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Inhaltsangabe

Die zukünftige Elektronik steht vor einem Übergang von der konventionellen Technologie mit

dem Fortschritt, der von Moores Gesetz vorhergesagt wird, zu einer Quantentechnologie, in

der Quantentunneln und Kohärenter ballistischer Transport bedeutende Rollen spielen werden.

Diese Arbeit konzentriert sich auf vier wichtige Bereiche der Quantentechnologie, die als Grund-

kern von Quantentschaltkreisen angesehen werden können. Wir beginnen mit einer alternativen

Methode zum Maÿschneidern der Potentiallandschaft in zweidimensionalen Elektronensyste-

men, eingebettet in GaAs/AlGaAs-Heterostrukturen im ersten Kapitel. Wir präsentieren eine

Charakterisierung dieser Methode anhand von Feld-E�ekt, Hall-E�ekt und Aharonov-Bohm-

Messungen, um elektrostatische, dynamische und kohärente Eigenschaften zu untersuchen und

auch eine allgemeine Tauglichkeit unserer Methode für zukünftige Quantenanwendungen zu

zeigen. Im zweiten Kapitel untersuchen wir die Optimierung des ballistischen Elektronen-

transports zwischen zwei entfernten Quantenpunktkontakten. Wir präsentieren eine Technik

zur Messung der Winkelverteilung von Elektronen, die von einem Quantenpunktkontakt emit-

tiert werden, indem wir sie mit einem externen Magnetfeld ablenken. Sodann demonstrieren

wir, dass die emittierten Elektronen mit Hilfe einer elektrostatischen Linse e�ektiv auf einen

zweiten Quantenpunktkontakt fokussiert werden können. Im zweiten Kapitel zeigen wir auch

die Verstärkung der Kopplung zwischen zwei entfernten Quantenpunktkontakten auf Basis der

elektrostatischen Fokussierung ballistischer Elektronen. Unsere Beobachtungen sprechen für

eine Elektronendynamik gemäÿ einem Gauÿschen Strahloptikmodell beschrieben mit Hermite-

Funktionen. Dies führt zu deutlichen Korrekturen verglichen zu den üblichen Modellen, die

Elektronen als ebene Wellen beschreiben. Im dritten Kapitel diskutieren wir die kohärente Kop-

plung eines Quantenpunktkontaktes mit einem o�enen hemisphärischen Resonator. Wir stellen

ein Verfahren zur Bestimmung der Elektronenphasen-Kohärenzlänge unter der Annahnme von

Gauÿ-Hermit-Moden sowohl des Quantenpunktkontakts als auch des Resonators vor. Das letzte

Experiment verwirklicht schlieÿlich eine Lissajous-Schaukel-Ratsche, die eine gerichtete Bewe-

gung von Elektronen erzeugt und die Zeitumkehrsymmetrie auf dem Chip bricht, realisiert in

einem in eine Halbleiter-Heterostruktur eingebetteten Quantenpunkt. Zum Abschluss der Ar-

beit diskutieren wir die Ergebnisse der durchgeführten Experimente im Kontext der Quanten-

technologie.
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Abstract

Future electronics faces a transition from conventional technology with progress predicted by

Moore’s law to a quantum technology where quantum tunneling or coherent ballistic transport

plays a signi�cant role. This thesis concentrates on several applications of quantum technology.

We start with demonstrating an alternative method for engineering the potential landscape in

two-dimensional electron systems embedded in GaAs/AlGaAs heterostructures in the �rst chap-

ter. We present a characterization of this design using �eld e�ect, Hall e�ect, and Aharonov-

Bohm measurements to study electrostatic, dynamic and coherence properties and also show

the general feasibility of our approach for future quantum applications. In the second chapter,

we examine optimization of the electron transport between two distant quantum point contacts.

We present a technique to measure the angular distribution of electrons emitted from a quan-

tum point contact by de�ecting it with an external magnetic �eld. In the second chapter, we

also demonstrate coupling enhancement between two distant quantum point contacts by elec-

trostatic focusing of ballistic electrons. Our observations favor electron dynamics according to a

Gaussian beam optics model assuming Hermite functions rather than the frequently used plane

electron wave model. In the third chapter, we discuss the coherent coupling of a quantum point

contact with an open hemispherical resonator. We present a method to determine the electron

phase coherence length based on Gaussian-Hermite modes of both quantum point contact and

a cavity. Finally, the last chapter introduces a Lissajous rocking ratchet realized in the quantum

dot embedded in the semiconductor heterostructure. It creates directed motion of electrons and

breaks time-reversal symmetry on-chip. At the end of the thesis, we discuss results of performed

experiments in the context of quantum technology.
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Motivation and Introduction

Modern electronics emphasizes miniaturization. Perhaps the most remarkable technological

progress has come from reductions in the size of transistors, thereby increasing the number

of transistors per chip. This number is predicted by the eponymous Moore’s law [1] to double

in about 18 months. However recently transistor technology approaches characteristic device

sizes comparable to that of molecules, and correct description of the carrier dynamics requires

the inclusion of quantum mechanical e�ects. Nowadays quantum tunneling is widely used in

tunnel �eld-e�ect transistors (FET) or tunneling diodes as well as in the �oating gate operation

in the �ash memory technology [2]. In today’s processor technology tunneling causes unwanted

leakage currents, the main dissipation process and the limiting factor for the processor frequency

[3]. Due to this limitation, industrial companies cannot ful�ll Moore’s law anymore without en-

hancing device and calculation complexity [4]. Future technology will make use out of quantum

e�ects without paying the price of the complexity increase. The quantum technology increases

the level of control on the carrier transport and acts as a fundamental basis for applications in

fast and high-performance devices.

Usage of ballistic electron transport facilitates further electronic device optimization. Bal-

listic transport of electrons was �rst demonstrated in semiconductor structures with the de-

velopment of molecular beam epitaxy (MBE) [5] over lengths of the order of micrometers at

temperatures of liquid Helium. Recently ballistic electron e�ects were also observed at room

temperatures [6]. We can treat ballistic electrons as quantum-mechanical waves, which can re-

�ect, refract and scatter during propagation and thus are similar to electromagnetic waves [7]. To

study the coherent properties of ballistic electrons, we can assume interference and di�raction

experiments. Here we aim at the fundamental understanding of ballistic and quantum e�ects to

lay the grounds for future devices realizations.

In the thesis, we discuss the role of electron quantum coherence, ballistic electron trans-

port, and tunneling properties as well as production methods of nanoelectrical devices in the

agenda of the quantum technology. We show experiments based on mesoscopic devices in a

two-dimensional electron system (2DES) embedded in GaAs/AlGaAs heterostructures at cryo-

genic temperatures T < 4 K. The focus is enhancing control of electron dynamics in mesoscopic

devices fabricated in GaAs/AlGaAs heterostructures.

We organize the thesis as follows: in the �rst chapter, we show an alternative method of

creating potential landscapes via carrier repopulation of a depleted 2DES. We start with a dis-

cussion of the electrical �eld e�ect, followed by the sample fabrication process. Next, we discuss

electron scattering mechanisms in a 2DES and characterization examples of the created struc-

tures via our alternative method. At the end of the chapter, we focus on electron dephasing in

a GaAs/AlGaAs 2DES. In the second chapter, we discuss transport through two serial quantum

point contacts (QPCs) with the coupling by ballistic electrons being enhanced by electrostatic

1
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focusing. We model our multiterminal system using the Büttiker approach. In the �rst series of

measurements, we explore the lateral distribution of electrons emitted by a QPC using a mag-

netic de�ection experiment. We present a semi-analytical model and discuss our results in the

following sections. In the second series of experiments, we study electron focusing by an elec-

trostatic lens and demonstrate coupling enhancement between two distant QPCs. We compare

two di�erent models: geometrical optics and Gaussian beam optics to explain our experimental

results. In the third chapter, we show the coherent coupling of a QPC with an open hemispheri-

cal resonator. We present a method to determine the electron phase coherence length based on

Gaussian-Hermite modes of both QPC and a cavity. In the fourth chapter, we realize a Lissajous

rocking ratchet based on driving a quantum dot (QD) with two independent forces. We start

by discussing how to break the time-reversal symmetry in mesoscopic solid-state devices and

highlight the examples of a recti�er, a pump, and a ratchet. In the next section, we concentrate

on the case of a ratchet realized in a single QD, present its characterization and discuss electron

transport through the ac driven QD. We o�er the theoretical model based on a master equation

approach and focus on the symmetry properties of the Lissajous rocking ratchet in the following

sections. At the end of the chapter, we brie�y explain a few alternative implementations of the

Lissajous ratchet and its possible applications. The thesis closes with a summary and outlook.



Chapter 1

Mesoscopic Field-E�ect Devices in

Depleted Two-Dimensional Electron

Systems

In this thesis, we use samples based on a two-dimensional electron system contained in a GaAs/Al-

GaAs heterostructure. This chapter describes the formation of a 2DES, its physical properties and the

techniques to further con�ne the electrons. In brief, we present an alternative method for engineering

the potential landscape in a 2DES based on the electric �eld e�ect. We experimentally study the elec-

tronic properties of mesoscopic samples created with our design, including the tunability of carrier

density, mobility, and phase coherence and give a short theoretical discussion for each of them. We

submitted the results of this chapter to Physical Review Applied [8].

1.1 2DES fundamentals and electrical field e�ect

To create a 2DES, we can use a heterostructure containing layers of di�erent materials with dif-

ferent bandgaps. Each layer of the heterostructure is a thin epitaxial �lm produced for di�erent

materials with MBE. One way to achieve high-quality crystals is utilizing materials of the same

lattice structure and similar lattice constants during the growth procedure. A good choice is

GaAs/AlxGa1�xAs, 0 < x < 1 with di�erent ratios of aluminum and gallium that o�ers concen-

tration combinations with the desired properties [9]. In Fig. 1.1(a) we show an example of a

�-doped GaAs/AlGaAs based heterostructure with a schematic pro�le of the conduction band.

The di�erent bandgaps of GaAs and AlGaAs result in a triangular potential well with the �rst

subband energy below the Fermi energy. Charge carriers from the dopants populate the energy

states in the potential well that con�nes carriers in two dimensions [10].

One can further constrain electrons in one or zero dimensions in a controlled manner by

creating potential barriers in a 2DES. The electric �eld e�ect is a powerful tool for this task. When

used with multiple individual gates it provides full tunability while being compatible with high

mobility wafers. Alternative methods for structuring a 2DES include etching [11�13] and surface

oxidation techniques [14, 15]. While they ensure additional possibilities in combination with in-

plane side gates [16] or metal gates [17], etching and oxidation techniques alone lack tunability.

