
Distributed Representations for
Fine-grained Entity Typing

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

Yadollah Yaghoobzadeh

München 2017

Erstgutachter: Prof. Dr. Hinrich Schütze
Zweitgutachter: Prof. Dr. Chris Biemann
Drittgutachter: Lecturer Andreas Vlachos, PhD

Tag der Einreichung: 10. August 2017
Tag der mündlichen Prüfung: 29. September 2017

4

29. September 2017
Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eides statt, dass die Dissertation von mir selbstständig
ohne unerlaubte Beihilfe angefertigt ist.

München, den 29.09.2017

Yadollah Yaghoobzadeh

5

6

Abstract

Knowledge about entities is essential for natural language understanding. This
knowledge includes several facts about entities such as their names, properties,
relations and types. This data is usually stored in large scale structures called
knowledge bases (KB) and therefore building and maintaining KBs is very im-
portant. Examples of such KBs are Wikipedia, Freebase and Google knowledge
graph.

Incompleteness is unfortunately a reality for every KB, because the world is
changing – new entities are emerging, and existing entities are getting new prop-
erties. Therefore, we always need to update KBs. To do so, we propose an in-
formation extraction method that processes large raw corpora in order to gather
knowledge about entities. We focus on extraction of entity types and address the
task of fine-grained entity typing: given a KB and a large corpus of text with men-
tions of entities in the KB, find all fine-grained types of the entities. For example
given a large corpus and the entity “Barack Obama” we need to find all his types
including PERSON, POLITICIAN, and AUTHOR.

Artificial neural networks (NNs) have shown promising results in different
machine learning problems. Distributed representation (embedding) is an effec-
tive way of representing data for NNs. In this work, we introduce two models for
fine-grained entity typing using NNs with distributed representations of language
units: (i) A global model that predicts types of an entity based on its global rep-
resentation learned from the entity’s name and contexts. (ii) A context model that
predicts types of an entity based on its context-level predictions.

Each of the two proposed models has some specific properties. For the global
model, learning high quality entity representations is crucial because it is the only
source used for the predictions. Therefore, we introduce representations using
name and contexts of entities on three levels of entity, word, and character. We
show each has complementary information and a multi-level representation is the
best. For the context model, we need to use distant supervision since the context-
level labels are not available for entities. Distant supervised labels are noisy and
this harms the performance of models. Therefore, we introduce and apply new
algorithms for noise mitigation using multi-instance learning.

7

Since the performance of both models is highly dependent on the quality of
distributed representations of words and entities, we aim to find out which models
are learning better representations. The common evaluations are mostly based
on the human judgements about the overall similarity of embeddings. We show
that these kinds of evaluation are problematic and a better evaluation is needed.
We introduce new evaluation methods to investigate the features of embedding
models better. This helps us to find out which embedding models we should use
for our task.

The contributions we make in this work include the following: (i) We address
fine-grained entity typing by using text corpora with the application in knowledge
base completion. (ii) We build a dataset for this task from Freebase entities and
their fine-grained types. (iii) We propose and implement two novel models for the
task and show that each model has special features. (iv) We represent entities us-
ing novel distributed representations on three levels of entity, word and character.
(v) We introduce new algorithms for multi-instance learning in neural networks
and apply them for the first time to the task of fine-grained entity typing. (vi) We
present a novel evaluation method for distributed representation of words.

8

Zusammenfassung

Wissen über Entitäten ist essentiell für das Verständnis natürlicher Sprachen (NLU).
Dieses Wissen umfasst verschiedene Fakten über Entities, einschließlich ihrer Na-
men, Eigenschaften, Relationen und Typen. Da diese Informationen üblicherweise
in großangelegten Strukturen, genannt knowledge bases (KB), gespeichert wer-
den, ist das Erstellen und Pflegen der KBs sehr wichtig. Beispiele für KBs sind
Wikipedia, Freebase oder Google knowledge graph.

Leider ist in der Realität jede KB unvollständig, da die Welt sich ständig
verändert; neue Entitäten entstehen, und existierende Entitäten erhalten neue Eigen-
schaften. Daher müssen KBs ständig aktualisiert werden. Um dies zu erreichen,
stellen wir eine Methode zur Informationsextraktion aus großen unannotierten Ko-
rpora vor, um Wissen über Entitäten zu sammeln. Wir konzentrieren uns auf die
Extraktion von Entitätstypen und befassen uns mit dem Task fine-grained entity
typing: dem Finden aller feinkörniger Typen von Entitäten mit einer gegebenen
KB und einem großen Korpus, in dem die Entitäten der KB erwähnt werden. Ein
Beispiel wäre, mit Hilfe eines großen Korpus alle Typen der gegebenen Entität
”Barack Obama” zu finden, einschließlich PERSON, POLITIKER und AUTOR.

Künstliche neuronale Netze (NN) haben vielversprechende Ergebnisse für ver-
schiedene Probleme des maschinellen Lernens erzielt. Verteilte Repräsentationen
(Embeddings), sind ein effektiver Weg, um Daten neuronalen Netzen zugänglich
zu machen. In dieser Arbeit stellen wir zwei Modelle für fine-grained entity typ-
ing mit neuronalen Netzen und verteilten Repräsentationen sprachlicher Einheiten
vor: (i) ein globales Modell, das den Typ einer Entität anhand ihrer globalen
Repräsentation, die aus ihrem Namen und ihrem Kontext gelernt wird, vorher-
sagt; (ii) ein Kontextmodell, das den Typ einer Entität basierend auf Vorhersagen
auf dem Kontextlevel vorhersagt.

Jedes dieser Modelle hat spezielle Features. Für das globale Modell ist es
entscheidend, Entitätsrepräsentationen von hoher Qualität zu lernen, da sie die
einzigen Informationen sind, die für die Vorhersagen verwendet werden. Da-
her führen wir Repräsentationen ein, die den Namen und Kontext von Entitäten
auf Entitäts-, Wort- und Buchstabenlevel verwenden. Wir zeigen, dass diese
Repräsentationen komplementäre Informationen beinhalten und dass Multilevel-

9

repräsentationen die besten Ergebnisse erzielen. Für das Kontextmodell müssen
wir distant supervision verwenden, da wir keine Kontextlevellabels für Entitäten
zur Verfügung haben. Distant supervision Labels sind verrauscht, was die Per-
formanz der Modelle reduziert. Daher stellen wir neue Algorithmen zur Vermin-
derung von Rauschen mit Hilfe von Lernen mit multiplen Instanzen vor, und wen-
den diese an.

Da die Performanz beider Modelle stark von der Qualität der verteilten
Repräsentationen der Wörter und Entitäten abhängt, wollen wir herausfinden,
welche Modelle bessere Repräsentationen lernen. Übliche Evaluierungsmethoden
basieren hauptsächlich auf menschlicher Beurteilung der allgemeinen Ähnlichkeit
von Embeddings. Wir zeigen, dass diese Arten der Evaluierung problematisch
sind und dass eine bessere Evaluierung benötigt wird. Wir stellen neue
Evaluierungsmethoden vor, um die Features der Embeddingmodelle besser zu ver-
stehen. Dies hilft uns, herauszufinden, welche Embeddingmodelle wir für unseren
Task verwenden sollten.

Diese Arbeit beinhaltet die folgenden Beiträge: (i) Wir beschäftigen uns mit
fine-grained entity typing unter Zuhilfename von Textkorpora für die Anwendung
in der Vervollständigung von KBs. (ii) Wir erstellen ein Datenset für diesen Task
unter Verwendung von Freebase-Entitäten und ihrer fine-grained Typen. (iii) Wir
präsentieren und implementieren zwei neue Modelle für den Task und zeigen, dass
jedes spezielle Features hat. (iv) Wir respräsentieren Entitäten mit neuen verteilten
Respräsentationen auf Entitäts-, Wort- und Buchstabenlevel. (v) Wir führen neue
Algorithmen für neuronale Netze zum Lernen mit multiplen Instanzen ein und
sind die Ersten, die sie auf den Task des fine-grained entity typing anwenden.
(vi) Wir stellen eine neue Evaluierungsmethode für verteilte Repräsentationen von
Wörtern vor.

10

Acknowledgments

I would like to thank everyone who directly or indirectly helped me to finish this
dissertation.

First, I appreciate all the support and help from Prof. Hinrich Schütze. I was
very lucky to have him as my advisor. He tought me how to do research, focusing
on interesting problems and solving them step by step.

I could not imagine finishing my thesis without countless discussions and sup-
port from my colleagues at CIS. Among all I would like to mention Wenpeng Yin,
Heike Adel, David Kaummans, Sascha Rothe, Ehsan Asgari, Irina Sergienya, ,
Katharina Kann, Sebastian Ebert, Thang Vu, and Thomas Müller.

It is impossible to accomplish anything without the support from friends and
family. I especially thank some of them, who I spent most of my time outside of
academic life, koosha khajehmoogahi, Keyvan Kardel, Milad Khanibeig, Katha-
rina Kann, Heike Adel, Sascha Rothe, Ehsan Asgari, Ramin Izadpanah, Hesam
Moradi and Morteza Moosavi. And finally, I appreciate all the countless help I
got from my family. My parents encouraged and supported me by any means they
could and I dedicate my dissertation to them.

11

12

Contents

Publications and Declaration of Co-Authorship 17

1 Introduction 19
1.1 Distributed Representations . 20
1.2 Natural Language Processing and Distributed Representations . . 21

1.2.1 Neural Networks . 21
1.3 Fine-grained Entity Typing . 29

1.3.1 Related Work . 32
1.3.2 Freebase and FIGER types 33

1.4 Models for Fine-grained Entity Typing 33
1.4.1 Global Model . 34
1.4.2 Context Model . 35

1.5 Summary and Overview . 38

2 Corpus-level Fine-grained Entity Typing Using Contextual Infor-
mation 39
2.1 Introduction . 40
2.2 Related work . 41
2.3 Motivation and problem definition 42

2.3.1 Freebase . 42
2.3.2 Incompleteness of knowledge bases 43
2.3.3 Entity linking . 43
2.3.4 FIGER types . 43

2.4 Global context and joint models 43
2.4.1 Global model . 44
2.4.2 Context model . 44
2.4.3 Joint model . 45

2.5 Experimental setup and results 46
2.5.1 Setup . 46
2.5.2 Results . 47

13

CONTENTS

2.6 Analysis . 47
2.7 Future work . 48
2.8 Conclusion . 48

3 Intrinsic Subspace Evaluation of Word Embedding Representations 51
3.1 Introduction . 52
3.2 Related work . 53
3.3 Criteria for word representations 53
3.4 Experimental setup and results 54

3.4.1 Nonconflation . 55
3.4.2 Robustness against sparseness 55
3.4.3 Robustness against ambiguity 56
3.4.4 Accurate and consistent representation of multifacetedness 57

3.5 Analysis . 58
3.5.1 Learned lessons . 58
3.5.2 Extrinsic evaluation: entity typing 59

3.6 Conclusion and future work . 60

4 Multi-level Representations for Fine-Grained Typing of Knowledge
Base Entities 63
4.1 Introduction . 64
4.2 Related work . 65
4.3 Fine-grained entity typing . 66

4.3.1 Entity-level representation 66
4.3.2 Word-level representation 66
4.3.3 Character-level representation 67
4.3.4 Multi-level representations 68

4.4 Experimental setup and results 68
4.4.1 Setup . 68
4.4.2 Results . 70
4.4.3 Analysis . 71

4.5 Conclusion . 72

5 Noise Mitigation for Neural Entity Typing and Relation Extraction 77
5.1 Introduction . 78
5.2 Related work . 79
5.3 MIML learning for entity typing 80

5.3.1 Algorithms . 80
5.3.2 Context representation 81

5.4 Type-aware relation extraction 81

14

CONTENTS

5.4.1 Context representation 81
5.5 Experimental data setup and results 83

5.5.1 Word entity and type embeddings 83
5.5.2 Entity typing experiments 83
5.5.3 Relation extraction experiments 85

5.6 Conclusion . 86

Bibliography 90

Curriculum Vitae 103

15

16

Publications and Declaration of
Co-Authorship

Chapter 2

Chapter 2 corresponds to the following publication:

Yadollah Yaghoobzadeh, Hinrich Schütze; Corpus-level Fine-grained
Entity Typing Using Contextual Information; Proceedings of the
2015 Conference on Empirical Methods in Natural Language Pro-
cessing (Lisbon, Portugal, September, 2015), pages 715–725.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 3

Chapter 3 corresponds to the following publication:

Yadollah Yaghoobzadeh, Hinrich Schütze; Intrinsic Subspace Eval-
uation of Word Embedding Representations; Proceedings of the
54th Annual Meeting of the Association for Computational Linguis-
tics (Berlin, Germany, August, 2016) , pages 236–246.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 4

Chapter 4 corresponds to the following publication:

17

Yadollah Yaghoobzadeh, Hinrich Schütze; Multi-level Representa-
tions for Fine-Grained Typing of Knowledge Base Entities; Pro-
ceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (Valencia, Spain, April, 2017),
pages 578–589.

I regularly discussed this work with my advisor, but I conceived of the original
research contributions and performed implementation and evaluation. I wrote the
initial draft of the article and did most of the subsequent corrections. My advisor
assisted me in improving the draft.

Chapter 5

Chapter 5 corresponds to the following publication:

Yadollah Yaghoobzadeh, Heike Adel, Hinrich Schütze; Noise Mit-
igation for Neural Entity Typing and Relation Extraction; Pro-
ceedings of the 15th Conference of the European Chapter of the Asso-
ciation for Computational Linguistics (Valencia, Spain, April, 2017),
pages 1183–1194.

This work is the result of a collaboration. Heike Adel and I contributed in equal
parts. Heike Adel contributed those parts that are concerned with relation extrac-
tion, “the relation extraction part”. I contributed those parts that are concerned
with entity typing, “the entity typing part”. I regularly discussed the entity typ-
ing part with my coauthors. Apart from these explicitly declared exceptions, I
conceived of the original research contributions of the entity typing part and per-
formed implementation and evaluation of the entity typing part. I wrote the initial
draft of the entity typing part and did most of the subsequent corrections. My
coauthors assisted me in improving the entity typing part.

München, 31.05.2017

Yadollah Yaghoobzadeh

18

Chapter 1

Introduction

Natural language understanding (NLU) is not possible without prior knowledge
about the world. Many natural language processing (NLP) tasks, which must be
addressed as part of NLU, need world knowledge; e.g., many coreference ambi-
guities can only be resolved based on world knowledge. Also, most NLU applica-
tions combine a variety of information sources that include both text sources and
knowledge bases (KBs); e.g., question answering systems need access to knowl-
edge bases like gazetteers. Thus, high-quality KBs, as resources to keep and query
world knowledge, are critical for successful NLU.

Unfortunately, most large scale KBs like Freebase (Bollacker et al., 2008),
YAGO (Suchanek et al., 2007) and Google knowledge graph are incomplete. The
effort required to create KBs is considerable and since the world changes, it will
always continue. KBs are therefore always in need of updates and corrections.
Their structure is roughly equivalent to a graph in which entities are nodes and
edges are relations between entities. Each node is also associated with one or
more semantic classes, called types. Most prior work tries to complete the edges
between entities, but here in this work, the focus is on completion of entity types
in KBs.

The approach we adopt in this work to address incompleteness of KBs is ex-
traction of information from large text corpora. Text can be argued to be the main
source of the knowledge represented in KBs. Thus, it is reasonable to attempt
completing them based on text. There is in fact a significant body of work on
corpus-based methods for extracting knowledge from text; however, most of it
has addressed relation extraction. Our focus instead is acquisition of types.

More specifically, we address the problem of fine-grained entity typing, i.e.,
inferring from a large corpus that an entity is a member of a fine-grained class
such as FOOD or ARTIST. We propose two approaches (i) a global model that
predicts types based on the aggregated representation of entities and (ii) a context
model that first scores the individual contexts of an entity and then aggregates the

19

1. Introduction

scores to make the type predictions.
Neural networks (NNs) are very successful to model machine learning prob-

lems in NLP. These models mostly work on distributed representations of lan-
guage units and high dimensional real-valued vectors. We use distributed rep-
resentations and NNs to learn functions that model entities, their contexts and
names.

In Section 1.1, we give background about distributed representation, followed
by Section 1.2 which focuses on NLP and how distributed representations and
NNs are used there. In Section 1.3, the task of fine-grained entity typing is defined
and motivated. Finally, in Section 1.4, we introduce our models for the task of
fine-grained entity typing.

1.1 Distributed Representations

In the domain of machine learning, data representation is one of the essential
elements to get good performance (Bengio et al., 2013). Feature engineering has
been widely the standard way of designing data representations based on human
prior knowledge of the task. In this way, a human designs some features for each
task, applies them on the data to build the data representation, and then trains a
function from input to output representations.

Feature engineering has some drawbacks, e.g., it is time consuming, sub-
optimal and domain specific. Another alternative is to learn representations auto-
matically. In this way, the learner should identify and disentangle the important
factors of the data to get good performance on the objective function. Representa-
tion learning is mostly addressed using neural networks (NNs) and it is the focus
of this work.

Generally, there are two ways of representation in NNs. (i) Local represen-
tation: each concept is represented with one computing unit (i.e., neuron), and
vice versa, each unit is representing one concept. (ii) Distributed representation:
each concept is represented by a pattern of activity over many computing units,
and vice versa, each computing unit is involved in representing many concepts
(Hinton, 1984).

Local representations are easy to understand and implement, but they do not
support generalization; the model has to remember all the units and their concepts.
For an unseen concept, local representations are unable to do any inference. Dis-
tributed representations are not easy to understand and implement, but they are
generalizable by nature. Activation patterns, i.e., the representations, have a no-
tion of similarity, meaning that similar concepts have similar representations. This
will enable distributed representations to be generalizable and for an unseen con-
cept, we can still infer something based on its similar activation patterns. In this

20

1.2 Natural Language Processing and Distributed Representations

work, we use distributed representations.

1.2 Natural Language Processing and Distributed
Representations

Natural language processing (NLP) is an important area in artificial intelligence,
dealing with understanding and generating human language. Machine learning
(ML) methods are dominant to solve different NLP tasks such as part of speech
tagging, named entity recognition, sentiment analysis, machine translation. There-
fore, representation learning for NLP is important. Distributed representations
have been widely used in NLP, especially after the recent rise of neural networks
(NNs). One good example is the applications of word embeddings, i.e., distributed
representations of words. Word embeddings are discussed more in Section 1.2.1.

Input units in NLP applications can be defined on different levels: characters,
character n-grams, words, phrases, sentences, paragraphs, documents, books, etc.
Distributed representations of all these language units can be achieved using NNs,
usually by representing higher level units as a function of lower level ones. In this
section, we describe how NNs and distributed representations are used in NLP
with more focus on the classification problems.

1.2.1 Neural Networks
Neural networks (NNs) are powerful learning models that are inspired by biology
of brains. NNs consist of a large number of neurons, i.e., computational nodes.
They usually consist of several layers including input and output layers and one or
several hidden layers. Each layer consists of multiple units (neurons). The input
layer is responsible to receive the input signals. Hidden layers are transforming
data through non-linear functions to compute more abstract representations of the
input. Output layer is transforming hidden layers to the desired output format,
which in classification is usually the set of label scores.

Recent advances in training NNs made them very popular, and they are now
state-of-the-art in many NLP problems (Goldberg, 2016). In the following, we
discuss how NN layers are usually defined for NLP tasks. Specifically, we cover
input layer, hidden layer (feed-forward, convolutional-maxpooling and recurrent)
and output layer.

Input Layer

In NNs, the input layer represents the data in a format suitable for learning. In
NLP, words are usually considered as basic units of the data (i.e., language). Other

21

1. Introduction

unit types are also widely used, e.g., characters (dos Santos and Zadrozny, 2014;
Zhang et al., 2015; Kim et al., 2016), morphemes (Botha and Blunsom, 2014),
character n-grams (Bojanowski et al., 2016) and even sentences (Kiros et al.,
2015). The first step is thus choosing the right unit type for the application, and
how to segment data into a sequence of those units. Next, we need to represent
the units properly.

To get better generalization, we feed vector representations of the units to the
NNs. To do so, we first map each unit to a d dimensional vector – the distributed
representations. These mappings are done for each unit in the vocabulary and
are stored in a matrix called lookup table. This matrix is initialized randomly or
by pre-trained embeddings. The word embeddings, discussed in Section 1.2.1,
trained for language modeling objectives, are very common types of pre-trained
embeddings.

Then, onsidering an input sequence of x1x2 . . . xl of language elements of xi,
we represent each with a d dimensional vector xi ∈ Rd. Then the representation
of the input sequence will be a matrix X ∈ Rd×l where l is the length of the input
sequence:

X =

x1,1 x1,2 . . . x1,d

x2,1 x2,2 . . . x2,d
...

...
xl,1 xl,2 . . . xl,d

T

(1.1)

Column i of X represents the vector representation of ith input unit xi.

Hidden Layer

Here, we briefly introduce the three most typical architectures for the hidden lay-
ers: fully connected feed-forward, convolutional-maxpooling, and recurrent. Each
one has some properties and for a particular task might be a better fit. It is also
common to use a combination of different architectures, e.g., Kim et al. (2016)
and Xiao and Cho (2016) use combinations of convolutional-maxpooling and re-
current architectures.

Fully connected feed-forward architecture. The fully connected feed-forward
architecture is the most simple architecture to transform input to hidden layers or
to transform a hidden layer to an upper level one. In this architecture, each neuron
is connected to all the neurons in the upper layer. An example architecture is
shown in Figure 1.1. Each layer in this architecture does this transformation:

hi = f(Wihi−1) (1.2)

22

1.2 Natural Language Processing and Distributed Representations

x1 x2 x3 x4Input layer

∫ ∫ ∫ ∫ ∫ ∫ ∫Hidden
layer 1

∫ ∫ ∫ ∫ ∫Hidden
layer 2

Figure 1.1 – Fully connected feed-forward architecture. In this example, two
fully connected hidden layers are applied on the input layer. The input units
are represented by vectors xi.

which basically is a linear transformation of previous layer hi−1 using matrix Wi

and then applying the non-linearity f . tanh and ReLu (rectified linear unit) are
typical choices for f . h0 ∈ Rd·l is the vector representation of the input matrix,
i.e, concatenation of all l vectors xi ∈ Rd.

Convolutional-maxpooling architecture. The convolutional-maxpooling archi-
tecture (Lecun and Bengio, 1995) is useful for classification tasks in which strong
local clues exist about a class membership. These clues can appear in different
places in the input. In other words, convolution-maxpooling can find some certain
n-grams of units useful for a particular task, independent of their position in the
input. They show promising results on many tasks, including document classifi-
cation (Johnson and Zhang, 2015), short-text categorization (Wang et al., 2015),
sentiment classification (Kalchbrenner et al., 2014; Kim, 2014), relation type clas-
sification between entities (Zeng et al., 2014; dos Santos et al., 2015), paraphrase
identification (Yin and Schütze, 2015).

Convolutional architecture uses k filters of different window widths w (typi-
cally w ∈ [1, .., 8]) to narrowly convolve X. For each filter M ∈ Rd×w, the result
of the convolution of M over matrix X is feature map m ∈ Rl−w+1:

m[i] = f(X[:,i:i+w−1] �M+ b)

where f is the activation (e.g., tanh or ReLu) function, b is the bias, X[:,i:i+w−1]
are the columns i to i+w−1 of X and� is the sum of element-wise multiplication

23

1. Introduction

Convolution layer

Pooling layer

Input layer

Hidden layer
representation

x
1
x

2
...x

l Input

Figure 1.2 – Convolutional-maxpooling architecture. In this example, there
are three convolution filters of widths two and four filters of width six. Max-
pooling outputs are considered as the hidden layer representation.

(Frobenius inner product). Finally, we take maxpooling (maximum over time) to
get the feature corresponding to the filter M:

u = max
i

m[i] (1.3)

The concatenation of all k of these features is our representation: h ∈ Rk. An
example convolutional-maxpooling architecture is show in Figure 1.2.

Recurrent architecture. In natural language we often work with sequences of
arbitrary size. Fully connected architecture is sequence aware, but it is hard to
train because it is too sensitive to the order and an insertion/deletion of a unit will
cause a big change in the input space. Also, it does not support arbitrary size of
input. Convolutional-maxpooling architectures could handle the arbitrary size of
input, but it is not suitable for modeling the whole sequence; each filter can model
just a local sequence of input units. Recurrent architecture (Elman, 1990) is de-
signed to model NLP problems with arbitrary size sequences of input units. To do

24

1.2 Natural Language Processing and Distributed Representations

h1	

x1	

h2	

x2	

h0	
…	

hl-1	

xl-1	

hl	

xl	

Hidden	layer	
representa4on	

Recurrent	layer	

Input	layer	

x1x2…xl	 Input	

Figure 1.3 – Recurrent architecture. ht is the hidden state at time t and is
updated by the current input xt and previous state ht−1.

so, we can learn a fixed length vector by processing the input sequentially, i.e., ap-
plying a composition function and updating a memory (or general representation)
at each time step in the input sequence. The current input xt at time t together
with the previous hidden state ht−1 generate a new hidden state at time t as:

ht = f(Wxxt +Whht−1) (1.4)

where Wx ∈ R|h|×d and Wh ∈ R|h|×|h| are the transformation matrices. At t = 1,
h0 is initialized to zero.

Vanishing gradient problem prevents standard recurrent model to work for
long sequences. Long Short Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) is designed to tackle this problem. It does so by introducing different

25

1. Introduction

gates that control updating the memories in the recurrent states. It models the unit
sequence x as follows (?):

it = σ(Wi
xxt +Wi

hht−1 +Wi
cct−1 + bi) (1.5)

ft = σ(Wf
xxt +Wf

hht−1 +Wf
c ct−1 + bf) (1.6)

ct = ft ◦ ct−1 + it ◦ tanh(Wc
xxt +Wc

hht−1 + bc) (1.7)
ot = σ(Wo

xxt +Wo
hht−1 +Wo

cct + bo) (1.8)
ht = ot ◦ tanh(ct) (1.9)

where ◦ is Hadamard product and it, ft, ot are the input, forget and output gates.
Parameters of the LSTM are Wj

x, Wj
h, bj for j ∈ {i, f, c, o} and Wj

c for j ∈
{i, f, o}. At t = 1, h0 and c0 are initialized to zero. The last hidden LSTM state
hl is usually considered as the whole input X representation.

The bi-directional LSTM consists of two separate LSTMs that are applied
on the input sequence, one going forward and one going backward. The bi-
directional LSTM representation is usually the concatenation of last states of the
forward and backward LSTMs.

∫ ∫ ∫ ∫ ∫Hidden
layer

ŷ1 ŷ2 ŷ3 ŷ4
Output
layer

Figure 1.4 – Example output layer with four units.

Output Layer

In neural networks, output layer is responsible to generate output variables for
specific inputs based on the states in the hidden layer. For a classification task,
usually each unit in the output layer represents the score or probability of a class.
Therefore, there is usually a fully connected layer with the size equal to the num-
ber of classes. Example output layer is shown in Figure 1.4. This layer is usually
connected to the last hidden layer (in some cases, e.g., in bidirectional recurrent
architecture, some hidden layers are concatenated before feeding to the output
layer). We define the output layer ŷ ∈ R|y| as:

ŷ = σ(Wouth) (1.10)

26

1.2 Natural Language Processing and Distributed Representations

where h ∈ R|h| is the hidden layer, Wout ∈ R|y|×|h| is the weight matrix from
hidden layer to the output layer of size |y|. σ is the sigmoid function: σ(x) =
1/(1 + e−x) that converts the value x to a value in [0, 1].1

Training

To train neural networks, we need to compare the predictions with the gold out-
puts. It is common to convert the gold outputs to a binary vector y ∈ {0, 1}|y|,
in which each index corresponds to a specific label and it has the value of 1 if the
example has that label.

Cross entropy is a common loss function for classification problems and for
each training example is defined as:

|y|∑

j

−
(
yj log ŷj + (1− yj) log (1− ŷj)

)
(1.11)

where yj and ŷj are truth and prediction for jth output, respectively.
Stochastic gradient descent (SGD) (Bottou, 2012; LeCun et al., 1998) is usu-

ally used for updating the parameters to minimize the loss function. Some more
advanced variants of standard SGD, such as AdaGrad (Duchi et al., 2011), Adam
(Kingma and Ba, 2014), and Momentum (Polyak, 1964), are also introduced to
find more optimal parameters or to converge faster.

Distributed Representation of Words

Distributed word representations or word embeddings are currently an active area
of research in NLP. The motivation for embeddings is that knowledge about words
is helpful in NLP. Representing words as vocabulary indexes, i.e, local represen-
tation, may be a good approach if large training sets allow us to learn everything
we need to know about a word to solve a particular task; but in most cases it helps
to have a representation that contains some information about the word and allows
inferences like: “above” and “below” have similar syntactic behavior or “engine”
and “motor” have similar meaning.

Language model based objectives are considered generic and since they do
not need labeled data, they have been widely used to compute word embeddings.
Several neural network architectures with different properties have been proposed
to learn word embeddings. In these settings, a network is trained to predict a word
in a context and the weights in the first layer of the network are considered as
word embeddings.

1The jth unit in the output, ŷj , is the probability of the jth label to be one. Multiple labels can
have the value of one.

27

1. Introduction

w(t-2)

w(t+1)

w(t-1)

w(t+2)

w(t)

SUM

 INPUT PROJECTION OUTPUT

w(t)

 INPUT PROJECTION OUTPUT

w(t-2)

w(t-1)

w(t+1)

w(t+2)

 CBOW Skip-gram

Figure 1.5 – Two architectures for learning word embedding proposed by
Mikolov et al. (2013). CBOW predicts the current word based on the context,
and the Skip-gram predicts context words given the current word.

