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Summary	
DNA repair is essential for life. It secures the correct inheritance of genetic information 

and prevents premature aging and cancer development. The only high-fidelity pathway 

that deals with the most toxic of all DNA lesions – double-strand breaks – is homologous 

recombination. Herein, the usage of an undamaged homologous donor as a template for 

repair allows the accurate restoration of the genetic information. Compared to the local 

processing of other DNA lesions, this sophisticated mechanisms yet comes at the cost of 

wide-ranging DNA transactions. Consequently, it involves not only a plethora of nucleases 

and other DNA repair proteins, but also requires a variety of factors that allow them to 

access the DNA within a chromatin environment. Despite significant progress regarding 

our knowledge on the involvement of chromatin remodeling during homologous 

recombination in the recent years, mechanistic insights into discrete functions of related 

players remain rare. 

 In this study, I aimed to identify novel requirements for chromatin remodeling 

during homologous recombination. Particularly, I was interested into the question whether 

homology search conducted by the Rad51 nucleoprotein filament is accompanied by 

chromatin changes while probing vast amounts of heterologous DNA. Combining a 

defined system of site-specific double-strand breaks in the yeast S. cerevisiae together 

with distinct localization analysis of DNA repair and chromatin factors by ChIP, I found 

novel functions of well-known members of the Snf2/Swi2 family of chromatin remodeling 

enzymes during homologous recombination. I identified the Rad54 family proteins Rad54 

and Rdh54 as the first factors that assist the Rad51 recombinase directly in the homology 

search process. While the mechanism underlying this function remains to be elucidated, 

both proteins help to indirectly promote a phosphorylation-dependent large-scale 

remodeling of histones H2A and H2B at sites of homology search. Investigation of 

canonical nucleosome remodeling machineries then uncovered an unexpected and 

intriguing function of the INO80 complex as the first chromatin remodeler directly assisting 

Rad51 loading onto ssDNA. This is achieved by removal of histone H2A.Z, and it is this 

histone variant, rather than the canonical nucleosome per se, which accumulates at 

double-strand breaks and specifically interferes with Rad51 filament formation in the 

absence of INO80. Removal of H2A.Z consequently rescues Rad51 loading as well as 

homologous recombination in INO80 deficient cells. 

The results presented in this study implicate novel requirements and stages for 

chromatin remodeling during homologous recombination and add further possible layers 

of regulation to this pivotal and widely conserved DNA repair pathway. 
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1 INTRODUCTION	

1.1 The	impact	of	DNA	damage	

 

 “We totally missed the possible role of … [DNA] repair  

although … I later came to realise that DNA is so precious  

that probably many distinct repair mechanisms would exist.”  

Francis Crick, writing in Nature, 19741 

 

DNA is the central unit of life. It carries the genetic information and with it the construction 

plan for generating proteins, cellular structures and eventually whole organisms. Faithful 

duplication of a genome during DNA replication allows the transmission of this vital 

information to daughter cells, and enables the inheritance of genetic trademarks over 

generations.  

Reflecting its essential function, DNA was thought to be an inherently stable entity 

and it came as a surprise that this is in fact not the case. The macromolecule not only 

faces a considerable intrinsic instability due to spontaneous hydrolysis, but is also under 

constant attack of reactive physical and chemical agents from outside and inside the cell2-4 

(Figure 1 A). Altogether, this adds up to a total of 100 000 changes per day at the level of 

a human genome, and this number can double upon prolonged exposure to sunlight. 

Although mutagenesis drives evolution, high doses of DNA damage threaten genomic 

integrity, contribute to premature aging and in vertebrates also to the development of 

cancer2 (Figure 1 B). Thus, it goes without saying that DNA damage repair mechanisms 

must exist to counteract this problem. Over the past 50 years, a variety of sophisticated 

pathways have been identified to deal with an even greater variety of DNA lesions5. Base 

damages, such as oxidation, alkylation or deamination, intra-and interstrand crosslinks, 

DNA-protein crosslinks as well as different kinds of DNA strand breaks are just some 

examples in this regard. Reflecting the central role of DNA over all kingdoms of life, it is a 

logical consequence that many of the corresponding repair pathways, such as base-

excision repair, mismatch repair, nucleotide-excision repair and homologous 

recombination are highly conserved from bacteria to humans6-9.  

Integrating these activities into a sophisticated signaling cascade collectively 

referred to as the DNA damage response (DDR) ensures the proper coordination of DNA 

repair with ongoing cellular physiology and eventually protects cells from death, and 

organisms from the development of diseases10. 
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Figure 1 | DNA damage, repair and consequences 
(A) A variety of endogenous and exogenous stimuli as well as spontaneous reactions trigger DNA damage. 
Common alterations comprise base modifications, such as guanine oxidation (generating 8-Oxoguanine) or 
cytosine deamination (generating uracil), bulky adducts, such as UV-light induced cyclobutane pyrimidine 
dimers (CPD) and DNA strand breaks (single- and double-strand breaks). Different kinds of lesions are 
repaired by specialized pathways, which are highly conserved throughout evolution. (B) DNA damage 
activates a signaling cascade known as the DNA damage response that couples cell cycle progression to 
damage repair. The long-term consequences of DNA damage are essentially twofold. Constant interference 
with essential processes such as transcription or replication triggers cell death and eventually contributes to 
aging. Surviving cells are subject to permanent genetic changes, such as point mutations and chromosomal 
aberrations, which support the development of cancer. Adapted from reference 11. 
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1.2 DNA	double-strand	breaks	and	their	repair	

1.2.1 Causes	and	consequences	of	DSBs	

A single nick in the phosphodiester backbone of one DNA strand is referred to as a single-

strand break (SSB). SSBs can be caused by exogenous or endogenous sources, such as 

ionizing radiation or reactive oxygen and nitrogen species, respectively. In addition, they 

are induced as reaction intermediates by topoisomerases and also during the repair of 

base damages as well as DNA interstrand crosslinks12. When two closely spaced SSBs 

are formed in complementary DNA strands, or when a replication fork encounters a nicked 

template, a double-strand break (DSB) is generated13,14. Overall, about 1 % of the SSBs in 

a cell are converted to DSBs, resulting in a number of one DSB per 100 000 kb per cell 

cycle12,13. Despite their comparably rare occurrence, DSBs are particularly harmful lesions 

and already a single persisting DSB blocks DNA replication and triggers a constant cell 

cycle arrest15,16. Not surprisingly, it is also the toxicity of these lesions that is exploited 

during cancer therapy by radio- or chemotherapeutic agents17. 

Importantly, DSBs are not only accidentally occurring lesions that bring harm to the 

cell, but are intentionally generated by various organisms to allow genetic rearrangements 

in essential cellular programs. The most fundamental of these processes is the case of 

meiosis, where DSBs induced by the enzyme Spo11 trigger genetic exchange in sexually 

reproducing organisms18. In yeast cells, the homothallic switching (HO) endonuclease 

induces a single DSB that allows a mating-type switch to initiate sexual reproduction19 and 

enzymatic DSB generation in vertebrates triggers the diversification of the antibody 

portfolio in B-lymphocytes20.  

It is their strong cytotoxic potential on the one hand and their nature as the origin of 

genetic variation on the other hand that led to the evolution of a unique toolbox of repair 

pathways that can deal with a broad spectrum of DSBs (Figure 2 and Figure 3). In the 

following, I will further outline the mechanistic bases of these pathways. As all of them are 

well conserved among eukaryotes, information will be generally given for yeast proteins. 

Mammalian proteins will be indicated separately only if not direct homologs. 

 

1.2.2 DSB	repair	by	non-homologous	end	joining	

During non-homologous end joining (NHEJ), the broken ends of a DSB are re-joined by 

the activity of DNA ligases (Figure 2 A). The pathway is principally applicable in every 

organism and works independent of the cell cycle status21,22. NHEJ plays a very prominent 
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role in mammals, while it is less important in yeast cells. This is at least in part due to the 

fast cell cycle of yeasts, which spend only little time in G1 and can often use a different 

pathway for repair (see section 1.2.3). The major advantage of NHEJ is its strong flexibility 

that allows to seal almost any kind of DSB with two available broken ends21. Initially, the 

trimeric Mre11-Rad50-Xrs2 (MRX) complex and the ring-shaped Ku70/Ku80 heterodimer 

(Ku complex) recognize and sense the lesion23-27, *. Members of both complexes then 

position DNA ligase IV and its cofactor Lif1 (XRCC4 in mammals) at the break, followed 

by the critical alignment of the free DNA ends to initiate ligation28-30. Recent data from 

vertebrate cell extracts suggest that this alignment is a two-step process, with initial long-

range tethering by Ku70/80 followed by detailed alignment via DNA ligase IV31. At “dirty” 

ends with incompatible overhangs, ligation cannot proceed directly. Here, processing 

enzymes and gap-filling polymerases such as Fen1 (ARTEMIS in mammals) and Pol4 

(Polµ and Polλ  in mammals) are recruited, respectively to catalyze necessary end 

modifications32-34. Although ligation often results in accurate repair, it is exactly the 

flexibility to modify the free ends that makes NHEJ intrinsically error-prone for small 

insertions and deletions21.  

 

 
Figure 2 | Double strand-break repair by ligation-based mechanisms 
(A) Non-homologous end joining (NHEJ) is a major DSB repair pathway. DSBs are bound by the Ku70/Ku80 
proteins (including DNA-PKcs in mammals). Together with DNA Ligase IV (Lig4) and its cofactor Lif1/XRCC4, 
the broken ends are positioned for ligation. Potential incompatible overhangs are clipped off by nucleases 
such as Fen1/ARTEMIS and gaps filled in by DNA polymerases IV/µ prior to ligation. (B) In S/G2 phases of 
the cell cycle, Ku70/80 binding is counteracted by DNA end resection enzymes. Revelation of 
microhomologies allows their alignment for end positioning. Overhangs are clipped off by Rad1-
Rad10/ERCC1-XPF nucleases and gaps filled in by DNA polymerases δ/θ. Ligation via Lig1/LIG3 eventually 
results in mutagenic repair, making microhomology-mediated end joining (MMEJ) an unfavored backup 
pathway for DSB repair (indicated by dashed arrow). 

                                                
* In mammalian cells, the MRN complex (homologous to MRX) is dispensable for NHEJ and 

instead Ku70/80 binds the DNA-PKcs protein kinase to form the DNA-PK holoenzme. 
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In addition to this classical NHEJ, breaks can also be re-ligated in a process called 

microhomology-mediated end joining (MMEJ)35 (Figure 2 B). In contrast to NHEJ, MMEJ 

requires initial degradation (resection) of the 5’ end at each side of the DSB. This process 

is driven by the nuclease activity of Mre11 in conjunction with the Sae2 protein36 and 

allows the revelation of microhomologies at the different sides of the break. As little as 6 nt 

(in mammals even only 1 nt) are then enough to align the broken ends and initiate repair. 

Heterologous 3’ flaps are subsequently removed by the Rad1-Rad10 (XPF-ERCC1 in 

mammals) nuclease, the gaps filled in by the replicative polymerase δ (Polθ in 

mammals)37,38 and ligation likely performed by DNA ligase I (DNA ligase III in mammals)35. 

Due to the substantial deletions that MMEJ can introduce, it is generally considered as a 

backup pathway when the two major repair pathways, namely NHEJ and homologous 

recombination, cannot be applied.  

 

1.2.3 DSB	repair	by	homologous	recombination	

Homologous recombination (HR) uses an undamaged homologous DNA sequence as a 

donor template for repair9,39 (Figure 3). Because this donor sequence is usually the exact 

copy of the broken DNA strand generated during DNA replication, information that got lost 

during DSB generation is faithfully restored via this pathway. Thus, there are two main 

principles that discriminate DSB repair by HR from repair by classical NHEJ. First, HR is a 

generally error-free process. Second, its applicability is in principle limited to the S and G2 

phases of the cell cycle, when a desired donor template is available. The ability of 

accurate repair makes HR an important pathway in all living organisms and underlying 

defects result in strong sensitivities to DSBs and account for the vast number of heritable 

breast and ovarian cancer in humans40. 

The decision to commence HR is largely coupled to the initiative end resection 

step of the pathway. Due to the CDK-regulated activity of Sae2, this process can only be 

triggered in the desired cell-cycle phases41. Following the Mre11/Sae2-mediated short-

range degradation of the first few hundred base pairs, a different set of enzymes further 

extends ssDNA generation. This long-range resection is either driven by the exonuclease 

Exo1, or the helicase-containing Sgs1-Top3-Rmi1 complex (STR; BLM-TOPO3α-RMI1-

RMI2 in mammals) in conjunction with the endonuclease Dna242,43. Exposure of ssDNA 

leads to the immediate recruitment of the heterotrimeric, high-affinity ssDNA binding 

protein RPA that removes secondary structures and also acts to inhibit illegitimate 

MMEJ44. Recombination mediators (see section 1.2.3.1) subsequently drive the exchange 
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of RPA for the recombinase Rad51. This generates a highly coordinated right-handed 

nucleoprotein filament, commonly known as the presynaptic filament, which is the central 

entity of the HR pathway45,46. This functional unit then undergoes the search for a 

homologous template and eventually invades the donor, thereby forming the characteristic 

microscopic D-loop structure with one displaced donor strand39,47. The Rad54 protein 

stabilizes the D-loop and initiates removal of Rad51 from the heteroduplex to allow 

subsequent priming of DNA synthesis from the invading strand by DNA polymerase δ48. 

At this stage, the extended D-loop marks the branching point for a number of HR sub-

pathways, of which one will be chosen depending on the cellular context39. In mitotic cells, 

seamless repair is guaranteed by synthesis-dependent strand annealing (SDSA) (Figure 3 

B). Following D-loop extension, the heteroduplex DNA is reversed to allow annealing of 

the newly synthesized strand with the resected strand of the second DSB end. In contrast, 

the utilization of the Dmc1 recombinase in meiotic cells favors capturing of the second 

DSB end inside the D-loop. This results in the formation of a double Holliday junction 

(dHJ), representing the classical DSB repair model (DSBR) (Figure 3 C). Endonucleases 

such as Mus81-Mms4, Yen1 or Slx1-Slx4 are capable to trigger genetic exchange by 

resolving such structures in a crossover or non-crossover fashion49. Despite the fact that 

dHJs can form in mitotic cells at low frequency, crossover formation here is strongly 

suppressed by their dissolution via the STR complex50. Finally, a third variation of HR is 

able to deal with one-ended DSB, which among others form at replication forks, 

particularly when no second fork directly approaches from the opposite direction51. In this 

case, the free end in the D-loop will be replicated in a mutagenesis-prone, conservative 

mode known as break-induced replication (BIR) that involves the DNA helicase Pif152 

(Figure 3 D).  

In addition to the Rad51-mediated recombination pathways, DSBs can also be 

repaired in a Rad51-independent, but homology-directed manner39. This single-strand 

annealing (SSA) is somewhat reminiscent of the MMEJ pathway. However it involves re-

annealing of RPA-coated ssDNA between larger repeats using the strand-annealing 

activity of Rad52 (Figure 3 E). Similar to MMEJ, SSA results in extensive deletions by 

processing of the 3’ flaps via Rad1-Rad10 and the mismatch repair proteins Msh2-Msh3. 

The requirement of SSA inside cells is unclear, though it might be useful for repairing 

DSBs within highly repetitive DNA. 
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Figure 3 | Double-strand break repair by recombination-based mechanisms 
(A) Homologous recombination (HR) is the preferred DSB repair pathway in S/G2 phases of the cell cycle. 
Here, DSBs can be subject to DNA end resection. Short-range resection initiation and long-range extension 
beyond a few hundred base pairs is covered by different sets of enzymes. Emerging ssDNA is covered by 
RPA, and mediator proteins help to replace this factor for Rad51. The Rad51 filament performs the homology 
search and invades the homologous donor template. The resulting D-loop is the branch point for different HR 
sub-pathways. (B) Mitotic DSBs channel into synthesis-dependent strand annealing (SDSA), where the D-loop 
is reverted to avoid crossovers. (C) Meiotic DSBs result in double Holliday junction (dHJ) formation. Nucleases 
cleave these structures to mediate crossover or non-crossover outcomes. (D) One-ended DSBs emerging at 
replication forks are repaired by break-induced replication (BIR), which leads to loss of heterozygosity (LOH). 
(E) Homologies on opposing sides of the break can be recombined in a Rad51-independent manner using the 
strand annealing activity of Rad52. Large overhangs are clipped off by the Rad1-Rad10/ERCC1-XPF 
nucleases. Single-strand annealing (SSA) is a highly mutagenic backup pathway of unclear relevance 
(indicated by dashed arrow). Adapted from reference 39. 
 

1.2.3.1 Regulation	of	Rad51	filaments	

The presynaptic filament is the central structure of the HR pathway with the potential to 

exchange DNA strands from different origins (Figure 4 A). Inappropriate DNA 

rearrangements can have hazardous consequences and consequently the formation of 

this functional unit is a tightly regulated process. The existence of tipping points at which 

structures are established or reversed ensures quality control, and this is achieved by a 

number of HR accessory proteins generally referred to as recombination mediators53,54 

(Figure 4 B). 
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The core recombination mediator, the Rad52 (BRCA2 in mammals) protein, 

functions to counteract the inhibitory effect of RPA on Rad51 loading onto ssDNA. Rad52 

binds both RPA and Rad51, targets Rad51 to ssDNA and is essential for Rad51 

recruitment to damage sites45,46,55-57. The central role of Rad52 in this process is 

underscored by in vitro experiments, where it alone is sufficient to overcome the RPA 

barrier. In addition to Rad52, Rad51 filament formation is promoted by a number of Rad51 

paralogs. These proteins bear readily detectable sequence similarities to Rad51 and 

structurally share the common RecA-like fold with it54. Despite these similarities, Rad51 

paralogs do neither form extensive nucleoprotein filaments on their own nor do they have 

the ability to catalyze DNA strand exchange. The best studied of these proteins are Rad55 

and Rad57, which form a stable heterodimer. This complex stimulates Rad51 loading onto 

RPA-coated ssDNA in vitro, and assists in Rad51 recruitment to DNA damage sites in 

vivo56-58. In addition to the promotion of initial Rad51 loading, it was shown that Rad55-

Rad57 also steadily stabilizes the presynaptic filament and thereby protects it from 

degradation by a negative mediator, the Srs2 helicase59. Two other Rad51 paralogs, 

Csm2 and Psy3, interact with the Shu1 and Shu2 proteins and this complex synergizes 

with Rad55-Rad57 in both in vitro filament formation and in vivo filament stabilization60-62. 

Especially in metazoans, it is less clear how Rad51 paralogs stimulate strand exchange. A 

recent study in Caenorhabditis elegans yet identified an ability of these proteins to 

physically remodel the Rad51 filament to a more “open” conformation that primes it for 

DNA strand exchange63.  

In contrast to the discussed positive mediators, a number of DNA helicases can 

disrupt Rad51 filaments and thereby act as negative mediators, as in the case of the 

above-mentioned Srs2†, 64-66. This activity is especially important to protect cells from 

illegitimate recombination at replication forks, where Srs2 is directly recruited via the 

SUMOylated sliding clamp PCNA67. While Srs2 counteracts recombination initiation, 

Rad54 family proteins critically regulate Rad51 filaments at the synaptic stage68. While the 

removal of Rad51 from heteroduplex DNA is essential to eventually complete 

recombination, it is suppressed during S-phase in a Rad54-phosphorylation dependent 

manner to avoid replication fork collapse69. Generally, not only phosphorylation, but a 

number of other post-translational modifications (PTMs) are involved in the regulation of 

HR, including ubiquitylation and SUMOylation39. While they play major roles in DSB 

signaling and the cell-cycle dependent initiation of DNA end resection (see also section 

                                                
† There is no direct homolog of Srs2 in higher eukaryotes, but the human RECQ5 helicase seems 

to fulfill similar functions64. 
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1.3.2), there are also direct contributions to presynaptic filament formation. An intriguing 

role in this regard plays SUMO, which fosters protein-protein interactions among a 

number of recombination mediators as well as RPA and this “SUMO-glue” thereby 

contributes to Rad51 loading at a DSB70. 

 

1.2.3.2 Homology	search		

Subsequently to its formation, the presynaptic filament undergoes the search for the 

homologous donor sequence71 (Figure 4 C). For this process, three different criteria have 

to be met: establishment of spatial proximity with the target DNA, probing this DNA for 

homology, and recognizing the homologous sequence.  

There is much information on the probing of non-homologous DNA and recognition 

of homologous DNA from in vitro experiments, in which the proximity problem is negligible 

due to free molecular diffusion. Under such conditions, homology probing and recognition 

are clearly intrinsic abilities of DNA recombinase proteins and no other mediators are 

required71. This is due to the presence of two different DNA binding sites in these proteins 

that enables holding the single-stranded resected DNA in one place while stochastically 

probing a short stretch of target DNA with the other site72,73. Because the affinity of the 

secondary binding site to ssDNA is yet too weak to initiate this process on its own, it in 

vitro relies on pre-existing ssDNA bubbles, generated by spontaneous DNA breathing or 

DNA supercoiling74-76. The search reaction is generally accelerated by filament sliding in a 

range up to 300 bp, and by intersegmental contact sampling, the probing of multiple 

regions at different sites of the filament77,78 (Figure 4 C). Contacts with target DNA are 

extremely short-lived and kinetically unstable unless a microhomology of at least 8 bp is 

encountered75,79. It thereby is the physical distance between the two DNA binding sites 

that energetically dictates this minimal recognition motif and hence enables a confinement 

of the search to sites with a high probability of being indeed the homologous target. If this 

is the case, strand exchange is kinetically favored due to the non-uniform extension of the 

presynaptic filament, and immediately proceeds in steps of 3 nt79,80. 

In contrast to the in vitro situation, only little is known about the principles how 

presynaptic filament and homologous DNA gain initial proximity in the context of whole 

chromosomes and the nuclear environment. It was long thought that homology search in 

yeast proceeds genome-wide with equal efficiency81-85, in contrast to mammalian cells, 

where recombination between non-homologous chromosomes is generally poor86. 

Suggested reasons for this discrepancy were the less well-defined chromosomal 
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architecture in yeast, with chromosomal territories showing quite robust intermingling87, 

and the smaller nuclear size in general. Nevertheless, yeast does possess a number of 

nuclear landmarks, of which three are enough to predict the overall nuclear 

architecture88,89: first, the nucleolus, a crescent-shaped structure close to the nuclear 

periphery, second, telomeres, which are tethered to the nuclear envelope, third, 

centromeres, which are tethered to the spindle pole body and occupy a position opposite 

to the nucleolus. Using centromere clustering as an example, our recent work identified 

that also in yeast homology search is generally the more efficient, the smaller the 

predicted spatial distance of the target DNA to the DSB is47 (Figure 4 C). Although the 

proof that this applies for the total efficiency of HR as well remains to be made, this finding 

suggests important conclusions for the process of recombination71. First, the guidance of 

homology search by the nuclear architecture automatically shifts the bias to the choice of 

the preferred donor template, due to the naturally close proximity mediated by sister-

chromatid cohesion and alignment of homologous chromosomes90-92. Second, it still 

allows the exploration of a reasonable nuclear area to eventually complete recombination 

in cases a bona fide donor cannot be found immediately. Indeed, such non-allelic or 

ectopic HR events can occur naturally between repetitive elements dispersed throughout 

the chromosomes, and contribute to genome evolution93,94. 

It is interesting that these principles apply in a context where the mobility of DNA at 

DSBs is massively changed compared to a non-broken state, and with it likely the nuclear 

architecture as well95-99. At least in the large nuclei of mammalian cells, these long-range 

movements seem to directly contribute to NHEJ between distant DSBs100. In contrast, 

there has been much debate and confusion about whether this accounts for repair by HR 

and thus the homology search as well101. The reliance on core recombination factors such 

as Rad51 and Rad54, as well as DDR kinases suggested an initial role in DNA repair96. 

Nevertheless, this model has recently been challenged by showing that the critical kinase 

target that promotes mobility in yeast is the kinetochore protein Cep3102. Ablation of its 

phosphorylation-site specifically decreased DSB mobility, but not HR efficiency. Instead, 

phospho-Cep3-induced centromere detachment from the spindle pole body enforces the 

DDR-induced cell cycle arrest by triggering the spindle assembly checkpoint.  