More importantly, they are restricted to wafers with a shallow 2DES causing a close proximity of

3
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Figure 1.1: a) Sketch of the conduction band in di�erent layers (marked with colour) of a GaAs/AlGaAs
heterostructure. b) Electrical �eld e�ect sketch in the sample containing a 2DES (blue hori-
zontal line) and surface metal gate (yellow). At the bottom we illustrate the resulting potential
pro�le, when negative voltage is applied to the gate.

surface states and doping atoms limiting the carrier mobility [18] and the electrostatic stability

at the nanoscale (related with the 1=f spectrum of charge noise [19�21]). Applications based

on the quantum mechanical coherence of localized carriers require superior control and stability

favoring the �eld e�ect.

A straightforward and the most common approach to shape potential landscapes by the

�eld e�ect, starting from an extended 2DES, is based on the controlled local depletion of the

2DES beneath individual surface gates by applying negative voltages Vg to them [see Fig. 1.1(b)].

This approach works perfectly for relatively small structures with simple topology such as few

coupled quantum dots [22, 23] or quantum point contacts. However, an individually tunable

one-dimensional array of N quantum dots requires at least � 2N metal gates, while even more

gates are needed for a two-dimensional array or for increased tunability. Failure of a single gate

would alter the current path and typically make the entire device useless. Furthermore, non-

trivial topologies such as an Aharonov-Bohm ring, allowing carriers to move in a circle around

a depleted center, require voltage biasing of a center gate without depleting the surrounding

carriers. This has been achieved by implementation of three-dimensional air bridges [24, 25].

However, the fabrication of air bridges is rather complex and limited to relatively big structures.

In a di�erent approach PMMA had been used to locally reduce the electric �eld beneath a global

top gate and thereby de�ne AB rings with limited tunability [26, 27].

By locally di�using in layers of AuGe we contact the 2DES in order to apply source-drain

bias V across the barrier. In case of a single barrier separating source and drain contacts it shifts

the chemical potentials �L,�R of the Fermi seas on both sides of the barrier in respect to each

other and a tunnelling current can �ow [lower panel of Fig. 1.1(b)]. This example describes a

typical transport measurement scheme in a FET, where a full range of parameters such as barrier

height, gate shape or coupling parameters for complex multigate structures are encoded in the

measured current and can be probed for di�erent combinations of source-drain and gate voltages.
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1.2 Lithography techniques

We use optical and electron beam lithography (EBL) to pattern mesoscopic structures on the

surface of a heterostructure. In this section, we describe the fabrication process, while we list

the speci�c fabrication parameters in the Appendix (A.1). We cut an approximately 5x5 mm2

Resist coating Exposure Development

Metal deposition

Wet etch

Lift o

Resist removal

1) 2) 3)
4a)

4b)

5a)

5b)

Figure 1.2: Sketch of the lithography process with positive resist. Step 1) The sample (grey) is spin-coated
with a photo- or electron-sensitive resist (red). Step 2) The resist is locally exposed (blue areas)
to either ultraviolet light through a mask or to a positioned electron beam. Step 3): During
development, the exposed parts of the resist are dissolved. Step 4a) For metal deposition, the
metal (yellow) is evaporated and deposited on the resist and sample surface. Step 4b) The
surface areas of the wafer are etched where the resist was removed. Step 5a) The resist is
removed, and the desired structure remains. Step 5b) The resist with metal on top is removed
by a lift-o� process, and the metal deposited on the wafer surface remains.

sized piece out of the wafer and clean it to improve surface quality. There are �ve main steps of

production from the bare wafer to the �nished sample including a nanostructure. All of these

steps involve separate lithography processes during which we write a pattern into a resist layer

on top of the sample surface. Steps divide into coarse and �ne structures lithography. For coarse

structures, UV photolithography based is used as a conventional method while for �ne structures

electron beam lithography (EBL) based on Raith E-line device is employed. The minimum size of

structures we build is limited by the wavelength of the radiation for the photolithography and

by the resist resolution for the EBL.

We sketch the lithography process in Fig. 1.2, for a detailed description the reader is advised

to reference [28]. After spin-coating, the positive resist is exposed through a shadow mask or by

scanning exposed areas with an electron beam to pattern the desired structures. Then the resist

is dissolved at the exposed areas with a development chemical. In the next step either metal (e.g.,

Ti/Au) is deposited on the structured surface or it is etched away with diluted sulfate acid, see

appendix (A.1) for details. In the following, lift-o� process removes the resist at the patterned

locations. The periphery of a �nal sample design is shown in Fig. 1.3. First so-called mesa layer

(�table� in Spanish) is de�ned. We etch away GaAs/AlGaAs layers beyond the depth of the 2DES

and leave the mesa area (illustrated in Fig. 1.3 with blue color) unchanged.

We create ohmic contacts to the 2DES by evaporating layers of AuGe/Ni/AuGe locally onto

the wafer surface. Then the wafer is heated for approximately 140s at 480�C to di�use in Ge

which moves much faster than Au or Ni into the AlGaAs layers. Ni acts as a di�usion barrier and

is used to control exact timing of the di�usion process. Another role of Ni is also an adhesion

material, to improve the adhesion of AuGe on GaAs. Au and Ni stay on the wafer surface, which

then allows subsequent contacting with the bond wire. Contacts consist of rectangular pads with

a meander edge structure to ensure a lower resistance through a large contact area after thermal
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Gates

b)a)

150 µm

Figure 1.3: a) Microscope image of the �nished chip layout. The central area framed by a blue square
contains the nanostructure. b) Optical lithography layout of a typical sample.

di�usion [28]. The contact optimization resulted in minimum 250 Ohm resistance of each Ohmic

contact. Finally, we de�ne golden gates in the last step of the optical lithography. The gates,

shown in Fig. 1.3, consist of a 5nm titan adhesion layer at the interface to the sample surface and

a 35nm golden layer. We use them to connect later to the nanostructures fabricated via electron

beam lithography. In a side project performed by Sebastian Konrad in his bachelor thesis, we have

studied the high-frequency properties of this gates through crosstalk and impedance matching

[29].

The nanostructure itself is too small for optical lithography and is fabricated by EBL at the

last step. We take particular care at the dose test of the desired designs and the writing order of

the design elements in the EBL machine (with the details in the master thesis by Hannes Seeger

[30]). In Fig. 1.3(a) the blue square contains the fabricated nanostructure. An extra fabrication

step, a global top gate is built on top of the nanostructure, to tune the carrier concentration

beneath it. For this purpose, an isolating layer that electrically separates the top gate and previ-

ously de�ned nanostructures is needed. We fabricate this layer by crosslinking the poly(methyl

methacrylate) (PMMA) resist. When exposed to a very high dose, the molecular chains of PMMA

crosslink among each other by secondary electrons and become insoluble in the used chemicals

[31]. Production steps of the top gate are similar to the one described in Fig. 1.2 and listed in in

the Appendix (A.1).

1.3 Sample design

In this section we probe an alternative method to de�ne complex nanoelectronic circuits based

on the �eld e�ect, o�ering full tunability of high-quality devices. Compared to common strate-

gies our method simpli�es the production of ring topologies and o�ers the prospect of scalability

while limiting the danger of general failure. Our idea, sketched in Fig. 1.4(a), is based on glob-

ally depleting the 2DES using a single top gate while we place nanoscale screen gates between

the top gate and the 2DES to locally shield the e�ect of the top gate and thereby regain free

carriers. We electrically isolate the top gate from the screen gates using an about 100nm thick

layer of cross-linked PMMA [31, 32]. In our sample the 2DES at the interface between AlGaAs

and GaAs is separated from the surface by 5 nm of GaAs (capping layer) followed by 70 nm of
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Figure 1.4: a) E�ect of a screen gate: the top gate (gray) is biased at Vt = �1V, the screen gate at Vs =
0:1V and the 2DES (light blue) is grounded. The dark blue regions are fully depleted. The
electrostatic potential (shown as equally spaced equipotential lines, arrows indicate the �eld
strength) has been calculated by self-consistently solving the Poisson equation using � = 2
for cross-linked PMMA and � = 12:8 for AlGaAs. For the calculation, we considered charges
on the gates and in the 2DES but neglected the e�ect of positively charged doping ions which
are immobile at cryogenic temperatures. b) False-colored optical microscope image of a Hall
bar sample. Yellow color indicates the screen gate (s) covering 2DES while the top gate (t) is
shown in gray.

homogeneously Si-doped Al0:36Ga0:64As and 35 nm of undoped Al0:36Ga0:64As [33]. Details of

the heterostructure can be found in the Appendix (A.1). The carrier density and the detailed

geometry of the con�nement potential depend on the electric �eld at the 2DES and can be �ne-

tuned by adjusting the individual gate voltages. In Fig. 1.4(a) we sketch the screening e�ect on a

grounded 2DES for an example of a positively charged screen gate beneath a negatively charged

top gate. Global top gates had been used previously for various purposes including the decrease

of telegraph noise [20] or for accumulation of carriers in undoped quantum wells [34, 35]. In

these examples gates on the GaAs surface are used to locally deplete the 2DES while in our case

carriers accumulate beneath the screen gate.

In Fig. 1.4(b) we display a scanning gate microscope (SEM) image of an actual Hall bar

sample. The top gate (t) is shown in light grey and the screen gate (s) colored yellow; the isolating

cross-linked PMMA manifests itself as a squared slightly darker region extending across most

of the image. By charging the top gate negatively with respect to the grounded 2DES and a

grounded back gate at the bottom of the 540�m thick wafer we deplete the 2DES beneath the

top gate where the screen gate doesn’t shield it. Below the top gate the shape of the screen gate

corresponds to the approximate form of the 2DES beneath. The screen gate in Fig. 1.4(b) de�nes

a Hall-bar with the source (S) and drain (D) and four side contacts used as voltage probes (1,2,3,4).

