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Chapter 1

Introduction

Ambient air pollution exposure has been a public health problem for decades. We can
consider particulate air pollution any particle of any matter (solid, liquid and gaseous),
that are suspended in the air. In this definition are included both products of combustion,
mostly as result of human activity like smoke, fumes and soot or of condensation of vapors
and oxidation of gases in the atmosphere. But they may also be natural particles like sea
salt, windblown dust or pollen. In conclusion we can say that particulate air pollution is
a collection of particles coming from different sources and different materials. Particles
have been classified according to their aerodynamics characteristics by measuring the
particle diameter in micrometers (µm). Initially, particles with aerodynamic diameter
lower than 10 µm were considered as inhalable (the so called PM10), but up to the ’90s,
evidence suggested that it might have been useful to isolate even smaller particles and
a new category was created: PM2.5, for particles with aerodynamic diameter lower than
2.5 µm. Nowadays, also particles with diameters lower that 1 µm are under observation.
Adverse health effects after increased air pollution exposure include not only the respiratory
system (covering asthma, pulmonary effects, lung functions and others), but a range of
different outcomes including the cardiovascular system, the autonomic nervous system,
endothelial functions and even increasing mortality and hospital admissions. However,
differently than other more traditional risk factors (such as smoking), consequences of
increased air pollution exposure are smaller. It is more difficult to isolate the effects from
the noise of the natural human variability and fluctuation on either hospital admissions or
mortality and it may be attributable to other factors. Accurate environmental assessment
and sophisticated statistical techniques have been developed in order to correctly address
the issue.
We can set the two key years 1936 and 1952 as the birth of air pollution epidemiology
with the first studies on Meuse Valley fog and London smog, and 1970 as a landmark year
with the first release of the Clean Air Act by the Environment Protection Agency (US
EPA) where every state was invited to set and achieve the Natural Ambient Air Quality
Standard. Nevertheless, a significant increase of number of publications on air pollution
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exposure related with health effect has broken out only in the last two decades where the
focus was also directed to short-term effects. In fact, it has been demonstrated by different
studies that rate in cardiovascular disease exacerbation, hospital admissions and ischemic
heart disease rate may raise in association with outdoor air pollution daily fluctuations.
Once this spectrum of health outcomes have been associated with an increase of ambient
air pollution exposure, epidemiological research started to get "smaller". On one side,
scientists started to look at the different PM components (metals and other elements),
trying to better detail their combination. On another side they joined physicians and
biologists in order to better understand the physiological factors that induce the increase
of the adverse health effect rate. Most of diseases reflect the effect of several complex
elements that combine their effect and the environmental influence has emerged as a key
factor that can influence immunological response and lead to a pathological status.
This work touches two important points within the field of environmental epidemiology
and specifically within air pollution research, therefore, after introducing the KORA study
(source of most of the data analyzed), the thesis will be divided in two parts. The first
one (which will take a greater part) will test whether air pollution exposure is related to
epigenetic changes, a recently discovered area. Several pollutants will be considered and
linked to the measure of DNA methylation in whole blood, with the aim of identifying
novel methylation sites that could play a role in the path between ambient exposure and
diseases. Our results increase the level of knowledge regarding the association between
epigenetic biomarkers and environmental factors. The second one, instead, is considering
the issue of confounding in air pollution research focusing mostly in the association between
pollutants and Socio-economic status (SES) factors accounting for both area and individual
level. Thanks to an alternative approach, the results of this study may add a piece to the
discussion regarding the association between SES and air pollution exposure.
In Part I of this work we will focus mostly in the second aspect while in Part II we will
deepen how geographical location have an indirect influence on personal air pollution
exposure.

1.1 Epigenomics

Let’s start with Part I. The key biological processes that have been found as associated
with air pollution exposure in the alveoli are inflammatory responses, coagulation and oxida-
tive stress. Several studies have confirmed that particulate matter exposure may potentially
influence C-reactive protein (CRP), marker of inflammation, or fibrinogen, marker of coagu-
lation or NF-kB, marker of oxidant mechanisms [Bind et al., 2012, Yang and Omaye, 2009].
CRP is produced by the liver and high values are evidence for an acute inflammation.
Elevated CRP is considered as non-specific "marker" for disease, however, several studies
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suggest that even low but constant levels of internal inflammation can lead to age-related
pathologies such as heart disease and neurodegenerative conditions. Fibrinogen instead,
plays a key role in the clotting cascade. It is converted in fibrin and stabilizes blood
clots after injuries. Fibrinogen promotes atherothrombosis thanks to its procoagulant
and proinflammatory characteristics. Instead, NF-kB is a complex protein that controls
transcription of DNA of a variety of pro inflammatory cytokines, enzymes responsible for
inflammation mediators and immune receptors. These pathophysiologic mechanisms play
a key role into the pathways that link air pollution exposure and ambient fine particles to
both respiratory and cardiovascular disease, and have also been demonstrated in animal
models [Cassee et al., 2013].
In recent years, air pollution exposure has been also linked to cancer development, includ-
ing lung cancer [Soberanes et al., 2012, Zhao et al., 2013, Raaschou-Nielsen et al., 2013].
Pathophysiological mechanisms like inflammation and oxidative stress have been found to
constitute plausible mediators but despite recent conclusion regarding the strength and
the consistency of this scientific evidence, the extent to which these systematic effects
are elicited by ambient pollution and which biological pathways are stimulated is still
undetermined and under debate [Peters, 2012]. Therefore, studies that are helping to
enlighten and detail the systemic impact of ambient particles need to take into account and
substantiate the multi-organ involvement in response to inhalation of particulate matter.
Moreover, deepening the knowledge regarding the genome, it has become more evident
that genetics alone is not sufficient to explain the risk of common diseases. There are,
in fact, non-genetic and extra-genetic factors that play an important role. Focusing on
cardiovascular disease, Baccarelli et al. [Baccarelli et al., 2010] produced a clear conceptual
model of how the different worlds influence each other. Epigenetics lies in the middle being
influenced by genomics but also by the environment and these three elements combine
for subclinical diseases that lead to cardiovascular diseases. Therefore it is no surprise
to observe how epigenetics has arisen in the recent year as a key research area in both
biomedicine and public health. A first and sharp definition of epigenetics was given by
Sir Conrad Waddington in 1942, who defined it as "the branch of biology which studies
the causal interactions between genes and their products, which bring the phenotype into
being" [Waddington, 2012]. Now we can define it as the heritable changes in phenotype
and gene expression that are occurring without a change in the genomic sequence. In
fact, the prefix "Epi" comes from ancient Greek and means "upon", "above", "on", "on top
of", "over" and defines something that is happening on genetics, over genetics, referring to
non- and extra-genetics mechanisms. The most understood epigenetic markers are DNA
methylation, histone modification and microRNA. In this work we will consider DNA
methylation.
Within the epigenetic markers, DNA methylation is surely the best studied and under-
stood. It represents a covalent modification that is heritable by somatic cells after cell
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division. It mostly occurs on CG dinucleotides when a methyl group (CH3) is added at
the 5-carbon of the cytosine ring resulting in 5-methylcytosine (5-mC). They represent
approximately 2-5% of all cytosines in mammal genome. Being found in proximity to
critically important cis elements within promoters, these methyl groups project into the
major channels of DNA and are often found as associated with a repressed chromatin state
and inhibit transcription [Orphanides and Reinberg, 2002]. DNA Methylation plays also
an important role in maintaining genome integrity by transcriptional silencing of repetitive
DNA sequences and endogenous transposons [Bestor, 1998, Hedges and Deininger, 2007].
Many studies have both observed a link between environmental exogenous factors and
aberrant changes in DNA methylation at both experimental an epidemiological level at
both global and gene-specific level. Moreover, it might mediate some toxicity mechanisms
and responses to certain chemicals. Within the list of exposure associated with aberrant
changes in DNA methylation we can find metals (cadmium, arsenic, nickel, chromium,
methylmercury), Trichloroethylene (TCE), dichloroacetic acid (DCA), and trichloroacetic
acid (TCA), air pollution, benzene, Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and
Endocrine-disrupting Chemicals and Reproductive Toxicants (Diethylstilbestrol, Bisphenol
A, Persistent Organic Pollutants, Dioxin) [Baccarelli and Bollati, 2009]. Several studies
observed altered DNA methylation in a priori identified areas of the genome or candidate
genes. For example, Tarantini et al. in 2009 focused they research on linking air pollution
exposure and repetitive elements (such as long interspersed nuclear elements, LINE, and
Alu) and iNOS [Tarantini et al., 2009]. Chanda et al. in 2006, instead, focused on promot-
ers of p53 and p16 genes in order to ascertain whether perturbation of DNA methylation
play a role in arsenicosis and cancer after chronic arsenic exposure [Chanda et al., 2006].
And, a last example is provided by the study carried by Christensen et al. in 2008, where
they associated DNA hypermethylation in promoter of APC, CCND2, CDKN2A, CDKN2B,
HPPBP1 and RASSF1 and asbestos exposure [Christensen et al., 2008]. All these studies
and many others increased the importance and the focus around the environmental epige-
netics but after the advent of genome-wide studies, researchers started to wonder why not
to expand it also to epigenetic and give birth to epigenomics. Previous intermediate steps
occurred between 2005 and 2010, but probably the greatest technological innovation in
this direction landed in spring 2011, when the company Illumina released the Infinium
450k Beadchip, able to estimate DNA methylation in a number of CpG sites 20 times
larger than his predecessor, the Illumina 27k. Since then, several groups around the
world were not only trying to use this new innovative technology but also to develop
methods and techniques in order to answer and address the novel challenges provided by
the new pioneering tool. The first innovation of a genome-wide approach is allowing a
hypothesis-free assessment of changes in regulation and activation of blood leukocytes,
involved in CVD development as part of atherosclerotic plaque formation and inflammation
initiation [Madjid et al., 2004], and may offer novel avenues for understanding the role of
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environmental stressors. This might not seem completely true since the CG loci had not
been selected completely at random, but focusing on hypothesized previous knowledge
about the genes and the genetic areas involved. However, the never-before large number
of loci involved and the wide range of genomic functional regions included (relation with
CpG Islands, proximity to transcription start sites for coding genes and corresponding
gene-bodies, 3’-UTRs and intergenic regions) allow to obtain a comprehensive DNA methy-
lome. Even if the molecular mechanisms behind the mentioned relationships are mostly
unclear, several studies showed biological pathways that link changes in DNA methylation
of candidate genes to oxidative stress, immune deficiency, chronic inflammation, and other
carcinogenesis-related biological processes [Brook and Rajagoapalan, 2010] that may alter
gene expression [Baccarelli and Bollati, 2009]. Here’s why the new hypothesis-free ap-
proach increased the excitement around epigenomics: the idea of explore so far untouched
areas of the human methylome. Baccarelli et al. in 2010 [Baccarelli et al., 2010], went even
beyond asking the question "how many epigenomes?". They observed how "epigenomics
markers showed both tissue specificity and correlations across different tissues depending
on the loci". Despite the enthusiasm and curiosity raised by that question, this work will
only discuss results on DNA methylation measured on whole blood samples.
After this initial excursus into epigenetics, go back to environmental epidemiology. As
stated, changes in global methylation [Zhu et al., 2010] as well as in candidate genes
[Bind et al., 2014] were observed in individuals with high occupational exposure such as po-
lice men or in response to variation in ambient air pollution concentrations [Fustinoni et al., 2012].
What remains still unclear is the time after exposure at which changes in DNA methylation
are occurring. Another recent study by the same group demonstrated DNA methylation
fluctuations in a short-term period (hours or few days) of elevated particle concentrations
[Baccarelli et al., 2009]. Genome-wide methylation assays allow taking advantage of ad-
vances in biological technologies in epidemiological studies [Christensen and Marsit, 2012]
and studying in particular the role of ambient fine particle concentrations in the days and
weeks before biosample collection. Previously unstudied regions of the epigenome are now
accessible, opening a new way to discover associations that may link air pollution and
DNA methylation. The study objective is to identify and investigate CpG sites which
DNA methylation, measured through a genome-wide screening, is associated with short-
and mid-PM2.5 ambient exposure, linking them to novel biological pathways.

1.2 Socio-economic Status and Air Pollution

Moving now to Part II, the focus is on the association between SES factors and air pollu-
tion exposure. As said, epidemiologists unveiled the link between increased air pollution ex-
posure and adverse health effects including respiratory and cardiovascular diseases and also
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cancer [Brook et al., 2010, Ruckerl et al., 2011]. Deepening origin and causes of these asso-
ciations, many risk factors have been proven to play a role in the environment-health path
[Dai et al., 2014, Dubowsky et al., 2006, McConnell et al., 2015, Ponticiello et al., 2015].
There are two key issues that required researchers’ effort in environmental epidemiology:
causality and confounding. Literature on both fields is quite large and epidemiologists
all over the world contributed to the discussion. Up to date several techniques have
been developed to account for both issues, leading to unbiased estimates and to provide
a correct interpretation of the results. Even if in this section we will mostly touch the
issue of confounding, it is worth to clarify how it also interplays with causality and to
clarify the rationale of our work. Regression models are built to test the hypothesis of
a plausible association between one or more independent variables with one (or more)
dependent variables. Sometimes it is clear from third or previous information that a
casual direction can be assumed, for example, it makes sense to assume that is smoking
that may lead to adverse health effects, while it doesn’t make much sense to assume that
people with respiratory disorders are more prone to starting smoking. In this example
is the temporal dimension that helps to enlighten the relationship: if a person smokes
at time A and health issues may occur at time B, which must follow A, they might be a
consequence of the event at time A which stressed the corporal equilibrium. Extending
this concept to a population-based study and applying the correct statistical tools, we
are induced to confirm the existence of a causal association that goes from smoking to
health issues and not the opposite. But this kind of information is not always available.
Now, going back to SES and air pollution, which one comes first? What is known is
that for sure air pollution doesn’t, while we cannot exclude the other direction. That
opens to another question, are SES factors influencing air pollution exposure? Or, in
other words, are they causing a raise in air pollution exposure? An obvious answer would
be clearly negative. How is it possible that the social status, the flow of money in bank
accounts and educational studies influence the amount of particles that the lungs are
inhaling? Surely not directly, but indirectly? The spatial variability of long-term air
pollution exposure in large areas of urbanized districts is related to the uneven distribution
of social deprivation of the neighborhoods and, up to date, some studies demonstrated
that lower SES levels are associated with increased air pollution exposure that may lead
to higher mortality and increased hospitalizations [Gray et al., 2013, Yap et al., 2013].
Hence, specially, in recent years, a particular interest has been directed to the impact of
socio-economic status factors with the result of classifying them as "modification effect"
[Blanco-Becerra et al., 2014, Forastiere et al., 2007, Ou et al., 2008]. Up to date, SES
factors have been considered mostly as confounders and used as adjustment factors in
epidemiological models, in order to reduce bias. However, how SES and air pollution
exposure are associated has not been fully described. We can hypothesize the existence
of a third unmeasured variable, probably house location, that may play two different
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roles: 1) be linked to both SES factors and air pollution exposure and this case is called
confounding; 2) alter the association SES factors and air pollution and it would be moder-
ation or interaction [MacKinnon et al., 2007]. Despite both scenarios look plausible, our
preliminary results didn’t confirm any of the hypotheses. This led us to think a third
alternative: whether the association between SES factors and air pollution exposure might
be not only driven but emphasized by accounting for household density. The statistical
technique which purpose is to answer that aim is called mediation analysis. Given two
variables and their association, it has the power to separate the part of the association
that represents how much of it is mediated by a third factor (the mediator), which is in a
causal sequence between the two variables. The idea behind it comes from the fact that
the location of the house is surely influenced by the individual income, but there are other
factors (such as proximity to job place/schools/subway stations, children, personal history)
that may influence the choice as well. Therefore, the aim of this study is to identify
and quantify factors that are influencing the effect. Simply adjusting by the residential
area, the association between SES and pollutants may result as masqueraded, therefore a
mediation scheme, including the household density as the mediator, can help to better
separate the sources of the variability of the link.
Path analysis has been selected as the statistical technique able to differentiate the origin
of the effect. We provide results for nitrogen dioxide (NO2) and particulate matter smaller
than 2.5 and 10 µm (PM2.5 and PM10). We present here analyses of the pathways poten-
tially mediating the association between SES factors on area-based as well as individual
levels and spatially modelled annual air pollution concentrations. Our analyses compare
data collected as part of the ESCAPE Study (European Study of Cohorts for Air Pollution
Effects, www.escapeproject.eu) in three European cities, Helsinki, Finland, Augsburg,
Germany and Rome, Italy [Stafoggia et al., 2014].
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Chapter 2

Objectives of the Dissertation

2.1 Epigenomics

Regarding epigenetics, objective of this dissertation is the increment the information
about air pollution influence on DNA methylation aberrant changes. This is not only
relevant in identifying CpG sites involved in so far undiscovered biological pathways, but
also deepening the knowledge regarding the behavior of untouched areas of the methylome
at different time point. The identification of extra- and non-genetic processes may increase
the awareness regarding diseases’ characteristic and their risk estimation.

2.2 Socio-economic Status and Air Pollution

On the other side, we give importance to the understanding of the function of socio-
economic status factors involved in the level of air pollution exposure. Objective of this
study is to clarify the role of these factors and increase the awareness of their influence. By
differentiating both area based and individual level we also aim to add significant pieces
to the discussion regarding their differences in air pollution models.
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Chapter 3

The KORA Study

KORA stands for the German acronym: Kooperative Gesundheitsforschung in der
Region Augsburg, which means Cooperative Health Research in the Region Augsburg. The
platform KORA was initiated in 1996 continuing and expanding the research started in 1984
by the international WHO MONICA project [Holle et al., 2005, Wichmann et al., 2005].
In addition to the three independent cross-sectional surveys conducted between 1984/85
and 1994/95 (called S1, S2 and S3), KORA began a fourth study in 1999/2001, with the
name S4. Merging data and samples from existing and new studies with the possibility
of long-term follow-ups, the aim of the KORA platform is to provide relevant knowledge
to the fields of epidemiology, health economics and public health research. The region of
Augsburg is situated in the South of Germany and it counts for around 600,000 inhabitants
and 430,000 of them belong to the 24-75 years age range. At every survey, information
regarding sociodemographic variables, risk factors such as smoking, alcohol consumption
and physical activity, medical and family history of chronical diseases and medication use
were collected. Additionally, the subjects underwent a standardized medical examination
in order to collect blood samples and other anthropometric measurements. All KORA
studies have been approved by the Ethics Commitee of Bavarian Medical Association and
the Bavarian commissioner for data protection and privacy.
Main epidemiological area of research of the KORA study is cardiovascular disease. That
also expands to associated diseases (diabetes, metabolic syndrome) and potential patholog-
ical mechanisms (such as inflammation, stress, endothelial dysfunction, etc. . . ). Moreover,
new topics that have been included in KORA have been OMICS integration, psycho-social
risk factors and environmental factors. In recent year, with the advent of genetics, a great
effort was also pushed in that direction with the creation of the KORA-gen resource. Aim
of the KORA-gen is to contribute to the field genetic epidemiology. The focus is dual,
on one side identification of relevant genes in complex disease and on the other side the
study of gene-environment interaction approach. In complex diseases, it is more likely
that the combination of the two factors may result in an exacerbation of the genes’ effect
on disease.
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Several sub-studies with specific aims (like the KORA-B "MI family study" in 1996/97 on
myocardial infarction and the KORA-A "Diabetes study" on diabetes) were also conducted
as well as follow-up studies. In 1987/88 was arranged the follow-up of S1, in 2004/05 F3
re-examined S3 and in 2006/08, F4 re-examined S4. Despite cardiovascular diseases kept
to be the main area of research, interest on other topics also increased. A special attention
was also given to diabetes, myocardial infarction, allergies, asthma, aging, air pollution
and other risk factors.

