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1. Einleitung 

Mit einer Prävalenz von bis zu 30% bei Erwachsenen stellen chronische 

Schmerzen ein bedeutendes gesundheitliches Problem dar (Wolff, Clar et al. 

2011). Seit Jahrzehnten wird das Phänomen des chronischen Schmerzes 

intensiv beforscht. Aufgrund seiner Komplexität sind hinsichtlich der 

Pathophysiologie jedoch noch viele Fragen offen. In jüngerer Zeit ergaben sich 

zunehmend Hinweise darauf, dass das Immunsystem maßgeblich an der 

Entstehung und Chronifizierung von Schmerzen beteiligt ist (Austin and 

Moalem-Taylor 2010, Tian, Ma et al. 2012). Die Mehrzahl der dazu publizierten 

Arbeiten beschreibt einen Zusammenhang zwischen Schmerzen und einer 

Aktivierung des Immunsystems. Die Erkenntnisse stützen sich dabei 

vorwiegend auf die Analyse pro- und antiinflammatorischer Zytokine. Während 

bei der Entstehung akuter Schmerzen insbesondere Zytokine und Granulozyten 

bedeutsam sind, scheinen bei chronischen Schmerzen die T-Lymphozyten als 

Hauptbestandteil des adaptiven Immunsystems eine besondere Rolle zu 

spielen (Perkins and Tracey 2000). In diesem Zusammenhang wurde 

beispielsweise eine Imbalance der proinflammatorischen TH1 und der 

antiinflammatorischen TH2 Zellen bei chronischen Blasenschmerzen und dem 

komplexen regionalen Schmerzsyndrom (CRPS) beschrieben (Liu, Xia et al. 

2006, Schinkel, Gaertner et al. 2006). In den letzten Jahren wurde die TH1/TH2 

Dichotomie erweitert durch die Identifikation neuer T-Zell Untergruppen, wie 

beispielsweise der TH17 Zellen und der regulatorischen T-Zellen (Tregs) 

(Kleinschnitz, Hofstetter et al. 2006). Während TH17 Zellen normalerweise eine 

Schlüsselrolle bei diversen Autoimmunerkrankungen spielen, sorgen Tregs für 

eine Kontrolle der adaptiven Immunantwort. Bei neuropathischen Schmerzen 

wurde ein Zusammenhang zwischen proinflammatorischen TH17 Zellen und 

einer vermehrten Schmerzempfindlichkeit gesehen, während die 

antiinflammatorischen Tregs eher an einer endogenen Wiederherstellung und 

Kontrolle der neuronalen Funktion beteiligt sind (Kleinschnitz, Hofstetter et al. 

2006, Austin and Moalem-Taylor 2010). Trotz all dieser neuen 

vielversprechenden Erkenntnisse gibt es bislang jedoch keine systematische 

Untersuchung zur Rolle des adaptiven Immunsystems bei unterschiedlichen 
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Schmerzsyndromen wie Rückenschmerz, neuropathischem Schmerz und dem 

CRPS. Dies war daher das Ziel der vorliegenden Habilitationsschrift.  
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2. Das adaptive Immunsystem bei unterschiedlichen Schmerzsyndromen 

 

Veröffentlicht als: 

B. Luchting, B. Rachinger-Adam, J. Heyn, L. C. Hinske, S. Kreth, S. C. Azad  

Anti-inflammatory T cell shift in neuropathic pain 

J Neuroinflammation, 2015 

B. Luchting, B. Rachinger-Adam, J. Zeitler, L. Egenberger, P. Möhnle, S. Kreth, S. 

C. Azad 

Disrupted TH17/Treg balance in patients with chronic low back pain  

PLoS One, 2014 

 

2.1. Chronisch unspezifischer Rückenschmerz (CLBP) 

Chronische Rückenschmerzen (CLBP) stellen die häufigste chronische 

Schmerzerkrankung dar und sind einer der größten Kostenverursacher des 

Gesundheitssystems (Balague, Mannion et al. 2012). Die Genese ist 

multifaktoriell und die Therapie richtet sich entsprechend nach dem sog. „Bio-

Psycho-Sozialen Schmerzmodel“. Der erste Teil des vorliegenden Projektes 

befasst sich mit der Analyse von T-Zell Funktionen bei Patienten mit CLBP vor 

und nach erfolgreicher Therapie. 

Methodik: Bei 37 Patienten mit CLBP und 25 gesunden Probanden wurden die 

quantitative Verteilung von TH1-, TH2-, TH17-Zellen und T regs, sowie T-Zell 

relevante Zytokine und mRNA-Expression bestimmt. Alle Patienten unterzogen 

sich einem 4-wöchigen multimodalen Schmerzprogramm. Vor Beginn, am Ende 

und 6 Monate nach Beendigung des Programms erfolgten Blutentnahmen. 

Patienten mit einer anhaltenden Schmerzreduktion wurden als „Responder“ 

gewertet, und deren Ergebnisse im zeitlichen Verlauf analysiert.  

Ergebnisse: Gegenüber Probanden wiesen CLBP Patienten einen signifikant 

höheren Anteil an Tregs bei deutlich reduziertem Anteil an TH17-Zellen auf. 

Entsprechend der durchflusszytometrischen Analysen war die Expression von 

Treg-spezifischem FoxP3 und von TGF-β signifikant erhöht. Die Konzentration 

T-Zell spezifischer Zytokine war sowohl bei Patienten als auch bei Gesunden 
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unterhalb bzw. nur knapp oberhalb der detektierbaren Grenzen. 35% der 

Patienten erlebten eine anhaltende, signifikante (> 50%) Schmerzreduktion 

durch das multimodale Schmerzprogramm. Trotz der signifikanten klinischen 

Besserung zeigte sich bei ihnen jedoch weder am Ende des Programms, noch 

6 Monate später eine Normalisierung der gestörten TH17/T reg-Balance. 

Interpretation: Patienten mit CLBP weisen ein gestörtes Gleichgewicht 

zwischen TH17- und Treg-Zellen zugunsten einer erhöhten Antiinflammation auf. 

Diese Verschiebung bleibt trotz suffizienter Therapie der Schmerzen langfristig 

bestehen. Dies lässt vermuten, dass die Chronifizierung von Rückenschmerzen 

durch eine vorbestehende Dysbalance von T-Zell Subpopulationen begünstigt 

wird. 

 

2.2. Neuropathischer Schmerz (NeP) 

Die suffiziente Behandlung neuropathischer Schmerzen stellt in der klinischen 

Praxis häufig eine Herausforderung für die behandelnden Ärzte dar (Cohen and 

Mao 2014). Trotz intensiver Forschung sind hinsichtlich der zugrundeliegenden 

pathophysiologischen Mechanismen bis heute noch viele Fragen offen. In der 

unter 2.1. beschriebenen Untersuchung an Patienten mit CLBP wurde ein 

gestörtes Verhältnis von pro- und antiinflammatorischen T-Zellen (TH17/T reg 

Balance) beobachtet, welches sich auch nach suffizienter Therapie nicht 

normalisierte. Nachdem nozizeptive und neuropathische Schmerzen als 

unterschiedliche Entitäten beschrieben werden, befasste sich die 

darauffolgende Untersuchung mit der Analyse von T-Zell Funktionen bei 

Patienten mit NeP. 

 

Methodik: Bei 26 Patienten mit NeP und 26 gesunden Probanden wurde 

durchflusszytometrisch wiederum die quantitative Verteilung von pro- und 

antiinflammatorischen  TH1-, TH2-, TH17-Zellen und Tregs bestimmt. Zur 

Bestätigung der durchflusszytometrischen Daten erfolgte zudem die Analyse 

der T-Zell spezifischen mRNA-Expression von FoxP3, TGF-β und RORT 
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mittels quantitativer Real-Time PCR, sowie die Bestimmung der Plasma-

Konzentration T-Zell relevanter Zytokine durch einen Multiplex Immunoassay. 

 

Ergebnisse:  Ebenso wie CLBP-Patienten, wiesen auch Patienten mit NeP 

einen signifikant höheren Anteil an antiinflammatorischen T regs bei deutlich 

reduziertem Anteil an proinflammatorischen TH17-Zellen auf. Bei Ihnen war die 

Expression von T reg-spezifischem FoxP3 und von TGF-β ebenfalls signifikant 

erhöht. Die Konzentration T-Zell spezifischer Zytokine war sowohl bei Patienten 

als auch bei Gesunden unterhalb bzw. nur knapp oberhalb der detektierbaren 

Grenzen. 

 

Interpretation: Bei den Patienten mit neuropathischen Schmerzen zeigte sich 

ein gestörtes Gleichgewicht von TH17- und Treg-Zellen zugunsten einer 

erhöhten Antiinflammation. Interessanterweise entsprach dieses Ergebnis auch 

dem von Patienten mit CLBP, die keinerlei neuropathische 

Schmerzkomponente aufwiesen. Dies deutet darauf hin, dass die 

Veränderungen des adaptiven Immunsystems keinen spezifischen 

Pathomechanismus des Schmerzsyndroms an sich widerspiegeln, sondern eher 

im Zusammenhang mit der Gesamterkrankung „chronischer Schmerz“ zu sehen 

sind.      

 

2.3. Komplexes regionales Schmerzsyndrom (CRPS) 

Beim CRPS handelt es sich um ein komplexes Syndrom, das durch das 

gleichzeitige Auftreten von Schmerzen, trophischen Veränderungen und 

motorischen Störungen gekennzeichnet ist. Die Symptome korrelieren dabei 

nicht mit der Schwere des auslösenden Ereignisses, u.U, kann das CRPS auch 

nach Bagatelltraumen oder sogar spontan auftreten.  Ein zentraler Bestandteil 

des CRPS ist eine „neurogene“ Entzündung verbunden mit einer 

zentralnervösen Störung des sympathischen Nervensystems (Parkitny, 

McAuley et al. 2013). Das klinische Bild stellt eine Mischform aus nozizeptivem 

und neuropathischem Schmerz dar.  
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Methodik: Bei 15 Patienten mit CRPS und 15 hinsichtlich Alter und Geschlecht  

vergleichbaren gesunden Probanden wurden die quantitative Verteilung von T-

Zell Untergruppen, T-Zell relevanten Zytokinen und mRNA-Expression 

bestimmt.  

Ergebnisse: Gegenüber den gesunden Probanden wiesen CRPS Patienten 

interessanterweise zwar einen deutlich reduzierten Anteil an TH17-Zellen auf, 

entgegen der Erwartung aber keine erhöhte Anzahl an Tregs. Obwohl in der 

Literatur zahlreiche Arbeiten veränderte Zytokinspiegel beschreiben, zeigten 

unsere Analysen aus dem Serum keine richtungsweisenden Ergebnisse. Auch 

hier lag die Konzentration T-Zell spezifischer Zytokine sowohl bei Patienten als 

auch bei Gesunden unterhalb bzw. nur knapp oberhalb der detektierbaren 

Grenzen.  

Interpretation: Patienten mit CRPS weisen eine deutlich erniedrigte Anzahl an 

proinflammatorischen TH17-Zellen auf, allerdings mit Ausbleiben einer 

korrespondieren Erhöhung der antiinflammatorischen T regs. Damit unterscheidet 

sich das CRPS zumindest in Bezug auf die Verteilung der T-Zell Untergruppen 

von den anderen oben beschriebenen Schmerzsyndromen. 
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3. Regulatorische Mechanismen des adaptiven Immunsystems bei 

unterschiedlichen Schmerzsyndromen 

 

 

Veröffentlicht als: 

J. Heyn*, B. Luchting*, L. Hinske, M. Hübner, SC Azad, S. Kreth  

miR-124a and miR-155 enhance differentiation of regulatory T cells in patients with 

neuropathic pain  

J Neuroinflammation, 2016  

B. Luchting, J. Heyn, L. Hinske, S. C. Azad 

Expression of miRNA-124a in CD4 cells reflects response to a multidisciplinary 

treatment program in patients with chronic low back pain 

Spine, 2016 

B. Luchting*, J. Heyn*, T. Wöhrle*, B. Rachinger-Adam, S. Kreth, L. C. Hinske, S. C. 

Azad 

Differential expression of P2X7 receptor and IL-1 in nociceptive and neuropathic 

pain 

J Neuroinflammation, 2016 

 

Trotz grundlegend verschiedener Entitäten von CLBP, NeP und CRPS zeigten 

unsere T-Zell Analysen teilweise deckungsgleiche Veränderungen in allen drei 

Schmerzsyndromen. Im zweiten Schritt fokussierten wir uns daher auf mögliche 

zugrunde liegende Mechanismen. Im Allgemeinen wird eine T-Zell 

Differenzierung durch eine komplexe Vernetzung von pro- und anti-

inflammatorischen Zytokinen reguliert. Nachdem unsere Zytokinbestimmung in 

keinem der von uns untersuchten Schmerzsyndrome richtungsweisende 

Befunde aufzeigten, analysierten wir im Folgenden mögliche epigenetische 

Mechanismen. Als wichtige Regulatormoleküle der posttranskriptionellen 

Genexpression erlangen MicroRNAs (miRNAs) in den letzten Jahren 

zunehmende Bedeutung (Bali and Kuner 2014, Descalzi, Ikegami et al. 2015). 

MiRNAs sind 20-22 Basenpaare lange, nicht-kodierende Einzelstrang-RNAs, 

welche durch eine spezifische Bindung an komplementäre Bindungssequenzen 
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eine Degradation von mRNAs bewirken können. Nach Literaturrecherche und 

aus Vorarbeiten unserer Arbeitsgruppe bezüglich T-Zell relevanter miRNAs bei 

Entzündungsreaktionen, erfolgte daraufhin die Analyse verschiedener 

Schmerz- und T-Zell relevanter miRNAs.  

 

3.1. Chronisch unspezifischer Rückenschmerz (CLBP) 

Bei Patienten mit CLBP wurden insgesamt acht relevante miRNAs untersucht. 

Dabei zeigte sich, dass lediglich drei (miRNA-150, miRNA-155, miRNA-124a) 

miRNAs bei Schmerzpatienten im Vergleich zu gesunden Kontrollen signifikant 

hochreguliert waren. Diese wurden daher bei den Patienten vor und nach 

Teilnahme an dem 4-wöchigen, teilstationären multimodalen Therapieprogramm 

bestimmt. Nach Abschluss des multimodalen Programms erfolgte die 

Unterteilung der Patienten in Responder (≥50% Schmerzlinderung) und Non-

Responder (<50% Schmerzlinderung). Es zeigte sich, dass nur die Expression 

von miRNA-124a durch die Therapie beeinflusst wurde. Interessanterweise war 

dies jedoch lediglich bei den Respondern der Fall, die eine signifikante 

Hochregulation der miRNA-124a aufwiesen. 

 

3.2. Neuropathischer Schmerz (NeP) 

Bei Patienten mit NeP zeigte sich im Vergleich zu Gesunden ebenfalls eine 

deutliche Hochregulation der miRNA-124a und der miRNA-155. Nachdem die 

Zytokinspiegel keine hinreichende Erklärung für den antiinflammatorischen T-

Zell Shift ergaben, untersuchten wir mögliche miRNA assoziierte T-Zell 

Mechanismen. In in vitro Untersuchungen konnten wir daraufhin eine direkte 

miR-Zielgen-Interaktion mittels Reportergenassay nachweisen. Hierzu wurde 

der 3´-untranslatierte Bereich des SIRT1 Gens mittels PCR amplifiziert und in 

einen Luciferase-Reporter-Vektor kloniert. Das Vektorkonstrukt wurde 

zusammen mit den jeweiligen pre-miRs (bzw. Kontroll-miR) in HEK293-Zellen 

transfiziert und Reporteraktivitäten luminometrisch quantifiziert . Unsere 

Ergebnisse konnten dabei aufzeigen, dass eine erhöhte Expression von 

miRNA-124a und miRNA-155 bei NeP über eine Hemmung von SIRT1 zu einer 

gesteigerten Ausdifferenzierung von immunsuppressiven T regs führt. 
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3.3. Komplexes regionales Schmerzsyndrom (CRPS) 

Im Gegensatz zu Patienten mit CLBP und NeP wiesen CRPS Patienten keine 

Erhöhung der antiinflammatorischen Tregs, interessanterweise jedoch eine 

signifikant gesteigerte CD39-Expression der Tregs auf. Eine CD39-

Hochregulation kann die antiinflammatorische Kapazität von Tregs verstärken 

und somit als ein kompensatorischer Mechanismus zur ausbleibenden Treg-

Erhöhung gewertet werden. Ob die Treg-Inhibition möglicherweise durch 

bestimmte miRNAs erfolgt, ist Gegenstand aktuell laufender Versuche.   