The top gate includes a large center square and six arms which electrically isolate the conducting

leads in the periphery of the Hall-bar. In our Hall-bar the free carriers are located directly beneath

a metal gate, which results in two critical di�erences to traditional devices: the direct vicinity

of metal can reduce the disorder potential as charged defects are partially screened by electron

rearrangement at the metal surface. At the same time, the metal will tend to screen the electron-

electron interaction in the 2DES below. In this chapter, we do not explore this reduced Coulomb

interaction but instead, demonstrate the general feasibility of our method.
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1.4 Field e�ect characterization

For the characterization measurements, we place the sample in a vacuum tube �lled with Helium-

gas as a thermal bath. We suspended the tube in liquid Helium-4 at the base temperature of

T = 4:2K. The sample was mounted on a chip carrier while the whole system had an option of

applying magnetic �elds along the tube axis. We sketch the electrical circuit diagram of the mea-

surement setup in Fig. 1.5. We used Yokogawa 7651 to apply gate voltages and a combination of

Figure 1.5: Electrical circuit diagram of the measurement setup with the SEM photo of the sample in the
center. Contacts 1,2,3,4 are left �oated, while we applied voltage across the SD contacts, and
measure the current at contact D. We also applied voltages Vs and Vt to the screen gate and
the top gate.

current preampli�er DL Instruments 1211 and multimeter Agilent 34411A to detect source-drain

current. We didn’t apply electric �ltering for the hall-bar measurements in the next sections,

see [36] for details of the measurement setup. We summarize the setup parameters for wiring in

Table (1.1) For a �rst characterization of our device we present in Fig. 1.6 the current �owing be-

Component Resistance (
) Capacitance to ground (F)

Double shielded coax ’ 1 > 100p

Manganin twisted pairs > 50 > 500pP
> 51 > 600p

Table 1.1: Resistances and capacitances in the electrical wiring.

tween source and drain contacts (while the side contacts are left �oating, see Fig. 1.5) in response

to a source-drain voltage ofVSD = 0:84mV as a function of both top gate and screen gate voltages

Vt and Vs. The lines of constant current display a kink at Vt � V d
t = �1:48V, marked by a dashed

horizontal line in panels a) and b), indicating complete depletion of the 2DES for Vt < V
d
t . The

almost constant slopes of the lines of constant current for Vt < V
d
t suggest a constant ratio of the

capacitances between the Hall bar and the two respective gates, Cs=Ct = dVt=dVs which we plot

in Fig. 1.6(d) versus Vs. This coupling ratio takes the large value of Cs=Ct ’ 75 at Vs ’ �200mV

near depletion where it indicates an e�cient screening of the top gate by the screen gate. The

gradual increase to Cs=Ct ’ 45 at Vs ’ 300mV indicates a growing in�uence of the top gate at

more positive Vs. It suggests that the Hall bar becomes wider at more positive Vs while the po-

tential pro�le at the Hall bar edges steepens. Consequently, the combination of top- and screen

gate voltages can be used to tune the Hall-bar edges and the shape and stability of quantum Hall

edge states [37]. Reliable predictions could be achieved employing a Poison-Schrödinger solver
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Figure 1.6: a) Current I through the Hall bar at VSD = 0:84mV (gray scale and lines of constant current at
an interval of 0:2�V) as a function of top gate Vt (y-axis) and screen gate Vs (x-axis) voltages.
The horizontal dashed line at Vt � V d

t = �1:48V indicates the onset of depletion of the 2DES
below the top gate away from the screen gate. b) and c) Vertical and horizontal cuts I(Vt)
and I(Vs) from panel a (�xed voltages Vs and Vt, respectively, are indicated by color coded
arrows). d) The slope dVt=dVs of the constant current lines versus Vs at Vt = �2:5V. Vertical
dashed lines indicate intersections with constant current lines in panel a.

such as nextnano3 [38], while breakdown measurements of the quantum Hall e�ect would pro-

vide an experimental test [37]. Both ideas go beyond the scope of the chapter but are topics for

the future.

From measured ratios of capacitances we can quantify the shielding of the top gate by

the screen gate: we therefore determine the ratio Cs=C
0
t with C0

t being the capacitance between

the top gate and the 2DES without screen gate in between. For a �rst estimate we compare

the depletion voltages of the respective gates Cs=C
0
t ’ V d

t =V
d
s ’ 1:48=0:2 ’ 7:4. For an al-

ternative estimation of Cs=C
0
t we determine the carrier density of the 2DES at grounded gates,

Vt = Vs = 0, based on Hall measurements to be n0
s ’ 1:45 � 1011 cm�2. Using a plate capaci-

tor model accounting for two dielectric layers of equal thickness, PMMA and AlGaAs, we then

�nd the dielectric constant �PMMA ’ 2:0 where we used the literature value �AlGaAs = 12:8
and the measured depletion voltage V d

t = �1:48V. Our plate capacitor model then predicts

Cs=C
0
t ’ 1 + �ALGaAs=�PMMA ’ 7:4 in excellent agreement with our �rst estimate. As a result,

we �nd C0
t =Ct = (Cs=Ct) =

�
Cs=C

0
t

�
’ 75=7:4 ’ 10:1 at Vs = �0:2V, i.e. the screen gate reduces

the coupling of the top gate to the 2DES roughly by one order of magnitude. Clearly, this result

depends on the geometry details and the applied voltages.

1.5 Electron transport in 2DES

We aim at evaluating the quality of the 2DES in nano circuits created with our method and discuss

the electron dynamics in the 2DES. Transport in mesoscopic systems can be classi�ed in di�erent

regimes by comparing the device sizes with characteristic scattering lengthscales [39]. We start

with the single particle scattering time �s that is a measure of how long an electron remains in
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any given momentum eigenstate. The scattering rate 1=�s for the single-particle excitations is

given by:
1

�s
=

Z
dk0Wkk0 , (1.1)

where Wkk0 represents the probability matrix element of the system to transform from momen-

tum state k to k0 . For a degenerate Fermi liquid the single particle scattering length ls can

be de�ned as ls = vF�s, where vF is the Fermi velocity. The momentum scattering time �m

is de�ned as the time a carrier moves before collisions randomize its momentum (direction).

L

w

w

lm

lm

Ballistic

Diffusive

Figure 1.7: Sketch of ballistic
and di�usive transport in meso-
scopic systems with width W
and length L. Red line represent
electron trajectories and black
line de�nes the channel.

The scattering rate 1=�m can be approximated as:

1

�m
=

Z
dk0Wkk0 (1 � cos�kk0 ) (1.2)

where �kk0 is the angle between the electron momentum be-

fore and after a scattering event. The integral is weighted by

(1 � cos�kk0 ), since large-angle scattering events are more prob-

able to randomize the direction of motion. In a typical remotely-

doped GaAs/AlGaAs heterostructures the majority of scattering

happens from ionized impurities spatially separated from the

2DES. As a result scattering is dominated by small-angle scatter-

ing, and �m >> �s [40].

The mean free path lm is the average distance an electron travels before its initial momen-

tum is destroyed lm = vF�m. By comparing lm with the dimensions L;W of the sample sketched in

Fig. 1.7 di�erent transport regimes can be determined. For the case that the elastic mean free path

lm is smaller than the dimensions L;W of the sample (lm << L;W ), the carriers exhibit di�usive

transport. For the case lm > L;W we assume that electrons propagate balistically.

1.5.1 The Drude model

We can describe the di�usive regime for L;W >> lm using the Drude model [10]. In the presence

of an in-plane electrical �eld electrons acquire an average drift velocity:

vdrift = ��E, (1.3)

where the electron mobility is � = e�m
m , m represent the e�ective electron mass in GaAs (m =

0:067me) and e is the elementary charge. The resistivity �, may be expressed as

� = ��1 =
m

e2ns�m
, (1.4)

by using the Einstein relation �ensvdrift = �E, where � is the conductivity.

1.5.2 Hall measurements: carrier density and mobility

For our device we �rst measure carrier density and mobility based on the Hall-bar introduced

above. As reference we use the �nominal� mobility and carrier density averaged over the wafer

measured directly after growth at the cryogenic temperature of T = 4K using the Van-der-Pauw

method [41]. They are � = 0:7 � 106 cm2V�1s�1 and ns = 2:27 � 1011 cm�2, corresponding to
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a mean free path of lm = 5:5�m. In our actual sample we determine the carrier density (aver-

aged over the width of the Hall bar) by measuring the classical Hall voltage VH / 1=ns [10] and

the mobility by measuring the longitudinal resistivity in the limit of tiny magnetic �elds B ! 0
(R13 = R24 / �0 / (ns�)�1), both at T ’ 4:2K. We sketch the electrical circuit diagram of the

measurement setup in Fig. 1.8(.) For all the measurements we keep the source-drain current con-

Figure 1.8: Electrical circuit diagram of the measurement setup. In a Hall measurement current is applied
between source (S) and drain (D) contacts and voltage is detected at the probes numbered 1,
2, 3, and 4. Magnetic �eld B is applied out-of-plane of the sample.

stant with a current source Keithley 6221 and measure voltages with Agilent 34411A multimeters.

We used the same electrical wiring as described in section (1.4). In Fig. 1.9 we present our results
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Figure 1.9: Hall measurements: Electron carrier density ns in panel a) and mobility � of the 2DES in panel
b) versus screen gate voltage Vs for various top gate voltages Vt < V

d
t . The inset presents the

actually measured longitudinal resistance R13(Vs) at B! 0mT.

as a function of screen gate voltage Vs and for various top gate voltages Vt < V
d
t , i.e. where the

2DES beyond the Hall-bar is fully depleted and the Hall-bar is well de�ned. Both, the carrier

density and mobility depend only little on the top gate voltage but are widely tunable by varying

the screen gate voltage. For Vs < 100mV we observe a linear decrease of both, ns and �, with

decreasingVs indicating an approximately constant capacitanceCs between 2DES and the screen

gate and a resistivity �0 / n�2
s (equivalent to � / ns). We note, that gate voltage independent

capacitances (as ourCs) between gates and the 2DES are not guaranteed as this property depends

on the wafer material. Leveling of mobility � at Vs > 0:1V while ns still increases we can explain
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assuming that larger ns no longer enhance screening of electrical �eld or that mobility is limited

by the screening independent of carrier scattering. In our sample, at Vs = 0 carrier density and

mobility are reduced by approximately a factor of two compared to the �nominal� values of the

pristine wafer. However, the �nominal� values can be recovered by applying positive Vs. This

result suggests, that wafers with a higher doping level could be advantageous for applications

requiring a high mobility or a highly tunable carrier density.

1.6 Electron dephasing in mesoscopic systems

We also probe dephasing properties of electrons in a 2DES de�ned with our method. The related

time-scale, phase coherence time �� determines how long a charge carrier may travel before

losing its phase memory [42].

In the di�usive transport regime [43] the phase coherence time �� depends on the corre-

sponding lengthscale, phase coherence length l� as:

l� =
q
de�� , (1.5)

where the di�usion coe�cient, de, is related to the Fermi velocity vF and the elastic scattering

time �m:

de = 1=2v2
F�m. (1.6)

For the ballistic transport regime we can assume l� = vF�� .

1.6.0.1 Aharonov-Bohm e�ect and dephasing in quasi-1D channels

We employ magnetoconductance �uctuations in a ring geometry for estimating phase-coherent

properties of the 2DES [43]. We illustrate the principal setup in Fig. 1.10, where a ring

encloses an area S and connects two electron reservoirs with chemical potential �s and �d.

B

L

µd

µs

S

Figure 1.10: Sketch of the
Aharonov-Bohm ring with per-
pendicular magnetic �eld B ap-
plied. Electron trajectories are
shown in red.