The Environmental Assessment
This short paragraph will describe the method that had been used to assess the environ-
mental measurements. A paramount feature in Environmental Epidemiology is how can
environmental measurements be assessed. Improving the technologies and the details of the
outcomes, novel techniques must point to an increase in preciseness that often require deep
preliminary analysis and expertise in the field. The area interested by the KORA study
is the region of Augsburg in south Germany and an extended program of measurement
stations have been undertaken. For the two different type of exposure (as it will be better
explained later), two different approaches and data sources have been considered according
to the problem that needed to be addressed. Despite these differences, the measurements
have been performed with the same tool, the Tapered Element Oscillating Microbalance
(TEOM model 1400A device Rupprecht and Patashnick). Here the two approaches.
For the short-term exposure it has only been considered one monitoring station positioned
approximately 1km South-east of the city of Augsburg, in the scientific campus of the
University of Augsburg. Particle concentration has been measured on an hourly basis and
daily averages have been evaluated when at least two measurements were considered valid.
The picture for the long-term exposure is, instead, quite more complicated. The main focus
is to assess personal yearly averages, concentrating more on the spatial variability inducing
the study to locate 20 monitoring stations. This approach has been developed, discussed,
and commented within the framework of the ESCAPE project across all the participant
research centers (http://www.escapeproject.eu/). The first step is the to geocode the
participant addresses and the location of the monitoring stations via WiGeoGis and
to consequently calculate the different buffers (125m, 250m, 500m, 1000m, 5000m) for
each address position. The next step requires the estimation of a number of variables
that need to be considered for every buffer from four different macro-areas: 1) land-use:
residential land, industry, forested/green areas; 2) demographic: population and density;
3) geophysical: altitude; 4) traffic: intensity, distance to the nearest road, road length,
load, major road. Per each monitor, the annual average concentrations have been calcu-
lated (20 values) based on three times 2-weeks measurements (in cold, mild and warm
season) and regression models on observed concentrations for each pollutant have been
developed. Models have been adjusted based with the routine since the two weeks were
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not matching across the stations. As further step, Land-use Regression models (LUR)
have been applied to cohort addresses and the final model from the 20-observation dataset
in order to obtain the final references on which apply participant personal values for all the
estimated variables, selected at the previous step and finally seize the personal exposure
values. Last operations would be to trim the extreme values of predictors to minimum and
maximum observed values (at monitoring level) and back-extrapolate concentrations based
on routine measurements. Results of the LUR models were published per each pollutant
[Beelen et al., 2013, Cyrys et al., 2012, Eeftens et al., 2012].
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Part I

Epigenomics
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Chapter 4

What is Epigenetics

The word "epigenetics" is already very fascinating from the etymology. By merging the
Greek term "epi" with "genetics", it is intended something that is working over genetics,
on top of genetics, above genetics. And genetics, on turn, has already been fascinating
for thousands of researchers all over the world from different areas (biologists, physicians,
epidemiologists, etc. . . ). One of the most illuminating examples that clarifies this definition
is provided by Prof. Andrea Baccarelli. He introduces genetics as the score of an opera play:
since its composition, it doesn’t change any more. However, the outcome is almost never
the same for several ambient conditions including different actors, different orchestras and
different theaters. And then there is also the director’s interpretation of the opera, who,
without changing the score, is adjusting it with some musical rearrangement according to
his/her taste or interpretation. Conclusion: keeping the same score, its final exhibition,
or, translating it into scientific terms, the "phenotype" of the play, differs. Thanks to this
brilliant metaphor, we can translate all these musical rearrangements in science as the
epigenetic markers that influence the final phenotype. A bold definition of epigenetics
might be: "it studies how we change without changing". While our genome doesn’t change,
the phenotype does change and epigenetics is the field that studies all the biological and
physiological mechanisms which are interplaying and completing genetics in phenotype
determination (including aging and disease risk). According to that, epigenetics emerges
as a multi-dimensional phenomenon. Laird in 2005, discussing cancer epigenetics, clarified
how the different mechanisms are interacting in order to reach phenotypic variations, in the
state of chromatin structure, through histone modification, associated protein composition,
transcriptional activity and DNA methylation [Laird, 2005]. DNA methylation turned
to be a useful marker and the development of new technologies allowed the researchers
to obtain accurate measurements in recent years. Not only, already in 2005, Laird (and
probably many others with him) was fascinated by the idea of a genome-wide analysis
of DNA methylation, and the possibility to uncover so far unveiled areas of the human
genome. As said, epigenetics is a multidimensional phenomenon and it is not only touching
exogenous processes but is also associated with environmental factors, increasing the
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complexity (and the interest) on the field. A first epigenetic impact happens already
during the prenatal state of life. It has been demonstrated that an increased risk of cardio-
vascular disease (CVD) at grown-up stage is associated with prenatal exposure to tobacco
and this effect may be (at least partially) mediated by epigenetics alterations. Several
hypothesis and novel discoveries have already been revealed but knowledge regarding the
underlying factors under the observed long latency period that elapses between the in
utero tobacco exposure and the CVD development later in life is still not very expanded
[Anon., 1994, Breton et al., 2009]. In addition, endogenous environmental factors have
also been observed in grown-up stages of life as connected with diseases through epigenetic
changes. In this direction, three independent studies observed that high traffic exposure and
particle concentrations, well-known environmental elements associated with CVD risk, af-
fected DNA methylation [Baccarelli et al., 2009, Tarantini et al., 2009, Yauk et al., 2008].
Despite DNA methylation is still a mono-dimensional marker for epigenetics, its revealed
link with the environment increased the focus on this biological process. This scenario opens
to a large pack of new questions. First of all, which environmental elements are influencing
DNA methylation? Secondly, how long does it take to a variation in DNA methylation to
occur? At this point a step-back is required to clarify what a variation in DNA methylation
is. As defined, DNA methylation represents the addition of a methyl group at the 5-carbon
of the cytosine ring giving to a specific locus the state of methylated or non-methylated.
Methylation is measured on thousands of cells in order to obtain a percentage: for each
CpG site, it is estimated the proportion of methylated and non-methylated cells. Loci
with low proportions (approximately below 0.30) are called hypomethylated and loci with
high percentages (approximately above 0.70) hypermethylated. DNA methylation depends
on a group of three enzymes which are in charge of adding the methyl group and they are
known as DNMT1, DNMT3a and DNMT3b. DNA methylation variations can also go in
the other direction and a reduction of the percentage happens when methyl groups are
removed from CpG sites and this process is called DNA demethylation. However, when
we refer to DNA methylation level we are always describing the estimated percentage of
cells where the methyl group is present at the moment of the medical examination for a
specific CG dinucleotide. In environmental epidemiology this concept has to be clearly
stated in order to avoid ambiguous and misleading interpretations. For example, observing
a positive significant association between DNA methylation in a specific CpG site and air
pollution exposure allows us to think that an increase in air pollution exposure is associated
with an increase in DNA methylation. But increase from what? Is there any starting
point? The association must be interpreted "according to" rather than "independently
from" the exposure since a theoretical hypothetical DNA methylation value does not exist.
An epidemiological conclusion might then sound like: a systematic higher value of DNA
methylation was observed in a group of high exposed subjects vs low exposed.
Literature in the last two decades regarding epigenetics underwent a consistent raise,
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its impact on modern medicine is huge. The number of publications on epigenetics
passed from around 400 in 1995 to almost 9000 in 2009. Of them, according to Pubmed,
in 1995, only 12 involved cardiovascular diseases, while in 2009 they were almost 500
[Baccarelli et al., 2010]. Focused on previously hypothesized areas of the genome (mostly
promoters, repeated elements and CpG islands), gene-specific results showed, with a certain
degree of consistence, evidence of associations between epigenetic markers and increased
environmental exposure. Aim of the genome-wide approach is to expand the knowledge
already assessed and try to involve also other areas of the human DNA. Novel insights are
needed to better enlighten the biological processes that happen behind diseases, behind
aging, behind hereditary traits and their further implications.
But new technologies carry not only new questions but also new issues. First, at the
planning stage it’s important to take into account that dealing with genome-wide data
needs an increase in power and sample size. Conduct a study with at least a few hundreds
of participants in order not to end up underpowered is necessary. A second clutch point is
then to find replication studies. In this work we’ll try to solve this problem in two different
ways: when at least three studies are involved it is reasonable to run a random-effect
meta-analysis while for only two studies it would be enough to replicate the magnitude
of the significance level for the CpGs identified in the first study. Despite finding other
cohorts with similar data at both biological/medical and environmental level is rather hard,
replicate the results in another independent population not only strengthens the evidence
and helps to avoid false positives, but also increases generalizability. Further issue re-
garding the data quality, the normalization and the data preparation will be later discussed.

The Illumina Infinium 450k Beadchip
In May 2010 the company Illumina released what researchers in epigenetics had already
been waited for years: the most extended DNA methylation measurement device, the
Illumina Infinium 450k Beadchip [Sandoval et al., 2011]. It has the power of measure DNA
methylation level in 485,764 loci, of which the 99.3% (482,421) are CpG dinucleotides
and 3,343 (0.7%) are CNG targets. It is circa 20-times larger than the previous Illumina
Infinium 27k Beadchip that accounted for approximately 27,000 CpG sites. Under the
functional genomic standpoint, around 40% of the annotated CpGs (200,339) are located
in proximity of promoters of genes, of which 62,625 are within 200 bp and 77,375 within
1500 bp upstream the starting transcription site, 49,525 are in the 5’untranslated region
and 10,810 are in Exon 1. A 31% of the CpGs are then annotated in the body of the genes,
a 25% in intergenic regions and a last 3% in 3’UTR. Relation to CpG Island is also an
important feature. They were firstly described in 1985 and then have been found as highly
sensible areas in the methylome, bestowing a special focus to the CpGs belonging to these
highly-CG-dense regions [Gardiner-Garden and Frommer, 1987]. 31% of the annotated
CpGs (150,254) are then found in CpG Islands, 23% (112,072) in CpG shores (North
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either South), 31% (47,161) in CpG Shelves (either North or South) and the rest 36%
(176,127) are annotated in other areas or the so called "Open Sea". A vast majority is also
associated with RNA coding areas (74%, 361,766), around 25% (119,830) are associated
with intergenic regions and the remaining 1% (4,168) is annotated into non-coding regions.
All the 22 autosomal chromosomes, as well as the two sexual chromosomes are touched by
the chip. Chromosome 1 is the most represented with 46,867 CpG sites involved and the
autosomal chromosome with the least amount of CpGs is number 21 with 4,246. This was
a short overview of the coverage of the chip, let’s look at how it is working. We’ll refer
to the DNA methylation measurements as β-values that represent the mean value for a
specific CG dinucleotide and a delta β-values, meaning the difference in DNA methylation
between the control and the experimental group. For a generic ith CpG site, this is the
formula:

β = Max(yi,meth, 0)
Max(yi,meth, 0) + Max(yi,unmeth, 0) + α

(4.1)

where yi,meth and yi,unmeth for the CpG site i are the intensities measured by the
methylated and un-methylated probes, respectively and α is an offset constant (by default,
α = 100) added to the denominator to regularize β value in case the intensities of both
methylated and un-methylated probes are low. The spectrum of values for the β-value
statistic is between 0 and 1, or, in percentage, 0 and 100%.
The greatest difference from the previous Illumina 27k chip lays in the two different types
of assay that have been used to measure the DNA methylation level, the so-called Infinium
I and Infinium II. Infinium I measures around one third of the CpGs and Infinium II
the other two thirds, however, this proportion is uneven in representing other regions
of the genome (e.g.: in CpG islands, 50% of loci are measured with Infinium I). While
Infinium I uses a classical dual-probe well-established approach, is the Infinium II that
brings out a novel technology. Severe repercussions appear as a consequence of this
separation on the detection of differentially methylated regions and are well elucidated by
[Dedeurwaerder et al., 2011]. Whereas Infinium I leans on two different probes, located on
two different bead types with the purpose of separate the measure for the methylated and
the unmethylated allele, Infinium II uses only one type of probe on a unique bead type. For
the second, is the dye of the channel that indicates whether the signal is methylated (green)
or unmethylated (red). Result of this hybrid approach is a difference in the distribution of
the measured DNA methylation across the two probe types that are highlighted by three
points. First, there is a difference in the range of the distribution and the Infinium II
lacks in recognizing highly methylated CpG sites coming up short at the upper bound.
Secondly and partially related to the first point, the DNA methylation distribution across
the CpG sites is acknowledged to be two-peaked. Empirical results show a shift of the
distance between the two peaks comparing Infinium I and II distribution, and, specifically,
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in Infinium II the summits appear closer than in the Infinium I (also considering the lowest
range that this bead type covers, as said in the point one). And, thirdly, the probe-wise
variance of DNA methylation resulted to be higher for CpG sites measured with Infinium
II.
Several groups of researchers started to look at this problem and in the years following
the release of the chip, new methods had been developed and reviewed in order to adjust
this shift and obtain the highest possible consistency across the two Infinium bead types.
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Chapter 5

Preprocessing of the Genome-wide
Methylation Data

Objective of this chapter is to clarify the preprocessing approached that was used in
this work after a short review of the available methods.

5.1 Quality Control

The first step of the preprocessing of the data is the Quality Control. During microar-
ray experiments, technical issues may occur, resulting in a poor performance of the chip;
therefore it is paramount to detect all possible sources of dirtiness in the data, find a way
to purify them and to discard data that are not needed or are not necessary. The first
step is to retain DNA methylation regarding only autosomal chromosomes and exclude
rs-probes (65 loci), markers that are not CpG sites but rather SNPs (Single Nucleotide
Polymorphisms). The second step was to remove background noise and it was accomplished
using the R package minfi. Afterwards it was necessary a bead filtering. Briefly, within
the same array is contained a random number of technical replicates, the so-called "beads",
for every probe. Their scope is to open unique opportunity of quality control of the data.
According to the manufacturer’s recommendation, to be valid, at least three functional
beads on the array have to summarize either the methylated or unmethylated signals that
are associated to a probe. Rather than eliminate the probes that do not fit with this
criteria, a detection p-value of 1 is associated to the β-value for these probes. Detection
p-values represent the confidence that a given transcript is expressed above the background
defined by negative control probes and the score whether a transcript on the array has
been detected. A non-acceptable (NA) value is also assigned to probes with a detection
p-value higher than 0.01. At this point, most of the deceptive information should have
been detected, and the second last measure that needs to be accounted is excluding the
CpG sites with more than 5% of NAs value and samples with more than 20% of NAs
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values. When a probe showed a high degree of non-valid information then it is likely
that the all data regarding that probe are not reliable. Finally, a dye bias correction was
applied according to the R package lumi. Considering the Quality Control completed, we
can move on to one of the most controversial topic: the normalization process.

5.2 The Normalization Process

For the first two/three years after the release of the chip, the problem of normalization
opened a huge discussion across scientists all over the world such that a gold standard
method has not yet been found. Despite several reviews and revision articles, which
clarified strengths and weaknesses of the different proposed pipelines and ranked their
performance including also mixture of different proposed methods, the final decision is
not univocal. Here we provide a short history of the pipelines that received a larger
echo. An historical overview is provided in Figure 5.1. The first method was proposed by

Figure 5.1: A few milestone points in Illumina 450k data evolution. From the release, in spring
2011, several pipelines have been developed, from the Peak-based by Dedeuwaerder
(late 2011), to the SQN from Touleimat and Tost (mid-2012), to BMIQ from
Teschendorff (late 2012) before other studies were undertaken in order to establish
the most reliable method.

Dedeurwaeder et al. together with the description of the two different types of bead probe
[Dedeurwaerder et al., 2011]. They proposed a simple normalization process (logarithmical
rescaling of DNA methylation proportions: M-values = log2(β-values/(1−β-values))) and
a peak-based correction that works as follows. Through kernel density estimation, the
methylated and unmethylated peaks for both Infinium I and II have been determined.
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Prior transformation to M-values allows to separate the distribution in order to have the
unmethylated summit in the negative side and the methylated in the positive side of the new
[-Inf; +Inf] range. The function Argmax(density M-value) has been used on both sides to
determine univocally the two summits SU and SM for the unmethylated and the methylated
side, respectively. The next step would then be to rescale independently the negative and
positive M-values based on the distance between the summits and zero. The corrected
M-values follow these equations for the negative side: corrected M-values = M-values/σu

where σu = 0 - SU and the positive side: corrected M-values = M-values/σm with σm =
SM - 0. Lastly, the M-values were rescaled to match Infinium I distribution range and
re-converted back into β-values.
It was then succeeded by a pipeline developed by the researchers Touleimat and Tost in 2012
[Touleimat and Tost, 2012]. They addressed all the issues there had been observed before
and provided a panel of plausible solutions that have also been tested through simulations.
Main novelty of the Touleimat-Tost approach is the Subset Quantile Normalization (SQN).
They are aware of the problems and the differences due to the hybrid approach used from
Illumina and they proposed a method that uses, after quality control, the more reliable
estimation from Infinium I to normalize and correct the DNA methylation levels measured
with Infinium II. This approach, that applies the concept of "anchor probes", is slightly
different than previously described approaches since it doesn’t modify the distribution
based on value equivalence but on rank equivalence. They further applied this method
taking into account the unbalanced distribution of Infinium I and II in the different regions
of the genome. So, using the information provided by Illumina regarding "relation to CpG
Island" and "relation to gene sequence", they computed SQN stratifying by the category
of the two mentioned variables. Then, they compared different methods including no
preprocessing, the Dedeurwaerder peak-based approach, a global SQN, a CpG Island
stratified SQN and a gene sequence stratified SQN. The results were finally compared with
pyrosequencing data, as best experimental expression of methylation measurements, and
underlined the SQN approach used in relation with CpG Island annotation as the best
solution.
However, a new revolution was about to come. During late 2012, Teschendorff et al.
published a new method called Beta-Mixture Quantile Normalization, that we’ll refer as
BMIQ [Teschendorff et al., 2013]. The basic idea of this method is not very complicated
but touches a rather problematic point of previous pipelines: global quantile normalization
might force a specific DNA methylation value into a quantile too far away from its original
position without any possibility of control. This intuition led to the idea of stratify the
distribution in three sections and parametrize them. These are the stages. After the Quality
Control step, this method considers the fitting of a three-state beta mixture model in order
to separate the three biological statuses of the methylation distribution: unmethylated,
hemimethylated and fully methylated. This step will be performed on separated Infinium
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I and II probes. Two parameters of a beta distribution are evaluated for the Infinium I
and II probes for each of the three identified set of CpGs (un-, hemi- or fully methylated).
What happens next is recreating a distribution of the un- and fully methylated status
using an Expectation Maximization (EM) algorithm with a function that denotes the
probability of belonging to a specific state on both left and right sides of the mean. This
separation is important since the EM algorithm estimates are two-tailed. Turning, then,
these probabilities into the quantiles of the beta-distribution using the Type I parameters,
the normalized β-values for the probe I are set. Finally, the hemimethylated values are
remaining and an empirical approach can be applied. Firstly setting the robust bounds
different than 0 and 1 but maximum of unmethylated or minimum of hemimethylated
and maximum of hemimethylated or minimum of fully methylated and then applying the
shift and dilatation factors would let the normalized values to be computed. There is
no uniform re-scaling but instead a probe-specific transformation, allowing the exclusion
of holes in the distribution. Even if in the same paper they tested the validity of their
approach compared with the other methods previously described, a more detailed and
extended evaluation was provided by Marabita et al. a few months later, in spring 2013
[Marabita et al., 2013]. Using two independent datasets that ensured high level of both
biological and technical replications, following a strict design, they focused on four issues
to validate the methods. The four criteria were:

1. how is technical variability reduced during normalization;

2. how much probe design bias is removed;

3. how is batch effect reduced;

4. how does it help to identify differentially methylated regions.

The conclusion is that in general BMIQ was the optimal method to provide a good
assessment and reliable methylation values. A valid alternative is also represented by the
combination of quantile normalization and BMIQ.
Following Teschendorff’s criteria we tested all these methods in our data and decided
to choose BMIQ without QN. To be thorough, other methods were also developed and
considered by Marabita et al. like SWAN (Subset-quantile Within Array Normalization)
of the GenomeStudio Quantile Normalization. But these methods were not taken into
account in this study. Figure 5.2 shows a summary of the steps applied to our data.

5.3 The Role of White Blood Cells

Hematopoiesis is the name of the biological process that gives birth to all the range of
blood cells subclasses from pluripotent hematopoietic stem cells. Leukocytes, commonly
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Figure 5.2: Performed steps, by thematic area, on KORA data.
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called white blood cells (WBC), play an important role in response to pathogens and
foreign antigens. Therefore, the composition of the different leukocytes type has been
found to reflect occurrences of disease states or exposure to toxicants leading to alterations
in whole types of cells in or out tissues [Wieczorek et al., 2009]. Moreover, white blood
cells composition strongly differs in DNA methylation levels of their respective CpG sites.
As a consequence, thanks to this dual implication of leukocytes, they arise as strong
confounding factor in environmental epigenetics. The composition of white blood cells
is related to phenotype or disease and DNA methylation, therefore biased estimates and
spurious correlations may be observed when excluded from the analysis. This is the reason
why in 2012 a group headed by Houseman E.A. proposed a new method, using the concept
of regression calibration, with the aim of estimate at the same time from DNA methylation
data the personal proportion of six different white blood cell types: B cells, Granulocytes,
Monocytes, Natural Killer cells, CD4+ and CD8+ T cells [Houseman et al., 2012]. The
group of researchers identified a number of differentially methylated regions that can be
used as reliable and steady biomarkers for individual leukocyte types and thanks this
property, proposed a set of analytical tools able to reach reliable estimates of white blood
cell proportions from whole blood samples. R code and methylation "purified" cell samples
(representing the external validation dataset or gold-standard data) have been made freely
accessible to all the users for easy implementation. Alternative gold-standard data have
been proposed by Reinius et al. [Reinius et al., 2012]. An advantage of this alternative
dataset is that most cell type specific CpG sites were selected from the Infinium 450k,
whereas the previous Infinium 27k was used by Houseman et al. Furthermore, Reinius et
al. also differentiated between Eosinophils and Neutrophils that in Houseman are both
ranked as Granulocytes and the purified cells were obtained from the same six subjects
differently than Houseman. However, data used by Reinius consider only male samples,
which implications in a mixed population are difficult to assess. This drawback let us
decide for the implementation of the Houseman data, being in possess of a mixed sex
population.