Overall, the nature of a successful in vivo homology search, whether it is a rather 

passive process or requires accessory factors supporting the Rad51 filament, remains to 

be elucidated. This does not only hold true with regards to the global nuclear architecture, 

but especially also when looking at the local DNA packaging into chromatin. 
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Figure 4 | Rad51 filament formation and homology search 
(A) The central entity of the HR pathway is the Rad51 filament. It is able to identify the homologous donor 
sequence during the homology search and to prime the repair process. (B) Formation of the Rad51 filament is 
highly regulated. Binding of replication protein A (RPA) to ssDNA protects DSB ends, e.g. against re-
alignments driving error-prone MMEJ. Recombination mediator proteins overcome the RPA barrier by 
interacting with both RPA and Rad51 and coordinately exchange both proteins for each other. Most important 
in this regard is Rad52 (BRCA2 in mammals). Rad55-Rad57 and the heterotetrameric Shu complex 
additionally stabilize the filament against anti-recombination mediators, such as Srs2. Metazoan mediators 
such as RFS-1/RIP-1 remodel the filament for proper strand exchange capacity. (C) Homology search is a 
two-step process. Rad51 filament and target DNA have to gain initial spatial proximity. The efficiency of this 
cellular homology search correlates with the 3D physical distance between DSB and target DNA. DSB-
induced chromatin mobility might actively contribute to this process as well. Once in close contact, local 
homology search involves accelerating mechanisms such as filament sliding and intersegmental contact 
sampling. It is unclear, which proteins other than Rad51 directly contribute to the homology search process. 
Part (C) adapted from reference 71. 
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1.3 Chromatin	and	its	role	in	DSB	repair	

1.3.1 Chromatin	structure	and	function	

In E. coli, the length of DNA exceeds the one of the cell about 10 fold. For a human cell 

however, this ratio is about 20 000 times larger. The packing of the genetic information 

within the confines of a small nucleus consequently constitutes a major challenge, which 

is further complicated by the strong electrostatic repulsion between the negatively charged 

phosphates of the DNA backbone. Thus, with the cellular compartmentalization and ever 

increasing complexity of their genomes, eukaryotic organisms inevitably had to co-evolve 

sophisticated packaging mechanisms to squeeze the DNA inside their nuclei ‡ . The 

solution comes with the generation of chromatin, in which highly conserved, basic histone 

proteins bind the DNA and neutralize the negative charges104. While the impact of this 

chromatinization culminates during cell division in light-microscopically visible structures 

known as chromosomes, it all builds on simple bricks – the nucleosomes105.  

In a nucleosome, 147 bp of DNA make 1.65 superhelical turns to wrap around an 

octameric histone assembly comprising each two molecules of H2A, H2B, H3 and H4106. 

The obligate heterodimerization of H2A with H2B and H3 with H4 thereby directs the 

nucleosome assembly. The central ~80 bp of DNA are bound by a more stable (H3-H4)2 

tetramer, to which two H2A-H2B dimers dock at each two contact points, organizing the 

peripheral base pairs on every side107. Interactions between the whole histone octamer 

and DNA are importantly not DNA base-specific, although sequences that facilitate DNA 

bending are preferential binding sites104. Just like beads on a string, individual 

nucleosomes are separated by an organism-dependent variable length of linker DNA 

between 10-80 bp and together with linker histones §  and non-histone proteins, this 

repeating unit self-organizes into higher-order structures of increasing complexity109.  

The inherent stability of the chromatin structure can cause problems in cases 

where other proteins require access to the DNA, such as during gene transcription, DNA 

replication and DNA repair. Already 25 years ago, this has led to the proposal of the 

famous “access-repair-restore” model110. Herein, initial opening of the chromatin is critical 

to allow lesion processing by the dedicated repair enzymes, followed by careful 

restoration of the structure after completion of repair. On top of being a pure obstacle, 

chromatin further fulfills a number of additional regulatory and signaling functions in DNA 

repair111,112. It thereby is the combination of a few basic principles that integrate and 
                                                
‡ Rudimentary chromatinization is present in some Archea, likely for regulatory and not packaging 

reasons103. 
§ In yeast, linker histone H1 seems not required for higher-order folding per se108. 
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coordinate chromatin changes and signaling not only in response to DNA damage: first, 

histone variant proteins and histone modifications, which intrinsically alter the properties of 

chromatin and second, ATP-dependent-chromatin remodeling enzymes and histone 

chaperones, modifying the chromatin structure by re-organizing nucleosomes from the 

outside. 

 

1.3.2 Histone	variants	and	histone	modifications	

In addition to the four canonical histone proteins, cells have evolved a range of histone 

variants. Unlike archetypical histones, their expression is independent of the cell-cycle 

stage, which allows local and on-demand integration into nucleosomes in a replication-

independent manner. Most of these proteins have been described as replacements for 

H2A and H3, opposed by a limited number of vertebrate-specific H2B variants and a 

largely invariant H4 core histone113. In higher eukaryotes, processes such as 

spermatogenesis or neuronal homeostasis are regulated by the tissue-specific expression 

of specialized variant histones. In contrast to that, other variants are well conserved 

among eukarya, reflecting their important roles in very basic cellular processes. Among 

the best examples are the centromere-specific H3 variant CenH3, which coordinates 

kinetochore assembly from yeast to humans, or the H2A variant H2A.Z, which plays major 

roles in transcription, chromosome segregation as well as during DNA repair114.  

The specific functionality of H2A.Z is best exemplified by the fact that e.g. the 

S. cerevisiae H2A.Z shows higher conservation between species than to its canonical 

counterpart itself115. Hence, H2A.Z evolved early in evolution and fulfills roles that cannot 

be taken over by canonical H2A. This is reflected by the embryonic lethality of H2A.Z 

knockout mice and the strong sensitization of yeast cells lacking this specific variant to a 

number of cellular stresses116,117. H2A.Z shares about 60 % amino acid identity with H2A, 

displaying important differences in the C-terminus that contains an alternative docking 

domain and an extended specific acidic patch118. These differences not only allow H2A.Zs 

incorporation into the chromatin by interaction with the Swc2 subunit of the chromatin 

remodeler SWR1119 (see section 1.3.3), but also enable specific protein-protein 

interactions120,121. The crystal structure of a H2A.Z containing nucleosome does not differ 

much from the canonical nucleosome, but suggests a subtle destabilization of interactions 

between the H2A.Z-H2B dimers and the (H3-H4)2 tetramer122. Hence, incorporation of 

H2A.Z is generally correlated with a more open chromatin structure and this might also 

explain its cellular functions. Importantly, the distribution of the 10 % of nucleosomes 
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containing H2A.Z throughout the genome is not random123. Its incorporation mainly at 

RNAPII promoters flanking the nucleosome free region at transcriptional start sites is 

suggested to promote transcriptional activation, especially at promoters of inducible 

genes118. Following DNA damage, H2A.Z is transiently incorporated next to DSBs and 

regulates DNA repair outcome as well as the DDR124-126. Interestingly, there is evidence 

for both a contribution of the histone variant to DNA end resection, as well as to the 

recruitment of the Ku complex125,127,128. Because repair by HR and NHEJ is accordingly 

down-regulated in absence of H2A.Z, cells up-regulate mutagenic MMEJ as a 

compensation pathway under these conditions124. Thus, H2A.Z incorporation seems to 

establish a relaxed chromatin structure that is generally primed for canonical DSB repair, 

upstream of the decision which pathway to take124. In addition to directly contributing to 

DNA repair, H2A.Z together with SWR1 mediates a change in the subcellular localization 

of DSBs125,129. Generally, this event seems to suppress unwanted recombination events 

and if it is abolished, increased recombination levels have been observed129,130. At the 

bottom line, it is likely the combination of its roles in both promoting and balancing DNA 

repair capacity that leads to the strong sensitivity of cells lacking H2A.Z when challenged 

with DNA damaging agents or replication stress.  

A second H2A variant with major implications in DSB repair is H2AX. This version 

differs from the core histone in a C-terminal extension bearing the conserved amino acid 

sequence SQ(E/D)ϕ (with ϕ denoting a hydrobphobic residue)131. Notably, there seems to 

be a potential link between the prevalence of H2AX and the efficiency of HR in different 

organisms. Both in C. elegans and humans, in which this variant is absent or present in 

only 10 % of all nucleosomes, respectively, HR activity is rather poor. Conversely, in yeast 

cells the bona fide presence of the SQ(E/D)ϕ motif in the canonical H2A (which is thus 

H2AX-like) goes along with an extraordinarily high HR activity115. Interestingly, in D. 

melanogaster, the H2AX C-terminal tail is linked to an H2A.Z globular domain. This so 

called H2A.V constitutes the only H2A variant in this organism and as for both variants in 

other clades, one of its major functions is the proper sensing of DNA damage132.  

The central role of H2AX in DNA repair is thereby not mediated by intrinsic 

properties of the histone variant itself, but rather by the DNA damage-induced serine 

phosphorylation of the SQ(E/D)ϕ motif. This event is catalyzed by the upstream DDR 

kinases of the phosphatidylinositol-3-OH-kinase-like family of protein kinases (PIKKs). All 

three of them are involved in this phosphorylation event, dependent on their recruitment to 

the DSB: Mec1 (ATR in mammals) via ssDNA, Tel1 (ATM in mammals) via the MRX 

complex, and the metazoan specific DNA-PKcs, via the Ku complex133 (Figure 5 A and B). 
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The resulting γH2AX is generally known to be the earliest of all chromatin modifications**, 

which arises within seconds to minutes after DSB generation and spreads up to hundreds 

of kilobases in yeast and even megabases in mammals away from a single DSB47,135. 

Interestingly, our recent work showed that a reason for the large-scale distribution of 

yH2AX is its direct linkage to the homology search process, with the inducer kinases 

possibly hitchhiking the presynaptic filament136. Yet, the needs for such a large-scale 

chromatin modification as well as its full consequences are still partially unclear. In 

mammals, the main γH2AX adaptor is the BRCT domain containing protein MDC1, which 

among others fosters MRN binding to DSBs and also recruits the ubiquitin ligase RNF8 – 

proteins required locally at the repair site137,138. In accordance, H2AX knockout mice 

display repair defects, which also result in reduced immunoglobulin isotypes and 

increased cancer susceptibility139. Yeast cells instead do not show severe growth defects 

in absence of γH2AX, but the corresponding strains display reduced levels of NHEJ rather 

than HR140. While this seems to be at odds with the above-mentioned hypothesis that the 

presence of H2AX correlates with the efficiency of recombination, γH2AX also contributes 

to a DSB-induced recruitment of the cohesin complex141,142. The reinforced alignment of 

homologous sequences thereby might facilitate the usage of the correct homologous 

donor during post-replicative DSB repair, which is one of the best examples of why the 

chromatin would need to be modified over such large domains. Yeast lacks general 

γH2AX adaptors such as MDC1, and recent results challenge the early findings that the 

phosphorylation is directly recognized by chromatin modifiers such as the NuA4 

complex143,144. In further contrast to the situation in mammalian cells, γH2AX in yeast is 

largely not required to induce cell-cycle arrest, but conversely for the escape from the 

latter following pro-longed DNA damage persistence126.  

Also ubiquitin- and SUMO-modified histones mediate important protein-protein 

interactions in the response to DSBs. One example in this regard is the C-terminal 

SUMOylation of the variant H2A.Z. In yeast, this modification mediates the above-

mentioned re-localization of DSBs to the nuclear periphery, by mediating an interaction 

with the inner-nuclear membrane protein Mps3125. Histone ubiquitylation instead plays a 

major role in the response to DSBs specifically in mammalian cells. The ubiquitin ligase 

RNF8 together with UBC13 is recruited to DSBs and ubiquitylates the linker histone H1, 

which in turn recruits RNF168 that subsequently ubiquitylates H2A-like histones145,146. This 

signaling cascade helps recruiting DSB-associated factors such as BRCA1 and 53BP1, 

                                                
** Recently, liquid demixing induced by PARylation was reported to occur prior to phosphorylation 

events at DSBs, though its functionality remains unclear134. 
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which promote HR or NHEJ, respectively, and thus once again, renders an environment 

generally permissive for suited DNA repair.  

Apart from acting as recruitment platforms for other factors, histone modifications 

also have the ability to intrinsically alter nucleosome properties. This is best exemplified 

by the presence of acetylation marks, which neutralize the positive charges of the 

modified lysines and thereby e.g. help unfolding chromatin at active promoters147. Also 

during DSB repair, the acetylation of histone H2A and H4, catalyzed by the NuA4 

complex, contributes to an open chromatin structure that primes the break site for 

subsequent repair143,148. At least in mammalian cells, acetylation of H4 requires the initial 

incorporation of H2A.Z124. The human homologue of the NuA4 complex thereby not only 

contains acetyltransferase, but also H2A.Z-exchange activity, giving an intriguing example 

how different chromatin transactions are coordinated for the common goal of DNA 

repair146.  

 

1.3.3 ATP-dependent	chromatin	remodelers	and	histone	chaperones		

Chromatin remodeling enzymes use the energy of ATP hydrolysis to move, eject or 

restructure nucleosomes on DNA and thus are the classical machineries that make 

chromatinized DNA elements accessible to other factors149. Based on the amino acid 

sequence, all of these enzymes share a conserved Snf2-type ATPase domain and 

together they constitute the large Snf2/Swi2 family within the SF2 superfamily of helicase-

like enzymes150,151. Importantly and in contrast to classical helicases, these enzymes do 

not separate DNA strands, but instead use their ATP-dependent motor domain to track 

along dsDNA and thereby break protein-DNA contacts. Classical nucleosome remodelers 

often come as multi-subunit molecular assemblies, which empowers them with certain key 

characteristics: a high affinity for the nucleosome itself, the ability to recognize different 

histone modifications, the regulation of their ATPase activity and numerous interaction 

sites for other chromatin proteins149. The combination of these features allows each 

remodeler to act in a variety of cellular processes, which is reflected by the growth defects 

or complete inviability under otherwise normal growth conditions if their activity is lacking. 

However, also single enzymes, often acting as homodimers or –oligomers, are known to 

alter chromatin structure and this remodeling is further not limited to nucleosomal proteins. 

Examples in this regard are Mot1 or Rad54, which remove the TATA-binding protein or 

the Rad51 recombinase from DNA, respectively68.  
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Figure 5 | Chromatin remodeling during homologous recombination 
(A) One of the earliest responses at DSBs is the recruitment of checkpoint kinases, such as Tel1 (ATM in 
mammals), that phosphorylate histone H2A(X) and induce damage signaling. Resection initiation by the MRX 
complex requires the activity of the RSC chromatin remodeler. (B) Long-range resection is driven by 
chromatin remodeling of Fun30 and supported by the SWR1-mediated incorporation of the histone variant 
H2A.Z. Recruitment of Mec1-Ddc2 (ATR-ATRIP in mammals) to RPA-coated ssDNA further enhances 
checkpoint signaling. INO80 plays a minor backup function during the resection process. (C) Following the 
assembly of the Rad51 filament, SWI/SNF-mediated nucleosome remodeling is required for strand invasion at 
least at heterochromatic donors. (D) Once strand invasion occurred, Rad54 drives DNA synthesis by removing 
nucleosomes ahead of the invading strand and disassembling Rad51 from dsDNA. (E) Following the 
completion of repair, histone chaperones such as Asf1 and CAF1 coordinate the reassembly of histones. This 
requires acetylation of H3 at lysine 56. (F) The antagonism of SWR1 and INO80 remodelers with respect to 
the chromatin binding of H2A.Z emerges as a regulator of genome stability. Removal of H2A.Z by INO80 
secures checkpoint adaptation and survival after replication stress. It is unclear whether INO80s variant 
displacement activity is also required during HR. 

 

While local nucleosomes can also hinder DSB repair by NHEJ, the chromatin 

access problem becomes particularly apparent in case of HR. Here, DNA processing goes 

far beyond the initial lesion and additionally involves external sites at the donor template. 

As a consequence, members of the Snf2-, Swr1- and Rad54-like subfamily groups of 

remodelers are particularly important for this pathway and generally for resistance against 

DNA damage68,150,152. While this accounts for both lower and higher eukaryotes, 

mechanistic studies mainly derived from yeast cells begin to unravel the diverse functions 

of these remodelers in the different steps of HR. It is generally appreciated that 

nucleosomes are lost during the process of DNA end resection. The RSC and to a lesser 

extend also the INO80 chromatin remodeling complex have been shown to reduce the 

nucleosome occupancy directly next to the break site and in turn foster the recruitment of 

initial processing factors such as the MRX complex127,153 (Figure 5 A). Instead, long-range 
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resection and the recruitment of the corresponding enzymes largely depend on the activity 

of the Fun30 remodeling enzyme154-156 (Figure 5 B). Also the SWR1 complex was reported 

to contribute to DSB repair by promoting end resection (Figure 5 B), although others 

placed it in the NHEJ pathway125,127,128. As this complex does not remove or slide 

nucleosomes, but specifically catalyzes the exchange of H2A-H2B for H2A.Z-H2B 

dimers117, the H2A.Z-mediated chromatin changes described above (see section 1.3.2) 

might well unite these apparently inconsistent findings. Following resection, the next 

chromatin barrier waits at the donor template. Although the Rad51-filament alone is 

sufficient to capture a nucleosomal donor on a chromatinized template in vitro, both the 

SWI/SNF and the INO80 complexes have been suggested to be involved in nucleosome 

displacement at the donor site in vivo, thus facilitating strand invasion157-159 (Figure 5 C). 

Downstream of synapsis, Rad54 is further implicated in the sliding and removal of 

nucleosomes inside the donor, probably facilitating subsequent strand exchange160 

(Figure 5 D). Importantly, all of the above studies were undertaken by using the yeast 

mating-type system as a model for recombination, where the donor loci are buried in 

dense heterochromatin structures. Especially in light of the fact that also during in vitro 

recombination with heterochromatinized templates Rad51 needs assistance of 

SWI/SNF161, it remains unclear to which extent donor remodeling applies in cases of 

canonical nucleosome structures as well. Finally, in addition to its role in initial DNA end 

resection, the RSC complex seems to fulfill a second, post-synaptic step during repair that 

facilitates the final ligation of the already extended invading DSB ends159.  

The SWR1 and INO80 remodelers harbor a unique long insertion in the Snf2-

ATPase domain of their catalytic subunits, which groups them into a separate remodeler 

class162. Although INO80 has long been known to remodel canonical nucleosomes163, 

recent data indicate also a closer functional overlap with the SWR1 complex. However, 

instead of integrating H2A.Z-H2B dimers into nucleosomes, INO80 catalyzes their 

removal from chromatin164. Remarkably, emerging evidence suggests that this functional 

antagonism between the two remodelers helps to secure genome stability (Figure 5 F). 

First, this process triggers an adaptation to the DNA damage checkpoint, by restoring 

γH2AX levels126 (see section 1.3.2). Although the benefit of this process remains unclear, 

it might give cells additional time to repair a DSB in the next cell division. Second and 

more importantly, H2A.Z removal by INO80 is critical for survival upon DNA replication 

stress, albeit the mechanism behind this important function remains entirely enigmatic164. 

It is thus an interesting possibility that the counteraction of SWR1 by INO80 might also be 

required directly for DSB repair.  
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Histone chaperones are the proteins that generally govern an ordered nucleosome 

build-up, shielding the positive histone charges and protecting them from non-specific 

interactions with the negatively charged DNA107. Different chaperones thereby target 

different sub-complexes of the nucleosome. The FACT complex as well as Nap1 are 

important H2A-H2B chaperones, whereas Asf1 and CAF1 play major roles in regulating 

H3-H4 removal and deposition. Histone chaperones are inevitable during DNA replication, 

where they mediate both the coordinated disassembly and reassembly of nucleosomes 

ahead and behind of the replication fork, respectively. In contrast to replication, the role of 

these proteins during DSB repair so far seems to be restricted to the nucleosome 

reassembly after the repair event107, where they “clean up” the disorder left behind by the 

action of the numerous chromatin remodelers. Herein, Asf1 first indirectly promotes the 

acetylation of histone H3 at lysine 56, a critical event for delivery of novel H3-H4 entities to 

CAF1, which subsequently inserts these building block into the chromatin165,166 (Figure 5 

E). Importantly, the activity of histone chaperones is also required to shut down the DNA 

damage checkpoint. On the one hand, the defective nucleosome delivery in the absence 

of Asf1 and CAF1 itself sustains a constant cell cycle arrest by a yet unclear 

mechanism166,167. On the other hand, the FACT complex at least in mammals is critical for 

the removal of yH2AX from chromatin168. There are also other variant specific 

chaperones, and most interesting with regards to DNA damage are those targeting H2A.Z. 

In yeast, Chz1 acts in conjunction with SWR1 to deposit this H2A variant, while 

mammalian cells possess a chaperone that specifically mediates H2A.Z removal from 

chromatin169,170. Only very recently it was shown that this protein called ANP32E catalyzes 

the dynamic turnover of DSB-incorporated H2A.Z, which is required for chromatin 

relaxation around the break site and sufficient NHEJ171.  

 Collectively, chromatin remodelers and histone chaperones play essential roles in 

DSB repair and especially during HR. While chaperones mainly restore chromatin after 

repair has been completed, nucleosome alterations by remodeling enzymes are inevitable 

already for lesion processing. A picture emerges in which a number of ATP-dependent 

machineries fulfill various functions along the complicated HR pathway and we are just at 

the beginning to understand the whole impact of their activities. 
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2 AIMS	OF	THE	STUDY	
HR is the most accurate pathway to repair the most toxic of all DNA damages – DSBs. 

Despite decades of research and seminal achievements by many different laboratories, 

central aspects of HR remain poorly understood. Especially our understanding of the 

impact of the associated chromatin remodeling is still poor, and mechanistic explanations 

for a variety of involved chromatin factors are at best vague.  

This study aims to address the fundamental question whether chromatin 

remodeling is required during the search for a homologous donor sequence during HR. In 

contrast to any step during any other DNA repair pathway, homology search affects vast 

amounts of undamaged DNA, demanding special attention and careful control in cases of 

underlying chromatin changes. 

Using the power of genetics in the model organism S. cerevisiae combined with 

chromatin immunoprecipitation (ChIP) of DNA repair proteins, I will discriminate between 

the roles of chromatin remodeling factors in distinct steps of HR. An important milestone 

towards this goal is the verification of Rad51 ChIP as a measure of homology search. To 

this end, I plan to establish a flexible assay to easily monitor HR between any two loci in a 

genome, which allows the correlation of previously measured intensities of homology 

search with the total efficiency of HR.  
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3 RESULTS	

3.1 Homology	search	requires	Rad54	and	Rdh54	proteins	and	
induces	large-scale	remodeling	of	histones	H2A	and	H2B		

3.1.1 An	assay	to	monitor	site-specific	recombination	in	real-time	

Rad51 ChIP was recently reported as the first method that allows the direct monitoring of 

homology search during HR47. Generally, the signals of Rad51 determined via ChIP 

following synchronized induction of a single and site-specific DSB are twofold. Very high 

enrichments at close distances to the break site reflect formation of the Rad51 filament. In 

contrast, comparably low enrichments measured over large areas of surrounding DNA 

were hypothesized to reflect an ongoing and random homology sampling of the Rad51 

filament, only transiently probing certain loci in a sub-population of cells at a certain time. 

Indeed, it was shown that the observed DSB-distant accumulation of Rad51 does neither 

result from extended single-stranded presynaptic filaments nor from unspecific binding of 

Rad51 to double-stranded DNA47. Nevertheless, the final proof that these signals indeed 

mirror the efficiency of homology search required their correlation with completion of HR. 

To verify this model, I decided to generate a site-specific recombination assay that allows 

monitoring DSB-induced recombination efficiency in real-time‡‡. Notably, the development 

of such an assay would not only allow the verification of Rad51 ChIP as a suitable method 

to monitor homology search, but more importantly could additionally provide the first clear 

evidence that the efficiency of HR correlates with spatial proximity, as predicted from the 

findings on the homology search47. 

An important prerequisite for a universally applicable recombination system is that 

recombination proceeds between homologous sequences that are otherwise not present 

in the genome of S. cerevisiae. One such sequence is the one encoding for the green 

fluorescent protein (GFP), often used for tagging endogenous yeast proteins for 

visualization via microscopy or immunoprecipitation approaches. I thus decided to use as 

a basis for the proposed recombination system available plasmids for PCR-based GFP-

tagging172,173 and combine it with yeast strains harboring the HO endonuclease gene 

under control of the galactose promotor – the method of choice for generating site-specific 

DSBs in S. cerevisiae174. Importantly, the respective strains are also deleted for the 

endogenous HO recognition site on chromosome III and thus entirely rely on artificially 

                                                
‡‡ Plenty of recombination assays are available in S. cerevisiae, but most systems either are 

limited to specific loci or the measurement of only spontaneous recombination rates. 
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integrated sequences for DSB induction. To generate the two recombination alleles, I 

cloned a 36 bp HO recognition site (GFP-HOcs) or an incleavable variant containing two 

point mutations175 (GFP-HOinc) in the middle of the GFP encoding sequence.  

