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I 

Summary 

Multiple sclerosis (MS) is a chronic inflammatory disorder of the central nervous system (CNS), 

typically with relapsing-remitting (RR) course. It is characterized by demyelination and infiltration of 

most probably autoreactive T lymphocytes into the brain parenchyma, and by oligoclonal bands 

persisting in the cerebrospinal fluid (CSF) of MS patients. CD8
+
 T cells are the dominant T-cell 

population of infiltrates, which are presumably accelerating the inflammation in MS brain. Clonal 

expansions of CD8
+
 T cells are often detected in situ, and are most likely related to the 

immunopathogenesis of MS. However, it remained unclear how those autoreactive CD8
+
 T cells 

trigger an immune attack and which molecular antigenic target(s) they recognize. 

This study investigates CD8
+
 T cell clones and their specific antigen(s) in the MS-related 

inflammatory tissues. To this end, an unbiased method to determine the paired αβ-T cell receptors 

(TCR) of single T cells on frozen tissue slides was improved. This includes optimization of a protocol 

of the fluorescence staining to identify single activated CD8
+
 T cells, and modification of a multiplex 

RT-PCR based method for the high yield of TCR-αβ pairs. Five significant points were accomplished 

with the optimized approach: (i) By immunohistochemistry, activated CD8
+
 T cells were shown to be 

accumulated in the MS lesions. (ii) Single activated CD8
+
 T cells were distinguished from irrelevant 

bystander cells. (iii) Degradation of RNA on tissue slide resulted from the fluorescence staining was 

minimized. (iv) Identical TCR β-chains detected in different tissue blocks indicate that CD8
+
 T cell 

infiltration is antigen-restricted. (v) TCR repertoires of CD4
+
 and CD8

+
 T-cell subpopulations were 

studied in the CSF of MS patients. 

In parallel, the HLA restriction of a TCR that consisits of BV1-BJ2.3 and AV7.2-AJ24.2 chains was 

investigated. This TCR was identified from brain-infiltrating CD8
+
 T cells of a MS patient. High 

numbers of activated T cells were detected with HLA-C*0701 restricted plasmid-encoded 

combinatorial peptide libraries. The result indicates that HLA-C*0701, but not the other two HLA 

class I molecules (HLA-A*0101 and HLA-B*0801) of the MS patient, might be the correct antigen-

presenting HLA molecule for TCR BV1-BJ2.3-AV7.2-AJ24.2. In the long-term, these results may 

contribute to the understanding of the immunopathogenesis of MS, and autoimmune diseases in 

generally. 
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Zusammenfassung 

Multiple Sklerose (MS), ist eine chronisch entzündliche Erkrankung des Zentralnervensystems (ZNS). 

Charakteristische Merkmale sind ihr schubförmig remittierender Verlauf, die Demyelinisierung und 

Infiltrierung des Hirnparenchym durch vermutlich autoreaktive T-Lymphozyten und die 

persistierenden oligoklonalen Banden in der Zerebrospinal Flüssigkeit (ZSF) der MS Patienten. 

Entzündungsbeschleunigende CD8
+
 T-Zellen sind die dominierende T-Zell Population der Infiltrate. 

Die klonalen Expansionen dieser CD8
+
 T-Zellen werden häufig in situ detektiert und stehen 

höchstwahrscheinlich im Zusammenhang mit der Immunopathogenese von MS. Allerdings ist es 

bislang unklar, wie diese autoreaktiven CD8
+
 T-Zellen einen Immunangriff auslösen. Zudem ist nicht 

bekannt, welche molekularen Antigene sie erkennen. 

Diese Studie untersucht CD8
+
 T-Zellklone und ihre spezifischen Antigene in MS betroffenen 

entzündlichen Geweben. Für diesen Zweck wurde ein Verfahren zur Bestimmung der gepaarten αβ-T-

Zellrezeptoren (TZR) einzelner T-Zellen auf gefrorenen Gewebe-Objektträgern verbessert. Dazu 

wurde ein Protokoll zur Fluoreszenzfärbung für die Identifizierung von einzeln aktivierten CD8 T-

Zellen optimiert und ein auf Multiplex-RT-PCR-basierendes Verfahrens für hohe TZR αβ-Paar 

Ausbeuten modifizeirt. 

Fünf signifikante Punkte konnten mit dem optimierten Ansatz erreicht werden: 

(i) Mittels Immunohistochemie konnte die Akkumulierung von aktivierten CD8
+
 T-Zellen in den MS-

Läsionen gezeigt werden. (ii) Es konnten einzeln aktivierte CD8
+
 T-Zellen von irrelevanten 

Bystanderzellen unterschieden werden. (iii) Die RNA Degradierung auf Gewebeschnitten während der 

Fluoreszenzfärbung konnte minimiert werden. (iv) Der Nachweis von identischen TZR-β Ketten in 

verschiedenen Gewebeblöcken einer Biopsie zeigte, dass die CD8
+
 T-Zellinfiltration vermutlich 

Antigen-spezifisch sind. (v) Zudem konnten die TZR-Repertoires von CD4
+
 und CD8

+
 T-Zell-

Subpopulationen im ZSF von MS-Patienten untersucht werden. 
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Parallel dazu wurde die HLA-Restriktion eines TZR, der aus BV1-BJ2.3 und AV7.2-AJ24.2 Ketten 

besteht, untersucht. Dieser TZR war aus hirninfiltrierenden CD8
+ 
T-Zellen eines MS-Patienten kloniert 

worden. Eine hohe Anzahl von aktivierten T-Zellen wurden beobachtet, wenn kombinatorischen 

Peptidbibliotheken verwendet wurden, die zusammen mit HLA-C*0701-Molekülen präsentiert 

wurden. Dieses Ergebnis deutet darauf hin, dass bei diesem MS Patienten HLA-C*0701, jedoch nicht 

die beiden weiteren HLA-Klasse-I-Moleküle des Patienten (HLA-A*0101 und HLA-B*0801) das 

richtige Antigen-präsentieren, also das spezifische Restriktionselement für den TZR BV1-BJ2.3-

AV7.2-AJ24.2 darstellen. Langfristig könnten diese Ergebnisse zum Verständnis der 

Immunpathogenese von MS und Autoimmunerkrankungen im Allgemeinen beitragen. 
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1 Introduction 

1.1 Immune Responses 

The environment of human and other mammals is obviously populated by both pathogenic and non-

pathogenic microbes, which contains huge amounts of variable toxic or allergenic substances that may 

threat the normal homeostasis. A host defense against the infection by potential pathogens is defined 

as immune responses, which are combined with two fronts, the fast and non-specific innate immune 

response and the antigen-specific adaptive immune response. 

1.1.1 Innate Immune Response 

When the pathogens encounter the human body for the first time, the innate immune response mounts 

several physical and chemical barriers against the infection. (i) The complement system is 

immediately activated to recognize and destroy the foreign organisms, even promote clearance 

procedures of dead cells or antibody complexes. (ii) Phagocytic white blood cells, like macrophages, 

neutrophils, and natural killer cells are recruited to the site of infection to ingest and kill microbes by 

producing some toxic chemicals and degradative enzymes. (iii) Antimicrobial proteins are secreted on 

the mucosal surfaces to prevent microbes from entering the body. Innate immune responses occur 

quickly upon exposure to an infectious organism; however, they do not lead a lasting immunity against 

virus or bacteria-derived pathogens. 

1.1.2 Adaptive Immune Response 

Unlike innate defense mechanisms, the adaptive immune response is capable of eliminating infections 

more efficiently because of the accurately specific recognizing functions of lymphocytes. These cells 

can recognize and respond to particular antigens through the highly specialized antigen receptors 

presented on the surface of lymphocytes. After the original infection is eliminated, the activated 

lymphocytes and secreted antibodies can be persisted in the human body even for many years, which 
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allow another faster and more intense response when a second infection will happen. Therefore, the 

adaptive immune response is more efficient than the innate immune response against the specific 

pathogens. The adaptive immune system contains two branches: one is humoral immunity mediated by 

B cells and their antibodies, and the other is cellular immunity mediated by CD8
+
 T cells and CD4

+
 T 

cells. 

The immune response, mediated by antibodies, complement proteins, and antimicrobial peptides in the 

extracellular fluids, is termed as humoral immunity. B lymphocytes are the main immune cells 

involved in the humoral immune responses. Naïve B cells can be activated and differentiated into 

plasma cells that produce and secrete antibodies to kill the specific soluble antigens. Meanwhile, some 

naïve B cells may develop into memory B cells that will quickly lead to an immune response against 

the reinfection by the same antigens in a long-lasting immunity. Moreover, B cells serve as 

professional APCs to recognize and present the pathogenic antigens to cytotoxic T cells. 

Once pathogens have entered the infected cells, antibodies in the extracellular fluid are not capable of 

encountering and even eliminating them. However, another significant immune response mediated by 

T lymphocytes will be triggered. T cells are capable of detecting peptide antigens derived from 

different types of pathogens. Peptide antigens derived from intracellular pathogens in the cytoplasm 

are transferred to the surface with major histocompatibility complex (MHC) class I molecules and 

recognized by CD8
+
 T lymphocytes. These CD8

+
 T cells will differentiate into cytotoxic T cells 

(CTLs) that release a series of cytotoxins and proteases (such as perforin granulysin, and granzyme) to 

kill the target cells. However, peptide antigens derived from bacteria or toxins are carried to the cell 

surface by MHC class II molecules and presented to CD4
+
 T cells. These T cells further differentiate 

into subtypes of effector T cells, termed as T helper 1 (Th1) and T helper 2 (Th2). Th1 cells can not 

only exclusively induce B cells to produce IgG antibodies that effectively opsonize extracellular 

pathogens, but also efficiently activate the phagocytosis of macrophages to engulf the infected cells. 

Cytokine interleukin-4 (IL-4) secreted by Th2 cells can stimulate naïve antigen-specific B cells to 

produce IgM antibodies acting on the humoral immune response. The highly specialized dendritic 
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cells (DCs) are the most important APCs during the activation of naïve T cells. They can present 

pathogenic antigens to the effector T cells to trigger the adaptive immune response. 

1.2 CD8
+
 T cells and Their Receptor Complex 

CD8
+
 T cells, also called as killer T cells, are indispensable warriors of the adaptive immune system 

for protecting the human body from infection and attacks of tumors, viruses (and other pathogens). 

The specific antigen is loaded onto MHC class I molecule and brought to the surface of the infected 

cell, which will be recognized by the specific TCR expressed on CD8
+
 T cell. There are three major 

mechanisms involved in the cytotoxicity of CD8
+
 T cells, which are (i) the secretion of cytokines 

(such as Tumor necrosis factor alpha (TNF-α) and Interferon gamma (INF-γ)), (ii) the production and 

release of cytotoxic granules (such as perforin and granzyme), which kill the target cells, and, (iii), the 

destruction of the infected cell directly by Fas/FasL interactions. 

1.2.1 Diversity of TCR Gene Rearrangement 

The genes coding for different chains of T-cell receptor are composed of numerous and intermittent 

segments that are rearranged somatically to produce heterodimeric TCR, either αβ-chains (90% - 95% 

of T cells) or γδ-chains (5% - 10% of T cells). Most of the CD8
+
 T cells express αβ-TCRs. Because of 

the hypervariety of pathogenic antigens recognized by CD8
+
 T cells, rearrangement of αβ-TCRs 

generates various antigen recognition sites in the binding grooves of the variable domains. The 

rearrangement of TCR gene segments occurs during the development of T lymphocytes in the thymus 

and is similar to that of immunoglobulin gene segments. After gene rearrangement, TCR α- and β-

chains both consist of a variable (V) amino-terminal region, a jointing (J) and a constant (C) gene 

segments whereas a diversity (D) gene element is exclusively included in TCR β-chain. The 

rearrangement of αβ-heterodimer of TCR is shown in Figure 1-1 (A). 
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Figure 1-1: TCR gene recombination and the formation of TCR-pMHC I complex 

(A) Rearrangement of TCR α/β gene locus. Human TCR β gene locus contains a combination of the variable (V), diversity 

(D), jointing (J) and constant (C) gene segments as same as the components of TCR α gene locus missing D gene segments. 

The rearrangement of Vβ, Dβ, as well as Jβ gene segments, generates a functional VnDnJ-region exon that is transcribed and 

spliced to connect Cβ gene segment. After mRNA translation, TCR β-chain is yielded. TCR α gene locus is rearranged in the 

same way, and then TCR αβ heterodimer is synthesized and expressed on the surface of T cells. (B) Structure of a T cell 

receptor-peptide-bound major histocompatibility complex (TCR–pMHC). TCR-CD3 complex contains the TCR heterodimer 

(TCR α-and β-chains) and CD3 molecule that binds to the immunoreceptor tyrosine-based activation motifs (ITAMs) for 

intracellular cell signaling. CDR3 regions bound to antigenic peptide (black) presented by MHC class I molecule (consisting 

of three domains: α1-α3 and beta-2 microglobulin) are associated with CD8 dimer on the surface of CD8+ T cell. (Modified 

from Woodsworth et al., 2013) 

The rearrangement of TCR β-chain begins with a random combination of a Vβ- and Dβ-segments that 

is then added to a Jβ-segment. To enhance the diversity of TCR, the hypervariable nucleotide 

sequence, N(D)N, is formed by the insertion or deletion of palindromic (P) or non-germline (N) 

nucleotides at the junctions between the V, D (only in TCR β-chains) and J gene segments. After 

transcription to mRNA, the V(D)J segments are connected to the Cβ-segment by splicing. Meanwhile, 

TCR α-chain is produced by the junction of a Vα- and Jα-segments followed by a Cα-segment. TCR 

α- or β-chain contains three hypervariable complementarity determining regions (CDRs) located in the 

variable domain termed as CDR1, CDR2, and CDR3. CDR1 and CDR2 are considered to interact with 

the MHC complex, however, CDR3 encoded by the hypervariable N(D)N nucleotides is the main 

CDR responsible for the formation of the antigen-binding site and antigen recognition. 
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1.2.2 Structure and Function of TCR-CD3 Complex 

Majority of CD8
+
 T cells express the TCR heterodimer that consists of two transmembrane 

glycoprotein chains, i.e., α- and β-chains. Both two chains are linked by a disulfide bond. For better 

antigen recognition and intracellular signal transduction, a set of proteins are also included in the TCR 

complex (Figure 1-1, B). (i) CD8 is a transmembrane glycoprotein, which is predominantly expressed 

on the surface of cytotoxic and effector T cells. It contains α- and β-chains and exclusively binds the 

class I MHC molecule. The interaction of CD8 and class I MHC complex increases the connection 

between TCR and its target cell for antigen recognition. (ii) CD3 is a group of non-polymorphic 

signaling molecules, which is made up of one γ and δ as well as two ε and ζ molecules. These 

molecules can assist TCR to transmit an intracellular signal when the TCR binds a peptide-bound 

major histocompatibility complex (pMHC). The intracellular domains of CD3 molecules contain 

several copies of a sequence motif termed as Immunoreceptor Tyrosine-based Activation Motifs 

(ITAMs) that serve either as tyrosine kinase substrates or as binding sites for SH2 domains of other 

kinases after phosphorylation. However, the precise molecular mechanism underlying this highly 

modified complex is still not completely identified. The TCR-CD3 complex could promote a series of 

signaling cascades driving the activation of the nuclear factor of activated T cells (NFAT), which in 

turn facilitates expression of activation-associated molecules such as interleukin-2 (IL-2). In addition, 

NFAT-dependent promoters can be used as a reporter protein for detection of TCR activation. 
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1.3 Antigen Recognition by CD8
+
 T Cells 

Major histocompatibility complex molecules in human, also named as human leukocyte antigen 

(HLA), is a set of cell surface proteins essentially for presenting the pathogenic peptide to its 

counterpart T lymphocyte. Typical MHC molecules are divided into two subgroups: MHC class I and 

MHC class II. MHC class I molecule is composed of three domains-α1, α2 and α3, interacting with a 

unit of the non-MHC molecule β2 microglobulin (β2M) that can specifically be recognized by CD8
+
 T 

cells (Figure 1-1, B). Because any nucleated cells can be infected by viruses, almost all such cells 

could express class I MHC molecules. A crystal structure of TCR-pMHC complex is shown in Figure 

1-2. On the contrary, class II MHC molecules are composed of two α- and β-chains of almost the same 

size. Each chain has a conserved region (α2, β2) and a variable peptide-binding domain (α1, β1). The 

latter two domains could specifically be recognized by CD4
+
 T cells. Only professional APCs (e.g., B 

lymphocytes, dendritic cells and macrophages) express class II MHC molecules to present antigens to 

effector CD4
+
 T cells. Because of more than 10,000 of variant alleles located at class I and class II loci 

according to the IMGT-HLA database (latest updated in July 2014), an individual generally possesses 

three different class I MHC molecules (e.g., HLA-A, -B, -C) as well as three class II MHC molecules 

(e.g., HLA-DP, -DQ, -DR). However, because of the MHC polymorphism and the codominant 

expression of MHC gene locus, MHC molecules express on almost all nucleated cells. Therefore, 

almost every person is heterozygous at MHC loci, except for some specific cases that same alleles are 

shown in the corresponding MHC locus on both homologous chromosomes (Table 2-13). 

CD8
+
 T cells specifically recognize short linear antigenic peptide with about 8-10 amino acids 

presented by class I MHC molecules. The antigenic peptide is digested by the proteasome in the 

cytosol and then translocated into the lumen of the endoplasmic reticulum (ER) accomplished by the 

transporter associated with antigen processing transporter (TAP). Then the peptide-loading process 

will proceed in the lumen of ER with the help of a large multimeric protein complex consisting of 

TAP, tapasin, calreticulin, calnexin, and Erp57. Once the correct peptide is loaded onto the MHC class 

I molecule, the MHC-peptide complex is dissociated from ER and translocated via the Golgi apparatus 



INTRODUCTION 

7 

to the cellular surface. In addition, to bind a particular MHC molecule, the peptide has the same or 

similar amino acid residues at two or three particular positions in the antigen binding sites of peptide 

sequence. They are the specific amino acids named as “anchor positions” or “anchor residues”. These 

“anchor residues” can enhance the interactions between antigenic peptide and MHC molecule. In 

addition, T cells can recognize the “non-self” antigens in the presence of self-MHC molecules. If the 

auto-antigens are recognized, MHC restriction can prevent T cells from an autoimmune response 

against host tissues. 

 

Figure 1-2: Crystal structure of a TCR–pMHC complex 

Side (left) and aerial (right) view of a αβ-TCR molecule in complex with an MHC class I molecule that expresses the 

antigenic peptide (colored in red). The MHC class I molecule (colored in gray) contains α1, α2, and α3 domains as well as a 

β2M molecule, in which the α1 and α2 domains contact the antigen, while the α3 domain is associated with β2M. The TCR 

consists of one α-chain (colored in black) and one β-chain (colored in cyan), in which the CDR regions (in the frame) of the 

two TCR chains interact with the antigenic peptide. The surface depiction of the pMHC from an aerial view is presented on 

the right. The peptide-bind cleft formed between α1 and α2 domains of MHC is colored in blue, at which the antigenic 

peptide binds to the MHC molecule. (modified from Kass et al., 2014) 
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1.4 Positive and Negative Section of T Cells in Thymus 

After the TCR α- and β-chains are successfully rearranged the T cells need to undergo positive and 

negative selection before leaving the thymus. The further development of CD4
+
 and CD8

+
 T cells in 

the thymus is vital for the proper recognition of foreign antigens presented by the self-HLA molecules 

and preventing the autoimmunity (Sprent et al., 1988). 

Positive selection occurs in the thymic cortex, where the double-positive thymocytes (CD4
+
CD8

+
) are 

presented with self-antigens binding to self-MHC molecules on the surface of thymic cortical 

epithelial cells (Nikolic-Zugic and Bevan, 1990). Only those thymocytes capable of interacting with 

MHC molecules appropriately, i.e., not too high affinity or no affinity, will survive and continue with 

the negative selection in the medulla of the thymus. On the contrary, all that do not or strongly interact 

with MHC class I or II molecule will be destroyed. In this stage, MHC restriction decides the 

differentiation of CD4
+
 and the CD8

+
 T cell lineage (Zerrahn et al., 1997). However, this process can 

not eliminate those thymocytes that may arise an autoimmune attack on the body. 

In the process of negative selection, T cells that react strongly with a self-antigen presented on the 

self-MHC complex of medullary thymic epithelial cells are deleted in the thymus (Hinterberger et al., 

2010). These auto-recognized T cells die by apoptosis. The remaining thymocytes exit the thymus and 

become matured naïve T cells, which will differentiate into CD4
+
 T helper cells or CD8

+
 T killer cells 

when encountering their specific pathogens. As an important aspect of central tolerance (Griesemer et 

al., 2010), this process can effectively prevent the formation of autoreactive T cells that might induce 

autoimmune diseases, such as multiple sclerosis. 

Therefore, more than 95% of precursor T cells are eliminated with these two mechanisms. The self-

MHC restricted, self-tolerant, and single positive T cells can enter into the peripheral blood and 

lymphoid system (Starr et al., 2003). Otherwise, once the T cells escape the two mechanisms and 

develop into self-reactive T cells, an autoimmune disease occurs (Section 1.4). 



INTRODUCTION 

9 

1.5 Autoimmunity and Autoimmune Disease 

If the antibodies and immune cells target the body’s healthy tissues, an autoimmune reaction will 

occur. The immune response against “self”-antigens is termed as autoimmunity, and the disease 

caused by such exceptional immune response is an autoimmune disease. The significant syndrome of 

an autoimmune disease is inflammation, and is often restricted to certain organs of the body. When an 

autoimmune attack occurs only in a specific organ like muscle, this is the case of Myositis, in which 

autoreactive T cells attack the muscle fibers and lead to a chronic inflammation of muscle 

(Mantegazza et al., 1993). An example on an autoimmune attack that targets different organs like the 

joints, heart, kidneys, liver, lung and skin, Systemic lupus erythematosus (SLE), might be mediated by 

anti-DNA antibodies (Diamond et al., 1992). So far, the loss of immune tolerance leading to 

autoimmune diseases and the underlying immunopathogenesis are not well understood. 

1.6 Multiple Sclerosis 

Multiple sclerosis is a chronic inflammatory disorder of the CNS. Its hallmarks are demyelination in 

the CNS, oligoclonal bands in the CSF, and the infiltration of T cells in the brain parenchyma. After 

entering the CNS from the peripheral circulation via a disrupted blood-brain barrier (BBB), the T cells 

will induce an inflammatory cascade that results in the infiltration of immune cells, multifocal 

inflammatory demyelination, and axonal loss (Hohlfeld et al., 2016). Such inflammatory episodes 

occur with unpredictable intervals usually last days to months. Relapses and remissions may happen 

during the patient’s whole lifetime. The disease was firstly systematically defined by French 

neurologist Jean-Martin Charcot in the late 19
th
 century (Compston, 1988). Charcot observed that the 

diagnosis of MS requires the presence of multiple white-matter lesions disseminated in CNS. Based on 

an investigation in 2013 (Global Burden of Disease Study, 2015), about 2.3 million of people in 

different regions around the world are still suffered from MS. About 20,000 people died from MS in 

that year compared to 12,000 in 1990. Moreover, MS patients are mainly diagnosed the limit time at 

age 20 to 50, and the incidence rate is twice as high in women as in men (Milo and Kahana, 2010). 
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Currently there are many ways to diagnose the autoimmune diseases, such as magnetic resonance 

imaging (MRI), CSF analysis, and the recording of evoked potentials (Brownlee et al., 2017). In the 

diagnosis of MS, increased secretion of intrathecal IgG and its distribution as “oligoclonal bands 

(OCB)” in the CNS are considered the most significant immunological hallmarks for MS patients 

(Stangel et al., 2013; Awad et al., 2010). There might be unknown antigens persisting in the CSF, 

which are recognized by MS-related B cells. 

According to the clinical diagnosis, the conventional types of MS patterns are categorized in Figure 

1-3, which include relapsing-remitting (RR) MS, secondary progressive (SP) MS, primary progressive 

(PP) MS, and progressive relapsing (PR) MS (Lublin, 2014). In addition, some patients, who have 

preclinical MS but may not be examined with a clinical attack by MRI, will experience the clinical 

attack within five years (Callan et al., 2000; Compston and Coles, 2008). This specific pattern is 

classified as a “radiologically isolated syndrome” (RIS). The identification for oligoclonal bands of 

IgG in the CSF of patient with a “clinically isolated syndrome” (CIS) doubles the risk of progression 

to MS independent of MRI analysis (Marcus and Waubant, 2013). 

Several treatments especially for MS, are developed, including immunomodulating therapies specific 

to autoreactive T and B lymphocytes (Dornmair et al., 2003; Hohlfeld et al., 2008), stem cell 

transplantation (Uccelli and Mancardi, 2010), anti-inflammatory drugs (Babij and Perumal, 2015), 

hormonal regulation (Deckx et al., 2013) and vitamin D (Ascherio et al., 2014; Munger et al., 2004). 

However, some aggressive treatments have the unknown risks for MS patients, which need more 

experimental evidences with long-term follow-up (Comi et al., 2017; Way and Popko, 2016). 
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Figure 1-3: Overview of the progress and diagnosis of MS 

Diagnosis of MS with MRI displays the difference between healthy and infected brains. (B) Four disease courses have been 

identified in MS: clinically isolated syndrome (CIS), relapsing-remitting MS (RRMS), primary progressive MS (PPMS) and 

secondary progressive MS (SPMS), according to International Advisory Committee on Clinical Trials of MS in 2013. (The 

source of MRI pictures came from the website: http://spinms.ca/; and the defining the clinical course of MS was adapted 

from Lublin et al., 2014) 

1.6.1 Pathology and Etiology 

During the progress of MS, demyelination is a significant diagnostic criterion to determine an MS 

lesion, which is not only excluded in the white matter but also extended to the gray matter, particularly 

in the cortex (Hohlfeld and Wekerle, 2001). Except for demyelination, many somatic immune cells, 

such as lymphocytes, macrophages, plasma cells and mononuclear cells are accumulated in the 

perivascular spaces of medium-sized or small veins within a MS plaque (Lassmann et al., 2001). 

However, the symptoms of MS are variable among different lesions of the same patient as well as 

different patients. An autoimmune-mediated pathomechanism is indeed involved in the progress of 

MS (Hohlfeld and Dornmair, 2007). Effective therapeutic tools are developed based on the immune 

mechanisms of inflammation, demyelination, or remyelination. However, whether the interaction of 

genetic background and unknown environmental factors will affect the development of MS is still 

uncertain (Oksenberg et al., 2001; Sawcer et al., 2014). 
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1.6.2 The Dominant Role of T lymphocytes in MS 

The demyelinated plaque is a pathological hallmark of focal white-matter lesions in MS patients. It is 

characterized by immune cell infiltration. The infiltrates may be composed of T and B lymphocytes as 

well as macrophages. Moreover, these presumably autoreactive T cells may persist in the blood of MS 

patient for many years (Skulina et al., 2004). In the T-cell subsets, CD4
+
 T cells are considered to play 

a role in the immunopathogenesis of MS (Bielekova et al., 2004). However, more evidences indicate 

CD8
+
 T cells might be the main subpopulation within the CNS lesions of MS patients (Friese and 

Fugger, 2009). These CD8
+
 T cells are clonally expanded in the brain lesions and in CSF (Babbe et al., 

2000; Skulina et al., 2004). One study evaluated that the proportion of CD8
+
 T cells ranges from 60% 

in active lesions to more than 85% in its onset of active lesions or inactive plaques (Berthelot et al., 

2008; Junker et al., 2007). The presiding T and B cells are still massively outnumbered in the 

demyelinated patches by macrophages and microglia cells. However, the molecular mechanism of T 

cells in the underlying immunopathogenesis of MS is not well understood. 

1.6.3 Mucosal Associated Invariant T Cells (MAITs) and MS 

Human Mucosal-associated invariant T cells (MAITs) are innate-like T-cells that are abundant and 

comprising 10% of the CD8
+
 T-cell compartment in blood (Le Bourhis et al., 2011). MAITs are 

distinguished by a specific expression of a semi-invariant TCR (Vα7.2-Jα33/12/20) and restricted by 

the evolutionarily conserved MHC Class I related protein (MR1) (Huang et al., 2005). Recent 

evidence indicates that MAITs might recognize a newly identified class of antigens termed as vitamin 

B metabolites existing in most bacteria and yeasts (Kjer-Nielsen et al., 2012; Milo and Kahana, 2010; 

Pellkofer et al., 2009). Except for the bacteria-derived ligand, MAITs can also be activated by Ki67 

antigen involved in the inflammatory bowel diseases (Serriari et al., 2014). Although MAITs are 

developing into the significant players in human immune system, the role of MAIT cells is unapparent 

so far. The specific antigens recognized by MAITs still need to be investigated. 
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The connection of MAITs and MS is initially demonstrated by Illes et al., that T populations possessed 

TCR AV7.2-AJ33 have infiltrated in CNS lesions from MS patients as well as in the peripheral 

nervous system from a patient with chronic inflammatory demyelinating polyneuropathy (CIDP) (Illes 

et al., 2004). With the development of MS, the number of MAIT cells in the peripheral blood of MS 

patients is reduced, especially during the remission and relapse stage of MS (Miyazaki et al., 2011). 

MAIT cells might be related to the immunopathogenesis of MS. In a previous study (Held et al., 

2015), four TCRs are characterized from the brain biopsy of an MS patient, which are consisted of the 

identical TCR β-chain (Vβ1-Jβ2.3) and four similar TCR α-chains (Figure 1-3). The four α chains 

contain the common Vα7.2 region but different Jα regions (Jα16, Jα 33, Jα 24, and Jα58) as well as the 

various sequences covering the CDR3 region. One MS-derived TCR (Vβ1Jβ2.3-Vα7.2Jα33), which 

carries the typical MAIT TCR (Porcelli et al., 1993; Tilloy et al., 1999), is clonally expanded in the 

brain of MS patient. The other three α chains are homologous at the peptide level, but they are not 

carrying the canonical region of MAIT α-chain (Va7.2-Ja33). During the investigation of TCR Vβ1
+
 

T-cell population in active brain lesions of MS patients, they are more related to Vα7.2
+
 α-chains with 

different Jα regions (Held et al., 2015). Although these T cells show MAIT cell-related features, there 

is no direct evidence to tell they are MAIT-cell subset or hypervariable CD8
+
 T-cell repertoire. 

 

Figure 1-4: Sequences of paired T-cell receptor (TCR) α- and β-chains derived from MS patient 

(A) Identical TCR β-chain (Vβ1-Jβ2.3) is identified in the active brain lesion and peripheral blood of MS patient. (B) Four 

homologous TCR α-chains correspond to the same TCR β-chain. Except one α-chain (Vα7.2-Jα16) is expanded in the 

peripheral blood, the rest three TCR (Vα7.2-Jα58, Vα7.2-Jα33, and Vα7.2-Jα24) are detected in the early active brain lesion. 

All TCR α-chains contain the identical V-region but different J-region as well as similar CDR3 region (in the green frame) 

where sequence homologies are found (in the yellow frame). The conserved region of each J segment is underlined. 

(Modified from Held et al., 2015) 
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1.7 Identification of Autoreactive T Cells in MS 

Autoreactive T cells play a crucial role in the immunopathogenesis of MS. Identification of these T 

cells might help us to better understand the pathogenic and possible protective mechanisms involved 

in the development of MS. Except for the classification of the T sub-populations by the glycoproteins 

(CD4/CD8) on the cell surface and the cytokines (IL-2, IL-4, IL-17, and TNF-γ), the T cells can be 

characterized by the presence of an antigen-specific TCR on the cell surface. Obviously, the clonally 

expanded TCRs or monoclonal TCRs are most interesting for the investigation of the 

immunopathogenesis of T cell-mediated autoimmune diseases. However, because of the short survival 

of live T cells in vitro (Dooms and Abbas, 2002), the research in this direction has been hindered for 

many years. It is urgent to find a way to distinguish relevant clones from an oligoclonal background in 

vivo (Hofbauer et al., 2003; Matsumoto et al., 2003) and the entire repertoire (~10
15

) of all possible αβ-

TCR heterodimers (Davis and Bjorkman, 1988). 

The early studies mainly focus on the analysis of the whole repertoire of TCR β-chain either by 

restriction fragment length polymorphisms (RFLP) (Beall et al., 1989; Biddison et al., 1989) or by 

reverse transcription of RNA from brain biopsy of MS patients (Wucherpfennig et al., 1992). 

However, these methods are not suited for distinguishing paired TCR clones of autoreactive T cells 

from the bystander cells. Moreover, an in situ oligoclonal expanded T cell clone within a biopsy 

sample can be detected by CDR3-spectratyping analysis (Pannetier et al., 1995), which indicates that 

characterization of the disease-related TCR β-chains from clonally expanded T cells is available. 

Recently, monoclonal antibodies are produced to recognize particular variable regions of TCR β-

chains (such as Vβ1, Vβ5, and Vβ13), which are used to detect the certain T cells in biopsy samples 

by immunofluorescence staining. By combining CDR3 spectratyping with immunofluorescence 

staining method, single T cells of interest are isolated by laser capture microdissection (LCM). 

Subsequently, the matched TCR α- and β-chains from these single T cells are characterized by 

clonally specific PCRs (Seitz et al., 2006). In addition, to identify the clonally expanded TCR α- and 
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β-chains for the autoreactive T cells of MS patients, next generation sequencing (NGS) is more 

efficient than CDR3-spectratyping on bulk T cell populations (Gerdes et al., 2016; Held et al., 2015). 