 

3.4 Bedeutung des purinergen Systems 

P2X7-Rezeptoren (P2X7R) sind Subtypen der Familie von sieben 

purinergischen P2X-Rezeptoren und werden vorwiegend auf Immunzellen und 

Microglia exprimiert. Im Zusammenspiel mit dem Zytokin IL-1β scheinen sie 

eine zentrale Rolle in der Pathophysiologie von Schmerzen zu spielen. Obwohl 

bereits in zahlreichen tierexperimentellen Studien P2X7R-Inhibitoren als 

mögliche schmerztherapeutische Ansätze untersucht wurden, gibt es bisher 

keine Daten über das P2X7R Expressionsmuster auf Immunzellen bei 

verschiedenen Schmerzsyndromen. Wir analysierten daher 

durchflusszytometrisch und mittels Real-Time PCR die P2X7R-Expression auf 

Lymphozyten und Monozyten bei Patienten mit CLBP und NeP und verglichen 

die Ergebnisse mit denen gesunder Probanden. Darüber hinaus bestimmten wir 

die Serumspiegel des mit dem P2X7R interagierenden IL-1β. Entgegen der 

zuvorigen Ergebnisse zeigte sich hier eine signifikante Erhöhung von P2X7R-

Protein, P2X7R-mRNA und  IL-1β exklusiv bei Patienten mit NeP, nicht aber bei 

Patienten mit CLBP. Wir mutmaßten daher, daß das Zusammenspiel zwischen 

P2X7R und IL-1β ein vorrangiges Phänomen bei der Entstehung von NeP 

darstellt. 
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4. Identifizierung eines potentiellen Biomarkers für Schmerzintensität 

 

Veröffentlicht als: 

B. Luchting*, L. Hinske*, B. Rachinger-Adam, S. Kreth, S. C. Azad 

sICAM-1: A Potential Biomarker for Pain Intensity in Chronic Pain Patients  

Biomarkers in Medicine, 2017 

 

In der klinischen Praxis werden Schmerzen bislang basierend auf den Angaben 

des Patienten behandelt, wobei die geäußerte Schmerzstärke maßgeblich Art 

und Umfang der Schmerztherapie bestimmt. Bei Patienten, bei denen diese 

Erhebung nicht möglich ist, kann sich der behandelnde Arzt nur auf 

unspezifische Parameter wie erhöhten Blutdruck und Herzfrequenz, Stöhnen 

oder Tränenfluss stützen. Dass daraus häufig eine unzureichende 

Schmerztherapie resultiert, konnte beispielsweise bei Patienten in  

Pflegeheimen oder Intensivstationen eindrucksvoll belegt werden. Bis zu 80% 

der Patienten in Pflegeeinrichtungen leiden an Schmerzen, werden aber 

teilweise nicht adäquat therapiert (Barkin, Barkin et al. 2005, Zwakhalen, 

Hamers et al. 2006). Auch bei der Mehrheit von Patienten auf Intensivstationen 

ist eine unzureichende Schmerztherapie beschrieben und potentiell mit einer 

längeren Liegezeit und Beatmungsdauer, höheren Infektionsraten und einem 

häufigeren Auftreten von posttraumatischen Belastungsstörungen (PTBS) 

assoziiert (Chanques, Jaber et al. 2006, Payen, Bosson et al. 2009, Joffe, 

Hallman et al. 2013). Zudem sind viele weitere Patientengruppen davon 

betroffen, wie z.B. Kleinkinder, Patienten mit Demenz oder anderen 

Erkrankungen des zentralen Nervensystems, sowie bewusstseinsgetrübte 

Patienten. 

Obwohl im Rahmen unserer Analyse T-Zell relevanter Zytokine im Hinblick auf 

unsere T-Zell Differenzierung keine wegweisenden Ergebnisse zu verzeichnen 

waren, konnten wir ein T-Zell unabhängiges Zytokin identifizieren, welches als 

potentieller Biomarker für Schmerzstärke dienen könnte: sICAM-1 

(Interzelluläres Adhäsionsmolekül-1) korrelierte bei 169 Patientenproben hoch 

signifikant mit der von den Patienten geäußerten Schmerzstärke (r=0.42, 
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p<0.001). Potentiell verfälschende Einflussgrößen (sog. Confounder und 

Effektmodifikatoren) wurden daraufhin von uns mittels umfangreicher 

statistischer Analysen ausgeschlossen. Bei sICAM-1 handelt es sich um ein 

Protein, welches in geringer Konzentration auf der Oberfläche von 

Endothelzellen und Immunzellen exprimiert wird. Nach Stimulation durch 

Schmerzen oder Zytokine kommt es zu einer raschen und starken 

Hochregulation von sICAM-1, wodurch eine Immunzell-Endothelzell-Interaktion 

eingeleitet wird. Durch diese Interaktion können Opioid-tragende Immunzellen 

das Gefäßsystem verlassen und in das schmerzverursachende Gewebe 

gelangen, um durch die Freisetzung ihrer Opioide die lokale Schmerzreaktion 

zu reduzieren (Hubbard and Rothlein 2000, Machelska, Mousa et al. 2002). Die 

erhöhte Freisetzung von sICAM-1 korrelierte in vorliegender Untersuchung 

hoch signifikant mit der Schmerzstärke, unabhängig vom zugrundeliegenden 

Schmerzsyndrom. Erhöhte sICAM-1 Werte wurden bereits bei verschiedenen 

Erkrankungen wie Migräne, Pankreatitis, Subarachnoidalb lutungen und 

koronarer Herzerkrankung beschrieben (Mack, Mocco et al. 2002, Remahl, 

Bratt et al. 2008, Zhu and Jiang 2012). Diese Erkrankungen sind allesamt 

schmerzhaft, allerdings hat bisher keine Arbeit den Zusammenhang zwischen 

sICAM-1 und der Schmerzstärke untersucht, sondern sICAM-1 als 

unspezifischen Marker für die jeweilige Erkrankung betrachtet. SICAM-1 als 

Marker für Schmerzintensität könnte im Rahmen eines PoCT-Verfahren (Point-

of-Care-Testing) eine gezielte und besser steuerbare Schmerztherapie 

ermöglichen und dadurch zu einer Verbesserung der Schmerztherapie in 

Pflegeeinrichtungen und Intensivstationen führen.  

Nachdem ein solcher Biomarker Einzug in die klinische Praxis nehmen könnte 

und somit auch eine patentrelevante Erfindung darstellt, meldeten wir diese 

Erfindung der Ludwig-Maximilians-Universität München (LMU). Nach positiver 

Begutachtung durch die Bayerische Patentallianz wurde die Erfindungsmeldung 

von der LMU in Anspruch genommen und ist seit dem 13.10.2015 als 

internationale Patentanmeldung hinterlegt.  Ein Ethikantrag zur klinischen 

Überprüfung dieses Biomarkers bei Demenzkranken wird derzeit erstellt.  
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5. Zusammenfassung 

Ziel des hier vorgestellten Habilitationsprojekts war es, an Hand von klinisch-

experimentellen Untersuchungen immunologische Veränderungen bei Patienten 

mit verschiedenen Schmerzsyndromen näher zu charakterisieren und 

zugrundeliegende molekulare Regulationswege aufzuzeigen. Es wurden dabei 

an drei unterschiedlichen Schmerzsyndromen mit grundlegend 

unterschiedlichen Entitäten teilweise deckungsgleiche immunologische 

Veränderungen beobachtet. Wir vermuteten daher, dass hierfür Faktoren 

verantwortlich sein könnten, die nicht unmittelbar mit der eigentlichen 

Nozizeption verbunden sind. Entgegen der bisher vorherrschenden Meinung, 

dass Schmerzen generell eher mit einer Proinflammation assoziiert sind, 

weisen unsere Untersuchungen bei chronischen Schmerzpatienten aber auf 

eine Antiinflammation hin.  

Diese wurde bislang vor allem im Zusammenhang mit chronischem Stress und 

Depressionen beschrieben (Irwin and Miller 2007, Hong, Zheng et al. 2013).  

Da alle Formen chronischer Schmerzen regelhaft mit chron ischem Stress und 

depressiven Verstimmungen assoziiert sind, verglichen wir die Stress-Scores 

unserer Patienten. Nachdem alle Patientengruppen hierbei vergleichbare, 

deutlich erhöhte Scores aufwiesen, deuten unsere Ergebnisse darauf hin, dass 

die immunologischen Veränderungen weniger einen spezifischen 

pathophysiologischen Mechanismus des jeweiligen Schmerzsyndroms, sondern 

vielmehr eine Reaktion auf den schmerzassoziierten chronischen Stress 

widerspiegeln. Diese Interpretation wurde darüber hinaus durch unsere 

epigenetischen Untersuchungen untermauert: Die Hochregulation der miRNA-

124a bei CLBP und NeP sowie die Assoziation zwischen Hochregulation und 

Therapieerfolg nach multimodaler Therapie weisen auf eine mögliche, 

schmerzunabhängige Beteiligung hin. MiRNA-124a stellt eine der wichtigsten 

miRNAs bei psychologischen Erkrankungen und chronischem Stress dar  

(Dwivedi 2014). Darüber hinaus wird sie auch als „NeurimmirR“ bezeichnet, 

welche als Schaltzentrale zwischen dem zentralen Nervensystem und dem 

Immunsystem agieren kann (Soreq and Wolf 2011). Manakov und Kollegen 

konnten dazu hunderte von Stress-induzierten Transkripten aufzeigen, welche 
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durch die miRNA-124a beeinflusst werden (Manakov, Morton et al. 2012). Wir 

vermuteten daher, dass die veränderte miRNA-124a Expression nach 

multimodaler Therapie eher mit der Verbesserung der psychischen Parameter 

als mit der Reduzierung des Schmerzes per se in Zusammenhang steht.  

Zusammenfassend konnte durch die erlangten Erkenntnisse die Komplexität 

von chronischen Schmerzten weiter untermauert werden. Basierend darauf 

könnten neue Therapieansätze  identifiziert werden. Darüber hinaus stellt der 

identifizierte potentielle Biomarker sICAM-1 ein vielversprechendes Tool zur 

besseren Erfassung unterversorgter Schmerzustände dar. Mittels eines solchen 

PoCT-Verfahrens wäre daher in der klinischen Praxis eine gezielte und besser 

steuerbare Schmerztherapie möglich, beispielweise in Pflegeeinrichtungen, 

Intensivstationen oder bei dementen- und bewusstseinsgetrübten Patienten. 

Entsprechende klinisch-experimentelle Projekte sind auf den Weg gebracht und 

sollten in absehbarer Zeit klinische Anwendungsfelder identifizieren.  
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miR-124a and miR-155 enhance
differentiation of regulatory T cells in
patients with neuropathic pain
Jens Heyn†, Benjamin Luchting†, Ludwig C. Hinske, Max Hübner, Shahnaz C. Azad and Simone Kreth*

Abstract

Background: Accumulating evidence indicates that neuropathic pain is a neuro-immune disorder with enhanced
activation of the immune system. Recent data provided proof that neuropathic pain patients exhibit increased
numbers of immunosuppressive regulatory T cells (Tregs), which may represent an endogenous attempt to limit
inflammation and to reduce pain levels. We here investigate the molecular mechanisms underlying these alterations.

Methods: Our experimental approach includes functional analyses of primary human T cells, 3′-UTR reporter assays,
and expression analyses of neuropathic pain patients’ samples.

Results: We demonstrate that microRNAs (miRNAs) are involved in the differentiation of Tregs in neuropathic pain. We
identify miR-124a and miR-155 as direct repressors of the histone deacetylase sirtuin1 (SIRT1) in primary human CD4+

cells. Targeting of SIRT1 by either specific siRNA or by these two miRNAs results in an increase of Foxp3
expression and, consecutively, of anti-inflammatory Tregs (siRNA: 1.7 ± 0.4; miR-124a: 1.5 ± 0.4; miR-155: 1.6 ± 0.4;
p < 0.01). As compared to healthy volunteers, neuropathic pain patients exhibited an increased expression of miR-
124a (2.5 ± 0.7, p < 0.05) and miR-155 (1.3 ± 0.3; p < 0.05) as well as a reduced expression of SIRT1 (0.5 ± 0.2; p < 0.01).
Moreover, the expression of these two miRNAs was inversely correlated with SIRT1 transcript levels.

Conclusions: Our findings suggest that in neuropathic pain, enhanced targeting of SIRT1 by miR-124a and miR-155
induces a bias of CD4+ T cell differentiation towards Tregs, thereby limiting pain-evoking inflammation. Deciphering
miRNA-target interactions that influence inflammatory pathways in neuropathic pain may contribute to the discovery
of new roads towards pain amelioration.

Trial registration: German Clinical Trial Register DRKS00005954

Keywords: Neuropathic pain, miRNA, Regulatory T cells, Histone deacetylase sirtuin1, Analgesia

Background
Neuropathic pain is caused by impairment of somato-
sensory functions in both the peripheral and central
nervous system [1]. It is often associated with spontan-
eous pain, dysesthesia, paraesthesia, and hyperalgesia
(increased pain caused by painful stimuli) and allodynia
(increased pain caused by non-painful stimuli) [2, 3].
The treatment of neuropathic pain is ambitious, and
outcomes often are unsatisfactory [4]. Despite intensive

analgesic treatment, significant attenuation of pain is
only achieved in a limited number of patients [5].
There is emerging evidence that aberrant responses of

the immune system substantially contribute to the devel-
opment of neuropathic pain [6]. Immune cells respond
to nerve injury by migration into the nervous system at
the side of injury, thereby releasing mediators, which
affect intercellular signaling [7]. Although the precise role
of immune cells in neuropathic pain remains unclear, adop-
tive transfer of immune cells producing pro-inflammatory
cytokines significantly increase pain sensitivity, whereas
transfer of cells producing anti-inflammatory cytokines
decrease pain sensitivity in nerve-injured rats [8]. Recent
data investigating neuropathic pain in humans published by
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our group point into the same direction. We showed that
patients exhibit altered ratios of peripheral T-helper cell
subsets. Specifically, increased numbers of immuno-
suppressive regulatory T cells (Tregs) have been found
[9, 10]. This could reflect an endogenous strategy to limit
inflammation and to reduce pain levels in neuropathic pain,
which is of interest with respect to future treatment
approaches.
The current study aims to investigate the molecular

mechanisms underlying these alterations. We focused
on the expression of the histone deacetylase sirtuin1
(SIRT1), which is supposed to play a significant role in
the development and function of Tregs [11, 12]. SIRT1
controls transcription factor forkheadbox-p3 (Foxp3),
the master regulator of Treg differentiation [12].
Treatment with SIRT1 inhibitors increased Foxp3 gene
expression with consecutive increase of Treg differen-
tiation in mice [13]. We thus hypothesized that these
mechanisms might also be involved in the Treg alter-
ations observed in neuropathic pain patients.

Methods
Patients
Patients appearing with neuropathic pain in our Depart-
ment of Pain Medicine were verified for fulfilling the
inclusion criteria and asked about their agreement to
participate in the study. Neuropathic pain was defined as
“pain caused by a lesion or disease of the somatosensory
nervous system” such as polyneuropathy, postherpetic
neuralgia, or trigeminal neuralgia/neuropathy using the
PainDETECT-questionnaire [14]. Additionally, quantita-
tive sensory testing was performed to all patients, accord-
ing to the protocol of the German Research Group on
neuropathic pain [15]. Patients suffering from low back
pain with radiculopathy (even if the radicular component
was clearly predominant) or patients with autoimmune,
chronic, inflammatory, neoplastic, or psychiatric diseases
were excluded. None of the patients had been treated with
corticosteroids or had received known immunomodula-
tory agents currently or in the past. Acute inflammation
was excluded by determination of C-reactive protein
(CRP), total- and differential leucocyte, and measurement
of body temperature. Eleven patients fulfilled the inclusion
criteria. Blood samples of these patients were obtained as
well as from 9 healthy volunteers after written consents
were obtained. Additionally, patients were asked to quote
their average pain intensity using an 11-point numerical
rating scale (NRS) with 0 representing “no pain” and 10
“worst pain imaginable”. For patients’ characteristics, see
Table 1.
The prospective study protocol followed the princi-

ples of the Declaration of Helsinki and was reviewed
and approved by the Ethics Committee of the LMU
Munich and registered on German Clinical Trial

Register (Registration Trial DRKS00005954). Patients
included in this study have also been part of a recently
published study by Luchting et al. [9] showing an anti-
inflammatory T cell shift in patients suffering from
neuropathic pain.

miRNA selection and target prediction
In the current manuscript, we focused on the evaluation
of miR-124a and miR-155. These microRNAs (miRNAs)
were selected as follows: We first sought to identify miR-
NAs that have been found to be differentially expressed in
pain- and inflammation-related syndromes [16, 17]. Of
these, only miR-124a and miR-155 were predicted to
target SIRT1. These predictions were based on the
established target prediction algorithm TargetScan [18].