The two alternative electron pathways through the ring, as

sketched in Fig. 1.10 with red lines give rise to the electron in-

terference at the crossover point with phase di�erence

�1 ��2 = �� =

I
~kd~r � ne

~

I
~Ad~r ; (1.7)

where ~A is vector potential, ~k is the electron wavevector and
~Ad~r = ~B~S is magnetic �ux through the ring. The �rst term

�’es =
H
~kd~r sums up all phase shifts related to the existence of

multiple paths (as for universal conductance �uctuations [44�46])

or geometry (such as the electrostatic phase shift due to geometri-

cal asymmetry or electron wavevector between the left and right

arms of the ring [47]). The second term (ne=~)
H
~Ad~r represents

the magnetic phase is 2�n times the number of enclosed mag-

netic �ux quanta, where n corresponds to the interference of the trajectories that make n half-

revolutions around the ring. Assuming equal transmission amplitudes t0 for both branches we

can calculate current through the ring

I / j(t1 + t2)j2 / 2t20(1 + cos(��)) ; (1.8)
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where t1;2 = t0exp(�i�1;2) is transmission of the arm of the ring. The current oscillations phe-

nomenon has been proposed in 1959 by Aharonov and Bohm and is called Aharonov-Bohm ef-

fect [48]. Sharvin and Sharvin made the �rst observation of the e�ect in a solid in a long metal

cylinder[49]. In the ring geometry, it was investigated by Webb et al. [50]. The Aharonov-Bohm

(AB) oscillations can be thus formally described as

I = I
�
1 + v cos

� e
~
BS + �’es

��
; (1.9)

where I is the current averaged over B, v = I0=I the visibility of the AB oscillations with ampli-

tude I0.

Our method introduced above o�ers a straightforward way to fabricate conducting path-

ways with a ring topology. In Fig. 1.11 we present a photograph of a sample containing seven

quasi-one-dimensional Aharonov-Bohm (AB) rings of various sizes and shapes in a parallel con-

�guration connected to two-dimensional leads. We can measure the conductance of an individual

ring by depleting the 2DES below the top gate and below all ring-shaped screen gates beside the

one of the AB-ring of interest. To explore the phase coherence of the carriers, we here concentrate

on the smallest ring (rightmost in Fig. 1.11) which we also present as a scanning-electron micro-

scope picture in Fig. 1.12(b). We also show the electrical circuitry of the measurement setup in

Figure 1.11: False-colored optical microscope image of the Aharonov-Bohm sample with seven individ-
ual AB rings and electrical circuit diagram of the measurement setup. We colorize the screen
gates in yellow and the top gate in gray. Unused AB rings are depleted by applying su�-
ciently negative Vs(not shown in the sketch). We used �ltering sketched in the insets for
both gate wires (g-�lter) and source-drain wires (sd-�lter), where resistances and capati-
cantes of the circuitry can be found in tables (1.2) and (1.3). Details of the setup and �ltering
are discussed in master thesis by Bachsoliani [36].

Fig. 1.11. The setup parameters for wiring and �ltering for gate wires and for source-drain wires

are listed in tables (1.2) and (1.3). In Fig. 1.12(a) we present an example of AB oscillations, mea-

sured in a dilution refrigerator Oxford Instruments Kelvinox at a lattice temperature of 25 mK.

Here we plot the current I �owing through the smallest ring in response to a source-drain volt-

age of V = 0:1mV versus the perpendicular magnetic �eld B. The measured period of the AB
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Component Resistance (
) Capacitance to ground (F)

Double shielded coax ’ 1 ’ 100p

Low temperature sd �ltering 1k 500p

Cu coax sd wires < 200 250p

Filter box sd wires 2:2k 1:8n

Double shielded coax ’ 1 100pP
(sd wires) ’ 3:4k ’ 3:31n

Table 1.2: Resistances and capacitances in the source-drain wires for AB-experiment.

Component Resistance (
) Capacitance to ground (F)

Double shielded coax ’ 1 ’ 100p

Room-temperature gate �ltering wires 100k 1�
Cu/NbTi loom gate wires < 10 300p

Low-temperature gate �ltering 330k 230n

Double shielded coax ’ 1 100pP
(gates) ’ 432k ’ 1:2�

Table 1.3: Resistances and capacitances in the gate wires for AB-experiment.

oscillation in Fig. 1.12(a) of �B ’ 7:9mT corresponds to the enclosed area of S = h=eB ’ 0:5�m2,

coinciding with the area framed by the dashed line in Fig. 1.12(b). In order to observe the AB-

oscillations shown in Fig. 1.12(a) it was necessary to almost completely deplete the carriers in

the AB-ring by applying Vs close to the depletion voltage V d
s . This hints at a channel width

so wide that it allows for multiple paths (in each arm) contributing with individual phases to

the conductance which e�ectively reduces the visibility of the AB-oscillations [51]. As a rule

of thumb, for our geometry an enclosed area di�erence of about 1% would su�ce to generate

a phase shift of � at B ’ 200mT. The almost depleted ring su�ciently reduces the number of

possible paths to reach a visibility of few percent. Taking the Hall-bar measurements above as

a reference for the applied gate voltages we expect a carrier density of � 8 � 109 cm�2 and a

mean free path in the order of 1�m which is the same order of magnitude as the arm length of

our AB-ring of L ’ 1:5�m. However, screening is reduced along the almost depleted AB-ring,

such that the mean-free-path is likely shorter. Hence, we conclude that the electron dynamics

in our AB-ring is located somewhere between the quasi-ballistic and the di�usive regime. One

way to reach the ballistic regime in future devices will be to further reduce the intrinsic channel

width such that quasi-one-dimensional channels can be realized at relatively large carrier den-

sities. A further reduction of the screen gate width by a factor of four is easily achievable by

electron-beam-lithography.

In Fig. 1.13(a) we present AB-oscillations of the current I � I as a function of B and Vs

while in panel b we show an exemplary depletion curve plotting the current I(Vs) averaged

over B. The latter strongly oscillates as observed for Coulomb blockade oscillations, the current

becomes small but stays �nite in the Coulomb valleys. Such behavior can be explained assuming

two quantum dots in parallel [52], i.e., one dot in each arm of the AB-ring as indicated in the

inset. The exact position of the quantum dots is thereby unknown. The overall resistance of R ’
120k
 � h=e2 at the two distinct current maxima below Vs �V d

s = 10mV is in agreement with

the assumption of two parallel dots giving rise to well-established Coulomb blockade oscillations.

The two-terminal AB-oscillations in Fig. 1.13(a) feature (i) continuous phase shifts at �nite B,

con�rming the contribution of multiple paths in each arm, and (ii) phase jumps as a function of



15 Mesoscopic Field-E�ect Devices in Depleted Two-Dimensional Electron Systems

160 170 180 190 200

0.04

0.02

0.00

0.02

0.04

I-
I 
(n

A
)

5
0

0
 n

m

5
 m

V

1
0
 m

V

a) b)

V
s
-V

s 
=

 1
5
 m

V

d

B=7.9 mT

S
 =

 0
.5

 ±
 0

.1
µ

m
2

B (mT)

Figure 1.12: a) Measured current I � I as a function of perpendicular magnetic �eld B for three values
of Vs � V d

s near depletion and Vt = �3V. (At V d
s the carriers beneath the screen gate are

depleted.) The bath temperature is T = 25mK and the source-drain voltage V = 0:1mV.
b) Scanning electron microscope image of the measured AB-ring. The screen gate is shown
in yellow. The dashed white line embraces the area of S = 0:5�m2 corresponding to the
measured magnetic �eld period of �B = 7:9mT, see main text. The white double arrow
indicates an error in S of �0:1�m2 corresponding to a maximum error in �B of �1:5mT.
This value re�ects the experimental uncertainty in the tilt angle between the 2DES and the
magnetic �eld of �1� (B is the �eld component perpendicular to the 2DES).

Vs. Both observations con�rm the existence of quantum dots in the arms of the AB-ring (phase

jumps have been previously observed for one dot in one arm) [53, 54]. Note that our ring is too

small to explain the observed phase jumps employing the electrostatic AB-e�ect [47].

In the following we will discuss the dephasing as a function of temperature and source-

drain voltage. In an ideal two-terminal AB-ring composed of one-dimensional arms dephasing

by energy broadening is absent at modest energies. The reason is phase rigidity [54�58] allow-

ing only phase shifts by multiples of � which would require either very di�erent arm length

or an unreasonably large energy window. Such an ideal AB-ring would be a perfect device to

study the electron-electron interaction [59�61] remaining as possible dephasing process. How-

ever, realistic AB-rings as ours host multiple paths compromising the phase rigidity such that

the temperature or source-drain voltage dependence of the dephasing at relatively small ener-

gies is dominated by energy broadening [62�65]. The measured temperature and source-drain

voltage dependence of the visibility are presented in Fig. 1.14 for Vs � V d
s = 15mV where the

two-terminal resistance is ’ 60k
, compare Fig. 1.13(b). Having already established the exis-

tence of two parallel quantum dots we now consider two scenarios, namely either ballistic or

di�usive transport between the quantum dots. Searching for an answer we �t the measured data

in Fig. 1.14 for two idealistic models. The �rst one assumes di�usive transport in an AB-ring

with quasi-one-dimensional arms for which the temperature dependence of the visibility has

been obtained from the weak localization theory [66]

v(T ) = v0

 
ETh

kBT

!1=2

exp

0
BBBBBBBB@

�L
q
de��

1
CCCCCCCCA
; (1.10)

with �� = �(kBT )�2=3 [67]. This equation takes into account thermal broadening (square root

term) and decoherence by scattering of electrons (exponential term). Here ETh = ~de=L
2 is
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Figure 1.13: a) Current oscillations I � I as a function of screen gate voltage and magnetic �eld at Vt =
�3V. b) Coulomb blockade oscillations in I(Vs) (averaged over B). Two individual Coulomb
blockade maxima are indicated with CB. The bath temperature was T = 25mK and the
source-drain voltage V = 0:1mV. The data shown in Fig. 1.12a are plots along the horizontal
dashed lines.

the Thouless energy. The according to voltage dependence of the visibility derived from non-

equilibrium dephasing models is [68, 69]

v(V ) = v0

 
e�V

ETh

!1=2

exp

0
BBBBBBBB@

�L
q
de��

1
CCCCCCCCA

(1.11)

with �� = �(e�V )�2=3 [70, 71]. The prefactor � = 0:52 takes into account that part of the source-

drain voltage V drops in the leads of the AB-ring. The red solid lines in Fig. 1.14 are �ts to the

respective temperature and voltage dependences given by Eq. (1.10) and Eq. (1.11). The di�u-

sive model describes the measured data well for high energies but drastically overestimates the

visibility at low T or V . This deviation can be explained with the approximations done in as-

suming V = 0 for �tting the T -dependence and T = 0 for �tting the V -dependence. The actual

�t-parameters are listed in the caption of Fig. 1.14.