 

 
Figure 6 | A flexible assay to monitor recombination between different genomic loci 
(A) Scheme of a yeast strain expressing the HO endonuclease from the ADE3 locus on ChrVII under control 
of the GAL1 promoter. (B) Scheme of a yeast strain with integrated constructs to measure site-specific 
recombination. Usage of galactose as a carbon source results in HO-mediated DSB induction inside the GFP-
HOcs sequence. Specific PCR primer (P) can be used to monitor successful recombination using the GFP-
HOinc sequence. (C) PCR reaction on genomic DNA isolated from strains with GFP-HOcs on ChrIV 491 kb 
and GFP-HOinc on ChrIV 625 kb grown on galactose (YP-Gal) or glucose (YPD) as a carbon source verifies 
specificity of the recombination reaction. Primer as in (B). (D) Recombination using the system described in 
(A-C) depends on both the presence of a homologous donor as well as the bona fide recombination factor 
Rad54. Cells were grown on agar plates supplemented with raffinose as a carbon source and an equal 
number of cells was then plated on YPD or YP-Gal. Single colonies were counted after 2-3 days and the ratio 
of survival calculated under HO expressing vs. non-expressing conditions. Mean plus SD of three independent 
experiments are shown. 
 

In addition, a unique 23 bp sequence was integrated exclusively next to the incleavable 

recognition site. Once these constructs have been integrated into the site of choice of the 

S. cerevisiae genome using a previously described PCR-based strategy172,173, the unique 

sequence will allow to specifically monitor recombination by quantitative real-time PCR 

(qPCR) following DSB induction (Figure 6 A and B). Indeed, in a yeast strain bearing the 

GFP-HOcs sequence at an intergenic position at 491 kb on chromosome IV and the GFP-

HOinc sequence at an intergenic region at 625 kb on chromosome IV, exclusively growth 

on galactose as a carbon source resulted in the emergence of a recombination product 

amplified from genomic DNA (Figure 6 C). Furthermore, I expected the growth of this 

strain on galactose medium to depend on recombination, as only in this scenario the 

incleavable HO recognition sequence will replace its canonical counterpart. Attempts to 

repair the induced DSB by NHEJ will instead result in continuous repair-cleavage cycles 

and constant cell-cycle arrest under such conditions176. Indeed, cell survival entirely 

depended both on the presence of a homologous donor and the essential recombination 

factor Rad54, proving that recombination occurred between the GFP-based homologies 
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(Figure 6 D). Interestingly, also in presence of the donor only 50 % of all cells are able to 

survive, indicating that there are limitations for the efficiency of distant recombination 

events177 (see also section 3.1.3). 

 

3.1.2 Recombination	efficiency	correlates	with	homology	search	signals	
and	is	determined	by	the	nuclear	architecture		

With this assay in hand, I next aimed to correlate the strength of homology search signals 

measured by Rad51 ChIP with the efficiency of HR in cis. To do so, I generated two 

additional yeast strains both harboring the GFP-HOcs sequence at position 491 kb on 

chromosome IV, but with the homologous donor (GFP-HOinc) either integrated at position 

795 kb or 820 kb, respectively, on the same chromosome. Importantly, homology search 

signals in a donor-deficient background at these sites were significantly weaker compared 

to those at 625 kb, correlating with an increased distance to the DSB (Figure 7 A). 

Recombination was subsequently monitored by qPCR at different time points following 

DSB induction in all three strains. As anticipated, the strain with the donor at the DSB-

close position (625 kb) showed much faster accumulation of the recombination product 

compared to the two strains with the distant donors (Figure 7 B). Surprisingly, even when 

comparing the latter, the accumulation of the recombination product dropped again about 

50 % in case of the 795 kb compared to the 820 kb donor. While Rad51 ChIP signals 

were already at the detection limit at these sites, this further strengthened the idea that 

recombination is largely influenced by the physical distance between the DSB and 

homologous donor. When I monitored Rad51 distribution itself in the three recombination-

competent (donor-proficient) strains, I found that it efficiently accumulates close to the 

potential donor integration sites only when a donor had also been integrated there (Figure 

7 C). Importantly, these Rad51 signals did not reflect latent cleavage of the mutated HO 

recognition site at the donor, as they were absent in strains where only the donor site had 

been integrated (Figure 7 D). Instead, these signals most likely reflected ongoing repair by 

synapsis between the presynaptic filament and the homologous donor. Taken together, 

the presented data verified Rad51 ChIP in a donor-deficient scenario as a measure of 

homology search and thus as an indicator of recombination efficiency when a specific 

donor is available. 
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Figure 7 | Homology search signals correlate with recombination efficiency 
(A) Homology search signals decrease with increasing linear distance from the DSB. Rad51 ChIP-chip profile 
of a part of ChrIV following DSB induction at position 491 kb. Data taken from reference 47. (B) 
Recombination efficiency decreases with increasing linear distance between DSB and donor site. qPCR 
determination of recombination following DSB induction at position 491 kb on ChrIV in three different yeast 
strains, each harboring one donor template placed at one of the indicated positions (see also A). (C) Rad51 
accumulates over time at the homologous donor. Rad51 ChIP-qPCR at indicated locations using the three 
strains depicted in (B). Rad51 enrichments at positions 625 kb, 795 kb and 820 kb are donor-specific. (D) 
Rad51 accumulation at the donor site is not due to latent cleavage of the GFP-HOinc constructs. Rad51 ChIP 
at donor sites in strains with and without DSB induction (i.e. integrated GFP-HOcs sites) (E) Scheme of how 
centromere clustering affects the 3D genome organization. Centromere proximal loci on ChrVII have a closer 
spatial proximity to the DSB on ChrIV then centromere distal loci. (F) Recombination and homology search 
efficiencies anti-correlate with increasing 3D distance between DSB and donor site. Left: qPCR analysis of 
recombination following DSB induction at position 491 kb on ChrIV in three different yeast strains, each 
harboring one donor template placed at one of the indicated positions (see also E). Right: Rad51 ChIP signals 
collected within 1 kb windows around the donor integration sites obtained from a corresponding donor-
deficient strain. Data taken from reference 47. 
Data represented in (B), (C) and (F) represent mean plus SD of three independent experiments. Data in (D) 
represent results from one experiment. All qPCR data were normalized to a control locus on ChrX and all ChIP 
data also to the time before DSB induction (0 h). 
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Recombination between distant donors cannot only proceed in cis within the same 

chromosome, but also in trans between different chromosomes, albeit the first scenario is 

the preferred one178,179. In line with this idea, homology search measured via Rad51 ChIP 

is generally hardly detectable on unbroken chromosomes. Intriguingly, this differs in a 

scenario where a DSB is induced close to a centromere. Here, Rad51 signals were 

subsequently detected at centromeres of all other chromosomes as well, a finding that 

was explained by the fact that centromeres cluster inside the yeast nucleus180,181. 

Consequently, it was suggested that the homology search efficiency does not necessarily 

correlate with the linear, but the three-dimensional distance to a DSB47. To investigate 

whether also recombination may be guided by the three-dimensional nuclear architecture, 

yeast strains bearing the GFP-HOcs sequence at position 491 kb on chromosome IV (51 

kb distant to CenIV450kb) and donor sequences at distances of 13 kb, 63 kb or 331 kb away 

from the centromere on chromosome VII, were generated (Figure 7 E). Perfectly matching 

the previously measured strengths of homology search, these strains showed decreasing 

recombination efficiencies with increasing distance of the donor site from the centromere 

(Figure 7 F). This finding showed for the first time§§ that HR seems to be linked to the 

three-dimensional nuclear architecture and once more the remarkable possibility to 

estimate recombination potentials even on the basis of Rad51 signals close to the 

detection limit. 

 

3.1.3 Rad54	and	Rdh54	are	important	regulators	of	the	homology	search	
process	

The verification of genome-wide Rad51 ChIP as a method to directly monitor homology 

search opened new avenues to analyze this process in more detail. Specifically, it allowed 

addressing the fundamental question of a potential requirement for chromatin remodeling 

factors during this process. An interesting candidate protein in this regard was Rad54, a 

multifunctional DNA translocase also known as the “Swiss Army knife” of HR183, thereby 

reflecting its various functions ranging from pre- to post-synaptic steps during the 

pathway. Although the main function of Rad54 lies at the (post-)synaptic modulation of 

Rad51, it was hypothesized that it might also be involved in the earlier process of 

homology search by a remodeling of nucleosomes.  

                                                
§§ Since the publication of these results47, two other groups addressed this correlation more 

globally and came to similar conclusions177,182. 
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Figure 8 | The Rad54 family proteins Rad54 and Rdh54 are essential for the homology search 
(A) Rad54 and Rdh54 are required for homology search, but not Rad51 filament formation. Top: scheme of 
ChrIII, indicating preferential homology search on the right chromosome arm in MATα cells. Bottom: time-
resolved Rad51 ChIP-chip experiment following DSB induction at the MAT locus in strains lacking Rad54, 
Rdh54 or both. (B) Rad51 and RPA accumulation are confined to the same area in absence of Rad54 and 
Rdh54. Rfa1-9myc ChIP-chip experiment in the ∆rad54 ∆rdh54 strain. (C) Rad51 ChIP-qPCR at regions close 
and distal to the DSB in the indicated strains. Verifies conclusion from (A) that Rad54 and Rdh54 are 
specifically required for homology search. (D) DSB induction kinetics is not changed in absence of Rad54 and 
Rdh54. qPCR analysis of MAT locus cleavage using primers spanning the HO recognition site in the indicated 
strains. (E) Defective homology search in absence of Rad54 and Rdh54 is not due to decreased Rad51 
protein levels. Immunoblot analysis against Rad51 using total cell extracts prepared following DSB induction. 
Data in (A) and (B) represent mean of two independent experiments, including a dye-labeling swap and are 
depicted on a log2 scale. Data in (C) and (D) represent mean and SD of three independent experiments. 
Statistical analysis was conducted using Student’s t-test with asterisks indicating p < 0.05 (*), p < 0.01 (**) or 
p < 0.001 (***). All qPCR data were normalized to a control locus on ChrX and all ChIP data also to the time 
before DSB induction (0 h). 
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To investigate a possible function of Rad54 during homology search, I performed ChIP 

against Rad51 in donor-deficient strains where a DSB was induced at the MAT locus on 

chromosome III. In absence of Rad54, Rad51 signals were markedly reduced at sites 

corresponding to an ongoing homology search, but importantly not at sites close to the 

DSB that reflect formation of the Rad51 filament (Figure 8 A and C). Because homology 

search was not completely deficient in the absence of Rad54, I wondered whether the 

Rad54 homologue Rdh54 was involved in the process as well184. Although removal of 

Rdh54 alone showed only little defects in homology search, the protein became important 

in the absence of Rad54, as reflected by the virtual absence of all homology search 

signals when both proteins were deleted (Figure 8 A and C). Hence, the only detectable 

Rad51 signals in the ∆rad54 ∆rdh54 background were limited to sites of Rad51 filament 

formation. This was further corroborated by the nearly perfect overlap of Rad51 and Rfa1 

signals in this strain, with the latter indicating the generation of single-stranded DNA 

during DNA end resection (Figure 8 A and B). Of note, Rfa1 accumulation appeared to a 

similar extent as previously observed in wild type (WT) cells47. Importantly, neither 

delayed DSB induction kinetics (Figure 8 D) nor decreased Rad51 protein levels (Figure 8 

E) could account for the observed Rad51 accumulation defects in the ChIP experiments. 

Instead, Rad51 expression was even up-regulated at early time points in the double 

mutant (Figure 8 E), likely reflecting a compensation for an intrinsically higher damage 

load of this strain. Similar functionalities for the Rad54 and Rdh54 proteins could be 

obtained upon DSB induction on a different chromosome (data not shown), further 

corroborating the previous observations. 

Results so far placed Rad54 and Rdh54 as central components of the homology 

search process, possibly traveling with the Rad51 filament and exerting their functions 

directly at the sites of transient homology sampling. To investigate this idea, I aimed to 

visualize Rad54 and Rdh54 directly at sites of homology search via ChIP. However, ChIP 

efficiency of both proteins and especially the more important Rad54 was repeatedly very 

weak, possibly due to poor protein expression levels (data not shown). I thus decided to 

make use of a different strategy to investigate whether Rad54 exerts its function in 

conjunction with Rad51. Expression of the Hed1 protein under natural conditions is 

restricted to meiosis, where it inhibits the protein-protein interaction between Rad51 and 

Rad54185 (Figure 9 A). This allows meiotic recombination to proceed by the recombinase 

Dmc1, which is important for repair via homologs instead of sister chromatids186. 
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Figure 9 | Rad54 family proteins require binding to Rad51 to function in homology search 
(A) Scheme of how presence of Hed1 affects the interaction of Rad51 and Rad54. (B) Overexpression of 
Hed1 abolishes homology search. Rad51 ChIP signals analyzed by qPCR at locations close and distant to the 
DSB in strains overexpressing either wild-type HED1, hed1T131P or none of them. Data were normalized to the 
time before DSB induction as well as a control locus on ChrX and represent the mean plus SD of three 
independent experiments. 
 

As artificial expression of Hed1 in mitotic cells was shown to inhibit the Rad51-Rad54 

interaction as well185, such a scenario should result in an inhibition of the Rad51-mediated 

homology search if it required Rad54 functionality directly linked to Rad51. When 

performing the corresponding Rad51 ChIP experiment, I indeed found a nearly complete 

abrogation of Rad51 accumulation at sites of homology search, but no effect on Rad51 

recruitment at the DSB (Figure 9 B). Importantly, this effect was gone when a Hed1 

mutant variant that cannot bind to Rad51 was expressed187 (Figure 9 B). Interestingly, the 

effect of Hed1 overexpression very much resembled the phenotype of the ∆rad54 ∆rdh54 

strain, although Hed1 was reported to have only mild effects on inhibiting the interaction 

between Rdh54 and Rad51185. 

Because Rad54 levels are very low, I wondered whether its important function in 

the homology search could be a limiting factor during HR. When measuring ectopic 

recombination between the GFP-HOcs sequence at position 491 kb on chromosome IV 

and a donor ~300 kb downstream by qPCR, repair was significantly faster when Rad54 

was overexpressed (Figure 10 A). Moreover, the accumulation of the recombination 

product correlated with the levels of Rad54, as estimated from the strength of the 

promoter under which they were expressed. On the whole cell population level, 25 % of all 

cells were able to survive with the donor site located 300 kb away from the DSB and this 

number could be almost doubled upon strong Rad54 expression (Figure 10 B). 
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Remarkably, Rad54 overexpression thereby mimicked repair efficiency in a case where 

the donor site is located less than half the distance away from the break.  

In summary, Rad54/Rdh54 promote homology search by direct binding to Rad51. 

This complex seems sub-stoichiometric, and increasing the ratio of at least Rad54 to 

Rad51 results in enhanced recombination levels. 

 

 
Figure 10 | Rad54 is a limiting factor for homologous recombination 
(A) Rad54 overexpression correlates with increased recombination levels. Time-resolved qPCR analysis of 
intra-chromosomal recombination on ChrIV in WT strains or strains overexpressing RAD54 from different 
promoters. Data were normalized to a control locus on ChrX. (B) RAD54 overexpression phenocopies 
increased spatial proximity between DSB and donor with respect to recombination. Growth assay analysis of 
strains depicted in (A) compared to a WT strain with less than half the linear DSB-donor distance. 
All data represent mean plus SD of three independent experiments. 
 

3.1.4 Sites	of	homology	search	display	changes	in	chromatin	structure		

Rad54 and Rdh54 are members of the Snf2/Swi2 family of chromatin remodeling 

enzymes68 and at least Rad54 has been linked to chromatin remodeling during the 

synaptic stages of HR both in vitro and in vivo160,188,189. Their specific function during 

homology search thus raises the possibility for a remodeling of nucleosomes underlying 

this process as well.  

To investigate a potential chromatin remodeling at sites of homology search, I 

conducted a genome-wide analysis of nucleosome occupancy following DSB induction by 

performing ChIP against histone H2B coupled to microarray analysis (ChIP-chip). By 

comparing yeast strains where a DSB was induced either at the MAT locus on 

chromosome III or at position 491 kb on chromosome IV with a strain harboring no HO 

endonuclease recognition site, a DSB-specific, wide-ranged drop of H2B levels on the 

broken chromosomes could be observed (Figure 11 A).  
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Figure 11 | Chromatin remodeling at sites of homology search 
(A) Histone H2B levels are reduced at sites of homology search. Time-resolved H2B ChIP-chip analysis 
following HO induction in strains bearing HO recognition sites on ChrIII or ChrIV or a control. Enrichments are 
depicted as log2 values with each bar representing the mean of a 15 kb window. Dashed blue lines indicate 
the estimated area of DNA end resection. Left: data depicted for a region of ChrIV. Right: data depicted for a 
region of ChrIII. (B) Different histones show differential behavior during homology search. Time-resolved ChIP 
against histones H2A, H2B and H3 following induction of a DSB on ChrIV. Enrichments are shown for the 421-
423 kb region, as determined by the mean of four qPCR primer pairs normalized to the mean of four random 
control pairs on different chromosomes. Additionally, data were normalized to a strain in which HO is 
expressed, but no DSB is generated. (C) Histone H3 levels remain unchanged at sites of homology search. 
H3 ChIP-chip analysis following DSB induction on ChrIV compared to a control strain. Data are depicted as 
described in (A). (D) Detection of open chromatin at sites of homology search. The chromatin fraction was 
isolated and DNA purified by Phenol-Chloroform extraction then analyzed by qPCR at the indicated positions.  
Data in (A) and (C) represent mean plus SEM of two independent experiments including a dye-labeling swap. 
Data in (B) and (D) represent mean plus SD of two independent experiments. Statistical analysis was 
conducted using Student’s t-test with asterisks indicating p < 0.05. ns: not significant. All qPCR data were 
normalized to a control locus on ChrX and to the time before DSB induction (0 h). 
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The effect was generally strongest in the area of DNA end resection (indicated by dashed 

blue lines, Figure 11 A), but clearly emanated up to several hundred kb beyond these 

sites. Moreover, the intensity of H2B removal increased over time and decreased with 

increasing distance to the DSB. As ChIP-chip only allows semi-quantitative analysis due 

to DNA amplification and microarray hybridization, H2B effects were additionally quantified 

via qPCR. Because such small changes were repeatedly observed to lie within the range 

of natural qPCR fluctuation for single sites (data not shown), I developed a special 

protocol to visualize them more robustly. To this end, the average of four qPCR primer 

pairs together spanning a region of 2 kb in an area of efficient homology search are 

normalized to the average of four different control primers randomly distributed on 

different chromosomes. Using this method, H2B levels were found to significantly 

decrease about 20 % at an area ~70 kb away from the DSB 4 h following break induction, 

although the weaker changes at the 1 h time point observed in the genome-wide analysis 

could not be recapitulated (Figure 11 B). Interestingly, ChIP against other histone proteins 

revealed a differentiated picture. A similar drop was detected for H2A, however with a 

tendency for this histone to be removed more robustly already 1 h following DSB 

induction. In contrast, H3 levels remained constant (Figure 11 B), and preliminary results 

indicated similar observations for H4 (data not sown). This finding was further 

corroborated by genome-wide analysis, where the decrease in H3 occupancy was limited 

to the area of DNA end resection (Figure 11 C). Thus not the nucleosome per se, but only 

the more unstable H2A-H2B dimers seemed to be affected at sites of homology search. 

I next asked whether the observed drop in H2A and H2B levels resulted in a 

generally more open chromatin status at sites of homology search. Formaldehyde-

assisted isolation of responsive elements (FAIRE) is a method initially developed to 

identify regulatory DNA elements that are characterized by poor nucleosome 

occupancy190. This “naked” DNA is enriched throughout the protocol and its presence can 

subsequently be quantified by qPCR. Intriguingly, DNA at sites of ongoing homology 

search could be enriched up to two-fold following DSB induction, indicating that homology 

sampling possibly correlates with an opening of the chromatin at these sites (Figure 11 D). 

In contrast, DNA directly next to the HO recognition site was lost following DSB induction, 

possibly due to both DNA end resection and tight binding of Rad51 to ssDNA. 

These findings indicated the induction of chromatin remodeling linked to homology 

search. Nevertheless, the possibility remained that the observed effects either emerged 

from a few cells generating particularly long stretches of ssDNA several hours after DSB 

induction or unspecific, “linear” chromatin remodeling along the affected chromosome. 



RESULTS 

 32 

 
Figure 12 | The reduction in histone occupancy correlates with the 3D homology search efficiency 
(A) H2B levels drop in relation to the homology search preference in the yeast mating-type system. Top: 
scheme representing preferential homology search to either the left or the right side in MATα or MATa cells, 
respectively, dependent on the activity of the recombination enhancer (RE) element. Bottom: H2B ChIP-chip 
data 1 h following DSB induction on ChrIII either in MATα or MATa cells. Each bar represents the average of a 
15 kb window. Data for MATα represent mean and SEM of two independent experiments including a dye-
labeling swap (same data as in Figure 11 A). Data for MATa are from a single experiment. (B) H2B levels anti-
correlate with Rad51 levels around centromeres following induction of a centromere-proximal DSB at position 
491 kb on ChrIV. ChIP-seq experiments against Rad51 and H2B 4 h following DSB induction. An area of 25 
kb around each centromere (except CenIV) was analyzed in 5 kb windows and the Rad51 and H2B values 
plotted and correlated by a linear regression. Dashed lines separate different quadrants with either increased 
or reduced presence of Rad51 and H2B compared to 0 h time point and the corresponding numbers are given 
as percentage values. Data represent the mean of three independent experiments and were normalized to the 
time before DSB induction.  
All data are depicted on a log2 scale. 
 

The strongest evidence to exclude such possibilities would be the identification of 

chromatin changes at sites of homology search that are not linearly linked to the DSB. In 

yeast cells of the “a” mating type (MATa), the left arm of chromosome III forms a loop and 

thereby gains close proximity to the MAT locus, mediated by an element called the 

recombination enhancer (RE)47,191. This results in efficient homology search around the 

RE, but not at sites in between this element and the DSB. In contrast, in yeast cells of the 

“α” mating type (MATα), the RE is inactive and homology search cannot efficiently sample 

this area. When comparing H2B occupancy following DSB induction at the MAT locus on 

chromosome III in MATa and MATα cells, a MATa-specific drop could be observed 30 kb 

around the RE, indicating that this remodeling indeed also happens in trans (Figure 12 A). 

Along this line, DSB-induction on chromosome IV at position 491 kb resulted in a specific 

drop of H2B levels in trans around the centromeres of all other chromosomes and more 

importantly, this drop anti-correlated weakly, but significantly with the strength of 

homology search as measured by Rad51 accumulation (Figure 12 B).  
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Taken together, these data support the idea that sites of homology search are 

reflected by a decrease in the occupancy of histones H2A and H2B, which results in an at 

least partially opened chromatin structure.  

 

3.1.5 Rad54	and	Rdh54	indirectly	influence	the	remodeling	of	histones	
H2A	and	H2B	at	sites	of	homology	search	

Having identified for the first time chromatin remodeling at sites of homology search during 

HR in vivo, the question remained whether these changes might be linked to the function 

of Rad54 and Rdh54. To this end, I performed ChIP against H2A and H2B following DSB 

induction in WT and ∆rad54 ∆rdh54 deletion strains. Both in case of H2A and H2B, the 

only significant drops in histone occupancy were observed 4 h after DSB induction and 

this was dependent on the presence of Rad54 and Rdh54 (Figure 13 A). Particularly the 

loss of H2B was strongly influenced by both translocases and this was confirmed by 

analyzing H2B occupancy on a larger area along the broken chromosome via ChIP-chip 

(Figure 13 B). Of note, H2B levels here were not only affected at the sites of homology 

search, but also strongly within the area of DNA end resection, i.e. at the Rad51 filament 

(indicated by dashed blue lines, Figure 13 B). This was surprising, as neither defective 

Rfa1 accumulation, nor defective Rad51 filament formation were observed in absence of 

Rad54 and Rdh54 before (Figure 8 A and B).  