28



Chapter 6

Statistical Analyses

After describing the data and their preprocessing, it is time now to explain how an
epigenetic genome-wide analysis is performed. First of all it takes the name EWA, from
epigenome-wide analysis. As discussed above, data are obtained from more than 400,000
CG dinucleotides for all the study participants. For each subject we then collected its
corresponding exposure values or outcome of interest and all the other useful information
we would like to use in order to purify as much as we can our analysis. The way to
proceed then is very straightforward, by running a model for each CpG site, reaching
the remarkable amount of results from more than 400,000 models. Useful information
are tracked for each of them (usually β coefficient, Standard Error and p-value of the
exposure or of the CpG site whether it is not the outcome) and results are then evaluated
and interpreted. This is the basic rationale behind every EWA: study the association
of each CpG site with the exposure or outcome of interest. Methylation can be either
the dependent or the independent variable, conditional to the design of the study, if it is
considered to suffer effects from other variables or if it supposed to cause changes to other
factors. Aim of the EWA: identify novel CpG sites associated with the variable of interest
and look for plausible biological pathways that might have elicited physiological reactions
leading to diseases.

6.1 Identification of the Model

EWAs require heavy computational calculations. For this reason an accurate prepara-
tion is necessary, not only regarding the organization of the data processing but also to
considering previous findings. We selected our model based on prior knowledge and we
then tested our results in order to evaluate the robustness of the model and to identify
plausible problematic sources. Starting now with the a priori model, the sections below
will describe some applications and how they had been tested. We obtained data following
a cross-sectional scheme with single individual measurements (as explained in Chapter 3 –
The KORA Study), thus a linear regression model would be fitted in order to study the
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linear association between the exposure and DNA methylation. Repeated over the time
measurements would require a random-effect model. In environmental epidemiology, the
identification of the model has to be accurately planned and the first element to take into
account is the type of exposure we are studying. All analyses have been performed with
the statistical software R, version 2.14. Some applications are described in the following
paragraphs.

6.1.1 Short- and Mid-term Model

The first exposure that will be discussed is the short- and mid-term PM2.5 and following
is described the way the model was build. A crude analysis of any methylation data always
require age and sex, mandatorily. Next, an important confounding factor that have been
observed to modify the methylation values are smoking status as categorical (stratified as
current, former and never smoker) and Body Mass Index (BMI) and alcohol consumption
(number of drinks per week) as continuous. Smoking-related CpG sites are particularly
susceptible to changes in methylation and some preliminary analysis already demonstrated
that unadjusted models lead to spurious false positive results. In line, we had to take
into account the social and environmental factors that epidemiologist found as possible
effect-modifications in air pollution studies: socio-economic status (personal income), day
of the week, season (according to the astronomical definition) and temperature (daily
averages). These variables are particularly important in short- and mid-term exposure
where our focus is two-sided: 1) to study short term variation in DNA methylation related
to increased air pollution exposure in a limited time window and 2) to focus on the
temporal side of the variability rather than the spatial one. Complete coverage regarding
the variables in the involved studies is provided in Table 6.1. Control for temperature
and season allow us to purify from possible effects due to the influence of the climate
and the weather conditions. Finally, as stated in the previous chapter, white blood cell
proportions, estimated via the method developed by Houseman et al., have been included
in the model. Here is the equation:

Yi = β0 + β1PM2.5i
+ β2Temperaturei + β3X3,i + ...+ βpXp,i + εi (6.1)

Where Yi is the methylation measurement for ith subject, β0 is the intercept, β1 and β2 are
the coefficients for the effect of the trailing average values for exposure and temperature
at a specific time window on methylation, X3,i to Xp,i are the p− 2 covariates with the
corresponding β3, . . . , βp coefficient and εi is the error.
As sensitivity analysis we then tested two different partially adjusted models. The first
one is a crude model, adjusting only for age and sex, while the second one added to the
crude model also the white blood cell proportions. A special focus on the white blood
cells is important in order to keep their effect under control. The question is: which of
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Mean ± SD / N(%)

KORA F3
(n=500, 2004-05)

KORA F4
(n=1799, 2006-08)

NAS baselinea

(n=657)

Participants Characteristics

Males 260 (52.0) 887 (49.3) 657 (100)

Age, years 53.12 ± 9.6 60.92 ± 8.9 72.44 ±m 6.9

BMIb, kg/cm2 27.15 ± 4.5 28.15 ± 4.8 28.07 ± 4.1

Monthly Income, euro 1,104.8 ± 583.9 1,159.84 ± 556.6 ∗

Education, years 11.7 ± 2.8 11.5 ± 2.5 15.07 ± 2.9

Drinkersc 296 (59.2) 1038 (57.7) 130 (19.7)

Alcohol Consumption,
g/day 16.11 ± 19.6 15.49 ± 20.4 ∗

Smoking

Never Smokers 226 (45.2) 226 (12.6) 188 (28.6)

Former Smokers 11 (2.2) 782 (43.5) 446 (67.9)

Current Smokers 232 (46.0) 753 (41.9) 23 (3.5)

Passive Smokers
(either Former or Never) 11 (2.2) 36 (2.0) ∗

Missing 20 (4.4) 2 (0.0) 0 (0.0)

Environmental Exposure (mean of the daily average of the day before the visit)

PM2.5
d, µg/m3

Percentiles (25th, 50th, 75th)
20.0 ± 11.6

14.0, 17.7, 25.9
14.2 ± 10.2

6.7, 12.2, 18.8
10.6 ± 7.1

6.3, 9.0, 13.2

Temperature, ◦C
Percentiles (25th, 50th, 75th)

7.1 ± 7.5
0.9, 7.9, 13.2

8.7 ± 6.6
3.9, 7.5, 13.1

12.5 ± 8.5
6.4, 12.7, 19.8

a First time blood sample was collected (time window: 1999-2007)
b Body Mass Index
c Participants with at least 2 drinks per week
d Particulate Matter smaller than 2.5 µm
∗ Data not available

Table 6.1: Descriptive statistics of the study participants in the KORA F3, KORA F4 and US
Veteran Affairs (VA) Normative Aging Study
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these confounders are leading to statistical significance? A comparison of the results across
the three models (crude, crude plus white blood cells and full) allows the confirmation of
the reasonability of the original model, including the necessary adjustments, and to even
exclude spurious implications by other covariates. Furthermore, the issue of long-term
exposure also needed consideration. In order to reduce the risk of running into false
positive associations between short- and mid-term PM2.5 exposure and DNA methylation
we also run a sensitivity analysis by including yearly averages. Usual air pollution exposure
is known to influence DNA methylation values by taking part of the variability and biasing
the results and being in possess of long-term PM2.5 data allowed us to check variability
due to this specific exposure and strengthen the evidence of the results.
Another important question touches the length of the time window exposure we considered.
Based on previous knowledge [Bind et al., 2014, Rückerl et al., 2007, Schwartz, 2000], we
looked at three different trailing averages prior the visit day. 2-, 7- and 28-day were
selected in order to represent variations within days and weeks (short- and mid-term
exposure) from measurement that took place at the same measurement station (in KORA
located at the scientific campus of the University). Looking for temporal rather than
spatial variability, daily averages from the city center can sufficiently simulate peaks of air
pollution that may trigger adverse health outcomes. According to the findings by Bind
et al., variations of DNA methylation due to endogenous exposures are possible after an
increase of exposure in a 4-week time window. Secondary aim of the three lags is also to
catch plausible DNA methylation fluctuations over time. A univocal pattern for most of
the CpG sites seems to be an unrealistic conclusion, while is more likely that different loci
may be associated at different temporal intervals. Genome-wide results looking at answers
to this open question do not yet exist. The results from single day windows led us also to
verify cumulative exposure periods (2nd and 3rd weeks before the day visit) defined and
evaluated in regression models as secondary analysis.
We applied the same approach also to particle number concentration (the number of
particles present in any given volume of air). We averaged the exposure at the three same
time-windows as PM2.5 and meta-analyzed the results of both exposures among KORA
F3, KORA F4 and NAS (Normative Aging Study, that will be later introduced) since the
strategy to measure the exposure was consistent across the studies.

6.1.2 Long-term Model

Possible implications of long-term air pollution exposure were also studied. Long-term
exposure values have been defined according to LUR models within the framework of the
ESCAPE study and have already been explained in Chapter 3. Models for long-term
exposure are slightly less complex than models for short-term exposure (partly because
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many factors have already taken into account in the estimation of the long-term variables)
and as covariates account only sex, age, BMI, smoking status, alcohol consumption and
educational years. Sensitivity analysis has also been performed with crude model (only
age and sex) and an alternatively adjusted model (with income instead of educational
years). Pollutant considered were PM2.5, PM10, NO2 as well as traffic exposure. Analyses
have been performed by pooling KORA F3 and F4 in order to increase power and were
not followed by replication sets. Finally, both BMIQ- and SQN-preprocessing pipelines
have been applied to the data and results were evaluated for both.

6.1.3 Lung Function Analysis

Another pioneer project that involved KORA DNA methylation data aims to link
smoking, epigenetic changes and lung functions. The conceptual framework Figure 6.1. is

Figure 6.1: Conceptual Framework of the lung function project. Confounders: log(height
baseline), weight, weight2, pack-years, follow-up time, max education, indicator
of taking medicine, Houseman cell proportions, indicator for season, day of week,
vitamin C intake and plate.

the prior identification of the CpG sites annotated within genes associated with smoking
and at a later stage the test of their possible implications with lung functions. The
rationale is: changes in DNA methylation associated with (and eventually caused by)
smoking exposure are then considered as possible enhancer of lung function variations.
Lung function decline over the time might be mediated by epigenetics, lying in between
the physiological changes and the environmental influence. Genome-wide smoking effect
on DNA methylation and their plausible recovery after quitting smoking have already been
innovatively described by Zeilinger et al. [Zeilinger et al., 2013]. By including spirometric
evaluations of FVC, FEV1 and FEF25%−75% lung functions we have the chance of adding
a piece to the puzzle. Again in collaboration with the Harvard School of Public Health
and the laboratory of Prof. Andrea Baccarelli, we discussed a shared strategy that best
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fits the data and replicate the results in two independent cohorts (in KORA spirometry
data are available only for F4). A pilot EWA on NAS data using smoking as exposure
variable had the scope of compile a Master List of CpGs for replication in KORA. This
list includes all the identified probes, any other CpGs found within the gene body, in
addition to any CpGs +/-5kb from the identified target and for the CpGs identified in
NAS but not mapped to any gene, all the local CpGs at +/-5kb were also added to the list.
The definitive Master List includes 2003 unique CpG sites all over the genome. In 2008
a subset of the KORA F4 called F4L gave birth to a study with the aim of controlling
lung functions. Responsible for this project is prof. Holger Schulz who, together with
dr. Stephan Karrasch took part of the joined decision group. Lung functions have been
consistently measured at different time points (four times in the NAS study and two times
in KORA) and have been considered as the outcome variables. We run a linear model for
each of the three measurements for each of the selected methylation site like the one that
follows:

Yi,j = β0,j + β1,jAgebaseline,j + β2,jCpGi,j,time1 + β3,j(Agek,j − Agebaseline,j)+

+β4,j(Agek,j − Agebaseline,j) ? CpGi,j,time1 + β5X5,i + ...+ βpXp,i + bi,j + εi,t (6.2)

Where Yi,j represent the lung functions, β0,j , β1,j , β2,j , β3,j , β4,j are intercept and coefficient
for age (at baseline), the CpG site, the difference between age at the follow-up points
and the baseline, and the interaction between the difference between age at the follow-up
points and the baseline and the methylation measurement. β5,j, ... ,βp,j represent the
p− 5 coefficient for the list of confounders: log(height baseline), weight, squared weight,
pack-years, follow-up time, maximum education, indicator of taking medicine, Houseman
cell proportions, indicator for season, day of week, vitamin C intake and technical effect
adjusting. bi,j represent the random intercept for the individuals. The models have been
applied to all folks, and replicated in a set of KORA subsets with only men, only women,
and men older than 55 years in order to increase the comparability with NAS data (an only
old male cohort). Results are reported for two parameters: β4, which measures the effect
of DNA methylation on the rate of decline in lung function, i.e., the interaction between
DNA methylation and follow-up time, and β2, which represents the cross-sectional effect
of DNA methylation. As final sensitivity analysis, trying to confirm that the effect was
not driven by the current smokers, the analysis was also run only on former and current.
Replication of the results with a subset implies a confirmation of the discovered signals
while a non-replication wouldn’t directly mean the denial of the observed signals. The
reason is simple, by reducing the sample size we reduce the power and it is not possible
anymore to define if the signal disappeared due to a lack of power or because it was
previously driven by an extra non-necessary adjustment.
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6.2 Outliers

Outliers might constitute a serious problem. Preliminary results showed that without
excluding them, the risk of increasing the false positive rate is higher. Here’s how we faced
this issue. Scatterplots of residuals have been plotted and plausible outliers have been
manually checked and discarded. Our belief is that unusual values are still plausible and
remove them from the analysis would reduce power. The basic idea is to follow the concept
of hypo-, hemi- and hypermethylation. Unusual or extreme values for a CpG wouldn’t
be discarded if they keep being within one of the three mentioned areas (identified with
these ranges [0 – 0.35], [0.35 – 0.65] and [0.65 – 1]), so for example if a CpG has an
average value of 0.85, displaying hypermethylation, all the records above 0.65 would not be
removed. This rule of thumb method gives the possibility of keeping the most reasonable
data. Since preliminary results confirmed that is more likely that outliers highlight false
positive associations instead of hiding true signals, it makes sense to check for outliers after
the analysis and not before. Other techniques based on distance from the median have
also been developed, but often they result in being too conservative, by simply drawing a
threshold that risk to discard extreme values without a particular biological reason.

6.3 Replication of Findings

As mentioned earlier, an important point in DNA methylation studies is to replicate the
results in different cohorts. Thanks to our collaboration with the Environmental Health
department at the Harvard School of Public Health, and especially thanks to Professors
Joel Schwartz and Andrea Baccarelli, we were able to perform the same analysis on short-
and mid-term PM2.5 within the framework of the Normative Aging Study (NAS) and
merge the results in a meta-analysis. This was also possible thanks to the high consistency
of the methods that were used to get the data in the two research unit, the Helmholtz
Zentrum München in Munich, Germany and the Harvard School of Public Health in Boston
(MA), United States. Before moving to the meta-analysis and the multiple-comparison, a
short introduction on the NAS and the methods applied is given below.
In 1963 at the Veteran Affairs (VA) Outpatient Clinic in Boston (MA) was initiated the Nor-
mative Aging Study, a comprehensive interdisciplinary longitudinal study [Bell et al., 1972].
Aim of NAS is to study the biomedical, physiological, psychosocial and disease-related
changes and effects associated with aging [Bossé et al., 1984]. Thanks to its statutory
responsibility for the medical care data of 25 million war veterans (mostly from World
War II and the Korean War), the VA could compose the first sample with 2,280 men.
They were enrolled as research individuals for their lifetime, be subject to recurrent
medical examinations (at 3-5 year interval) on an outpatient basis and supplemented with
periodic mail surveys, interviews and examinations. In order to center the attention on
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non-pathological aging, the subjects were carefully screened prior the visit to meet rigid
health requirements regardless of age. Exceptionality of this study is its large sample size
and a vast socioeconomic diversity of its population. Focus of the analysis is dual on both
the clinical and the social side collecting biological, anthropometrical and medical data as
well as socio-behavioral. The design of the study aims to sharpen the association between
the natural course of aging and the regular history of chronic diseases. Important element
is also given by the environmental implications, which have been included throughout the
longitudinal scheme accounting for the endogenous and exogenous character of the aging
process.
Data provided for this project belong to the batch of samples collected between 1999 and
2007. Blood samples were provided for most of the 657 participants at two different time
points (1,119 total samples). DNA methylation has been measured with the Illumina
Infinium 450k Beadchip and particulate matter concentration with the same device as
in Augsburg and it was located at the Boston Logan International airport measurement
station. Preprocessing strategy was discussed together according to the data and the on-
coming literature. The result was a highly comparable pipeline with only minor differences.
Only white individuals from the NAS were included in the analysis. Lastly, the model that
was used in KORA cannot be perfectly applied in NAS due to the inclusion of replicate
measurements from the same subjects. Keeping the same set of covariates, a mixed effect
model was required in order to take into account the intra-person variability:

Yi,t = β0 + β1Exposurei,t + β2X2,i,t + ...+ βpXp,i,t + ui,jεi,t (6.3)

This model follows the one applied in KORA and differs only in the ui,j element that
represents the random participant effect.

6.4 Meta-analysis

Results provided in this work for the short- and mid-term analysis come from a meta-
analysis between three independent studies: two surveys F3 and F4 from the KORA study
(Augsburg, Germany) and the NAS (Boston, US). KORA F3 counts for 500 subjects
enrolled between 2004 and 2005, KORA F4 counts 1799 study participants who underwent
the visit in the years 2006-2008 while the NAS includes 657 subjects examined between
1999 and 2007, of which, most underwent the examination twice. We selected random
effect meta-analysis in order to control and take into account the heterogeneity. Being yet
impossible to extensively expand the analysis to a large number of studies, homogeneity
of the estimates slightly increases the reliability of the results. Heterogeneity has been
assessed through the I-squared test (I2) on fixed-effect estimates and CpGs with p-values >
0.05 and I2 < 0.5 were indicated as homogenous. Methylation changes might be very little
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but consistency across the studies helps to identify more plausible signals. Being in possess
of at least three studies allows the adoption of the meta-analysis in order to summarize the
results. But when we only possess two studies, a confirmation of the significant findings is
a valuable replication measure, and this is the case of the lung function study. For this
project we matched the list of the significant CpG sites at both studies across the three
different lung functions.

6.5 Multiple Comparison

As said before, EWAs are so designed in order to test the association between each
CpG sites and endogenous exposure as well as other physiological index. But facing
thousands of tests implies to face the problem of multiple comparisons: increasing the
number of estimated p-values, some of them will fall below the significance threshold just
by chance, signaling false positive associations. In order to avoid this, several techniques
have been developed and within the most common there are the Bonferroni and the
False Discovery Rate (FDR). The Bonferroni method aims to correct the familywise error
rate by reducing the threshold by the number of performed tests, for example fixing
the significance threshold at 0.05 and running 100 tests, the new adjusted threshold
for p-values would be 0.05/100=0.0005. This method has been acknowledged as a very
conservative method even leaving the chance to observe false negatives. The FDR instead
aims to control for the false discovery rate which represents the proportion of discoveries
that classified as false positive. Developed in details by Benjamini & Hochberg in 1995
[Benjamini and Hochberg, 1995] it is less conservative than Bonferroni and creates a new
rescaled p-values called q-values starting by ordering the raw p-values by descending. They
are then compared with a standard threshold to select the significant hits. The method
choice depends on the situations, usually if the risk of accounting for some false positives is
not too expensive, FDR let to enlarge the number of positive associations. Otherwise if the
researcher is very worried in catching false positives even at the cost of discarding plausible
good signals, then Bonferroni might be preferable. However, a standard threshold for
EWAs (and more general genome-wide studies) has not yet been defined, not even within
the frame of a specific method (eg: Bonferroni). A solid, but now slightly less common,
alternative is represented by the Holm sequential technique which, like Bonferroni, corrects
the familywise error rate [Holm, 1979]. It is more powerful than Bonferroni keeping the
error rate under control but in recent years FDR became a more common solution.
For the meta-analysis of the short- and mid-term exposure at the three different trailing
averages, we based our choice following a paper from Dudbridge F. and Gusnanto A.
[Dudbridge and Gusnanto, 2008] where they do not address a specific edge but a reasonable
range. We were slightly more severe than how a pure Bonferroni threshold would have
been with our data (0.05/430.000 ∼ 1.2E − 07), setting it at 7.5E-08. It has become
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common for genome-wide studies to use FDR as correction method arguing that Bonferroni
assumes independence of the tests, which is surely not our case or any EWA case. However,
we judged the risk of noise leading to false positives, in genome-wide DNA methylation
studies, very high and decided to keep as main multiple comparison approach the Bonferroni
method. FDR was further used as less conservative technique in order to look at CpGs
that displayed a lower degree of significance but annotated with genes annotated with loci
identified through Bonferroni. This double-step approach might lead to the discovery of
regions within the genome that might show sensibility to endogenous exposures instead of
single loci. This leads the discussion into a new arena of which yet very little is known:
the study of correlation and interaction across CpG sites throughout the genome. Based
on published literature about this theme, a short discussion will take place later in this
work.
A different approach was used in the lung function project. As mentioned before, meta-
analysis wasn’t applied on these but a simpler replication strategy. A probe was considered
genome-wide significant at the first step (from NAS results) if it had a Holm p-value
equal or lower than 0.05. Moreover, always in NAS, CpG sites that were significant at the
FDR level of 0.10 were also investigated for pathway analysis as well as for replication.
At the second stage, for replication on KORA results, despite analysis were run for the
whole package of selected CpGs (∼2000), FDR was used accounting only for the loci that
showed significance in NAS, independently per each considered lung function. Finally,
Intra Correlation Coefficient (ICC) was estimated in order to check stability across the
studies (otherwise known as metastability).

