamy, T. Dua, M. Harper, and S. Saxena, “a Growing Concern,” vol. 3, no. June, 

pp. 4–9, 2012. 

[20] M. E. Brewster, S. H. Maninder, J. W. Simpkins, and N. Bodor, “Use of 2-

hydroxypropyl-β-cyclodextrin as a solubilising and stabilising excipient for protein 

drugs.,” Pharmaceutical research, vol. 8, no. 6. pp. 792–795, 1991. 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
137 

[21] T. Serno, R. Geidobler, and G. Winter, “Protein stabilization by cyclodextrins in the 

liquid and dried state,” Adv. Drug Deliv. Rev., vol. 63, no. 13, pp. 1086–1106, 2011. 

[22] E. Härtl, N. Dixit, A. Besheer, D. Kalonia, and G. Winter, “Weak antibody-cyclodextrin 

interactions determined by quartz crystal microbalance and dynamic/static light 

scattering,” Eur. J. Pharm. Biopharm., vol. 85, no. 3, pp. 781–789, 2013. 

[23] T. Serno, J. F. Carpenter, T. W. Randolph, and G. Winter, “Inhibition of Agitation-

Induced Aggregation of an IgG-Antibody by Hydroxypropyl-β-Cyclodextrin,” J. Pharm. 

Sci., vol. 99, no. 3, pp. 1193–1206, Mar. 2010. 

[24] F. L. Aachmann, D. E. Otzen, K. L. Larsen, and R. Wimmer, “Structural background of 

cyclodextrin ± protein interactions,” vol. 16, no. 12, 2004. 

[25] A. Martos, W. Koch, W. Jiskoot, K. Wuchner, G. Winter, W. Friess, A. Hawe, “Trends on 

Analytical Characterization of Polysorbates and Their Degradation Products in 

Biopharmaceutical Formulations,” J. Pharm. Sci., vol. 106, no. 7, pp. 1722–1735, 2017. 

[26] R. Mendelsohn, “External Infrared Reflection Absorption Spectrometry of Monolayer 

Films at the Air-Water Interface,” Annu. Rev. Phys. Chem., vol. 46, pp. 305–334, 1995. 

[27] C. R. Flach, J. W. Brauner, J. W. Taylor, R. C. Baldwin, and R. Mendelsohn, “External 

reflection FTIR of peptide monolayer films in situ at the air/water interface: 

experimental design, spectra-structure correlations, and effects of hydrogen-

deuterium exchange.,” Biophys. J., vol. 67, no. 1, pp. 402–410, 1994. 

[28] A. H. Muenter, J. Hentschel, H. G. Borner, and G. Brezesinski, “Characterization of 

peptide-guided polymer assembly at the air/water interface,” Langmuir, vol. 24, no. 7, 

pp. 3306–3316, 2008. 

[29] S. Hénon and J. Meunier, “Microscope at the Brewster angle: Direct observation of 

first-order phase transitions in monolayers,” Rev. Sci. Instrum., vol. 62, no. 4, pp. 936–

939, 1991. 

[30] D. Hoenig and D. Moebius, “Direct Visualization of Monolayers at the Air-Water 

Interface by Brewster Angle Microscopy,” J. Phys. Chem., no. 2, pp. 4590–4592, 1991. 

 

 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
138 

[31] D. Vollhardt, “Brewster angle microscopy: A preferential method for mesoscopic 

characterization of monolayers at the air/water interface,” Curr. Opin. Colloid 

Interface Sci., vol. 19, no. 3, pp. 183–197, 2014. 

[32] D. R. Devi, P. Sandhya, and B. N. V. Hari, “Poloxamer: A novel functional molecule for 

drug delivery and gene therapy,” J. Pharm. Sci. Res., vol. 5, no. 8, pp. 159–165, 2013. 

[33] S. Horiuchi and G. Winter, “CMC determination of nonionic surfactants in protein 

formulations using ultrasonic resonance technology,” Eur. J. Pharm. Biopharm., vol. 

92, pp. 8–14, 2015. 

[34] J.-L. Tian, Y. Z. Zhao, Z. Hin, C. T. Lu, Q. Q. Tang, Q. Xiang, C. Z. Sun, L. Zhang, Y. Y. Xu, 

H. S. Gao, Z. C. Zhou, X. K. Li, Y. Zhang, “Synthesis and characterization of Poloxamer 

188-grafted heparin copolymer.,” Drug Dev. Ind. Pharm., vol. 36, no. 7, pp. 832–8, 

2010. 

[35] A. R. Mackie, A. P. Gunning, P. J. Wilde, and V. J. Morris, “Orogenic Displacement of 

Protein from the Air/Water Interface by Competitive Adsorption.,” J. Colloid Interface 

Sci., vol. 210, no. 1, pp. 157–166, 1999. 

[36] R. R. Niño, C. C. Sanchez, V. P. Ruìz-Henestrosa, J. M. Rodrìguez-Patino, “Milk and soy 

protein films at the air-water interface,” Food Hydrocoll., vol. 19, no. 3, pp. 417–428, 

2005. 

[37] A. R. Mackie, A. P. Gunning, P. J. Wilde, and V. J. Morris, “Competitive displacement of 

beta-lactoglobulin from the air/water interface by sodium dodecyl sulfate,” Langmuir, 

vol. 16, no. 11, pp. 8176–8181, 2000. 

[38] E. Mohajeri and G. D. Noudeh, “Effect of temperature on the critical micelle 

concentration and micellization thermodynamic of nonionic surfactants: 

Polyoxyethylene sorbitan fatty acid esters,” E-Journal Chem., vol. 9, no. 4, pp. 2268–

2274, 2012. 

[39] K. Ziegler, “Untersuchungen zur Stabilisierung und Interaktion von Cetuximab mit 

nicht-ionischen Tensiden,” 2013. 

 

 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
139 

[40] Z. Liao, J. W. Lampe, P. S. Ayyaswamy, D. M. Eckmann, and I. J. Dmochowski, “Protein 

assembly at the air-water interface studied by fluorescence microscopy.,” Langmuir, 

vol. 27, pp. 12775–81, 2011. 

[41] J. S. Bee, D. K. Schwartz, S. Trabelsi, E. Freund, J. L. Stevenson, J. F. Carpenter, and T. 

W. Randolph, “Production of particles of therapeutic proteins at the air–water 

interface during compression/dilation cycles,” Soft Matter, vol. 8, no. 40, p. 10329, 

2012. 

[42] S. Ghazvini, C. Kalonia, D. B. Volkin, and P. Dhar, “Evaluating the Role of the Air-

Solution Interface on the Mechanism of Subvisible Particle Formation Caused by 

Mechanical Agitation for an IgG1 mAb,” J. Pharm. Sci., vol. 105, no. 5, pp. 1643–1656, 

2016. 

[43] E. A. Vogler, “Protein adsorption in three dimensions,” Biomaterials, vol. 33, no. 5, pp. 

1201–1237, 2012. 

[44] V. S. Alahverdjieva, K. Khristov, D. Exerowa, and R. Miller, “Correlation between 

adsorption isotherms, thin liquid films and foam properties of protein/surfactant 

mixtures: Lysozyme/C10DMPO and lysozyme/SDS,” Colloids Surfaces A Physicochem. 

Eng. Asp., vol. 323, no. 1–3, pp. 132–138, 2008. 

[45] E. Koepf, S. Eisele, R. Schroeder, G. Brezesinski, and W. Friess, “Notorious But Not 

Understood: How Liquid-Air Interfacial Stress Triggers Protein Aggregation,” J. Pharm. 

Sci., p. submitted August 14, 2017. 

[46] D. Lu and D. G. Rhodes, “Mixed composition films of Spans and Tween 80 at the air-

water interface,” Langmuir, vol. 16, no. 21, pp. 8107–8112, 2000. 

[47] M. E. Mahmood and D. A. F. Al-Koofee, “Effect of Temperature Changes on Critical 

Micelle Concentration for Tween Series Surfactant,” Glob. J. Sci. Front. Res. Chem., vol. 

13, no. 4, pp. 1–7, 2013. 

[48] S. A. Maskarinec, J. Hannig, R. C. Lee, and K. Y. C. Lee, “Direct observation of 

poloxamer 188 insertion into lipid monolayers.,” Biophys. J., vol. 82, no. 3, pp. 1453–9, 

2002. 

 



CHAPTER V          MOVE ALONG PLEASE! 
__________________________________________________________________________________ 

 
140 

[49] T. Serno, “Inhibition of therapeutic protein aggregation by cyclodextrins. 

Dissertation,” Ludwig-Maximilians-Universität, Munich, Germany, 2010. 

[50] E. A. Vogler, K. B. Spencer, D. B. Montgomery, L. M. Lander, and W. J. Brittain, “Design 

and Operational Characteristics of a Robotic Wilhelmy Balance,” Langmuir, vol. 9, no. 

9, pp. 2470–2477, 1993. 

[51] E. Amado, A. Kerth, A. Blume, and J. Kressler, “Infrared reflection absorption 

spectroscopy coupled with brewster angle microscopy for studying interactions of 

amphiphilic triblock copolymers with phospholipid monolayers,” Langmuir, vol. 24, 

no. 18, pp. 10041–10053, 2008. 

[52] C. C. Sánchez, M. R. R. Niño, A. L. Caro, and J. M. R. Patino, “Biopolymers and 

emulsifiers at the air-water interface. Implications in food colloid formulations,” J. 

Food Eng., vol. 67, no. 1–2, pp. 225–234, 2005. 

[53] S. Miao, H. Leeman, S. De Feyter, and R. A. Schoonheydt, “Facile preparation of 

Langmuir-Blodgett films of water-soluble proteins and hybrid protein-clay films,” J. 

Mater. Chem., vol. 20, no. 4, pp. 698–705, 2010. 

[54] T. S. Berzina, V. I. Troitsky, A. Petrigliano, D. Alliata, A. Y. Tronin, and C. Nicolini, 

“Langmuir-Blodgett films composed of monolayers of amphiphilic molecules and 

adsorbed soluble proteins,” Thin Solid Films, vol. 284–285, no. Cyt c, pp. 757–761, 

1996. 

[55] D. Otzen, “Protein-surfactant interactions: A tale of many states,” Biochim. Biophys. 

Acta - Proteins Proteomics, vol. 1814, no. 5, pp. 562–591, 2011. 

[56] R. G. Couston, D. A. Lamprou, S. Uddin, and C. F. Van Der Walle, “Interaction and 

destabilization of a monoclonal antibody and albumin to surfaces of varying 

functionality and hydrophobicity,” Int. J. Pharm., vol. 438, no. 1–2, pp. 71–80, 2012. 

[57] J. Sánchez-González, M. A. Cabrerizo-Vílchez, and M. J. Gálvez-Ruiz, “Interactions, 

desorption and mixing thermodynamics in mixed monolayers of beta-lactoglobulin 

and bovine serum albumin.,” Colloids Surf. B. Biointerfaces, vol. 21, no. 1–3, pp. 19–

27, 2001. 

   



 

 
141 

 



 

 
142 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
143 

CHAPTER VI - Part 1 

HOW FORMULATION PH AND IONIC STRENGTH 

AFFECT PHYSICOCHEMICAL PROTEIN 

BEHAVIOR AT THE LIQUID-AIR INTERFACE 

 

1. ABSTRACT 

Both, formulation parameters and the presence of liquid-air interfaces are known to affect 

the aggregation of protein drugs. In this study, the impact of pH on the liquid-air interfacial 

behavior of three proteins, a polyclonal and two monoclonal antibodies (IgG, mAB1 and 

mAB2) was investigated using different surface sensitive methods. Equilibrium surface 

pressure values revealed only a minor impact of pH and ionic strength. Infrared Reflectance 

Absorbance Spectroscopy (IRRAS) proved not only the presence of the proteins at the 

interface but also showed that the secondary structure was not considerably affected by the 

adsorption to the interface independent of pH between pH 3 and 9. Additionally, the 

physical resistance of the film as determined by the interfacial compressibility in a Langmuir 

trough was not affected by pH. Compression of the interfacial film caused the formation of 

telescoped areas which were no longer present after decompression at all pH values as 

investigated by underwater Atomic Force Microscopy (AFM). Brewster Angle Microscopy 

(BAM) showed some slight changes in the film reflectivity depending on pH, indicating 

changes in the interfacial film thickness. IRRAS experiments at different angles of incidence 

as well as section analysis of AFM images proved not only that the film thickness increased 

upon compression, but also that the interfacial film is thinner at pH 4 than at pH 9. 

Continuous compression and decompression of the protein film resulted in particle 

formation with increasing numbers of particles at higher pH value as detected by Light 

Obscuration and Micro-Flow Imaging.  