While the remodeling of histones H2A and H2B during homology search seems 

thus to be linked to Rad54/Rdh54, it remained puzzling that H2A showed a tendency to be 

remodeled earlier than H2B. This would in principle be inconsistent with the idea that the 

observed effects result from the same remodeling event. Intriguingly, a recent report 

demonstrated a comparable, timely separated alteration of H2A and H2B following DSB 

induction192. Specifically, a novel C-terminal damage-induced phosphorylation on H2B 

was identified, at an equivalent site to the serine in H2A that is modified during the 

formation of the famous γH2AX (in the following referred to as γH2A). Although 

established by the same kinases, γH2A peaked already 30-60 min following DSB 

induction, while the newly identified H2B phosphorylation (γH2B) only did so after 2 h. 

Consequently, I asked whether the previously observed drop in the occupancies of H2A 

and H2B was linked to their DSB-induced phosphorylation. To this end, I generated yeast 

strains in which the phospho-acceptor serines or threonines in both alleles of either H2A 

or H2B, respectively, were replaced by non-phosphorylatable alanine residues and 

subjected these strains to H2A and H2B ChIP. 
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Figure 13 | Reduction in histone occupancy at sites of homology search requires Rad54 and Rdh54 
(A) Time-resolved H2B ChIP following DSB induction on ChrIV at 491 kb in WT and ∆rad54 ∆rdh54 strains. 
Enrichments are shown for the 421-423 kb region on ChrIV, as determined by the mean of four qPCR primer 
pairs normalized to the mean of four random control pairs on different chromosomes. Additionally, data were 
normalized to a strain in which HO is expressed, but no DSB is generated. Note that data for WT strain are 
similar to Figure 11 B. (B) H2B ChIP-chip analysis 4 h following DSB induction in a similar scenario as 
indicated in (A). Dashed blue lines indicate the estimated area of DNA end resection.  
Data represent mean plus SD (A) or SEM (B) of two independent experiments. Statistical analysis was 
conducted using Student’s t-test with asterisks indicating p < 0.05. ns: not significant. All data were normalized 
to the time before DSB induction and qPCR data in (A) additionally to a control locus on ChrX.  
 

In the strain expressing mutated H2A, the drop in the occupancy of this histone could not 

be observed anymore, while H2B still dropped like in WT cells (Figure 14 A). In contrast, 

the strain expressing mutated H2B showed the corresponding specific effect for H2B. 

Here, H2A levels remained unchanged compared to WT cells, while the drop in H2B 

occupancy completely disappeared (Figure 14 B). This data demonstrated that the 

observed drop in the occupancies of histone H2A and H2B during homology search 

strongly depends on their C-terminal phosphorylation. Of note, antibodies used to 

immunoprecipitate H2A and H2B were of a polyclonal nature. Thus, their functionality 

should not depend on the recognition of a single epitope at the C-terminus that would 

possibly be masked by phosphorylation. In line with that, a drop in H2A and H2B 

occupancy could still be observed when HA-tagged H2A or H2B were immunoprecipitated 

with an HA antibody, albeit to a somewhat weaker extent (data not shown). 
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Figure 14 | Reduction in histone occupancy at sites of homology depends on the C-terminal 
phosphorylation of H2A and H2B 
(A) Levels of a non-phosphorylatable H2A variant do not change during homology search. ChIP-qPCR 
analysis against H2A and H2B in WT and H2A mutant backgrounds. Enrichments are shown for the 421-423 
kb region on ChrIV, as determined by the mean of four qPCR primer pairs normalized to the mean of four 
random control pairs on different chromosomes. Additionally, data were normalized to a strain in which HO is 
expressed, but no DSB is generated. (B) Levels of a non-phosphorylatable H2B variant do not change during 
homology search. ChIP-qPCR analysis against H2A and H2B in WT and H2B mutant backgrounds. Data were 
analyzed as indicated in (A). (C) DSB-distant H2A phosphorylation depends on the presence of Rad54 and 
Rdh54. Time-resolved γH2A ChIP following DSB induction on ChrIV analyzed by qPCR at the indicated 
regions. 
Data represent mean plus SD of two independent experiments. Statistical analysis was conducted using 
Student’s t-test with asterisks indicating p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). ns: not significant. All 
qPCR data were normalized to a control locus on ChrX and to the time before DSB induction (0 h). 

 

As a consequence of these results, I tested the possibility that Rad54/Rdh54 only 

indirectly influence the status of H2A and H2B levels on chromatin by promoting their 

phosphorylation. Evidence for this model came from earlier results that showed the 

formation of at least γH2A to depend on a functional homology search, possibly via 

kinases bound to the Rad51 filament136. When the induction of γH2A was directly 

compared between WT and ∆rad54 ∆rdh54 cells, its accumulation was strongly reduced 

at sites of homology search, but not close to the DSB in the mutant compared to the WT 

cells (Figure 14 C). Although similar experiments could not be conducted for γH2B due to 

lack of a commercially available antibody, I conclude from the results that phosphorylation 
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of H2A and H2B is likely the primary trigger for their observed remodeling at sites of 

homology search.  

 

3.1.6 Homology	search	does	not	require	phosphorylation-induced	
remodeling	of	histones	H2A	and	H2B		

A functional homology search process itself is responsible for the formation of both γH2A 

and γH2B, and thus for the associated decreased occupancy of these modified histones 

on chromatin. Following the initial hypothesis, I asked whether the same accounts vice 

versa, i.e. whether the observed chromatin remodeling is also a prerequisite for the 

homology search. Earlier results showed that homology search is not influenced when 

H2A phosphorylation (and thus drop from chromatin) is prevented47. Yet, I hypothesized 

that a detectable effect might require the forced stability of both H2A and H2B. However, 

Rad51 ChIP experiments with yeast strains expressing non-phosphorylatable H2B or both 

H2A and H2B phospho-mutant variants revealed no significant changes in the homology 

search intensity (Figure 15 A and B). I concluded from these results that the observed 

large-scale chromatin remodeling accompanies the homology search, but is not a 

requirement for this process. 

 

 
Figure 15 | Homology search does not depend on the formation of γH2A and γH2B 
(A) Rad51 ChIP following DSB induction on ChrIV analyzed by qPCR at the indicated regions in WT or H2B 
mutant strains. (B) Rad51 ChIP following DSB induction on ChrIV analyzed by qPCR at the indicated regions 
in WT or H2A and H2B mutant strains. 
Data represent the mean plus SD of two independent experiments and were normalized to a control locus on 
ChrX as well as the time before DSB induction (0 h). 
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Taken together, in the first part of this study, I established a flexible recombination 

assay that allows measuring recombination between any two loci in a genome either in 

real-time or on the absolute efficiency level. Using this assay, I proved the suitability of 

Rad51 ChIP as a method to measure the intensity of homology search across a genome 

and verified that not only the search, but also recombination is largely guided by the 

nuclear architecture47,71. With Rad51 ChIP as a method to monitor the homology search in 

hand, I identified a specific involvement of the Rad54/Rdh54 proteins to promote 

homology search by a still unknown mechanism47,71. Rad54/Rdh54-driven homology 

search subsequently triggers the C-terminal phosphorylation of histones H2A and likely 

also H2B, which results in a detectable drop of these histones from chromatin. Possible 

mechanisms for the Rad54/Rdh54 function, nature of and reasons for the remodeling of 

histones H2A and H2B are discussed in sections 4.2 and 4.3. 
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3.2 INO80	promotes	Rad51	filament	formation	and	
recombination	by	removal	of	the	histone	variant	H2A.Z	

3.2.1 The	INO80	chromatin	remodeler	is	required	for	Rad51	filament	
formation		

The determination of histone occupancy during homology search could not reveal a 

specific requirement of nucleosome remodeling for the homology search process. 

Similarly, although Rad54 and Rdh54 are novel factors specifically implicated in the 

search, their activity in nucleosome remodeling is rather poor and they are known to have 

various other activities68. In contrast, testing an involvement of the classical, multi-subunit 

nucleosome remodeling complexes during homology search seemed a promising 

alternative to uncover a potential requirement for chromatin remodeling in this process.  

 

 
Figure 16 | INO80 is required for Rad51 filament formation 
(A) Rad51 signals at sites of ssDNA and homology search are reduced in absence of INO80 activity. Rad51 
ChIP-qPCR analysis following DSB induction on ChrIV at the indicated distances from the DSB in WT and 
∆arp8 strains. (B) Rad51 ChIP signal reduction in ∆arp8 cells is statistically significant. Data from (A) were 
additionally normalized to the WT strain at the indicated positions and analyzed by Student’s t-test. Asterisks 
indicate p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). (C) Time-resolved Rad51 ChIP-seq analysis following 
DSB induction at position 491 kb on ChrIV depicted for the 300-700 kb region. Data are depicted on a log2 
scale and dashed lines indicate the estimated area of DNA end resection. (D) Quantification of Rad51 
enrichments in the estimated area of DNA end resection as indicated in (C).  
Data in (A) and (B) represent the mean plus SD of three independent experiments. Data depicted in (C) and 
(D) represent mean plus SEM (only D) of two independent experiments. All data were normalized to the time 
point before DSB induction and qPCR data additionally normalized to a control region on ChrX. 
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To test this possibility, I generated yeast strains defective in the activities of RSC, 

SWR1, SWI/SNF and INO80 chromatin remodelers and analyzed time-resolved Rad51 

accumulation following induction of a single DSB by qPCR. Neither absence of RSC, 

SWR1, nor SWI/SNF activities led to more than a delayed accumulation of Rad51 signals 

(data not shown). Instead, deficiency in INO80, generated by knockout of the ARP8 

gene193, resulted in a nearly complete absence of Rad51 signals at a site of ongoing 

homology search ~50 kb distant to the DSB (Figure 16 A). Surprisingly however, qPCR 

analysis of Rad51 accumulation at further loci that mirror formation of the Rad51 filament 

showed that Rad51 signals were also largely diminished at these regions. Although the 

reduction of around 60-70 % initially seemed to be statistically not significant, signal 

normalization to the WT strain within each experiment demonstrated statistical robustness 

(compare Figure 16 A and B). The reason for this observation was the strong variation of 

extremely high enrichments at sites of Rad51 filament formation between different 

experiments (up to 2000-fold), resulting from the normalization to very low background 

Rad51 signals prior to the induction of the DSB. Nevertheless, I aimed to confirm these 

observations by monitoring Rad51 accumulation genome-wide and thus analyzed 

immunoprecipitated DNA by next-generation sequencing (ChIP-seq). To determine 

formation of the Rad51 filament, areas of single stranded DNA were estimated using 

previously published resection rates of 4-5 kb/h42, which in fact correlated well with the 

main Rad51 peaks at different time points following DSB induction (Figure 16 C). As 

determined by qPCR analysis, Rad51 levels in these areas were reduced around 60 % in 

mutant compared to WT cells (indicated by dashed black lines in Figure 16 C and 

quantified in D), and those beyond these areas, reflecting the homology search, appeared 

nearly entirely absent. I conclude from these data that ∆arp8 cells are defective in Rad51 

filament formation and as a consequence also display a defective homology search. 

I next asked whether the observed defects in Rad51 filament formation and 

homology search would also translate into a recombination defect of INO80-deficient cells. 

Using the previously established recombination assay, I determined the repair efficiency 

between a DSB on chromosome IV and a donor ~300 kb downstream on the same 

chromosome. Both the analysis of a recombination product by qPCR as well as the overall 

cell survival on galactose medium indicated a significant deficiency of ∆arp8 cells in 

completing recombination§§ (Figure 17 A and B).  

                                                
§§ While this thesis was carried out, two other labs published similar (side) observations on 

reduced ectopic recombination in ∆arp8 cells130,182.  
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Figure 17 | INO80 is required for efficient homologous recombination 
(A) qPCR analysis of recombination following DSB induction at position 491 kb on ChrIV using a donor at 
position 795 kb in WT and ∆arp8 strains. (B) Recombination between the same loci as indicated in (A) 
measured via cell survival and including a control (ctrl) strain lacking the donor. (C) qPCR recombination 
analysis as in (A) including two additional INO80-deficient strains (∆ies5 and ∆nhp10). All data are depicted as 
the mean plus SD of three independent experiments. qPCR data have been normalized to a control region on 
ChrX. 
 

The strength of the defect that was measured thereby markedly correlated with the 

previously measured strength of defective Rad51 filament formation, indicating that these 

effects might be directly linked to each other. To corroborate the specific involvement of 

INO80 activity in the observed phenotype, I generated knockout yeast strains of two 

further unique INO80 subunits, Ies5 and Nhp10, which both showed similar defects 

compared to the ∆arp8 strain (Figure 17 C). Removal of the catalytic subunit Ino80 

appeared lethal in the genetic background used and thus an involvement of the INO80 

ATPase activity in this phenotype could not be tested directly.  

 

3.2.2 Defective	Rad51	recruitment	in	INO80-deficient	cells	is	independent	
of	DNA	end	resection	or	recombination	mediators	

Although the observed homology search defect in absence of INO80 seemed to arise only 

indirectly, I decided to follow up on this finding, as it suggested a potential requirement for 

a chromatin remodeler at an entirely unexpected step during HR – Rad51 filament 

formation. To investigate whether INO80 does promote Rad51 loading directly and not 

indirectly via DNA end resection, I performed a similar ChIP-seq experiment as before, but 

as a measure of DNA end resection analyzed the distribution of RPA (RFA) along the 

chromatin. 

As in case for Rad51, the area of the main RPA peak correlated again well with the 

region of ssDNA expected from general resection kinetics (compare Figure 18 A and 

Figure 16 C). More importantly however, RPA accumulation in ∆arp8 cells showed no 

defect compared to WT cells and quantification even indicated slightly elevated RPA 
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levels in the mutant cells (Figure 18 A and B). This was verified by additional qPCR 

analysis, which indicated significantly enriched RPA accumulation in ∆arp8 cells 

compared to WT cells directly next to the DSB (Figure 18 C). Instead of measuring DNA 

end resection indirectly via the accumulation of RPA, it can also be detected in a direct but 

non-quantitative manner via loss of DNA next to the DSB.  

 

 
Figure 18 | Uncoupling of resection and RPA enrichment in absence of INO80 activity 
(A) Slightly enriched RPA (RFA) accumulation in ∆arp8 compared to WT cells. Time-resolved RFA ChIP-seq 
analysis following DSB induction at position 491 kb on ChrIV depicted for the 440-540 kb region. Data are 
depicted on a log2 scale and dashed lines indicate the estimated area of DNA end resection. (B) 
Quantification of RFA signals in the estimated area of DNA end resection as indicated in (A). (C) Time-
resolved RFA ChIP-qPCR analysis following DSB induction at 491 kb on ChrIV at the indicated distances from 
the break in WT and ∆arp8 strains. (D) ∆arp8 cells exhibit a mild DNA end resection defect. qPCR 
quantification of ChIP input DNA 4 h following DSB induction at the indicated distances from the break. 
Asterisks denote statistical difference between WT and ∆arp8 strains. (E) Deep sequencing analysis of ChIP 
input DNA following DSB induction as depicted for the 440-540 kb region on ChrIV. Input from the same 
experiment and as depicted in (A).  
Data in (A), (B) and (E) represent mean plus SEM (only B) from two independent experiments. Data in (C) and 
(D) represent mean plus SD of three independent experiments. Statistical analysis was conducted using 
Student’s t-test with asterisks indicating p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). All data were normalized 
to the time point before DSB induction and qPCR data additionally to a control region on ChrX. 
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Importantly, this loss can be observed from the same RPA ChIP experiment, by solely 

analyzing the input DNA which is used to normalize IP enrichments166. Additional 

comparison with cells deleted for the long-range resection factors Exo1 and Sgs1, 

revealed a minor, but significantly reduced drop in the ChIP input levels of ∆arp8 cells 

compared to WT cells (Figure 18 D and E). While this minor function of INO80 in DNA end 

processing was reported before154,194, it surprisingly did not correlate with the enrichment 

of RPA. The combination of these data with the reduced Rad51 accumulation observed 

before thus led to the conclusion that in absence of INO80 activity RPA is not properly 

replaced for Rad51 on ssDNA. Of note, it was recently shown that absence of Fun30 and 

therefore reduced end resection is beneficial for ectopic recombination events due to the 

prevention of RPA exhaustion177, indicating that the recombination defect observed in 

INO80-deficient cells (Figure 17) likely comes directly through defective Rad51 loading. 

 

 
Figure 19 | Absence of INO80 activity does not influence the recruitment of recombination mediator 
proteins 
(A) Time-resolved Rad52 ChIP-qPCR experiment following DSB induction on ChrIV at the indicated distances 
from the break in WT and ∆arp8 strains. (B) HA ChIP against HA-tagged Rad55 4 h following DSB induction 
as in (A). (C) HA ChIP against HA-tagged Rad57 4 h following DSB induction as in (A). 
All data are depicted as the mean plus SD of three independent experiments and qPCR values were 
normalized to the 0 h time point and to a control region on ChrX. 

 

Rad51 loading at resected DNA requires a number of recombination mediator 

proteins and I next tested, whether the central factors Rad52, Rad55 and Rad57, were 

influenced by absence of INO80 activity. However, when performing ChIP experiments 

against Rad52 or HA-tagged Rad55 and Rad57, none of these proteins showed a 

defective recruitment in ∆arp8 compared to WT cells (Figure 19 A-C). Instead, the filament 

stabilizing Rad55 and Rad57 proteins even appeared slightly enriched especially close to 

the DSB in ∆arp8 cells. 

Collectively, since the recruitment of neither RPA nor recombination mediator 

proteins is negatively affected in an absence of INO80, I conclude that the chromatin 

remodeling activity of this complex is required to promote the loading of Rad51 at DSBs 

by a potentially novel mechanism.  
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3.2.3 INO80	regulates	H2A.Z	at	a	DSB	

I next wondered which molecular activities of the INO80 chromatin remodeler could 

promote Rad51 loading. Very interesting in this regard is the emerging importance of its 

capacity to remove the histone H2A variant H2A.Z from chromatin, which amongst other 

activities confers cellular resistance to replication stress164.  

 

 
Figure 20 | INO80 removes H2A.Z from the vicinity of DSBs 
(A) Time-resolved H2A.Z ChIP-seq analysis following DSB induction at position 491 kb on ChrIV in WT and 
∆arp8 strains depicted for the 470-510 kb region. Data are presented on a log2 scale. (B) H2A.Z ChIP-qPCR 
analysis following DSB induction on ChrIV in WT and ∆arp8 strains at the indicated distances from the break. 
(C) HA ChIP-qPCR against HA-tagged H2A.Z as indicated in (B). (D) H2A.Z enriches in the soluble protein 
fraction following DNA damage induced by phleomycin. Separation of chromatin-bound and soluble protein 
fractions by a sucrose-gradient and subsequent immunoblotting against H2A.Z. (E) H2A.Z and INO80 interact 
preferentially following DSB induction. Immunoprecipitation of HA-tagged H2A.Z and subsequent immunoblot 
analysis for the co-immunoprecipitation of myc-tagged Ino80 protein 4 h following DSB induction on ChrIV or 
in control cells. 
ChIP-seq in (A) represents the mean of two independent experiments, ChIP-qPCR in (B) and (C) the mean 
plus SD of three independent experiments. All qPCR data were normalized to the 0 h time point and to a 
control region on ChrX. 
 

To investigate if INO80 controls H2A.Z levels also directly at DSBs, I performed 

time-resolved H2A.Z ChIP-seq following the induction of a DSB on chromosome IV as 

done earlier for other proteins. In WT cells, H2A.Z was removed from sites next to the 

DSB with increasing efficiency over time (Figure 20 A). Strikingly, in the absence of INO80 
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activity, H2A.Z removal is not only dramatically diminished, but the histone variant even 

accumulated at certain sites along the chromosome compared to its abundance prior to 

DSB induction (Figure 20 A). I hypothesized that this at least partially stems from active 

incorporation of H2A.Z following DSB induction to promote DNA end resection and 

nuclear anchoring of non-repairable DSBs125. Although loss of H2A.Z was weak compared 

to histone loss at promoters195, I repeatedly observed similar effects via qPCR analysis, 

also when a HA-tagged variant of H2A.Z was immunoprecipitated using an antibody 

directed against the tag (Figure 20 B and C). Of note, total IP to input ratios were orders of 

magnitude lower when the target protein was not expressed (data not shown). 

 

 
Figure 21 | H2A.Z recruits INO80 to DSBs 
(A) Arp5 ChIP-qPCR analysis 2 h (upper panel) and 4 h (lower panel) following DSB induction on ChrIV at the 
indicated distances from the break in WT, ∆htz1 and ∆exo1 ∆sgs1 strains. (B) H2A.Z and INO80 support the 
removal of histone H2B from the vicinity of a DSB. H2B ChIP q-PCR analysis as indicated in (A).  
Data represent the mean plus SD of three independent experiments. All data were normalized to the time 
point before DSB induction (0 h) as well as to a control region on ChrX. 

 

To test loss of H2A.Z using an independent assay, I subjected cells to DNA breaks 

by phleomycin treatment and observed H2A.Z removal from chromatin by cell 

fractionation and subsequent immunoblotting. While in WT cells H2A.Z quickly enriched in 

the soluble protein fraction following damage induction, ∆arp8 cells showed only little 

soluble H2A.Z, indicative of an impaired removal of the histone variant from chromatin 

(Figure 20 D). However, no corresponding drop of H2A.Z was observed in the chromatin 

fraction, likely because the amount of H2A.Z that was shifted to the soluble pool was too 

low in this regard. 

If INO80 catalyzes the removal of H2A.Z from DSBs, both factors should interact 

following DSB induction. Indeed, immunoprecipitation of H2A.Z from native protein 
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extracts reproducibly pulled down the INO80 catalytic subunit Ino80, with an increased 

interaction following DSB induction (Figure 20 E). 

Because INO80 was previously reported to be involved in the removal of canonical 

nucleosomes from the DSB127,196, I was interested in testing the primary role of INO80 

activity at damage sites. To this end, I assayed for the recruitment of INO80 to a DSB by 

time-resolved ChIP using antibodies against the INO80 subunit Arp5. As previously 

reported144, INO80 could be enriched at sites close to the DSB and this was dependent on 

the STR and Exo1 pathways of DNA end-resection (Figure 21 A). Only directly next to the 

DSB, where Mre11 drives end processing together with Sae2, ∆sgs1∆exo1 cells displayed 

strong Arp5 recruitment. Most importantly however, INO80 recruitment to the DSB was 

strongly diminished in absence of H2A.Z at all analyzed genomic locations (compare WT 

and ∆htz1***, Figure 21 A). This indicates that H2A.Z seems to be the primary substrate of 

INO80 at the break and suggests that canonical nucleosomes are removed alongside with 

the variant. In line with this idea, cells deficient for H2A.Z expression showed a markedly 

reduced removal of the canonical histone H2B upon DSB induction, even exceeding the 

reduction observed in ∆arp8 cells (Figure 21 B). 

In summary, H2A.Z recruits INO80 to DSBs, which later catalyzes the removal of 

this histone variant from chromatin, likely together with other histones as well. 

 

3.2.4 Removal	of	H2A.Z	rescues	Rad51	filament	formation	and	
recombination	in	the	absence	of	a	functional	INO80	complex	

Motivated by the finding that H2A.Z seems to be a major substrate of INO80 at DSBs, I 

wondered whether the unscheduled presence of this histone variant explains the 

diminished Rad51 accumulation in absence of a functional INO80 complex. To test this 

model, I performed time-resolved ChIP-seq experiments against Rad51 in strains lacking 

Arp8, H2A.Z or both proteins. Intriguingly, simultaneous deletion of HTZ1 and ARP8 

largely rescued the defective accumulation of Rad51 signals seen in ∆arp8 cells, both at 

sites of Rad51 filament formation and ongoing homology search (Figure 22). Analysis of 

input DNA levels showed that ∆arp8 ∆htz1 cells displayed a resection defect comparable 

to ARP8 single knockout cells (Figure 22 B), again confirming that resection and Rad51 

loading are separable events with regards to INO80 activity. While defects in Rad51 

accumulation at the late 4 h time point were rescued to near-WT level, rescue at the 1 h 

time point was less strong, especially with respect to homology search (Figure 22 A). 

