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Preface

The most popular photography ever in the history of the National Geographic mag-
azine is not a splendid rugged mountain scenery or a breath-taking underwater
wild-life shot. No, it is a face, that of Afghan child refugee Sharbat Gula shot in
1984 by Steve McCurry in a refugee camp in Pakistan.1

What is so special about the human face that gives it this priority over all other
images, makes it the prime object for front pages, advertisement, politics and not
least human relationships? Surely,

The face provides a plethora of social information about an individ-
ual’s gender, age, familiarity, emotional expression and potentially their
intentions and mental state. (Emery, 2000)

But the knowledge of that alone does not seem to help much to really appreciate
the role of the human face in direct personal interactions. It might be that the face
is just too predominant in everyday life, omnipresent as it is, and that most of all it
is taken for granted - true likewise for its static as well as for its dynamic aspects.
Thus the full importance of facial expression becomes only evident - painfully
- with its loss. Jonathan Cole describes in his book ’About face’ (Cole, 1998)
patients suffering from a rare neurological condition called Möbius syndrome in
which ’people are born without any ability to move their faces and so cannot make
facial expressions’, and the devastating impact it has on their everyday life.

Notice that N. J. Emery in the quote above does not mention the enhancement
in intelligibility that is gained by watching a talker’s face during speech. Maybe
as a low level function it does not really qualify as social information; however,
auditory-visual integration in speech allows undoubtedly fascinating insights into
the way the human brain works. The video-based face motion measurement sys-
tem developed in this thesis is dedicated to this particular aspect of face motion
and hopefully will provided a versatile tool for research in auditory-visual speech
processing.

The thesis originated in an invitation by Eric Vatikiotis-Bateson (now Professor
at the University of British Columbia, Canada) to come to Japan and work in his
excellent auditory-visual speech production research group at ATR Laboratories
(Kyoto). So my gratitude goes foremost to him and to Professor Hans Günther
Tillmann, who was so open-minded as to accept and actively support this slightly
unconventional topic for a doctoral thesis in his phonetic sciences department.

I also wish to thank for active or passive support, for comments or for sim-
ply being a subject in one of the experiments, Phil Hoole, Takaaki Kuratate,
Kevin Munhall, Ales Ude, Daniel Callan, Akiko Callan, Saeko Masuda, Roberto
Ejii Nawa, Michiko Inoue, Hartmut Pfitzinger, Klaus Härtl, Selime Altinbilek, Jeff

1 See http://www.melia.com/ngm/0204/feature0/
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Jones, Shinji Maeda, Gèrard Bailly, Steven Greenberg, Kyoshi Honda, Dennis
Burnham and Oyunaa Shagdar.
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Chapter 1

Introduction

He was only demonstrating certain basic pronunciation pat-
terns but the transformation in his face and voice made me
think he was making a passage between levels of beings.

Don DeLillo White Noise

1.1 Why speech?

The overwhelming majority of research resources - and subsequently publications
- concerning face motion has so far been dedicated to the analysis and synthesis
of emotional facial expression and almost marginalised the processing of speaking
faces. The balance was shifted slightly in favour of a more profound investiga-
tion of visual aspects of speech with the advent of a new interest in ’multi-modal’
human-human or human-machine communication both by the academic world
and by industry. Again, however, the main emphasis was put on the expres-
sive facial behaviour accompanying speech instead of the genuine speech move-
ments of the facial surface. Only the surge of computer-aided animated human
or human-like characters in advertisement, entertainment and as impersonations
of computer help agents or human users in virtual reality (avatars) has made re-
alistic ’lip synchronous’ face motion during speech a primary concern for some
research groups.

In 1991 K. Mase and A. Pentland, two well known senior researchers (the latter
being one of the outstanding figures in the emerging science of computer vision)
wrote in the summary section of Mase and Pentland (1991), an often cited paper:

The velocity of lip motion may be measured from optical flow data
which allows muscle action to be estimated. Pauses in muscle action
result in zero velocity of the flow and are used to locate word bound-
aries.

Their study does not comprise any experiment with direct measurement of
muscle activity (for instance using Electromyography (EMG)) to proove their claim.
Nevertheless they state later about lip muscle activity during speech:
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There is a stop at word boundaries even in continuous speech. Since
the stop results in zero velocity of lip movements, it is easy to find word
boundaries by looking for instances of zero velocity.’

Everyone who took pains to look at articulator movements (jaw, tongue or lips)
knows that this incorrect: an undergraduate in phonetic sciences would probably
fail her or his exam with such remarks having been advised of the contrary in first-
semester courses. Careful reading of their paper shows that all of the authors’
’insights’ are based on a single experiment with recorded data consisting of

’continously spoken utterances comprising three to five digits’.

This admittedly extreme example demonstrates the lack of knowledge of
speech in the (machine) vision field at that time.

On the other hand the majority of speech scientists tended to avoid the visual
aspects of human speech regarding them at best as useful byproducts. One
of the exceptions has been the research concerning the so-called McGurk-Effect
(McGurk and MacDonald, 1976), even though the discovery itself and many of the
following studies were accomplished by psychologists and not speech scientists.
The lack of interest in auditory-visual speech by, say, linguists and phoneticians
might be understandable:

Firstly, there is the obvious question regarding the relevance of auditory visual
speech. Since every human being without hearing impairment can perfectly well
understand any possible utterance without looking at the speaker’s face, one
might see no interesting role auditory visual speech could play in research or the
development and design of end-user applications. Secondly, adopting an even
more pragmatic view one might just point to the heap of yet unsolved problems
in the auditory/acoustic domain and merely shrug at the prospect of multiplying
these problems by adding a new communication channel.

Additionally it seems not very likely that the visually observable face move-
ments during speech might be anything else than just a simple mechanic conse-
quence of some of the movements of the (mostly hidden) speech articulators that
are governed by the human brain with the aim of producing a desired acoustic
output. Since here is not the place to enter the discussion about the nature of
phonetic targets, we only would like to point out that the hypothesis assuming
articulatory phonetic targets would make an independent significant role of the
visual speech more likely - if, quoting Raymond Herbert Stetson,

Speech is rather a set of movements made audible than a set of
sounds produced by movements (Stetson, 1951),

why then should they not be made visible as well whenever possible? By-
passing this dispute and assuming that speech face movements are indeed only
a mechanical consequence as stated above, the question remains whether or not
the human brain uses them and their relationship to the speech articulator move-
ments. Looking at it in terms of evolutionary development it seems doubtful that
a capability would evolve whose gain would almost completely exhaust itself in
adding redundancy to an already close to perfect working other ability. Since to
our current knowledge speech must have evolved during a period where our hu-
man ancestors lived in small groups in ’hunter and gatherer’ societies, all speech
communication was limited to person-to-person short-distance communication,
where visual perception of the speaker was important and frequent, but not at all
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a necessary or even dominant condition (the speaker might have turned away or
be in darkness).

But what about the McGurk-Effect? The effect, named after one of the two
psychologists who discovered it (McGurk and MacDonald, 1976), describes the
change in perception of an auditory stimulus depending on synchronous percep-
tion of a concordant or discordant visual stimulus: If visually presented /ga/,
usually a video clip showing the speakers face in a close-up, is combined with an
aligned audio signal of /ba/, subjects perceive /da/. Of course this does not hap-
pen with a concordant audio signal. It is particular striking on an intuitive level,
that if one looks at McGurk-stimuli repeatedly and closes one’s eyes in between
for a short time, the auditory perception switches back and forth between /da/
and /ba/ without any feeling of a disruption. So clearly there is some auditory-
visual integration.

It is often argued against the relevance of the McGurk-Effect that it is highly
artificial. And despite the fact that it can be demonstrated live without technical
means (Kevin Munhall, personal communication), it is clear that occurrences in
non-technological societies are extremely rare and virtually devoid of significance.
However, this does not diminish its value as a tool for investigating (a special
case of) auditory-visual integration. Though likely, it cannot be determined for
sure whether or not the McGurk effect is speech-specific or just a more or less
accidental consequence of a general auditory-visual integration mechanism that
allows us to visually locate and distinguish sources of sounds even if the sounds
emanate from the same direction. That this integration even ’overrides’ the audi-
tory location of sound sources can be confirmed easily on a non-scientific level by
viewing a movie with a single loudspeaker that is not placed directly behind the
screen.

The strongest evidence for speech-specific auditory-visual integration might
come from numerous studies documenting that being able to look at the
speaker’s face significantly enhances overall intelligibility in noisy environments
(Sumby and Pollack, 1954). The amount of additionally recovered phonetic in-
formation, when the speaker’s face is visible, is substantial and the effect is not
limited to single phonemes, making it difficult to dismiss it as a byproduct of a
general auditory-visual integration mechanism. Furthermore studies investigat-
ing brain activity using functional Magnetic Resonance Imaging (fMRI) show that
speech related areas in the ’auditory cortex’ are activated when the stimuli pre-
sented to the subject contain video capture of a speaking face only and no sound.
For instance Callan, Callan, and Vatikiotis-Bateson (2001) state:

It is interesting to note that consistent with other studies investi-
gating silent speechreading ... that the visual only condition showed
activity in superior and middle temporal areas, including the primary
auditory cortex, ... , even though there was no auditory signal.

Now, if there happens to be speech-specific auditory-visual integration it would
be worthwhile to look in acoustic/articulatory signals and face/head motion
measurements for redundancies. And in fact this has been done in several
studies at least up to the point of determining (multiple) correlations between
the different groups of signals (e.g. Yehia, Rubin, and Vatikiotis-Bateson, 1998;
Jiang, Alwan, Bernstein, Keating, and Auer, 2000) and using them for mutual
prediction. The correlations were found to be high and the predictions usable
to reconstruct a quite close approximation to the original signal so long as the
analysis/synthesis was confined to a small set of sentences or even limited to a
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single sentence approach. Of course there are a lot of applications that potentially
could be built on a strong acoustic-to-head/face motion relationship: low band-
width coding of speaking faces for e.g. video conferencing, text-to-audio-visual
speech synthesis systems for animated human-like characters, supplementary
information for acoustic-based Automatic Speech Recognition (ASR) systems es-
pecially in situations where there is strong background noise (particularly other
speakers) but capture of the speakers face is available. As an example for the
latter think of automated information terminals in airports, train stations, etc.

The doctoral thesis at hand, however, was primarily motivated by a differ-
ent aspect: if the human brain uses a speech specific auditory-visual integra-
tion mechanism to extract phonetic information from the face, then this process
should tell us a lot about speech processing in general, even if it is used only
in situations where the acoustical signal is degraded. Interesting questions are:
What kind of information from the face is used? In which way is it used? What are
its very own dynamics? Are there categories and categorical perception? Since
visual perception has different properties concerning e.g. spatial and temporal
resolution as compared with auditory perception, investigating speech transmit-
ted via this channel should make further reaching insights not only into speech
perception but also into production possible.

1.2 Why video?

Clearly, any research in this area would be severely limited so long as there is
no means to measure face motion. Perceptual studies are possible without it,
but both controlling the stimuli and further interpreting the results remains dif-
ficult. However, several systems exist that track face motion by means of active
or passive markers placed directly on the face. OPTOTRAK (Northern Digital, Inc)
is an example for an active marker system using infrared LEDs that have to be
connected to a device that generates a strobe electric pulse and have to be visible
for the three tracking cameras. ELITE (BTS, Milan, Italy) and QUALISYS (Qualisys
Medical AB) are examples for passive marker systems using reflective, usually
spherical, markers and a set of video cameras.

By contrast, reliably measuring the motion of an object without markers
is much more difficult. In general, markerless techniques for measuring vis-
ible objects have been optical using simple video or structured light (e.g.,
Carter, Shadle, and Davies, 1996). Despite the low temporal resolution (typically
25 or 30 Hz.), the system must first find the object in a video image, identify the
features to be measured, and then convert those measures from image pixels to
a more physically meaningful coordinate system. Time-consuming initialisation
and intense post-processing is usually necessary to identify and extract detailed
measures of face motion relevant to speech analysis.

Thus marker-based systems seem to have the critical advantages of being spa-
tially very accurate, having sufficient temporal resolution, and returning instantly
accessible and processable data. But they have some unfavourable limitations,
too:

i. Such equipment is highly specialised and cannot be used outside the labo-
ratory, thus restricting the scope of applications.

ii. Even within the laboratory, the method is invasive in that markers must be
attached to the subject’s skin.
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iii. Some of the mentioned methods interfere with other systems providing mea-
surements that might be considered crucial to be acquired simultaneously,
e.g., OPTOTRAK sensors and wires cause disturbances in electromagnetic
measurement systems (EMA) that could be used to record vocal tract data
together with the face motion data. And the other way round, reflection at
the plexiglass helmet used in EMA causes problems in most optical systems
for face motion measurement.

iv. Marker placement requires a-priori decisions about proper measurement lo-
cations. Since it is usually not feasible to vary marker location systematically
in different runs of the experiments (simply because of the sheer number of
runs necessary), marker placement can restrict or bias subsequent analysis.

v. Although perception experiments using the measurement data directly are
possible and very useful (so-called point light display experiments), use of
still images or video sequences acquired simultaneously with the measure-
ment data for perception experiments is not feasible because of the uncon-
trolled influence of the visible markers on human perception.

All these limitations would be overcome by a method that could derive reliable
globally distributed face motion measurements from standard video recordings.
Failing automatised methods in the past many researchers turned to manually
analysing face motion usually based on Ekman and Friesen’s Facial Action Coding
System (FACS, see Ekman and Friesen, 1978). Despite its usefulness for a num-
ber of studies (e.g., Heller and Haynal, 1997) the disadvantages of the procedure
are too severe for it to be helpful in analysing speech: The investigators need to
be thoroughly trained beforehand and then have to examine every single frame to
determine the changes of the so-called Action Units (AU). The AUs represent the
(visible) impact of underlying muscles or muscle groups of parts of the face. Thus
in addition to being extremely tedious the resulting measurement is still qualita-
tive. So it may not be surprising that to our knowledge FACS has not been used
for analysing auditory-visual speech at all.

On the other hand attempts at automating video-based face motion measure-
ment face an uphill struggle against the inherent general difficulties of image mo-
tion estimation (see 2.1) that are compounded by the specific nature of the object
to be measured: face motion is in principal non-rigid motion with an underlying
rigid component (i.e., jaw movements) modified in its overall appearance from a
static viewpoint by rigid head motion. The reflectance characteristics (albedo and
specular content) of the different parts of the face are the only entities on which a
measurement algorithm can be built, but they cannot be accessed directly with a
video camera. The recorded signal, the video image, represents a non-linear map-
ping of the three-dimensional real world to the two-dimensional image plane (per-
spective projection, see 2.2). The intensity value of each pixel (the only available
variable besides pixel location) is a mixture of the above mentioned reflectance
characteristics of the object, the scene illumination, the viewing geometry, and
the camera response parameters - integrated over space (a subset of light rays
passing through the camera lense) and time (shutter time). The resolution both
in space and time is of course limited by the image acquiring mechanism, usually
a Charged Coupled Device (CCD) chip.

Those difficulties explain why video-based face motion tracking methods that
return measurements distributed globally over the face are so far rather rare.
Instead most researchers employed feature tracking methods focusing usually on
the lips, the eyes, the eyebrows and already less frequently including the whole
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chin or the alar wing of the nose. It should be clear that video-based methods
will not be able to compete with marker-based methods in terms of resolution
and reliability, at least not in the near future. Nevertheless when looking at the
benefits of video-based face motion analysis the advantages seem to outweigh the
limitations:

i. Since the constraint of recording in the lab is no longer confining the record-
ing, it can be done anywhere where a video camera can be used and at any
time. In addition, continuous recording time is only limited by the camera’s
storage capabilities.

ii. With the freedom of choice of space and time for the recording and the no
longer existing necessity of marker attachment a whole new variety of sit-
uations is made accessible for analysis reaching from quasi-spontaneous
dialogs in the lab to authentic TV news coverage and documentaries. With
respect to the main principle of a New Phonetics - to abandon ’lab speech’
in phonetic analyses in favour of spontaneous or at least quasi-spontaneous
speech - this would be highly desirable.

iii. A video-based method would make it easier to measure e.g. the vocal tract
behaviour at the same time, since the only condition needed is an unimpeded
optical connection between the camera and the subject’s face. Reflections do
not interfere with the tracking process in a significant way.

iv. Any decision about the use of only a subset of analysis points (virtual mark-
ers) could be done a-posteriori, according to the needs of the particular anal-
ysis type or even based on criteria coming from processing the full set of
tracking points in a first run.

v. If the measurement points are truly globally distributed over the face, ani-
mations based on the results can be accomplished. This could lead to means
for perfect stimulus control and verification in auditory-visual speech per-
ception experiments.

Potential applications for video-based face tracking include acoustic speech
synthesis from talking faces (Yehia et al., 1998), realistic face synthesis and
animation (Kuratate, Yehia, and Vatikiotis-Bateson, 1998), more accurate anal-
ysis of human-machine interfaces, and many clinical applications where accu-
rate measures of functional behaviour of the face are required (for details, see
Ekman and Rosenberg, 1997). However, it cannot be emphasised enough, that
great care is needed given the complexity of both speech and faces and the diffi-
culties involved in image motion estimation.

1.3 Point of view

In this section we briefly lay out the assumptions being made in the development
of the face motion tracking algorithm described in this thesis before clarifying in
chapter 2 the role different techniques and procedures originating from distinct
scientific domains play in working towards a face tracking algorithm.
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1.3.1 Video footage

First of all we assume a static camera directed towards the subject’s face with
no change in the focal length (i.e. zoom in or out) occurring during the tracking
period. The algorithm could probably be adapted to a situation with a moving
camera, but this would be beyond the scope of this thesis. Furthermore the face
should not appear too small in the video frame in order to have enough pixels left
in the segments into which the facial surface will be divided by our algorithm and
which will be tracked independently. Somewhere in the entire sequence there
should be a frame with an (almost) full frontal view of the face needed for the
initialisation.

Of course movements of the subject are not restricted, but - trivially - face
motion tacking is not possible when the subject’s face is completely turned away
from the camera and already not making much sense with the current setup
when the subject’s head is approaching a profile view. Head motion is tracked
using OPTOTRAK and a headmount; in a future version it might be replaced by an
integrated video-based method.

It is assumed that there are no occlusions of the facial surface (except occlu-
sions occurring due to head motion); but again, the algorithm might be adapted
to cope with temporary occlusions if necessary. The method can handle colour as
well as gray-scale image sequences. In fact, currently colour images will be con-
verted to gray-scale before the tracking. This is done mainly in order to speed up
the slow tracking procedure, but in principle the three colour channels of RGB-
images could be separately processed and the tracking results combined in an
optimal way afterwards.

1.3.2 Constraints of the facial surface

Our explicit aim was to avoid any high level assumptions about face motion, es-
pecially speech-specific assumptions, for instance, that the lip region must be
tracked with a higher resolution than the cheeks because of their supposed im-
portance in visual speech. After all, the whole face motion analysis system de-
scribed herein was built to investigate what kind of role the different parts of the
facial surface play (or can play) in auditory-visual speech processing. Low level
constraints, however, are of crucial importance because of the already mentioned
inherent difficulties and ambiguities of image motion estimation.

In the case of speaking faces, obtaining accurate motion measures is hindered
by a combination of factors: 1) the lack of strong image gradients (see also 2.1.1)
for the cheeks and chin, 2) the diversity of movement types caused by simultane-
ous rigid (head and jaw) and non-rigid (face) motions on different scales, and 3)
the high velocity of some movements such as mouth opening and closing for tran-
sitions between low vowels and bilabial stops. However, workable solutions can
be found by using the physical properties of the face as task-specific constraints.
The face structure combines rigid jaw and skull components with a non-rigid cov-
ering of facial tissue. Although complex, the relation between these components
is constrained. In particular, looking at face motion from the camera’s perspec-
tive, it is possible to analyse it as a combination of rigid translation and rotation
of the entire head and non-rigid deformations of facial tissue. The non-rigid de-
formations result from the contraction of muscles attached to the fascia and from
the motion of the jaw. The fascia itself has dynamic tissue properties that pas-
sively filter the influence of the musculoskeletal system. Specific activities such
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as speech can further influence the shape of the facial surface through changes
in tongue position and air pressure within the oral cavity (see Yehia et al., 1998).

Once identification and correction of head motion effects on apparent face mo-
tion are accomplished, four assumptions can be made about the physical prop-
erties of the face and its motion from the view point of a static camera looking at
the frontally displayed face.

i. The face surface is in general continuous, so its parts cannot be dissociated
from each other;

ii. There is no image-plane rotation for larger areas of the face;

iii. Larger movements always affect larger regions;

iv. Since occlusion due to head motion can be predicted easily, the visible areas
of the face are known, provided they are not very small. That is, they cannot
appear or disappear; rather they can only extend, contract or become dis-
torted. The exception to this are the areas within the opened mouth and the
eyes that are occluded completely during mouth closure and eye blinking.

These assumed properties, especially i. and iv., suggest that the texture map of
the face in the video frame can be used to measure the location of facial segments,
provided that the image intensity does not change much from one frame to the
next (this assumption is critical to other methods such as optical flow, see section
2.1.1).

The implication of iii. is that a multi-resolution analysis (see section 2.3) can
be applied, starting at low resolution, without introducing errors into the subse-
quent finer-grained analyses. It also takes care of the exceptions to iv. because
of the surface continuity constraint i.. To explain this we have to anticipate the
motion tracking section 3.3 for a moment: The basic idea is that by increasing the
resolution of the tracking procedure in a stepwise manner, it should be possible
to track the motion of large areas separately from motions of smaller areas. For
example, large motions due to the jaw must be distinguishable from the small
motion of the lower lip that may move independently of the jaw in the opposite
direction. Thus, by breaking the analysis down into a sequence of resolution-
specific analysis steps, then the loss of detailed texture information at a lower
resolution, or spatial frequency, defines a natural motion region that can be re-
fined in a subsequent step at higher resolution.

Finally the constraint on image-plane rotation, ii., allows us to avoid relatively
cumbersome, orientation sensitive filters such as Gabor wavelets or the so-called
steerable filters (Freeman and Adelson, 1991) in the multi-resolution analysis of
the image data. These two-dimensional filters can be designed with arbitrary ori-
entations, while the wavelets used currently in the tracking are fixed to horizontal,
vertical and diagonal orientation (see section 2.3.4). However, the constraint as-
sumption might be violated for certain small areas of the facial surface, e.g., the
corner of the mouth might undergo quasi-rotational movements during mouth
opening and closing. The coarse-to-fine strategy in the tracking in combination
with the segment warping process described in section 3.3.5 and the wavelet-
based image decomposition can in general catch these exceptions. However, the
exclusion of orientations sensitive filters is motivated only by run-time consid-
eration: All correspondence determination procedures (described later in section
3.3.5 and 3.3.6) must be repeated for every selected orientation which currently
would slow down the motion tracking too much. Nevertheless - in anticipation
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of faster computers in the near future - a steerable filter based on the second
derivative of Gaussian (so-called Mexican hat) is already implemented in the cur-
rent version of the algorithm.





Chapter 2

Theoretical and empirical
basis

2.1 Image motion estimation

Usually there will be temporal variations of image brightness in an image se-
quence caused by image motion. In natural images image motion is induced by
the movement of three-dimensional scene points relative to the camera. The pro-
jection of the tree-dimensional velocity field of scene points to the image plane
results in a two-dimensional motion field. This might be due to the movement
of objects in the scene or movements of the camera (including changes of the
focal length) or both combined. Since image sequences, for instance video se-
quences, are time-discrete, continuous ’real world’ trajectories are sampled into
time-varying discrete changes of image coordinates of the respective image points.
Depending on the shutter time of the camera during the recording a shorter or
longer time period is integrated into a single image.

In contrast to the A/D conversion of continuous sound pressure variations into
a sampled digital sound signal via microphone and digitising equipment and the
D/A conversion of the sampled signal back into continuous sound waves via D/A
converter and loudspeaker, the video image remains discrete when played back.
All motion a human observer perceives, when an image sequence is presented
with a sufficiently high frame rate, is apparent motion. The perceived continuous
trajectories or discontinuous ’jumps’ of image elements are a (re-)construction of
the human eye and brain (see Marr, 1982; Wandell, 1995; Palmer, 1999). The
insight has created one of the most fruitful paradigms for visual perception re-
search, since very basic stimuli could be conceived and realised (e.g., a black
square on a white background which changes position from one frame to the
next) and systematically varied.

This introduces a fundamental problem of image motion estimation: the cor-
respondence problem. How can be determined to which new location the scene
objects (represented in the image as brightness variation) moved in a frame-to-
frame transition? In other words, which image object in the incoming frame n
corresponds to which image object in the previous frame n− 1. Suggestions made
for human perception as well as solution attempts in machine vision include: the
closest one, the most similar one concerning shape or texture map values, the
one in the direction of the motion of the object determined in earlier frames, any
combination of those already mentioned, and so on. Note that the human visual
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system has excellent capabilities to solve the correspondence problem - for ex-
ample a grayscale video sequence of swirling leaves in the wind does not throw
our motion perception into disarray. Or as shown in perception experiments,
transparent motion of two planes of random dots could still be resolved correctly.

Before presenting two main strategies to determine image motion in the next
section a short excursion is necessary to address technical difficulties when work-
ing with standard video sequences in speech face motion tracking. Evidently the
correspondence problem is easier to tackle if the displacement of image objects
from one frame to the next is very small. Despite the fact that the average ve-
locity of observable speech movements is relatively low compared to the standard
frame rate, there are - as already mentioned - some very fast movements most of
the times involving combined jaw and lip movements. Standard video frames are
composed of two half frames, also called fields, that are acquired successively.
They consist of every other line of the full video frame, alternating between odd
and even lines. After the acquisition each two of the fields are interlaced into
the full frame. This leads to severe artifacts for frames containing fast motions;
imagine for example the area of the mouth in a fast opening gesture: every other
line may contain the dark area inside the mouth, while the remaining ones still
have intensity values corresponding to the lip and chin texture. Note that low
pass filtering applied during preprocessing in almost all tracking methods does
not solve the problem: the averaging effect of it still corrupts the intensity values
of the area in question even though the sandwich-like artifact structure on line
level has disappeared.

Full frames can be decomposed into their fields again later leading to an in-
crease of the frame rate to 50 Hz (PAL) or 60 Hz (NTSC) in the analysis. This
would facilitate the tracking of fast speech movements considerably, if it was not
traded for half of the vertical resolution available with a one line offset every other
field. The decision whether to use frames or fields can only be made according
to the actual tracking task and the properties of the video footage. For instance
in our speech face motion tracking we would only decompose frames into fields
if the height of the subject’s face is at least half of the frame height. But even
with decomposition into fields the standard shutter time of 1/60 second results
every now and again in blurring of parts of the fields thereby eradicating almost
completely the original texture map of that area.