The use of different surface sensitive methods provides expedient information on how 

liquid-air interfacial events are affected by formulation pH and ionic strength. These findings 

enable a better understanding of the events and processes happening at the interface and 

can be directly linked to the interface-related formation of particles. 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
144 

2. INTRODUCTION 

Protein stability is a major priority during the development of protein pharmaceuticals. 

Moreover, protein aggregation is one critical stability parameter for safety and efficacy of 

protein pharmaceuticals [1]–[4] and is described as the process by which individual protein 

molecules assemble into larger complexes [5]. Protein aggregates differ not only in size, 

ranging from dimers to oligomers to large visible particles, but also in conformation 

consisting of unfolded, partly unfolded, native monomers or combinations thereof. Large 

native-like aggregates, with essentially intact secondary and tertiary structure have been 

associated with immune reactions, especially when also chemically modified [5]. Typically, 

conformational distortion with hydrophobic amino acid residues, becoming exposed to the 

surface, triggers aggregation due to stronger hydrophobic protein-protein interactions [6]. In 

addition, solution pH and ionic strength are important factors affecting colloidal stability due 

to their decisive impaction and charge shielding responsible for charge interaction [7], [8]. 

Thus, pH value and ionic strength have to be chosen carefully, as they impact colloidal as 

well as conformational stability [9], [10]. In presence of interfaces, aggregation processes 

may differ fundamentally from those described in solution. Due to their partly amphiphilic 

character proteins adsorb to interfaces, accumulate and form highly compressible films. 

Continuous rupture of the interface, e.g. by a needle [13], or continuous compression and 

decompression of the adsorbed protein film [14], can be correlated with protein aggregation 

upon shaking of protein formulations in their primary container. However, many pieces in 

the puzzle of protein aggregation caused by stressing the liquid-air interface of protein 

solutions are still missing. Several authors describe that proteins, such as lysozyme, unfold 

upon adsorption [13], [14]. Nevertheless, investigations of the interfacial conformation of 

pharmaceutically relevant proteins have not been reported yet. Furthermore, the impact of 

pH value and ionic strength on protein adsorption, unfolding and protein-protein 

interactions at the interface is complex and requires elucidation.  

Besides studying surface activity itself, the impact of pH on the liquid-air interfacial film was 

investigated using surface-sensitive spectroscopic methods. Additionally, the number of 

particles formed by liquid-air interfacial stress at different pH values was analyzed. Thus, a 

better understanding of how the pH value affects protein interfacial behavior and the 

process of aggregation is reached.  

 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
145 

3. MATERIALS AND METHODS 

 3.1. Materials 

Human IgG (Beriglobin™, CSL Behring GmbH, Germany) was used for this study. The market 

product contains 159 mg/mL human IgG in 22 g/L Glycine and 3 g/L NaCl buffer at pH 6.8. 

Additionally, two monoclonal antibodies were investigated (mAB1 and mAB2) provided by 

AbbVie Deutschland GmbH & Co. KG, Ludwigshafen am Rhein, Germany. mAB1 is formulated 

in 20mM Histidine buffer at pH 6.0 in a concentration of 126 g/L, mAB2 in 15mM Histidine 

buffer at pH 5.3 in a concentration of 94 g/L. In Hydrophilic Interaction Chromatography 

(HIC) mAB2 turned out to be more hydrophobic compared to mAB1. Dilutions were 

performed using 15 mM histidine buffer, prepared using highly purified water (ELGA LC134, 

ELGA LabWater, Germany) and pH was adjusted by addition of 1mM NaOH and 1mM HCl, 

respectively. All samples were filtrated using 0.2µm sterile polyethersulfone (PES) syringe 

filters (PES, VWR, Germany). All protein solutions were diluted to a final concentration of 

1 mg/mL for analysis unless otherwise stated with 15 mM histidine buffer as standard 

condition.  

 

 3.2. Sum Frequency Generation 

Sum Frequency Generation (SFG) is a second-order nonlinear optical process and inherently 

specific for interfaces with inversion symmetry, such as the liquid-air interface, in the time 

average [15]. Two laser beams are combined at the interface, where the sum frequency of 

the two impinging beams is generated. One beam has tunable infrared wavelengths (IR), 

whereas the other one is of a fixed wavelength (vis). SFG is not only highly sensitive to 

changes in the interfacial composition and surface coverage, but also to the intrinsic 

molecular arrangement of the adsorbed layer. SFG measurements were performed with a 

broadband SFG spectrometer (in-house production FAU Erlangen-Nuernberg) as described 

elsewhere [16]. The spectrometer is equipped with a tunable femtosecond IR laser 

(bandwidth >200 cm-1) and an etalon filtered pulse at 800 nm wavelength (bandwidth 

< 6 cm-1). Spectra were recorded with s-polarized sum frequency, s-polarized IR and vis 

beams. All spectra were normalized to an oxygen plasma cleaned polycrystalline aurum 

sample as reference spectrum. Spectra were collected from a 1 mg/mL IgG solution in 

15 mM histidine buffer in a Petri dish.  Each spectrum was measured by scanning the 
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broadband IR beam with a step width of 130 cm-1. Acquisition time was set to 8 min for a 

frequency range between 2800−3800 cm-1.  

 

 3.3. Surface Pressure Measurements 

Surface activity was expressed by surface pressure Π, with Π = σ0 – σ, where σ0 and σ are the 

aqueous subphase surface tension and the surface tension of the aqueous protein solution, 

respectively. Surface pressure measurements were performed in a 5.9 x 39.7 cm2 PTFE 

Langmuir trough equipped with a metal alloy dyne probe (Microtrough XS, Kibron Inc., 

Finland). For the determination of equilibrium surface pressures a 3 x 6 Multiwell Plate 

(V = 0.8 mL) was used. Results are given as mean (n = 3) and standard deviation. Equilibrium 

adsorption pressure is defined as the maximum surface pressure that is reached by 

adsorption only and stable in a range of +/- 0.2 mN/m within 0.5 h. 160 mL sample solution 

was filled into the trough for the repeated compression-decompression measurements. The 

surface area of the trough can be varied by two movable PTFE barriers. Temperature was 

kept at 20 °C (K6-cc circulation thermostat, Peter Huber Kaeltemaschinenbau GmbH, 

Germany). Compression speed was set to 55 mm/min, and compression-decompression 

cycles were conducted from a maximum surface area of Amax = 210 cm2 to Amin = 52 cm2. 

Compression was started after the equilibrium adsorption pressure was reached. 

 

 3.4. Electrophoretic Light Scattering 

The isoelectric point of the IgG was determined to 6.94 using a Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, UK). IgG was used at 5 mg/mL in a 15 mM histidine buffer. 

Using a Boltzmann fit the IEP was determined by Origin 8G (OriginLab Corporation, USA). 

Detailed results are described in the appendix (Fig. 16). IEP of the other mABs were already 

known by the provided certificate of analysis as 8.75 for mAB1 and 6.51 for mAB2.  

 

 3.5. FT-IR Spectroscopy 

For FT-IR measurements spectra were recorded using a Tensor 27 (Bruker Optics GmbH, 

Germany) connected to a thermostat (DC30-K20, Thermo Haake GmbH, Germany). For each 

measurement, the protein was formulated at 10 mg/mL, and for each spectrum 100 

absorbance scans were collected at a single beam mode with a resolution of 4 cm-1. Spectra 
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were analyzed by Opus 7.5 (Bruker Optics GmbH, Germany) and displayed as vector-

normalized second-derivative spectra (calculated with 17 smoothing points according to the 

Savitzky-Golay algorithms [17]). Infrared spectra of the protein in solution were recorded 

using an AquaSpec (transmission cell H2O A741-1) and a BioATR or BioATR cell™ II 

respectively, at 20 °C.  

Infrared spectra during temperature-induced unfolding of the IgG samples were recorded 

using the BioATR cell with buffer as reference. Temperature-dependent spectra were 

acquired every 4 °C from 25 – 93 °C with an equilibration time of 120 s. Infrared spectra 

were analyzed by Protein Dynamics for Opus 7.5.  

 

 3.6. Infrared Reflection-Absorption Spectroscopy (IRRAS)  

IRRAS was used to determine the presence and the conformation of the adsorbed protein at 

the soft liquid/air interface. IRRA spectra were recorded using a VERTEX FT-IR spectrometer 

(Bruker Optics GmbH, Germany) equipped with a liquid nitrogen-cooled MCT detector. The 

spectrometer was coupled to a Langmuir trough (Riegler&Kirstein GmbH, Germany), placed 

in a sealed container (external air/water reflection unit XA-511) to guarantee constant vapor 

atmosphere. The IR beam was conducted out of the spectrometer and focused onto the 

liquid surface of the Langmuir trough. A computer controlled KRS-5 wire-grid polarizer 

(thallium bromide and iodide mixed crystal) was used to generate perpendicular (s) and 

parallel (p) polarized light. The angle of incidence was set to 40° with respect to the surface 

normal. Measurements were performed using a trough with two compartments and a 

trough shuttle system. One compartment contained the protein solution under investigation 

(sample), whereas the other (reference) was filled with the pure buffer sub-phase. The 

single-beam reflectance spectrum (R0) from the reference trough was taken as background 

for the single-beam reflectance spectrum (R) of the monolayer in the sample trough to 

calculate the reflection-absorption spectrum as -log(R/R0) in order to eliminate the water 

vapor signal. IR spectra were collected at 8 cm-1 resolution and a scatter speed of 20 kHz. For 

s‐polarized light, spectra were co‐added over 200 scans, and spectra with p‐polarized light 

were co‐added over 400 scans. To distinguish between the influence of increasing 

concentration and changed orientation on the signal intensity, the dichroic ratio DR of the 

amide I band at 1643 cm-1 was calculated as DR = 𝐴𝑝/𝐴𝑠, with Ap and As being the maximum 

absorption obtained with p-polarized light and s-polarized light, respectively. For the 
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determination of the interfacial film thickness in equilibrium and after compression to 30 

mN/m, the incidence angle of the IR beam was varied with respect to the surface normal 

between 30° and 72° in steps of 2° or 3°. IRRA spectra were simulated using a MATLAB 

program [18], [19] on the basis of the optical model of Kuzmin and Michailov [20], [21]. The 

intensity and shape of a reflection absorption band depend on the absorption coefficient k, 

the full-width at half-height, the orientation of the transition dipole moment within the 

molecule, the molecular tilt angle, the polarization and the angle of incidence (AoI) of the 

incoming light, as well as the layer thickness and its refractive index n. By using an Abbe 

refractometer (Nr. 322323, Carl-Zeiss AG, Germany) an average n for 100 mg/ml protein 

solutions was determined as 1.5 and used for the calculations of film thickness. Simulated 

spectra were fitted to the experimental data in a global fit, where all spectra recorded at 

different AoI and different polarizations were fitted in one non‐linear least square 

minimization using the Levenberg‐Marquardt algorithm. The polarizer quality was set to Γ = 

0.01. The optical constants of the water subphase were taken from Bertie et al. [22], [23]. 

The layer thickness was determined from a fit of the OH stretching vibrational band ν(OH) in 

the range of 3800–3000 cm–1.  

 

 3.7. Brewster Angle Microscopy (BAM) 

A Langmuir Trough (KSV NIMA, Finland) was connected to a KSV NIMA Brewster Angle 

Microscope to enable visualization of the monolayer at the Brewster Angle (53.06°, p-

polarized light). Protein solutions of 0.1 mg/mL were filled into the trough (V = 80 mL). 

Simultaneous surface pressure measurements during adsorption and compression in the 

Langmuir trough enabled a direct connection of each image with the corresponding surface 

pressure during adsorption or compression of the protein. The lateral resolution of the BAM 

was approximately 3 µm. The size of the BAM images is 400 x 720 µm2. 

 

 3.8. Atomic Force Microscopy (AFM) 

For AFM, protein films formed during adsorption to equilibrium surface pressure or after 

compression to a desired surface pressure were transferred by Langmuir-Schaefer 

deposition (horizontal transfer of the film) using 1 cm x 1 cm mica plates (Mica Sheet V5 

Quality, Science Services GmbH, Germany) attached to a stamp tool. The mica was lowered 

onto the surface and pulled off after 2 s of contact time. The mica was removed from the 
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stamp tool and the transferred film was covered with 1 drop of buffer solution to prevent 

drying of the sample. The transferred films were analyzed by underwater AFM (Bruker / 

Veeco / Digital Instruments MultiMode AFM ) using a cantilever (Arrow™ NCPt, resonance 

frequency 285 kHz, spring constant 42 N/m) in tapping mode (Nano World AG, Switzerland). 

Images were analyzed by NanoScope III 5.12r3 Software (Digital Instruments Inc., US).  