RNA isolation and cDNA synthesis
Total RNA was isolated using either the RNAqueous®
Micro Kit or the mirVana miRNA Isolation Kit
followed by subsequent DNase treatment (Turbo
DNase, Ambion) according to the manufacturer’s in-
structions. Quantity and purity of the isolated RNA
were measured using a NanoDrop 2000 spectropho-
tometer (Thermo Scientific). Complementary DNA
(cDNA) was synthesized from 1 μg of total RNA using
SuperScript III First Strand Synthesis System (Invitro-
gen), as per manufacturer’s instructions.

Quantitative RT-PCR
cDNA was synthesized from equal amounts of total RNA
using Superscript III reverse transcriptase (Invitrogen) and
oligo(dT) and random hexamer primers following the
supplier’s instructions. Quantitative analyses of messenger
RNA (mRNA) levels were performed in duplicates on a
Light Cycler 480 (Roche Diagnostics) using either UPL
probes and specific primers or specific single assays
(Table 2, Roche Diagnostics, Penzberg). The cycling con-
ditions comprised an initial denaturation phase at 95 °C
for 5 min, followed by 45 cycles at 95 °C for 10 s, 60 °C for

Table 1 Patient characteristics

Item Healthy Neuropathic pain p value

Numbers (n) 9 11

Age 36 ± 9 54 ± 12 < 0.05

Female 55 % 64 % n.s.

BMI 22.9 ± 2.9 25.3 ± 3.4 n.s.

NRS (rest) 0.0 ± 0.0 4.8 ± 2.3 < 0.05

NRS (motion) 0.0 ± 0.0 7.6 ± 1.7 < 0.05

KAB 1.5 ± 0.4 3.4 ± 0.7 < 0.05

Results are expressed as mean ± standard deviation (SD)
BMI body mass index, NRS (rest/motion) numeric rating scale (0 to 10) of pain,
0: “no pain,” 10: “worst pain imaginable,” KAB questionnaire for self-perceived
stress ranging (1–6), 1: “no stress,” 6: “maximum stress,” n.s. not significant
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30 s, and 72 °C for 15 s. Data were normalized to the ref-
erence genes SDHA and TBP [19].

Quantification of miRNA expression
Expression of miR-124a, miR-155, and U47 (endogenous
control) was quantified using TaqMan miRNA assays
(Applied Biosystems) following the manufacturer’s
protocol. In brief, equal amounts of RNA (10 ng) were
reverse transcribed using miRNA-specific stem-loop
primers and the TaqMan MicroRNA Reverse Transcrip-
tion Kit (Applied Biosystems). Real-time PCR (RT-PCR)
was performed in duplicate using LightCycler 480
Probes Master on the LightCycler 480 instrument apply-
ing the following cycling conditions: denaturing at 95 °C
for 10 min, 45 cycles of 95 °C for 15 s, and 60 °C for
60 s. U47 RNA was used for normalization of miRNA
expression data.

Western blot analysis
Thirty-five micrograms of total protein extracts was
electrophoresed in an 8 % SDS–PAGE and subsequently
electroblotted onto PVDF membranes. Non-specific
binding sites on the membrane were blocked using 5 %
non-fat dry milk in TBS-Tween. SIRT1 antibody (Cell
Signaling Technology, Danvers, MA) was diluted in
PBST supplemented with 1 % non-fat dry milk (dilution
factor 1:2000). β-actine (Cell Signaling Technology,
dilution factor 1:40,000) served as a loading control.
Immunoreactive bands were visualized using horserad-
ish peroxidase-labeled goat anti-mouse or goat anti-
rabbit antibodies and the Signal Fire ECL Substrate
(Cell Signaling Technology, Danvers, MA).

Purification of peripheral human CD4+ T cells
CD4+ T cells were isolated from peripheral blood mono-
nuclear cells (PBMCs) by magnetic separation with Whole
Blood CD4 MicroBeads (MACS Miltenyi Biotec, Bergisch
Gladbach, Germany) according to the manufacturer’s
instructions. Viability and cell number were ascertained
by ViCell analyzer (Beckman Coulter, Fullerton, CA).

Cell cultures and stimulation conditions
Primary CD4+ T cells were cultured in six-well plates in
RPMI 1640 medium (Sigma-Aldrich, St. Louis, MO)
supplemented with 10 % heat-inactivated fetal calf serum
(Biochrom, Berlin, Germany), penicillin (100 IU/mL),

streptomycin (100 μg/mL), sodium pyruvate, and L-glu-
tamine (Gibco, Life Technologies, Darmstadt, Germany)
at 37 °C in a humidified atmosphere of 5 % CO2 in air.
For differentiation into Tregs, CD4+ T cells (7 × 105/mL)

were cultured under Treg differentiating conditions (anti-
CD3/CD28 Dynabeads (Invitrogen, Carlsbad, Germany)
for 36 h, rhIL-2 and TGF-ß for four additional days.) To
evaluate the effect of miR-124a, miR-155, or siSIRT1 on
Treg differentiation, CD4+ T cells were transfected with
these miRNAs, siRNA, or negative control 6 h before
stimulation of CD4+ T cells was initiated.

Flow cytometric staining and analysis
For identification and quantification of Tregs, multicolor
flow cytometry was used after surface staining of periph-
eral blood mononuclear cells with specific antibodies.
These antibodies include anti-human CD4 and Foxp3.
To quantify the number of Tregs after transfection of
CD4+ T cells and incubation under Treg skewing condi-
tions, Tregs were identified by surface staining with anti-
human CD4+ and intracellular staining with FoxP3 anti-
body (Biolegend, San Diego, CA, USA). The amount of
Tregs was expressed as a ratio of CD4+Foxp3+ T cells as a
percentage of CD4+ T cells. Tregs in patients and healthy
volunteers were identified after surface staining of PBMCs
with monoclonal antibodies specific for anti-human CD4,
CD25, and CD127 and intracellular staining with an anti-
human Foxp3 antibody. CD4+CD25highCD127lowFoxp3
+ cells were defined as Tregs.

Cloning and mutagenesis of vector constructs
The psiCHECK-2 Target Expression Vector (Promega,
Madison, WI, USA) was used for generation of 3′-untrans-
lated region (3′-UTR) reporter constructs as described be-
fore [20]. Briefly, the 3′-UTR of SIRT1 containing the
predicted target sites of miRNA-124a and miRNA-155
were amplified by PCR from human genomic DNA
(100 ng) with the primers given in Table 3 (synthesized by
Metabion, Martinsried, Germany). Cycling conditions were
as follows: 95 °C for 3 min denaturing; 30 cycles of 95 °C
for 30 s, 61.2 °C for 30 s, and 72 °C for 30 s; and a final ex-
tension at 72 °C for 5 min. PCR products were cloned into
the PmeI and XhoI restriction sites of the psiCHECK-2
plasmid. Site-directed mutagenesis [20] of the putative
miR-124a or the three miR-155 binding sites was per-
formed using the QuickChange Lightning Mutagenesis Kit

Table 2 Primer sequences for real-time PCR

Sequence/assay ID

Foxp3 Roche RealTime Ready Single Assay ID 113503

SIRT1 for 5′-TGT ACG ACG AAG ACG ACG AC-3′ (UPL probe #63) rev 5′-TTC ATC ACC GAA CAG AAG GTT-3′ (UPL probe #63)

TBP for 5′-GAACATCATGGATCAGAACAACA-3′ (UPL probe #87) rev 5′-ATAGGGATTCCGGGAGTCAT-3′ (UPL probe #87)

SDHA for 5′-GAGGCAGGGTTTAATACAGCA-3′ (UPL probe #80) rev 5′-CCAGTTGTCCTCCTCCATGT-3′ (UPL probe #80)

Heyn et al. Journal of Neuroinflammation  (2016) 13:248 Page 3 of 11



(Stratagene) with the primers given in Table 4. All
plasmids were verified by sequence analysis (MWG
Biotech, Ebersberg, Germany).

Cell transfections and luciferase assay
Cell transfections were performed by electroporation
using the Neon™ transfection system (Invitrogen, Life
Technologies, Darmstadt, Germany). CD4+ T cells were
transfected with 50 nM pre-miR-124a, pre-miR-155, or
negative control. For luciferase assay, HEK-293 cells
were co-transfected with 1 μg of psiCheck-2 dual lucifer-
ase reporter plasmids containing the 3′-UTR of SIRT1
and either pre-miR-124a, pre-miR-155, or negative
control (Ambion, Austin, TX, USA) at a final concentra-
tion of 50 nM. HEK-293 cells (European Collection of
Cell Cultures) were grown in Dulbecco’s modified Eagle
medium (DMEM—Lonza, Walkersville, MD) supple-
mented with 10 % heat-inactivated fetal bovine serum
(FBS), 1 % penicillin/streptomycin/glutamine, and 1 %
NEAA at 37 °C in a humidified atmosphere of 5 % CO2

in air. Forty-eight hours after transfection, cells were
lysed and analyzed for firefly and renilla luciferase activ-
ity using the Dual-Glo-Luciferase Assay System (Pro-
mega), and Renilla luciferase activities were normalized
to Firefly activities. All experiments were performed in
triplicates.

Statistical analyses
All statistical analyses were performed using SigmaStat
12.0 (Systat Software, Chicago, USA). Every statistical
analysis was started with testing for normal distribution
using the Shapiro-Wilk Test. Further analyses were
performed with Student’s t test for all data with normal

distribution and the nonparametric Mann-Whitney
rank-sum test for all data without normal distribution.
Values are expressed as mean ± standard deviation
(SD). p values <0.05 were considered as statistically
significant.

Results
SIRT1 mRNA expression is decreased in neuropathic pain
First, to confirm our previous findings, we determined
the Foxp3/CD4+ cell ratio in neuropathic pain patients
as compared to healthy volunteers. As shown in Fig. 1a,
neuropathic pain patients exhibited significantly elevated
Foxp3/CD4+ ratios (1.6 ± 0.9 in neuropathic pain vs. 0.8
± 0.5 in healthy controls; p < 0.05). Noteworthy, number
of Tregs was not correlated with age (Additional file 1:
Figure S1A). Next, we investigated the mRNA expres-
sion of SIRT1 in CD4+ T cells obtained from patients
suffering from neuropathic pain as compared to healthy
volunteers. As shown in Fig. 1b, neuropathic pain patients
exhibited a markedly reduced SIRT1 mRNA expression
(0.5 ± 0.2 in neuropathic pain vs. 1.0 ± 0.4 in healthy con-
trols; p < 0.01, Fig. 1b).

Knockdown of SIRT1 in human CD4+ T cells induces Treg
differentiation in vitro
SIRT1 is known as an important negative regulator of
Foxp3 expression in murine T cells. To gain insight into
its functions in human T lymphocytes, we next analyzed
the impact of SIRT1 knockdown in primary human
CD4+ T cells on Foxp3 expression and Treg differenti-
ation. Transfection of human CD4+ T cells with SIRT1
siRNA significantly reduced both SIRT1 mRNA and
protein expression (mRNA 0.5 ± 0.1, n = 6; p < 0.01,
Fig. 2a) as compared to normal control (NC). After in-
cubation of transfected and stimulated cells under Treg
skewing conditions for 4 days, an increase of Foxp3
mRNA expression by approximately 30 % was found
(1.3 ± 0.1, n = 3; p < 0.01, Fig. 2b). Accordingly, Treg
differentiation was clearly enhanced (1.7 ± 0.4, n = 3;
p < 0.01, Fig. 2c). These findings imply that a decreased

Table 3 Primer sequences for the 3′-UTR of SIRT1

Primer Sequence Restriction
site

SIRT1-3′UTR for 5′-CTCGAGCTGTGAAACAGGAAGTAACAGACA-
3′

XhoI

SIRT1-3′UTR rev 5′-GTTTAAACTGGCAGTAATGGTCCTAGCTG-3′ PmeI

Restriction enzymes and the cutting sides of these enzymes are italicized

Table 4 Primers for mutagenesis

Primer Sequence Position

SIRT mut 124a for 5′-TATTTAAAAGCTTAGCCTGGATTAAAACTAGAGATCAACTTTCTCAGA-3′ 1211–1217

SIRT mut 124a rev 5′-GCTGAGAAAGTTGATCTCTAGTTTTAATCCAGGCTAAGCTTTTAAATA-3′

SIRT mut 155_1 for 5′-CAGGAATTGTTCCACCAGGGTTAGGAACTTTAGCATGTC-3′ 36–42

SIRT mut 155_1 rev 5′-GACATGCTAAAGTTCCTAACCCTGGTGGAACAATTCCTG-3′

SIRT mut 155_2 for 5′-TTGATCTTTTCCACAAGGGTTAAACTGCCAAAATGTG-3′ 929–935

SIRT mut 155_2 rev 5′-CACATTTTGGCAGTTTAACCCTTGTGGAAAAGATCAA-3′

SIRT mut 155_3 for 5′-GAAATTGCACAGTAAGGGTTTATTTTTCAGACCATT-3′ 1408–1414

SIRT mut 155_3 rev 5′-AATGGTCTGAAAAATAAACCCTTACTGTGCAATTTC-3′

Sequenzes of the mutagenesis are italicized
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SIRT1 expression may significantly contribute to the in-
crease of Treg cells in neuropathic pain.

miR-124a and miR-155 are potential candidates of SIRT1
regulation in neuropathic pain
We next hypothesized that regulation by specific miR-
NAs may influence SIRT1 expression and may thus ac-
count for the observed alterations of SIRT1 mRNA
expression in neuropathic pain. To this end, we com-
bined results of published microarray data in patients
with chronic pain syndromes with target prediction in
silico. These analyses revealed miR-124a and miR-155 as
potential candidates involved in the regulation of SIRT1
in neuropathic pain. Target prediction tools suggested
three specific binding sites for miR-155 and a single
specific binding side for miR-124a with high probability
within the 3′-UTR of the SIRT1 transcript (Fig. 3a).

SIRT1 expression is directly regulated by miR-124a
and miR-155
To provide an experimental proof of a direct inter-
action between miR-124a and/or miR-155 with the
SIRT1 3′-UTR, we performed luciferase reporter assay
on a psiCheck-2 plasmid containing a Renilla luciferase
gene upstream of the SIRT1 3′-UTR. HEK293 cells
were transiently co-transfected with the reporter vector

construct and either pre-miR-124a or pre-miR-155 or
NC, and luciferase activity was measured. As shown in
Fig. 3b, reporter activity was significantly reduced by
both miRNAs (miR-124a 72 ± 7 %, miR-155 68 ± 13 %,
n = 8; p < 0.01), as compared to NC.
Site-directed mutagenesis of either the miR-124a or

the three miR-155 binding sites within the 3′-UTR of
SIRT1 strongly diminished the inhibitory effect of the re-
spective miRNA (Fig. 3c). These data demonstrate that
both miRNAs regulate SIRT1 expression by direct tar-
geting of specific binding sites within the 3′-UTR of
SIRT1.
Next, we validated the impact of miR-124a and miR-

155 on the expression of SIRT1. We assessed SIRT1
mRNA levels after transfection of human CD4+ T cells
with either miR-124a or miR-155 mimics or with nega-
tive control. As depicted in Fig. 3d, SIRT1 mRNA (miR-
124a 0.75 ± 0.1, miR-155 0.72 ± 0.1; n = 6; p < 0.01) and
protein expression significantly decreased after transient
transfection of both miRNAs as compared to control.
Taken together, we provide evidence that SIRT1

mRNA expression in primary human T cells is directly
regulated by miR-124a and miR-155.

miR-124a and miR-155 control SIRT expression in
neuropathic pain
We next determined the expression of miR-124a and
miR-155 in CD4+ T cells obtained from patients with
neuropathic pain and from healthy volunteers. Expres-
sion of both miRNAs was significantly higher in pa-
tients with neuropathic pain as compared to healthy
volunteers (miR-124 2.5 ± 0.7, p < 0.05, Fig. 2a, miR-155
1.3 ± 0.3; p < 0.05, Fig. 4a). Correlation analyses in hu-
man CD4+ T cells revealed for both miRNAs a signifi-
cant inverse correlation with SIRT1 transcript levels
(miR-124a: r = −0.75, p < 0.001, n = 20, miR-155: r =
−0.6, p = 0.006, n = 20, Fig. 4b, c), which strongly points
to an important role of both miRNAs as regulators of
SIRT1 in vivo. There was no significant correlation
between age and either miR-124a, miR-155, or SIRT1
mRNA expression (Additional file 1: Figure S1B-D).

miR-124a and miR-155 increase Treg differentiation
To investigate the impact of both miRNAs on Treg
differentiation, we transfected human CD4+ T cells
with either pre-miR-124a or pre-miR-155 followed by
culturing under Treg skewing conditions for 4 days.
As shown in Fig. 5a, Foxp3 mRNA expression was
significantly increased in miRNA-transfected cells as
compared to controls (miR-124a 1.5 ± 0.4; n = 6; p < 0.01;
miR-155 1.5 ± 0.4; n = 6; p < 0.01; Fig. 5a). Additionally,
expression of the Treg signature molecules EOS, CTLA4,
and IL2RA [21] was also elevated (Additional file 1:
Figure S2). Accordingly, an enhancement of Treg

a b

Fig. 1 SIRT1 is down-regulated in CD4+ T cells of patients with
neuropathic pain. a T cells obtained from patients with neuropathic
pain were characterized by surface staining with monoclonal antibodies
specific for anti-human CD4, CD25, and CD127 and intracellular staining
with an anti-human Foxp3 antibody followed by flow cytometric
analysis. The Foxp3/CD4+ ratio found in neuropathic pain patients
(NeP, n = 11) and in healthy controls (control, n = 9) is shown. b
Total RNA was extracted from purified CD4+ T cells of patients with
neuropathic pain (NeP, n = 11) as well as from CD4+ T cells of healthy
volunteers (control, n = 9). Relative expression of SIRT1 was quantified
by quantitative PCR (qPCR) using SDHA and TBP as reference
genes. The results indicate fold reduction of SIRT1 in patients
with neuropathic pain vs. healthy volunteers. Data are given as
means ± SD; *p < 0.05, **p < 0.01
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differentiation was found (miR-124a 1.5 ± 0.4; n = 6; p <
0.01; miR-155 1.6 ± 0.4; n = 6; p < 0.01; Fig. 5b, c). In
accordance with these in vitro findings, we found a
significant correlation between both miR-124a and
miR-155 expression and Foxp3 mRNA expression in
human CD4+ T cells (Additional file 1: Figure S3).
These findings demonstrate an impact of miR-124a and
miR-155 on Treg differentiation via targeting of SIRT1.