6.6 Functional Analysis

After highlighting the CpGs from the genome-wide analysis, several tools have been used
in order to determine plausible functional associations. Through Pubmed and GeneCards
(http://www.genecards.org/), the involved genes were defined and classified. Then, to
look at possible links across them and with any other gene, a web-interface, GeneMania,
was extensively consulted [Warde-Farley et al., 2010]. GeneMania uses protein databases
in order to map and link genes. In this way we extended our list of genes with others
that look very associated or show interplay with the ones identified in our analysis. The
approach was dual: to look for previous publications that found the genes in our list
involved with physiological processes or even directly to diseases and to find if they had
already been linked with air pollution or similar exposures.
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Chapter 7

Results

This chapter will present results obtained in the different aforementioned projects. It
will start with results on short- and mid-term exposure (that will take the larger part),
then discuss long-term and finally lung functions.

7.1 Short- and Mid-term Results

We obtained data from three independent studies: KORA F3 and KORA F4 from
the region Augsburg (Germany) and NAS (Boston Area, USA) (Table 6.1). While both
the KORA studies accounted for around an equal sex distribution (52% of males in F3
and 49.3% in F4), the NAS is a totally male cohort. Differences can also be found in
average age with 53 and 60 years old for the German cohorts and 72 for the American, in
mean educational years with around 11 in both F3 and F4 and 15 in NAS and in drinker
proportion where F3 registered 59.2% of drinkers, F4 57.7% and NAS 19.7%. On the other
side, BMI resulted rather consistent with average values around 27 and 28. Substantial
differences were also observed for smoking. F3 participants were mostly split between
never (45.2%) and current smokers (46%), F4 in former (43.5%) and current (41.9%) and
NAS registered mostly former smokers (67.9%), a smaller percentage of never smokers
(28.6%) and a few current (3.5%). Regarding the particle concentration the day before the
visit we observed a higher average in F3 with a value of 20.0 µg/m3, while it was assessed
at 14.2 µg/m3 in F4 and 10.6 µg/m3 in NAS. Instead temperature was higher in NAS with
12.5 ◦C against 7.1 ◦C and 8.7 ◦C in F3 and F4 respectively. Finally, DNA methylation
showed consistency across the three studies with a relatively small standard deviation.
Results of the meta-analysis showed the identification of significant loci at all the three
trailing averages considered, from 2-day up to 4-week exposure (Table 7.1, Table 7.2,
Table 7.3, Table 7.4, Figure 7.1).

Coefficients are expressed as per increase of 10 µg/m3 in PM2.5. One CpG site was
observed as Bonferroni genome-wide significant at 2-day trailing average, (cg25575464
within NEURL4, chromosome 17), displaying a positive association implying an increase in
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Name Chr.a
Reference

Gene
Name

Relation
to CpG
Island

Methylation level Illumina
Beta, Mean ± SD

F3 F4 NAS

Trailing 2-day average PM2.5

cg25575464 17 NEURL4 Island .03 ± .01 .02 ± .01 .01 ± .01

Trailing 7-day average PM2.5

cg04078416 3 CCDC12 Island .05 ± .01 .05 ± .01 .02 ± .01

cg15996282 5 LMBRD2; SKP2 Island .04 ± .01 .04 ± .03 .02 ± .01

cg00402617 8 YWHAZ Island .07 ± .01 .06 ± .02 .03 ± .01

cg19963313 8 NSMAF Island .04 ± .01 .03 ± .01 .02 ± .01

cg15883382 10 Island .04 ± .01 .05 ± .01 .02 ± .01

cg09225537 15 MAG N. Shore .03 ± .01 .02 ± .01 .01 ± .01

cg08757611 17 Island .03 ± .01 .03 ± .01 .02 ± .01

cg25575464 17 NEURL4 Island .03 ± .01 .02 ± .01 .01 ± .01

cg02608596 19 MPND Island .04 ± .01 .03 ± .02 .02 ± .01
a CHR: chromosome

Table 7.1: Characteristics of the CpG sites from meta-analyses of 2- and 7-day trailing averages,
significant with Bonferroni and FDR methods.
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Name Methylation level Illumina
Beta, Mean ± SDa

Regression
Coefficientb P-valuec FDRd

Trailing 2-day average PM2.5

cg25575464 .02 ± .01 0.00082 4.69E-08 0.005

Trailing 7-day average PM2.5

cg04078416 .04 ± .01 0.0001 4.19E-07 0.027

cg15996282 .04 ± .02 0.0017 7.69E-08 0.010

cg00402617 .06 ± .02 0.0002 1.29E-07 0.018

cg19963313e .03 ± .01 0.0018 2.49E-08 0.016

cg15883382 .04 ± .01 0.0001 8.43E-07 0.040

cg09225537 .02 ± .01 0.0001 4.44E-07 0.027

cg08757611 .03 ± .01 9.70E-05 2.15E-07 0.018

cg25575464 .02 ± .01 0.0001 1.76E-07 0.018

cg02608596e .03 ± .02 0.0017 7.69E-08 0.010
a Calculated across KORA F3, F4 and NAS
b Methylation change for an increase of PM2.5 of 10 µg/m3 adjusted for sex, age, income
(education years for NAS, in which information on income was not available), smoking status,
alcohol intake, BMI, temperature (moving average always matching with the PM exposure
window), day of the week, season and the proportion of five estimated white blood cell types:
Monocytes, B Cells, CD8 T Cells, CD4 T Cells, NK

c Bonferroni significance level at 7.5E-08
d FDR: False Discovery Rate with Benjamini-Hochberg method, significance level at 0.05
e Shown in Figure 7.2

Table 7.2: Mean and meta-analysis results of the CpG sites of 2- and 7-day trailing averages,
significant with Bonferroni and FDR methods.
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Name CHRa
Reference

Gene
Name

Relation
to CpG
Island

Methylation level Illumina
Beta, Mean ± SD

F3 F4 NAS

cg16308101 1 SERBP1 Island .45 ± .03 .46 ± .03 .44 ± .03

cg16856342 1 SERBP1 Island .46 ± .02 .46 ± .02 .38 ± .02

cg23276912 1 C1orf212 S. Shore .87 ± .03 .89 ± .03 .86 ± .04

cg03455255 2 TSPYL6; ACYP2 Island .90 ± .02 .92 ± .01 .93 ± .02

cg11046593 2 MSGN1 - .80 ± .05 .83 ± .09 .86 ± .07

cg04423572 3 LOC100128640 N. Shelf .70 ± .04 .74 ± .04 .74 ± .03

cg19963313 8 NSMAF Island .04 ± .01 .03 ± .01 .02 ± .01

cg13169286 10 - S. Shore .55 ± .03 .59 ± .07 .51 ± .06

cg02795981 10 ZMIZ1 - .78 ± .05 .78 ± .06 .79 ± .08

cg19215199 10 ZMIZ1 S. Shore .82 ± .04 .83 ± .04 .82 ± .06

cg13527922 11 F2 - .86 ± .02 .87 ± .02 .87 ± .02

cg24101979 17 NXN N. Shore .81 ± .03 .77 ± .04 .80 ± .05

cg26003785 17 NXN N. Shore .94 ± .01 .96 ± .01 .97 ± .02

cg26283240 17 NXN S. Shore .87 ± .03 .86 ± .03 .88 ± .04

cg06004017 22 MN1 N. Shore .86 ± .02 .90 ± .02 .87 ± .03

cg20680669 22 MN1 N. Shelf .96 ± .02 .96 ± .02 .99 ± .01
a CHR: chromosome

Table 7.3: Characteristics of the CpG sites from meta-analysis of 28-day trailing average,
significant with Bonferroni method, or FDR significant and located in a gene with
another CpG that meets genome-wide significance, or FDR significant and Bonferroni
significant at shorter time-window.
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Name
Reference

Gene
Name

Methylation
level Illumina

Beta, Mean ± SDa

Regression
Coefficientb P-valuec FDRd

cg16308101 SERBP1 .45 ± .03 -0.0076 2.86E-08 0.002

cg16856342 SERBP1 .44 ± .02 -0.0061 1.74E-07 0.003

cg23276912e C1orf212 .90 ± .03 0.0073 4.56E-08 0.002

cg03455255 TSPYL6; ACYP2 .92 ± .02 0.0047 1.86E-08 0.001

cg11046593e MSGN1 .83 ± .08 0.016 1.12E-08 0.001

cg04423572 LOC100128640 .73 ± .04 0.013 7.26E-09 0.001

cg19963313 NSMAF .03 ± .01 0.0024 4.12E-07 0.005

cg13169286 - .57 ± .06 -0.013 6.21E-08 0.003

cg02795981 ZMIZ1 .78 ± .06 0.0093 3.94E-05 0.029

cg19215199 ZMIZ1 .83 ± .04 0.0093 3.66E-08 0.002

cg13527922 F2 .87 ± .02 0.0051 1.54E-08 0.001

cg24101979 NXN .78 ± .04 0.0072 8.95E-05 0.001

cg26003785e NXN .96 ± .01 0.0038 9.53E-09 0.001

cg26283240 NXN .87 ± .03 0.0065 2.03E-05 0.024

cg06004017 MN1 .89 ± .02 0.0046 0.00019 0.048

cg20680669 MN1 .97 ± .02 -0.0049 2.09E-08 0.001
a Calculated across KORA F3, F4 and NAS
b Methylation change for an increase of PM2.5 of 10 µg/m3 adjusted for sex, age, income (education years for
NAS, in which information on income was not available), smoking status, alcohol intake, BMI, temperature
(moving average always matching with the PM exposure window), day of the week, season and the
proportion of five estimated white blood cell types: Monocytes, B Cells, CD8 T Cells, CD4 T Cells, NK

c Bonferroni significance level at 7.5E-08
d FDR: False Discovery Rate with Benjamini-Hochberg method, significance level at 0.05
e Shown in Figure 7.3

Table 7.4: Mean and meta-analysis results of the CpG sites of 28-day trailing averages, significant
with Bonferroni method, or FDR significant and located in a gene with another CpG
that meets genome-wide significance, or FDR significant and Bonferroni significant
at shorter time-window.
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Figure 7.1: Manhattan plots showing p-values from the meta-analysis of KORA F3, KORA
F4 and NAS longitudinal cohort studies across the human genome. Each dot
corresponds to a CpG methylation site. Panel A: 2-day PM2.5 exposure; Panel B:
7-day PM2.5 exposure; Panel C: 28-day PM2.5 exposure.

DNA methylation at elevated particle exposure. Despite the three study-specific estimates
were all positives, heterogeneity was significant among the studies. Applying FDR as less
conservative method, no other CpGs site appeared as significant. Moving to the 7-day
trailing average, we observed another CpG site that reaches the genome-wide significance
level (cg19963313 on NSMAF, chr. 8). Despite the positive association, p-value for
cg02608596 (on MPND, chr. 9) resulted slightly above the threshold. Both showed a
positive association and fulfilled the criteria for homogeneity. Conversely than the 2-day
average, FDR correction added to the two mentioned CpGs other 7 loci with p-value <
0.05. Within them, it also appears cg25575464, Bonferroni significant at 2-day PM2.5.
Homogeneity among the studies was observed in four cases and heterogeneity in three.
Finally, a 28-day average in PM2.5 concentration was found as associated with ten CpG
sites: cg16308101 (on SERBP1, chr. 1), cg23276912 (C1orf212, 1), cg03455255 (TSPYL6,
ACYP2, 2), cg11046593 (MSGN1, 2), cg04423572 (LOC100128640, 3), cg13169286 (no
annotated gene, 10), cg19215199 (ZMIZ1, 10), cg13527922 (F2, 11), cg26003785 (NXN,
17), cg20680669 (MN1, 22). Three of them showed decreased DNA methylation while
the other seven showed increased DNA methylation at similar effect size. Homogeneity
across the study sites was also reached in three out of ten of these CpGs (cg23276912,
cg11046593, and cg26003785). Specific Manhattan plots are provided in Figure 7.1 and
detailed results on significant CpG sites in Table 7.2 and Table 7.4. Considering FDR,
a number of 1,819 additional CpGs displayed a p-value < 0.05 suggesting association
with 28-day PM2.5 exposure including five sites annotated in genes with at least one
Bonferroni significant CpG: cg16856342 (SERBP1, chr 1), cg02795981 (ZMIZ1, chr 10),
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cg24101979 and cg26283240 (NXN, chr 17) and cg06004017 (MN1, chr 22). Additionally,
the new list of 1,819 loci FDR associated with 28-day PM2.5, included also cg19963313,
Bonferroni significant at 7-day exposure. Within this longer list, several CpGs were found
to be associated within one single gene: the top-ranked was MAD1L1 (on chromosome 7)
which appeared 11 times and PRDM16 (on chromosome 1) 8 times. We unfortunately
acknowledged that several loci are rather isolated signals as shown by the regional plots in
Figure 7.2 and Figure 7.3 (right sides). For this reason we also checked how our results

Figure 7.2: Forest plots (left side) and Regional plots regarding the CpG sites that achieved
genome-wide significance level and homogeneity at 7-day average. Forest plots
show KORA F3, KORA F4 and NAS longitudinal cohort estimates and pooled
meta-analysis results. Regional plots show the p-values of each annotated CpG
sites (diamonds) in a 200k bp length genome segment around the top CpG. The
color and the size of the diamonds represent the intensity of the correlation with
the top CpG target (in the center). The blue broken line connects the average
methylation value of adjacent CpG sites; the right axis displays the 0-1 methylation
scale. Correlations and averages values are calculated as mean of the three studies.
Yellow outlined diamonds highlight FDR significant CpG sites.

would look like adjusting the multiple comparisons with FDR, a less conservative method.
A further plot that may simplify the temporal variation for the top CpGs is showed in
Figure 7.4 and it has been recalled "Spider Plot". The top ten significant CpGs per each
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Figure 7.3: Same as Figure 7.2, on 28-day average homogeneous results.

46



0

2

4

6

2−day 7−day 28−day
Time Window

−
lo

g 1
0(p

)

0

2

4

6

−0.0050 −0.0025 0.0000 0.0025 0.0050
Fixed Effect Estimate

−
lo

g 1
0(p

)

2

4

6

2−day 7−day 28−day
Time Window

−
lo

g 1
0(p

)

2

4

6

−0.008 −0.004 0.000
Fixed Effect Estimate

−
lo

g 1
0(p

)

0

2

4

6

8

2−day 7−day 28−day
Time Window

−
lo

g 1
0(p

)

0

2

4

6

8

−0.01 0.00 0.01
Fixed Effect Estimate

−
lo

g 1
0(p

)

Figure 7.4: Behavior of the top 10 CpG sites identified at 2-day (panel A), 7-day (B) and
28-day (C) exposure over time. On the left panel it is shown how p-values vary
within the different averaging period, one broken line for each CpG. On the right
panel we show estimates and p-values on horizontal and vertical axis, one broken
line for each CpG, the colors represent each temporal average: red for 2-day, blue
7-day, green 28-day and the corresponding colored horizontal lines lie on the average
level of the p-values.

47



trailing average have been considered: on the left side we can observe how the p-values
vary from one trailing average to the other, while on the right side it is shown how the
effect estimates vary in relationship with the time window (colors) and the p-value (vertical
axis). Two more things are also important to highlight. The first is that a general decrease
of p-values has been observed extending the length of the time window. The second is
the unbalanced proportion of CpGs that displayed increased and decreased methylation,
positive coefficients have been observed approximately twice more often than negatives.
Results for sensitivity analysis confirmed the reasonability regarding the selected priori
model and the fact that it is necessary in order to best separate the sources of the variability
and purify the effect of the short-term concentration. The amount of significant hits at
the two partially adjusted models is reported in Table 7.5.

Model 1 Model 2 Model 3

FDR Bonferroni FDR Bonferroni FDR Bonferroni

2-day Trailing
Average 29 1 34 1 1 1

7-day Trailing
Average 696 18 988 14 9 2

28-day Trailing
Average 37377 431 52800 563 1829 10

Table 7.5: Sensitivity analysis, comparison of amount of FDR and Bonferroni significant CpGs
for three models: 1- adjusted only with age and sex; 2- model 1 plus white blood
cell proportions; 3- full adjustment.

Considering the minimal adjustment with only sex and age, the number of significant
CpG sites increases dramatically at all the three time windows. It slightly decreases form
the crude model, as expected, by adding the white blood cell proportions. In contrast,
after adjusting for the long term exposure, our top 10 CpGs at 28-day average show high
consistency with the previous results in both estimate and p-value, except for cg20680669
and cg26003785 which estimates respectively moved from a β = -0.0049 with p = 2.09E-08
(without long-term) to β = -0.0020 with p = 2.36E-03 and from β = 0.0038 with p =
9.53E-09 to β = 0.0033 with p = 1.10E-06. Table 7.6 shows the differences in coefficient
and p-value for the 28-day significant CpGs without and with adjustment for the long-term
exposure. Furthermore a special focus has also been driven to the problem of outliers.
Residuals of FDR significant CpGs at 2- and 7-day trailing averages and Bonferroni
significant at 28-day were plotted and manually checked in order to detect unusual values.
Cg11046593 have been identified as problematic locus (according to the approach explained
in the Chapter 6, Statistical Analyses), therefore we excluded 22 values for F4, 1 for F3 and
12 for NAS. Results of the new values on the reduced dataset didn’t delineate a relevant
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With long-term Without long-term

β∗ P-value β∗ P-value

cg16308101 -0.0070 4.64E-07 -0.0076 2.86E-08

cg23276912 0.0079 8.85E-09 0.0073 4.56E-08

cg03455255 0.0050 5.37E-09 0.0047 1.86E-08

cg11046593 0.016 1.28E-07 0.016 1.12E-08

cg04423572 0.013 1.23E-08 0.013 7.26E-09

cg13169286 -0.014 5.97E-08 -0.013 6.21E-08

cg19215199 0.0095 4.32E-08 0.0093 3.66E-08

cg13527922 0.0056 2.09E-09 0.0051 1.54E-08

cg26003785 0.0033 1.10E-06 0.0038 9.53E-09

cg20680669 -0.0020 2.36E-03 -0.0049 2.09E-08
∗ β express change in % 5mC according to a 10 unit increase in PM2.5
exposure

Table 7.6: Sensitivity analysis, comparison of regression coefficients (β) and p-values in 28-day
significant hits with and without yearly PM2.5 exposure adjustment.

49



change and the association remained significant: the estimate changed from 0.016 to 0.012
and the p-value from 1.12E-08 to 5.48E-08. A final comparison between air pollution and
temperature estimates have also been conducted and didn’t show remarkable differences,
resulting similar in magnitude as shown in Table 7.7 and Table 7.8.

Particle number concentration results provided instead a more confusing scenario: after
meta-analysis hundreds of CpG sites were found as associated at each trailing average.
After several checks such as outliers, confounding and very carefully the code, we were not
able to find a rationale behind it. It seems unlikely that all these signals are real and a
possibility is that one or more factors, that may confound the real effects, are still missing.

7.2 Long-term Results

LUR long-term exposure estimates have also been used as exposure. Three different
air pollution indicators were accounted: the gaseous NO2 and the particles PM2.5, PM10.
In order to increase power, KORA F3 and KORA F4 were pooled together accounting for
almost 2,300 participants. Despite the increased sample size, it wasn’t observed any strong
consistent association. NO2 and PM2.5 displayed a few CpG sites as associated with the
exposure but only using the Tost-preprocessed data and this severe lack of consistency
(even comparing probes with higher p-values, in the order of E-05 or E-06) left behind
some doubts regarding the credibility of these results. These loci didn’t replicate using the
BMIQ pipeline and, additionally, the more the literature updated, the more the skepticism
regarding the Tost pipeline increased, until even hypothesizing that can add noise to the
data, leading to false positives. In conclusion we couldn’t strongly associate any signal to
long-term air pollution exposure but these results confirmed the importance of an accurate
pipeline: analysis on same data but after different preprocessing produced rather different
results. The fact that the scarce evidence that we observed on long-term data, when
results have so little consistency just by changing the preprocessing, probably means that
they were mostly influenced by noise.

7.3 Lung Functions

Differences between KORA F4 and NAS participants have already been described but
not regarding lung functions. We observed a high degree of consistency for FEF25%−75%,
but a small difference for the other two categories. In KORA F4, values for FVC and
FEV1 resulted slightly larger than in NAS with values around 4.20 in the German study
vs 3.60 in the American for FVC and 3.30 vs 2.70 for FEF25%−75%. This is probably due
to the effect of age, NAS participants are averagely 10 years older than KORAs.
Results of the preliminary EWAs on NAS highlight nine genome-wide significant hits (at
Holm correction level) as shown in Table 7.9, Table 7.10.
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CpG
NAS F3 F4

β∗ PM β∗ Temp. β∗ PM β∗ Temp. β∗ PM β∗ Temp.