In our second idealistic scenario we assume ballistic transport through the AB-ring. Be-

cause the dwell time ’ L=vF of an electron moving ballistically through the AB-ring is short

compared to �� in this case we can neglect the in�uence of Nyquist noise which leaves energy

broadening as only remaining dephasing process [67]. Combining voltage and temperature de-

pendence in �rst order the ballistic scenario can be described by [72]:

v = 2�v0
kBT

je�V jsinh�1

 
�kBT

~=��

! �����sin
� e�V

2~=��

������ ; (1.12)

where �� de�nes the di�erence of the dwell times of a ballistic electron in the two arms of the

AB-ring. A single �t to both data sets of Eq. (1.12) representing the ballistic model is shown as

black dashed lines in Fig. 1.14. Our ballistic model describes the temperature dependence well

but shows qualitative deviations in the voltage dependence (at high voltages). We list the actual

�t-parameters in the caption of Fig. 1.14. We �nd a dwell time di�erence of �� = 30ps. On the
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Figure 1.14: Visibility v(T ) at V = 0:1mV in panel a) and v(V ) at T = 25mK in b); Vs � V d
s = 15mV

and Vt = �3V. Solid red lines are model curves assuming di�usive transport calculated with
Eqs. (1.10) in a) and (1.11) in b) for v0 = 56%, ETh = 36�eV, � = 0:015psmeV2=3, � =
0:009psmeV2=3 and � = 0:52. Dashed black lines are calculated assuming ballistic transport
with Eq. (1.12) for v0 = 2:56%, �� = 30ps and � = 0:52.

one hand, this corresponds to an unrealistically large arm length di�erence of � 1�m assuming

ballistic motion at the Fermi velocity. On the other hand, the existence of a quantum dot in

each arm leads to multiple re�ections which would enhance dwell times. As a result, without

further experimental and theoretical e�orts, it is impossible to determine from our data, whether

transport through the AB ring is di�usive or ballistic. The almost complete depletion might cause

di�usive transport in the AB-rings which is necessary to reduce the number of one-dimensional

channels preventing a higher visibility. We believe that AB-rings with narrower arms but higher

carrier density will in future help to reach ballistic transport and to reduce the chance of the

formation of quantum dots.

1.7 Conclusions

Within the �rst chapter we have explored an alternative method to de�ne mesoscopic circuits in

heterostructures based on the electric �eld e�ect. The idea is to deplete most of the 2DES area

utilizing a global top gate. Only at those regions where carriers are needed screen gates placed

below the top gate are used to shield the e�ect of the top gate locally. The resulting circuits are

highly tunable on the nanoscale as demonstrated in the presented experiments. Importantly, our

method has the advantage of reducing the complexity of gate de�ned nanostructures. In more

detail, it allows a straightforward way to realize conducting paths with ring topology and o�ers a

way to design complex structures with a smaller number of gates compared to the conventional

technology based on multiple depletion gates. Our Aharonov-Bohm measurements demonstrate

phase coherence comparable to that in conventional AB-rings in semiconductors which makes

our method suitable for quantum information applications. While not shown here the close

vicinity of a metal gate to the carriers is expected to lead to a reduction of the Coulomb interaction

between carriers.





Chapter 2

Ballistic Electron Optics with �an-

tum Point Contacts

Quantum point contacts are short and narrow constrictions in a 2DES with a width in the order of the

Fermi wavelength. They display an astonishingly rich spectrum of complex phenomena from the well

understood one-dimensional conductance quantization [73] to many-body interaction e�ects such as

the so-called 0.7-anomaly [74, 75]. In our experiments, electrons are injected by a �rst QPC and travel

ballistically towards a second QPC. Previous experiments on coupled QPCs [76] were discussed using

a hard-wall con�nement potential and didn’t include the discussion of realistic QPC eigenmodes in

contrast to our study. Another critical di�erence to some of the historical experiments [77] is that we

don’t �oat the intermediate region between the QPCs but leave it as an open and grounded 2DES.

We also present electron focusing experiments with an electrostatic lens similar to previous attempts

[78, 79] but with an optimized setup.

2.1 �antum Point Contacts

To de�ne a QPC in a 2DES, we apply negative voltages VQPC to two gates placed on top of the

sample surface and separated by a small gap as sketched in Fig. 2.1(a). We deplete the 2DES

below the gates and tune the width of the constriction by decreasing VQPC further beyond the

depletion voltage until the constriction is completely pinched o�. The resulting potential pro�le

can be approximated as the saddle-point potential, characterized by its curvatures !y and !x
sketched in the Fig. 2.1(a).

U(x;y) =U(0) + 1=2m!2
yy

2 � 1=2m!2
xx

2, (2.1)

For an incident electron wavefunction  the Hamiltonian of the problem writes [80]:

�H(x;y) = �p2=2m+U(x;y) ; (2.2)

where �p2=2m is the kinetic energy operator. Here we assume the parabolic dispersion for free

electrons in 2DES. Separation of variables x and y in the Hamiltonian leads to a one-dimensional

harmonic oscillator in the potential U(y) = 1=2m!2
yy

2 and �H(y)	(y) = En	(y) ;n = 1;2;:::.

19
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Figure 2.1: a) Top: Sketch of the quantum point contact formed by two metallic gates. Bottom: sketch of
the QPC saddle-point potential. b) Sketch of the lateral con�nement of the QPC potential at
its center (black) and its eigenmodes transversal pro�le (red)

Eigenmodes of the problem are associated with discrete energy values En = (n � 1=2)!y . The

corresponding wavefunctions 	n(y) with quantum number n are [10]:

	n(y) =
�m!y
�~

�1

4 1
p

2n�1(n� 1)!
Hn�1

0
BBBB@

r
m!y
~

y

1
CCCCAexp

�
�
m!y
2~

y2
�

(2.3)

with the Hermite polynomials Hn�1 [81]. In Fig. 2.1(b) we illustrate eigenfunctions lateral po-

tential pro�le and mark the energy values with horizontal black lines.

2.1.1 QPC conductance

In case of ballistic transport a nanodevice’s conductance is limited by the scattering on the con-

tacts [10]. One therefore cannot describe conductance in terms of local conductivity as in the

case of di�usive transport. Following, we describe the scattering problem of a ballistic QPC by

applying the Landauer approach [73, 82] and write its conductance G = I =V as

G =
2e2

h
�
N
n=1Tn, (2.4)

where Tn is the transmission probability of the nth mode. For idealistic re�ectionless contacts

and ballistic 1D transport the transmission of every fully occupied mode is Tn = 1 such that

G = 2e2

h N for N fully transmitting modes, where h=2e2 = 12:9k
. Experimentally the number

of occupied modes N can be controlled by tuning the QPC gate voltage VQPC. The resulting

1D conductance quantization predicted by Landauer in 1957 [82] was �rst measured in 1988

independently by Van Wees et al [83] and Wharam et al [84]. A single mode transmission Tn(E)
at a given electron energy E can be calculated following Büttiker [80]

Tn(E) =
1

1 + e���n where �n = 2(E � ~!y(n� 1=2) �U0)=~!x (2.5)

Here the QPC gate voltage de�nes the change of the saddle point potential energy VQPC /U0. In

Fig. 2.2 we illustrate the formula (2.5) for four di�erent ratios of !y=!x equal to 0:5 (magenta),
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Figure 2.2: Simulated QPC conductance as a function of QPC gate voltage for di�erent ratios of longitu-
dinal and transversal curvatures, !x and !y , marked with arrows. QPC is biased with �nite
source-drain voltage V in the linear regime.

1 (red), 2 (black) and 5 (blue). The expression (2.5) describes smooth transitions between con-

ductance plateaus with a step width / !y and an edge width proportional to / !x, as indicated

in Fig. 2.2. Experimentally several conditions are required to see quantized conductance in the

transmission through a QPC:

� !x < !y , otherwise conductance plateaus are too smooth and vanish (red line in Fig. 2.2).

� kBT < ~!y , the thermal broadening is smaller than the subband spacing.

� �wnoise < ~!y the inhomogeneous broadening, e.g. caused by charge noise, is smaller than

the subband spacing.

The degree of �atness of the plateaus and sharpness of the steps in the experiments also vary be-

tween devices of nominally identical design, indicating that the detailed shape of the electrostatic

potential de�ning the constriction is important [85]. Many uncontrolled factors are a�ecting this

shape, such as small changes in the gate geometry, variations in the pinning of the Fermi level

at the free GaAs surface or the interface with the gate metal, doping inhomogeneities in the

heterostructure material and trapping of charge in deep levels in AlGaAs [43].
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2.1.2 Adiabaticity criteria

 

R

d
x

y

Figure 2.3: a) Il-
lustration of the
QPC mode evolving
through the QPC.
QPC tips are round,
transition from the
QPC center to the
2DES is adiabatic.

A parabolic barrier or more precisely a barrier with the potential U(x) /
x� ;� > 2 guarantees smooth T (VQPC). However if the transition from the

QPC centre to the opened 2DES is abrupt there can be considerable re�ec-

tion of propagating modes at this interface (resulting in Fabry-Perot inter-

ference [75, 86]). Such re�ection is minimized by adiabatically opening the

constriction. When considering the adiabatic transition we have to study

the mode coupling at the entrance and exit of the QPC constriction.

Evolving QPC eigenstates change their lateral extensions as indi-

cated in Fig.2.3. The e�ective mode widths depends on the distance to the

constriction centre [87]. At some distance the in�uence of the charged gates

is so small that the electron motion is that of a free particles in 2D. The mode

mixing is in the order of the subband splitting ~!y at this point [88]. The

adiabaticity criterion was �rst de�ned by Yacoby and Imry in terms of the

constriction geometry [89, 90]:

�d(x)=�x < 1=N (x) ; (2.6)

where d(x) is the constriction width and N (x) ’ kFd(x)=� is the local number of occupied sub-

bands. If the constriction width changes su�ciently gradually in Eq. (2.6) the transport through

the constriction occurs without intersubband scattering. It has been also suggested that for

rounded QPC tips the adiabaticity condition can be calculated as [91]

�2
p

2R=d(0) > 1 ; (2.7)

where R is the tip radius. The QPC conductance is always determined by the narrowest part

of the constriction, however, to achieve high QPC transmission for each mode it is essential to

minimize the impurity backscattering by keeping the length of the QPC short.

2.1.3 Landauer-Büttiker formalism

µ1

µ2

µ3

µ4

1DN1

N2

N3N4

E

B

Figure 2.4: Sketch of a multiterminal device
used to explain the Landau-Büttiker formalism.
Each reservoir is in thermal equilibrium at a
chemical potential �i . A terminal supporting Ni
1D modes connects reservoirs to a central scat-
tering region.

In the following experiments we will consider

multi-terminal devices. A generalization of the

Landauer approach to a multi-terminal case is

possible as illustrated in Fig. 2.4. Each of the ter-

minals supports Ni modes and provides an elec-

tron reservoir at a given chemical potential �i .
The Landauer formula [73, 82] can be written for

multiterminal resistances as proposed by Büttiker

[92]: Let tij;�� de�ne the complex coe�cient for

scattering from mode � in terminal j to mode �
in terminal i . The total transmission probability

from terminal j to terminal i is then given by

Tij = �
Ni
�=1�

Nj
�=1jtij;�� j2. (2.8)

Conservation of current impliesNi =
P
j
Tij , where the sum extends over all reservoirs. We

took into account the backscattering modes by assuming Tii = Ri



23 Ballistic Electron Optics with Quantum Point Contacts

The reservoir i at chemical potential �i above EF injects into terminal i a current �Ii =
2e=hNi�i . A fraction �Ij;i = �IiTji =Ni is transmitted into terminal i while a fraction �Ii;i = �IiTii =Ni
is back re�ected. The net current Ii in the terminal i is reduced by the injected current

P
j

�Ij
from other terminals and thus given by:

Ii =

0
BBBBBB@Ni�i �

X

j

Tij�i

1
CCCCCCA

2e

h
(�1), (2.9)

where the factor �1 takes into account that we assume technical current direction, that is conve-

nient for a direct comparison with experiments. The equation above is known as the Landauer-

Büttiker formula. It provides a system of linear equations that may be solved to determine the

transmission properties of a sample. Alternatively it allows a direct comparison with speci�c

transport measurements. For instance, if all contacts but 1 and 3 are left �oating and a constant

current I31 is driven from terminal 1 to 3, then the Landauer-Büttiker formula can be use to �nd

the 4-probe resistance, R13;24.