Discussion
The pathophysiology of neuropathic pain is not fully
understood. Recent studies have established proof that
aberrant responses of the adaptive immune system sub-
stantially contribute to the development of this clinical
disorder. Underlying mechanisms, however, are largely
unknown. In this study, we show an involvement of

miRNAs in the regulation of inflammatory processes in
neuropathic pain. We identify miR-124a and miR-155
as direct repressors of the deacetylase SIRT1. Targeting
of SIRT1 by these miRNAs results in an increase
of Foxp3 expression and, consecutively, of anti-
inflammatory Tregs. We here show that in patients
suffering from neuropathic pain as compared to healthy
volunteers, an increased expression of miR-124a and
miR-155 inhibits SIRT1 expression, which enhances
CD4+ T cell differentiation towards Tregs.
Peripheral nerve injury leads to the release of factors

that recruit and activate immune cells from the circula-
tion. These cells secrete pro-inflammatory mediators
that contribute to the development of pain symptoms.
In particular, the T cell response is considered an im-
portant contributor to the development of neuropathic

a b

c

Fig. 2 SIRT1 is a negative regulator of Foxp3 expression in human T cells. SIRT1 knockdown in primary human CD4+ T cells of healthy volunteers
was performed by specific siRNA, and Foxp3 mRNA expression and Treg differentiation was analyzed after incubation under Treg skewing conditions
for 4 days. a Successful transfection of siRNA was confirmed by qPCR (left panel) and Western Blot analysis (right panel). One blot is representative of
n = 3. b Relative Foxp3 mRNA expression after transfection and Treg differentiation as measured by qPCR. c Treg subpopulation as determined by
FACS analysis (left panel), a histogram representative of n = 6 individual experiments performed in duplicates is shown in the right panel.
Data are given as means ± SD; *p < 0.01, n = 6

Heyn et al. Journal of Neuroinflammation  (2016) 13:248 Page 6 of 11



pain. In animal models of peripheral nerve injury, pain
sensitivity of T cell deficient animals was significantly
attenuated, which could be restored by adoptive trans-
fer of pro-inflammatory cytokine producing Th1 cells
[8]. On the other hand, expansion of Tregs, which limit
immune responses of pro-inflammatory T cells, led to a

significant reduction of pain hypersensitivity [22] while
depletion of Tregs promoted pain hypersensitivity by
inducing altered systemic concentrations of cytokines
in mice [6]. The latter findings point towards a possible
role of Tregs in the limitation of pain promoting in-
flammatory responses. In a very recently published

a

b c

d

Fig. 3 SIRT1 is a novel miR-124a and miR-155 target. Depiction of the genomic structure of the human SIRT1 gene on chromosome 10 and
location of the putative miR-124a and miR-155 binding sites within its 3′-UTR (a). Target prediction algorithm identified a putative miR-124a
binding site and three putative miR-155 binding sites, indicated by the red bars. Positions and seed sequences of the putative binding sites
are listed in the adjacent table (a). A reporter vector containing the SIRT1 3′-UTR was co-transfected with pre-miR-124a or pre-miR-155 into
HEK-293 cells, and hRLuc reporter activity was determined relative to a vector construct containing the SIRT1 3′-UTR co-transfected with
pre-miR-scrambled control (b). Control constructs lacking either the miR-124a (Mut 124a) or the miR-155 binding sites (Mut 155) were generated by
site-directed mutagenesis. Both mutant vectors were co-transfected with the respective miRNA or with scrambled control into HEK-293 cells, and
hRLuc reporter activity was determined; luciferase activity relative to scrambled control is given. Data are means ± SD; ns not significant,
*p < 0.01, n = 8. c CD4+ T cells of healthy donors were transiently transfected with miR-124a, miR-155, or scrambled control, respectively,
and stimulated with anti-CD3/CD28 Dynabeads for 36 h. Relative SIRT1 mRNA was detected by qPCR, n = 6, *p < 0,01 (d, left panel), and SIRT1 protein
expression was determined by Western Blot analysis (d, right panel). One blot is representative of n = 3
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study, we reported an increase of the Treg subpopula-
tion in the peripheral blood of patients suffering from
neuropathic pain, which also points into that direction.
The pathways leading to the observed Treg induction,
however, have not been addressed yet.
We here suggest a decreased expression of the

histone-deacetylase SIRT1 as a possible underlying
mechanism. SIRT1 is known to control Treg differen-
tiation and function (i) by promoting Foxp3 gene ex-
pression and (ii) by Foxp3 lysine ε-aminodeacetylation
leading to ubiquitination and proteasomal degrad-
ation. Here, we show that targeting of SIRT1 by spe-
cific siRNA promotes Treg differentiation of human
CD4+ T cells in vitro. Similar results have been found
in a recently published study, which reported an in-
creased differentiation of naive T cells to Tregs after
treatment with SIRT1 inhibitors in mice. Our findings

strongly suggest that a decrease of SIRT1 expression
contributes to the observed increase of Treg cells in
neuropathic pain patients.
SIRT1 is subject to regulation on a transcriptional

and posttranscriptional level [23, 24]. Particularly in
tumors and endothelial cells, miRNAs have been
shown to influence SIRT1 expression (e.g., miR-29c
[23], miR-141 [23], miR-200 [24], miR-204 [25]).
Based on the assumption that alterations of miRNA
profiles might also be involved in the regulation of
SIRT1 in neuropathic pain, we focused on miRNAs
as potential suppressors of SIRT1 in this context.
We identified miRNA-124a and miRNA-155 as po-
tential candidates binding to the SIRT1-3′-UTR with
high probability in silico. miR-155 is expressed in
multiple types of immune cells and has been pro-
posed to affect a wide range of immunological

a

b c

Fig. 4 miR-124a and miR-155 are upregulated in CD4+ T cells of patients with neuropathic pain. a Total RNA was extracted from purified CD4+ T
cells of patients suffering from neuropathic pain (n = 11) as well as from those of healthy volunteers (n = 9, control). Relative expression of
endogenous miR-124a and miR-155 was quantified by qPCR using U47 RNA as normalizing control. Expression of miR-124a (a, left panel)
and miR-155 (a, right panel) in patients with neuropathic pain as compared to healthy volunteers is shown. Data are given as means ± SD;
*p < 0.05. Correlation of miR-124a expression (b) and miR-155 expression (c) and SIRT1 transcript levels in human CD4+ T cells
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a

b

c

Fig. 5 miR-124a and miR-155 enhance Treg differentiation. Human CD4+ T cells were transfected with either pre-miR-124a, pre-miR-155, or scrambled
control, followed by culturing under Treg skewing conditions for 4 days. Relative Foxp3 mRNA expression was detected by qPCR (a). The number of
Tregs was determined by FACS analysis (b, c). Additionally, representative histograms of the FACS analysis are shown in b and c (right panels).
Data are given as means ± SD; *p < 0.01, n = 6
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processes under physiologic conditions as well as in
the course of immune responses [26–31]. In mice
studies, it has been shown that the expression of
miR-155 in Treg cells is required to maintain nor-
mal Treg numbers and function, which was in part
attributed to miR-155-mediated SOCS1 repression [32, 33].
In a rat model of neuropathic pain, inhibition of miR-155
was shown to reduce cytokine production of microglial
cells via SOCS1 repression, thereby attenuating pain symp-
toms [34].
miR-124a is predominantly expressed in the central

nervous system (CNS). There, it displays specific tem-
poral and spatial expression profiles in various cell
types and affects a variety of biological functions.
Dysregulation of miR-124 has been linked to several
pathologic conditions of the CNS, such as brain tu-
mors, neurodegeneration, epilepsy, and neuroimmune
disorders. Furthermore, miR-124a is involved in macro-
phage polarization, which impacts a variety of diseases.
For example, in animal models of pain, intrathecal appli-
cation of miR-124a resulted in a decrease of pro-
inflammatory cytokines secreted by microglia/macro-
phages, which led to a reduction of persistent hyperalgesia
[35, 36].
Roads of miRNA regulation are redundant and highly

dependent on the cellular and physiological context.
Here, we reveal a new function of miR-124a and miR-
155 in T cells in neuropathic pain: Our experiments
show that both miRNAs suppress SIRT1 mRNA
expression by direct targeting of specific binding sites.
Accordingly, overexpression of miR-124a and miR-155 in
human CD4+ T cells in vitro suppressed SIRT1 and,
in accordance with our in vitro results obtained by
transfection of SIRT1 siRNA, induced a bias towards
Treg differentiation.
Clinical data also support this hypothesis: In T cells of

neuropathic pain patients, we detected an increased
expression of miR-124a and miR-155. Moreover, the
expression of these two miRNAs was inversely corre-
lated with SIRT1 transcript levels, which strongly
supports the hypothesis that the Treg shift observed in
neuropathic pain, indeed, is at least partially driven by a
miRNA-mediated mechanism.

Conclusions
Increasing peripheral Treg numbers may be an endogen-
ous attempt to limit inflammation, thus reducing pain
levels in neuropathic pain. We here demonstrate that
lymphocytic miRNAs significantly contribute to these
adaptive processes. Deciphering miRNA-target interac-
tions that influence inflammatory pathways in neuro-
pathic pain may thus help to develop new approaches of
pain amelioration.

Additional file

Additional file 1: Figure S1. Correlation analysis of age and (A) Treg
numbers, (B) SIRT1 mRNA, (C) miRNA-124 expression, and (D) miR-155
expression. Analyses revealed no significant correlations. Black dots:
Neuropathic pain patients, white dots: Healthy volunteers. Figure S2
Human CD4 + T cells were transfected with either pre-miR-124a, pre-miR-155,
or scrambled control, followed by culturing under Treg skewing conditions for
4 days. Relative mRNA expression the Treg signature molecules EOS, CTLA4,
and IL2RA was detected by qPCR; *p < 0.05, **p < 0.01, n = 5. Figure S3.
Correlation analysis of either miR-124a (A) or miR-155 (B) and Foxp3
mRNA expression. Black dots: Neuropathic pain patients, white dots:
Healthy volunteers. (PPTX 227 kb)

Abbreviations
Tregs: Regulatory T cells; SIRT1: Histone deacetylase sirtuin1; Foxp3: Transcription
factor forkheadbox-p3; NeP: Neuropathic pain; CRP: C-reactive protein;
NRS: Numerical rating scale; PBMCs: Peripheral blood mononuclear cells;
qPCR: Quantitative real-time PCR (RT-PCR); FACS: Fluorescent-activated cell
sorting; KAB: Kurzfragebogen zur aktuellen Beanspruchung; SDHA: Succinate
dehydrogenase complex subunit A; TBP: TATA box binding protein;
SD: Standard deviation; CNS: Central nervous system; BMI: Body mass index

Acknowledgements
The authors are grateful to G. Groeger, J. Rink, and S. Alijagic for the excellent
technical assistance.

Funding
The study was partly funded by the Hella-Langer Stiftung, Germany (to SCA).
The funding institution had no role in the data collection, analysis, interpretation,
patient recruitment, or any other aspect pertinent to the study.

Availability of data and materials
All material used in this manuscript will be made available to researchers
subject to confidentiality.

Authors’ contributions
JH, BL, and MH performed the experiments; JH, BL, LCH, and SK wrote the
manuscript; BL and SCA recruited the patients and prepared the blood
samples; all authors analyzed the data; JH, BL, and SK designed the experiments.
All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
The prospective study protocol followed the principles of the Declaration of
Helsinki and was reviewed and approved by the Ethics Committee of the
LMU Munich (ethical approval number: 331–10) and registered on German
Clinical Trial Register (Registration Trial DRKS00005954).

Received: 13 May 2016 Accepted: 7 September 2016

References
1. Baron R. Mechanisms of disease: neuropathic pain—a clinical perspective.

Nat Clin Pract Neurol. 2006;2:95–106.
2. Bouhassira D, Lanteri-Minet M, Attal N, Laurent B, Touboul C. Prevalence of

chronic pain with neuropathic characteristics in the general population.
Pain. 2008;136:380–7.

3. Scholz J, Woolf CJ. The neuropathic pain triad: neurons, immune cells and
glia. Nat Neurosci. 2007;10:1361–8.

4. van Hecke O, Austin SK, Khan RA, Smith BH, Torrance N. Neuropathic pain
in the general population: a systematic review of epidemiological studies.
Pain. 2014;155:654–62.

Heyn et al. Journal of Neuroinflammation  (2016) 13:248 Page 10 of 11

dx.doi.org/10.1186/s12974-016-0712-6


5. Freeman R, Baron R, Bouhassira D, Cabrera J, Emir B. Sensory profiles of
patients with neuropathic pain based on the neuropathic pain symptoms
and signs. Pain. 2014;155:367–76.

6. Lees JG, Duffy SS, Perera CJ, Moalem-Taylor G. Depletion of Foxp3+
regulatory T cells increases severity of mechanical allodynia and
significantly alters systemic cytokine levels following peripheral nerve injury.
Cytokine. 2015;71:207–14.

7. Sommer C, Kress M. Recent findings on how proinflammatory cytokines
cause pain: peripheral mechanisms in inflammatory and neuropathic
hyperalgesia. Neurosci Lett. 2004;361:184–7.

8. Moalem G, Xu K, Yu L. T lymphocytes play a role in neuropathic pain
following peripheral nerve injury in rats. Neuroscience. 2004;129:767–77.

9. Luchting B, Rachinger-Adam B, Heyn J, Hinske LC, Kreth S, Azad SC. Anti-
inflammatory T-cell shift in neuropathic pain. J Neuroinflammation. 2015;12:12.

10. Luchting B, Rachinger-Adam B, Zeitler J, Egenberger L, Mohnle P, Kreth S,
Azad SC. Disrupted TH17/Treg balance in patients with chronic low back
pain. PLoS One. 2014;9, e104883.

11. Akimova T, Xiao H, Liu Y, Bhatti TR, Jiao J, Eruslanov E, Singhal S, Wang L,
Han R, Zacharia K, et al. Targeting sirtuin-1 alleviates experimental
autoimmune colitis by induction of Foxp3+ T-regulatory cells. Mucosal
Immunol. 2014;7:1209–20.

12. Beier UH, Akimova T, Liu Y, Wang L, Hancock WW. Histone/protein
deacetylases control Foxp3 expression and the heat shock response of
T-regulatory cells. Curr Opin Immunol. 2011;23:670–8.

13. Beier UH, Wang L, Bhatti TR, Liu Y, Han R, Ge G, Hancock WW. Sirtuin-1
targeting promotes Foxp3+ T-regulatory cell function and prolongs allograft
survival. Mol Cell Biol. 2011;31:1022–9.

14. Freynhagen R, Baron R, Gockel U, Tolle TR. painDETECT: a new screening
questionnaire to identify neuropathic components in patients with back
pain. Curr Med Res Opin. 2006;22:1911–20.