Mikolov et al. (2013) introduce Skip-gram (skipgram bag-of-word model),
(iii) CBOW (continuous bag-of-word model) models. For a given context, rep-
resented by the input space representations of the left and right neighbors wt−2,
wt−1 and wt+1, wt+2, CBOW predicts wt by adding the context vectors. Skip-
gram predicts the context words wt−2, wt−1, wt+1 and wt+2 given the input word
wt. The architectures are shown in Figure 1.5. Both CBOW and Skip-gram are
learning embeddings using bag-of-word (BoW) models. There are other architec-
tures where order of words in the sentence is also implemented, cf., (Mnih and
Kavukcuoglu, 2013; Ling et al., 2015a).

Evaluation. Two types of evaluation, intrinsic and extrinsic, have been ap-
plied to assess which models are more suitable for learning word embeddings.

Intrinsic evaluations assess the quality of embeddings independent of an NLP
task. Currently, this evaluation mostly is done by testing overall distance/similar-
ity of words in the embedding space, i.e., it is based on viewing word representa-
tions as points and then computing full-space similarity. Similarity and analogy
datasets are widely used as intrinsic evaluation. In similarity, datasets compare

28

1.3 Fine-grained Entity Typing

the human judgments of word similarities with the embedding similarities. Sim-
ilarity of two embeddings is computed mostly using cosine function defined as:
cosine(v,w) = (vTw)/(||v||2×||w||2). In analogy, the similarity of words along
a property is evaluated using analogical questions like “Berlin” to “Germany” is
“Paris” to X.

Extrinsic evaluations test embeddings for a specific NLP task (cf. (Li and
Jurafsky, 2015; Köhn, 2015; Lai et al., 2015)). Extrinsic evaluation is a valid
methodology, but it does not allow us to understand the properties of represen-
tations without further analysis; e.g., if an evaluation shows that embedding A
works better than embedding B on a task, then that is not an analysis of the causes
of the improvement.

Each single word is a combination of a large number of morphological, lexical,
syntactic, semantic, discourse and other features. Its embedding should accurately
and consistently represent these features, and ideally a good evaluation method
must clarify this and give a way to analyze the results. The goal of Chapter 3 is
to build such an evaluation. We introduce some criteria for word embeddings and
build grammars to generate artificial text based on them and evaluate embeddings
on those criteria. We also show some issues with the intrinsic evaluations based
on similarity and analogy.

1.3 Fine-grained Entity Typing

Large scale knowledge bases (KBs) like Freebase (Bollacker et al., 2008), YAGO
(Suchanek et al., 2007) and Google knowledge graph are designed to store world
knowledge. Their structure is usually graph-based and with different schemas.
In Figure 1.6, we show some parts of an example KB (Buitelaar, 2007) that con-
tains some geographical entities and their properties and relations. In this graph,
the upper parts are the schema of the KB including the entity types (e.g., RIVER

and GEOGRAPHICAL ENTITY) and the relations between them (e.g., the rela-
tion “flow through” from type RIVER to type GEOGRAPHICAL ENTITY). The
lower parts are the instances of types (“Neckar” is an instance of type RIVER and
GERMANY is a COUNTRY), relations between them (relation “flow through” from
“Neckar” to “Germany”), and their property-values (e.g., “length(m)” of 367 for
“Neckar”).

Here in this work, we use Freebase. Freebase is a labeled graph, with nodes
and directed edges. Topics (or entities) are the essential part of Freebase, which
are represented as graph nodes. These topics can be named entities (like “Ger-
many”) or abstract concepts (like “love”). In this work, we refer to Freebase
topics as entities. Apart from entities, Freebase uses types like CITY, COUNTRY,
BOOK SUBJECT, PERSON, etc. Each entity can have one or many types, e.g.,

29

1. Introduction

Figure 1.6 – Part of a knowledge base with types, entities, relations and prop-
erties.

“Arnold Schwarzenegger” is a PERSON, ACTOR, POLITICIAN, SPORT FIGURE,
etc. There are about 1,500 types in Freebase, organized by domains; e.g., the
domain FOOD has types like FOOD, INGREDIENT and RESTAURANT. Each type
contains some specific properties about entities, e.g., ACTOR type contains a prop-
erty that lists all films that “Arnold Schwarzenegger” has acted in. In other words,
entities are connected to each other by properties because they are in certain types.
For example, “Arnold Schwarzenegger” is connected to “California” with prop-
erty “Governor of” which is defined in the type POLITICIAN.

Even though Freebase is one of the largest publicly available KB of its kind, it
still has significant coverage problems; e.g., 78.5% of persons in Freebase do not
have nationality (Min et al., 2013). In our Freebase dump, 22% of entities have
only one type. This is unavoidable, partly because Freebase is user-generated,
partly because the world changes. All existing KBs that attempt to model a large
part of the world suffer from this incompleteness problem. Incompleteness is
likely to become an even bigger problem in the future as the number of types
covered by KBs like Freebase increases. As more and more fine-grained types
are added, achieving good coverage for these new types using only human editors
will become impossible.

30

1.3 Fine-grained Entity Typing

E100	gave	his	speech	at	the	UN.	

In	his	book,	E100	talked	about	different	
issues.	

Nobel	prize	winner,	E100,	was	in	the	last	
session.		

I	had	dinner	with	E100	yesterday.		

Poli>cian	Author	

Award	
winner	

Person	

Athlete	 Musician	

Men)ons	 En)ty	 Types	

Engineer	

En>ty	Linked	
Corpus	

find	men>ons	

Barack	Obama	
ID:	E100	

Figure 1.7 – Fine-grained entity typing: task definition.

The approach we adopt in this paper is to address incompleteness of Freebase
as an example KB. We aim to do that by extracting information from large text
corpora. We focus on completing types of entities. More specifically, in our
problem setting we assume that the following is given: a KB with a set of entities
E with their names, a set of types T and a membership function m : E × T 7→
{0, 1} such that m(e, t) = 1 iff entity e has type t; and a large linked corpus C in
which mentions of E are annotated to the KB. In this problem setting, we address
the task of fine-grained entity typing: we want to infer from the corpus for each
pair of entity e and type t whether m(e, t) = 1 holds, i.e., whether entity e is a
member of type t.

An example is shown in Figure 1.7. “Barack Obama” is taken from a KB
with ID “E100”. We then look for the mentions of “E100” in the entity linked
corpus. In the figure, there are four examples of the mentions. Then, the task is to
separate the types that E100 belongs to from other types. In this case, we have to
find PERSON, POLITICIAN, AUTHOR and AWARD WINNER.

31

1. Introduction

1.3.1 Related Work

Our task is to infer fine-grained types of KB entities. Neelakantan and Chang
(2015) and Xie et al. (2016) also address a similar task, but they rely on entity
descriptions in KBs. Thus, in contrast to our approach, their system is not able
to type entities that are not covered by existing KBs. We infer classes for entities
from a large corpus and do not assume that these entities occur in the KB. The
problem of Fine-grained mention typing (FGMT) (Yosef et al., 2012; Ling and
Weld, 2012; Yogatama et al., 2015; Del Corro et al., 2015; Shimaoka et al., 2016;
Ren et al., 2016b) is related to our task. FGMT classifies single mentions of named
entities to their context dependent types whereas we attempt to identify all types of
a KB entity from the aggregation of all its mentions. FGMT can still be evaluated
in our task by aggregating the mention level decisions.

Entity set expansion (ESE) is the problem of finding entities in a class (e.g.,
medications) given a seed set (e.g., {“Ibuprofen”, “Maalox”, “Prozac”}). The
standard solution is pattern-based bootstrapping (Thelen and Riloff, 2002; Gupta
and Manning, 2014). ESE is different from the problem we address because ESE
starts with a small seed set whereas we assume that a large number of examples
from a knowledge base (KB) is available. Initial experiments with the system of
Gupta and Manning (2014) showed that it was not performing well for our task
– this is not surprising given that it is designed for a task with properties quite
different from entity typing.

Fine-grained entity typing can be used for knowledge base completion (KBC).
Most KBC systems focus on relations between entities, not on types as we do.
Some generalize the patterns of relationships within the KB (Nickel et al., 2012;
Bordes et al., 2013) while others use a combination of within-KB generalization
and information extraction from text (Weston et al., 2013; Socher et al., 2013;
Jiang et al., 2012; Riedel et al., 2013; Wang et al., 2014).

The first step in extracting information about entities from text is to reliably
identify mentions of these entities. This problem of entity linking has some mutual
dependencies with entity typing. Indeed, some recent work shows large improve-
ments when entity typing and linking are jointly modeled (Ling et al., 2015c;
Durrett and Klein, 2014). However, there are constraints that are important for
high-performance entity linking, but that are of little relevance to entity typing.
For example, there is a large literature on entity linking that deals with coref-
erence resolution and inter-entity constraints – e.g., “Naples” is more likely to
refer to a US (resp. an Italian) city in a context mentioning “Fort Myers” (resp.
“Sicily”). Therefore, we will only address entity typing in this work and consider
entity linking as an independent module that provides contexts of entities for the
system. A similar process is used in relation extraction (cf. (Zeng et al., 2015; Lin
et al., 2016)).

32

1.4 Models for Fine-grained Entity Typing

1.3.2 Freebase and FIGER types

In about 1500 types of Freebase, some are very general like LOCATION, some
are very fine-grained, e.g., VIETNAMESE URBAN DISTRICT. There are types that
have a large number of instances like CITYTOWN and types that have very few like
CAMERA SENSOR. The types are not organized in a strict taxonomy even though
there exists an included type relationship between types in Freebase. The reason
is that for a user-generated KB it is difficult to maintain taxonomic consistency.
For example, almost all instances of AUTHOR are also instances of PERSON, but
sometimes organizations author and publish documents.

Our goal is fine-grained typing of entities, but types like
VIETNAMESE URBAN DISTRICT are too fine-grained. To create a reliable setup
for evaluation and to make sure that all types have a reasonable number of in-
stances, we adopt the FIGER type set (Ling and Weld, 2012) that was created
with the same goals in mind. FIGER consists of 113 tags and was created in an
attempt to preserve the diversity of Freebase types while consolidating infrequent
and unusual types through filtering and merging. For example, the Freebase types
DISH, INGREDIENT, FOOD and CHEESE are mapped to one type FOOD. See (Ling
and Weld, 2012) for a complete list of FIGER types.

1.4 Models for Fine-grained Entity Typing

In Section 1.3, we introduced the task of fine-grained entity typing. In summary,
the setting is that the following is given: a KB with a set of entities E, a set
of fine-grained types T and a membership function m : E × T 7→ {0, 1} such
that m(e, t) = 1 iff entity e has type t; and a large annotated corpus C in which
mentions of E are linked.

Our general approach is that we use a set of training examples to learn P (t|e):
the probability that entity e has type t. These probabilities can be used to as-
sign new types to entities covered in the KB as well as typing unknown entities
– i.e., entities not covered by the KB. To work for new or unknown entities, we
would need an entity linking system such as the ones participating in TAC KBP
(McNamee and Dang, 2009) that identifies and clusters mentions of them.

We use two general types of modeling for this problem: global model, context
model and a joint model of the two. In the following, we introduce each model
and the distributed representations we used to implement them.

33

1. Introduction

Type	probabili,es	

Feed-forward	layer	

En,ty	embedding	

En,ty	contexts	 En,ty	name	

Figure 1.8 – Global model. Entity embedding is learned from contexts and
name of the entity.

1.4.1 Global Model

The global model (GM) scores possible types of entity e based on a distributed
representation or embedding e ∈ Rd of e. e can be learned from corpus or entity
name. Accordingly, we define representations of entities on three levels: (i) entity
(ii) word (iii) character.

After learning this vector representation, we learn P (t|e) by using a fully con-
nected feed-forward hidden layer and an output layer of size |T |, i.e., number
of types. We model P (t|e) as a multi-label classification. In the following, we
present our entity, word and character level models to learn entity embeddings.

Entity-level representation of entities. We learn distributed representations
for entities so that entities with similar meanings will have similar representations.
Thus, we can learn a d dimensional embedding e of entity e, in the same space
as word embeddings, by running an embedding learner like word2vec on a cor-
pus in which all mentions of the entity have been replaced by a special identifier.
Similar method is used by (Wang et al., 2014; Wang and Li, 2016; Yamada et al.,

34

1.4 Models for Fine-grained Entity Typing

2016; Fang et al., 2016) to learn entity embeddings by replacing Wikipedia an-
chors with their referred article ID. We refer to these entity vectors as the entity
level representation (ELR). (More details in Chapter 2 and Chapter 4)

Word-level representation of entities. Words inside entity names are impor-
tant sources of information for typing entities. We define the word-level represen-
tation (WLR) as the average of the embeddings of the words that the entity name
contains e = 1

n

∑n
i=1wi where wi is the embedding of the ith word of an entity

name of length n. We opt for simple averaging since entity names often consist of
a small number of words with clear semantics.

Character-level representation of entities. For computing the character
level representation (CLR), we design models that try to type an entity based
on the sequence of characters of its name. Our hypothesis is that names of entities
of a specific type often have similar character patterns. Entities of type ETHNIC-
ITY often end in “ish” and “ian”, e.g., “Spanish” and “Russian”. Entities of type
MEDICINE often end in “en”: “Lipofen”, “Acetaminophen”. Also, some types
tend to have specific cross-word shapes in their entities, e.g., PERSON names usu-
ally consist of two words, or MUSIC names are usually long, containing several
words.

We compute character-level representations of entities by segmenting the en-
tity names into their sequence of characters, and then represent them using dis-
tributed representations and applying either fully connected feed-forward, convolutional-
maxpooling or recurrent hidden layers. The parameters of these models are trained
to predict the types. See Chapter 4 for more details.

1.4.2 Context Model
For the context model (CM), we first learn a probability function P (t|c) for indi-
vidual contexts c in the corpus. P (t|c) is the probability that an entity occurring
in context c has type t. For example, consider the contexts c1 = “he served SLOT
cooked in wine” and c2 = “she loves SLOT more than anything”. SLOT marks
the occurrence of an entity and it also shows that we do not care about the en-
tity mention itself but only its context. For the type t = “food”, P (t|c1) is high
whereas P (t|c2) is low. This example demonstrates that some contexts of an entity
like “beef” allow specific inferences about its type whereas others do not. Based
on the context probability function P (t|c), we then compute the entity-level CM
probability function P (t|e).

More specifically, consider B = {c1, c2, . . . , cq} as the set of q contexts of
e in the corpus. Each ci is an instance of e and since e can have several labels,
it is a multi-instance multi-label (MIML) learning problem. We address MIML
using neural networks by representing each context as a vector ci ∈ Rh, and learn
P (t|e) from the set of contexts of entity e. We represent the contexts by two types

35

1. Introduction

of hidden layers: fully connected feed-forward and convolutional-maxpooling.
In both cases, the input layer is the matrix of context word embeddings. The
architecture also includes a hidden layer of either fully connected feed-forward or
convolutional-maxpooling architecture (details are in Chapter 2 and Chapter 5).
In the following, we describe our MIML algorithms that work on the contexts
representations to compute P (t|e).

c2	

P(tj|c2)	

c3	

P(tj|c3)	

P(tj|e)	

cn	

P(tj|cn)	
.....	

.....	

.....	

avg	or	
max	

c1	

P(tj|c1)	

En2ty-level	probability	

Context-level	probabili2es	

Contexts	

Figure 1.9 – Learning the entity-level (bag-level) probability for type tj from
the context-level (instance-level) probabilities using average or max as ag-
gregation functions. In distant supervision, we apply the aggregation function
(AVG or MAX) only during test time. In MIML-AVG, MIML-MAX, we apply
the AVG and MAX during train and test time.

The distant supervision assumption is that all contexts of an entity with type
t are contexts of t; e.g., we label all contexts mentioning “Barack Obama” with
all of his types, including PERSON, POLITICIAN, AUTHOR and AWARD WINNER.
Therefore, we can learn P (t|ci) for each context ci of e, and aggregate them using
a function like “average” or “maximum” to get P (t|e). See Figure 1.9.

Obviously when distant supervision is used, the labels are incorrect or noisy
for some contexts. Multi-instance multi-label (MIML) learning addresses this
problem and has been applied before in similar task of relation extraction (Sur-
deanu et al., 2012). We apply MIML to fine-grained Entity Typing. Our assump-

36

1.4 Models for Fine-grained Entity Typing

c2	

c2	

c3	

c3	

aj	

cn	

cn	
.....	

.....	

.....	c1	

c1	

α1,	j	 α2,	j	 α3,	j	 αn,	j	

P(tj|e)	 En2ty-level	probability	

Aggregated	representa2on	

AAen2on	weights	

Contexts	representa2ons	

Contexts	

Figure 1.10 – Multi-instance multi-label learning using attention (MIML-
ATT). The entity-level (bag-level) probability of type tj is computed based
on an aggregated representation aj of all the contexts.

tion is: if entity e has type t, then there is at least one context of e in the corpus
in which e occurs as type t. So, we apply this assumption during training with the
following estimation of the type probability of an entity. which means we take the
maximum probability of type t over all the contexts of entity e as P (t|e). We call
this approach MIML-MAX. See Figure 1.9.

MIML-MAX picks the most confident context for t, ignoring the probabilities
of all the other contexts. Apart from missing information, this can be especially
harmful if the entity annotations in the corpus are the result of an entity linking
system. In that case, the most confident context might be wrongly linked to the
entity. So, it can be beneficial to leverage all the contexts into the final prediction,
e.g., by averaging the type probabilities of all the contexts of entity e. We call
this approach MIML-AVG.

MIML-AVG treats every context equally which might be problematic since
many contexts are irrelevant for a particular type. A better way is to weight the

37

contexts according to their similarity to the types. Therefore, we propose using
selective attention over contexts as follows and call this approach MIML-ATT.
MIML-ATT is the multi-label version of the selective attention method proposed
in Lin et al. (2016). at is the type t specific aggregated representation of all the
contexts ci of the entity e and αi,t is the attention score (i.e., weight) of context ci
for type t and at ∈ Rh can be interpreted as the representation of entity e for type
t. See Chapter 5 for more details on MIML methods.

1.5 Summary and Overview
In this chapter, we gave short introductions to several concepts that we used in
this work. We also defined our task and models. The next four chapters are our
published papers on this topic. In Chapter 2, we introduce the task of fine-grained
entity typing and introduce the first version of the two mentioned models for solv-
ing the task. In Chapter 3, we investigate a new intrinsic evaluation method for
distributed representation of words, and also show that this task is a good fit for
extrinsic evaluation. This evaluation highlights some important performance dif-
ferences between different learning models and gives us hints for further improve-
ments of the entity typing models. In Chapter 4, we improve the global model by
introducing multi-level representations of entities in three levels of characters,
words and entities. In Chapter 5, our aim is to improve the context model by
tackling its key problem, i.e, noisy labels because of distant supervision. We in-
troduce and apply new algorithms that effectively mitigate the noise and increase
the performance.

38

Chapter 2

Corpus-level Fine-grained Entity
Typing Using Contextual
Information

39

Corpus-level Fine-grained Entity Typing Using Contextual Information

Yadollah Yaghoobzadeh and Hinrich Schütze
Center for Information and Language Processing

University of Munich, Germany
yadollah@cis.lmu.de

Abstract

This paper addresses the problem of
corpus-level entity typing, i.e., inferring
from a large corpus that an entity is a
member of a class such as “food” or
“artist”. The application of entity typ-
ing we are interested in is knowledge base
completion, specifically, to learn which
classes an entity is a member of. We pro-
pose FIGMENT to tackle this problem.
FIGMENT is embedding-based and com-
bines (i) a global model that scores based
on aggregated contextual information of
an entity and (ii) a context model that first
scores the individual occurrences of an en-
tity and then aggregates the scores. In
our evaluation, FIGMENT strongly out-
performs an approach to entity typing that
relies on relations obtained by an open in-
formation extraction system.

1 Introduction

Natural language understanding (NLU) is not pos-
sible without knowledge about the world – partly
so because world knowledge is needed for many
NLP tasks that must be addressed as part of NLU;
e.g., many coreference ambiguities can only be re-
solved based on world knowledge. It is also true
because most NLU applications combine a vari-
ety of information sources that include both text
sources and knowledge bases; e.g., question an-
swering systems need access to knowledge bases
like gazetteers. Thus, high-quality knowledge
bases are critical for successful NLU.

Unfortunately, most knowledge bases are in-
complete. The effort required to create knowledge
bases is considerable and since the world changes,
it will always continue. Knowledge bases are
therefore always in need of updates and correc-
tions. To address this problem, we present an in-
formation extraction method that can be used for

knowledge base completion. In contrast to most
other work on knowledge base completion, we fo-
cus on fine-grained classification of entities as op-
posed to relations between entities.

The goal of knowledge base completion is to
acquire knowledge in general as opposed to de-
tailed analysis of an individual context or sen-
tence. Therefore, our approach is corpus-level:
We infer the types of an entity by considering the
set of all of its mentions in the corpus. In contrast,
named entity recognition (NER) is context-level or
sentence-level: NER infers the type of an entity
in a particular context. As will be discussed in
more detail in the following sections, the problems
of corpus-level entity typing vs. context/sentence-
level entity typing are quite different. This is
partly because the objectives of optimizing ac-
curacy on the context-level vs. optimizing accu-
racy on the corpus-level are different and partly
because evaluation measures for corpus-level and
context-level entity typing are different.

We define our problem as follows. Let K be a
knowledge base that models a set E of entities, a
set T of fine-grained classes or types and a mem-
bership function m : E × T 7→ {0, 1} such that
m(e, t) = 1 iff entity e has type t. Let C be a large
corpus of text. Then, the problem we address in
this paper is corpus-level entity typing: For a given
pair of entity e and type t determine – based on the
evidence available in C – whether e is a member of
type t (i.e., m(e, t) = 1) or not (i.e., m(e, t) = 0)
and update the membership relation m of K with
this information.

We investigate two approaches to entity typing:
a global model and a context model.

The global model aggregates all contextual in-
formation about an entity e from the corpus and
then based on that, makes a classification deci-
sion on a particular type t – i.e., m(e, t) = 0 vs.
m(e, t) = 1.

The context model first scores each individual

40

context of e as expressing type t or not. A final de-
cision on the value of m(e, t) is then made based
on the distribution of context scores. One diffi-
culty in knowledge base completion based on text
corpora is that it is too expensive to label large
amounts of text for supervised approaches. For
our context model, we address this problem using
distant supervision: we treat all contexts of an en-
tity that can have type t as contexts of type t even
though this assumption will in general be only true
for a subset of these contexts. Thus, as is typi-
cal for distant supervision, the labels are incorrect
in some contexts, but we will show that the label-
ing is good enough to learn a high-quality context
model.

The global model is potentially more robust
since it looks at all the available information at
once. In contrast, the context model has the advan-
tage that it can correctly predict types for which
there are only a small number of reliable contexts.
For example, in a large corpus we are likely to
find a few reliable contexts indicating that “Barack
Obama” is a bestselling author even though this
evidence may be obscured in the global distri-
bution because the vast majority of mentions of
“Obama” do not occur in author contexts.

We implement the global model and the con-
text model as well as a simple combination of
the two and call the resulting system FIGMENT:
FIne-Grained eMbedding-based Entity Typing. A
key feature of FIGMENT is that it makes exten-
sive use of distributed vector representations or
embeddings. We compute embeddings for words
as is standard in a large body of NLP literature,
but we also compute embeddings for entities and
for types. The motivation for using embeddings
in these cases is (i) better generalization and (ii)
more robustness against noise for text types like
web pages. We compare the performance of FIG-
MENT with an approach based on Open Informa-
tion Extraction (OpenIE).

The main contributions of this paper can be
summarized as follows.

• We address the problem of corpus-level en-
tity typing in a knowledge base completion
setting. In contrast to other work that has fo-
cused on learning relations between entities,
we learn types of entities.

• We show that context and global models for
entity typing provide complementary infor-

mation and combining them gives the best re-
sults.

• We use embeddings for words, entities and
types to improve generalization and deal with
noisy input.

• We show that our approach outperforms a
system based on OpenIE relations when the
input corpus consists of noisy web pages.

2 Related work

Named entity recognition (NER) is the task of
detecting and classifying named entities in text.
While most NER systems (e.g., Finkel et al.
(2005)) only consider a small number of entity
classes, recent work has addressed fine-grained
NER (Yosef et al., 2012; Ling and Weld, 2012; Yo-
gatama et al., 2015; Dong et al., 2015; Del Corro
et al., 2015). These methods use a variety of lex-
ical and syntactic features to segment and clas-
sify entity mentions. Some more recent work as-
sumes the segmentation is known and only classi-
fies entity mentions. Dong et al. (2015) use dis-
tributed representations of words in a hybrid clas-
sifier to classify mentions to 20 types. Yogatama et
al. (2015) classify mentions to more fine-grained
types by using different features for mentions and
embedding labels in the same space. These meth-
ods as well as standard NER systems try to maxi-
mize correct classification of mentions in individ-
ual contexts whereas we aggregate individual con-
texts and evaluate on accuracy of entity-type as-
signments inferred from the entire corpus. In other
words, their evaluation is sentence-level whereas
ours is corpus-level.

Entity set expansion (ESE) is the problem
of finding entities in a class (e.g., medications)
given a seed set (e.g., {“Ibuprofen”, “Maalox”,
“Prozac”}). The standard solution is pattern-based
bootstrapping (Thelen and Riloff, 2002; Gupta and
Manning, 2014). ESE is different from the prob-
lem we address because ESE starts with a small
seed set whereas we assume that a large number
of examples from a knowledge base (KB) is avail-
able. Initial experiments with the system of Gupta
and Manning (2014) showed that it was not per-
forming well for our task – this is not surprising
given that it is designed for a task with properties
quite different from entity typing.

More closely related to our work are the OpenIE
systems NNPLB (Lin et al., 2012) and PEARL

41

(Nakashole et al., 2013) for fine-grained typing
of unlinkable and emerging entities. Both sys-
tems first extract relation tuples from a corpus and
then type entities based on the tuples they occur
in (where NNPLB only uses the subject position
for typing). To perform typing, NNPLB propa-
gates activation from known members of a class
to other entities whereas PEARL assigns types to
the argument slots of relations. The main differ-
ence to FIGMENT is that we do not rely on re-
lation extraction. In principle, we can make use
of any context, not just subject and object posi-
tions. FIGMENT also has advantages for noisy
text for which relation extraction can be challeng-
ing. This will be demonstrated in our evaluation
on web text. Finally, our emphasis is on making
yes-no decisions about possible types (as opposed
to just ranking possibilities) for all entities (as op-
posed to just emerging or unlinkable entities). Our
premise is that even existing entities in KBs are of-
ten not completely modeled and have entries that
require enhancement. We choose NNPLB as our
baseline.

The fine-grained typing of entities performed
by FIGMENT can be used for knowledge base
completion (KBC). Most KBC systems focus on
relations between entities, not on types as we
do. Some generalize the patterns of relation-
ships within the KB (Nickel et al., 2012; Bordes
et al., 2013) while others use a combination of
within-KB generalization and information extrac-
tion from text (Weston et al., 2013; Socher et al.,
2013; Jiang et al., 2012; Riedel et al., 2013; Wang
et al., 2014). Neelakantan and Chang (2015) ad-
dress entity typing in a way that is similar to FIG-
MENT. Their method is based on KB information,
more specifically entity descriptions in Wikipedia
and Freebase. Thus, in contrast to our approach,
their system is not able to type entities that are not
covered by existing KBs. We infer classes for en-
tities from a large corpus and do not assume that
these entities occur in the KB.

Learning embeddings for words is standard in
a large body of NLP literature (see Baroni et al.
(2014) for an overview). In addition to words, we
also learn embeddings for entities and types. Most
prior work on entity embeddings (e.g., Weston et
al. (2013), Bordes et al. (2013)) and entity and
type embeddings (Zhao et al., 2015) has mainly
used KB information as opposed to text corpora.
Wang et al. (2014) learn embeddings of words and

entities in the same space by replacing Wikipedia
anchors with their corresponding entities. For our
global model, we learn entity embedding in a sim-
ilar way, but on a corpus with automatically anno-
tated entities. For our context model, we learn and
use type embeddings jointly with corpus words
to improve generalization, a novel contribution of
this paper to the best of our knowledge. We learn
all our embeddings using word2vec (Mikolov et
al., 2013).

Our problem can be formulated as multi-
instance multi-label (MIML) learning (Zhou and
Zhang, 2006), similar to the formulation for re-
lation extraction by Surdeanu et al. (2012). In
our problem, each example (entity) can have sev-
eral instances (contexts) and each instance can
have several labels (types). Similar to Zhou and
Zhang (2006)’s work on scene classification, we
also transform MIML into easier tasks. The global
model transforms MIML into a multi-label prob-
lem by merging all instances of an example. The
context model solves the problem by combining
the instance-label scores to example-label scores.

3 Motivation and problem definition

3.1 Freebase

Large scale KBs like Freebase (Bollacker et al.,
2008), YAGO (Suchanek et al., 2007) and Google
knowledge graph are important NLP resources.
Their structure is roughly equivalent to a graph in
which entities are nodes and edges are relations
between entities. Each node is also associated
with one or more semantic classes, called types.
These types are the focus of this paper.

We use Freebase, the largest available KB, in
this paper. In Freebase, an entity can belong to
several classes, e.g., “Barack Obama” is a mem-
ber of 37 types including “US president” and “au-
thor”. One notable type is also defined for each
entity, e.g., “US-president” for “Obama” since it is
regarded as his most prominent characteristic and
the one that would be used to disambiguate refer-
ences to him, e.g., to distinguish him from some-
body else with the same name.

There are about 1500 types in Freebase, or-
ganized by domain; e.g., the domain “food” has
types like “food”, “ingredient” and “restaurant”.
Some types like “location” are very general, some
are very fine-grained, e.g., “Vietnamese urban dis-
trict”. There are types that have a large number of
instances like “citytown” and types that have very

42

few like “camera sensor”. Entities are defined as
instances of types. They can have several types
based on the semantic classes that the entity they
are referring to is a member of – as in the above
example of Barack Obama.