                                                
*** The gene encoding for H2A.Z in S. cerevisiae is HTZ1.  
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Figure 22 | H2A.Z inhibits Rad51 filament formation in absence of INO80 activity 
(A) Defective Rad51 filament formation and homology search in the absence of INO80 activity are rescued by 
additional removal of H2A.Z (∆htz1). Time-resolved Rad51 ChIP-seq analysis following DSB induction at 
position 491 kb on ChrIV in strains lacking Arp8, H2A.Z, or both, depicted for the 300-700 kb region on ChrIV. 
(B) Deletion of HTZ1 in the ∆arp8 background does not rescue the DNA end resection defect of ∆arp8 cells. 
Deep sequencing analysis of ChIP input DNA otherwise as in (A). (C) ChIP-qPCR analysis 1 h (left panel) or 
4 h (right panel) following DSB induction on ChrIV at the indicated distances from the DSB in strains lacking 
Arp8, H2A.Z, or both. Data were normalized to the WT strain. (D) qPCR analysis of ChIP input DNA from (C). 
(E) ChIP-qPCR as in (C), but in strains lacking Arp8, Swr1, or both.  
Data depicted in (A) and (B) represent mean of two independent experiments and are depicted on a log2 
scale. Data depicted in (D-E) represent mean plus SD of three independent experiments. Statistical analysis 
was conducted using Student’s t-test with asterisks indicating p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). ns: 
not significant. All data were normalized to the time before DSB induction and qPCR values were additionally 
normalized to a control locus on ChrX. 
 

I reasoned that this might have been due to the diminished Rad51 accumulation in the 

∆htz1 strain itself, probably as a direct consequence of the altered resection kinetics in 

this strain125 (Figure 22 B). To corroborate the above observations, I additionally analyzed 

Rad51 ChIP signals at specific loci by qPCR (Figure 22 C). While Rad51 accumulation 

measured at sites both close and distant to the DSB was generally significantly defective 

in ∆arp8 cells, I could not observe any significant changes in ∆arp8 ∆htz1 compared to 

WT cells. Surprisingly, Rad51 accumulation close to the DSB in the double mutant 

appeared almost normal despite clear defects in both single mutant strains (Figure 22 A 

and also C). While this seemed initially puzzling, analysis of ChIP input levels showed that 

the resection defect of the ∆htz1 strain was substantially larger than the one of the ∆arp8 

strain, as well as the one of the double mutant (Figure 22 B and D). Although the reason 

for this finding was unclear, it suggests that the initial problems of Rad51 accumulation in 

both the ∆arp8 and ∆htz1 strains, which are presence of H2A.Z and delayed end 

resection, respectively, are overcome in the double mutant. 

To further corroborate the model that unscheduled presence of H2A.Z at DSBs 

inhibits Rad51 loading, I assayed for Rad51 ChIP signals via qPCR in strains lacking 

Arp8, the catalytic subunit of the SWR1 chromatin remodeler, or both proteins. Defective 

Rad51 accumulation in ∆arp8 cells was rescued by additional knockout of the SWR1 gene 

(Figure 22 E), as in case of additional HTZ1 deletion. Thus, not solely H2A.Z expression, 

but its incorporation into chromatin by the SWR1 complex represses Rad51 accumulation 

in the absence of a functional INO80 complex. An important observation however were 

the generally weaker phenotypes observed upon SWR1 deletion than upon HTZ1 

deletion, both for Rad51 accumulation in the single mutant and combination with ∆arp8 

(compare Figure 22 C and E). Such a tendency was observed previously in response to 

various genotoxic agents117, and might indicate some SWR1-independent H2A.Z 

incorporation into chromatin. 
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Figure 23 | H2A.Z inhibits homologous recombination in absence of INO80 activity 
(A) Deletion of H2A.Z (∆htz1) rescues the recombination defect of ∆arp8 cells. qPCR analysis of 
recombination between a DSB at position 491 kb on ChrIV and a donor sequence at position 795 kb on the 
same chromosome in WT strains or strains lacking Arp8, H2A.Z, or both proteins. (B) Deletion of SWR1 
partially rescues the recombination defect of ∆arp8 cells. Analysis as in (A), but using strains lacking Arp8, 
Swr1, or both. (C) Absence of H2A.Z from chromatin partially rescues defective Rad51 accumulation at the 
donor in ∆arp8 cells. Time-resolved Rad51 ChIP-qPCR analysis at position 795 kb on ChrIV next to the 
integrated donor site following induction of a DSB at 491 kb. (D) Deletion of HTZ1 rescues recombination 
defects of various INO80 mutant strains. qPCR analysis of recombination as indicated in (A) using ∆arp8, 
∆ies5 and ∆nhp10 with or without additional HTZ1 deletion.  
All data represent the mean plus SD of three independent experiments. Statistical analysis was conducted 
using Student’s t-test with asterisks indicating p < 0.05 (*), p < 0.01 (**) or p < 0.001 (***). ns: not significant. 
All data have been normalized to a control region on ChrX and data depicted in (C) additionally to the time 
before DSB induction (0 h). 

 

I next asked whether the rescue of Rad51 accumulation in cells with H2A.Z-devoid 

chromatin was also sufficient to restore recombination in ∆arp8 cells. To this end, I 

switched again to a donor-proficient test system, in which cells are able to repair an 

induced DSB using a donor sequence elsewhere in the genome. Strikingly, when I 

investigated recombination events using the qPCR-based assay described previously, the 

strong recombination defect of ∆arp8 cells was entirely rescued in the ∆arp8 ∆htz1 double 

mutant cells (Figure 23 A). The same tendency could be observed in ∆arp8 ∆swr1 cells, 

albeit to an again significantly weaker extent, quantified to around 50 % (Figure 23 B). 

Interestingly, both ∆swr1 and ∆htz1 strains themselves showed slightly enhanced 

recombination levels compared to WT, reminiscent of the increased homology search 

signals of the H2A.Z single mutant (compare Figure 22 A). Due to the vast growth defects 

of the ∆arp8 ∆htz1 and ∆arp8 ∆swr1 strains, likely reflecting overlapping functions of 
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H2A.Z and the INO80 complex in other essential cellular processes164, recombination 

could not be determined by total cell survival on galactose media. To underpin the results 

obtained using the PCR-based recombination assay, I additionally monitored Rad51 

accumulation at the homologous donor, which is indicative of ongoing repair (compare 

Figure 7). Here, both the additional deletion of SWR1 and HTZ1 in ∆arp8 cells led to a 

partial restoration of Rad51 signals at the donor site, with HTZ1 deletion again having a 

slightly larger impact than SWR1 (Figure 23 C). Finally, combination of HTZ1 deletion with 

other INO80 complex subunit deletions as well showed robust rescues of their 

corresponding recombination defects (Figure 23 D), thereby underscoring the specificity of 

H2A.Z in inhibiting recombination in the absence of INO80. 

 

3.2.5 H2A.Z	is	required	for	centromere-linked	recombination	

I wondered whether inter-chromosomal homology search would be affected similarly than 

intra-chromosomal homology search in the absence of Arp8, H2A.Z, or both proteins.  

 

 
Figure 24 | H2A.Z is required for centromere-linked recombination 
(A) Deletion of H2A.Z (∆htz1) does not rescue centromere-linked Rad51 signals in ∆arp8 cells. Rad51 ChIP-
seq data as depicted in Figure 22. Normalized Rad51 signals 4 h following DSB induction were calculated in 
the areas of 90 kb surrounding each centromere (except CenIV). Signals with similar centromere distance 
were averaged and the fitted curves plotted. (B) H2A.Z is required for recombination between centromere-
linked alleles. qPCR analysis of recombination between the centromere proximal DSB at position 491 on 
ChrIV and two donor sites with different distances from the centromere on ChrVII.  
All data represent mean of two independent experiments plus SD (only B). 
 

Using the Rad51 ChIP-seq data generated before (Figure 22 A), I analyzed the mean 

efficiency of the inter-chromosomal homology search around all centromeres, excluding 

the one on the broken chromosome IV. As expected, the inter-chromosomal Rad51 

signals in the ∆arp8 strain were largely defective, similar to the case on the DSB-affected 

chromosome IV (Figure 24 A and Figure 22 A). Surprisingly, a comparable defect was 
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also present in the ∆htz1 and the ∆arp8 ∆htz1 strains, despite the fact that both of these 

strains showed robust Rad51 accumulation on the broken chromosome and importantly 

around the centromere on chromosome IV. I aimed to confirm these results on the level of 

recombination, allowing the cells to repair the DSB induced on chromosome IV using a 

centromere-linked donor site on chromosome VII (compare Figure 7 E and F). Strikingly, 

deletion of HTZ1 resulted in reduced recombination levels, with the strongest defect 

present in the strain with the donor site closest to centromere VII (Figure 24 B). Together, 

these results indicated the possibility that H2A.Z might be generally required for 

centromere-linked or inter-chromosomal recombination, although further work involving 

differently located homology pairs will be required to verify this hypothesis. 

 

Collectively, in the second part of this study I identified INO80 as the first chromatin 

remodeler specifically involved in the formation of Rad51 filaments during HR. Absence of 

INO80 chromatin remodeling activity results in the unscheduled accumulation of the 

histone variant H2A.Z next to DSBs. H2A.Z interferes with the loading of Rad51 onto 

RPA-coated ssDNA, despite normal presence of canonical recombination mediators. 

Finally, removal of H2A.Z largely eradicates both the Rad51 filament formation as well as 

total recombination defects of INO80-deficient cells. 
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4 DISCUSSION	

4.1 Homologous	recombination	in	a	three-dimensional	and	
chromatinized	environment	

Since the proposal of the famous DSB repair model for recombination in 1983197, the 

biochemistry behind the HR pathway as well as important variations from it have been 

well established. A multitude of key enzymes in core recombination steps such DNA end 

resection, presynaptic filament formation, synapsis and strand exchange as well as 

Holliday junction dissolution/resolution have been characterized in much detail49,54,64,198. 

However, our detailed knowledge on recombination between two genomic sequences in 

vivo and especially in context of the nuclear environment has lagged behind71. Coping 

with the dense packaging of DNA inside chromatin, recombining within a well-defined 

nuclear architecture as well as balancing the activity of the pathway are key challenges for 

the cell in this context.  

While HR predominantly takes place between sister-chromatids, also non-allelic 

(ectopic) recombination occurs naturally between repetitive sequences and contributes to 

genome evolution93,94. Only recently, our laboratory identified an intriguing guidance of 

genome-wide homology search signals by the three-dimensional nuclear architecture47, 

but it remained unclear whether this transmits to a link between recombination efficiency 

and genomic distance as well. Using a newly developed recombination assay to monitor 

HR between different genomic locations in real-time, I could indeed for the first time 

determine a connection between nuclear architectural elements and the efficiency of 

recombination. The latter is generally low between chromosomes, but I could show that it 

markedly increases between sites that are physically linked by centromere clustering 

compared to unlinked loci†††. Importantly, since then two other laboratories corroborated 

this data and extended the analysis to global correlations between contact probabilities 

and recombination outcome177,182. Overall, in the recent years nuclear architecture has 

emerged as a major determinant with regards to DSB repair, thereby regulating important 

processes such as disease-related chromosome translocations and V(D)J recombination 

in lymphocytes199-201. 

In the case of chromatin, histone modifications and variants as well as ATP-

dependent chromatin remodeling complexes all play important roles in DSB repair202,203. 

Most studies placed these factors at the beginning of the repair process where they also 

determine the pathway choice between NHEJ and HR, often by promoting DNA end 
                                                
††† This data has been published in the same study as the initial homology search findings47. 
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resection124,125,127,153-155,204. Others reported a need for nucleosome removal at the site of 

the homologous donor and subsequent chromatin restoration once repair is 

completed158,160,166,167. 

Employing a combination of ChIP of DNA repair and chromatin factors in a highly 

controllable model system of inducible DSBs in S. cerevisiae, I could reveal novel 

functions of well-known Snf2/Swi2 family chromatin remodeling enzymes in processes of 

HR that were previously not directly connected to chromatin remodeling. First, I 

demonstrated the Rad54/Rdh54 proteins to be essential factors for the in vivo homology 

search process (Figure 25). Although their function could not be linked to a necessary 

change in the chromatin structure, I unexpectedly found that such a change is instead a 

consequence of the homology search. Second, I identified an intriguing function of the 

INO80 complex in promoting the formation of the central entity of the HR pathway – the 

Rad51-coated ssDNA filament (Figure 26). Surprisingly, this was independent of 

previously known requirements for this process, such as DNA end resection and 

recombination mediator proteins. Instead, INO80 removes the histone variant H2A.Z – 

possibly from single-stranded DNA – next to a DSB, and in cells with H2A.Z-devoid 

chromatin Rad51 filament formation as well as recombination do not depend on the 

remodeler anymore. 

These data raise important questions: what is the mechanistic basis for 

Rad54/Rdh54 function in the homology search? What are the nature and the benefit of the 

remodeling of histones H2A and H2B that follow this process? How can a histone variant 

inhibit Rad51 filament formation downstream of DNA end resection? What is the rationale 

behind the role of INO80-H2A.Z in regulating Rad51 accumulation? 

In the following paragraphs, I will try to address these questions by discussing 

them in the context of the current literature and by presenting possible mechanistic 

models. 
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4.2 Rad54	and	Rdh54	function	during	homology	search	

Homology search has long remained enigmatic, mainly due to the lack of adequate 

methodologies that monitor this process directly. The observation that minor 

accumulations of Rad51 outside the area of DNA end resection correspond to snapshots 

of transient homology sampling then enabled for the first time the investigation of the 

molecular components underlying the search47. In vitro, homology probing between 

isolated DNA molecules is an intrinsic capability of DNA recombinases such as Rad51 or 

bacterial RecA, mediated by their two different DNA binding sites72,73,75,205. Instead, long-

ranged cellular homology search in vivo in the context of chromatin and entire 

chromosomes is much more complicated and expected to have higher molecular 

demands71. Verifying this hypothesis, I showed that the two DNA translocases Rad54 and 

Rdh54 are essential components for cellular homology search. Importantly, Rad51 

filament formation is normal in the absence of the two translocases, arguing for a direct 

contribution to the homology search process. While the activities of both proteins seem to 

be at least partially redundant in this regard, the underlying mechanism is still unclear and 

several models can be envisioned (Figure 25). A possible explanation for the involvement 

of Rad54 and Rdh54 in the homology search is that both proteins use their intrinsic 

nucleosome remodeling activities to make homology probing more efficient188,206,207 

(Figure 25 C, 1). Although this model cannot be entirely excluded, I could not link any 

specific chromatin remodeling event at sites of homology search to Rad54/Rdh54 so far. 

Alternatively, the high translocation processivity of both enzymes on dsDNA208,209 might 

not be used to remodel nucleosomes, but to increase the transient strand opening of DNA 

via supercoiling210, thereby facilitating access of the Rad51 secondary DNA binding site to 

the target DNA (Figure 25 C, 2). In fact, a requirement for negative supercoiling of the 

target DNA has been observed during in vitro recombination experiments with the 

bacterial RecA protein75,211,212 and along that line the capacity of target DNA breathing 

seems to be beneficial when it comes to homology recognition76. A third, more provocative 

possibility is the idea that Rad54 and Rdh54 could function as motor proteins, increasing 

the processivity and directionality of presynaptic filament sliding along the target DNA 

(Figure 25 C, 3)77. This could be mediated by the direct interaction of both translocases 

with Rad51213,214. 
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Figure 25 | Potential mechanisms for the function of the Rad54 family proteins during homology 
search 
(A) DSB induction results in the formation of Rad51 filaments with sub-stoichiometric amounts of Rad54 and 
Rdh54 bound to it. Rad54 and Rdh54 presumably form hexameric ring-shaped structures, which enable their 
efficient translocation on dsDNA209,215. (B) At an initial level, at least Rad54 is required for a DSB-induced 
chromatin mobility, which might play a role in mediating proximity between Rad51 filament and target DNA. 
(C) Once target DNA is nearby, Rad54 and Rdh54 could act by several means to enhance the efficiency of 
homology probing. First, although not observable during this study, both proteins could use their chromatin 
remodeling activity to enhance homology probing (1). Second, translocation-induced DNA supercoiling could 
generate ssDNA bubbles, acting as entry points for the Rad51 secondary binding site to sample target DNA 
(2). Third, robust translocation could act as a pulling force for the entire Rad51 filament and enhance its 
interaction with the target DNA, thus maximizing search efficiency (3). 
 

All three proposed models place the role of both translocases directly at the site of 

the search, consistent with my finding that they exert their function while interacting with 

Rad51. Consequently, their absence would not affect the long-range homology search 

itself, but only the direct homology probing of the in vivo substrate. However, I observed 

that absence of Rad54 and Rdh54 also reduces the phosphorylation of histones H2A and 

likely also H2B, which follow the homology search. Assuming that these phosphorylation 

events would only require local proximity between the presynaptic filament and target 

histones (for further information see section 4.3), an additional or even completely 

different function for both proteins in enabling the presynaptic filament not only to locally 

probe, but also initially reach the target DNA sites would be required. Notably, such a role 

could be linked to the requirement of Rad54 in induced chromatin mobility at DSBs96 

(Figure 25 B). Although the majority of this mobility seems to be attributable to a DSB-
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induced relief of centromeric constraints that is not necessary for the homology search102, 

Rad54 could still perform an independent function in this regard. 

Interestingly, I also found that recombination can be enhanced by increasing the 

expression of Rad54; but paradoxically, increased Rad54 levels are not beneficial for cell 

survival per se216. Thus, protein functionalities have to be specifically fine-tuned to allow 

the best possible outcome on the cellular level, although this might include a reduced 

capacity to essentially repair DNA damage on the molecular level.  
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4.3 Chromatin	remodeling	at	sites	of	homology	search	

Active homology search induces the DSB-distant generation of γH2A and likely also 

γH2B47,192. While it was a long-standing belief that chromatin modifications catalyzed by 

DDR kinases spread in a linear fashion on the broken chromosome, this picture now turns 

into a model in which these modifications are set onto large parts of DSB-surrounding 

chromatin in the three-dimensional space136,217,218. In this study, I could show that the 

large-scale induction of γH2A and γH2B upon induction of a single DSB results in a 

reduced interaction of these histone molecules with DNA and that this event might 

contribute to an opening of the chromatin structure at the respective sites. There are 

important questions arising from these findings: how is this change in the chromatin 

structure achieved? What is its specific nature? What is it good for? 

The presynaptic filament required for the homology search and subsequent strand 

invasion is not a sole entity between ssDNA and recombinase proteins. Instead, many 

repair proteins, once recruited to a DSB, remain there for hours, still binding after the 

Rad51 filament has been assembled47,55. Among these molecules are the upstream DNA 

damage-response kinases Mec1 and Tel1 (mammalian ATR and ATM, respectively), 

which catalyze γH2A and γH2B formation. Thus, traveling of these kinases together with 

the filament brings potential substrates into their close physical proximity136,217, which 

might be already sufficient for the modification of nearby histones. However, my finding 

that also Rad54/Rdh54 are required for the phosphorylation of at least H2A, could imply 

an additional need for transient homology sampling to further increase proximity or 

prolong interaction time with the substrate. Either way, phosphorylation results in a ChIP-

detectable reduction in the occupancy of these histones with DNA. What does this tell us 

for the whole nucleosome? (H3-H4)2 tetramers are considerably more stable on chromatin 

than H2A-H2B dimers219-222. However, the fact that H2A or H2B loss can be detected 

independently of each other in the respective phosphorylation mutants excludes a model 

in which H2A-H2B dimers are selectively lost from these sites. Also, H2A and H2B are 

always disassembled from or deposited onto DNA as obligate heterodimers109,223 and to 

my knowledge there has been no report in the literature on conditions where solely H2A or 

H2B molecules are lost from nucleosomes. Thus, the ChIP results most likely account for 

conditions in which DNA-histone interactions are weakened and as a consequence 

nucleosomes are more flexible and unstable. In line with this model, γH2A formation has 

been previously associated with an intrinsic destabilization of nucleosomes both in yeast 

and mammals (here γH2AX)140,168,224. Local chromatin flexibility might be further enhanced 

by additional phosphorylation of cohesin, whose mobility on DNA is increased by this 
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event225. Mine as well as earlier results47 demonstrated that this increased chromatin 

flexibility does not promote the homology search itself, however. Accordingly, yeast 

strains expressing both non-phosphorylatable H2A and H2B are generally not sensitive 

towards genotoxic agents192. It remains to be shown whether the same applies for survival 

upon ectopic recombination, which could not be tested in this study due to repeating 

problems in generating the respective yeast strains. Instead of promoting recombination 

directly, γH2A and γH2B may trigger an enhanced DNA damage checkpoint response, 

both through protein-protein interactions226 and the observed increasing chromatin 

flexibility102. 
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4.4 The	histone	variant	H2A.Z	inhibits	Rad51	filament	formation	

The presented work places INO80 as the first chromatin remodeling complex that is 

directly involved in the loading of Rad51 at resected DNA (Figure 26). While this finding 

was surprising, there is supporting evidence from other groups. First, the remarkable initial 

discovery that histones are removed alongside a DSB dependent on the INO80 complex 

included a finding that showed also Rad51, but not RPA recruitment to a DSB to require 

this remodeler196. The speculative conclusion that this might be due to a defective 

recruitment of Rad52 could however be disproved in the present study, as well as the idea 

that Rad51 recruitment is linked to the observed removal of canonical nucleosomes per 

se. Second, a recent study in mammalian cells reported a reduced number of Rad51, but 

not RPA foci, upon DNA damage in absence of INO80 function. Under similar conditions, 

also sister-chromatid recombination was defective and in both cases, this depended on 

the presence of H2A.Z227, ‡‡‡. Although the microscopic analyses carried out in that study 

give limited information about the detailed chromatin binding status of repair proteins, the 

combination with the presented data in this thesis allows important conclusions. First, the 

INO80-H2A.Z axis regulating recombination on the level of Rad51 is evolutionary 

conserved. Second, INO80-H2A.Z regulation seems important for repair of drug-induced 

and endonuclease-induced DSBs. Third, absence of INO80 activity likely completely 

blocks Rad51 filament formation in a subset of cells. The reduced ChIP signals over the 

average of a cell population presented in this study could similarly reflect a scenario in 

which all cells only assemble a shorter or patchy filament. However, both the total 

reduction in number of Rad51 foci in the mammalian system, as well as the strikingly 

similar strength of defective Rad51 signal accumulation and recombination, support the 

former model. Consequently, the intriguing question arises how a specific histone variant 

can inhibit the loading of Rad51 onto single-stranded DNA, and in principle, two scenarios 

can be envisioned in this regard. 

In the first scenario, H2A.Z directly interferes with Rad51 loading by modulation of 

DSB binding proteins. On the one hand, this could involve an inhibition of pro-

recombinogenic proteins, such as Rad51 itself or recombination mediators54. On the other 

hand, it might favor the recruitment of proteins with anti-recombination activity228. A direct 

interference of H2A.Z and Rad51 appears hard to imagine, as this could only happen 

directly adjacent to a nucleosome and Rad51 should still be loaded properly in between 

those. In fact, it was recently hypothesized that presynaptic filaments might remain 
                                                
‡‡‡ This publication appeared after the key findings on INO80 and H2A.Z presented in this study 

had already been made. 
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nucleosome-covered, taking into account the discrepancy between actual experimental 

results and current models depicting nucleosome-free resected DNA203. Consistent with 

data presented in this study, nucleosome loss next to a DSB has previously been shown 

to be poor compared to inducible promoters195. This is especially true for sites exceeding 

a distance of one or two nucleosomes away from the break127,153,196. With regards to 

recombination mediators, increased H2A.Z levels alter neither Rad52, nor Rad55 or 

Rad57 binding to the DSB. Nevertheless, recently identified additional mediators such as 

members of the Shu complex60 might play a role in this regard and it will be interesting to 

test their recruitment in INO80 mutants. Interestingly, my preliminary experiments point to 

a rescue of Rad51 accumulation in INO80-deficient strains upon deletion of the yeast anti-

recombinase SRS265,66 (data not shown). However, these experiments are difficult to 

interpret, as already SRS2 single deletion strains appear to have strongly increased 

Rad51 levels at both sites of filament formation and homology search. Conversely, these 

strains are defective in ectopic recombination, likely due to problematic resolving of Rad51 

joint molecules or Rad51 filaments stuck at non-productive microhomologies79,229. Also, no 

specific interaction between H2A.Z and Srs2 was reported so far§§§. Overall, the mass 

spectrometry approach I conceived to detect differential protein binding to ssDNA at a 

DSB could not identify significant differences in the interaction profiles of WT and ∆arp8 

cells (data not shown), thus demanding alternative explanations. 