2.1.1 Image flow and image registration

Very generally speaking there exist two alternative ways of image motion estima-
tion for tracking real world objects in a frame-to-frame transition:

i. First determine where each pixel moved, which includes knowing which pix-
els disappeared or appeared. Then infer from the dense pixel-based motion
field the image motion of the real world objects, that is, the two-dimensional
projection of the three-dimensional trajectories of the scene objects. If re-
quired, infer the three-dimensional trajectories from the image motion using
prior knowledge about the objects.

ii. First generate an appearance model of the scene objects, which usually
means a description of the geometrical shape and the texturing of the ob-
jects together with a model of their appearance change due to all kinds of
admissible/expected motion. The latter could for instance include a model
of the scene lighting. Then generate the appearance of the object over the
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entire motion parameter space and use an appropriate distance measure to
compare the generated image (or part of the image) with the original. The
parameter set that produces the minimum distance describes the motion
of the particular object. Since the parameter search space might be high-
dimensional and infinite, almost always some kind of optimisation method is
used to limit the number of views required to be generated to a small subset
of the set of potential views.

The first class of methods (i.) uses image flow (also called optical flow) tech-
niques, the second class (ii.) is known as image registration. For an example of
the use of constrained image flow in full body tracking see Ju, Black, and Yacoob
(1996), and for an example of image registration using an appearance model in
full body tracking see Ude (2001). There are, of course, all kinds of hybrid ap-
proaches.

Image flow techniques (see Barron, Fleet, and Beauchemin, 1994, for an
overview) assume that the image brightness I(x(t), y(t), t) is constant along the
visual trajectories, where x(t) and y(t) are spatial coordinates of the image and t
denotes time. Formulated as a differential equation this is:

dI

dt
= 0 (2.1)

Applying the chain rule for differentiation equation 2.1 becomes

dI(x(t), y(t), t)

dt
=
∂I

∂x

dx

dt
+
∂I

∂y

dy

dt
+
∂I

∂t
= 0 (2.2)

Equation (2.2) can be rewritten as

∂I

∂x
u+

∂I

∂y
v+

∂I

∂t
= (∇I)2 v +

∂I

∂t
= 0 (2.3)

where v = (u, v) is the velocity consisting the two velocity components of the
motion field (change in horizontal and vertical direction) and ∇I is the spatial
gradient. Since there is only one scalar constraint to determine the two veloc-
ity components, this is an ill-posed problem. It can only be solved by adding
additional constraints, usually by assuming a certain degree of smoothness of
the motion field often both in spatial and in temporal respect. Thus the actual
computation is usually based on larger areas, not on single pixels, and sometimes
needs to consider several successive frames (up to 64). Observe that the approach
requires differentiable trajectories, thus even in the discrete form will look only
at very local surroundings for the continuation of a movement. To allow bigger
movements propagation and refinement of image flow values from coarse to fine
scale image representations are necessary.

Image registration techniques provide in our opinion a greater robustness and
a more ’realistic’ overall scenario for high level vision. This is traded for a higher
computational effort and a greater task dependence. In practise, the methods
often suffer badly from the simplifications that have to be made in the model
building process. The algorithm proposed in this thesis applies image registration.

We want to conclude this section with a quote from Stiller and Konrad (1999),
which was published in 1999, but is still valid (even if the real-time requirement
is relaxed):
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Although the understanding of issues involved in the computation
of motion has significantly increased over the last decade, we are still
far from generic, robust real-time motion-estimation algorithms.

2.1.2 Video-based head and face motion tracking

Since the human head is a rigid structure, its motion can trivially be only rigid
body motion. This makes head tracking easier, but by no means easy. Prob-
lems posed by varying illumination are further aggravated by the fact that in
video sequences face motion, especially jaw movements, influences the appear-
ance of the head. Only because the magnitude and the size of the affected
area of the coherent parts of face motion are usually small compared to the
remaining unaffected rigid parts, rigid body constraints can be used effectively
in the tracking. Basu, Essa, and Pentland (1996) used a three-dimensional el-
lipsoidal model of the head, a parametrised but then resampled mesh, and in-
terpreted the optical flow in terms of the possible rigid motions of the model.
La Cascia, Isidoro, and Sclaroff (1998) employed a cylindrical surface model of
the head and projected the video image into the surface texture map of the model.
Model parameters were updated ’via robust image registration in the texture map
space’. The most sophisticated head model, a commercially available polygon
model consisting of about 7000 triangles, was used by Schödl, Haro, and Essa
(1998). The rendered image of the textured model was registered with the video
images and the motion parameters were found by ’mapping the derivative of the
error with respect to the parameters to intensity gradients in the image’.

As mentioned in the introduction face motion tracking has attracted remark-
able attention in the last decade mainly with respect to automatic recognition of
emotional face expressions. The exception proving the rule is the abundance of
lip tracking systems that have appeared almost everywhere in recent years and
that are almost always designed for speech applications. Apart from them two
main approaches researchers have taken so far are methods that:

i. identify and track pre-determined facial features;

ii. track a set of measurement points globally distributed across the face.

Feature tracking methods are by far the most popular and typically use
either optical flow techniques (see section 2.1.1) and/or a statistical con-
straint on the desired features, such as an adaptive shape model (e.g.,
Revèret, Garcia, Benoit, and Vatikiotis-Bateson, 1997). For example Mase (1991)
used optical flow limited to pre-determined areas containing the specific facial
features that they want to measure (e.g., mouth). Black and Yacoob (1997) have
added higher-order constraints that restrict the shape changes of the selected
areas to an affine model. Methods based on globally distributed measurements
may also use dense optical flow (e.g., Wu, Kanade, Cohn, and Li, 1998) or as in
Essa and Pentland (1997) an optimal optical flow method coupled to a physical
model describing the skin and muscle structure of the face. Alternatively, the
video texture map may be fit to a global model as has been done for head tracking.
In extending their method Cohn and colleagues (Wu et al., 1998) have developed
a hybrid approach that combines global measurement techniques and feature
tracking (Lien, Kanade, Cohn, and Li, 1999).
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2.2 Perspective transformation

Every natural image taken by a photo or video camera is the mapping of a three-
dimensional ’real world’ scene to the two-dimensional image plane. Light rays
emitted from a light source fall either directly into the camera or are reflected
from object surfaces first and then fall into the camera. The latter is the more
important process for imaging and allows us to draw conclusions about spatial
arrangement, shape, surface texture and other properties of objects in the scene.
The mapping is called perspective projection, it can be modelled with the so-called
perspective transformation. The actual parameters of the transformation depend
on the camera properties, which can be quite complex to determine in modern
video cameras with clusters of lenses and zoom ability. Fortunately, however, the
simplest and most fundamental camera model, the ideal pinhole camera, is for
most applications a sufficiently accurate simulation of the real imaging process.

2.2.1 The ideal pinhole camera

The principle of the pinhole camera was already realised in the camera obscura
invented in the 16th century. The names already describe the underlying idea:
a very small hole in one side of a closed black box facing the object or scene
to be imaged is basically all that is needed. If the opposite site is replaced by
a translucent plate a dim upside-down image can be observed. Forsyth (2003)
notes:

If the pinhole were really reduced to a point (which is of course phys-
ically impossible), exactly one light ray would pass through each point
in the plane of the plate (or image plane), the pinhole and some scene
point. In reality, the pinhole has a finite (albeit small) size, and each
point in the image plane collects light from a cone of rays subtending
a finite solid angle ... (Forsyth, 2003, page 4, italics by the original
author)

Note that with the ideal infinite small pinhole the image would be always in fo-
cus now matter how far away from the pinhole the image plane would be placed.
Figure 2.1 shows a schematic drawing of this idealised model of the imaging ge-
ometry.

The origin of the camera coordinate system is usually assumed to lie in the op-
tical centre of the lense system, i.e., in the pinhole camera approximation the hole
is the optical centre. The optical axis is the line perpendicular to the image plane
going through the optical centre. The focal length is simply the distance from the
optical centre to the image plane and the principal point is the intersection of the
optical axis with the image plane, usually the centre of the image plane.

If PW is a scene point with coordinates [xW , yW , zW ] and PI its corresponding
image point with coordinates [xI, yI, zI], then zI = f, since PI lies in the image
plane, and the perspective transformation is given by

xI = f
xW

zW

yI = f
yW

zW

(2.4)



16 Theoretical and empirical basis

(a) 40 degree

(b) Side view

(c) Top view

Figure 2.1: Ideal pinhole camera model

Equation (2.4) only holds if all measurements are made in the camera reference
frame and share the same unit and origin, which has to be the principal point. In
practice, the coordinate system for the scene points, usually the ’world coordinate’
system (see section 3.1.4), and the camera coordinate system are related by a
set of physical parameters including pixel size, position and orientation of the
camera, etc. Therefore we will derive a more complex perspective projection matrix
that accounts for these parameters in the next section.
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2.2.2 Extrinsic and intrinsic camera parameters

In computer vision intrinsic and extrinsic camera parameters are distinguished.
Intrinsic parameters relate the real camera coordinate system to an idealised im-
age coordinate system. They include the principal point, scale factors for pixel
size in both image dimensions, an aspect distortion factor that models the aspect
ratio of the camera, focal length and a lense distortion factor that models radial
lense distortion effects. These are only the more important and frequently mod-
elled ones, but real lenses exhibit for instance nonlinear spherical aberrations,
coma, astigmatism and field curvature as well.

Extrinsic parameters relate the idealised image coordinate system to a fixed
world coordinate system by specifying its position via translation parameters and
its orientation via rotation parameters.

We will now build a camera model which incorporates all of the extrinsic and
two of the intrinsic parameters (focal length and the scale factor for pixel size)
following Shapiro and Stockman (2001). It approximates the perspective projec-
tion process that happens in a real video camera such as we use in the motion
tracking. Let PW be again a point in the world coordinate system with coordi-
nates [x, y, z]T and PW a set of those points. Let PI be the corresponding image
point in the camera coordinate system, thus it is actually a pixel in the image
matrix PI with row and column index [r, c]T and the origin by convention in the
upper left corner. In order to be able to use uniformly matrix notation we change
to homogenous coordinates (see Faugeras, 1993; Shapiro and Stockman, 2001;
Forsyth, 2003), i.e., PW becomes [x, y, z, 1]T .

2.2.2.1 Translation

PW can be translated from the world coordinate system to a coordinate system
having the same origin as the camera coordinate system using a translation ma-
trix TW→T by

PT = TW→T PW








PT x
PT y
PT z
1









=









1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

















PWx
PWy
PWz
1









(2.5)

where tx, ty, and tz, are the entries for each of the three dimensions in the
translation vector t that maps the origins of the two coordinate systems on each
other.

2.2.2.2 Rotation

Rotations in three-dimensional space are possible around any arbitrary rotation
axis, but it is convenient to express them as components around the three coor-
dinate axis. They are given by the following equations.
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Rotation of α about the x-axis:

PRα = Rx,α PW








PRαx
PRαy
PRα z
1









=









1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

















PWx
PWy
PWz
1









(2.6)

Rotation of β about the y-axis:

PRβ = Ry,β PW








PRβx
PRβy
PRβ z
1









=









cosβ 0 sinβ 0

0 1 0 0

− sinβ 0 cosβ 0

0 0 0 1

















PWx
PWy
PWz
1









(2.7)

Rotation of γ about the z-axis:

PRγ = Rz,γ PW








PRγx
PRγy
PRγ z
1









=









cosγ − sinγ 0 0

sinγ cosγ 0 0

0 0 1 0

0 0 0 1

















PWx
PWy
PWz
1









(2.8)

In this way we obtain three rotation matrices depending on three parameters
(the rotation angles). All possible three-dimensional rotations can be performed
by applying sequentially these three matrices. In addition they can be combined
in a single one by

R = Rx,αRy,βRz,γ (2.9)

since matrix multiplication is associative. Accordingly the orientation of the
world coordinate system and the camera coordinate system can be align with:

PR = RW→R PW (2.10)
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Translation and rotation can be integrated in to a single matrix describing rigid
motion:

V = T R =









r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1









(2.11)

where rij are the rotation coefficients from equation (2.10). This step is actually
the motivation to switch to homogenous coordinates.

2.2.2.3 Projection

After we moved the world coordinate system to be aligned with the image coor-
dinate system the projection itself can be applied. Since our underlying model
for the projection process is still the pinhole camera this amounts only to rewrite
equation (2.4) in matrix form:

PF = FV→F (VW→V PW)








s PFx
s PFy
s PFz
s


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

(2.12)

The third row of the matrix can be dropped, since it only returns a constant
value for PFz,1 and because matrix multiplication is associative we can rewrite
equation (2.12) as

PF = (FV→F VW→V) PW





s PFx
s PFy
s



 =





g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 1













PWx
PWy
PWz
1









(2.13)

1 Evaluating the fourth row of PF = FV→F PV gives of course s = 1
f
PVz (see second half of the

explicit version of the projection equation above). Accordingly evaluating the third row yields PFz =

PVz
f

PV z
= f.
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2.2.2.4 Accounting for pixel size

Up till now we still have the same unit as the world coordinate system and real-
valued coordinates instead of row and column index integers. Therefore another
scaling is needed that at the same time should take care of the fact that image
matrix rows correspond to the y-axis and columns to the x-axis as well as invert
the y-axis:

PI = SF→I (FV→F VW→V) PW





s PIr
s PIc
s



 =





0 − 1
dy

0
1

dx
0 0

0 0 1









g11 g12 g13 g14
g21 g22 g23 g24
g31 g32 g33 1













PWx
PWy
PWz
1









(2.14)

where dx and dy are the respective scaling factors.

2.2.2.5 The final camera model

As the result of the preceeding steps we obtain the final full perspective projection
matrix:

PI = CW→I PW





s PIr
s PIc
s



 =





c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 1













PWx
PWy
PWz
1









(2.15)

2.3 Wavelets and multiresolution analysis

2.3.1 Spatial frequencies

As many authors (e.g., Burke Hubbard, 1998) have pointed out the term ’spa-
tial frequency’ is actually inappropriate, since frequency is defined for time only.
Therefore it is often substituted by the term ’wave number’. In this thesis we will
use the term nevertheless, because the concept of oscillation can be very easily
transferred from time to space, and it seems to be somewhat more intuitive than
’wave number’. Some caution in using the term is still recommended though,
since there are differences between temporal and spatial frequencies, most no-
tably that at least in the Newton Universe time has only one direction.

Having said this we would like to ask the reader not familiar with image pro-
cessing to imagine how a vertically uniform horizontal sinusoid looks in a grey-
scale image. The answer can be inspected in Figure 2.2 on the facing page. Our
human visual perception can hardly interprete the image as anything else than
a line of vertical bars in front of a black background.2 A ’cross section’ through

2 Please send an email to kroos@phonetik.uni-muenchen.de, if you have other suggestions
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Figure 2.2: Image with an horizontally oriented sinusoid of fre-
quency 8 c/image width (0.0125 c/p). Below the image the inten-
sity values of a single line are plotted.

an arbitrary row, i.e., plotting the intensity values, reveals the sinusoid. The in-
tensity values of the pixels oscillate with a spatial frequency of 8 cycles per image
width along the horizontal axis. The term ’cycles’ is very broadly used and com-
monly abbreviated to just the letter c. To specify spatial frequencies relative to the
size of the image frame cannot be considered very favourable, even if the approach
is intuitively appealing, since image size is a rather arbitrary quantity. Accord-
ingly one switches in digital image processing to the smallest unit, the pixel and
specifies spatial frequencies in cycles/pixel. It needs a little bit of rethinking to
familiarise oneself with the fact that with this definition all relevant frequencies in
the image will be smaller than 1. More precisely less than or equal to 0.5, because
the sampling theorem holds naturally for spatial frequencies as well as for tempo-
ral frequencies. Thus the highest frequency that is contained in the image is the
Nyquist frequency, the bandwidth of a sampled signal, equal to half the sampling
frequency of that signal, i.e. 0.5 c/p in the case of a digital image.3 The image

3 Very irritatingly, there seem to exist two different definitions of the Nyquist frequency. For example
Trucco and Verri write in Trucco and Verri (1998) on page 314:

The frequency νc = ωc/π, inverse of the sampling interval Tc = π/ωc, is named
Nyquist frequency and is typical of the signal. It is the minimal sampling frequency neces-
sary to reconstruct the signal. [italics by the original authors]

Also Eric Weisstein (Weisstein, 1999) defines the Nyquist frequency as follows:

In order to recover all Fourier components of a periodic waveform, it is necessary to
sample more than twice as fast as the highest waveform frequency ν, i.e.,

fNyquist = 2ν

The cutoff frequency fNyquist above which a signal must be sampled in order to be able
to fully reconstruct it is called the Nyquist frequency. [italics by the original author]

Those definitions might not even be just idiosyncratic deviations from the more generally accepted
definition presented in the main text, but stem from different introduction but interchanging use
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Figure 2.3: Top row: Two images (64 x 64 pixels) with horizontal
sinusoids of frequency 0.1875 c/p (left) and 0.5 c/p (centre) and
image of the same size that combines the two sinusoids. Centre
row: Two images (64 x 64 pixels) with vertical sinusoids of fre-
quency 0.0926 c/p (left) and 0.25 c/p (centre) and image of the
same size that combines the two sinusoids. Bottom row: Image
that contains all four sinusoids (right) and its power spectrum.

underlying Figure 2.2 has the size of a full NTSC video frame with square pixels,
i.e. 640 pixels (width) times 486 pixels (height). That means that the frequency of
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Figure 2.4: Two diagonal spatial sinusoids of frequencies
0.1768c/p (left) and 0.0663 c/p (centre), the combined image
(right), and the power spectrum of the combined image (bottom).

the sinusoid is 8/640 = 0.0125 c/p.
It goes without saying that the concept of the Fourier transformation can be

applied to spatial frequencies in the same way as to temporal. Its one-dimensional
formulation (here in the most general form) for discrete-time aperiodic signals

X(ω) =

∞∑

t=−∞

x(t) e−iωt (2.16)

where x(t) is the signal value at time sample t, ω the angular frequency 2πk,
and X(ω) represents the frequency content of signal x(t), can be directly trans-
ferred to space-discrete aperiodic signals

F(k) =
1

N

N−1∑

n=0

x(n) e−i 2πk
N
n (2.17)

of the terms Nyquist frequency and Nyquist rate. For example Proakis and Manolakis (1996) define
Nyquist rate as in the two examples just mentioned.
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Figure 2.5: Diagonal oriented spatial sinusoids at Nyquist fre-
quency.

We only exchanged n for t to indicate the shift from the temporal to the spatial
domain and additionally we confined the signal to finite length of N samples. The
latter was merely done to make the comparison easier to the two-dimensional
formulation in a form that could be directly applied to an image:

F(u, v) =
1

NM

N−1∑

x=0

M−1∑

y=0

I(x, y) e−i 2π (xu
N

+yv
M

) (2.18)

Here F(u, v) represents again the frequency content of the signal but this time
depending on oriented spatial frequencies (horizontal and vertical), I(x, y) is the
two-dimensional signal, i.e., the spatially ordered intensity values of the image,
and N and M the extent of the image along its two axes.

Figure 2.3 shows in its top row images with a original width and height of 64
pixels containing two horizontal sinusoids of different spatial frequencies (0.1875
c/p and 0.5 c/p). Whereas the left and the centre image comprise just one sinu-
soid only, the right image combines the two. The second row depicts the vertical
equivalent with sinusoids of frequencies 0.0926 c/p and 0.25 c/p. In the third
row the image on the right hand side combines all of the sinusoids. Left to it a
three-dimensional plot of the corresponding power spectrum is shown. Note that
the Fourier transformation of a 64 x 64 image results in a matrix with 64 rows
and columns and thus could be displayed as an image as well even though it is
not an image and should not be confounded with one.

In the figure frequency increases from the centre to the outer edges. The energy
contributed to the overall signal by each sinusoid can be seen as a sharp peak in
the otherwise flat power spectrum. Because of the symmetry around the Nyquist
frequency of the real part of the Fourier transform there are two peaks for each
sinusoid, except for the one horizontal sinusoid at the Nyquist frequency where
the two peaks fall together. Since the intensity values along one of the two axes
are constant for all sinusoids, all peaks appear on the centrelines of the spectrum.
Only frequency components with an askew orientation relative to the image axis
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Figure 2.6: Spatial sinusoid with orientation angle of 56.3 degree
and frequency 0.0845 c/p and its power spectrum.

would appear in the remaining area.
This becomes evident in Figure 2.4 that shows two sinusoids (0.1768c/p and

0.0663 c/p) oriented at 135 and 45 degrees respectively and their power spec-
trum. Now peaks can only be found in the diagonals. Let us look more closely at
the second sinusoid. It was generated by the formula 128 cos (2π (3 x/64 + 3y/64)).
Accordingly it is oscillating between -128 and 128. For display purposes we add
128 to keep the range of the values between 0 and 256, but for the Fourier trans-
form the zero mean signal avoids the peak at the zero frequency. Focusing only on
the x- or y-axis clearly three cycles can be counted everywhere in the image. But
because of the 45 degree angle the frequency per image width or height would be√
32 + 32 = 4.2426 (see Shapiro and Stockman, 2001, for the rather simple deriva-

tion). Taking into account that the diagonal length of a pixel is
√
2 ≈ 1.4 we should

find 4.2426 · 1.4 ≈ 6 cycles along the diagonal, which can be easily checked.
At first glance it may be puzzling that the range of orientations of sinusoids

that can occur in the signal and are represented in the power spectrum seems to
be limited. For instance one step above the 0 frequency coefficient (or graphically
one step away from the centre in the spectrum figures), there seem to be only four
unique angles (0,45,90 and 135 degree) available.

But firstly some confinements really do exist due to the sampling theorem,
i.e. analogous to the one-dimensional case where two adjacent sampling values
- a black and a white pixel in our case - are needed to represent the Nyquist
frequency, the highest diagonal frequency is a checkerboard-like pattern on pixel
level. As can be seen in Figure 2.5 this corresponds to two sinusoids of 0.5 c/p
that can only have orientation angles of 45 and 135 degree. It is then easy (and
does not need to be done here) to examine what frequencies of what orientations
could for instance be present in a 3 x 2 pixel neighbourhood.

And secondly, not all possible sines and cosines are needed as basic building
blocks or conversely would appear as single sharp peaks in the power spectrum.
In the one-dimensional case only sinusoids of integer-valued frequencies appear
as single sharp peak and only those form the set of basic functions the signal
is decomposed into. Accordingly in the two-dimensional case the tangent of the



26 Theoretical and empirical basis

−pi
−pi/2

0
pi/2

pi

−pi

−pi/2

0

pi/2

pi
0

1

2

3

4

5

6

7

x 10
4

horizontal
vertical

M
ag

ni
tu

de 20 40 60

10

20

30

40

50

60

Figure 2.7: Picture of a human eye (64 x 64 pixel) and its power
spectrum.

orientation angle must be a rational number. Figure 2.6 shows an example where
the sinusoid was generated by the formula 128 cos (2π (4.5 x/64 + 3y/64)). The
resulting orientation angle is 56.3 degree as given by (arctan(4.5/3)/π)180 and the
frequency is 0.0845 c/p which leads to the 7 or so visible cycles. If the image
would be enlarged 4.5/3 = 1.5 times in the x-direction the almost 10 cycles that
are predicted by the appropriately modified calculation given above for the 45
degree example could be observed. As can be seen from the power spectrum in
the same figure a whole range of frequency components contributes significant
energy to the signal.

In natural images usually most of the energy is contained in the lower fre-
quencies and spread over all possible angles. Figure 2.7 shows as an example a
picture of a human eye in the same size as the artificial images above.

2.3.2 Discrete wavelet transformation

After a rather hesitant start in the 1980’s wavelets became a shooting star in
the world of applied mathematics used in signal processing, statistics and nu-
merical analysis - triggered not at least by Daubechies (1992). Once the math-
ematical foundation was laid out, wavelet analysis asserted itself in fields as di-
verse as quantum physics, electrical engineering, seismic geology, image com-
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pression, human vision, turbulence, radar, earthquake prediction, meteorology,
etc.. What are wavelets and what made them so successful? Of course we
can only give here a very superficial account of the vast field wavelet analy-
sis comprises and we will do so from the viewpoint of signal processing. For
more or less detailed overviews see Kaiser (1994); Strang and Nguyen (1997);
Prasad and Iyengar (1997); Burrus, Gopinath, and Guo (1998); Nievergelt (1999)
or Raghuveer and Bopardikar (1998), and for a very readable account of wavelet
history, principles and relevance Burke Hubbard (1998).

Jawerth and Sweldens (Jawerth and Sweldens, 1993) summarise the general
principle

Wavelet theory involves representing general functions in terms of
simpler, fixed building blocks at different scales and positions.

While Fourier transformation expands signals (or functions) in terms of sines
and cosines (or equivalently in terms of complex exponentials) that are infinite,
wavelet transformations use ’small waves’, wavelets, that have their energy con-
centrated around a point in time or space, i.e. the energy of the wavelet function
is finite.4 Therefore they are well localised in time or space in contrast to Fourier
analysis which is not localised at all. Because of this property Fourier analysis is
very well suited for periodic, time/space-invariant or stationary signals, but nat-
urally not so well for aperiodic, time/space-varying, transient signals. Here the
two parameter dependency of the wavelet transform makes it superior, since scale
and position are varied allowing simultaneous time and frequency analysis. The
wavelet transformation is often compared to a musical score, which tells the mu-
sician what note to play and when to play it, while in the Fourier transformation
the temporal localisation is inaccessibly hidden in the phases.

Very much at the heart of the matter is the time-frequency resolution problem
called at times Heisenberg uncertainty principle or Heisenberg-Gabor inequality. It
states that a signal cannot be perfectly localised both in time and frequency at
the same time.

Let x(t) with t ∈ R be an arbitrary signal whose energy Ex is finite (bounded):

Ex =

+∞∫

−∞

|x(t)|2 dt < ∞ (2.19)

and X(τ) its Fourier transform

X(τ) =

+∞∫

−∞

x(t) e−i2πτtdt (2.20)

Then we can consider |x(t)|2 and |X(τ)|2 as probability distributions (see

4 Wavelets that have finite duration as well are said to have compact support. Note that not all
wavelets are compactly supported (see Raghuveer and Bopardikar, 1998).
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Auger, Flandrin, Gonçalvès, and Lemoine, 1997) and look at their means

tm =
1

Ex

+∞∫

−∞

t |x(t)|2 dt

τm =
1

Ex

+∞∫

−∞

τ |X(τ)|2 dτ

(2.21)

and variances

T 2 =
4π

Ex

+∞∫

−∞

(t− tm)2 |x(t)|2 dt

B2 =
4π

Ex

+∞∫

−∞

(τ− τm)2 |X(τ)|2 dτ

(2.22)

The Heisenberg-Gabor inequality now gives a lower bound for the product of
these variances or standard deviations respectively, namely

T B ≤ 1 (2.23)

This means that if the spreading in time (or space) T decreases, the spreading
in frequency, the bandwidth B, increases, and the other way round. Since the
value for the joint time-frequency uncertainty can be exactly calculated, one can
look for a transformation that minimises it and indeed there is a transformation
right at the absolute minimum. This is the transformation using the so-called
Gabor function, a sinusoid modulated by a Gaussian. The Gabor transforma-
tion resembles a windowed Fourier transformation (also called Short-time Fourier
transformation), if a Gaussian window is used, but with one essential difference:
the Gabor function has infinite support.