Trailing 2-day average PM2.5

cg16308101 0.00086 0.00050 -0.00017 -0.00138 0.00031 0.00016

cg23276912 0.00013 0.00042 0.00119 0.00139 0.00016 0.00127

cg03455255 0.00028 0.00132 0.00094 -0.00052 0.00019 0.00110

cg11046593 0.00468 -0.00162 0.00771 -0.00114 -0.00592 0.00220

cg04423572 0.00189 0.00341 0.00731 0.01175 -0.00100 -0.00373

cg19963313 0.00082 -0.00018 0.00132 0.00414 0.00067 0.00053

cg13169286 0.00016 0.00356 -0.00174 -0.01280 -0.00301 -0.00451

cg19215199 0.00146 -0.00334 0.00584 0.00493 0.00017 0.00162

cg13527922 0.00062 -0.00005 0.00185 0.00230 -0.00068 -0.00035

cg25575464 0.00168 -0.00128 0.00054 0.00177 0.00015 0.00014

cg26003785 0.00100 -0.00026 0.000200 -0.00028 0.00016 -0.00024

cg20680669 -0.00175 0.00061 -0.00171 0.00050 -0.00020 0.00048

Trailing 7-day average PM2.5

cg16308101 0.00340 -0.00401 -0.00440 -0.00481 0.00022 -0.00026

cg23276912 -0.00121 0.00427 0.00449 0.00427 0.00256 0.00245

cg03455255 -0.00089 0.00169 0.00207 -0.00095 0.00092 0.00108

cg11046593 0.00450 0.00394 0.00983 -0.00578 -0.00419 0.01015

cg04423572 0.00350 0.00471 0.01304 0.02375 -0.00076 -0.00529

cg19963313 -0.00035 0.00183 0.00252 0.00465 0.00126 0.00084

cg13169286 0.00042 -0.00106 -0.00533 -0.01860 -0.00196 -0.00128

cg19215199 0.00637 -0.00086 0.00961 0.00336 -0.00029 0.00227

cg13527922 -0.00148 0.00259 0.00348 0.00037 -0.00020 -0.00036

cg25575464 -0.00050 0.00246 0.00047 0.00199 0.00049 0.00057

cg26003785 -0.00293 0.00215 0.00317 -0.00026 0.00029 -0.00037

cg20680669 0.00096 -0.00566 -0.00474 -0.00185 -0.00066 -0.00053
∗ β express change in % 5mC according to a 10 unit increase in PM2.5 exposure

Table 7.7: Study specific regression coefficients of PM and Temperature for all Bonferroni
significant CpGs at 2- and 7-day trailing averages.
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CpG
NAS F3 F4

β∗ PM β∗ Temp. β∗ PM β∗ Temp. β∗ PM β∗ Temp.

Trailing 28-day average PM2.5

cg16308101 -0.00934 0.01292 -0.02129 -0.01348 -0.00334 -0.00071

cg23276912 0.00695 -0.00317 0.01048 0.00847 0.00582 0.00235

cg03455255 0.00288 0.00038 0.00863 0.00441 0.00408 0.00086

cg11046593 0.00989 0.00424 0.02228 -0.00868 0.01036 0.00167

cg04423572 0.00634 -0.00117 0.04365 0.05288 0.00021 -0.00776

cg19963313 0.00262 -0.00011 0.00172 0.00088 0.00187 0.00300

cg13169286 -0.00331 -0.00086 -0.02180 -0.03602 -0.00775 -0.00090

cg19215199 0.00248 0.01015 0.02568 0.01168 0.00398 0.00246

cg13527922 0.00361 0.00129 0.01043 0.00580 0.00350 -0.00103

cg25575464 0.00229 -0.00096 -0.00092 -0.00043 0.00043 0.00089

cg26003785 0.00368 -0.00835 0.00655 0.00120 0.00313 -0.00034

cg20680669 -0.00609 -0.00039 -0.00692 0.00054 -0.00253 -0.00164
∗ β express change in % 5mC according to a 10 unit increase in PM2.5 exposure

Table 7.8: Study specific regression coefficients of PM and Temperature for all Bonferroni
significant CpGs at 28-day trailing average.
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CpG (Gene) PFTa
Unadjusted
for smoking

Adjusted
for smoking ICCb

Effect
Estimate P-value Effect

Estimate P-value

β4
c

cg02721176
(C10ORF96)

FEV1 0.03 2.29E-08 0.03 N.S. 0.81

cg09995068 FEV1 -0.41 2.09E-09 -0.34 N.S. 0.99

cg14292220 FEV1 0.23 3.89E-10 0.19 N.S. 0.95

cg01249054 FEV1 0.62 9.43E-08 0.52 N.S. 0.78
cg18476993
(MIR671; CHPF2) FEV1 0.00 N.S. 0.14 6.06E-08 0.64

cg05644990 (GPBP1) FVC 0.84 1.25E-08 0.86 8.42E-09 2.80E-14

cg12565126
(MFSD2B)

FVC 0.09 2.33E-08 0.09 2.45E-08 0.88

cg13532885 (SYN1) FVC 0.06 4.69E-08 0.06 4.41E-08 0.93

cg26468478
(CELSR3)

FVC 0.90 1.50E-08 0.90 2.17E-08 0.032

cg03867607 (MYL6) FVC 0.00 N.S. 0.39 9.09E-08 0.76

cg05191655 FVC 0.00 N.S. 0.15 7.34E-08 0.73
a The genomic inflation β-values, with no adjustment for smoking for the longitudinal effect (β4), were 1.36,
1.14, and 1.03 for the FEV1, FVC and FEF25%−75% models, respectively; after adjusting for smoking,
the β-values were 1.20, 1.48, and 1.08 for FEV1, FVC and FEF25%−75%, respectively.

b ICC: Interclass Correlation Coefficient
c β4 measures the effect of DNAm on the rate of decline in lung function, i.e., the interaction between
DNA methylation and follow-up time.

N.S. Non Significant

Table 7.9: Total of 11 unique DNA methylation sites associated with a given Pulmonary
Function Test (PFT) model organized by smoking analysis, unadjusted (left side)
and adjusted for smoking (right side), n = 657 participants in the NAS across all
three smoking classes, never (190 participants), former (441), and current smokers
(26).
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CpG (Gene) PFTa
Unadjusted
for smoking

Adjusted
for smoking ICCb

Effect
Estimate P-value Effect

Estimate P-value

β2
b

cg03636183 (F2RL3) FEF25%−75% 1.01 1.30E-08 0.72 N.S. 0.83

cg05575921 (AHRR)

FEV1 1.79 1.21E-16 1.56 4.74E-11 0.91

FVC 1.40 3.33E-09 1.25 N.S.

FEF25%−75% 1.26 9.52E-19 1.15 1.30E-12

cg05951221
(ALPPL2)

FEF25%−75% 0.96 5.35E-08 0.66 N.S. 0.89

cg06126421 (IER3)

FEV1 1.44 1.14E-11 1.18 7.46E-08 0.93

FVC 1.28 1.55E-08 1.14 N.S.

FEF25%−75% 0.85 1.61E-09 0.64 N.S.

cg21566642
FEV1 1.29 4.67E-09 1.00 N.S. 0.90

FEF25%−75% 0.89 1.15E-09 0.69 N.S.

cg15342087 (IER3) FEV1 3.06 1.20E-08 2.57 N.S. 0.67
a The genomic inflation β-values, with no adjustment for smoking for the cross sectional effect (β2), were
0.71, 0.93, and 0.80 for the FEV1, FVC and FEF25%−75% models, respectively; after adjusting for smoking,
the β-values were 0.94, 0.71, and 0.83 for FEV1, FVC and FEF25%−75%, respectively.

b ICC: Interclass Correlation Coefficient
c β2 represents the cross-sectional effect of DNAm.
N.S. Non Significant

Table 7.10: Total of 6 unique DNA methylation sites associated with a given Pulmonary
Function Test (PFT) model organized by smoking analysis, unadjusted (left side)
and adjusted for smoking (right side), n = 657 participants in the NAS across all
three smoking classes, never (190 participants), former (441), and current smokers
(26).
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Of them, seven referred to the so-called effect of DNA methylation on the rate of
decline in lung function (technically, the interaction term between DNA methylation and
follow-up length): cg18476993 (on MIR671 and CHPF2, chr. 7), cg05644990 (GPBP1, 5),
cg12565126 (MFSD2B, 2), cg13532885 (SYN1, X), cg26468478 (CELSR3, 3), cg03867607
(MYL6, 12) and cg05191655 (no annotated gene, 4). The two remaining significant CpGs
for the cross-sectional effects are cg05575921 (AHRR, 5) and cg06126421 (IER3, 6). It is
worth to also highlight that cg05575921, annotated in the gene AHRR, was associated
with two lung functions FEV1 and FEF25%−75%. Research on smoking exposure already
highlighted more times this probe (and consequently the gene AHRR) and is a further
discover to see it associated with lung function decline (after adjustment for smoking).
Excluding smoking from the covariates provided a few more hits for both the parameters
and, for those who kept being Holm significant, effect magnitudes remained regular. After
sensitivity analysis on current and former smokers only, the probe on AHRR kept being
significant as well as two probes associated with the rate of decline (cg05644990 and
cg26468478). Results of replication showed that three probes reproduced the NAS effect
also in KORA (meeting the two criteria of FDR adjustment and effect in the same direction)
as shown in Table 7.11 and Table 7.12.

Two of these were probes linked with the cross-sectional effect (cg05575921 and
cg06126421) while the third one (cg01086847) with the lung function rate of decline. A
closer examination brought us to discard cg01086847 being very likely simply influenced
by SNP near the target. The two CpG sites that replicated the effect, also showed high
ICC, meaning high meta-stability. Moreover, they have also been found to be replicated
by Shah et al. despite a not very high heritability in cg05575921 [Shah et al., 2014].
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PFT Variable

FDR
significant
hits in
NASa

Number of FDR
-significant results
in NAS also FDR
-significant in

KORAb

Number of FDR
-significant KORA
results with effect in

same direction as NAS

KORA all participants

FEF25%−75%
β2 1 1 1

β4 0 - -

FVC
β2 2 2 2

β4 270 0 0

FEV1
β2 0 - -

β4 1212 0 0

KORA men

FEF25%−75%
β2 1 1 1

β4 0 - -

FVC
β2 2 2 2

β4 270 0 0

FEV1
β2 0 - -

β4 1212 15 1
a FDR defined as having a Benjamini Hochberg p-value less than 0.1.
b FDR defined as having a Benjamini Hochberg p-value less than 0.1, based on the number of FDR significant
in NAS

Table 7.11: Comparison of NAS top findings within KORA when adjusted for cigarette use
(smoking status and pack-years): all of the KORA participants (males and females)
vs. only men.
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PFT Variable

FDR
significant
hits in
NASa

Number of FDR
-significant results
in NAS also FDR
-significant in

KORAb

Number of FDR
-significant KORA
results with effect in

same direction as NAS

KORA oldest men

FEF25%−75%
β2 1 1 1

β4 0 - -

FVC
β2 2 2 2

β4 270 0 0

FEV1
β2 0 - -

β4 1212 0 0

KORA women

FEF25%−75%
β2 1 1 1

β4 0 - -

FVC
β2 2 1 1

β4 270 0 0

FEV1
β2 0 - -

β4 1212 0 0
a FDR defined as having a Benjamini Hochberg p-value less than 0.1.
b FDR defined as having a Benjamini Hochberg p-value less than 0.1, based on the number of FDR significant
in NAS

Table 7.12: Comparison of NAS top findings within KORA when adjusted for cigarette use
(smoking status and pack-years): oldest KORA men (55 years and up) vs. all
women.
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Chapter 8

Discussion

This chapter will discuss possible implications of our discoveries. A greater part will
be taken by the CpG sites identified with short- and mid-term PM2.5 exposure since the
analysis led to a larger amount or results.

8.1 Short- and Mid-term Results

This meta-analysis conducted on three independent studies identified twelve CG
dinucleotides genome-wide significantly associated with ambient fine particle matter
concentration at a threshold of 7.5E-08. Based on previous findings on the literature three
trailing averages were defined at 2-, 7- and 28-day prior the visit day. The twelve CpG
sites were so temporally distributed: one at 2-day average, one at 7-day and ten at 28-day.
Nine out of twelve sites displayed increased methylation and four of them were also found
to be homogenous across the three studies. All of them displayed regularly a little overall
variation (observed 15% average coefficient of variation) within the study populations. A
less conservative multiple comparison approach unveiled a larger number of CpG sites,
especially at 7-day (8 additional targets) and at 28-day (1,819 additional probes).

8.1.1 Homogeneous CpGs

The genome-wide significant CpG site (cg19963313) at 7-day average shows homogene-
ity among the studies. Cg19963313 is located in the gene NSMAF that has been previously
linked with the 55kD tumor necrosis factor receptor, encoding a WD-repeat protein that
binds a cytoplasmic sphingomyelinase activation domain [Montfort et al., 2010]. In addi-
tion it participates in the same reaction within a pathway as SMPD2 [Wu et al., 2010],
that, thanks to prior discoveries in primary cells, have been found to be linked to oxidative
stress [Byon et al., 2008, Jana and Pahan, 2007]. Furthermore, it has also been identified
as a plausible therapeutic target [Liao et al., 2013] and a determinant in cellular response
to hypersmolar stress [Robciuc et al., 2012]. It is well known that hypersmolarity imposes
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a conspicuous stress on membranes, and it is even acuter on those in direct contact with the
environment [Hallows et al., 1996], however, very little is known regarding its association
with air pollution.
MPND, the gene that includes cg02608596 (which p-value resulted close above the Bon-
ferroni genome-wide significance threshold), has interaction with ubiquitin specific pep-
tidase. Ubiquitination is a well-known process involved post-transcriptional histone
modifications (another very well characterized and investigated epigenetic marker re-
lated to chromatin modeling) and it induces us to hypothesize that even short temporal
peaks of air pollution exposure may widely affect chromatic remodeling by influenc-
ing key players in chromatin function. Finally, a further implication of ubiquitination
have been found in association with DNA repair and recovering from DNA damage
[Al-Hakim et al., 2010, Ulrich and Walden, 2010]. Our work may present cellular response
to a DNA damage caused or better provoked by particulate matter.
Three additional CpGs were found significant and fulfilled the criteria for homogeneity
at the 28-day trailing average exposure to fine particle: cg26003785, cg23276912 and
cg11046593, respectively annotated to NXN, MSGN1 and C1orf212. All three genes
belong to the categorization "protein-coding gene".
Specifically, NXN has been observed in partnership with phosphofructokinase (PFK) 1, a
glycolytic enzyme reported to contribute to systemic metabolic conditions and cancerous
processes [Mor et al., 2011, Yi et al., 2012]. In addition, NXN interacts with CIR1, a
compressor interacting with RBPJ. It plays an important role in the Notch Signaling
Pathway, which is involved in many functions regarding inter-cell communication and also
gene regulation of various cell differentiation processes at both embryonic and adult stage
of life.
DNA methylation was observed as increased at cg23276912, which is located in the pro-
moter of MSGN1, which, whether methylated, has been shown to conduct to transcriptional
repression [Jones and Takai, 2001]. It resulted reported as clutch element during matura-
tion of mesoderm stage in embryonic development [Fior et al., 2012, Wittler et al., 2007]
and, additionally, domain datasets reported shared protein domain between MSGN1 and
AHR and ARNT (Aryl Hydrocarbon Receptor and Aryl Hydrocarbon Receptor Nuclear
Translocator, respectively). There are evidences in literature about the involvement of
these genes in several biological processes including regulation of inflammatory and other
endogenous processes among the ones known to have been associated with multi-factorial
diseases like pulmonary disorders [Scrivo et al., 2011, Ukena et al., 2010]. Ovrevik et
al. in 2014 found that these genes play a key role in regulating chemokine-responses
mostly relating AHR and ARNT to NF-kB, the nuclear factor-kB family, where the
regulation of the inflammatory responses is usually characterized by the p65/p50 dimer
[Ovrevik et al., 2014]. The link between the gene AHR and PM exposure is not a nov-
elty since was already highlighted through nongenotoxic events and Th17 polarization
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[Andrysik et al., 2011, van Voorhis et al., 2013] but this work provides the first evidence
of a possible epigenetic mediation between the ambient effect and the gene. In fact,
results from Di Meglio et al. [Di Meglio et al., 2014] demonstrated an absence of AHR
triggers dysregulation of skin cellular response to inflammatory stimuli, this work provided
evidence for the increase of DNA methylation in a CpG site located in the promoter
of a gene (MSGN1 ) sharing protein domain with AHR associated with an increase in
PM exposure. Despite the indirect link, the identification of MSGN1 may add useful
information regarding the complex relationship that occurs between endogenous (often
environmental) factors and the consequent responses of the immunological system. On the
other side, no other study has previously displayed the gene ARNT in an air pollution
study, so our finding constitutes a real novelty. Future studies are required with the aim
of verifying and clarifying the role of ARNT.
Unfortunately we had no access to any functional information about C1orf212.

8.1.2 Heterogenous CpGs

Below is briefly described the role of the seven genes annotated with the other genome-
wide significant CpGs but not sufficiently homogeneous across the studies.
Cg25575464 (NEURL4 ). After MPND, mentioned in the manuscript, this is another gene
related with Ubiquitination.
Cg16308101 (SERBP1 ). Koensgen et al. [Koensgen et al., 2007] discovered overexpressed
SERBP1 in ovarian tumor epithelial cells and we observed decreased methylation in a
CpG site annotated within that gene. Moreover, Serce and coworkers [Serce et al., 2012]
presented a significant association of SERBP1 expression in human breast carcinoma with
favorable prognosis, hypothesizing it as a potential prognostic marker of tumor. This is,
to our knowledge, the first study that links the SERBP1 behavior with an environmental
factor.
Cg19215199 (ZIMZ1 ). It was found by Lee et al. [Lee et al., 2007] as regulatory gene
for the p53-mediated transcription, a tumor suppressor and it is consistent with our
result, showing increased methylation at higher particle matter exposure, hence, eventually,
increased gene silencing. Other publications helped to clarify how and where ZIMZ1
operates [Rakowski et al., 2013, Soler et al., 2008] but this is the first study that links it
with an environmental exposure.
Cg13527922 (F2, Thrombin). A well-known gene already linked to tumors. It was found
by Hu and colleagues [Hu et al., 2004] playing an important role in the three steps of
implantation, seeding and spontaneous metastasis. We observed increased methylation at
ambient concentration of fine particle.
Cg20680669 (MN1 ). Already known as related to Acute Myeloid Leukemia (AML) and
meningioma, in a Chinese cohort, Xiang and coauthors [Xiang et al., 2013] and Aref et
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al. [Aref et al., 2013] confirmed the work made by Liu and coworkers [Liu et al., 2010],
observing that, in human, overexpressed MN1 is associated with AML consistently with
the decreased methylation we observed.
TSPYL6 and ACYP2, annotated for the CpG site cg03455255 and LOC100128640, anno-
tated for the CpG site cg04423572, were not found to be related with any specific disease
or other outcomes.