For the determination of interfacial film thickness the film was transferred onto silica by 

Langmuir-Schaefer technique. A scratch was made using stainless steel tweezers. Film 

thickness was determined by section analysis from an average of 6 measuring points from 

the silica substrate to the film (area unaffected by the scratch).  

 

 3.9. Mini-Trough 

The so-called “Mini”-trough was designed and built in-house. It consists of a PTFE trough 

with same proportions and functionality as the Kibron Langmuir Trough described before 

without a surface pressure measurement unit. Automated and continuous compression-

decompression cycles can be performed to stress the liquid-air interface only. In relation to 

the Langmuir Trough the dimensions of the Mini-trough are reduced by factor 8.7 with a 

maximum area of 27.0 cm2 (=Amax). This results in a trough length of 9.0 cm, a width of 

3.0 cm and a depth of 0.5 cm. To maximize contact between the sample surface and the 

barriers, the trough was slightly overfilled and therefore, the sample volume was set 

constant to 14.5 mL for all experiments.  Particle contamination was minimized by washing 

with ethanol (commercial grade, absolute) and repeated washing with highly purified water. 

A plastic enclosure covers the PTFE trough and the barriers (see Fig. 2). The samples were 

stressed by 100 cycles started after an equilibration time of 2.5 h. Compression factor (cf), 

defined as the ratio of maximum surface area to minimum surface area was kept constant at 

4.5 for all measurements. Compression speed was set to 55 mm/min. 

 

 

 

 

 

 

 

http://www.artisantg.com/Scientific/78254-1/Bruker_Veeco_Digital_Instruments_MultiMode_AFM_2_Atomic_Force_Microscope
http://www.artisantg.com/Scientific/78254-1/Bruker_Veeco_Digital_Instruments_MultiMode_AFM_2_Atomic_Force_Microscope
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 3.10. Particle Analysis 

 3.10.1. Light Obscuration 

Samples were analyzed for particles in the micrometer range by light obscuration (in analogy 

to USP 788 and Ph Eur 2.9.19 requirements) with a SVSS-C instrument (PAMAS, 

Partikelmess- und Analysesysteme GmbH, Rutesheim, Germany). After a pre-run volume of 

0.5 mL, each sample was analyzed in triplicates of 0.3 mL at a filling and emptying rate of 

10 mL/min. Before each run, the system was rinsed with at least 5 mL of highly purified 

water. Data was collected using PAMAS PMA Program V 2.1.2.0.  

 

 3.10.2. Micro-Flow Imaging 

Particle size and number were additionally measured using a micro-flow imaging (MFI) 

system DPA4100 from Brightwell Technologies Inc. (Ottawa, Canada) equipped with a high-

resolution 100 μl flowcell and the MFI™ View Application Software. Pre-run volumes of 

0.3 mL and sample volumes of 0.65 mL were drawn through the flow cell by a peristaltic 

pump at a flow rate of 0.1 mL/min. To optimize illumination and to provide a clean baseline 

the system was rinsed with highly purified water before and after the measurements.  

 

 3.10.3. Statistical Significance 

A t-test was performed with * for p ≤ 0.05, ** for p ≤ 0.01 and *** for p ≤ 0.001. 
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4. RESULTS AND DISCUSSION 

 4.1. Determination of the interfacial pI  of IgG using SFG 

Potentially, the pI of the IgG molecules at the liquid-air interface may differ from that of 

molecules in the bulk due to differences in dissociation of preferential adsorption of charge 

variants. The pI in the bulk (pIbulk) of the IgG was 6.94 as determined by DLS. The pI of mAB1 

amounts to 8.75 and of mAB2 to 6.51. SFG measurements were performed to determine pI 

of the IgG at the interface (pIinterface). The OH-stretching vibrations of interfacial water 

molecules between 3100-3800 cm-1 show a strong dependence on pH reflecting the charged 

state of the interfacial molecules (Fig. 1A). Additionally, a weak band due to aromatic CH-

stretching vibrations is observed at 3060 cm-1. Interfacial electrical fields induce changes in 

SFG intensities, particularly for small and highly polarizable molecules such as water [24]. As 

a result, pH dependent changes of the intensity of the OH-bands can be used to determine 

relative changes in the strength of the interfacial electric field (Fig. 1B). The local minimum 

of SFG intensities of OH-bands can be assigned to pIinterface [15], [16]. Accordingly, the 

pIinterface of the IgG was determined as 5.3. Thus, it was found to be considerably lower 

compared to pIbulk with 6.94. Engelhart et al. showed similar isoelectric points in bulk 

solution and at the liquid-air interface for bovine serum albumin and lysozyme [15]. The 

polyclonal IgG behaves different which may be explained by either a preferential adsorption 

of an IgG subtype to the interface or by changes in the dissociation of charged side chain 

residues. Further investigations are required for a conclusive statement. Nevertheless, these 

findings make clear that in discussions about electrostatic repulsions and intermolecular 

interactions, the bulk pI cannot be necessarily used. 

 

 

 

 

 

 

 

 

  



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
152 

A 

 

B 

 

 

 

 

 

 

Figure 1 A: SFG spectra of IgG at different pH values and B: pH dependence of the amplitudes of the OH 

stretching vibration at 3443 cm
-1

 

 

 4.2. Protein Adsorption as Function of pH  

To evaluate the influence of pH on the surface activity the equilibrium surface pressure 

values (πeq) were determined (Fig. 2). Overall, πeq of the IgG remains roughly constant 

between pH 3 and pH 7.6 with values of 18.5 mN/m at pH 6.8 and 21.3 mN/m at pH 3. At pH 

2 πeq values of 24.2 mN/m indicate an increased surface activity of the IgG and thus the 

beginning of unfolding at this very low pH. Although the absolute values are slightly lower 

compared to the IgG, a similar trend was observed for mAB1. In case of mAB2, surface 

pressures range between 15.8 mN/m and 17.9 mN/m for the pH values investigated. 

Different authors stated that the surface activity of proteins (e.g. β-lactoglobulin) reaches a 

maximum around the pI, as the protein exhibits minimal repulsion at this point leading to 

the formation of more dense layers or multilayers at this pH value [23], [37]. This effect, 

however, could not be seen for β-casein [25] as was the case in our study with IgG.  
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Figure 2: Equilibrium surface pressures as a function of pH of A: IgG, B: mAB1 and C: mAB2 

 

 4.3. Interfacial Film Compressibility 

Continuous compression-decompression experiments of the interfacial film were performed 

at different pH values (Fig. 3). The surface pressure increase upon movement of the barriers 

towards each other clearly demonstrated that the protein molecules stay at the interface 

upon compression. Barrier movement compresses and compacts the adsorbed film and thus 

can be related to an increase in film thickness and / or changes in packing density [28], [29]. 

The high compressibility and the appearance of a considerable hysteresis substantiate the 

formation of a viscoelastic protein network at the interface where in addition to 

hydrophobic interactions, hydrogen bonds contribute substantially to the molecular 

association [29]–[32]. However, no considerable pH effect, neither in hysteresis profile nor in 

film compressibility was detected. The maximum change in surface pressure Δπmax upon 

compression amounted to 39.6 mN/m for pH 9 to 39.8 mN/m for pH 3.  
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A B 

  
C D 

  
Figure 3: Compressibility of IgG 1 mg/mL at A: pH 9, B: pH 6.8, C: pH 4, and D: pH 3 

 

 4.4. Impact of pH on Secondary Structure: Bulk vs. 

Interface 

Protein secondary structure is sensitive to the charge state and therefore to pH [33] (Fig. 4). 

Between pH 4 and pH 9, the absorbance maximum of the amide I region of IgG at 1639 cm-1 

can be assigned to an intramolecular β-sheet structure of the IgG. At pH 4 as well as at pH 9 

the intensity of the peak is decreased due to slight perturbations within the secondary 

structure [34]. A clear peak shift of the amide I band from 1639 cm-1 to 1631 cm-1 is observed 

at pH 2 indicating that the IgG unfolds forming intermolecular β-sheets. This is in good 

accordance with the increased surface pressure value at pH 2 described before. Similarly, the 

maximum of the amide I region of mAB1 and mAB2 is situated at 1637 cm-1 referring to an 

intramolecular β-sheet structure and was not affected by pH.  
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Additionally, the secondary structure was evaluated during heating up to 93 °C (Fig. 5). 

Spectral changes of all proteins were observed starting at 73 °C. The amide I absorbance 

maximum around 1639 cm-1 (or 1637 cm-1 respectively) decreased accompanied by an 

intensity increase at 1625 cm-1 (or 1624 cm-1 respectively).  

Those changes were accompanied by a shift of the peak maximum at 1690 cm-1 to 1695 cm-1. 

The changes represent the change from intra- to intermolecular β-sheet structure for all 

three proteins investigated [35], [36]. Identifying the temperature-induced structural 

changes should help to interpret the IRRAS results. 
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Figure 4: Impact of pH on secondary structure analyzed by FT-IR at 25 °C of A: of IgG, , B: mAB1 and C: mAB2 
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Figure 5: Temperature-induced unfolding from 25 – 93°C analyzed by FT-IR of A: IgG, B: mAB1 and C: mAB2 

 

IRRAS was used to determine the secondary structure at the interface directly (Fig. 6). 

Evaluation of secondary structure elements of the amide I region revealed no significant 

conformational changes of the IgG at the interface compared to the bulk solution, neither 

after adsorption nor after compression. The slight shift of the peak maxima at pH 6.8 from 

1639 cm-1 in bulk solution to 1643 cm-1 at the interface can be explained the lower resolution 

or to by an overlay of slightly altered conformational modi, also indicated by broader peaks 

of the IRRA spectra compared to the FT-IR spectra.  Similar results were obtained for the 

mABs, as no pH-induced shift of the amide bands and therefore no unfolding was observed. 

Overall, the sensitivity to unfolding of IR spectra is limited as at least 20 % of the molecular 

portions must be altered to see significant changes in the peak positions [34], [37]. 

Nevertheless, no peak shift to lower wavenumbers as observed during heating, or at pH 2 in 

bulk solution were detected. Thus, the proteins essentially remain in a native-like 

conformation at the interface. Comparison of the IRRA spectra at different pH values reveals 

no impact of pH, similar to the FT-IR results in bulk solution.  
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Figure 6: IRRA spectra at equilibrium surface pressure (solid lines) and after compression by 15 mN/m (broken 

lines) at different pH values of A: IgG, B: mAB1, and C: mAB2 

 

 

 4.5. Impact of pH on Interfacial Film Structures 

 4.5.1. Brewster Angle Microscopy (BAM) 

BAM was performed at different pH values during adsorption as well as during compression 

of the film (Fig. 7). Upon adsorption a coherent interfacial film with an inhomogeneous 

protein distribution can be observed. Areas of increased brightness represent areas of 

increased packing density and / or film thickness, whereas darker regions imply a thinner 

protein film. Comparing the results of IgG at pH 4 and 3 to pH 6.8 it becomes obvious that 

the overall grey level increases with decreasing pH, particularly at pH 3. Moreover, the 

island-like character at higher pH changes to large elongated coherent areas of increased 

brightness at lower pH. The appearance of these larger coherent areas and the overall 

increase in brightness at lower pH suggest that the IgG molecules are more densely packed 

or indicate an increased interfacial film thickness. Furthermore, this effect was pronounced 
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in case of mAB1 as with decreasing pH the grey level increased and the island-like structure 

more and more vanishes (Fig. 8). In fact, the film appears smoother at lower pH values. A 

similar outcome was found for mAB2 as shown in figure 9. In this case, at pH 4 and 3 no 

larger areas referring to an inhomogeneous distribution of protein molecules over the 

interface as for pH 6 and 5.3 are detected. Further investigations focused on coherences on 

the topographical film appearance and the emergence of particles upon interfacial stress. 