Calculating the averages and the standard deviations as done with equation
(2.21) and (2.22) allows the creation of pictorial time-frequency representations,
so-called Heisenberg boxes (also called Heisenberg cells or time-frequency cells),
where the area of a rectangular box corresponds to the joint time-frequency un-
certainty, the lengths of the box sides to the variance or standard deviation of
the time and frequency probability distribution, and its position to the average of
each distribution.

Figure 2.8 shows schematic time/space-frequency plots for several different
transformations. In reality the distributions are of course not formed like those
neat rectangulars, rather they are elliptic or irregular shaped blobs and they
might overlap. Figure 2.8(a) depicts a sampled signal, which of course is well
located in time (space), but provides no frequency information (except the band-
width of the entire signal via the sampling theorem). In contrast the Fourier
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Figure 2.8: Time/space-frequency representations (Heisenberg
boxes)

transformation shown to the right of it in Figure 2.8(b) gives good frequency res-
olution, but contains no information about their locations (except the length of
the whole signal). The Gabor transformation shown in Figure 2.8(c) not only min-
imises the time/space-bandwidth product, thus having the smallest possible area
a Heisenberg box can take on, but also is equally well located in time (space) as
in frequency yielding the square shape of the box.

The Short-time Fourier transform can be considered to be half way between
the sampled time (space) signal and the Fourier transform. With its flexible win-
dow length it can be tuned towards a better temporal (spatial) resolution and less
good frequency location (Figure 2.8(d), broad-band) or in the opposite direction
(Figure 2.8(e), narrow-band). The area of the rectangle, however, is not at the
minimum and fixed for all frequencies and the entire temporal (spatial) domain.
Wavelet transformation on the contrary adapts its way of decomposition to the
frequencies under scrutiny, as shown in Figure 2.8(f): At the lowest frequencies
very good frequency resolution is traded for very poor temporal (spatial) resolu-
tion. Moving towards higher frequencies the trend is stepwise reversed. Thus the
wavelet transformation is best suited for signals with high frequency components
of short duration and low frequency components of long duration. On both sides
of the spectrum this would equally mean that the signal has to be stationary
only for one to a few cycles in order to be localised in time (space) and frequency
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sufficiently well. Most signals encountered in practise fulfil this condition.
How can the wavelet transform achieve these favourable properties. Let us

have a look at the formal definition. In the wavelet transformation a function or
signal f(t) is linearly decomposed into a set of linearly independent functions, the
so-called basis functions, ψs,l(t), the wavelets,

f(t) =
∑

s

∑

l

cs,lψs,l(t) (2.24)

where cs,l are the wavelet coefficients. In particular a wavelet system can be
generated from a single mother wavelet ψ(t), i.e., all basis functions ψs,l(t) can be
constructed by simply scaling and translating ψ(t):

ψs,l(t) = ψ(2−st− l) (2.25)

with s, l ∈ Z, the set of all integers. The expression ψ(2−st − l) causes the
wavelet in question to be shifted in time or space by l, thus providing the temporal
or spatial localisation, and rescaled by 2−s, thus analysing the signal on different
scales. Note that the generating wavelet is dilated by powers of two, the most
common choice for the basis resulting in the so-called dyadic sampling or dyadic
wavelet. Thus the Discrete Wavelet Transform (DWT) becomes

f(t) =

∞∑

s=−∞

∞∑

l=−∞

cs,l 2
− s
2 ψ(2−st− l) (2.26)

The factor 2− s
2 ensures a constant norm over all scales. Note that at any

dilation by 2s the translation parameter takes effectively the form 2sl where l is
again an integer.5 In this way the wavelet transform’s adapting localisation in
time (space) and frequency is accomplished.

The DWT is in principle not redundant (see Raghuveer and Bopardikar, 1998),
though in practise for most signals many of the coefficients might be zero or close
to zero. Since the DWT is still a transformation of a continuous-time signal,
it should be denoted - analogously to the Fourier series - as ’continuous-time
wavelet series’, as many authors point out. But the different naming is already
established.

So far we have not said much about the wavelet function ψ itself. In general it
can be a real- or complex-valued function that fulfils three requirements:

5 This might look like a parenthesis error in the DWT equation on first glance, however, it becomes
clear, when looking at the discretisation of the CWT (Continous Wavelet Transformation) as given in
Daubechies (1992):

(Twavf)(a, b) = |a|−1/2
∫
f(t)ψ

„

t − b

a

«

dt

For the dilation parameter a positive or negative powers of one fixed dilation parameter a0 ≥ 1 are
chosen: a = am0 . Since m changes the wavelet width, the discretisation of the translation parameter
b should depend on m. As in deed the width of ψ(a−m

0
t) is proportional to am0 , b is discretised as

b = nb0a
m
0 with a fixed b0 ≥ 0 and n ∈ Z. In this way the DWT becomes

Twavm,n (f) = a
−m/2

0

∫
f(t)ψ(a−m

0 (t − nb0a
m
0 ))dt

= a
−m/2

0

∫
f(t)ψ(a−m

0 t − nb0)dt
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i. The integral of the function is zero

∞∫

−∞

ψ(t)dt = 0 (2.27)

ii. The function has finite energy (i.e., is square integrable)

∞∫

−∞

|ψ(t)|2 dt < ∞ (2.28)

iii. Its Fourier transform decays sufficiently fast

∞∫

−∞

|Ψ(ω)|2

ω
dω < ∞ (2.29)

where Ψ(ω) is the Fourier transform of ψ(t).

The first condition essentially says that the function has to oscillate (though
there are exceptions, see Raghuveer and Bopardikar, 1998), the second forces
finite support. The third condition, known as admissibility condition, is only nec-
essary to ensure that the inverse of the wavelet transformation can be computed
as well (see Daubechies, 1992, page 7,63). For all practical purposes it is equiva-
lent to the first condition (see Daubechies, 1992, page 24). Since the construction
of wavelets is far beyond the scope of this work, we point the reader to the al-
ready cited literature, especially Daubechies (1992), and resort to just show two
wavelets in Figure 2.9.

Most wavelets are orthogonal, i.e . their inner product is zero:

〈ψs,l(t), ψS,L(t)〉 =

∞∫

−∞

ψs,l(t)ψS,L(t)dt = 0 (2.30)

Thus they constitute an orthogonal basis. On the one hand this makes it
easier to compute the coefficients cS,L by using the inner product of the signal (or
function) and the corresponding wavelet ψS,L. Multiply expansion equation (2.26)
by ψS,L(t) and integrate (Strang and Nguyen, 1997):

∞∫

−∞

f(t)ψS,L(t)dt = cs,l

∞∫

−∞

(ψS,L(t))
2 dt (2.31)

Because of orthogonality all integrals of ψs,l times ψS,L disappear except the
one term that has s = S and l = L, which leads to (ψS,L(t))

2. cS,L is simply the
ratio of the two integrals. On the other hand this allows using wavelets in a
multiresolution analysis described in the next section.
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Figure 2.9: Two wavelets with corresponding scaling function

2.3.3 Multiresolution analysis

Multiresolution techniques exploit the idea of analysing a given signal at different
resolutions or scales. This can be compared with measuring an ocean coast line
with rigid rulers of different sizes (e.g., powers of two). The representation of the
coast line will look different depending on what ruler size had been used and the
resulting length would be different as well. However, in multiresolution analy-
sis as defined by S. Mallat (e.g., Mallat, 1989) for image processing the so-called
scaling function takes the part of the ruler and extracts a series of images at res-
olutions differing by a factor of two, which include only the low frequency part of
the image at each level. In one direction, moving towards higher resolutions each
successive level contains all previous ones and eventually approximates the origi-
nal image. In the other direction increasingly less information is represented. The
difference between two successive levels can be encoded using a wavelet function.

We will now describe multiresolution analysis more formally following
Raghuveer and Bopardikar (1998) and Daubechies (1992), and return to a one-
dimensional signal for the time being, but again the reader must be warned that
the account will be very superficial and he or she should consult the already
mentioned wavelet literature and Vaidyanathan (1993).

A multiresolution analysis consists of a sequence of nested linear vector spaces
. . . ⊂ V1 ⊂ V0 ⊂ V−1 . . .. The closed subspaces must satisfy the following five
conditions:

i. Every subspace is entirely included in the next one, forming a sequence of
successive approximation spaces:

Vk ⊂ Vk−1 for all k ∈ Z (2.32)

ii. The union of all subspaces is dense in the space of all square integrable
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functions
⋃

k∈Z

Vk = L2(R) (2.33)

where the over-line denotes the set closure (for an explanation of the term
’dense’ and ’set closure’ see texts on mathematical analysis or Weisstein,
1999).

iii. All subspaces only have the set containing the all-zero function or zero vector
in common.

⋂

k∈Z

Vk = {0} (2.34)

The following last two conditions make the nested vector space sequence an actual
multi-resolution analysis:

v. Elements in a space Vk are simply scaled versions of the elements in sub-
space Vk−1

f(t) ∈ Vk ⇔ f(2t) ∈ Vk−1 (2.35)

A function in a certain subspace dilated by factor 2 yields a function in the
next coarser subspace. The value 2 of the factor is not a necessity, actually
it is required only to be a power of two, but we confine ourselves in this
presentation to dyadic relationships.

vi. There exist a so-called scaling function φ(t) such that

{φ(t− n); n ∈ Z} is a basis in V0 (2.36)

According to Raghuveer and Bopardikar (1998)

... the final property requires that there be a scaling function
φ(t) such that the set {φ(t − n) : n integer} is linearly independent,
and any function f0(t) ∈ V0 is expressible as

f0(t) =

∞∑

n=−∞

a(0, n)φ(t− n)

for a sequence of scalars a(0, n) where n = 0,±1,±2, and so on.

We can now formulate the recursive so-called Multiresolution Analysis (MRA)
equation (also called refinement or dilation equation).

φ(t) =

∞∑

n=−∞

c(n)
√
2φ(2t− n) (2.37)

that allows us to write φ as a weighted sum of its translates at a resolution
twice as fine. The coefficients c(n) are called the scaling function coefficients and
the factor

√
2 ensures a constant norm over all scales.

Two properties of an MRA are now of special interest for us. Firstly, as shown
in Daubechies (1992) for every sequence of closed subspaces fulfilling conditions
(2.32)-(2.36) with the additional requirement in (2.36) that {φ(t − n); n ∈ Z} must
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be an orthonormal basis,6 there exists an orthonormal wavelet basis {ψs,l ; s, l ∈ Z}

of L2(R), ψs,l(t) = 2−s/2ψ(2−s t− l) such that, for all f ∈ L2(R)

Ps−1f = Psf+
∑

l∈Z

〈f, ψs,l〉ψs,l (2.38)

where Psf is the orthogonal projection of f on Vs. This means that the dif-
ference between each MRA level is covered by a certain wavelet function on the
corresponding level and all its translates:

Vs−1 = Vs ⊕Ws (2.39)

where Ws is the subspace generated by the set {ψ(2−s t− l); s, l ∈ Z}} , and ⊕ is
the orthogonal sum (since Vs−1 ⊥Ws).

Secondly, a MRA can be expressed and realized as a cascade filter bank of
pairwise low and high pass filters. The filters must be half-band filters and more-
over satisfy certain criteria which led to the name Quadrature Mirror Filters (QMV,
see the already cited wavelet literature, in particular Strang and Nguyen, 1997).
Their coefficients can be calculated from the scaling function and vice versa.

Therefore the wavelet transformation and in particular its discrete time version
DTWT (Discrete-time Wavelet Transform) can be realized as filter bank, too. The
resulting output signals at each level of the DWT/DTWT will be bandlimited with
theoretically a bandwidth of exactly one octave. In practise, however, no filter is
perfect and the results will vary slightly with the steepness of the filter slope.

Note that we will use the term multiresolution analysis in a less formal way
in chapter 3 to characterise analogies between the motion tracking coarse-to-fine
strategy per se and its included image processing part.

2.3.4 Image decomposition with two-dimensional wavelets

So far we have considered only one-dimensional signals. Our goal, however
was to obtain a wavelet decomposition of digital images - spatially discrete two-
dimensional finite signals.

In the two-dimensional case we need to construct three two-dimensional
wavelets by multiplying together a one-dimensional scaling function φ and the
corresponding wavelet ψ

wφψ= φ(x)ψ(y) (2.40a)

wψφ= ψ(x)φ(y) (2.40b)

wψψ= ψ(x)ψ(y) (2.40c)

These wavelets are directionally sensitive: wφψ encodes changes in the ver-
tical direction, wψφ in the horizontal direction, and wψψ in the diagonal direc-
tion. By a linear combination of the dyadic translates and dilates of all three

6 An orthonormal basis is a basis that is orthogonal, i.e. for all vectors v belonging to the basis
〈vn, vm〉 = 0 when n 6= m, and further the vectors have unit length, i.e., 〈vn, vn〉 = 1.



2.3 Wavelets and multiresolution analysis 35

wavelets every two-dimensional square integrable function can be approximated
(Raghuveer and Bopardikar, 1998):

f(x, y) =

∞∑

s=−∞

∞∑

l=−∞

∞∑

k=−∞

bw(l, k)wψφ(2
−sx− l, 2−sy− k) +

∞∑

s=−∞

∞∑

l=−∞

∞∑

k=−∞

cw(l, k)wφψ(2
−sx− l, 2−sy− k) +

∞∑

s=−∞

∞∑

l=−∞

∞∑

k=−∞

dw(l, k)wψψ(2
−sx− l, 2−sy− k)

(2.41)

where k, l, s ∈ Z and bw(l, k), cw(l, k), dw(l, k) are the wavelet coefficients of each
oriented wavelet. To expand the multiresolution approach to the two-dimensional
case the scaling function has to be augmented as well by defining

wφφ= φ(x)φ(y) (2.42)

Observe that the subspaces spanned by the four functions wφψ, wψφ, wψψ,
and wφφ on each scaling level Wa,s, Wb,s, Wc,s, and Vs are orthogonal to each
other and we have:

Vs−1 = Vs ⊕Wa,s ⊕Wb,s ⊕Wc,s (2.43)

Thus equivalently to the one-dimensional case the differences between two
successive levels of a multiresolution analysis are covered by wavelet functions,
albeit in the two-dimensional case the linear combination of three wavelet func-
tions for one level is necessary. Moreover the wavelet decomposition can be again
expressed and implemented as cascade filter bank. Figure 2.10 shows the re-
quired filter bank structure.

The input is the approximation As−1 of the lower level s − 1. The way the two-
dimensional wavelets and the scaling function are derived in equation (2.41) and
(2.42) ensures separability of the filter kernel, which allows filtering along the
rows and along the columns separately. Accordingly the next step entails forking
the path depending on which kind of filter is applied along the image rows only.
One branch is created by filtering with a high pass filter, the other one by filtering
with a low pass filter. Since the bandwidth in both resulting images is reduced
by factor two, the rows can be decimated by factor two. Afterwards the path is
split again to filter each decimated image along the columns with either a high or
low pass filter and subsequently downsample along the columns. The outcome
consists of four images at level s with an area size of one fourth of the input image.
D
diagonal
s , filtered along both dimensions with the high pass filter, contains the

diagonal details, Dverticals the vertical, and Dhorizontals the horizontal details. As,
low pass filtered along both dimensions, is the approximation at level s. It will be
used as input for the next decomposition step leading to level s + 1. Notice that
because of the subsampling the filters do not need to be changed at all.

The different D’s are called details or subbands, A is called approximation. On
the lowest level the input image is of course the original image. At first sight the
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Figure 2.10: Filter bank implementing the two-dimensional DTWT.
The input approximation is filtered first along the rows with a high
pass or a low pass filter and then decimated. Each of the resulting
signals is filtered along the columns with a high pass or a low
pass filter and decimated. This yields four output signals for the
next level of the DTWT: three spatially oriented subbands and an
approximation.

typical wavelet terminology seems counter-intuitive in describing a level as higher
when actually moving towards lower frequencies. Within the ’wavelet world’, how-
ever, the equivalent parameter in the wavelet filter function is not frequency
but scale, which is the inverse of frequency. Nevertheless some authors (e.g.,
Strang and Nguyen, 1997 and Burrus et al., 1998) started to invert the naming
based on a slightly different formulation of the wavelet equation, i.e. the wavelet
is compressed and not dilated, and reversed subspace indices in the MRA, i.e.,
. . . ⊂ V−1 ⊂ V0 ⊂ V1 . . . (cf. equation (2.32)). The seemingly more intuitive ap-
proach, however, is then sometimes led ad absurdum when the authors following
the original wavelet terminology speak of dilation while meaning compression.

For several reasons explained below and in chapter 3 we do not want to sub-
sample the image in the motion tracking procedure. As a consequence we in fact
have to adapt the filter on each level. This can be achieved by convolving the low
pass filter (corresponding to the scaling function) with itself iteratively n− 1 times
on level n given the original image was the input at level 1, and then convolve the
high pass as well as the low pass filter with the iterated scaling function/low pass
filter (starting of course not before level 2).

Wavelet coefficients can be spatially arranged like the original image and be-
cause of their good spatial location they look very much like an image when inter-
preted as intensity values (unlike Fourier transform coefficients). But in a strict
sense they do not constitute an image, and a synthesis filter bank should be
applied first to recover some kind of image. However, for many wavelets the dif-
ference between reconstruction and wavelet coefficients is almost not perceptible.
In the following we will present wavelet subbands as images and when without
ambiguity from the context speak of pixel instead of wavelet coefficients.

Figure 2.11 shows the four output ’images’, for the fifth level of the wavelet
filtering for a video frame showing a face and an artificially constructed pattern
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horizontal subband diagonal subband

vertical subbandoriginal image

approximation

scaling function
(low pass filter)

wavelet function
(high pass filter)

Figure 2.11: Wavelet transformation of a natural image and an
artificial pattern. The pattern was created by combining three si-
nusoids in both the horizontal and vertical directions. The origi-
nal image is shown in the middle on the left side. The remaining
images show the decomposition into the three subbands and the
approximation on the fifth level of the DWT. They are created by
filtering along rows and columns with either the high pass or the
low pass filter (indicated schematically by the graph of the wavelet
function, which constitutes the high pass filter, and the graph of
the scaling function, which constitutes the low pass filter).
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(level zero corresponds to the unfiltered image, level one to the output of the first
pass through the filter bank, and so on). The spatial frequency bandwidth for
each subband ranges from 0.016 to 0.031 cycles/pixel, which corresponds to
wavelengths from 64 to 32 pixels. The pattern was created by combining three
sinusoids in both the horizontal and vertical directions. The frequencies of the
sinusoids (0.047, 0.023 and 0.012 cycles/pixels) were chosen to be equal to the
centre frequency of the spatial frequency band for the fourth, fifth and sixth level
of the wavelet transform.

As can be seen in the figure each subband contains only the one sinusoid,
which lies within its frequency range and is of the same direction. The lower fre-
quency sinusoid remains in the approximation, while the higher one is completely
filtered out (but would appear in the subbands of the fourth level). Note that
the signal is not subsampled: Even though the signal does not contain the high
spatial frequency part of the original image and therefore, could be re-sampled at
lower sampling rate without loss of information, doing so would introduce a larger
error in the motion tracking on a coarser scale, simply because one pixel in the
subsampled image would correspond to several pixels in the original image. As
we want to use the tracking on a coarser scale to predict the approximate motion
on a finer scale, we have to avoid this error (see chapter 3).

For Figure 2.11 and for the motion tracking procedure filters were used
that correspond to a biorthogonal scheme with cubic spline wavelets (see
Sánchez, Prelic, and Galán, 1996, for details about the algorithm). In spline
wavelets the scaling and the wavelet function are constructed using basic spline
functions (Daubechies, 1992) - in our case cubic splines. Spline wavelets can be
created with compact support, i.e., the scaling and wavelet functions are finite:
they have the value zero outside a certain interval. This avoids truncation errors
during computation of the wavelet transform. Their ’disadvantage’ is that they
cannot be constructed from analytic formulae, but their graph can be computed
with arbitrarily high precision using iterations. The scaling and wavelet func-
tions shown in Figure 2.11 are determined in this way. The real filter kernels
were approximation of these functions with a few coefficients and of course not
as smooth.

2.4 Principal component analysis

The statistical method of Principal Component Analysis (PCA) plays an important
role in the validation of the motion tracking system. For that reason we will very
briefly present the concept here. For details the reader is referred to the excellent
and extensive covering of all aspects of PCA in Jackson (1991).

The method of principal components is primarily a data-analytic
technique that obtains linear transformations of a group of correlated
variables such that certain optimal conditions are achieved. The most
important of these conditions is that the transferred variables are un-
correlated. (Jackson, 1991, page 1)

PCA forms a part of the large field of multivariate data analysis. Often the as-
sumption is made that all or a subset of the components represent essential or
even causal factors of the correlated variables under scrutiny, thus ’explain’ their
covariance. For instance they could allow separation of noise from the actual data
or - in case of PCA applied to face motion measurements - identify physiological
mechanism underlying face motion.
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Let us assume we have a set of p variables with equally n observations repre-
sented in the n× p matrix X:











x11 . . . . . . x1p
... . . . ...
... . . . ...
xn1 . . . . . . xnp











(2.44)

In the case of face motion the variables are the measurement points. The dif-
ferent coordinates of a single measurement point are treated as different variables
and become individual columns, e.g, with two-dimensional motion data p = 2h

where h is the number of measurement points.
Then the p× p covariance matrix S of the data becomes:











s21 . . . . . . s1p
... . . . ...
... . . . ...
sp1 . . . . . . s2p











(2.45)

where

sij =

n
n∑

k=1

xkixkj −
n∑

k=1

xki
n∑

k=1

xkj

n(n− 1)
(2.46)

Using the matrix product (2.45) and (2.46) can be written

S =
XTcenXcen

n
(2.47)

where Xcen is the centred data set, i.e., the variable mean is subtracted for
each variable.

Clearly, the sum of the diagonal elements Tr(S) = s11 + s22 + . . . + spp is the
sum of the variances of all variables and in this way a measure for the overall
variability of the data. If an off-diagonal element sij of S is not zero, then the
variables represented by X(i) and X(j), the ith and the jth column of X, are linearly
related. The strength of the relationship is given by the correlation coefficient
rij = sij/(sisj). However, the correlation coefficient is not needed for PCA:

The method of principal components is based on key results from
matrix algebra: A p × p symmetric, nonsingular matrix, such as the
covariance matrix S, may be reduced to a diagonal matrix L by premul-
tiplying and postmultiplying it by a particular orthonormal matrix U ...
(Jackson, 1991, page 7)

Formally expressed this is

UT SU = L (2.48)
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L is p × p with at most the diagonal elements l1, l2, . . . , lp being non-zero. They
are called eigenvalues or characteristics roots. The columns of the p× p matrix U

(u1,u2, . . . ,up) are called eigenvectors or characteristics vectors. lm is the corre-
sponding eigenvalue to the eigenvector um.

Viewed from a geometrical point of view the above is a principal axis rotation
of the original coordinate axis x1, x2, . . . , xp around their means. The eigenvectors
contain the direction cosines relating the original axis to the new. The values of
the variables in the new coordinate system can be obtained by

zk = (xk − x̄)U (2.49)

xk is an 1 × p vector of the kth observations on the original variables, x̄ an
1×p vector with the variable means, and zk an 1×p vectors with the transformed
observations. The transformed variables are called principal components, its in-
dividual (transformed) observations z-scores. Thus the kth observation of the ith

principal component is

zki = (xk − x̄)ui (2.50)

As can be seen from (2.50) zki is indeed a linear combination of the original
observations on all variables weighted with the coefficients ui

zki = (xk1 − x̄)u1i + (xk2 − x̄)u2i + . . .+ (xkp − x̄)upi (2.51)

Note that a linear combination of variables like in 2.51 is only then a rotational
transformation (Bortz, 1993), if

p∑

m=1

u2mi = 1 (2.52)

This is guaranteed by the property of U to be orthonormal, i.e., the eigen-
vectors are orthogonal and have unit length. This also ensures that the princi-
pal components are uncorrelated and have variances equal to the corresponding
eigenvalues.

So far we have skipped the question of how to obtain L and U. There are at
least two techniques (see Jackson, 1991) of which the more frequently used is
Singular Value Decomposition (SVD).

In its general form SVD decomposes a matrix X such that

X = ADBT (2.53)

where D is a matrix with nonnegative diagonal elements in decreasing order
(the singular values of X) and A and B have orthonormal columns and are called
the left and right singular vectors. In connection with PCA equation (2.53) can be
rewritten as

X = U∗ L1/2UT (2.54)
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Notice that we do not have to obtain the covariance matrix but instead can
work on the data itself, and that we therefore get the square root of the eigenval-
ues. There exist several algorithms solving the SVD problem and a lot of numeri-
cal packages provide functions implementing them. In e.g., MATLAB the solution
can be obtained with the SVD function by

[U,L,V] = SVD(X)

An important advantage of the PCA model is that it is invertible. Since U is
orthonormal, the inverse of U is its transpose:

U−1 = UT (2.55)

Thus equation (2.49) can be inverted as follows

xk = x̄+ UTzk (2.56)

In this way the original variables could be reconstructed exactly. In practise,
however, the case where the reconstruction is based only on a subset of compo-
nents (by deleting the z-scores and respective eigenvectors of components that
should be disregarded) is the more interesting. For example, noise in the data
could be removed in this manner. Or even more interestingly in the case of face
motion measurements as input data, the impact of single components on the face
motion could be studied systematically.





Chapter 3

Video-based face motion
tracking: the system

Our proposed algorithm can be broken down into two major procedures that are
independent of each other both conceptually and implementation-wise: initialisa-
tion and motion tracking.

The purpose of the initialisation procedure is to handle all ’administrative’
tasks with regard to the input video sequence and, if available, external head
motion tracking data. This comprises the temporal arrangement and labelling of
the filename list pointing to the image files according to their frame type, reading
in of the external head motion tracking data and synchronisation of them with
the video sequence. Furthermore the initialisation procedure acquires from the
raw image data with the aid of the user the parameters that allow the creation
and projection of the three-dimensional ellipsoid mesh onto the face in the video
sequence. Obviously the mesh has to fit, at least approximately, the spatial ex-
tent of the face in all three dimensions. Part of this step is the assumption and
application of a camera model to be used throughout the whole motion tracking
procedure.

The motion tracking procedure itself progresses frame by frame through the
video sequence. The measurement is accomplished by projecting the half-ellipsoid
mesh onto the subjects face (with a fixed attachment to the facial surface main-
tained by the use of head motion tracking data) and then deform its interior ac-
cording to two-dimensional face motion data derived from an image motion esti-
mation process. Realizing a coarse-to-fine strategy the mesh is not superimposed
onto the raw image but onto wavelet subbands of the image data proceeding from
lower spatial frequencies to higher ones and with it a coarser mesh is iteratively
refined until the final resolution for the tracking is reached.