8.1.3 Temporal Variation within Days and Weeks before the
Visit

As said, one CpG have been found significant at 2-day average, one at 7-day and ten
at 28-day, and they don’t match, constituting twelve unique loci. This result opens the
big question regarding the temporal variation of DNA methylation. But proceed with
order. A systematic decrease of p-values has been observed consequently to the extension
of the trailing average Figure 7.1. From the Manhattan plot can be clearly seen how
the cloud of dots is extending its area towards the more statistically significant side of
the graph and this is reflexed by the higher number of significant loci. This trend may
suggest that increased levels of fine particle exposure need to persist over longer period
of time than just a couple of days before epigenetic mechanisms alter the regulation in
leukocytes exceptionally beyond their usual exposure, as presumably pinpointed by the
number of differentially methylated CpG sites throughout the genome. P-values of CpG
sites significant at 28-day average were decreasing moving from the 2-day to the 7-day
and to the 28-day, where finally turned significant (as also shown in Figure 7.4 [Panel
C]), meanwhile, p-values of probes significant at 7-day average didn’t result significant
at 28-day. In order to better understand the behavior of the selected CpG sites, further
analysis are required. The hypothesis after this work is that eventual DNA methylation
fluctuations according to a short- or mid-term exposure are probe-specific. The cases
of the two CpG sites Bonferroni significant at a time-window but only FDR significant
(less conservative method) at the next longer trailing average are examples that point
to the fact that maybe there are CpGs which DNA methylation level is more sensible
at shorter variations. However is very difficult to drawn any conclusion since a reference
value doesn’t exist. This is a crucial concern for this research and an open question that
emerged from our results, having the possibility to choose several temporal windows and
perform a rather extensive package of analysis.
A second pattern that we come out looking closely at our results is the proportion of
positive and negative coefficients, reporting increased or decreased DNA methylation
consequently an increase in PM2.5. We predominantly observed positive DNA methylation
coefficients, 9 out of 12 only within the significant ones. While a general trend is difficult
to interpret, it is still possible to make sense of the results CpG by CpG. It is known from
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several studies that epigenetic changes might increase gene silencing and it becomes an
issue when tumor suppressors are silenced [Laird, 2005]. In our results, an example of this
mechanism might be constituted by the identification of a CpG within the gene ZIMZ1
which was already connected to skin tumor cells in mouse models [Rogers et al., 2013].
Little is known regarding the role of epigenetics in tumor development mediated by air
pollution but this result might provide useful information. A previous study observed,
instead, a higher prevalence of decreased DNA methylation associated with short-term PM
exposure in tandem repeats [Guo et al., 2014]. However, the basic approach is substan-
tially different: our results are the first that link PM exposure and DNA methylation on a
genome-wide basis, while the excellent work done by Guo et al. still reports a gene-specific
approach. The completely hypothesis-free approach makes results with previous study not
much comparable, where the hypothesis was yet to look at priori selected genes. Since
the original dogma of a genome-wide analysis is to identify so far undiscovered areas of
the genome (and hopefully, in the future, cross-link them), novel results are very welcome
having the power to open so far unasked questions, even if the interpretation might not be
suddenly evident.
With respect to that, the regional plots (Figure 7.2 and Figure 7.3, right side) showed that
the highly significant hits are mostly isolated probes instead of pointing to a specific region.
This opens another interesting subject and it is the relationship across CpGs within the
same area. We know that CpGs that are close have an influence each other and it is a
common hypothesis that these specific variations related to differentially methylated areas
are stronger than the ones related to lonely differentially methylated CpG sites. We will
later discuss this topic attaching also a short literature review of developed methods that
address the intra-CpG correlation.
Despite we identified several plausible links involving the genes we identified, we couldn’t
provide any specific causal function that may unveil how is happening that air pollution
exposure influences adverse physical responses. This is only an observational study and
further mechanistic in-depth analyses are required to better enlighten this possibility.
However, another interesting implication of our results is the higher prevalence of pos-
itive associations that seems going in the opposite direction of the larger percentage
of negative associations found by Zeilinger et al. in relationship with smoking status
[Zeilinger et al., 2013]. Deepening the results that we found, we noticed that cg23276912
shares protein domain with gene AHR, as explained above, and its coefficient displayed
increased methylation, hence, plausibly, gene silencing. The most striking CpG observed
by Zeilinger et al. is located within AHRR, which represses AHR consistently with the
hypothesis suggested by our results but possible implications need to be verified by future
studies. Being at the dawn of the Epigenomics era, this is another example that shows
how important it is to focus on each identified locus and discover its real functions.
The Regional Plots of the CpG sites identified in this study exhibit another pattern, despite
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we are not fully aware of the rationale behind. Selecting a restricted genetic window
(200k bp) around a target (a highly significant probe), all the probes positively/negatively
correlated with the target show a similar methylation value, that might be either hyper-
or hypo-methylation and independently of the correlation direction, but consistent within
them. For example, looking at the CpG sites with blue shade (meaning negative correlation)
around cg02608596 in Figure 7.2, the height of the broken blue line (representing their
average methylation value) is homogenous (showing hyper-methylation, in this specific
example).

8.1.4 Strengths and Limitations

A great strength of the results presented here is that none of the studies that we
considered is underpowered since all included at least 500 participants. We strongly
believe that it was a necessity in order to have the sufficient power to identify and detect
differentially methylated probes with such a little variability. Moreover going into the
details of the model, we could take advantage of several positive elements that increased
the research value. First of all, both methylation and PM2.5 had been measured with the
same methods and tools across the studies. Then, we had the potential to adjust for an
extensive list of relevant confounders including temperature at the same time window
of the PM2.5, weather conditions and others that from sensitivity analysis and previous
knowledge seem to be pre-requisite for the least possible biased estimation of associations
with such ubiquitous exposures like, particulate matters (and more in general air pollution).
Finally, performing a number of sensitivity analysis allowed the consideration of the a
priori model as the most conservative for the estimates. Our results were not dependent on
long-term exposure at residences and not influenced by potential outliers. Some limitations
are also acknowledged. Air pollution had been measured from a single monitoring station
since personal exposure data were not available. Considering that no coal power plant was
in operation in proximity of the subjects and just a little percentage of them is addressed
to live near a major road, let us focus on the temporal fluctuations of DNA methylation
but not the spatial variability, forced to rely on ambient air pollution estimates. On
support of the reliability of this method, we report an exposure-validation study enrolled
in Boston, Massachusetts. Home indoor and outdoor concentrations on PM2.5 were
compared on 25 participants with ambient concentrations from a central monitoring
station. They observed that ambient PM2.5 was highly associated with both indoor and
outdoor concentrations. Primarily Berkson-type measurement error [Zeger et al., 2000]
will surely result in measurements error since a single site has been used in this study that
implies a bias in the standard error but not in the effect size. Therefore, we considered
only white participants limiting our results from plausible generalizations to other races.
One more limitation comes from the type of analysis that we enrolled, focusing on the
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exposure on the days before the medical examination, no longitudinal/long-term effect
could be deepened. Lastly, even if the Illumina 450k is the widest used platform with
respect of number of successful probes analyzed, it doesn’t yet cover the whole epigenome.

8.1.5 Summary

In conclusion we could observe and highlight a number of novel CpG sites associated
with increased days and week of ambient fine particle exposure at different trailing averages.
Sensitivity analysis also provides the evidence that these results were not influenced and
cannot be attributed to long-term effects. We also observed, after meta-analysis, that the
significance level tends to decrease extending the time window of exposure. Novel biological
pathways have been identified according to the findings of this work and might be link air
pollution exposure to several pathophysiological processes and health outcomes such as
tumor development, inflammation stimuli, pulmonary disorders, glucose metabolism and
also chromatin remodeling and gene regulation. Mechanistic analyses will be required in
the future in order to establish the evidence of the effect of these epigenetic changes on
the human biological system, including eventually lung cancer. Novel questions have been
raised that solicit further research on environmental epigenomics.

8.2 Long-term Analysis

Results of long-term analysis on KORA F3 and F4 combined were not as clear as results
on short- and mid-term exposure. Nevertheless, some suggestions and take-home messages
can still be discussed. First of all, a long-term study focuses more on the spatial variability
of the exposure and is determined by factors that are not much volatile during the time,
such as traffic, green areas, major road or presence of massive sources of pollution. Relating
to that, it is plausible to imagine that in a medium-sized city like Augsburg, the differences
of the elements in play might not re-create the variability needed to display a change in
DNA methylation related with conditions over extended time windows. On another side,
the cross-sectional design of the analysis doesn’t allow us to consider longitudinal variations
of DNA methylation. This constitutes an important point since little is known regarding
the behavior of DNA methylation, its plausible reversibility and most interestingly its
interaction with aging. In western countries, air pollution effects on health are also limited
compared to other exposures like smoking and produces just little effects through the time
that constantly damage men’s health but not massively. For this reason, genome-wide
studies and specifically addressing DNA methylation might be very useful and contribute
to enlighten the deep biological processes of diseases elicited by endogenous exposures. A
genome-wide screening has the power to touch vast areas of the human genetic background,
hence to try to merge a large amount of very small variations that, combined, might unlock
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a physiological outcome and many factors were already identified to play a major role
into this system. Analytical tools keep evolving quickly. Considering the relative novelty
represented by the Illumina 450k Beadchip and the yet elevated costs needed to enroll
projects involving hundreds of sample, eventually longitudinally, and the necessity of a
replication base, we consider our results a positive impulse for future analysis. Our DNA
methylation measurements were only performed on whole blood samples and even the
consideration of other types of tissues may provide a more specific picture of the effects of
common environmental exposure on human health. Finally, epigenetic findings might also
turn into therapeutic targets expanding the medical frontiers of treatments.

8.3 Lung Functions

As result of EWAs conducted on the American population-based study NAS, a large
number of CpG sites have been detected as being Holm-significantly associated with
smoking. Aim of the research is to study the possible association of some of the identified
CpG sites with variations in lung functions, especially the results of a spirometry test
FVC, FEV1 and FEF25%−75%. Across the different parameters and adjustment for smoking
activity, nine CpG sites revealed an association with the respiratory functions; of them,
seven with the rate of decline and the other two with the cross-sectional effect. Results of
the selected 1339 CpG sites have been replicated in an independent German study: KORA.
Three of the nine identified probes have also been found FDR significant in the replication
study. These results confirmed the role of DNA methylation as possible mediator between
smoking exposure and variation in lung functions parameters. One of the CpG sites that
also replicate in KORA belongs to gene AHRR, a well-known gene in the field of smoking.
If on one side it is surprising to observe it associated with decline in lung functions, on
the other side, by adding a piece to the puzzle, it confirms that it is a key path between
smoking and health consequences.
Another major question raised by these results concerns the CpG sites that were not found
associated with lung function decline at either rate or cross-sectional level. Throughout
our genome there are probes which DNA methylation is directly influenced by smoking
but our empirical results haven’t yet identified pathophysiologic factors that change in
association with this epigenetic marker. Despite the brilliant idea of checking for lung
functions parameters, smoking effects mediated by DNA methylation seem to be even
more broadly extended.
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Chapter 9

Inter-CpG Correlation

Sometimes, from analysis or studies, very simple issues related to the nature of the data
and the information that we are handling, emerge from the reality and require a solution
or, at least, an investigation. The issue discussed here is the correlation across CpG sites.
Are CpG sites close each other following a similar behavior? Are they influencing each
other? Are they correlated or do they follow a more complicated and intriguing pattern?
Those are just a few exciting questions that arise looking at the epigenome and at the
first results in the field of epigenomics and environmental epigenomics. Two published
methods will be here discussed and at the end a naïve solution will be proposed.

9.1 A-Clustering

During late 2013 Sofer et al. proposed a computational method with the aim of
detect areas of the genome that "exhibit common behavior" but might not be restricted
to pre-specified or known methylation domains [Sofer et al., 2013]. The brilliant idea was
to use correlation coefficient in order to scroll adjacent CpGs and cluster them according
to certain parameters of distance and minimum correlation. Once a cluster have been
identified, all the probes are tested together vs a specific exposure using a GEE model.
Generalized Estimating Equations (commonly known as GEEs) is a special model, alterna-
tive to Mixed Models, developed by Liang and Zeger in 1986 in order to analyze correlated
data like longitudinal data [Liang and Zeger, 1986]. The algorithm developed by Sofer et
al., gives the possibility to choose the type of correlation that is preferred (Spearman or
Pearson) and the way the distance between two clusters is estimated, hence how to join or
not them. The analyst can also arbitrarily decide the minimum dimension (in number of
probes) of the cluster. Even if the authors provided results from simulations conducted by
variating the parameters, it is surely a strength the possibility given to the users to choose
based on its own data and beliefs. This method represents a distinct novelty in the field
of epigenomics. The dogma of A-clustering lies in the dual-step approach, first, the CpG
sites are clustered together independently from the exposure but based on their "behavior",
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then associated with other factors. Once clusters are calculated, they constitute a kind
of completely new dimension of the epigenome that can then be directly considered for
further analysis and associated to plausible exposures. It looks like a new hierarchical
level, at the base there are the CpGs, above there are the clusters. An interesting study
that applied A-clustering has been recently published by Sen et al. [Sen et al., 2015],
where they demonstrated that Pb-induced changes in DNA methylation can be modeled as
co-regulated cluster. Simulations provided evidence of its increase effectiveness compared
with Bump-Hunting, which will be discussed in the next paragraph.
A-clustering has also drawbacks. First of all an extension is needed in order to use all
the power of an eventual longitudinal study. The algorithm includes currently only the
steps needed for a cross-sectional study and a new strategy for repeated measurements is
not yet proposed. However it is fair to remind that the whole code is written in R and
is open access, so every user can simply modify and add the features he/she prefers. A
second question that is raised is how can a user decide the best distance for his data? Are
there biological elements that are needed to be taken into account? A proposed solution
has been written in the paper but it is based on computational results on pilot data. A
further question comes regarding replications. Clusters are strongly study-specific and the
only way to replicate a result would be to ask another study to consider exactly the same
grouping structure. This closes the way to a full replication since one study determines
the first step for all the others, which would be used only from the second step. Finally,
a limitation concerns the use of correlation. Figure 9.1 may help to better understand
the problem. The histograms represent the distribution of the correlation between CpGs
annotated next to each other. Then the distance was changed, to the second next CpGs,
then the fifth, the tenth, the 100th and the 1000th. The distribution never changes across
the different distances (as shown by the histograms, which density is then reported in
the bottom graph, Figure 9.1) and this might suggest that correlation might not exactly
address CpGs that exhibit the same behavior but rather randomness of the data. A second
test was also performed. Three CpGs have been randomly selected and their correlation
with any other CpG from the same chromosome has been estimated. The results showed
a homogeneous histogram across all the estimated values, but more interestingly the
same pattern across all the other CpGs, independently from the distance, shown in the
horizontal axis of Figure 9.2. Results from Figure 9.1 and Figure 9.2 come from chromo-
some 5 as example but the pattern didn’t change in other chromosomes (results not shown).

9.2 Bump-Hunting

Looking for differentially methylated regions (alternatively called DMR) can solicit
several questions and one of them is: "do groups of CpG sites identified in a certain area,
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Figure 9.1: Distribution of the correlation at different distance orders across the CpGs. The
bottom graph groups the density distribution of the previous six histograms.
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Figure 9.2: Distribution of the correlation coefficients of three random CpG sites.
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all consistently influenced by a certain exposure/phenotype, exist?" This is the question
that Jaffe et al. tried to answer when they applied the concept of Bump-Hunting to
epigenomics [Jaffe et al., 2012]. Bump-hunting works similarly to A-clustering since it also
perform a genome-screening, but after a EWA had already been performed. The basic
idea is very simple; it starts taking a CpG with the corresponding estimates after the
model performance, then moves to the next, and asks: is this second estimate similar to
the first one? If yes then start to group them together and move to the next probe, is the
new estimate similar to the previous ones? If yes, add it to the cluster, otherwise go on.
And repeat it throughout the all genome. The analyst can also decide the dimension of
the cluster and the other parameters according to his/her beliefs, the data and also the
magnitude of the effect size in order to decide how much "similar" two probes/cluster must
be to be joined. The authors propose a change in DNA methylation of 5%. The approach
of Bump-Hunting, conversely than A-clustering, starts with regular EWAs and extrapolates
clusters of probes after the they have already been associated with the exposure/phenotype
but the focus is not to associate the probes that behave similarly, but the probes that
behave similarly dependently on a specific outcome. In other words, clusters must be
functional to the factor in study, that might be a disease (e.g.: tumoral vs healthy cells)
or an environmental exposure (e.g.: high air pollution concentration). This constitutes a
strength since this method is independent from the model and the study design, the only
elements that are needed are the regression slopes per each locus. A final step, after the
identification of a differentially methylated area is the performance of a permutation test
in order to avoid the identification of random differentially methylated region.
Bump-Hunting is also not immune to drawbacks. The first one is the high reliability
on estimates. If on one side it leaves the freedom of the model choice, on the other
side regression coefficients have limitations in representing the completeness of the phe-
nomenon in act. Smaller estimates might be more significant that larger ones and in
general they are sensible to the mean, probes with an average value in the middle of
the distribution might be more variables than probes at the extremes (hypo- or hyper-
methylated). It seems difficult for Bump-Hunting to detect small but significant changes
in DNA methylation, like the ones that are more common in environmental exposure,
while it might be a very efficient technique to detect differentially methylated regions
comparing strong outcomes like tumoral vs healthy cells. A second limitation is again
constituted by the replication stage. It seems very unlikely that different study repli-
cate the same regions. Like A-clustering, a limited but alternative solution would be
to identify the regions in a first study and check results of other studies on the same regions.
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9.3 A Separation between Hypo- and Hyper-methylated
CpGs

The method we propose here represents a starting point that addresses one question:
is it possible that hypo-, hemi- and hyper-methylated CpG sites behave differently? May
it be more likely for a hypermethylated probe to increase its DNA methylation level than
for a hypomethylated one with similar functional characteristics? This is why based on
functional information a two-step probe clustering method was developed. The first step
is to group CpGs annotated within the same gene and the second is to then subgroup
them in hypo-, hemi- or hyper-methylated according to their average value. The threshold
across these three categories would be empirically estimated based on the double peaked
distribution of DNA methylation across the probes. After estimating the distribution of
methylation for each subject, two derivatives have been estimated in order to detect the
two flexes of the curve, after the first peak (approximately between 0.20 and 0.30) and
prior to the second peak (between 0.65 and 0.75). The slope of the derivative can be
arbitrarily decided and the median of the projections on the 0-1 methylation scale where
the derivatives fall would be calculated across all the samples. The two medians, after
the first peak and prior the second, would represent the threshold to classify the CpG
sites: probes with mean lower than the first median are hypomethylated, the ones between
the two medians are hemi-methylated and the ones with a mean greater than the second
median would be classified hyper-methylated. We have now obtained clusters of CpGs
belonging to the same gene and with a close DNA methylation output. After this selection
step, all the CpGs in a group would be analyzed together with the outcome of interest
with a mixed-effect model to take into account the inter-CpG correlation. In fact, even if
we cannot quantify the amount of this co-variability, we expect the correlation inter-cluster
to be not null: the rationale behind the method is that near CpG sites are surely not
independent each other, as observed in the regional plots. This method had been tested on
short- and mid-term PM2.5 exposure and results show very low consistency between models
run in the same genes but on clusters classified as different DNA methylation segment. The
number of matches between significant CpGs across hypo-, hemi- and hyper-methylated
clusters is presented in Figure 9.3. A strength of this method is the simplicity of the
selection of the clusters. Often simplicity means lack of quality and possible repercussions
are explained in the following lines, but in this case it also represents computational time
saving. It is happening at two levels: one is the evident reduction of the models to run and
the second one it that no screening is involved but a simpler sub-selection step: average
and gene annotation are the two required parameters. Even if the mean might naïvely
represent some probes, it is quite efficient for the vast majority of them which display
a little variation. On the other side, an evident limitation of this method, consequence
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Figure 9.3: Number of significant clusters associated with PM2.5 exposure at 2-day (Panel A),
7-day (B) and 28-day (C). Intersections show the number of matching clusters
between different methylation segments. Blue: hypomethylated segment, Red:
hemimethylated, Green: hypermethylated
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of the simplicity of the cluster selection, is the fact that grouping a priori all the CpG
sites annotated in a same gene and separating them only according to segment of the
DNA methylation spectrum where their average falls, might provide imprecise results.
How probes behave once they belong to the same gene is not yet clear and some CpGs
will be clustered together without evidences of any association. Inter-CpGs influence has
been observed in CpG Islands but evidences of a co-modulation pattern at gene level are
not yet exhibited. On one side, the idea is to rely on prior information to cluster the
probes before looking for an association with the outcome of interest. Therefore, across
studies, this allows the selection of clusters that are not so different each other. In fact,
we have observed high consistency of the DNA methylation values in different cohorts
making plausible for a CpG to belong to the same methylation segment in different studies.
However this problem might affect the borderline probes, those in a short around of the
two thresholds.

9.4 Conclusion

The methods described in this chapter represent the first solutions in literature aimed
to account for intra-CpG correlation. They all started from a different perspective, A-
clustering is looking at CpG sites with a similar behavior, while Bump-Hunting is seeking
CpG sites with a similar behavior depending on the outcome of interest and the method
tested in this work simply addresses the possibility that hypo-, hemi- or hyper-methylated
loci might behave differently. We also acknowledge that replication is still one of the biggest
challenges that require attention in order to study the interplay that occur across different
probes. The epigenome constitutes one of the biggest and most exciting novelties of the
scientific research of the last couple of decades and identification of relevant differentially
methylated regions (rather than simple CpG sites) may contribute to better enlighten
the influence of DNA methylation in estimating the risk of common diseases and their
interaction with both environment and genetics.
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Part II

Socio-economic Status
and Air Pollution
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Chapter 10

The Problem of Confounding

The problem of confounding has been a real riddle for statisticians and epidemiologists
and it will keep being so. Several techniques have been developed in order to control it,
but the fact that it depends on the theme of interest, makes it always actual: confounding
requires field knowledge. The reason why the mere development of techniques is not
enough lies exactly in the fact that we have to know what confounds what. This is exactly
why this project was started.
But what is confounding? Here is how the Oxford dictionary defines it: "mix up (some-
thing) with something else so that the individual elements become difficult to distin-
guish". In statistics its definition came out through other concepts like collapsibility
[Whittemore, 1978] and comparability [Miettinen and Cook, 1981], inducing Nurminen
to conclude: “Any attempt to clarify ’confounding’ in simple conceptual or statistical
terms is destined to omit some important aspect on the topic” [Nurminen, 1997]. Showing
this work epidemiological evidences, we can then refer to the definition of the Mosby’s
Medical Dictionary [Inc., 2009]: 1) "Interference by a third variable so as to distort the
association being studied between two other variables, because of a strong relationship
with both of the other variables"; 2) "A relationship between two causal factors such that
their individual contributions cannot be separated". Consequently, the analyst cannot
be fully sure that the effect he/she observed depends on the variable he is studying. A
simple example to emphasize it might be the following. Suppose the aim of the project is
to study the effect of a new drug on a specific outcome and two samples are drawn, one
for the drug and the second one for the placebo, but in the first sample there are only
men and in the second only women. Whatever effect we do observe between the drug and
the outcome, the conclusion cannot unambiguously declare whether it depends on the
sex or the drug and the final estimate for the drug effect would clearly result biased. In
other words, there is a third variable, called confounder, that alters the real estimation the
researcher is interested in. The confounder, as evidenced by Mosby, must be associated
with both the variables under observation and the aim of confounding correction techniques
is then to delete the more possible sources of bias in the studies. A short list is here provided.
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1. Adjustment. When a linear model is performed, a common way to adjust for
confounding is to include all the possible confounders in the formula as covariates.
Two strengths of this method are its easy application and a good degree of efficacy,
however, on the other side when too many variables are included, the reduction of
degrees of freedom must be compensated by a sufficient sample size.