Overall, slight changes in the topographical appearance of the BAM images depending on pH 

are observed. Also, Nino et al. demonstrated that the spreading of β-casein is not uniform 

over the liquid-air interface. Moreover, they stated that the reflected light intensity 

decreased with pH in case of β-casein, although other proteins such as milk or soy protein 

behave differently [38]. 
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Figure 7: BAM images of IgG 0.1 mg/mL at different pH during adsorption and compression with increasing 

surface pressure during adsorption and compression 

 

 

 

 

 

 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
159 
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Figure 8: BAM images of mAB1 0.1 mg/mL at different pH during adsorption and compression with increasing 

surface pressure during adsorption and compression  
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 Adsorption Compression 
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pH 5.3 
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Figure 9: BAM images of mAB2 0.1 mg/mL at different pH during adsorption and compression with increasing 

surface pressure during adsorption and compression 

 

 4.5.2. Atomic Force Microycopy (AFM) 

AFM is a versatile tool for the visualization of topographical features of liquid-air interfacial 

films after transfer on a solid substrate. After adsorption, a continuous film with small 

agglomerates is formed at pH 6.8 (Fig. 10). This implies clustered IgG material already after 

adsorption which is in good accordance with the BAM results. Compression causes the 

appearance of telescoped material which is no longer recognizable after decompression. A 

similar appearance can be observed for the films formed at pH 3 and pH 5. At pH 3 and 5, 

however, the distribution of IgG after adsorption to equilibrium surface pressure is slightly 

more inhomogeneous as circular clusters of IgG are separated by smooth and flat areas. For 

all samples, compression caused the formation of wrinkles and decompression resulted in 

smoother films compared to the adsorbed films. This is consistent with the compression-

decompression experiments where the surface pressure values ended up slightly lower after 

each cycle. Therefore, this can be explained by a loss of material within the film upon 
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interfacial stress. However, only little is known about Langmuir films of protein molecules. 

Moreover, the effect of pH as well as compressive forces on proteins adsorbed to the liquid-

air interface, have not been studied so far. Wang et al., however, examined the role of 

charge interaction on the adsorption behavior of an IgG1 onto a silica surface. The height 

profiles demonstrated a flat-on orientation of adsorbed antibody molecules at pH values 

between 4 and 8 [39]. 
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Figure 10: IgG 1 mg/mL A: in Equilibrium and B: Compression by 15mN/m and C: Decompression at A: pH 6.8, 

B: pH 5 and C: pH 3 
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 4.6. Determination of the Interfacial Film Thickness  

The thickness of the protein film at the interface in equilibrium and after compression at 

different pH values was determined by angle-dependent IRRAS measurements and 

compared to the values obtained by underwater AFM of the films after Langmuir-Schaefer 

transfer. The increase in the intensity of the OH-stretching vibration around 3600 cm-1 

indicates an increase in film thickness upon compression. Polarized light has different 

reflectivity properties for p and s, respectively, around the Brewster angle (~53.1°) with a 

minimized intensity of the reflected p-polarized light. As exemplarily shown for IgG at pH 6.8 

in figure 11, the reflectance-absorbance (RA) in the region of the OH-stretching vibration 

changes continuously for s-polarized light as a function of the AoI, whereas the RA of p-

polarized light exhibits a discontinuity around the Brewster angle. For comparison, spectra 

with the OH-stretching vibration were simulated (Fig. 12). The corresponding spectra 

(experimental and simulated) of mAB1 and mAB2 can be found in the appendix. 
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Figure 11: A: IRRA spectra of the OH-stretching vibration of IgG pH 6.8  in equilibrium Eq (top) and after 

compression Comp by 15 mN/m (bottom) at different AoI from 30° – 72° (from black via grey to green) in steps 

of 2°, s-polarized light (left), p-polarized light (right), A: experimental data and B: corresponding simulated 

spectra  
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Figure 12: Experimental and simulated RA intensities using p-polarized (□) and s-polarized (▴) light at the 

maximum position of the OH-stretching vibration (2750 cm
-1

) in equilibrium and after compression by 

15 mN/m 

 

The maxima of RA intensity of experimental and simulated spectra at different AoI were 

used to determine the layer thickness, assuming a refractive index of 1.5 for both the 

equilibrium and the compressed state which is in accordance with literature [40]. At pH 6.8, 

an IgG film of 3.05 nm thickness formed and upon compression by 15 mN/m it thickened to 

5.59 nm (Tab. 1). At pH 9, the interfacial film thickness of the IgG amounted to 2.88 nm and 

5.05 nm in equilibrium and after compression, respectively. Hence, no major difference in 

the interfacial film thickness can be detected between pH 6.8 and pH 9. In contrast, at pH 4 

the interfacial film thickness is much lower with values of 1.67 nm in equilibrium and 

3.45 nm after compression. For all three proteins investigated, the interfacial film thickness 

was lowest at pH 4 and compression results in an increase in film thickness. Overall 

comparison of the different proteins revealed highest interfacial film thickness values for the 

IgG and lowest for mAB1 with 1.50 nm in equilibrium and 2.41 nm after compression at pH 4. 

The hydrodynamic radius of the IgG in solution was determined as 6.9 nm by DLS which 

corresponds to literature [41], [42]. It has been stated that IgG molecules preferentially 

adsorb in flat orientation, which can explain that the interfacial film thickness is thinner than 
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the hydrodynamic radius in solution [42], [43]. Erickson [44] determined the minimal radius 

of a sphere that could contain a protein with 100 kDa to 3.05 nm and for 200 kDa to 3.84 nm 

[44]. Overall, the results suggest rather the presence of a monolayer than the formation of 

multilayers. Moreover, Wang et al. showed that an IgG1 adsorbed in a flat-on orientation at 

pH values between pH and 8 [39].  

 

Table 1: Interfacial film thickness of IgG, mAB1 and mAB2 in equilibrium and after compression by 15 mN/m at 

different pH determined by IRRAS and AFM 

  Equilibrium Compression  

  IRRAS AFM IRRAS AFM 

 pH     

IgG 4 1.67 nm 3.92 nm ± 0.61 nm 3.45 nm 4.28 nm ± 1.17 nm 

 6.8 3.05 nm 5.56 nm ± 0.94 nm 5.59 nm 6.41 nm ± 1.05 nm 

 9 2.88 nm 5.36 nm ± 0.86 nm 5.05 nm 6.67 nm ± 0.97 nm 

mAB1 4 1.50 nm 4.74 nm ± 1.41 nm 2.41 nm 5.73 nm ± 1.13 nm 

 6 1.57 nm 4.99 nm ± 1.79 nm 1.98 nm 5.92 nm ± 1.22 nm 

 9 1.80 nm 5.47 nm ± 0.76 nm 2.57 nm 6.55 nm ± 1.73 nm 

mAB2 4 2.19 nm 3.56 nm ± 1.33 nm 3.82 nm 4.65 nm ± 1.40 nm 

 5.3 3.22 nm 3.07 nm ± 1.54 nm 5.01 nm 4.99 nm ± 1.79 nm 

 

 

AFM was used as orthogonal methodology to determine the thickness of the interfacial film. 

Whereas artefacts may result from the film transfer on a solid substrate, AFM is not based 

on assumptions such as the refractive index and a mathematical simulation model. A scratch 

was made in a blotted film using stainless steel tweezers (Fig. 13) and the interfacial film 

thickness was determined as mean height from the silica substrate to the film area 

unaffected by the scratch. The film thickness values deduced from AFM are in the same 

order of magnitude as the ones determined by IRRAS but consistently higher (Tab. 1). 

Moreover, the percentage of increase in film thickness is slightly lower when determined by 

AFM compared to IRRAS.  This might be explained on the one hand by a possible relaxation 

of the transferred film as it is not measured in situ and on the other hand by incorrect 

assumptions and simulation for the IRRAS data. At pH 4 the interfacial film thickness of the 

IgG is smallest with 3.92 nm in equilibrium. For mAB1 the interfacial film thickness 

determined by AFM in equilibrium decreases from 5.47 nm at pH 9 to 4.74 nm at pH 4.  
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However, the interfacial film thickness of mAB2 at pH 4 and pH 5.3 is comparable with values 

of 3.56 nm and 3.05 nm, respectively. As only two pH values were investigated for mAB2 it is 

not possible to assess possible trends. Thus, the interfacial films of the IgG as well as for 

mAB1 are thinner at pH 4 compared to pH 6.8 and 9, similar to the results obtained by the 

angle dependent IRRAS measurements. 

 

 Equilibrium Compression 

pH 4 

 

 

 

 

pH 6.8 

 

 

 

 

pH 9 

 

 

 
Figure 13: AFM images of IgG after adsorption to equilibrium surface pressure and after compression by 

15mN/m including scratch at pH 4, pH 6.8 and pH 9. Mean height was determined as section analysis from the 

silica substrate to the film (area unaffected by the scratch)  

 

At pH 4, the molecules are more heavily charged what results in more repulsive interactions 

between the molecules. Thus, less molecules may adsorb resulting in a thinner interfacial 

film [45]. Overall, the results obtained for mAB1 and mAB2 follow the same trend as for all 

proteins the interfacial film thickens upon compression. This again supports the assumption 

that once adsorbed, short-range interactions dominate the behavior of an interfacial protein 

film and that protein molecules do not easily desorb upon compressive forces.  
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According to literature, antibody molecules form small non-uniform clusters equivalent to 2-

15 molecules as investigated by AFM [46]. Tronin et al. determined that the molecular 

orientation of IgG changes with increasing pressure as investigated by ellipsometry [47]. 

Transferring the liquid-air interfacial films of IgG on silicon wafers followed by drying they 

obtained an interfacial IgG film thickness of approximately 4 nm at low surface pressures, 

which coincides with the smallest dimension of IgG molecules, and about 10 nm at pressures 

up to 40 mN/m which is consistent with the largest molecular dimension [47]. Malmsten [48] 

evaluated an IgG adsorbed to a silica surface and concluded a dimension of 

23.5 x 4.5 x 4.5 nm3. Moreover, segments of the adsorbed molecules have been considered 

to twist and or tilt, driven by electrostatic interactions [46]. 

 

 

 4.7. Impact of pH on Particle Formation by Liquid-Air 

Interfacial Stress (Mini Trough)  

The impact of pH on the particle formation by liquid-air interfacial stress was investigated by 

100 continuous compression-decompression cycles in the Mini-trough and subsequent 

particle analysis. Figure 14 demonstrates the pH-dependence of IgG aggregation. While the 

number of particles at pH 3 and 4 is below 3000 particles/mL, an increase in pH results in 

higher numbers of particles formed. Consequently, the pH directly affects the number of 

particles formed by liquid-air interfacial stress only, although no considerable differences in 

the physicochemical film characteristics were detected and only slight topographical 

differences were revealed using BAM and AFM. Therefore, not only the events at the 

interface but also the protein-protein interactions both at the interface and in the bulk 

solution contribute to the number of particles formed upon compression and 

decompression and thus mechanical stressing a protein solution.  

Whereas at high pH net attraction between the protein molecules studied dominates, as 

indicated by the self-interaction parameter A2, the repulsive forces increase with decreasing 

pH, finally ruling at pH 4 and 3 [49]. This explains why less particles were detected at low pH 

values. Although partly clustered protein material, as observed by BAM or AFM, is brought 

into solution by interfacial stress, those loose conglomerates rather dissociate at low pH 

than sticking together due to the repulsive forces between the molecules. In contrast at high 

pH values the conglomerates formed at the interface persist in solution.  
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The interactions are also related to the charge state of the protein molecules at the surface 

and are affected by environmental conditions. Therefore, also salts providing charge 

shielding may both stabilize or destabilize a mAB solution against interface related stress 

[50], [51]. 

 

Figure 14: Number of particles ≥1 µm / mL after 100 continuous compression-decompression cycles of IgG at 

different pH in the Mini-trough determined by LO and MFI 
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5. SUMMARY & CONCLUSION 

Proteins exhibit surface activity and therefore adsorb to interfaces, such as the liquid-air 

interface. Upon mechanical stress, e.g. shaking, this can cause protein aggregation [52], [53]. 

The mechanistic details of this effect are not fully understood yet and a rational 

identification of formulation conditions which can prevent this instability is highly desirable. 

Changes of the formulation pH are associated with a different protein charge distribution 

and therefore altered protein-protein interactions. Repulsive forces go along with an 

increased colloidal stability, whereas attraction may provoke undesired agglomeration and 

clustering of the molecules [54], [55]. Although both pH condition and the presence of 

liquid-air interfaces have been identified to decisively affect protein stability, their complex 

interplay has not been investigated adequately. In this study, the effect of pH protein 

behavior at the liquid-air interface as well as pH-dependent particle formation by interfacial 

stress only was examined. The charge state of the IgG molecules reflected by the pI was 

determined not only in bulk solution but also at the liquid-air interface by SFG. Whereas the 

bulk pI was identified as pH 6.94, the interfacial pI was significantly lower at 5.3. Since the 

investigated IgG is polyclonal, it is conceivable that a specific IgG molecule population with 

specific characteristics such as pI preferentially adsorb to the interface. It may also be 

possible that dissociation of charged moieties is affected by the interface. Further 

investigations are required to understand this difference between pIbulk and pIinterface. 