An alternative model is that pronounced presence of H2A.Z indirectly suppresses 

Rad51-mediated HR, resulting in delayed recombination or the usage of a completely 

alternative repair pathway. I hypothesize that such an indirect suppression could act via a 

H2A.Z-dependent translocation of the DSB to a more recombination-repressive 

compartment (Figure 27). Indeed, the histone variant contributes to the anchoring of DSBs 

to the nuclear pore, where classical recombination is suppressed125,129,130,230. This 

suppression seems to involve a mechanism dependent on the SUMO-targeted ubiquitin 

ligases Slx5/Slx8, and my preliminary data indicate that the recombination defect of ∆arp8 

cells can be partially rescued by absence of either the Slx8 protein or the SUMO ligases 

Siz1 or Siz2. This scenario could also take into account why Rad51 loading at probably 

only some, but not all DSBs is affected in the absence of INO80 activity, which is hard to 

envision for the direct modulation of protein-protein interactions at the DSB. Instead, a 

timely competition between the arrival of the DSB in the recombination suppressive 

compartment and Rad51 loading could arise, shifting the balance to the one or the other 

side (see also section 4.5). 
                                                
§§§ As annotated in the Saccharomyces Genome Database (http://www.yeastgenome.org) 
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Figure 26 | INO80 promotes Rad51 filament formation by removal of H2A.Z. 
(A) A DSB is generated by exogenous or endogenous sources. (B) A number of chromatin remodeling 
enzymes help to promote DNA end resection, yet some nucleosomes may remain bound to ssDNA. Resected 
DNA is covered by RPA, which recruits recombination mediator proteins. Mediators are not sufficient for 
Rad51 loading in presence of the variant histone H2A.Z. (C) INO80 removes H2A.Z, which promotes Rad51 
filament formation and allows HR to be completed. It is unclear whether H2A.Z-containing nucleosomes are 
entirely removed or exchanged for canonical H2A-H2B dimers. 
 

Whatever the mechanism is, the problem boils down to one question: what 

differentiates H2A.Z from canonical H2A? Although H2A.Z fulfills a plethora of specialized 

functions inside a cell and is an essential protein in higher eukaryotes118, there is no 

simple answer to this question in general and in particular regarding recombination. 

Studies with the Drosophila melanogaster H2A.Z protein have shown that only mutation of 

the C-terminal so called M6 region does not rescue the embryonic lethality of the null 

mutant231. In fact, this region is required for incorporation into chromatin119 and thus, once 

part of the chromatin, it remains largely unclear which regions make H2A.Z that specific. 

Although due to subtle changes in the crystal structure H2A.Z-containing nucleosomes are 

believed to be rather unstable, it remains unclear which amino acids exactly mediate this 

difference. Furthermore, biochemical and biophysical experiments gave contradictory 

outcomes regarding the stability of variant-containing nucleosomes232-236 and it is likely the 

general chromatin context that determines the physical outcome of H2A.Z 

incorporation118. Along that line, the comprehensive region-swap analysis that I performed 

to generate multiple partially H2A-like H2A.Z variants, revealed only the M6 region as 

clearly important in inhibiting recombination, with some inconsistent tendencies for the N-

terminal part as well (data not shown). Since the M6 mutation functionally mimics the 
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deletion of SWR1, which does not allow H2A.Z incorporation into chromatin, these data do 

not allow any conclusion on the function of H2A.Z once it resides inside the chromatin. 

Further work will be required in this regard, emphasizing the fact that the identification of a 

non-recombination suppressive H2A.Z variant would surely be beneficial for 

understanding the mechanism behind the inhibition as well.  
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4.5 An	INO80-H2A.Z	axis	regulating	recombination	activity	

The complexity of the INO80-dependent regulation of H2A.Z at DSBs is unclear. On the 

one hand, the anti-recombination function of H2A.Z could be a simple, accidental cost for 

the desired functions of this histone variant in other cellular pathways, such as gene 

transcription118. This “passive activation model” (Figure 27 A) would go along with a 

standardized requirement for INO80 and the concomitant removal of H2A.Z during any 

recombination event at a DSB. On the other hand, H2A.Z could be used as an intended 

tool to adapt the activity of HR to specific repair situations. This “active regulation model” 

(Figure 27 B) would assume a possibility to adapt at least either H2A.Z levels or the 

activity of INO80 at the DSB, better still both. 

 

 
Figure 27 | A hypothetical model for the function of the INO80-H2A.Z axis during HR 
A DSB is generated at an endogenous locus, flanked by canonical and H2A.Z-containing nucleosomes. (A) 
Intrinsic H2A.Z interferes with Rad51 loading during every HR event and INO80 is required to counteract this 
inhibition. This passive activation model is unlikely to be true (indicated by dashed arrows). (B) Active 
regulation model: a subset of complex DSBs require more time for their repair. Prolonged resection leads to 
enhanced incorporation of H2A.Z by SWR1, which fosters relocation of damage sites to the nuclear periphery. 
Constant suppression of Rad51-mediated HR at the nuclear pore can result in Rad51-independent repair. 
Alternatively, active regulation of INO80 in this model triggers H2A.Z removal and release of the Rad51 block, 
allowing completion of canonical HR. 
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Several lines of evidence argue against the passive activation model and support 

the active regulation model, which I will outline in the following. At first, INO80 is not a 

bona fide recombination factor. It is neither required for mating-type switching in 

yeast126,237 nor for spontaneous sister-chromatid recombination or allelic recombination in 

diploids227,237. In contrast, the remodeler becomes important when the latter two events 

are measured after damage induction with MMS237 or MMC227, which both induce DSBs at 

(long-term) stalled replication forks238. Moreover, this and other studies showed an 

involvement of INO80 in ectopic recombination130,182. While repair of ectopic donors or 

collapsed forks can be slow and take several hours, sister chromatid recombination and 

mating-type switching are rather fast events due to specialized chromosome 

conformations91,191. Altogether, this speaks for a model in which INO80 function is 

important for the repair of a subset of “difficult-to-repair” DSBs. In line with the previously 

proposed mechanistic model of INO80-H2A.Z balancing the targeting of DSBs to the 

nuclear periphery, it is exactly such DSBs, also at collapsed replication forks, that are 

anchored at the nuclear pore125,129. 

How would the regulation take place at such breaks? One possibility to modulate 

initial H2A.Z levels is via the incorporation of the histone variant to promote DNA end 

resection and chromatin opening124,125,128. In agreement, I also found increased levels of 

H2A.Z next to a DSB in an INO80 mutant following damage induction. Although it will 

require methods to formally distinguish pre- and post-DSB incorporated H2A.Z molecules 

to reveal the true source of the inhibitory H2A.Z, at least for mammalian cells it was 

suggested that failure to remove the post-DSB H2A.Z pool interferes with subsequent 

repair outcome171,227. Thus, the longer repair takes and the further resection will go239, the 

more important the activity of INO80 would become. Cells could then carefully and 

continuously unleash recombination activity and “buy time” to avoid toxic aberrant 

recombination events in such scenarios (Figure 27 B). Indeed, INO80 binding to the DSB 

constantly increases for several hours after induction of irreparable DSBs144,194. 

Consequently, a lack of the ability to use H2A.Z as a potential recombination constraint 

should cause negative effects. My preliminary experiments show that expression of a non-

acetylatable H2A.Z variant in INO80-defective cells partially rescues ectopic 

recombination (data not shown). By contrast, the same variant reduces cell survival 

following prolonged replication fork stalling in absence of INO80 activity, and here, 

knockout of the recombination promoting H2A.Z de-acetylase is beneficial164. 

In summary, the requirement of INO80 for removal of H2A.Z at DSBs is likely 

limited to specific types of lesions. H2A.Z might be specifically used to inhibit Rad51 
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filament formation at these sites, possibly by delaying recombination or allowing the usage 

of an alternative repair pathway. Eventually, this regulation will result in the best condition 

to promote cellular survival. The development of sophisticated, image-based and detailed 

repair systems to follow the fate of specific lesions will undoubtedly be essential to our 

future understanding of this regulation. 

 

After decades of research, HR remains an intriguingly complex and sophisticated 

pathway to repair DNA breaks and exchange genetic information. This study adds 

important new insights into the pathway and expands our view on the importance of an 

adaptation to the variety of complications that it faces inside the nucleus. Future studies 

will further broaden our horizon, and eventually this will give us better chances to fight the 

many diseases that have underlying genetic defects in HR.  
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5 MATERIALS	AND	METHODS	
Unless mentioned differently, materials, chemicals and reagents were purchased from 

Agilent, BD, Biomol, Bioneer, Bio-Rad, Eppendorf, Eurofins Genomics, GE Healthcare, 

Life Technologies, Merck, New England Biolabs, PeqLab, Promega, Qiagen, Roth, Roche, 

Sarstedt, Serva, Sigma or Thermo Fisher Scientific. Flasks, solutions, and de-ionized 

water were sterilized before use for all the described procedures. Basic microbiological, 

molecular biological and biochemical techniques followed standard protocols or 

instructions provided by the manufacturer240,241. 

 

5.1 Microbiology	

5.1.1 Escherichia	coli	(E.	coli)	techniques	

E. coli strains were cultivated at 37°C either in liquid LB medium or on LB agar plates. 

Liquid culture density was determined photometrically via absorption at 600 nm (OD600). 

E.	coli	strains	

Strain	 Genotype	 Source	

XL1-Blue  recA1 endA1 gyrA96 thi-1 hsdR17(rK
-mK

+) supE44 relA1 
lac [F´ proAB lacIqZΔM15 Tn10 (Tetr)] Agilent 

Mach1TM T1R F-Φ80(lacZ)ΔM15 ΔlacX74 hsdR(rK
-mK

+) ΔrecA1398 
endA1 tonA 

Life 
Technologies 

	

E.	coli	media	

LB medium/plates    1 % (w/v) trypton 
0.5 % (w/v) yeast extracts 
1 % (w/v) NaCl 
1.5 % (w/v) agar (only for plates) 
sterilized by autoclaving 

 

For plasmid selection, 100 μg/ml ampicillin was added to media or plates. 

Competent	E.	coli	cells	

For the preparation of electro-competent E. coli cells, 1 l pre-warmed LB medium was 

inoculated to an OD600 of 0.05 from a fresh overnight culture (starting with cells from the 

commercially available stock) and grown to a final OD600 of 0.6-0.8 at 37°C. Subsequently, 

bacteria were chilled on ice for 30 min and cells were harvested by centrifugation (3000 g, 
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10 min, 4°C). The bacterial pellet was carefully resuspended in 0.5 l of pre-chilled water 

and subsequently washed three times with 0.5 l of pre-chilled 10 % (v/v) glycerol. After a 

final washing step with 50 ml of 10 % (v/v) glycerol, bacteria were resuspended in 3 ml 10 

% (v/v) glycerol, 50 μl aliquots snap-frozen frozen in liquid nitrogen and long-term stored 

at -80°C. 

Transformation	of	E.	coli	cells	

To transform E. coli cells via electroporation, 50 µl cells were thawed on ice immediately 

before transformation and ~100 ng of plasmid DNA or 8 µl of a dialyzed ligation reaction 

(see section 5.2.3) added to the cells. The mixture was transferred to pre-chilled 

electroporation cuvettes (0.1 cm electrode gap; Bio-Rad) and electroporated with a pulse 

of 1.8 kV and 25 μF at a resistance of 200 Ω using a Gene Pulser X-cell (Bio-Rad). 

Immediately after electroporation, 1 ml warm LB medium was added to the cuvette, cells 

transferred to a 15 ml tube and incubated for 30 min at 37°C (220 rpm). Successfully 

transformed cells were eventually selected on LB plates containing Ampicillin via 

overnight incubation at 37°C. 

 

5.1.2 Saccharomyces	cerevisiae	(S.	cerevisiae)	techniques	

All S. cerevisiae strains were cultivated at 30°C either in liquid media or on agar plates. 

Liquid culture density was determined photometrically via absorption at 600 nm (OD600) 

with a value of 1.0 estimated to correspond to a number of 1.5 x 107 cells. 

S.	cerevisiae	strains	

All yeast strains were isogenic to either DBY745242 or W303243. Strains YCL25 and YCL26 

were obtained by crossing YCZ173244 with W303 MATα. Strain YCL42 by crossing YCL25 

with W303 MATa.  

 

Name	 Genotype	 Source	

JKM179 Δhml::ADE1, MATα, Δhmr::ADE1, ade1, leu2-3,112 lys5, 
trp1::hisG', ura3-52, ade3::PGAL-HO Ref. 245 

JOR03 JKM179, ∆rad54::kanMX6 Ref. 47 
JOR05 JKM179, ∆rdh54::natNT2 Ref. 47 
JOR34 JKM179, ∆rad54::kanMX6, ∆rdh54::natNT2 Ref. 47 
JOR97 YCL26, ChrIV491kb::HOcs-hphNT1 Ref. 47 
YCL025 MATα, ade3::PGAL-HO, hmlΔ::pRS-1 hmrΔ::pRS-2 This study 
YCL026 MATa, ade3::PGAL-HO, hmlΔ::pRS-1 hmrΔ::pRS-2 This study 
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matHOcsΔ::pBR-1 
YCL042 MATa, ade3::PGAL::HO, hmlΔ::pRS-1 hmrΔ::pRS-2 This study 
YCL061 JOR34, RFA1-9myc::hphNT1 This study 
YCL063 YCL26, ChrIV491kb::GFPHOcs-hphNT1 This study 
YCL072 YCL63, ChrIV625kb::GFPHOinc-kanMX4 This study 
YCL076 YCL63, ChrIV795kb::GFPHOinc-kanMX4 This study 
YCL078 YCL63, ChrIV820kb::GFPHOinc-kanMX4 This study 
YCL080 YCL63, ChrVII434kb::GFPHOinc-kanMX4 This study 
YCL081 YCL63, ChrVII484kb::GFPHOinc-kanMX4 This study 
YCL083 YCL63, ChrVII166kb::GFPHOinc-kanMX4 This study 
YCL084 YCL26, ChrIV625kb::GFPHOinc-kanMX4 This study 
YCL085 YCL26, ChrIV795kb::GFPHOinc-kanMX4 This study 
YCL086 YCL26, ChrIV820kb::GFPHOinc-kanMX4 This study 
YCL104 YCL25, ura3::PADH-HED1-URA3 This study 
YCL110 JOR97, ∆arp8::kanMX6 This study 
YCL112 YCL72, ∆rad54::natNT2 This study 
YCL115 YCL76, ∆arp8::natNT2 This study 
YCL119 JOR97, ∆rad54::kanMX6, ∆rdh54::natNT2 This study 
YCL124 YCL25, ura3::PADH-hed1T131P-URA3 This study 
YCL134 YCL76, ura3::PGAL-RAD54-URA3 This study 
YCL157 YCL76, ura3::PADH-RAD54-URA3 This study 
YCL179 JOR97, ∆sgs1::kanMX6, ∆exo1::natNT2 This study 
YCL201 YCL26, ChrIV491kb::HOcs-natNT2 This study 
YCL208 YCL201, hta1S129A::kanMX6, hta2S129A::hphNT1 This study 
YCL246 YCL201, htb1T129A::kanMX6, htb2T129A::hphNT1 This study 
YCL248 JOR97, ∆htz1::natNT2 This study 
YCL252 JOR97, ∆swr1::natNT2 This study 
YCL260 JOR97, ∆arp8::kanMX6, ∆swr1::natNT2 This study 
YCL261 JOR97, ∆arp8::kanMX6, ∆htz1::natNT2 This study 
YCL344 YCL76, ∆arp8::natNT2, ∆htz1::CaURA3 This study 
YCL345 YCL76, ∆arp8::natNT2, ∆swr1::CaURA3 This study 

YCL353 MATα, ade3::PGAL-HO, hmlΔ::pRS-1 hmrΔ::pRS-2 
matHOcsΔ::pBR-1, ∆ura3, ∆trp1 This study 

YCL451 YCL76, ∆htz1::natNT2 This study 
YCL458 YCL353, ∆htz1::TRP1 This study 

YCL505 MATa, ChrIV491kb::HOcs-hphNT1, ∆hta1htb1::LEU2, 
∆hta2htb2::TRP1, YC33-HTA1-HTB1  This study 

YCL506 MATa, ChrIV491kb::HOcs-hphNT1, ∆hta1htb1::LEU2, 
∆hta2htb2::TRP1, YC33-hta1S129A-htb1T129A  This study 

YCL513 JOR97, RAD55-6HA::natNT2 This study 
YCL514 YCL110, RAD55-6HA::natNT2 This study 
YCL515 JOR97, RAD57-6HA::natNT2 This study 
YCL517 YCL110, RAD57-6HA::natNT2 This study 
YCL537 YCL76, ∆swr1::natNT2 This study 
YCL584 JOR97, HTZ1-3HA::TRP1 This study 
YCL587 JOR97, HTZ1-3HA::TRP1, INO80-9myc::natNT2 This study 
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YCL588 YCL110, HTZ1-3HA::TRP1 This study 
YCL601 JOR97, INO80-9myc::natNT2 This study 
YCL602 YCL76 x YCL458 This study 
YCL609 YCL602, ∆ino80::natNT2 This study 
YCL618 YCL80, ∆htz1::natNT2 This study 
YCL619 YCL81, ∆htz1::natNT2 This study 
YCL626 YCL76, ∆ies5::natNT2 This study 
YCL627 YCL76, ∆ies5::natNT2, ∆htz1::TRP1 This study 
YCL734 YCL76, ∆nhp10::natNT2 This study 
YCL735 YCL76, ∆nhp10::natNT2, ∆htz1::TRP1 This study 
	

S.	cerevisiae	vectors	

Type	 Name	(Marker)	 Purpose	 Source	

Centromeric YC33 (URA3) Expression of protein of interest under 
URA3 marker Ref. 246 

Integrative YIplac-PADH-
TADH (URA3) 

Expression of protein of interest under 
the ADH promotor at the URA3 locus Ref. 246 

 
YIplac-PGAL-TADH 
(URA3) 

Expression of protein of interest under 
the GAL promotor at the URA3 locus Ref. 246 

 

S.	cerevisiae	plasmids	

Name	 Plasmid	(Marker)	 Source	

D4137 HOcs (natNT2) J. Renkawitz, 
unpublished 

pCL02 YIplac128-PADH-RAD54 (URA3) This study 
pCL09 YIplac128-PADH-HED1 (URA3) This study 
pCL15 GFPHOcs (hphNT1) This study 
pCL17 GFPHOinc (kanMX6) This study 
pCL22 YIplac128-PGAL-RAD54 (URA3) This study 
pCL31 YIplac128-PADH-hed1T131P (URA3) This study 
pCL41 YCplac33-HTA1-HTB1 (URA3) This study 
pCL44 YCplac33-hta1S129A-htb1T129A (URA3) This study 

 

S.	cerevisiae	media	and	buffers	

YPD/YP-Gal/YP-Raff   1 % (w/v) yeast extract 
2 % (w/v) bacto-peptone 
2 % (w/v) carbon source (glucose, galactose, 
raffinose) 
2 % (w/v) agar (only for plates)  
sterilized by autoclaving 
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YP-lactate     1 % (w/v) yeast extract 

2 % (w/v) bacto-peptone 
3 % (w/v) lactic acid 
adjusted to pH 5.5 with NaOH (ca. 12 g/l final) 
sterilized by autoclaving 

 
YPD G418/Nat/Hyg plates  after autoclaving, YPD medium with 2 % agar was 

cooled to 50°C and 200 mg/l G418 (geneticine 
disulphate, PAA Laboratories), 100 mg/l Nat 
(nourseothricin, HK Jena) or 500 mg/l Hyg 
(hygromycin B, PAA Laboratories) was added. 

 
SC-media     0.67 % (w/v) yeast nitrogen base 

0.2 % (w/v) amino acid drop out mix (except amino 
acids selected for by auxotrophy markers) 
2 % (w/v) Glucose 
2 % agar (w/v) (for plates) 
sterilized by autoclaving 

 
Drop out amino acid mix   20 mg Ade, Ura, Trp, His  

30 mg Arg, Tyr, Leu, Lys 
50 mg Phe 
100 mg Glu, Asp 
150 mg Val 
200 mg Thr 
400 mg Ser 

 
SORB      100 mM LiOAc 

10 mM Tris-HCl, pH 8.0 
1 mM EDTA, pH 8.0 
1 M sorbitol 
sterilized by filtration 

 
PEG      100 mM LiOAc 

10 mM Tris-HCl, pH 8.0 
1 mM EDTA, pH 8.0 
40 % (w/v) PEG-3350 
sterilized by filtration, stored at 4°C 
 

Storage	and	cultivation	of	S.	cerevisiae	

For long-term storage, single yeast colonies were inoculated overnight, mixed with 50 % 

(v/v) glycerol (final concentration 15 %) and frozen at -80°C. For each experiment, cells 

were freshly streaked from glycerol stocks onto agar plates using a sterile toothpick or 
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glass pipette. Liquid cultures were inoculated from pre-cultures to an OD600 of 0.1. In case 

of experiments using YP-lactate, cells were passed through two sequential pre-culture 

steps to fully inhibit glucose metabolism. Main cultures were then grown under constant 

shaking (150-250 rpm on a shaking platform) to mid-log phase (OD600 = 0.5-0.8) density 

and further processed according to the experimental regimen. 

Preparation	of	competent	S.	cerevisiae	cells	

Competent S. cerevisiae cells were generated from a 50 ml YPD culture grown to mid-log 

phase. Cells were harvested by centrifugation (500 g, 5 min, RT) and washed with 5 ml 

SORB buffer. After resuspension in 360 μl SORB buffer, 50 μl carrier DNA (hering sperm 

DNA, Invitrogen, 10mg/ml, heat-denatured at 99°C for 10 min) was added and cells either 

used directly for transformation or stored in aliquots at -80°C. 

Transformation	of	S.	cerevisiae	cells	

For transformation, competent S. cerevisiae cells were mixed with DNA (10 μl cells + 

~100 ng DNA in case of plasmids, 50 μl cells + ~500 ng DNA in case of linearized 

plasmids and 50 µl cells + 15 µl PCR product in case of PCR-amplified DNA (see section 

5.2.2)) and six volumes of PEG buffer. The mixture was incubated at RT for 30 min and 

subsequently heat-shocked in a waterbath for 15 min at 42°C. Cells were then harvested 

by centrifugation (500 g, 2 min, RT) and recovered in YPD medium for 2 h prior to plating 

on selective plates (recovery only in case of antibiotic selection markers). Selection was 

carried out for 2-3 days at 30°C. 

Genetic	manipulation	of	S.	cerevisiae	

Genes were deleted, replaced or tagged using selection cassettes generated by a PCR-

based strategy172,173. In brief, selection cassettes containing different marker genes 

(kanMX4/6, hphNT1, natNT2, CaURA3247, TRP1248) were amplified using gene specific 

overhangs, leading to their integration at the endogenous locus, thereby replacing the 

original gene. Correct cassette integration was generally determined by yeast colony PCR 

(see below) and chromosomal taggings were additionally confirmed by immunoblotting 

(see section 5.3.1).  

Marker-free seamless deletion of ura3 and trp1 alleles to enhance the efficiency of 

targeted integration using cassettes containing the URA3 or TRP1 markers was achieved 

as described previously249. In brief, the endogenous locus chosen for seamless deletion 

was replaced by a construct bearing the URA3 ORF that is flanked upstream by a 40 bp 

repeat of the endogenous sequence downstream of the integration site. Counter-selection 
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of the URA3 marker on plates containing 5-Fluoroorotic acid (5’FOA) results in deletion of 

the URA3 marker by intra-chromosomal recombination between the 40 bp repeats. 

Endogenous mutations S129A of H2A alleles and T129A of H2B alleles were 

generated using PCR cassettes with overhangs carrying the destined mutations and 

harboring an ADH1 terminator to maintain proper expression. The presence of mutations 

was additionally confirmed by DNA sequencing (see section 5.2.1). 

For construction of yeast strains harboring site-specific HOcs or GFP-HOcs, a 36 bp 

HO endonuclease recognition sequence (5’-AGTTTCAGCTTTCCGCAACAGTATAATT 

TTATAAAC-3’)250 was cloned via oligonucleotide annealing (see section 5.2.3) next to a 

marker gene in the pFA6a backbone or inside the GFP ORF of pYM25, respectively, and 

this construct used for PCR amplification with site-specific overhangs for the destined 

integration site. In case of GFP-HOinc, a similar approach was undertaken, but with a 

mutated HO endonuclease recognition site (5’-AGTTTCAGCTTTCCaCAAtAGTATAATTT 

TATAAAC-3’, mutations in lowercase)175 flanked by a unique 23 bp sequence (5’-

CTAGCTGACGAAATGGCAAACAA-3’) cloned into the GFP-encoding sequence of 

pYM12.  