However, many commercial antibodies to certain Vβ-regions are unavailable. Therefore, the entire 

TCR β-chain repertoire can not be analyzed. Moreover, because TCR α-chain genes are more variable 

than β-chain genes (Lefranc and Lefranc, 2001), and because very rarely anti-α-chain antibodies are 

available for immunofluorescence staining (Dornmair et al., 2009), detection of TCR α-chains had 

been more difficult than β-chains. Thus, an “unbiased approach” was established to overcome this 

obstacle (Seitz et al., 2006). This approach was based on firstly detecting the V element of the β chain 

by an antibody, secondly amplifying the entire VnDnJ region of β chain by multiplex RT-PCR using a 

Vβ specific primer, and thirdly amplifying the corresponding α chain using a set of α-chain primers 

that cover the entire α repertoire. Later, a primer-set was developed that could determine the matched 

TCR αβ-chains from any single T cell of interest without prior knowledge of their particular TRAV or 

TRBV usage (Kim et al., 2012). The activated T cells accumulate in the distinct lesions of MS brain, 

which are possibly considered autoreactive T cells. These T cells of interest could be detected by the 

commercial antibodies against a common T cell marker and an activation marker, which might have a 

close contact to an APC or target cell. 

1.8 Characterization of Specific Antigens of TCR in MS 

The identification of antigenic peptides derived from the processing of antigenic protein is an essential 

step in understanding the pathogenesis of such diverse processes as the response to infectious agents, 

and the immune surveillance of cancer as well as autoimmune diseases. So far, several approaches 

were developed to determine the possible antigens of TCRs. The recognition of candidate antigens, 

such as viruses, experimental autoimmune encephalomyelitis (EAE)-related glycoproteins (e.g., 

Myelin basic protein and Myelin basic protein), could be tested (Hohlfeld et al., 2015; Hohlfeld et al., 

2016). A report indicates that soluble TCR molecules may recognize the randomized peptide libraries 

expressed by insect cells (Crawford et al., 2006). However, this approach is limited by the low affinity 
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of TCRs to their MHC-peptide complex and by rare appropriate HLA-matched APCs from MS 

patients. Another approach is to use the patient-derived full-length complementary DNA (cDNA) 

libraries to identify the potential antigens from tumors (Boon et al., 2006; Van Der Bruggen et al., 

2002; Wong et al., 1999). However, the cDNA library should contain the full-length in-frame cDNA 

originated from affected tissue, which is not always available in vitro. Besides, correct antigen 

processing machinery is necessary for the screening of cDNA library (Vyas et al., 2008). Moreover, 

using the ‘motif-recognition’ properties of TCR molecules, synthetic combinatorial peptide libraries 

were established to screen the antigenic peptide in quantitative terms (Zhao et al., 2001). In the 

chronic Lyme disease, a report indicates that the potentially relevant antigens are recognized both by 

CD4
+
 T cells from the host and by Borrelia burgdorferi (Hemmer et al., 1999). Nevertheless, the 

antigenic peptide is highly diluted by many irrelevant bystander peptides in the library and incapable 

of recovery by cloning. Because of these reasons, very rarely specific antigens of human T cells have 

been characterized so far. 

Therefore, a new strategy was developed to overcome the requirement for accurate antigen processing. 

This approach is based on the plasmid-encoded combinatorial peptide libraries (PECP), through which 

mimotopes might be identified (Siewert et al., 2012). The schematic overview of this antigen search 

technology is illustrated in Figure 1-5. In detail, COS-7 cells served as APCs are co-transfected with 

plasmids encoding the patient’s HLA class I alleles and the plasmids coding PECP libraries consisted 

of short peptides with random sequences but defined lengths. Simultaneously, 58
-/- 

T hybridoma cells, 

a variant cell line of the DO-11.10.7 mouse T hybridoma that does not express TCR α/β chains 

(Letourneur and Malissen, 1989), are used to generate the functional T cells which can express the 

putatively disease-related TCR, human CD8, and green fluorescent protein (sGFP) under the control 

of the NFAT promoter. After the co-culturing of T hybridoma cells together with transfected COS-7 

cells, the activated T hybridoma cells will turn to green under the fluorescence microscope, and the 

underlying positive APC can be isolated by micromanipulation. One problem is that some 58 cells turn 

green spontaneously for unknown reasons (Section 3.5.2 and 4.5.1). Due to spontaneous Ca
2+

 influx, 
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the spontaneous activation is observed in T cells (Kawakami, 2016). To minimize the spontaneous 

activation, T hybridoma cell clones that show minimal activation spontaneously should be selected by 

sub-cloning. Moreover, these cells should be in good condition during antigen search experiments 

(Section 4.5.1). Subsequently, the potential antigen-coding plasmid will be identifed by subcloning 

with several rounds of plasmids enrichment by E.coli culture (Siewert et al., 2012). 

 

Figure 1-5: Overview of an approach for antigen identification from putatively disease-related 

TCR molecules 

The experimental strategy is based on the PECP library (multi-colored lines) that is con-transfected with appropriate HLA 

molecule (MHC class I, orange) into COS-7 as an APC. With the help of large T antigen on the plasmids, intracellular 

plasmids are amplified and candidate antigen (pMHC complexes) is presented on the surface of COS-7 cell. At the same 

time, TCR-deficient mouse T hybridoma cells 58-/- cell as a detector is stably transfected with plasmids coding for a 

putatively disease-related TCR (α-chain: red; β-chain: blue) and human CD8 molecule (α-chain: magenta; β-chain: yellow) as 

well as sGFP reporter protein under the control of the NFAT promoter (purple). Once the TCR binds the correct antigenic 

peptide (multi-color) presented by the suitable MHC molecules, the T hybridoma cells will be activated and fluorescent green 

and the underlying APC will be isolated with the help of a capillary, which is then employed for the recovery of antigen 

coding plasmids. (Modified from Siewert et al., 2012) 
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1.9 Objectives 

Although high numbers of CD8
+
 T cells are infiltrating the brain lesions and give a great risk to 

proliferate into clonally expanded sub-populations, the identity and the mimicry reaction of CD8
+
 T 

cells involved in the immunopathogenesis of MS are still not known. Recent evidence indicates the 

predomination of brain-infiltrating CD8
+
 T cells over the other immune cells such as CD4

+
 T cells and 

macrophages in MS lesions (Babbe et al., 2000). Moreover, it is also of interest to determine their 

target cells in MS lesions, which might help us to understand the antigen presenting process and the 

recognition of autoantigens by the autoreactive CD8
+
 T cells. To characterize the clonally expanded 

CD8
+
 T cells and their presumed antigenic mimotopes from MS patients, six objectives will be 

accomplished in the thesis as followed: 

i. Immunolocalization of immune cells infiltrated in the active brain lesions of MS patients; 

ii. Identification of single activated CD8
+
 T cells in the active brain lesions of MS patients, and 

the cells interacting with those CD8
+
 T cells; 

iii. Microdissection of these single T cells with sufficient RNA preservation; 

iv. Optimization of the “unbiased method” to obtain the high yield of paired αβ-TCRs from these 

T cells; 

v. Application of the improved protocol for the single T cell analysis on clonally expanded T 

cells from brain and CSF samples of MS patients; 

vi. Searching for antigenic peptides of certain TCR molecules by screening of unbiased plasmid 

encoded peptide libraries. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Devices 

Table 2-1 presents the devices used for the experiments. 

Table 2-1: List of devices 

Name Model Company 

Bacteria shaker  Innova® 44 New Brunswick Scientific 

Centrifuge 

 

 

 

Avanti® JXN-26 

Centrifuge 5417 R 

Heraeus® Multifuge X3R 

Optima L-90K 

Beckman Coulter 

Eppendorf 

Thermo Fisher Scientific 

Beckman Coulter 

Class 2 microbiological safety 

cabinet 

FlowSafe® B-[MaxPro]²- 130/160 Berner 

CO2 Incubator Galaxy® 170 S/R New Brunswick Scientific 

Cryostat CM3050 S Leica System 

Electroporator Gene Pulser Bio-Rad 

Flow Cytometer FACS Calibur Becton Dickinson 

Fridge and Freezer 

 

 

 

 

 

KP 3120 Comfort 

TP 1410 Comfort 

GNP 1066 Premium NoFrost 

GNP 3013 Comfort NoFrost 

HERAfreeze® HFU T Series -86°C 

Innova® U725 Upright -86°C 

Liebherr 

Liebherr 

Liebherr 

Liebherr 

Thermo Fisher Scientific 

New Brunswick Scientific 

Gel Documentation AlphaImage DE500 Alpha Innotech 

Gel Electrophoresis Power supply: LKB ECPS Pharmacia 

Microbiological Incubators BD 115 Binder 

Microscopes and accessories 

 

 

 

 

 

Axioplan 2 

AxioVert 25 

AxioVert 200M 

Robo-Mover 

Microinjector CellTram Vario 

Micromanipulator LN25 Mini 

Zeiss 

 

 

P.A.L.M. Microlaser Technologies 

Eppendorf 

Luigs und Neumann 

4D-Nucleofector™ X unit AAF-1002X lonza 

PCR Cyclers 

 

 

GeneAmp PCR System 9600 

Mastercycler® Gradient Thermal Cycler 

Mastercycler® pro 

TC-E-48DA 

Perkin Elmer 

Eppendorf 

 

Genetouch 

pH-meter S20 SevenEasy™ pH Mettler Toledo 

RNA Quality Analysis 2100 Bioanalyzer Agilent 

Spectrophotometers 

 

Nanodrop ND-2000 

UV-1600PC 

Thermo Fisher Scientific 

VWR 

Thermomixer Comfort 25436 Eppendorf 

Water Bath Incubation 1002-1013 GFL 

Water Purification System Milli-Q® Reference Millipore 
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2.1.2 Consumables and Chemicals 

The general consumables, such as pipette tips, centrifugation tubes, graduated pipettes and cell culture 

materials, were purchased from the Biozym, BD Falcon, Nunc, and Corning, respectively. The sterile 

DNase/RNase-free centrifugation tubes and polypropylene pipette tips were bought from Biozym. 

They are particular to minimize the adsorption of nucleic acids and proteins. Unless otherwise 

mentioned, all the chemicals were obtained from companies BD Falcon or Sigma-Aldrich. 

2.1.3 Chemical kits and specific reagents 

Table 2-2 presents the chemical kits and specific reagents used for the experiments. 

Table 2-2: List of chemical kits and specific reagents 

Name Company Application 

Agilent RNA 6000 Pico Kit Agilent RNA quality analysis 

Amersham Cy3 mAb Labelling Kit GE Healthcare Antibody label 

Anti-Mouse IgG2a+b MicroBeads Kit MACS Cell isolation 

Anti-PE MicroBeads UltraPure Kit MACS Cell isolation 

Bovine Serum Albumin solution Sigma-Aldrich A blocking agent 

CD3 Microbeads Kit MACS Cell isolation 

DAPI Sigma-Aldrich Nucleic acid staining 

dNTP (10 mM each) Qiagen PCR 

FuGENE® HD Transfection Reagent Promega Plasmid transfection 

Glycogen (20 mg/ml) Roche Precipitation of nucleic acids 

Hispeed Plasmid Maxi Kit Qiagen Plasmid purification from Bacteria 

HistoGene™ LCM Immunofluorescence Staining Kit Arcturus IHC 

iProof™ High-Fidelity Master Mix (2×) Bio-Rad Plasmid recovery PCR 

MiniElute® Gel Extraction Kit Qiagen DNA purification from agarose gels 

OneStep RT-PCR Kit Qiagen Single cell PCR 

Pan T Cell Isolation Kit MACS Cell isolation 

pcDNA3.1™ Directional TOPO® Expression Vector Kit Invitrogen Cloning of PCR products 

PCR Buffer (10×) Roche PCR 

Pellet Paint® Co-Precipitant Millipore DNA precipitation 

peqGOLD 50 bp DNA-ladder Peqlab DNA ruler 

peqGREEN DNA/RNA dye Peqlab Dye of Nucleic Acid 

PicoPure™ RNA Isolation Kit Life Technologies RNA purification 

Propidium iodide Sigma-Aldrich Staining of dead cell 

Protector RNase Inhibitor Roche Single cell PCR 

Protein Block Serum-Free Dako IHC 

QIAprep® Spin Miniprep Kit Qiagen Plasmid isolation 

QIAquick® Gel Extraction Kit Qiagen DNA purification from agarose gels 

QIAquick® PCR Purification Kit Qiagen PCR products purification 

Random Primers Invitrogen RT-PCR 

RNase OUT™ Recombinant Ribonuclease Inhibitor Invitrogen Single cell PCR 

RNeasy® Mini Kit Qiagen RNA purification 

Sodium Acetate (3 M, pH=5.2) Millipore DNA precipitation 

Taq-DNA-Polymerase (5 U/μl) Roche Single cell PCR 

TOPO TA Cloning® Kit Life Technologies Cloning of PCR products 

ToPro®-3 Iodide 642/661 (1 mM) Invitrogen Staining of dead cell 

TRIzol® RNA Isolation Reagents Invitrogen Isolation of total RNA 

Trypan Blue solution (0.4%) Sigma-Aldrich Staining of dead cell 

Trypsin-EDTA solution Sigma-Aldrich Trypsinization of Adherent cells 
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2.1.4 Buffers, Mediums, and Solutions 

Table 2-3 shows the buffers, medium and solutions used for the experiments. 

Table 2-3: List of buffers, medium, and solutions 

Name Chemical composition 

Cell freezing medium 10% (v/v) DMSO 

FBS Superior 

DNA loading buffer (6×) 30% (v/v)  

0.25% (w/v)  

0.25% (w/v)  

Glycerol 

Bromophenol blue 

Xylene cyanol FF 

DEPC treated water Dissolve 0.1% diethylpyrocarbonate (DEPC) in H2O; incubate at room temperature 

overnight, autoclave. 

FACS buffer 1% (v/v)  FBS Superior 

PBS (1×, pH=7.4) 

LBamp medium (pH=7.0) 1% (w/v) 

1% (w/v) 

0.5% (w/v) 

5 N 

0.14 mM 

NaCl 

Tryptone 

Yeast extract 

NaOH (adjust the pH) 

Ampicillin 

RNase-free H2O 

LBamp plate 1.5% (w/v) 

0.14 mM 

Bacto agar 

Ampicillin  

LB medium (pH=7.0) 

MACS buffer 0.5% 

2 mM 

Bovine Serum Albumin (BSA) 

EDTA (disodium salt) 

PBS (1×, pH=7.2) 

PBS buffer (10×, pH=7.4) 1.37 M 

27 mM 

100 mM 

18 mM 

NaCl 

KCl 

Na2HPO4 

KH2PO4 

RNase-free H2O 

S.O.C. Medium 2% 

0.5% 

10 mM 

2.5 mM 

10 mM 

10 mM 

20 mM 

Tryptone 

Yeast Extract 

NaCl 

KCl 

MgCl2 

MgSO4 

Glucose 

TBE electrophoresis buffer (10×) 1 M 

1 M 

0.02 M 

Tris base 

Boric acid 

EDTA (disodium salt) 

RNase-free H2O 

Tissue blocking buffer 1% (w/v) 

0.1% (w/v) 

0.5% (w/v) 

0.05% (w/v) 

0.01 M 

BSA 

Cold fish skin gelatin 

Triton X-100 

Sodium aside 

PBS (1×, pH=7.4) 

Trypan Blue solution (0.04%) 10% (v/v) Trypan Blue solution (0.4%) 

PBS (1×, pH=7.4) 

RPMI-1640/complete 500 ml 

10% (v/v) 

100 U/ml 

100 µg/ml 

1 mM 

2 mM 

1× 

RPMI-1640 Medium 

FBS Superior 

Penicillin (10,000 U/ml) 

Streptomycin (10,000 µg/ml) 

Sodium Pyruvate (100 mM) 

L-Glutamine 

MEM Non-essential Amino Acid Solution (100×) 
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2.1.5 Primers 

All the primers used in this thesis were synthesized and HPLC-purified by Metabion. The final 

concentration of them is 100 μM. Primers designated with “for” (forward primer) elongate the coding 

strand and primers designated with “rev” (reverse primer) extend the non-coding strand of DNA. The 

appendages “out” or “in” refer to the position of primers in nested PCRs. To avoid cross-

contaminations, we separated the primers in small volume aliquots and stored them at -20°C. Table 2-

4 to 2-8 present the nucleotide sequences of primers and their specificity. The primers designed for the 

variable regions of the TCR α- and β-chains are named according to the Arden nomenclature (Arden et 

al., 1995). The reverse primers (Cβ-mid3 and Cβ-mid4) and the anchor primers (UPnew, VP1
+

new to 

VP9
+

new) are newly designed during the thesis, but all the rest primers were created by Katherina 

Siewert, Sabine Seitz, and Song-Min Kim (Kim et al., 2012; Seitz et al., 2006; Siewert et al., 2012). 

Primer “UPnew” is modified from primer “UP” without the first two nucleotides, and primers “VP1
+

new 

to VP9
+

new” are designed to add the new anchor primer “UPnew” to 5-end of primers “VP1 to VP9”. 

The formula                  is used to calculate melting temperature (Tm) of all 

oligonucleotide primers mentioned in the thesis. 

Table 2-4: Primers used for reverse transcription (RT) reaction of single T cells 

The first three reverse primers were designed by Sabine Seitz (Seitz et al., 2006) and the latter two primers were created by 

Song-Min Kim (Kim et al., 2012). 

Name Specificity Nucleotide sequence (5’3’) 

Cα-RT-imp Cα GCCACAGCACTGTTGC 

Cβ-RT Cβ GAAGAAGCCTGTGGCC 

Cβ-RT-2 Cβ GWAGAAGCCTGTGGCC 

Cα-out Cα GCAGACAGACTTGTCACTGG 

Cβ-out Cβ TGGTCGGGGWAGAAGCCTGTG 
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Table 2-5: Primers used for specific amplification of TCR β-chain of single T cells 

All primers VP1 to VP9 are synthesized with an “UPnew” sequence at their 5’-end (termed as VP1+ to VP9+). Nucleotides 

exchanges (underlined) are introduced here to avoid primer interactions. Degenerate primers contain bold red letters to 

indicate nucleotide exchanges. VP1 to VP9, Cβ-in and anchor primer (UP) were designed by Song-Min Kim (Kim et al., 

2012). 

Name Vβ specificity Nucleotide sequence (5’3’) 

VP1 1, 5, 16, 17, 23 TSYTTTGTCTCCTGGGAGCA 

VP2 22, 25 CCTGAAGTCGCCCAGACTCC 

VP3 18, 24 GTCATSCAGAACCCAAGAYACC 

VP4 2, 4 GGWTATCTGTMAGMGTGGAACCTC 

VP5 3, 11, 12, 13,  ATGTACTGGTATCGACAAGAYC 

 14, 15  

VP6 20 CACTGTGGAAGGAACATCAAACC 

VP7 6, 8, 21 TCTCCACTCTSAAGATCCAGC 

VP8 6 CAGRATGTARATYTCAGGTGTGATCC 

VP9 7, 9 CCAGACWCCAARAYACCTGGTCA 

VP1+
new  AGCACGACTTCCAAGACTCACYTTTGTCTCCTGGGAGCA 

VP2+
new  AGCACGACTTCCAAGACTCACCTGATGTCGCCCAGACTCC 

VP3+
new  AGCACGACTTCCAAGACTCAGTCATSCAGAACCCAAGAYACC 

VP4+
new  AGCACGACTTCCAAGACTCAGGWTATCTGTMAGMGTGGAACCTC 

VP5+
new  AGCACGACTTCCAAGACTCAATGTACTGGTATCGACAAGAYC 

VP6+
new  AGCACGACTTCCAAGACTCACACTGTGGAAGGAACATCAAACC 

VP7+
new  AGCACGACTTCCAAGACTCATCTCCACTCTSAAGATCCAGC 

VP8+
new  AGCACGACTTCCAAGACTCACAGRATGTARATYTCAGGTGTGATCC 

VP9+
new  AGCACGACTTCCAAGACTCATCAGACWCCAARAYACCTGGTCA 

UP  ACAGCACGACTTCCAAGACTCA 

UPnew  AGCACGACTTCCAAGACTCA 

Cβ-mid3 Cβ TGTGGCCTTTTGGGTGTGG 

Cβ-mid4 Cβ TGGGTGTGGGAGATCTCTG 

Cβ-in Cβ TCTGATGGCTCAAACACAGC 

 

Table 2-6: Primers used for pre-amplification of TCR α-chain of single T cells 

Degenerate primers contain bold red letters to indicate nucleotide exchanges. All the forward primers for TCR α-chain were 

designed by Sabine Seitz (Seitz et al., 2006). 

Name Vα specificity Nucleotide sequence (5’3’) 

Vα-114-for-out 1.1, 1.4 AGSAGCCTCACTGGAGTTG 

Vα-1235-for-out 1.2, 1.3, 1.5 CTGAGGTGCAACTACTCATC 

Vα-2-for-out 2.1, 2.2, 2.3 CARTGTTCCAGAGGGAGCC 

Vα-3,25-for-out 3.1, 25.1 GAARATGYCWCCATGAACTGC 

Vα-4,20-for-out 4.1, 4.2, 20.1 WTGCTAAGACCACCCAGCC 

Vα-5-for-out 5.1 AGATAGAACAGAATTCCGAGG 

Vα-6,14-for-out 6.1, 14.1, 14.2 RYTGCACATATGACACCAGTG 

Vα-7-for-out 7.1, 7.2 CACGTACCAGACATCTGGG 

Vα-8,21-for-out 8.1, 8.2, 21.1 CCTGAGYGTCCAGGARGG 

Vα-9-for-out 9.1 GTGCAACTATTCCTATTCTGG 

Vα-10,24-for-out 10.1, 24.1 ASTGGAGCAGAGYCCTCAG 

Vα-11-for-out 11.1 TCTTCAGAGGGAGCTGTGG 

Vα-12-for-out 12.1 GGTGGAGAAGGAGGATGTG 

Vα-13,19,26-for-out 13.1, 19.1, 24.1, 26.1 SAASTGGAGCAGAGTCCTC 

Vα-15-for-out 15.1 CCTGAGTGTCCGAGAGGG 

Vα-16-for-out 16.1 ATGCACCTATTCAGTCTCTGG 

Vα-17-for-out 17.1 TGATAGTCCAGAAAGGAGGG 

Vα-18-for-out 18.1 GTCACTGCATGTTCAGGAGG 

Vα-22,31-for-out 22.1, 31.1 CCCTWCCCTTTTCTGGTATG 

Vα-23,30-for-out 23.1, 30.1 GGCARGAYCCTGGGAAAGG 

Vα-27-for-out 27.1 CTGTTCCTGAGCATGCAGG 

Vα-28-for-out 28.1 AGACAAGGTGGTACAAAGCC 
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Vα-29-for-out 29.1 CAACCAGTGCAGAGTCCTC 

Vα-32-for-out 32.1 GCATGTACAAGAAGGAGAGG 

 

Table 2-7: Primers used for the specific amplification of TCR α-chain of single T cell 

All the forward primers for TCR α-chain were created by Sabine Seitz (Seitz et al., 2006). 

 Name Vα specificity Nucleotide sequence (5’3’) 

 Cα-rev-in Cα AGTCTCTCAGCTGGTACACG 

SET1 Vα-4/1-for-in 4.1 ACAGAAGACAGAAAGTCCAGC 

Vα-4/2-for-in 4.2 GTCCAGTACCTTGATCCTGC 

Vα-6-for-in  6.1 GCAAAATGCAACAGAAGGTCG 

Vα-8/1-for-in  8.1 CAGTGCCTCAAACTACTTCC 

Vα-8/2-for-in  8.2 GCCTCAGACTACTTCATTTGG 

Vα-14-for-in  14.1, 14.2 ACAGAATGCAACGGAGAATCG 

Vα-24-for-in  24.1 CCTTCAGCAACTTAAGGTGG  

Vα-28-for-in  28.1 TCTCTGGTTGTCCACGAGG  

SET2 Vα-2/1-for-in 2.1, 2.3 TGGAAGGTTTACAGCACAGC 

Vα-2/2-for-in 2.2 TGGAAGGTTTACAGCACAGG 

Vα-5-for-in  5.1 CAGCATACTTACAGTGGTACC 

Vα-10-for-in  10.1 TCACTGTGTACTGCAACTCC 

Vα-12-for-in  12.1 TACAAGCAACCACCAAGTGG 

Vα-22-for-in  22.1 AGGCTGATGACAAGGGAAGC 

Vα-31-for-in  31.1 GTGGAATACCCCAGCAAACC 

SET3 Vα-7-for-in  7.1, 7.2 CTCCAGATGAAAGACTCTGC 

Vα-13-for-in  13.1 TTAAGCGCCACGACTGTCG 

Vα-17-for-in  17.1 CTGTGCTTATGAGAACACTGC 

Vα-18-for-in  18.1 CCTTACACTGGTACAGATGG 

Vα-21-for-in  21.1 TGCTGAAGGTCCTACATTCC 

Vα-23-for-in  23.1 GTGGAAGACTTAATGCCTCG 

Vα-32-for-in  32.1 TCACCACGTACTGCAATTCC 

SET4 Vα-3-for-in  3.1 TTCAGGTAGAGGCCTTGTCC  

Vα-11-for-in  11.1 AGGGACGATACAACATGACC  

Vα-15-for-in  15.1 CCTCCACCTACTTATACTGG  

Vα-19-for-in  19.1 CCTGCACATCACAGCCTCC  

Vα-25-for-in  25.1 AGACTGACTGCTCAGTTTGG  

Vα-26-for-in  26.1 CCTGCATATCACAGCCTCC  

Vα-29-for-in  29.1 ACTGCAGTTCCTCCAAGGC  

SET5 Vα-1/235-for-in  1.2, 1.3, 1.5 AAGGCATCAACGGTTTTGAGG  

Vα-1/14-for-in  1.1, 1.4 CTGAGGAAACCCTCTGTGC 

Vα-9-for-in  9.1 ATCTTTCCACCTGAAGAAACC  

Vα-16-for-in  16.1 TCCTTCCACCTGAAGAAACC  

Vα-20-for-in  20.1 ACGTGGTACCAACAGTTTCC  

Vα-27-for-in  27.1 ACTTCAGACAGACTGTATTGG  

Vα-30-for-in  30.1 CTCTTCACCCTGTATTCAGC  
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Table 2-8: Primers used for recovery of antigen-coding plasmids 

Nucleotides underlined are the insert site of pcDNA3.1D/V5-His-TOPO. All primers used for experiments were designed by 

Katherina Siewert (Siewert et al., 2012). 

Name Nucleotide sequence (5’3’) 

pcDNA-for-1 CACTGCTTACTGGCTTATCG 

pcDNA-for-2 CGACTCACTATAGGGAGACC 

pcDNA-2nd-for TCCGGCGCGCCACCATG 

pcDNA-2nd-for-TOPO CACCTCCGGCGCGCCACCATG 

pcDNA-rev-1 ACTAGAAGGCACAGTCGAGG 

pcDNA-rev-2 CTGATCAGCGGGTTTAAACTC 

pcDNA-rev-3 TGGTGATGGTGATGATGACC 

pcDNA-2nd-rev-10 CTAGACTCGAGCGGCCGC 

pHSE-res-for GGTTATTGTCTCATGAGCGG 

pHSE-res-rev AGCTGGCGTAATAGCGAAG 

2.1.6 Plasmids 

Table 2-9 lists the plasmids used for the experiments. 

Table 2-9: Plasmid constructions 

Plasmid Length 

Resistance 

Genes Application Resources 

pHSE3’-HLA-A*0101 9.2 kb AmpR, NeoR Expression of human HLA-A* 0101 in 

COS-7 cells 

Klaus Dornmair 

pHSE3’-HLA-A*0201 9.2 kb AmpR, NeoR Expression of human HLA-A* 0201 in 

COS-7 cells 

pHSE3’-HLA-B*0801 9.2 kb AmpR, NeoR Expression of human HLA-B* 0801 in 

COS-7 cells 

pHSE3’-HLA-C*0701 9.2 kb AmpR, NeoR Expression of human HLA-C* 0701 in 

COS-7 cells 

pHSE3’-hMR1 11.2 kb AmpR, NeoR Expression of human MR1 in COS-7 

cells 

pcDNA6/V5-HisA 5.1 kb AmpR, BlsR Backbone plasmid for truncated protein 

expression 

Invitrogen 

pcDNA6/V5-HisA-sGFP 5.9 kb AmpR, BlsR Expression of sGFP in COS-7 cells Katherina Siewert 

pcDNA6/V5-HisA-N27 lib 5.1 kb AmpR, BlsR PECP library, coding for random 

nonamer peptides 

Katherina Siewert 

pcDNA6/V5-HisA-A139 Lib 5.1 kb AmpR, BlsR PECP library, coding for nonamer 

peptides with I, V and L at the positions 

2, 6 and 9, respectively 

Katherina Siewert 

Latika Bhonsle 

pcDNA6/V5-HisA-A2269 Lib 5.1 kb AmpR, BlsR PECP library, coding for nonamer 

peptides with I, V and L at the positions 

2, 6 and 9, respectively 

Katherina Siewert 

pcDNA6/V5-HisA-B8359 Lib 5.1 kb AmpR, BlsR PECP library, coding for nonamer 

peptides with I, V and L at the positions 

2, 6 and 9, respectively 

Katherina Siewert 

Latika Bhonsle 

pcDNA6/V5-HisA-C79 Lib 5.1 kb AmpR, BlsR PECP library, coding for nonamer 

peptides with I, V and L at the positions 

2, 6 and 9, respectively 

Katherina Siewert 

Latika Bhonsle 

pcDNA™3.1D/V5-His-TOPO 5.5 kb AmpR, NeoR Recloning of peptides coded on PECP 

libraries for mimotope search 

Invitrogen 

pCR™ 2.1-TOPO® 3.9 kb AmpR, KanR Cloning of PCR products directly from a 

PCR reaction 

Invitrogen 
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2.1.7 Antibodies 

Table 2-10 to 2-11 present the antibodies for immunofluorescence staining and flow cytometers 

analysis, respectively. Unless there are special annotations, all antibodies listed in this thesis are 

directly against human antigens. 

Table 2-10: Antibodies employed for immunofluorescence staining 

×: non-specific staining detectable in human tissues. † The antibody is self-labeled with Cy3 mAb labeling kit (Bioscience), 

according to the manufacturer’s instructions. 

A. Primary antibodies 

Target antigen Clone (isotype) Working Concentration Company 

CD3ε Polyclonal (rabbit IgG) 1:500 Dako 

CD3ζ K25-407.69 (mouse IgG2a) 1:10 BD BioSciences 

CD8α† LT8 (mouse IgG1) 1:50-1:100 AbD serotec 

SK1 (mouse IgG1) 1:50 BD BioSciences 

CD8β 5F2 (mouse IgG1) 1:20-1:50 Santa cruz 

2ST8.5H7 (mouse IgG2a) 1:50-1:100 BD BioSciences 

F-5 (mouse IgG2a) × Santa cruz 

SIDI8BEE (mouse IgG1) × Ebioscience 

CD57 HNK-1 (mouse IgM) 1:50 Biolegend 

CD68 PG-M1 (mouse IgG3) 1:1 Dako 

EBM11 (mouse IgG1) 1:500 Dako 

KP1 (mouse IgG1) 1:200 Dako 

CD69 FN50 (mouse IgG1) 1:100 AbD serotec 

CD83 HB15e (mouse IgG1) 1:250 BD BioSciences 

CD134 443318 (rat IgG2a) 1:25 R&D 

7H163 (mouse IgG1) 1:100-1:200 Usbiological 

ACT35 (mouse IgG1) 1:5 BD BioSciences 

H-10 (mouse IgG2a) 1:50-1:200 Santa cruz  

W4-3 (rat IgG2a) 1:50-1:200 MBL 

CD137 Polyclonal (goat IgG) 1:200 RD 

BBK-2 (mouse IgG1) 1:200 Abcam 

ICAM-3 ICAM-3.3 (mouse IgG1) 1:500 R&D 

Vα7.2 3C10 (mouse IgG1) 1:15 Biolegend 

Vβ1 BL37.2 (rat IgG1) 1:25 Beckman coulter 

B. Secondary antibodies 

Target antigen Species Conjugation Company 

Goat IgG Rabbit Alexa Fluor® 488 Invitrogen 

Mouse IgG Goat Alexa Fluor® 488 Invitrogen 

Mouse IgG2a Goat Alexa Fluor® 488 Invitrogen 

Rabbit IgG Goat Alexa Fluor® 594 Invitrogen 

Rat IgG Goat Alexa Fluor® 488 Invitrogen 

Rat IgG Goat Cy3 Jackson ImmunoResearch 

α-FITC Goat Alexa Fluor® 488 Invitrogen 

C. Isotype controls 

Target antigen Clone Conjugation Company 

Mouse IgG1 X40 FITC BD BioSciences 

MOPC-21 PE BD BioSciences 

Rat IgG2a R35-95 PE BD BioSciences 

X39 FITC BD BioSciences 
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Table 2-11: Antibodies employed for flow cytometers 

† This is anti-mouse antibody. 