The types are not organized in a strict taxon-
omy even though there exists an included type re-
lationship between types in Freebase. The reason
is that for a user-generated KB it is difficult to
maintain taxonomic consistency. For example, al-
most all instances of “author” are also instances of
“person”, but sometimes organizations author and
publish documents. We follow the philosophy of
Freebase and assume that the types do not have a
hierarchical organization.

3.2 Incompleteness of knowledge base
Even though Freebase is the largest publicly avail-
able KB of its kind, it still has significant coverage
problems; e.g., 78.5% of persons in Freebase do
not have nationality (Min et al., 2013).

This is unavoidable, partly because Freebase is
user-generated, partly because the world changes
and Freebase has to be updated to reflect those
changes. All existing KBs that attempt to model a
large part of the world suffer from this incomplete-
ness problem. Incompleteness is likely to become
an even bigger problem in the future as the number
of types covered by KBs like Freebase increases.
As more and more fine-grained types are added,
achieving good coverage for these new types us-
ing only human editors will become impossible.

The approach we adopt in this paper to address
incompleteness of KBs is extraction of informa-
tion from large text corpora. Text can be argued
to be the main repository of the type of knowledge
represented in KBs, so it is reasonable to attempt
completing them based on text. There is in fact
a significant body of work on corpus-based meth-
ods for extracting knowledge from text; however,
most of it has addressed relation extraction, not
the acquisition of type information – roughly cor-
responding to unary relations (see Section 2). In
this paper, we focus on typing entities.

3.3 Entity linking
The first step in extracting information about en-
tities from text is to reliably identify mentions
of these entities. This problem of entity linking
has some mutual dependencies with entity typing.
Indeed, some recent work shows large improve-
ments when entity typing and linking are jointly

modeled (Ling et al., 2015; Durrett and Klein,
2014). However, there are constraints that are im-
portant for high-performance entity linking, but
that are of little relevance to entity typing. For ex-
ample, there is a large literature on entity linking
that deals with coreference resolution and inter-
entity constraints – e.g., “Naples” is more likely
to refer to a US (resp. an Italian) city in a context
mentioning “Fort Myers” (resp. “Sicily”).

Therefore, we will only address entity typing
in this paper and consider entity linking as an in-
dependent module that provides contexts of en-
tities for FIGMENT. More specifically, we build
FIGMENT on top of the output of an existing en-
tity linking system and use FACC1,1 an automatic
Freebase annotation of ClueWeb (Gabrilovich et
al., 2013). According to the FACC1 distributors,
precision of annotated entities is around 80-85%
and recall is around 70-85%.

3.4 FIGER types

Our goal is fine-grained typing of entities, but
types like “Vietnamese urban district” are too fine-
grained. To create a reliable setup for evaluation
and to make sure that all types have a reasonable
number of instances, we adopt the FIGER type set
(Ling and Weld, 2012) that was created with the
same goals in mind. FIGER consists of 112 tags
and was created in an attempt to preserve the di-
versity of Freebase types while consolidating in-
frequent and unusual types through filtering and
merging. For example, the Freebase types “dish”,
“ingredient”, “food” and “cheese” are mapped to
one type “food”. See (Ling and Weld, 2012) for
a complete list of FIGER types. We use “type” to
refer to FIGER types in the rest of the paper.

4 Global, context and joint models

We address a problem setting in which the fol-
lowings are given: a KB with a set of entities
E, a set of types T and a membership function
m : E × T 7→ {0, 1} such that m(e, t) = 1 iff
entity e has type t; and a large annotated corpus C
in which mentions of E are linked. As mentioned
before, we use FACC1 as our corpus.

In this problem setting, we address the task of
corpus-level fine-grained entity typing: we want to
infer from the corpus for each pair of entity e and
type t whether m(e, t) = 1 holds, i.e., whether
entity e is a member of type t.

1lemurproject.org/clueweb12/FACC1

43

We use three scoring models in FIGMENT:
global model, context model and joint model. The
models return a score S(e, t) for an entity-type
pair (e, t). S(e, t) is an assessment of the extent to
which it is true that the semantic class t contains
e and we learn it by training on a subset of E. The
trained models can be applied to large corpora and
the resulting scores can be used for learning new
types of entities covered in the KB as well as for
typing new or unknown entities – i.e., entities not
covered by the KB. To work for new or unknown
entities, we would need an entity linking system
such as the ones participating in TAC KBP (Mc-
Namee and Dang, 2009) that identifies and clus-
ters mentions of them.

4.1 Global model
The global model (GM) scores possible types of
entity e based on a distributed vector representa-
tion or embedding ~v(e) ∈ Rd of e. ~v(e) can be
learned from the entity-annotated corpus C.

Embeddings of words have been widely used in
different NLP applications. The embedding of a
word is usually derived from the distribution of its
context words. The hypothesis is that words with
similar meanings tend to occur in similar contexts
(Harris, 1954) and therefore cooccur with similar
context words. By extension, the assumption of
our model is that entities with similar types tend
to cooccur with similar context words.

To learn a score function SGM(e, t), we use a
multilayer perceptron (MLP) with one shared hid-
den layer and an output layer that contains, for
each type t in T, a logistic regression classifier that
predicts the probability of t:

SGM(e, t) = Gt

(
tanh

(
Winput~v(e)

))

where Winput ∈ Rh×d is the weight matrix from
~v(e) ∈ Rd to the hidden layer with size h. Gt

is the logistic regression classifier for type t that
is applied on the hidden layer. The shared hid-
den layer is designed to exploit the dependen-
cies among labels. Stochastic gradient descent
(SGD) with AdaGrad (Duchi et al., 2011) and
minibatches are used to learn the parameters.

4.2 Context model
For the context model (CM), we first learn a scor-
ing function Sc2t(c, t) for individual contexts c in
the corpus. Sc2t(c, t) is an assessment of how
likely it is that an entity occurring in context c has

type t. For example, consider the contexts c1 = “he
served SLOT cooked in wine” and c2 = “she loves
SLOT more than anything”. SLOT marks the oc-
currence of an entity and it also shows that we do
not care about the entity mention itself but only its
context. For the type t = “food”, Sc2t(c1, t) is high
whereas Sc2t(c2, t) is low. This example demon-
strates that some contexts of an entity like “beef”
allow specific inferences about its type whereas
others do not. We aim to learn a scoring function
Sc2t that can distinguish these cases.

Based on the context scoring function Sc2t, we
then compute the corpus-level CM scoring func-
tion SCM that takes the scores Sc2t(ci, t) for all
contexts of entity e in the corpus as input and re-
turns a score SCM(e, t) that assesses the appropri-
ateness of t for e. In other words, SCM is:

SCM(e, t) = g(Ue,t) (1)

where Ue,t = {Sc2t(c1, t), . . . , Sc2t(cn, t)} is the
set of scores for t based on the n contexts c1 . . . cn
of e in the corpus. The function g is a sum-
mary function of the distribution of scores, e.g.,
the mean, median or maximum. We use the mean
in this paper.

We now describe how we learn Sc2t. For train-
ing, we need contexts that are labeled with types.
We do not have such a dataset in our problem set-
ting, but we can use the contexts of linked entities
as distantly supervised data. Specifically, assume
that entity e has n types. For each mention of e in
the corpus, we generate a training example with n
labels, one for each of the n types of e.

For training Sc2t, a context c of a mention is
represented as the concatenation of two vectors.
One vector is the average of the embeddings of
the 2l words to the left and right of the mention.
The other vector is the concatenation of the em-
beddings of the 2k words to the left and right of
the mention. E.g., for k = 2 and l = 1 the
context c is represented as the vector: Φ(c) =[
x−2, x−1, x+1, x+2, avg(x−1, x+1)

]
where xi ∈

Rd is the embedding of the context word at posi-
tion i relative to the entity in position 0.

We train Sc2t on context representations that
consist of embeddings because our goal is a robust
model that works well on a wide variety of genres,
including noisy web pages. If there are other enti-
ties in the contexts, we first replace them with their
notable type to improve generalization. We learn
word and type embeddings from the corpus C by
replacing train entities with their notable type.

44

The next step is to score these examples. We use
an MLP similar to the global model to learn Sc2t,
which predicts the probability of type t occurring
in context c:

Sc2t(c, t) = Gt

(
tanh

(
WinputΦ(c)

))

where Φ(c) ∈ Rn is the feature vector of the con-
text c as described above, n = (2k + 1) ∗ d and
Winput ∈ Rh×n is the weight matrix from input to
hidden layer with h units. Again, we use SGD
with AdaGrad and minibatch training.

4.3 Joint model
Global model and context model have comple-
mentary strengths and weaknesses.

The strength of CM is that it is a direct model
of the only source of reliable evidence we have:
the context in which the entity occurs. This is also
the way a human would ordinarily do entity typ-
ing: she would determine if a specific context in
which the entity occurs implies that the entity is,
say, an author or a musician and type it accord-
ingly. The order of words is of critical importance
for the accurate assessment of a context and CM
takes it into account. A well-trained CM will also
work for cases for which GM is not applicable. In
particular, if the KB contains only a small number
of entities of a particular type, but the corpus con-
tains a large number of contexts of these entities,
then CM is more likely to generalize well.

The main weakness of CM is that a large pro-
portion of contexts does not contain sufficient in-
formation to infer all types of the entity; e.g.,
based on our distant supervised training data, we
label every context of “Obama” with “author”,
“politician” and Obama’s other types in the KB.
Thus, CM is trained on a noisy training set that
contains only a relatively small number of infor-
mative contexts.

The main strength of GM is that it bases its de-
cisions on the entire evidence available in the cor-
pus. This makes it more robust. It is also more
efficient to train since its training set is by a factor
of |M | smaller than the training set of CM where
|M | is the average number of contexts per entity.

The disadvantage of GM is that it does not work
well for rare entities since the aggregated repre-
sentation of an entity may not be reliable if it is
based on few contexts. It is also less likely to
work well for non-dominant types of an entity
which might be swamped by dominant types; e.g.,

the author contexts of “Obama” may be swamped
by the politician contexts and the overall context
signature of the entity “Obama” may not contain
enough signal to infer that he is an author. Finally,
methods for learning embeddings like word2vec
are bag-of-word approaches. Therefore, word or-
der information – critical for many typing deci-
sions – is lost.

Since GM and CM models are complementary,
a combination model should work better. We
test this hypothesis for the simplest possible joint
model (JM), which adds the scores of the two in-
dividual models:

SJM(e, t) = SGM(e, t) + SCM(e, t)

5 Experimental setup and results

5.1 Setup
Baseline: Our baseline system is the OpenIE sys-
tem no-noun-phrase-left-behind (NNPLB) by Lin
et al. (2012) (see Section 2). Our reimplementa-
tion performs on a par with published results.2 We
use NNPBL as an alternative way of computing
scores S(e, t). Scores of the four systems we com-
pare – NNPBL, GM, CM, JM – are processed the
same way to perform entity typing (see below).

Corpus: We select a subset of about 7.5 mil-
lion web pages, taken from the first segment of
ClueWeb12,3 from different crawl types: 1 million
Twitter links, 120,000 WikiTravel pages and 6.5
million web pages. This corpus is preprocessed
by eliminating HTML tags, replacing all numbers
with “7” and all web links and email addresses
with “HTTP”, filtering out sentences with length
less than 40 characters, and finally doing a simple
tokenization. We merge the text with the FACC1
annotations. The resulting corpus has 4 billion
tokens and 950,000 distinct entities. We use the
2014-03-09 Freebase data dump as our KB.

Entity datasets: We consider all entities in the
corpus whose notable types can be mapped to one
of the 112 FIGER types, based on the mapping
provided by FIGER. 750,000 such entities form
our set of entities. 10 out of 112 FIGER types have
no entities in this set.4

2The precision of our implementation on the dataset of
three million relation triples distributed by (Lin et al., 2012) is
60.7% compared to 59.8% and 61% for tail and head entities
reported by Lin et al. (2012).

3http://lemurproject.org/clueweb12
4The reason is that the FIGER mapping uses Freebase

user-created classes. The 10 missing types are not the notable
type of any entity in Freebase.

45

We run the OpenIE system Reverb (Fader et
al., 2011) to extract relation triples of the form
<subject, relation, object>. Since NNPLB only
considers entities in the subject position, we filter
out triples whose subject is not an entity. The size
of the remaining set of triples is 4,000,000. For
a direct comparison with NNPLB, we divide the
750,000 entities into those that occur in subject po-
sition in one of the extracted triples (about 250,000
subject entities or SE) and those that do not (about
500,000 non-subject entities or NSE). We split SE
50:20:30 into train, dev and test sets. The average
and median number of FIGER types of the training
entities are 1.8 and 2, respectively. We use NSE
to evaluate performance of FIGMENT on entities
that do not occur in subject position.5

Context sampling: For Sc2t, we create train’,
dev’ and test’ sets of contexts that correspond to
train, dev and test sets of entities. Because the
number of contexts is unbalanced for both entities
and types and because we want to accelerate train-
ing and testing, we downsample contexts. For the
set train’, we use the notable type feature of Free-
base: For each type t, we take contexts from the
mentions of those entities whose notable type is t.
Recall, however, that each context is labeled with
all types of its entity – see Section 4.2.

Then if the number of contexts for t is larger
than a minimum, we sample the contexts based on
the number of training entities of t. We set the
minimum to 10,000 and constrain the number of
samples for each t to 20,000. Also, to reduce the
effect of distant supervision, entities with fewer
distinct types are preferred in sampling to provide
discriminative contexts for their notable types. For
test’ and dev’ sets, we sample 300 and 200 random
contexts, respectively, for each entity.

System setup: As the baseline, we apply
NNPLB to the 4 million extracted triples. To learn
entity embeddings for GM, we run word2vec
(skipgram, 200 dimensions, window size 5) on
a version of the corpus in which entities have
been replaced by their Freebase IDs, based on the
FACC1 annotation. We then train MLP with num-
ber of hidden units h = 200 on the embeddings of
training entities until the error on dev entities stops
decreasing.

Our reasoning for the unsupervised training
setup is that we do not use any information about

5The entity datasets are available at http:
//cistern.cis.lmu.de/figment

the types of entities (e.g., no entities annotated by
humans with types) when we run an unsupervised
algorithm like word2vec. In a real-world appli-
cation of FIGMENT to a new corpus, we would
first run word2vec on the merger of our corpus
and the new corpus, retrain GM on training entities
and finally apply it to entities in the new corpus.
This scenario is simulated by our setup.

Recall that the input to CM consists of 2k unit
embeddings and the average of 2l unit embeddings
where we use the term unit to refer to both words
and types. We set k to 4 and l to 5. To learn em-
beddings for units, we first exclude lines contain-
ing test entities, and then replace each entity with
its notable type. Then, we run word2vec (skip-
gram, 100 dimensions, window size 5) on this new
corpus and learn embeddings for words and types.

Using the embeddings as input representations,
we train Sc2t on train’ until error on dev’ stops de-
creasing. We set the number of hidden units to
300. We then apply the trained scoring function
Sc2t to test’ and get the scores Sc2t(c, t) for test’
contexts. As explained in Section 4.2, we compute
the corpus-level scores SCM(e, t) for each entity by
averaging its context-level scores (see Equation 1).

Ranking evaluation: This evaluation shows
how well the models rank types for entities. The
ranking is based on the scores S(e, t) produced by
the different models and baselines. Similar to the
evaluation performed by Lin et al. (2012), we use
precision at 1 (P@1) and breakeven point (BEP,
Boldrin and Levine (2008)). BEP is F1 at the point
in the ranked list at which precision and recall have
the same value.

Classification evaluation: This evaluation
demonstrates the quality of the thresholded assign-
ment decisions produced by the models. These
measures more directly express how well FIG-
MENT would succeed in enhancing the KB with
new information since for each pair (e, t), we have
to make a binary decision about whether to put it
in the KB or not. We compare our decisions with
the gold KB information.

Our evaluation measures are (i) accuracy: an
entity is correct if all its types and no incorrect
types are assigned to it; (ii) micro average: F1

of all type-entity assignment decisions; (iii) entity
macro average F1: F1 of types assigned to an en-
tity, averaged over entities; (iv) type macro aver-
age F1: F1 of entities assigned to a type, averaged
over types.

46

The assignment decision is made based on
thresholds, one per type, for each S(e, t). We se-
lect the threshold that maximizes F1 of entities as-
signed to the type on dev.

5.2 Results

Table 1 presents results for the ranking evaluation
as well as for the first three measures of the clas-
sification evaluation. MFT is the most frequent
type baseline that ranks types according to their
frequency in train. We also show the results for
head entities (frequency higher than 100) and tail
entities (frequency less than 5). The performance
of the systems is in this order: JM > GM > CM
> NNPLB > MFT.

Table 2 shows the results of the fourth classi-
fication measure, type macro average F1, for all,
head (more than 3000 train entities, 11 types), and
tail (less than 200 train entities, 36 types) types.
The ordering of models for Table 2 is in line with
Table 1: JM > GM > CM > NNPLB > MFT.

We can easily run FIGMENT for non-subject
entities (NSE) exactly the same way we have run
it for subject entities. We test our JM on the 67,000
NSE entities with a frequency of more than 10.
The top ranked type returned for 73.5% of enti-
ties was correct. Thus, due to our ability to deal
with NSE, we can type an additional 50,000 enti-
ties correctly.

6 Analysis

Effect of window size in CM: Table 3 explores
the effect of using different context sizes. Recall
that CM was trained with 2k = 8 for the concatena-
tion and 2l = 10 for the average window size. We
change 2k from 0 to 14 while keeping 2l = 10. The
number of hidden units used in each model is also
reported. The table shows that CM can leverage
larger context sizes well.

Poor results of NNPLB: NNPLB is mostly
hampered by Reverb, which did not work well on
the noisy web corpus. As a result, the quality of
the extracted relations – which NNPLB entity typ-
ing is based on – is too low for reliable typing
decisions. The good results of NNPLB on their
non-noisy published relation triples confirm that.
On the three million relation triples, when map-
ping Freebase types to FIGER, P@1 of NNPLB
is .684; when limiting entities to those with more
than 10 relations, the results improve to .776.

GM performs better than CM and JM per-

forms best: The fact that GM outperforms CM
shows that decisions based on one global vector
of an entity work better than aggregating multiple
weak decisions on their contexts. That is clear-
est for tail entities – where one bad context can
highly influence the final decision – and for tail
types, which CM was not able to distinguish from
other similar types. However, the good results of
the simple JM confirm that the score distributions
in CM do help. As an example, consider one of
the test entities that is an “author”. GM and CM
wrongly predict “written work” and “artist”, re-
spectively, but JM correctly outputs “author”.

Errors of CM: Many CM errors are caused by
its simple input representation: it has to learn all
linguistic abstractions that it wants to rely on from
the training set. One manifestation of this problem
is that CM confuses the types “food” and “restau-
rant”. There are only few linguistic contexts in
which entities of these types can be exchanged for
each other. On the other hand, the context words
they cooccur with in a bag-of-words (BOW) sense
are very similar. Thus, this indicates that CM pays
too much attention to BOW information and that
its representation of contexts is limited in terms of
generalization.

Assumptions that result in errors: The per-
formance of all models suffers from a number of
assumptions we made in our training / evaluation
setup that are only approximately true.

The first assumption is that FACC1 is correct.
But it has a precision of only 80-85% and this
caused many errors. An example is the lunar crater
“Buffon” in Freebase, a “location”. Its predicted
type is “athlete” because some FACC1 annotations
of the crater link it to the Italian goalkeeper.

The second assumption of our evaluation setup
is the completeness of Freebase. There are about
2,600 entities with the single type “person” in SE
test. For 62% of the errors on this subset, the top
predicted type is a subtype of person: “author”,
“artist” etc. We manually typed a random subset
of 50 and found that the predicted type is actually
correct for 44 of these entities.

The last assumption is the mapping from Free-
base to FIGER. Some common Freebase types like
“award-winner” are not mapped. This negatively
affects evaluation measures for many entities. On
the other hand, the resulting types do not have a
balanced number of instances. Based on our train-
ing entities, 11 types (e.g., “law”) have less than

47

all entities head entities tail entities
P@1 BEP acc mic mac P@1 BEP acc mic mac P@1 BEP acc mic mac

MFT .101 .406 - - - .111 .410 - - - .097 .394 - - -
NNPLB .365 .480 .000 .099 .096 .378 .503 .000 .114 .109 .368 .474 .000 .086 .084
CM .694 .734 .299 .668 .635 .713 .751 .385 .738 .702 .608 .661 .118 .487 .452
GM .805 .856 .426 .733 .688 .869 .899 .489 .796 .769 .665 .757 .299 .578 .510
JM .816 .860 .435 .743 .699 .874 .900 .500 .803 .776 .688 .764 .306 .601 .532

Table 1: Ranking and classification results for SE entities. P@1 and BEP are ranking measures. Accuracy
(acc), micro (mic) and macro (mac) are classification measures.

all types head types tail types
NNPLB .092 .246 .066
CM .406 .662 .268
GM .533 .725 .387
JM .545 .734 .407

Table 2: Type macro average F1 for all, head and
tail types

2k 0 2 4 6 8 10 12 14
h 50 100 200 250 300 400 450 450

micro .576 .613 .672 .673 .668 .674 .680 .674
P@1 .663 .685 .687 .718 .694 .744 .722 .742

Table 3: Effect of the context size 2k in CM (2k:
context size, h: number of hidden units in MLP)

50 instances while 26 types (e.g., “software”) have
more than 1000 instances. Even sampling the con-
texts could not resolve this problem and this led to
low performance on tail types.

7 Future work

The performance of FIGMENT is poor for tail
types and entities. We plan to address this in the
future (i) by running FIGMENT on larger corpora,
(ii) by refining the FIGER type set to cover more
Freebase entities, (iii) by exploiting a hierarchy
over types and (iv) by exploring more complex in-
put representations of the context for the CM.

FIGMENT’s context model can in principle be
based on any system that provides entity-type as-
sessment scores for individual contexts. Thus,
as an alternative to our scoring model Sc2t(c, t),
we could use sentence-level entity classification
systems such as FIGER (Ling and Weld, 2012)
and (Yogatama et al., 2015)’s system. These sys-
tems are based on linguistic features different from
the input representation we use, so a comparison
with our embedding-based approach is interesting.

Our assumption is that FIGMENT is more robust
against noise, but investigation is needed.

The components of the version of FIGMENT
we presented, in particular, context model and
global model, do not use features derived from the
mention of an entity. Our assumption was that
such features are less useful for fine-grained en-
tity typing. However, there are clearly some types
for which mention-based features are useful (e.g.,
medications or organizations referred to by abbre-
viations), so we will investigate the usefulness of
such features in the future.

8 Conclusion

We presented FIGMENT, a corpus-level system
that uses contextual information for entity typing.
We designed two scoring models for pairs of en-
tities and types: a global model that scores based
on aggregated context information and a context
model that aggregates the scores of individual con-
texts. We used embeddings of words, entities and
types to represent contextual information. Our
experimental results show that global model and
context model provide complementary informa-
tion for entity typing. We demonstrated that, com-
paring with an OpenIE-based system, FIGMENT
performs well on noisy web pages.

Acknowledgements. Thanks to the anonymous
reviewers for their valuable comments. This work
was supported by Deutsche Forschungsgemein-
schaft (grant DFG SCHU 2246/8-2, SPP 1335).

48

References
Marco Baroni, Georgiana Dinu, and Germán

Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, pages
238–247.

Michele Boldrin and David K. Levine. 2008. Against
intellectual monopoly. Cambridge University Press
Cambridge.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Irreflexive and hierarchical relations as trans-
lations. CoRR, abs/1304.7158.

Luciano Del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
868–878, Lisbon, Portugal, September. Association
for Computational Linguistics.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 1243–1249.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12:2121–2159.

Greg Durrett and Dan Klein. 2014. A joint model
for entity analysis: Coreference, typing, and linking.
TACL, 2:477–490.

Anthony Fader, Stephen Soderland, and Oren Etzioni.
2011. Identifying relations for open information ex-
traction. In Proceedings of the 2011 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2011, 27-31 July 2011, John McIntyre
Conference Centre, Edinburgh, UK, A meeting of
SIGDAT, a Special Interest Group of the ACL, pages
1535–1545.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
gibbs sampling. In ACL 2005, 43rd Annual Meeting
of the Association for Computational Linguistics,
Proceedings of the Conference, 25-30 June 2005,
University of Michigan, USA.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. Facc1: Freebase annotation
of clueweb corpora.

Sonal Gupta and Christopher D. Manning. 2014. Im-
proved pattern learning for bootstrapped entity ex-
traction. In Proceedings of the Eighteenth Confer-
ence on Computational Natural Language Learning,
CoNLL 2014, Baltimore, Maryland, USA, June 26-
27, 2014, pages 98–108.

Zellig S. Harris. 1954. Distributional structure. Word,
10:146–162.

Xueyan Jiang, Volker Tresp, Yi Huang, and Maxi-
milian Nickel. 2012. Link prediction in multi-
relational graphs using additive models. In Pro-
ceedings of the International Workshop on Seman-
tic Technologies meet Recommender Systems & Big
Data, Boston, USA, November 11, 2012, pages 1–
12.

Thomas Lin, Mausam, and Oren Etzioni. 2012. No
noun phrase left behind: Detecting and typing un-
linkable entities. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, EMNLP-CoNLL 2012, July 12-14,
2012, Jeju Island, Korea, pages 893–903.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada.

Xiao Ling, Sameer Singh, and Daniel S. Weld. 2015.
Design challenges for entity linking. TACL, 3:315–
328.

Paul McNamee and Hoa Trang Dang. 2009. Overview
of the tac 2009 knowledge base population track. In
Text Analysis Conference (TAC), volume 17, pages
111–113.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang,
and David Gondek. 2013. Distant supervision for
relation extraction with an incomplete knowledge
base. In Human Language Technologies: Confer-
ence of the North American Chapter of the Asso-
ciation of Computational Linguistics, Proceedings,
June 9-14, 2013, Westin Peachtree Plaza Hotel, At-
lanta, Georgia, USA, pages 777–782.

Ndapandula Nakashole, Tomasz Tylenda, and Gerhard
Weikum. 2013. Fine-grained semantic typing of
emerging entities. In Proceedings of the 51st An-
nual Meeting of the Association for Computational
Linguistics, ACL 2013, 4-9 August 2013, Sofia, Bul-
garia, Volume 1: Long Papers, pages 1488–1497.

49

Arvind Neelakantan and Ming-Wei Chang. 2015.
Inferring missing entity type instances for knowl-
edge base completion: New dataset and methods.
In NAACL HLT 2015, The 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Denver, Colorado, USA, May 31 - June 5,
2015, pages 515–525.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing YAGO: scalable ma-
chine learning for linked data. In World Wide Web
Conference, pages 271–280.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas.
In Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Geor-
gia, USA, pages 74–84.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, WWW 2007, Banff, Al-
berta, Canada, May 8-12, 2007, pages 697–706.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
pages 455–465.

Michael Thelen and Ellen Riloff. 2002. A bootstrap-
ping method for learning semantic lexicons using
extraction pattern contexts. In Proceedings of the
ACL-02 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2002, Strouds-
burg, PA, USA, pages 214–221.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly
embedding. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 1591–1601.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language

and knowledge bases with embedding models for re-
lation extraction. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A
meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1366–1371.

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained entity
type classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL
2015, July 26-31, 2015, Beijing, China, Volume 2:
Short Papers, pages 291–296.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hof-
fart, Marc Spaniol, and Gerhard Weikum. 2012.
HYENA: hierarchical type classification for entity
names. In COLING 2012, 24th International Con-
ference on Computational Linguistics, Proceedings
of the Conference: Posters, 8-15 December 2012,
Mumbai, India, pages 1361–1370.

Yu Zhao, Zhiyuan Liu, and Maosong Sun. 2015. Rep-
resentation learning for measuring entity relatedness
with rich information. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 1412–1418.

Zhi-Hua Zhou and Min-Ling Zhang. 2006. Multi-
instance multi-label learning with application to
scene classification. In Advances in Neural In-
formation Processing Systems 19, Proceedings of
the Twentieth Annual Conference on Neural In-
formation Processing Systems, Vancouver, British
Columbia, Canada, December 4-7, 2006, pages
1609–1616.

50

Chapter 3

Intrinsic Subspace Evaluation of
Word Embedding Representations

51

Intrinsic Subspace Evaluation of Word Embedding Representations

Yadollah Yaghoobzadeh and Hinrich Schütze
Center for Information and Language Processing

University of Munich, Germany
yadollah@cis.lmu.de

Abstract

We introduce a new methodology for in-
trinsic evaluation of word representations.
Specifically, we identify four fundamen-
tal criteria based on the characteristics of
natural language that pose difficulties to
NLP systems; and develop tests that di-
rectly show whether or not representations
contain the subspaces necessary to satisfy
these criteria. Current intrinsic evalua-
tions are mostly based on the overall simi-
larity or full-space similarity of words and
thus view vector representations as points.
We show the limits of these point-based
intrinsic evaluations. We apply our evalu-
ation methodology to the comparison of a
count vector model and several neural net-
work models and demonstrate important
properties of these models.

1 Introduction

Distributional word representations or embeddings
are currently an active area of research in nat-
ural language processing (NLP). The motivation
for embeddings is that knowledge about words is
helpful in NLP. Representing words as vocabulary
indexes may be a good approach if large train-
ing sets allow us to learn everything we need to
know about a word to solve a particular task; but
in most cases it helps to have a representation that
contains distributional information and allows in-
ferences like: “above” and “below” have similar
syntactic behavior or “engine” and “motor” have
similar meaning.

Several methods have been introduced to assess
the quality of word embeddings. We distinguish
two different types of evaluation in this paper: (i)
extrinsic evaluation evaluates embeddings in an
NLP application or task and (ii) intrinsic evalu-

ation tests the quality of representations indepen-
dent of a specific NLP task.