3.1 Coordinate systems

Before describing both procedures in detail the main coordinate systems used
must be described.
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3.1.1 Image

Digital images are usually stored as a matrix of intensity values that correspond
to the amount of received light energy integrated over the area of a single CCD
(Charge Coupled Device) element in case of a digital camera or a small part of
the image quantised in case of a analogous image source. A possible coordinate
system would be to treat the row and column indices as the midpoint values of
the pixels with the x-axis corresponding to the columns and the y-axis to the rows
starting from the upper left corner of the image. This is actually the most widely
used coordinate system in image processing, however, the different orientation
(different sign) of the y-axis compared to the conventional Cartesian coordinate
system can cause some inconvenience. Note that the axes have continuous values
serving the purpose of allowing coordinate transformations from other coordinate
systems (e.g., ’real world’) without quantisation as well as image processing algo-
rithm involving subpixel arithmetic.

From the set of alternative systems a somewhat unfamiliar option was chosen
for this work: a standard two-dimensional Cartesian coordinate system but with
its origin located in the image centre (see Fig. 3.1). The main advantage arises
from the fact that most camera models assume the optical axes as a line per-
pendicular to the image plane intersecting it right at the centre of the image. (cf.
section 2.2.1).

Y

X

video frame

O

Figure 3.1: Image coordinate system with origin O in the centre of
the image

3.1.2 OPTOTRAK

The OPTOTRAK coordinate system is a three-dimensional Cartesian coordinate
system defined relative to OPTOTRAK’s multiple camera device. The origin is lo-
cated at the centre camera. The x-axis is oriented vertically increasing upwards,
the y-axis horizontally increasing to the left hand side of the device, and the z-axis
is in line with the optical axis of the centre camera increasing towards the camera
(see Fig. 3.2).
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camera device (backside)

X

Z

Y

O

Figure 3.2: OPTOTRAK coordinate system

3.1.3 Subject centred

Our own system-inherent coordinate system is centred on the speaker or more
precisely on the ellipsoid mesh representing the speaker’s head in the tracking.
It is based on the DICOM (Digital Imaging and Communications in Medicine)
standard coordinate system as specified in Nat (2003), PS 3.3, C.7.6.2.1.1 (page
237):

The direction of the axes is defined fully by the patient’s orientation.
The x-axis is increasing to the left hand side of the patient. The y-axis is
increasing to the posterior side of the patient. The z-axis is increasing
toward the head of the patient. The patient based coordinate system
is a right handed system, i.e. the vector cross product of a unit vector
along the positive x-axis and a unit vector along the positive y-axis is
equal to a unit vector along the positive z-axis.

The origin lies in the centre of the ellipsoid (see Figure 3.3). Since in this case
we can rename the axis with terms used in anatomy, we happily do so in order
to reduce a little bit the danger of confusion generated by multiple coordinate
system’s x, y-, and z-axis. Table 3.1 shows the designations for axes and planes
of the subject centred coordinate system.

axes
transversal ≡ x-axis

anterior-posterior ≡ y-axis
longitudinal ≡ z-axis

planes
axial ≡ xy-plane

coronal ≡ xz-plane
sagittal ≡ yz-plane

Table 3.1: Names of axes and planes in the subject centred coordinate system
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anterior−
posterior

longitudinal

anterior−
posterior

longitudinal

O
transversal

Figure 3.3: Subject centred coordinate system

3.1.4 ’World’

When dealing with physical objects or virtual objects representing physical ones
in several different coordinate systems, it is convenient to have a single ’world’
coordinate system that acts as a global frame of reference anchored in the ’real
world’. In the case of head motion data provided by OPTOTRAK (or similar robust
and accurate tracking devices) we could just use the OPTOTRAK coordinate sys-
tem. However, this option is not available in the case of video-based head tracking
and besides this it simplifies the perspective projection equations if the world co-
ordinate system is centred at the (assumed) focal point of the camera. Accordingly
our world coordinate system is tightly attached to the single static video camera
and has its origin at the focal point of the ideal pinhole camera modelling the
video camera.

The x-axis is oriented horizontally increasing towards the right hand side of the
camera, the y-axis is also horizontal in line with the optical axis and increases
into the scene, and the z-axis is the vertical axis increasing upwards. In fact, the
world coordinate system is the same as the subject centred one up to a translation
offset if the subject/ellipsoid mesh is straightly facing the camera (see Figure 3.4).

3.1.5 Implementation issues

Since dealing with several coordinate systems can very easily turn into an imple-
mentation nightmare and is an inexhaustible source of potential hard-to-detect
errors, we decided to represent the coordinate system as classes in MATLAB. More
precisely there is a general parent class coordinate_system and several
child classes that implement the above described specific coordinate systems (e.g.,
video_image or world_reference). The coordinate transformation of, for
instance, the ellipsoid mesh (represented by a class itself) can then ’simply’ be
done by using a method (function) of the coordinate_system class that we
named transform: It takes as first argument the new coordinate system (an



3.2 Initialisation 47

X

Y

Z

O

Figure 3.4: World reference coordinate system

object instance of the appropriate class) and as second the ellipsoid_mesh
object. The ellipsoid_mesh object has as one of its attributes its current
coordinate system. The whole transformation process becomes basically one line:

mesh_obj=transform(coord_sys,mesh_obj)

Creating the specific instance of the coordinate system class, however, still re-
quires heightened attention, since some of the parameters defining the relation-
ship between two arbitrary coordinate systems cannot be fixed in a permanent
way beforehand - for example the transformation between the image coordinate
system and the world coordinate system depends on the results of the camera
calibration (see below). Additionally the video image was represented within the
system as a class which allows capsulating its behaviour and its accessing by
subroutines depending on whether frames or fields were its original source. See
Zimmer and Bonz (1995) for a general account of object-oriented programming in
digital image processing.

3.2 Initialisation

Figure 3.5 shows a schematic overview of the several stages of the initialisation
procedure. We will closely follow the graph with our description by dedicating a
section to each of the boxes in the procedure scheme.

3.2.1 External head tracking data

In section 2.1.2 we described several existing methods for video-based head track-
ing. It should be clear that in spite of fulfilling their purpose in general within the
given task they are far from being perfect, that is, their accuracy was seldom eval-
uated beyond visual inspection. However, even small errors in the head tracking
can completely spoil the measurement of the ’real’ or implicit face motion. The
reader may compare the displacement magnitude of, say, the raising of the cor-
ners of the mouth to a simple nodding movement, not to speak of the effect of
movements of the whole upper body.

Very early in the development of this algorithm it was thus decided to bypass
the head tracking problem for the time being by using external head motion track-
ing. The particular system chosen was OPTOTRAK in combination with a special
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Figure 3.5: Scheme of the initialisation procedure

headmount (see Figure 3.6). The headmount consisted of a skeleton structure of
thin bamboo sticks that carried six OPTOTRAK sensors ensuring that the sensors
were spread out in all three spatial dimensions.

OPTOTRAK’s own software allows the construction of a rigid body object from
the sensors and calculates its rotation and translation values over the time course
of the recording. Additionally it can try to determine the real centre of rotation
compared to just taking the centroid of the set of sensors. The choice of the centre
of rotation does not influence the rotation values of the rigid body but it may have
a substantial effect on the translation values. The procedure, however, is always
prone to some error for several reasons. Firstly, in case of head movements there
is not a single point that acts as a centre of rotation for the head, since no single
joint but the combined action of eight joints of complex geometry of the upper and
lower cervical spine accomplishes the movement (see Zatsiorsky, 1998, page 326-
336). The contribution of any single joint to the overall head-neck movement
varies with the kind and amount of the executed movement. Secondly, even
without knowing details about the algorithm implemented by Northern Digital it is
clear that an extended range of movement is needed in order to ensure accuracy.
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(a) Front view
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(b) Side view

Figure 3.6: Subject with headmount.

In the usual lab situation with the subject reading the stimuli from some kind
of prompting device head movements will be small. The error from this source,
however, can be minimised by including extra trials with random but deliberately
large head movements. Trivially the calculated centre of rotation is despite its
error better than any arbitrary choice.

The OPTOTRAK signal converted to rigid body motion parameters has to be
synchronised with the video sequence. One way to achieve this is to use the
capability of the OPTOTRAK system to record synchronously with the motion mea-
surement an arbitrary analogue signal. If the acoustic signal of the speaker is
recorded, it can be perfectly aligned with the audio channel of the video camera
using cross-correlation.

The first step of the initialisation procedure reads in the head motion tracking
data and synchronises them with the video sequence.

3.2.2 Determining a reference frame

For every input video sequence a reference frame must be determined, i.e. a
frame where the motion tracking should be started with the undeformed ellipsoid
mesh and from which the motion measurement proceeds frame by frame either
forwards or backwards. Currently the choice is left to the user, but one could
easily imagine basing it on some automatically verifiable criteria or just the first
frame where a face detection algorithm finds the face of the speaker in the video
frame. There is only one essential criterion for the reference frame and that is
that it should contain the face to be examined in a more or less frontal view, since
the ellipsoid mesh can be only rotated in the image plane (around the optical axis)
during the fitting process (see section 3.2.4). If the tracking results are intended
to be visualised as animation it is favourable if the speaker’s mouth is slightly
opened in the reference frame in order to have a representation of the area within
the opened mouth in the extracted reference texture map (see section 4.1).

The second step of the procedure displays the first frame for which head track-
ing data are available and than asks the user whether or not to use this frame as
reference frame. If the user declines, she can search the entire video sequence by
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requesting the display of any frame that has head tracking data assigned.

3.2.3 Marking the face

The size of the ellipsoid mesh along its transversal and longitudinal axis can
be directly adjusted to the subject’s face by determining the face outline in the
reference frame (remember that we required a frontal view of the face). The cross-
section of an ellipsoid in the coronal plane is an ellipse (as any cross-section
parallel to one of the major planes). If the coronal cross-section contains the cen-
tre point of the ellipsoid, the ellipse will have maximum size. Therefore an ellipse
fit to the face in the image is an ideal way to determine the length of the transver-
sal and longitudinal axis of the ellipsoid. This could be done either manually with
an ellipse drawn by the user, which is rather tedious, or automatically by means
of a face detection routine. In fact, many face detection programmes return as
their output an ellipse fit to the face (see for example Nefian, Khosravi, and Hayes,
1997). However, they might not always work with the precision we would like to
have guaranteed here (after all they are usually conceived to fulfil a different pur-
pose).

We tried to strike a happy balance for our system insofar as we prompt the
user to mark a few points on the face outline and then fit an ellipse automatically
to these points. Additionally the user has to mark the outer or inner eye corners
of the subject. The reason for this is explained in the next section. Figure 3.7
shows an example.
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Figure 3.7: Subject with face outline and eye corner marking
points
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3.2.4 Ellipse fitting

It might come as a surprise that there existed no direct ellipse-specific method to
fit an ellipse to a set of points before the publication of Fitzgibbon, Pilu, and Fisher
(1996). As reviewed therein earlier methods were either linear or quadratic general
cone fitting methods that were only biased towards an ellipse by applying different
constraints or iterative, i.e. indirect methods.

The normal form of the ellipse is

x2

k2
+
y2

l2
= 1 (3.1)

where k and l equal the length of the semimajor axis and the semiminor axis,
respectively. However, the normal form assumes that the centre of the ellipse lies
at the origin of the coordinate system, and that the ellipse is oriented in such that
its axes are aligned with the axes of the coordinate system. Thus it cannot be
used for ellipse fitting in general.

As is evident from above we need to estimate five parameters: major and minor
axis, centre coordinates in two dimensions, and orientation. Therefore we switch
to the representation of the ellipse as a general conic by a second order polynomial

ax2 + bxy+ cy2 + dx+ ey+ f = 0 (3.2)

The general conic represents not necessarily an ellipse, it includes hyperbolas
and parabolas as well. More precisely it will be an ellipse only if

b2 − 4ac < 0 (3.3)

Let pi = [xi, yi]
T represent a single point in the set of N image points pi . . .pN

marked by the user, let x = [x2, xy, y2, x, y, 1]T and gather the polynomial coeffi-
cients in a = [a, b, c, d, e, f]T . Then (3.2) could be expressed as

f(p,a) = xTa = 0 (3.4)

Now a general cone can be fitted to the image points in the least-squares sense
by minimising

min
a

N∑

i=1

(D(pi,pa))
2 (3.5)

where D(pi,pa) is a suitable distance, e.g. the algebraic distance (see
Trucco and Verri, 1998, page 101). Since the algebraic distance of a point p from
a curve f(p,a) = 0 is |f(p,a)|, (3.5) becomes

min
a

N∑

i=1

|xTi a|2 (3.6)
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So far we would still fit a general conic to the data points that would not
be forced to be an ellipse. In addition the trivial solution a = [0, 0, 0, 0, 0, 0]T

is not excluded. Since the inequality constraint (3.3) is difficult to solve (see
Fitzgibbon, Pilu, and Fisher, 1999) and parameter vector a is defined only up to
a scale factor we can reformulate it as an equality constraint:

b2 − 4ac = −1 (3.7)

Since the details of the solution to this problem are beyond the scope of this
thesis we will only give a coarse description of the subsequent procedure in the
next paragraph following the presentation in Trucco and Verri (1998, page 104).
Using matrix notation (3.7) becomes

[

a b c d e f
]















0 0 −2 0 0 0

0 1 0 0 0 0

−2 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0





























a

b

c

d

e

f















= aT C a = −1 (3.8)

C is called the constraint matrix.
With

D =











x21 x1y1 y21 x1 y1 1

x22 x2y2 y22 x2 y2 1
...

...
...

...
...

...
x2N xNyN y2N xN yN 1











(3.9)

called the design matrix minimisation problem (3.7) can be rewritten as

min
a

‖aTDTD a‖ or shorter as min
a

‖aTSa‖ (3.10)

where S is called the scatter matrix. Differentiating the minimisation function
with the use of the Lagrange multiplier λ and re-ordering the terms results in (see
Fitzgibbon et al., 1999, for the single steps of the derivation)

Sa = λCa (3.11)

The solution for problem (3.10) under the constraint (3.7) is found by deter-
mining the only negative eigenvalue of the general eigenvalue problem posed by
(3.11).

Many numerical packages provide functions to solve the eigenvalue problem,
for example in MATLAB the solution would be found by

[A,V]=eig(S,C)

where S and C are the scatter and the constraint matrix as defined above. Di-
agonal matrix V contains the eigenvalues and the columns of A the correspond-
ing eigenvectors. MATLAB is in general able to cope with the rank suffiency of
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C and S, however there are exceptions that lead either to no solution at all or
several solutions. Fitzgibbon et al. (1999) presents a numerically more stable
version of their first algorithm from Fitzgibbon et al. (1996) by basically partition-
ing (block decomposition) the scatter and the constraint matrix as suggested by
Halir and Flusser (2000).

The improved algorithm can also handle a special case: if all data points lie
perfectly on an ellipse, the older version of the algorithm breaks down completely
(see Halir and Flusser, 2000). This is a rare situation in ’real world’ applications,
since usually one would like to fit an ellipse to set of data points that are dis-
turbed by noise and hence do not lie exactly on an ellipse even though they might
originate from one; see Halir and Flusser (2000) for an interesting example of es-
timating the diameter of an archaeological pot from a single fragment.

Rosin (1999) showed that constrained least-squares fitting of ellipses performs
well if the noise is essentially Gaussian, but breaks down very early if there are
non-Gaussian outliers. In our case of fitting an ellipse to a face in a video image
it is difficult to make any estimate about the nature of the noise, since we simply
do not have an underlying ellipse: the face outline does not conform to an ellipse.
Assuming that there is at least an ellipse which approximates the face outline
in the best way, one must doubt that the deviation of the user marked points
from it would follow a Gaussian distribution considering for instance the jaw
region. However, none of the discussed methods in Rosin (1999), e.g., Theil-
Sen estimator, Least Median of Squares (LMedS) estimator, could be used here,
because they all need a larger set of data points while we would like to keep the
set of points as small as possible to avoid the initialisation process becoming too
cumbersome for the user. Therefore we implemented the improved version of the
Fitzgibbon-Fischer-Pilu algorithm.

Surprisingly the results were not very satisfying. Though of course an optimal
ellipse was fit to the data points, it was not covering the face in such a way
that one would have liked to base the ellipsoid mesh on it: in most cases the
orientation seemed to be wrong. Two reasons are responsible for that:

i. As described in all the papers cited above least-squares fits are biased to-
wards thinner ellipses.

ii. Very often points could not be set to cover the whole face. Either the top part
of the face lay outside the video or a judgement could not be made because
of hair occluding stretches of the upper face outline (for bearded subject
this might also be the case for the lower part of the face). In addition there
is a general difficulty in deciding what should be assigned to the face and
what not (e.g. end with forehead versus including full scull). For the face
motion tracking this is almost irrelevant, and even more so for the fitting
algorithms: all of them can cope in an excellent way with data points which
are scattered over the potential ellipse and completely unbalanced, e.g, data
points covering only a very small part of the full ellipse. However, the ellipse
is fit to the points marked by the user, whatever their location might be, and
not to the face outline.

The combined impact of i. and ii. could easily lead to a thinner than expected
ellipse with an orientation apparently tilted with respect to the perceived face
orientation being fit to the unbalanced data point set.

Remarkably, an ad hoc ellipse fitting method1 we had conceived and
implemented in an early version of the face motion tracking system

1 The algorithm attempted to find first the centre of the desired ellipse and then the remaining
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(Kroos, Kuratate, and Vatikiotis-Bateson, 2000) that did not return the best
fitting ellipse under certain conditions nevertheless seemed to perform subjec-
tively better. In this method any one of the five intrinsic parameters could be
fixed and subsequently excluded from the optimisation process. We had applied
this on the ellipse orientation by fixing the minor axis to be parallel to the virtual
line connecting the outer or inner eye corners of the subject. It seemed to be that
this restriction on ellipse orientation was responsible for the subjectively better
results.

Accordingly we decided to include the feature in the direct least-squares fitting.
The effort for the user does not increase much, after all the eye corners are easy
to detect and mark and only two points are necessary. Furthermore saving this
information facilitates considerably aligning the motion tracking results of several
trials from the same subject or even different subjects later on. Unfortunately it
is not straightforward to fix one of the intrinsic parameters, since the Fitzgibbon-
Fischer-Pilu algorithm operates on the conic coefficients.

However, setting conic coefficient b to 0 results in the fitting of an el-
lipse with its axis aligned to the coordinate system axis, i.e. no rotation is
attempted. This can be easily shown by looking at the formulae that al-
low the transformation from the conic representation back to the normal form
(see Bronstein, Semendjajew, Musiol, and Mühlig, 1999, for tables that cover all
quadratic curves, i.e. conic sections), and in particular the equation for the rota-
tion angle α that rotates the coordinate system given by

tan 2α =
2b

a− c
(3.12)

If b = 0, α will always be 0 as well, independent of the values of a and c.
This means that before submitting the data points to the fitting procedure they

have to be rotated by the inverse of the angle between the line connecting the eye
corners and either the x- or the y-axis with the standard two-dimensional rotation
formula

[

xTr
yTr

]

=

[

cos −α − sin −α

sin −α cos −α

] [

xT

yT

]

(3.13)

where xT and yT are row vectors with the x and y coordinates of the original
data points and xTr and yTr their rotated counterparts. Then parameter b is re-
moved from the conic coefficient vector a and the constraint matrix C adjusted by

ellipse parameters in a second run using the ellipse definition as the geometrical place of all points for
which the sum of the distances from two given points, the focal points, is constant:

r1 + r2 = 2a

where r1 is the distance of any point belonging to the ellipse from the first focal point, r2 the distance
from the second focal point, and a the length of the major axis.

Calculating r1 and r2 based on the estimated ellipse parameters and the given data points the
equation above holds only if all parameters a correctly estimated and no noise corrupts the data
points. Otherwise an error remains. This error, or more precisely the mean squared error, was
iteratively minimised using the downhill simplex optimisation method (see Nelder and Mead, 1965) to
find the best fitting ellipse.
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excluding the exigencies for parameter b:

C =













0 −2 0 0 0

−2 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0













(3.14)

Afterwards the direct least-squares fitting algorithm is carried out as before.
Upon finishing the found centre coordinates have to be rotated by α (the length of
the major and minor axes are of course invariant to rotation). Figure 3.8 shows
the previous example (Figure 3.7) with the ellipse fit.
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Figure 3.8: Ellipse fit to the face

3.2.5 Camera model and camera calibration

As shown in section 2.2 an algebraic model for perspective imaging is given by the
following equation:

PI = CW→I PW (3.15)

where PW is a set of points in the ’real world’ coordinate system, PI the cor-
responding points in the image, and CW→I the camera model matrix. Explicitly
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written for a single point this becomes





s PIr
s PIc
s



 =





c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 1













PWx
PWy
PWz
1









(3.16)

where s is the perspective scaling factor, PIr and PIc the image row and col-
umn coordinates of the transformed three-dimensional ’real world’ point with co-
ordinates PWx, PWy, and PWz respectively, and c the camera model coefficients.
Eliminating the homogeneous scaling factor s (using the last row in (3.16) and the
dot product of vectors) leads to

PIr =
[c11 c12 c13 c14] ¯ [PWx PWy PWz 1]
[c31 c32 c33 1] ¯ [PWx PWy PWz 1]

PIc =
[c21 c22 c23 c24] ¯ [PWx PWy PWz 1]
[c31 c32 c33 1] ¯ [PWx PWy PWz 1]

(3.17)

Therefore we have 11 parameters that would have to be estimated. Assuming
that we have n points where the ’real world’ coordinates and their corresponding
image coordinates are known, we could obtain n pairs of calibration equations of
the form

PIr = (c11 − c31 PIr) PWx + (c12 − c32 PIr) PWy
+ (c13 − c33 PIr) PWz + c14

PIc = (c21 − c31 PIc) PWx + (c22 − c32 PIc) PWy
+ (c23 − c33 PIc) PWz + c24

(3.18)

Usually we would have more than ceil(11/2), i.e., 6 calibration points and thus
an overdetermined linear equation system, though disturbed by measurement
noise and noise in the process of determining the point-to-point correspondence
between ’real world’ and image. Therefore a least-squares solution appears to be
appropriate (see Shapiro and Stockman, 2001).

By rearranging equations (3.18) to separate the knowns from the unknowns
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we get
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Gathering all available calibration points in a matrix, equation (3.18) can be
represented as

A2n×11 x11×1 ≈ b2n×1 (3.20)

where A2n×11 is the matrix with knowns corresponding to the leftmost matrix of
(3.19), b2n×1 the row vector with concatenated known image coordinates of the
calibration points corresponding to the right hand side of (3.19) and x the column
vector with the unknowns in exactly the same form as in (3.19). (3.20) can be
solved for x with numerical methods, in MATLAB this is simply stated as

x = A \ B

(see Shapiro and Stockman, 2001, page 423f, for more details).
Let us now consider the situation encountered in the initialisation phase of

our face motion tracking system. In general we assume an uncalibrated camera
in order to keep the intended wide range of possible applications of the method. In
case of head tracking data coming from OPTOTRAK some or all of the sensors will
most likely be visible in the image and could be employed for calibration, though
the minimum requirement of 6 calibration points will almost never be fulfilled,
either because less than 6 sensors were used on the headmount or not all of
them lie within the video frame. In the video data from several experiments used
for this thesis never more than 3 sensors were accessible for the calibration, and
very often only 2.

Therefore we have to make additional assumptions, for instance on the camera
pose relative to the ’real world’ coordinate system. Note that of the 11 parameters
in (3.19) only 9 are independent; we have three rotational and three translational
parameters defining the camera pose, one scaling parameter relating continuous
horizontal real image coordinates to pixel columns (dx), another scaling parameter
expressing the relationship for vertical real image coordinates and pixel rows (dy),
and finally focal length (f).

First we discard the external camera parameters by defining the world system
as described in section 3.1.4. Of course this does not solve the problem but rather
shifts it to determining the pose of the OPTOTRAK device relative to the world co-
ordinate system. However, we may assume that video and OPTOTRAK camera
were as closely as possible aligned in the experiment, since they should catch
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very similar aspects of the subjects behaviour via a direct optical pathway. Since
it is technically impossible that they are exactly in the same spot, some devia-
tion is unavoidable, but being small it could be neglected or otherwise manually
measured by the experimenter.

Because we do not model the effects of radial distortion and spherical aber-
rations we have only three internal parameters, from which the two scaling pa-
rameters relating real image coordinates to pixel size (dx and dy) are actually the
same since we deal only with square pixels at this stage (non-square pixels had
been converted in the preprocessing).

Using homogenous coordinates let FW→F be

FW→F =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 1
f
1









(3.21)

where F is depending only on the focal length, and let SF→I be

SF→I =





0 1
dy

0
1
dx

0 0

0 0 1



 (3.22)

then the relationship between ’real world’ coordinates and and camera coor-
dinates in pixels in our simplified case could be expressed as (dropping the third
row of SF→I as shown for equation (2.12))

PI = SF→I FW→F PW (3.23)

Accordingly equation (3.16) simply becomes





s PIr
s PIc
s



 =


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0 0

1
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
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1









(3.24)

The index of the d-parameter was dropped, because of the above mentioned
property of square pixels. After the same transformation as above with the full
calibration matrix we get analogously to (3.19) for a single point:

[

PWy −PWzPIr
PWx −PWzPIc

][

1
d

1
f

]

=

[

PIr
PIc

]

(3.25)

Thus we obtain two equations from every calibration point to estimate two
calibration parameters. Using a least-squares method we can now get a solution
with only two OPTOTRAK sensors visible in the reference frame, albeit of a little
bit doubtful reliability. Three or more sensors, however, should yield sufficiently
good results. Note, however, that the least-squares solution tends to become
instable, if the distance between the OPTOTRAK and the video camera is not really
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very small or not appropriately measured. In this case the calibration can be
expanded again to include at least the x- and y-translation parameters.

3.2.6 The ellipsoid mesh

We are now able to reverse the effect of perspective projection for the fit ellipse
of section 3.2.4. Keep in mind that all ellipse parameters refer to the image co-
ordinate system, but for the motion tracking it would be highly desirable if the
results were independent of the projection. In case of external head tracking data
from OPTOTRAK it is actually necessary to create the ellipsoid mesh outside the
image space in order to be able to drive it with the motion data obtained in the
OPTOTRAK reference frame. With our very primitive camera model this amounts
only to scaling of the length of the two principal axes.

The ellipsoid mesh we using is a parametrised half-ellipsoid. The ellipsoid is
one of the 17 standard-form types of the quadratic surface (also called quadric).
Its normal form is given by

x2

a2
+
y2

b2
+
z2

c2
= 1 (3.26)

a,b, and c are the length of the semi-axes. To create the ellipsoid mesh the
parametric equation is used

x = a cos θ sinφ
y = b sin θ sinφ
z = c cosφ

(3.27)

for azimuth angle θ ranging from 0 to 2π and polar angle φ from −π/2 to π/2. To
approximate the facial surface a half-ellipsoid is sufficient, therefore the azimuth
angle can be limited to the interval from 0 to π instead of 2π.