Surface pressure measurements revealed no considerable impact of pH on equilibrium 

surface pressure, as roughly constant values of about 20 mN/m were reached. A higher 

equilibrium surface pressure of 24.2 mN/m resulted at pH 2 which can be explained by an 

increased hydrophobicity due to unfolding [56], [57]. FT-IR measurements confirmed no 

effect of pH on the IgG secondary structure despite at pH 2. While mAB1 did not reveal any 

pH-induced conformational changes, the secondary structure of mAB2 is sensitive to very 

low pH values as indicated by the peak splitting and peak shift to lower wavenumbers at 

pH 2. In addition, mAB2 precipitated above pH 6.5. The secondary structure of all proteins 

investigated was not affected by adsorption to the liquid-air interface. No shift or additional 

peaks referring to new secondary structure elements appeared. The secondary structure at 

the interface can be considered as essentially native-like between pH 3 and 6.8. Adsorption 

to the liquid-air interface results in the formation of a continuous film as visualized by BAM 

images for all proteins studied. The protein distribution over the interface is inhomogeneous 
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with areas of different reflectivity. During adsorption as well as during compression island-

like structures of increased brightness were noticeable, representing areas of higher packing 

density or film thickness. Nino et al. found a significant effect of pH on topographical 

characteristics due to the strong impact of pH on the conformation of soy protein whereas 

milk protein is not affected [25]. Hence, whether or not altered charge conditions affect the 

interfacial film structure depend on the type of molecules used. 

Compression of the film caused a considerable increase in surface pressure above 

equilibrium values. Repeated compression-decompression cycles revealed not only a high 

compressibility of the protein film but the appearance of a considerable hysteresis indicates 

physical changes within the film as the packing density and film thickness change with 

compression and decompression [12], [58], [59]. Moreover, compression did affect the BAM 

appearance. A slight increase in the overall grey level pointing to a higher packing density or 

altered molecular ordering within the film was seen at lower pH. Xu et al. [60] showed that 

protein molecules form small islands upon adsorption to biomaterial surfaces which is in 

good accordance with the results obtained in this study. At different scale, AFM images 

prove the formation of a continuous protein film with some areas of agglomerated protein 

at equilibrium surface pressure. Upon compression areas of telescoped material with 

increased height appeared which were no longer present after decompression. This is 

consistent with the fact that surface pressure values ended up slightly lower after each 

compression-decompression cycle. A formation and subsequent loss of clustered protein 

material from the interface upon compression and decompression can explain the 

topographical changes and the flattening of the film observed in AFM. This loss of clustered 

protein material may contribute to the emergence of protein particles in bulk solution.  

The interfacial film thickness was determined from the RA intensity of the OH-stretching 

band. At equilibrium surface pressure, the film thickness amounts to 3.05 nm and after 

compression by 15 mN/m to 5.59 nm, such as in the case of IgG at pH 6.8. The thickness at 

pH 9 is comparable (2.88 nm in equilibrium and 5.05 nm after compression) whereas a 

thinner film is formed at pH 4 (1.67 nm in equilibrium and 3.45 nm after compression). For 

mAB1 at pH 4 a thickness of 1.50 nm in equilibrium and 2.41 nm after compression was 

determined. The mAB2 films were 2.19 nm and 3.92 nm thick at pH 4 and 3.22 nm and 

5.01 nm at pH 5.3, in equilibrium and after compression, respectively. Orthogonal analysis of 

the film height by AFM rendered 5.56 nm ± 0.94 nm for the IgG at pH 6.8 in equilibrium. 
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Compression caused an increase in film thickness to 6.32 nm ± 1.05 nm. At pH 9 film 

thickness values were comparable, and at pH 4 slightly lower. The two mABs formed films of 

similar thickness. Compression caused an increase in AFM film thickness in all cases. Hence, 

AFM as well as angle dependent IRRA measurements resulted in similar values for the 

thickness of the protein films formed at the liquid-air interface. The minimal radius of a 

protein sphere of 100 kDa amounts to 3.05 nm [44]. The effective hydrodynamic radius of a 

monoclonal antibody is with 5-7 nm slightly higher than the equilibrium interfacial film 

thickness [44], [61] pointing to a preferentially flat orientation of the adsorbed IgG 

molecules [42], [43].  

Overall, the physicochemical investigations revealed no or only a minor effect of pH on the 

interfacial protein behavior. Mini-trough experiments connect compression and 

decompression of the protein film at the interface with particle formation. With increasing 

pH the number of particles formed upon stressing the interfacial film increased significantly. 

Thus, the studies demonstrate that a continuous, highly compressible interfacial film with 

areas of clustered, native-like protein material is formed upon protein adsorption. The 

considerable surface pressure hysteresis, the lowered surface pressure value after each 

compression-decompression cycle, and the smoother film after decompression indicate the 

loss of material and the transfer of protein clusters from the interface into the bulk solution. 

Consequently, repeated compression and decompression of the film results in the 

appearance of particles in the bulk. No effect of pH on the protein surface activity or folding 

was observed. But, pH strongly affected the number of particles formed upon stressing the 

film. Therefore, the bulk conditions have a vital influence on particle formation. Solution 

conditions which render attractive protein-protein interactions in the bulk preserve the 

clusters transferred from the interface into the bulk. In contrast, net repulsion of the protein 

molecules results in dissociation of the loosely packed protein agglomerates derived from 

the interface. Consequently, in the second part we complete this study with a detailed 

investigation of the protein-protein interactions depending on solution pH and ionic 

strength. A correlation with the aggregation tendency provides understanding of how the 

formulation conditions affect protein instability upon mechanical stress.  
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6. SUPPLEMENTAL INFORMATION 

 6.1. Determination of the isoelectric point (pI) in bulk 

solution 

  

Figure 15: Zetapotential of the IgG versus pH and determination of pI using a Bolzmann fit. pI is given by the 

changing point of the curve and was calculated to pH 6.9 (= x0)  
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 6.2. Interfacial film thickness by IRRAS 
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Figure 16: Experimental IRRA spectra (40s) of IgG in equilibrium (left) and after compression by 15 mN/m 

(right) at different pH. Data were used for the simulation and calculation of the interfacial film thickness 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
174 

 Equilibrium Compression 

pH 4 

3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

R
ef

le
ct

an
ce

 A
b

so
rb

an
ce

 /
 a

.u
.

Wavenumber [cm-1]
 

3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

Wavenumber [cm-1]

R
e

fl
e

ct
an

ce
 A

b
so

rb
an

ce
 /

 a
.u

.

 

pH 6 

3200 3300 3400 3500 3600 3700 3800 3900 4000

0.000

0.005

0.010

0.015

0.020

R
ef

le
ct

an
ce

 A
b

so
rb

an
ce

 /
 a

.u
.

Wavenumber [cm-1]

 

3200 3300 3400 3500 3600 3700 3800 3900 4000

0.000

0.005

0.010

0.015

0.020

R
ef

le
ct

an
ce

 A
b

so
rb

an
ce

 /
 a

.u
.

Wavenumber [cm-1]  

pH 9 

3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

R
e

fl
e

ct
an

ce
 A

b
so

rb
an

ce
 /

 a
.u

.

Wavenumber [cm-1]
 

3200 3300 3400 3500 3600 3700 3800 3900 4000
-0.005

0.000

0.005

0.010

0.015

0.020

0.025

Wavenumber [cm-1]

R
ef

le
ct

an
ce

 A
b

so
rb

an
ce

 /
 a

.u
.

 

Figure 17: Experimental IRRA spectra (40s) of mAB1 in equilibrium (left) and after compression by 15 mN/m 

(right) at different pH. Data were used for the simulation and calculation of the interfacial film thickness. 
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Figure 18: Experimental IRRA spectra (40s) of mAB2 in equilibrium (left) and after compression by 15 mN/m 

(right) at different pH. Data were used for the simulation and calculation of the interfacial film thickness. 
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 6.3. Interfacial film thickness by AFM 
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Figure 19: AFM images of mAB1 after adsorption to equilibrium and after compression by 15mN/m including 

scratch at different pH. Mean height was determined as section analysis from the silica substrate to the film 

(area unaffected by the scratch) 
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 Equilibrium Compression 

pH 4 

 

 

 

pH 5.3 

  

Figure 20: AFM images of mAB2 after adsorption to equilibrium and after compression by 15mN/m including 

scratch at different pH. Mean height was determined as section analysis from the silica substrate to the film 

(area unaffected by the scratch) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
178 

7. REFERENCES 

[1] C. J. Roberts, “Protein aggregation and its impact on product quality,” Curr. Opin. 

Biotechnol., vol. 30, pp. 211–217, 2014. 

[2] M. C. Manning, D. K. Chou, B. M. Murphy, R. W. Payne, and D. S. Katayama, “Stability 

of protein pharmaceuticals: An update,” Pharm. Res., vol. 27, no. 4, pp. 544–575, 

2010. 

[3] S. Uchiyama, “Liquid formulation for antibody drugs,” Biochim. Biophys. Acta, vol. 

1844, no. 11, pp. 2041–2052, 2014. 

[4] M. F. Wheeler and M. Peszyńska, “Computational engineering and science 

methodologies for modeling and simulation of subsurface applications,” Adv. Water 

Resour., vol. 25, no. 8–12, pp. 1147–1173, 2002. 

[5] C. J. Roberts, “Therapeutic protein aggregation : mechanisms , design , and control,” 

vol. 32, no. 7, 2014. 

[6] C. J. Roberts, T. K. Das, and E. Sahin, “Predicting solution aggregation rates for 

therapeutic proteins: Approaches and challenges,” Int. J. Pharm., vol. 418, no. 2, pp. 

318–333, 2011. 

[7] A. Hawe and W. Friess, “Formulation development for hydrophobic therapeutic 

proteins.,” Pharm. Dev. Technol., vol. 12, pp. 223–237, 2007. 

[8] T. Menzen and W. Friess, “Temperature-ramped studies on the aggregation, 

unfolding, and interaction of a therapeutic monoclonal antibody,” J. Pharm. Sci., vol. 

103, no. 2, pp. 445–455, 2014. 

[9] E. Sahin, A. Grillo, M. Perkins, and C. Roberts, “Comparative Effects of pH and Ionic 

Strength on Protein–Protein Interactions, Unfolding, and Aggregation for IgG1 

Antibodies,” J. Pharm. Sci., vol. 99, no. 12, pp. 4830–4848, 2010. 

[10] R. M. Fesinmeyer, S. Hogan, A. Saluia, S. R. Brych, E. Kras, L. O. Narhi, D. N. Brems, Y. 

R. Gokarn, “Effect of Ions on Agitation- and Temperature-induced Aggregation 

Reactions of Antibodies,” Pharm. Res., vol. 26, no. 4, pp. 903–913, 2009. 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
179 

[11] S. Rudiuk, L. Cohen-Tannoudji, S. Huille, and C. Tribet, “Importance of the dynamics of 

adsorption and of a transient interfacial stress on the formation of aggregates of IgG 

antibodies,” Soft Matter, vol. 8, no. 9, p. 2651, 2012. 

[12] J. S. Bee, S. K. Schwartz, S. Trabelsi, E. Freund, J. L. Stevenson, j. F. Carpenter and T. W. 

Randolph, “Production of particles of therapeutic proteins at the air–water interface 

during compression/dilation cycles,” Soft Matter, vol. 8, no. 40, p. 10329, 2012. 

[13] Y. F. Yano, T. Uruga, H. Tanida, H. Toyokawa, Y. Terada, M. Takagaki, and H. Yamada, 

“Driving Force Behind Adsorption-Induced Protein Unfolding : A Time-Resolved X-ray 

Reflectivity Study on Lysozyme Adsorbed at an Air / Water Interface,” Society, no. 14, 

pp. 32–35, 2009. 

[14] C. Postel, O. Abillon, and B. Desbat, “Structure and denaturation of adsorbed 

lysozyme at the air-water interface,” J. Colloid Interface Sci., vol. 266, no. 1, pp. 74–81, 

2003. 

[15] K. Engelhardt, W. Peukert, and B. Braunschweig, “Vibrational sum-frequency 

generation at protein modified air-water interfaces: Effects of molecular structure and 

surface charging,” Curr. Opin. Colloid Interface Sci., vol. 19, no. 3, pp. 207–215, 2014. 

[16] A. Rumpel, M. Novak, J. Walter, B. Braunschweig, M. Halik, and W. Peukert, “Tuning 

the molecular order of C60 functionalized phosphonic acid monolayers.,” Langmuir, 

vol. 27, no. 24, pp. 15016–15023, 2011. 

[17] A. Savitzky and M. J. E. Golay, “Smoothing and Differentiation of Data by Simplified 

Least Squares Procedures,” Anal. Chem., vol. 36, no. 8, pp. 1627–1639, 1964. 

[18] C. Schwieger, B. Chen, C. Tschierske, J. Kressler, and A. Blume, “Organization of T-

shaped facial amphiphiles at the air/water interface studied by infrared reflection 

absorption spectroscopy.,” J. Phys. Chem. B, vol. 116, no. 40, pp. 12245–56, 2012. 