Each single word is a combination of a large
number of morphological, lexical, syntactic, se-
mantic, discourse and other features. Its em-
bedding should accurately and consistently repre-
sent these features, and ideally a good evaluation
method must clarify this and give a way to analyze
the results. The goal of this paper is to build such
an evaluation.

Extrinsic evaluation is a valid methodology, but
it does not allow us to understand the properties
of representations without further analysis; e.g., if
an evaluation shows that embedding A works bet-
ter than embedding B on a task, then that is not an
analysis of the causes of the improvement. There-
fore, extrinsic evaluations do not satisfy our goals.

Intrinsic evaluation analyzes the generic quality
of embeddings. Currently, this evaluation mostly
is done by testing overall distance/similarity of
words in the embedding space, i.e., it is based
on viewing word representations as points and
then computing full-space similarity. The assump-
tion is that the high dimensional space is smooth
and similar words are close to each other. Sev-
eral datasets have been developed for this purpose,
mostly the result of human judgement; see (Baroni
et al., 2014) for an overview. We refer to these
evaluations as point-based and as full-space be-
cause they consider embeddings as points in the
space – sub-similarities in subspaces are generally
ignored.

Point-based intrinsic evaluation computes a
score based on the full-space similarity of two
words: a single number that generally does not
say anything about the underlying reasons for a
lower or higher value of full-space similarity. This
makes it hard to interpret the results of point-based
evaluation and may be the reason that contradic-
tory results have been published; e.g., based on

52

point-based evaluation, some papers have claimed
that count-based representations perform as well
as learning-based representations (Levy and Gold-
berg, 2014a). Others have claimed the opposite
(e.g., Mikolov et al. (2013), Pennington et al.
(2014), Baroni et al. (2014)).

Given the limits of current evaluations, we pro-
pose a new methodology for intrinsic evaluation
of embeddings by identifying generic fundamen-
tal criteria for embedding models that are impor-
tant for representing features of words accurately
and consistently. We develop corpus-based tests
using supervised classification that directly show
whether the representations contain the informa-
tion necessary to meet the criteria or not. The
fine-grained corpus-based supervision makes the
sub-similarities of words important by looking at
the subspaces of word embeddings relevant to the
criteria, and this enables us to give direct insights
into properties of representation models.

2 Related Work

Baroni et al. (2014) evaluate embeddings on dif-
ferent intrinsic tests: similarity, analogy, synonym
detection, categorization and selectional prefer-
ence. Schnabel et al. (2015) introduce tasks with
more fine-grained datasets. These tasks are unsu-
pervised and generally based on cosine similarity;
this means that only the overall direction of vec-
tors is considered or, equivalently, that words are
modeled as points in a space and only their full-
space distance/closeness is considered. In con-
trast, we test embeddings in a classification set-
ting and different subspaces of embeddings are an-
alyzed. Tsvetkov et al. (2015) evaluate embed-
dings based on their correlations with WordNet-
based linguistic embeddings. However, correla-
tion does not directly evaluate how accurately and
completely an application can extract a particular
piece of information from an embedding.

Extrinsic evaluations are also common (cf. (Li
and Jurafsky, 2015; Köhn, 2015; Lai et al., 2015)).
Li and Jurafsky (2015) conclude that embed-
ding evaluation must go beyond human-judgement
tasks like similarity and analogy. They suggest to
evaluate on NLP tasks. Köhn (2015) gives similar
suggestions and also recommends the use of su-
pervised methods for evaluation. Lai et al. (2015)
evaluate embeddings in different tasks with differ-
ent setups and show the contradictory results of
embedding models on different tasks. Idiosyn-

crasies of different downstream tasks can affect
extrinsic evaluations and result in contradictions.

3 Criteria for word representations

Each word is a combination of different proper-
ties. Depending on the language, these properties
include lexical, syntactic, semantic, world knowl-
edge and other features. We call these properties
facets. The ultimate goal is to learn representa-
tions for words that accurately and consistently
contain these facets. Take the facet gender (GEN)
as an example. We call a representation 100% ac-
curate for GEN if information it contains about
GEN is always accurate; we call the representation
100% consistent for GEN if the representation of
every word that has a GEN facet contains this in-
formation.

We now introduce four important criteria that a
representation must satisfy to represent facets ac-
curately and consistently. These criteria are ap-
plied across different problems that NLP applica-
tions face in the effective use of embeddings.

Nonconflation. A word embedding must keep
the evidence from different local contexts sepa-
rate – “do not conflate” – because each context
can infer specific facets of the word. Embeddings
for different word forms with the same stem, like
plural and singular forms or different verb tenses,
are examples vulnerable to conflation because they
occur in similar contexts.

Robustness against sparseness. One aspect of
natural language that poses great difficulty for sta-
tistical modeling is sparseness. Rare words are
common in natural language and embedding mod-
els must learn useful representations based on a
small number of contexts.

Robustness against ambiguity. Another cen-
tral problem when processing words in NLP is
lexical ambiguity (Cruse, 1986; Zhong and Ng,
2010). Polysemy and homonymy of words can
make it difficult for a statistical approach to gen-
eralize and infer well. Embeddings should fully
represent all senses of an ambiguous word. This
criterion becomes more difficult to satisfy as dis-
tributions of senses become more skewed, but a
robust model must be able to overcome this.

Accurate and consistent representation of
multifacetedness. This criterion addresses set-
tings with large numbers of facets. It is based
on the following linguistic phenomenon, a phe-
nomenon that occurs frequently crosslinguistically

53

(Comrie, 1989). (i) Words have a large number
of facets, including phonetic, morphological, syn-
tactic, semantic and topical properties. (ii) Each
facet by itself constitutes a small part of the over-
all information that a representation should cap-
ture about a word.

4 Experimental setup and results

We now design experiments to directly evaluate
embeddings on the four criteria. We proceed as
follows. First, we design a probabilistic context
free grammar (PCFG) that generates a corpus that
is a manifestation of the underlying phenomenon.
Then we train our embedding models on the cor-
pus. The embeddings obtained are then evaluated
in a classification setting, in which we apply a lin-
ear SVM (Fan et al., 2008) to classify embeddings.
Finally, we compare the classification results for
different embedding models and analyze and sum-
marize them.

Selecting embedding models. Since this paper
is about developing a new evaluation methodol-
ogy, the choice of models is not important as long
as the models can serve to show that the proposed
methodology reveals interesting differences with
respect to the criteria.

On the highest level, we can distinguish two
types of distributional representations. Count
vectors (Sahlgren, 2006; Baroni and Lenci,
2010; Turney and Pantel, 2010) live in a high-
dimensional vector space in which each dimen-
sion roughly corresponds to a (weighted) count
of cooccurrence in a large corpus. Learned vec-
tors are learned from large corpora using machine
learning methods: unsupervised methods such as
LSI (e.g., Deerwester et al. (1990), Levy and
Goldberg (2014b)) and supervised methods such
as neural networks (e.g., Mikolov et al. (2013))
and regression (e.g., Pennington et al. (2014)). Be-
cause of the recent popularity of learning-based
methods, we consider one count-based and five
learning-based distributional representation mod-
els.

The learning-based models are: (i) vLBL
(henceforth: LBL) (vectorized log-bilinear lan-
guage model) (Mnih and Kavukcuoglu, 2013),
(ii) SkipGram (henceforth: SKIP) (skipgram bag-
of-word model), (iii) CBOW (continuous bag-of-
word model (Mikolov et al., 2013), (iv) Struc-
tured SkipGram (henceforth SSKIP), (Ling et al.,
2015) and CWindow (henceforth CWIN) (contin-

1 P (aV b|S) = 1/4
2 P (bV a|S) = 1/4
3 P (aWa|S) = 1/8
4 P (aWb|S) = 1/8
5 P (bWa|S) = 1/8
6 P (bWb|S) = 1/8
7 P (vi|V) = 1/5 0 ≤ i ≤ 4
8 P (wi|W) = 1/5 0 ≤ i ≤ 4

Figure 1: Global conflation grammar. Words vi
occur in a subset of the contexts of words wi, but
the global count vector signatures are the same.

uous window model) (Ling et al., 2015). These
models learn word embeddings for input and tar-
get spaces using neural network models.

For a given context, represented by the input
space representations of the left and right neigh-
bors ~vi−1 and ~vi+1, LBL, CBOW and CWIN pre-
dict the target space ~vi by combining the contexts.
LBL combines ~vi−1 and ~vi+1 linearly with posi-
tion dependent weights and CBOW (resp. CWIN)
combines them by adding (resp. concatenation).
SKIP and SSKIP predict the context words vi−1
or vi+1 given the input space ~vi. For SSKIP, con-
text words are in different spaces depending on
their position to the input word. In summary,
CBOW and SKIP are learning embeddings using
bag-of-word (BoW) models, but the other three,
CWIN, SSKIP and LBL, are using position depen-
dent models. We use word2vec1 for SKIP and
CBOW, wang2vec2 for SSKIP and CWIN, and
Lai et al. (2015)’s implementation3 for LBL.

The count-based model is position-sensitive
PPMI, Levy and Goldberg (2014a)’s explicit vec-
tor space representation model.4 For a vocabulary
of size V , the representation ~w of w is a vector
of size 4V , consisting of four parts corresponding
to the relative positions r ∈ {−2,−1, 1, 2} with
respect to occurrences of w in the corpus. The
entry for dimension word v in the part of ~w cor-
responding to relative position r is the PPMI (pos-
itive pointwise mutual information) weight of w
and v for that relative position. The four parts of
the vector are length normalized. In this paper, we
use only two relative positions: r ∈ {−1, 1}, so
each ~w has two parts, corresponding to immediate
left and right neighbors.

1code.google.com/archive/p/word2vec
2github.com/wlin12/wang2vec
3github.com/licstar/compare
4bitbucket.org/omerlevy/hyperwords

54

4.1 Nonconflation

Grammar. The PCFG grammar shown in Fig-
ure 1 generates vi words that occur in two types
of contexts: a-b (line 1) and b-a (line 2); and wi
words that also occur in these two contexts (lines
4 and 5), but in addition occur in a-a (line 3) and
b-b (line 6) contexts. As a result, the set of con-
texts in which vi and wi occur is different, but if
we simply count the number of occurrences in the
contexts, then vi and wi cannot be distinguished.

Dataset. We generated a corpus of 100,000 sen-
tences. Words that can occur in a-a and b-b con-
texts constitute the positive class, all other words
the negative class. The words v3, v4, w3, w4 were
assigned to the test set, all other words to the train-
ing set.

Results. We learn representations of words by
our six models and train one SVM per model; it
takes a word representation as input and outputs
+1 (word can occur in a-a/b-b) or -1 (it cannot).
The SVMs trained on PPMI and CBOW repre-
sentations assigned all four test set words to the
negative class; in particular, w3 and w4 were in-
correctly classified. Thus, the accuracy of clas-
sification for these models (50%) was not better
than random. The SVMs trained on LBL, SSKIP,
SSKIP and CWIN representations assigned all
four test set words to the correct class: v3 and v4
were assigned to the negative class and w3 and w4

were assigned to the positive class.
Discussion. The property of embedding mod-

els that is relevant here is that PPMI is an aggre-
gation model, which means it calculates aggregate
statistics for each word and then computes the fi-
nal word embedding from these aggregate statis-
tics. In contrast, all our learning-based models are
iterative models: they iterate over the corpus and
each local context of a word is used as a training
instance for learning its embedding.

For iterative models, it is common to use com-
position of words in the context, as in LBL,
CBOW and CWIN. Non-compositional iterative
models like SKIP and SSKIP are also popular.
Aggregation models can also use composite fea-
tures from context words, but these features are
too sparse to be useful. The reason that the model
of Agirre et al. (2009) is rarely used is precisely its
inability to deal with sparseness. All widely used
distributional models employ individual word oc-
currences as basic features.

The bad PPMI results are explained by the fact

1 P (AV B|S) = 1/2
2 P (CWD|S) = 1/2
3 P (ai|A) = 1/10 0 ≤ i ≤ 9
4 P (bi|B) = 1/10 0 ≤ i ≤ 9
5 P (ci|C) = 1/10 0 ≤ i ≤ 9
6 P (di|D) = 1/10 0 ≤ i ≤ 9
7 P (vi|V) = 1/10 0 ≤ i ≤ 9
8 P (wi|W) = 1/10 0 ≤ i ≤ 9

9 L′ = L(S)
10 ∪ {aiuibi|0 ≤ i ≤ 9}
11 ∪ {cixidi|0 ≤ i ≤ 9}

Figure 2: In language L′, frequent vi and rare ui
occur in a-b contexts; frequent wi and rare xi oc-
cur in c-d contexts. Word representations should
encode possible contexts (a-b vs. c-d) for both fre-
quent and rare words.

that it is an aggregation model: the PPMI model
cannot distinguish two words with the same global
statistics – as is the case for, say, v3 and w3. The
bad result of CBOW is probably connected to its
weak (addition) composition of context, although
it is an iterative compositional model. Simple rep-
resentation of context words with iterative updat-
ing (through backpropagation in each training in-
stance), can influence the embeddings in a way
that SKIP and SSKIP get good results, although
they are non-compositional.

As an example of conflation occurring in the
English Wikipedia, consider this simple example.
We replace all single digits by “7” in tokenization.
We learn PPMI embeddings for the tokens and see
that among the one hundred nearest neighbors of
“7” are the days of the week, e.g., “Friday”. As an
example of a conflated feature consider the word
“falls” occurring immediately to the right of the
target word. The weekdays as well as single dig-
its often have the immediate right neighbor “falls”
in contexts like “Friday falls on a public holiday”
and “2 out of 3 falls match” – tokenized as “7 out
of 7 falls match” – in World Wrestling Entertain-
ment (WWE). The left contexts of “Friday” and
“7” are different in these contexts, but the PPMI
model does not record this information in a way
that would make the link to “falls” clear.

4.2 Robustness against sparseness

Grammar. The grammar shown in Figure 2 gen-
erates frequent vi and rare ui in a-b contexts (lines
1 and 9); and frequent wi and rare xi in c-d con-
texts (lines 2 and 10). The language generated by
the PCFG on lines 1–8 is merged on lines 9–11
with the ten contexts a0u0b0 . . . a9u9b9 (line 9)

55

and the ten contexts c0x0d0 . . . c9x9d9 (line 10);
that is, each of the ui and xi occurs exactly once
in the merged language L′, thus modeling the phe-
nomenon of sparseness.

Dataset. We generated a corpus of 100,000 sen-
tences using the PCFG (lines 1–8) and added the
20 rare sentences (lines 9–11). We label all words
that can occur in c-d contexts as positive and all
other words as negative. The singleton words ui
and xi were assigned to the test set, all other words
to the training set.

Results. After learning embeddings with differ-
ent models, the SVM trained on PPMI representa-
tions assigned all twenty test words to the negative
class. This is the correct decision for the ten ui
(since they cannot occur in a c-d context), but the
incorrect decision for the xi (since they can occur
in a c-d context). Thus, the accuracy of classifica-
tion was 50% and not better than random. The
SVMs trained on learning-based representations
classified all twenty test words correctly.

Discussion. Representations of rare words in
the PPMI model are sparse. The PPMI represen-
tations of the ui and xi only contain two nonzero
entries, one entry for an ai or ci (left context) and
one entry for a bi or di (right context). Given this
sparseness, it is not surprising that representations
are not a good basis for generalization and PPMI
accuracy is random.

In contrast, learning-based models learn that the
ai, bi, ci and di form four different distributional
classes. The final embeddings of the ai after learn-
ing is completed are all close to each other and
the same is true for the other three classes. Once
the similarity of two words in the same distribu-
tional class (say, the similarity of a5 and a7) has
been learned, the contexts for the ui (resp. xi) look
essentially the same to embedding models as the
contexts of the vi (resp.wi). Thus, the embeddings
learned for the ui will be similar to those learned
for the vi. This explains why learning-based repre-
sentations achieve perfect classification accuracy.

This sparseness experiment highlights an im-
portant difference between count vectors and
learned vectors. Count vector models are less
robust in the face of sparseness and noise be-
cause they base their representations on individ-
ual contexts; the overall corpus distribution is
only weakly taken into account, by way of PPMI
weighting. In contrast, learned vector models
make much better use of the overall corpus distri-

1 P (AV1B|S) =10/20
2 P (CW1D|S)=9/20
3 P (CW2D|S)=β·1/20
4 P (AW2B|S) =(1− β)·1/20
5 P (ai|A) =1/10 0 ≤ i ≤ 9
6 P (bi|B) =1/10 0 ≤ i ≤ 9
7 P (ci|C) =1/10 0 ≤ i ≤ 9
8 P (di|D) =1/10 0 ≤ i ≤ 9
9 P (vi|V1) =1/50 0 ≤ i ≤ 49

10 P (wi|W1) =1/45 5 ≤ i ≤ 49
11 P (wi|W2) =1/5 0 ≤ i ≤ 4

Figure 3: Ambiguity grammar. vi and w5 . . . w49

occur in a-b and c-d contexts only, respectively.
w0 . . . w4 are ambiguous and occur in both con-
texts.

bution and they can leverage second-order effects
for learning improved representations. In our ex-
ample, the second order effect is that the model
first learns representations for the ai, bi, ci and di
and then uses these as a basis for inferring the sim-
ilarity of ui to vi and of xi to wi.

4.3 Robustness against ambiguity

Grammar. The grammar in Figure 3 generates
two types of contexts that we interpret as two dif-
ferent meanings: a-b contexts (lines 1,4) and c-d
contexts (lines 2, 3). vi occur only in a-b contexts
(line 1), w5 . . . w49 occur only in c-d contexts (line
2); thus, they are unambiguous. w0 . . . w4 are am-
biguous and occur with probability β in c-d con-
texts (line 3) and with probability (1 − β) in a-b
contexts (lines 3, 4). The parameter β controls the
skewedness of the sense distribution; e.g., the two
senses are equiprobable for β = 0.5 and the sec-
ond sense (line 4) is three times as probable as the
first sense (line 3) for β = 0.25.

Dataset. The grammar specified in Figure 3
was used to generate a training corpus of 100,000
sentences. Label criterion: A word is labeled posi-
tive if it can occur in a c-d context, as negative oth-
erwise. The test set consists of the five ambiguous
words w0 . . . w4. All other words are assigned to
the training set.

Linear SVMs were trained for the binary clas-
sification task on the train set. 50 trials of this
experiment were run for each of eleven values of
β: β = 2−α where α ∈ {1.0, 1.1, 1.2, . . . , 2.0}.
Thus, for the smallest value of α, α = 1.0, the two
senses have the same frequency; for the largest
value of α, α = 2.0, the dominant sense is three
times as frequent as the less frequent sense.

Results. Figure 4 shows accuracy of the classi-

56

1.0 1.2 1.4 1.6 1.8 2.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

alpha

ac
cu

ra
cy

pmi

lbl

cbow

skip

cwin

sskip

Figure 4: SVM classification results for the am-
biguity dataset. X-axis: α = − log2 β. Y-axis:
classification accuracy:

fication on the test set: the proportion of correctly
classified words out of a total of 250 (five words
each in 50 trials).

All models perform well for balanced sense fre-
quencies; e.g., for α = 1.0, β = 0.5, the SVMs
were all close to 100% accurate in predicting that
the wi can occur in a c-d context. PPMI accuracy
falls steeply when α is increased from 1.4 to 1.5. It
has a 100% error rate for α ≥ 1.5. Learning-based
models perform better in the order CBOW (least
robust), LBL, SSKIP, SKIP, CWIN (most robust).
Even for α = 2.0, CWIN and SKIP are still close
to 100% accurate.

Discussion. The evaluation criterion we have
used here is a classification task. The classifier at-
tempts to answer a question that may occur in an
application – can this word be used in this con-
text? Thus, the evaluation criterion is: does the
word representation contain a specific type of in-
formation that is needed for the application.

Another approach to ambiguity is to compute
multiple representations for a word, one for each
sense. We generally do not yet know what the
sense of a word is when we want to use its
word representation, so data-driven approaches
like clustering have been used to create represen-
tations for different usage clusters of words that
may capture some of its senses. For example,
Reisinger and Mooney (2010) and Huang et al.
(2012) cluster the contexts of each word and then
learn a different representation for each cluster.
The main motivation for this approach is the as-
sumption that single-word distributional represen-
tations cannot represent all senses of a word well
(Huang et al., 2012). However, Li and Jurafsky
(2015) show that simply increasing the dimension-

1 P (NFn|S) =1/4
2 P (AFa|S) =1/4
3 P (NMn|S) =1/4
4 P (AMf |S) =1/4
5 P (ni|N) =1/5 0 ≤ i ≤ 4
6 P (ai|A) =1/5 0 ≤ i ≤ 4

7 P (xnf
i U

nf
i |Fn) =1/5 0 ≤ i ≤ 4

8 P (f |Unf
i) =1/2

9 P (µ(Unf
i)|Unf

i) =1/2
10 P (xaf

i U
af
i |Fa) =1/5 0 ≤ i ≤ 4

11 P (f |U af
i) =1/2

12 P (µ(U af
i)|U af

i) =1/2
13 P (xnm

i Unm
i |Mn) =1/5 0 ≤ i ≤ 4

14 P (m|Unm
i) =1/2

15 P (µ(Unm
i)|Unm

i)=1/2
16 P (xam

i U am
i |Mf) =1/5 0 ≤ i ≤ 4

17 P (m|U am
i) =1/2

18 P (µ(U am
i)|U am

i) =1/2

Figure 5: This grammar generates nouns (xn.
i) and

adjectives (xa.
i) with masculine (x.m

i) and feminine
(x.f
i) gender as well as paradigm features ui. µ

maps each U to one of {u0 . . . u4}. µ is randomly
initialized and then kept fixed.

ality of single-representation gets comparable re-
sults to using multiple-representation. Our results
confirm that a single embedding can be robust
against ambiguity, but also show the main chal-
lenge: skewness of sense distribution.

4.4 Accurate and consistent representation of
multifacetedness

Grammar. The grammar shown in Figure 5 mod-
els two syntactic categories, nouns and adjectives,
whose left context is highly predictable: it is one
of five left context words ni (resp. ai) for nouns,
see lines 1, 3, 5 (resp. for adjectives, see lines 2, 4,
6). There are two grammatical genders: feminine
(corresponding to the two symbols Fn and Fa)
and masculine (corresponding to the two symbols
Mn and Ma). The four combinations of syntac-
tic category and gender are equally probable (lines
1–4). In addition to gender, nouns and adjec-
tives are distinguished with respect to morpholog-
ical paradigm. Line 7 generates one of five fem-
inine nouns (xnf

i) and the corresponding paradigm
markerU nf

i . A noun has two equally probable right
contexts: a context indicating its gender (line 8)
and a context indicating its paradigm (line 9). µ
is a function that maps each U to one of five mor-
phological paradigms {u0 . . . u4}. µ is randomly
initialized before a corpus is generated and kept
fixed.

The function µ models the assignment of

57

paradigms to nouns and adjectives. Nouns
and adjectives can have different (or the same)
paradigms, but for a given noun or adjective the
paradigm is fixed and does not change. Lines 7–
9 generate gender and paradigm markers for fem-
inine nouns, for which we use the symbols xnf

i .
Lines 10–18 cover the three other cases: mas-
culine nouns (xnm

i), feminine adjectives (xaf
i) and

masculine adjectives (xam
i).

Dataset. We perform 10 trials. In each trial,
µ is initialized randomly and a corpus of 100,000
sentences is generated. The train set consists of
the feminine nouns (xnf

i , line 7) and the masculine
nouns (xnm

i , line 13). The test set consists of the
feminine (xaf

i) and masculine (xam
i) adjectives.

Results. Embeddings have been learned, SVMs
are trained on the binary classification task femi-
nine vs. masculine and evaluated on test. There
was not a single error: accuracy of classifications
is 100% for all embedding models.

Discussion. The facet gender is indicated di-
rectly by the distribution and easy to learn. For
a noun or adjective x, we simply have to check
whether f or m occurs to its right anywhere in the
corpus. PPMI stores this information in two di-
mensions of the vectors and the SVM learns this
fact perfectly. The encoding of “f or m occurs to
the right” is less direct in the learning-based rep-
resentation of x, but the experiment demonstrates
that they also reliably encode it and the SVM reli-
ably picks it up.

It would be possible to encode the facet in just
one bit in a manually designed representation.
While all representations are less compact than a
one-bit representation – PPMI uses two real di-
mensions, learning-based models use an activation
pattern over several dimensions – it is still true that
most of the capacity of the embeddings is used for
encoding facets other than gender: syntactic cat-
egories and paradigms. Note that there are five
different instances each of feminine/masculine ad-
jectives, feminine/masculine nouns and ui words,
but only two gender indicators: f and m. This
is a typical scenario across languages: words are
distinguished on a large number of morphological,
grammatical, semantic and other dimensions and
each of these dimensions corresponds to a small
fraction of the overall knowledge we have about a
given word.

Point-based tests do not directly evaluate spe-
cific facets of words. In similarity datasets,

there is no individual test on facets – only full-
space similarity is considered. There are test
cases in analogy that hypothetically evaluate spe-
cific facets like gender of words, as in king-
man+woman=queen. However, it does not con-
sider the impact of other facets and assumes the
only difference of “king” and “queen” is gen-
der. A clear example that words usually differ on
many facets, not just one, is the analogy: Lon-
don:England ∼ Ankara:Turkey. political-capital-
of applies to both, cultural-capital-of only to Lon-
don:England since Istanbul is the cultural capital
of Turkey.

To make our argument more clear, we de-
signed an additional experiment that tries to eval-
uate GEN in our dataset based on similarity and
analogy methods. In the similarity evaluation,
we search for the nearest neighbor of each word
and accuracy is the proportion of nearest neigh-
bors that have the same gender as the search
word. In the analogy evaluation, we randomly se-
lect triples of the form<xc1g1i ,xc1g2j ,xc2g2k > where
(c1, c2) ∈ {(noun, adjective), (adjective, noun)}
and (g1, g2) ∈ {(masculine, feminine), (feminine,
masculine) }. We then compute ~s = ~xc1g1i −
~xc1g2j + ~xc2g2k and identify the word whose vec-
tor is closest to ~s where the three vectors ~xc1g1i ,
~xc1g2j , ~xc2g2k are excluded. If the nearest neighbor
of ~s is of type ~xc2g1l , then the search is successful;
e.g., for ~s = ~xnf

i − ~xnm
j + ~xam

k , the search is suc-
cessful if the nearest neighbor is feminine. We did
this evaluation on the same test set for PPMI and
LBL embedding models. Error rates were 29% for
PPMI and 25% for LBL (similarity) and 16% for
PPMI and 14% for LBL (analogy). This high er-
ror, compared to 0% error for SVM classification,
indicates it is not possible to determine the pres-
ence of a low entropy facet accurately and consis-
tently when full-space similarity and analogy are
used as test criteria.

5 Analysis

In this section, we first summarize and analyze the
lessons we learned through experiments in Sec-
tion 4. After that, we show how these lessons are
supported by a real natural-language corpus.

5.1 Learned lessons

(i) Two words with clearly different context dis-
tributions should receive different representations.
Aggregation models fail to do so by calculating

58

all entities head entities tail entities
MLP 1NN MLP 1NN MLP 1NN

PPMI 61.6 44.0 69.2 63.8 43.0 28.5
LBL 63.5 51.7 72.7 66.4 44.1 32.8

CBOW 63.0 53.5 71.7 69.4 39.1 29.9
CWIN 66.1 53.0 73.5 68.6 46.8 31.4
SKIP 64.5 57.1 69.9 71.5 49.8 34.0

SSKIP 66.2 52.8 73.9 68.5 45.5 31.4

Table 1: Entity typing results using embeddings
learned with different models.

global statistics.
(ii) Embedding learning can have different ef-

fectiveness for sparse vs. non-sparse events. Thus,
models of representations should be evaluated
with respect to their ability to deal with sparse-
ness; evaluation data sets should include rare as
well as frequent words.

(iii) Our results in Section 4.3 suggest that
single-representation approaches can indeed rep-
resent different senses of a word. We did a classi-
fication task that roughly corresponds to the ques-
tion: does this word have a particular meaning?
A representation can fail on similarity judgement
computations because less frequent senses occupy
a small part of the capacity of the representa-
tion and therefore have little impact on full-space
similarity values. Such a failure does not neces-
sarily mean that a particular sense is not present
in the representation and it does not necessarily
mean that single-representation approaches per-
form poor on real-world tasks. However, we saw
that even though single-representations do well on
balanced senses, they can pose a challenge for am-
biguous words with skewed senses.

(iv) Lexical information is complex and multi-
faceted. In point-based tests, all dimensions are
considered together and their ability to evaluate
specific facets or properties of a word is limited.
The full-space similarity of a word may be high-
est to a word that has a different value on a low-
entropy facet. Any good or bad result on these
tasks is not sufficient to conclude that the repre-
sentation is weak. The valid criterion of quality is
whether information about the facet is consistently
and accurately stored.

5.2 Extrinsic evaluation: entity typing

To support the case for sub-space evaluation and
also to introduce a new extrinsic task that uses the
embeddings directly in supervised classification,
we address a fine-grained entity typing task.

Learning taxonomic properties or types of
words has been used as an evaluation method
for word embeddings (Rubinstein et al., 2015).
Since available word typing datasets are quite
small (cf. Baroni et al. (2014), Rubinstein et al.
(2015)), entity typing can be a promising alter-
native, which enables to do supervised classifi-
cation instead of unsupervised clustering. Enti-
ties, like other words, have many properties and
therefore belong to several semantic types, e.g.,
“Barack Obama” is a POLITICIAN, AUTHOR and
AWARD WINNER. We perform entity typing by
learning types of knowledge base entities from
their embeddings; this requires looking at sub-
spaces because each entity can belong to multiple
types.