The mesh itself is represented by the coordinates of its nodes, for example in
MATLAB with a three-dimensional matrix. The arrangement along the first two
dimensions (rows and columns) determines the topology of the mesh, the location
of the nodes relative to each other, while the third dimension (we may call it
’slices’) represents the three spatial dimensions). Only a few lines of source code
are needed to build the mesh from scratch

theta=linspace(0,pi,res_long);
phi=linspace(-pi/2,pi/2,res_tran);

The above generates vectors with linearly equally spaced azimuth and polar an-
gles. The last input argument is the number of nodes along the longitudinal or
transversal axis of the mesh.

[PHI,THETA]=meshgrid(phi,theta);
DATA=zeros([size(THETA),3]);

Function meshgrid generates matrices from the vectors theta and phi in
such a way that the rows of PHI are copies of the vector phi and the columns of
THETA are copies of the vector theta. The second line initialises the mesh data
matrix.



60 Video-based face motion tracking: the system

X (pixel)

Y
 (

pi
xe

l)

−300 −200 −100 0 100 200 300

−200

−150

−100

−50

0

50

100

150

200

Figure 3.9: Ellipsoid mesh superimposed onto subject’s face

DATA(:,:,1)=tran*sin(PHI);
DATA(:,:,2)=ante*sin(THETA).*cos(PHI);
DATA(:,:,3)=long*cos(THETA).*cos(PHI);

Finally the parametric formula is applied. tran, ante, and long are the
lengths of the transversal, anterior-posterior, and longitudinal semi-axes, respec-
tively. Figure 3.9 shows a sample mesh superimposed onto the subject’s face. The
parameters were derived from the ellipse in Figure 3.8. For demonstrations pur-
poses it was fit exactly to the ellipse; in a real tracking situation, however, it would
be generally enlarged by a proportional factor to make sure that for example the
jaw would not move outside of the tracked area during opening gestures.

Note that the specific way in which the new data are assigned to the dimen-
sions of the ellipsoid ensures that the vertex points where all longitude lines meet
is at the side of the face, an area which does not have to be tracked unlike the
important lower chin region.

The length values for the longitudinal and transversal axis are obtained from
the principal axis of the ellipse fit to the face. The length of the anterior-posterior
axis must be estimated, because there is no information in the image we could
utilise to derive it.2 On account of this the best solution would probably be to
use a large database of faces represented as range data (e.g. using a laser range
scanner) and examine whether or not the depth parameter could be determined

2 We intentionally do not account here for methods of retrieving three-dimensional data from
single images or image sequences, trying to resolve the so-called shape from shading and structure
from motion problem. There are several techniques described in the computer vision literature (see
Shapiro and Stockman, 2001; Trucco and Verri, 1998; Faugeras, 1993; Forsyth, 2003, for overviews),
however, as far as no stereo camera system is used these methods lack sufficient reliability and more
important the effort spent on it would be out of all proportions relative to the gain for our system.
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Figure 3.10: Ellipsoid meshes
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depending on face width and length. Since we did not have access to such a
database at the time of developing the system, we conceived an ad hoc estimation
depending on the semi-major and semi-minor axis of the ellipse fit to the face
given by

dE = s emajor
emajor

eminor
(3.28)

where s is a scaling constant that can be modified in the program source code
and is currently set to 0.2.

(3.28) has the effect to make the ellipsoid flatter for more rounded faces, since
the ratio of the semi-major and semi-minor axis approaches 1, and more pro-
longed for thiner faces. The wisdom in doing so might be arguable, however, very
fortunately the depth parameter of the ellipsoid is of subordinate importance in
the motion tracking process. Firstly, the half-ellipsoid approximates the facial
surface very crudely anyway, the error dwarfing at some locations in the face
(e.g., the nose) any error made by using an even grossly wrong anterior-posterior
length parameter. Secondly, the tracking is essentially two-dimensional. The el-
lipsoidal shape is mainly used to predict in a better way the effect that head shape
and motion has on the appearance of the face in the video frame (i.e. perspective
foreshortening when the angle between the surface normal and the optical axis of
the camera becomes relatively large). During the motion tracking the mesh nodes
are constraint to lie on the surface of the ellipsoid at all times.

The motion tracking is based on texture map segments whose size and location
is defined using the mesh nodes (see section 3.3.4). Therefore the area enclosed
by e.g. four neighbouring nodes should stay more or less constant over the mesh,
i.e. should not be depending on the location of the area on the ellipsoid surface,
to guarantee that approximately the same number of pixels is enclosed in every
search segment. As can be seen from Figure 3.10(a) showing the ellipsoid mesh
(in an orthographic projection) the area between four neighbouring nodes appears
to become smaller as one moves away from the centre towards the edges.

This is partly due to the foreshortening effect and in this way not only wanted
but necessary. However, there is a second cause which is a result of the
parametrisation. It can be observed when looking at the ellipsoid exactly from
the top as in Figure 3.10(e). It appears as if there would be very little foreshorten-
ing3 despite the strong curvature away from the camera exhibited by the ellipsoid
from this viewpoint. In the parametrisation the polar angle was linearly equally
spaced, but the ellipsoid for our purposes is not - and never will be - a sphere.
Thus the lines connecting the nodes are compressed in the regions of higher cur-
vature at the top and the bottom. A similar phenomenon is happening along
the transversal axis. Additionally the converging lines towards the vertices at
the sides lead to very small segments there. The latter cannot be compensated
for without resampling the ellipsoid surface, something we would prefer to avoid
for the increased complexity it causes in the further handling during the actual
motion tracking.

A partial remedy - albeit not a perfect one - for the above mentioned shortcom-
ings is to replace the equal spacing of the angular values in the basic matrices by
a normalised spacing that in some respects is simply the inverse of the parametri-
sation formula. We used

3 Remember that in orthographic projection the image plane coordinates equal their ’real world’
counterparts: xI = xW and yI = yW
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theta=linspace(1,-1,res_long);
theta=acos(theta);
phi=linspace(-1,1,res_tran);
phi=asin(phi);

acos and asin are the MATLAB function names for the arccos and arcsin.
Figure 3.10 shows a comparison of the described spacing variants from a slightly
lateral view and from a front view. Both ellipsoidal meshes have the same num-
ber of nodes along corresponding axes. The improvement for the tracking of the
normalised version is clearly visible in the front view: the area between four neigh-
bouring nodes at the top and the bottom is about the same size as in the centre.
But the side view makes clear that it is achieved by the expense of constancy
of the area over the ellipsoid surface. The only resort here would be to give up
the ellipsoid and turn to other quadrics, like the somewhat exotic, but beautifully
spaced one in Figure 3.11.
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Figure 3.11: Ellipsoid alternative

After the ellipsoid is created its location on the anterior-posterior axis has to be
estimated. If it was a real world object, we would like it to be as close to the face as
the protective masks commonly worn in fencing (which are actually an ellipsoidal
gauge mesh). However, in our virtual representation we could fit it even closer
to the facial surface. Usually a distance value of the mesh centre to one of the
headmount sensors is manually measured or just guessed. The resulting location
is then visually checked using trials with considerable amount of head motion (see
section 3.2.1), since problems in the positioning become immediately palpable as
the head of the subjects turns towards a profile view. It should have become clear
that by now we are able to use the OPTOTRAK head tracking data to steer the
mesh to follow the head motion of the subject in the video sequence and visualise
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the result by superimposing the projected mesh onto the video sequence.4

3.3 Motion tracking

A schematic overview over the tracking procedure is presented in Figure 3.12. We
will follow the graph with our description in a little bit less rigid way than we did
in the initialisation procedure.

3.3.1 Image preprocessing: Filtering with wavelets

The first step applied to any incoming frame is a two-dimensional discrete wavelet
transformation. As outlined in section 2.3.2 this corresponds to applying a set
of digital halfband filters to the image, where the filters have specific properties.
At each level of the DWT the input signal is decomposed into a high frequency
and a low frequency part, using a pair of highpass and lowpass filters, which are
orthogonal to each other. The lowpass data are then used as the input signal
to the next higher level. This insures that there is no redundant information in
the low and high frequency components of one level, and hence no redundant
information in the high frequency parts of the different levels.

However, human faces or more precisely images of human faces, exhibit static
as well as dynamic features that are to a certain degree scale independent.

Figure 3.13 shows the grayscale images of the face of a human (the author
of the thesis) and of a gibbon,5 and their representation at two different wavelet
levels: In the images of the centre row the three subbands of the 2nd level are
overlaid, thus the images are residing entirely in the high spatial frequency do-
main. In the images at the bottom the subbands of the 4th level are superimposed
and accordingly the frequencies remaining in the images are relatively low. No-
tice that for instance the lips are clearly recognisable at both scales, though less
clearly for the gibbon in the low frequency image (Figure 3.13(f)). The main reason
for it is that any reasonably sharp edge bounded by larger uniform image areas
receives energy from a whole set of wavelet levels. The highest level still contribut-
ing is the one that contains the frequency whose wavelength equals twice the size
of the larger of the two bounding areas, the lowest is limited by the sharpness of
the edge.

The human eyes constitute a remarkable exception in the way that their overall
shape is scale independent, but the interior consisting of pupil, iris and sclera
emerges only in the higher spatial frequency domain (Figure 3.13(c)). The gibbon
does not possess a white sclera, thus its eye is not as finely structured and does
not appear as strongly in the high spatial frequencies (Figure 3.13(d)).

Given the importance for humans of being able to determining the gaze direc-
tion of another with great precision (Emery, 2000), it can be assumed that the
peak in the high frequency domain aids in that task (while for monkeys and pri-
mates the head orientation gives sufficiently detailed clues about the gaze direc-
tion). This might in turn have consequences for auditory-visual speech. Because
the resolution of human visual perception is varying widely across the field of
view, being relatively low in the periphery and relatively high in the centre (fovea),
every attempt to resolve high frequency details requires focusing the view on that

4 We were actually asked once during a demonstration, where a video clip with the undeformed
mesh following the head movements was shown, whether or not the subject felt uncomfortable having
to wear this tight mask.

5 The author is the one on the left.
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Figure 3.12: Scheme of the motion tracking procedure

particular area (Wandell, 1995). Thus it would be evolutionarily useful if the per-
ception and neural processing of facial speech movements would not rely on high
frequency details to avoid competition with the gaze determining task.

Reasoning along these lines was indirectly confirmed by an exper-
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(a) Original image (b) Original image

(c) Level 2 (d) Level 2

(e) Level 4 (f) Level 4

Figure 3.13: Spatial frequency filtering: comparison between the
face of human and gibbon
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iment showing that subjects spend less time than expected viewing
the speakers mouth even if the audio signal was severely degraded
(Vatikiotis-Bateson, Eigsti, Yano, and Munhall, 1998). In spite of the audito-
rily unfavourable condition the subjects dedicated a significant amount of time
to looking at the speakers eyes. Additional confirmation comes from a direct
investigation of the role of spatial frequencies that will be presented later in
section 4.5.

The above yields a first argument in favour of the multiresolution approach on
the image level: it might not be necessary to regard the whole spectral range of the
signal for the automatic tracking. Because of the technical difficulties of image
motion estimation any reduction of the signal that could help to exclude unwanted
information and dampen disturbing factors must be greatly appreciated.

A second argument stems from the comparison with the human visual percep-
tion system (or what we think we know about it):

The spatial frequency theory of image-based vision proposes that
early visual processing can be understood in terms of a large number
of overlapping psychophysical channels at different spatial frequencies
and orientations. (Palmer, 1999)

In particular Marr (1982) strongly advocated the point that early visual processes
would operate on several different scales. In his influential book he suggested the
second derivative of a Gaussian as the basic operator. The circularly symmetric
operator ∇2G, where G stands for the two-dimensional Gaussian distribution

G(x, y) = e
−x2+y2

2πσ2 (3.29)

and ∇2 is the Laplacian operator (∂2/∂x2 + ∂2/∂y2). resembles from its shape
a Mexican hat and constitutes a band-pass filter. Since human beings possess
excellent abilities in face motion estimation, it appears promising to probe the
aptness of concepts of human visual processing for technical solutions address-
ing the same problems. However, one should keep in mind that the human visual
system in general is not yet fully understood and many details in particular are
still completely unclear. One of these questions concerns the bandwidth of the
proposed filters. While Marr (1982) suggests a general 1 1/2 octave wide fil-
ter, Gold, Bennett, and Sekuler (1999) found in several studies investigating face
recognition that faces are processed with a 2 octaves wide filter. However, their
use of a rectangular filter in the experiments makes the finding in our view a little
bit questionable. Näsänen (1999) concluded from his experiments using Gaus-
sian band-pass filters that the recognition of faces is relatively narrowly tuned,
i.e., a bandwidth below 2 Octaves. Note that dyadic wavelets correspond to 1
octave band-pass filters.

The third argument for a multiresolution approach on the image level is purely
technical. Firstly, very high spatial frequencies should be excluded because in
this way pixel disturbances that are ubiquitous in digital images can be annihi-
lated. Secondly, it was assumed that lighting changes are prevalent in the very
low spatial frequencies. This does not hold in many circumstances, for instance
shadows with sharp edges, as they might appear if the lighting of the face is not
diffuse, certainly have an impact over the whole range of the spectrum. Another
violation of the assumption is caused by specular highlights. Since their shape
and size depend on surface orientation and curvature relative to the viewer and
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relative to the light source, they might not extend too much towards the low spa-
tial frequencies but they are not confined to the domain of the very high spatial
frequencies. However, in in-door environments with normal ceiling lighting the
assumption may be appropriate.

Thirdly, it was found in pretests that the texture map of small areas of the
human face is locally unique, where locally is meant both in the spatial and in
the frequency domain. Thus the correspondence problem is weakened or under
ideal circumstances solved altogether. This is hardly surprising taking into ac-
count what has been said above about the human visual system and the social
importance of face motion in human society. Figure 3.14 exemplifies a contrastive
case where the two-dimensional cross-correlation (see section 3.3.6) used for the
motion tracking fails to return the correct new location of one of the ’search seg-
ments’, if applied to the unfiltered image. The figure shows two frames which dif-
fer more or less only in the degree of mouth opening of the subject. Figure 3.14(a)
could be the first frame in typical motion tracking sequence, Figure 3.14(b) the
consecutive frame. In reality more time passed between the two frames than just a
frame-interval, but the difference in the mouth posture is still realistic (and actu-
ally often occurring) in a frame-to-frame situation, albeit fast jaw/lip movements
like this would result in additional motion blurring. Since this would aggravate
the judgement of the correct tracking in the example, we used these more static
frames.

In the left upper corner of 3.14(a) the original source frame is shown. To the
right of it the vertical subband on the 4th wavelet level, below the horizontal sub-
band and in the lower right corner the diagonal subband. Two square areas of 48
pixels side length are marked with white and black rectangles in all images in the
same way. One is covering the subject’s opened mouth, the other one is located at
the cheeks. Their centres are indicated by small crosses in the same colour. These
are the ’search segments’ which should be located in the target frame displayed
with its wavelet subbands in Figure 3.14(b), and the rectangle centres correspond
to mesh nodes whose potential movements should be determined. The white and
black rectangles in the target frame mark the position of the maximum value of
a cross-correlation of the enclosed area in the source frame with the whole of the
target frame applied separately to the original intensity values and to each wavelet
subband.

As can be seen the cheek area is tracked well in the original image as well as in
all subbands most likely due to the strong image gradient where the visible sur-
face of the face ends with a sharp edge meeting the head rest or the background
room wall. However, the mouth area is completely mistracked using the original
intensity values where the most similar area was found centred on the right eye-
brow of the subject. The similarity between the curved eyebrow and the dark arc
formed by the area between upper lip and teeth on the one side and the tongue
on the other side might be the crucial misleading factor. In the wavelet subbands
only the vertical subband positions the area wrongly too high and a little bit too
much to the left at the nose, the other ones are correct. This is not surprising
since the disappearing dark area within the opened mouth is mainly horizontally
oriented.

The white and black circles give the centre of the square if the maximum
correlation value is determined after summing up the correlation values of all
three subbands, the procedure we use in the tracking (see below). As can be seen
this way the tracking can cope well with the mouth closing since the area of the
search segment is big enough to retain enough surrounding area (e.g., lips) and
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the change due to the movement is mainly affecting only one orientation, i.e.,
filtered out in the other orientations, on this wavelet level.

Note that the cross-correlation search through the whole frame is not the usual
procedure and not applied in the tracking procedure. It would be too time con-
suming and result in errors which could be avoided easily by having recourse to
constraints on the facial surface, i.e. the places where parts of the face can move
due to normal face motion is very limited. But for display purposes we needed
here misplacements that are large enough to be spotted with the naked eye in
static images.

The wavelet transformation can only be applied to a gray-scale image or to
each channel of a multi-channel image, e.g, the red, green and blue channel of
an RGB image, separately. Without doubt using the colour information would be
highly desirable for the motion tracking procedure. Currently, however, this is
not feasible, since it would slow down the already time consuming tracking too
much: the whole procedure that is described in the following would have to be
applied to each colour channel separately. Therefore incoming video frames are
converted to grayscale images using standard perceptual weighting given by

Igray = 0.299 Ir + 0.587 Ig + 0.114 Ib (3.30)

where Ir, Ig, and Ib are the intensity values of the red, green, and blue chan-
nels respectively. Alternative ways of weighting like for instance using only the
saturation values of the HSI representation (Hue, Saturation, Intensity) are still
under investigation.

As described in section 2.3.2 a whole range of different wavelets are at hand
for use in applications like ours. The question of what wavelet might be the best
suited for a specific application constantly pops up in wavelet related discussion
forums. And very often there is no clear answer. For our purpose the linear-phase
property of spline-wavelets turned the balance towards them, even though the
wavelet corresponding to a set of orthonormal, maximally flat FIR filters described
in Vaidyanathan (1993, pages 532-536) proved in pretest to have slightly more
favourable filtering characteristics. However the alignment of the different levels
was not satisfying even if based on the energy or the mass centre of the filter. The
result of the misalignment is that nodes of the ellipsoid mesh do not come to lie
on exactly the same location at different tracking/wavelet levels (see below). Most
of the time the cross-correlation based tracking can easily correct for the initial
displacement caused by initialising the tracking on a higher level with the tracking
results of a lower wavelet level (see below), but at points where the tracking runs
into near critical problems these are substantially worsened.

On the implementation side the Uvi_Wave wavelet toolbox 6

(see Sánchez et al., 1996, for details about the implemented algorithms) was
used. The toolbox implements the spline wavelet transformation in the usual way
as a cascade of biorthogonal filters.

Usually a multiresolution pyramid implies subsampling of the higher levels.
Since the high spatial frequency portion is removed no information is lost by
adequate subsampling, i.e., in the case of dyadic wavelets by just retaining every
other sample point. However, since in our method the higher wavelet levels (lower
spatial frequencies) in combination with reduced mesh node densities are used for
prediction of initial mesh node locations on lower levels (see below), subsampling

6 Download is available at http://www.gts.tsc.uvigo.es/~wavelets/
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(a) Source frame

(b) Target frame

Figure 3.14: Comparison of tracking results using cross-
correlation on original image intensity values and wavelet subband
coefficients (see explanation in the text on page 68 for details).

would trivially reduce the accuracy of the tracking and thus prediction by the
order of the subsampling factor. The lower levels are not in all cases able to
catch this error. Interestingly a similar observation in connection with optical
flow estimation and Gaussian pyramids was one of the motivation for the non-
subsampled wavelet based optical flow determination in Wu et al. (1998), used
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among other things for face tracking. Accordingly we do not subsample and use
phase differences in the lower spatial frequency domain to track with an accuracy
below the wavelength corresponding to these frequencies.

The question which wavelet levels should be used is still open. From the above
said it is clear that the lowest wavelet level (ranging from half of the Nyquist
frequency to the Nyquist frequency) should be disregarded, and if it only was to
filter out pixel disturbances. Almost all image motion estimation methods require
at least some smoothing of the raw input image. The inclusion or exclusion of
higher level is then more governed by the requirements of the motion tracking
described in the following than image processing considerations. For the upper
bound run-time considerations and a minimal number of mesh nodes to preserve
the ellipsoid topology are decisive, for the lower bound the necessary minimum
number of pixels enclosed between the mesh nodes dictates the cut-off: enough
pixels7 must remain in the search segment to make the cross-correlation reliable
(see below). As consequence levels 3-5 were chosen (see left column of Figure
3.15, the three subbands are superimposed for display purposes).

The choice was later validated in a perception experiment by Munhall et al.
(Munhall, Kroos, and Vatikiotis-Bateson, 2001b,a, in press, see section 4.5).

3.3.2 Coarse-to-fine strategy with different mesh resolutions

With the next step in the tracking procedure a loop through the different wavelet
levels is entered. This entails looping through different mesh resolutions and
accordingly different tracking resolutions as well. In this way a coarse-to-fine
strategy is implemented that is very much the heart of the tracking algorithm.

Coarse-to-fine strategies have a long history in image processing and are now
ubiquitous, e.g, the use of Gaussian or Laplacian pyramids (Haberäcker, 1995).
However, in our case not only the image processing operates on several resolution
levels but the whole tracking process is realized in a multiresolution approach. It
is shown with an undeformed mesh in Figure 3.15.

The processing starts on the highest selected wavelet level, i.e., level 5, (low
spatial frequencies) with a maximally reduced node density of the ellipsoid mesh.
Since the area for which correspondence is determined from one frame to the
next (the search segment) is dependent on the mesh node spacing (see below),
the tracking starts with determination of the location changes of relatively large
parts of the face. Of course this only makes sense because of the constraints of
the facial surface and face motion assumed in section 1.3.2. We will refer to this
level as the coarse tracking level hereafter.

The results from the coarse level will be used to modify the initial locations of
the next finer level that we will call the middle tracking level in the following. This
kind of prediction when moving from a coarser to a finer level is one of the most
important advantages of the coarse-to-fine strategy. For example, if the whole
chin moves in conjunction with a large jaw opening gesture, the motion will be
registered already at the highest level and the starting position for the search of
– e.g., a part of the lower lip – will be shifted accordingly. Otherwise the tracking
procedure on the middle level might attempt to find the corresponding texture
map values of the lip in what has become the area within the opened mouth in

7 Here and in the following we will often speak of pixels despite the fact that the tracking procedure
after the wavelet filtering operates only on the wavelet subband coefficients. It just simplifies descrip-
tion and imagination enormously, if we treat the subband coefficients as normal images for the time
being. Wherever it could lead to erroneous conclusion, we will abstain from it.
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fine

wavelet
transformation

motion
measurement

Figure 3.15: The multiresolution approach of the tracking: Differ-
ent levels of the wavelet transformation (subbands superimposed
for illustration purposes, left side) and corresponding mesh models
with different node densities (right side). For the motion tracking
the mesh is projected onto the ’subband image’ (centre).

the incoming video frame. Since the search has to be limited to the immediately
surrounding area the procedure would quite certainly fail to return the correct
new location.

At the middle level the mesh node density is doubled along both of the sur-
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face dimensions of the half ellipsoid. This has its correspondence in moving to
the next lower wavelet level (level 4, relatively higher spatial frequencies), since
the band of remaining frequencies is now centred on a twice as high centre fre-
quency. From another viewpoint: the length of the sides of the search segment
are halved along each axis (the enclosed area comprises now only a fourth or so
of the original area) as are by virtue of the wavelet filtering the wavelengths of
the frequencies remaining in the image along both image dimensions. Then the
tracking is repeated, now with a four times higher number of nodes, yielding on
the one hand a refinement of the already obtained tracking results and on the
other hand an increase of resolution.

What has been described for the middle level of tracking is then iterated in
passing to the last level (wavelet level 3, ’fine tracking level’). The final mesh
used here has the full intended resolution. We will dicuss problems with the
reliability of the results that specifically come in on this level in the validation
chapter (chapter 4).

3.3.3 Mesh projection

Using the camera model derived in section 3.2.5 ellipsoid meshes of any resolution
can be projected onto the face in the image and kept there during the whole
image sequence by steering its three-dimensional pose prior to projection with
the head tracking data acquired in section 3.2.1. As said before the different
wavelet levels do not lead to any difficulties if spline wavelets are used because
of their linear phase. Compensation of the filter delay is straightforward and
boundary effects occurring at the image borders are usually far enough away
from the face surface area to not impede the tracking process. It should be clear
that the mesh never needs to be actually superimposed onto the ’subband image’
(as shown in Figure 3.15, middle column) except for human visual inspection. For
the tracking we only need the image coordinates of the mesh nodes to determine
search segments as explained in the next section.

3.3.4 Determining search segments on the texture map

The motion tracking procedure is frame-to-frame based. Therefore we have to
determine the change of location of the face surface from one frame to the next.
This and the following step establish the conditions for the comparison of two
consecutive video frames. Unfortunately the continuous character of the facial
surface implies that there are no rigid objects to track. Even in the case of the
jaw that clearly is a rigid object and whose motion can be described with the
usual six rigid motion parameters the appearance of its movements in the video
frame is that of non-rigid motion due to the layers of muscles and skin above the
bone structure. The eyeballs are an exception to this, but eye blinking makes
them a less than favourable candidate and they are not very important for speech
anyway. The bridge of the nose might be another exception, but even here some
people show wrinkles when wrinkling their nose.

Since we were not interested in tracking features, the only remaining solution
is to partition the face surface in small parts. The general way of accomplishing it
using a multiresolution approach was already discussed in former sections. But
what about the practical details? It was suggested by many studies and authors
concerned with animating faces in computer graphics (see Parke and Waters,
1996) that different mesh resolutions (different patch sizes) are necessary for
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(b) Horizontal neighbours

Figure 3.16: Section of the ellipsoid mesh with two search seg-
ments marked. The search segment is defined by the four neigh-
bouring nodes surrounding the centre node.

the animation of different parts of the face, i.e., high resolutions in the mouth
and eye region and lower resolution in the cheek area. The same is sometimes
claimed though not proved for face motion tracking. One of the longterm goals
of our work is to investigate whether or not this claim holds in general and if not
whether there are circumstances where it nevertheless is found to be true. Are
there maybe differences depending on the kind of face motion, and how is the
situation in particular for speech face motion? This requires being able to look at
the covariations or correlations between measurements globally distributed over
the face. Therefore we chose for the tracking ’atom’ on the final fine level of our
tracking a relatively small area that is distributed globally over the face and has
more or less the same size everywhere. The shape and size of the search areas on
the coarser levels are merely a consequence of this.

Of course the ’search segment’, as we will call the search area from now on
consistently, has to be well-defined everywhere. This is achieved in our algorithm
by defining it as the area enclosed by the quadrilateral created by taking the four
neighbouring nodes surrounding a centre node as its vertices. Figure 3.16 shows
an example.

The search segments of diagonally neighbouring nodes share a border but
do not overlap (Fig. 3.16(a)), vertically or horizontally neighbouring nodes share
about one fourth of their area (Fig. 3.16(b)). Taking a closer look at all surround-
ing segments in vertical and horizontal direction reveals that each pixel of the
texture map is used twice in the tracking. This redundancy, however, is inten-
tional and its important role in the tracking will become evident later on.