A. Primary antibodies 

Target antigen Clone (isotype) Conjugation Company 

mCD3ε† 145-2C11 (Armenian hamster IgG1) APC, FITC, PE BD BioSciences 

CD8α SK1 (mouse IgG1) APC, FITC BD BioSciences 

CD8β 2ST8.5H7 (mouse IgG2a) PE BD BioSciences 

Vβ1 BL37.2 (rat IgG1) FITC, PE Beckman coulter 

Vβ17 E17.5F3.15.13 (mouse IgG1) PE Beckman coulter 

Vα7.2 3C10 (mouse IgG1) APC, FITC Biolegend 

B. Isotype controls 

Anti- Clone (isotype) Conjugation Company 

Trinitrophenol (TNP) A19-3 (Armenian hamster IgG1) APC, FITC, PE BD BioSciences 

- MOPC-21 (mouse IgG1) APC, FITC, PE BD BioSciences 

Trinitrophenol (TNP) G155-178 (mouse IgG2a) PE BD BioSciences 

C. Fluorescence dyes for dead cells 

Name Stock solution Working concentration Company 

ToPro-3 1 mM in DMSO 1:6,000 Invitrogen 

Propidiumiodid 1 mg/ml in PBS 1:500 Sigma-Aldrich 

2.1.8 Eukaryotic Cell Lines and Escherichia coli Strains 

Table 2-12 presents the eukaryotic cell lines and the E.coli strains used in this thesis. 

Table 2-12: List of eukaryotic cell lines and E.coli strains 

Except for COS-7 cell line, all the other cell lines were generated in the lab of PD. Dr. Klaus Dornmair, and all E.coli strains 

were purchased from Invitrogen. † Colony forming units (cfu)/μg pUC19 plasmid. 

A. Eukaryotic cell lines 

Name Description  Reference 

COS-7 African green monkey kidney cell line, adherent, transformed with SV40, 

produces T antigen 

ATCC® CRL-1651™ 

COS-7-A2 COS-7 cells with stable expression of human HLA-A*0201 Klaus Dornmair, 

Katherina Siewert 

EBV-16488 EBV-transducted B cells derived from polymyositis patient 16488, stable 

expression of HLA-A2, HLA-A26, HLA-B8, HLA-B38, HLA-C7, HLA-

C12, suspended 

Klaus Dornmair 

EBV-17490 EBV-transduced B cells derived from polymyositis patient 17490, stable 

expression of HLA-A2, HLA-A3, HLA-B35, HLA-B40, HLA-C3, HLA-

C4, suspended  

Klaus Dornmair 

EBV-FE EBV-transducted B cells derived from MS patient FE, stable expression of 

HLA-A1, HLA-B8, HLA-C7, suspended 

Klaus Dornmair 

 

 

 

  

D. The dye for cell nuclei 

Name Stock solution Working concentration Company 

DAPI 5 mg/ml 10 µl in 50 ml 1× PBS solution ThermoFisher scientific 
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58α-β-  TCR deficient mouse T hybridoma recipient cell line, suspended Klaus Dornmair 

58-JM22 Derivative cell line from 58α-β-, stably expressing human Vα10.1-Jα42-

Vβ17Jβ2.7 TCR and human CD8 molecule, additionally expressing sGFP 

under the control of the NFAT promoter, suspended 

Klaus Dornmair 

   

58-FE-BV1-BJ2.3-

AV7.2-AJ24.2 

Derivative cell line from 58α-β-, stably expressing human Vα7.2-Jα24.2-

Vβ1Jβ2.3 TCR and human CD8 molecule, additionally expressing sGFP 

under the control of the NFAT promoter, suspended 

Klaus Dornmair, Latika 

Bhonsle, 

David Laplaud 

B. E.coli strains 

E.coli strains Genotype 

Transformation 

Efficiency† 

ElectroMAXTM 

DH10BTM T1 

Phage Resistant 

Cells 

F- mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 endA1 

araD139 Δ(ara, leu)7697 galU galK λ- rpsL nupG 

1×1010 

MAX Efficiency® 

DH5α F’IQTM 

Competent Cells 

F-φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 hsdR17 (rk-, mk+) 

phoA supE44 λ- thi-1 gyrA96 relA1/F´ proAB+ lacIqZΔM15 zzf::Tn5 

[KmR] 

3×108 

One Shot® TOP10 

Chemically 

Competent Cells 

F
- 

mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacΧ74 recA1 araD139 

Δ(ara-leu) 7697 galU galK rpsL (Str
R
) endA1 nupG λ- 

1×109 

2.1.9 Human Tissue Samples 

All patients and voluntary donors allowed scientific examination of their biopsies or blood samples. 

Immunological and CSF investigation were approved by the ethics committee of the Ludwig 

Maximillian’s University, Munich. 

2.1.9.1 Human brain and tonsil biopsies 

Brain biopsies from two MS patients are used in this thesis. Patient FE was diagnosed with a 

malignant glioma in the right temporooccipital lobe of the brain at the age of 49 and then the affected 

region of the brain was surgically removed and stored at -80°C. Followed by the presence of 

oligoclonal immunoglobulin in the CSF and three relapses in the next five years, the patient had a 

diagnosis of MS Type III (Hu and Lucchinetti, 2009). He is homozygous for the HLA class I gene 

locus (Skulina et al., 2004), and possesses the alleles HLA-A*0101, HLA-B*0801, HLA-C*0701, HLA-

DRB1*0301, HLA-DRB3*0101, HLA-DQA1*05 and HLA-DQB1*0201. Brain biopsies from patient 

RF were obtained from Ph.D. David-Axel Laplaud from University of Nantes, France. The HLA 

composition analyzed in this study is presented in Table 2-13. 

In addition, two tonsil biopsies were obtained from Dr. Markus Krumbholz. One tonsil biopsy was 

from a healthy donor, and another tonsil biopsy was from an inflammation patient donor. 
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Table 2-13: HLA typing results of MS patients FE and RF 

The HLA alleles were determined by genomic HLA typing with the identification code (ID) of the MS patients displayed in 

column 1. The haplotype for patient FE is homozygous as only one allele was detected for each of the loci. However, patient 

RF is heterozygous for all loci. – Not detectable in the loci. 

Patient ID 

HLA- 

A* B* C* DRB1* DRB3* DQA1* DQB1* 

FE 0101 0801 0701 0301 0101 05 0201 

RF 0301 

2402 

0702 

1402 

- 0102 

1501 

- - 0501 

0602 

2.1.9.2 Human blood and CSF specimens 

In cooperation with Dr. Lisa Ann Gerdes, the CSF and blood samples were taken either from selected 

MS twins or newly diagnosed patients. These MS patients were diagnosed with Clinically Isolated 

Syndrome (CIS), Radiologically Isolated Syndrome (RIS), Neurological Disorder after Treatment of 

Metastatic Melanoma with Ipilimumab (MP), or encephalitis against N-methyl-D-aspartate receptor. 

Some of the samples were immediately stored in liquid nitrogen, and the rest were used for TCR 

analysis. The HLA typing for each patient has been done in the lab of Immunogenetics (LMU, 

Munich). The results are summarized in Table 2-14. MS twins (Twin #01) are homozygous at each of 

the loci, but the rest of patients analyzed in this study are heterozygous. Besides, blood lymphocytes 

from voluntary donors are employed for αβ-TCRs identification. 

Table 2-14: Diagnostic performance of HLA typing for MS patients. 

The HLA alleles of the MS patients are determined by genomic HLA typing with the identification code (ID). Identical twins 

always have identical MHCs. The haplotype for patient Twin #01 are homozygous as only one allele is detected for each of 

the loci, but the rest of patients are heterozygous for all loci. – Not detectable in the loci. 

Patient ID 

HLA-A HLA-B HLA-C HLA-DRB1 HLA-DQB1 

Allele 1 Allele 2 Allele 1 Allele 2 Allele 1 Allele 2 Allele 1 Allele 2 Allele 1 Allele 2 

RIS #01 *11 *31 *35 *35 *04 - *11 *15 *03 *06 

RIS #02 *03 *68 *41 *44 *05 *17 *07 *13 *02 *06 

RIS #03 *03 - *07 *51 *07 - *15 - *06 - 

RIS #04 *02 *68 *44 *47 *06 *07 *11 *15 *03 *06 

RIS #05 *24 *26 *27 *49 *01 *07 *01 *15 *05 *06 

RIS #06 *24 *68 *07 *51 *07 *15 *08 *09 *03 *04 

RIS #07 *02 *03 *07 *37 *06 *07 *11 *15 *03 *06 

RIS #08 *01 *03 *07 *35 *04 *07 *15 - *06 - 

RIS #09 *02 - *15 - *03 *03 *04 *15 *03 *06 

RIS #10 *03 *24 *08 *39 *07 - *03 *15 *02 *06 

Twin #01 *24 - *07 - *07 - *15 - *06 - 

Twin #02 *31 *32 *15 *35 *04 - *13 *15 *06 *06 

Twin #03 *01 *02 *08 *51 *07 *15 *03 *15 *02 *06 

Twin #04 *01 *03 *14 *35 *08 *12 *04 *08 *03 *03 

Twin #05 *02 *30 *08 *42 *07 *17 *03 *13 *02 *03 
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2.2 Molecular Biology based Methods 

2.2.1 Isolation of Total RNA 

50-100 mg of tissue samples was homogenized in 1 ml TRIzol reagent using a pipette or grinding tool 

and incubated at room temperature for 5 minutes to permit complete dissociation of the nucleoprotein 

complex. Then 0.2 ml of chloroform per ml TRIzol-tissue was added to the sample and it was shaken 

vigorously for 15 seconds. After incubation at room temperature for five minutes and centrifugation at 

4°C at 20,800× g for 15 minutes, the sample was separated into a lower red phenol-chloroform phase, 

an interphase, and a colorless upper aqueous phase. The upper phase contained most of the RNA 

exclusively. Then the upper phase was gently transferred into an RNase-free tube by pipetting. 5-10 

µg of glycogen (20 mg/ml, Roche) and 0.7 ml of isopropanol (70%) were added for RNA 

precipitation, and then the sample was incubated at -20°C for 20 minutes. After centrifugation at 4°C 

at 20,800× g for 20 minutes, the RNA pellet was resuspended in 1 ml of 80% ethanol and 

subsequently centrifuged at 4°C at 20,800× g for 5 minutes. Finally, the RNA pellet was dried in a 

vacuum for 30 minutes and completely dissolved in 20 μl of DEPC treated water (Invitrogen). The 

concentration of RNA was determined as described in Section 2.2.3. 

2.2.2 Isolation of Plasmid DNA 

Different commercial kits were used to isolate the plasmid DNA from E.coli culture. Briefly, QIAprep 

Spin Miniprep Kit (Qiagen) was used to isolate plasmid DNA (≤ 20 µg) from 1-2 ml of E.coli cultures. 

However, HISpeed Plasmid kit (Qiagen) was employed to obtain a high yield of plasmid DNA (up to 

750 µg) especially for the generation of PECP libraries. 

2.2.3 Quantitation of DNA and RNA 

Two methods were used to quantitate solutions of nucleic acids. The first one was to use a 

spectrophotometer (NanoDrop 2000, Thermo Fisher Scientific) to measure the amount of ultraviolet 

radiation absorbed at a wavelength of 260 nm (OD260). OD260/OD280 ratio is an indication of nucleic 
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acid purity, such as pure DNA had an OD260/OD280 ratio of around 1.8 and purified RNA has an 

OD260/OD280 ratio of around 2.0. Phenol or protein contamination might cause low rates of 

OD260/OD280. The second one was to quantify the amount of DNA by judging its concentration as 

compared to a standard molecular mass marker after the agarose gel electrophoresis. 

2.2.4 Assessment of RNA Integrity 

Intact RNA is essential for successful RT-PCR analysis. The assessment of RNA integrity is a critical 

step for obtaining gene expression data. The 2100 Bioanalyzer (Agilent) and Agilent RNA 6000 Pico 

Kit were used to determinate the RNA integrity. Briefly, the RNA sample was diluted with DEPC 

treated water (Invitrogen) and subsequently was denatured at 70°C for 2 minutes. Then the RNA 

integrity was measured as the manufacturer’s introduction. Finally, the data was displayed in the 

electropherogram and densitometry plot through the software “Agilent Technologies 2100 Bioanalyzer 

2100 Expert, VB.02.06.SI418” (Agilent). The quality of RNA was classified by “RNA integrity 

number” (RIN), based on a numbering system (level 1-10), which represents that level 1 means the 

most degraded RNA and level 10 means the most intact RNA. The RIN-value represents the ratio 

between 28S rRNA and 18S rRNA offset against further factors. Moreover, the ratio of the 18S to 28S 

ribosomal subunits also plays a significant role in determining the degree of degradation of RNA 

sample. 

2.2.5 Separation of DNA Fragments 

Gel electrophoresis can easily separate different size of DNA fragments. In an electrical field, the 

negatively charged DNA moves towards to positive electrode through an agarose gel matrix. Agarose 

gel was prepared in 1× TBE buffer with fluorescence dye peqGREEN (peQlab), which is used to 

visualize the DNA with the UV-induced emission of fluorescence (λ=295 to 490 nm). PeqGREEN is a 

non-carcinogenic and non-toxic DNA/RNA fluorescence dye. In the condition of 90-150 V and 50 

mA, the DNA fragments are completely separated in 40 minutes. The lengths of the DNA segments 
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are determined by a DNA standard of known concentration or a molecular mass marker, such as 

peqGOLD 50 bp DNA-ladder, Peqlab). 

2.2.6 DNA Extraction 

After separating by gel electrophoresis, the DNA fragment was excised from the gel with a clean, 

sterile razor blade under a UV transilluminator. Then DNA was purified from the gel by the Gel 

Extraction kit (Qiagen) by the manufacturer’s instructions. Finally, the extracted DNA was eluted in 

30 µl of EB buffer and stored at -20°C. 

2.2.7 Ethanol Precipitation of DNA 

Ethanol precipitation is the most widely used method for concentration and purification of DNA. This 

approach is accomplished by adding salt and ethanol to a DNA solution. Briefly, the DNA solution 

was mixed with 1/10 volume of 3 M sodium acetate (pH=5.2) and about 2-3 volumes of 100% ethanol. 

The mixture was frozen overnight at -80°C. Then the mixture was centrifuged at 20,800× g in a 

standard microcentrifuge at 4°C for one hour. After the supernatant was carefully removed by a pipette, 

the DNA pellet was rinsed twice with cold 70% ethanol and centrifuged at 4°C at 20,800× g for 15 

minutes. Finally, The DNA pellet was air-dried for another 15 minutes and then resuspended in DEPC 

treated water. In addition, Pellet Paint
®
 Co-precipitant (Novagen) can be employed to visualize the 

DNA pellet during precipitation procedure. 

2.2.8 DNA Sequencing 

The sequencing service performed DNA sequencing analyses at the Faculty of Biology at the Ludwig 

Maximillian’s University (LMU), Munich. The template was prepared in a total volume of 7 µl with 

diluted DNA and primer. According to the protocol “Cycle, Clean & Run BigDye v3.1”, the sequence 

of DNA was analyzed. The sequencing data were presented by the software “Chromas Lite V2.01”. 
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2.2.9 Amplification of TCR chains from Single T Cells 

Polymerase chain reaction (PCR) is a widely used method for generation of multiple copies from a 

single copy or a segment of DNA through several cycles of annealing, amplification, and denaturation. 

The TCR α- and β-chains of single T cells could be amplified by multiplex RT-PCR-based method. 

The unbiased PCR approaches were established by Song-Min Kim and optimized during this thesis. 

All the reactions were performed in the Mastercycler
™

 pro-PCR System (Eppendorf). DEPC treated 

water instead of DNA template was served as a negative control in each PCR reaction. PCR products 

were analyzed by the gel electrophoresis. 

2.2.9.1 Workflow 

The relative positions of primers for the unbiased amplification of TCR α- and β-chains are illustrated 

in Figure 2-1. 

2.2.9.2 Reverse transcription (RT) 

Single isolated T cells were used as template to synthesize the complementary cDNA strands that were 

further amplified by PCR. The RT reaction was carried out with the OneStep
®
 RT-PCR Kit (Qiagen) 

according to the manufacturer’s instruction. 20 µl of RT reaction mix with 0.3 µM of the Cα-RT-imp 

and Cβ-RT-2 oligonucleotide primers (Table 2-4) were added to the sample containing the single T 

cell. RNaseOUT
™

 Recombinant Ribonuclease Inhibitor (Invitrogen) was additionally added to the 

sample to avoid the RNA degradation. The details of RT reaction mix are presented below: 

Reagent Volume (µl) Final concentration 

RNase-free H2O 13.78  

5× one step RT-PCR buffer 4 1× 

dNTP 0.8 0.4 mM each 

Cα-RT-imp 0.06 0.3 µM 

Cβ-RT-2 0.06 0.3 µM 

Enzyme Mix 0.8  

RNaseOUT Inhibitor 0.5 20 units 

Total 20  
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20 µl of RT reaction mix was directly added into the cap of the PCR tube that contained the isolated 

single T cell. Subsequently, the sample was centrifuged at 4°C at 20,800× g for 5 minutes and then 

cDNA synthesis proceeded at 50°C for 30 minutes. 

 

Figure 2-1: PCR strategy for identifying the paired TCR α- and β-chains from single T cells 

Step 1 (A) Total mRNA from paired TCR α- and β-chains (E) was transcribed into cDNA via the primers Cα-RT-imp and 

Cβ-RT-2 which bind to the constant gene regions of αβ chains. Step 2 (B) Pre-amplification of the paired αβ chains by the 

former primers (Vα-for-out pools Vβ pools) and the reverse primers (Cα-out, Cβ-mid4). Step 3 (C) Specific amplification of 

the Vβ genes by two steps: firstly, an anchor sequence (Universal Primer) was added to the 5’-site of each variable gene 

region of β-chain with a semi-nested PCR (C1) using the primers Vβ pools and Cβ-in; secondly, the Vβ genes were amplified 

with the anchor primer and primer Cβ-in (C2). Step 4 (D) Specific amplification of the TCR α-chains by semi-nested PCR 

from the pre-amplification PCR products (B) using the primer Vα-for-in pools and primer Cα-in. Orange: variable gene 

regions V; yellow: diversity gene regions nDn/N; green: joining gene regions J; stripe: constant gene regions C. Figure was 

modified from Kim et al., 2012. 
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2.2.9.3 Pre-amplification of TCR α- and β-chains of single cells 

After reverse transcription, 5 µl of PCR mix from the OneStep
®
 RT-PCR Kit (Qiagen) was added to 

the previous reaction to obtain a final volume of 25 µl. The PCR mix contained 0.072 µM of Vα- and 

Vβ-oligonucleotide primers each as well as 0.08 µM of Cα-out and Cβ-mid4 oligonucleotide primers. 

The primer pools for the Vα-repertoire consisted of 24 oligonucleotide primers are described in Table 

2-6. The primer pools for Vβ- repertoire consisted of nine oligonucleotide primers (VP1 to VP9) are 

given in Table 2-5. A pool of all V regions primers (called “V-primers”), and a pool of all the C 

segments primers (called “C-primers”) were prepared in advance. These primers were used to pre-

amplify the TCR αβ-chains. The details of PCR mix are presented below: 

Reagent Volume (µl) Final concentration 

RNase-free H2O 2.8  

5× OneStep RT-PCR buffer 1 1× 

dNTP 0.2 0.08 mM each 

V-primers 0.6 0.072 µM each 

C-primers 0.2 0.08 µM each 

Enzyme Mix 0.2  

Total 5  

 

Thermocycling conditions for a touchdown PCR: 

Step Temperature (°C) Time (Minute) Cycles 

Initial Denaturation 95 15 1× 

Denaturation 

Hybridization 

Elongation  

94 

61 

72 

1 

1 

1 

4× 

Denaturation 

Hybridization 

Elongation 

94 

58 

72 

1 

1 

1 

4× 

Denaturation 

Hybridization 

Elongation 

94 

56 

72 

1 

1 

1 

40× 

Final Extension 72 10  1× 

Hold  4-10 ∞ ∞ 

 

Finally, the PCR product was employed as a template for the subsequent identification of TCR α- and 

β-chains. 
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2.2.9.4 Characterization of TCR β-chains of single cells 

The specific amplification of TCR β-chains contains two PCR steps (Figure 2-1, C1-C2). The first step 

introduced a new universal primer (UPnew) segment comprising 20 nucleotides 

(AGCACGACTTCCAAGACTCA) as an anchor to the 5’ -end of each VP1 to VP9 primers (VP1
+
-

new to VP9
+
-new). The nucleotide sequences of VP2

+
-new and VP9

+
-new were modified to avoid 

primer interactions (Table 2-5). 1 µl of PCR product from Section 2.2.9.3 was added to a PCR mix 

containing 0.11 µM of anchored Vβ-oligonucleotide primers (VP1
+

new to VP9
+

new) and 0.1 µM of Cβ-

in oligonucleotide primer. A pool of VP1
+

new to VP9
+

new primers called “VP
+
-pool” was prepared in 

advance. The details of PCR mix are presented below: 

Reagent Volume (µl) Final concentration 

RNase-free H2O 16.28  

10× PCR buffer with MgCl2 2 1× 

dNTP 0.4 0.2 mM each 

VP+-pool 0.2 0.11 µM 

Cβ-in 0.02 0.1 µM 

Taq 0.1 0.025 U/µl 

DNA 1  

Total 20  

 

For the first PCR step, the well-mixed sample was initially denatured at 94°C for 2 minutes. Then 

PCR program was set up for 30 cycles (denatured at 94°C for 30 seconds, annealed at 56°C for 1 

minute and elongated at 72°C for 1 minute). Finally, the reaction was extended at 72°C for 10 

minutes. 

The second PCR step was to amplify the TCR β-chain transcripts with an anchor primer (UPnew) and a 

reverse primer (Cβ-in). Briefly, 1 µl of PCR product from the first step was added to a PCR mix. The 

PCR mix was comprised of 2 µl 10× PCR buffer with MgCl2 (Roche), 0.4 µl dNTP (10 mM each), 0.5 

µM of oligonucleotide primers (Cβ-in and UPnew), and 0.1 µl of Taq DNA Polymerase (5 U/µl, 

Roche). The PCR program began with the initial denaturation at 94°C for 2 minutes and followed by 

20 cycles (denatured at 94°C for 30 seconds, annealed at 58°C for 1 minute and elongated at 72°C for 

1 minute. Afterwards, a final elongation step was set up at 72°C for 10 minutes. The PCR product was 



MATERIALS AND METHODS 

37 

collected by agarose gel electrophoresis. After DNA extraction from agarose gel (Section 2.2.6), the 

DNA was sequenced as described in Section 2.2.8. 

2.2.9.5 Amplification of the matching TCR α-chain 

Only the single T cells that had yielded a PCR product for the TCR β-chains were employed for 

characterization of the matching TCR α-chains. 36 different primers were designed for the V regions 

of TCR α-chains and divided into five sets, named “Vα-in-set X” (X=1 to 5). 1 µl of PCR product 

from Section 2.2.9.3 was separately added to five PCR mixes. Each PCR mix contained 0.5 µM of 

Vα-in-set X primers and reversed primer (Cα-rev-in). The details of a PCR mix are presented below: 

Reagent Volume (µl) Final concentration 

RNase-free H2O 15.5  

10× PCR buffer with MgCl2 2 1× 

dNTP 0.2 0.1 mM each 

Vα-in-set X 1 0.5 µM 

Cα-rev-in 0.1 0.5 µM 

Taq 0.2  

DNA 1  

Total 20  

 

Touchdown PCR was carried out with an initial denaturation at 95°C for 2 minutes. Then the PCR 

program was run for four cycles each with annealing temperature at 61°C, 58°C and 56°C for 1 

minute, respectively. Subsequently, 40 cycles were run at 53°C. Each cycle contained denaturation 

and extension steps at 94°C and 72°C each for 1 minute. Finally, the extension of PCR product was at 

72°C for 10 minutes and collected by agarose gel electrophoresis. After DNA extraction from agarose 

gel (Section 2.2.6), the DNA was sequenced as described in Section 2.2.8. 

2.2.10 Plasmid Recovery PCR 

Single APCs that contain the antigen-coding plasmids were isolated by a microcapillary as described 

in Section 2.7.1. A PCR program is immediately performed with the flowing PCR mix. 
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Reagent Volume (µl) Final concentration 

RNase-free H2O 49  

pcDNA 2nd for TOPO 0.5 0.5 µM 

pcDNA-rev-3 0.5 0.5 µM 

iProofTM HF Master Mix (2×) 50 1× 

Total 100  

 

The well-mixed sample was initially denatured at 98°C for 3 minutes. Then PCR program was set up 

for 40 cycles (denaturing at 98°C for 20 seconds, annealing at 56°C for 20 seconds and elongating at 

72°C for 30 seconds). Finally, PCR product was extended at 72°C for 10 minutes. After PCR 

purification (Section 2.2.11), the DNA was inserted into an expression vector (pcDNA
™

 3.1D/V5-His-

TOPO) for characterization of antigen coding plasmids (Section 2.7.2). 

2.2.11 PCR Purification 

PCR purification could efficiently remove excess primers, nucleotides, DNA polymerase and salts 

from PCR reactions, and it is an essential step for DNA construction. QIAquick PCR purification kit 

(Qiagen) was used to purify PCR product under the manufacturer’s introductions. After purification, 

most primers and primer-dimers (<40 bp) were removed. Purified DNA was ready for antibody-

labeling, DNA amplification, sequencing and re-cloning. 

2.2.12 TOPO TA Cloning 

TOPO TA cloning technology is used to directly insert the Taq polymerase-amplified PCR products 

into a plasmid vector. The linearized pCR
™

 2.1-TOPO
®
 TA vector carries the 3'-thymidine (T) 

overhangs to directly ligate to the 3'-adenine (A) overhangs of Taq polymerase-amplified PCR 

products. The PCR product was cloned into the TOPO
®
 vector with the TOPO

®
 TA Cloning

®
 kit 

(Invitrogen) according to the manufacturer’s description. The ligated product was then transformed 

into chemically competent E.coli cells (Section 2.3.5). 
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2.3 Microbiology based Methods 

2.3.1 Bacterial E.coli Culture Conditions 

Escherichia coli (E.coli) cells grow on a solid (LB plate) or in a liquid growth medium (LB broth). 

Solid and liquid medium contain the similar composition, but an extra agar (15 g/l) is added to the 

solid medium. The LB culture medium is autoclaved at 121°C for 20 minutes to avoid the 

contaminations. If necessary, antibiotics such as ampicillin and kanamycin are added to the culture 

medium to select the antibiotic-resistant plasmids. The E.coli cells are grown in a liquid growth 

medium at 37°C with 180 rpm for 16 hours or on an LB plate at 37°C overnight. 

2.3.2 Determination of E.coli Cells’ Density 

The density of E.coli cells was determined by measuring the optical density (OD) at a wavelength of 

600 nm. Two kinds of spectrophotometers, UV-1600 PC (VWR) and Nanodrop ND-2000 (Peqlab), 

were occupied to measure the OD600 value
1
 of E.coli cells’ density according to the manufacturer’s 

introductions. An equal volume of fresh LB medium served as a negative control. Furthermore, the 

diluted E.coli cells were uniformly plated on LB plate with appropriate antibiotics and incubated at 

37°C overnight. The clone numbers of E.coli cells were determined by the numbers of colonies on the 

plate. 

2.3.3 Preparation of E.coli Culture Glycerol Stocks 

The quality of E.coli strains highly influences the transformation efficiency and the subsequent 

analysis of recombinant plasmids. Correctly storing the E.coli strains is important to make competent 

cells retain high transformation efficiency. Agar plate and liquid LB medium are only suitable for 

short-term storage of E.coli cells at 4°C. Preparation of a Glycerol bacteria stock kept at -80°C is the 

best way to maintain the high transformation efficiency of bacteria strains. Glycerol can stabilize the 

                                                      
1
 OD600 value corresponds to the cell density or cell number in a given E.coli culture volume; OD600=1 equals to 

1×10
9
 E.coli cells per millimeter of LB medium. 
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frozen bacteria, prevent damage to the cell membranes and keep the cells alive. Briefly, once a new 

E.coli strain was purchased, a small portion of the bacteria was transferred to a liquid LB medium and 

incubated in a shaker at 37°C with 225 rpm for 2-8 hours. Then a suitable amount of culture medium 

was uniformly coated on an LB plate with appropriate antibiotics, and subsequently the plate was 

incubated overnight at 37°C. Afterwards, a single colony was picked and cultured overnight in a fresh 

LB medium containing appropriate antibiotics at 37°C. Then 180 µl of 86% sterile glycerol was added 

to a 2 ml screw-cap culture vial and mixed with 820 µl of liquid E.coli cells. Finally, the glycerol 

stock with E.coli cells was stored at -80°C. 

2.3.4 Reviving Bacteria from a Glycerol Stock 

E.coli cells were revived from a glycerol stock, which was thawed on ice and centrifuged at 4°C with 

3000× g for 15 minutes. Then the bacteria pellet was resuspended in 5 ml of fresh LB medium 

containing appropriate antibiotics and cultured at 37°C/225 rpm for 1 hour. Subsequently, a small 

portion of bacteria suspension was uniformly plated on an LB plate with appropriate antibiotics and 

incubated at 37°C overnight. Finally, a single colony was picked and cultured in fresh LB medium 

containing appropriate antibiotics overnight at 37°C/180 rpm. In addition, the density of bacteria was 

measured as described in Section 2.3.2. 

2.3.5 Bacterial Transformation by Heat Shock 

Transformation is a process that bacterial cells can take up foreign DNA from the environment by 

creating pores in bacterial cell membranes. These bacterial cells are called competent cells. Heat shock 

is a basic technique to transform the plasmid DNA into E.coli competent cells. In this thesis, E.coli 

One Shot
®
 TOP10 competent cells were employed for the heat shock transformation according to the 

manufacturer’s description. Briefly, the competent cells were completely thawed on ice. Then about 2 

µl of plasmid DNA (10 pg-100 ng) was immediately added to the competent cell solution and the 

mixture was incubated in an ice-water bath for 30 minutes. After that, the sample was stimulated at 

42°C for 45 seconds (heat shock) and quickly incubated in an ice-water bath. Finally, 250 µl of S.O.C. 
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medium (Invitrogen) was added, and the sample was incubated at 37°C with 225 rpm for one hour. 

PUC19 and DEPC treated water instead of the plasmid DNA served as positive control and negative 

control, respectively. Moreover, to check whether the transformation successfully or not, a small 

portion of transformed E.coli cells was cultured on LB plate containing the appropriate antibiotics 

overnight at 37°C. The successfully transformed E.coli cells will be further used for plasmid isolation. 

2.3.6 Bacteria Transformation by Electroporation 

Electroporation is another highly efficient strategy to introduce the foreign nucleic acids into many 

cell types, including bacteria and mammalian cells. In this section, electroporation was used to 

transform plasmid DNA into the ElectroMAX
™

 DH10B
™

 T1 Phage-Resistant Competent Cells 

(Invitrogen). Briefly, the dissolved competent cells were immediately added to a reaction tube that 

contained 2 µl of DNA sample. Then the mixture was pipetted into a chilled cuvette (0.1 cm, Bio-Rad) 

and directly electroporated in GenePulser
®
 II electroporator (Bio-Rad) using the following conditions: 

2.0 kV, 200 Ω, and 25 μF. Subsequently, 1 ml of S.O.C. medium (Invitrogen) was added to the cells in 

the cuvette. The cell suspension was transferred to a 14 ml snap-cap tube and then incubated at 37°C 

with 225 rpm for one hour. A positive control was prepared with pUC19 instead of DNA sample and a 

negative control with cells only (without DNA) was included as well. Afterwards, the transformed 

cells were transferred into 20 ml of LB medium containing appropriate antibiotics and incubated at 

37°C with 180 rpm overnight. Meanwhile, a small portion of transformed cells was spread on LB plate 

containing appropriate antibiotics and incubated at 37°C overnight. The successfully transformed 

E.coli cells will be further used for plasmid isolation. 



MATERIALS AND METHODS 

42 

2.4 Cell Biology based Methods 

2.4.1 Cultivation of Eukaryotic Cells 

Unless otherwise specified, all cell lines were cultured in the RPMI-1640 medium with 10% FCS and 

incubated in a humid atmosphere of 5% CO2 at 37°C. 

2.4.1.1 COS-7 cell line 

COS-7 (ATCC
®
) is an adherent and fibroblast-like cell line that came from the kidney of an African 

Green Monkey, Cercopithecus aethiops. It is immortalized by transformation with a mutant strain of 

the Simian vacuolating virus 40 (SV40) that codes for the wild-type T-antigen. Thus, a vector bearing 

the SV40 promoters can be substantially replicated in COS-7 cells using the large T-antigen. COS-7 

cells mainly display adherent growth to glass or plastic surfaces with RPMI-1640 complete medium. 

Cells can be sub-cultured with a ratio of 1:4 to 1:8 with the following protocol. The cells were rinsed 

with Trypsin-EDTA solution (Sigma-Aldrich) and incubated at 37°C for 10 minutes. Once the cells 

were detached from the surface, the trypsinization reaction was stopped by adding the RPMI-1640 + 

L-Glutamine medium containing 5% FCS to the cells. Then the cells were centrifuged at 4°C at 300× 

g for 5 minutes, and the supernatant was discarded. Afterwards, the cell pellet was thoroughly 

resuspended in 6-8 ml of growth medium by pipetting up and down. Finally, an aliquot of cells 

suspension was transferred to a new culture vessel that contained fresh growth medium. The COS-7-

A2 cell line was stably transfected with pHSE3’-HLA-A2 and expressed human HLA-A*0201. In the 

growth medium of culturing COS-7-A2 cells, the antibiotic G418 (1.5 mg/ml) was added to select 

HLA-A2
+
 COS-7 cells (Table 2-15). 