R13;24 =
�3 ��4

�eI31
, (2.10)

In the original formulation, the scattering in the conductor was assumed to be elastic, but Büttiker

subsequently showed that the formalism could be extended to include inelastic scattering [57].

2.1.4 Casimir-Onsager relation

To explain the symmetry properties of current for multiterminal devices in external magnetic

�elds similar to Casimir-Onsager reciprocal relations in thermodynamics [55, 56] we can use the

Landauer-Büttiker formula [57]. In the following derivation, we will use two matrix operators:

Hermite conjugation � and matrix transposition T [81]. We discuss canonical symmetries of the

scattering matrix S = tij;�� , those are unitarity and time-reversal symmetry. The unitary symme-

try is related with the conservation of currents. It is illustrated for a two-terminal case in Fig. 2.5.

T21T11

-B

B

S
1 2

Figure 2.5: Scattering problem sketch for a two-
terminal device. T21 denotes the transmission,
S the scattering and T11 the re�ection matrix.
Solid/dashed lines indicate possible trajectories
for electrons for the direct/time-reversed prop-
agation at �nite magnetic �eld B (blue) and �B
(red).

We can express the unitarity for the �rst termi-

nal:

X

��

jt11;�� j2 +
X

��

jt12;�� j2 =N1, (2.11)

where N is the number of modes in terminal 1.

Generally for a multi-terminal device unitarity of

the scatterting matrix can be calculated as SS�T =
SSy = 1 or in a summation form:

X

j

X

��

tij;��t
y
ij;�� = 1i , (2.12)

where 1i is a vector with dimension i , �;� denote

mode numbers and i;j are terminal numbers.

Second, we study the invariance of the scattering matrix in presence of non-zero magnetic

�eld B , 0: S(B) = ST (�B). The symmetry of the Schroedinger equation implies that the time-

reversed wavefunction	
� is identical to the original wavefunction	 with the reversed direction
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of magnetic �eld 	(B) = 	
�(�B) [10]. For the two-terminal problem illustrated in Fig. 2.5 the

wavefunctions 	1 and 	2 can be related as

	2(B) = S(B)	1(B) or equivalently as 	
�
1 (�B) = S(�B)	�

2 (�B) (2.13)

This can be directly seen by conjugating the �rst equation 	
�
2 (B) = S�(B)	�

1 (B) �nally we get

S�(B)S(�B) = 1. Applying the unitary condition SS�T = SSy = 1 we �nally get S(B) = ST (�B).
Time-reversal symmetry of the scattering matrix gives rise to the according symmetry of the

transmission matrix:
X

��

[tij;��(B)]2 =
X

��

[tji;��(�B)]2 = Tij (B) = Tji(�B) (2.14)

Next we consider a four-terminal con�guration sketched in Fig. 2.6, where a current I1 is

forced to �ow between terminals 1 & 3 and another current I2 applied between terminals 2&4.

Solving Eq. 2.9 under the conditions I1 = �I3 and I2 = �I4, where Ii is the current into the

respective contact, results in [57]:

I1 = �11(V1 �V3) ��12(V2 �V4) (2.15)

I2 = ��21(V1 �V3) +�22(V2 �V4), (2.16)

where Vi = �i =e and with

�11 = (e2=h)[(1 �T11)D1 � (T14 +T12)(T41 +T21)]=D1, (2.17)

�12 = (e2=h)(T12T34 �T14T32)=D1, (2.18)

�21 = (e2=h)(T21T43 �T23T41)=D1, (2.19)

�22 = (e2=h)[(1 �T22)D1 � (T21 +T23)(T32 +T12)]=D1, (2.20)

and

D1 = T12 +T14 +T32 +T34 = T21 +T41 +T23 +T43, (2.21)

From Tij (B) = Tji(�B) it follows that diagonal elements obey the sym-

metries �11(B) = �11(�B) and o�-diagonal �21(B) = �12(�B) [57].

I1

I2

1

3

2

4

Figure 2.6: Sketch of the measurement when the
current is forced to �ow between pairs of termi-
nals (1,3) and (2,4).

In a four terminal measurement we measure volt-

age at (2;4) pair of terminals and I2 = I4 = 0. Then

we can express resistance R13;24 as a function of

V2 �V4

R13;24 = (V2 �V4)=I1 = �21=(�11�22 ��12�21)
(2.22)

Now we switch the current and the voltage leads

but keep magnetic �eld �xed and take I1 = 0.

R24;13 = �12=(�11�22 ��12�21) (2.23)

The sum of these resistances is symmetric under

magnetic �eld reversal as a result of the symmetry of the �21(B) = �12(�B) and we get:

R13;24(B) = R24;13(�B). (2.24)
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or the 4-probe resistance is invariant under exchange of the current and voltage leads if the

direction of the applied �eld is also reversed. Now we can determine six resistances

Rmn;kl = (h=e2)(TkmTln �TknTlm)=D2, (2.25)

where m;n;k;l are the terminal numbers, and D2 = (h=e2)2(�11�22 � �12�21)=D1 is symmetric

in magnetic �eld. Finally we can write the general reciprocity relation [57]

Rmn;kl(B) = Rkl;mn(�B), (2.26)

. The reciprocity relation is una�ected by adding reservoirs to the system and is not restricted

to elastic scattering [57]. In the following chapter we deal with two and three terminal systems.

Therefore we discuss the application of the approach outlined above for some special cases.

2.1.4.1 Two-terminal device

Current conservations in a two-terminal system gives N1 = T11 + T12 and N2 = T22 + T21 for

the �rst and second terminal respectively. From the symmetry of the transmission through the

system T = T12 = T21 we can deduce that the two-terminal resistance R = (�1 � �2)=eI is also

symmetric under magnetic �eld reversal:

R(B) = R(�B). (2.27)

2.1.4.2 Three-terminal device

In the three-terminal measurements, we keep terminal 3 always grounded with �3 = 0 and apply

voltage (�1 � �2)=e from terminal 1 while measuring current I through the terminal 2. Büttiker

showed that addition of a lead to a multi-terminal conductor doesn’t change the reciprocity re-

lation for the two terminal resistance and is equivalent to the introduction of inelastic scattering

into conduction process [57]. Therefore we can write the symmetry of the measured resistance

R12 = (�1 ��2)=eI
R12(B) = R21(�B) or I(B) = �I(�B). (2.28)

2.1.5 Validity of the Casimir-Onsager relation

In the di�usive transport regime, the reciprocity relation (2.24) for the resistance follows from the

Casimir-Onsager relation also for the resistivity tensor �(B) = �T (�B). However, the reciprocity

holds only in the linear response limit of in�nitely small currents and voltages. Hence deviations

from (2.24) can occur experimentally caused by higher order resistance terms which can arise

from quantum interference or classically in a strongly driven system [93]. At small deviations

the voltage response may be expanded asV (I ) = R(1)I+R(2)I
2+R(3)I

3+::: and Onsager relations

are not ful�lled for R(2) and higher. In the case of long phase coherence time deviations persist

down to tiny voltages in the order of V ’ ~=e�� [43]. Magnetic impurities can be another source

of deviations from reciprocity if the applied magnetic �eld is not su�ciently strong to reverse

the magnetic moments on �eld reversal.
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2.2 Measurement setup

For the measurements in this chapter we used a He3 cryostat and performed ballistic electron ex-

periments at low temperatures down to 250mK. In this section we explain the used experimental

techniques and devices.

2.2.1 He3 evaporation cryostat

Details about single shot He3 cryostats can be found in [94]. To prepare the used Janis SVSD-38

system, we condense He3 gas to liquid by bringing it in contact with a pumped He4 reservoir

(1K pot). To generate low temperatures below 300mK we then reduce the vapor pressure on top

of the liquid He3 reservoir by pumping with an internal sorption pump. The maximum duration

of a single shot is about seven days if pumping on both the 1K pot and the sorb pump. We

were also able to perform temperature dependent measurements in the cryostat while having

stable temperatures for more than 10hours up to 700mK. After heating the system to more than

700mK, the temperature becomes unstable and quickly rises to 4K.

2.2.2 Experimental setup and devices

We sketch a circuit diagram of our experiment in Fig. 2.7. In the cryostat shielded twisted pairs

of Manganin wires are used from room temperature down to the sample, thermally anchored at

several stages. Outside the cryostat, we used double shielded coax cables with BNC connectors.
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Figure 2.7: Scheme of the low-temperature transport setup used for experiments in this chapter. The
sample inside the cryostat (sketched with a circle) can be exposed to a magnetic �eld up to 8T
generated by a superconducting coil (not shown). To electrically connect the sample to the
room temperature instruments we used various types of wiring. Red color indicates electrical
wires used to drive current through and blue color shows the wires used to apply voltages to
metal gates. (i),(ii) and (iii) depict isolated ground potentials. Electrical isolators are used to
prevent ground loops.

We illustrate both cables as colored solid wires (red and blue) in Fig. 2.7.
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2.2.2.1 Ground connection

Avoiding ground loops is an important requirement of low-noise measurement. A usual solu-

tion for the ground connection is the powerline, and the ground resistance highly depends on

the electrical circuit of the building. However, ground levels can be di�erent for di�erent power

sockets or connection spots. Our goal is complete separation of the measurement ground coupled

to the source-drain connection of the sample from the other grounds used for instruments and a

PC. This ground also serves as a reference for applied voltages. One possible solution is using the

isolating transformers that decouple supply ground of the instruments from the measurement

ground (sketched with in Fig. 2.7). The isolator helps to avoid ground loops by interrupt-

ing them. We sketch the ground connections with solid black wires in Fig. 2.7. The externally

grounded cryostat (with a low-resistance wire) provides a common measurement ground (i) for

all wires and devices connected to the cryostat. To avoid ground loops we didn’t electrically con-

nect the surrounding dewar and its frame to the cryostat and therefore ground it separately (ii).

We also connected the magnet power supply to a separate ground (ii). We de�ne the common

measurement ground (i) via the shield of the BNC cable that carried it to electrical instruments.