15. Maier C, Baron R, Tolle TR, Binder A, Birbaumer N, Birklein F, Gierthmuhlen J,
Flor H, Geber C, Huge V, et al. Quantitative sensory testing in the German
Research Network on Neuropathic Pain (DFNS): somatosensory abnormalities in
1236 patients with different neuropathic pain syndromes. Pain. 2010;150:439–50.

16. Orlova IA, Alexander GM, Qureshi RA, Sacan A, Graziano A, Barrett JE,
Schwartzman RJ, Ajit SK. MicroRNA modulation in complex regional pain
syndrome. J Transl Med. 2011;9:195.

17. Schomberg D, Ahmed M, Miranpuri G, Olson J, Resnick DK. Neuropathic
pain: role of inflammation, immune response, and ion channel activity in
central injury mechanisms. Ann Neurosci. 2012;19:125–32.

18. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP, Burge CB. Prediction of
mammalian microRNA targets. Cell. 2003;115:787–98.

19. Ledderose C, Heyn J, Limbeck E, Kreth S. Selection of reliable reference
genes for quantitative real-time PCR in human T cells and neutrophils.
BMC Res Notes. 2011;4:427.

20. Heyn J, Hinske LC, Ledderose C, Limbeck E, Kreth S. Experimental miRNA
target validation. Methods Mol Biol. 2013;936:83–90.

21. Schmidt A, Eriksson M, Shang MM, Weyd H, Tegnér J. Comparative analysis
of protocols to induce human CD4 + Foxp3+ regulatory T cells by
combinations of IL-2, TGF-beta, retinoic acid, rapamycin and butyrate.
PLoS One. 2016;11, e0148474.

22. Austin PJ, Kim CF, Perera CJ, Moalem-Taylor G. Regulatory T cells attenuate
neuropathic pain following peripheral nerve injury and experimental
autoimmune neuritis. Pain. 2012;153:1916–31.

23. Bae HJ, Noh JH, Kim JK, Eun JW, Jung KH, Kim MG, Chang YG, Shen Q, Kim SJ,
Park WS, et al. MicroRNA-29c functions as a tumor suppressor by direct targeting
oncogenic SIRT1 in hepatocellular carcinoma. Oncogene. 2014;33:2557–67.

24. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, Zhou Q. miR-200a regulates
SIRT1 expression and epithelial to mesenchymal transition (EMT)-like
transformation in mammary epithelial cells. J Biol Chem. 2011;286:25992–6002.

25. Zhang L, Wang X, Chen P. MiR-204 down regulates SIRT1 and reverts
SIRT1-induced epithelial-mesenchymal transition, anoikis resistance and
invasion in gastric cancer cells. BMC Cancer. 2013;13:290.

26. Dorsett Y, McBride KM, Jankovic M, Gazumyan A, Thai TH, Robbiani DF,
Di Virgilio M, Reina San-Martin B, Heidkamp G, Schwickert TA, et al.
MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated
Myc-Igh translocation. Immunity. 2008;28:630–8.

27. Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC, Merck E, Boudousquie C,
Utzschneider DT, Escobar TM, Perret R, et al. MicroRNA-155 is required for
effector CD8+ T cell responses to virus infection and cancer. Immunity.
2013;38:742–53.

28. O'Connell RM, Kahn D, Gibson WS, Round JL, Scholz RL, Chaudhuri AA,
Kahn ME, Rao DS, Baltimore D. MicroRNA-155 promotes autoimmune
inflammation by enhancing inflammatory T cell development. Immunity.
2010;33:607–19.

29. Vigorito E, Perks KL, Abreu-Goodger C, Bunting S, Xiang Z, Kohlhaas S,
Das PP, Miska EA, Rodriguez A, Bradley A, et al. MicroRNA-155 regulates
the generation of immunoglobulin class-switched plasma cells. Immunity.
2007;27:847–59.

30. Rodriguez A, Vigorito E, Clare S, Warren MV, Couttet P, Soond DR, van
Dongen S, Grocock RJ, Das PP, Miska EA, et al. Requirement of bic/
microRNA-155 for normal immune function. Science. 2007;316:608–11.

31. Zawislak CL, Beaulieu AM, Loeb GB, Karo J, Canner D, Bezman NA, Lanier LL,
Rudensky AY, Sun JC. Stage-specific regulation of natural killer cell
homeostasis and response against viral infection by microRNA-155.
Proc Natl Acad Sci U S A. 2013;110:6967–72.

32. Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H,
Yoshimura A, Rajewsky K, Rudensky AY. Foxp3-dependent microRNA155
confers competitive fitness to regulatory T cells by targeting SOCS1 protein.
Immunity. 2009;30:80–91.

33. Yao R, Ma YL, Liang W, Li HH, Ma ZJ, Yu X, Liao YH. MicroRNA-155
modulates Treg and Th17 cells differentiation and Th17 cell function by
targeting SOCS1. PLoS One. 2012;7, e46082.

34. Tan Y, Yang J, Xiang K, Tan Q, Guo Q. Suppression of microRNA-155
attenuates neuropathic pain by regulating SOCS1 signalling pathway.
Neurochem Res. 2015;40:550–60.

35. Ponomarev ED, Veremeyko T, Barteneva N, Krichevsky AM, Weiner HL.
MicroRNA-124 promotes microglia quiescence and suppresses EAE by
deactivating macrophages via the C/EBP-alpha-PU.1 pathway. Nat Med.
2011;17:64–70.

36. Willemen HL, Huo XJ, Mao-Ying QL, Zijlstra J, Heijnen CJ, Kavelaars A.
MicroRNA-124 as a novel treatment for persistent hyperalgesia.
J Neuroinflammation. 2012;9:143.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Heyn et al. Journal of Neuroinflammation  (2016) 13:248 Page 11 of 11



RESEARCH Open Access

Differential expression of P2X7 receptor
and IL-1β in nociceptive and neuropathic
pain
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Abstract

Background: Despite substantial progress, pathogenesis and therapy of chronic pain are still the focus of many
investigations. The ATP-gated P2X7 receptor (P2X7R) has previously been shown to play a central role in animal
models of nociceptive inflammatory and neuropathic pain. Recently, we found that the adaptive immune system
is involved in the pathophysiology of chronic nociceptive and neuropathic pain in humans. So far, data regarding
P2X7R expression patterns on cells of the adaptive immune system of pain patients are scarce. We therefore
analyzed the P2X7R expression on peripheral blood lymphocytes and monocytes, as well as serum levels of IL-1β
in patients suffering from chronic nociceptive and neuropathic pain in comparison to healthy volunteers in order to
identify individuals who might benefit from a P2X7R modulating therapy.

Methods: P2X7R messenger RNA (mRNA) and protein expression were determined in patients with either chronic
nociceptive low back pain (CLBP) or neuropathic pain (NeP), and in healthy volunteers by quantitative real-time PCR
(qPCR) and by fluorescence-assisted cell-sorting (FACS), respectively. IL-1β serum levels were measured with a
multiplex cytokine assay.

Results: Compared to healthy volunteers, P2X7R mRNA (1.6-fold, p = 0.038) and protein levels were significantly
increased on monocytes (NeP: 24.6 ± 6.2, healthy volunteers: 17.0 ± 5.4; p = 0.002) and lymphocytes (NeP: 21.8 ± 6.5,
healthy volunteers: 15.6 ± 5.2; p = 0.009) of patients with NeP, but not in patients with CLBP. Similarly, IL-1β serum
concentrations were significantly elevated only in NeP patients (1.4-fold, p = 0.04).

Conclusions: A significant upregulation of P2X7R and increased IL-1β release seems to be a particular
phenomenon in patients with NeP. P2X7R inhibitors may therefore represent a potential option for the treatment
of this frequently intractable type of pain.
German Clinical Trial Register (DRKS): Registration Trial DRKS00005954.

Keywords: Neuropathic pain, Chronic low back pain, T cells, TH17, Treg, Il-1β, Neuroinflammation

Background
Purinergic P2X receptors (P2XRs) are ATP-gated cation
channels, divided into seven subtypes (P2XR1-P2XR7).
They are predominantly expressed on cells of the
hematopoietic lineage including macrophages, micro-
glia, and lymphocyte subtypes [1].

The subtype receptor P2X7R has been found to play
a major role in central nervous system (CNS) processes,
including neurodegeneration, traumatic brain injuries,
psychiatric disorders, and pain. The exceptional role of
P2X7R in pain syndromes has been shown in various
animal models of nociceptive inflammatory and neuro-
pathic pain [2–5]. In humans, P2X7R messenger RNA
(mRNA) expression was shown to be increased in leu-
kocytes of patients with chronic fatigue syndrome [6].
Results of experimental P2X7R inhibition in a rat model
of inflammatory arthritis, induced by injection of Freund’s
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complete adjuvant into one hind paw, were promising [7].
Furthermore, P2X7R antagonists have been tested in clin-
ical trials in patients with rheumatoid arthritis [8, 9].
P2X7R activation leads to a rapid increase in intracellular
calcium concentrations and triggers the release of the pro-
inflammatory and pro-nociceptive cytokine IL-1β [10]. IL-
1β is known to be a key mediator in neurodegeneration,
chronic inflammation, and chronic pain by affecting neur-
onal cell death [1, 10]. Pharmacological inhibition of IL-1β
attenuates hyperalgesia induced by spinal cord inflamma-
tion in rats [11]. Moreover, higher serum levels of IL-1β
have been implicated in the pathogenesis of depression
[12, 13]. Accordingly, P2X7R inhibitors displayed an anti-
depressant activity in mice [14]. P2X7R has been found to
be readily expressed on the cell surface of both microglia
and immune cells, suggesting a link between the CNS
and the immune system [1, 15]. Since the adaptive im-
mune system is critically involved in the pathophysiology
of chronic pain [16], we systematically investigated the ex-
pression of P2X7R on lymphocytes and monocytes of pa-
tients suffering from either chronic low back pain (CLBP)
or chronic neuropathic pain (NeP) in comparison to
healthy volunteers. We analyzed P2X7R protein by flow
cytometry (FACS) and determined P2RX7 mRNA expres-
sion by real-time PCR (qPCR). Furthermore, we analyzed
the expression of the cytokine IL-1β.

Methods
Ethics statement
The study followed the principles of the Declaration of
Helsinki, was approved by the Ethics Committee of the
LMU Munich, and has been registered by the German
Clinical Trial Register (Registration Trial DRKS00005954).

Subjects
Subject recruitment was estimated for 2 years. Patients
presenting to our Department of Pain Medicine with
chronic pain who met the inclusion criteria, as well as
healthy volunteers, were enrolled after written informed
consent.

Inclusion criteria
Patients suffering from chronic non-specific low back pain
(CLBP) without any signs of neuropathic pain compo-
nents and patients suffering from neuropathic pain (NeP)
were included. CLBP was defined as persistent low back
pain not attributable to a detectable pathology (e.g. infec-
tion, tumor, osteoporosis, trauma, inflammatory disorder,
or radicular syndrome). NeP was diagnosed according to
its international definition (“pain caused by a lesion or dis-
ease of the somatosensory nervous system”). All patients
were assessed by detailed pain history, physical examin-
ation, and the PainDETECT-questionnaire. This question-
naire consists of several items related to neuropathic pain

symptoms (burning sensations, tingling or prickling sensa-
tions, shooting/lancinating, hyperalgesia, dysesthesia, allo-
dynia, or paresthesia) with excellent sensitivity (85 %) and
specificity (80 %) [17]. Healthy volunteers were evaluated
for any history of pain. If no history of pain was detected
in these individuals, they were included in the study.

Exclusion criteria
Exclusion criteria were autoimmune, chronic systemic,
inflammatory, neoplastic, or psychiatric diseases, drug
abuse, and pregnancy. Patients on irregular medication
with opioids, non-opioids, or co-analgesics were ex-
cluded. None of the patients had been treated with cor-
ticosteroids or had received immunomodulatory agents
before or during the study. Any acute inflammatory
process was ruled out by laboratory testing including
serum concentration of C-reactive protein (CRP) and
total and differential leukocyte count as well as meas-
urement of the body temperature. Patients with mixed
pain (nociceptive and neuropathic components), e.g.,
low back pain with radiculopathy, were excluded.

Assessment of pain, stress, and depressive
symptomatology
Patients rated their recalled average pain intensity both
at rest and while moving using an 11-point numerical
rating scale (NRS): 0 meaning “no pain” and 10 mean-
ing “worst pain imaginable.” Self-perceived stress was
evaluated using the German version of the Question-
naire for Actual Demands (“KAB”: “Kurzfragebogen zur
aktuellen Beanspruchung”) in patients and in healthy
volunteers. The KAB was designed to repeatedly quan-
tify the individual’s level of acute or chronic stress. It is
highly sensitive to short-term or situational changes
during a stressful experience [18]. The rating on a scale
ranging from 1 to 6 is based on normalized adjectives.
Higher KAB values indicate the perception of increased
stress levels. The center for epidemiologic studies de-
pression scale (CES-D scale) which measures depressive
symptomatology in the general population was used to
assess depressive symptomatology in patients and in
healthy volunteers. This scale contains 20 items to ex-
plore feelings or experiences during the past week.
These 20 items belong to 4 main categories: depressed
affect, positive affect, somatic complaints/retarded ac-
tivity, and interpersonal experiences. Response options
range from 0 to 3 for each item (0 = rarely or never, 1 =
some or little of the time, 2 = moderately or much of
the time, 3 = most or almost all of the time). Results
range from 0 to 60, with higher values representing
more depressive symptoms. Values >25 are considered
pathological [19].
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Leukocyte count and cytokine assessment
Peripheral blood was collected from patients and healthy
volunteers between 9:00 and 9:30 AM. Samples were
assessed for differential leukocyte count by routine labora-
tory testing. For cytokine assessment, blood was centri-
fuged at 2000×g for 10 min to obtain cell-free serum.
After centrifugation, supernatants were harvested and
frozen at −80 °C until further use. IL-1β serum concentra-
tions were determined using a human cytokine immuno-
assay (Myriad Rules-Based Medicine Inc., Austin, Texas,
USA). The microbead assay is based on a Luminex tech-
nology and quantifies protein in a similar manner to
standard sandwich ELISA techniques, with comparable
sensitivity and range [20].

Flow cytometric staining and analysis
Peripheral blood mononuclear cells (PBMCs) from
heparinized venous blood samples were separated by
Ficoll density gradient centrifugation (Sigma Aldrich,
Taufkirchen, Germany). PBMCs were then cryopre-
served in RPMI freezing media containing 10 % FCS
and 10 % DMSO, frozen at −30 °C for 24 h, and then
stored at −196 °C [21]. For FACS analyses, samples
were thawed rapidly and washed twice with ice-cold
FACS buffer (HBSS containing 1 % BSA and 0.1 %
NaN3) to eliminate any remaining DMSO. For extra-
cellular staining, cells were co-incubated with PerCP-
labeled antihuman CD4 antibody (1:50, Biolegend, San
Diego, CA, USA) and FITC-labeled antihuman P2X7R
antibody (1:100, Alomone Labs, Jerusalem, Israel) at
room temperature for 1 hour. Again, cells were washed
twice with FACS buffer (400×g, 5 min, 4 °C) to remove
excessive antibodies. P2X7R expression was then ana-
lyzed with an Attune Acoustic Focusing Cytometer
(Life Technologies, Carlsbad, USA) as described by
Gudipaty et al. [22]. Representative density plots and
gating strategy are displayed in Fig. 1; representative
histograms for evaluation of CD4+/CD4− cells and for

analyses of mean fluorescence intensity (MFI) are
shown in Fig. 2.

Quantitative RT-PCR
CD4+ cells were isolated from PBMCs by magnetic bead
separation with the Whole Blood CD4 MicroBeads kit
(MACS Miltenyi Biotec, Auburn, CA, USA) according to
the manufacturer’s recommendations. Subsequently, total
RNA was isolated with the mirVana miRNA Isolation Kit,
followed by a DNase digest with the Turbo DNA-free kit
(Ambion). Quantity and purity of the isolated RNA were
measured with a NanoDrop ND-1000 spectrophotometer
(Peqlab). After the amplification of total RNA using the
TargetAmp 1-Round aRNA Amplification Kit (Epicentre
Biotechnologies, Madison, WI, USA) and purification
using an RNeasy Mini Kit (Qiagen), cDNA synthesis was
performed with the SuperScript III First Strand Synthesis
System (Invitrogen) and oligo-dT and random hexamer
primers (Qiagen). Quantitative RT-PCR was performed in
duplicates with a LightCycler 480 instrument (Roche
Diagnostics, Mannheim, Germany) using LightCycler 480
Probes Master and RealTime Ready Single Assays (Roche
Diagnostics). Cycling conditions were as follows: 95 °C for
10 min, 45 cycles at 95 °C for 10 s, 60 °C for 30 s, and 72 °
C for 15 s. Relative mRNA expression of P2RX7 was cal-
culated by the Relative Quantification Software (Roche
Diagnostics) using an efficiency-corrected algorithm with
standard curves and reference gene normalization against
the reference genes succinate dehydrogenase complex
subunit A (SDHA) and TATA box binding protein (TBP)
as described previously [23]. Primer sequences and assay
characteristics are given in Table 1.