2.4.1.2 58 α
-
β

-
 cell line 

58 α
-
β

-
 T hybridoma cell line can be used as a recipient for TCR α/β gene transfection to obtain cell 

lines that express the functional TCR molecules at their surfaces. Thus, two stable transfected cell 
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lines, 58-JM22 and 58-FE-BV1-BJ2.3-AV7.2-AJ24.2, were created by Katherina Siewert and Latika 

Bhonsle (Siewert et al., 2012) to express TCR JM22 and BV1-BJ2.3-AV7.2-AJ24.2 on their surfaces 

(Table 2-12). Besides the TCRs, the two cell lines also expressed human CD8 molecule and an NFAT-

GFP pcDNA construct. They are soluble cells and could be cultured in RPMI-1640 complete medium 

in addition to appropriate antibiotics for selection of stably transfected cells (Table 2-15). 

Table 2-15: Antibiotic selection for stable transfection of eukaryotic cell lines 

Stable Transfection Antibiotics Final Concentration Cell line 

HLA-A*0201 G418 1.5 mg/ml COS-7-A2 

CD8αβ 

NFAT-sGFP 

TCR α-chain 

TCR β-chain 

Puromycin 

Blasticidin 

Hygromycin 

G418 

1.0 µg/ml 

3.0 µg/ml 

0.3 mg/ml 

1.5 mg/ml 

58-JM22 

58-FE-BV1-BJ2.3-AV7.2-AJ24.2 

2.4.1.3 EBV-transducted B cell line 

Human B lymphocytes can be immortalized by transduction of Epstein-Barr virus (EBV) (Hellebrand 

et al., 2006). In this thesis, three EBV-transducted B cell lines, EBV-B-16488, EBV-B-17490 and 

EBV-FE cell lines (Table 2-12), were used to investigate potential antigens. They were cultivated in 

RPMI-1640 complete medium as well. 

2.4.2 Determination of Cell Numbers 

The number of cells were determined by counting cells using a hemocytometer under a microscope. 

During cell counting, trypan blue solution (0.4%, Sigma-Aldrich) was used for staining dead cells in 

blue. Briefly, the cell suspension was prepared in a balanced salt solution (e.g., 1× PBS). Then 50 µl 

of cells was pipetted to an equal volume of trypan blue (dilution factor=2). Finally, 10 µl of cells was 

added to the hemocytometer and counted under a microscope. The concentration of live cells (seen as 

bright cells) is calculated by the percentage of visible cells using an equation below: 
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2.4.3 Freezing and Thawing of Cell Lines 

Cryopreservation is necessary to maintain cells in the long term. Storage of cells in liquid nitrogen is 

the best way to ensure a reliable, career-long source of cells. Moreover, a particular freezing medium 

containing DMSO or glycerol is used to reduce the possibility of ice crystal formation, which does 

damage to cells and causes cell death. Briefly, cells were centrifuged at 4°C at 300× g for 5 minutes, 

and the supernatant was completely discarded. Afterwards, the cell pellet was resuspended in freezing 

medium (Table 2-3). The optimized cell concentration is from 2×10
6
 to 5×10

6
 cells per milliliter. 

Subsequently, 1.5 ml of cells was pipetted into a sterile Corning
®
 cryovial. Then the vial was placed in 

a Nalgene
®
 freezing container (Thermo Scientific) and stored at -80°C for 48 hours. The appropriate 

freezing container contains isopropanol and allows the sample slowly cool down with approximately 

1°C per hour. Two days later, the frozen cells were transferred into liquid nitrogen tank for long-term 

storage. 

Cell thawing should be quickly accomplished in a 37°C water bath to avoid the ice crystals to destroy 

the cells. Briefly, the frozen vial was quickly removed from the liquid N2 storage and immediately 

placed in a water bath (37°C) until the cells were completely dissolved. Then the cell suspension was 

transferred to a centrifuge tube containing 10 ml of culture medium and spun down at 300× g for 5 

minutes. Subsequently, the supernatant was completely removed, and the cell pellet was resuspended 

in 10 ml of fresh, appropriate culture medium. Finally, the cell suspension was placed in a small T25 

flask and incubated in a 5% CO2 incubator. If necessary, antibiotics were added for transfection 

selection after two days of first cultivation. 

2.4.4 Cell Re-cloning for Stably Transfected T Hybridoma Cell Line 

For better investigation of potential antigens, the two stable transfected T hybridoma cell lines should 

satisfy two criteria. (i) The numbers of unwanted single green T cells should be as low as possible 

(Section 1.8). (ii) The cells should have a strong response in the presence of antigenic stimuli. These 

signals can be observed by fluorescence microscopy and flow cytometry analysis. Re-cloning was 
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employed to select a stable clone from these hybridoma cells. Briefly, 90 cells were diluted in 60 ml of 

fresh RPMI-1640 complete medium. Then 200 µl of cell suspension per well was added to three BD 

Falcon
®
 cell culture plate (96 wells). Subsequently, three plates of cells were convolved with the 

plastic wrap and incubated at 37°C in an incubator for 5-7 days. Afterwards, only single cell cluster 

was transferred to a new BD Falcon
®
 cell culture plate (24 wells) for further proliferation. Finally, the 

individual clones were stimulated by CD3 cross-linking and the activation results were analyzed by 

flow cytometry. 

2.4.5 Cell Transfection by FuGENE
®
 HD Reagent 

Transfection is a process to deliver nucleic acids (either DNA or RNA) into mammalian or insect cells 

by various methods including lipid transfection and chemical and physical methods such as 

electroporation. FuGENE
®
 HD Transfection Reagent (Promega) was used to transfect plasmids DNA 

into COS-7 cells. It is a non-liposomal transfection reagent to insert RNA or plasmid DNA into 

cultured cells. 

The protocol of transfection with FuGENE
®
 HD Transfection Reagent was optimized based on the 

manufacturer's protocol. Briefly, before the transfection, COS-7 cells were seeded for at least three 

hours at a density of 500,000 cells per dish in 3 ml of RPMI-1640 complete medium. About 2 µg of 

plasmid DNA was diluted in 100 µl of pre-warmed RPMI-1640 medium without serum. Then 7 µl of 

the FuGENE
®
 HD Transfection Reagent was added to the diluted DNA. After vortexing briefly, the 

DNA was incubated at room temperature for 15 minutes. Afterwards, the transfected DNA was slowly 

added to the COS-7 cell suspension. Finally, the cells were incubated at 37°C for 48-72 hours. The 

transfection efficiency was measured by an assay appropriate for the reporter gene pcDNA-sGFP. 

2.4.6 Cell Transfection by Nucleofection 

Nucleofection also referred to as “Nucleofector
 
Technology”, is an electroporation-based transfection 

method that enables the DNA to enter the nucleus directly. In this thesis, SE Cell Line 4D-
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Nucleofector
®
 X Kit L was used to transfect plasmid DNA into a COS-7 cell line, according to the 

manufacturer’s instruction. Briefly, 1×10
6
 COS-7 cells harvested by trypsinization were centrifuged at 

125× g for 10 minutes at room temperature. Then the supernatant was completely removed, and the 

cell pellet was carefully resuspended in 100 µl of Nucleofector
®
 Solution (Lonza). Afterwards, 2 µg of 

plasmid DNA was added to the cell suspension. The cell/DNA solution was subsequently transferred 

into a certified cuvette. Meanwhile, the appropriate Nucleofector
®
 Program CM-130 was selected. 

Then the cuvette with cell/DNA suspension was inserted into the Nucleofector
®
 Cuvette Holder 

(Lonza). The chosen program was immediately applied. The cuvette was taken out from the holder 

and incubated at room temperature for 10 minutes immediately when the transfection was finished. 

Thereupon, 1 ml of pre-warmed RPMI-1640 complete medium was added to the cuvette and then the 

cell suspension was gently transferred into a cell culture dish containing 2 ml pre-warmed RPMI-1640 

complete medium. Finally, the cells were incubated in a humidified 37°C/5% CO2 incubator. If 

necessary, antibiotics were added to the culture medium two days after transfection. 

2.4.7 Co-cultivation with T Hybridoma cells 

24 or 48 hours after transfection, T hybridoma cells were seeded onto the transfected COS-7 cells for 

reactivation assays. The transfected COS-7 cells should be rinsed twice with PBS before co-culturing 

with T hybridoma cells to avoid un-transfected plasmid DNA to adhere to the surface of COS-7 cells. 

About 1.5×10
6
 of T hybridoma cells in 3 ml of RPMI-1640 complete medium were added onto the 

transfected COS-7 cells and then the cells were incubated in a humidified 5% CO2 incubator at 37°C 

for 16 hours before reactivation assays. 

2.4.8 T hybridoma Cell Activation Assays 

2.4.8.1 T hybridoma cell activation by CD3 cross-linking 

To examine whether the stably transfected T hybridoma cells could be activated or not, we analyzed 

the expression of NFAT-sGFP in T hybridoma cells upon CD3 activation. Briefly, 96-well plate was 
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coated with the antibody against mouse CD3ε (1:500 dilution in PBS) and then incubated at 37°C for 2 

hours. Subsequently, the cell suspension was added to the antibody. After 16 hours incubation, the 

sGFP expressing cells were tested by fluorescence microscopy or flow cytometers. 

2.4.8.2 T hybridoma cell activation by EBV antigens 

To find out whether the stable TCR-transfected T hybridoma cells could recognize the antigens 

derived from EBV or not, we analyzed the expression of NFAT-sGFP in T hybridoma cells upon co-

cultivation with autologous EBV-transformed B cells. After 16 hours incubation, the sGFP expression 

cells were observed by microscopy and the cell supernatant was examined by IL-2 measurement. 

2.4.8.3 Activation of 58-JM22 by the synthetic peptide flu (58-66) 

As a source of antigenic stimuli, the synthetic peptide flu (58-66) was recognized by the stable TCR-

transfected T hybridoma cell line 58-JM22 (Siewert et al., 2012). The peptide was used as a positive 

control for the recognition of 58-JM22 cells. Briefly, 50,000 COS-7 cells (stably expressing HLA-

A*0201) per cm
2
 were seed on the plate and incubated at 37°C for 3 hours. Then the synthetic peptide 

flu (58-66) with a final concentration of 5 µM was pulsed on cultured COS-7-A2 cells for 3 hours 

before the addition of 58-JM22 cells in RPMI-1640 complete medium. 

2.4.8.4 Detection of sGFP expression by fluorescence microscopy 

The activation of T hybridoma cells could be directly observed by the inverse fluorescence 

microscopy (AxioVert 200 M, Zeiss) by the expression of the super green fluorescent protein (sGFP). 

Briefly, after 16 hours of co-cultivation (Section 2.4.7), expression of sGFP could be detected at 

498/516 nm emission with a combination of a CCD-camera (CoolSNAP-HQ, Roper Scientific), 

fluorescence lamp (HXP 120, Visitron) and different Zeiss objectives (5×, NA 0.15; ∞/0, Epiplan-

NEOFLUAR; 10x, NA 0.45 Plan Apochromat; 20×, NA 0.4; ∞/0-1.5 Achroplan, Korr Ph2). A GFP-

filter (excitation/emission at 472 (30)/520 (35) nm, Semrock, BrightLine) was adopted to detect the 

sGFP expression and Cy3-filter (excitation/emission: 545 (25)/605 (70) nm, Zeiss) was used to 
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counter-check the auto-fluorescence of T hybridoma cells. Light microscopy was performed with 

phase contrast illumination while the exposure times were 600 ms for the 5× and 20× objectives and 

100 ms for the 10× objective. Images were taken in three channels (transmitted light illumination, 

sGFP fluorescence, and Cy3 fluorescence) by the software “MetaMorph V6.3r6” (Vistron, Puchheim, 

D) and edited with the software “ImageJ 1.51f” (Wayne Rasband, National Institutes of Health, USA). 

2.4.8.5 Detection of IL-2 by ELISA 

In addition to fluorescence microscopy, the activation of T hybridoma cells could also be indirectly 

detected by quantitative Enzyme-Linked Immunosorbent Assay (ELISA) for measurement of IL-2 in 

the cell supernatant. In this thesis, Mouse IL-2 ELISA Ready-SET-Go
®
 kit (eBioscience) was 

employed, according to the manufacturer’s introduction. About 100 µl of cell supernatant was taken to 

do the IL-2 measurement. A standard curve for IL-2 is performed with the concentrations between 5 

pg/ml and 1000 pg/ml. The detection limit of the kit is 5 pg/ml or 0.25 pg/well. 

2.4.9 Flow Cytometry Analysis 

Flow cytometry is used to detect the cell surface markers and intracellular sGFP expression upon CD3 

activation. Briefly, a cell suspension was prepared in PBS at a density of 10
5
-10

7
 cells/ml. After 

centrifugation at 4°C at 300× g for 5 minutes, the cell pellet was rinsed twice with 150 µl of FACS 

buffer (Table 2-3). Then the cell pellet was resuspended in 50 µl of FACS buffer containing diluted 

primary antibody and incubated in the darkness on ice for 30 minutes. Afterwards, cells were rinsed 

twice with FACS buffer and then incubated on ice with the secondary antibody solution for 20 

minutes. Finally, the cell pellet was resuspended in FACS buffer containing dead cell counterstain 

(e.g., Topro-3) and then examined by the FACSCslibur flow cytometer with two excitation lasers for 

488 nm and 633 nm. Data were collected and analyzed by the software FlowJo V10.0. 
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2.4.10 Identification of Single T Cells from CSF Specimens 

2.4.10.1 Workflow 

The analysis of TCR repertoire from the blood and CSF specimens of MS patients is accomplished 

with the procedure illustrated in Figure 2-2. 

 

Figure 2-2: Workflow of TCR repertoire analysis from the blood and CSF samples from MS 

patients 

After obtaining fresh 10 ml of blood and CSF samples from one MS patient, we immediately divided the blood and CSF 

samples into two parts: one part was instantly stored at -80°C in freezing medium; the other part was used for TCR/BCR 

analysis. This part performed in cooperation with Dr. Kathrin Held and Dr. Eduardo Beltrán. CD138+ cells (plasma cells), 

CD19+ cells (B cells), and CD8+ and CD4+ T cells were isolated by MACS® technology (Miltenyi Biotec). Subsequently, 

each cell population was also divided into two aliquots: one aliquot was employed for NGS; another aliquot was isolated 

under the microscope and then used for single cell αβ-TCR characterization. 
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2.4.10.2 Initial processing of CSF specimens 

CSF samples were centrifuged at 4°C at 300× g for 10 minutes, and the cell pellet was either 

processed with MACS isolation for T cell subsets (Section 2.4.10.3) or frozen in 1 ml of FCS which 

contained 10% DMSO (Section 2.4.3). For long-term storage, the cells should be kept at -80°C with a 

freezing medium for two days and then transferred into liquid nitrogen. 

2.4.10.3 Isolation of T-cell subsets 

After centrifugation, the cells were used for isolation of the CD4
+
/CD8

+
 T cell subsets, using T Cell 

Isolation Kits (Miltenyi Biotec). Briefly, 1×10
7
 cells were resuspended in 40 µl of MACS

®
 buffer 

(Table 2-3) and mixed with 10 µl of CD8
+
 T Cell Biotin-Antibody Cocktail. The cell suspension was 

incubated at 4°C for 5 minutes. In addition to 30 µl of MACS
®
 buffer, we added another 20 µl of 

CD8
+
 T Cell MicroBead Cocktail and incubated the cell suspension at 4°C for 10 minutes. Once the 

MACS
®
 column was mounted on the magnetic separation device, the cell suspension was loaded onto 

the column, and the CD8
+
 T cells were collected in the flow-through. After rinsing the column with 3 

ml of MACS
®
 buffer, 5 ml of MACS buffer was added onto the column and then the non-CD8

+
 T cells 

were immediately flashed out by firmly pushing the plunger into the column. These non-CD8
+
 T cells 

were used for the isolation of CD4
+
 T cells, plasma cells (CD138

+
) and B cell (CD19

+
). 

2.4.10.4 Isolation of single T cells 

The isolated T cells were diluted until averagely one cell in 2 µl of MACS buffer, which were 

observed clearly under the microscope. Single living T cells were isolated with a pipette, transferred 

into a PCR tube with 2 µl of MACS buffer, and immediately placed on dry ice. These individual T 

cells will be further used for single cell αβ-TCR characterization (Section 2.2.9). 
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2.5 Immunology-based Methods 

2.5.1 Preparation of Tissue Cryosections 

Human tissue blocks were taken from -80°C and placed in a Cryostat (CM3050 S, Leica) where 10 

µm cryostat tissue sections were generated. Cryosections were placed on PET-membrane slides 1.0 

(Zeiss) that were pretreated following these procedures: these slides were firstly baked at 180°C for 4-

5 hours. Then they were rinsed with decontamination solutions and RNase-free DEPC-treated water. 

After 30 minutes of UV-irradiation, 100 µl of diluted Poly-Lysine solution was coated on the slides for 

1 hour. Then the Poly-Lysine solution was diluted with DEPC-treated water and completely removed. 

Finally, the slides were dried at room temperature for 30 minutes in the presence of UV-irradiation. 

The preparation of slides was carried out in a DNase/RNase-free chamber. Once the human tissue 

blocks were cut and mounted correctly, the cryosections were stored at -80°C. 

2.5.2 Immunofluorescence of the Immune Cells in Human Tissue 

Immunofluorescence was used to detect the different immune cells in human tissues with commercial 

antibodies (Table 2-10). The general staining protocol was as followed: cryosections were fixed in 

100% Acetone for 10 minutes and then blocked with 2% BSA (Sigma-Aldrich) in PBS for 20 minutes. 

Subsequently, cryosections were incubated with the diluted primary antibody for one hour. After 

rinsing with PBS, the cryosections were incubated with the diluted secondary antibody for 30 minutes. 

The antibodies had already been diluted in PBS with optimized ratios. After rinsing with PBS, 

cryosections were stained with DAPI for 5 minutes and then attached with a glass cover with the help 

of the fluorescent mounting medium (Dako). All the incubation steps were carried out in a humidified 

dark staining chamber. The isotype control antibody instead of primary antibody served as a negative 

control. An Axioplan 2 microscope (Zeiss) was employed to analyze the staining results of immune 

cells on human tissue cryosections. 
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2.6 Laser Capture Microdissection 

Single activated CD8
+
 T cells were isolated by laser capture microdissection (LCM) for further αβ-

TCR characterization. Before cell isolation, the activated CD8
+
 T cells should be visualized under the 

fluorescence microscopy using an optimized fluorescent staining method. Based on the 

immunofluorescence method described in Section 2.5.2, the improved protocol should be finished 

within 15 minutes. To avoid RNA degradation, monoclonal antibodies against CD8α and CD137 were 

used to stain the activated CD8
+
 T cells on human brain cryosections. In addition, CD8α antibody was 

labeled with the fluorescence dye Cy3 using a Cy3
™

 Labeling Kit (Amersham). The details of this 

optimized method are described in Section 3.3.1. 

Once covered with isopropanol, the cryosection was placed on P.A.L.M Axiovert 200 M microscope 

for single cell isolation. The apparatus consists of the fluorescence lamp HXP 120 (Visitron), the 

Microscopy Camera AxioCam MRm Rev.3 FireWire (Zeiss), the LD Plan-NEOFLUAR objective 

40×/0.6 Korr, ∞/0-1.5 (Zeiss), the Robo Mover and the software “P.A.L.M. Robo Software V4.6” 

(P.A.L.M. Microlaser Technologies). Before the evaporation of isopropanol, single T cells were 

marked on the computer screen within 30 minutes. After isopropanol was completely evaporated, the 

single circled cells were isolated from dried cryosection by a RoboMover (Zeiss) and catapulted into a 

lid of PCR reaction tubes by laser pressure catapulting. The lid was coated with mineral oil to enhance 

the adhesion of cells. The RT reaction mix (Section 2.2.9.2) was immediately added to the tube since 

the single T cell was isolated. Then the cell sample was centrifuged at 20,800× g for 5 minutes. 

Finally, an RT reaction was subsequently performed at 50°C for 30 minutes. 

In addition, the whole procedures including staining and microdissection were carried out in an 

independent, closed and UV-irradiated room to prevent the contaminations. The working areas and 

devices were rinsed with decontamination solutions before and after usage. 
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2.7 Characterization of Antigen Coding Plasmids from COS-7 cells 

2.7.1 Isolation of Candidate COS-7 Cells by Micromanipulation 

COS-7 cell line served as APC in this thesis. They are adherent cells, which were superposed with T 

hybridoma cells that stably express CD8, activated TCR and sGFP molecule under the control of 

NFAT promoter. The isolation of positive COS-7 cell was controlled by the manipulator monitor and 

observed through the MetaMorph
®
 Microscopy Automation & Image Analysis Software. Briefly, once 

a cluster of green fluorescing T hybridoma cells was detected, the underlying COS-7 cell was 

aspirated into a customized glass capillary (beveled end, 14 µm inner diameters, +/- heat formed spike, 

+/- flexible material, BioMedical Instruments). The capillary was fixed on an LN25 Mini 

micromanipulator and connected to a mineral oil-filled pipe. The latter device was controlled by a 

CellTram Vario microinjector that allowed applying slight changes of pressure. The candidate COS-7 

cell was absorbed in the capillary along with some microliters of culture medium in the dish and 

immediately expelled into a PCR tube that contained 7 µl of DEPC treated H2O. Finally, the cell was 

spun down and further employed for the plasmid recovery PCR (Section 2.2.10). 

2.7.2 Reconstruction of PCR Products into Expression Plasmids 

The PCR products were inserted into an expression vector with directional TOPO TA cloning 

technology. The pcDNA
™

 3.1 Directional TOPO
®
 Expression Vector Kit (Invitrogen) was employed 

for DNA reconstruction, and the details of ligation mix are presented below: 

Reagent Volume (µl) Final concentration 

RNase-free H2O 3.5 - 

Salt Solution 1 0.2 M of NaCl, 0.01 M of MgCl2 

pcDNA™ 3.1 D/V5-His-TOPO® Vector (15 to 20 ng/μl) 0.5 7.5 to 10 ng 

Diluted PCR-Product 1 1 ng 

Total 6  

 

The ligation reaction was carried out at room temperature for 30 minutes and then placed overnight at 

16°C. Once the PCR product was successfully ligated into a vector, the plasmids were then 
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precipitated in Ethanol as described in Section 2.2.7. Afterwards, the reconstructed plasmids were 

transformed into electrocompetent ElectroMAX
™

 DH10B
™

 T1 Phage-Resistant Competent Cells 

(Invitrogen) by electroporation (Section 2.3.6). Finally, the plasmids were amplified and isolated from 

2 ml of the E.coli cultures (Section 2.2.2). 

2.7.3 Reactivation of T Hybridoma Cells 

The isolated plasmids were co-transfected with the plasmids coding for human HLAs into the COS-7 

cells as introduced in Section 2.4.6. These co-transfected COS-7 cells were employed to examine the 

reactivation of T hybridoma cells. The antigen coding plasmids were enriched through several sub-

pools of E.coli cultures (Section 2.7.4) if the activation was detected by the fluorescence microscopy. 

During the subpooling, it was necessary to examine the reactivation of T hybridoma cells to ensure 

that the obtained signal was increased due to enrichment. In addition, new software ZEN 2.0 (Zeiss) 

for the microscope was employed for searching the activated cells from the high cell numbers of 

samples quickly and efficiently. It can automatically record coordinates and take photos for each 

sample with different fluorescent lights. 

2.7.4 Antigen Coding Plasmids Enrichment by plasmid subpools 

If the reactivation of T hybridoma cells is detected under the fluorescence microscope as described in 

Section 2.7.3, the antigen coding plasmids will be identified in subpools of E.coli culture (Figure 2-3). 

Briefly, after the plasmids transformed into E.coli (ElectroMaxDH10B), the bacteria were grown in 

liquid LB
amp

 medium, and a small aliquot was plated out on LB
amp

 agar plates for an estimation of the 

initial clone number (e.g., 300,000) in Figure 2-3 (A). Usually, less than 1/1000 of antigen plasmids 

diluted with non-relevant bystander plasmids was observed. Thus, to identify the antigen coding 

plasmid from bystanders, the subpools of E.coli culturing with limited numbers of bacteria were 

generated (Figure 2-3, B). In the first round of E.coli subpools, 30 probes containing 1/10 (e.g., 

30,000) of the original clone numbers of the same E.coli culture were added to a 96-well deep flat-

bottom block with 1.25 ml of LB medium containing the appropriate antibiotics. Meanwhile, exact 
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numbers of E.coli was plated to estimate the real clone numbers. After incubation for 16 hours, 1 ml of 

cell suspension from the bulk E.coli culture was taken for plasmid isolation (Section 2.2.2). Then the 

reactivation assay from the 30 probes was subsequently carried out in the presence of antigen coding 

plasmids (Section 2.7.3). If the activated signal was received in one probe (Figure 2-3, #5), the second 

round of E.coli subpools containing another 30 probes began. The number of E.coli clones in each 

probe was 1/10 (e.g., 30,000) of clone numbers in the first round of E.coli subpools. The following 

procedure was as same as the one in the first round of E.coli subpools. 

 

Figure 2-3: Workflow for the enrichment of positive E.coli clones in subpools 

The characterization of antigen coding plasmids was accomplished in subpools of E.coli culture according to this scheme, 

and the explanation is given in detail in Section 2.7.4. 

When the antigen coding sequence was present at a dilution of 1:300 or lower (Figure 2-3, 3
rd

 subpool) 

in the final stage of antigen isolation, at least 300 clones of E.coli were cultured on LB plates 

containing the appropriate antibiotics overnight at 37°C (Figure 2-3, C). Then 30 connected colonies 

are marked as presented in Figure 2-4, isolated with autoclaved toothpicks and incubated in a volume 

of 20 ml LB medium with the appropriate antibiotics for 16 hours. Afterward, 2 ml of E.coli culture 

from each bacteria colony was taken for plasmids purification, and then reactivation assay was 

performed. Once the positive probe containing the antigen coding plasmids was determined, the 30 
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E.coli colonies were separately incubated in 3 ml of LB medium with the appropriate antibiotics 

overnight at 37°C. Each bacteria colony containing the same plasmids was examined by final 

reactivation assay. Finally, the antigen coding plasmid from the potentially tested E.coli subpool was 

successfully identified, isolated and sequenced (Figure 2-3, D). 

 

Figure 2-4: Streets of 30 bacteria colonies were marked on LB
amp

 agar plate 

About 300 different clones identified in a positive pool were plated on LBamp agar plates after several rounds of E.coli 

subpools. Each plate had at least 90 colonies. Subsequently, lines with different colors (①-③) connected 30 single colonies, 

and then these colonies were picked separately and sorted individually into subpools. 
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3 Results 

3.1 Immunofluorescence of the Immune Cells on Human Tissue Cryosection 

T or B lymphocytes are considered to be the principal effector cells in the pathogenesis of MS. 

However, many other types of immune cells such as DCs, macrophages, and NK cells may also cross 

the BBB, infiltrate into the lesions, and attack the CNS structures in the process of MS. They may 

further serve as the antigen presenting cells (APCs) to present the self-antigens to the autoaggressive T 

cells or B cells in an immune reaction. 

Table 3-1: Detection of different immune cells with the specific antibodies 

√√: Specific staining of the target cells. √: Faint staining of the target cells and unspecific staining. ×: No staining of target 

cells but unspecific staining. Bold font: Two antibodies were verified specifically to stain the activated CD8+ T cells on the 

brain sections by the optimized rapid immunostaining method. 

Cell Marker Antibody Isotype/Clone ID Tonsil Brain 

T cell CD3 IgG/Polyclonal √√ √√ 

CD8+ T cell 

  
CD8α IgG1/LT8 √√ √√ 

CD8β 

  

IgG2a/2ST8.5H7 √√ √√ 

IgG1/5F2 √√ √ 

IgG2a/F-5 × × 

Activated cell  CD69 IgG1/FN50 √√ √√ 

CD134 

  

IgG1/ACT35 √√ × 

IgG1/7H163 √ × 

IgG2a/443318 × × 

IgG2a/H-10 × × 

IgG2a/W4-3 √√ √ 

CD137 

  

IgG/Polyclonal × × 

IgG1/BBK-2 √√ √√ 

NK cell CD57 IgM/HNK-1 × × 

Dendritic cell CD83 IgG1/HB15e √√ √√ 

Macrophage CD68 IgG1/EBM11 √√ √√ 

IgG1/KP1 √√ √√ 

IgG3/PG-M1 √√ × 

 

It is still unknown what the functions of the immune cells in the MS lesions are and how this is related 

to the pathogenesis of MS. Here, we employed the immunofluorescence staining to visualize the 

immune cells on frozen brain sections of MS patients. It is of great interest to figure out the 

relationship between the CD8
+
 T cells and the other immune cells in the MS brain lesions. However, 

many commercial antibodies were designed for the application of the paraffin sections, and only a few 
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of them could be used for the frozen sections, in particular for the human brain. In the awareness of 

the disadvantages, we firstly examined the antibody candidates on the frozen tonsil sections from the 

donors. Only the antibodies that stained well on tonsil could be used for frozen brain sections from MS 

patients. We list six types of immune cells and different antibodies that were tested here (Table 3-1). 

Immunofluorescence staining reveals these target cells on tonsil and brain tissues, which are presented 

in Figure 3-1 to 3-3. In addition, the isotype controls of these antibodies testing on tonsil and brain 

sections are summarized in supplementary data (Figure 5-1 to 5-3). 

Previous research discovered that clonally expanded CD8
+
 T cells were detected both at perivascular 

and intraparenchymal sites of the brain from MS patient FE (Babbe et al., 2000). Here, we attempted 

to validate this result and detect CD8
+
 T cells in brain tissues from MS patient FE. Figure 3-1 shows 

that the T cells and its subset-CD8
+
 T cells were specifically detected on human tonsil (A1-A3) and 

MS brain (B1-B3) sections by four commercial antibodies. However, the CD8
+
 T cells could not be 

detected by another antibody (Clone F-5, A5 and B5) against CD8 β-chain. Conversely, the unspecific 

staining was discovered in the isotype control of this antibody (Figure 5-1, A5 and B5). Therefore, the 

staining results demonstrate that there are many T cells infiltrated in the brain lesions of MS patient 

FE, expecially the CD8
+
 T cells, which is in accordance with the previous discovery (Babbe et al., 

2000). 
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Figure 3-1: Immunofluorescence staining of immune cells in tonsil and brain tissues. (Part 1) 

The CD8+ T cells were detected on human tonsil section (A) and MS brain sections (B) by different commercial antibodies. 

All nuclei were stained with DAPI (blue). Red and green dyes were used to visualize the CD8+ T cells. The names of 

antibodies (Clone ID) are written on the top of each image, and the working dilution ratios are labeled on each picture. The 

specific staining of CD8+ T cells is marked with the solid arrow. Scale bar=20 µm. 
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In brain lesions of MS patients, the activated CD8
+
 T cells are more likely to be the dominators of 

inflammatory demyelination (Dornmair et al., 2003). These activated cells might be the clonally 

expanded CD8
+
 T cells. Here, we could use a T cell activation marker to identify the activated CD8

+
 T 

cells in MS brain tissue morphologically. We examined several antibody candidates against T cell 

activation markers, such as CD69, CD134, and CD137 (Table 3-1). CD69 is the earliest glycoprotein 

appeared on the inducible cell surface during the activation of T lymphocytes and NK cells (Ziegler et 

al., 1994). The tested antibody against CD69 specifically detected its target cells both on tonsil and 

brain sections (Figure 3-2, A1 and B1). Furthermore, CD134 and CD137, as the other stimulatory 

checkpoint molecules, are up-regulated on the most recently antigen-activated T cells within 

inflammatory lesions (Anderson et al., 2012; Carboni et al., 2003). In the five anti-CD134 antibodies, 

two antibodies did not detect their target cells on tonsil and brain sections (Figure 3-2, A4, A5, B4, 

and B5). However, the activated T cells were specifically detected by the other three anti-CD134 

antibodies on tonsil sections (Figure 3-2, A2, A3, and A6). Unfortunately, the former two antibodies 

stained other targets on brain sections (Figure 3-2, B2 and B3). The shape of these cells suggests that 

they might be neurons or astrocytes. For the two tested antibodies against CD137, only one antibody 

specifically stained its target cells both on tonsil and on brain sections (Figure 3-2, A8 and B8), but 

another one had unspecific staining in the isotype controls (Figure 5-2, A7 and B7). 



RESULTS 

61 

 

 

Figure 3-2: Immunofluorescence staining of immune 

cells in tonsil and brain tissues. (Part 2) 

The activated T cells were detected on human tonsil section (A) and MS 

brain sections (B) by different commercial antibodies. All nuclei were 

stained with DAPI (blue), and green dyes were used to visualize the 

activated T cells. The names of antibodies (Clone ID) are written on the 

top of each image, and the working dilution ratios are labeled on each 

picture. The specific staining of activated T cells is marked with the solid 

arrow, and the unspecific staining is marked with the dashed arrow. 