We adopt the setup of Yaghoobzadeh and
Schütze (2015) who present a dataset of Freebase
entities;5 there are 102 types (e.g., POLITICIAN

FOOD, LOCATION-CEMETERY) and most entities
have several. More specifically, we use a multi-
layer-perceptron (MLP) with one hidden layer to
classify entity embeddings to 102 FIGER types.
To show the limit of point-based evaluation, we
also experimentally test an entity typing model
based on cosine similarity of entity embeddings.
To each test entity, we assign all types of the entity
closest to it in the train set. We call this approach
1NN (kNN for k = 1).6

We take part of ClueWeb, which is annotated
with Freebase entities using automatic annota-
tion of FACC17 (Gabrilovich et al., 2013), as
our corpus. We then replace all mentions of
entities with their Freebase identifier and learn
embeddings of words and entities in the same
space. Our corpus has around 6 million sen-
tences with at least one annotated entity. We
calculate embeddings using our different models.
Our hyperparameters: for learning-based mod-
els: dim=100, neg=10, iterations=20, window=1,
sub=10−3; for PPMI: SVD-dim=100, neg=1, win-
dow=1, cds=0.75, sub=10−3, eig=0.5. See (Levy
et al., 2015) for more information about the mean-
ing of hyperparameters.

Table 1 gives results on test for all (about 60,000
entities), head (freq > 100; about 12,200 enti-
ties) and tail (freq < 5; about 10,000 entities).
The MLP models consistently outperform 1NN on

5cistern.cis.lmu.de/figment
6We tried other values of k, but results were not better.
7lemurproject.org/clueweb12/FACC1

59

all and tail entities. This supports our hypothe-
sis that only part of the information about types
that is present in the vectors can be determined by
similarity-based methods that use the overall di-
rection of vectors, i.e., full-space similarity.

There is little correlation between results of
MLP and 1NN in all and head entities, and the
correlation between their results in tail entities is
high.8 For example, for all entities, using 1NN,
SKIP is 4.3% (4.1%) better, and using MLP is
1.7% (1.6%) worse than SSKIP (CWIN). The
good performance of SKIP on 1NN using cosine
similarity can be related to its objective function,
which maximizes the cosine similarity of cooccur-
ing token embeddings.

The important question is not similarity, but
whether the information about a specific type ex-
ists in the entity embeddings or not. Our results
confirm our previous observation that a classifica-
tion by looking at subspaces is needed to answer
this question. In contrast, based on full-space sim-
ilarity, one can infer little about the quality of em-
beddings. Based on our results, SSKIP and CWIN
embeddings contain more accurate and consistent
information because MLP classifier gives better
results for them. However, if we considered 1NN
for comparison, SKIP and CBOW would be supe-
rior.

6 Conclusion and future work

We have introduced a new way of evaluating dis-
tributional representation models. As an alterna-
tive to the common evaluation tasks, we proposed
to identify generic criteria that are important for an
embedding model to represent properties of words
accurately and consistently. We suggested four
criteria based on fundamental characteristics of
natural language and designed tests that evaluate
models on the criteria. We developed this evalua-
tion methodology using PCFG-generated corpora
and applied it on a case study to compare different
models of learning distributional representations.

While we showed important differences of the
embedding models, the goal was not to do a com-
prehensive comparison of them. We proposed an
innovative way of doing intrinsic evaluation of
embeddings. Our evaluation method gave direct
insight about the quality of embeddings. Addi-
tionally, while most intrinsic evaluations consider

8The spearman correlation between MLP and 1NN for
all=0.31, head=0.03, tail=0.75.

word vectors as points, we used classifiers that
identify different small subspaces of the full space.
This is an important desideratum when designing
evaluation methods because of the multifaceted-
ness of natural language words: they have a large
number of properties, each of which only occupies
a small proportion of the full-space capacity of the
embedding.

Based on this paper, there are serveral lines of
investigation we plan to conduct in the future. (i)
We will attempt to support our results on arti-
ficially generated corpora by conducting experi-
ments on real natural language data. (ii) We will
study the coverage of our four criteria in evalu-
ating word representations. (iii) We modeled the
four criteria using separate PCFGs, but they could
also be modeled by one single unified PCFG. One
question that arises is then to what extent the four
criteria are orthogonal and to what extent interde-
pendent. A single unified grammar may make it
harder to interpret the results, but may give addi-
tional and more fine-grained insights as to how the
performance of embedding models is influenced
by different fundamental properties of natural lan-
guage and their interactions.

Finally, we have made the simplifying assump-
tion in this paper that the best conceptual frame-
work for thinking about embeddings is that the
embedding space can be decomposed into sub-
spaces: either into completely orthogonal sub-
spaces or – less radically – into partially “over-
lapping” subspaces. Furthermore, we have made
the assumption that the smoothness and robustness
properties that are the main reasons why embed-
dings are used in NLP can be reduced to similar-
ities in subspaces. See Rothe et al. (2016) and
Rothe and Schütze (2016) for work that makes
similar assumptions.

The fundamental assumptions here are decom-
posability and linearity. The smoothness proper-
ties could be much more complicated. However
even if this was the case, then much of the gen-
eral framework of what we have presented in this
paper would still apply; e.g., the criterion that a
particular facet be fully and correctly represented
is as important as before. But the validity of the
assumption that embedding spaces can be decom-
posed into “linear” subspaces should be investi-
gated in the future.

Acknowledgments. This work was supported
by DFG (SCHU 2246/8-2).

60

References
Eneko Agirre, Enrique Alfonseca, Keith B. Hall, Jana

Kravalova, Marius Pasca, and Aitor Soroa. 2009.
A study on similarity and relatedness using distri-
butional and wordnet-based approaches. In Human
Language Technologies: Conference of the North
American Chapter of the Association of Computa-
tional Linguistics, Proceedings, May 31 - June 5,
2009, Boulder, Colorado, USA, pages 19–27.

Marco Baroni and Alessandro Lenci. 2010. Dis-
tributional memory: A general framework for
corpus-based semantics. Computational Linguis-
tics, 36(4):673–721.

Marco Baroni, Georgiana Dinu, and Germán
Kruszewski. 2014. Don’t count, predict! A
systematic comparison of context-counting vs.
context-predicting semantic vectors. In Proceedings
of the 52nd Annual Meeting of the Association
for Computational Linguistics, ACL 2014, pages
238–247.

Bernard Comrie. 1989. Language universals and lin-
guistic typology: Syntax and morphology. Black-
well, 2nd edition.

D. A. Cruse. 1986. Lexical Semantics. Cambridge
University Press, Cambridge, MA.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-
Rui Wang, and Chih-Jen Lin. 2008. Liblinear: A
library for large linear classification. Journal of Ma-
chine Learning Research, 9:1871–1874.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. Facc1: Freebase annotation
of clueweb corpora.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In The 50th Annual Meeting of the Asso-
ciation for Computational Linguistics, Proceedings
of the Conference, July 8-14, 2012, Jeju Island, Ko-
rea - Volume 1: Long Papers, pages 873–882.

Arne Köhn. 2015. What?s in an embedding? ana-
lyzing word embeddings through multilingual eval-
uation. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 2067–2073, Lisbon, Portugal, September.

Siwei Lai, Kang Liu, Liheng Xu, and Jun Zhao. 2015.
How to generate a good word embedding? CoRR,
abs/1507.05523.

Omer Levy and Yoav Goldberg. 2014a. Linguistic reg-
ularities in sparse and explicit word representations.
In CoNLL.

Omer Levy and Yoav Goldberg. 2014b. Neural word
embedding as implicit matrix factorization. In Ad-
vances in Neural Information Processing Systems
27: Annual Conference on Neural Information Pro-
cessing Systems 2014, December 8-13 2014, Mon-
treal, Quebec, Canada, pages 2177–2185.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. TACL, 3:211–225.

Jiwei Li and Dan Jurafsky. 2015. Do multi-sense em-
beddings improve natural language understanding?
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1722–1732, Lisbon, Portugal, September.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In NAACL HLT
2015, The 2015 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Denver,
Colorado, USA, May 31 - June 5, 2015, pages 1299–
1304.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. In Proceedings of ICLR.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In NIPS, pages 2265–2273.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Joseph Reisinger and Raymond J Mooney. 2010.
Multi-prototype vector-space models of word mean-
ing. In Human Language Technologies: The 2010
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 109–117. Association for Computational Lin-
guistics.

Sascha Rothe and Hinrich Schütze. 2016. Word
embedding calculus in meaningful ultradense sub-
spaces. In ACL.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze.
2016. Ultradense embeddings by orthogonal trans-
formation. In NAACL.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari
Rappoport. 2015. How well do distributional mod-
els capture different types of semantic knowledge?
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing of the Asian Federation of Natural
Language Processing, ACL 2015, July 26-31, 2015,
Beijing, China, Volume 2: Short Papers, pages 726–
730.

61

Magnus Sahlgren. 2006. The Word-Space Model.
Ph.D. thesis, Stockholm University.

Tobias Schnabel, Igor Labutov, David Mimno, and
Thorsten Joachims. 2015. Evaluation methods for
unsupervised word embeddings. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 298–307, Lisbon,
Portugal, September.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guil-
laume Lample, and Chris Dyer. 2015. Evaluation of
word vector representations by subspace alignment.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2049–2054, Lisbon, Portugal, September.

Peter D. Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of seman-
tics. J. Artif. Intell. Res. (JAIR), 37:141–188.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using con-
textual information. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 715–725, Lisbon, Portugal,
September.

Zhi Zhong and Hwee Tou Ng. 2010. It makes sense:
A wide-coverage word sense disambiguation sys-
tem for free text. In ACL 2010, Proceedings of the
48th Annual Meeting of the Association for Com-
putational Linguistics, July 11-16, 2010, Uppsala,
Sweden, System Demonstrations, pages 78–83.

62

Chapter 4

Multi-level Representations for
Fine-Grained Typing of Knowledge
Base Entities

63

Multi-level Representations
for Fine-Grained Typing of Knowledge Base Entities

Yadollah Yaghoobzadeh and Hinrich Schütze
Center for Information and Language Processing

LMU Munich, Germany
yadollah@cis.lmu.de

Abstract

Entities are essential elements of natu-
ral language. Learning rich representa-
tions of entities is therefore important. In
this paper, we present methods for learn-
ing multi-level representations of entities
on three complementary levels: charac-
ter (character patterns in entity names ex-
tracted, e.g., by neural networks), word
(embeddings of words in entity names)
and entity (entity embeddings). We in-
vestigate state-of-the-art learning methods
on each level and find large differences,
e.g., for deep learning models, traditional
ngram features and the subword model
of fasttext (Bojanowski et al., 2016)
on the character level; for word2vec
(Mikolov et al., 2013) on the word level;
and for the order-aware model wang2vec
(Ling et al., 2015a) on the entity level.

We confirm experimentally that each level
of representation contributes complemen-
tary information and a joint representation
of all three levels improves the existing
embedding based baseline for fine-grained
entity typing by a large margin. Addi-
tionally, we show that adding information
from entity descriptions further improves
multi-level representations of entities.

1 Introduction

Knowledge about entities is essential for under-
standing human language. This knowledge can
be attributional (e.g., canFly, isEdible), type-based
(e.g., isFood, isPolitician, isDisease) or relational
(e.g, marriedTo, bornIn). Knowledge bases (KBs)
are designed to store this information in a struc-
tured way, so that it can be queried easily. Exam-
ples of such KBs are Freebase (Bollacker et al.,

2008), Wikipedia, Google knowledge graph and
YAGO (Suchanek et al., 2007). For automatic up-
dating and completing the entity knowledge, text
resources such as news, user forums, textbooks or
any other data in the form of text are important
sources. Therefore, information extraction meth-
ods have been introduced to extract knowledge
about entities from text. In this paper, we focus on
the extraction of entity types, i.e., assigning types
to – or typing – entities. Type information can help
extraction of relations by applying constraints on
relation arguments.

We address a problem setting in which the fol-
lowing are given: a KB with a set of entities
E, a set of types T and a membership function
m : E × T 7→ {0, 1} such that m(e, t) = 1 iff
entity e has type t; and a large corpus C in which
mentions of E are annotated. In this setting, we
address the task of fine-grained entity typing: we
want to learn a probability function S(e, t) for a
pair of entity e and type t and based on S(e, t) in-
fer whether m(e, t) = 1 holds, i.e., whether entity
e is a member of type t.

We address this problem by learning a multi-
level representation for an entity that contains the
information necessary for typing it. One important
source is the contexts in which the entity is used.
We can take the standard method of learning em-
beddings for words and extend it to learning em-
beddings for entities. This requires the use of an
entity linker and can be implemented by replac-
ing all occurrences of the entity by a unique to-
ken. We refer to entity embeddings as entity-level
representations. Previously, entity embeddings
have been learned mostly using bag-of-word mod-
els like word2vec (e.g., by Wang et al. (2014)
and Yaghoobzadeh and Schütze (2015)). We show
below that order information is critical for high-
quality entity embeddings.

Entity-level representations are often uninfor-

64

mative for rare entities, so that using only entity
embeddings is likely to produce poor results. In
this paper, we use entity names as a source of in-
formation that is complementary to entity embed-
dings. We define an entity name as a noun phrase
that is used to refer to an entity. We learn character
and word level representations of entity names.

For the character-level representation, we adopt
different character-level neural network architec-
tures. Our intuition is that there is sub/cross word
information, e.g., orthographic patterns, that is
helpful to get better entity representations, espe-
cially for rare entities. A simple example is that
a three-token sequence containing an initial like
“P.” surrounded by two capitalized words (“Rolph
P. Kugl”) is likely to refer to a person.

We compute the word-level representation as
the sum of the embeddings of the words that make
up the entity name. The sum of the embeddings
accumulates evidence for a type/property over all
constituents, e.g., a name containing “stadium”,
“lake” or “cemetery” is likely to refer to a location.
In this paper, we compute our word level repre-
sentation with two types of word embeddings: (i)
using only contextual information of words in the
corpus, e.g., by word2vec (Mikolov et al., 2013)
and (ii) using subword as well as contextual in-
formation of words, e.g., by Facebook’s recently
released fasttext (Bojanowski et al., 2016).

In this paper, we integrate character-level and
word-level with entity-level representations to im-
prove the results of previous work on fine-grained
typing of KB entities. We also show how descrip-
tions of entities in a KB can be a complementary
source of information to our multi-level represen-
tation to improve the results of entity typing, espe-
cially for rare entities.

Our main contributions in this paper are:

• We propose new methods for learning en-
tity representations on three levels: character-
level, word-level and entity-level.

• We show that these levels are complementary
and a joint model that uses all three levels im-
proves the state of the art on the task of fine-
grained entity typing by a large margin.

• We experimentally show that an order depen-
dent embedding is more informative than its
bag-of-word counterpart for entity represen-
tation.

We release our dataset and source codes:
cistern.cis.lmu.de/figment2/.

2 Related Work

Entity representation. Two main sources of in-
formation used for learning entity representation
are: (i) links and descriptions in KB, (ii) name and
contexts in corpora. We focus on name and con-
texts in corpora, but we also include (Wikipedia)
descriptions. We represent entities on three levels:
entity, word and character. Our entity-level repre-
sentation is similar to work on relation extraction
(Wang et al., 2014; Wang and Li, 2016), entity
linking (Yamada et al., 2016; Fang et al., 2016),
and entity typing (Yaghoobzadeh and Schütze,
2015). Our word-level representation with distri-
butional word embeddings is similarly used to rep-
resent entities for entity linking (Sun et al., 2015)
and relation extraction (Socher et al., 2013; Wang
et al., 2014). Novel entity representation methods
we introduce in this paper are representation based
on fasttext (Bojanowski et al., 2016) sub-
word embeddings, several character-level repre-
sentations, “order-aware” entity-level embeddings
and the combination of several different represen-
tations into one multi-level representation.

Character-subword level neural networks.
Character-level convolutional neural networks
(CNNs) are applied by dos Santos and Zadrozny
(2014) to part of speech (POS) tagging, by dos
Santos and Guimarães (2015), Ma and Hovy
(2016), and Chiu and Nichols (2016) to named
entity recognition (NER), by Zhang et al. (2015)
and Zhang and LeCun (2015) to sentiment anal-
ysis and text categorization, and by Kim et al.
(2016) to language modeling (LM). Character-
level LSTM is applied by Ling et al. (2015b) to
LM and POS tagging, by Lample et al. (2016) to
NER, by Ballesteros et al. (2015) to parsing mor-
phologically rich languages, and by Cao and Rei
(2016) to learning word embeddings. Bojanowski
et al. (2016) learn word embeddings by repre-
senting words with the average of their character
ngrams (subwords) embeddings. Similarly, Chen
et al. (2015) extends word2vec for Chinese with
joint modeling with characters.

Fine-grained entity typing. Our task is to in-
fer fine-grained types of KB entities. KB comple-
tion is an application of this task. Yaghoobzadeh
and Schütze (2015)’s FIGMENT system addresses
this task with only contextual information; they

65

Entity Representation

Hidden Layer

Output Layer (type probabilities)

Figure 1: Schematic diagram of our architecture
for entity classification. “Entity Representation”
(~v(e)) is the (one-level or multi-level) vector rep-
resentation of entity. Size of output layer is |T |.

do not use character-level and word-level features
of entity names. Neelakantan and Chang (2015)
and Xie et al. (2016) also address a similar task,
but they rely on entity descriptions in KBs, which
in many settings are not available. The problem
of Fine-grained mention typing (FGMT) (Yosef
et al., 2012; Ling and Weld, 2012; Yogatama et
al., 2015; Del Corro et al., 2015; Shimaoka et
al., 2016; Ren et al., 2016) is related to our task.
FGMT classifies single mentions of named enti-
ties to their context dependent types whereas we
attempt to identify all types of a KB entity from
the aggregation of all its mentions. FGMT can
still be evaluated in our task by aggregating the
mention level decisions but as we will show in our
experiments for one system, i.e., FIGER (Ling and
Weld, 2012), our entity embedding based models
are better in entity typing.

3 Fine-grained entity typing

Given (i) a KB with a set of entities E, (ii) a set of
types T , and (iii) a large corpus C in which men-
tions of E are linked, we address the task of fine-
grained entity typing (Yaghoobzadeh and Schütze,
2015): predict whether entity e is a member of
type t or not. To do so, we use a set of training
examples to learn P (t|e): the probability that en-
tity e has type t. These probabilities can be used
to assign new types to entities covered in the KB
as well as typing unknown entities.

We learn P (t|e) with a general architecture; see
Figure 1. The output layer has size |T |. Unit t of
this layer outputs the probability for type t. “En-
tity Representation” (~v(e)) is the vector represen-
tation of entity e – we will describe in detail in
the rest of this section what forms ~v(e) takes. We
model P (t|e) as a multi-label classification, and
train a multilayer perceptron (MLP) with one hid-

den layer:
[
P (t1|e) . . . P (tT |e)

]
= σ

(
Woutf

(
Win~v(e)

))

(1)
where Win ∈ Rh×d is the weight matrix from
~v(e) ∈ Rd to the hidden layer with size h. f is
the rectifier function. Wout ∈ R|T |×h is the weight
matrix from hidden layer to output layer of size
|T |. σ is the sigmoid function. Our objective is
binary cross entropy summed over types:
∑

t

−
(
mt log pt + (1−mt) log (1− pt)

)

where mt is the truth and pt the prediction.
The key difficulty when trying to compute

P (t|e) is in learning a good representation for en-
tity e. We make use of contexts and name of e to
represent its feature vector on the three levels of
entity, word and character.

3.1 Entity-level representation
Distributional representations or embeddings are
commonly used for words. The underlying hy-
pothesis is that words with similar meanings tend
to occur in similar contexts (Harris, 1954) and
therefore cooccur with similar context words. We
can extend the distributional hypothesis to enti-
ties (cf. Wang et al. (2014), Yaghoobzadeh and
Schütze (2015)): entities with similar meanings
tend to have similar contexts. Thus, we can learn
a d dimensional embedding ~v(e) of entity e from
a corpus in which all mentions of the entity have
been replaced by a special identifier. We refer to
these entity vectors as the entity level representa-
tion (ELR).

In previous work, order information of context
words (relative position of words in the contexts)
was generally ignored and objectives similar to the
SkipGram (henceforth: SKIP) model were used
to learn ~v(e). However, the bag-of-word context
is difficult to distinguish for pairs of types like
(restaurant,food) and (author,book). This suggests
that using order aware embedding models is im-
portant for entities. Therefore, we apply Ling et
al. (2015a)’s extended version of SKIP, Structured
SKIP (SSKIP). It incorporates the order of context
words into the objective. We compare it with SKIP
embeddings in our experiments.

3.2 Word-level representation
Words inside entity names are important sources
of information for typing entities. We define the

66

word-level representation (WLR) as the average of
the embeddings of the words that the entity name
contains ~v(e) = 1/n

∑n
i=1 ~v(wi) where ~v(wi) is

the embedding of the ith word of an entity name
of length n. We opt for simple averaging since
entity names often consist of a small number of
words with clear semantics. Thus, averaging is a
promising way of combining the information that
each word contributes.

The word embedding, ~w, itself can be learned
from models with different granularity levels. Em-
bedding models that consider words as atomic
units in the corpus, e.g., SKIP and SSKIP, are
word-level. On the other hand, embedding
models that represent words with their charac-
ter ngrams, e.g., fasttext (Bojanowski et al.,
2016), are subword-level. Based on this, we con-
sider and evaluate word-level WLR (WWLR)
and subword-level WLR (SWLR) in this paper.1

Lipofen

Convolution
layer

Max Pooling

Lookup table
layer

Character-level Representation

Figure 2: Example architecture for the character-
level CNN with max pooling. The input is
“Lipofen”. Character embedding size is three.
There are three filters of width 2 and four filters
of width 4.

3.3 Character-level representation
For computing the character level representation
(CLR), we design models that try to type an entity
based on the sequence of characters of its name.
Our hypothesis is that names of entities of a spe-
cific type often have similar character patterns.
Entities of type ETHNICITY often end in “ish”

1Subword models have properties of both character-level
models (subwords are character ngrams) and of word-level
models (they do not cross boundaries between words). They
probably could be put in either category, but in our context fit
the word-level category better because we see the granularity
level with respect to the entities and not words.

and “ian”, e.g., “Spanish” and “Russian”. Entities
of type MEDICINE often end in “en”: “Lipofen”,
“acetaminophen”. Also, some types tend to have
specific cross-word shapes in their entities, e.g.,
PERSON names usually consist of two words, or
MUSIC names are usually long, containing several
words.

The first layer of the character-level models is a
lookup table that maps each character to an em-
bedding of size dc. These embeddings capture
similarities between characters, e.g., similarity in
type of phoneme encoded (consonant/vowel) or
similarity in case (lower/upper). The output of
the lookup layer for an entity name is a matrix
C ∈ Rl×dc where l is the maximum length of a
name and all names are padded to length l. This
length l includes special start/end characters that
bracket the entity name.

We experiment with four architectures to pro-
duce character-level representations in this paper:
FORWARD (direct forwarding of character em-
beddings), CNNs, LSTMs and BiLSTMs. The
output of each architecture then takes the place of
the entity representation ~v(e) in Figure 1.

FORWARD simply concatenates all rows of
matrix C; thus, ~v(e) ∈ Rdc∗l.

The CNN uses k filters of different window
widths w to narrowly convolve C. For each fil-
ter H ∈ Rdc×w, the result of the convolution of H
over matrix C is feature map f ∈ Rl−w+1:
f [i] = rectifier(C[:,i:i+w−1] �H + b)

where rectifier is the activation function, b is the
bias, C[:,i:i+w−1] are the columns i to i+w− 1 of
C, 1 ≤ w ≤ 10 are the window widths we con-
sider and � is the sum of element-wise multipli-
cation. Max pooling then gives us one feature for
each filter. The concatenation of all these features
is our representation: ~v(e) ∈ Rk. An example
CNN architecture is show in Figure 2.

The input to the LSTM is the character se-
quence in matrix C, i.e., x1, . . . , xl ∈ Rdc . It
generates the state sequence h1, ..., hl+1 and the
output is the last state ~v(e) ∈ Rdh .2

The BiLSTM consists of two LSTMs, one go-
ing forward, one going backward. The first state of
the backward LSTM is initialized as hl+1, the last
state of the forward LSTM. The BiLSTM entity
representation is the concatenation of last states of
forward and backward LSTMs, i.e., ~v(e) ∈ R2∗dh .

2We use Blocks (van Merriënboer et al., 2015).

67

Character-level
Representation

Word-level
Representation

Entity-level
Representation

Entity Representation

Figure 3: Multi-level representation

3.4 Multi-level representations

Our different levels of representations can give
complementary information about entities.

WLR and CLR. Both WLR models, SWLR
and WWLR, do not have access to the cross-word
character ngrams of entity names while CLR mod-
els do. Also, CLR is task specific by training on
the entity typing dataset while WLR is generic. On
the other hand, WWLR and SWLR models have
access to information that CLR ignores: the tok-
enization of entity names into words and embed-
dings of these words. It is clear that words are par-
ticularly important character sequences since they
often correspond to linguistic units with clearly
identifiable semantics – which is not true for most
character sequences. For many entities, the words
they contain are a better basis for typing than
the character sequence. For example, even if
“nectarine” and “compote” did not occur in any
names in the training corpus, we can still learn
good word embeddings from their non-entity oc-
currences. This then allows us to correctly type the
entity “Aunt Mary’s Nectarine Compote” as FOOD

based on the sum of the word embeddings.
WLR/CLR and ELR. Representations from

entity names, i.e., WLR and CLR, by themselves
are limited because many classes of names can be
used for different types of entities; e.g., person
names do not contain hints as to whether they are
referring to a politician or athlete. In contrast, the
ELR embedding is based on an entity’s contexts,
which are often informative for each entity and
can distinguish politicians from athletes. On the
other hand, not all entities have sufficiently many
informative contexts in the corpus. For these en-
tities, their name can be a complementary source
of information and character/word level represen-
tations can increase typing accuracy.

Thus, we introduce joint models that use com-
binations of the three levels. Each multi-level
model concatenates several levels. We train the
constituent embeddings as follows. WLR and
ELR are computed as described above and are not

changed during training. CLR – produced by one
of the character-level networks described above
– is initialized randomly and then tuned during
training. Thus, it can focus on complementary in-
formation related to the task that is not already
present in other levels. The schematic diagram
of our multi-level representation is shown in Fig-
ure 3.

4 Experimental setup and results

4.1 Setup
Entity datasets and corpus. We address
the task of fine-grained entity typing and use
Yaghoobzadeh and Schütze (2015)’s FIGMENT
dataset3 for evaluation. The FIGMENT corpus
is part of a version of ClueWeb in which Free-
base entities are annotated using FACC1 (URL,
2016b; Gabrilovich et al., 2013). The FIGMENT
entity datasets contain 200,000 Freebase entities
that were mapped to 102 FIGER types (Ling and
Weld, 2012). We use the same train (50%), dev
(20%) and test (30%) partitions as Yaghoobzadeh
and Schütze (2015) and extract the names from
mentions of dataset entities in the corpus. We take
the most frequent name for dev and test entities
and three most frequent names for train (each one
tagged with entity types).

Adding parent types to refine entity dataset.
FIGMENT ignores that FIGER is a proper hierar-
chy of types; e.g., while HOSPITAL is a subtype of
BUILDING according to FIGER, there are entities
in FIGMENT that are hospitals, but not buildings.4

Therefore, we modified the FIGMENT dataset by
adding for each assigned type (e.g., HOSPITAL) its
parents (e.g., BUILDING). This makes FIGMENT
more consistent and eliminates spurious false neg-
atives (BUILDING in the example).

We now describe our baselines: (i) BOW
& NSL: hand-crafted features, (ii) FIGMENT
(Yaghoobzadeh and Schütze, 2015) and (iii)
adapted version of FIGER (Ling and Weld, 2012).

We implement the following two feature sets
from the literature as a hand-crafted baseline for
our character and word level models. (i) BOW: in-
dividual words of entity name (both as-is and low-
ercased); (ii) NSL (ngram-shape-length): shape
and length of the entity name (cf. Ling and Weld
(2012)), character n-grams, 1 ≤ n ≤ nmax, nmax =
5 (we also tried nmax = 7, but results were worse

3cistern.cis.lmu.de/figment/
4See github.com/xiaoling/figer for FIGER

68

on dev) and normalized character n-grams: lower-
cased, digits replaced by “7”, punctuation replaced
by “.”. These features are represented as a sparse
binary vector ~v(e) that is input to the architecture
in Figure 1.

FIGMENT is the model for entity typing pre-
sented by Yaghoobzadeh and Schütze (2015).
The authors only use entity-level representations
for entities trained by SkipGram, so the FIG-
MENT baseline corresponds to the entity-level re-
sult shown as ELR(SKIP) in the tables.

The third baseline is using an existing mention-
level entity typing system, FIGER (Ling and Weld,
2012). FIGER uses a wide variety of features
on different levels (including parsing-based fea-
tures) from contexts of entity mentions as well as
the mentions themselves and returns a score for
each mention-type instance in the corpus. We pro-
vide the ClueWeb/FACC1 segmentation of enti-
ties, so FIGER does not need to recognize enti-
ties.5 We use the trained model provided by the
authors and normalize FIGER scores using soft-
max to make them comparable for aggregation.
We experimented with different aggregation func-
tions (including maximum and k-largest-scores for
a type), but we use the average of scores since it
gave us the best result on dev. We call this baseline
AGG-FIGER.

Distributional embeddings. For WWLR and
ELR, we use SkipGram model in word2vec and
SSkip model in wang2vec (Ling et al., 2015a) to
learn embeddings for words, entities and types. To
obtain embeddings for all three in the same space,
we process ClueWeb/FACC1 as follows. For each
sentence s, we add three copies: s itself, a copy
of s in which each entity is replaced with its Free-
base identifier (MID) and a copy in which each
entity (not test entities though) is replaced with an
ID indicating its notable type. The resulting cor-
pus contains around 4 billion tokens and 1.5 bil-
lion types.