To determine whether a pixel really lies within the quadrilateral the MATLAB
function inpolygon is used.

Some segments, however, must be excluded: If head motion causes one or
more segments to be ’occluded’ by the reminder of the ellipsoid their location
cannot be determined anymore. If the mesh were a solid ’real world’ object the oc-
cluded part would be just not visible in the video frame. But the two-dimensional
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projection of the virtual mesh nodes still returns image coordinates for these
nodes - they are just wrapped around the curve of intersection between the el-
lipsoid and an arbitrary plane parallel to the image plane. It goes without saying
that this would not only result in wrong values for the occluded segments but
would interfere with the whole motion tracking. Fortunately those segments can
be easily recognised by probing the angle between the optical axis and the vertex
normals of the mesh nodes that define the search segment. If the absolute value
of the angle is greater than 90 degree for any limiting mesh node, the search seg-
ment must be excluded from the tracking for the time being (i.e. for this particular
frame-to-frame transition). Since the limiting mesh nodes form the vertices of the
search quadrilateral, and the vertices are the quadrilateral extremal points, and
further, the intersection curve of the half ellipsoid with any plane parallel to the
image plane is convex,8 no pixel that would not be visible if the ellipsoid was the
’real world’ facial surface is included in the tracking.

E

D

E’

D’

C

B
A

B’

A’

C’

Frame n
(prediction)

Frame n−1

Adaptation

Figure 3.17: Adaptation of the search segment (light gray area) of
two successive frames, shown for one ’quadrant’ (dark gray area).

3.3.5 Warping the search segments

After having determined a tracking level specific search segment in the first of
two consecutive frames we could now try to find the corresponding location of
it in the next frame. However this would mean disregarding some of the infor-
mation gained by the head tracking. Keeping the ellipsoid mesh at a constant

8 Unless the half ellipsoid is rotated itself more then 90 degrees around the longitudinal and/or
transversal axis relative to its ’neutral’ starting position (i.e. coronal plane parallel to image plane). In
this case, however, the tracking would be suspended altogether because of the lack of facial surface
visible in the video frame.
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position relative to the subject’s face guarantees the best starting location for the
correspondence search in the incoming frame. But we would not have considered
shape distortions of the search segment due to the projection of the mesh with a
potentially new pose. Therefore the search segment has to be adapted by warping
the whole area it comprises to fit the shape set by the new mesh node coordinates
in the second frame (see Figure 3.17). This is equivalent to extracting a texture
map in the first frame and applying it to the mesh with the pose derived from
the second frame, i.e., rendering the texture-mapped ellipsoid with the new pose
(image registration, see section 2.1.1).

On the middle and the fine level of tracking another exigency for warping of
the search segment arises. At those levels motion tracking results from the level
one step higher are already available. To roughly a quarter of the mesh nodes
new coordinates could be assigned. The remaining ones could be updated using
interpolation (see section 3.3.7 below). Thus the likely position and shape of the
search segment in the next frame can be predicted based on the information of
the already completed tracking on the higher level. However, the tracking is de-
signed to return only results for the mesh nodes as will become clear later on. To
take advantage of the already obtained information in solving the correspondence
problem the whole area comprised in the search segment must be adapted, i.e.,
warped. At this point the full strength of the multiresolution approach comes into
its own. By warping the search segment according to the predicted shape, the
expected texture map of the search segment is also predicted. Taking the exam-
ple of a large jaw movement, the texture map of a smaller segment located right
at the corner of the mouth will undergo dramatic changes. Using the results of
the motion tracking on the higher level and a warping procedure these changes
will be approximately determined before we start to look for corresponding areas
in the incoming frame. Again this can be thought of as a rendering of the tex-
ture mapped surface patch that constitutes the search segment based on the new
position and shape parameters.

How is the warping accomplished? Clearly it is a geometrical transformation,
since not only the intensity values of the pixel within the search segment are
modified but their spatial relationships as well. As Gonzalez and Woods (2002)
points out:

Geometric transformations often are called rubber-sheet transforma-
tions, because they may viewed as the process of "printing" an image
on a sheet of rubber and then stretching this sheet according to some
predefined set of rules. (Gonzalez and Woods, 2002, page 270)

The comparison validates in a way to model face motion with a geometric trans-
formation: Although the facial surface does not really possess the properties of
rubber the skin parts have some similarities. The most important exception, the
area within the opened mouth, will hence need to be watched closely in the track-
ing.

Gonzalez and Woods (2002) continue

In terms of digital image processing, a geometric transformation
consists of two basic operations: (1) a spatial transformation, which
defines the "rearrangement" of pixels in the image plane; and (2) gray-
level interpolation, which deals with the assignment of gray levels to
pixels in the spatially transformed image. (Gonzalez and Woods, 2002,
page 271)
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The statement given in the context of image restoration can be directly transferred
to our search segment warping: In the restoration of a geometrically distorted
image normally so-called tiepoints are used and these tiepoints are pixels whose
location are known in both states, distorted and undistorted. The mesh nodes
that define the search segment correspond exactly to the tiepoints.

Let I(x, y) be the intensity function which assigns intensity values to the coor-
dinates x and y in the unwarped search segment and I ′(x ′, y ′) the equivalent for
the warped search segment. Then the spatial transformation could be expressed
as

x ′ = g(x, y)

y ′ = h(x, y)
(3.31)

g(x, y) and h(x, y) must be determined based on the location differences of the
mesh nodes. There are several ways to accomplish that, since we have 5 mesh
nodes that control the search segment.

3.3.5.1 Piecewise affine transformation

In the earlier version of the algorithm we used an affine transformation for each
’quadrant’ of the search segment. The quadrant is defined here as the triangle
between the centre node and two adjacent limiting nodes (see Figure 3.17). This
results in a piecewise affine transformation for the search segment as a whole.
The affine transformation9 is given by

x ′ = ax+ by+ p

y ′ = dx+ ey+ q
(3.32)

It includes rotation, translation, scaling and skewing. Since we have six pa-
rameters we need at least three points to compute them using the resulting six
equations in the form of (3.32). In our case these are the three mesh nodes.

It can be shown that every affine transformation is composed of a linear
transformation and a translation (see Theorem 1 on page 45 in Gomes et al.,
1999). Therefore one mesh node, e.g, the centre node, can be utilised to deter-
mine the translation, in other words we can assume without loss of generality
(Draper and Beveridge, 2002)

x1 = 0 and y1 = 0

where x1 and y1 are the coordinates of one of the mesh nodes. This yields
p = x ′1 and q = y ′

1. Then the remaining equations for each spatial direction are
solved for the unknown parameter

x ′
2 = ax2 + by2 + x ′

1 (3.33)

9 Mathematically more rigorously the affine transformation is defined as the transformation
f : R

n → R
n with

f((1 − t)P + tQ) = (1 − t)f(P) + tf(Q)

where P,Q ∈ R
n, and t ∈ R (see Gomes, Darsa, Costa, and Velho, 1999, page 45).
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x ′
3 = ax3 + by3 + x ′

1 (3.34)

Solving (3.33) for a gives

a =
x ′
2 − x ′

1 − by2

x2
(3.35)

Then substituting a in 3.34 with 3.35 yields

x ′
3 =

(

x ′
2 − x ′

1 − by2

x2

)

x3 + by3 + x ′
1 (3.36)

By isolating b with

x ′
3 − x ′

1− =
x ′
2x3 − x ′

1x3 − byx3 + by3x2

x2
x2(x

′
3 − x ′

1) − x ′
2x3 + x ′

1x3 = −byx3 + by3x2

x2(x
′
3 − x ′

1) − x3(x
′
2 − x ′

1) = b(−yx3 + by3x2)

(3.37)

and rearranging the terms we obtain the final solution for b

b =
(x ′
3 − x ′

1)x2 − (x ′
2 − x ′

1)x3

−x3y2 + y3x2
(3.38)

Trivially by substituting the right side of 3.38 in 3.35 the solution for a is
obtained.

The whole process is equivalent to the following procedure that we imple-
mented in the first version of the algorithm:

i. The mesh nodes of the unwarped and the warped search segment were
translated so that each centre node became the origin.

ii. For each quadrant of the unwarped segment the coordinate values of all
included pixels in an oblique non-Cartesian coordinate system were calcu-
lated, where the coordinate system was defined by considering the two mesh
nodes that limit the quadrant as unit vectors of this system.

iii. The resulting coordinate values were treated as if they were coordinates in
another oblique coordinate system defined by taking the two mesh nodes
which limit the equivalent quadrant in the warped search segment as unit
vectors, i.e., to get the new image coordinates of the pixels the oblique co-
ordinates obtained from the unwarped segment were transformed back into
the Cartesian coordinate system of the image by using the specification of
the oblique coordinate system of the warped segment.

iv. Then the entire warped segment was translated back into its starting loca-
tion.
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(a) Original image (b) Extracted
unwarped segment

(c) Predicted new
shape

(d) Piecewise affine (e) Bilinear (f) Piecewise bilinear

(g) Original image (h) Extracted
unwarped segment

(i) Predicted new
shape

(j) Piecewise affine (k) Bilinear (l) Piecewise bilinear

Figure 3.18: Comparison of the warping methods
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The affine transformation returns most of the time non-integer values for the
new pixel locations, but for any further processing we need of course the inten-
sity value at the regular integer positions. Thus they must be interpolated in a
step called intensity interpolation. We used a so-called zero-order interpolation,
the simplest form of nearest neighbour interpolation, a choice more influenced by
considerations to keep the already high computational burden within manageable
limits than the quality of the interpolation. Thereby simply every non-integer co-
ordinate within the range of the search segment is rounded to the nearest integer.
A promising alternative would be the bilinear interpolation of the four nearest
neighbours, but currently it would slow down the tracking procedure too much.

Figure 3.18(d) and 3.18(j) on the page before show the affine transformation
of a search segment with a checkerboard-like pattern and a real texture map
extracted from the image of a face. The main disadvantage of the affine transfor-
mation based on the triangular subparts of the search segment can be observed
clearly in the figure. The transformation per se is continuous, but there are dis-
continuities in the first derivative at the quadrant borders (see Gomes et al., 1999,
page 48).

3.3.5.2 Bilinear transformation of the entire search segment

A quite obvious alterative would be to use a bilinear transformation of the quadri-
lateral search segment as a whole. Bilinear transformation is given by

x ′ = ax+ by+ cxy+ p

y ′ = dx+ ey+ fxy+ q
(3.39)

Since there are now eight free parameters we need four tiepoints to obtain the
necessary eight linear equations. Using matrix notation and the four neighbour-
ing nodes as tiepoints ([x1, y1], [x2, y2], [x3, y3], [x4, y4] of the original segment, and
[x ′1, y

′

1], [x ′2, y
′

2], [x ′3, y
′

3], [x ′4, y
′

4] of the warped segment) the equations can be written
as
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(3.40)

The solution is found analogously to the camera calibration solution of equa-
tion (3.19).

However this procedure can only be applied for warping from the unit square
to an arbitrary quadrilateral not from one arbitrary quadrilateral to another (see
Gomes et al., 1999). In order to achieve the latter first the coefficients for the
bilinear transformation from the unit square to the unwarped search segment
(backward warping) must be determined as described above. Then they are used
to determine the coefficients for the inverse bilinear transformation (see below)
which warps the search segment into the unit square. After that the coordinates
obtained for the unit square can be bilinearly transformed to the new shape of
the search segment (forward warping) - again in the way described above. This
yields the new spatial locations for all pixels of the search segment. Afterwards
the intensity values can be interpolated.
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However that would mean sacrificing another key concept of the tracking al-
gorithm: In order to solve the correspondence problem we use a well-defined
image region, the search segment. In the comparison procedure the new location
of the search segment is ascertained which yields two translation parameters in
the image coordinate system. Our tracking model however is the image indepen-
dent ellipsoid mesh its nodes representing the facial surface. Therefore the two
translation values will be assigned to the projected mesh node in the centre of the
search segment. In other words, the only purpose of the search segment is to have
enough ’material’ (pixels) to determine the change of location from one frame to
the next of the mesh node in its centre.

Accordingly the mesh node must not ’float’ within the segment as it would do
with bilinear transformation of the whole segment, but should be treated as the
fifth and actually most important reference point of the segment. Non-observance
would lead to mistracking almost instantly in any case where the search segment
is not lying within a homogeneously moving region of the face. In the piecewise
affine transformation described above the principle of the fixed centre node is fully
employed by virtue of the definition of the quadrants. Figure 3.18(e) and 3.18(k)
on page 79 show the bilinear transformation of the entire search segment - again
for a checkerboard-like pattern and the image of a human eye. Notice that the
centre node in the original search segment - shown in Figure 3.18(h) - is located
just on the edge of the lower palpebra, but after the bilinear transformation it can
be found within the sclera - in contrary to the piecewise affine (Figure 3.18(d))
and the piecewise bilinear (see next section, Figure 3.18(f)) transformation.
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Figure 3.19(a)

Figure 3.19: Determination of four qudrilaterals within the search
segment

3.3.5.3 Piecewise bilinear transformation

How can the favourable properties of both methods be combined? The answer
is to resort to a piecewise bilinear transformation. Clearly it cannot be based on
triangulars and it should not be based on the ’halfs’ of the search segment, e.g.,
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the quadrilaterals ABDC or ACDE in Figure 3.19(a), since the centre mesh node
might be collinear with two of the other mesh nodes.

However, the quadrilaterals based on the additional tiepoints P, Q, R, and S,
e.g., APCS would be suited. P, Q, R, and S are the projections of the centre node
C onto the borders in the unit square with vertices [0, 0], [1, 0], [1, 1], [0, 1] assuming
the search segment has been warped to the unit square.

This is shown in Figure 3.19(b) (Note that Figure 3.19(a) and 3.19(b) are
schematic and might not represent the real relationships correctly). Here we
mapped A to [0, 0].

Now assume we already found the coordinates of the additional tiepoints in
the unit square giving us

P0 = [xC0 , 0] Q0 = [1, yC0] R0 = [xC0 , 1] S0 = [0, yC0 ]

In order to get their position in the original search segment, we would need to
warp them back into it. Since we have the corner points of the unit square as
tiepoints, (3.40) can be easily solved symbolically yielding in its general form

a = x ′
2 − x ′

1

b = x ′
4 − x ′

1

c = x ′
3 − x ′

2 + x ′
1 − x ′

4

p = x ′
1

d = y ′
2−

′
1

e = y ′
4 − y ′

1

f = y ′
3 − y ′

2 + y ′
1 − y ′

4

q = y ′
1

(3.41)

Thus the bilinear transformation for P0, Q0, R0, and S0 would be









xP yP
xQ yQ
xR yR
xS yS









=









xC0 0 0 1

1 yC0 yC0 1

xC0 1 xC0 1

0 yC0 0 1

















a d

b e

c f

p q









(3.42)

But we do not know xC0
and yC0

yet, thus we are left with only 8 equations
for 10 unknowns. The remaining two equations to make the system solvable are
provided by the bilinear equations for the centre node C itself, since clearly

xC = axC0 + byC0 + cxC0yC0 + p (3.43)

and

yC = dxC0 + eyC0 + fxC0yC0 + q (3.44)
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Solving (3.43) for xC0
we obtain

xC0 =
xC − byC0 − p

a+ yC0
(3.45)

Substituting (3.45) in (3.44) gives

yC = d
xC − byC0 − p

a+ yC0
+ eyC0 + fyC0

xC − byC0 − p

a+ yC0
+ q (3.46)

which can be rewritten as

(a+ yC0)(yC − eyC0 − q) − (d+ fyC0)(xC − byC0 − p) = 0 (3.47)

Expanding (3.47) and isolating yC yields a standard quadratic equation

(fb−ce)y2C0 +(cyC − fxC −ae−cq+db+ fp)yC0 +(ayC −dxC −aq+dp) = 0

(3.48)

which can be solved by means of standard algebra for yC0
. It can be shown that

from the resulting two values only one lies within the unit square and hence must
be the correct one. By substituting this value for yC0

in (3.45) xC0
is determined

as well. Notice that the above solution for the centre node constitutes the inverse
of the bilinear transformation (see Gomes et al., 1999, for more details on the
inverse of the bilinear transformation and a geometric interpretation of it).

Using (3.42) the coordinates of P, Q, R, and S in the original search segment
can be computed. In the same way the coordinates of the corresponding points
in the new search segment, i.e. our warping target, P ′, Q ′, R ′, and S ′ can be
determined. Having obtained all necessary tiepoints we are now able to warp the
pixels within the quadrilaterals CSAP, CPBQ, CQDR, and CRES (Figure 3.19(a))
separately using bilinear transformation. The options for the final determination
of the intensity values at the integer pixel coordinates are the same as described
for the piecewise affine transformation.

Results for checkerboard pattern (Figure 3.18(f)) and the image of an human
eye (Figure 3.18(l)) can be compared with the other warping methods in Figure
3.18 on page 79.

3.3.5.4 Aliasing and completeness

Independently of which one of the above warping methods is used there is in
general the danger of aliasing effects introducing noise in the warped segment and
thus diminishing the advantage gained by predicting the expected texture map of
the search segment in the incoming frame. However, even on the lowest of the
selected wavelet levels (level 3) we are already operating on a 4 times oversampled
signal in each spatial direction. Thus the chance of aliasing effects caused by e.g.,
a compression of the segment, is rather minimal.

This leads to interesting considerations on the completeness of the warped
segment. In the above example of a compressed segment (or part of it) the trans-
formation and nearest neighbour interpolation might return several values for
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the same integer pixel location. For our proposed method of determining cor-
respondence (see next section) this is unproblematic, it would just result in an
implicit averaging of these values.10 In the case that the prediction process fore-
casts an substantially enlarged search segment, the warping would return new
coordinates only for the much smaller number of pixels in the original search
segment, i.e., the pixels in the warped segment would be to a certain degree scat-
tered over the area of the warped segment. Of course, the remaining gaps in
the warped segment could be interpolated, but for our proposed method of deter-
mining correspondence this is again not necessary and since it would increase
the computational effort both in the warping and in the correspondence routine
without adding any new information, we are very much inclined to abstain from
it.

Here another fundamental strength of the algorithm is revealed: If the image
was not bandlimited and oversampled, the prediction with the warped segment
would lead at some points to low correlation values even at the correct new lo-
cation of the search segment: since the prediction can never be perfect (the face
has no underlying ellipsoidal mesh structure) for instance high frequency details
would be likely to be missed by the scattered pixel of an enlarged warped search
segment (interpolation of the missing pixel would not make a difference). One
could assume that the results would be still better than without any prediction,
but here speculation starts. Note, however, that the coarse-to-fine strategy with
different mesh resolutions and their inherent limitation of the extent a mesh node
can move (see next section) guarantees that the expansion of a segment is con-
tained within a certain range.

3.3.6 Determining correspondence

After having established the conditions for the comparison of to consecutive
frames thereby maximising the use of already available information, we are now
ready two tackle the correspondence problem itself. Since it is not only a fun-
damental problem of image motion estimation, but also of stereopsis, some well
established correlation methods are at hand (Trucco and Verri, 1998).

If we denote by I1 and I2 two arbitrary frames, then the similarity criterion
r for the correlation window of width (and height) 2k + 1 pixel centred at image
coordinates [x, y] in I1 with its equivalent in I2 displaced by [∆x,∆y] is computed
according to the following methods:

i. Cross-correlation

r(∆x,∆y)(x, y) =

k∑

i=−k

k∑

j=−k

I1(x+ i, y+ j) I2(x+ i+ ∆x, y+ j+ ∆y) (3.49)

ii. Sum of squared distances (SSD)

r(∆x,∆y)(x, y) =

k∑

i=−k

k∑

j=−k

−
(

I1(x+ i, y+ j) − I2(x+ i+ ∆x, y+ j+ ∆y)
)2

(3.50)

10 In some cases (i.e., high number of multiple values) it might be recommended to do the averaging
explictly in order to cut computational costs.
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iii. Normalised cross-correlation

r(∆x,∆y)(x, y) =

k∑

i=−k

k∑

j=−k

(

I1(x+ i, y+ j) −m1
) (

I2(x+ i+ ∆x, y+ j+ ∆y) −m2
)

√

k∑

i=−k

k∑

j=−k

(

I1(x+ i, y+ j) −m1
)2

k∑

i=−k

k∑

j=−k

(

I2(x+ i+ ∆x, y+ j+ ∆y) −m2
)2

(3.51)

where m1 and m2 are the means of the intensity values of the correlation
window in the respective frames.

The normalised cross-correlation of (3.51) takes into account the first-order
statistics of the involved regions by subtracting the mean of the correlation win-
dow and normalising by the product of the standard deviations (the normalisation
factor n−1 of the standard deviations themselves can be cancelled, its square ap-
pears in the numerator as well).

These are the general definitions. They imply a square-shaped window that is
centred on a single pixel in one of the images and shifted across a certain area in
the other image to calculate some value of correspondence. However, the square
shape is not essential for the corresponding problem.

Two important parameters must be set: The size of the correlation window,
which naturally has an effect on the lower bound of spatial frequencies contribut-
ing to the solution, and the displacement vectors, which limit the maximum dis-
tance for which correspondences can be found (if not the whole image is searched
through, which is almost always not sensible because of the computational effort
involved). The setting of both parameters requires some knowledge or expecta-
tions about the input images and the nature of the structures or patterns for
which correspondence should be established.

We will now present a slightly modified correspondence procedure to fit the
particular needs of our approach. It implicitly solves the problem of determining
the window size and the displacement vectors. We will first formally develop the
algorithm and then explain its characteristics.

Let Ip be the first of the two consecutive frames (the previous one), Ia the
incoming second frame (the actual one), and Spw

the warped search segment
stemming from the previous frame with the centre node translated to the origin
using the translation vector t = [tx, ty]. Note that Spw

contains intensity values
derived from Ip, but due to the interpolation process included in the warping ac-
tually no original value might have been preserved. Note also that the translation
vector refers already to the predicted position of Spw

in the incoming frame. Let
ppw

= [xw, yw] be coordinate vectors of the pixels within the search segment (thus
the centre node would be [0,0]), and Cpw

the set of all those vectors. Further-
more, let n be the number of pixels in Spw

and let D be the set of two-dimensional
displacement vectors d = [dx, dy] that shift the cross-correlation window over the
designated area in the incoming frame.

i. Set

D = Cpw (3.52)
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ii. For every d compute

r(d) =

n∑

i=1

f
(

Spw
(

Cpw(i)
)

, Ia
(

Cpw(i) − t + d
)

)

(3.53)

where f is one of the functions

f(u, v) = uv (3.54a)

f(u, v) = −(u− v)2 (3.54b)

f(u, v) =
(u−mpw)(v−ma)

spwsa
(3.54c)

with mpw
being the intensity mean of the n pixels in the warped search

segment and ma the intensity mean of its shifted equivalent in the actual
frame

mpw
=
1

n

n∑

i=1

Spw

(

Cpw
(i)
)

ma =
1

n

n∑

i=1

Ia
(

Cpw
(i) − t + d

)

and spw
and sa the unnormalised standard deviations of the pixels belonging

to the warped search segment and its shifted equivalent in the actual frame,
respectively:

spw
=

√

√

√

√

n∑

i=1

(

Spw

(

Cpw
(i)
)

−mpw

)2

sa =

√

√

√

√

n∑

i=1

(

Ia
(

Cpw
(i) − t + d

)

−ma

)2

iii. Find the displacement vector that produces the highest correspondence
score and assign it as motion vector to the centre node

vSp→a
= arg max {r(d)} (3.55)

With (3.52) we gain our set of shift vectors. Remember that the centre node
of the search segment is translated to the origin, thus Cpw

and therfore D con-
tains all pixel coordinates (integer) within the search segment and the maximum
displacement included is a shift to the border of the segment in any direction,
but not further. This ensures that the mesh topology will always be preserved
in the motion tracking, since there can be no overlapping movement during the
updating of the mesh node location in the transition from one frame to the next.
For the time being this is only true for diagonally neighbouring nodes as can be
confirmed in Figure 3.16, but we will show later that with a two-step updating
process it covers all neighbouring relationships.
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(3.52) has another essential advantage: it allows bigger movements in direc-
tions where the limiting nodes are far away and only smaller movements in di-
rections where they are close, instead of searching as usual uniformly within a
square-shaped area. In this way it is made sure that areas that were expanded
very much in the past motion tracking can easily contract again (and the other
way round via the coarse-to-fine strategy) without necessarily changing the loca-
tion of a centre node at the border of the expanding area. For instance a mesh
node situated at the upper lip must not be moved from the lip position during
mouth opening. We will return to this example shortly. This models a continuous
surface that can be stretched and compressed, but will not disintegrate. Note
that we do not employ virtual springs between the mesh nodes, since the compu-
tational effort would exceed any manageable measure. With the proper coefficient
setting assumed it would probably be advantageous for all skin areas, however
in case of the opened/closed mouth or eye blinking it might drive the tracking
system into critical errors.

Alternatively to (3.52) one could set D = Cp, where Cp the set of all coordinate
vectors pp = [x, y] of the unwarped search segment Sp. This allows the correlation
procedure to search around the centre node’s predicted location in the incoming
frame according to the borders of the unwarped segment. Thus it could for ex-
ample move across the limits of the interpolated borders of the warped search
segment. In this way interpolation errors can be compensated more radically,
but if one assumes that the prediction based on head tracking and/or motion
tracking on a higher level and subsequent interpolation is relatively reliable one
would possibly prefer the more restrictive approach given in (3.52). Very generally
speaking the tracking on the higher levels is indeed more reliable, since more pix-
els contribute to the solution, however, at least a fine tuning of the interpolated
nodes is always absolutely necessary and sometimes amounts to a bit more than
’fine’, leaving us in some kind of stalemate here. Note that the just described
approach has as well as (3.52) the property of avoiding overlap with diagonally
neighbouring nodes. It was implemented in the earlier version of the algorithm,
for the current one both alternatives are available.

Equation (3.53) looks surprising at first glance: Having a two-dimensional sig-
nal, why is there only one summation? But Cpw

contains of course vectors with
two-dimensional coordinates, therefore by running through all elements of Cpw

we move through a part of the image plane. It means that our correlation win-
dow is no longer square-shaped but rather assumes the shape of each individual
search segment.

It probably needs no further comment that a correlation window that is
adapted to the task outperforms a traditional square-shaped one, even if some
of the favourable properties of the cross-correlation in the frequency domain are
sacrificed. Nevertheless let us return to the example of a mesh node located di-
rectly on the upper lip. Now assume that in a particular frame transition the
subject’s mouth is opening. That means that in the second frame of the transi-
tion a texture map patch appears (usually a dark, almost black area) for which
we do not have an equivalent in the first frame. On the coarsest level of the track-
ing the change is not significant enough to disturb the tracking, that is, mesh
nodes situated above the mouth will stay there and mesh nodes on the chin will
move downwards with the chin. On the finer levels the neighbouring mesh node
below the upper lip centre node will be moved far away due to interpolation (see
section 3.3.7), thus the search segment will be warped to have a relatively long
wedge-like extension downwards. The upper half of the search segment will be
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still undeformed and contain the texture map values of the lip and maybe a bit of
the skin above the lip, while the lower half will consist mainly of interpolated val-
ues. If the mouth was only very slightly opened before, the downward extension
will already have a significant amount of the almost black values that charac-
terised the area within the opened mouth in our example. Trying to determine
the correspondence with a thus shaped correlation window improves the chances
for a successful location in the second frame enormously.