Scale bar=20 µm. 
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Moreover, we tested several antibodies against the cell surface markers CD57, CD83, and CD68 for 

the natural killer cells, dendritic cells and macrophages (Table 3-1). The staining results show us that 

the NK cells were not detected by the monoclonal antibody (mAb) against CD57 (Clone HNK-1) 

either on tonsil or brain sections (Figure 3-3, A1-B1), because the unspecific staining was also 

observed in the isotype controls of the antibody (Figure 5-3, A1 and B1). Furthermore, three 

commercial antibodies against CD83 and CD68 specifically detected their target cells in tonsil and 

brain tissues, especially in the perivascular space of the brain tissue (Figure 3-3, A2-A4 and B2-B4), 

but another anti-CD68 antibody (Clone PG-M1) could not stain its target cells on brain sections 

(Figure 3-3, B5). 

In conclusion, the activated CD8
+
 T cells could be specifically detected by the anti-CD8α antibody 

(Clone LT8, 1:50 dillution) and the anti-CD137 antibody (Clone BBK-2, 1:200 dillution) on frozen 

brain sections. These visiable T cells later were isolated by laser microdissection and used for single 

cell αβ-TCR characterization. In addition, dendritic cells and macrophages were also detected in the 

brain lesions of MS patient FE. It demonstrates that except T lmphocytes, other immune cells might be 

infiltrated in the CNS lesions of MS patients during MS progress, which needs more evidences in the 

future. 
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Figure 3-3: Immunofluorescence staining of immune cells in tonsil and brain tissues. (Part 3) 

The NK cells, dendritic cells and macrophages were detected on human tonsil section (A) and MS brain sections (B) by 

different commercial antibodies. All nuclei were stained with DAPI (blue). Red and green dyes were used to visualize the 

NK cells, dendritic cells and macrophages. The names of antibodies (Clone ID) are written on the top of each image, and the 

working dilution ratios are labeled on each picture. The specific staining of NK cells, dendritic cells and macrophages is 

marked with the solid arrow, and the unspecific staining is marked with the dashed arrow. Scale bar=20 µm. 
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3.2 Morphological Identification of Activated CD8
+
 T Cells in the Lesion of MS Brain 

During the thesis, some brain tissue blocks from MS patient FE were available to investigate the 

distribution of CD8
+
 T cells in the lesions. In the previous analysis of the brain tissue blocks by Anna 

G. Niedl, block #12 contains higher numbers of CD8
+
 T cells than other blocks, especially in the 

meninges, perivascular and parenchymal spaces. However, it was still unknown whether these CD8
+
 T 

cells were activated and proliferated to the clonally expanded CD8
+
 T cells or not. 

The monoclonal antibodies LT8 against CD8a and BBK-2 against CD137 specifically detected their 

targets on frozen brain sections without unspecific staining background (Section 3.1). Therefore, we 

employed the two antibodies to identify the activated CD8
+
 T cells in the different brain blocks of MS 

patient FE. Before staining, the purified monoclonal antibody anti-CD8α was labeled with the 

fluorescent dye by the Cy3 mAb Labelling kit (Amersham). After the fluorescence staining as 

described in Section 2.5.2, we detected the activated CD8
+
 T cells under the fluorescence microscope. 

The numbers of the activated CD8
+
 T cells in the different blocks were calculated by the software 

“ImageJ 1.48i”. 

Figure 3-4 presents the distribution of the activated CD8
+
 T cells in three brain blocks (#2, #6, and 

#12). Block #2 has the least numbers of CD8
+
 T cells as well as the lowest numbers of activated CD8

+
 

T cells (CD137-positive) amongst the brain tissue blocks. Another two blocks (#6 and #12) have more 

CD8
+
 T cells, some of which are also demonstrated to be CD137-positive. Many clusters of activated 

CD8
+
 T cells were found in the perivascular space of brain blocks (#6 and #12 with red frame). These 

activated CD8
+
 T cells were composed of several T-cell clusters that are presented in Figure 3-5. In 

block #2, the T cell clusters were rarely detected, but only single activated CD8
+
 T cells showed up in 

this part of MS brain, where obviously no inflammation occurred. On the contrary, many CD8
+
 T cell 

clusters were observed in block #6 and #12, most of which were activated (CD137-positive). We 

assume that these two brain tissue blocks might be the parts of MS lesions, which were infiltrated by 

inflammatory CD8
+
 T lymphocytes. Thus, these T cells will subsequently be isolated by laser 



RESULTS 

65 

microdissection to identify the paired αβ-TCRs in the single cell level. The expanded TCR clones 

identified from the brain lesions might belong to the auto-aggressive CD8
+
 T cells underlying the 

pathogenesis of MS. 

 

Figure 3-4: Identification of activated CD8
+
 T cells in different brain blocks of MS patient FE 

8-10 µm of cryosections from frozen brain biopsies block #2 (A), #6 (B) and #12 (C) were employed for the fluorescence 

staining. Left panel: CD8+ T cells were stained with anti-CD8α-Cy3 antibody (red). Middle panel: activated T cells were 

stained with anti-CD137 antibody as well as the Alexa Fluor® 488-labeled secondary antibody anti-mouse IgG (H+L) 

(green). Right panel: Double-positive cells for CD8α and CD137 were merged (yellow). All nuclei were stained with DAPI 

(blue). The cluster of activated CD8+ T cells is framed out. (D) The comparison of the numbers of CD8+ T cells and activated 

CD8+ T cells per slide were plotted for each brain blocks. Red frame: activated CD8+ T cell clusters; white arrows: activated 

CD8+ T cells. Scale bars=50 µm. 
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Figure 3-5: Clusters of activated CD8
+
 T cells infiltrated in the MS brain tissue 

8-10 µm of cryosections from brain block #12 of MS patient FE were stained with primary antibodies anti-CD8α-Cy3 (red) 

and anti-CD137 as well as the secondary antibody anti-mouse IgG (H+L)-Alexa Fluor® 488 (green). All nuclei were stained 

with DAPI (blue). The double-positive cells were appeared in yellow and indicated by arrows. (A-D) Four clusters of 

activated CD8+ T cells were detected by fluorescence microscopy. Subsequently, single activated CD8+ T cells in the clusters 

were isolated by laser microdissection for the characterization of paired αβ-TCRs. Scale bars=50 µm. 

In the spaces of brain tissue where T-cell clusters were found, most of the activated CD8
+
 T cells were 

detected to contact tightly to another cells (Figure 3-6). The contact site between the activated CD8
+
 T 

cell and its contacting cell was clearly discovered under the confocal microscope (Figure 3-6, D1-D3). 

In the future, it will be interesting to figure out the cell types of the contacting cells and the 

relationship with the activated CD8
+
 T cells that were contacted. 

In summary, we successfully identified the activated CD8
+
 T cells in the different brain tissue blocks 

of MS patient FE, and also found that these T cells showed up in clusters in the MS lesions. To 

characterize expanded TCR clones of these activated CD8
+
 T cells, single T cells will be isolated to do 

the amplifications of TCR α- and β-chains. In addition, many activated CD8
+
 T cells in the lesions 

were found to contact another cells that might be their targets expressing the MS-related antigens. This 

hypothesis will be verified in the future. 
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Figure 3-6: Detection of the activated CD8
+
 T cells in directly contact with another cells in the 

MS brain tissue 

8-10 µm of cryosections from frozen brain biopsy of MS patient FE were stained with the primary antibodies anti-CD8α-Cy3 

(A1-D1, red) and anti-CD137 as well as the secondary antibody anti-mouse IgG (H+L)-Alexa Fluor® 488 (A2-D2, green). 

The double-positive cells appeared in yellow (A3-D3). All nuclei were stained with DAPI (blue). The activated CD8+ cells 

contacted another cell are framed out (A-C). The confocal microscopy was used to get better quality of images for activated 

CD8+ T cell and its contacting cell (D1-D3). Observation at higher magnification is both shown in the red channel and green 

channel. Scale bars=20 µm. 

3.3 Identification of Matching TCR α- and β-Chains from MS Patients 

MS is a relapsing inflammatory autoimmune disorder and characterized by repeated inflammatory 

infiltration of the CNS. Progressive demyelination together with axonal loss causes the chronic 

disability of human body (Hohlfeld and Wekerle, 2001). CD8
+
 T cells prevail and conduct the direct 

attack on CNS tissue structure in all infiltrating cell populations (Hohlfeld et al., 2016). Therefore, 

characterization of TCR molecules initiating from autoaggressive CD8
+
 T cells may bring further 

insightful opinions into the pathogenesis of MS. In addition, MS is initiated by the migration of 

pathogenic T cells from the peripheral blood over the BBB to the CNS. The brain-infiltrating CD8
+
 T 

cells were demonstrated to persist as clonal expansions in the CSF and blood of MS patient (Skulina et 

al., 2004). Therefore, identification of clonally expanded pathogenic T cells is vital for understanding 

the pathogenesis of MS. 
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A technology to characterize the matching TCR α- and β-chains of single T cells was established 

earlier (Kim et al., 2012; Seitz et al., 2006). Here, this unique technology was optimized to generate 

the matching TCR α- and β-chains of the putatively pathogenic T cells from MS patients. Firstly, an 

approach of rapid immunostaining was improved for better distinguishing the single activated CD8
+
 T 

cells from bystander T cells in MS brain tissues (Section 3.3.1). Secondly, the different effective 

treatments on brain tissues were explored for minimizing the RNA degradation (Section 3.3.2). 

Thirdly, the approach of amplifying the αβ-TCRs of single T cells was improved to obtain a high yield 

of the matching TCR α- and β-chains (Section 3.3.3). Fourthly, several TCR β-chains of 

autoaggressive CD8
+
 T cells were identified from the frozen brain biopsies of MS patients (Section 

3.3.4). Lastly, TCR α/β chains of migrated T cells were generated from the CSF of MS patients 

(Section 3.3.5). 

3.3.1 Rapid Immunostaining of Single CD8
+
 T Cells for Microdissection 

MS patient FE is characterized by large CD8
+
 T-cell populations infiltrated in the brain lesions (Babbe 

et al., 2000). Biopsy samples are necessary to characterize these MS-related CD8
+
 T cells by the 

current technologies (Kim et al., 2012; Seitz et al., 2006). The single activated CD8
+
 T cells have to 

meet three criteria before LCM: Firstly, T-cell appearance (relatively round, 8-20 μm in diameters) is 

displayed with the cell’s morphology. Secondly, the T cells of interest carry the CD8 molecules on the 

surface along with the activation markers (such as CD69, CD134, and CD137). Lastly, the single 

isolated T cells still contain enough intact mRNA for subsequent TCR characterization. 

Immunostaining of activated CD8
+
 T cells on frozen sections was described previously (Kim et al., 

2012), but needs to be optimized. This study is dedicated to establishing a reliable protocol for rapid 

immunostaining of the single activated CD8
+
 T cells from MS brain biopsies and improving the 

accuracy of isolating single T cells for subsequent TCR analysis. 
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Figure 3-7: Steps and examinations within the rapid immunostaining method 

The immunostaining includes these steps (A-H). ①: Different fixation periods with Acetone were tested. ②-③: Various 

BSA concentration and blocking time were examined. ④-⑤: The concentrations of antibodies against CD8α, CD137 and 

mouse IgG (H+L) as well as the incubation time were tested. ⑥-⑦: The staining procedure including the rinsing steps or not 

was examined. In addition, we appended three additional conditions to the rapid immunostaining protocol to minimize RNA 

degradation: Firstly, the staining temperature was sustained at 4°C. Secondly, RNase Inhibitor was used in the dilution of 

BSA and antibodies. Lastly, the dehydration steps (F) proceeded after staining. 

The steps and examination points within the rapid immunostaining protocol are summarized in the 

scheme shown in Figure 3-7. These tests were carried out in five crucial steps. Firstly, the fixation 

time was optimized (Figure 3-7, ①). Secondly, the relationship between the concentration of BSA 

solution and the blocking time was investigated (Figure 3-7, ②-③). Thirdly, the different antibodies’ 

concentrations and incubation times were tested (Figure 3-7, ④-⑤). Fourthly, the staining protocols 

with and without rinsing steps were also compared (Figure 3-7, ⑥ -⑦ ). Lastly, considering 

minimizing RNA degradation, we compared the results obtained from the rapid immunostaining 

protocol at 4°C and room temperature. Table 3-2 summarizes the staining results obtained from the 

five different conditions above and scored in score of 5. 

 

 



RESULTS 

70 

Table 3-2: Summary of staining results obtained from different conditions 

1: no staining, 2: faint staining, 3: weak staining, 4: acceptable staining, 5: strong staining. 

A. Staining results obtained with different fixation time 

Fixative 10 s 1 min 5 min 10 min 

100% Acetone 4 4 5 5 

Without fixation 1 1 1 1 

B. Staining results from different concentration of BSA and blocking time 

Block Reagent Concentration 30 s 2 min 5 min 10 min 

BSA 1:50 1 1 3 5 

1:20 1 2 3 5 

1:10 1 4 4 5 

C. Staining results of different concentration of antibodies and incubation periods 

Anti- Concentration 2 min 3 min 5 min 10 min 

Human CD8α-Cy3 1:50 3 4 5 5 

Human CD137 1:100 1 1 2 3 

1:50 1 2 3 3 

1:5 2 3 4 5 

Mouse IgG (H+L)-Alexa Fluor® 488 1:1000 1 1 1 2 

1:100 2 2 3 4 

1:20 4 4 5 5 

D. Staining results of different staining temperatures 

Temperature 10 min 15 min 20 min 30 min 

4°C 4 3 3 2 

Room temperature 5 5 5 5 

E. Staining results with or without rinse steps 

Step 10 s 30 s 1 min 2 min 

Rinsing with PBS solution 4 4 5 5 

Without rinse steps 4 

 

If the tissue sections were not fixed initially, the detection of staining was impossible. Fixation of 

tissue sections with acetone for ten seconds or one minute was a little weaker than for five or ten 

minutes, with no difference between ten seconds and one minute (Table 3-2, A). Slides were immersed 

in acetone ten times rather than applying them by drops because the acetone is highly volatile, and 

drops may wash cells out of slides by surface tension (Salem et al., 2003). Blocking the tissue with 10% 

BSA solution for 2 minutes, were comparable to those obtained from blocking for longer times (Table 

3-2, B). Less than one minute of blocking resulted in no staining absolutely. Unfortunately, the weak 

staining by blocking with lower concentrations of BSA solutions (such as 2% and 5%) for less than 5 

minutes did not reveal reliable results. 
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Figure 3-8: Pathogenic CD8
+
 T cells located in the MS brain and isolated by laser 

microdissection 

8 µl cryosections of a frozen biopsy sample (block #12) from the MS patient FE were stained with Cy3-labeled anti-CD8α 

(red, 1:50) and anti-CD137 (1:5) primary antibodies as well as Alexa Fluor® 488-labeled anti-mouse IgG (H+L) (green, 1:20) 

secondary antibody. (A-C) Detection of activated CD8+ T cells (white arrows) that were double-positive (C) for CD8 (A) and 

CD137 (B). (D-F) Laser microdissection of single T cells was co-stained for CD8α (red, D) and CD137 (green, E). The 

single activated CD8+ T cells (cell element #1, 2 and so on) were dissected within the yellow circles and then captured 

directly into the cap of a PCR tube for subsequent TCR analysis. After laser microdissection (F), the corresponding image of 

the tissue from transmitted channel is presented. Scale bars=25 µm. 

Results obtained from incubating brain sections with antibodies anti-CD8α-Cy3 (1:50), anti-CD137 

(1:5) and anti-mouse IgG (H+L)-Alexa Fluor
®
 488 (1:20) for 3, 5, and 2 minutes, respectively, were 

comparable to those acquired from incubation with lower concentrated antibodies for longer times 

(Table 3-2, C). In addition, results obtained from the staining at 4°C were slightly weaker than those 

obtained from the staining at the room temperature, but the former ones were acceptable staining for 

microdissection (Table 3-2, D). There was no significant difference in staining results with or without 

rinsing steps (Table 3-2, E). Therefore, using the improved rapid immunostaining method we obtained 

the same results on frozen brain sections as fluorescence staining with the long protocol (Section 3.2). 
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In summary, we tested the influence of different conditions to the staining results on frozen brain 

sections. The repaid immunostaining method was successfully optimized to visualize the activated, i.e. 

double-stained CD8α
+
/CD137

+
 single T cells in a limited time before laser microdissection. A sample 

of isolation of single activated CD8
+
 T cells by laser microdissection from the brain biopsies of MS 

patients are shown in Figure 3-8. 

3.3.2 Effective Treatments on Tissue to Minimize the Degradation of RNA Quality 

RNA quality is crucial for subsequent TCR analysis. The decay of RNA transcripts is mainly infected 

by the environmental elements like temperature, chemicals, RNases and so on. The degradation of 

RNA mostly happened in the treatment of MS brain cryosections, even though the completely staining 

period was shortened to 12 minutes (Section 3.3.1). The brain biopsy samples of MS patient FE and 

RF were used for the measurement of RNA quality as described in Section 2.2.4. The assessment of 

RNA integrity in brain tissues before and after staining is shown in Figure 3-9. 

 

Figure 3-9: Comparison of RNA qualities in brain tissues before and after fluorescence staining 

The RNA quality in tissue blocks of the brain biopsies from MS patients FE and RF were determined by the Agilent 2100 

bioanalyzer. Densitometry plot shows RNA signals in runtime (s) against fluorescence intensity with relative fluorescence 

units (FU). Note the different scales of the Y-axes. RIN values represent standardization of RNA quality control. (A-B) The 

positive and negative controls of the experiment. (C-D) Initial RNA qualities of brain biopsies from MS patients FE and RF. 

(E-F) The RNA quality after fluorescent staining procedure. Solid arrow: 18S rRNA; dashed arrow: 28S rRNA. 

The densitometry plots present that the fresh brain biopsy samples stored at -80°C both had the high 

RNA integrity numbers (RIN) of 7.60 and 6.70 with two peaks at the signals of 18S and 28S rRNA 
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(Figure 3-9, C-D, arrows), respectively. However, weak signals of 18S and 28S rRNA were detected 

from the same brain biopsy samples after the fluorescence staining. The RNAs were almost decayed 

according to the low RINs with 1.30 and 1.0, respectively (Figure 3-9, E-F). 

Therefore, except for using the improved rapid immunostaining (Section 3.3.1) instead of the general 

fluorescence staining (Section 2.5.2), some other conditions were included to minimize RNA 

degradation. Firstly, RNases inhibitor
2
 was added to the blocking solution, diluted antibodies, and 

rinsing solution. Secondly, instead of preparing the blocking solution with the BSA-1
3
 powder, 10% of 

the BSA-2
4
 solution was used as the blocking reagent, which is a commercial product without 

RNase/DNase. Thirdly, the slides were kept on a cold metal block during the staining to maintain the 

temperature of slides at 4°C. Lastly, to get rid of the water within the tissues completely, we used a 

series of ethanol with different concentration gradients and xylene solution to deal with the slides 

before laser microdissection. These steps are called dehydration. The frozen sections of tonsil were 

used to test these conditions above, and the results are presented in Figure 3-10. 

The untreated RNA (Figure 3-10, A) from fresh tonsil biopsy stored at -80°C was examined with high 

quality (RIN=5.30) and visible signals of 18S and 28S rRNA (two peaks marked with arrows). The 

untreated RNA sample stored on dry ice served as the positive control in our study. After subsequent 

fluorescence staining, RNA was mostly decayed (Figure 3-10, B), but faint signals of 18S and 28S 

rRNA were detected in addition of RNases inhibitor (Figure 3-10, C). It indicates that the amount of 

RNase inhibitor is not enough to minimize RNA degradation. However, the RNA quality after the 

fluorescence staining performed at 4°C was comparable to that at room temperature (Figure 3-10, D). 

                                                      
2
 RNases inhibitor: protector RNase inhibitor (40 U/µl, Roche) 

3
 BSA-1: the powder of Bovine Serum Albumin (Sigma-Aldrich) 

4
 BSA-2: the solution of Bovine Serum Albumin (Protease/DNase/RNase free, 20 mg/ml in H2O, Sigma-

Aldrich) 
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Figure 3-10: Comparison of RNA qualities in tonsil tissues with different treatments 

RNA quality was examined after different treatments of tonsil tissues by the Agilent 2100 bioanalyzer. Densitometry plot 

shows RNA signals in runtime (s) against fluorescence intensity with relative fluorescence units (FU). Note the different 

scales of the Y-axes. RIN values represent standardization of RNA quality control. (A) Untreated RNA stored on dry ice 

served as positive control. (B) RNA quality after fluorescent staining without any treatment served as negative control. (C) 

RNA quality after fluorescent staining with Protector RNase Inhibitor. (D) RNA quality after fluorescent staining at 4°C with 

Protector RNase Inhibitor. (E) RNA quality after fluorescent staining at 4°C with BSA-2 and Protector RNase Inhibitor. (F) 

RNA quality after fluorescent staining at 4°C with BSA-2, Protector RNase Inhibitor and the dehydration steps (Xylene). 

Solid arrow: 18S rRNA; dashed arrow: 28S rRNA. 

As complete RNA degradation was observed in the stained sections (Figure 3-10, B), it is 

hypothesized that BSA-1 solution might contain RNases. However, BSA-2 solution (10%) is a 

Protease/DNase free, liquid BSA purchased from Sigma-Aldrich. The RNA sample treated with BSA-

2 solution yielded a RIN value of 3.50 and detectable signals of 18S and 28S rRNA (Figure 3-10, E). 

Even though RNases inhibitor could delay the RNA degradation, the water contained in the tissues 

might speed up the decay of RNA. The RNA samples obtained from dehydrated sections yielded a 

good RIN value of 4.90 and strong signals of 18S and 28S rRNA (Figure 3-10, F). The RNA quality 

after these treatments is much close to the original RNA quality from fresh biopsies stored at -80°C 

(Figure 3-10, A). The dehydration takes the water completely out of tissue sections and stops RNases 

further to decompose RNAs. 
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Figure 3-11: Minimization of RNA degradation on brain biopsy with the improved rapid 

immunostaining 

RNA quality of brain biopsy (Block #9) from MS patient FE was examined before and after rapid immunostaining by the 

Agilent 2100 bioanalyzer. Densitometry plot shows RNA signals in runtime (s) against fluorescence intensity with relative 

fluorescence units (FU). Note the different scales of the Y-axes. RIN values represent standardization of RNA quality 

control. (A) Untreated RNA stored on dry ice served as positive control. (B) RNA quality after fluorescent staining without 

any treatment served as negative control. (C) RNA quality after the improved staining was dehydrated with Xylene solution 

in the last step. (D) RNA quality after the improved staining was dehydrated with 100% Ethanol in the last step. Solid arrow: 

18S rRNA; dashed arrow: 28S rRNA. 

Due to the high RNA quality of tonsil (Figure 3-10, F) after treatment with the optimized staining 

method, we measured the RNA quality of brain tissue sections from MS patient FE (Block #9) after 

the same treatment as mentioned above. Meanwhile, 100% ethanol solution instead of Xylene solution 

in the dehydration steps was also examined. The assessment of RNA qualities in brain tissues is shown 

in Figure 3-11. Compared to the RNA quality before fluorescence staining (RIN=7.10, A), the 

degradation of RNA is actually slowed down after the treatment of improved staining and the 

dehydration (Figure 3-11, C-D). The strong signals of 18S and 28S rRNA were detected after the 

improved staining either with dehydration of Xylene solution or with 100% Ethanol (C-D, arrows). 

However, the value of RIN with dehydration of Xylene solution (RIN=6.10) is much higher than the 

treatment with 100% Ethanol (RIN=4.60) in the dehydration steps. 

In summary, for the subsequent laser microdissection experiments the addition of RNases inhibitor to 

each staining solutions and dehydration included in the optimized staining protocol is necessary. The 
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commercial blocking solution (BSA-2) and the staining temperature (4°C) are essential for the 

minimization of RNA degradation. During the following one hour of microdissection, the RNA 

quality is preserved well enough for subsequent TCR analysis. 

3.3.3 Optimization of the Unbiased PCR Technology to Identify Paired TCR α- and β-Chains 

Brain tissue specimens from MS patients FE and RF were employed for identification of the single 

activated CD8
+
 T cells by staining with antibodies against CD8α and CD137. The double positive 

single T cells (CD8
+
CD137

+
) were isolated by laser microdissection and analyzed by the multiplex 

RT-PCR-based approach to amplify the αβ-TCRs of single T cells (Kim et al., 2012). Here, this 

unbiased technology was optimized for higher yield of TCR α- and β-chains. The strategically steps 

and optimization are shown in Figure 3-12. Single T cells from peripheral blood of a healthy donor 

were used to examine these changes within the unbiased PCR protocol. DEPC-treated water instead of 

DNA sample served as negative control. 

The TCR α- and β-chains are named in accordance with IMGT
®
 nomenclature (Lefranc et al., 2009; 

Lefranc and Lefranc, 2001), except for the variable regions of the TCR chains, which are specially 

designated according to Arden et al. (Arden et al., 1995). 

3.3.3.1 Different PCR thermal cyclers 

To enhance the accuracy of PCR, we compared the unbiased TCR amplification with three different 

PCR thermal cyclers. A new PCR thermal cycler (Mastercycler
®
 pro, Eppendorf) and another two old 

cyclers (Mastercycler
®
 Gradient Thermal Cycler from Eppendorf and GeneAmp PCR System 9600 

from Perkin Elmer) were included in the comparison. There is no difference on the yield of TCR β-

chains amongst the PCR thermal cyclers (data not shown). However, based on the principles of 

timesaving and preventing the evaporation of PCR master mix, we chose the Mastercycler
®
 pro PCR 

thermal cycler for subsequent PCR experiments. 



RESULTS 

77 

 

Figure 3-12: Strategically steps and optimization to identify paired TCR α- and β-chains from 

dissected tissue-infiltrating T cells 

(A) RT reaction was employed to prepare cDNA of TCR molecules. In this step, we examined the reaction performed in 

different PCR thermal cycles (①) and the concentrations of primers (②) used in the reaction (B) Touchdown PCR was 

employed to pre-amplify the TCR α- and β-chains. In this step, we examined the reaction performed in different PCR thermal 

cyclers (③), different reverse primers (④) and the Thermocycling conditions (⑤) involved in the reaction. (C-D) The TCR 

α- and β-chains were separately amplified with two PCRs. In these two steps, we both examined the reactions performed in 

different PCR thermal cyclers (⑥, ⑧) and the Thermocycling conditions (⑦, ⑨) involved in the responses. 

3.3.3.2 Different concentrations of RT primers 

Two primers (Cβ-RT-2 and Cα-RT-imp) are involved in the reaction for preparation the cDNA of 

TCR α- and β-chains, respectively. In the original protocol, the final concentration of RT-primers 

might have been too high to obtain high yield of TCR β-chains finally. Thus, we reduced the amount 

of RT-primers in order to improve the output of PCR. To avoid further RNA degradation, we added 

RNases inhibitor to the reaction. The RT reaction is described in Section 2.2.9.2, and the TCR β-

chains obtained from two concentrations are given in Table 3-3. Three TCR β-chains (9%) have been 

achieved from 32 single T cell samples with the high concentration of primers (Table 3-3, #1-#3). 

However, with the low concentration of primers, TCR β-chains were double yielded from the same T 

cells (Table 3-3, #1-#5). In addition, two identical TCR β-chains (BV6S2-GRGGGF-BJ2.5) were 

found with a low concentration of primers. The high amount of primers might increase unspecific PCR 
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products, such as primer dimers and short oligonucleotides. Therefore, the low concentration of RT 

primers will be used for subsequent unbiased PCR experiments. 

Table 3-3: TCR β-chains obtained from unbiased PCR protocol with various concentrations of 

RT primers 

In the unbiased PCR protocol, we examined the high (0.6 µM) and low (0.3 µM) concentrations of primers involved in RT 

reaction. All the TCR β-chains (#1-#5) were obtained with the low concentrations of primers, except for the first three 

sequences (#1-#3) that were obtained with the high concentrations of primers. ‡Two identical TCR β-chains (BV6S2-

GRGGGF-BJ2.5) were found. Blue: amino acid sequence, red: V region, black: n(D)n, green: J region. N=numbers of the 

single T cells. 

Cell Nr. TCR β-chains Sequence n(D)n (N=32) 

#1 BV 13S2a-BJ 2.5 

  C A S S Y S I G T G R R Q   

5’- TGT GCC AGC AGT TAC TCG ATT GGG ACT GGG CGG AGG CAA - 3’ 

#2 BV 8S3-BJ 2.3 

  C A S G T R D T D T Q Y F   

5’- TGT GCT AGT GGT ACC CGG GAC ACA GAT ACG CAG TAT TTT - 3’ 

#3 BV 6S2-BJ 2.5 

  C A S S L G R G X X S K R   

5’- TGT GCC AGC AGC TTA GGG CGA GGA GNN NNN TCC AAG AGA - 3’ 

#4 BV 6S2-BJ 2.5‡ 

  C A S S L G R G G G F Q E   

5’- TGT GCC AGC AGC TTA GGG CGA GGC GGG GGG TTC CAA GAG - 3’ 

#5 BV 6S5-BJ 2.5 

  R A S S L G R G G X I Q E   

5’- CGC GCC AGC AGC TTA GGG CGA GGA GGG NGA ATC CAA GAG - 3’ 

3.3.3.3 Design of different reverse primers for TCR β-chains 

In the pre-amplification of TCR α/β chains, multiple primer sets are included to produce different 

sized amplicons. Multiple primer sets were designed for the “V-segments” of TCR α/β chains, which 

are named as Vβ primer pools and Vα-for-out primer pools (Table 2-5 to Table 2-6). Two reverse 

primers (Cα-out and Cβ-out) were designated for the constant regions of TCR α/β chains. However, 

the binding site of primer Cβ-out (5’-TGGTCGGGGWAGAAGCCTGTG-3’) overlaps to that of 

primer Cβ-RT-2 (5’-GWAGAAGCCTGTGGCC-3’) involved in the RT reaction. The low yield of the 

PCR products might be arised by mispriming during PCR, which verified that the primer Cβ-out has 

no additional complementary regions within the template DNA. In addition, all primers involved in 

this reaction have the similar melting temperature (Tm=60°C), except for the primer Cβ-out 

(Tm=68°C). Tm can also be known as the annealing temperature (Ta), at which the primers start to bind 

template DNA during PCR. Too high Ta might produce insufficient hybridization of the primer-DNA 

template and result in low yield of PCR products. Moreover, closely matched Tm of primers leads to 
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maximize the yield of PCR products. The difference of 5°C or more between forward and reverse 

primers may result in no amplification or non-specific products. Therefore, a new primer Cβ-mid4 is 

designed, (5’-TGGGTGTGGGAGATCTCTG-3’, Tm=60°C), which locates at the inner fragment of 

“C-segments” of TCR β-chains. The pre-amplification of TCR chains is described in Section 2.2.9.3, 

and the TCR β-chains obtained from two branches are shown in Table 3-4. Only one TCR β-chain 

(6%) was obtained from 16 single T cell samples using the reverse primer Cβ-out (Table 3-4, #1). 

However, nine TCR β-chains (56%) were obtained from same numbers of single T cell samples with 

the reverse primer Cβ-mid4 (Table 3-4, #1-#9). The high yield of productive TCR β-chains was 

achieved from the unbiased PCR with the newly designed primer Cβ-mid4. Thus, the newly designed 

reverse primer (Cβ-mid4) is much more efficient for pre-amplify the TCR chains than the former 

primer (Cβ-out). We therefore will employ the primer (Cβ-mid4) for subsequent TCR analysis. 

Table 3-4: TCR β-chains obtained from unbiased PCR protocol with various reverse Cβ primers 

In the unbiased PCR protocol, we examined the two different reverse primers (Cβ-out and Cβ-mid4) involved in the pre-

amplification of TCR chains. The TCR β-chains (#2-#9) were obtained with the primer Cβ-mid4. The first sequence (#1) was 

obtained with the primer Cβ-out. Blue: amino acid sequence, red: V region, black: n(D)n, green: J region. N=numbers of the 

single T cells. 

Cell Nr. TCR β-chains Sequence n(D)n (N=16) 

#1 BV 6S2-BJ 1.1 

  C A S S P V G G I E A F F   

5’- TGT GCC AGC AGC CCC GTT GGG GGC ATA GAA GCT TTC TTT - 3’ 

#2 BV 13S3-BJ 2.7 

  C A S S T G R R S S Y       

5’- TGT GCC AGC AGC ACG GGA CGC CGG AGC TCC TAC - 3’     

#3 BV 6S4-BJ 1.3 

  C A S S Y G E N T I         

5’- TGT GCC AGC AGC TAC GGG GAA AAC ACC ATA - 3’       

#4 BV 20S1-BJ 2.2 

  C A W S P Q F N T G         

5’- TGT GCC TGG AGT CCC CAG TTC AAC ACC GGG - 3’       

#5 BV 8S1/8S2-BJ 1.2 

  C A S S L G R I P S H G Y   

5’- TGT GCC AGC AGC CTA GGA CGC ATA CCG AGC CAT GGC TAC - 3’ 

#6 BV 17S1-BJ 2.4 

  C A S S I R A P L A K N     

5’- TGT GCC AGT AGT ATT CGG GCG CCT CTA GCC AAA AAC - 3’   

#7 BV 12S1-BJ 1.5 

  C A I S G S G G T G M G Q   

5’- TGT GCC ATC AGT GGC AGC GGC GGT ACA GGG ATG GGT CAG - 3’ 

#8 BV 9S1-BJ 2.5 

  C A S S Q D A L A V E T Q   

5’- TGT GCC AGC AGC CAA GAT GCG CTA GCG GTA GAG ACC CAG - 3’ 

#9 BV 6S5-BJ 2.3 

  C A S N P T R S A D         

5’- TGT GCC AGC AAC CCA ACC CGG AGC GCA GAT - 3’       



RESULTS 

80 

3.3.3.4 Different thermocycling conditions to pre-amplify TCR chains 

The unbiased amplification of TCR chains is achieved by a multiplex RT-PCR-based method to 

analyze the matching i.e. paired αβ-TCR chains of single human T cells (Kim et al., 2012). During the 

pre-amplification of paired αβ-TCRs, nine degenerate primers (Vβ1-Vβ9) together with 24 degenerate 

primers (Vα-for-out) (Seitz et al., 2006) were designed to cover the entire “V-segments” of functional 

TCR α- and β-chains (Table 2-5 to Table 2-6). The average of Tm for all the degenerate primers is 

61°C, and the optimum Ta is determined by the gradient PCR. In the previous setup by Kim et al., two 

annealing temperatures (60°C and 53°C) each with 10 and 30 cycles were employed for the TCR 

amplification. To this point, we tested some modification, which are shown in Table 3-5 (A). Except 

for the modified conditions, the pre-amplification of TCR chains is performed as described in Section 

2.2.9.3. The TCR β-chains obtained from the unbiased PCR protocol with the different thermocycling 

conditions are displayed in Table 3-5 (B). 