[19] S. Schrettl, C. Stefaniu, c. Schwieger, G. Pasche, E. Oveisi, Y. Fontana, A. Fontcuberta i 

Morral, J. Reguera, R. Petraglia, C. Corminboeuf, G. Brezesinski and H. Frauenrath, 

“Functional Carbon Nanosheets Prepared from Hexayne Amphiphile Monolayers at 

Room Temperature,” Nat. Chem., vol. 6, no. 6, pp. 468–76, 2014. 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
180 

[20] V. L. Kuzmin and A. V. Mikhailov, “Molecular Theory of Light Reflection and 

Applicability Limits of the Macroscopic Approach,” Opt. Spectrosc., vol. 51, no. 4, pp. 

383–385, 1981. 

[21] V. L. Kuzmin, V. P. Romanov, and A. V Michailov, “Reflection of Light at the Boundary 

of Liquid Systems and Structure of the Surface Layer: A Review,” Opt. Spectrosc., vol. 

73, no. 1, pp. 1–26, 1992. 

[22] J. E. Bertie and Z. Lan, “Infrared Intensities of Liquids XX: The Intensity of the OH 

Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical 

Constants of H2O(l) at 25°C between 15,000 and 1 cm-1,” Appl. Spectrosc., vol. 50, no. 

8, pp. 1047–1057, 1996. 

[23] J. E. Bertie, M. K. Ahmed, and H. H. Eysel, “Infrared Intensities of Liquids. 5. Optical 

and dielectric constants, integrated intensities, and dipole moment derivatives of H2O 

and D2O at 22 °C,” J. Phys. Chem., vol. 93, pp. 2210–2218, 1989. 

[24] K. Engelhardt, M. Lexis, G. Gochev, C. Konnerth, R. Miller, N. Willenbacher, W. Peukert 

and B. Braunschweig, “pH Effects on the Molecular Structure of β‑Lactoglobulin 

Modified Air-Water Interfaces and Its Impact on Foam Rheology,” Langmuir, vol. 29, 

no. 37, pp. 11646–11655, 2013. 

[25] M. Rodrigueznino. M. R. Rodriguez Nino, C. C. Sanchez, C. P. Ruìz-Henestrosa,and  J. 

M. Rodriguez Patino, “Milk and soy protein films at the air-water interface,” Food 

Hydrocoll., vol. 19, no. 3, pp. 417–428, 2005. 

[26] J. M. Rodriguez Patino, M. R. R. Niño, C. C. Sanchez, S. E. Molina Ortiz, and C. Anon, 

“Dilatational properties of soy globulin adsorbed films at the air – water interface 

from acidic solutions,” vol. 68, pp. 429–437, 2005. 

[27] R. Wüstneck, V. B. Fainerman, E.V. Aksenenko, C.S. Kotsmar, V. Pradines, J. Krägel, and 

R. Miller, “Surface dilatational behavior of β-casein at the solution/air interface at 

different pH values,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 404, pp. 17–24, 

2012. 

 



CHAPTER VI          PART 1 
___________________________________________________________________________________________ 

 
181 

[28] R. R. Niño, C. C. Sànchez, and J. M. Rodrìguez Patino, “Interfacial characteristics of β-

casein spread films at the air-water interface,” Colloids Surfaces B Biointerfaces, vol. 

12, no. 3–6, pp. 161–173, 1999. 
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CHAPTER VI – Part 2 

THE MISSING PIECE IN THE PUZZLE:  

PREDICTION OF AGGREGATION VIA THE 

PROTEIN-PROTEIN INTERACTION PARAMETER  

 

1. ABSTRACT 

The tendency of protein pharmaceuticals to form aggregates is a major challenge during 

formulation development, as aggregation affects quality and safety of the product. In 

particular, the formation of large native-like particles in the context of liquid-air interfacial 

stress is a well-known but not fully understood problem. So, the impact of pH and ionic 

strength on the interaction parameter A*
2 and its link to aggregation upon mechanical stress 

was investigated. A*
2 of two monoclonal antibodies (mABs) and a polyclonal IgG was 

correlated to the number of particles formed upon shaking in vials. A good correlation 

between aggregation induced by interfacial stress and formulation pH was given. A*
2 was 

highest for mAB1 and lowest for IgG. Shaking of IgG resulted in overall higher particle 

numbers compared to the mABs. A*
2 decreased and particle numbers increased with 

increasing pH. Previous studies on the physicochemical behavior at the liquid-air interface 

pointed out that a continuous film with an inhomogeneous protein distribution over the 

interface is formed upon protein adsorption. Clusters of agglomerated, native-like protein 

material built up and are transferred into the bulk solution by compression-decompression 

of the interface. Whether or not those clusters lead to appearance of large protein 

aggregates or fall apart depends on the intermolecular forces. Thus, protein aggregation due 

to interfacial stress is correlated with the protein-protein interactions as determined by A*
2. 

This enables to differentiate different antibodies according to their propensity to form 

particles upon mechanical stress and to identify optimum formulation conditions. 

 

 

A
*
2 



CHAPTER VI        PART 2 
___________________________________________________________________________________________ 

 
188 

2. INTRODUCTION 

Aggregation of monoclonal antibodies (mABs) is a known critical instability pathway. More 

particularly, the presence of interfaces, such as the liquid-air interface can trigger aggregate 

formation and especially the formation of large particles [1]–[4]. Proteins adsorb and 

accumulate at interfaces due to their amphiphilic nature thereby forming an interfacial 

protein film [5]. Rupture of this highly viscous film, e.g. by shaking, can release clusters of 

aggregated protein material [3], [4]. In this context the formation of large native-like protein 

particles has been described [2], [6]. The impact of pH on the physicochemical behavior of 

proteins adsorbed to the liquid-air interface was investigated in part 1 of this study using 

surface-sensitive analytical methods. Surface activity as well as the physical film resistance 

did not show a considerable pH dependency. A continuous but inhomogeneous protein film 

is formed during adsorption with clusters of native-like protein material. The interfacial film 

thickness overall slightly decreased at lower pH values. Upon compression, the protein 

molecules are pushed together and interact more strongly as indicated by an enormous 

increase in surface pressure thereby reflecting very high local concentrations [7]. Similarly, it 

has been stated that strong compression can cause a collapse of the protein film thereby 

leading to a gradual displacement of protein molecules from the interface [7]–[9]. The 

appearance of a considerable hysteresis upon compression and decompression, lowered 

surface pressure values after each cycle and a smoother film after decompression indicate a 

transfer of clusters of agglomerated, native-like protein material from the interface into 

solution upon interfacial stress. This effect has also been frequently seen in literature [3], [4], 

[9], [10]. However, it has also been shown that also different formulation parameters, such 

as pH and ionic strength, directly affect the susceptibility of a protein to aggregate [11], [12]. 

Thus, an investigation of the protein-protein interactions in solution may serve as the 

missing piece in the puzzle as it contributes to a better understanding of protein aggregation 

upon interfacial stress. Although the interfacial protein behavior was only slightly affected by 

pH, it is known that clusters of protein material are derived from the interface and brought 

into solution upon interfacial stress. Protein particle formation, however, is known to be 

strongly affected by solution pH [13]–[15]. Consequently, this study aims to link the effect of 

formulation pH and ionic strength on the aggregate formation by agitation to the protein-

protein interactions determined via the second virial coefficient A*
2 in bulk solution.  
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3. MATERIALS AND METHODS 

 3.1. Materials 

Human IgG (Beriglobin™, CSL Behring GmbH, Germany) was used for this study. The market 

product contains 159 mg/mL human IgG in 22 g/L Glycine and 3 g/L NaCl buffer at pH 6.8. 

Two monoclonal antibodies (mAB1 and mAB2) were provided by AbbVie Deutschland GmbH 

& Co. KG, Ludwigshafen am Rhein, Germany. mAB1 is formulated in 20 mM Histidine buffer 

at pH 6.0 at 126 g/L, mAB2 in 15 mM Histidine buffer at pH 5.3 at of 94 g/L. In Hydrophilic 

Interaction Chromatography mAB2 turned out to be more hydrophobic compared to mAB1 

(relative perspective). Dilutions were performed using highly purified water (ELGA LC134, 

ELGA LabWater, Germany) and pH was adjusted by addition of 1 mM NaOH and 1 mM HCl, 

respectively. All samples were filtrated using 0.2 µm sterile polyethersulfone syringe filters 

(Sterile Syringe Filter PES, VWR, Germany). A 15 mM histidine buffer was used as standard 

condition. The low ionic strength solutions were prepared by 15 mM histidine buffer and pH 

adjustment only. The resulting ionic strength was calculated based on the amount of 

1 mM NaCl or 1 mM NaOH necessary for pH adjustment (Tab. 1). High ionic strength 

solutions were prepared by adding NaCl in the pH-dependent required quantity to achieve 

100 mM for all samples. The contribution of the polyelectrolytic proteins to the ionic 

strength was neglected. 

 

Table 1: Ionic strengths of 15 mM histidine buffer at different pH values without addition of NaCl  

pH Ionic strength [mM] 
2.0 28.3 

4.0 16.8 

6.0 12.0 

6.8 9.1 

7.6 8.4 

9.0 12.4 
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 3.2. Determination of A*
2 using Dynamic Light Scattering 

Dynamic light scattering (DLS) measurements were performed in 96-well plates (Greiner Bio-

One Cellstar 96 well cell plate Cat.-No. 655160) using a DynaPro plate reader (Wyatt 

Technologies, Santa Barbara, US). A triplicate of three wells was measured for every sample 

with 20 acquisitions of 2 s for every well. Data were analyzed with the DYNAMICS software 

(version 7.1.7.16., Wyatt Technologies) at 20 °C. A viscosity of 1.019 mPa*s and a refractive 

index of 1.333 were used for all measurements [16]. A linear fit of D versus protein 

concentration data using Origin 8G gives the interaction parameter kD [24]. The kD values 

were transferred to A*
2 values using the “TIM”-Equation [16]. For the polyclonal IgG, which 

consists of multiple molecular species the obtained A*2 value is only an apparent one.  

 

 3.3. Agitation Studies 

Agitation studies of 1 mg/mL antibody solutions in 15 mM histidine buffer were performed 

on a horizontal orbital shaker (GfL 3017, Gesellschaft für Labortechnik mbH, Burgwedel, 

Germany) at 100 rpm for 48 h (n=3). Each vial was filled with 4 mL and sealed with 20 mm 

Serum NovaPure® stoppers (RS 1343 4023/50G with B2-40 FluoroTec® Coating, West 

Pharmaceutical Services Deutschland GmbH & Co. KG, Eschweiler, Germany). 

 

 3.4. Particle Analysis 

 3.4.1. Visual Inspection and Photo-documentation 

Samples were analyzed for particles by visual inspection in a box with a blackboard equipped 

with a white light lamp for 5 s each following Ph. Eur. 2.9.19. Photodocumentation of the 

vials was performed using a Nikon digital camera (Nikon D5300 SLR digital camera, Nikon 

Corporation, Japan). Each sample was categorized according to table 2. 

 

 Table 2: Four Categories for visual inspection (following Ph. Eur. 2.9.19) 

0 1 2 3 

Free from particles Practically free from particles Several particles Many particles 
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 3.4.2. Turbidity 

Samples were analyzed for turbidity according to Ph. Eur. 2.2.1. A sample volume of 1.8 mL 

was analyzed using a Nephla turbidimeter (Dr. Lange, Duesseldorf, Germany). Data are given 

as formazine nephelometric units (FNU). 

 

 3.4.3. Light Obscuration 

Samples were analyzed for particles in the micrometer range by light obscuration (LO) with a 

SVSS-C instrument (PAMAS, Partikelmess- und Analysesysteme GmbH, Rutesheim, 

Germany). After a pre-run volume of 0.5 mL, each sample was analyzed in triplicates of 

0.3 mL at a filling and emptying rate of 10 mL/min. Samples with ≥ 40 000 particles per mL 

were diluted to stay within the specification of the instrument. Before each run, the system 

was rinsed with at least 5 mL of highly purified water. Data was collected using PAMAS PMA 

Program V 2.1.2.0.  

 

 3.4.4. Micro-Flow Imaging 

Particle size and number was additionally measured using a micro-flow imaging (MFI) system 

DPA4100 from Brightwell Technologies Inc. (Ottawa, Canada) equipped with a high-

resolution 100 μl flowcell and the MFI™ View Application Software. Pre-run volumes of 

0.3 mL and sample volumes of 0.65 mL were drawn through the flow cell by a peristaltic 

pump at a flow rate of 0.1 mL/min. To optimize illumination and to provide a clean baseline 

the system was rinsed with highly purified water before and after the measurements.  