Data analyses
Statistical analyses were performed with SigmaStat 12.0
(Systat Software, Chicago, USA). Every statistical analysis
was started with testing for normal distribution using
the Shapiro Wilk Test. Differences between groups were

LC

CD4-

MC

CD4+

Fig. 1 Gating strategy for the detection of lymphocytes, monocytes, CD4+ and CD4− cells, lymphocytes (LC), and monocytes (MC) was gated according
to forward scatter (FSC) and side scatter (SSC) characteristics; PerCP-labeled antihuman CD4 antibody was used to separate CD4+/CD4− cells
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tested with the t test for results with normal distribution
and the nonparametric Mann-Whitney Rank Sum Test
for all data without normal distribution. Discrete variables
were compared with the Fisher’s exact test. In order to de-
termine significant differences between pain syndromes,
we used a one-way ANOVA tests and multiple com-
parisons versus a control group (Holm-Sidak method).
p values <0.05 were considered statistically significant. All
results are expressed as mean ± standard deviation (SD).

Results
Subjects
Within 2 years of recruitment, 19 patients suffering from
CLBP and 19 patients suffering from NeP who met the
inclusion criteria as well as 19 pain-free volunteers were
enrolled. As shown in Table 2, both groups of patients
significantly differed from healthy volunteers in terms of
stress level and depressive symptomatology. No signifi-
cant differences were detected between the patient
groups regarding pain levels at rest and during motion,
as well as duration of pain (Table 2). Furthermore, statis-
tical analysis of the number of patients receiving anal-
gesic and coanalgesic medication revealed no significant
difference between the two groups (Table 3).

Differential blood count and quantification of CD4+ cells
We quantified the number of neutrophil granulocytes,
representing an essential part of the innate immune
system, as well as total lymphocytes and CD4+ T cells
as key players of the adaptive immune response. As
shown in Fig. 3, numbers of polymorphonuclear leuko-
cytes (CLBP: 57.1 ± 8.7 %, NeP: 58.4 ± 9.1 %, healthy
volunteers: 55.2 ± 9.0; n.s.), total lymphocytes (CLBP:
33.2 ± 6.9 %, NeP: 29.9 ± 7.6 %, healthy volunteers: 34.4
± 7.2; n.s.), and CD4+ T cells (CLBP: 44.1 ± 11.4 %, NeP:
41.7 ± 11.3 %, healthy volunteers: 44.5 ± 10.5; n.s.) did
not differ between patients suffering from CLBP, NeP,
or healthy volunteers.

Fig. 2 Exemplary illustration of P2X7 receptor expression. For quantitative analysis of the proportion of CD4+ cells (a) and P2X7R protein expression (b),
cells were stained with PerCP-labeled antihuman CD4 antibody and FITC-labeled antihuman P2X7R antibody. We separately analyzed each subgroup by
the mean fluorescence intensity (MFI) of P2X7R expression. Overlay histograms of representative results of P2X7R expression of one patient/healthy volunteer
are displayed in histograms

Table 1 RT-PCR assay characteristics and primer sequences

Gene Primer sequence

TBP-87 for 5′ GAACATCATGGATCAGAACAACA 3′

rev 5′ ATAGGGATTCCGGGAGTCAT 3′

SDHA-132 for 5′ GAGGCAGGGTTTAATACAGCA 3′

rev 5′ CCAGTTGTCCTCCTCCATGT 3′

P2RX7 Roche RealTime Ready Single Assay ID 106724

Table 2 Patients characteristics

Healthy CLBP NeP

Numbers 19 19 19

Age (years) 40 ± 11 47 ± 13 58 ± 13*

Female (%) 58 % 79 % 68 %

BMI (kg/m2) 23.6 ± 2.9 23.9 ± 3.1 24.6 ± 3.8

Duration of pain
(years)

0.0 ± 0.0 5.9 ± 4.2* 4.5 ± 2.8*

NRS (rest) 0.0 ± 0.0 3.5 ± 2.2* 5.1 ± 2.2*

NRS (motion) 0.0 ± 0.0 4.4 ± 2.1* 6.9 ± 2.1*

KAB 1.7 ± 0.7 3.4 ± 0.9* 3.3 ± 0.9*

CES-D 2.4 ± 2.2 21.8 ± 7.3* 21.0 ± 9.6*

Patients with either CLBP or NeP significantly differed from healthy volunteers
in terms of duration of pain, NRS, KAB, and CES-D. However, no significant
differences were detected between CLBP and NeP patients for any of the
parameters. Data are presented as mean ± SD, n = 19, *p < 0.05 versus healthy
in paired Student’s t test (NeP) and Mann-Whitney Rank Sum Test (CLBP)
BMI body mass index; NRS (rest/motion) numeric rating scale (0–10) of pain, 0:
“no pain,” 10: “worst pain imaginable,” KAB questionnaire for self-perceived stress
ranging from 1 (no stress) to 6 (max. stress), CES-D center for epidemiologic
studies depression scale, CLBP chronic low back pain, NeP neuropathic pain
(symmetrical polyneuropathy, peripheral mononeuropathy, postherpetic
neuralgia, orofacial pain)

Luchting et al. Journal of Neuroinflammation  (2016) 13:100 Page 4 of 9



P2RX7 mRNA expression is increased in patients with
NeP, but not in CLBP
The relative expression of P2RX7 mRNA was determined
by qPCR. Compared to healthy volunteers, significantly
elevated mRNA levels (1.6-fold) were detected in patients
with NeP (NeP: 1.6 ± 0.6, healthy volunteers 1.0 ± 0.3, p
< 0.05; Fig. 4), while only a mild increase of P2RX7
mRNA expression (1.1-fold) was found in patients with
CLBP (CLBP: 1.1 ± 0.6, healthy volunteers 1.0 ± 0.3, n.s.;
Fig. 4).

P2X7R protein expression is significantly increased on
lymphocytes and monocytes of patients with NeP
Consistent with the results on mRNA expression,
FACS results (MFI) revealed that compared to healthy
volunteers, P2X7R protein expression levels on lym-
phocytes (NeP: 21.8 ± 6.5, healthy volunteers: 15.6 ±

5.2; p = 0.009; Fig. 5a) and monocytes (NeP: 24.6 ± 6.2,
healthy volunteers: 17.0 ± 5.4; p = 0.002; Fig. 5d) were
significantly enhanced in patients with NeP, but not in
patients with CLBP. This P2X7R upregulation was de-
tected on both CD4+ monocyte (NeP: 21.0 ± 6.4,
healthy volunteers: 13.2 ± 4.8; p < 0.001; Fig. 5b) and
CD4− monocyte (NeP: 21.5 ± 6.5, healthy volunteers:
16.6 ± 4.9; p = 0.039; Fig. 5d) cells.

Differential IL-1β levels in patients with neuropathic pain
and CLBP
In a number of preclinical studies, IL-1β has been shown
to be mainly involved in neurodegeneration, inflamma-
tion, and pain [1, 10] and to be a key mediator of the
P2X7R-pain interplay. In order to find out whether the
observed differences in P2X7R expression between pa-
tients with CLBP and NeP are also reflected by IL-1β,
we analyzed serum levels of this pro-inflammatory and
pro-nociceptive cytokine by multiplex enzyme-linked
immunoassay. Concomitant with the P2X7R elevation,
we found significantly increased serum levels of IL-1β
(1.4-fold) only in the peripheral blood of patients suffer-
ing from neuropathic pain (Fig. 6).

Confounding analyses
Since P2X7R expression has been associated with vari-
ous diseases, we tested a set of potentially confounding
variables for significant differences in distribution be-
tween healthy volunteers and patients [24, 25]. As ele-
vated receptor expression is associated with depression
and anxiety, we tested the CES-D depression scores and
KAB values. Healthy volunteers showed significantly lower
depression and stress scores, but no differences were

Table 3 Patients’ medication at the beginning of the study

Medication at beginning of the study CLBP (n = 19) NeP (n = 19)

Ibuprofen (no. (%)) 3 (16) 2 (11)

Diclofenac (no. (%)) 2 (11) 3 (16)

Paracetamol (no. (%)) 3 (16) 2 (11)

Metamizole (no. (%)) 1 (5) 1 (5)

Opioids (no. (%)) 2 (11) 3 (16)

Pregabalin (no. (%)) 0 (0) 1 (5)

Duloxetine (no. (%)) 0 (0) 1 (5)

There is no significant difference in the intake of analgesics or coanalgesics in
patients with CLBP and NeP. Data are presented as mean ± SD, n = 19,
statistical testing was performed using Fisher’s exact test
CLBP chronic low back pain; NeP neuropathic pain (symmetrical
polyneuropathy, peripheral mononeuropathy, postherpetic neuralgia,
orofacial pain)
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Fig. 3 Differential blood count and quantification of CD4+ cells. In order to avoid misinterpretation of potentially elevated P2X7R protein expression
based on different cell counts, we quantified numbers of polymorphonuclear leukocytes (a), lymphocytes (b), and CD4+ cells (c). No differences were
found between patients suffering from CLBP, NeP, and healthy volunteers. Data are presented as mean ± SD, n = 19, *p < 0.05 in one-way ANOVA with
multiple comparisons versus healthy volunteers (Holm-Sidak method)
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found between patients with nociceptive and neuropathic
pain. Age differed significantly between patients and
healthy volunteers. However, a potential confounding effect
was excluded by investigating the correlation between age
and P2X7R levels (no significant correlation for both, Pear-
son’s and Spearman’s correlation test; r = 0.18, p = 0.16 and
rho = 0.17, p = 0.18, respectively), as well as checking
P2X7R levels in age-matched subgroups that yielded simi-
lar results as the main analysis. Moreover, no correlation
was found regarding gender and receptor expression.
Subgroup analysis of neuropathic pain syndromes revealed
no differences in P2X7R expression between peripheral
polyneuropathy/mononeuropathy, postherpetic neuralgia
or orofacial pain.

Discussion
In this study, we found a significantly increased expres-
sion of P2X7R mRNA and protein in lymphocytes and
monocytes as well as higher IL-1β serum levels in
patients suffering from NeP, but not in those with noci-
ceptive CLBP. These results might point to an import-
ant role of P2X7R and IL-1β in the pathogenesis and
maintenance of NeP.
Chronic pain is a global health problem, affecting up to

60 % of the population [26]. Over the last years, significant
effort has been made to investigate endogenous pain-
modulating factors [27]. In various animal models of
nociceptive, inflammatory, and neuropathic pain, the en-
dogenous receptor P2X7 was the focus of interest [2–5].
Recent data indicate that nociceptive information from
the periphery to the CNS is transmitted through various
ion channels and receptor pathways [28, 29]. The ATP-
sensitive P2X7R, which is particularly localized on im-
mune and microglial cells, is part of this reporter system
[29]. In response to inflammation or cellular damage, ATP
activates P2X7R, which represents an important step in
the transmission of sensory information to the central
nervous system [4, 30]. Recent studies suggest that
P2X7R is involved in the pathogenesis of neurological
disorders such as epilepsy, stroke, neuralgia, multiple
sclerosis, Alzheimer’s disease, Parkinson’s disease, and
Huntington’s disease [31]. Moreover, the P2X7R is asso-
ciated with mood disorders like major depression or
anxiety [31, 32]. Upon activation, P2X7R triggers a
series of physiological events that culminate in the
posttranscriptional processing and release of IL-1β
from monocytes [10]. IL-1β is a pro-inflammatory and
pro-nociceptive cytokine which was shown to be a key
mediator in chronic pain [33]. In addition, there is in-
creasing evidence that enhanced release of IL-1β after
P2X7R activation antagonizes morphine analgesia and
accounts for the development of morphine tolerance,
which may partly explain the insufficient effect of opi-
oids in a considerable number of NeP patients [34]. IL-
1β induces the transcription of cyclo-oxygenase 2
(COX-2) and nitric oxide synthase (iNOS), which play a
central role in the generation and maintenance of pain
[35, 36]. Within clinical settings, the efficacy of agents
to treat neuropathic pain is variable. While COX-2 in-
hibitors are particularly effective against the inflamma-
tory component of neuropathic pain, their effect on the
intensity of pain is generally not satisfactory [37]. Con-
trary, antiepileptic drugs and antidepressants are useful
to modulate the intensity of pain, but rather inefficient
to treat the inflammatory component [38]. P2X7R and IL-
1β are known to modulate inflammation and nociception,
which recently led to the discovery of pharmacological
agents selectively blocking P2X7R [30]. Genetic modula-
tion or pharmacological blockade of P2X7R induces a
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Fig. 4 P2RX7 mRNA expression is exclusively increased in patients
with neuropathic pain. To confirm the flow cytometric observations
with elevated P2X7R protein expression, predominantly on CD4+

cells and only in NeP, we determined the relative P2RX7 mRNA
expression of CD4+ cells by qPCR. Affirmatively, increased mRNA
levels were consistent with the flow cytometric analyses and
exclusively elevated in patients with NeP. (p = 0.038). *p < 0.05. Data
are presented as mean ± SD, n = 19, *p < 0.05 in one-way ANOVA
with multiple comparisons versus healthy volunteers
(Holm-Sidak method)
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regression of symptoms in animal models of neurological
disorders and reduces the intensity of inflammatory and
neuropathic pain in mice [4, 39, 40].
These findings are consistent with our results dem-

onstrating an increased expression of lymphocyte and
monocyte P2X7R and IL-1β in patients suffering from
NeP. It is not surprising, that only slight elevations of
P2X7R protein, P2RX7 mRNA expression and of IL-1β
levels were found in patients with CLBP, as CLBP is
usually not associated with significant immune activation.
These findings might point to a minor role of the P2X7R/
IL-1β interplay in the pathophysiology of CLBP. This as-
sumption is supported by recent research, showing a com-
munication link between the immune system and the
CNS [1, 15]. Lesion of a peripheral nerve leads to both a
transition of microglia to the side of damage and an infil-
tration of immune cells in the vicinity of the synapse be-
tween primary afferent fibers and nociceptive neurons in
the dorsal horn of the spinal cord [41, 42]. These activated
immune cells release many pro-inflammatory mediators,
such as IL-1β which cross the blood-brain barrier [15] and
modulate pain intensity [40, 43]. A crucial regulator of
IL-1β release is P2X7R [10]. Peripheral knock-down of
P2X7R in mice leads to a significant decrease of IL-1β
release and reduction of pain intensity [40].
Since elevated P2X7R expression has also been associ-

ated with mood disorders such as depression and anxiety,
we tested the CES-D depression scores and KAB values as
potentially confounding variables. Healthy volunteers had
significantly lower depression and stress scores than both
patient subgroups, but no differences were found between
patients suffering from CLBP or NeP. In order to exclude
further factors being responsible for the different expres-
sion of P2X7R/IL-1β in pain syndromes, we performed
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Fig. 5 P2X7R expression on lymphocytes (a), CD4+ (b) and CD4− cells (c), and monocytes (d) is elevated in patients with neuropathic pain.
PBMCs were stained with PerCP-labeled antihuman CD4 antibody and FITC-labeled antihuman P2X7R antibody and analyzed by FACS. The results
show a significantly elevated P2X7R expression only in patients suffering from neuropathic pain on the analyzed cell type (lymphocytes (p = 0.009),
CD4+ cells (p < 0.001), CD4− cells (p = 0.039), and monocytes (p = 0.002)). Data are presented as mean ± SD, n = 19, *p < 0.05 in one-way ANOVA with
multiple comparisons versus healthy volunteers (Holm-Sidak method)

Fig. 6 IL-1β levels are elevated in patients with neuropathic pain. As
IL-1β was shown to be the key mediator in P2X7R-pain interplay, we
analyzed serum levels of this pro-inflammatory and pro-nociceptive
cytokine by multiplex immune assay. Affirmatively to the results with
elevated P2X7Rs, we solely found significant increased serum levels in
the peripheral blood of patients with NeP *p < 0.05. Data are presented
as mean ± SD, n = 19, *p < 0.05 in one-way ANOVA with multiple
comparisons versus healthy volunteers (Holm-Sidak method)
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confounder-analyses. Although age differed between
patients and healthy volunteers, a potential confound-
ing effect could be excluded. Furthermore, we found
that gender did not correlate with the expression of
P2X7R or IL-1β either. Regarding subgroups of NeP, no
differences with respect to the P2X7R expression were
found between patients suffering from peripheral poly-
neuropathy/mononeuropathy, postherpetic neuralgia or
orofacial pain. One limitation of our study is that the
analysis of P2X7R protein and mRNA expression was
performed on lymphocytes, whereas IL-1β levels were
determined in the peripheral blood. Since P2X7R is also
expressed on the surface of other immune cells such as
macrophages, which are also a major source of IL-1β
production, further studies are needed to clearly define
the source of elevated IL1β levels. Furthermore, it
would be interesting to take the monocytes followed by
LPS priming and ATP challenge to demonstrate differ-
ent IL-1β release between groups.