Following the previous setup by Kim et al., we obtained two TCR β-chains (12.5%) from 16 cell 

samples, together with many non-specific products that may be caused by the low annealing 

temperature (53°C). We improved the annealing temperatures (58°C and 56°C) and adjusted the PCR 

cycles according to the nucleotides sizes of different TCR α- and β-chains (Table 3-5, A). Then eight 

functional TCR β-chains (50%) were acquired from the same numbers of T cell samples. In addition, 

we also optimized the DNA elongating temperature (72°C) for the best activity of Taq polymerase. 

Therefore, the optimized thermocycling conditions will be used in the pre-amplification of the paired 

αβ-TCRs in the future. 
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Table 3-5: TCR β-chains obtained from unbiased PCR protocol with different thermocycling 

conditions 

(A) In the unbiased PCR protocol, we modified the thermocycling conditions for pre-amplification of the paired αβ-TCRs. 

(B) All the TCR β-chains (#1-#8) were obtained with optimized thermocycling conditions, except for the first two sequences 

(#1-#2) that were achieved with the original PCR setup (Kim et al., 2012). Blue: amino acid sequence, red: V region, black: 

n(D)n, green: J region. N=numbers of the single T cells. 

(A) 

Conditions  Original Modified  

Annealing temperature (°C)  60  →  53 61→58→56  

Elongating temperature (°C)  68 72  

Numbers of cycles  10×      30× 4×    4×   10×  

(B) 

Cell Nr. TCR β-chains Sequence n(D)n (N=16) 

#1 BV 6S4-BJJ 2.3 

  C A S S L V G S G R S T D   

5’- TGT GCC AGC AGC TTA GTT GGG AGC GGG AGA AGC ACA GAT - 3’ 

#2 BV 8S1/8S2-BJ 1.1 

  C A S T Q G W G D T E A F   

5’- TGT GCC AGC ACC CAA GGG TGG GGA GAT ACT GAA GCT TTC - 3’ 

#3 BV 21S3-BJ 2.5 

  C A S S L D R T G G E E T   

5’- TGT GCC AGC AGC TTA GAT CGC ACA GGG GGC GAA GAG ACC - 3’ 

#4 BV 7S1-BJ 1.2 

  C A S S P I G G D Y G Y T   

5’- TGC GCC AGC AGC CCC ATC GGG GGG GAC TAT GGC TAC ACC - 3’ 

#5 BV 8S1/8S2-BJ 2.4 

  C A S R Q G R D I Q         

5’- TGT GCC AGC AGA CAG GGG CGG GAC ATT CAG - 3’       

#6 BV 21S2-BJ 1.1 

  C A S S T R Q Q T N T       

5’- TGT GCC AGC AGC ACC CGA CAG CAG ACG AAC ACT - 3’     

#7 BV 14S1-BJ 1.4 

  C A S S W G E K L F         

5’- TGT GCC AGC AGT TGG GGG GAA AAA CTG TTT - 3’       

#8 BV 15S1-BJ 1.3 

  C A T S D P R T D G N T     

5’- TGT GCC ACC AGT GAC CCA AGG ACT GAT GGA AAC ACC - 3’   

3.3.3.5 Specific amplification of TCR α- and β-chains 

The pre-amplification PCR products served as templates to amplify the TCR β-chains by anchor PCR 

and the corresponding α-chains by nested PCR (Kim et al., 2012). The anchored PCR includes two 

steps according to the previous protocol. Firstly, the pre-amplification PCR products are introduced to 

a run-off reaction using the nine anchored primers (VP1
+
-VP9

+
), at the 5’ end of which a unique 

oligonucleotide sequence (5’-ACAGCACGACTTCCAAGACTCA-3’, Tm=66°C) is connected. 

Secondly, the unique sequence (UP) serves as the forward primer together with a nested primer (Cβ-in, 

Tm=60°C) are used to amplify the TCR β-chain rearrangement. However, we did not obtain a high 

yield with this PCR setup (Kim et al., 2012). Four problems were in our concern. Firstly, non-specific 

products might be caused by the run-off reaction. Secondly, the two primers (UP and Cβ-in) have 
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different Tm values, which compromise the PCR efficiency. Thirdly, the PCR cycles are not enough 

for the addition of anchor sequences to the V-segments of TCR β chains. Lastly, the annealing 

temperature (53°C) is not high enough to avoid the non-specific PCR products. 

Table 3-6: TCR β-chains obtained from unbiased PCR protocol with different PCR setups 

(A) PCR setups were modified for the amplification of TCR β-chains. (B) All the TCR β-chains (#1-#16) were obtained with 

optimized PCR setup, except for the first sequence (#1) that was achieved with the original PCR setup (Kim et al., 2012). 

Blue: amino acid sequence, red: V region, black: n(D)n, green: J region. N=numbers of the single T cells. 

(A) 

Conditions  Original Modified  

Anchor primer  UP (Tm=66°C) UPnew (Tm=60°C)  

Anchored VP primer  VP1+-VP9+ VP1+
new-VP9+

new  

Reverse primer  - Cβ-in (Tm=60°C)  

Cycling program  Run-off reaction Anchor PCR  

Annealing temperature (°C)  53 56  

Elongating temperature (°C)  68 72  

Numbers of cycles  1× 30×  

(B) 

Cell Nr. TCR β-chains Sequence n(D)n (N=16) 

#1 BV 7S1-BJ 2.1 

  C A S R S V K G I G S E Q   

5’- TGC GCC AGC AGG AGC GTA AAG GGT ATA GGA TCT GAG CAG - 3’ 

#2 BV 13S1-BJ 2.1 

  C A S S L D S R A S T D T   

5’- TGT GCC AGC AGT CTG GAC AGC CGA GCT AGC ACA GAT ACG - 3’ 

#3 BV 21S3-BJ 2.7 

  C A S S Y S P A H E Q F F   

5’- TGT GCC AGC AGT TAC TCC CCG GCC CAT GAG CAG TTC TTC - 3’ 

#4 BV 21S3-BJ 2.7 

  C A S R S G L A G G D E Q   

5’- TGT GCC AGC AGA TCC GGA CTA GCG GGG GGG GAC GAG CAG - 3’ 

#5 BV 13S2-BJ 2.3 

  C A S S Y S P E G G N T Q   

5’- TGT GCC AGC AGT TAC TCC CCG GAA GGG GGG AAT ACG CAG - 3’ 

#6 BV 6S2-BJ 1.5 

  C A S S L A I Y S N Q P Q   

5’- TGT GCC AGC AGC TTA GCC ATT TAT AGC AAT CAG CCC CAG - 3’ 

#7 BV 14S1-BJ 2.5 

  C A S S A L G G Q E T Q Y   

5’- TGT GCC AGC AGT GCG CTG GGG GGC CAA GAG ACC CAG TAC - 3’ 

#8 BV 8S1/8S2-BJ 2.5 

  C A S S L I A G D G E T Q   

5’- TGT GCC AGC AGT TTA ATA GCG GGA GAC GGG GAG ACC CAG - 3’ 

#9 BV 14S1-BJ 1.2 

  C A S S L Q L G D Y G Y T   

5’- TGT GCC AGC AGT TTA CAA CTG GGA GAC TAT GGC TAC ACC - 3’ 

#10 BV 7S1-BJ 2.1 

  C A S R S V K G I G S E Q   

5’- TGC GCC AGC AGG AGC GTA AAG GGT ATA GGA TCT GAG CAG - 3’ 

#11 BV 20S1-BJ 1.2 

  C A W T K L G V G Y T F     

5’- TGT GCC TGG ACC AAG TTG GGG GTT GGC TAC ACC TTC - 3’   

#12 BV 21S3-BJ 2.7 

  C A S S L G G T G G N E Q   

5’- TGT GCC AGC AGC TTA GGA GGG ACA GGG GGC AAC GAG CAG - 3’ 

#13 BV 6S4-BJ 2.2 

  C A S S P P A T N T G E L   

5’- TGT GCC AGC AGC CCC CCA GCT ACG AAC ACC GGG GAG CTG - 3’ 

#14 BV 6S8-BJ 2.2 

  C A S S P P A T N T G E L   

5’- TGT GCC AGC AGC CCC CCA GCT ACG AAC ACC GGG GAG CTG - 3’ 

#15 BV 7S2-BJ 1.1 

  C A S S P G A G S A E A F   

5’- TGC GCC AGC AGC CCG GGG GCA GGG AGC GCT GAA GCT TTC - 3’ 

#16 BV 18S1-BJ 2.3 

  C A S S P D I P D T Q Y F   

5’- TGT GCC AGC TCC CCA GAC ATC CCA GAT ACG CAG TAT TTT - 3’ 
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In aware of the disadvantages, a new anchor (UPnew, Table 2-5) is designed, which is modified from 

the original anchor primer (UP) and has 20 oligonucleotides (5’-AGCACGACTTCCAAGACTCA-3’, 

Tm=60°C). We used the modified Vβ primers
5
 (VP1

+
new to VP9

+
new) and Cβ-in primer in an anchored 

PCR instead of run-off reaction. In addition, the annealing temperatures and PCR cycles are improved 

as presented in Table 3-6 (A) for higher yield of TCR β-chains. Thus, the TCR-β chains obtained from 

unbiased PCR protocol with two different PCR setups for amplification of TCR β-chains are shown in 

Table 3-6 (B). Except for the modification mentioned above, the amplification of TCR β-chains is 

performed as described in Section 2.2.9.4. From the sequencing results, we obtained one TCR β-chain 

(6%) from 16 single T cell samples using the original PCR setup (Table 3-6, #1). However, with the 

optimized PCR setup, we got 16 TCR β-chains (100%) from the same numbers of T cell samples 

(Table 3-6, #1-#16). Therefore, the optimized PCR setup will be employed for subsequent TCR 

analysis. 

Table 3-7: TCR α-chains obtained from the nested PCRs with different PCR setups 

(A) In the nested PCRs, we tried two different PCR setups to avoid non-specific products. However, no difference of PCR 

products was observed from different setups. (B) Five TCR α-chains were achieved from 16 single dissected T cells with 

different PCR setups. Blue: amino acid sequence, red: V region, black: n(D)n, green: J region. N=numbers of the single T 

cells. 

(A) 

Conditions Original Modified #01 Modified #02 

Annealing temperature (°C) 61→58→56→53 61→58→56 61→58 

Numbers of cycles 4×    4×   4×    40× 4×    4×   30× 10×  20× 

(B) 

Cell Nr. TCR α-chains Sequence n(D)n (N=16) 

#1 AV 28S1-AJ 54 

  C A A P I I Q G A   

5’- TGT GCT GCG CCT ATA ATT CAG GGA GCC - 3’ 

#2 AV 31-AJ 41 

  C L L Y S N S N S 

 5’- TGT CTT CTG TAC TCG AAC TCA AAT TCC - 3’ 

#3 AV 5S1-AJ 31 

  C A L G D A R L M 

 5’- TGT GCT CTA GGA GAT GCC AGA CTC ATG - 3’ 

#4 AV 3S1-AJ 20 

  C A T A S I S N D 

 5’- TCT GTG CTA CGG CTA GCA TTT CTA ACG - 3’ 

#5 AV 30S1-AJ 39 

  C A V Q X A N A G 

 5’- TGT GCT GTG CAG GNA GCT AAT GCA GGC - 3’ 

                                                      
5
 The modified Vβ primers were formed with the addition of an oligonucleotide (UPnew) at the 5’ end of Vβ 

primers. 
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When the rearranged sequence of a productive TCR β-chain was obtained, we amplify the 

corresponding α-chain from the pre-amplification PCR products with five parallel nested PCRs (Seitz 

et al., 2006). Five Vα-for-in primer sets designed for the “V-segments” of TCR α-chains together with 

a reverse primer Cα-rev-in are subjected to nested PCRs (Table 2-7). Because of the non-specific 

products shown in the PCR results, we introduced some modifications to the PCR setup (Table 3-7, A) 

to get a higher yield of TCR α-chains. We compared the different PCR setups using the single 

dissected T cells from tonsil sections. Except for the modifications, the nested PCRs are performed as 

described in Section 2.2.9.5. However, there is no difference of PCR results between the original PCR 

setup and modifications (data not shown). The TCR α-chains obtained from the nested PCRs are 

indicated in Table 3-7 (B). 

In summary, the method for specific amplification of TCR β-chains is optimized. Higher yield of TCR 

β-chains was obtained with the improved protocol compared to the former one. This optimized method 

will be used to unbiased amplify the TCR β-chains of single T cells from blood, CSF and tissues of 

MS patients. However, so far there is no effective way to optimize the protocol for specific 

amplification of TCR α-chains, which needs more investigation in the future. 

3.3.4 Identification of TCR β-chains from Single CD8
+
 T Cells Infiltrating in the MS Brain 

The brain tissue blocks from MS patients FE (blocks #6, #9, and #12) and RF (block #B) were 

employed for identification of auto-aggressive CD8
+
 T cells. In the previous investigation as described 

in Section 3.2, these brain tissue blocks contain many infiltrated CD8
+
 T cells. Here, we used the 

modified rapid immunostaining method (Section 3.3.1) to visualize the activated CD8
+
 T cells with the 

antibodies against CD8α and CD137. When the single T cells were successfully isolated by laser 

microdissection, the optimized unbiased multiplex RT-PCR-based approach (Section 3.3.3) was 

employed to identify the paired αβ-TCRs. 

We have successfully isolated 182 single activated CD8
+
 T cells from MS patient FE and 387 from RB 

(Table 3-8, A). Totally, 569 single activated CD8
+
 T cells were used for subsequent TCR analysis. The 
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information of TCR β-chains obtained from these single T cells is presented in Table 3-8, B. In the 

brain tissue blocks of MS patient FE, we obtained four unique TCR β-chains from 182 single CD8
+
 T 

cells. Three TCR β-chains contain same V-regions (BV 8S1/8S2) and J-regions (BJ 1.1), but different 

CDR3 regions. Moreover, one β-chain (BV8S1/8S2-QGWGD-BJ1.1) was detected four times in MS 

patients FE and one time in MS patient RF, which might be a DNA cross-contamination from patient 

FE. Moreover, two unique TCR β-chains were identified from MS patient RF. These TCR β-chains 

were differed from the earlier discovered β-chains. There are no contamination from the former 

discovered sequences. Unfortunately, we could not recover the corresponding α-chains even by the 

improved method. Compared to the high yield from single T cells from blood (Section 3.3.3), the low 

yield of αβ-TCRs from MS brain biopsies is mainly caused by the RNA degradation of the brain 

biopsies. 

Table 3-8: TCR β-chains obtained from the single dissected T cells using the improved unbiased 

PCR approach 

(A) The numbers of single activated CD8+ T cells were isolated from different brain tissue blocks of MS patients FE and RF. 

These single T cells were immediately used for TCR analysis. (B) The sequences and the frequency of TCR β-chains were 

obtained from these dissected T cells by the improved unbiased PCR approach. Blue: amino acid sequence; red: V region, 

black: n(D)n, green: J region. N=numbers of the single T cells. 

(A) 

Block Numbers of cells   

FE Block #6 122   

FE Block #12 34   

FE Block #9 26   

RF Block #B 387   

Total 569   

(B) 

Frequency Tissue TCR β-chains Sequence n(D)n (N=569) 

2 FE BV 22S1-BJ 2.1  
C A S S E G A G E H N 

 5’- TGT GCC AGC AGT GAA GGG GCG GGA GAA CAC AAT - 3’ 

2 FE BV 8S1/8S2-BJ 1.1  
C A S S L G L R A E A 

 5’- TGT GCC AGC AGC CTG GGA CTC CGA GCT GAA GCT - 3’ 

3 FE BV 8S1/8S2-BJ 1.1  
C A S S F G T E A F F 

 5’- TGT GCC AGC AGT TTT GGC ACT GAA GCT TTC TTT - 3’ 

4 FE/RF BV 8S1/8S2-BJ 1.1  
C A S T Q G W G D T E 

 5’- TGT GCC AGC ACC CAA GGG TGG GGA GAT ACT GAA - 3’ 

1 RF BV 6S2-BJ 2.5  
C A S S P G Q G Q E T 

 5’- TGT GCC AGC AGC CCA GGA CAG GGC CAA GAG ACC - 3’ 

1 RF BV 8S3-BJ 1.1  
C A S G Y I S A T E A 

 5’- TGT GCT AGT GGT TAT ATC TCG GCT ACT GAA GCT - 3’ 
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In conclusion, using the improved RT-PCR technology, we identified 13 specific TCR β-chains from 

the single activated CD8
+
 T cells in the brain tissues of MS patients. However, the corresponding α-

chains failed to be amplified from the tissue, which needs more investigation in the future. 

3.3.5 Characterization of Paired αβ-TCRs from Single T Cells of the MS CSF Specimens 

Considering the degraded RNA involved in the frozen brain tissues of MS patients, we could not 

easily recover the paired αβ-TCRs with damaged RNAs. However, fresh CSF specimens obtained 

from MS patients could be the other choice for TCR analysis independent from the RNA degradation. 

The clonally expanded T cells persisted in the CSF of MS patient for several years might be the auto-

aggressive T cells initiating the occurrence of MS (Skulina et al., 2004). 

Table 3-9: TCR chains obtained from single T cells of the MS CSF specimens 

Single isolated CD4+ (A) and CD8+ T cells (B) from the CSF specimens of different patients (the first column) were 

employed for TCR analyzation. TCR-α: TCR α-chain. TCR-β: TCR β-chain. TCR-αβ: Matched αβ-TCRs. TCR-ααβ: TCRs, 

which are composed of two α-chains and one β-chain. Cell Nr.: numbers of single T cells used for TCR analysis. Red: no 

functional TCRs were found in these patients with limited numbers of single T cells. 

Patient ID 

A. CD4
+
 T cell B. CD8

+
 T cell 

TCR-α TCR-β TCR-αβ TCR-ααβ Cell Nr. TCR-α TCR-β TCR-αβ TCR-ααβ Cell Nr. 

CIS #01 4 5 3 0 24 0 6 0 0 24 

CIS #02 19 9 3 3 40 15 9 3 4 40 

CIS #04 0 6 0 0 96 1 36 1 0 88 

RIS #01 9 7 2 2 40 2 4 0 1 32 

RIS #02 8 11 4 1 24 3 4 3 0 24 

RIS #03 9 4 1 2 28 3 1 0 0 16 

MP #01 77 35 9 10 80 34 17 7 3 40 

MP #02 9 4 1 1 48 5 3 1 2 48 

TWIN #2.1 5 3 1 2 32 4 3 2 1 32 

TWIN #2.2 29 12 2 5 32 8 3 0 1 32 

TWIN #4.2 5 2 1 0 24 2 1 0 1 13 

NMDA #01 25 9 3 1 48 5 2 0 1 24 

 

Once the fresh CSF specimens were obtained, we followed the protocol as described in Section 2.4.10 

to isolate the single T cell populations (CD4
+
/CD8

+
). Then the single T cells were used for the analysis 

of paired TCR α- and β-chains by the optimized TCR amplification approach (Section 3.3.3). We 

discovered many TCR α-chains and β-chains from the CSF samples of MS patients (Table 3-9). 

Because of some technological obstacles (Section 4.2.3.3), we could not recover all the paired αβ-
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TCRs from the limited T cell numbers (Table 3-9, CIS #01, CIS #04 and RIS #03). In addition, due to 

the high sensitivity of this method, we enabled detect dual TCRs (Padovan et al., 1993) on the single 

cell level, which express one β-chain in combination with two different α-chains in the CD4
+
 and 

CD8
+
 T cell subsets. 

As described in Section 2.4.10, one part of the CSF specimens was employed for the analysis of paired 

TCR α- and β-chains, and the other part was used for NGS
6
 to figure out the clonally expanded α-

chains and β-chains. The identical sequences for TCR α- and β-chains obtained from the single cell 

analysis and NGS are shown in Table 3-10. In sample CIS #02, we discovered 5 identical α-chains and 

3 identical β-chains. These TCR sequences might belong to the clonally expanded T cells in the CSF 

of MS patients. 

Table 3-10: Identical TCR α- and β-chains obtained from single cell analysis and NGS 

The single T cell subsets (CD4+/CD8+) were isolated from the CSF specimens of MS patients. The CSF specimens were 

divided into two parts for identification of the TCR α- and β-chains on the single cell level and by NGS. (A) Identical TCR α-

chains were detected with the two methods. (B) Identical TCR β-chains were recovered with the two approaches. 

(A) TCR α-chains 

Patient # Subset Sequence 

CIS #02 CD8+ AV 23S1 - CAVPTSGTYKYIF - AJ 40 

CD8+ AV 2S1 - CAGSRDDKIIF - AJ 30 

CD8+ AV 7S2 - CAVPTQAGTALIF - AJ 15 

CD8+ AV 7S2 - CAVRGGYYSSASKIIF - AJ 3 

CD8+ AV 7S2 - CAVTSASGGSYIPTF - AJ 6 

MP #01 CD8+ AV 24S1 - CVVSASGTDKLIF - AJ 34 

CD8+ AV 15S1 - CADLYGGSQGNLIF - AJ 42 

TWIN #02 CD4+ AV 4S1 - CLVGGNTGTASKLTF - AJ 44 

(B) TCR β-chains 

Patient # Subset Sequence 

CIS #02 CD4+ BV 12S1 - CAIRTRSNYGYTF - BJ 1.2 

CD8+ BV 14S1 - CASSLMWNTEAFF - BJ 1.1 

CD8+ BV 12S2 - CASSEDNQETQYF - BJ 2.5 

CIS #04 CD8+ BV 13S3 - CASPLPPGNEQFF - BJ 2.1 

MP #01 CD8+ BV 8S1/8S2 - CASSFGTEAFF - BJ 1.1 

CD8+ BV 8S1/8S2 - CASSLAREPQHF - BJ 1.5 

MP #02 CD8+ BV 8S1 - CASSTLAVNTEAFF - BJ 1.1 

TWIN #02 CD8+ BV 8S1 - CASSTTSGASTDTQYF - BJ 2.3 

 

                                                      
6
 NGS was accomplished in cooperation with Dr. Kathrin Held and Dr. Eduardo Beltran. 
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Even though the clonally expanded T cells were not found yet in the CSF specimens of MS patients, 

several α- and β-chains were frequently detected (Table 3-11). In sample TWIN #02, three TCR α-

chains were detected twice, and three TCR β-chains were found twice or three times. Furthermore, 

there were several TCR α- and β-chains discovered twice or three times in the CSF specimens of the 

other four MS patients. In addition, two TCR β-chains (BV 8.1/8.2-CASSFGTEAFF-BJ 1.1 and BV 

8.1-CASSTLAVNTEAFF-BJ 1.1) were detected by NGS as well. 

Table 3-11: Frequency of TCR α- and β-chains discovered from different MS patients 

The single T cell subsets (CD4+/CD8+) were isolated from the CSF specimens of MS patients for identification of the TCR α- 

and β-chains on the single cell level. (A) The TCR α-chains were frequently detected in three CSF samples of MS patients. 

(B) The TCR β-chains were frequently detected in four CSF specimens of MS patients. Frequency indicates the number of 

times that a specific sequence is recovered. 

(A) TCR α-chains 

Patient # Subset Sequence Frequency 

MP #01 CD4+ AV 1S4 - CAVRSDGQKLLF - AJ 16 2 

TWIN #02 CD4+ AV 16S1 - CAVRDGSSYKLIF - AJ 12 2 

CD8+ AV 11S1 - CAVDPKTHGSSNTGKLIF - AJ 37 2 

CD8+ AV 16S1 - CAVRDRGSSNTGKLIF - AJ 37 2 

RIS #01 CD4+ AV 22S1 - CALLRSNDYKLSF - AJ 20 2 

(B) TCR β-chains 

Patient # Subset Sequence Frequency 

CIS #04 CD8+ BV 6S4 - CASSSLNTEAFF - BJ 1.1 2 

CD8+ BV 6S2 - CASSLGTSYTGELFF - BJ 2.2 3 

MP #01 CD8+ BV 8S1/8S2 - CASSFGTEAFF - BJ 1.1 2 

MP #02 CD8+ BV 8S1 - CASSTLAVNTEAFF - BJ 1.1 2 

TWIN #02 CD8+ BV 6S3 - CASSLNGISSYEQYF - BJ 2.7 3 

CD4+ BV 8S1 - CASSLMAPNTEAFF - BJ 1.1 2 

CD4+ BV 8S1 - CASSARTTNYGYTF - BJ 1.2 2 

 

Except for the detection of paired TCR α- and β-chains from single T cells, it is important to figure out 

the clonally expanded TCR transcript repertoire (Vβ, Jβ, Vα, and Jα). We investigated the frequency 

of these TCR transcript repertoires in 11 CSF specimens from MS patients. The analyzed results are 

summarized in Figure 3-13. In the Vβ and Jβ transcripts, two Vβ (BV 6S2 and BV 8S1) were detected 

more than 25 times and two Jβ (BJ 1.1 and BJ 2.1) were even discovered 35 times in these CSF 

specimens. Furthermore, these transcripts mentioned above are also shown in most of the MS patients 

(Figure 3-13, B). In addition, one Vα (AV 9S2) and Jα (AJ 23) were found more than 10 times in these 
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TCR sequences. The latter one is shown in 7 MS patients. These transcript repertoires above might 

belong to the TCRs of clonally expanded T cells persisting in the CSF of MS patients. It brings a new 

insight to establish a database containing the MS-related TCR repertoires for the MS patients in the 

future. 

 

Figure 3-13: TCR α and β transcripts obtained from single CSF T cells of MS patients 

The single T cells isolated from CSF specimens of MS patients were employed to recover the TCR α- and β-chains using the 

optimized unbiased PCR approach. (A) The frequency of TCR transcripts was calculated from the CSF specimens of all the 

MS patients. (B) The frequency of the CSF specimens was calculated for the detected TCR transcripts. The red dot represents 

the Vβ transcripts. Green square represents the Jβ transcripts. Blue diamond represents the Vα transcripts. Orange triangle 

represents the Jα transcripts. The most detected TCR transcripts are named. Vβ: variable region of β-chain, Jβ: jointing 

region of β-chain, Vα: variable region of α-chain, Jα: Jointing region of α-chain. 

In the 11 CSF specimens, we totally obtained 37 Vβ, 113 Jβ, 40 Vα, and 49 Jα transcripts using the 

optimized unbiased RT-PCR method. The distribution of these TCR transcripts in the MS patients is 
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shown in Figure 3-14. The aim is to investigate the correlation between the TCR transcripts and the 

pathogenesis of MS. The Vβ transcripts are averagely distributed in each MS patient. However, one Jβ 

(BJ 1.1) was detected in 10 MS patients expect for the MS patient RIS #01, which is also included in 

many TCR β-chains (Figure 3-13, A). In addition, almost all the Vα and Jα transcripts were detected in 

MS patient MP #01 (Figure 3-14, B-C), which indicates that the TCR α-chains are polyclonal 

compared to the TCR β-chains. With the limited specimens, it is hard to figure out the clonally 

expanded T cells in MS patient #01. 

 

Figure 3-14: Distribution of TCR α and β transcripts obtained from single CSF T cells of MS 

patients 

The single T cells isolated from CSF specimens of MS patients were employed for recover the TCR α- and β-chains using the 

optimized unbiased PCR approach. We totally achieved 37 Vβ transcripts, 113 Jβ transcripts, 40 Vα transcripts and 49 Jα 

transcripts from 11 CSF specimens of MS patients (#1-#11). (A-C) We examined the distribution of these TCR transcripts in 

different MS patients. Red represents the Vβ transcripts. Green represents the Jβ transcripts. Blue represents the Vα 

transcripts. Orange represents the Jα transcripts. 
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In summary, high yield of TCR α- and β-chains from single T cells were obtained in the CSF samples 

of MS patients using the optimized RT-PCR technology. Even if the clonally expanded αβ-TCRs 

failed to be identified from the limited numbers of single T cells, some TCR transcripts were indeed 

detected frequently both in the TCR clones and in the MS patients. These transcripts might indeed be 

consisted in the clonally expanded TCRs of disease-related T-cell populations, which need more 

investigation in the future. 

3.4 Resurrection of Disease-Related CD8
+
 T cells in vitro 

In the section, we introduced two other recombinant diseased-related TCRs to identify the target 

antigens. One TCR is the well-investigated standard TCR JM22 model (Gotch et al., 1987; Stewart-

Jones et al., 2003), which is specific for HLA-A*02101 (HLA-A2) and recognizes the presenting 

peptide, such as the amino acids 58-66 of the influenza matrix protein (flu (58-66)). The other TCR 

(BV1-BJ2.3-AV7.2-AJ24.2) was done from the brain biopsy sample of the MS patient FE, which 

owns the identical TCR β-chain and the same Vα gene segments with other three detected αβ-TCRs 

(Figure 1-4). In the previous work, these two reconstructed αβ-TCRs are ligated into an expression 

vector and then transfected to the T hybridoma cell line 58α
-
β

-
 that is deficient of endogenous TCRs 

(Blank et al., 1993). Subsequently, the stably transfected cells were employed in the thesis for the 

antigen search. COS-7 cell line and autologous Epstein-Barr virus transformed B (EBV-B) cell lines 

from patients served as the APCs to express the patient-related HLA molecules and present the 

candidate peptide libraries (PECP library). COS-7-A2 cell line, stably expressing the human HLA-A2 

molecules, is used to present the antigens to the reconstructed T hybridoma cells 58-JM22 (Siewert et 

al., 2012). The EBV-B cell lines, generated from the patients’ blood, express HLA alleles of the 

patients and present the autologous antigens to specific T cells. 

Before antigen screening with the candidate peptide libraries, the cell lines used to be characterized. 

Firstly, we analyzed the two stable transfected T hybridoma cell lines for stably expressing murine 

CD3, the patient-specific αβ-TCRs, and CD8 molecules additionally with NFAT-sGFP upon cell 
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activation (Section 3.4.1). Secondly, the T hybridoma cells must be activated by CD3-cross-linking 

(Section 3.4.2). 

3.4.1 Expression of Recombinant TCRs and Co-Receptor CD8 in vitro 

58-JM22 T hybridoma cell line was created and re-cloned by Katherina Siewert (Siewert et al., 2012). 

58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cell line was established in our lab and subcloned by 

Latika Bhonsle. When I got these two T-cell clones, I immediately examined the expressions of 

recombinant TCRs (JM22 and BV1-BJ2.3-AV7.2-AJ24.2) and the co-receptor CD8 molecules. As 

described in Section 2.4.9, 1.5×10
6
 cells were stained with the particular antibodies (Table 2-11). Then 

flow cytometry was used to examine the expression of these molecules mentioned above. The testing 

results are shown in Figure 3-15. 

The FACS results indicate that all molecules are stably expressed on the surfaces of 58-JM22 T 

hybridoma cells (Figure 3-15, A). Due to the unavailable commercial antibody against AV10.1 TCR 

α-chains of JM22, we may ascertain the mRNA level expression by the application of an RT-PCR 

(Data not shown). However, the expression of human CD8 β-chain on the 58-FE-BV1-BJ2.3-AV7.2-

AJ24.2 T hybridoma cells is only 18.3%, while all other molecules including murine CD3ε, human 

CD8α, and human TCR αβ-chains were highly detected (Figure 3-15, B). The affinity between CD8 

and Class I MHC molecules facilitates the TCR to bind the target cell closely during the antigen-

specific T cell activation. Therefore, we have to increase the expression of CD8 β-chain on the 58-FE-

BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells. 

The genes for human CD8 α- and β-chains are connected by an IRES sequence in the expression 

vector (Siewert et al., 2012). However, the reason for low expression of CD8 β-chain during the 

plasmid replication was unknown so far. Fortunately, there were still few numbers of cells expressing 

CD8 β-chains (Figure 3-15, B). It is conceivable to enrich and produce these hCD8β-positive cells by 

MACS
®
 technology according to the manufacturer’s introduction. After cell separation and cultivation, 

the expression of CD8 β-chains on the 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells was 
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examined by flow cytometry (Figure 3-16). Compared to the percentage of hCD8β-positive cells 

before cell separation, more than 99% cells are capable of stable expression of human CD8β after cell 

separation. 