2. Matching. It consists in forcing the comparability between the groups by including
individuals with determinate characteristics. Despite the clear advantage that
the matching structure create in separate the effects, a few limitations are also
acknowledge such as the difficulty of selecting individuals following the rigid structure
(that could alternatively lead to a residual confounding), the impossibility of measure
the effect of the confounder (or matching factor) on the risk and the overmatching
that leads to underrate the risk.

3. Stratification. It consists in evaluate the effect of interest intra-strata, which are
homogenous according to the confounder. Compared to the matching, stratification
is sensibly more informative, however a couple limitations must be taken into account.
First, in order to consider several strata, some sub-strata might be affected by low
sample size (and consequent difficult interpretation of stratum-specific estimates).
Additionally, it only allows categorical variables to be used as correction factors.

4. Randomization. Aim of the randomization is to randomly label all the study
participants into two groups which characteristics are expected to be homogenous.
Randomization offers a good solution to control the confounder’s effect, however it
cannot be applied when we want to estimate the effect of a factor for a specific event
and it is not ethically allowed to randomly label the patients for which there are
solid evidences in terms of therapeutic evidence.

Purpose of this work is to provide better insights regarding the association between SES
factors and air pollution exposure. Which is the role of the area based level? And the one
of traffic?
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Chapter 11

Preliminary Results

Preliminary analysis on KORA data has been performed with the aim of exploring
the data and find possible associations. NO2, NOx, PM2.5, PM10, PMcoarse and noise were
considered as exposure and smoking status, personal income, alcohol consumption, wine
consumption, physical activity, BMI, educational level and occupational status as social
factors. Here we briefly report some of the most interesting examples.
A multivariable statistical technique called Multiple Correspondence Analysis (MCA)
has been applied. Shortly, through eigenvectors and some matrix transformations, MCA
restructure the variability of the phenomenon in study creating a number of dimensions
from the table of contingency. The variables must be categorical and each category of
each variable receives a score for every dimension. Usually the dimensions that grab the
highest amount of variability are studies together in order to look for categories that
cluster together. We separated our continuous variables in three segments in order to
apply MCA. Different combinations have been tested and the most interesting are reported
in Figure 11.1 and Figure 11.2. Looking at results for NO2, from Figure 11.1 on S4 we
observe that noise and exposure group often together and from Figure 11.2 that never
smokers seems to set along with low exposed people and middle-exposed with middle-class
participants. Despite the clear potential of this method, these results couldn’t guarantee
much stability and the percentage of variability accounted by the first two variables was
never very high (always below 35%).

One- and two-way ANOVA have been also performed associating at each exposure the
social variables we wanted to look at Table 11.1.

Results are briefly summarized here. Most relevant results are reported for income and
smoking. Regarding income, for NO2 negative significant differences have been observed
between the first and the second tertiles vs the third one indicating an increased exposure
for wealthier subjects. The same pattern repeats also with NOx, PMcoarse and noise. For
PM10 a significant difference has been observed only for the first vs the third tertile of the
distribution and for PM2.5 no contrast looks statistically different. Regarding smoking, a
positive significant contrast for NO2 was observed between the first vs both the second
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Figure 11.1: Multiple Correspondence Plot for NO2, noise, smoke and income.
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Figure 11.2: Multiple correspondence Plot for PM10, smoking and income.
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Exposure
Income SESa Educational Level Smoking Statusb

Contrast MDc Contrast MDc Contrast MDc Contrast MDc

NO2
d

1 - 3 -0.77 1 - 3 -0.74 1 - 3 -0.62 1 - 3 0.8

2 - 3 -0.7 2 - 3 -0.52 1 - 2 0.5

NOx
e

1 - 3 -1.32 2 - 3 -0.96 1 - 2 0.99

2 - 3 -1.38 1 - 3 -1.19 1 - 3 1.63

2 - 3 0.63

PM10
f 1 - 3 -0.24 1 - 3 0.28

PMcoarse
f

1 - 3 -0.11 1 - 3 -0.1 1 - 3 0.18

2 - 3 -0.13

PM2.5
f

1 - 3 0.16

1 - 3 0.11

Noise
1 - 3 -0.74 1 - 3 -0.59 1 - 3 0.96

2 - 3 -0.67
a Combination of income and educational level
b 1= "smoker" , 2 = "former smoker", 3 = "never smoker"
c Mean Difference
d Nitrogen dioxide
e Mono-nitrogen oxides
f PM10, PMcoarse, PM2.5: particulate matter respectively smaller than 10 µm, between 2.5 and 10 µm and
smaller than 2.5 µm in aerodynamic diameter

Table 11.1: Significant contrasts from the 1-way ANOVA matching pollutants level on the
three-category social variables: Income, SES, Educational Level and Smoking
Status.
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and the third tertiles indicating increased NO2 for smokers vs former and never smokers.
For NOx, significant differences have been observed in all the three contrasts, especially in
smokers vs never smokers while for PM10, PMcoarse and noise only between smokers and
never smokers. The limit of these results is that they cannot be adjusted for other variables.
The two-way ANOVA confirmed some of the previous indications and highlighted a few
significant interactions: significant interaction between educational level and smoking,
noise and income and noise and smoking for NO2 and significant interaction between noise
and smoking for PMcoarse.
Linear regression models have also been tested and stratified for occupational status.
Figure 11.3 shows the regression results between NO2 and income across the different occu-
pational situations where employed and retired participants seemed to show a significant
positive increase in NO2 vs Income. Models were adjusted for educational level, smoking.

Figure 11.3: Linear regression results of NO2 on income stratified by occupational status.

However, the most striking result was displayed applying mixed models. Performing the
same model but adding a random effect for the zipcode of the participants the p-value for
NO2 vs income passed from <.0001 to 0.9647. This result was enough to firmly convince
us that a normal linear regression might not be the most appropriate method to answer
our questions and better understand the picture.
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Chapter 12

An Alternative, the Path Model

Usual statistical techniques have been observed as incomplete tools to describe the
phenomenon under consideration. In the Chapter 1, Introduction, we presented the concept
of mediation as the phenomenon that happens when a third variable lies in between the
two variable of interest and not only is necessary but emphasizes the effect. Aim of the
path analysis is to separate the two sources of variability and once both direct and indirect
effects are positive and different than zero it implies that both paths have to be taken into
account.
Now, just a step back. Path Analysis was firstly introduced in 1965 by Wright with the
aim of separate the origin of the co-variability between two variables [Wright, 1965]. It is
based on Structural Equation Modeling (SEM), a mathematical multivariate system that
allows the consideration of several equations at the same time. In this complex system,
variables can be classified in two different ways: endogenous or exogenous. They recall the
concept of dependent and independent variables in a usual linear regression model but on
a multiple equation scale. Aim of the SEM is to list all the variables that depend on others
and they will be named endogenous, irrespective of how many times they appear in other
equations as the explanatory variable. On the other side, variables that never appear as
dependent of any others are called exogenous. In Figure 12.1 the Directed Acyclic Graph
(DAG) shows how the rationale of our analysis and evidences the only exogenous variable,
the one with no income arrows: the SES factor. This is the definition that characterizes
the system: a specific equation is required for any endogenous variable. The length of
the equation system is determined by the number of endogenous variables (the ones with
at least an income arrow in Figure 12.1). Despite several alternative schemes might be
drawn, the design of the analysis must follow some priori information. Elements like
temporal sequence or logical structure of the variables must be clarified at the planning
stage otherwise it would be improper to even consider a mediation path. As said, the
Path analysis allows the measure of the total effect between two variables that doesn’t
match with the real amount of association but provide most of the relevant information.
The total effect (TE) is, in fact, divided into the direct (DE) and indirect effect (IE) that
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Figure 12.1: DAG of the theoretical mediation scheme. Highlighted, the two paths we consid-
ered.

coincide with the most useful information regarding the association (due to identified
factors) and leaving spurious and unmeasured effects out. In other words, the total effect
focuses on what can be measured and kept under control. The ratio DE/TE is then called
non-mediated proportion while IE/TE represents the mediated proportion. The DE can be
interpreted as the effect solely due to the pure association between two variables, while the
IE (which is on turn built on two direct effects) measures the fraction of that association
mediated by a third factor. Both DE and IE connect the same two variables, but for the
IE there is also a mediator in play.
Figure 12.1 highlights two paths (A and B), one with number of households as mediator
and one with traffic as mediator. The SES factor has been expressed at both personal and
area based level and results were replicated in two European studies, one in the North
(Helsinki-Turku, Finland) and one in the South (Rome, Italy). In Augsburg and Helsinki,
the percentage of low income households in a 5km buffer was used as area-level SES while
in Rome it was used an index of socio-economic position at census-block level resulting
from a factor analysis that included several census variables such as employment and
house property. As air pollution exposure the long-term parameters for NO2, PM2.5, and
PM10 (estimated via LUR models as explained in Chapter 3) were included as outcomes.
Households’ density was used as mediator for path A and variable of interest for path B.
Two traffic indices were used as mediators for path B: the intensity in the nearest road
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and the load in the major roads within a 100m buffer. Both paths have been obtained as
result of a single data step.
Sensitivity analysis was also performed. At first, all the path models (combinations of
exposure and type of income) were performed in subsamples of employees. Besides, other
social variables (BMI, smoking, alcohol consumption, wine consumption and educational
year) were also included in the picture in different plausible positions in order to assess
and evaluate their impact on the association between SES and pollutants. PROC CALIS
from statistical software SAS (V9.3, SAS Institute) was used to perform all the analyses.
An alternative novel method to test for mediation schemes have been developed and
published by Valeri and VanderWeele in 2013 [Valeri and Vanderweele, 2013]. Through
a counterfactual approach, they extended the previous concepts developed by Baron &
Kenny [Baron and Kenny, 1986]. The new method was denominated "mediation analysis".
Once a variable have been hypothesized as causative on another variable, output of the
mediation analysis is the total effect of the first variable on the second. The total effect
would finally be split in natural (and controlled) direct effect and natural indirect effect
with the aim of estimate the proportion mediated and non-mediated. Following the same
theoretical structure identified for the path model and adjusting for educational years,
intensity of traffic in the nearest road and load of traffic in a major road in a 100m buffer
around the participants’ home addresses, the mediation analysis have been applied to our
data.

12.1 The Replication Studies

Results of Path model in KORA suggested the interest towards other European cities.
Thanks to the collaboration with the groups of Francesco Forastiere in Rome (Italy) and
Timo Lanki in Kuopio (Finland), our proposal was tested in other two realities. A short
introduction to the two studies follows.

12.1.1 SIDRIA

The population-based study SIDRIA was conducted in Italy as extension of the ISAAC
initiative. It represents a worldwide survey with the aim of determine variations in
prevalence of symptoms of asthma, rhinitis and atopic eczema. Between October 1994
and March 1995, in eight medical centers in Northern and Central Italy, participants
were recruited following a cross-sectional scheme. Standardized questionnaires have been
filled out. For the purpose of this project, we reduced the sample to the 10,550 subjects
collected in Rome between years [Anon., 1997]. Rome is located in the Tyrrhenian coast
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of the Italian peninsula and covers an area of 1,285 km2 with approximately ∼2,6 million
inhabitants.

12.1.2 FINRISK

FINRISK is a national Finnish study was initiated in 1972 with the objective of
collecting information on risk factors of chronic non communicable diseases. A stratified
random sample of population aged between 25 and 64 years old has been drawn from
the Population Information System every five years since then. Unique personal identity
codes have been assigned to data from different population registers. For this analysis,
9,317 study participants have been considered from four cross-sectional surveys (1992,
1997, 2002 and 2007) and two study areas (Helsinki/Vantaa and Turku/Loimaa areas)
located in South Finland that count for around 1.0 million inhabitants over ∼2,900 km2
[Vartiainen et al., 2010].

88



Chapter 13

Results

Characteristics of the participants for the three studies are described in Table 13.1
and correlation coefficients between pollutants and SES factors presented in Table 13.2.
The following variables resulted balanced across the studies: age (slightly lower variability
in SIDRIA), BMI (not available in SIDRIA) and proportion of males. On the other
side, SIDRIA and FINRISK showed a higher percentage of employees (70% and 78%
respectively) than in KORA (61%). Traffic in Rome was observed more intense both in
the nearest road and on major roads than in Augsburg and Helsinki. Lastly, the smallest
and least dense city (lowest household density) was Augsburg.

Results from path modeling exhibit both similarities and differences across the three
cohorts. Focusing on the link between SES and air pollution mediated by household
density (Path A), the Goodness of Fit index resulted averagely in 92%. Cases where
DE and IE displayed opposite direction where classified as non-mediated. Results with
percentage of low income people as SES factor follows Table 13.3.

A larger TE was observed only for NO2 in KORA (0.55) while the others emerged in a
low to moderated range. DE and IE took then respectively 44% (proportion non-mediated)
and 56% (proportion mediated) of the TE differently than the other two studies where the
DE for NO2 were too small and non-significant and, unexpectedly, the TE were negative
(-0.09 in SIDRIA and -0.03 in FINRISK). PM2.5 was the pollutant that displayed the
most unpredictable and surprising results and its behavior was different in each city. In
both KORA and SIDRIA the TE resulted almost null but while in SIDRIA both DE and
IE were close to zero, in KORA, both DE and IE reached a similar moderate intensity
but at opposite direction, exhibiting path coefficients of -0.18 and 0.17 respectively. In
FINRISK, instead, we observed an even more different result since almost all the TE
(-0.07) come from the DE (-0.06) taking the 84% of the co-variability. The IE, despite
resulting rather small (-0.01), was still significant. Concerning PM10, the pattern observed
in KORA was similar (proportion mediated: 0.59%) than NO2 but at lower intensities with
a path coefficient for TE of 0.25. And while in SIDRIA the TE was zero (with DE and IE
nullifying each other: 0.03 and -0.03), in FINRISK, interestingly, the proportion mediated
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Study
KORA

(n=4,237)
1999-2001

SIDRIA
(n=10,550)
1994-1995

FINRISK
(n=9,317)

1992/1997/2002/2007
N(%)

Males 2,080 (49.2) 4,970 (47.1) 4,417 (47.4)

Employed 2,570 (60.7) 7,339 (70.4) 7,282 (78.2)

Mean ± SD (5%, 50%, 95%)

Age, years 49.2 ± 13.9
(28.0, 49.0, 71.0)

43.7 ± 6.0
(34.0, 43.0, 54.0)

48.2 ± 13.4
(27.0, 48.0, 70.0)

BMIa, kg/m2 27.2 ± 4.7
(20.6, 26.6, 35.7) * 26.3 ± 4.5

(20.2, 25.8, 34.9)

Traffic Near,
veh/db

1,735.5 ± 3,778.5
(500.0, 500.0,

8,922.0)

2,942.8 ± 6,715.0
(500.0, 500.0,
14,928.0)

1,920.7 ± 4,697.3
(50.0, 250.0,
9,011.0)

Traffic Major,
1000*veh/d*mc

482.2 ± 1,156.1
(0.0, 0.0, 3,009.1)

1,399.9 ± 2,830.2
(0.0, 0.0, 6,878.3)

734.6 ± 16,125.2
(0.0, 0.0, 3,770.6)

Household Density,
#/1kmd

1,585.2 ± 1,498.7
(67.0, 1,191.0,

5,132.0)

59.5 ± 32.5
(12.4, 54.9, 112.6)

6,214.1 ± 4,944.9
(1,211.0, 4,747.8,

16,223.2)

Income, ee
1,005.6 ± 561.9
(341.8, 894.8,

2,300.8)
∗

23,646.6 ± 6,412.2
(16,361.0, 21,596.0,

33,709.0)
Low Income
Households, %f

29.6 ± 18.1
(2.9, 24.9, 51.9)

0.19 ± 2.0
(-2.1, -0.3, 4.0)

36.6 ± 7.3
(27.6, 35.9, 48.4)

Education
(9/13/17 years), N (%) ∗

4,691, 4,139,
1,544

(45.2, 39.9, 14.9)
∗

Education, years 11.6 ± 2.6
(8.0, 11.0, 17.0) ∗ 12.6 ± 4.1

(7.0, 12.0, 19.0)
a BMI: Body Mass Index
b Traffic intensity on the nearest road
c Traffic load on major roads within 100m of the residence
d In SIDRIA it was scaled by the number of rooms and adjusted accounting for the area of both census block
and buffer

e Monthly in KORA, yearly in FINRISK
f Low Income threshold: 1250e, buffer: 5km
∗ Data not available

Table 13.1: Descriptive statistics of the study participants in the studies KORA, Augsburg,
Germany, SIDRIA, Rome, Italy and FINRISK, Helsinki/Turku, Finland.
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Mean ± SD
(5%, 50%, 95%)

Correlation

Traffic
Near

Traffic
Major

Household
Density

Annual
Income

Area
Level Low
Income

KORA 19.01 ± 3.9
(13.79, 18.53, 26.28) 0.35 0.46 0.61 0.08 0.57

NO2
a SIDRIA 38.99 ± 9.01

(25.48, 38.00, 56.13) 0.42 0.53 0.55 NA -0.13

FINRISK 15.31 ± 4.89
(8.64, 14.48, 24.22) 0.22 0.39 0.57 0.12 -0.03

KORA 13.65 ± 0.89
(12.51, 13.49, 15.38) 0.30 0.29 0.13 -0.01 0.03

PM2.5
b SIDRIA 19.35 ± 1.82

(17.3, 18.91, 23.32) 0.68 0.61 0.26 NA -0.09

FINRISK 7.7 ± 1.13
(5.59, 7.92, 9.07) 0.13 0.34 0.30 0.05 -0.07

KORA 20.46 ± 2.42
(16.49, 20.52, 24.57) 0.17 0.25 0.29 0.04 0.27

PM10
c SIDRIA 36.44 ± 4.99

(31.39, 35.20, 47.1) 0.64 0.53 0.18 NA -0.06

FINRISK 14.07 ± 3.09
(9.59, 13.62, 19.91) 0.23 0.41 0.68 0.07 -0.11

a Nitrogen dioxide
b Particulate matter smaller than 2.5 µm in aerodynamic diameter
c Particulate matter smaller than 10 µm in aerodynamic diameter

Table 13.2: Distribution and Spearman correlation with covariates NO2, PM2.5, PM10 in the
three studies KORA, SIDRIA, FINRISK.
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KORA SIDRIA FINRISK

Path A: SES → Household Density → Exposure

% of Low
Income

Householdsa

TE: 0.55∗∗ TE: -0.09∗∗ TE: -0.03∗

NO2 DE: 0.24∗∗ IE: 0.31∗∗ DE: -0.01∗ IE: -0.09∗∗ DE: 0.00 IE: -0.03∗∗

Prop. Mediated: 56% Prop. Mediated: 92% Prop. Mediated: 100%

TE: 0.00 TE: -0.03∗ TE: -0.07∗∗

PM2.5 DE: -0.18∗∗ IE: 0.17∗∗ DE: 0.01 IE: -0.04∗∗ DE: -0.06∗∗ IE: -0.01∗∗

Prop. Mediated: ‡ Prop. Mediated: ‡ Prop. Mediated: 16%

TE: 0.25∗∗ TE: 0.00 TE: -0.06∗∗

PM10 DE: 0.10∗∗ IE: 0.15∗∗ DE: 0.03∗∗ IE: -0.03∗∗ DE: -0.03∗∗ IE: -0.03∗∗

Prop. Mediated: 59% Prop. Mediated: ‡ Prop. Mediated: 49%

Path B: Household Density → Traffic → Exposure

Adjusted
with %
of Low
Income

Householdsa

TE: 0.46∗∗ TE: 0.56∗∗ TE: 0.66∗∗

NO2 DE: 0.38∗∗ IE: 0.08∗∗ DE: 0.49∗∗ IE: 0.07∗∗ DE: 0.57∗∗ IE: 0.08∗∗

Prop. Mediated: 18% Prop. Mediated: 13% Prop. Mediated: 13%

TE: 0.26∗∗ TE: 0.28∗∗ TE: 0.26∗∗

PM2.5 DE: 0.18∗∗ IE: 0.08∗∗ DE: 0.17∗∗ IE: 0.11∗∗ DE: 0.18∗∗ IE: 0.08∗∗

Prop. Mediated: 31% Prop. Mediated: 39% Prop. Mediated: 31%

TE: 0.22∗∗ TE: 0.19∗∗ TE: -0.06∗∗

PM10 DE: 0.17∗∗ IE: 0.05∗∗ DE: 0.10∗∗ IE: 0.09∗∗ DE: 0.60∗∗ IE: 0.09∗∗

Prop. Mediated: 21% Prop. Mediated: 48% Prop. Mediated: 13%
a Low Income threshold: 1250e, buffer: 5km
‡ No mediation
∗∗ p-value <0.01
∗ p-value <0.05