Conclusions
In conclusion, we here report that, in patients with NeP,
P2X7R expression is significantly elevated. Activation of
P2X7 has been shown to result in IL-1β release. Thus,
based on our data, we propose the hypothesis that in-
creased P2X7R expression leads to increased IL-1β blood
levels, which may either predispose or maintain neuro-
pathic pain. This P2X7R-driven inflammatory component
seems to be absent in patients with CLBP. Our results
suggest a major role of the purinergic-receptor/cytokine-
interplay in NeP and may help identify patients who might
benefit from P2X7R modulating treatment approaches.
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Anti-inflammatory T-cell shift in neuropathic pain
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Abstract

Background: The classification of pain into nociceptive and neuropathic pain is based on characteristic symptoms
and different pathophysiological mechanisms. In a recent investigation, we found a disrupted TH17/Treg balance in
patients suffering from chronic unspecific low back pain (CLBP). These patients did not show any signs of neuropathy.
There is evidence for a considerable impact of the immune system also in neuropathic pain. However, the role of the
adaptive immune system is still unclear. In the present study, we investigated systemic T-cell subset responses and
T-cell related cytokine profiles in patients with chronic neuropathic pain.

Methods: We analyzed T-cell subsets, mRNA expression and T-cell-related cytokine profiles in 26 patients suffering
from neuropathic pain in comparison to 26 healthy controls. Using multicolor flow cytometry (FACS), we quantified the
number of T helper cells 1 (TH1), TH2, TH17 and regulatory T-cells (Tregs). Forkhead-Box-Protein 3 (FoxP3), Transforming
growth factor-β (TGF-β) and RAR-related orphan receptor-γT (ROR-γT) mRNA expression was determined by
quantitative real-time PCR (qPCR) and levels of pain-related cytokines were measured by Human Cytokine Multiplex
Immunoassay (Macrophage inflammatory protein-1α (MIP-1α), Tumor necrosis factor-α (TNF-α), Interferon-γ (IFN-γ),
Interleukin (IL) -4, IL-6, IL-10, IL-17, and IL-23).

Results: We found a TH17/Treg imbalance with significantly increased anti-inflammatory Tregs and decreased
pro-inflammatory TH17 cells in patients with neuropathic pain as compared to healthy controls. These results
were confirmed on mRNA level: Treg-related FoxP3 and TGF-β mRNA expression was elevated, whereas expression
of TH17-related RORγT was reduced. Cytokine analyses revealed only marginal changes.

Conclusions: Our investigation revealed a clear shift of T-cell subsets towards anti-inflammation in patients with
neuropathic pain. Interestingly, this is quite similar to our previous findings in CLBP patients, but even more
pronounced. Therefore, it remains to be elucidated in future investigations whether the immune changes represent
an underlying pathophysiological mechanism or an epiphenomenon induced by ongoing pain and stress.

German Clinical Trial Register (DRKS): Trial registration number: DRKS00005954

Keywords: Neuropathic pain, T-cells, TH17, Treg, Cytokines, Neuroinflammation
Background
Neuropathic pain represents a major problem in clinical
practice. In contrast to nociceptive pain, which is caused
by damage or potential damage to tissue, neuropathic
pain occurs due to a lesion or disease of the peripheral
or central nervous system. It is characterized by burning
and lancinating pain sensations and further somatosensory
disturbances like hypo- and hypersensitivity. Very often,
neuropathic pain is more difficult to treat and more
refractory to common analgesics, including non-steroidal
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Department of Anesthesiology and Pain Medicine, Ludwig-Maximilians
University Munich, Marchioninistr. 15, 81377 Munich, Germany
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anti-inflammatory drugs and opioids, than nociceptive
pain [1,2]. Despite extensive research, the underlying
pathophysiological mechanisms of neuropathic pain are
still not fully understood. In recent years, increasing
evidence indicates a pivotal role of the immune system
in neuropathic pain [3,4]. The majority of previously
published data link pain syndromes with higher levels
of pro-inflammatory cytokines. Due to these findings,
attempts were made in numerous studies to reduce
neuropathic pain by blocking pro-inflammatory or enhan-
cing anti-inflammatory immune cells and cytokines [3].
For example, in animal models of neuropathy, tumor
necrosis factor-α (TNF-α), Interleukin (IL) -6, IL-17 and
al. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
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https://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00005954
mailto:benjamin.luchting@med.uni-muenchen.de
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Luchting et al. Journal of Neuroinflammation  (2015) 12:12 Page 2 of 10
Makrophage inflammatory protein1-α (MIP1-α) blockers
reduced pain hypersensitivity [5-9]. Comparable results
were obtained by increasing the anti-inflammatory cyto-
kines IL-4, IL-10 or Transforming growth factor-β (TGF-β)
[10-12]. Nevertheless, despite those promising experimental
findings, there are no pharmacological agents available
for the specific immunological therapy of neuropathic
pain until now.
Cytokines and neutrophils are important during the

early stages of acute pain, whereas T-lymphocytes seem
to play a central role in chronic neuropathic pain [13].
Regarding T-cells as key players of the adaptive immune
system, a TH1/TH2 imbalance has already been shown
in patients with complex regional pain syndrome (CRPS)
and chronic pelvic pain [14,15]. In recent years, TH1/
TH2 dichotomy has been extended by the identification
of two other CD4+ T-cell lineages: TH17 and regulatory
T-cells (Tregs) [16]. TH17 cells appear to be the key
effector T-cells in a variety of human autoimmune
diseases and Tregs play a vital role in controlling adap-
tive immune responses. In neuropathy, TH17 has been
linked to increased pain sensitivity and destructive effects
promoting persistent pain [16], while Tregs were found
to be mainly involved in the endogenous recovery [17].
Recently published data showed an increased proportion
of Tregs in patients with postherpetic neuralgia [18].
Assuming a beneficial role for an anti-inflammatory T-cell
shift, a phase one trial was carried out with an anti-CD28
antibody, preferentially expanding TH2 cells and Tregs in
human volunteers. Despite promising results in several
animal models, the clinical trial had to be cancelled
because of severe side effects [19]. In patients with
neuropathic pain, the role of T-cell subsets has not yet
been investigated.
In a recent study, we found that patients suffering

from nociceptive, non-specific chronic low back pain
(CLBP), without any signs of neuropathic pain compo-
nents, display a clear disruption of the TH17/Treg balance
as compared to healthy volunteers [20]. Since clinical and
pathophysiological mechanisms differ considerably between
nociceptive and neuropathic pain, we aimed to detail
changes of pro- and anti-inflammatory T-cell subsets
and the respective relative mRNA expression, as well as
pain-related cytokine levels in patients with chronic neuro-
pathic pain in comparison to pain free controls. While the
cytokine measurement did not reveal any relevant results,
we found a distinct anti-inflammatory shift of the T-cell
subsets and their respective mRNA expression.

Methods
Ethics statement
The study followed the principles of the Declaration of
Helsinki and was approved by the Ethics Committee
of the Ludwig Maximilians University Munich (Ethical
approval number: 331–10). This study was registered
on German Clinical Trial Register (Trial registration:
DRKS00005954).
Subjects
Patient recruitment of our prospective study was esti-
mated to last for two years. All patients presented to our
Department of Anesthesiology and Pain Medicine, Ludwig-
Maximilians University Munich with neuropathic pain for
at least six months were assessed for fulfillment of the
inclusion criteria and asked for their consent to participate
in the study. In addition, healthy pain-free volunteers
without any signs or history of pain were asked for their
participation. Neuropathic pain was diagnosed according
to its international definition: ‘pain caused by a lesion
or disease of the somatosensory nervous system’ [2], by
pain history, physical examination and the PainDETECT
questionnaire.
This questionnaire consists of several items related to

neuropathic symptoms (burning sensations, tingling or
prickling sensations, shooting or lancinating, hyperalge-
sia, dysesthesia, allodynia or paresthesia) with excellent
sensitivity (85%) and specificity (80%) [21]. Additionally,
quantitative sensory testing (QST) was performed in all
patients according to the protocol of the German Research
Group on neuropathic pain [22]. Patients with mixed pain
(nociceptive and neuropathic components) like complex
regional pain syndrome (CRPS) and low back pain with
radiculopathy were excluded. Further exclusion criteria
were autoimmune, chronic systemic, inflammatory, neo-
plastic or psychiatric diseases, as well as drug abuse and
pregnancy. Patients taking any current medication with
opioids, non-opioids or co-analgesics were excluded. None
of the patients had been treated with corticosteroids or
had received immunomodulatory agents currently or in
the past. Any signs of acute inflammatory disease were
disclosed by laboratory examination, including plasma
concentration of C-reactive protein (CRP), total and dif-
ferential leucocyte count, as well as measurement of the
body temperature. Patients rated their recalled average
pain intensity using an 11-point numerical rating scale
(NRS): 0 meaning ‘no pain’ and 10 meaning ‘worst pain
imaginable’.
Self-perceived stress was evaluated using the German

version of the Questionnaire for Actual Demands (KAB:
Kurzfragebogen zur aktuellen Beanspruchung) in patients
and healthy volunteers. The KAB was designed to repeat-
edly quantify an individual’s acute or chronic stress. It
is highly sensitive to short-term or situational changes
during a stressful experience. The rating is based on a
six-point scale ranging from one to six based on normal-
ized adjectives. Higher KAB values indicate increased
perceived levels of stress [23].
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Cytokine assessment
Samples of peripheral blood from all patients and healthy
controls were collected between 9:00 and 9:30 am, centri-
fuged at 2000 × g/10 min and stored in polypropylene
aliquot tubes at −80°C. Samples were then assessed for
levels of T-cell-related cytokines using a human cytokine
multiplex immunoassay (Myriad Rules-Based Medicine
Inc., Austin, Texas, United States). The multiplex micro-
bead assay is based on Luminex technology and measures
proteins in a similar manner to standard sandwich ELISA,
with comparable sensitivity and range. Regarding the detec-
tion limits, the lower limit of quantitation (LLOQ) for the
cytokines were: MiP1-α: 42.0 pg/ml, TNF-α: 23.0 pg/ml,
IFN-γ: 1.5 pg/ml, IL-4: 29.0 pg/ml, IL-6: 11.0 pg/ml, IL-10:
6.9 pg/ml, IL-17: 4.0 pg/ml, and IL-23: 0.59 pg/ml. The
LLOQ is the lowest concentration of an analyte in a sample
that can be reliably detected and at which the total error
meets the laboratory’s requirements for accuracy [24].

Flow cytometric staining and analysis
Peripheral blood mononuclear cells (PBMCs) were sepa-
rated by density gradient preparation over Ficoll-Uropoline
(Sigma Aldrich, Taufkirchen, Germany) of all heparinized
venous blood samples. Then, PBMCs were cryopreserved
in Roswell Park Memorial Institute medium (RPMI)
freezing media (Sigma Aldrich, Taufkirchen, Germany),
containing 10% Fetal calf serum (FCS), (Sigma Aldrich,
Taufkirchen, Germany) and 10% Dimethyl sulfoxide
(DMSO), (Sigma Aldrich, Taufkirchen, Germany) [25],
and stored at −30°C for 24 hours, and then at −196°C
until measurement. After storage, samples were thawed
rapidly and washed twice to eliminate DMSO. For TH1,
TH2 and TH17 analysis, cells were stimulated for five
hours with cell stimulation cocktail, including protein
transport inhibitors Phorbol 12-myristate 13-acetate
(PMA), ionomycin, Brefeldin A and monensin (eBio-
science, San Diego, California, United States), according
to the manufacturer’s protocol. Subsequently, cells were
extracellularly stained with anti-human CD4 antibody and
consecutively fixed and permeabilized (Fix-Perm-Solutions
A and B, Life Technologies, Darmstadt, Germany) for
intracellular staining with anti-human Interferon-γ, Inter-
leukin (IL) -4 and IL-17 antibody (Biolegend, San Diego,
California, United States). T-cell distribution was measured
by fluorescent-activated cell sorting (FACS) analysis with
the Attune Acoustic Focusing Cytometer (Life Technolo-
gies, Carlsbad, United States), and exemplary pictures of
the gating strategy for TH17 cells are displayed in Figure 1
and Additional files 1 and 2. Tregs were identified and
quantified after surface staining of PBMCs with monoclonal
antibodies (mAbs) specific for anti-human CD4, CD25 and
CD127 and intracellular staining with an anti-human
FoxP3 antibody (Biolegend, San Diego, California, United
States). The frequencies of CD4+CD25high T-cells and
CD4+CD25highCD127lowFoxP3+ T-cells were expressed as
percentage of total CD4+ T-cells by sequential gating on
lymphocytes. Exemplary pictures of the gating strategy
for Tregs are displayed in Figure 2 and Additional files 1
and 2. Isotype controls (Biolegend, San Diego, California,
United States) were given for compensation and confirm-
ation of antibody specificity.

Quantitative real-time PCR (qPCR)
CD4+ cells were isolated from PBMCs by magnetic
separation with Whole Blood CD4 MicroBeads (MACS
Miltenyi Biotec, Auburn, California, United States) accord-
ing to the manufacturer’s recommendations. Subsequently,
total RNA was isolated using the mirVana miRNA Isolation
Kit followed by a DNase-digest with Turbo DNA-free Kit
(Ambion, Darmstadt, Germany). Quantity and purity of the
isolated RNA were measured using a NanoDrop ND-1000
spectrophotometer (Peqlab, Erlangen, Germany). After
amplification of total RNA using TargetAmp 1-Round
aRNA Amplification Kit (Epicentre Biotechnologies,
Madison, Wisconsin, United States) and purification using
RNeasy Mini Kit (Qiagen, Hilden, Germany), cDNA syn-
thesis was performed with SuperScript III First Strand
Synthesis System (Invitrogen, Darmstadt, Germany) and
random hexamers (Qiagen, Hilden, Germany). Quantitative
RT-PCR was performed in duplicates with the LightCycler
480 instrument (Roche Diagnostics, Mannheim, Germany)
using LightCycler 480 Probes Master and RealTime ready
single assays (Roche Diagnostics, Mannheim, Germany)
and UniversalProbeLibrary (UPL) probes. The Real-
Time ready single assays contain target-specific primers
and a UPL-LNA probe (Roche Diagnostics, Mannheim,
Germany). Primer sequences and qPCR characteristics
are given in Table 1. The cycling conditions comprised
an initial denaturation phase at 95°C for 10 minutes,
followed by 45 cycles at 95°C for 10 seconds, 60°C for
30 seconds and 72°C for one second. Relative mRNA
expression of FoxP3, TGF-β and RORγT was calculated
by Relative Quantification Software (Roche Diagnostics,
Mannheim, Germany) using an efficiency-corrected algo-
rithm with standard curves and reference gene normal-
ization against the reference genes succinate dehydrogenase
complex subunit A (SDHA) and TATA box binding protein
(TBP) as described in Ledderose et al. [26].

Statistical analyses
Statistical analyses were performed using SigmaStat 12.0
(Systat Software, Chicago, United States). Every statistical
analysis was started with testing for normal distribu-
tion using the Shapiro-Wilk test. Testing for differences
between groups was accomplished by the T-test for all
data with normal distribution and the nonparametric
Mann–Whitney rank sum test for all data without normal
distribution. Family-wise error rate was controlled at a



Figure 1 Gating strategy for the detection of pro-inflammatory TH17 cells. PBMCs were stained with Brilliant Violet (BV421)-labeled anti-human
IL-17 antibody. Lymphocyte population was gated from PBMCs according to forward scatter (FSC) characteristics and side scatter (SSC) characteristics
(see Figure 2) and then separated in IL-17 + TH17 cells. Representative results of a healthy control with a higher number of TH17 cells (A) and a patient
suffering from neuropathic pain with less TH17 cells (B) are shown. TH, T helper cells; PBMC, Peripheral blood mononuclear cells; IL, Interleukin.
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false discovery level of q <0.05, and P values were adjusted
accordingly following the Benjamini-Hochberg algorithm.
P <0.05 were considered to be statistically significant.
Results are expressed as mean ± standard deviation (SD)
in the text.

Results
Subjects
Within two years of recruitment, 26 patients fulfilling the
inclusion criteria and 26 healthy controls were enrolled.
The characteristics of the participating patients and pain
syndromes are given in Table 2.