 

Figure 3-15: Expression of recombinant TCRs and co-receptor CD8 molecules before subcloning 

The inherent murine CD3 (ms CD3, red) and the human CD8 molecule (hm CD8, α: purple, β: green) were expressed on the 

surface of both 58-JM22 (A) and 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 (B) T hybridoma cell lines. Two recombinant TCRs were 

examined with the expressions of human BV17 TCR β-chains (hm TCR-BV17, blue) for 58 JM22 cells and human AV7.2 

TCR α-chains (hm TCR-AV7.2, brown) as well as the human BV1 TCR β-chains (hm TCR-BV1, black) for 58-FE-BV1-

BJ2.3-AV7.2-AJ24.2 cells. The isotype control of each antibody is presented with a gray shaded curve in Flow cytometry. 

The percentage of the expression of each molecule is labeled on each flow chart. Ms: mouse; hm: human. 

In conclusion, before antigen search, the expression of recombinant TCRs and other important 

molecules in two stable transfected T hybridoma cells were examined and optimized. Then the two 

cell lines are ready for subsequent target antigen screening experiments. 
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Figure 3-16: Expression of CD8β in 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells before 

and after separation 

MACS® technology was employed to separate and enrich the cells containing the plasmid LPC-hCD8α-IRES-hCD8β. The 

expressions of hCD8β (green curve) on the surface of cells before (A) and after (B) separation were detected by Flow 

cytometry. The isotype control of the antibody is presented with a gray shaded curve. 

3.4.2 TCR Activation in vitro by CD3 Cross-linking 

The two T hybridoma cell lines were co-transfected with pcDNA-NFAT-sGFP that encoded for sGFP 

under the control of the NFAT promoter. The green signal could be detected by a fluorescence 

microscopy, once the T cells are activated by specific antigens. As described in Section 2.4.8.1, T cell 

activation could be stimulated in vitro by a specific antibody against murine CD3e. sGFP expression 

was detected by the following three readout methods: fluorescence microscopy, flow cytometry and 

IL-2 secretion measurement. The examination results are shown in Figure 3-17. The two cell lines 

could be activated in vitro by CD3 cross-linking (Figure 3-17, A1, A2, B1, and B2). In addition, the 

IL-2 secretion upon TCR activation was also detected in the supernatant (Figure 3-17, A3 and B3). 
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Figure 3-17: TCR activation in vitro by CD3 cross-linking 

The activation of 58-JM22 (A) and 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 (B) T hybridoma cells by CD3 cross-linking was 

examined by the following three readout ways. (A1-B1) Upon the NFAT-sGFP production in the activated cells, the green 

signals were directly detected by fluorescence microscopy. Almost 80% of activated T hybridoma cells directly discerned by 

the fluorescence channel were NFAT-sGFP+ cells. (A2-B2) These stimulated T cells (red curve) were examined by Flow 

cytometry. The gray curves correspond to the unstimulated T hybridoma cells as negative control. (A3-B3) In the supernatant 

of these stimulated T cells, the secretion of IL-2 was measured by ELISA. The IL-2 secretion of unstimulated (Unstim) T 

cells served as negative control, and the transfected T hybridoma cells (IP2-8S1) was used as positive control (PC). Scale 

bar=50 µm. 

Before target antigen screening, we did investigate the autologous or EBV antigens for the MS-related 

TCR BV1-BJ2.3-AV7.2-AJ24.2. The EBV-transducted B cells (EBV-B-FE) derived from MS patient 

FE served as APCs (Section 2.4.8.2). Unfortunately, the MS-related T hybridoma cells could not be 

activated, i.e. the signals with autologous APC were not distinguishable from signals of the negative 

control (Data not shown). It indicates that the target antigens of the MS-derived TCR are neither 

ubiquitously expressed autologous proteins nor EBV proteins. 

In summary, before antigen search, the two stable transfected T hybridoma cell lines could be 

activated by CD3 cross-linking, which are suitable for the following experiments of antigen search. 
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3.5 Identification of Specific Antigens of Recombinant TCRs 

Since the MS-derived TCRs failed to recognize the autologous and EBV antigens, it was required to 

apply an unbiased method to search the specific target antigens. In combination with the plasmid-

encoded combinatorial peptide (PECP) libraries and the NFAT-sGFP TCR activation, we successfully 

established a prominent technology to apply the antigen search (Siewert et al., 2012). This technology 

allows us to screen ~10
9
 possible peptide antigens and is available to process and present the proper 

antigen to the TCR. Importantly, we could isolate the correct antigen-presenting cells and screen the 

specific antigenic peptide finally. 

3.5.1 PECP Libraries Employed for Antigen Unbiased Search 

CD8
+
 T cells recognize the MHC class I restricted antigenic peptides that usually contain 8-10 amino 

acids. In the previous study, five mimotopes of antigens were successfully characterized from a PECP 

library (A2
269

), which could activate TCR JM22 co-cultured with HLA-A*0201 expressed COS-7 cells 

(Siewert et al., 2012). These mimotopes are shown to be nonapeptides with similar amino acids to the 

flu (58-66) peptide from the influenza matrix protein. Based on the applicable unbiased technology, 

we characterized other mimotopes from the A2
269

 library, which are recognized by TCR JM22. 

Likewise, the TCR BV1-BJ2.3-AV7.2-AJ24.2 was derived from autoaggressive CD8
+
 T cells in the 

brain lesions of MS patient FE who was examined to be homozygous for only three HLA alleles of 

HLA-A*0101, -B*0801 and -C*0701. To investigate the specific antigens of TCR BV1-BJ2.3-AV7.2-

AJ24.2, we synthesized three PECP libraries (A1
39

, B8
359

, and C7
9
) specifically for these HLAs. In 

addition, due to the Vα7.2 genes belongs to the semi-variable TCRs of the MAIT cells that recognize 

MR1-restricted antigens, the TCR BV1-BJ2.3-AV7.2-AJ24.2 might be possessed by the MAIT cells 

(Figure 1-4). Despite the identical Vα7.2 genes and longer CDR3 regions of α-chain, there is no direct 

evidence so far to tell the MS-derived TCR belonging to CD8
+
 T cells or MAIT cells. Thus, except for 

the three PECP libraries mentioned above, a universal PECP library (N27) was created to investigate 
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the potential antigenic peptide recognized by the MAIT cells. The nucleotides of nonamer insert and 

the total clone numbers for these PECP libraries are presented in Table 3-12. Except N27 library 

containing nine random amino acids, all the other PECP libraries comprise conserved amino acid 

residues or “anchor positions” specifically binding to the MHC class I molecules. 

Table 3-12: PECP library employed for antigen search 

The five-nonamer residues all start with a guiding Kozak sequence, the start codon (ATG) and all end with the stop codon 

(TGA). 9 positions of amino acid are performed with the random amino acid (X) except the fixed anchor positions (red). In 

the cDNA sequences depicted in red, “N” represents the presence of any of the four (adenine, cytosine, thymidine and 

guanidine) residues while a “K” residue corresponds to a guanine or thymidine residue. A139: PECP library containing 

nonapeptides anchored at positions 3 and 9 by an Aspartic acid (D) and Tyrosine (Y) residue. A2269: PECP library containing 

nonapeptides anchored at positions 2, 6 and 9 by an Isoleucine (I), Tyrosine (V) and Leucine (L) residue. B8359: PECP library 

containing nonapeptides anchored at positions 3, 5 and 9 by a Lysine (K), Lysine or Arginine(R) and Leucine (L) residue 

respectively. C79: PECP library containing nonapeptides anchored at position 9 with a Lysine (K) residue. N27: PECP library 

containing nine random amino acids. *These libraries are established by Katherina Siewert and Latika Bhonsle, respectively. 

3.5.2 Reduction of T-cell Spontaneous Activation by Re-cloning 

Not all positive signals, i.e. green (sGFP
+
) TCR-transfected T hybridoma cells, indicate TCR 

activation, as T cells might turn green by spontaneous self-activation (Section 1.7). During the antigen 

search, spontaneous activation may be detected both in negative controls and in antigen-screening 

samples. If the T hybridoma cells contain a high content of clones that were spontaneously activated, 

we re-cloned the cells as described in Section 2.4.4. Activation of 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T 

hybridoma cells with and without CD3 stimulation was examined by Flow cytometry (Figure 3-18). 

The chosen cell clone should meet two criteria: (i) Rare spontaneous activation was detectable without 

the antigen recognition. (ii) In the presence of the antigenic stimuli, the chosen T cell clone responded 

  

Nonamer insert 

PECP library ID* Total clones 1 2 3 4 5 6 7 8 9 

A139 80×106 X X D X X X X X Y 

  

NNK NNK GAC NNK NNK NNK NNK NNK TAT 

A2269 17×106 X I X X X V X X L 

  

NNK ATC NNK NNK NNK GTG NNK NNK CTA 

B8359 70×106 X X K X K/R X X X L 

  

NNK NNK AAA NNK ARG NNK NNK NNK CTN 

C79 110×106 X X X X X X X X K 

  

NNK NNK NNK NNK NNK NNK NNK NNK AAR 

N27 95×106 X X X X X X X X X 

  

NNK NNK NNK NNK NNK NNK NNK NNK NNK 
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as the strongest signal that was clearly observed by fluorescence microscope or Flow cytometry. 

Before cell re-cloning, we detected 4.78% false positives in the 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T 

hybridoma cells without CD3 stimulation (Figure 3-18, A). After re-cloning for the cell line, we got 

the best cell clone (Figure 3-18, B) that had ~0.014% of false positives (right panel) and strongest 

activation signals upon CD3 stimulation (left panel). Consequently, the best cell clone was increased 

to a certain number and stored in liquid nitrogen for subsequent antigen search of TCR BV1-BJ2.3-

AV7.2-AJ24.2. 

 

Figure 3-18: Spontaneous activation of TCR BV1-BJ2.3-AV7.2-AJ24.2 reduced by cell re-

cloning 

The activation response (by sGFP expression) of 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells with or without CD3 

stimulation was measured by flow cytometry. (A) High false positive is shown in the spontaneous activation of T cells before 

re-cloning. (B) The best cell clone presents hypo-stimulated response and less false activation after re-cloning. The scatter 

plots are divided into four quadrants based on the negative control (data not shown). The upon two quadrants contain the 

population of the dead cells that were stained with the Topro-3 dye, and the lower right quadrant includes the portion of the 

sGFP+ cell populations that were count and further analyzed.  
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3.5.3 Search of Positive APCs upon TCR Activation 

3.5.3.1 Antigen search for TCR JM22 

TCR JM22 recognizes antigens presented by the HLA-A2 restricted APCs. Here, the COS-7-A2 cell 

line served as APCs, which was verified for stable expression of HLA-A2 on the cell surface before 

antigen search (Figure 3-19). As described in Section 2.7, 58-JM22 T hybridoma cells were co-

cultured with the COS-7-A2 cells that were transfected with the A2
269

 library for 16 hours. After 16 

hours co-cultivation, we examined the samples and searched for T cells that have turned green. The 

green T cells (sGFP
+
) were observed under the fluorescence microscope (Figure 3-20). 

 

Figure 3-19: Expression of HLA-A2 in the stably transfected COS-7-A2 cell line 

Stable transfected COS-A2 cells were stained either with the isotype control IgG2b-PE (A1-A3) or with the antibody anti-

HLA-A2-PE (B1-B3) as well as the fluorescent dye (Topro-3) for dead cells. (A1-B1) Gate P1 represents the population of 

COS-7-A2 cells. (A2-B2) The living COS-7-A2 cells are subsequently selected from gate P1. (A3-B3) The HLA-A2+ cells 

are subsequently selected from the living COS-7-A2 cells. (B3) HLA-A2- (gray) and HLA-A2+ (red) expressions are overlaid 

in COS-7-A2 cells. SSC: Side scatters, FCS: Forward scatters. 
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Figure 3-20: TCR JM22 activation by A2
269

 library 

The sGFP expression of T hybridoma cells that were co-cultured with different treated COS-7-A2 cells was observed under 

the fluorescence microscope. After transfection, the T hybridoma cells were added and analyzed at the time point of 48 and 

72 hours post transfection. (A-B) Un-transfected COS-7-A2 cells and transfected with empty vector served as negative 

controls. (C) COS-7-A2 cells treated with Flu (58-66) peptide served as positive control. (D) T hybridoma cells were 

activated by CD3 cross-linking. (E1-E3) Clusters of activated T hybridoma cells were detected with the transfection of A2269 

Lib. The number of sGFP+ cells is labeled in green. (F) Activated (GFP+) cells (counted per cm2) in response to different 

treated COS-7-A2 cells are calculated and shown in a histogram. A2269 Lib: HLA-A*0201 matched nonapeptide library. The 

size of scale bar is labeled on each image. 

Un-transfected COS-7-A2 cells and transfected with empty vector served as the negative controls 

(Figure 3-20, A-B). The aim is to distinguish library-dependent activation of T cells from background 

activation. The threshold value of activated T cells per cm
2
 is set at 0.05 in Figure 3-20 (F, dashed 

line). Therefore, higher numbers of activated T cells were detected with A2
269

 Lib, compared to 

negative controls. Three cell clusters of JM22 T hybridoma cells were detected in the activation assays. 

The clusters are shown in Figure 3-20 (E1-E3), which contain 2, 3, or 7 activated T cells. Obviously, 

Cluster #03 with 7 activated T cells was the most promising activation of TCR JM22 and COS-7 cell 

underneath might express the particular antigen. In addition, flu (58-66) peptide and CD3 cross-
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linking served as positive controls to ensure the activated efficiency of 58-JM22 T hybridoma cells 

(Figure 3-20, C-D). Later, the single positive APCs are isolated by micromanipulation for the recovery 

of the antigen coding plasmid. An example of APC isolation using a microcapillary is presented in 

Figure 3-21. 

 

Figure 3-21: Micromanipulation of the COS-7 cell beneath the activated T hybridoma cells 

T hybridoma cells were co-cultured with COS-7 cells that co-transfected with the patient related HLA alleles and the 

restricted PECP libraries. After 16 hours of co-culturing, the activated T cells were detected under the fluorescence 

microscope, and the positive COS-7 cells underneath were isolated using a micromanipulator. (A-C) The activated T cell 

cluster is detectable in green with FITC light and composited with the image in transmitted channel, yet undetectable with 

Cy3 light. (D) Image shows the same area after the isolation of COS-7 cells by a microcapillary (microcapillary not in the 

image). Scare bar=20 µm. 

In conclusion, the numbers of positive APCs recognized by TCR JM22 is summarized in Table 3-13 

(A). In the total areas of investigation (172.8 cm
2
), 35 activated T cells by A2

269
 library were detected 

under the fluorescence microscope. Meanwhile, 24 positive APCs underneath were immediately 

isolated for the recovery of the antigen coding plasmids. In these activated T cells, 5 clusters (N=2 + 

N≥3) were discovered, and the COS-7 cells underneath might express the specific antigen(s).
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Table 3-13: Summary of APCs isolation in different antigen libraries recognized by two transfected T hybridoma cell lines 

Co-cultivation of COS-7 cells and T hybridoma cells was performed on BD Falcon® cell culture dishes. At least 3 biological replicates proceed with the same investigated areas in the negative 

controls. N represents the numbers of activated T cells (sGFP+) included in one cluster. 

A. Activation of 58-JM22 T hybridoma cells 

PECP Library HLA- Areas of Investigation (cm2) Activated T cells Isolated APCs 

Clusters (Areas of Investigation, cm2) 

N=1 N=2 N≥3 

A2269 Lib A*0201 172.8 35 24 19 (134.4) 3 (9.6) 2 (28.8) 

 

B. Activation of 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells 

PECP Library HLA- Areas of Investigation (cm2) Activated T cells Isolated APCs 

Clusters (Areas of Investigation, cm2) 

N=2 N≥3 

A139 Lib A*0101 115.2 1 0 0 0 

B8359 Lib B*0801 115.2 4 2 2 (115.2) 0 

C79 Lib C*0701 192 31 14 11 (76.8) 3 (38.4) 

A139, B8359 and C79 Lib A*0101, B*0801 and C*0701 336 19 5 1 (115.2) 4 (38.4) 

N27 Lib MR1 432 29 10 3 (48) 7 (105.6) 
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3.5.3.2 Antigen search for TCR BV1-BJ2.3-AV7.2-AJ24.2 

TCR BV1-BJ2.3-AV7.2-AJ24.2 was identified from the CD8
+
 T cells in the brain lesion of MS patient 

FE, but the HLA restriction was not ascertained. MS patient FE possesses the three alleles HLA-

A*0101, HLA-B*0801, HLA-C*0701, because he is homozygous for the HLA class I gene locus. Here, 

we had to screen each HLA-matched PECP library (e.g., A1
39

 Lib, B8
359

 Lib, and C7
9
 Lib) that 

expressed on the APCs bonding to each HLA allele (e.g., HLA-A*0101, HLA-B*0801, and HLA-

C*0701). 

In contrast to the cell line COS-7-A2 that was stably transfected with human HLA-A*0201, it was not 

possible to establish the stable transfected COS-7 cell lines expressing the different HLA alleles 

restricted for MS patient FE. So we had to co-transfect the plasmids encoding each HLA allele (e.g., 

HLA-A*0101, HLA-B*0801, and HLA-C*0701) and matched PECP library (e.g., A1
39

 Lib, B8
359

 Lib, 

and C7
9
 Lib) into COS-7 cells. In addition, as mentioned in Section 1.5.3, it is uncertain whether TCR 

BV1-BJ2.3-AV7.2-AJ24.2 might be a MAIT cell or not. Therefore, it should also be examined 

whether this TCR might be activated by MR1 restricted N27 library or not. After 16 hour of co-

culturing, the activation of TCR BV1-BJ2.3-AV7.2-AJ24.2 by different PECP library was detected 

under the fluorescence microscope (Figure 3-22). 
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Figure 3-22: TCR BV1-BJ2.3-AV7.2-AJ24.2 activation by PECP libraries presented by different 

MHC molecules 

Activated 58-FE-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells (sGFP+) were observed in co-culturing with untransfected 

COS-7 cells (A), COS-7 cells transfected with empty vector (B), HLA-A*0101 matched A139 Lib (D), HLB-A*0801 matched 

B8359 Lib (E), HLA-C*0701matched C79 Lib (F1-F2), all HLA alleles (HLA-A*0101, HLB-A*0801 and HLA-C*0701) 

matched PECP libraries (G1-G2) and MR1 matched N27 Lib (H). The number of sGFP+ cells is labeled in green on each 

image. (I) A column of GFP+ cells (counted per cm2) is in response to the PECP libraries presented by different MHC 

molecules. The activation by CD3 cross-linking (C) served as positive control. The three MHC class I alleles of the patient 

FE (only three alleles, as he is homozygous) and MR1 were tested and this experiment was repeated more than five times. 

HLA: human leukocyte antigen. MR1: MHC class I related molecule-1. A139 Lib: HLA-A*0101 matched nonapeptide library. 

B8359 Lib: HLA-B*0801 matched nonapeptide library. C79 Lib: HLA-C*0701 matched nonapeptide library. N27 Lib: 

Randomized nonapeptide library. The size of scale bar is labeled on each image. 
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In Figure 3-22 (A-C), un-transfected COS-7 cells and transfected with empty vector served as negative 

controls, and the activation of T cells by CD3 cross-linking served as positive control. For A1
39

 and 

B8
359

 libraries, only one or two green T cells were detected (Figure 3-22, D-E). However, higher 

numbers of green T cells were observed in the samples with the C7
9
 library, which also are 

summarized in Table 3-13 (B). In the total areas of investigation (192 cm
2
), 31 green T cells were 

detected and included in 14 activated T-cell clusters (N=2 + N≥3). Two clusters consisted of 3 green T 

cells were detected in the samples transfected with HLA-C*0701 restricted C7
9
 library (Figure 3-22, 

F1-F2). Furthermore, in a pool of PECP libraries (A1
39

 + B8
359

 + C7
9
), activated T-cell clusters were 

also detected (Figure 3-22, G1-G2). In the areas of investigation (336 cm
2
), five activated T-cell 

clusters (N=2 + N≥3) containing 19 green T cells were observed in the samples transfected with a pool 

of PECP libraries (Table 3-13, B). Combining the results from the activation assays for different PECP 

libraries above, we assume that the potential antigenic peptide might be contained in the C7
9
 library. 

In addition, in the MR1 restricted N27 library, one big cluster with five green T cells (sGFP
+
) was 

detected (Figure 3-22, H). Totally 29 green T cells in 10 clusters (N=2 + N≥3) were observed in 432 

cm
2
 of investigation (Table 3-13, B). If the threshold value of activated T cells per cm

2
 is set at 0.1, 

higher numbers of activated T cells were found in the samples transfected with C7
9
 library compared 

to the MR1 restricted N27 library (Figure 3-22, I). 

In summary, the samples transfected with HLA-C*0701 restricted C7
9
 library were consistently 

detected with more activated T cells than the other two HLA class I molecules (HLA-A*0101 and 

HLA-B*0801). However, some activated T cells were also detected in the samples transfected with 

MR1 restricted N27 library. These observations indicate that either HLA-C*0701 or MR1 might be the 

appropriate antigen-presenting partner for TCR BV1-BJ2.3-AV7.2-AJ24.2. To make sure which one is 

the “real” antigen-presenting partner for the TCR, positive APCs underneath are isolated for recovery 

of the antigen coding plasmids (Section 3.5.4). Reactivation assays are carried out to re-check these 
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recovered plasmids that might contain the target antigens for TCR BV1-BJ2.3-AV7.2-AJ24.2 (Section 

3.5.5). 

3.5.4 Recovery of Antigen Coding Plasmids from Single Positive APCs 

Once 31 positive COS-7 cells were successfully isolated in the antigen search for TCR BV1-BJ2.3-

AV7.2-AJ24.2, the plasmids were immediately recovered as described in Section 2.2.10. The PCR 

products were stored at -20 °C until the plasmid reconstruction. After amplification, PCR products 

(about 150 bp) were examined by gel electrophoresis (Figure 3-23). From the pictures of the agarose 

gel, no or faint bands were detected in three samples from HLA-C*0701 restricted C7
9
 Library (Lane 8, 

12 and 13) and two samples from MR1 restricted N27 Library (Lane 30 and 31). Except for the five 

PCR products above, rest of PCR products were successfully amplified. No PCR products might be 

caused either by the invalid amplification or by the failure of capturing the correct COS-7 cell. 

 

Figure 3-23: Detection of plasmid recovery PCR products by gel electrophoresis 

During the antigen search for TCR BV1-BJ2.3-AV7.2-AJ24.2, single positive COS-7 cells were isolated and amplified to 

recover the antigen coding nucleotides inserted in the expression plasmids. 10 µl of each PCR product was analyzed by gel 

electrophoresis. (A) Lanes 1-2 represent the library inserts from B8359 Lib. (B) Lanes 3-16 represent the library inserts from 

C79 Lib. (C) Lanes 17-21 represent the library inserts from the mixture of A139, B8359, and C79 libraries. (D) Lanes 22-31 

represent the library inserts from N27 Lib. A 50 bp size ladder (M) is used for size comparison. 
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In summary, amongst 31 isolated APCs, 29 of them were successfully amplified, which could be 

reconstructed into the expression vector for the reactivation assay (Section 3.5.5). These plasmids 

might contain the antigen coding plasmid specifically for TCR BV1-BJ2.3-AV7.2-AJ24.2. 

3.5.5 TCR Reactivation by Antigen Pools Isolated from Single APCs 

Once reconstructed in vitro and replicated through E.coli cultivation, these plasmids were re-

transfected into the COS-7 cells to testify the reactivation of the recombinant TCRs as described in 

Section 2.7.3. When reactivation was verified in these plasmids, the promising plasmids were further 

divided into several smaller subpools to identify the antigen coding plasmid as described in Figure 2-3. 

Reactivation assays of TCR were performed in each round of subpools of E.coli culture until the 

antigen coding plasmid was identified. During the subpools, activation signals should be enlarged 

gradually. 

 

Figure 3-24: Reactivation of TCR JM22 by antigen pools isolated from single APCs 

In each round of subpools for enrichment of antigen coding plasmid, reactivation assay was performed to check the antigen-

coding plasmid in the 30 probes of subpools. The expression of GFP+ T cells was detected under the fluorescence 

microscope. (A) The activated T cells were detected in co-culturing with COS-7-A2 cells that transfected with A2269 library. 

The COS-7-A2 cell underneath was isolated and used for the plasmid recovery. (B-D) After the plasmid reconstruction, three 

clusters were detected in the reactivation of TCR JM22. (E-F) In the first round of subpools, the plasmids were divided into 

30 probes and two clusters were detected in one of these probes. The number of sGFP+ cells (green) and the scale bar (white) 

both are labeled on each image. Each round of reactivation was repeated with three independent experiments. 
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During the antigen search for TCR JM22, one cluster of four activated T cells was detected, and the 

COS-7-A2 cell underneath was isolated for recovery of the antigen coding plasmid. Once the plasmids 

were reconstructed and replicated, reactivation assay and enrichment of antigen coding plasmid by 

subpools of E.coli culture were carried out. Clusters of green activated JM22 T hybridoma cells were 

detected in reactivation assays (Figure 3-24). Unfortunately, after two rounds of subpools of E.coli 

culture, the activation signals could not reproduced in three independent experiments. In addition, it 

was also tried to isolate the positive APCs that were transfected with the plasmids. However, no 

activated T cells were found in these re-picking experiments. 

Table 3-14: Reactivation of TCR BV1-BJ2.3-AV7.2-AJ24.2 by antigen pools isolated from single 

APCs 

The COS-7 cells beneath the activated T cells were isolated and used for the plasmid recovery. The reconstructed plasmids 

and the corresponding HLAs were co-transfected into COS-7 cells, which employed for the reactivation of TCR BV1-BJ2.3-

AV7.2-AJ24.2. The expression of sGFP+ cells was detected by the fluorescence microscope. The reactivation was repeated 

with three independent experiments. Five plasmids (Bold) that have a strong reaction to TCR activation will be used for 

enrichment of antigen coding plasmid by subpools. 

PECP library HLA- Plasmid ID Initial clones 

Areas of 

Investigation (cm2) 

Activated 

T cells Clusters 

A139 Lib A*0101 # A-01 - - - - 
       

B8359 Lib B*0801 
# B-01 5,000 12 0 0 

# B-02 8,000 12 0 0 
       

C79 Lib C*0701 

# C-01 7,000 12 0 0 

# C-02 6,000 12 2 1 

# C-03 17,000 12 3 1 

# C-04 9,000 12 2 1 

# C-05 12,000 12 4 1 

# C-06 1,000 12 3 1 

# C-07 28,000 12 3 1 

# C-08 19,000 12 4 2 

# C-09 13,000 12 12 4 

# C-10 15,000 12 9 4 

# C-11 43,000 12 15 6 

# C-12 20,000 12 7 3 

# C-13 17,000 12 14 5 
 

A139 

B8359 

C79 

A*0101 

B*0801 

C*0701 

# ABC-01 8,000 16 2 1 

# ABC-02 17,000 16 2 1 

# ABC-03 18,000 16 6 3 

# ABC-04 9,000 16 4 2 

# ABC-05 9,000 16 4 2 
 

N27 MR1 

# N-01 31,000 12 0 0 

# N-02 25,000 12 0 0 

# N-03 18,000 12 0 0 

# N-04 31,000 12 4 1 
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During antigen search for TCR BV1-BJ2.3-AV7.2-AJ24.2, 29 positive APCs were successfully 

isolated, and the plasmids were recovered and reconstructed in vitro as mentioned in Section 3.5.4. 

Similar to TCR JM22, reactivation assay was repeated with three independent experiments, and the 

results are summarized in Table 3-14. Briefly, no activation signals were re-detected in two recovered 

plasmids from B8
359

 library. On the contrary, higher reactivation signals were detected in five 

recovered plasmids (# C-09 to # C-13) from C7
9
 library. Several green T-cell clusters were observed 

in these five plasmids, which indicate that they are the most probable ones to contain the antigen 

coding plasmid. Thus, these plasmids will be used for enrichment of antigen coding plasmid by 

subpools of E.coli culture. In addition, no or few activated T cells were re-detected with the four 

reconstructed plasmids (# N01 to # N-04) from MR1 restricted N27 library. Therefore, the results of 

reactivation assays indicate that TCR BV1-BJ2.3-AV7.2-AJ24.2 might not belong to the semi-variant 

TCR of MAIT cells, but recognize antigens binding to HLA-C*0701 molecules. However, this 

hypothesis needs more evidences in the future. 

To identify the antigen coding plasmid from the five promising reconstructed plasmids (Table 3-14, # 

C-09 to # C-13), subpools of E.coli culture proceeded as describe in Figure 2-3. The results of 

reactivation assay from the first round of subpools of E.coli culture are presented in Figure 3-25. The 

reactivation assay was repeated with two independent experiments. Obviously, two green T cells 

(sGFP
+
) were detected in some batches of plasmids, but stronger activated signals were only detected 

in one or two batches of plasmids with higher numbers of green T cells (N≥3). These promising 

batches for each reconstructed plasmids (Figure 3-25, marked with asterisks) were used for the second 

round of subpools of E.coli culture until the antigen coding plasmid is finally identified. However, the 

activation signals are never enhanced by the following subpools (Data not shown). 
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Figure 3-25: Reactivation of TCR BV1-BJ2.3-AV7.2-AJ24.2 in 30 probes of plasmids from 1
st
 

subpool 

As mentioned in Table 3-14, five promising reconstructed plasmids from C79 Library continued the subpools of E.coli 

culture for enrichment of antigen coding plasmid. In 1st subpool, reactivation assay from 30 probes of plasmids was carried 

out and examined under fluorescence microscope after transfection for 48 and 72 hours, which were repeated with two 

independent experiments (black: first experiment; red: second experiment). Histogram shows the numbers of activated T cells 

(sGFP+) in each probe of plasmids, which were recognized by the following reconstructed plasmids: Plasmid # C-09 (A), 

Plasmid # C-10 (B), Plasmid # C-11 (C) Plasmid # C-12 (D), and Plasmid # C-13 (E). In 30 probes of plasmids, only the 

probes that showed activated T cells are presented here, and the probes marked with asterisks will continue for the following 

subpools of E.coli culture. 
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Thus, during the antigen identification for TCR BV1-BJ2.3-AV7.2-AJ24.2, we detected higher 

numbers of activated T cells in the samples transfected with C7
9
 library, and successfully isolated the 

positive APCs underneath. After plasmids recovery and reconstruction in vitro, the activated signals 

were re-detected in reactivation assay with five promising reconstructed plasmids. However, the 

positive signals were disappeared gradually in the subpools’ experiments. Re-picking of positive 

APCs in the reactivation assay might help to achieve the activated signals again. In addition, 

distinguishing the activated signals from the spontaneous activated background is crucial for the 

recognition of the real antigen. 

The positive APCs underneath are successfully isolated and used for plasmid recovery and 

reconstruction. The positive signals detected in reactivation assay indicate that the antigen coding 

plasmid might indeed be included in these reconstructed plasmids. However, the positive signals are 

lost in the subpools for enrichment of antigen coding plasmid. In the future, the method for enrichment 

of antigen coding plasmid should be optimized. 
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4 Discussion 

4.1 Localization of Immune Cells in MS Brain 

Brain-infiltrating CD8
+
 T cells persist as expanded clones in the CSF and blood of MS patients 

(Skulina et al., 2004), but there might be other immune cells that infiltrate in brain lesions. In the 

previous study, αβ-TCRs of some CD4
+
/CD8

+
 T cells and MAIT cells were identified from MS brain 

lesions (Held et al., 2015; Junker et al., 2007; Kim et al., 2012; Seitz et al., 2006). Here, we located 

immune cells in histological sections of MS brain biopsy morphologically (Section 4.1.1). Particularly 

for activated CD8
+
 T cells, many clusters were detected in some blocks of brain biopsies (Section 

4.1.2). Lastly, we predict some possibilities for investigation of immune cells in future experiments 

(Section 4.1.3). 

4.1.1 Immunofluorescence Staining of Immune Cells 

Beside resident cells in the CNS, like neurons, glial cells, and neural stem cells some immune cells 

might migrate into the inflammatory lesions through BBB. Examples are T and B lymphocytes, 

dendritic cells, macrophages and NK cells. To verify this assumption, we identified these immune 

cells in histological sections of MS brain (Section 3.1). The chosen commercial antibodies needed to 

meet three conditions, which are (i) the antibodies apply to immunofluorescence staining, (ii) the 

antibodies should be suitable for frozen sections, and, (iii), they should not cross-react irrelevant brain-

specific target cells. However, not all the commercial antibodies met these conditions. We initially 

tested them on frozen tonsil sections, and then the ones that had specifically detected the target cells 

were used for MS brain biopsy. 

In MS, activated T cells entering the CNS could trigger an inflammatory cascade that facilitates the 

recruitment of other immune cells migrating to MS lesions (Krumbholz et al., 2005). T lymphocytes 

were specifically detected on tonsil and brain sections. However, of four antibodies against CD8 α- 
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and β-chains, one anti-CD8β antibody (clone F-5) did not specifically detect the CD8
+
 T cells on brain 

sections (Figure 3-1). Therefore, it may not be applied on frozen tissues, especially for brain sections, 

which rather stained unspecific brain-specific target cells and not confined to the cell surfaces. 

To figure out CD8
+
 T cells in brain lesions activated or not, we examined eight commercial antibodies 

that target for three common activation markers (CD69, CD134, and CD137). After tested on tonsil 

sections, five of them specifically detected their targets with the appropriate working concentrations. 