Table 13.3: Path Coefficients for % of Low Income Households on the three studies KORA,
SIDRIA and FINRISK using % of low income households as SES factor (TE=
Total Effect, DE= Direct Effect, IE= Indirect Effect).
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resulted almost half of the TE (49%). Despite the low intensities of the coefficients, the
DE and IE quite perfectly split the TE differently than the other coefficients in Finland.
To conclude, larger coefficients were observed in KORA for NO2 and PM10, also displaying
a clear separation between DE and IE. In SIDRIA the IE was generally higher and in
FINRISK all the TE resulted consistently negative.
Personal income was then applied to the same models as SES factor (data not available in
SIDRIA) Table 13.4. Results differed quite substantially from the percentage of low income
people. In KORA, despite an overall decrease of TE and in general of all the coefficients,
DE suffered the strongest reduction in both NO2 and PM10. For both pollutants, path
coefficients for DE turned non-significant leaving a higher percentage to the proportion
mediated. Regarding PM2.5 all the coefficients decreased drastically close to the zero. In
FINRISK, instead, at least for NO2 and PM10 the TE turned into positive values. The
most striking results from the Finnish cohort comes from the NO2, where a TE of 0.11 was
split in a DE of 0.05 and IE of 0.06 resulting in a 56% of proportion mediated. However,
for both PM2.5 and PM10, DE and IE exhibited opposite direction excluding the possibility
of mediation.
Switching to Path B, where traffic was considered as possible mediator in between

household density and air pollution exposure, a general trend of overall larger coefficients
was observed (Table 13.3, Table 13.4). Even if the focus wasn’t directly on SES, results
were affected by the SES variable included in the model. Looking at results obtained
when percentage of low income people was included in the path analysis, NO2 showed
a high degree of consistency across the three studies. The TE resulted between 0.46 in
KORA and 0.66 in FINRISK with large percentages of proportion non-mediated (82% in
KORA, 87% in SIDRIA and 86% in FINRISK). High stability, but at more modest values,
was also observed for PM2.5. In KORA and FINRISK, TE was 0.26 and 69% was the
proportion non-mediated, while in SIDRIA the TE settled at 0.28 with 61% proportion
non-mediated. Larger differences across the geographical location were instead observed
for PM10. In Finland the TE resulted very high with a value of 0.69 where only the 13%
was the proportion mediated. More modest coefficients were observed in Germany (0.22)
and Italy (0.19) displaying, however, different pattern in terms of mediation. If in KORA,
the proportion mediated settled at 21%, in Rome was more than doubled with a value
of 48%. Differently than Path A, we conclude that all the coefficients resulted positive
and mediation structure was observed (at different extent) across all the pollutants and
studies.
Results of sensitivity analysis on a subset of employees were mostly consistent with results
in all subjects. The influence of the other social variables that were tested (wine and
alcohol consumption, BMI, educational years) resulted poor as well as their own association
with either SES or air pollution exposure.
Finally, as shown in Table 13.5, results from mediation analysis developed with Valeri
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KORA FINRISK

Path A: SES → Household Density → Exposure

Personal
Incomea

TE: 0.08∗∗ TE: 0.11∗∗

NO2 DE: 0.02 IE: 0.06∗∗ DE: 0.05∗∗ IE: 0.06∗∗

Prop. Mediated: 75% Prop. Mediated: 54%

TE: -0.01 TE: -0.04∗∗

PM2.5 DE: -0.02 IE: 0.01∗∗ DE: -0.06∗∗ IE: 0.02∗∗

Prop. Mediated: ‡ Prop. Mediated: ‡

TE: 0.03∗ TE: 0.04∗∗

PM10 DE: 0.00 IE: 0.03∗∗ DE: -0.02∗∗ IE: 0.06∗∗

Prop. Mediated: 100% Prop. Mediated: ‡

Path B: Household Density → Traffic → Exposure

Adjusted
with

Personal
Incomea

TE: 0.62∗∗ TE: 0.65∗∗

NO2 DE: 0.53∗∗ IE: 0.09∗∗ DE: 0.57∗∗ IE: 0.09∗∗

Prop. Mediated: 15% Prop. Mediated: 14%

TE: 0.14∗∗ TE: 0.27∗∗

PM2.5 DE: 0.07∗∗ IE: 0.08∗∗ DE: 0.19∗∗ IE: 0.08∗∗

Prop. Mediated: 57% Prop. Mediated: 30%

TE: 0.29∗∗ TE: 0.69∗∗

PM10 DE: 0.24∗∗ IE: 0.05∗∗ DE: 0.61∗∗ IE: 0.09∗∗

Prop. Mediated: 17% Prop. Mediated: 13%
a Monthly in KORA, yearly in FINRISK, not available in SIDRIA
‡ No mediation
∗∗ p-value <0.01
∗ p-value <0.05

Table 13.4: Path Coefficients for Personal Income on the three studies KORA, SIDRIA and
FINRISK using personal income as SES factor (TE= Total Effect, DE= Direct
Effect, IE= Indirect Effect).
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and VanderWeele method applied on Path A with percentage of how income households
displayed a considerable consistency with results of path model in terms of proportion
mediated and non-mediated.

KORA SIDRIA FINRISK

SES → Household Density → Exposure

TE: 0.91 TE: -0.08 TE: 0.00

NO2 DE: 0.47 IE: 0.45 DE: 0.01 IE: -0.09 DE: 0.04 IE: -0.04

Prop. Mediated: 49% Prop. Mediated: ‡ Prop. Mediated: ‡

TE: -0.17 TE: -0.01 TE: -0.04

PM2.5 DE: -0.33 IE: 0.16 DE: 0.02 IE: -0.03 DE: -0.01 IE: -0.03

Prop. Mediated: ‡ Prop. Mediated: ‡ Prop. Mediated: 16%

TE: 0.37 TE: 0.03 TE: -0.06

PM10 DE: 0.21 IE: 0.16 DE: 0.05 IE: -0.02 DE: 0.00 IE: -0.06

Prop. Mediated: 43% Prop. Mediated: ‡ Prop. Mediated: 100%
‡ No mediation

Table 13.5: Results of mediation analysis on the three studies KORA, SIDRIA and FINRISK
using % of low income households as SES factor.
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Chapter 14

Discussion and Conclusion

We collected data from three independent population-based studies in Europe, one
South (SIDRIA, Rome, Italy), one Central (KORA, Augsburg, Germany) and one North
(FINRISK, Helsinki/Turku, Finland). Objective of the analysis was to study the asso-
ciation between individual and area-level SES factors and identifying and quantifying
the influential factors. Preliminary analysis showed an inconsistency of the results and
more importantly evidenced a lack of pertinence in the methods. This is why it was
hypothesized that the household density (indicator of geographic area) may mediate the
link between pollutants (NO2, PM2.5, PM10 were considered in this analysis) and SES
factors. An alternative statistical technique has been proposed: path analysis, which
is rather uncommon within the field of environmental epidemiology. Interestingly, our
results unveiled differences across the two levels, exposures and cities. Nevertheless, the
hypothesized scheme seems to work in several circumstances but not in all the cases and
all the pollutants. However, path model, splitting the total effect in direct and indirect
effect, was proved as a more consistent method to try to explain the complexity of the
phenomenon in act.
At first, it was acknowledged that the TE regarding NO2 differed on Path A across the
studies. The higher value observed in Augsburg may be explained by the stratification
due to the different SES levels across the people and that this pattern is more closely
associated with the spatial distribution of NO2 Table 13.3: Augsburg is the least dense
city of the three considered. What can this structure suggest? A possibility might be that,
displaying both DE and IE a moderate association in KORA, despite the trend of people
with close SES is to group together, their choice keep being variable. This variability
is relevant and the positive association may reflect the higher NO2 exposure in subjects
belonging to areas with an increased percentage of low income people. The mediation
structure is confirmed by the IE which reflects the association between the 1km density
and the SES, reckoning for one part of the variability. Conversely, the sign of the TE in
the Finnish and Italian cohorts resulted negative (actually in Helsinki almost null) and it
might reflect the weight of a high-SES part of the inhabitants that keeps living in the city
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center.
At a second stage, we observed a very different pattern for PM2.5. While in Augsburg
path coefficients displayed a surprising structure, in Rome and Helsinki they showed low
negative intensity. In KORA, DE and IE resulted equal in absolute value but opposite in
the sign, presenting a null TE. Trying to get to the bottom of these results, it can be seen
that higher proportions of low-income people reflected a dual patter: on one side they are
associated with lower pollution concentrations but on the other side are also positively
associated with household density, which, in turn, correlates positively with PM2.5. We can
conclude that lower SES levels may be positively associated with air pollution only through
the mediation of the household density. The path model, separating the two effects, could
give us this overview of the picture, but at the same time we have to acknowledge that
the mediation structure doesn’t properly fit this scenario.
Thirdly, the behavior of PM10 in KORA was similar to NO2 but displaying lower coef-
ficients. However, the substantial difference between the two pollutants is their source:
NO2 is more related to traffic while PM10 reflects the local road traffic emissions as well
as the long-range transported particulate air pollution.
Keeping the scheme of Path A, percentage of low income people was replaced by personal
income as SES factor where available (KORA and FINRISK). Results changed drastically.
In Augsburg we assisted a consistent decrease of the DE towards the null value across the
pollutants. We assume then, that individual income is not as appropriate as the area-based
indicator to describe the variability of the path we are interested in. Personal income
and low income percentage in KORA display a 0.11 correlation coefficient, considerably
lower than the -0.72 observed in FINRISK. While on one side the difference between these
correlation values surely explains the substantial decrease of TE in KORA, on the other
side it suggests that in FINRISK the population is stratified by SES level but it doesn’t
match with the uneven spatial distribution of the pollutants. In fact, the TE resulted to
be pretty low.
Evidence of a positive association between low SES and increased pollutant concentra-
tion has already been assessed [Gray et al., 2014, Hajat et al., 2013]. From the analysis
of this work, consistent results have been observed in KORA but not in SIDRIA and
FINRISK (TE was negative). Despite the low intensity of the path coefficients, subjects
that can afford to live in the city center are only the more affluent. This might come as a
consequence of the fact that the percentage of households with income below a certain
value was indicating low-SES. Therefore the distribution of high-SES people cannot be
fully addressed using this approach and it cannot be inferred as inverse of the low-income
individuals. Finally, the differences observed in megacities of developing countries cannot
be revealed from our results, since additionally, they also suggest a city-specific pattern.
Looking at the results for path B, including traffic as element in between household density
and exposures, a clear patter can be suddenly detected across the cities: a consistent
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increment of the DE that took the majority of the TE. Additionally, the TE for NO2

resulted always larger than for PM2.5 and PM10, except in Finland. We might conclude
that even if traffic was a major element, its effect wasn’t carrying more than 20% for NO2

and at most 40% and 50% for PM2.5 and PM10 respectively, of the TE. Consider other
sources of emissions can surely help to understand more extensively the whole path.
Within the framework of the ESCAPE study, the confounder selection followed a priori
staged approach. A conceptualization of the main model for each outcome was as-
sessed and area-based SES was included later as sensitivity analysis [Cesaroni et al., 2014,
Lanki et al., 2015, Stafoggia et al., 2014]. The impact of area-based SES on air pollution
estimates observed in meta-analysis was very low but sometimes it implicated a reduction
in heterogeneity. Results of the analysis performed in this work showed a clear city-specific
pattern of area level SES and it seems feasible to expect, despite producing similar es-
timates in meta-analysis, a reduction of between-city heterogeneity (co-variability) by
adjusting for area-based SES. From our results, the link between area level SES and
particle concentration might be mediated or at least partially explained by the density of
the households within a certain area. Even if lies in between in the causal association, it
cannot be assumed as responsible of the whole conjunct variability.

14.1 Strengths and Limitations

The possibility offered by the working group of Francesco Forastiere in Rome and Timo
Lanki in Koupio to replicate our results in a southern and northern European city clearly
strengthen the validity of this work. Secondly, the methodology behind the measurement
and the assessment of the exposures followed a shared and verified approach. Finally,
geographical variables were comparable across the studies and estimated on the same
buffer or spatial grid. Going to limitations, not all the relevant elements, such as residential
wood burning, involved in the link between SES, population density and air pollution
could be included. In the second place, it is acknowledged that in SIDRIA, area-level SES
was differently estimated than in KORA and FINRISK. Lastly, pollutant concentrations
were not measured but rather estimated via Land-use Regression models, whose predictors
(e.g. traffic indicators) might on turn be associated to SES levels on their own (Details in
Table 14.1).

14.2 Conclusion

In summary, the results of this analysis highlight a stronger association of area-based
SES to annual average air pollution exposure than individual SES indicators. Overall,
the role of area-based indicators was larger for NO2 than PM2.5 and PM10. Additionally,
substantial differences were observed regarding the impact of household density and traffic
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LUR modela

KORA TRAFLOAD_50, INTMAJORINVDIST, ROADLENGTH_50,
POP_5000,MAJORROADLENGTH_50, HLDRES_500

NO2 SIDRIA
POP_100, ROADLENGTH_1000, DISTINVNEAR2,

INDUSTRY_5000, URBGREEN_1000, TRAFLOAD_50,
MAJORROADLENGTH_100

FINRISK TRAFLOAD_25, TRAFLOAD_25_1000, ROADLENGTH_25,
ROADLENGTH_25_300, URBGREEN_500

KORA MAJORROADLENGTH_50, ROADLENGTH_300,
URBGREEN_5000, TRAFMAJORLOAD_1000

PM2.5 SIDRIA TRAFLOAD_25, ROADLENGTH_100

FINRISK NATURAL_500, TRAFMAJORLOAD_50

KORA MAJORROADLENGTH_50, NATURAL_100,
ROADLENGTH_50

PM10 SIDRIA TRAFLOAD_25, ROADLENGTH_50

FINRISK TRAFMAJORLOAD_50, HHOLD_100, NATURAL_500
a Variables that are buffered with _X indicating the radius of the buffer in meters: urban green
space (URBGREEN_X), natural land (NATURAL_X); population (POP_X), number of households
(HHOLD_X), total length of all road (ROADLENGTH_X), all major road segments (MAJOR-
ROADLENGTH_X); the product of inverse distance to the nearest major road and the traffic intensity
on nearest major roads (vehicles·day−1m−1)(INTMAJORINVDIST); the sum of (traffic intensity ×
length of all road segments) within a buffer (_X) (vehicles·day−1·m) for all roads (TRAFLOAD_X),
for major roads (TRAFMAJORLOAD_X)

Table 14.1: Composition of the LUR models for NO2, PM2.5 and PM10 for the three studies
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covariates, plausibly reflecting the diversity between larger and smaller cities as well as
dissimilar types of city across Europe. Path analysis might be a useful tool in order to
better enlighten and extensively comprehend the underlying correlation structure. Finally,
multi-city analyses require considering the role of different confounding structure by
area-based SES over Europe, often also dependent on the size of the cities/areas.
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Summary

Ambient air pollution exposure still remains a huge public health problem in the recent
decades. Epidemiological evidence of increased risks in major adverse health outcomes such
as hospitalization and premature deaths has been observed following increased exposure
to air pollution. This work will investigate two topics: the interplay between ambient air
pollution exposure and epigenetics and the implication of socio-economic status and other
social factors.
Epigenetics rose as promising field in filling the holes left by modern genetics being unable
to fully explain the factors responsible for diseases risks. DNA methylation, its most
accessible marker, has been found to be linked with both endogenous environmental
exposure and adverse health effects. Blood samples were collected in three independent
cohorts (KORA F3 and KORA F4 from Germany and Normative Aging Study from
the United States) and genome-wide DNA methylation was measured with the Illumina
450k Beadchip. Three different PM2.5 trailing averages prior the visit day (2-, 7- and
28-day) were considered as exposure, representing short- and mid-term variations and an
Epigenome-wide Analysis was performed. The model was developed based on previous
knowledge and results meta-analyzed across the three studies. Twelve Bonferroni significant
CpGs have been identified (one at 2-, one at 7- and ten at 28-day average), and of them,
nine displayed increased methylation. Four of them also showed homogeneity across
the studies: cg19963313 (on gene NSMAF, chromosome 8), cg23276912 (C1orf212, chr.
1), cg11046593 (MSGN1, chr. 2), and cg26003785 (NXN, chr. 17). Applying False
Discovery Rate, 7 additional CpGs were highlighted at 7-day and 1,819 at 28-day average.
Finally, sensitivity analysis revealed that one of the associated loci was attributable to
long-term effects. In conclusion, PM-related CG targets identified in this study suggest
novel plausible pathways between air pollution exposure and adverse health effect. Further
studies are needed to better understand possible pathophysiological implications of the
detected biological pathways.
Socio-economic status (SES) has been so far considered as effect modification in air
pollution studies. The approach followed in this work is the identification of plausible
mediators that play a role in the link between SES and pollutants’ exposure. Long-term air
pollution data (on NO2, PM2.5 and PM10) from three European Cohorts (KORA, Germany,
SIDRIA, Italy and FINRISK, Finland) were collected. Households’ density and traffic
were proposed as possible mediators between air pollution and SES factors (considered as
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Percentage of low Income People in a 5km buffer and Personal Income) and Path Model
was applied. A clear mediation pattern for percentage of low income people was observed
in KORA for NO2 and PM10 (proportion mediated: 56% and 59%, respectively) and in
FINRISK for PM10 (proportion mediated: 49%). With personal income, a proportion
mediated of 49% was observed in FINRISK for NO2. The results of this study indicate
that area-based SES factors are more related to SES factors than personal indicators and
observed differences across the studies revealed a city-specific effect. In order to consider
the role of confounding, multi-city analysis need to be performed, in order to account for
the differences in size and structure of the urban areas.
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Zusammenfassung

Die Belastung durch Luftverschmutzung stellt ein großes Problem für die öffentliche
Gesundheit dar. Epidemiologische Daten zeigen ein erhöhtes Risiko für negative gesund-
heitliche Folgen, wie eine erhöhte Anzahl an Krankenhausaufenthalten und eine geringere
Lebenserwartung nach erhöhtem Kontakt mit verschmutzter Umgebungsluft. In dieser
Arbeit werden zwei Themenkomplexe bearbeitet: Erstens das Zusammenspiel zwischen
Epigenetik und dem Kontakt/der Exposition mit verschmutzter Umgebungsluft und zweit-
ens die Auswirkungen des sozioökonomischen Status und anderer sozialer Faktoren.
Mithilfe epigenetischer Prozesse können Risikofaktoren für umweltbedingte Erkrankungen
begründet werden, bei denen die moderne Genetik an ihre Grenzen stößt. So wurde die
DNA-Methylierung, als leicht analysierbarer Regulierungsmechanismus, mit endogenen
Umweltbelastungen und nachteiligen Effekten auf die Gesundheit assoziiert. Im Rahmen
dreier Kohorten (KORA F3 und KORA F4, Deutschland und die Normative Aging Study,
USA) wurden Blutproben akquiriert und genomweite DNA-Methylierungsmuster mit dem
Illumina 450K Beadchip ermittelt. Drei PM2.5 Durchschnittswerte, 2, 7 oder 28 Tage
der Probennahme vorausgehend, wurden als Expositionswerte herangezogen um kurz-
und mittelfristige Variationen in einer genomweiten Analyse darzustellen. Das Model
wurde basierend auf Vorkenntnissen entwickelt und Ergebnisse über die drei Studien
metaanalysiert. Zwölf nach Bonferroni-Analyse signifikante CpG-Loci konnten identifiziert
werden (ein Locus für den 2-, ein Locus für den 7- und zehn für den 28-Tagesdurchschnitt),
von diesen zeigten wiederum neun eine erhöhte Methylierung. Vier dieser Loci wiesen
Homogenität zwischen den Studien auf: cg19963313 (auf Gen NSMAF, Chromosom
8), cg23276912 (C1orf212, Chromosom 1), cg11046593 (MSGN1, Chromosom 2), und
cg26003785 (NXN, Chromosom 17). Durch Anwendung der False Discovery Rate konnten
sieben zusätzliche CpGs für den 7-Tage-Durchschnitt und 1.819 CpGs für den 28-Tage-
Durchschnitt ermittelt werden. Schließlich zeigte die Sensitivitätsanalyse, dass einem der
assoziierten Loci Langzeiteffekte zugeschrieben werden können. Zusammenfassend wurden
in dieser Studie PM-abhängige CpG-Loci identifiziert, die neue, plausible Verbindungen
zwischen der Belastung durch Luftverschmutzung und nachteiligen Folgen für die Gesund-
heit herstellen. Weitere Studien sind notwendig, um mögliche pathophysiologische Prozesse
innerhalb der aufgezeigten biologischen Signalwege besser zu verstehen.
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