We run SKIP and SSkip with the same setup
(200 dimensions, 10 negative samples, window
size 5, word frequency threshold of 100)6 on this
corpus to learn embeddings for words, entities and
FIGER types. Having entities and types in the
same vector space, we can add another feature
vector ~v(e) ∈ R|T | (referred to as TC below): for

5Mention typing is separated from recognition in FIGER
model. So it can use our segmentation of entities.

6The threshold does not apply for MIDs.

each entity, we compute cosine similarity of its en-
tity vector with all type vectors.

For SWLR, we use fasttext7 to learn word
embeddings from the ClueWeb/FACC1 corpus.
We use similar settings as our WWLR SKIP and
SSkip embeddings and keep the defaults of other
hyperparameters. Since the trained model of
fasttext is applicable for new words, we ap-
ply the model to get embeddings for the filtered
rare words as well.

model hyperparameters
CLR(FF) dc = 15, hmlp = 600
CLR(LSTM) dc = 70, dh = 70, hmlp = 300
CLR(BiLSTM) dc = 50, dh = 50, hmlp = 200
CLR(CNN) dc = 10, w = [1, .., 8]

n = 100, hmlp = 800
CLR(NSL) hmlp = 800
BOW hmlp = 200
BOW+CLR(NSL) hmlp = 300
WWLR hmlp = 400
SWLR hmlp = 400
WWLR+CLR(CNN) w = [1, ..., 7]

dc = 10, n = 50, hmlp = 700
SWLR+CLR(CNN) w = [1, ..., 7]

dc = 10, n = 50, hmlp = 700
ELR(SKIP) hmlp = 400
ELR(SSKIP) hmlp = 400
ELR+CLR dc = 10, w = [1, ..., 7]

n = 100, hmlp = 700
ELR+WWLR hmlp = 600
ELR+SWLR hmlp = 600
ELR+WWLR+CLR dc = 10, w = [1, ..., 7]

n = 50, hmlp = 700
ELR+SWLR+CLR dc = 10, w = [1, ..., 7]

n = 50, hmlp = 700
ELR+WWLR+CNN+TC dc = 10, w = [1, ..., 7]

n = 50, hmlp = 900
ELR+SWLR+CNN+TC(MuLR) dc = 10, w = [1, ..., 7]

n = 50, hmlp = 900
AVG-DES hmlp = 400
MuLR+AVG-DES dc = 10, w = [1, ..., 7]

n = 50, hmlp = 1000

Table 1: Hyperparameters of different models. w
is the filter size. n is the number of feature maps
for each filter size. dc is the character embedding
size. dh is the LSTM hidden state size. hmlp is the
number of hidden units in the MLP.

Our hyperparameter values are given in Ta-
ble 1. The values are optimized on dev. We use
AdaGrad and minibatch training. For each experi-
ment, we select the best model on dev.

We use these evaluation measures: (i) accu-
racy: an entity is correct if all its types and no
incorrect types are assigned to it; (ii) micro aver-
age F1: F1 of all type-entity assignment decisions;
(iii) entity macro average F1: F1 of types assigned
to an entity, averaged over entities; (iv) type macro
average F1: F1 of entities assigned to a type, aver-
aged over types.

The assignment decision is based on thresh-

7github.com/facebookresearch/fastText

69

olding the probability function P (t|e). For each
model and type, we select the threshold that max-
imizes F1 of entities assigned to the type on dev.

4.2 Results

Table 2 gives results on the test entities for all
(about 60,000 entities), head (frequency > 100;
about 12,200) and tail (frequency < 5; about
10,000). MFT (line 1) is the most frequent type
baseline that ranks types according to their fre-
quency in the train entities. Each level of represen-
tation is separated with dashed lines, and – unless
noted otherwise – the best of each level is joined
in multi level representations.8

Character-level models are on lines 2-6. The
order of systems is: CNN > NSL > BiLSTM
> LSTM > FORWARD. The results show that
complex neural networks are more effective than
simple forwarding. BiLSTM works better than
LSTM, confirming other related work. CNNs
probably work better than LSTMs because there
are few complex non-local dependencies in the se-
quence, but many important local features. CNNs
with maxpooling can more straightforwardly cap-
ture local and position-independent features. CNN
also beats NSL baseline; a possible reason is that
CNN – an automatic method of feature learning
– is more robust than hand engineered feature
based NSL. We show more detailed results in Sec-
tion 4.3.

Word-level models are on lines 7-10. BOW
performs worse than WWLR because it cannot
deal well with sparseness. SSKIP uses word order
information in WWLR and performs better than
SKIP. SWLR uses subword information and per-
forms better than WWLR, especially for tail en-
tities. Integrating subword information improves
the quality of embeddings for rare words and mit-
igates the problem of unknown words.

Joint word-character level models are
on lines 11-13. WWLR+CLR(CNN) and
SWLR+CLR(CNN) beat the component models.
This confirms our underlying assumption in
designing the complementary multi-level models.
BOW problem with rare words does not allow
its joint model with NSL to work better than

8For accuracy measure: in the following ordered lists of
sets, A<B means that all members (row numbers in Table 2)
of A are significantly worse than all members of B: {1} <
{2}< {3, . . . , 11}< {12,13}< {14,15,16}<{17, . . . , 23}.
Test of equal proportions, α < 0.05. See Table 6 in the ap-
pendix for more details.

NSL. WWLR+CLR(CNN) works better than
BOW+CLR(NSL) by 10% micro F1, again due
to the limits of BOW compared to WWLR.
Interestingly WWLR+CLR works better than
SWLR+CLR and this suggests that WWLR is
indeed richer than SWLR when CLR mitigates its
problem with rare/unknown words

Figure 4: t-SNE result of entity-level representa-
tions

Entity-level models are on lines 14–15 and
they are better than all previous models on lines
1–13. This shows the power of entity-level embed-
dings. In Figure 4, a t-SNE (Van der Maaten and
Hinton, 2008) visualization of ELR(SKIP) embed-
dings using different colors for entity types shows
that entities of the same type are clustered to-
gether. SSKIP works marginally better than SKIP
for ELR, especially for tail entities, confirming our
hypothesis that order information is important for
a good distributional entity representation. This
is also confirming the results of Yaghoobzadeh
and Schütze (2016), where they also get better en-
tity typing results with SSKIP compared to SKIP.
They propose to use entity typing as an extrinsic
evaluation for embedding models.

Joint entity, word, and character level mod-
els are on lines 16-23. The AGG-FIGER baseline
works better than the systems on lines 1-13, but
worse than ELRs. This is probably due to the fact
that AGG-FIGER is optimized for mention typing
and it is trained using distant supervision assump-
tion. Parallel to our work, Yaghoobzadeh et al.
(2017) optimize a mention typing model for our
entity typing task by introducing multi instance
learning algorithms, resulting comparable perfor-
mance to ELR(SKIP). We will investigate their

70

all entities head entities tail entities
acc mic mac acc mic mac acc mic mac

1 MFT .000 .041 .041 .000 .044 .044 .000 .038 .038
2 CLR(FORWARD) .066 .379 .352 .067 .342 .369 .061 .374 .350
3 CLR(LSTM) .121 .425 .396 .122 .433 .390 .116 .408 .391
4 CLR(BiLSTM) .133 .440 .404 .129 .443 .394 .135 .428 .404
5 CLR(NSL) .164 .484 .464 .157 .470 .443 .173 .483 .472
6 CLR(CNN) .177 .494 .468 .171 .484 .450 .187 .489 .474
7 BOW .113 .346 .379 .109 .323 .353 .120 .356 .396
8 WWLR(SKIP) .214 .581 .531 .293 .660 .634 .173 .528 .478
9 WWLR(SSKIP) .223 .584 .543 .306 .667 .642 .183 .533 .494

10 SWLR .236 .590 .554 .301 .665 .632 .209 .551 .522
11 BOW+CLR(NSL) .156 .487 .464 .157 .480 .452 .159 .485 .469
12 WWLR+CLR(CNN) .257 .603 .568 .317 .668 .637 .235 .567 .538
13 SWLR+CLR(CNN) .241 .594 .561 .295 .659 .628 .227 .560 .536
14 ELR(SKIP) .488 .774 .741 .551 .834 .815 .337 .621 .560
15 ELR(SSKIP) .515 .796 .763 .560 .839 .819 .394 .677 .619
16 AGG-FIGER .320 .694 .660 .396 .762 .724 .220 .593 .568
17 ELR+CLR .554 .816 .788 .580 .844 .825 .467 .733 .690
18 ELR+WWLR .557 .819 .793 .582 .846 .827 .480 .749 .708
19 ELR+SWLR .558 .820 .796 .584 .846 .829 .480 .751 .714
20 ELR+WWLR+CLR .568 .823 .798 .590 .847 .829 .491 .755 .716
21 ELR+SWLR+CLR .569 .824 .801 .590 .849 .831 .497 .760 .724
22 ELR+WWLR+CLR+TC .572 .824 .801 .594 .849 .831 .499 .759 .722
23 ELR+SWLR+CLR+TC .575 .826 .802 .597 .851 .831 .508 .762 .727

Table 2: Accuracy (acc), micro (mic) and macro (mac) F1

on test for all, head and tail entities.

types: all head tail
AGG-FIGER .566 .702 .438
ELR .621 .784 .480
MuLR .669 .811 .541

Table 3: Type macro aver-
age F1 on test for all, head
and tail types. MuLR =
ELR+SWLR+CLR+TC

all known?
yes no

CLR(NSL) .484 .521 .341
CLR(CNN) .494 .524 .374
BOW .346 .435 .065
SWLR .590 .612 .499
BOW+NSL .497 .535 .358
SWLR+CLR(CNN) .594 .616 .508

Table 4: Micro F1 on test of
character, word level models
for all, known (“known? yes”)
and unknown (“known? no”)
entities.

method in future.
Joining CLR with ELR (line 17) results in

large improvements, especially for tail entities
(5% micro F1). This demonstrates that for rare
entities, contextual information is often not suf-
ficient for an informative representation, hence
name features are important. This is also true
for the joint models of WWLR/SWLR and ELR
(lines 18-19). Joining WWLR works better than
CLR, and SWLR is slightly better than WWLR.
Joint models of WWLR/SWLR with ELR+CLR
gives more improvements, and SWLR is again
slightly better than WWLR. ELR+WWLR+CLR
and ELR+SWLR+CLR, are better than their two-
level counterparts, again confirming that these lev-
els are complementary.

We get a further boost, especially for tail en-
tities, by also including TC (type cosine) in the
combinations (lines 22-23). This demonstrates the
potential advantage of having a common represen-
tation space for entities and types. Our best model,
ELR+SWLR+CLR+TC (line 22), which we refer
to as MuLR in the other tables, beats our initial
baselines (ELR and AGG-FIGER) by large mar-
gins, e.g., in tail entities improvements are more
than 8% in micro F1.

Table 3 shows type macro F1 for MuLR
(ELR+SWLR+CLR+TC) and two baselines.

There are 11 head types (those with ≥3000 train
entities) and 36 tail types (those with <200 train
entities). These results again confirm the superi-
ority of our multi-level models over the baselines:
AGG-FIGER and ELR, the best single-level
model baseline.

4.3 Analysis

Unknown vs. known entities. To analyze the
complementarity of character and word level rep-
resentations, as well as more fine-grained com-
parison of our models and the baselines, we di-
vide test entities into known entities – at least one
word of the entity’s name appears in a train entity
– and unknown entities (the complement). There
are 45,000 (resp. 15,000) known (resp. unknown)
test entities.

Table 4 shows that the CNN works only slightly
better (by 0.3%) than NSL on known entities, but
works much better on unknown entities (by 3.3%),
justifying our preference for deep learning CLR
models. As expected, BOW works relatively well
for known entities and really poorly for unknown
entities. SWLR beats CLR models as well as
BOW. The reason is that in our setup, word em-
beddings are induced on the entire corpus using
an unsupervised algorithm. Thus, even for many
words that did not occur in train, SWLR has ac-

71

cess to informative representations of words. The
joint model, SWLR+CLR(CNN), is significantly
better than BOW+CLR(NSL) again due to limits
of BOW. SWLR+CLR(CNN) is better than SWLR
in unknown entities.

Case study of LIVING-THING. To understand
the interplay of different levels better, we perform
a case study of the type LIVING-THING. Living
beings that are not humans belong to this type.

WLRs incorrectly assign “Walter Leaf”
(PERSON) and “Along Came A Spider” (MUSIC)
to LIVING-THING because these names contain a
word referring to a LIVING-THING (“leaf”, “spi-
der”), but the entity itself is not a LIVING-THING.
In these cases, the averaging of embeddings that
WLR performs is misleading. The CLR(CNN)
types these two entities correctly because their
names contain character ngram/shape patterns
that are indicative of PERSON and MUSIC.

ELR incorrectly assigns “Zumpango” (CITY)
and “Lake Kasumigaura” (LOCATION) to LIVING-
THING because these entities are rare and words
associated with living things (e.g., “wildlife”)
dominate in their contexts. However, CLR(CNN)
and WLR enable the joint model to type the two
entites correctly: “Zumpango” because of the in-
formative suffix “-go” and “Lake Kasumigaura”
because of the informative word “Lake”.

While some of the remaining errors of our best
system MuLR are due to the inherent difficulty of
entity typing (e.g., it is difficult to correctly type a
one-word entity that occurs once and whose name
is not informative), many other errors are due to
artifacts of our setup. First, ClueWeb/FACC1 is
the result of an automatic entity linking system
and any entity linking errors propagate to our mod-
els. Second, due to the incompleteness of Freebase
(Yaghoobzadeh and Schütze, 2015), many entities
in the FIGMENT dataset are incompletely anno-
tated, resulting in correctly typed entities being
evaluated as incorrect.

Adding another source: description-based
embeddings. While in this paper, we focus on the
contexts and names of entities, there is a textual
source of information about entities in KBs which
we can also make use of: descriptions of entities.
We extract Wikipedia descriptions of FIGMENT
entities filtering out the entities (∼ 40,000 out of
∼ 200,000) without description.

We then build a simple entity representation by
averaging the embeddings of the top k words (wrt

entities: all head tail
AVG-DES .773 .791 .745
MuLR .825 .846 .757
MuLR+AVG-DES .873 .877 .852

Table 5: Micro average F1 results of MuLR and
description based model and their joint.

tf-idf) of the description (henceforth, AVG-DES).9

This representation is used as input in Figure 1
to train the MLP. We also train our best multi-
level model as well as the joint of the two on this
smaller dataset. Since the descriptions are coming
from Wikipedia, we use 300-dimensional Glove
(URL, 2016a) embeddings pretrained on Wikip-
dia+Gigaword to get more coverage of words. For
MuLR, we still use the embeddings we trained be-
fore.

Results are shown in Table 5. While for head
entities, MuLR works marginally better, the differ-
ence is very small in tail entities. The joint model
of the two (by concatenation of vectors) improves
the micro F1, with clear boost for tail entities. This
suggests that for tail entities, the contextual and
name information is not enough by itself and some
keywords from descriptions can be really helpful.
Integrating more complex description-based em-
beddings, e.g., by using CNN (Xie et al., 2016),
may improve the results further. We leave it for
future work.

5 Conclusion

In this paper, we have introduced representations
of entities on different levels: character, word
and entity. The character level representation is
learned from the entity name. The word level rep-
resentation is computed from the embeddings of
the words wi in the entity name where the embed-
ding of wi is derived from the corpus contexts of
wi. The entity level representation of entity ei is
derived from the corpus contexts of ei. Our exper-
iments show that each of these levels contributes
complementary information for the task of fine-
grained typing of entities. The joint model of all
three levels beats the state-of-the-art baseline by
large margins. We further showed that extracting
some keywords from Wikipedia descriptions of
entities, when available, can considerably improve
entity representations, especially for rare entities.
We believe that our findings can be transferred to
other tasks where entity representation matters.

9k = 20 gives the best results on dev.

72

Acknowledgments. This work was supported
by DFG (SCHU 2246/8-2).

References
Miguel Ballesteros, Chris Dyer, and Noah A. Smith.

2015. Improved transition-based parsing by model-
ing characters instead of words with lstms. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 349–
359, Lisbon, Portugal, September. Association for
Computational Linguistics.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2016. Enriching word vectors with
subword information. CoRR, abs/1607.04606.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim
Sturge, and Jamie Taylor. 2008. Freebase: a col-
laboratively created graph database for structuring
human knowledge. In Proceedings of the ACM SIG-
MOD International Conference on Management of
Data, SIGMOD 2008, Vancouver, BC, Canada, June
10-12, 2008, pages 1247–1250.

Kris Cao and Marek Rei. 2016. A joint model for word
embedding and word morphology. In Proceedings
of the 1st Workshop on Representation Learning for
NLP, pages 18–26, Berlin, Germany, August. Asso-
ciation for Computational Linguistics.

Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,
and Huan-Bo Luan. 2015. Joint learning of char-
acter and word embeddings. In Proceedings of
the Twenty-Fourth International Joint Conference
on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, pages 1236–1242.

Jason Chiu and Eric Nichols. 2016. Named entity
recognition with bidirectional lstm-cnns. Transac-
tions of the Association for Computational Linguis-
tics, 4:357–370.

Luciano Del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
868–878, Lisbon, Portugal, September. Association
for Computational Linguistics.

Cı́cero Nogueira dos Santos and Victor Guimarães.
2015. Boosting named entity recognition with neu-
ral character embeddings. CoRR, abs/1505.05008.

Cı́cero Nogueira dos Santos and Bianca Zadrozny.
2014. Learning character-level representations for
part-of-speech tagging. In Proceedings of the
31th International Conference on Machine Learn-
ing, ICML 2014, Beijing, China, 21-26 June 2014,
pages 1818–1826.

Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen,
and Ming Li. 2016. Entity disambiguation by

knowledge and text jointly embedding. In Proceed-
ings of The 20th SIGNLL Conference on Computa-
tional Natural Language Learning, pages 260–269,
Berlin, Germany, August. Association for Computa-
tional Linguistics.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. Facc1: Freebase annotation
of clueweb corpora.

Zellig S. Harris. 1954. Distributional structure. Word,
10:146–162.

Yoon Kim, Yacine Jernite, David Sontag, and Alexan-
der M. Rush. 2016. Character-aware neural lan-
guage models. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, February 12-
17, 2016, Phoenix, Arizona, USA., pages 2741–
2749.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer.
2016. Neural architectures for named entity recog-
nition. In Proceedings of the 2016 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 260–270, San Diego, California,
June. Association for Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada.

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015a. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304,
Denver, Colorado, May–June. Association for Com-
putational Linguistics.

Wang Ling, Chris Dyer, Alan W Black, Isabel Tran-
coso, Ramon Fermandez, Silvio Amir, Luis Marujo,
and Tiago Luis. 2015b. Finding function in form:
Compositional character models for open vocabu-
lary word representation. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1520–1530, Lisbon, Portu-
gal, September. Association for Computational Lin-
guistics.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end se-
quence labeling via bi-directional lstm-cnns-crf. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 1064–1074, Berlin, Germany,
August. Association for Computational Linguistics.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

73

Arvind Neelakantan and Ming-Wei Chang. 2015. In-
ferring missing entity type instances for knowledge
base completion: New dataset and methods. In Pro-
ceedings of the 2015 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
515–525, Denver, Colorado, May–June. Association
for Computational Linguistics.

Xiang Ren, Wenqi He, Meng Qu, Clare R. Voss, Heng
Ji, and Jiawei Han. 2016. Label noise reduction
in entity typing by heterogeneous partial-label em-
bedding. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1825–1834.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2016. An attentive neural ar-
chitecture for fine-grained entity type classification.
pages 69–74, June.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 926–934.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard
Weikum. 2007. Yago: a core of semantic knowl-
edge. In Proceedings of the 16th International Con-
ference on World Wide Web, WWW 2007, Banff, Al-
berta, Canada, May 8-12, 2007, pages 697–706.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhen-
zhou Ji, and Xiaolong Wang. 2015. Modeling men-
tion, context and entity with neural networks for en-
tity disambiguation. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 1333–1339.

URL. 2016a. Glove project. http://nlp.
stanford.edu/projects/glove.

URL. 2016b. Lemur project. http://
lemurproject.org/clueweb12/FACC1.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(2579-2605):85.

Bart van Merriënboer, Dzmitry Bahdanau, Vincent Du-
moulin, Dmitriy Serdyuk, David Warde-Farley, Jan
Chorowski, and Yoshua Bengio. 2015. Blocks
and fuel: Frameworks for deep learning. CoRR,
abs/1506.00619.

Zhigang Wang and Juan-Zi Li. 2016. Text-enhanced
representation learning for knowledge graph. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages 1293–
1299.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly em-
bedding. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pages 1591–1601, Doha, Qatar, October.
Association for Computational Linguistics.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and
Maosong Sun. 2016. Representation learning of
knowledge graphs with entity descriptions. In Pro-
ceedings of the Thirtieth AAAI Conference on Arti-
ficial Intelligence, February 12-17, 2016, Phoenix,
Arizona, USA., pages 2659–2665.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using con-
textual information. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 715–725, Lisbon, Portugal,
September. Association for Computational Linguis-
tics.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2016.
Intrinsic subspace evaluation of word embedding
representations. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 236–246,
Berlin, Germany, August. Association for Computa-
tional Linguistics.

Yadollah Yaghoobzadeh, Heike Adel, and Hinrich
Schütze. 2017. Noise mitigation for neural entity
typing and relation extraction. In EACL, Valencia,
Spain.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and
Yoshiyasu Takefuji. 2016. Joint learning of the em-
bedding of words and entities for named entity dis-
ambiguation. pages 250–259, August.

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained entity
type classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 2:
Short Papers), pages 291–296, Beijing, China, July.
Association for Computational Linguistics.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hof-
fart, Marc Spaniol, and Gerhard Weikum. 2012.
HYENA: hierarchical type classification for entity
names. In COLING 2012, 24th International Con-
ference on Computational Linguistics, Proceedings
of the Conference: Posters, 8-15 December 2012,
Mumbai, India, pages 1361–1370.

Xiang Zhang and Yann LeCun. 2015. Text understand-
ing from scratch. CoRR, abs/1502.01710.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun.
2015. Character-level convolutional networks for
text classification. pages 649–657.

A Supplementary Material

74

All entities
Models 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 MFT 0
02 CLR(FORWARD) * 0
03 CLR(LSTM) * * 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 CLR(BiLSTM) * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 CLR(CNN) * * * * 0 * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
06 CLR(NSL) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
07 BOW * * 0
08 WWLR(SkipG) * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
09 WWLR(SSkipG) * * * * * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
10 SWLR * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0
11 BOW+CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 WWLR+CLR(CNN) * * * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0
13 SWLR+CLR(CNN) * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0
14 ELR(SkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
15 ELR(SSkipG) * * * * * * * * * * * * * * 0 * 0 0 0 0 0 0 0
16 AGG-FIGER * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0
17 ELR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
18 ELR+WWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
19 ELR+SWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
20 ELR+WWLR+CLR * * * * * * * * * * * * * * * * * * * 0 0 0 0
21 ELR+SWLR+CLR * * * * * * * * * * * * * * * * * * * 0 0 0 0
22 ELR+WWLR+CLR+TC * * * * * * * * * * * * * * * * * * * 0 0 0 0
23 ELR+SWLR+CLR+TC * 0 0

Head entities
Models 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 MFT 0
02 CLR(FORWARD) * 0
03 CLR(LSTM) * * 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
04 CLR(BiLSTM) * * 0 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 CLR(CNN) * * * * 0 * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
06 CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
07 BOW * * 0
08 WWLR(SkipG) * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
09 WWLR(SSkipG) * * * * * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
10 SWLR * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
11 BOW+CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 WWLR+CLR(CNN) * * * * * * * * 0 * * 0 * 0 0 0 0 0 0 0 0 0 0
13 SWLR+CLR(CNN) * * * * * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
14 ELR(SkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
15 ELR(SSkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
16 AGG-FIGER * * * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0
17 ELR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
18 ELR+WWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
19 ELR+SWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
20 ELR+WWLR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
21 ELR+SWLR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
22 ELR+WWLR+CLR+TC * * * * * * * * * * * * * * * * * 0 0 0 0 0 0
23 ELR+SWLR+CLR+TC * * * * * * * * * * * * * * * * * * * 0 0 0 0

Tail entities
Models 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23

01 MFT 0
02 CLR(FORWARD) * 0
03 CLR(LSTM) * * 0
04 CLR(BiLSTM) * * * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
05 CLR(CNN) * * * * 0 * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
06 CLR(NSL) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
07 BOW * * 0
08 WWLR(SkipG) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
09 WWLR(SSkipG) * * * * 0 0 * 0 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0
10 SWLR * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0
11 BOW+CLR(NSL) * * * * 0 0 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 WWLR+CLR(CNN) * * * * * * * * * * * 0 0 0 0 * 0 0 0 0 0 0 0
13 SWLR+CLR(CNN) * * * * * * * * * * * 0 0 0 0 0 0 0 0 0 0 0 0
14 ELR(SkipG) * * * * * * * * * * * * * 0 0 * 0 0 0 0 0 0 0
15 ELR(SSkipG) * * * * * * * * * * * * * * 0 * 0 0 0 0 0 0 0
16 AGG-FIGER * * * * * * * * * 0 * 0 0 0 0 0 0 0 0 0 0 0 0
17 ELR+CLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
18 ELR+WWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
19 ELR+SWLR * * * * * * * * * * * * * * * * 0 0 0 0 0 0 0
20 ELR+WWLR+CLR * * * * * * * * * * * * * * * * * 0 0 0 0 0 0
21 ELR+SWLR+CLR * * * * * * * * * * * * * * * * * * * 0 0 0 0
22 ELR+WWLR+CLR+TC * * * * * * * * * * * * * * * * * * * 0 0 0 0
23 ELR+SWLR+CLR+TC * 0 0 0

Table 6: Significance-test results for accuracy measure for all, head and tail entities. If the result for the
model in a row is significantly larger than the result for the model in a column, then the value in the
corresponding (row,column) is * and otherwise is 0.

75

76

Chapter 5

Noise Mitigation for Neural Entity
Typing and Relation Extraction

77

Noise Mitigation for Neural Entity Typing and Relation Extraction

Yadollah Yaghoobzadeh* and Heike Adel* and Hinrich Schütze
* These authors contributed equally to this work
Center for Information and Language Processing

LMU Munich, Germany
yadollah|heike@cis.lmu.de

Abstract

In this paper, we address two different
types of noise in information extraction
models: noise from distant supervision
and noise from pipeline input features.
Our target tasks are entity typing and rela-
tion extraction. For the first noise type, we
introduce multi-instance multi-label learn-
ing algorithms using neural network mod-
els, and apply them to fine-grained entity
typing for the first time. Our model outper-
forms the state-of-the-art supervised ap-
proach which uses global embeddings of
entities. For the second noise type, we
propose ways to improve the integration
of noisy entity type predictions into re-
lation extraction. Our experiments show
that probabilistic predictions are more ro-
bust than discrete predictions and that joint
training of the two tasks performs best.

1 Introduction

Knowledge bases (KBs) are important resources
for natural language processing tasks like ques-
tion answering and entity linking. However, KBs
are far from complete (e.g., Socher et al. (2013)).
Therefore, methods for automatic knowledge base
completion (KBC) are beneficial. Two subtasks of
KBC are entity typing (ET) and relation extraction
(RE). We address both tasks in this paper.

As in other information extraction tasks, obtain-
ing labeled training data for ET and RE is chal-
lenging. The challenge grows as labels become
more fine-grained. Therefore, distant supervision
(Mintz et al., 2009) is widely used. It reduces the
need for manually created resources. Distant su-
pervision assumes that if an entity has a type (resp.
two entities have a relationship) in a KB, then
all sentences mentioning that entity (resp. those

two entities) express that type (resp. that relation-
ship). However, that assumption is too strong and
gives rise to many noisy labels. Different tech-
niques to deal with that problem have been in-
vestigated. The main technique is multi-instance
(MI) learning (Riedel et al., 2010). It relaxes the
distant supervision assumption to the assumption
that at least one instance of a bag (collection of all
sentences containing the given entity/entity pair)
expresses the type/relationship given in the KB.
Multi-instance multi-label (MIML) learning is a
generalization of MI in which one bag can have
several labels (Surdeanu et al., 2012).

Most MI and MIML methods are based on hand
crafted features. Recently, Zeng et al. (2015) in-
troduced an end-to-end approach to MI learning
based on neural networks. Their MI method takes
the most confident instance as the prediction of
the bag. Lin et al. (2016) further improved that
method by taking other instances into account as
well; they proposed MI learning based on selective
attention as an alternative way of relaxing the im-
pact of noisy labels on RE. In selective attention,
a weighted average of instance representations is
calculated first and then used to compute the pre-
diction of a bag.

In this paper, we introduce two multi-label ver-
sions of MI. (i) MIML-MAX takes the maximum
instance for each label. (ii) MIML-ATT applies,
for each label, selective attention to the instances.
We apply MIML-MAX and MIML-ATT to fine-
grained ET. In contrast to RE, the ET task we con-
sider contains a larger set of labels, with a variety
of different granularities and hierarchical relation-
ships. We show that MIML-ATT deals well with
noise in corpus-level ET and improves or matches
the results of a supervised model based on global
embeddings of entities.

The second type of noise we address in this pa-
per influences the integration of ET into RE. It has

78

been shown that adding entity types as features im-
proves RE models (cf. Ling and Weld (2012), Liu
et al. (2014)). However, noisy training data and
difficulties of classification often cause wrong pre-
dictions of ET and, as a result, noisy inputs to RE.
To address this, we propose a joint model of ET
and RE and compare it with methods that integrate
ET results in a strict pipeline. The joint model per-
forms best. Among the pipeline models, we show
that using probabilities instead of binary decisions
better deals with noise (i.e., possible ET errors).