However, only three of them could distinctively detect these targets (CD69, CD134, and CD137) on 

brain sections without any unspecific staining background (Figure 3-2). Brain contains a lot of fat, 

which may impede antibody binding to the target antigens on the surface of cells. In addition, most 

commercial antibodies are not tested against brain tissue, which might cross-react to brain-specific 

targets, such as neurons, microglia, Astrocytes, and oligodendrocytes. 

Dendritic cells and macrophages served as cognate APCs might be recruited to present autoantigens to 

the autoreactive T cells in brain lesions of MS patients. In previous study, Melanie Greter et al. 

discovered that dendritic cells are vital for antigen recognition of autoreactive T cells further to 

mediate CNS inflammation and demyelination in an animal model of MS. (Greter et al., 2005). 

Deletion of macrophage and microglia functions is effective to reduce the inflammation and 

demyelination within the CNS (Benveniste, 1997). Moreover, a recent study demonstrated the NK 

cells play a critical role in controlling T-cell activity in the clinical progression of MS (Gross et al., 

2016). Here in the thesis, dendritic cells and macrophages in brain tissue were detected by one anti-

CD83 antibody (Clone HB15e) and two anti-CD68 antibodies (Clone EBM11 and Clone KP1), 

respectively (Figure 3-3). They were more often found in the perivascular space of brain. 

Thus, we successfully located CD8
+
 T cells, dendritic cells and macrophages in MS brain tissues 

morphologically. They might be related to the immunopathogenesis of MS. Some possible issues that 

might influence the staining results are summed up. (i) Not all commercial antibodies can work 

properly on brain biopsies. (ii) Brain biopsy contains much fat that might prevent antibody to bind to 



DISCUSSION 

115 

specific antigen on the surface of target cells. (iii) Some antibodies might cross-react to irrelevant 

brain-specific targets. (iv) Non-specific binding of antibodies and the ionic and hydrophobic 

interaction may result in the non-specific background of the antibody. 

4.1.2 Distribution of Clusters of Activated CD8
+
 T-Cells 

In MS brain biopsy investigated here, activated CD8
+
 T cells were specifically detected by two anti-

CD8α and anti-CD137 antibodies. Next, it was of interest to see how these activated CD8
+
 T cells are 

distributing in different blocks (#2, #6, and #12) of MS brain biopsies. In line with the previous study 

by Anna G. Niedl, we discovered that block #12 has the highest number of CD8
+
 T cells especially in 

the meninges, perivascular and parenchymal spaces (Figure 3-5). Most of them are activated 

(CD137
+
). It indicates that actively demyelinating brain lesions infiltrated with large numbers of 

activated CD8
+
 T cells might be located in this brain block. However, only a few single activated 

CD8
+
 T cells but rare cluster were found in block #2 (Figure 3-4), where obviously no inflammation 

occurred. If single activated CD8
+
 T cells from block #6 and #12 could be isolated and used for 

characterization of αβ-TCRs, it would be likely that these cells might be autoaggressive T cells 

involved in the immunopathogenesis of MS. 

During the investigation of activated CD8
+
 T cells in MS brain lesions, we noticed that many cells are 

not alone, but tightly contacting another cell that are unknown so far (Figure 3-6). In line with 

previous research on psoriasis vulgaris (PV) disease, different T cells with identical TCR molecules 

were detected in direct contact with other cells that exhibit the dendritic or epithelial morphology 

(Arakawa et al., 2015). In future research, it will be interesting to figure out the cell types of these 

contacting cells for activated CD8
+
 T cells. It will bring new insight into the characterization of auto-

antigens recognized by autoreactive CD8
+
 T cells in MS. 
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4.1.3 Prospects for Investigation of Immune Cells in MS Brain 

Inflammatory cells existing in CNS lesions may have effector functions in the immunopathogenesis of 

MS. These cells could be either the systemic immune cells translocated from the peripheral system 

through BBB or the CNS-resident cells that initiate, regulate and maintain an immune response 

(Becher et al., 2000). In the thesis, we only detected four systemic immune cells, i.e., T cells, CD8
+
 T 

cells, dendritic cells and macrophages in the brain lesions of MS patients morphologically. However, 

the CNS-resident cells might also be the potential APCs presenting autoantigens to the encephalitic 

CD4
+
/CD8

+
 T subsets, leading to demyelination and axonal damage. Höftberger et al. reported that 

MHC class I molecules are highly expressed on astrocytes, axons, neurons and oligodendrocytes 

which may be potential targets for Class I MHC-restricted CD8
+
 T-lymphocytes (Höftberger et al., 

2004). Another research on Theiler’s murine encephalomyelitis virus-induced demyelinating disease 

(TMEV-IDD) demonstrates that the resident microglia and the infiltrating macrophages are the mainly 

antigen-presenting phenotypes in the contribution of CNS demyelination (Mack et al., 2003). 

Therefore, in future experiments, it will be interesting to investigate other immune cells as well as the 

CNS-resident cells, and the relationships between them in brain lesions of MS patients. 

4.2 Identification of the MS-Related TCR αβ-Chains 

Two strategies have been established to identify the complete TCR αβ-heterodimers of the tissue-

infiltrating T cells from frozen histological samples (Kim et al., 2012; Seitz et al., 2006). (i) Clonally 

expanded TCR β-chains in muscle sections were identified using CDR3 spectratyping. Then, those 

Vβ
+
 T cells that were considered as myocytotoxic CD8

+
 T cells morphologically were identified by 

immunohistochemistry, and then isolated by laser microdissection. Next, the paired TCR α- and β-

chains were identified by a multiplex RT-PCR based clonally specific protocol, which can amplify 

both α- and β-chains from the single T cells. (ii) This approach was further developed, so that all α- 

and β-TCR chains may be detected, even without knowledge of the Vβ elements. 
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To identify paired αβ-TCRs from the single activated CD8
+
 T cells with high efficiency in MS brain 

tissues, we optimized the protocol of rapid immunostaining to distinguish the activated CD8
+
 T cells 

from irrelevant bystanders and maximally preserved RNA from histological sections (Section 4.2.1 

and 4.2.2). Next, the multiplex RT-PCR-based approach was improved to yield higher number of TCR 

α- and β-chains (Section 4.2.3). 

4.2.1 Distinguishing of Activated CD8
+
 T Cells from Irrelevant Bystanders 

Immunofluorescence staining was used to distinguish the cells of interest from irrelevant bystanders. 

However, the routine use of this approach in frozen or fixed tissue accelerates RNA degradation. The 

consequence is that no enough intact RNA is left for unbiased amplification of TCR α- and β-chains. 

Thus, a rapid immunostaining method was introduced here and developed not only for visualizing T 

cells of interest but also for preserving RNA quality (Section 3.3.1). CD137, as an activations marker, 

was chosen for staining with CD8α molecule to identify the activated CD8
+
 T cells morphologically 

on brain sections of MS patients. In Section 3.1, it is shown that one anti-CD137 antibody (Clone 

BBK-2) specifically detected its target cells on brain sections by the conventional protocol of 

immunofluorescence staining. Along with the staining protocol that was adjusted to preserve more 

RNA in a slide, an acceptable staining was obtained on brain sections when a higher concentration of 

anti-CD137 antibody was used. Thus, by combining the anti-CD8α-Cy3 antibody (Clone LT8) with 

the anti-CD137 antibody, single activated CD8
+
 T cells were clearly distinguished from irrelevant 

bystander T cells on brain sections, and then isolated by laser microdissection (Figure 3-8). 

In summary, we adjusted the period for tissue fixing, blocking and incubation with antibodies during 

staining. The steps of fixation and blocking are necessary to reduce the unspecific staining 

background. Addition of RNase inhibitor is significant for RNA preservation during staining. In 

addition, rinse steps were deleted, which compromise the cellular adherence to slides and accelerate 

RNA degradation. The whole staining procedure performed at 4°C, from which we got the acceptable 

staining results. Low temperature may also be helpful to reduce RNA degradation (Figure 3-10). 
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4.2.2 Minimization of RNA Degradation 

RNA quality is vital for the subsequent amplification of αβ-TCRs from single T cells on brain 

sections. However, four main technical obstacles might significantly influence the integrity of RNA. 

(i) Repeated unfreezing of brain biopsy leads to the loss of RNA (Section 4.2.2.1). (ii) Various 

thicknesses in brain tissue sections affect the cell shape and the RNA integrity in the cell (Section 

4.2.2.2). (iii) Immunofluorescence staining of target cells on histological sections accelerates RNA 

degradation (Section 4.2.2.3). Addition of RNase inhibitor does matter for RNA preservation. (iv) 

Image quality and correct operation during laser microdissection also matter to the isolation of single 

T cells (Section 4.2.2.4). 

4.2.2.1 Storage of MS brain biopsy 

The initial RNA quality in tissue biopsy is crucial for RNA preservation. The brain biopsy of MS 

patient FE was surgically removed in 1996, as he was initially diagnosed with a malignant glioma in 

the brain area. Considering of the rarely available human brain autopsies, we seized the occasion to 

investigate the immunopathogenesis of MS with the rare brain biopsy. It was divided into several 

blocks and frozen at -80°C. Hereafter, the brain blocks were transferred numerous times from -80°C to 

-20°C and backward for the preparation of tissue sections. These warming and cooling cycles during 

the last 20 years severely influence the RNA integrity nowadays. 

4.2.2.2 Cell-positions in tissue sections  

During the preparation of tissue sections by freezing microtome, the T cells of interest might be 

broken, and RNA might be lost. After immunofluorescence staining, the single T cells appeared as 

dots under the fluorescence microscope, which were marked and isolated by laser microdissection. 

The isolated single T cells might not be the amount of cell included in the tissue section, which are 

decided by the thickness of tissue section. 
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Figure 4-1: Vary thickness of tissue sections influences the subsequent single cell TCR analyses 

(A) Improved rapid immunostaining approach was used to stain the activated CD8+ T cells (CD8α and CD137 double 

positive) on frozen brain sections. (B) Single CD8α+CD137+ T cells were isolated by laser microdissection. (C) T cells (~15 

µm) are distributed in three different thicknesses of tissue sections. ① In the tissue sections with a thickness of 10 µm, the T 

cells are cut in different layers, which contain either most of the cell nuclei or small piece of cytoplasm. ②-③ In the tissue 

sections with a thickness of 15 µm or greater, the opportunity of cutting entire T cells is higher, but the overlapped T cells 

(more than two cells located in the same position) might appear as one T cell on microscopy. Scale bars=25 µm. 

The approximate diameter of T cells is up to 15 µm. If tissue sections are cut with a thickness <15 µm 

(Figure 4-1, ①), the T cells might be damaged by cutting and their RNAs may diffuse off the slice. 

Moreover, the cell nucleus may not be included in the slice either. If cut with a thickness of 15 µm or 

greater (Figure 4-1, ②-③), two T cells in one position may probably be isolated and used to amplify 

the αβ-TCRs. In this case, it is hard to tell the TCR α- and β-chains coming from one T cell or another. 

To avoid this problem, in the thesis, we prepared the tissue sections with a diameter of 10 µm for all 

the experiments. Hence, approximately 50% of isolated single T cells had enough RNA for 

amplification of αβ-TCRs. 

4.2.2.3 RNA retaining during staining 

The incubation and washing steps during staining severely influence RNA quality of tissue sections. In 

Section 3.3.2, different ways were tested to minimize RNA degradation during staining. Compared to 

the RNA quality after staining without any treatment, the employment of RNase/DNase-free BSA 

solution as a blocking reagent additionally with the dehydration steps effectively minimized RNA 
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degradation (Figure 3-10). Thus, RNase inhibitor is necessary for maintaining RNA quality during 

staining. Dehydration could take residual water out of tissue sections after staining, thus further 

blocking RNases. After these effective treatments, the preserved RNA might be enough for subsequent 

TCR amplification (Figure 3-11). 

4.2.2.4 Image quality and operation of laser microdissection 

To obtain high resolution of fluorescence images with high contrast, we usually covered the tissue 

sections with fluorescence mounting medium and a glass cover slip, which allow the light to pass 

through straightly. However, because single cells of interest shall be catapulted into a reaction tube by 

a laser ray, the tissue section must not be covered with a glass cover slip. Instead, we cover the tissue 

sections with isopropanol solution that may impede the detection of strong auto-fluorescence from the 

stained cells, and seclude contact with water for RNA preservation. However, isopropanol covered 

tissue may refract the light rays in different directions, which reduces the apparent resolution of 

fluorescence images. In addition, because of the volatility of isopropanol, the amount of isopropanol 

covered on tissue sections should be increased again during the searching of appropriate T cells under 

the microscope. 

4.2.3 Molecular Analysis of Paired αβ-TCRs from Single T Cells in MS Patients 

For a higher yield of TCR α- and β-chains from single T cells, the multiplex RT-PCR based approach 

was optimized (Section 4.2.3.1). In the CSF specimens of MS patients, one Vβ and two different Vα-

chain rearrangements (termed as dual TCRs) are detected (Section 4.2.3.2). However, there are still 

some technological obstacles in identifying the clonally expanded αβ-TCRs (Section 4.2.3.3). 

4.2.3.1 Improvement of the technique for T cell repertoire studies 

An unbiased RT-PCR based approach was established to amplify TCR α- and β-chains of single T 

cells without a prior knowledge of particular TRBV/TRAV usage (Kim et al., 2012). For a higher 

yield of paired αβ-TCRs from histological samples of MS brain biopsies, this method was optimized 
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during the thesis (Section 3.3.3). The unbiased approach is independent of applying monoclonal 

antibodies against TCR Vβ regions that are identified earlier by CDR3 spectratyping (Seitz et al., 

2006). As long as the single T cells of interest are isolated from brain sections with sufficient RNA 

quality, in theory, the paired α/β chains should be amplified by the unbiased approach. In fact, 

however, the yield of αβ-receptors from MS brain biopsies was not as expected. 

In the RT reaction, the concentration of two TRAC and TRBC primers (Cα-RT-imp and Cβ-RT-2) 

might be too high to influence PCR efficiency. Here the final concentration was reduced for better 

yield of PCR product. However, this yield was still low (Table 3-3), which indicates that the following 

multiplex PCRs should be optimized as well. A set of nine degenerated primers was designated by 

Song-Min Kim to cover all functional variable segments of TCR β-chains. Together with nested 

reverse primers annealing to the TRBC regions, the whole TCR β-chain rearrangements are possible to 

be reconstructed. In the pre-amplification of TCR α- and β-chains, one primer (Cβ-out) is not 

specifically annealing to the cDNA of TCR β-chains (Section 3.3.3.3). A new primer (Cβ-mid4) was 

designed to anneal to the inner site of TRBC region to avoid the unproductive TCR β-chains. 

Significant higher yields of TCR β-chains were obtained, which indicates that primer design is critical 

to the PCR efficiency. Except for the primers, the thermocycling conditions were also optimized. 

Obviously, two annealing temperatures (60°C and 53°C) are not sufficient to amplify all the TRAV 

and TRBV repertoire. In addition, if the annealing temperature is too low, the primers could not 

effectively anneal to the template, and the PCR efficiency might be reduced. Therefore, the touchdown 

PCR with three phases may satisfy the requirement of all primers involved in the PCR. 

Before specific amplification of TCR β-chains, a set of anchor sequences was added to the 5’ end of 

V-regions of β-chains through a run-off reaction, which reacts to one direction (Kim et al., 2012). 

Because this reaction might bring unspecific PCR products and lead to the interaction of primers, a 

reverse primer was introduced into the reaction, which might help to improve the PCR efficiency. 

Moreover, the melting temperatures of primers are different, which may also influence the PCR 
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efficiency. Therefore, annealing temperature and amplification cycles were increased to gain more 

specific PCR products. 

The even more variable α-chain repertoire makes the amplification even more challenging. Thus the 

number and the variability of Vα elements are more variable than that of β-chains, so that the number 

of primers was significantly increased (Seitz et al., 2006). With the pre-amplification product as a 

template, the corresponding α-chain was successfully amplified by nested PCR from freshly prepared, 

FACS-sorted single T cells. However, this approach might not be efficient when cryosections of 

human biopsies (not fresh cells) are used, because of RNA degradation during long-term storage. 

Here, we tried to optimize this protocol for higher yields of TCR α-chains; however, there was no 

significant difference before and after improvement. The unspecific interactions between these primers 

may also impede the amplification of α-chains. 

4.2.3.2 Detection of dual TCRs 

Due to the high sensitivity of this method, we could detect dual TCRs in single T cells. In CSF 

specimens of MS patients, we identified some T cells that express two different TCR α-chains 

associated with one identical β-chain (Table 3-9). It was found that 20% of influenza-primed CD8
+
 T 

cells express functional dual TCRs (Dash et al., 2011; Padovan et al., 1993). There are two 

possibilities of dual TCRs involved in the immune response. (i) T cells express two functional αβ-

TCRs which contain one identical β-chain but two different α-chains. These specific T cells can 

recognize the similar antigens presented by different APCs. (ii) During T-cell development, only one 

α-chain is chosen to form the functional pathogenic receptor expressed on the surface. In brain 

biopsies, because of RNA degradation, it was hard to identify the dual TCRs from single CD8
+
 T cells. 

On the contrary, with the fresh CSF specimens, some T cells were detected to express dual TCRs. 

Because of the limited numbers of single T cells, we could not tell yet whether the dual TCRs mainly 

identified from a CD4
+
 T-cell subset or a CD8

+
 T-cell subset. 
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4.2.3.3 Technical challenges in characterization of clonally expanded αβ-TCRs 

High yields of TCR α- and β-chains obtained from freshly isolated, single T cells demonstrate the 

successful application of this optimized method. However, the yield of paired αβ-TCR was restricted 

by some technical challenges, especially for frozen sections of biopsy samples. 

The first challenge is generated due to the unstable RNA in a tissue section. During the fluorescence 

staining of target cells on frozen sections, RNA might be degraded by RNases. It is also explained by 

the high yields of TCR clones with better RNA quality from freshly isolated single T cells (Section 

3.3.5). It is well-known that histological samples of human tissue biopsies provide evidence of 

autoreactive T cells involved in the immunopathogenesis of autoimmune disorders (Dornmair et al., 

2003). By combining morphological identification with reconstruction in vitro, in theory, we could 

characterize any TCR molecular from any histological sample of human diseases. Therefore, RNA 

degradation has to be minimized to the utmost extent. 

The second challenge is TCR repertoire analysis. With the single cell PCR, it is hard to identify clonal 

expansions, because very high number of single T cells would be analyzed. Therefore, flanking NGS 

experiments are usually required. In a recent study, the investigation of CD161
hi
TRAV1-2

+
 T cells by 

pyrosequencing and single cell analyses demonstrates that this cell subset does not exclusively contain 

semi-invariant MAIT cells, but also conventional MHC-restricted T-cell subpopulations with 

hypervariable TCR α- and β-chains (Held et al., 2015). Likewise, NGS results from a melanoma 

patient reveal that some clonally expanded T-cell subsets are detected in the CSF, but not in the 

melanoma (Gerdes et al., 2016). Therefore, combining NGS technology with single cell analysis will 

be the best choice to identify the clonally expanded receptors of autoreactive T cells on MS brain 

lesions. 

A research group introduced one method that combines 5’RACE with multiplex PCR to amplify TCR 

α- and β-chains from single FACS-sorted CD8
+
 T cells of human peripheral blood (Sun et al., 2012). 

There is still room to optimize the protocol to improve the yield of rearranged α-chains. Similar to 
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amplify TCR β-chains, we might modify the PCR with the ligation of an anchor to the entire possible 

variable segments of α-chains associated with a single primer targeting at the conserved constant 

regions (Gao and Wang, 2015). 

4.3 Subcloning of 58-BV1-BJ2.3-AV7.2-AJ24.2 T hybridoma cells 

Before searching antigens for TCR JM22 and BV1-BJ2.3-AV7.2-AJ24.2, it is necessary to validate 

expression of each transfected molecule in the transfected T hybridoma cells, including the 

recombinant αβ-TCR, CD8 co-receptor, and NFAT-sGFP upon TCR activation. No or low expression 

of any of these molecules mentioned above will abrogate subsequent antigen identification. In Section 

3.4.1, we checked the expression of each molecule for these two transfected T hybridoma cell lines 

before antigen identification. Expression of CD8 β-chains on 58-BV1-BJ2.3-AV7.2-AJ24.2 T 

hybridoma cells was initially low as compared to that on 58-JM22 T hybridoma cells (Figure 3-15). 

The low expression might be caused by unstable transfection with plasmids. However, the actual 

reason is still unknown so far. Purification by MACS
®
 technology might help to resolve this problem. 

After separation and subcloning, 100% T hybridoma cells were validated to express CD8 β-chain that 

was not lost in the following cultivation. 

4.4 Investigation of HLA Restriction of the TCR BV1-BJ2.3-AV7.2-AJ24.2 

The TCR BV1-BJ2.3-AV7.2-AJ24.2 identified from brain-infiltrating CD8
+
 T cells of a MS patient 

was investigated to determine its HLA restriction. As described in Section 1.6.3, the α-chain contains 

the typical “V” element (Vα7.2) for MAIT cells, even though the CDR3 region is longer than that for 

conventional MAIT cells. Therefore, except for CD8
+
 T cells, we examined whether this TCR 

recognize antigens presented by MR1 molecules or not. The tested HLA molecules are MS patient FE 

matched MHC Class I molecules (HLA-A*0101, -B*0801, and -C*0701) and MR1 molecule. We used 

COS-7 cells as APCs that were co-transfected with each MHC molecule mentioned above, as well as 

matched PECP library (A1
39

, B8
359

, C7
9
, or N27). These cells were co-cultivated with the 58-BV1-
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BJ2.3-AV7.2-AJ24.2 T hybridoma cells. The TCR activation was subsequently analyzed. However, 

the T cell activation was significantly different amongst different HLA molecules. The highest level of 

activation was observed in the HLA-C*0701 restricted C7
9
 library, and in the presence of the MR1 

restricted N27 library, an intermediate level of activation was also detected (Figure 3-22). This 

suggests that the HLA-C*0701 might be the correct HLA molecule to present auto-antigen to the MS-

derived TCR BV1-BJ2.3-AV7.2-AJ24.2, which is responsible for restricting the antigen presentation 

to this particular MS-related TCR. 

4.5 Technical Challenges of Antigen Identification 

Several technical challenges influence the antigen identification for TCR JM22 and BV1-BJ2.3-

AV7.2-AJ24.2. Avoiding the activation background in antigen search is crucial for distinguishing the 

“real” activated T-cell clusters from spontaneously activated T cells (Section 4.5.1). In addition, the 

biggest problem was how to apply the subpools of E.coli culture effectively to identify the antigenic 

plasmid (Section 4.5.2). 

4.5.1.1 Activation Background of TCR BV1-BJ2.3-AV7.2-AJ24.2 

During the experiments of antigen identification, activation background caused by the spontaneously 

activated T cells was detected for the TCR BV1-BJ2.3-AV7.2-AJ24.2. This activation background 

fluctuated in different experiments. Two reasons might cause this problem, which are (i) spontaneous 

calcium influx, and, (ii), TCR activation by an endogenous antigen. The spontaneous activation may 

be caused by Ca
2+

 influx involved in T cells (Kawakami, 2016) (Section 1.8). In a previous study, 

MAIT cells recognize an endogenous ligand binding to MR1 molecule that is expressed on 

hematopoietic cells in the thymus (Chua et al., 2011; Gold et al., 2015). However, if there is an 

endogenous antigen in the T hybridoma cells, much more cells should be green. This was obviously 

not the case here. T hybridoma cells were re-cloned to select the ones that have rare spontaneous 

activation without exogenous stimuli (Section 3.5.2). 
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4.5.2 Identification of the Antigenic Plasmid by E.coli Subpools 

Even a positive APC that activates this particular MS-related TCR was successfully isolated; the 

antigenic plasmid should be identified from hundreds of irrelevant bystander plasmids. In section 

3.5.5, subpools of E.coli culture were used to determine the antigenic plasmid. Unfortunately, the 

antigenic signal was lost after these E.coli subpools. Several rounds of E.coli culture and separation 

might lead to the loss of the antigenic plasmid. In the future experiments, we might increase the 

numbers of probes of plasmids in subpools to cover all the E.coli clones. Then with the help of the 

auto-scanning system, reactivation assay performs under the fluorescence microscope. 

4.6 Outlook 

CD8
+
 T cells, a main component of the adaptive immune system, are predominate in the brain lesions 

and significantly related to the immunopathogenesis involved in multiple sclerosis (Hohlfeld et al., 

2016). Strategies for identifying the clonally expanded TCR repertoire and investigating the 

specificities of their target antigens in patients with multiple sclerosis are important approaches for 

neuroimmunological research of autoimmune diseases. 

A universal strategy for identification of paired αβ-TCRs from single T cells (Kim et al., 2012) was 

improved in the present work. It is developed from earlier work that identified the TCRs from those 

myocytotoxic CD8
+
 T cells in frozen biopsies of myositis patients (Seitz et al., 2006). The optimized 

unbiased approach continued the previous work to the frozen brain biopsies and CSF specimens of MS 

patients. So far, several TCR β-chains of interest T cells (that usually belonged to an in situ activated 

population) were obtained from brain biopsies. Because of the hypervariability of α-chains and RNA 

degradation, amplification of corresponding α-chains has proved more difficult. Future research 

should be focused to large extents on optimizing the existing protocols. Without considering RNA 

degradation, prior knowledge of TCR repertoire from single CD4
+
 and CD8

+
 T cells persisting in the 

CSF of MS patients was required. However, by combining NGS technology and single cell analysis, 
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we may identify the paired αβ-TCRs that belong to the clonally expanded population. With the 

universal approach, any T cells of interest may be identified, such as (i) fresh T cell populations in 

blood and CSF, (ii) T cells that secrete cytotoxic factors or express an activation marker, and, (iii), T 

cells that contact their target cells. 

Once the TCR of interest is identified and then revived in a hybridoma cell line, the searching of its 

target antigens in vitro is started. Anti-myelin recognition by a particular MHC class I-restricted TCR 

is successfully mimicked through the antigen searching system (Ruhl et al., 2016). However, Because 

of the spontaneous activation background and huge work of screening the plasmids subpools, in the 

thesis, identification of the potential mimotope for an MS-related TCR was failed. Further efforts 

should be undertaken to develop this antigen searching system for high efficiency. In the future 

research, we may simplify the procedure of screening antigenic plasmid from thousands of irrelevant 

plasmids subpools. In addition, antigen-processing machinery and affinity between the mimotope and 

TCR should be taken into consideration. 
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5 Appendix 

5.1 Abbreviations 

List of Abbreviations: 

A Adenosine 

AA Amino Acid 

APC Allophycocyanin (a fluorescent dye) 

APCs Antigen presenting cells 

Amp Ampicillin 

BBB Blood-brain barrier 

bp Base pairs 

BSA Bovine Serum Albumin 

C Constant region of TCR chains 

C Cytosine 

CD Cluster of differentation 

cDNA Complementary DNA 

CDRs Complementarity determining regions 

cfu Colony forming units 

CIDP Chronic inflammatory demyelinating polyneuropathy 

CIS Clinically isolated syndrome of multiple sclerosis 

CNS Central nervous system 

CSC China Scholarship Council 

CTLs Cytotoxic T cells 

Cy3 Cytochrome 3 (a fluorescent dye) 

D Diversity region of TCR β-chain 

DAPI 4',6-diamidino-2-phenylindole (fluorescent stain) 

DCs Cendritic cells 

DEPC Diethylpyrocarbonate 

DMSO Dimethylsulfoxid 

DNA Deoxyribonucleic acid 

dNTP Desoxy-nucleoside-triphosphate 

EAE Experimental Autoimmune Encephalomyelitis 

EBV Epstein-Barr virus 

E.coli Escherichia coli 

EDTA Ethylenediamine tetraacetic acid 

ELISA Enzyme linked immunosorbent assay 

ER Endoplasmic reticulum 

FACS Fluorescence-activated cell sorting 

FBS Fetal bovine serum 

FCM Flow cytometry 

FDA Food and Drug Administration 

FITC Fluoresceinisothiocyanate (a fluorescent dye) 

FU Fluorescence Unit 

G Guanine 

G418 Geneticin 

HLA Human leukocyte antigen 

hMR1 Human MHC Class I related protein 

ID Identification code 

IL-2 Interleukin-2 



APPENDIX 

130 

IL-4 Interleukin-4 

IMGT
®
 The international ImMunoGeneTics information system

®
 

INF-γ Interferon gamma 

ITAMs Immunoreceptor tyrosine-based activation motifs 

J Joining region of TCR chains 

JM22 A T cell receptor that recognizes flu(58-66) peptide from influenza matrix protein 

K K-nucleotide, represents the random insertion of guanine or thymine nucleotides 

kb Kilo base pairs 

LB Luria-Bertani culture medium 

LCM Laser capture microdissection 

mAb Monoclonal Antibody 

MAIT Mucosal-associated invariant T cells 

MACS Magnetic Cell Separation 

MBP Myelin basic protein 

MEM Minimum essential medium 

MHC Major histocompatibility complex 

MOG Myelin oligodendrocyte protein 

MP Melanoma patient 

MRI Magnetic resonance imaging 

MS Multiple sclerosis 

N Non-germline 

N N- or non-templated nucleotide, represents the random insertion of any nucleotide 

NFAT Nuclear factor of activated T cells 

NK cells Natural killer cells 

NGS Next generation sequencing 

OCB Oligoclonal bands 

OD Optical density 

ori Origin of replication 

P Palindromic 

PBS Phosphate buffered saline 

PBMC Peripheral Blood Mononuclear Cell 

PCR Polymerase chain reaction 

PE Phycoerythrin (a fluorescent dye) 

PECP Plasmid-encoded combinatorial peptide libraries 

PFA Paraformaldehyde 

pH Potential of hydrogen 

pMHC Peptide-MHC complex 

PPMS Primary progressive MS 

PRMS Progressive relapsing MS 

PS-SCL Synthetic combinatorial peptide libraries in positional scanning format 

RFLP Restriction fragment length polymorphisms 

RIN RNA Integrity Number 

RIS Radiologically isolated syndrome of multiple sclerosis 

RNA Ribonucleic acid 

RNase Ribonuclease 

rpm Rounds per minute 

RPMI Roswell Park Memorial Institute medium 

RRMS Relapsing-remitting MS 

rRNA Ribosomal ribonucleic acid 

RT Room temperature  

RT-PCR Reverse Transcription polymerase chain reaction 

sGFP Superfolder green fluorescent protein 

SH2 Src Homology 2 

SLE Systemic lupus erythematosus 

SPMS Secondary progressive MS 

SV40 Simian vacuolating virus 40 



APPENDIX 

131 

T Thymine 

Ta Annealing temperature 

TAP Transporter associated with antigen processing transporter 

Taq Polymerase of Thermophilus aquaticus 

TBE Tris/Borate/EDTA buffer 

TCR T-cell receptor 

Th1 T helper 1 

Th2 T helper 2 

Tm Melting Temperature 

TMEV-IDD Theiler’s murine encephalomyelitis virus-induced demyelinating disease 

TNF-α Tumor necrosis factor alpha 

Tris Tris(hydroxymethyl)-aminomethane 

U Unit 

U Uracil 

UV Ultraviolet Light 

V Variable region of TCR chains 

v/v Volume per volume 

w/v Weight per volume 
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5.3 Control Staining with Isotype Antibody 

In Section 3.1, the potential immune cells in the space of brain of MS patients were detected with the 

appropriate antibodies. Meanwhile, the control staining with isotype antibodies proceeded to measure 

the non-specific staining background signals caused by the interaction of immunoglobulin binding to 

Fc receptors on the cell surface. The isotype control has the same host species and isotype as the 

specific primary antibody. Additionally, we examined the specific antibodies and the isotype 
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antibodies on tonsil and brain sections with the same fluorescence staining protocol. The staining 

results for isotype control are presented in Table 5-1 to 5-3. 

 

Figure 5-1: Isotype control of each antibody in tonsil and brain tissues (Part 1) 

Isotype controls were given parallel with the staining of different antibodies both on frozen tonsil sections (A) and MS brain 

sections (B). All nuclei were stained with DAPI (blue). The isotype control antibodies were labeled with same dyes (Red and 

green dyes) as the antibodies for CD8+ T cells. The names of antibodies (Clone ID) are written on the top of each image. 

Scale bar=20 µm. 
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Figure 5-2: Isotype control of each antibody in tonsil and brain tissues (Part 2) 

Isotype controls were given parallel with the staining of different antibodies both on frozen tonsil sections 

(A) and MS brain sections (B). All nuclei were stained with DAPI (blue). The isotype control antibodies 

were labeled with same dyes (Red and green dyes) as the antibodies for activated cells. The names of 

antibodies (Clone ID) are written on the top of each image. Scale bar=20 µm. 
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Figure 5-3: Isotype control of each antibody in tonsil and brain tissues (Part 3) 

Isotype controls were given parallel with the staining of different antibodies both on frozen tonsil sections (A) and MS brain 

sections (B). All nuclei were stained with DAPI (blue). The isotype control antibodies were labeled with same dyes (Red and 

green dyes) as the antibodies for NK cells, dendritic cells, and macrophages. The names of antibodies (Clone ID) are written 

on the top of each image. Scale bar=20 µm. 
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5.4 Vector Maps 

5.4.1 Map of pcDNA
™

 6/V5-His 

 

 

 

5.4.2 Map of pcDNA
™

 3.1D/V5-His-TOPO
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5.4.3 Map of pCR
™

 2.1-TOPO
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