This is even more important in the case of a mouth closuring gesture and a
node located on the upper lip but somewhat off-centre. There the combination of
the coarse-to-fine strategy and the individually shaped correlation window helps
to thwart the danger of a spurious movement to the side: Since a whole area of
intensity values below the mesh node disappears, an undeformed square-shaped
correlation window would certainly move towards the centre of the upper lip sim-
ply because there - if the mouth is not closed completely - more of the almost
black intensity values are preserved below the upper lip.

Clearly using (3.54a) as the function to calculate the correspondence gives
the ordinary cross-correlation, (3.54b) the SSD (Sum of Squared Distances) and
(3.54c) the normalised cross-correlation. So far we used only the normalised
cross-correlation for a very simple reason: The correspondence procedure has to
be applied to all subbands of a wavelet level (as shown in Figure 3.14) and the
three resulting sets of values have to be combined in some way or another to get
the final motion vector. Since the normalised cross-correlation returns a value
between -1 and 1, the values can be simply added and afterwards (3.55) applied.
With the other methods the results must be ranked for each subband (requiring
a computationally expensive sorting process) and then the minimum combined
rank must be found. The interesting question as to how the results would differ,
has not been addressed yet. Neither have we investigated what impact different
ways of combining the results of the normalised cross-correlation would have.
For instance multiplying the correlation results from each subband would punish
candidates that perform badly in only one of the subband, weighting could be
used to give a single subband more salience, and it is not clear whether the rank-
ing process described above applied to the normalised cross-correlation values
would lead to the same result as if the values are just summed up.

In the earlier implementation the intensity values of the warped search seg-
ment and the shifted equivalent areas in the incoming frame were not prepro-
cessed before being submitted to the cross-correlation. However this might not
be the optimal choice for the following reasons:

i. Since we assign the motion vector of the search segment to its centre node,
it appears sensible to weight the area close to the centre node more strongly
than the periphery.

ii. Severe mistracking of a specific node would be less likely to propagate to
its neighbours in the next frame-to-frame transition (or by passing from one
wavelet level to the next), if the area surrounding the centre node is more
strongly weighted than the periphery: Each limiting node of a search seg-
ment is a centre node of another one. Therefore after completing the track-
ing for a specific frame-to-frame transition (or just a single wavelet level)
the search segment looks slightly different for the following frame-to-frame
transition (or wavelet level). This is of course intentional, in fact, it is one
of the strengths of the algorithm. However in case of severe mistracking it
can turn into a problem, not directly, because it cannot penetrate into the
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correspondence process, but indirectly, by changing the shape of the search
segment to an inappropriate form. Imagine that because of a grave lighting
change the system would have placed the lower neighbour of our example
node at the upper lip much too low. Then in the next transition the lower
half of the search segment would be the wedge-like elongated triangle. In the
correspondence process it would gather correctly the intensity values, which
would include in this case probably texture map patches from the lower lip
and even the chin. If there would be no movement in this area no problem
would arise, but if for example the lips would open the segment would be
quite likely located incorrectly in the next frame, because it became unrea-
sonably large in one direction, i.e., a region of the mesh which was supposed
to be non-rigid at the specific resolution becomes rigid and thus cannot re-
cover the non-rigid movement. A stronger weighting of the area around the
centre node would dampen the propagating effect of the error without sacri-
ficing the positive impact during correct tracking (described above).

iii. The half-ellipsoid mesh with movable nodes is of course not a very accu-
rate model of the facial surface, which is much too complicated to be mod-
elled in any simple way. With the piecewise affine warping the model ap-
proximates more a set of arbitrarily flexible rubber sheets suspended be-
tween a wire mesh with joint-like behaviour at the mesh nodes and expand-
able/contractible but otherwise solid links between the nodes, while with
the piecewise bilinear warping the links can bend, too. Since the face has
no underlying mesh structure the deviation of model and original due to the
impact of the links between the nodes will be more severe at a distance from
mesh nodes than close to them, or in other words, only with a mesh reso-
lution approaching infinity we could model any surface behaviour correctly.
Therefore weighting the intensity values with some function inversely pro-
portional to the radial distance from the centre node should counteract this
deficiency of our model.

Therefore we applied a windowing function to the search segment in the new
implementation of the algorithm. Lacking any criterion pointing towards a special
window a two-dimensional circular Gaussian window (3.29) appears to be the
most natural choice. For the free parameter σ several alternatives are conceivable,
e.g., matching it to some fraction of the maximum length of each individual search
segment, i.e., forcing the coefficients close to the search segment border to become
sufficiently small. We decided to set σ uniformly for all search segments to half
of the wavelength corresponding to the centre frequency of the respective wavelet
level. Note that the infinite support of the Gaussian function can be considered an
advantage in this context, since remote pixels in an exorbitantly enlarged sector
still contribute to the correlation albeit very little.

As already mentioned the displacement vector that produced the maximum
correlation is finally assigned as motion vector to the centre node of the search
segment. We must now return once more to the problem of mesh node movement
producing overlap and thus destroying the mesh structure.

Figure 3.20(a) shows the motion vector of two horizontally neighbouring nodes
for a movement which rarely occurs but is still within the allowed limits of the
tracking algorithm. As depicted in Figure 3.20(a) such a movement would lead to
the disintegration of the mesh.

In the earlier implementation of the tracking system our remedy for problems
caused by those extreme cases was to limit the movement of a mesh node to half
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(a) Movement of mesh nodes
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(b) Overlap destroying mesh structure

Figure 3.20: Critical mesh node movement

of the distance in each direction, i.e., the shift vectors were extracted from the
quadrilateral created by taking the points as vertices that lie halfway on the line
between the centre node and its neighbouring nodes. The main disadvantage
is of course that the movement resolution does not match the mesh resolution,
thus for instance an area could not be compressed (almost) completely from one
frame to the next. Given the fundamental assumption for all image motion esti-
mation procedure that the changes from one frame to the next should be small,
this is unproblematic. However in the notably less than ideal world of speaking
faces captured on video, mouth closuring gestures indeed happen during a single
frame transition, though not very often. In these cases the procedure leads to an
underestimation of the movement.

Accordingly we used an alternative procedure in the current implementation:
The motion tracking on each wavelet level is broken down into two steps. In the
first step all mutually diagonally neighbouring nodes relative to an arbitrary start-
ing node are tracked, that is, roughly half of all mesh nodes. As shown in Figure
3.16(a) they are not able to produce any overlap in a single frame transition. The
node positions of all tracked nodes are updated and the ones not yet tracked are
interpolated yielding a new deformed mesh. Then in step two the set of the re-
maining nodes is tracked. Since it contains only diagonally neighbouring nodes
as well, the danger of overlapping movements is avoided again. After the updating
of these node’s positions the tracking on the particular level is completed. One
could object that the process creates two classes of nodes, since for the latter
half the shape of the search segment is changed just before they are submitted
to the warping and correlation procedure. However the search segments of all
nodes almost always undergo some changes because of the effect of head mo-
tion or tracking results on a higher level. What remains constant and ensures
consistency in the tracking over a sequence of frames is that some area around
the centre node is used for the tracking and that different shapes of the search
segment cannot seep into the correspondence procedure itself.
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3.3.7 Interpolation of mesh node coordinates of next finer
mesh

The last step in the loop through the wavelet and tracking levels is the interpola-
tion of the location of the nodes that come in on the next resolution levels. Un-
like the search segment the mesh coordinates are always full matrices, though
not containing regularly spaced values, which permits usual two-dimensional
interpolation methods to be used. For example, the MATLAB function ZI =
GRIDDATA(X,Y,Z,XI,YI)

... fits a surface of the form Z = F(X,Y) to the data in the (usually)
nonuniformly-spaced vectors (X,Y,Z) GRIDDATA interpolates this sur-
face at the points specified by (XI,YI) to produce ZI. The surface always
goes through the data points.

as the help command points out. In our case X und Y are the image coordinates
of the tracked nodes, Z is one of the two components of their respective motion
vectors, and XI und YI the image coordinates of all mesh nodes of the next
resolution level. The function has to be executed twice to get the x and the y
component of the motion vectors. The obtained full motion vectors for all mesh
nodes are than just added to the image coordinates in their original state before
the motion tracking of this level.

3.3.8 Reversing the mesh projection

After completion of the actual motion tracking the effects of perspective projection
and head motion (translation and rotation) on the mesh must be reversed, since
our final result should be a sequence of stabilised meshes (one for each frame)
preferably in physically meaningful unit. Thus we step here from mere tracking
to relative (uncalibrated camera) or absolute (calibrated camera) measurement of
face motion. In principle this is straightforward since for the combined transfor-
mation matrix

Q = SRT (3.56)

accounting for scaling S, rotation R and translation T of the ellipsoid the in-
verse Q−1, i.e.,

I = QQ−1 (3.57)

always exists. But unfortunately the non-linear part of the perspective projec-
tion (division by the depth coordinate) makes the process a bit more complicated:
For all mesh nodes that were moved by the tracking we simply do not have their
new depth coordinate in the image coordinate system. If the ellipsoid was still
in its undeformed starting state they could be easily recovered by solving the
ellipsoid normal form given in (3.26) for the desired depth coordinate z:

z =

√

c2
(

1−
x2

a2
−
y2

b2

)

(3.58)
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However, this is not the fact, rather the ellipsoid was translated to a different
origin (the calculated centre of rotation of the head), rotated and translated ac-
cording to head movements and projected. Since the actual x and the y image
coordinates of the ellipsoid are depending on the z coordinates, the z coordinates
cannot be recovered directly with (3.58). But since we know all rotation, transla-
tion, etc. parameters there should be a unique solution, we only need to account
for the effects they have. Thus re-formulate (3.26) as follows:

x2

a2
+
y2

b2
+
z2

c2
− 1 = 0 (3.59)

Let us now look for simplicity at one of the terms only:

x2

a2
+ . . . (3.60)

If nothing would have changed the ellipsoid except the translation to a different
origin, (3.60) could be expressed as

(xo + ox)
2

a2
+ . . . (3.61)

where ox is the inverse (negative) of the x translation component. Now we add
rotation which is dependent on the coordinates in all three components

(r1xxr + r2xyr + r3xzr + ox)
2

a2
+ . . . (3.62)

where r1x
,r2x

, and r3x
are rotation coefficients from the inverse of the rotation

matrix R that we used to rotate the ellipsoid according to the rotational head
motion parameters (the structure of the matrix was developed in section 2.2.2).
r1x

,r2x
, and r3x

constitute the first row of this matrix, i.e., the coefficients that
have an impact on the x-coordinate. xr,yr, and zr are the mesh node coordinates
after origin translation and rotation.

We continue in the same way with the head motion translation component

(r1x(xt + sx) + r2x(yt + sy) + r3x(zt + sz) + ox)
2

a2
+ . . . (3.63)

with sx,sy, and sz being the inverse (negative) of the respective translation. In
the next to last step we have to consider the scaling, i.e., the focal length. Since
in the projection it affects only the depth component zi = 1/f zt we have

(r1x(xt + sx) + r2x(yt + sy) + r3x(zif+ sz) + ox)
2

a2
+ . . . (3.64)

And finally the division by the unknown depth coordinates zi is reversed into
a multiplication

(r1x(xizi + sx) + r2x(yizi + sy) + r3x(zif+ sz) + ox)
2

a2
+ . . . (3.65)
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Now we have incorporated all changes in the normal form (assuming that the
y-term and the z-term were treated in the same way) and we can start to solve for
zi.

Isolating zi within the basis of the exponent gives

(r1xxi + r2xyi + r3xf) zi + (r1xsx + r2xsy + r3xsz + ox))
2

a2
+ . . . (3.66)

Expanding the square and returning to the full equation yields

q21 z
2
i + 2 q1 q2zi + q2

2

a2
+
q23 z

2
i + 2 q3 q4zi + q4

2

b2
+

q25 z
2
i + 2 q5 q6zi + q6

2

c2
− 1 = 0

(3.67)

where

q1 = r1xxi + r2xyi + r3xf

q2 = r1xsx + r2xsy + r3xsz + ox

q3 = r1yxi + r2yyi + r3yf

q4 = r1ysx + r2ysy + r3ysz + oy

q5 = r1zxi + r2zyi + r3zf

q6 = r1zsx + r2zsy + r3zsz + oz

Rewriting (3.67) into a standard quadratic equation we obtain

(

q21
a2

+
q23
b2

+
q25
c2

)

z2i + 2
(q1q2

a2
+
q3q4

b2
+
q5q6

c2

)

zi+

(

q22
a2

+
q24
b2

+
q26
c2

− 1

)

= 0

(3.68)

which can be solved for zi by means of standard algebra

zi1,2
=

−2
(

q1q2

a2 + q3q4

b2 + q5q6

c2

)

2
(

q2
1

a2 +
q2

3

b2 +
q2

5

c2

) ±

√

4
(

q1q2

a2 + q3q4

b2 + q5q6

c2

)2
− 4

(

q2
1

a2 +
q2

3

b2 +
q2

5

c2

)(

q2
2

a2 +
q2

4

b2 +
q2

6

c2 − 1
)

2
(

q2
1

a2 +
q2

3

b2 +
q2

5

c2

) (3.69)

The plus and minus in the equation gives, so to speak, the front and the back
side zi coordinates of the ellipsoid. Since the general orientation of the ellipsoid
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is usually fixed (the half used for tracking faces the camera) it can be determined
beforehand which part of the solution is matching the image x and y coordinates
of the mesh.

After determining the depth coordinates the ellipsoid mesh can be transformed
into standard form and written to file, its nodes now representing the intrinsic
face motion relative to the state of the face in the reference frame.

3.4 Putting it all together

Figure 3.21 shows a schematic overview over the data flow of the whole system.
On the left hand side the initialisation is shown, which needs the video sequence
and the head motion data to derive the mesh parameters based on a reference
frame and to calibrate the camera. Arrows indicate where the initialisation pro-
cedure contributes information to the motion tracking procedure, e.g., the head
motion parameters are just passed to the tracking routine.

The main motion tracking box stands for the loop through the frames that
were selected for tracking. It contains itself three nested loops, one for the wavelet
levels, one for the mesh nodes, and the final one for the correspondence deter-
mination on each subband (horizontal, vertical and diagonal). Note that the first
frame that is really tracked has as its frame n-1 the reference frame.
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Chapter 4

Validation

Video-based methods to measure face motion are in general intricate to evaluate
for several reasons:

i. The location change of parts of the face surface cannot be known beforehand.
We do not understand face motion enough to construct a reliable model for
prediction, not even for very simple experimental tasks like mouth opening.

ii. It is difficult to apply other measuring methods without interfering with the
video-based method. Reliable marker-based methods are at hand, but the
makers introduce a strong image gradient at their location and thus facilitate
the tracking considerably (they act as passive markers for the video-based
tracking). Potential wires attached to active markers on the other hand dis-
turb video-based methods.

iii. Face motion is not symmetric. Numerous studies including our own have
shown this. That prevents using a marker based method at one side of the
face and the video-based on the other half during the same experiment and
evaluate the comparison. As an approximation it might be acceptable, but
the discrepancy will be to high to base an evaluation on it.

iv. Manual tracking is difficult and error-prone. Human observers have ex-
cellent abilities to perceive location changes of the face surface in motion
sequences. But if selected points in still images should be tracked the task
becomes extremely challenging.

v. ’Nothing compares’ to the facial surface. Morphological structure and textu-
ral appearance are highly complex and unique, making it very demanding,
not so say impossible, to find a sufficiently similar substitute with known
motion parameters or build a comprehensive simulation (the latter at least
for a foreseeable future). Up to now animated faces had to concede to the
complexity of real faces and had to allow strong simplification, for instance,
a grossly smoothed or idealised texture map of the artificial face.

As consequence of this we certainly will not get a single validation number as-
serting the goodness of the tracking and allowing comparison to other tracking
methods. Rather more qualitative methods relying on human visual inspection
or comparisons of large amounts of data acquired asynchronously with different
methods will take a centre stage in the following. However, even here strong dif-
ferences exist in the usefulness of the method, e.g., just presenting the flow field
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superimposed on the image sequence as in the online demo of the tracking results
described in Wu et al. (1998)1 does not allow a serious verification of the tracking
goodness.

Table 4.1 summarises some of the properties of the data sets we will refer to in
the next sections. All recordings were made at the speech production laboratories
at ATR near Kyoto (Japan). The subjects were seated approximately 3 meters away
from the recording Betacam video camera and wore a headmount with attached
OPTOTRAK sensors to track head movements. During the experiment they were
reading each sentence from a display monitor. The sound was recorded with a
directional microphone. The video data were digitised and the single frames/fields
were stored as lossless compressed TIF-files.

Table 4.1: Data sets used in the development and evaluation of the tracking
algorithm
Code Corpus Speaker Language Remark
EVB-
TEST5

5 test sen-
tences

Male American En-
glish native speaker

American
English

Experimental,
used for algorithm
development, nor-
mal room lighting

EVB-
CID100

Full CIDa

corpus
Male American En-
glish native speaker

American
English

Normal room
lighting

EVB-
CID15

First 15
CIDa sen-
tences

Male American En-
glish native speaker

American
English

normal room
lighting

SAE-
KAN12

12
sentencesb

Female Japanese
native speaker

Japanese Additional light-
ing

ACA-
KAN12

12
sentencesb

Female Japanese
native speaker

Japanese Additional light-
ing

DCA-
MOB12

12
sentencesc

Male American En-
glish native speaker

American
English

Additional light-
ing

ENA-
DOM12

12
sentencesd

Male Brazilian
Portuguese native
speaker

Brazilian
Por-
tuguese

Additional light-
ing

CHK-
MOO12

12
sentencese

Male German native
speaker

German Additional light-
ing

a The Central Institute for the Deaf (CID) ’Everyday Sentences’, 100 phonetically balanced sentences
(see Davis and Silverman, 1970).

b First 12 sentences from the phonetically balanced Kanzaki corpus, developed by Rika Kanzaki at
ATR-HIP, Kyoto, Japan.

c First 12 sentences from the novel ’Moby Dick’ by US-American novelist Herman Melville.
d First 12 sentences from the novel ’Dom Casmurro’ by Brazilian novelist Joaquim Maria Machado

de Assis
e First 12 sentences from the ’Moorsoldaten’ story, written by the author for articulatory experi-

ments within the ’DFG-Schwerpunktprogramm Sprachproduktion’

4.1 Animation

Using the face motion tracking results to create a photo-realistic animation of the
talker’s face can only be accomplished, if the tracking points are truly globally
distributed over the face. If this is not the case at least a sufficiently detailed

1 Available at http://www-2.cs.cmu.edu/afs/cs/project/face/www/Facial.htm
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computer graphic animation model must be available. In the latter case motion
parameter e.g,. derived from feature tracking, would drive certain portions of the
model only and the inherent model structure would ideally take care of the rest.
In the former case, which is ours, the texture map of the face taken from an
arbitrary frame can be deformed according to the measured motion.

Thus as a prerequisite, a high resolution texture map of the ellipsoid mesh
model must be extracted. There are several ways to accomplish that, two of them
will be described here.

i. The first method was used in Kroos, Masuda, Kuratate, and Vatikiotis-Bateson
(2001). The texture map is taken (arbitrarily) from the input frame where
the motion tracking started. At this stage the tracking mesh is translated
and rotated in the image plane to fit the face and also projected, but is not
deformed with respect to the motion tracking. That is, the coordinates of
all mesh nodes in the image are already known and exist in a normalised,
unfolded two-dimensional matrix corresponding to the two angular coordi-
nate matrices that were used to generate the ellipsoid in the initialisation
process. These correspond to azimuth angle θ and polar angle φ in the pa-
rameterisation formula for the ellipsoid from standard analytical geometry
(equation (3.27)).

Now for any pixel lying inside the projected mesh’s outline, its image plane
coordinates are easily obtained by reversing translation, rotation and pro-
jection. However, the corresponding depth values have be computed by
solving the ellipsoid normal equation taking into account the rotation,
translation and projection of the mesh in the reference frame (see section
3.3.8). Then, reversing the parameterisation formulae and putting in the
three-dimensional pixel coordinates ’unfolds’ the ellipsoid surface yielding
normalised two-dimensional angular coordinates for every pixel (see Fig-
ure 4.1(a)).

Using those and the θ and φ values of the mesh nodes, arbitrarily coarse or
fine texture maps can be obtained via interpolation. Of course, the informa-
tion content of the texture maps is limited by the pixel density of the video
frame. Figure 4.1(b) shows an example.

ii. If the tracking mesh is undeformed, that is, the texture map is taken from
the reference frame, an arbitrarily coarse or fine mesh is generated. Usually
it would be much finer than the one used for tracking. It is then translated,
rotated and projected according to the known parameter values for the ref-
erence frame. Then by interpolation the intensity value at each node in the
image is determined. If zero-order interpolation (see 3.3.5) is applied this
amounts only to rounding of the coordinates of the mesh nodes and assign-
ing the intensity value of the pixel with the same coordinates to them. After
that the mesh is just ’unfolded’ as described under item i..

If the tracking mesh is already deformed, it must be brought in standard
form first and must then be unfolded. Now different resolutions can be
obtained by interpolation. The remainder of the procedure is the same as for
the undeformed mesh.

The texture map is then applied to the sequence of deformed ellipsoid meshes
using the graphics capabilities of the 3D rendering subroutines of MATLAB. Cre-
ating a new movie sequence by juxtaposing the original video frame and the ani-
mation can be considered the best of all quantitative, visual evaluation methods.
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(a) The ellipsoid surface ’unfolded’ (b) Full interpolated texture
map

Figure 4.1: Texture map extraction

Any deviation is is immediately spotted. Figure 4.2 shows some stills from a thus
obtained movie.

Animations could also be used to do an evaluation based on perception ex-
periments with humans. It could be tested whether or not the reconstructed
motion sequence elicit the same speech related phenomena as the original, for
example improving intelligibility in acoustically noisy environments or causing
the McGurk-Effect.

4.2 Difference images

The first suggestion for an evaluation at presentations of parts of the earlier algo-
rithm was that we should calculate difference images between the original images
and reconstructed images based on the motion tracking. However, again this is
merely a qualitative evaluation and moreover it depends critically on the recon-
struction method, in particular on the chosen resolution of the texture map and
whether the reference frame comprises all areas that become visible later on as
consequence of the tracking. For instance, if the mouth is opened only slightly
in the reference frame, the teeth might be not visible, because not enough light
can pass into the oral cavity. As a result there would appear strong peaks in the
difference images when later in the sequence the mouth is opened completely,
even if the tracking were perfect. On the other hand a human perceiver might not
be disturbed at all by the missing visible teeth, since the effect could be caused
equally by reduced front lighting.

In addition difference images emphasise correct location of edges, since a slight
mispositioning of an edge creates a strong peak. The paramount perceptual rel-
evance of ’hard’ edges, to use this term from modern art, i.e., scale-space inde-
pendent edges where all frequencies contribute, is at least doubtful. The state-
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Figure 4.2: Pairwise comparison of the original video image (right
side) and reconstructed image (left side) by applying the texture
map of the reference frame to the deformed mesh. Frames 1, 8
(first row), 16, 22 (second row), 49, and 66 (third row).

ment could actually be generalised for difference images per se: No arguments
are known to us showing that the perception of a difference image has any fixed
relationship to the perception of the similarity between the original images used
to create the difference image. Therefore we did not use difference images for
evaluation.

4.3 Comparison of Principal Components

While a direct comparison between results from the video-based method and OP-
TOTRAK (i.e. using the same trials) is not feasible (see above), a comparison is still
possible by looking at the overall spatial behaviour of larger sets of data reduced
by statistical means to essential components, e.g., by using Principal Component
Analysis. Of course it is only sensible if the material is as sufficiently similar be-



102 Validation

yond being produced by the same speaker. This includes using the same corpus
and recording in a comparable experimental situation. These conditions were ful-
filled for the EVB-CID100 data set, of which 71 sentences were tracked with the
video-based method and a comparable OPTOTRAK data set for the same speaker
containing a subset of 58 of the 71 sentences was available from an earlier exper-
iment.

Even then the globally distributed but relatively coarse (low image resolution)
video-based tracking might show different statistical behaviour if compared with
the sparsely distributed but very fine OPTOTRAK tracking. Also the video-based
tracking is only two-dimensional while OPTOTRAK returns three-dimensional co-
ordinates. Accordingly PCA was performed based on the covariance matrix of
four different data subsets. The first data subset contained movement data from
the video-based method for a region of the lower face (242 mesh nodes) corre-
sponding to the area measured by 18 OPTOTRAK markers. Figure 4.3 shows the
measurement locations.

Figure 4.3: Location of the OPTOTRAK markers (left side) and the
selected mesh nodes of the video-based method (white dots, right
side)

The second data set consisted only of the 18 mesh nodes that were at similar
locations on the face as the OPTOTRAK markers. The third data set included
the OPTOTRAK movement data, as did the fourth, however this time the ’depth’
dimension (perpendicular to the video image plane) was disregarded.

Figure 4.4 shows the cumulative amount of variance recovered by the first
36 components for all four data sets. Note that 36 is the maximum number of
components that can be derived from 18 two-dimensional marker or mesh node
measures. Obviously, many more components are needed to account for the same
level of variance in the video-based method as in the OPTOTRAK data. In part this
is due to the large difference in measurement resolution of the two systems; com-
pare 0.6 mm pixel resolution of the video image with .01 mm position accuracy of
the OPTOTRAK.

However, despite this difference in accuracy, the two analyses capture the
same motion characteristics; e.g., the first components are fairly similar for the
two methods. This can be seen in Figure 4.5 which shows a comparison of the
first three components by projecting them two standard deviations on each side
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Figure 4.4: Recovered variance by the first 36 principal compo-
nents: three-dimensional OPTOTRAK data (first 36 of 54 compo-
nents), two-dimensional OPTOTRAK data (image plane, all compo-
nents), video-based method using all originally selected nodes (first
36 of 242 components) and video-based method using 18 nodes
corresponding to OPTOTRAK marker locations (all components).

of the mean.
The uppermost part of the figure depicts the results from the video-based anal-

ysis with all originally selected nodes included and the texture map applied to the
deformed mesh. The three components account for 48.2, 6.8 and 4.6 % of the
total variance in the data set. The centre part shows the results from the video-
based analysis limited to 18 nodes; the three components account for 59.6, 7.1,
and 4.6 % of the total variance. And the lower part displays the results from the
two-dimensional OPTOTRAK data set with the components accounting for 77.0,
9.8 and 5.6 % of the total variance. The first component clearly corresponds to
the contribution of the jaw to the face motion. This does not mean, however, that
jaw motion effects are uniformly oriented. The jaw moves the whole chin area ver-
tically, but its effect on the soft tissue of the cheeks and mouth corners is more
lateral than vertical, due to structural constraints.