To sum up, our contributions are as follows.
(i) We introduce new algorithms for MIML us-
ing neural networks. (ii) We apply MIML to fine-
grained entity typing for the first time and show
that it outperforms the state-of-the-art supervised
method based on entity embeddings. (iii) We show
that a novel way of integrating noisy entity type
predictions into a relation extraction model and
joint training of the two tasks lead to large im-
provements of RE performance.

We release code and data for future research.1

2 Related Work

Noise mitigation for distant supervision. Distant
supervision can be used to train information ex-
traction systems, e.g., in relation extraction (e.g.,
Mintz et al. (2009), Riedel et al. (2010), Hoffmann
et al. (2011), Zeng et al. (2015)) and entity typ-
ing (e.g., Ling and Weld (2012), Yogatama et al.
(2015), Dong et al. (2015)). To mitigate the noisy
label problem, multi-instance (MI) learning has
been introduced and applied in relation extraction
(Riedel et al., 2010; Ritter et al., 2013). Surdeanu
et al. (2012) introduced multi-instance multi-label
(MIML) learning to extend MI learning for multi-
label relation extraction. Those models are based
on manually designed features. Zeng et al. (2015)
and Lin et al. (2016) introduced MI learning meth-
ods for neural networks. We introduce MIML al-
gorithms for neural networks. In contrast to most
MI/MIML methods, which are applied in relation
extraction, we apply MIML to the task of fine-
grained entity typing. Ritter et al. (2013) applied
MI on a Twitter dataset with ten types. Our dataset
has a larger number of classes or types (namely
102) and input examples, compared to that Twitter
dataset and also to the most widely used datasets
for evaluating MI (cf. Riedel et al. (2010)). This
makes our setup more challenging because of dif-

1cistern.cis.lmu.de

ferent dependencies and the multi-label nature of
the problem. Also, there seems to be a difference
between how entity relations and entity types are
expressed in text. Our experiments support that
hypothesis.

Knowledge base completion (KBC). Most
KBC systems focus on identifying triples
R(e1, r, e2) missing from a KB (Nickel et al.,
2012; Bordes et al., 2013; Weston et al., 2013;
Socher et al., 2013; Jiang et al., 2012; Riedel et
al., 2013; Wang et al., 2014). Work on entity
typing or unary relations for KBC is more recent
(Yao et al., 2013; Neelakantan and Chang, 2015;
Yaghoobzadeh and Schütze, 2015; ?). In this
paper, we build a KBC system for unary and
binary relations using contextual information of
words and entities.

Named entity recognition (NER) and typing.
NER systems (e.g., Finkel et al. (2005), Collobert
et al. (2011)) used to consider only a small set
of entity types. Recent work also addresses fine-
grained NER (Yosef et al., 2012; Ling and Weld,
2012; Yogatama et al., 2015; Dong et al., 2015;
Del Corro et al., 2015; ?; Ren et al., 2016; Shi-
maoka et al., 2016). Some of this work (cf. Yo-
gatama et al. (2015), Dong et al. (2015)) treats
entity segment boundaries as given and classi-
fies mentions into fine-grained types. We make
a similar assumption, but in contrast to NER, we
evaluate on the corpus-level entity typing task of
Yaghoobzadeh and Schütze (2015); thus, we do
not need test sentences annotated with context de-
pendent entity types. This task was also used to
evaluate embedding learning methods (?).

Entity types for relation extraction. Sev-
eral studies have integrated entity type informa-
tion into relation extraction – either coarse-grained
(Hoffmann et al., 2011; GuoDong et al., 2005) or
fine-grained (Liu et al., 2014; Du et al., 2015; Au-
genstein et al., 2015; Vlachos and Clark, 2014;
Yao et al., 2010; Ling and Weld, 2012) entity
types. In contrast to most of this work, but similar
to Yao et al. (2010), we do not incorporate binary
entity type values, but probabilistic outputs. Thus,
we allow the relation extraction system to com-
pensate for errors of entity typing. Additionally,
we compare this approach to various other pos-
sibilities, to investigate which approach performs
best. Yao et al. (2010) found that joint training of
entity typing and relation extraction is better than a
pipeline model; we show that this result also holds

79

for neural network models and when the number
of entity types is large.

3 MIML Learning for Entity Typing

Entity typing (ET) is the task of finding, for
each named entity, a set of types or classes that
it belongs to, e.g., “author” and “politician” for
“Obama”. Our goal is corpus-level prediction of
entity types. We use the entity-type information
from a KB and annotated contexts of entities in a
corpus to estimate P (t|e), the probability that en-
tity e has type t.

More specifically, consider an entity e and B =
{c1, c2, ..., cq}, the set of q contexts of e in the
corpus. Each ci is an instance of e and since
e can have several labels, it is a multi-instance
multi-label (MIML) learning problem. We address
MIML using neural networks by representing each
context as a vector ~ci ∈ Rh, and learn P (t|e) from
the set of contexts of entity e. In the following,
we first describe our MIML algorithms and then
explain how ~ci is computed.

Notations and definitions. Lowercase letters
(e.g., e) refer to variables. Lowercase letters with
an upper arrow (e.g., ~e) are vectors. We define
BCE, binary cross entropy, as follows where y is
a binary variable and ŷ is a real valued variable
between 0 and 1.

BCE(y, ŷ) = −
(
y log(ŷ)+(1−y)(1−log(ŷ))

)

3.1 Algorithms
Distant supervision. The basic way to estimate
P (t|e) is based on distant supervision with learn-
ing the type probability of each ci individually, by
making the assumption that each ci expresses all
labels of e. Therefore, we define the context-level
probability function as:

P (t|ci) = σ(~wt~ci + bt) (1)

where ~wt ∈ Rh is the output weight vector and bt
is the bias scalar for type t. The cost function is
defined based on binary cross entropy:

(2)L(θ) =
∑

c

∑

t

BCE(yt, P (t|c))

where yt is 1 if entity e has type t otherwise 0. To
compute P (t|e) at prediction time, i.e., P pred(t|e),
the context-level probabilities must be aggregated.
Average is the usual way of doing that:

P pred(t|e) =
1

q

q∑

i=1

P (t|ci) (3)

Multi-instance multi-label. The distant super-
vision assumption is that all contexts of an en-
tity with type t are contexts of t; e.g., we la-
bel all contexts mentioning “Barack Obama” with
all of his types. Obviously, the labels are incor-
rect or noisy for some contexts. Multi-instance
multi-label (MIML) learning addresses this prob-
lem. We apply MIML to fine-grained ET for the
first time. Our assumption is: if entity e has type
t, then there is at least one context of e in the cor-
pus in which e occurs as type t. So, we apply this
assumption during training with the following es-
timation of the type probability of an entity:

P (t|e) = max
1≤i≤q

P (t|ci) (4)

which means we take the maximum probability of
type t over all contexts of entity e as P (t|e). We
call this approach MIML-MAX.

MIML-MAX picks the most confident context
for t, ignoring the probabilities of all the other con-
texts. Apart from missing information, this can be
especially harmful if the entity annotations in the
corpus are the result of an entity linking system.
In that case, the most confident context might be
wrongly linked to the entity. So, it can be bene-
ficial to leverage all contexts into the final predic-
tion, e.g., by averaging the type probabilities of
all contexts of entity e:

P (t|e) =
1

q

q∑

i=1

P (t|ci) (5)

We call this approach MIML-AVG. We also pro-
pose a combination of the maximum and average,
which uses MIML-MAX (Eq. 4) in training and
MIML-AVG (Eq. 5) in prediction. We call this ap-
proach MIML-MAX-AVG.

MIML-AVG treats every context equally which
might be problematic since many contexts are ir-
relevant for a particular type. A better way is to
weight the contexts according to their similarity to
the types. Therefore, we propose using selective
attention over contexts as follows and call this
approach MIML-ATT. MIML-ATT is the multi-
label version of the selective attention method pro-
posed in Lin et al. (2016). To compute the type
probability for e, we define:

P (t|e) = σ(~wt~at + bt) (6)

where ~wt ∈ Rh is the output weight vector and
bt the bias scalar for type t, and ~at is the aggre-
gated representation of all contexts ci of e for type

80

Model Train Prediction
MIML-MAX MAX MAX
MIML-AVG AVG AVG
MIML-MAX-AVG MAX AVG
MIML-ATT ATT ATT

Table 1: Different MIML algorithms for entity
typing, and the aggregation function they use to
get corpus-level probabilities.

t, computed as follows:

~at =
∑

i

αi,t~ci (7)

where αi,t is the attention score of context ci for
type t and ~at ∈ Rh can be interpreted as the repre-
sentation of entity e for type t.
αi,t is defined as:

αi,t =
exp(~ciM~t)∑q
j=1 exp(~cjM~t)

(8)

where M ∈ Rh×dt is a weight matrix that mea-
sures the similarity of ~c and ~t. ~t ∈ Rdt is the rep-
resentation of type t.

Table 1 summarizes the differences of our
MIML methods with respect to the aggregation
function they use to get corpus-level probabilities.
For optimization of all MIML methods, we use the
binary cross entropy loss function,

L(θ) =
∑

e

∑

t

BCE(yt, P (t|e)) (9)

In contrast to the loss function of distant supervi-
sion in Eq. 2, which iterates over all contexts, we
iterate over all entities here.

3.2 Context Representation
To produce a high-quality context representation
~c, we use convolutional neural networks (CNNs).

The first layer of the CNN is a lookup table that
maps each word in c to an embedding of size d.
The output of the lookup layer is a matrix E ∈
Rd×s (the embedding layer), where s is the context
size (a fixed number of words).

The CNN uses n filters of different window
widths w to narrowly convolve E. For each of the
n filters H ∈ Rd×w, the result of applying H to
matrix E is a feature map ~m ∈ Rs−w+1:

m[i] = g(E:,i:i+w−1 �H) (10)

where g is the relu function, � is the Frobenius
product, E:,i:i+w−1 are the columns i to i+w− 1

of E and 1 ≤ w ≤ k are the window widths we
consider. Max pooling then gives us one feature
for each filter and the concatenation of those fea-
tures is the CNN representation of c.

As it is shown in the entity typing part of Fig-
ure 1, we apply the CNN to the left and right
context of the entity mention and the concatena-
tion ~φ(c) ∈ R2n is fed into a multi-layer percep-
tron (MLP) to get the final context representation
~c ∈ Rh:

~c = tanh
(

Wh
~φ(c)

)
(11)

4 Type-aware Relation Extraction

Relation extraction (RE) is mostly defined as find-
ing relations between pairs of entities, for in-
stance, finding the relation “president-of” between
“Obama” and “USA”. Given a set of q contexts for
an entity pair z, B = {c1, c2, ..., cq} in the cor-
pus, we learn P (r|z), which is the probability of
relation r for z. We assume that each z has one
relation r(z). Each ci is represented by a vector
~ci ∈ Rh, which is our type-aware representation
of context described in Section 4.1.

To learn P (r|z), we use the multi-instance (MI)
learning method of Zeng et al. (2015):

P (r|ci) = softmax
(

Wout~ci

)
,

P (r|z) = max
1≤i≤q

P (r|ci)
(12)

where P (r|ci) is the probability of relation r for
context ci. The cost function we optimize is:

L(θ) = −
∑

z

logP (r(z)|z)

4.1 Context Representation

Similar to our entity typing system, we apply
CNNs to compute the context representation ~φ(c).
In particular, we use Adel et al. (2016)’s CNN. It
uses an input representation designed for RE. Each
sentence is split into three parts: left of the re-
lation arguments, between the relation arguments
and right of the relation arguments. The parts
“overlap”, i.e., the left (resp. right) argument is in-
cluded in both left (resp. right) and middle parts.
For each of the three parts, convolution and 3-max
pooling (Kalchbrenner et al., 2014) is performed.
The context representation ~φ(c) ∈ R3·3·n is the
concatenation of the pooling results.

81

sentence

left e
1 right left e

1 middle e
2 right

conv conv conv conv conv

pooling pooling pooling pooling pooling

entity typing relation extraction

Ф(c)

concat

Ф(c)

concat

Ф(c)Ф(c)

concat

c

c

W
h

W
h

P(t|ce1)

W
out

t2t1

P(r|c)

W
out

P(t|ce2)P(t|ce1)

W
t

W
t

left e
2 right

conv conv

pooling pooling

Ф(c)

concat

Ф(c)

concat

c

W
h

P(t|ce2)

W
out

→ →

→

Figure 1: Our architecture for joint entity typing and relation extraction

4.1.1 Integration of Entity Types
We concatenate the entity type representations
~t1 ∈ Rτ and ~t2 ∈ Rτ of the relation arguments
to the CNN representation of the context, ~φ(c):

~φ(c)′ = [~φ(c) : ~t1 : ~t2] (13)

Our context representation ~c is then:

~c = tanh
(

Wh
~φ(c)′

)
(14)

where Wh ∈ Rh×(3·3·n+2τ) is the weight matrix.
This is also depicted in Figure 1, right column,
third layer from the top: ~t1, ~t2, ~Φ(c). We calculate
~t1 and ~t2 from the predictions of the entity typing
model with the following transformation:

~tk = f
(

Wt[P (t1|cek) . . . P (tT |cek)]
)

(15)

where cek is the context of ek, Wt ∈ Rτ×T is
a weight matrix (learned from corpus or during
training) and f is a function (identity or tanh).
With the transformation Wt, the model can com-
bine predictions for different types to learn better
internal representations t1 and t2. The choices of
Wt and f depend on the different representations
we investigate and describe in the following.

(1) Pipeline: We integrate entity types into the
RE model, using the output of ET in a pipeline
model (see Eq. 15). We test the following rep-
resentations of ~tk, k ∈ {1, 2}. PREDICTED-
HIDDEN: Wt from Eq. 15 is learned during
training and f is tanh. That means that a hid-
den layer learns representations based on the
predictions P (t1|cek) . . . P (tT |cek). BINARY-
HIDDEN: This is the binarization of the input of

PREDICTED-HIDDEN, i.e., each probability es-
timate is converted to 0 or 1 (with a threshold of
0.5). BINARY: ~tk is the binary vector itself (used
by Ling and Weld (2012)). WEIGHTED: The
columns of matrix Wt from Eq. 15 are the distribu-
tional embeddings of types trained on the corpus
(see Section 5.1). f is the identity function.

(2) Joint model: As an alternative to the
pipeline model, we investigate integrating entity
typing into RE by jointly training both mod-
els. We use the architecture depicted in Fig-
ure 1. The key difference to the pipeline model
PREDICTED-HIDDEN is that we learn P (t|c)
and P (r|c) jointly, called JOINT-TRAIN. We
compare JOINT-TRAIN to other models, includ-
ing the pipeline models.

During training of JOINT-TRAIN, we compute
the cost of the ET model for typing the first en-
tity L1(θT), the cost for typing the second entity
L2(θT) and the cost of the RE model for assign-
ing a relation to the two entities L(θR). Then,
we combine those costs with a weight γ which is
tuned on the development set:

L(θ) =
∑

z

(
L1(θT) + L2(θT) + γ · L(θR)

)
,

Li(θT) =
∑

t

BCE(yeit , P (t|cei)),

L(θR) = − logP (r(z)|z)

P (r|z) is computed based on Eq. 12.
Note that based on this equation, the ET param-

eters are optimized on the contexts of the RE ex-
amples, which are a subset of all training exam-
ples of ET. However in the pipeline models, ET
is trained on the whole training set used for typ-

82

GOV.GOV agency.jurisdiction PPL.PER.children
GOV.us president.vice president PPL.PER.nationality
PPL.deceased PER.place of death PPL.PER.religion
ORG.ORG.place founded PPL.PER.place of birth
ORG.ORG founder.ORGs founded NA (no relation)
LOC.LOC.containedby

Table 2: Selected relations for relation extraction;
PPL = people, GOV = governement

ing. Also note that in JOINT-TRAIN we do not
use MIML for the ET part but a distant supervised
cost function.

5 Experimental Data, Setup and Results

For entity typing, we use CF-FIGMENT (URL,
2016b), a dataset published by Yaghoobzadeh and
Schütze (2015). CF-FIGMENT is derived from
a version of ClueWeb (URL, 2016c) in which
Freebase entities are annotated using FACC1
(URL, 2016d; Gabrilovich et al., 2013). CF-
FIGMENT contains 200,000 Freebase entities that
were mapped to 102 FIGER types (Ling and Weld,
2012), divided into train (50%), dev (20%) and test
(30%); and a set of 4,300,000 sentences (contexts)
containing those entities.

For relation extraction, we first select the ten
most frequent relations (plus NA for no rela-
tion according to Freebase) of entity pairs in CF-
FIGMENT. We ensure that the entity pairs have at
least one context in CF-FIGMENT. This results in
5815, 3054 and 6889 unique entity pairs for train,
dev and test.2 Dev and test set sizes are 124,462
and 556,847 instances. For the train set, we take
a subsample of 135,171 sentences. The entity and
sentence sets of CF-FIGMENT were constructed
to ensure that entities in the entity test set do not
occur in the sentence train and dev sets; that is, a
sentence was assigned to the train set only if all
entities it contains are train entities.1

5.1 Word, Entity and Type Embeddings

We use 100-dimensional word embeddings to ini-
tialize the input layer of ET and RE. Embeddings
are kept fixed during training. Since we need em-
beddings for words, entities and types in the same
space, we process ClueWeb+FACC1 (corpus with
entity information) as follows. For each sentence
s, we add two copies: s itself, and a copy in which
each entity is replaced with its notable type, the

2We only assign those entity pairs to test (resp. dev, resp.
train) for which both constituting entities are in the ET test
(resp. dev, resp. train) set.

most important type according to Freebase. We
process train, dev and test this way, but do not re-
place test entities with their notable type because
the types of test entities are unknown in our ap-
plication scenario. We run word2vec (Mikolov et
al., 2013) on the resulting corpus to learn embed-
dings for words, entities and types. Note that our
application scenario is that we are given an unan-
notated input corpus and our system then extracts
entity types and relations from this input corpus to
enhance the KB.

5.2 Entity Typing Experiments

Entity context setup. We use a window size of
5 on each side of the entity mentions. Follow-
ing Yaghoobzadeh and Schütze (2015), we replace
other entities occurring in the context with their
Freebase notable type mapped to FIGER.

Models. Yaghoobzadeh and Schütze (2015) ap-
plied a multi-layer perceptron (MLP) architecture
to create context representations. Therefore, we
use an MLP baseline to compute the context rep-
resentation ~φ(c). The input to the MLP model is a
concatenation of context word embeddings. As an
alternative to MLP, we also train a CNN (see Sec-
tion 3.2) to compute context representations. We
run experiments with MLP and CNN, each trained
with standard distant supervision and with MIML.

EntEmb and FIGMENT baselines. Follow-
ing Yaghoobzadeh and Schütze (2015), we also
learn entity embeddings and classify those embed-
dings to types, i.e., instead of distant supervision,
we classify entities based on aggregated informa-
tion represented in entity embeddings. An MLP
with one hidden layer is used as classifier. We call
that model EntEmb. We join the results of EntEmb
with our best model (line 13 in Table 3), similar to
the joint model (FIGMENT) in Yaghoobzadeh and
Schütze (2015).

We use the same evaluation measures as Ling
and Weld (2012), Yaghoobzadeh and Schütze
(2015) and Neelakantan and Chang (2015) for en-
tity typing: precision at 1 (P@1), which is the
accuracy of picking the most confident type for
each entity, micro average F1 of all entity-type
assignments and mean average precision (MAP)
over types. We could make assignment decisions
based on the standard criterion p > θ, θ = 0.5, but
we found that tuning θ improves results. For each
probabilistic classifier and each type, we set θ to
the value that maximizes performance on dev.

83

P@1 F1 F1 F1 MAP
all all head tail

1 MLP 74.3 69.1 74.8 52.5 42.1
2 MLP+MIML-MAX 74.7 59.2 50.7 46.8 41.3
3 MLP+MIML-AVG 77.2 70.6 74.9 56.2 45.0
4 MLP+MIML-MAX-AVG 75.2 71.2 76.4 56.0 47.1
5 MLP+MIML-ATT 81.0 72.0 76.9 59.1 48.8
6 CNN 78.4 72.2 77.3 56.3 47.6
7 CNN+MIML-MAX 78.6 62.2 53.5 49.7 46.6
8 CNN+MIML-AVG 80.8 73.5 77.7 59.2 50.4
9 CNN+MIML-MAX-AVG 79.9 74.3 79.2 59.8 53.3

10 CNN+MIML-ATT 83.4 75.1 79.4 62.2 55.2
11 EntEmb 80.8 73.3 79.9 57.4 56.6
12 FIGMENT 81.6 74.3 80.3 60.1 57.0
13 CNN+MIML-ATT+EntEmb 85.4 78.2 83.3 66.2 64.8

Table 3: P@1, Micro F1 for all, head and tail en-
tities and MAP results for entity typing.

Results. Table 3 shows results for P@1, micro
F1 and MAP. For F1, we report separate results
for all, head (frequency higher than 100) and tail
(frequency less than 5) entities.

Discussion. The improvement of CNN (6)
compared to MLP (1) is not surprising consider-
ing the effectiveness of CNNs in finding position
independent local features, compared to the flat
representation of MLP. Lines 2-5 and 7-10 show
the results of different MIML algorithms for MLP
and CNN, respectively. Considering micro F1 for
all entities as the most importance measure, the
trend is similar in both MLP and CNN for MIML
methods: ATT > MAX-AVG > AVG > MAX.

MAX is worse than even basic distant super-
vised models, especially for micro F1. MAX pre-
dictions are based on only one context of each en-
tity (for each type), and the results suggest that this
is harmful for entity typing. This is in contradic-
tion with the previous results in RE (cf. Zeng et al.
(2015)) and suggests that there might be a signif-
icant difference between expressing types of enti-
ties and relations between them in text. Related
to this, MAX-AVG which averages the type prob-
abilities at prediction time improves MAX by a
large margin. Averaging the context probabilities
seems to be a way to smooth the entity type prob-
abilities. MAX-AVG models are also better than
the corresponding models with AVG that train and
predict with averaging. This is due to the fact that
AVG gives equal weights to all context probabil-
ities both in training and prediction. ATT uses
weighted contexts in both training and prediction
and that is probably the reason for its effectiveness
over all other MIML algorithms. Overall, using at-
tention (ATT) significantly improves the results of
both MLP and CNN models.

CNN+MIML-ATT (10) performs comparable

… /m/024g5w , and DOCTOR into disease will be ...

… whooping cough , and kidney disease (/m/024g5w ‘s
disease ...

In 7 , DOCTOR and /m/024g5w write Elements of the ...

book but his catarrhal bronchitis turned to /m/024g5w ‘s
disease and ...

It has cured /m/024g5w ‘s disease that could be traced to ...

two clinical wards so /m/024g5w can carry on intensive
study ...

/m/024g5w , who once explored LOCATION-COUNTRY
and wrote up his ...
... is /m/024g5w , who is collecting and painstakingly
recording ...

pe
rs
on

au
th
or

do
ct
or

pe
rs
on

au
th
or

do
ct
or

ATT MAX

Figure 2: MIML-ATT and MIML-MAX scores for
the example entity /m/024g5w.

to EntEmb (11), with better micro F1 on all and
tail entities and worse MAP and micro F1 on head
entities. These two models have different proper-
ties, e.g., MIML is also able to type each mention
of entities while EntEmb works only for corpus-
level typing of entities. (See Yaghoobzadeh and
Schütze (2015) for more differences) It is impor-
tant to note that MIML can also be applied to any
entity typing architecture or model that is trained
by distant supervision. Due to the lack of large
annotated corpora, distant supervision is currently
the only viable approach to fine-grained entity typ-
ing; thus, our demonstration of the effectiveness of
MIML is an important finding for entity typing.

Joining the results of CNN+MIML-ATT with
EntEmb (line 13) gives large improvements over
each of the single models. It is also consistently
better (by more than 3% in all measures) than
our baseline FIGMENT (12), which is basically
MLP+EntEmb. This improvement is achieved by
using CNN instead of MLP for context represen-
tation and integrating MIML-ATT. EntEmb is im-
proved by ?) by using entity names. We leave the
integration of that model to future work.

Example. To show the behavior of MIML-
MAX and MIML-ATT, we extract the scores that
each method assigns to the labels for each context.
A comparison for the example entity “Richard
Bright” (MID: /m/024g5w) who is a PERSON,
DOCTOR and AUTHOR is shown in Figure 2. Note
that the weights from MIML-ATT (Eq. 8) sum to 1
for each label because of the applied softmax func-
tion while the scores from MIML-MAX (Eq. 1)
do not. For both methods, the scores for the type
PERSON are more equally distributed than for the
other types which makes sense since the entity has
the PERSON characteristics in every sentence. For

84

the other types, both models seem to be influenced
by other entities occurring in the context (e.g., an
occurrence with another DOCTOR could indicate
that the entity is also a DOCTOR) but also by trig-
ger words such as “write” or “book” for the type
AUTHOR or “disease” for the type DOCTOR.

5.3 Relation Extraction Experiments

Models. In our experiments, we compare two
state-of-the-art RE architectures: piecewise CNN
(Zeng et al., 2015) and contextwise CNN (Adel et
al., 2016). We use the publicly available imple-
mentation for the piecewise CNN (URL, 2016a)
and our own implementation for the contextwise
CNN. Both CNNs represent the input words with
embeddings and split the contexts based on the
positions of the relation arguments. The context-
wise CNN splits the input before convolution, the
piecewise CNN after convolution. Also, while
the piecewise CNN applies a softmax layer di-
rectly after pooling, the contextwise CNN feeds
the pooling results into a fully-connected hidden
layer first. For both models, we use MI learning to
mitigate the noise from distant supervision.

Results. The precision recall (PR) curves in
Figure 3 show that the contextwise CNN outper-
forms the piecewise CNN on our RE dataset. We
also compare them to a baseline model that does
not learn context features but uses only the em-
beddings of the relation arguments as an input and
feeds them into an MLP (similar to the EntEmb
baseline for ET). The results confirm that the con-
text features which the CNNs extract are very im-
portant, not only for ET but also for RE. Note that
the PR curves are calculated on the corpus level
and not on the sentence-level, i.e., after aggregat-
ing the predictions for each entity pair. Following
Ritter et al. (2013), we compute the area A under
the PR curves which supports this trend (EntEmb:
A = 0.34, piecewise CNN: A = 0.48, context-
wise CNN: A = 0.50).

Pipeline vs. joint training. Since the con-
textwise CNN outperforms the piecewise CNN,
we use the contextwise CNN for integrating en-
tity types. Figure 4 shows that the performance
on the RE dataset increases when we integrate
entity type information into the CNN. The main
trend of the PR curves and the areas under them
shows the following order of model performances:
JOINT-TRAIN > WEIGHTED > PREDICTED-
HIDDEN > BINARY-HIDDEN > BINARY.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Recall

RE = entEmb
RE = piecewise CNN

RE = contextwise CNN

Figure 3: PR curves: relation extraction models

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Recall

contextwise CNN
+ BINARY

+ BINARY-HIDDEN
+ PREDICTED-HIDDEN

+ WEIGHTED
+ JOINT

Figure 4: PR curves: type-aware relation extrac-
tion models

Discussion. The better performance of our
approaches of integrating type predictions into
the contextwise CNN (PREDICTED-HIDDEN,
WEIGHTED) compared to baseline type integra-
tions (BINARY, BINARY-HIDDEN) shows that
probabilistic predictions of an entity typing sys-
tem can be a valuable resource for RE. With bi-
nary types, it is not possible to tell whether one
of the selected types had a higher probability than
another or whether a type whose binary value is
0 just barely missed the threshold. Probabilistic
representations preserve this information. Thus,
using probabilistic representations, the RE system
can compensate for noise in ET predictions.

WEIGHTED with access to the distributional
type embeddings learned from the corpus works
better than all other pipeline models. This shows
that our type embeddings can be valuable for RE.
JOINT-TRAIN performs better than all pipeline
models, even though the ET part in the pipelines is
trained on more data. The area of JOINT-TRAIN
under the PR curve is A = 0.66. A plausible rea-
son is the mutual dependencies of those two tasks
which a joint model can better learn than a pipeline

85

model. We can also relate it to better noise mitiga-
tion of jointed ET, compared to isolated models.3

Analysis of joint training. In this paragraph,
we investigate the joint training in more detail.
In particular, we evaluate different variants of it
by combining relation extraction with other en-
tity typing approaches: EntEmb and FIGMENT.
For joint training with ET-EntEmb, we do not use
the context for predicting the types of the relation
arguments but only their embeddings. Then, we
feed those embeddings into an MLP which com-
putes a representation that we use for the type pre-
diction. This corresponds to the EntEmb model
presented in Table 3 (line 11). For joint train-
ing with ET-FIGMENT, we compute two differ-
ent cost functions for entity typing: one for typ-
ing based on entity embeddings (see ET-EntEmb
above) and one for typing based on an MLP con-
text model. This does not correspond exactly to
the FIGMENT model from Table 3 (line 12) which
combines an entity embedding and MLP context
model as a postprocessing step but comes close.
In addition to those two baseline ET models, we
also train a version in which both entity typing
and relation extraction use EntEmb as their only
input features. Figure 5 shows the PR curves for
those models. The curve for the model that uses
only entity embedding features for both entity typ-
ing and relation extraction is much worse than the
other curves. This emphasizes the importance of
our context model for RE (see also Figure 3), also
in combination with joint training. Similarly, the
curve for the model with EntEmb as entity typ-
ing component has more precision variations than
the curves for the other models which use context
features for ET. Thus, joint training does not help
per se but it is important which models are trained
together. The areas under the PR curves show the
following model trends: joint with ET-FIGMENT
≈ joint as in Figure 1 > joint with ET-EntEmb >
joint with ET-EntEmb and RE-EntEmb.