Mating,	sporulation	and	tetrad	analysis		

For mating, freshly streaked strains of opposing mating types were mixed in 300 μl YPD 

and 50 µl of this mixture was subsequently spotted on warm YPD plates. Plates were 

incubated for at least 4 h at 30°C, followed by streaking of cells on double-selection 

plates. In case of auxotrophy/antibiotic double-selection, antibiotics (G418, NAT or HYG) 

were dissolved in 150 µl water and spread onto SC selection plates. 

After 2-3 days incubation at 30°C, single colonies of diploid cells were inoculated 

overnight and 500 µl harvested by centrifugation (500 g, 2 min, RT). For sporulation, cells 

were washed four times in sterile water prior to resuspension in 3 ml sporulation medium 

(2 % (w/v) KAc, sterilized by autoclaving) and incubation on a rotating shaker for at least 3 

days at 25°C. 

For tetrad dissection, sporulated diploid cells were mixed 1:1 with zymolase 100T 

(1 mg/ml in de-ionized water) and incubated for 5 min at RT. Tetrads were then dissected 

on YPD plates using a micromanipulator (Singer MSM Systems) and incubated for 2-3 

days. Genotype and mating type of each spore were determined by replicaplating on 

selection and mating type tester plates. 
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Mating	type	analysis	of	haploid	yeast	cells	

To determine unknown mating types, a large toothpick of each of two mating type tester 

strain was resuspended in 500 μl sterile water and this solution (250 µl in case of RH448) 

mixed with 50 ml 1 % agarose (dissolved in water, precooled to 42°C). The agarose 

containing the tester strains was then poured on top of pre-warmed YPD plates (~5 ml per 

plate) and after cool-down strains with unknown mating type were replicaplated on the 

tester plates. Because of the sensitivity of the tester strains RC757 (MATα) and RH448 

(MATa) to cells of the opposing mating type, a halo (a region without growth) will form 

around the streaked strain on one of the two tester plates.  

Cell	cycle	arrest	

To arrest cells in G2/M-phase, early- to mid-log phase cells (OD600 0.3-0.5) were treated 

with the microtubule poison nocodazole (Sigma) at a concentration of 5 µg/ml. Cells were 

typically allowed to arrest for one generation time (2-4 h depending on the genetic 

background) and the arrest confirmed microscopically and later also by flow cytometry 

(see below). 

Cell	cycle	analysis	by	flow	cytometry	

To monitor cell cycle stage, cell amounts corresponding to 1 OD600 were harvested from 

cultures by centrifugation, immediately fixed in 1 ml 70 % ethanol, 50 mM Tris-HCl, pH 7.8 

and stored at 4°C until further processing (up to a few weeks). Cells were then washed 

once in 1 ml Tris buffer (50 mM Tris-HCl pH 7.8) and subjected to RNA digestion by 

addition of 520 μl RNAase solution (500 μl Tris buffer + 20 μl RNAse A (10 mg/ml in 10 

mM Tris-HCl pH 7.5, DNAse inactivated by boiling for 10 min)). After incubation on a 

rotating platform at 37°C for 4 h cells were harvested by centrifugation and resuspended 

in 220 μl proteinase K solution (200 μl Tris buffer + 10 μl Proteinase K (20 mg/ml in 10 

mM Tris-HCl, pH 7.5)). Proteinase K digestion was then performed at 50°C for 30 min 

cells, followed by centrifugation and resuspension of the cells in 500 µl Tris buffer. After 

sonication of all samples (5 s, 50 % cycle, minimum power using a Bandelin SONOPLUS 

device), 25 μl of each sample were mixed with 500μl SYTOX solution (999 μl Tris buffer + 

1 μl SYTOX green, Life Technologies). Fluorescence of SYTOX stained cells was finally 

detected in the FL1 channel of a MACSQuant® Analyzer 10 flow cytometer (Miltenyi 

Biotec). 
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Yeast	colony	PCR	

For yeast colony PCR, a small toothpick of cells was dissolved in 20 µl 0.2 M NaOH and 

the mixture boiled for 10 min at 95°C in a PCR machine. Subsequently, 40 µl de-ionized 

water were added and the cell debris pelleted by a quick spin in a small benchtop 

centrifuge. 4 µl of the supernatant were subsequently taken as input DNA for the following 

PCR reaction (see section 5.2.2).  

Induction	of	single	DSBs	in	vivo	

To induce single and site-specific DSB by HO-endonuclease, yeast strains expressing the 

HO endonuclease gene under control of the GAL promoter174 have been modified with 

site-specific HO recognition sites (see above). Strains were then grown in YP-lactate 

medium to avoid any repressive effects of glucose metabolism on the activation of GAL 

promotor-driven expression. HO expression was typically induced at mid-log phase (OD600 

0.5-0.8) by the addition of galactose to the lactate medium at a final concentration of 2 % 

(w/v).  

Recombination	survival	assay	

To measure recombination via cell survival, strains were stroke directly from glycerol 

stocks onto YP-Raffinose plates. After 3 days at 30°C, cells were serially diluted in water 

to an OD of 10-5 and 100 µl or 200 µl were subsequently plated onto YPD or YP-GAL 

pates, respectively. After a sufficient growth time (2-4 days), single colonies were counted 

and the ratio between YP-GAL and YPD taken as recombination efficiency.  

Real-time	recombination	assay	

To measure recombination in real-time, cells were inoculated in YP-lactate medium and 

2 % galactose added at mid-log phase (OD600 = 0.5-0.8). At time points of interest, a cell 

amount corresponding to 1 OD600 was taken from the culture, harvested by centrifugation 

(1000 g, 1 min, RT) and immediately snap-frozen in liquid nitrogen. Cells were either 

stored short-term at -80°C or directly processed. Genomic DNA was then isolated using 

the MasterPureTM Yeast DNA Purification Kit (Epicentre) according to the manufacturer’s 

instructions including an extra 5 min incubation at 37°C prior to elution to remove any 

traces of ethanol. The DNA was eluted in 100 µl of de-ionized water and 2 µl were used 

for analysis by quantitative real-time PCR (see section 5.2.2).  
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5.2 Molecular	biology	techniques	

5.2.1 DNA	isolation,	purification	and	sequencing	

Isolation	of	plasmid	DNA	from	E.	coli	

Plasmid DNA was propagated in and isolated from E. coli using the AccuPrep® Plasmid 

Mini Extraction Kit (Bioneer) according to the manufacturer’s instructions. 

Purification	of	linear	DNA	fragments	

To purify linear DNA fragments generated by PCR amplification, the QIAquick PCR 

Purification Kit (Qiagen) was used according to the manufacturer’s instructions.  

Purification	of	DNA	fragments	from	agarose	gels	

DNA fragments separated by gel electrophoresis were purified using the QIAquick Gel 

Extraction Kit (Qiagen) according to the manufacturer’s instructions. 

Isolation	of	genomic	DNA	from	S.	cerevisiae	

Isolation of genomic DNA from S. cerevisiae (e.g. as template for the amplification of 

specific genes or chromosomal elements by PCR) was performed using the MasterPureTM 

Yeast DNA Purification Kit (Epicentre) according to the manufacturer’s instructions.  

Purification	of	plasmid	DNA	from	S.	cerevisiae	

Isolation of DNA plasmids from yeast was performed using the AccuPrep® Plasmid Mini 

Extraction Kit (Bioneer) according to the manufacturer’s instructions, with the following 

changes: strains YKH124/127-129192 (expressing HTA and HTB variants from their 

endogenous promoter) were grown overnight, 1.5 ml of this culture harvested and 

resuspended in 250 µl buffer P1 supplemented with an equal volume of glass beads (Ø 

500 μm; Roth). Cells were then lysed for 4 min using a cell disruptor (Disruptor Genie, 

Scientific Industries) at maximum speed and following the addition of buffer P2 the 

standard protocol was followed.  

Measurement	of	DNA	concentration	

DNA concentration was determined photometrically using a NanoDrop ND-1000 

spectrophotometer (PeqLab). The absorbance at a wavelength of 260 nm (A260) was 

used for DNA quantification with a value of 1 equaling a concentration of 50 μg/ml double-

stranded DNA. 
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Separation	of	DNA	fragments	by	agarose	gel	electrophoresis		

For analytical and preparative separation of DNA fragments, 0.5-1.5 % (w/v) gels 

containing ultra-pure agarose in TBE buffer (89 mM Tris, 89 mM boric acid, 2 mM EDTA) 

were prepared. Ethidium bromide was added shortly before the gel was poured (final 

concentration 1 µg/ml) to allow visualization of the DNA using an UV transilluminator 

(Raytest). DNA samples were mixed with 0.2 volumes of 5 x DNA loading buffer (25 % 

Glycerol, 10 mM EDTA, Orange G) and electrophoretically separated at 110 volts (12 

V/cm) in TBE buffer. The size of DNA fragments was estimated with a standard size 

marker (1kB ladder, Invitrogen) migrating on the same gel. 

DNA	sequencing	

Sequencing analysis of plasmid DNA or purified PCR products was performed by the 

copre facility of the MPI of Biochemistry using an ABI 3730 DNA analyzer (Applied 

Biosystems) and ABI Big Dye 3.1 sequencing chemistry. Alternatively, samples were 

sequenced as value reads at Eurofins Genomics.  

 

5.2.2 DNA	amplification	by	polymerase	chain	reaction	(PCR)	

Amplification	of	genomic	DNA	fragments	

Amplification of genomic or plasmid DNA for subsequent molecular cloning (see section 

5.2.3) was performed using the high fidelity Phusion polymerase (Thermo). Specifically, a 

50 µl reaction consisted of 200 ng DNA, 0.6 µM of each primer, 0.8 mM dNTP-Mix, 1 x 

Phusion HF buffer and 2 units of Phusion polymerase. Amplification was performed in a 

Veriti® Thermal Cycler (Applied Biosystems) with an initial 1 min denaturation step at 

98°C, followed by 25 cycles of 20 s 98°C denaturation, 20 s 60°C primer annealing and an 

amplification-length adjusted extension time (15 s/kb for plasmid DNA, 30 s/kb for 

genomic DNA plus an additional 20 s) at 72°C. Following a final extension at 72°C for 7 

min samples were stored at 4°C or -20°C.  

Amplification	of	marker	cassettes	for	genetic	manipulation	of	yeast	

Amplification of marker cassettes was performed using a mixture of Taq and Vent 

polymerases as described previously172,173 with the only change that the PCR amplification 

program was not adjusted for cassettes bearing the natNT2 marker. 
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Amplification	of	DNA	for	yeast	colony	PCR	

For yeast colony PCR, the DNA template was generated as described above and 

amplified using Taq polymerase (in-house made by the MPI core facility). Specifically, a 

50 µl reaction consisted of 4 µl template DNA, 0.64 µM of each primer, 1.4 mM dNTP-Mix, 

1 x ThermoPol Reaction Buffer (New England Biolabs) and 2 units of Taq polymerase. 

Amplification was performed in a Veriti® Thermal Cycler (Applied Biosystems) with an 

initial 5 min denaturation step at 94°C, followed by 30 cycles each consisting of 30 s 94°C 

denaturation, 30 s 55°C primer annealing and an amplification-length adjusted extension 

time (90 s/kb) at 72°C. Following a final extension at 72°C for 5 min samples were stored 

at 4°C or -20°C prior to analysis by gel electrophoresis.  

Quantitative	real-time	PCR		

Quantitative real-time PCR (qPCR) was performed using the LightCycler 480 system 

(Roche). For ChIP experiments (see section 5.3.2), SYBR Green-based chemistry either 

consisted of the LightCycler 480 SYBR Green I Master Mix (Roche, “RocheMix”) or the 

KAPA SYBR® FAST qPCR kit (Kapa Biosystems, “KAPAMix”). Specifically, a 20 µl 

reaction contained 2 μl of ChIP (undiluted) or input DNA (1:10 dilution), 10 μl SYBR Green 

Master Mix and either 0.6 µM or 0.2 µM of each primer (see table below) in case of 

“RocheMix” or “KAPAMix”, respectively. All reactions were performed in technical 

triplicates in 384-well plates with pipetting conducted by a CAS-1200 PCR setup robot 

(Corbett Lifescience). Quantification was then achieved via the “second-derivative 

maximum” method using the LightCycler 480 software. Relative concentrations of the 

template DNA were determined by fitting these values with a primer-specific standard 

curve that was generated by a dilution series of one input sample (1:5, 1:50, 1:500 and 

1:5000) measured with every primer pair. As quality control, samples clearly differing 

within technical triplicates, as well as those showing multiple products in a melting curve 

analysis performed at end of the amplification reaction, were removed from the analysis. 

For data presentation the IP/input ratios were calculated and, if not indicated differently, 

normalized to the IP/input ratios of a control primer pair on chromosome X (see table 

qPCR primer). 

In case of measuring FAIRE samples (see section 5.3.2) or analyzing real-time 

recombination (see section 5.1.2), exclusively the “RocheMix” was used as described for 

ChIP DNA. Notably, for recombination experiments standard curves were measured with 

DNA from the latest time point (1:1, 1:10, 1:100 and 1:1000), as recombination products 
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are only then robustly detectable. As in case of ChIP DNA, concentrations were 

normalized to a control locus on chromosome X. 

 

LightCycler	programs	

 RocheMix,	ChIP	 KAPAMix,	ChIP	 Recombination	
Initial Denaturation 95°C, 10 min 95°C, 3 min 95°C, 10 min 
Amplification/Detection 45 x 40 x 45 x 
 95°C, 10 s 95°C, 10 s 95°C, 10 s 
 57°C, 10 s  57°C, 20 s  58°C, 10 s  
 72°C, 16 s 72°C, 1 s 72°C, 20 s 
Melting Curve Analysis 95°C, 30 s 95°C, 5 s 95°C, 30 s 
 65°C, 30 s 65°C, 1 min 65°C, 30 s 
 65°C-95°C 

0.11°C/s, 
5 acquisitions/°C 

65°C-97°C, 
0.11°C/s,  
5 acquisitions/°C 

65°C-95°C 
0.11°C/s, 
5 acquisitions/°C 

Cool-Down 4°C, ∞ 4°C, ∞ 4°C, ∞ 
 

qPCR	primer	

Name	 Sequence	
Genomic	
Position	

Usage	

BA069 CAATGGACGAGGAAACAAGAGCGATT ChrIV_509kb ChIP_filament 
BA070 ACCATACCAGACCTTTTCCAGTCTGT ChrIV_509kb ChIP_filament 
CL_154 CATACTGTCTCACTCGCTTGGA ChrIV, 491 kb RT-recombination  
CL_156 TTGTTTGCCATTTCGTCAGCTAG GFPHOinc RT-recombination 
CL_166 TGGGAATCGTTTTATCCTTGTTTCGC ChrIV_625kb ChIP_Donor 
CL_167 GTGAAGCAACCAACATAATGCCAGAT ChrIV_625kb ChIP_Donor 
CL_169 AACCTGATTCCTATACAAGCAGCCAA ChrIV_795kb ChIP_Donor 
CL_170 AATTGGAATGCCCCAGATTCTCAAAC ChrIV_795kb ChIP_Donor 
CL_175 TCGAGTGGAGATATTTGGGAGAAAGA ChrIV_820kb ChIP_Donor 
CL_176 TCTGGCAAAGCTTCTATGCTTCTGAT ChrIV_820kb ChIP_Donor 
CL_226 ATTCCAGGCCAACCCAAGTAAGTC ChrIV_491kb ChIP_DSB 
CL_227 CTTCCTAGGAGGAGGAAAGCCCAT ChrIV_491kb ChIP_DSB 
CL_277 GCCACCAATAAGGGTCCATTAGCA ChrIV_445kb ChIP_search  
CL_278 CCTGATTCGTCATCACAGCCAGAA ChrIV_445kb ChIP_search 
CL_279 CTCTAACGCCACGGTCATGAAGAA ChrIV_451kb ChIP_search 
CL_280 TCCTAACGGTCTCGGTATTCCTCC ChrIV_451kb ChIP_search 
CL_303 CACATGTCCAAAGGCTGCTGATGA ChrIV_421kb ChIP_search 
CL_304 GTTGCTCATTGGGTGGACCAAGTA ChrIV_421kb ChIP_search 
CL_305 TTGTGAAGTTTTCAGTTGGCGAGC ChrIV_421.5kb ChIP_search 
CL_306 AGGGAGAAGAGGCAAAACAACAGG ChrIV_421.5kb ChIP_search 
CL_307 AAGTGCAGAGCTGCTGATATTGCT ChrIV_422kb ChIP_search 
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CL_308 AGTCAATCCGCATTACAGGCAAGA ChrIV_422kb ChIP_search 
CL_309 AGAAACGTCACTTCAGCTCTGTCA ChrIV_422.5kb ChIP_search 
CL_310 ATGAGCTGCGCTCAAATTGCCATA ChrIV_422.5kb ChIP_search 
CL_311 TCTTGTCGTGTGCTTTACCACCAT ChrIV_423kb ChIP_search 
CL_312 ACGCTAACTCCGGAAATTGACTGT ChrIV_423kb ChIP_search 
CL_323 ACTGCAACAAGACCTTCACTCAACT ChrXV_536kb ChIP_alt.control 
CL_324 GCAGGATGGTTTTCTGGTGAGGA ChrXV_536kb ChIP_alt.control 
CL_325 CTAAACGTGGCCGCATTTGGTAAG ChrVI_242kb ChIP_alt.control 
CL_326 ATCATCGCCGATTGGATAAGGGTG ChrVI_242kb ChIP_alt.control 
CL_327 TGATAGCTTCTGCAATCGTAGGGC ChrV_358kb ChIP_alt.control 
CL_328 TGGATCACGGTGCTAAGGAGGTTA ChrV_358kb ChIP_alt.control 
CL_329 TGGTCTGAGTTTCCAGTTCTTTGGT ChrI_55kb ChIP_alt.control 
CL_330 AGCGTCCAAACTAAATGAGCAGTCT ChrI_55kb ChIP_alt.control 
CL_494 TGGGATAATGGTAGTACTGGGCGT ChrIV_500kb ChIP_filament 
CL_495 CAGCTGCTCCGAAACCAATTTTGA ChrIV_500kb ChIP_filament 
CL_496 GTATACCTGACGGGCAGTCCTTTT ChrIV_505kb ChIP_filament 
CL_497 GCAGTGACGGTTCAAGATCTCCTT ChrIV_505kb ChIP_filament 
CterYJL112Win GCGTGCCTGGTCACAGGTTCATACGAC ChrX_207kb Standard control 
CterYJL112Wr TCATACGGCCCAAATATTTACGTCCC ChrX_207kb Standard control 
HO-100check GAGCATATTACTCACAGTTTGGCTC ChrIII_200kb DSB induction 
HO+0.2kb In CCTGGTTTTGGTTTTGTAGAGTGG ChrIII_201kb ChIP_DSB 
HO+0.2kb re GAGCAAGACGATGGGGAGTTTC ChrIII_201kb ChIP_DSB 
HO +190re GGATAGCTATACTGACAACATTCAG ChrIII_200kb DSB induction 
JOR053 CCCAAGCTCACAAATTAATATGGC ChrIII_275kb ChIP_search 
JOR054 GCATCTGTAGTACCACTGCTCTTTG ChrIII_275kb ChIP_search 
JOR238 TACACATAAGAGGCTCATTAGGGC ChrIV_540kb ChIP_search 
JOR239 CCAGCGTAATTATAGGATTGCCA ChrIV_540kb ChIP_search 
JOR324 GTTTCCCCAGCTTTCCGTGT ChrIV_492kb ChIP_filament 
JOR325 TTGCTTCTTGCAGAAGTGGAGA ChrIV_492kb ChIP_filament 
JOR330 AGGGCCAACACCTAGTCCAA ChrIV_496kb  ChIP_filament 
JOR331 AGGCGAAGTTAGTGCTGAACA ChrIV_496kb  ChIP_filament 
 

5.2.3 Molecular	cloning	

Restriction	digest	

For sequence-specific restriction digestion of PCR amplified DNA or plasmid DNA, 

enzymes (New England Biolabs) were used according to the manufacturer’s instructions. 

Typically, 1.5 µg of plasmid DNA or the amount of a purified 50 µl PCR reaction (see 

section 5.2.2) were taken as input. In case the digestion reaction generated side products 

with a length > 100 bp or not, the reaction was purified either via gel extraction or column-

based purification, respectively (see section 5.2.1). 
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De-phosphorylation	of	linearized	plasmid	DNA	

De-phosphorylation of the free 5’-ends of the vector backbone was performed using 1.5 

µg of digested and purified vector DNA incubated with 2 units of rAPid Alkaline 

Phosphatase (Roche) in the provided reaction buffer for 1 h at 37°C. Alkaline 

Phosphatase was subsequently heat-inactivated by incubation at 75°C for 5 min prior to 

ligation. 

Oligonucleotide	annealing	

To generate DNA inserts with a size of less then 120 bp, oligonucleotide annealing 

instead of PCR amplification was used. To this end, complementary oligonucleotides with 

overhangs specific to the restriction enzymes of choice were ordered and dissolved at a 

concentration of 100 µM in 50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM EDTA. 10 µl of 

each oligonucleotide were then mixed in a PCR reaction tube and denatured in a Veriti® 

Thermal Cycler (Applied Biosystems) at 95°C for 90 s. Subsequently, the temperature 

was gradually decreased at a rate of 1°C per 20 s until reaching 4°C and 2 µl of the 

reaction used as input for DNA ligation.  

DNA	ligation		

For DNA ligation, linearized and de-phosphorylated vector DNA and digested PCR 

product were mixed in a ratio of 1:5 in a 20 µl ligation reaction containing 1 x T4 DNA 

ligase buffer and 400 units of T4 DNA ligase (New England Biolabs). The reaction was 

subsequently incubated for 15 min at 25°C, followed by heat-inactivation of DNA ligase at 

65°C for 10 min. The sample was then dialyzed for 20 min against de-ionized water using 

a nitrocellulose filter (pore size 0.05 μm, Millipore) and 8 µl were used for transformation 

into electro-competent E. coli cells. 

Site-directed	mutagenesis	

Introduction of specific point mutations, as well as small insertions or deletions into 

plasmid DNA were achieved using the PCR-based QuickChange® Site-Directed 

Mutagenesis Kit (Agilent Technologies). Briefly, complementary oligonucleotides bearing 

the mutation of interest were designed with at least 20-25 nucleotides flanking the 

mutation on each side. PCR amplification was then performed using Pfu Turbo 

polymerase and 10 ng plasmid DNA as starting material. Dam-methylated, non-

mutagenized input DNA was removed from the reaction following PCR amplification by 

addition of 10 units of the DpnI restriction endonuclease (New England Biolabs) and 

incubation at 37°C for 1.5-3 h. After dialysis (see above), 8 µl of the reaction were 
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transformed into electro-competent E. coli cells. Finally, extracted plasmid DNA was 

analyzed for the presence of desired and absence of undesired mutations by DNA 

sequencing. 

 

5.3 Biochemical	and	cell	biological	techniques	

5.3.1 Protein	techniques	

Buffers	and	solutions	

HU sample buffer    200 mM Tris-HCl, pH 6.8 
8 M urea 
5 % (w/v) SDS 
1 mM EDTA 
0.1 % (w/v) bromophenol blue 
100mM DTT (freshly added before use) 
 

MOPS running buffer    50 mM MOPS 
50 mM Tris base 
3.5 mM SDS 
1 mM EDTA 

 
Blotting buffer (self-made)  250 mM Tris base 

1.92 M glycine 
0.1 % (w/v) SDS 
20 % (v/v) methanol 

 
Swift blotting buffer   5 % (v/v) 20 x Swift buffer (G-Bioscience) 

10 % (v/v) Methanol 
 
TBS-T solution   25 mM Tris-HCl, pH 7.5 

137 mM NaCl 
2.6 mM KCl 
0.1 % (v/v) Tween 20 

 
PBS     10 mM phosphate, pH 7.4 

137 mM NaCl 
2.7 mM KCl 

 
IP lysis buffer     50 mM Tris-HCl, pH 7.5 

150 mM NaCl 
10 % (v/v) glycerol 
2 mM MgCl2 
0.5 % (v/v) NP-40 
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Preparation	of	denatured	protein	extracts	(TCA	precipitation)	

For the generation of denatured protein extracts, a cell amount corresponding to one 

OD600 was harvested by centrifugation and immediately frozen in liquid nitrogen. After 

thawing, cells were lysed by resuspension in 150 μl 1.85 M NaOH, 7.5 % beta-

mercaptoethanol and incubated for 15 min on ice. Proteins were then precipitated from the 

lysate by addition of 150 μl ice-cold 55 % TCA and incubation for 15 min on ice. After 

centrifugation (20000 g, 15 min, 4°C) and complete removal of TCA supernatant protein 

pellets were resuspended in HU buffer and incubated for 10 min at 65°C prior to analysis 

by SDS-PAGE (see below). 