 

 3.4.5. Statistical Significance 

A t-test was performed with * for p ≤ 0.05, ** for p ≤ 0.01 and *** for p ≤ 0.001. 
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4. RESULTS AND DISCUSSION 

 4.1. Impact of Protein and pH on A*
2 

The protein-protein interaction parameter A*
2 was determined as function of pH for all three 

proteins investigated. The polyclonal IgG shows the overall lowest apparent A*
2 values 

(Fig. 1), whereas mAB1 reveals the highest values. For all proteins, A*
2 decreased with 

increasing pH indicating an increase in attractive protein-protein interactions [18]. In case of 

mAB1, A*
2 remained positive over the entire pH range between 2.0 and 9.0. The IgG showed 

a similar decrease with pH as mAB1. However, mAB2 exhibited a drastic drop in A*
2 starting at 

pH 5.0 and no further values could be determined above pH 6.8 due to precipitation. 

Consequently also no agitation studies were performed for mAB2 above pH 6.8. Hence, mAB1 

is assumed to be the colloidally most stable protein with the least tendency to aggregate 

over the entire pH range. At the same time, mAB2 shows the most pronounced impact of pH 

on colloidal stability. 

 
Figure 1: (Apparent) A

*
2 values versus pH for IgG (■), mAb1 (●) and mAB2 (▼) in 15 mM histidine at low ionic 

strength without addition of NaCl  
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 4.2. Impact of Protein and pH on Particle Formation by 

Agitation 

A shaking study was carried out over 48 h for the three proteins at varying pH. The results of 

the visual inspection are given in figure 2. At pH 2.0, the formulations of all proteins were 

categorized to be free or at least practically free from particles, whereas particles were 

detected at all pH values above. Particularly, at pH 9.0 large protein particles were detected 

which is in good accordance with the hypothesis that interfacial stress can cause the 

formation of large protein particles. 

Turbidity values increased over time and the effect was most pronounced at higher pH for all 

proteins. Control samples of all formulations before shaking (t0) overall were below 1 in 

turbidity. In case of the IgG, no considerable increase in turbidity was observed for the 

formulations with a pH below 6.8, whereas the formulations at pH 7.6 and 9 exhibited 

elevated turbidity values of 4.1 and 5.1, respectively after 48 h. Also in case of mAB1, the 

highest turbidity value of 4.6 was reached after 48 h of shaking at pH 9.0. The mAB2 

solutions reached a maximum turbidity of 5.3 at pH 6.0 and, different to the other proteins, 

already shaking at pH 2.0 led to a significant increase in turbidity. At pH 5.3, the IgG showed 

no increase in turbidity but mAB1 and mAB2 rendered values of 2.6 and 4.5, respectively 

after 48 h shaking. Similar to turbidity, the numbers of particles detected by LO and MFI 

were increasing with increasing pH for all proteins. In case of IgG, at pH 9.0 a maximum of 

430,500 (LO) or 449,500 (MFI) particles >1 µm per mL was detected. The number of particles 

drastically decreased down to values well below 100,000 particles >1 µm per mL at pH 

values of pH 5.3 and below. Control samples of all formulations before shaking (t0) revealed 

particle numbers below 800 particles by LO and below 1000 particles >1 µm per mL by MFI. 

A similar dependency of particle formation on pH was found for mAB1 reaching maximum 

particle numbers of 61,300 (LO) and 73,800 (MFI) at pH 9.0. However, the number of 

particles is lower compared to the IgG. In case of mAB2 38,000 (LO) and 49,900 (MFI) 

particles >1 µm per mL were determined at pH 6. In comparison, mAB1 exhibited only 9,000 

(LO) and 7,500 (MFI) particles and thus a much lower aggregation tendency at that pH. MFI 

measurements overall indicated the presence of more particles compared to LO which can 

be explained by the presence of non-spherical protein particles as well as by the presence of 

particles with a similar refractive index as the surrounding solvent [19], [20].  



CHAPTER VI        PART 2 
___________________________________________________________________________________________ 

 
194 

Furthermore, also the number of large particles of >10 µm and >25 µm increases with 

increasing pH (Fig. 4). Following the trend of the overall number of particles formed upon 

shaking, mAB1 also formed fewest large particles with e.g. only 32 (LO) or 39 (MFI) particles 

> 25 µm at pH 9.0. However, it will be noted that although the IgG forms overall highest 

numbers of particles > 1 µm, the number of large particles >10 µm and >25 µm reaches 

equal values for all proteins. Particularly, in case of the IgG 73 (LO) or 82 (MFI) particles 

>25 µm build up at pH 6.8. At a similar pH of 6.0, mAB2 forms similar numbers of large 

particles with 86 (LO) or 91 (MFI). At the slightly lower pH of pH 5.3, only 32 (LO) or 41 (MFI) 

particles >25 µm build up in case of mAB2. 

Overall, shaking of the IgG resulted in the highest numbers of particles >1 µm per mL after 

48 h and both mAbs behaved rather similar. Although the absolute A*
2 values differ between 

the proteins, a clear trend can be observed as the number of particles directly increases with 

decreasing A*
2.  
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A      

pH 2.0 pH 4.0 pH 5.3 pH 6.8 pH 9.0 

    

 

 

 
B      

pH 2.0 pH 4.0 pH 5.3 pH 6.0 pH 9.0 

 

 

    

C     

pH 2.0 pH 4.0 pH 5.3 pH 6.0  

    

 

 
Figure 2: Visual inspection and photodocumentation of A: IgG, B: mAB1 and C: mAB2 after 48 h shaking at 

different pH values (without addition of NaCl) 
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A  

  B  

  

C  

  

Figure 3: Turbidity (left) during and number of particles > 1 µm (right) after 48 h of shaking, A: IgG, B: mAB1 

and C: mAB2 in 15 mM histidine without addition of NaCl  
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A  

  
B  

 
 

 C  

  
Figure 4: Number of particles > 10 µm (left) and > 25 µm (right) after 48 h of shaking, A: IgG, B: mAB1 and 

C: mAB2 in 15 mM histidine without addition of NaCl  
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 4.3. Impact of Ionic Strength on A*
2  

The impact of ionic strength on the protein-protein interaction parameter A*
2 is summarized 

in figure 5. In case of IgG, ionic strength does not have any considerable impact on A*
2. 

Different to that, mAB1 exhibited decreased A*
2 values at pH 7.6 and 9.0 indicating an 

increase in attractive interactions between the molecules at higher ionic strength.  Also the 

A*
2 of mAB2 became lower at higher ionic strength. Similar findings have been reported in 

literature thereby showing that with increasing the ionic strength protein attraction is more 

likely [16], [21]. Zhang et al. showed that protein-protein interactions between BSA 

molecules were dominated by an attractive potential at high ionic strengths in presence of 

I = 100 mM, whereas at low ionic strengths with less than 30 mM repulsive forces dominated 

[22]. Our ionic strength conditions were similar adding 100mM to achieve the high ionic 

strength condition for formulations which have at the most an ionic strength of 28.3 mM at 

pH 2.0 and 12.4 mM at pH 9.0. 

 
Figure 5: (Apparent) A

*
2 values versus pH for IgG (■), mAb1 (●) and mAB2 (▼) at low (solid line, closed 

symbols) and high (broken line, open symbols) ionic strength  
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 4.4. Impact of Ionic Strength on Turbidity and Particle 

Formation 

The influence of ionic strength on the susceptibility of the three proteins to 48 h shaking 

stress was analyzed comparing low and high ionic strength at different pH values. At high 

ionic strength, the protein solutions remained clear and free from visible particles at pH 2.0, 

whereas with increasing pH more and more particles were formed. Particle formation was 

most pronounced for the IgG sample. However, mAB1 and mAB2 followed a similar trend as 

visible particles were detected at higher pH in all cases (Fig. 6). Overall, the high ionic 

strength samples exhibited slightly more visible particles compared to the lower ionic 

strength formulations described above. 

Turbidity of the IgG solutions substantially increased over 48 h of shaking at pH 6.8 and 9.0. 

Higher turbidity resulted at high ionic strength at pH 6.8, but lower ionic strength at pH 9.0 

(Fig. 7A). Similar results were obtained in sub-visible particle analysis. Only mAB1 behaved 

differently, as turbidity was not much affected and remained overall low at pH 4. At pH 6.0, 

however, turbidity was higher in case of the high ionic strength samples. At pH 9.0, turbidity 

values overall were increased and revealed only slightly elevated values in case of high ionic 

strength. In contrast, both mABs showed higher numbers of particles measured by LO and 

MFI at high ionic strength, and also turbidity was higher compared to the low ionic strength 

samples at all pH values tested. Comparing the absolute numbers, it becomes clear that 

shaking of mAB1 overall resulted in the lowest numbers of particles compared to mAB2, and 

most pronounced in comparison to the IgG. Moreover, at high ionic strength more particles 

of > 10 µm or > 25 µm build up compared to low ionic strength, revealing the most 

pronounced effect at highest pH of 9.0 (Fig. 8). 
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Figure 6: Visual inspection and photodocumentation of A: IgG, B: mAB1 and C: mAB2 after 48h shaking at 

different pH values at an ionic strength of 100 mM 

 

 

 

 

 

 

 

 

 

A A A BB B B C C D C D D D D 

A A A C B B B B B CC D D C D 

A A B A B B B A B D C C 



CHAPTER VI        PART 2 
___________________________________________________________________________________________ 

 
201 

A  

  
B  

  

C  

  
Figure 7: Turbidity (left) during and number of particles > 1 µm (right) after 48 h of shaking, A: IgG, B: 

mAb1 and C: mAB2 in 15 mM histidine without addition of NaCl (solid line / left part of the graph) and 

at an ionic strength of 100 mM (broken line / right part of the graph) 
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A  

  B  

 
 

 
C  

  

Figure 8: Number of particles > 10 µm (left) and > 25 µm (right) after 48 h of shaking, A: IgG, B: mAB1 and 

C: mAB2 in 15 mM histidine without addition of NaCl (left part of the graphs) and at an ionic strength of 

100 mM (right part of the graphs) 
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5. SUMMARY & CONCLUSION 

Aggregation and particle formation is a frequently observed challenge in protein formulation 

development. Particularly, in the context of liquid-air interfacial stress upon shaking often 

large protein particles build up [28], [29]. On the one hand, various studies have been 

published on protein adsorption to interfaces and the effect of interfacial protein film 

disruption leading to particle formation [25]–[27]. On the other hand, aggregation in 

solution is very much dependent on protein-protein interactions which are highly affected 

by pH and ionic  [30]–[32]. In this study, we hypothesized that protein-protein interactions in 

solution are also strongly affecting particle formation upon shaking. 

Both the protein-protein interaction parameter A*
2 as well as the propensity to form 

particles upon shaking were determined for three different proteins at different pH values 

and two different ionic strengths. Moreover, A*
2 was found to depend on the protein itself. 

The repulsive interactions were most pronounced for mAB1 which accordingly exhibited the 

overall lowest tendency to form aggregates. A*
2 of the polyclonal IgG was substantially lower 

compared to the other proteins across the entire pH range investigated. Comparison with 

the results of the agitation studies revealed a good correlation between A*
2 and the number 

of particles formed, as the number of particles overall increased with decreasing A*
2. 

Additionally, also turbidity followed a similar trend. Next to the A*
2 values, also the number 

of particles measured for mAB2 was found to be in between the ones of IgG and mAB1. Thus, 

mAB1 was identified as the most stable protein upon shaking and A*
2 values were overall 

positive. Exemplarily, even at the lowest A*
2 at pH 9.0 only 61,300 particles >1 µm per mL 

(LO) were formed. Furthermore, the effect of pH was most pronounced for the IgG which 

upon shaking formed 19,000 particles >1 µm per mL at pH 2.0 and 430,500 particles >1 µm 

per mL at pH 9.0 (LO). Consistent with the A*
2 values of the IgG, which became negative at 

pH values of 6.0 and above, at pH 5.3 less than 100,000 particles >1 µm per mL were 

detected whereas at pH 6.8 already 300,000 particles >1 µm per mL were formed. Therefore, 

it was not only shown that A*
2 is different for each protein, but also that it directly correlates 

with the colloidal stability of a formulation. A study by LeBrun et al. also pointed out small 

variations in the protein-protein interaction parameter of an IgG1 by varying relevant 

formulation parameters, with pH and ionic strength having the most impact [21]. Differences 

between different antibodies can be traced back to their different structure what results in 

different charge distributions and net charges. Generally, antibodies carry a positive net 
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charge at pH values below the pI and a negative net charge at pH values above the pI. In 

good accordance to this, Li et al. demonstrated that BSA showed the lowest level in 

aggregation induced by liquid-gas interfacial stress directly at pI (pH 4.7) [33]. Moreover, at 

pH values down to 3.0, protein aggregation was found to be enhanced. In addition to charge 

effects, conformational instability leading to unfolding and stronger hydrophobic interaction 

comes into play, e.g. at highly acidic pH [34], [35]. Similarly, in a study by Majhi et al. the pH 

dependent aggregation of β-lactoglobulin was ascribed to the sensitivity to local charges in 

certain electrostatic domains, which have a particularly significant effect on protein-protein 

interactions [36]. Hence, also the net charge and the charge distribution within a molecule 

directly affect, next to the protein-protein interactions, its colloidal stability. Additionally, 

the aggregation mechanism of β-lactoglobulin was explained by an association process, 

where intermediate aggregates further associate and thereby form larger clusters [36]. 