For multimeters and preampli�ers, we used isolation transformers to isolate them from the power

supply to avoid the ground loops via the powerline (iii). However, transformers were unneces-

sary for voltage sources which are galvanically isolated from the powerline. We controlled the

whole setup by Lab-View programs using GPIB interfaces (dashed black wires in Fig. 2.7) as con-

nection standard between di�erent devices. We also isolated the measurement computer from

the setup by using galvanic USB isolator (CESYS USB Isolator). Finally, we decoupled the magnet

power supply via a GPIB isolator from the other GPIB wires. Both isolators are shown with

symbols in Fig. 2.7.

2.2.2.2 Gate wires

We used the gate wires to apply dc voltages to the gates of the sample (blue in Fig. 2.7). As only dc

signals were applied we implemented �lters with 1:5Hz cut-o� frequencies to achieve e�cient

noise �ltering. We show a circuit diagram in the labeled box of Fig. 2.7. We also used double

shielded coax cables as a low noise solution to connect the dc-voltage sources (Yokogawa 7651)

via a switching box to the room temperature �lters at the cryostat. A feed-through capacitor

Tusonix T053 built into the metallic �lter box is shielding any high-frequency noise propagating

as electromagnetic waves along the wires.

2.2.2.3 Current wires

We used the current wires (solid red wires in Fig. 2.7) for two con�gurations: in series with

QPCs and directly connected to the opened 2DES with resistances < 200Ohms. For the ballistic

experiments, we have not added any �lter components for both to keep resistances and shunt

capacitances as low as possible in the source-drain wires. Filtering the second also causes an

additional voltage drop on the 2DES that we want to avoid. We used a DL Instruments 1211

model preampli�er to detect currents in our setup. The signal from the ampli�er was read out

by an Agilent Multimeter 34411A. The setup parameters for wiring and �ltering are summarized

in Tables (2.1) and (2.2).
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Component Resistance (
) Capacitance to ground (F)

Double shielded coax ’ 1 100p

Filter box 100k 1�
Double shielded coax ’ 1 100p

Manganin twisted pairs ’ 50 ’ 500pP ’ 103k ’ 1�

Table 2.1: Resistances and capacitances in the gate wires.

Component Resistance (
) Capacitance to ground (F)

Double shielded coax ’ 1 100p

Manganin twisted pairs ’ 50 ’ 500pP ’ 2k ’ 400p

Table 2.2: Resistances and capacitances in the current wires.

2.2.2.4 Magnet power supply

For the magnetic �eld measurements, we exploited a magnet integrated into a dewar fab-

ricated by Oxford Instruments and two di�erent power supplies: Lakeshore 625 and Ox-

ford IPS 120-10. In the following sections, we perform several measurements at step

sizes less than 1mT which is close to the accuracy and resolution for the set and read-

out of both magnet power supplies. For the correct analysis of 2D color scale plots in

this chapter, the equidistance of points is essential. The point represents a colored pixel

at the 2D plot, and the plotting software makes equal pixel size for every point in a 2D

sweep, that realistically can �uctuate due to the limited device accuracy and resolution.

-20 -15 -10 -5 0

Lakeshore

625

Oxford IPS

120-10

B (mT)

Figure 2.8: Comparison of both power supplies, as-
suming step equidistance for a continuous sweep of
the magnetic �eld B with step size �B = 0:5mT.

In Fig. 2.8, we show an exemplary plot

recorded with each power supply to compare

the step equidistance. Here we sweep the

magnetic �eld with the step size of 0:5mT,

vertical bars represent measurement points

for the used two magnet power supplies. In

the speci�cations of both, we found the same

readout resolution of 0:0085mT. The set-

point accuracy of the Oxford device, however,

turned out to be higher, permitting sweeps

with equidistant steps of 0:5mT. For the Lake

Shore device, a test sweep at the same step size

results in a non-equidistant sequence of steps seen in Fig. 2.8. Deviations correspond to the accu-

racy of the Lakeshore power supply 0:85mT indicated in the speci�cations [95]. To summarize,

for the general analysis of the measured data arrays in this chapter both devices o�ered a suf-

�cient output accuracy as well as readout accuracy. To perform magnetic �eld measurements

at stepsizes of �B � 0:5mT, we limit the smallest step size for measurements presented in this

chapter at 0:5mT.
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2.2.3 Sample design and connections

The sample is located below the He3 pot and thermally connected to it (by gluing it to the stage

with conductive silver epoxy) to obtain the best cooling e�ciency. We mount the sample in the

center of the magnet located inside the dewar at the coldest part of the cryostat. We engineered

the connection from the gates to the macroscopic sample holder and lines with gold wires bonded

to the sample via using a wedge-bonder. Golden wires also provide the thermal connection for

cooling the 2DES. In Fig. 2.9(a) we show the used sample holder with a sample connected with

a)

b)

Q
P
C
1 Q

P
C
2

Lense

Figure 2.9: (a) Photo of the sample-holder with the sample attached (b) Scanning electron microscope
image of the sample surface; the dark grey area contains 2DES 107nm beneath the surface.
Five Ti/Au gates (yellow) are used to de�ne QPC1 and QPC2 and a central lens-shaped gate
(yellow) respectively.

bond wires to the golden pins disposed in a circle at the edge of the sample holder. We show the

sample design in Fig. 2.9(b) that consists of two pairs of split gates. These gates are employed to

de�ne, via the electric �eld e�ect, two nominally identical QPCs in series in the 2DES embedded

107 nm below the surface of a GaAs/AlGaAs heterostructure. In the center is an additional lens

gate to manipulate electrons moving between QPC1 and QPC2. The sample contains a 2DES

with a nominal carrier density of ns ’ 3:1 � 10�11 cm�2 and mobility of � ’ 2:3 � 106 cm2=Vs,

corresponding to a mean free path of lm ’ 21�m (see Appendix (A.1) for details). Between the

two QPCs with the distance L ’ 4:6�m we, therefore, expect ballistic transport. We used the

QPC gate design tested by David Borowsky in his master thesis [96] with details showed in the

Appendix (A.1).
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2.3 Single QPC characterization

In Fig. 2.10(a) we present the setup for the single QPC characterization. We apply voltage V

Figure 2.10: a) Sketch of the measurement setup used to characterize single QPCs. We place the SEM
photo of the sample in its center. Tips of the golden gates (false-colored with transparent yel-
low) have adiabatic round design. We deplete the 2DES beneath the gates keep it unchanged
under the light grey area. b) Sketch of the saddle point potential described by Eq.(2.29).

from one side of the QPC and measure the current I on the other side as a function of split gate

voltage VQPC. We used a single ohmic contact to detect current, while the other �ve contacts

we kept grounded. We will use this con�guration in the following ballistic experiments with

two QPCs in series. In Fig. 2.11(a) we present pinch-o� curves of the two individual QPCs used

in the following experiments. The data presented here are shown after subtraction of the lead

resistance described in Appendix (A.2). We �nd well-de�ned conductance plateaus at integer

multiples of the (spin degenerate) conductance quantum GQ = 2e2=h. The smooth transitions

between plateaus indicate perfect adiabatic coupling of the QPCs to the 2DES and the assumption

of a parabolic barrier in current direction is appropriate (x-axis in Fig. 2.10a) [97].

We can �t the experimentally measured conductance for both QPCs with Eq. (2.5) and

Eq. (2.4) to determine the ratio of transversal and longitudinal potential curvature !y=!x.
However we found that the energy subbands in our QPC are not equidistant in energy that

is clear from the inset of Fig. 2.11(b). Here we plot the width of the conductance steps in

VQPC that is proportional to the subband energy di�erence. To account for this problem we

can assume slightly anharmonic potential with additional quadratic component of curvature

U(y) = 1=2!2
y (y2 + �1y

4), where �1 is the anharmonicity parameter of the potential. We illus-

trate both harmonic and anharmonic potentials in Fig. 2.12(b). Subband energies and eigenmodes

of both harmonic and slightly anharmonic oscillator can be calculated with the help of a tight

binding model for a 1D chain with an onsite potential, see Appendix (A.5) for details. We �t the

�1 parameter in order to reproduce the energy dependence from the inset of Fig. 2.11(b)and show

results as solid red and black lines there. Corresponding eigenmodes of the oscillator are shown

in Fig. 2.12(b). We see that eigenfunctions are slightly less con�ned in the anharmonic potential

at 5 < n < 7 but almost identical as the corresponding harmonic eigenfunctions at 1 < n < 7 . In
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Figure 2.11: a) Dots: Measured conductance G = I =V of a single QPC (QPC1 in black color and QPC2 in
red color) as a function of QPC gate voltage VQPC. Solid lines: theoretical �t to the measured
data calculated by the formula (2.5). We also place horizontal lines at integers of multi-
ple 2e2=h. b) Measured current I as a function of QPC gate voltage VQPC in an extended
voltage range of (a). Both (a,b) data was taken at temperature T = 250mK and the source-
drain voltage V = �0:7mV. All other gate voltages in Fig.(2.10) are grounded. Inset: Voltage
�VQPC = VQPC �V 0

QPC at G = ie2=h ;1;2;3:::7, where V 0
QPC is taken at G = e2=h. Points are

the measured data and lines are theoretical �ts for the anharmonic QPC1 (black) and QPC2
(red) and anharmonic case as a transparent line.

our experiments we will limit discussion to �rst 7 subbands in all the experiments and assume

that we can treat QPC eigenfunctions to have Gaussian-Hermite form up to the 7 th conductance

plateau of both QPCs. Therefore we can use the extended version of the formulas (2.5) and (2.4).

G = GQ

1X

n=1

0
BBBBBB@1 + exp

8>><>>:�2�

�
VQPC �V 0

QPC

�
=�1 �

�
n� 1=2 � �2(n� 1=2)2

�
~!y

~!x

9>>=>>;

1
CCCCCCA

�1

; (2.29)

where �2 is anharmonicity parameter of the subband energy, �1 is proportional to the gate ca-

pacitance and converts the gate voltage VQPC into energy. V 0
QPC=�1 de�nes the potential energy

at the apex of a saddle point potential consisting of a parabolic barrier in current direction, x-

axis in panel a, and a slightly anharmonic (i.e. almost parabolic) lateral con�nement along the

perpendicular y-axis. Table 2.3 contains the result of our calibration.

QPC !y=!x V 0
QPC (V) �~!x (V) �1 �2

1 2:1 � 0:1 �2:12 0:06 -1E � 5 0:009

2 2:1 � 0:1 �2:04 0:06 -1E � 5 0:011

Table 2.3: Table of calibrated values of !y =!x , �~!x , �1 and �2 for QPC1 and QPC2

Additional broadening can be caused by a source-drain voltage applied V = �0:7mV and

temperature T . In Fig. 2.13 we plot comparison for the QPC conductance at higher temperature
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Figure 2.12: a) Oscillator potential pro�le with (red) and without (black) the anharmmonic component.
b) Calculated QPC eigenmodes for the harmonic (black) and slightly anharmonic potential
(red).
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Figure 2.13: a) Measured conductance G = I =V of a single QPC (QPC1 in black colour and QPC2 in red
colour) as a function of QPC gate voltage VQPC at two source-drain voltages V = �0:25mV
(vertically shifted) and V = �0:7mV. Conductance plateaus are indicated with horizontal
lines at integers of 2e2=h. b) Measured conductanceG = I =V of a single QPC (QPC1 in black
colour and QPC2 in red colour) as a function of QPC gate voltage VQPC at two temperatures
T = 250mK and T = 4K (vertically shifted).