SDS-polyacrylamide	gel	electrophoresis	(SDS-PAGE)	

Proteins samples were loaded on pre-cast 4-12 % NuPAGE Bis-Tris gels (Thermo Fisher 

Scientific). Gel electrophoresis was performed in MOPS buffer at a constant voltage of 

120V until the bromphenol blue front reached the end of the gel.  

Immunoblot	analysis	

For immunoblot (western blot) analysis, proteins separated by SDS-PAGE were 

subsequently transferred to polyvinylidene fluoride (PVDF) membranes (ImmobilionP, 

Millipore) using wet blotting in an electric tank blotter (Hoefer) at a constant voltage of 70 

V for 90 min at 4°C. Blotting efficiency was determined by transfer of the Precision Plus 

Protein All Blue Standard (Bio-Rad). Membranes were then quickly washed with TBS-T, 

blocked for 30-60 min in TBS-T + 5 % milk powder at RT and incubated with primary 

antibodies diluted in TBS-T + 5 % milk powder (see table “antibodies” below) overnight at 

4°C. Membranes were then placed at RT, washed three times with TBS-T (5-10 min 

each), incubated 1-1.5 h with a horseradish peroxidase (HRP)-coupled secondary 

antibody (Dianova) and washed again three times with TBS-T (5-10 min each). Signal 

detection was performed using chemiluminiscence kits ECL, ECL-plus or ECL advanced 

(GE Healthcare) and exposure of the membranes to chemiluminescence sensitive films 

(Amersham Hyperfilm ECL, GE Healthcare) with variable exposure times and subsequent 

automated film development. 

Determination	of	protein	interactions	by	immunoprecipitation	

For immunoprecipitation experiments native yeast extracts were prepared. To avoid 

protein degradation, all steps were performed at 4°C and the IP lysis buffer was freshly 

supplemented with protease inhibitors (1 x EDTA-free complete cocktail and 1 mg/ml 

Pefabloc SC (Roche)). Briefly, 150 OD600 of yeast cells were harvested from cultures at 
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desired time points, washed once in ice-cold PBS and transferred to 2 ml reaction tubes. 

Cell pellets were either snap-frozen in liquid nitrogen and short-term stored at -80°C or 

directly processed for cell extract preparation. To this end, pellets were resuspended in 

800 μl of IP lysis buffer, an equal volume of zirconia/silica beads (BioSpec Inc.) added and 

lysis performed on a multi-tube bead-beater (MM301, Retsch GmbH) in 6 intervals of 1 

min shaking (frequency 30/s) and 4 min pausing for cool-down (bead-beater was used in 

a 4°C room). Lysed samples were then separated from the beads and collected in a fresh 

tube by piggyback elution. To enrich protein interactions that occur in the chromatin 

environment, the lysate was subsequently sonicated for 10 min in ice-water (output 200W; 

10 cycles with 30 s sonication and 30 s break) using the Bioruptor UCD-200 sonication 

system (Diagenode). Cell debris was then removed by centrifugation (4000 g, 10 min, 

4°C) and the supernatant added to 1 ml of IP lysis buffer. 25 µl HA affinity matrix (Roche) 

were washed twice with IP lysis buffer and incubated with 800 µl of the lysate for 3 h at 

4°C on a rotating wheel. Next, the beads were pelleted by centrifugation (500 g, 1 min, 

4°C), the supernatant removed by aspiration and the beads washed 3 x with 500 μl of IP 

lysis buffer. The immunoprecipitated material was eluted from the beads by addition of 40 

μl of HU buffer and incubation at 65°C for 10 min in a shaking thermomixer (1400 rpm). 

As input control, 20 µl of the lysate were mixed with 60 µl of HU buffer and similarly 

incubated at 65°C. Both the input material and the immunoprecipitated material were 

subsequently analyzed by SDS-PAGE and immunoblot analysis (see above).  

Antibodies	

Antibody	 Type	 Use	 Source	
Arp5 (ab12099) primary (rabbit IgG) ChIP (2 µl) Abcam 
c-myc (A-14)  primary (rabbit IgG) Blot (1:2500) Santa Cruz 
Dpm1 primary (mouse IgG) Blot (1:500) Thermo Fisher 
γH2A primary (rabbit IgG) ChIP (3 µl) Upstate 
H2A primary (rabbit IgG) ChIP (3 µl) Active Motif 
H2B primary (rabbit IgG) ChIP (3 µl) Active Motif 
H3 c-terminal primary (rabbit IgG) ChIP (6 µl) Active Motif 
HA (ab9110) primary (rabbit IgG) ChIP (3 µl) Abcam 
HA (F-7) primary (mouse IgG) Blot (1:1000) Sana Cruz 
HRP-coupled α-mouse  Secondary (goat IgG) Blot (1:5000) Dianova 
HRP-coupled α-rabbit  Secondary (goat IgG) Blot (1:5000) Dianova 

Htz1 primary (rabbit IgG) Blot (1:750) 
ChIP (3 µl) ActiveMotif 

Pgk1 primary (mouse IgG) Blot (1:2000) Thermo Fisher 
Rad51 (ab63798) primary (rabbit IgG) Blot (1:5000) Abcam 
Rad51 (y-180) primary (rabbit IgG) ChIP (4 µl) Santa Cruz 
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Rad52 primary (rabbit IgG) Blot (1:2000) 
ChIP (3 µl) Ref. 251 

RPA (RFA) primary (rabbit IgG) ChIP (1.5 µl) Agrisera 
 

5.3.2 Chromatin	techniques		

Buffers	and	solutions	

FA lysis buffer    50 mM Hepes-KOH, pH 7.5 
150 mM NaCl 
1 mM EDTA 
1 % (v/v) Triton X-100 
0.1 % (w/v) Deoxycholic acid, Na-salt 
0.1 % (w/v) SDS 

 
FA lysis buffer 500 (high salt) 50 mM Hepes-KOH, pH 7.5 

500 mM NaCl 
1 mM EDTA 
1 % (v/v) Triton X-100 
0.1 % (w/v) Deoxycholic acid, Na-salt 
0.1 % (w/v) SDS 

 
ChIP wash buffer    10 mM Tris-HCl, pH 8 

250 mM LiCl 
1 mM EDTA 
0.5 % (v/v) NP-40 
0.5 % (w/v) Deoxycholic acid, Na-salt 

 
TE      10 mM Tris-HCl, pH 8 

1 mM EDTA 
 
ChIP elution buffer    50 mM Tris-HCl, pH 7.5 

10 mM EDTA 
1 % (w/v) SDS 
 

Chromatin	immunoprecipitation	

Chromatin immunoprecipitation (ChIP) was essentially performed as described 

previously47,252. For all ChIP experiments in this study, 200 ml cultures of cells were cross-

linked by addition of Formaldehyde (37 % solution, Roth) to a final concentration of 1 % 

(v/v) and incubation for 16 min under moderate shaking at RT prior to the addition of 2.5 M 

Glycine to terminate the reaction. Cross-linked cultures were then allowed to shake 

another minimum of 15 min before 140 OD600 were harvested by centrifugation (3500 g, 
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5 min, 4°C), washed with ice-cold PBS and transferred to 2 ml reaction tubes. Cell pellets 

were immediately snap-frozen in liquid nitrogen and stored at -80°C (up to a few weeks) 

until further processing. Although proteases were likely inactivated during cross-linking, 

subsequent cell lysis was performed at 4°C and the FA lysis buffer freshly supplemented 

with protease inhibitors (1x EDTA-free complete cocktail and 1 mg/ml Pefabloc SC 

(Roche)). Pellets were then resuspended in 800 μl of FA lysis buffer, an equal volume of 

zirconia/silica beads (BioSpec Inc.) added and lysis performed on a multi-tube bead-

beater (MM301, Retsch GmbH) in 6 intervals of 3 min shaking (frequency 30/s) and 3 min 

pausing for cool-down (bead-beater was used in a 4°C room). Lysed samples were 

separated from the beads and collected in a fresh tube by piggyback elution. The 

chromatin fraction was subsequently enriched by centrifugation (20000 g, 15 min, 4°C), 

followed by resuspension of the pellet in 1 ml FA lysis buffer and transferred to hard 

plastic 15 ml TPX tubes (Diagenode). 40 cycles of sonication were then conducted (output 

200 W; each cycle 30 s sonication and 30 s break) using the Bioruptor UCD-200 

sonication system (Diagenode), with the aim to shear the DNA to an average length of 

250-500 bp (occasionally controlled by phenol-chloroform purification and subsequent 

agarose gel electrophoresis of input DNA). After every 10 cycles, 200 ml water of the 

sonication bath were exchanged for an equal volume of ice to constantly maintain low 

temperatures. An additional ml of FA lysis buffer was then added to the sheared 

chromatin and cell debris removed by centrifugation (6150 g, 30 min, 4°C). 20 µl of 

chromatin lysate were taken aside as input reference and 800 µl used for 

immunoprecipitation. To this end, the lysate supplemented with a primary antibody of 

choice (see table “antibodies” in section 5.3.1) was incubated for 1.5 h at RT on a rotating 

wheel, followed by addition of 20 μl Protein A Sepharose CL-4B (GE Healthcare), pre-

swollen in 80 µl of lysis buffer, and another 30 min of incubation. Next, the beads were 

pelleted by centrifugation (500 g, 1 min, RT), the supernatant removed by aspiration and 

the beads consecutively washed 3 x with FA lysis buffer and 1 x each with FA lysis buffer 

500, ChIP wash buffer and TE. The immunoprecipitated material was eluted from the 

beads by addition of 110 μl ChIP elution buffer and incubation at 65°C for 10 min in a 

shaking thermomixer (1400 rpm). The eluate was separated from the sepharose beads by 

centrifugation (8000 g, 2 min, RT) and 100 µl transferred to a 0.5 ml reaction tube. Both 

eluate and input samples were subjected to Proteinase K (Sigma, final concentration 

2mg/ml) digestion in a volume of 200 μl with a final SDS concentration of 0.5 % for 2 h at 

42°C, and subsequently cross-links were reversed by incubation at 65°C for 6 h. All 

samples were finally purified using the QIAquick PCR purification kit (Qiagen) with input 
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DNA eluted in 50 µl and ChIP DNA eluted in 100 µl EB buffer. Thereafter, samples were 

either subjected to qPCR (see section 5.2.2), whole genome amplification for ChIP-chip 

analysis (see below) or next-generation sequencing library amplification for ChIP-seq 

analysis (see below).  

ChIP-chip	analysis	

ChIP-chip analysis to detect protein binding to DNA on a genome-wide level was 

performed as described previously47,125. Briefly, ChIP-samples were RNase A-digested 

(10 mg/ml in 10 mM Tris-HCl pH 7.5, DNAse-inactivated by boiling for 10 min, final 

concentration 0.1 mg/ml) and again purified using the QIAquick PCR purification system 

(Qiagen). DNA was then amplified in two rounds of 14 cycles using the GenomePlex 

Whole Genome Amplification (WGA) and reamplification kits (Sigma) as described in the 

Farnham Lab protocol for WGA amplification of DNA253. Subsequent labeling of input and 

IP samples (using Cy3 or Cy5 fluorescent dyes), hybridization to custom-made high-

density arrays covering the whole S. cerevisiae genome (NimbleGen), array scanning as 

well as raw data extraction were performed by SourceBioSource. NimbleGen custom 

arrays were specified by 84 base pairs median genomic probe spacing and only unique 

oligonucleotides. ChIP-chip experiments were performed in duplicates, involving a 

hybridization dye-swap of input and IP material.  

ChIP-seq	analysis	

ChIP coupled to next-generation sequencing was performed to detect protein binding to 

DNA on a genome-wide level following official cessation of the NimbleGen microarray 

service. Briefly, ChIP DNA was prepared as described above with the exception of an 

RNAse A digestion step (final concentration 0.2 mg/ml) for 1 h at 37°C prior to the addition 

of Proteinase K. Sequencing libraries were then generated using the MicroPlex library 

preparation kit v2 including 48 indices (Diagenode) as described by the manufacturer’s 

instructions. Specifically, DNA concentrations were determined using the QuantiTTM 

PicoGreen® dsDNA assay kit (Thermo Fisher Scientific) together with an Infinite M1000 

Pro microplate reader (Tecan) and the DNA then typically amplified for 4+9 cycles (input, 

2 ng starting material) or 4+14 cycles (IP, 200 pg starting material), aiming at a final 

concentration of 10 ng/µl. Subsequent determination of sample molarity using an Agilent 

2100 Bioanalyzer (Agilent Genomics), and sequencing of 50 bp single-end reads on an 

Illumina HiSeq sequencer (Illumina) at an average of 3 million reads per sample were 

performed by the sequencing core facility of the LMU Munich (LAFUGA). ChIP-seq 

experiments were typically performed in duplicates and to avoid technical fluctuations, 
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duplicates of all samples in one experiment were typically amplified together and, using 

48-index multiplexing, sequenced together on a single lane. 

Determination	of	protein	binding	to	chromatin	(chromatin	binding	assay)		

For the analysis of histone removal from chromatin following DNA damage induction, cell 

extracts were prepared and separated into chromatin-bound and soluble protein fractions 

using a sucrose cushion. Briefly, cells were nocodazole-arrested (see section 5.1.2) in 

YPD and subsequently subjected to DNA damage by addition of Phleomycin (InvivoGen, 

final concentration 50 µg/ml). Cell amounts of 25 OD600 were collected from the culture 

immediately prior to DNA damage induction as well as 30, 60 and 120 min afterwards. At 

each time point, cells were harvested by centrifugation (1000 g, 2 min, 4°C) and ATP-

dependent processes were immediately blocked by resuspension in STOP buffer 

(150 mM NaCl, 1 mM NaN3, 50 mM NaF, 10 mM EDTA, pH 8.0) until all samples were 

collected. Pellets were then sequentially washed with de-ionized water and 1.2 M sorbitol, 

resuspended in 1 ml CB1 buffer (50 mM sodium citrate, 1.2M sorbitol, 40 mM EDTA, pH 

8.0) and spheroblasted by addition of 138 µl spheroblasting solution (125 µl 2xCB1 buffer, 

8 µl zymolyase Z100T (50mg/ml), 5 µl ß-Me) and 30 min incubation at 30°C. Spheroblasts 

were collected by centrifugation (290 g, 4 min, 4°C), resuspended in 425 µl 1.2 M Sorbitol 

and lysed by addition of 50 µl 10 x lysis buffer (500 mM KAc, 20 mM MgCl2, 200 mM 

Hepes-KOH, pH 7.9, freshly supplemented with protease inhibitors) as well as 50 µl 10 % 

TX-100 and incubation at 4°C for 5 min. Aliquots of total cell extracts were collected, 250 

µl of the remaining material applied on 125 µl of a sucrose cushion (50 mM Hepes/KOH 

pH7.5, 100 mM KCl, 2.5 mM MgCl2, 0.4 M Sorbitol, 0.25 % T-X100, 30 % Sucrose, 

freshly supplemented with 1mM DTT and protease inhibitors) and chromatin and soluble 

fractions separated by centrifugation (20000 g, 5 min, 4°C). Proteins in total extracts and 

soluble fractions were TCA-precipitated and the resulting protein pellets together with the 

chromatin pellets incubated in HU buffer for 10 min at 65°C prior to analysis via SDS-

PAGE (see section 5.3.1). 

Detection	of	open	chromatin	using	FAIRE	

Formaldehyde-associated isolation of responsive elements (FAIRE) was essentially 

performed as described previously190 and used to identify open chromatin during 

homology search. Briefly, yeast cells were treated as for ChIP (see above), with the only 

difference that 50 OD600 of cells were harvested. Also cell lysis was performed as 

indicated for ChIP, yet directly sonicating the whole cell lysate without enriching the 

chromatin fraction by centrifugation. To distinguish open from condensed chromatin, 
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sonicated samples were subsequently divided in two halves, each mixed with an equal 

volume of Phenol-Chloroform-Isoamylalcohol (PCI, 25:24:1, Roth) and nucleosomal DNA 

precipitated by centrifugation (20000 g, 15 min, 4°C). The nucleosome-free DNA in the 

aqueous phase was then purified via ethanol precipitation by adding 0.1 volumes of 3 M 

NaOAc and 2.5 volumes of ice-cold EtOH and subsequent centrifugation (20000 g, 15 

min, 4°C). After a washing step with 70 % ice-cold EtOH, pellets were dried for 5 min at 

50°C, eluted in 40 µl of TE and corresponding samples re-pooled. RNA was digested 

using RNAse A (final concentration 0.25 µg/ml) for 30 min at 37°C and the remaining DNA 

purified using the QIAquick PCR purification kit (Qiagen). DNA was eventually analyzed 

by qPCR as indicated above. 

 

5.4 Bioinformatics	

5.4.1 ChIP-chip	analysis	

Quality controls, normalization and data analysis of ChIP-chip experiments were 

performed using the R software tool254 (www.Rproject.org) as described previously255 

(Tobias Straub Epigenome project PROT43, http://www.epigenesys.eu/). Despite array 

normalization and mean-averaging two independent experiments, the depicted data 

represent raw data. Consequently, single spikes correspond to single oligonucleotides 

and are hybridization artifacts. All ChIP-chip data are normalized to the input and the 

corresponding 0 h data set. 

 

5.4.2 ChIP-seq	analysis	

Multiplexed raw data files generated on the Illumina HiSeq sequencer were initially de-

multiplexed using the Illumina De-Multiplex application available on the Galaxy web 

platform hosted by the sequencing core facility of the LMU Munich. De-multiplexed raw 

data was subsequently further processed by Tobias Straub (Bioinformatics Core Facility, 

LMU Munich) and Assa Yeroslaviz (Bioinformatics Core Facility, MPI of Biochemistry) 

using the R software tool256.  

Briefly, raw data quality was analyzed using the FastQC tool 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The fastq raw files were then 

mapped to the S. cerevisiae genome (genome built R-64-1-1) downloaded from Ensembl 

using the bowtie1 aligner257 with standard parameters except -m=1, indicating that reads 

mapping to the genome more than once were filtered from the analysis. The genome was 
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split into non-overlapping windows with a size of 500 bp and all successfully mapped 

reads (generally > 70 %) assigned to their corresponding window(s) using the 

GenomicRanges R package258 (a read was considered to map to two neighboring 

windows as soon as a single base overlapped between those two). For a statistical 

comparison of input with IP samples the window counts were TMM-normalized259, the 

dispersion was estimated260 and a negative binomial generalized log-linear model was 

fitted using a generalized linear model261 using the edgeR262 R package. Normalized 

IP/input values were then written to wig files for visualization using publicly available 

genome browsers263,264. In case of the centromere analysis depicted in Figure 24 A, 

BEDtools265 was used to generate a saf file containing 500 bp windows of the regions 

surrounding all centromeres ±90 kb, except CenIV. Reads in the respective windows were 

then counted from the mapped files using featureCounts266 and the subsequently 

calculated normalized IP/input ratios of corresponding windows with similar linear 

distances averaged over all chromosomes. The ratios were plotted as a locally weighted 

regression using the geom_smooth function of the ggplot2 R package267.  

All data depicted present log2 enrichments and were normalized to the 

corresponding 0 h time point. 

 

5.4.3 Statistical	analysis	

ChIP-qPCR data and recombination assay data typically represent the mean of three 

independent biological replicates with the error bars corresponding to their standard 

deviation (SD), if not indicated differently. All ChIP-chip and ChIP-seq data are depicted 

on log2 scales as the mean of two biological replicates (with error bars corresponding to 

the standard error of the mean (SEM)). Statistical significance was tested via Student’s t-

test analysis, typically for unpaired samples, but paired in case where mutant strains have 

been normalized to their corresponding wild type. One asterisk indicates p < 0.05, two 

asterisks indicate p < 0.01 and three asterisks indicate p < 0.001. 

 

5.4.4 Online	resources	and	computer	programs	

S. cerevisiae genomic sequence and protein information was derived from the 

Saccharomyces Genome Database (www.yeastgenome.org) and UniProt Consortium 

(http://www.uniprot.org), DNA and protein sequence manipulation as well as Sanger 

sequencing analysis performed using DNA-Star software (DNA Star Inc.). 
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ChIP-chip and ChIP-seq data were generally visualized and presented using the 

Integrated Genome Browser264 (http://bioviz.org/igb/index.html) and Matlab was used to 

segment ChIP-chip data into windows of certain kb ranges for data presented in Figure 

11, Figure 12 and Figure 13. 

Data depicted in diagrams, including their statistical analysis, were generated with 

the help of GraphPad Prism software (www.graphpad.com/scientific-software/prism/) and 

immunoblots were cropped as well as level- and contrast-adjusted using Adobe 

Photoshop (Adobe Systems Inc.).  

Figures and illustrations were arranged and designed using Adobe Illustrator 

(Adobe Systems Inc.) and general text and table generation done via the Microsoft Office 

software package (Microsoft Corp.). 

 For literature review, databases integrated into the National Center of 

Biotechnology Information (www.ncbi.nlm.nih.gov) and Papers 3 

(http://papersapp.com/mac/) were used.  
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7 ABBREVIATIONS	

3D  Three-dimensional 
BIR  Break-induced replication 
bp  Base-pairs 
BRCA2  Breast cancer type 2 susceptibility protein 
CDK Cyclin-dependent kinase 
Cen Centromere 
ChIP  Chromatin immunoprecipitation 
Chr  Chromosome 
D-loop  Displacement loop 
DDR DNA damage response 
dHJ  Double-Holliday junction 
DNA  Desoxyribonucleic acid 
dNTP  Desoxynucleoside triphosphate 
DSB  DNA double-strand break 
dsDNA  Double-stranded DNA 
DTT Dithiothreitol 
e.g.  Exempli gratia, for example 
EDTA  Ethylenediaminetetraacidic acid 
FACT Facilitates chromatin transcription 
g  Centrifugational G-force 
Gal  Galactose 
h Hour(s) 
H1 Histone H1 
H2A  Histone H2A 
H2A.Z Histone H2A variant Z 
H2AX  Histone H2A variant X 
H2B Histone H2B 
H3  Histone H3 
H4 Histone H4 
HA  Hemagglutinin epitope 
HML  Hidden MAT left, silent mating-type locus 
HMR  Hidden MAT right, silent mating-type locus 
HO  Homothallic switching endonuclease 
HOcs  HO recognition site 
HOinc Mutated (incleavable) HO recognition site 
HR  Homologous recombination 
i.e.  Id est, that is/that means 
INO80  Inositol requiring 80 
kb  Kilobase pairs 
Log  Logarithmic 
MAT  Mating-type locus 
MATa  MAT locus containing a information 
MATα  MAT locus containing α information 
min  Minute 
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MMC Mitomycin C 
MMEJ Microhomology-mediated end joining 
MMS Methyl methanesulfonate 
Myc  Epitope derived from c-myc 
NHEJ  Non-homologous end joining 
NP-40  Nonidet p-40 
nt Nucleotide(s) 
ODx Optical density at x nm 
ORF  Open reading frame 
p-value  Probability value 
PAGE  Polyacrylamide gel electrophoresis 
PBS Phosphate buffered saline 
PCR  Polymerase chain reaction 
PEG  Polyethylene glycol 
Pgk1  Phospho-glycerate kinase 1 
PVDF  Polyvinylidene fluoride 
qPCR  Quantitative real-time PCR 
Raf  Raffinose 
RE  Recombination enhancer element 
RNA  Ribonucleic acid 
RNAPII RNA polymerase II 
RPA  Replication protein A 
rpm Revolutions per minute 
RSC Chromatin structure remodeling 
RT  Room temperature 
s Second(s) 
SD Standard deviation 
SDS  Sodium dodecylsulfate 
SDSA Synthesis-dependent strand annealing 
SEM  Standard error of the mean 
SSA Single-strand annealing 
SSB Single-strand break 
ssDNA  Single-stranded DNA 
SUMO  Small ubiquitin-like modifier 
SWI/SNF  Switching defective/sucrose non-fermentable 
TBE Tris, boric acid, EDTA 
TBS-T  Tris-buffered saline with Tween-20 
TCA  Trichloro acidic acid 
Tel  Telomere 
VDJ  Variable, diversity and joining genes 
WT Wild type 
YPD  Yeast bactopeptone dextrose 
β-ME β-mercaptoethanol 
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