Referring to this, the results obtained in this study agree with this assumption. Also, the pI 

values of the proteins investigated differ among each other, with the IgG having a pI of pH 

6.9, and mAB1 and mAB2 values of 8.75 and 6.51, respectively. Hence, the high pI of mAB1 

also contributed to the fact that it was found to be the most stable one compared to the 

other antibodies.  Above pI, A*
2 of all three proteins decreased due to charge shielding, and 

the aggregation propensity increased as indicated by the subvisible particle numbers. 

Different to pH, however, ionic strength only slightly affected A*
2. Nevertheless, at high ionic 

strength the samples exhibit more pronounced visible particles formation. Accordingly, also 

the number of particles formed upon shaking was increased, i.e. large particles >25 µm were 

found to a greater extent, what was most pronounced at high pH. At high ionic strength, 

protein charges can be shielded effectively which can foster protein aggregation and the 

effect also depends on the mAB investigated [47, 48]. Additionally, the nature of the 

shielding ion can affect aggregation. For example, citrate anions were found to preferentially 

accumulate at the surface of an IgG1 compared to acetate anions, resulting in different 

charge profiles and hence different intermolecular interactions [38]. Hence, it can be 

assumed, that attractive forces in bulk solution foster aggregation whereas repulsive ones 

promote rather a dissociation of loosely-packed protein material derived from the interface 

[8], [42]–[44]. Therefore, the complex interplay between interfacial film formation and 

transport of protein material into bulk solution upon interfacial stress can only be linked to 

the emergence of protein particles in bulk solution when protein-protein interactions are 
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taken into account. Consequently, A*
2 can serve as the missing piece in the puzzle, as it 

allows to rank protein formulations according to their propensity to form aggregates upon 

interfacial stress. 

In part 1 of this study it was shown that a continuous interfacial protein film with some areas 

of clustered protein material is formed at the liquid-air interface, independent of pH. Upon 

compression, the interfacial film thicknesses increases, and the protein molecules are 

brought into closer contact resulting in more pronounced protein-protein interactions. 

Repeated compression and decompression of the concentrated interfacial layer causes 

release of large agglomerates of native-like protein into the bulk solution. No effect of pH or 

salt on surface activity or folding was observed. But, pH affected the number of particles 

formed upon interfacial stress. In part 2 we demonstrated that the protein agglomerates 

disintegrate at solutions conditions which trigger enhanced repulsive protein-protein 

interactions, represented by positive A*
2 values, but sustain at conditions of more attractive 

interactions, represented by negative A*
2 values. It can be concluded that protein molecules 

can remain in a native-like conformation at the interface but still form aggregates if the 

molecules come close enough to each other, and if attractive forces are sufficiently high 

within the condensed protein film. Particularly, close to the pI attractive forces between 

protein molecules dominate, thereby strengthening the assembly of protein clusters. 

Repulsive forces at pH conditions away from the pI can have an opposite effect. Additionally, 

the charge interactions are affected by charge shielding effects by added ions. Therefore, 

although similar processes happen at the interface at all pH values and ionic strengths, 

solution conditions and hence protein-protein interactions dictate whether or not protein 

particles, especially large native-like protein particles, build up. As pH strongly affected the 

number of particles formed upon stressing the interfacial film, the bulk conditions have a 

vital influence on particle formation. 

Finally, a determination of A*
2 helps to identify optimum formulation conditions to increase 

stability of biopharmaceuticals against mechanical, specifically shaking stress. The A*
2 can 

also be a tool to screen different molecules for their susceptibility to undergo surface-

induced protein aggregation.   
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CHAPTER VII 

SUMMARY 

Protein aggregation is a major challenge in the development of biopharmaceutics as it 

negatively impacts product quality. The mechanisms and pathways of protein aggregation 

are manifold and can occur in parallel in a product. At many points during manufacturing 

and transportation of protein pharmaceuticals aggregation may be encountered. A better 

understanding of the features that influence, control and prevent protein aggregation is 

essential to enable a systematic and rational formulation development. Although it has 

already been extensively investigated that the presence of liquid-air interfaces is directly 

related to the emergence of protein aggregates, little is known about the aggregation 

mechanism at the interface itself. In particular, the formation of large native-like particles in 

the context of liquid-air interfacial stress is a well-known but not well understood problem. It 

was the aim of this thesis to provide an understanding of the behavior of immunoglobulins 

(IgGs) at the liquid-air interface and of the formation of aggregates, as well as to elucidate 

how formulation affects interface-related protein instability.  

In chapter III surface-sensitive analytical methods such as Langmuir trough experiments, 

Infrared Reflection-Absorption Spectroscopy (IRRAS), Brewster Angle Microscopy (BAM), and 

Atomic Force Microscopy (AFM) were combined to uncover IgG adsorption and structure at 

the liquid-air interface. Concentration-dependent adsorption of IgG and surface-pressure / 

area isotherms substantiated the amphiphilic nature of the protein molecules as well as the 

formation of a compressible protein film at the liquid-air interface. The increase in surface 

pressure upon compression of the protein layer demonstrated that the protein molecules 

rather stay at the interface and do not readily desorb upon compression. IRRA spectra 

proved not only the presence of the protein molecules at the interface, but also showed that 

the secondary structure does not change considerably during adsorption or compression. 

IRRAS experiments at different angles of incidence enabled to determine the effective film 

thickness (packing density) and proved that the film thickness increased upon compression. 

Furthermore, BAM images pointed out a coherent but inhomogeneous distribution of the 

protein at the interface. Topographical differences within the protein film after adsorption, 

compression and decompression were revealed using underwater AFM.  
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Different methodologies to thoroughly characterize the liquid-air interfacial behavior of two 

monoclonal antibodies were used in chapter IV. Therefore, not only physical-chemical 

aspects were taken into account, but also controlled stress of the liquid-air interfacial film. 

Therefore, a model was developed to investigate the impact of liquid-air interfacial stress 

only on protein aggregation. Repeated compression and decompression of the film in this 

newly designed test model resulted in significant formation of protein particles compared to 

controls, as detected by visual inspection, turbidity, Light Obscuration (LO) and Micro-Flow 

Imaging (MFI) analysis. The steep decrease in surface pressure upon decompression as well 

as the slightly decreased equilibrium surface pressure after each subsequent cycle of 

compression and decompression pointed towards a loss of protein material from the 

interface. Furthermore, the compressibility of the interfacial film was directly affected by the 

speed and extent of compression. Compression above a cf of 3 caused irreversible 

compaction of the protein molecules within the film as observed by the emergence of a 

pronounced hysteresis. The number of particles formed also increased with increasing 

compression factor. Accordingly, compression speeds of 25 mm/min and above triggered 

the formation of protein particles. The island-like distribution of protein observed in the 

BAM images goes in line with this hypothesis. However, as no major effect on secondary 

structure was observed by IRRAS, the IgGs are assumed to remain in a native-like 

conformation. Hence, the Mini-trough method is a highly expedient method for the 

localization of protein particle formation by liquid-air interfacial stress only. In addition, the 

Mini-trough represents a valuable tool to screen different formulation candidates for their 

propensity to undergo interface-related protein aggregation processes.  

The addition of surface active compounds is a popular option to improve the stability of a 

protein formulation and to prevent interface-related aggregation. Understanding of the 

behavior of both the protein and the additive at the interface is mandatory for the decision 

whether and which one to add. Therefore, physicochemical investigations and interfacial 

stress studies were performed with combinations of IgG and polysorbate 80 (PS 80), 

poloxamer 188 (P 188) or hydroxypropyl-β-cyclodextrin (HP-β-CD) in chapter V. Whilst IgG 

films were highly compressible, compression of an additive solution did not result in a 

considerable increase in surface pressure. The mixtures of both, revealed either IgG - or 

additive - like characteristics depending on the mixing ratio. The appearance of amide bands 

in IRRA spectra proved the presence of IgG at the interface in case of mixtures with the 
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surfactant present at concentrations below the critical micellar concentration (CMC). In 

formulations with additive present above CMC, no amide bands but characteristic additive 

bands were detected. Moreover, additive solutions did not supply any signal in BAM. 

Therefore, bright domains could be traced back to the presence of the IgG at the interface. 

No aggregate formation was observed upon mechanically stressing by shaking or repeated 

compression and decompression of samples with PS 80 and P 188 present above CMC in the 

Mini-trough. Also, HP-β-CD successfully inhibited aggregation, although to a lesser extent. 

Residual clusters of IgG were uncovered in BAM even at PS 80 concentrations above CMC. 

Similarly, residual IgG clusters were detected in mixtures with P 188 above CMC and all HP-

β-CD concentrations tested. In contrast, in mixtures with PS 80 far below CMC bright regions 

of large IgG domains emerged upon compression. Accordingly, areas of agglomerated 

protein material with increased height appeared in AFM images. Very low PS 80 

concentrations caused a destabilization compared to a surfactant free system with a more 

pronounced increase in particle numbers both in shaking and compression-decompression 

experiments. The different surface-sensitive techniques applied in combination with 

interfacial-stress studies provide valuable insights into the liquid-air interfacial film 

characteristics that help to better understand how formulation additives affect interface 

related protein instability. 

In chapter VI – part 1 the impact of pH and ionic strength on the liquid-air interfacial protein 

behavior was investigated. Equilibrium surface pressure value was only marginally impacted 

by pH and ionic strength. Only at a low pH values surface pressure increased which can be 

traced back to an increased hydrophobicity due to IgG unfolding as investigated by FT-IR. 

Secondary structure and mechanical properties of the IgG film were not considerably 

affected by adsorption between pH 3 and pH 9. Compression of the film caused the 

formation of telescoped areas which are no longer present after decompression. BAM 

showed slight changes in the film reflectivity depending on the pH value indicating changes 

within the interfacial film thickness. IRRAS experiments at different angles of incidence as 

well as section analysis of AFM images proved not only that the film thickness increased 

upon compression but also that the interfacial film was thinner at pH 4 compared to higher 

pH values. This was in accordance with the formulation dependent formation of particles as 

detected by Light Obscuration (LO) and Micro-Flow Imaging (MFI) upon repeated 

compression-decompression of the interfacial protein film.  
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Subsequently, the protein-protein interaction parameter A*
2 was analyzed by DLS and its 

importance for interface-related protein particle formation was studied (chapter VI - part 2). 

Whereas no considerable effects of pH and ionic strength on the physicochemical 

characteristics of the interfacial protein film were detected, particle formation upon shaking 

or continued compression and decompression was strongly related to pH and ionic strength. 

A*
2 decreased with increasing pH value for all three proteins investigated. This correlates 

well with the more pronounced particle formation with higher pH upon shaking. At low pH, 

repulsive forces between protein molecules dominate, impeding aggregation. Moreover, A*
2 

was found to be highest for mAB1 which showed lowest numbers of particles upon 

mechanical stress. Overall, high ionic strength caused a destabilization, as A*
2 decreased and 

the number of particles formed increased compared to lower ionic strength samples. 

Altogether, upon compression a highly concentrated protein phase is formed. Upon 

decompression, clusters of agglomerated protein material may remain or fall apart 

depending on the extent of attractive and repulsive protein-protein interactions. 

In conclusion, this work introduced valuable new surface sensitive methods that allow a 

better understanding of liquid-air interfacial protein behavior. The combinatorial use of 

physicochemical, spectroscopic and microscopic methods provided useful insights into the 

liquid-air interfacial protein characteristics and revealed the formation of a continuous but 

inhomogeneous film of native-like protein molecules whose topographical appearance is 

affected by compressive forces. The relevance of compression and decompression of the 

protein film at the liquid-air interface for the formation of protein particles was proven. 

Based on these achievements, the effect of formulation additives can be evaluated what 

helps not only to understand their mechanisms of action but also to identify the optimum 

additive type and concentration. Ultimately, whether aggregates and particles result after 

such stress depends on the protein-protein interactions and hence also on the formulation 

conditions. This understanding provides a good basis for the development of stable protein 

formulations. 
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