T = 4K and at smaller source-drain bias V = �0:3mV. QPC Conductance steps are strongly

broaden by the temperature and almost don’t change their width by applying di�erent source-

drain voltage. We can therefore deduce that we can neglect temperature of source-drain voltage

broadening for T = 250mK and jV j < 0:7mV for the determination of !y=!x, �~!x, �1 and �2

values.
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2.4 Two QPCs in series

Now we characterize the system of two QPCs in series with the experimental setup shown in Fig.

2.14. QPCs are formed by applying gate voltages VQPC1 and VQPC2. The electrostatic lens gate

1 m
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Figure 2.14: Scanning electron microscope image of the sample; the dark grey area contains 2DES. Five
Ti/Au gates (a light grey area) are used to de�ne QPC1 and QPC2 and a central lens-shaped
gate respectively. We apply voltage V behind QPC1 and measure current I2 behind QPC2.
Four ohmic contacts in the middle of the structure are grounded.

remains grounded to minimize its in�uence on the measurements presented in this section. Four

grounded Ohmic side contacts serve as drains for carries, which are scattered between the QPCs

and di�use to the sides. Applying a small dc voltage V = �1mV across QPC1 (emitter) we record

both sides drain I3 and detector current I2 �owing through the other unbiased QPC2 (detector).

Previous experimental studies of ballistic transport through two opposite point contacts (with

conductances G1 and G2) were carried out by Wharam et al. [77] and Beton et al. [98, 99]. They

discovered that the serial resistance of two QPCs is considerably less than the ohmic sum of

the two individual QPC resistances. Subsequent experiments [100] attributed this result to the

collimation of the electrons injected by a point contact that enhances the direct transmission

probability through the opposite point contact [101]. Two QPCs in series were also investigated

for various designs, for example with staggered QPCs [102, 103], for the transition from Ohmic

to ballistic adiabatic transport [104] and in the Quantum Hall regime [105]. Recently two QPCs

in series in the ballistic regime were used to build multi-valued logic devices [106, 107].

The conductance of the two coupled QPCs G, calculated by Beenakker [108], can be ex-

pressed as G = max(G1;G2). In the calculation (expanded by Takagaki et al. [109]) and in the

previous two-terminal experiments by Wharam et al. [77, 98, 99] the current I �ew only between

two QPCs while the additional contacts in between the QPCs were used as voltage probes with

zero current through them. To exclude unwanted charge build-up in the area between the QPCs

in our experiment we keep the central region grounded. We also designed our QPC gates such

that scattered electrons tend to di�use into the grounded side contacts. Such QPC design reduces

the contribution of multiple scattered carriers to the measured detector current. First we discuss

the case of zero magnetic �eld B = 0. We perform a similar experiment as described by Shepard



Two QPCs in series 34

a) b)

V
QPC1

V
QPC2

V
QPC1

V
QPC2

A A

3 3

I
1

I
1

2 2

Figure 2.15: (a) The scheme of ballistic electron optics experiment with two QPCs as emitter and detector.
We form both QPCs with gate voltagesVQPC1;2

and apply source-drain voltageV behind one
QPC while measuring current I behind the other QPC. We also measure current I3 through
one of the side drain contacts. Four side ohmic contacts in the middle of the structure are
grounded. (b) Reduced scheme by assuming all side drain contact resistance R to be the
same.

et al. [110, 111]. Following Landauer-Büttiker formalism, the incident electron enters from termi-

nal 1 and is scattered into the one of the six terminals. We assume all side drain contacts to have

equal resistance of 250Ohm, taken into account that we produced all the contacts in one step

and used the same design for every contact. Next we reduce the scheme from 6 to 3 terminals

by combining all side contacts in one for simplicity of discussion. We illustrate this procedure in

Fig. 2.15. Transmission from QPC1 to QPC2 can be determined from Landauer-Büttiker formula

(2.4)
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where N1 is the number of occupied subbands in QPC1. Speci�cally, we apply a voltage V at

reservoir 1, increasing its chemical potential to �1 = eV , while �2 = �3 = 0. The sum of the

currents I1, I2 and I3 obeys Kirchho�s law: I1 + I2 + I3 = 0. The elements of the �rst row Ti;j of

the transmission matrix are directly proportional to the measured currents:

T1;1 �N1 =
h

2e

I3
�1

(2.31)

T2;1 =
h

2e

I2
�1

(2.32)

T3;1 =
h

2e

I3
�1

(2.33)

In the experiment we have to take into account the following corrections: (i) non-zero

lead resistance (250 Ohm) that cause �nite chemical potentials �2 and �3 between the QPCs, (ii)

o�set voltage from the input of our current ampli�er (in the order of 10�V) addint to �2 and

(iii) voltage drop at the emitter contact that in�uences �1. The �nite �2 and �3 values result in

two contributions to I2: �I21 / (�2 � �1) and �I23 / (�3 � �2). We subtracted the unwanted

contribution for all the measurement data presented in this section with details of calibrations

shown in Appendix (A.2).

We present conductance G = I2=V through both QPCs measured as a function of VQPC1

and VQPC2 in Fig. 2.16. Most carriers are emitted at an aperture angle [112], consequently, miss

the second QPC and contribute to I3. Nevertheless the conductance quantization is visible in
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Figure 2.16: a) Conductance G measured for two QPCs in series as a function of VQPC1 and VQPC2 at
B = 0. b) Conductance G measured through the device as a function of VQPC1 for three
variousVQPC2 marked with shades of blue colour at (a) atB = 0. c) ConductanceGmeasured
through the device as a function of VQPC2 for three various VQPC1 marked with shades of
red colour at (a) at B = 0. Source-drain voltage is V = �1mV at all the plots.

terms of conductance steps for both QPCs [as functions ofVQPC1 andVQPC2 in Fig. 2.16(b) and Fig.

2.16(c)]. The combined transmission through both QPCs is weak and investigated two methods

to modulate it: magnetic de�ection and focusing with the electrostatic lens. These methods

also reveal intrinsic information about the QPC potential pro�le and help us to probe the 2DES

properties in the area between two QPCs.
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2.5 Magnetic deflection experiment

In this section we modulate the transmission between two QPCs by

applying an external magnetic �eld B perpendicular to the 2DES.

B

Figure 2.17: Sketch
of a magnetic de-
�ection experiment.
Magnetic �eld B
bends electron tra-
jectories based on
the Lorenz force and
de�ects them into
the detector QPC
constriction.

In Fig. 2.17 we illustrate the performed experiment for electrons emitted at

zero or a �nite angle �. We de�ect electrons emitted at a speci�c angle by

the Lorentz force and guide them into the detector constriction, in analogy

to bend resistance measurements [86, 113]. The magnetic �eld allows us to

access the angle distribution of the emitted electrons that re�ects the lat-

eral structure of occupied modes of the QPC [105, 114]. This experiment

is close in spirit to a so-called ’magnetic focusing’ experiment [115]. Mag-

netic de�ection of electrons in metals was investigated by Sharvin [116] as

a method to measure the shape of the Fermi surface. It was also used to

measure surface scattering [117] and electron-phonon interaction [118].

In Fig. 2.18 we present G(B) for both QPCs tuned to identical con-

ductance plateaus at N1 = N2 = N from 1 to 7 for each line. We use the

measurement setup presented in Fig. 2.14. As insets, we show the reduced

scheme of the conductance diagram in Fig. 2.16(a,b). The reduced scheme

contains positions of the conductance plateaus on VQPC1 with vertical black lines and on VQPC2

with horizontal black lines. Every curve on the main plot corresponds to the color �lled conduc-

tance plateau. We show this scheme in some of the plots in the following sections, as a guide for

the eyes. G(B) contains information about the (nominally identical) modestructures of both QPCs

and their mutual coupling. We �nd curves with increasing complexity as the conductance in-
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Figure 2.18: (a) Measured conductance G as a function of magnetic �eld B for di�erent combinations of
GQPC1 = GQPC2 = 2e2N=h starting with N = 1 from the bottom. (b) G(B) for both QPCs
operating at the same plateau for two con�gurations of emitter/detector. Red: QPC1 emitter.
Black: QPC2 emitter. V = �1mV

creases. In Fig. 2.18(b) we plot the curves of opposite current direction (red color is one direction,

black is the other). To do so, we exchanged emitter and detector QPCs, by exchanging positions

of the voltage source and the current ampli�er. The pairs of curves at identical conductance are

mirror symmetric around B0 = 2:57mT. The observed symmetry con�rms the Casimir-Onsager

relation discussed in Sec. (2.1.4) for Eq.(2.28). Slight deviations from this symmetry can be at-
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tributed to magnetic defects and a residual magnetic �eld, which is independent of the external
magnetic �eld B and tilted concerning it. Such a magnetic �eld can be caused by the materials
used in the sample holder, for example, Ni. The o�setB0 reveals a residual magnetic �eld of
2:57mT parallel to the external �eldB. We correct this small o�set from the following plots.

2.5.1 Linear response regime

One possible problem was Joule heating of the electron system. A larger amplitude of the excita-
tion voltage increases the signal to noise-ratio but also causes heating of electrons in 2DES. The
heated 2DES leads to an additional build-up of a thermovoltage across the detector point contact,
which is driven by the temperature di�erence between the heated 2DES in between emitter and
detector and the still cold 2DES behind the detector [119]. Another encountered problems were
energy broadening at a source-drain voltage of5mV corresponding to� 60K and possible non-
linear e�ects due to excited states, or many-body interaction. To avoid these e�ects, the applied
voltageV to the 2DES should be limited. In Fig. 2.19(a) we showI=V curves for the system of two

Figure 2.19: (a) Measured conductanceG at B = 2:57mT as a function of source-drain voltageV for
di�erent combinations ofGQPC1 = GQPC2 = 2e2N=h, N = 1 marked with black colour,N =
4 marked with red colour,N = 7 marked with blue colour. (b) Measured conductanceG
as a function of external magnetic �eldB for both QPCs operating at the same conductance
plateauN = 4 (marked with red colour) andN = 7 (marked with blue colour) for two source-
drain voltages,V = 0:1mV (transparent) andV = 1 mV (solid line). Both data from (a) and
(b) was taken atT = 250 mK.

QPCs in series for various combinations ofGQPC1 = GQPC2 = 2e2N=h ;N= 1;2;3:::. We see that
we work in the linear response regime up toV = 5 mV. In Fig. 2.19(b) we show that all the main
local extreme points of the magnetic focusing pattern stay the same for two di�erent voltages of
1mV and0:1mV. Also, the range of the data is preserved. Therefore we found no evidence of
heating e�ects up tojV j = 1 mV in our magnetic focusing experiments that is in correspondence
too similar experiments in literature [119].
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