Most improved relations. To identify which
relations are improved the most when entity
types are integrated, we compare the relation
specific F1 scores of CNN, CNN+WEIGHTED
and CNN+JOINT-TRAIN. With WEIGHTED, the
relations PPL.deceased PER.place of death and
LOC.LOC.containedby are improved the most
(from 36.13 to 53.73 and 49.04 to 64.19 F1,

3On the joint dataset, joint training improves MAP for en-
tity typing by about 20% compared to the best isolated model.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

P
re

ci
si

on

Recall

joint, ET = entEmb, RE = entEmb
joint, ET = FIGMENT

joint, ET = entEmb
joint, Figure 1

Figure 5: Variants of joint training

resp.). JOINT-TRAIN has the most posi-
tive impact on PPL.deceased PER.place of death,
ORG.ORG.place founded and GOV.GOV agen-
cy.jurisdiction (from 36.13 to 67.10, 42.38 to
58.51 and 62.26 to 70.41 resp.).

6 Conclusion

In this paper, we addressed different types of noise
in two information extraction tasks: entity typ-
ing and relation extraction. We presented the first
multi-instance multi-label methods for entity typ-
ing and showed that it helped to alleviate the noise
from distant supervised labels. This is an impor-
tant contribution because most of the current fine-
grained entity typing systems are trained by distant
supervision. Our best model sets a new state of the
art in corpus-level entity typing. For relation ex-
traction, we mitigated noise from using predicted
entity types as features. We compared different
pipeline approaches with each other and with our
proposed joint type-relation extraction model. We
observed that using type probabilities is more ro-
bust than binary predictions of types, and joint
training gives the best results.

Acknowledgments

This work was supported by DFG (SCHU2246/8-
2) and by a Google European Doctoral Fellowship
granted to Heike Adel.

References
Heike Adel, Benjamin Roth, and Hinrich Schütze.

2016. Comparing convolutional neural networks to
traditional models for slot filling. In NAACL HLT
2016, The 2016 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, San

86

Diego, California, USA, June 12 - June 17, 2016.
http://arxiv.org/abs/1603.05157.

Isabelle Augenstein, Andreas Vlachos, and Diana
Maynard. 2015. Extracting relations between
non-standard entities using distant supervision and
imitation learning. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 747–757.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-
Durán, Jason Weston, and Oksana Yakhnenko.
2013. Irreflexive and hierarchical relations as trans-
lations. CoRR, abs/1304.7158.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel P. Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12:2493–2537.

Luciano Del Corro, Abdalghani Abujabal, Rainer
Gemulla, and Gerhard Weikum. 2015. Finet:
Context-aware fine-grained named entity typing. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
868–878.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu.
2015. A hybrid neural model for type classification
of entity mentions. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial
Intelligence, IJCAI 2015, Buenos Aires, Argentina,
July 25-31, 2015, pages 1243–1249.

Lan Du, Anish Kumar, Mark Johnson, and Massim-
iliano Ciaramita. 2015. Using entity information
from a knowledge base to improve relation extrac-
tion. In Australasian Language Technology Associ-
ation Workshop 2015, pages 31–38.

Jenny Rose Finkel, Trond Grenager, and Christo-
pher D. Manning. 2005. Incorporating non-local
information into information extraction systems by
gibbs sampling. In ACL 2005, 43rd Annual Meeting
of the Association for Computational Linguistics,
Proceedings of the Conference, 25-30 June 2005,
University of Michigan, USA.

Evgeniy Gabrilovich, Michael Ringgaard, and Amar-
nag Subramanya. 2013. Facc1: Freebase annotation
of clueweb corpora.

Zhou GuoDong, Su Jian, Zhang Jie, and Zhang Min.
2005. Exploring various knowledge in relation ex-
traction. In Proceedings of the 43rd annual meet-
ing on Association for Computational Linguistics,
pages 427–434. Association for Computational Lin-
guistics.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke
Zettlemoyer, and Daniel S Weld. 2011. Knowledge-
based weak supervision for information extraction
of overlapping relations. In Proceedings of the 49th

Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies-
Volume 1, pages 541–550. Association for Compu-
tational Linguistics.

Xueyan Jiang, Volker Tresp, Yi Huang, and Maxi-
milian Nickel. 2012. Link prediction in multi-
relational graphs using additive models. In Pro-
ceedings of the International Workshop on Seman-
tic Technologies meet Recommender Systems & Big
Data, Boston, USA, November 11, 2012, pages 1–
12.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blun-
som. 2014. A convolutional neural network for
modelling sentences. Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan,
and Maosong Sun. 2016. Neural relation extraction
with selective attention over instances. In Proceed-
ings of the 54th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 2124–2133, Berlin, Germany, August.
Association for Computational Linguistics.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained en-
tity recognition. In Proceedings of the Twenty-Sixth
AAAI Conference on Artificial Intelligence, July 22-
26, 2012, Toronto, Ontario, Canada.

Yang Liu, Kang Liu, Liheng Xu, and Jun Zhao. 2014.
Exploring fine-grained entity type constraints for
distantly supervised relation extraction. In Proceed-
ings of COLING 2014, the 25th International Con-
ference on Computational Linguistics: Technical
Papers, Dublin, Ireland, August 23-29 2014, pages
2107–2116.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. CoRR, abs/1301.3781.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation ex-
traction without labeled data. In ACL 2009, Pro-
ceedings of the 47th Annual Meeting of the Associ-
ation for Computational Linguistics and the 4th In-
ternational Joint Conference on Natural Language
Processing of the AFNLP, 2-7 August 2009, Singa-
pore, pages 1003–1011.

Arvind Neelakantan and Ming-Wei Chang. 2015.
Inferring missing entity type instances for knowl-
edge base completion: New dataset and methods.
In NAACL HLT 2015, The 2015 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Denver, Colorado, USA, May 31 - June 5,
2015, pages 515–525.

Maximilian Nickel, Volker Tresp, and Hans-Peter
Kriegel. 2012. Factorizing YAGO: scalable ma-
chine learning for linked data. In World Wide Web
Conference, pages 271–280.

87

Xiang Ren, Wenqi He, Meng Qu, Clare R. Voss, Heng
Ji, and Jiawei Han. 2016. Label noise reduction
in entity typing by heterogeneous partial-label em-
bedding. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, San Francisco, CA, USA, August
13-17, 2016, pages 1825–1834.

Sebastian Riedel, Limin Yao, and Andrew McCal-
lum. 2010. Modeling relations and their men-
tions without labeled text. In Machine Learning and
Knowledge Discovery in Databases, pages 148–163.
Springer.

Sebastian Riedel, Limin Yao, Andrew McCallum, and
Benjamin M. Marlin. 2013. Relation extraction
with matrix factorization and universal schemas.
In Human Language Technologies: Conference of
the North American Chapter of the Association of
Computational Linguistics, Proceedings, June 9-14,
2013, Westin Peachtree Plaza Hotel, Atlanta, Geor-
gia, USA, pages 74–84.

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Et-
zioni. 2013. Modeling missing data in distant super-
vision for information extraction. TACL, 1:367–378.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and
Sebastian Riedel. 2016. An attentive neural ar-
chitecture for fine-grained entity type classification.
CoRR, abs/1604.05525.

Richard Socher, Danqi Chen, Christopher D. Manning,
and Andrew Y. Ng. 2013. Reasoning with neural
tensor networks for knowledge base completion. In
Advances in Neural Information Processing Systems
26: 27th Annual Conference on Neural Information
Processing Systems 2013. Proceedings of a meet-
ing held December 5-8, 2013, Lake Tahoe, Nevada,
United States., pages 926–934.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati,
and Christopher D. Manning. 2012. Multi-instance
multi-label learning for relation extraction. In Pro-
ceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
pages 455–465.

URL. 2016a. Ds pcnns (piecewise cnn) code
(kang liu). http://lemurproject.org/
clueweb12.

URL. 2016b. Figment data set. http://cistern.
cis.lmu.de/figment.

URL. 2016c. Lemur project: Clueweb. http://
lemurproject.org/clueweb12.

URL. 2016d. Lemur project: Facc1. http://
lemurproject.org/clueweb12/FACC1.

Andreas Vlachos and Stephen Clark. 2014.
Application-driven relation extraction with limited
distant supervision. In Proceedings of the AHA!

Workshop on Information Discovery in Text, Dublin,
Ireland, August 23 2014, pages 1–6.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng
Chen. 2014. Knowledge graph and text jointly
embedding. In Proceedings of the 2014 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2014, October 25-29, 2014,
Doha, Qatar, A meeting of SIGDAT, a Special In-
terest Group of the ACL, pages 1591–1601.

Jason Weston, Antoine Bordes, Oksana Yakhnenko,
and Nicolas Usunier. 2013. Connecting language
and knowledge bases with embedding models for re-
lation extraction. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2013, 18-21 October 2013,
Grand Hyatt Seattle, Seattle, Washington, USA, A
meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1366–1371.

Yadollah Yaghoobzadeh and Hinrich Schütze. 2015.
Corpus-level fine-grained entity typing using con-
textual information. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2015, Lisbon, Portugal,
September 17-21, 2015, pages 715–725.

Limin Yao, Sebastian Riedel, and Andrew McCallum.
2010. Collective cross-document relation extrac-
tion without labelled data. In Proceedings of the
2010 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2010, 9-11 Oc-
tober 2010, MIT Stata Center, Massachusetts, USA,
A meeting of SIGDAT, a Special Interest Group of
the ACL, pages 1013–1023.

Limin Yao, Sebastian Riedel, and Andrew McCallum.
2013. Universal schema for entity type prediction.
In Proceedings of the 2013 Workshop on Automated
Knowledge Base Construction, AKBC ’13, pages
79–84.

Dani Yogatama, Daniel Gillick, and Nevena Lazic.
2015. Embedding methods for fine grained entity
type classification. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing of the Asian
Federation of Natural Language Processing, ACL
2015, July 26-31, 2015, Beijing, China, Volume 2:
Short Papers, pages 291–296.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hof-
fart, Marc Spaniol, and Gerhard Weikum. 2012.
HYENA: hierarchical type classification for entity
names. In COLING 2012, 24th International Con-
ference on Computational Linguistics, Proceedings
of the Conference: Posters, 8-15 December 2012,
Mumbai, India, pages 1361–1370.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao.
2015. Distant supervision for relation extraction via
piecewise convolutional neural networks. In Pro-
ceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2015,

88

Lisbon, Portugal, September 17-21, 2015, pages
1753–1762.

89

5. Noise-mitigation

90

Bibliography

Heike Adel, Benjamin Roth, and Hinrich Schütze. Comparing convolutional neu-
ral networks to traditional models for slot filling. In Proceedings of the 2016
Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 828–838, 2016.

Isabelle Augenstein, Andreas Vlachos, and Diana Maynard. Extracting relations
between non-standard entities using distant supervision and imitation learning.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 747–757, 2015.

Miguel Ballesteros, Chris Dyer, and Noah A. Smith. Improved transition-based
parsing by modeling characters instead of words with lstms. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 349–359, 2015.

Marco Baroni and Alessandro Lenci. Distributional memory: A general frame-
work for corpus-based semantics. Computational Linguistics, 36:673–721,
2010.

Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. Representation learning:
A review and new perspectives. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 35:1798–1828, 2013.

James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for Scientific Computing Conference (SciPy), 2010.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching
word vectors with subword information. CoRR, abs/1607.04606, 2016.

Kurt D. Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Tay-
lor. Freebase: a collaboratively created graph database for structuring human

91

BIBLIOGRAPHY

knowledge. In Proceedings of the International Conference on Management of
Data, pages 1247–1250, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcı́a-Durán, Jason Weston, and Ok-
sana Yakhnenko. Irreflexive and hierarchical relations as translations. In
Proceddings of the Workshop on Structured Learning: Inferring Graphs from
Structured and Unstructured Inputs, 2013.

Jan A. Botha and Phil Blunsom. Compositional morphology for word represen-
tations and language modelling. In Proceedings of the 31th International Con-
ference on Machine Learning, pages 1899–1907, 2014.

Léon Bottou. Stochastic gradient descent tricks. In Neural Networks: Tricks of
the Trade - Second Edition, pages 421–436. Springer, 2012.

Paul Buitelaar. Nlp in the ontology life-cycle. eLearning4NLP Workshop, 2007.

Yu Chen, You Ouyang, Wenjie Li, Dequan Zheng, and Tiejun Zhao. Using deep
belief nets for chinese named entity categorization. In Proceedings of the 2010
Named Entities Workshop, pages 102–109, 2010.

Luciano Del Corro, Abdalghani Abujabal, Rainer Gemulla, and Gerhard Weikum.
Finet: Context-aware fine-grained named entity typing. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, pages
868–878, 2015.

Li Dong, Furu Wei, Hong Sun, Ming Zhou, and Ke Xu. A hybrid neural model for
type classification of entity mentions. In Proceedings of the 24th International
Joint Conference on Artificial Intelligence, pages 1243–1249, 2015.

Cı́cero Nogueira dos Santos and Victor Guimarães. Boosting named entity recog-
nition with neural character embeddings. CoRR, abs/1505.05008, 2015.

Cı́cero Nogueira dos Santos and Bianca Zadrozny. Learning character-level repre-
sentations for part-of-speech tagging. In Proceedings of the 31th International
Conference on Machine Learning, pages 1818–1826, 2014.

Cı́cero Nogueira dos Santos, Bing Xiang, and Bowen Zhou. Classifying relations
by ranking with convolutional neural networks. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing of the Asian
Federation of Natural Language Processing, pages 626–634, 2015.

92

BIBLIOGRAPHY

Lan Du, Anish Kumar, Mark Johnson, and Massimiliano Ciaramita. Using entity
information from a knowledge base to improve relation extraction. In Aus-
tralasian Language Technology Association Workshop, pages 31–38, 2015.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12:2121–2159, 2011.

Greg Durrett and Dan Klein. A joint model for entity analysis: Coreference, typ-
ing, and linking. Transactions of the Association for Computational Linguistics,
2:477–490, 2014.

Jeffrey L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

Wei Fang, Jianwen Zhang, Dilin Wang, Zheng Chen, and Ming Li. Entity dis-
ambiguation by knowledge and text jointly embedding. In Proceedings of The
20th SIGNLL Conference on Computational Natural Language Learning, pages
260–269, August 2016.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating
non-local information into information extraction systems by gibbs sampling.
In Proceedings of the 43rd Annual Meeting of the Association for Computa-
tional Linguistics, pages 363–370, 2005.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse Kirchner, and David Huynh.
Context-dependent fine-grained entity type tagging. CoRR, abs/1412.1820,
2014.

Yoav Goldberg. A primer on neural network models for natural language process-
ing. Journal of Artificial Intelligence Research, 57:345–420, 2016.

Sonal Gupta and Christopher D. Manning. Improved pattern learning for boot-
strapped entity extraction. In Proceedings of the 18th Conference on Computa-
tional Natural Language Learning, pages 98–108, 2014.

GE Hinton. Distributed representations. Technical Report at School of Computer
Science at Carnegie Mellon University, 1984.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
Computation, 9:1735–1780, 1997.

Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S.
Weld. Knowledge-based weak supervision for information extraction of over-
lapping relations. In Proceedings of the 49th Annual Meeting of the Associ-

93

BIBLIOGRAPHY

ation for Computational Linguistics: Human Language Technologies, pages
541–550, 2011.

Xueyan Jiang, Volker Tresp, Yi Huang, and Maximilian Nickel. Link prediction
in multi-relational graphs using additive models. In Proceedings of the Interna-
tional Workshop on Semantic Technologies meet Recommender Systems & Big
Data, pages 1–12, 2012.

Rie Johnson and Tong Zhang. Effective use of word order for text categorization
with convolutional neural networks. In Proceedings of the 2015 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 103–112, 2015.

Nal Kalchbrenner, Edward Grefenstette, and Phil Blunsom. A convolutional neu-
ral network for modelling sentences. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics, pages 655–665, 2014.

Yoon Kim. Convolutional neural networks for sentence classification. In Pro-
ceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing, pages 1746–1751, 2014.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M. Rush. Character-
aware neural language models. In Proceedings of the Thirtieth AAAI Confer-
ence on Artificial Intelligence, pages 2741–2749, 2016.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
CoRR, abs/1412.6980, 2014.

Ryan Kiros, Yukun Zhu, Ruslan Salakhutdinov, Richard S. Zemel, Raquel Urta-
sun, Antonio Torralba, and Sanja Fidler. Skip-thought vectors. In Proceed-
ings of the 29th Annual Conference on Neural Information Processing Systems,
pages 3294–3302, 2015.

Dan Klein, Joseph Smarr, Huy Nguyen, and Christopher D. Manning. Named
entity recognition with character-level models. In Proceedings of the 7th Con-
ference on Natural Language Learning, pages 180–183, 2003.

Arne Köhn. What’s in an embedding? analyzing word embeddings through multi-
lingual evaluation. In Proceedings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 2067–2073, 2015.

Siwei Lai, Kang Liu, Liheng Xu, and Jun Zhao. How to generate a good word
embedding? CoRR, abs/1507.05523, 2015.

94

BIBLIOGRAPHY

Yann Lecun and Yoshua Bengio. Convolutional Networks for Images, Speech and
Time Series, pages 255–258. The MIT Press, 1995.

Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Effiicient
backprop. In Neural Networks: Tricks of the Trade, pages 9–50, 1998.

Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional similarity
with lessons learned from word embeddings. Transactions of the Association
for Computational Linguistics, 3:211–225, 2015.

Jiwei Li and Dan Jurafsky. Do multi-sense embeddings improve natural language
understanding? In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1722–1732, 2015.

Yankai Lin, Shiqi Shen, Zhiyuan Liu, Huanbo Luan, and Maosong Sun. Neural
relation extraction with selective attention over instances. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics, pages
2124–2133, 2016.

Wang Ling, Chris Dyer, Alan W. Black, and Isabel Trancoso. Two/too simple
adaptations of word2vec for syntax problems. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 1299–1304, 2015a.

Wang Ling, Chris Dyer, Alan W Black, Isabel Trancoso, Ramon Fermandez, Sil-
vio Amir, Luis Marujo, and Tiago Luis. Finding function in form: Compo-
sitional character models for open vocabulary word representation. In Pro-
ceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1520–1530, 2015b.

Xiao Ling and Daniel S. Weld. Fine-grained entity recognition. In Proceedings
of the 16th AAAI Conference on Artificial Intelligence, 2012.

Xiao Ling, Sameer Singh, and Daniel Weld. Design challenges for entity link-
ing. Transactions of the Association for Computational Linguistics, 3:315–328,
2015c.

Yang Liu, Kang Liu, Liheng Xu, and Jun Zhao. Exploring fine-grained entity
type constraints for distantly supervised relation extraction. In Proceedings
of the 25th International Conference on Computational Linguistics: Technical
Papers, pages 2107–2116, 2014.

Gideon S. Mann. Fine-grained proper noun ontologies for question answering. In
Proceedings of the 2002 Workshop on Building and Using Semantic Networks,
pages 1–7, 2002.

95

BIBLIOGRAPHY

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction
to Information Retrieval. Cambridge University Press, 2008.

Paul McNamee and Hoa Trang Dang. Overview of the tac 2009 knowledge base
population track. In Text Analysis Conference, pages 111–113, 2009.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation
of word representations in vector space. CoRR, abs/1301.3781, 2013.

Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek. Distant
supervision for relation extraction with an incomplete knowledge base. In Pro-
ceedings of the 2013 Conference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Language Technologies, pages
777–782, 2013.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Jurafsky. Distant supervision
for relation extraction without labeled data. In Proceedings of the Joint Con-
ference of the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP, 2009.

Andriy Mnih and Koray Kavukcuoglu. Learning word embeddings efficiently
with noise-contrastive estimation. In Proceedings of the 27th Annual Confer-
ence on Neural Information Processing, pages 2265–2273, 2013.

David Nadeau and Satoshi Sekine. A survey of named entity recognition and
classification. Lingvisticae Investigationes, 30:3–26, 2007.

Arvind Neelakantan and Ming-Wei Chang. Inferring missing entity type instances
for knowledge base completion: New dataset and methods. In Proceedings of
the 2015 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, pages 515–525,
2015.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing YAGO:
scalable machine learning for linked data. In Proceedings of the 21st World
Wide Web Conference, pages 271–280, 2012.

Alexandre Passos, Vineet Kumar, and Andrew McCallum. Lexicon infused phrase
embeddings for named entity resolution. In Proceedings of the 18th Conference
on Computational Natural Language Learning, 2014.

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global
vectors for word representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, pages 1532–1543, 2014.

96

BIBLIOGRAPHY

B.T. Polyak. Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4:1 – 17, 1964.

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng Ji, and Jiawei Han. Afet:
Automatic fine-grained entity typing by hierarchical partial-label embedding.
In Proceedings of the 2016 Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1369–1378, 2016a.

Xiang Ren, Wenqi He, Meng Qu, Clare R. Voss, Heng Ji, and Jiawei Han. Label
noise reduction in entity typing by heterogeneous partial-label embedding. In
Proceedings of the 22nd International Conference on Knowledge Discovery
and Data Mining, pages 1825–1834, 2016b.

Sebastian Riedel, Limin Yao, and Andrew McCallum. Modeling relations and
their mentions without labeled text. In Machine Learning and Knowledge Dis-
covery in Databases, pages 148–163. Springer, 2010.

Sebastian Riedel, Limin Yao, Andrew McCallum, and Benjamin M. Marlin. Re-
lation extraction with matrix factorization and universal schemas. In Proceed-
ings of the 2013 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 74–84,
2013.

Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Etzioni. Modeling missing
data in distant supervision for information extraction. Transactions of the As-
sociation for Computational Linguistics, 1:367–378, 2013.

Sascha Rothe and Hinrich Schütze. Word embedding calculus in meaningful ultra-
dense subspaces. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics, 2016.

Sascha Rothe, Sebastian Ebert, and Hinrich Schütze. Ultradense word embed-
dings by orthogonal transformation. In Proceddings of the 2016 Conference of
the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 767–777, 2016.

Dana Rubinstein, Effi Levi, Roy Schwartz, and Ari Rappoport. How well do distri-
butional models capture different types of semantic knowledge? In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing of
the Asian Federation of Natural Language Processing, pages 726–730, 2015.

Magnus Sahlgren. The Word-Space Model. PhD thesis, Stockholm University,
2006.

97

BIBLIOGRAPHY

Tobias Schnabel, Igor Labutov, David Mimno, and Thorsten Joachims. Evalua-
tion methods for unsupervised word embeddings. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 298–
307, 2015.

Sonse Shimaoka, Pontus Stenetorp, Kentaro Inui, and Sebastian Riedel. An atten-
tive neural architecture for fine-grained entity type classification. In Proceed-
ings of the 5th Workshop on Automated Knowledge Base Construction, pages
69–74, 2016.

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Y. Ng. Rea-
soning with neural tensor networks for knowledge base completion. In Proceed-
ings of the 27th Annual Conference on Neural Information Processing Systems,
pages 926–934, 2013.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th International Conference on
World Wide Web, pages 697–706, 2007.

Yaming Sun, Lei Lin, Duyu Tang, Nan Yang, Zhenzhou Ji, and Xiaolong Wang.
Modeling mention, context and entity with neural networks for entity disam-
biguation. In Proceedings of the 24th International Joint Conference on Artifi-
cial Intelligence, pages 1333–1339, 2015.

Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D. Man-
ning. Multi-instance multi-label learning for relation extraction. In Proceed-
ings of the 2012 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, pages 455–465,
2012.

Michael Thelen and Ellen Riloff. A bootstrapping method for learning semantic
lexicons using extraction pattern contexts. In Proceedings of the 2002 Confer-
ence on Empirical Methods in Natural Language Processing, pages 214–221,
2002.

Yulia Tsvetkov, Manaal Faruqui, Wang Ling, Guillaume Lample, and Chris Dyer.
Evaluation of word vector representations by subspace alignment. In Proceed-
ings of the 2015 Conference on Empirical Methods in Natural Language Pro-
cessing, pages 2049–2054, 2015.

Peter D. Turney and Patrick Pantel. From frequency to meaning: Vector space
models of semantics. Journal of Artificial Intelligence Research, 37:141–188,
2010.

98

BIBLIOGRAPHY

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Jour-
nal of Machine Learning Research, 9:2579–2605, 2008.

Andreas Vlachos and Stephen Clark. Application-driven relation extraction with
limited distant supervision. In Proceedings of the AHA! Workshop on Informa-
tion Discovery in Text, pages 1–6, 2014.

Peng Wang, Jiaming Xu, Bo Xu, Cheng-Lin Liu, Heng Zhang, Fangyuan Wang,
and Hongwei Hao. Semantic clustering and convolutional neural network for
short text categorization. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Con-
ference on Natural Language Processing of the Asian Federation of Natural
Language Processing, pages 352–357, 2015.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph and
text jointly embedding. In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 1591–1601, 2014.

Zhigang Wang and Juan-Zi Li. Text-enhanced representation learning for knowl-
edge graph. In Proceedings of the 24th International Joint Conference on Arti-
ficial Intelligence, pages 1293–1299, 2016.

Jason Weston, Antoine Bordes, Oksana Yakhnenko, and Nicolas Usunier. Con-
necting language and knowledge bases with embedding models for relation
extraction. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing, pages 1366–1371, 2013.

Yijun Xiao and Kyunghyun Cho. Efficient character-level document classification
by combining convolution and recurrent layers. CoRR, abs/1602.00367, 2016.

Ruobing Xie, Zhiyuan Liu, Jia Jia, Huanbo Luan, and Maosong Sun. Representa-
tion learning of knowledge graphs with entity descriptions. In Proceedings of
the 30th Conference on Artificial Intelligence, pages 2659–2665, 2016.

Yadollah Yaghoobzadeh and Hinrich Schütze. Corpus-level fine-grained entity
typing using contextual information. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pages 715–725, 2015.

Yadollah Yaghoobzadeh and Hinrich Schütze. Intrinsic subspace evaluation of
word embedding representations. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics, pages 236–246, 2016.

99

BIBLIOGRAPHY

Yadollah Yaghoobzadeh and Hinrich Schütze. Multi-level representations for fine-
grained typing of knowledge base entities. In Proceedings of the 15th Confer-
ence of the European Chapter of the Association for Computational Linguistics,
pages 578–589, 2017.

Ikuya Yamada, Hiroyuki Shindo, Hideaki Takeda, and Yoshiyasu Takefuji. Joint
learning of the embedding of words and entities for named entity disambigua-
tion. In Proceedings of The 20th SIGNLL Conference on Computational Natu-
ral Language Learning, pages 250–259, 2016.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Collective cross-document
relation extraction without labelled data. In Proceedings of the 2010 Con-
ference on Empirical Methods in Natural Language Processing, pages 1013–
1023, 2010.

Limin Yao, Sebastian Riedel, and Andrew McCallum. Universal schema for entity
type prediction. In Proceedings of the 2013 Workshop on Automated Knowledge
Base Construction, pages 79–84, 2013.

Wenpeng Yin and Hinrich Schütze. Convolutional neural network for paraphrase
identification. In Proceedings of the 2015 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language
Technologies, pages 901–911, 2015.

Dani Yogatama, Daniel Gillick, and Nevena Lazic. Embedding methods for fine
grained entity type classification. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, pages 291–296, 2015.

Mohamed Amir Yosef, Sandro Bauer, Johannes Hoffart, Marc Spaniol, and Ger-
hard Weikum. HYENA: Hierarchical type classification for entity names. In
Proceedings of the 24th International Conference on Computational Linguis-
tics, pages 1361–1370, 2012.

Daojian Zeng, Kang Liu, Siwei Lai, Guangyou Zhou, Jun Zhao, et al. Rela-
tion classification via convolutional deep neural network. In Proceedings of
the 25th International Conference on Computational Linguistics, pages 2335–
2344, 2014.

Daojian Zeng, Kang Liu, Yubo Chen, and Jun Zhao. Distant supervision for
relation extraction via piecewise convolutional neural networks. In Proceedings
of the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 1753–1762, 2015.

100

BIBLIOGRAPHY

Xiang Zhang and Yann LeCun. Text understanding from scratch. CoRR,
abs/1502.01710, 2015.

Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional net-
works for text classification. In Proceedings of the 29th Annual Conference on
Neural Information Processing, pages 649–657, 2015.

Huaping Zhong, Jianwen Zhang, Zhen Wang, Hai Wan, and Zheng Chen. Align-
ing knowledge and text embeddings by entity descriptions. In Proceedings of
the 2015 Conference on Empirical Methods in Natural Language Processing,
pages 267–272, 2015.

Zhi Zhong and Hwee Tou Ng. It makes sense: A wide-coverage word sense dis-
ambiguation system for free text. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, System Demonstrations, pages
78–83, 2010.

GuoDong Zhou, Jian Su, Jie Zhang, and Min Zhang. Exploring various knowl-
edge in relation extraction. In Proceedings of the 43rd Annual Meeting of the
Association for Computational Linguistics, pages 427–434, 2005.

101

BIBLIOGRAPHY

102

Curriculum Vitae

Education
02/2014 – 07/2017 Ph.D. Student (CIS, LMU Munich, Germany)

Research on Distributed Representations
and Fine-grained Entity Typing

09/2010 – 01/2013 MSc Student (Sharif University of Technology, Iran)
Specializations: Computer Engineering

09/2006 – 07/2010 BSc Student (University of Tehran, Iran)
Specializations: Computer Engineering

Work Experience
10/2016 - 01/2017 Research Intern (Intuit Inc., California, USA)

Research on Ontology Learning

06/2015 – 09/2015 Software Developer (FANAP, Tehran, Iran)
Developing and Maintaining an Insurance Software

Professional Activities
Program Committee Member ACL, EMNLP
Workshop Organization SCLeM (Subword and Caracter LEvel Models in NLP)

Workshop in EMNLP 2017,
Copenhagen, Denmark, Sep. 2017

103