Less clear is why the percentage of recovered variance for the jaw’s contribu-
tion is so different for each analysis. One possibility is that positioning of the
small set of markers on the chin and around the lower lip overemphasises the
contribution of the jaw. However, in previous work (Yehia et al., 1998), it was
shown that the jaw component was the major contributor to the motion of all
markers, not just those of the lower face region. Another possibility is that the
video-based method underestimates the jaw’s contribution to face motion at high
speeds, even though the distribution of the effect on the various nodes has been
shown to be coherent through examination of the node velocities.

Note that the second and the third component in the video-based method ap-
parently changed their order in the OPTOTRAK data. The second component does
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Figure 4.5: Visualisation of the first three principal components
by calculating the coordinates of the data points, which are
plus/minus two standard deviations apart from the average face
in each component’s direction. The upper part of the figure shows
results from the video-based method using all mesh nodes, the
centre part shows results form the video-based method using only
18 nodes corresponding to OPTOTRAK marker locations and the
lower part shows results from OPTOTRAK data, where only the
two image plane dimensions were regarded. In the upper part the
top row corresponds to +2 stds and the bottom row to -2 stds. In
the centre part and lower part circles and solid lines correspond to
+2 stds and squares and dashed lines to -2 stds. The connecting
lines are drawn only in order to facilitate the comparison.
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Figure 4.6: Scores of the first three principal components and ver-
tical coordinates of two selected mesh nodes are shown over the
time course of the first sentence of the CID corpus (’Walking is my
favourite exercise’). The top panel shows the acoustic signal and a
broad phonetic transcription. The centre panel shows the scores of
the first three principal components. The scores of the component
are not scaled, i.e. their variances equal their respective eigenval-
ues, thus showing their relative importance (the unit, however, is
meaningless). The bottom panel shows the vertical coordinates of
two of the 18 mesh nodes corresponding to OPTOTRAK marker lo-
cations (see Figure 4.5): ’chin’ corresponds to the upper centre of
the four chin nodes, ’upper lip’ corresponds to the upper centre of
the eight mouth nodes.



106 Validation

not account for any jaw motion; it corresponds entirely to deformation of the
mouth and lip area. This influences the cheek tissue in a manner complementary
to the effect of the first component and results in a tightening of the lip oval. This
can be seen most clearly in the second component of the 18-nodes video-based
analysis and the third component of the OPTOTRAK data, and may account for
a substantial part, but not all, of the lip rounding/spreading mechanism. The
third component is also independent of jaw position and contributes to mouth
and lip shape in a way similar to the second component. The major difference be-
tween the second and third components is in their opposite effects on the cheek
behaviour associated with a particular mouth/lip shape. This is most evident on
the right side of the image (left hand side of the subject).

It is exemplified in Figure 4.6, which shows the scoring of the first three com-
ponents for the first sentence of the CID corpus, ’Walking is my favourite exercise’,
and the vertical coordinates of two selected mesh nodes. In order to evaluate the
extent that the principal components can be interpreted in a physical sense, we
segmented and labelled all vowels in the data set used for the video-based tracking
and examined the scoring of the components for each segment by its phonological
category. However, no conclusive results were found for any analysed phoneme.
Manual inspection of a subset of segments confirmed that the speaker showed
very little ’expected’ behaviour so long as the whole segment was taken in to
account and not just a ’magical’ moment picked out within the segment. For
example, lip rounding in rounded vowels was not very prominent.

4.4 Comparison with manual tracking

Since visual inspection of the resulting animations is not sufficient to judge the
accuracy of the tracking algorithm, and PCA based comparisons with OPTOTRAK
only access the general behaviour, we decided to track manually nine points on
the subject’s face for the first 8 of 15 sentences (877 of 1363 image fields) of the
EVB-CID15 data set.

Figure 4.7: Location and movement range of the manually marked
points (head motion not removed)
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Ideally for this test, the points should be distributed randomly on the face,
but it was impossible to find enough arbitrarily assigned points that could be
identified reliably in every frame. Therefore, landmark coordinates were used
comprising the mouth corners, two points on the upper lip, and five points on the
cheeks and chin marked by small blemishes (not visible in the images reproduced
for this thesis). Figure 4.7 shows the locations (filled circles) and the movement
ranges (including head motion). For the ellipses enclosing each location, size was
three times the standard deviation and axis orientation was derived from PCA of
the manually tracked position coordinates.
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Figure 4.8: Means and standard deviations of the discrepancy be-
tween manual and automatic tracking of nine points on the cheeks
(TLC, TRC, BRC, BLC), upper lip (RUL, LUL), lip corners (RCM,
LCM), and the chin (CHN).
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Figure 4.9: Mean discrepancy of all points over time for each sen-
tence

The manual and the automatic tracking results were compared by calculat-
ing the Euclidian Distance between each manually marked point and the mesh
node closest to it in the global reference frame, taking it as reference (i.e. zero),
and then computing the distances between node-point pairs over time. Figure 4.8
shows the discrepancy between the methods for the nine points for all image fields
tested. As can be seen, there is a mean discrepancy (change in Euclidean Dis-
tance) of 3-4 pixels. Neither the mean nor the standard deviation of discrepancy
seems to depend on the location or degree of face motion e.g., compare the rela-
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Bandwidth (cy-
cles/face width)

Centre frequency
(cycles/face
width)

Centre frequency
(cycles/degree vi-
sual angle)

F1 1.8-3.7 2.7 0.36
F2 3.7-7.3 5.5 0.73
F3 7.3-15 11 1.46
F4 15-29 22 2.92
F5 29-59 44.1 5.85

Table 4.2: Spatial frequency bands (from Munhall et al., in press)

tively motionless upper cheek with highly mobile chin. It is clear, however, that
the discrepancy increases over time. Figure 4.9 shows the generally monotonic
growth in mean discrepancy for all markers over the time course of each sentence.
The tendency is common to almost all more complex image motion estimations
methods if they are frame-to-frame based: the error accumulates slowly.

4.5 Comparison with human auditory-visual speech
perception

Beyond direct evaluation interesting insight was won in Munhall et al. (in press)
in which spatial frequencies are used by human observers in auditory-visual
speech perception, thereby providing a convincing argument for the wavelet-based
approach in machine tracking of face motion during speech. Munhall and col-
leagues tested spatial frequency bandpass filtered image sequences of a talker in
an audiovisual speech-in-noise task in two experiments.

As already mentioned in the introduction seeing the speakers face enhances
intelligibility in acoustically unfavourable environments. In the first experiment
the performance of subjects in recognising correctly keywords of the CID corpus
was tested where the original audio track was severely degraded by superimposed
multi-speaker babble. The original video sequence was converted to grayscale and
filtered with five different one octave-wide bandpass filters yielding together with
the audio-only and the full video (grayscale) seven test conditions. Table 4.2
shows the bandwidth and the centre frequencies.

Table 4.3 shows the mean percentage of correct answers over all 42 subjects.

Presentation
condition

Percent correct
keywords

Full face 66.38
F1 49.52
F2 46.76
F3 55.9
F4 53.81
F5 31.9
Auditory only 36.67

Table 4.3: Identification results (from Munhall et al., in press)
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In the second experiment with 90 subjects the viewing distance was varied.
Munhall et al. (in press) summarises:

Experiment 1 showed that all but the lowest spatial frequency band
that we tested enhanced auditory speech perception, however, none of
the individual frequency bands reached the accuracy level of the unfil-
tered images. The band-pass conditions showed a quadratic intelligibil-
ity pattern with the peak intelligibility occurring in the mid-range filter
band with center frequency of 11 c/face. Experiment 2 showed that
this pattern did not vary as a function of viewing distance and thus
that object-based spatial frequency best characterized the data.

Note that the spatial frequency conditions denoted as F2, F3, and F4 corre-
spond exactly to the wavelet levels 5, 4, and 3, respectively used in the motion
tracking. Actually the stimuli images were produced with the (slightly modified)
routine implemented for the tracking procedure. Therefore we can be sure that
most of the phonetic information humans can infer from image sequences can be
extracted from the spatial frequency domain we are relying on for the tracking
(see also MacDonald, Andersen, and Bachmann, 2000).





Chapter 5

Conclusion

5.1 Summary

We presented a system for video-based analysis of face motion during speech. The
core of it consists of an algorithm to measure face motion from image sequences.
Additional features ensure that the audio track, the acoustical speech signal, is
synchronised with the face motion measurement, external head motion data can
be integrated and the measurement data itself can be accessed at will for further
analysis.

The tracking algorithm has two stages - an initialisation phase and the actual
frame-to-frame image motion tracking. The initialisation procedure generates a
parametrised ellipsoid mesh, scales it to the size of the subject’s face in a user-
chosen reference frame and places it to cover the face area. The mesh’s function
in the subsequent motion tracking is to provide anchor points for the tracking
and record location changes of small parts of the facial surface. To achieve size
accommodation and placement of the ellipsoid, the user is required to mark a few
points at the outline of the face and the inner or outer eye corners. An ellipse
is then fit to the outline points, the orientation of which is constrained to the
slope angle of the line connecting the eye corner points. From the ellipse the
ellipsoid parameters are derived. Also in the initialisation phase a camera model
is instantiated, an adapted version of the ideal pinhole camera model.

The motion tracking procedure uses a multiresolution analysis in the strict
sense for the image data and - adapted to it, but formulated in a less strict sense
- for the mesh resolution, i.e., a set of ellipsoids meshes with varying node density
is applied for the tracking in a coarse-to-fine strategy and the tracking results are
refined at each step. The goal of the multiresolution decomposition of the video
images is to obtain spatial frequency band-limited subbands that are mutually
orthogonal and orientation sensitive in three major directions (horizontal, verti-
cal, and diagonal). This is accomplished by a discrete-space wavelet transform
of the image data realized as cascade filter bank with pairwise low and high pass
half-band filters. The algorithm then loops through selected levels of the wavelet
transform projecting the ellipsoid mesh onto the subband ’images’ using the cam-
era model and following head movements by considering external head motion
data.

The mesh resolution is reduced at the beginning of the tracking of a frame-to-
frame transition and superimposed onto a higher wavelet level decomposition of
each of the two frames under investigation. Search segments are defined as the
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partial face texture map contained in quadrilaterals created by the four neigh-
bouring nodes surrounding an arbitrary centre node. The set of all search seg-
ments covers the entire facial surface with overlapping to ensure on the one hand
that enough area is included and on the other hand that a relatively high density
of measurement points is maintained distributed globally over the face surface.
Due to the reduced mesh node density the size of the search segment area corre-
sponds to the low spatial frequencies remaining in the higher level subband.

The search segment is then warped to integrate already known information
about its appearance in the next frame (e.g., the effect of head movements). Af-
ter that correspondence is established using normalised cross-correlation. This
yields a motion vector characterising the change of location of the search segment
from one frame to the next, which is assigned to the centre node of the search
segment. After in a two-step procedure motion vectors for all mesh nodes have
been determined the whole mesh is deformed accordingly.

Moving to the next finer tracking level the coordinates of intermediate nodes
not tracked yet are interpolated, and then the tracking procedure described above
is repeated using the wavelet subbands of a lower scale (higher spatial frequen-
cies). On finishing the run through the updating loop one more time, the entire
refining step is once more repeated to yield the final fine-grained result.

In order to allow comparison and analysis of the measured face motion inde-
pendent from the original video sequence a stabilised version of the mesh must
be produced. Therefore the effect of projection is reversed and the translation and
rotation of the mesh because of head movements is inverted. Once the tracking
of a video sequence is finished the resulting sequence of ellipsoid meshes (one per
frame) represents the intrinsic face motion.

The evaluation with several different methods showed that our speech face
motion tracking system picked up the essential speech-related facial behaviour
and the tracking error remained within acceptable limits so long as the video
sequence did not become too long.

5.2 Outlook

Neither the evaluation nor the refinement of the algorithm is finished yet. In that
respect the thesis documents work still in progress, even though the fundamen-
tal concepts and the layout of the algorithm do not need to be changed anymore.
On the evaluation side one of the most interesting studies will be to examine to
what extent animations based on the face motion measurements increase intelli-
gibility in speech-in-noise-tasks in the same way as the original video sequence.
Note, however, that even this kind of experiment has limited validity concern-
ing the accurateness of the tracking, since the animations would be based on
a texture map extracted once for the entire video sequence and thus the ani-
mation might be unable to reproduce - just by deforming - certain appearance
effects of the facial surface, for instance creases that appear due to face motion
(Revèret, Bailly, and Badin, 2000).

On the improvement side video-based head motion tracking should be inte-
grated into the system to make it independent from any data source other than
video and allow its use in a wide range of applications as outlined in the in-
troduction. Concerning the tracking algorithm itself one of the most promising
extensions would be to include Kalman filtering (see for instance Maybeck, 1979;
Brown and Hwang, 1997; Grewal and Andrews, 2001). Kalman filtering is a sta-
tistical method from modern control theory that allows combining one or more
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measurements of the same process variable compounded with different degrees
of noise with a model prediction, which can include a noise or uncertainty factor
as well. Kalman prooved that the method conceived by him to estimate the state
of the variable based on the available information leads to the statistically optimal
result, i.e. no other method could do better. There are some restrictions on the
nature of the noise distribution, but for many, if not most, applications they are
acceptable.

In case of the face motion tracking the most difficult part, however, is
to develop an appropriate prediction model. In the simplest form this could
possibly consist of a smoothed extrapolation using already tracked frames.
Essa, Darrell, and Pentland (1994) created a finite-element-based simulation of
the muscles and the skin/tissue of the face and used its dynamic properties as
a model for face motion from which the prediction was obtained. However, the
enormous simplifications made because of the computational costs of such an
approach renders in our eyes the otherwise promising approach almost useless,
unless only comic-style exaggerated face motion is to be tracked.

Interestingly the authors claim concerning face motion of all kinds, e.g., speech
face motion, emotional expression, etc.

The number of degrees of freedoms required for tracking facial ar-
ticulations is limited, especially as most of the facial expressions are
linear combinations of simpler motions. One can think of tracking be-
ing limited to a fixed, relatively small set of "control knobs," one for
each type of motion, and then tracking the change in facial expression
by moving these control knobs appropriately.

In absence of any proof for the claim we opt decidedly for something quite close to
the opposite. Given the complexity of the facial anatomy (and in particular of the
insertion points of facial muscles), the prominent importance of the human face
in social interactions, the wide variety of facial behaviour, and the distinguished
ability of human observers to perceive subtle changes of the face surface, ’simple’
seems not a good description for any underlying mechanism. We are aware that
Essa et al. (1994) speaks only of face motion tracking, but we are just not con-
vinced that the tracking could be done by ’simple’ means, if the phenomenon to
be tracked is highly complex both in appearance and underlying control mecha-
nisms.

We think that currently our knowledge concerning production and perception
of face motion is at a superficial level and that the research into it has still a long
way to go before reaching a deeper understanding. As far as speech face motion
is concerned this might include better insights into how speech production and
perception in general is controlled and processed. We hope that our system will
contribute to new findings especially by allowing the analysis of video footage
recorded outside the laboratory.
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Appendix A

Deutsche Zusammenfassung

A.1 Einführung

Im Bereich der Analyse von Gesichtsmimik steht traditionell die Analyse emo-
tionalen Gesichtsausdrucks stark im Vordergrund. Zwar ist inzwischen das
Interesse an der genuinen Sprechmimik stark angestiegen dank vielfältiger
Anwendungsmöglichkeiten (computergesteuerte Animationen von sprechenden
Gesichtern halten immer mehr Einzug in Werbung, Unterhaltung und als Be-
nutzerverkörperung in virtuellen Räumen), jedoch ging das nicht immer einher
mit einer Nutzung des unter anderem in der Phonetik vorhanden Wissens über
die beim Sprechen ablaufenden Vorgänge. Beispiele aus Veröffentlichungen im
Bereich Maschinelles Sehen belegen dies. Auf der andern Seite wurde und wird
die menschliche auditorisch-visuelle Sprachverarbeitung in der Phonetik zum Teil
immer noch nur als bloßes Kuriosum angesehen.

Die vorliegende Doktorarbeit präsentiert ein System, das die Analyse von
(Sprech-)Mimik erlauben soll, ohne dass auf sensorbasierte Verfolgungssys-
teme zurückgegriffen werden muss. Diese haben zwar den Vorteil von großer
Genauigkeit und zeitlich und räumlich guter Auflösung, aber den Nachteil, dass
sie verhältnismäßig teuer sind und im Allgemeinen nicht außerhalb des Labors
eingesetzt werden können. Letzteres verhindert kombiniert mit der Erfordernis,
Sensoren an der Versuchsperson anbringen zu müssen, die Analyse spontaneren
Sprechverhaltens.

Entsprechend wäre ein Verfahren, das Messdaten der Gesichtsmimik aus
Standardvideosequenzen extrahieren kann, höchst wünschenswert. Dem stehen
jedoch die eminenten Probleme im Bereich der Bildbewegungsschätzung (rech-
nerische Ermittlung der Bewegung von Bildobjekten in Bildsequenzen, die realen
Objekten entsprechen mögen oder auch nicht) entgegen, ganz besonders, da es
sich beim menschliche Gesicht um einen höchst komplexen Untersuchungsge-
genstand handelt.

Im Bildakquisitionsprozess werden kontinuierliche dreidimensionale Trajekto-
rien der realen Szene nicht-linear auf zweidimensionale zeit-diskrete Trajektorien
abgebildet. Die erhaltenen Bildintensitätswerte aber sind eine Kombination aus
den Reflektionscharakteristika der abgebildeten Oberflächen, dem einzigen Ob-
jektmerkmal, auf dem die Bewegungsverfolgung aufbauen kann, und anderen
Einflussfaktoren wie der allgemeinen Szenenbeleuchtung.

Zudem besteht die Gesichtsmimik aus der eigentlichen oder intrinsischen
Mimik und der überlagerten Bewegung des gesamten Kopfes. Während letztere
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in die Kategorie der Bewegung von starren Körpern fällt und deshalb in einfacher
Weise mit drei Translations- und drei Rotationsparametern parametrisiert wer-
den kann, lässt sich erstere nur als nicht-starre Bewegung beschreiben mit im
Prinzip unendlich vielen Freiheitsgraden.

Die genannten Probleme lassen sich jedoch bis zu einem gewissen Grad lösen
durch Rückgriff auf Einschränkungen, denen die Gesichtsoberfläche unterliegt,
z.B. dass sie mit Ausnahme des Mundes eine zusammenhängende Fläche bildet,
von der sich nicht einfach Teile ablösen können.

A.2 Theoretische und empirische Grundlagen

Das Herzstück des in der Doktorarbeit beschriebenen Systems ist ein Algorith-
mus zur videobasierten Bewegungsverfolgung von Gesichtsmimik. Aufgrund der
oben beschriebenen inhärenten Schwierigkeiten musste ein neuer Ansatz zur Lö-
sung gefunden werden. Dieser benutzt aber natürlich zum Teil bereits bekannte
Techniken. Besondere Bedeutung haben dabei:

i. Bildregistierung
Von den realen Objekten, die in der Bildsequenz verfolgt werden sollen,
wird ein Erscheinungsmodell erstellt, gewöhnlich aus einer geometrischen
Beschreibung und einer Oberflächentextur bestehend. Die Objektmod-
elle werden entsprechend der zu erwartenden Bewegung animiert und die
so generierten Bilder mit denen der realen Videosequenz mit Hilfe eines
geeigneten Abstandsmaßes verglichen. Die Bewegungsparameter, die ein
Minimum im Abstand des jeweiligen realen und generierten Bildes erre-
ichen, werden dem verfolgten Objekt zugewiesen. Um nicht einen möglicher-
weise hochdimensionalen Suchraum komplett durchsuchen zu müssen,
wird üblicherweise ein Optimierungsverfahren verwendet.

ii. Perspektivische Projektion
Perspektivische Projektion erlaubt den Vorgang der Abbildung der realen
dreidimensionalen Szene auf das zweidimensionale Bild vereinfacht math-
ematisch zu beschreiben. In dieser Weise kann ein Kameramodell erstellt
werden. Ein sehr einfaches aber durchaus für viele Anwendung ausreichen-
des derartiges Modell ist ein idealisiertes Modell der camera obscura.

iii. Wavelets in Verbindung mit einer Vielfachauflösung-Analyse
Ortsfrequenzen können im großen Ganzen in der selben Weise behandelt
werden wie Frequenzen im zeitlichen Bereich. Bewährte Verfahren wie die
Fouriertransformation können ohne Schwierigkeiten auch auf zweidimen-
sionale Signale erweitert werden, wobei nun aber neben Amplitude und
Phase der Frequenzkomponenten auch deren Orientierung ein Rolle spielt.

Die diskrete Wavelet-Transformation ist im Gegensatz zur Fouriertransfor-
mation zeitlich/räumlich und frequenzmäßig gut lokalisiert und zwar in
einer sinnvollen Abhängigkeit vom Frequenzbereich. Dabei wird das Signal
nicht wie bei der Fouriertransformation in Sinus- und Kosinuskomponenten
zerlegt, vielmehr sind die Bausteine ’wavelets’, ’kleine Wellen’, Funktionen,
deren Energie finit ist, die also außerhalb eines kurzen Intervalls meist nur
Funktionswerte gleich Null aufweisen.

Der mathematisch geklärte Zusammenhang zwischen Wavelet-
Transformation und einer strikt formulierten Vielfachauflösung-Analyse
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erlaubt es, die zweidimensionale Wavelet-Transformation als kaskadische
Filterbank mit Halbbandfiltern zu realisieren. Dabei entstehen bei jedem
Filterungsschritt (der jeweils einer Wavelet-Ebene entspricht) vier Signale:
eine Approximation und drei orientierte Seitenbänder (horizontal, vertikal
und diagonal.

A.3 Videobasierte Messung der Gesichtsmimik

Der Algorithmus umfasst zwei zentrale Module: die Initialisierung und die
eigentliche auf Einzelbildern operierende Bewegungsverfolgung.

A.3.1 Initialisierung

In dieser Phase wird ein parametrisiertes ellipsoidales Maschennetzwerk gener-
iert, auf die Größe des Gesichtes der Versuchsperson in einem vom Benutzer
ausgewählten Referenzvideobild skaliert und über dem Gesicht plaziert, so dass
es dieses vollständig abdeckt. Das Maschennetzwerk liefert in der nachfolgenden
Bewegungsmessung Ankerpunkte für die Verfolgung der Mimik und dient der Er-
fassung von Ortsveränderungen von kleinen über die Netzknoten definierten Seg-
menten der Gesichtsoberfläche. Um die Größenanpassung und Positionierung
zu erreichen, wird der Benutzer aufgefordert, die Gesichtsaußenkontur und die
Augenwinkel der Versuchperson im Bild mit eine paar Punkten zu markieren. An-
schließend wird eine Ellipse berechnet, so dass sie in ihrer Größe optimal auf die
Konturpunkte angepasst ist, ihre Orientierung aber durch den Neigungswinkel
der Geraden zwischen den Augenwinkelpunkten fixiert ist. Die Ellipse liefert die
Parameter zur Generierung des Ellipsoids. Außerdem wird in der Initialisierung-
phase ein einfaches Kameramodell erstellt und, wenn möglich, kalibriert.

Die Kopfbewegungen der Versuchsperson werden in der jetzigen Implemen-
tierung noch nicht videobasiert verfolgt, denn eine der zentralen Fragen in der
Entwicklung des Verfahren war, welche Präzision in der Messung der intrinsis-
chen Mimik zu erreichen ist, vorausgesetzt die Kopfbewegungserfassung liefert
nahezu perfekte Resultate. Demzufolge liest die Initialisierungroutine Kopfbewe-
gungsdaten ein, die mit Hilfe eines sensorbasierten kommerziellen Gerätes und
einer Kopfhalterung für die Sensoren erhoben wurden.

A.3.2 Bewegungsmessung

Die Bewegungsverfolgung verwendet in zweifacher Hinsicht eine
Vielfachauflösung-Analyse, zum einen im strikten Sinne für die Bilddaten,
zum anderen weniger rigoros formuliert für das Maschennetzwerk, in dem seine
Netzknotendichte variiert wird. Im Bildverarbeitungsbereich ist das Ziel band-
begrenzte Signale zu erhalten und die Vielfachauflösung-Analyse wird durch
eine Wavelet-Transformation realisiert. Mit der Vielfachauflösung-Analyse das
Netzwerk betreffend wird eine Grob-zu-fein-Strategie umgesetzt, die es möglich
macht, erst größere Bewegungen mit einem groben Netzwerk zu verfolgen und
die Ergebnisse dann schrittweise mit feineren Netzwerken zu präzisieren.

Das ellipsoidale Maschennetzwerk wird mit Hilfe des Kameramodells direkt
den Seitenbändern aus der Wavelet-Filterung überlagert. Dabei folgt es - ges-
teuert von den externen Kopfbewegungsdaten - den Kopfbewegungen der Ver-
suchsperson, so dass das Netzwerk als Ganzes immer über derselben Stelle des
Gesichtes verharrt.
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Suchsegmente werden über benachbarte Knotenpunkte, die einen beliebi-
gen zentralen Knoten umgeben, definiert. Das Suchsegement registriert Inten-
sitätswerte an seinen Pixelkoordinaten im ersten von zwei aufeinanderfolgenden
Videobildern. Um Informationen zu berücksichtigen, die über seine Form und Po-
sition im nächsten Videobild schon vorliegen (aufgrund der Kopfbewegungsdaten
oder der schon erfolgten Bewegungsmessung auf einer gröberen Ebene), wird es
entsprechend verzerrt.

Dann wird mit Hilfe der Kreuzkorrelationsmethode seine korrespondierende
Position im zweiten Videobild ermittelt. Der entsprechende Verschiebungsvektor
wird dem zentralen Knoten des Suchsegments als Bewegungsvektor zugewiesen.
Ist dies für alle Knotenpunkte erfolgt, wird das gesamte Netzwerk entsprechend
verformt. Solange noch nicht die feinste ausgewählte Netzwerkdichte erre-
icht ist, wird der Vorgang auf der nächst feineren Ebene wiederholt, wobei die
hinzugekommenen Knoten bilinear interpoliert werden, um Startwerte für die
Korrespondenzermittlung zu erhalten.

Um stabilisierte, von der speziellen Videosituation unabhängige Messungen als
Ausgabe zu erhalten, werden am Schluss Kopfbewegungen ausgeglichen und die
perspektivische Projektion reversiert. Das Ergebnis ist eine Sequenz von stabil-
isierten, verformten Netzwerken, eines pro Videobild, die die in der Videosequenz
sichtbare Gesichtsmimik repräsentieren.

A.4 Validierung

Eine Reihe von unterschiedlichen Evaluierungsmethoden, sowohl qualitativer
wie quantitativer Natur, hat gezeigt, dass der vorgestellte Algorithmus die
wesentlichen Charakteristiken der Sprechmimik erfasst und der Messfehler im
akzeptablen Rahmen bleibt, solange die analysierte Videosequenz nicht zu lang
ist.
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