Granulocytes and lymphocytes were only slightly
changed in neuropathic pain
Venous blood was drawn between 9:00 and 9:30 am into
vacutainers containing Ethylenediaminetetraacetic acid
(EDTA) for routine laboratory studies. Upon analyzing
the number of neutrophil granulocytes, representing an
essential part of the innate immune system, as well as
lymphocytes, we found only slight alterations in patients
with neuropathic pain (neutrophils: 55.4 ± 9.1% in con-
trols versus 58.6 ± 9.3% in neuropathic pain, P = 0.268;
lymphocytes: 33.8 ± 8.1% in controls versus 29.2 ± 8.2%
in neuropathic pain, P = 0.069, Table 3).

Cytokine measurement did not reveal relevant results
The specific functions of T-cell subsets are based on their
respective cytokine release. TH1 cells produce predomin-
antly pro-inflammatory cytokines such as IFN-γ and
TNF-α, which support cellular immunity, whereas TH2
cells release anti-inflammatory cytokines, including IL-4
and IL-10, which mediate humoral immunity. TH17
cells particularly produce the potent pro-inflammatory
cytokine IL-17, which is involved in many inflammatory
conditions. IL-23 is a key cytokine in the control of
inflammation in peripheral tissues, which stimulates
naïve CD4 T-cells to differentiate into TH17 cells, in
conjunction with IL-6 and TGF-β. Tregs have an anti-
inflammatory role by releasing anti-inflammatory cyto-
kines like IL-10 and TGF-β. However, it seems likely, that
TH1 and TH17 cytokines are central to increased pain
sensitivity, whereas TH2 and Treg derived cytokines may
be protective.
Therefore, we analyzed blood levels of pain-associated

and T-cell-related cytokines using human cytokine multi-
plex immunoassay (MIP-1α, TNF-α, IFN-γ, IL-4, IL-6,
IL-10, IL-17, and IL-23). Serum levels of IL-4, TNF-α
and IFN-γ were neither detectable in the peripheral blood
of patients nor in healthy controls. No differences between
patients and healthy controls were found analyzing IL-6,
IL-10 and IL-17. In accordance with numerous described
studies, serum levels of pro-inflammatory cytokines MIP-
1α and IL-23 were significantly higher in the peripheral
blood of patients suffering from neuropathic pain. How-
ever, it has to be noted that IL-23 was the only cytokine
with values above the so-called LLOQ, the lowest concen-
tration that can be reliably detected (see Methods section).
(IL-6: 1.2 ± 0.8 pg/ml in controls versus 2.5 ± 2.4 pg/ml in
neuropathic pain, P = 0.064; IL-10: 3.56 ± 2.45 pg/ml in
controls versus 3.69 ± 2.40 pg/ml in neuropathic pain,
P = 0.84; IL-17: 3.53 ± 2.11 pg/ml in controls versus
4.29 ± 2.02 pg/ml in neuropathic pain, P = 0.23; MIP-1α:
17.2 ± 11.2 pg/ml in controls versus 28.4 ± 16.4 pg/ml in



Figure 2 Gating strategy for the detection of the investigated Tregs. PBMCs were extracellularly stained with PerCP-labeled anti-human CD4-,
PE-labeled anti-CD25 antibody, Brilliant Violet (BV570)-labeled anti-CD127 antibody and intracellularly stained with Alexa Fluor (AF488)-labeled anti-human
FoxP3 antibody. Lymphocyte population was gated according to forward scatter (FSC) characteristics and side scatter (SSC) characteristics (A +D). Gated
lymphocytes were then separated in CD4 + CD25high cells (B + E) and CD4 + CD25highCD127lowFoxP3+ cells (C + F, named Treg). Representative
results of a healthy control (A-C) and a patient with neuropathic pain (D-F) are shown. Regulatory T-cells, Tregs; PBMC, Peripheral blood
mononuclear cells; Forkhead-Box-Protein 3, FoxP3.

Table 1 RT-PCR assay characteristics and primer
sequences

Gene Primer sequence

SDHA Roche RealTime Ready Single Assay ID 102136

TBP Roche RealTime Ready Single Assay ID 101145

FoxP3 Roche RealTime Ready Single Assay ID 113503

TGF-β for 5′ACTACTACGCCAAGGAGGTCAC 3′

rev 5′TGCTTGAACTTGTCATAGATTTCG 3′, UPL probe #31

RORγT for 5′CAGCGCTCCAACATCTTCT 3′

rev 5′CCACATCTCCCACATGGAC 3′, UPL probe #69

Table 2 Patient characteristics

Item Healthy NeP (all) PNeP PHN OFP

Numbers (n) 26 26 13 7 6

Age 39 ± 11 56 ± 14* 49 ± 14* 71 ± 6* 53 ± 10*

Female 52% 73% 69% 71% 83%

BMI 23.4 ± 2.8 24.0 ± 3.4 25.1 ± 3.2 22.4 ± 3.4 23.6 ± 3.8

NRS (rest) 0.0 ± 0.0 4.5 ± 2.3* 4.3 ± 2.5* 3.7 ± 1.6* 5.6 ± 2.1*

NRS (motion) 0.0 ± 0.0 6.2 ± 2.7* 6.0 ± 2.3* 4.7 ± 3.9* 6.6 ± 3.3*

KAB 1.9 ± 0.7 3.2 ± 0.8* 3.3 ± 0.7* 2.9 ± 1.1* 3.1 ± 0.8*

NeP (all): all patients suffering from neuropathic pain; PNeP: Peripheral
neuropathic pain (symmetrical polyneuropathy/peripheral mononeuropathy);
PHN: postherpetic neuralgia; OFP: orofacial pain; NRS (rest/motion): Numeric
rating scale (0 to 10) of pain, 0: ‘no pain’ , 10: ‘worst pain imaginable’; KAB:
Questionnaire for self-perceived stress ranging from one (no stress) to six
(maximum stress). Results are expressed as mean ± standard deviation (SD),
*P <0.05 versus healthy controls.
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Table 3 Differential blood count, flow cytometric and RT-PCR results of patient subgroups

Item Healthy NeP (all) PNeP PHN OFP

Neutrophils (%) 55.4 ± 9.1 58.6 ± 9.3 57.5 ± 10.1 57.3 ± 9.0 62.3 ± 8.5

Lymphocytes (%) 33.8 ± 8.1 29.2 ± 8.2 30.5 ± 7.9 28.3 ± 9.6 27.2 ± 8.1

CD4+ Counts × 1000 28.7 ± 7.3 33.5 ± 15.4 36.8 ± 18.8 30.3 ± 15.3 30.8 ± 2.9

CD4+ (%) 43.4 ± 9.9 47.5 ± 11.9 49.9 ± 12.6 44.3 ± 13.8 46.6 ± 8.0

TH1 (%) 9.7 ± 4.7 9.6 ± 4.1 10.9 ± 4.7 7.2 ± 3.1 9.3 ± 2.7

TH2 (%) 1.3 ± 1.2 1.5 ± 0.8 1.7 ± 0.7 0.9 ± 0.5 2.0 ± 0.9

TH17 (%) 1.3 ± 1.0 0.7 ± 0.4* 0.9 ± 0.4 0.4 ± 0.1* 0.8 ± 0.5

RORγT 2.7 ± 1.4 1.9 ± 1.0 1.8 ± 0.6* 1.9 ± 1.2* 2.2 ± 1.5

CD4+CD25high (%) 3.7 ± 0.7 5.4 ± 1.5* 5.1 ± 1.8* 5.0 ± 0.7* 6.4 ± 0.9*

Tregs (%) 2.0 ± 1.0 3.9 ± 1.3* 3.5 ± 1.1* 4.0 ± 1.9* 4.4 ± 0.9*

FoxP3 0.6 ± 0.2 1.2 ± 0.8* 1.0 ± 0.7* 1.3 ± 0.3* 1.4 ± 1.3*

NeP (all): all patients suffering from neuropathic pain; PNeP: Peripheral neuropathic pain (symmetrical polyneuropathy/peripheral mononeuropathy);
PHN: postherpetic neuralgia; OFP: orofacial pain; Results are expressed as mean ± standard deviation (SD), *P <0.05 versus healthy controls.
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neuropathic pain, P = 0.022; IL-23: 0.9 ± 0.3 pg/ml in con-
trols versus 1.2 ± 0.4 pg/ml in neuropathic pain, P = 0.022).

TH17 frequency was distinctly decreased in neuropathic pain
Although many studies have analyzed the role of TH17
cells in human autoimmune diseases, there are very limited
data on the role of TH17 cells in patients with neuropathic
pain. TH17 cells act as an important pro-inflammatory
component and have been shown to promote inflamma-
tion in a number of diseases. The proportion of TH17
cells is expressed as percentage of all T-cells. As shown
in Figure 3, the frequency of TH17 cells was evidently
Figure 3 Reduced TH17 frequency in patients with neuropathic pain.
with anti-human IL-17 antibody after five hours of stimulation. The results sho
blood of patients suffering from neuropathic pain. In accordance with these r
factor RORγT was reduced, but did not reach significance. T helper cells, TH; P
orphan receptor-γT, ROR-γT; *P <0.05 versus healthy controls.
decreased in the peripheral blood of patients suffering
from neuropathic pain. Affirming these results, the relative
mRNA expression of the TH17 cell-specific transcription
factor RORγT was reduced, but did not reach significance
(TH17 cells: 1.3 ± 1.0% in controls versus 0.7 ± 0.4% in
neuropathic pain, P = 0.046; relative RORγT mRNA expres-
sion: 2.7 ± 1.4 in controls versus 1.9 ± 1.0 in neuropathic
pain, P = 0.064; Figure 3).

Treg frequency was distinctly increased in neuropathic pain
Human regulatory T-cells play a vital role in controlling
the adaptive immune response and in maintaining self-
Using a multicolor flow cytometer, PBMCs were intracellularly stained
w a significantly decreased frequency of TH17 cells in the peripheral
esults, the relative mRNA expression of the TH17 cell-specific transcription
eripheral blood mononuclear cells, PBMC; Interleukin, IL; RAR-related
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tolerance. Tregs have been shown to prevent autoimmune
diseases and to limit chronic inflammatory and nervous
system disturbances. On the other hand, the strong Treg-
induced immune suppression also impairs beneficial
responses such as anti-tumor immunity [27,28]. However,
there were limited data analyzing the functional role of
Tregs in neuropathic pain, which therefore remained
to be investigated. We analyzed the number of Tregs
by flow cytometry, using two staining procedures;
classic extracellular staining with CD4+CD25high and
the more specific intra- and extracellular staining
procedure with CD4+CD25highCD127lowFoxP3+. We
defined CD4+CD25highCD127lowFoxP3+ T-cells as Tregs.
The prevalence of Tregs was expressed as a ratio of
CD4+CD25highCD127lowFoxP3+ T cells as a percentage
of CD4+ T-cells. Figure 3 shows a significantly increased
frequency of Tregs in patients with neuropathic pain as
compared to controls. To confirm the quantitative obser-
vations of the Treg frequency we also determined the
relative mRNA expression of the specific transcription
factor FoxP3 and TGF-β by quantitative real-time PCR
(qPCR). As shown on Figure 4, significantly increased
mRNA levels of FoxP3 and TGF-β were observed in
patients with neuropathic pain. These results were
consistent with the flow cytometric analyses (Tregs:
2.0 ± 1.0% in controls versus 3.9 ± 1.3% in neuropathic
pain, P = 0.007; relative FoxP3 mRNA expression:
0.6 ± 0.2 in controls versus 1.2 ± 0.8 in neuropathic
pain, P = 0.028; relative TGF-β mRNA expression:
0.15 ± 0.06 in controls versus 0.25 ± 0.15 in neuropathic
pain, P = 0.009; Figure 4).
Figure 4 Increased Treg frequency in patients with neuropathic pain.
analyzed after intra- and extracellular staining procedure. CD4 + CD25highCD
increased frequency of Tregs in patients with neuropathic pain as compare
Treg frequency, the relative mRNA expression of the Treg-specific transcriptio
PCR (qPCR). Affirmatively, increased mRNA levels of FoxP3 and TGF-β were co
helper cell, TH; Forkhead-box-protein 3, FoxP3; Transforming growth factor-β,
TH1/TH2 balance was only slightly altered in
neuropathic pain
In previous investigations, the ratio of TH1 and TH2 cells
was used to characterize immune responses in different
diseases. In the present study, a trend towards a decreased
TH1/TH2 ratio was observed, which, however, did not
reach significance (TH1/TH2: 16.1 ± 17.4 in controls ver-
sus 10.1 ± 10.0 in neuropathic pain, P = 0.56; Figure 5).
TH17/Treg balance was markedly disrupted in
neuropathic pain
TH17 cells play an important pro-inflammatory role
whereas Tregs are strong immune suppressors. Therefore,
the balance between TH17 cells and Tregs, along with
TH1/TH2 balance, is an important factor in analyzing the
immune response. Our results regarding T-cell subsets
alone demonstrated markedly reduced pro-inflammatory
TH17 cells with simultaneous elevated anti-inflammatory
Tregs. Conclusively, as shown in Figure 5, the TH17/Treg
ratio was significantly lower in the peripheral blood of
patients compared to healthy controls. These results indi-
cate a clear anti-inflammatory T-cell shift in neuropathic
pain (TH17/Treg: 0.9 ± 1.1 in controls versus 0.2 ± 0.1 in
neuropathic pain, P <0.007; Figure 5).
Discussion
Neuropathic pain is a severe and frequent condition
which affects up to 18% of the population [29]. The
pathophysiological mechanisms leading to chronification
of neuropathic pain are a major focus of interest, but are
In addition to the TH17 cell quantification, the number of Tregs was
127lowFoxP3+ were defined as Tregs. The results show a significantly
d to healthy controls. To confirm the quantitative observations of the
n factor FoxP3 as well as TGF-β was determined by quantitative real-time
nsistent with the flow cytometric analyses. Regulatory T-cell, Treg; T
TGF-β; *P <0.05 versus healthy controls.



Figure 5 Altered TH1/TH2 and TH17/Treg balances in patients with neuropathic pain. While the TH1/TH2 ratio was only slightly decreased,
the TH17/Treg balance was significantly enhanced in patients as compared to healthy controls. These results indicate a clear anti-inflammatory
T-cell shift in neuropathic pain. T helper cell, TH; Regulatory T-cell, Treg; *P <0.05 versus healthy controls.
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not yet completely elucidated. Recent data indicate a
critical involvement of the innate and adaptive immune
system in the pathophysiology of chronification. Several
types of immune cells have been implicated in the patho-
genesis of neuropathic pain [3]. The innate immune
system has been shown to be important during the early
stages of acute pain, represented particularly by neutro-
phils [13]. Regarding chronification, T-lymphocytes, as key
players of the adaptive immune system, seem to be of
major importance [30,31]. Traditionally, it has been
suggested that neuropathic pain is associated with a
pro-inflammatory immune response. Therefore, mainly
anti-inflammatory treatments targeting cytokines and
immune cells have been evaluated in several animal
models of neuropathic pain [3]. In a recent study, neuro-
pathic pain induced by experimental autoimmune neuritis
was successfully attenuated by expanding Tregs [17]. In
humans, the first Treg-expanding tests were stopped
because of life-threatening side effects [19]. Nevertheless,
the modulation of T-cells is still the focus of intense
research [32].
In the present study, we analyzed the pain-related

cytokines MIP-1α, TNF-α, IFN-γ, IL-4, IL-6, IL-10, IL-17
and IL-23 in the peripheral blood of 26 patients with
neuropathic pain and compared the results with those of
26 healthy controls. We found that the serum levels of
IL-4, TNF-α and IFN-γ were below the detectable limit
and no differences were found regarding IL-6, IL-10 and
IL-17. Only the pro-inflammatory cytokines MIP-1α and
IL-23 were significantly higher in neuropathic pain. It
has to be noted though, that except for IL-23, values of all
cytokines measured were below the lowest concentration
of an analyte in a sample that can be reliably detected.
This shortcoming of serum cytokine measurements in
pain syndromes has also been described by other authors
[33]. Taken together, our results indicated that serum
cytokine levels alone are not sufficient to monitor the
adaptive immune response in neuropathic pain and led us
to analyze the cellular compartment.
By routine laboratory studies regarding the differential

leucocyte count, we found only an unchanged number of
neutrophil granulocytes and a slightly reduced number of
lymphocytes in the peripheral blood of patients with
neuropathic pain. Using multicolor flow cytometry, we
subsequently quantified the numbers of TH1, TH2,
TH17 and Treg cells in the peripheral blood of our
patients. Contrary to our initial assumption, we found
clear indications for an anti-inflammatory T-cell shift:
Pro-inflammatory TH17 cells were significantly decreased,
whereas anti-inflammatory Tregs were significantly in-
creased. Consequently, the corresponding TH17/Treg
ratio was distinctly shifted towards an anti-inflammatory
immune response. To confirm the quantitative observa-
tions of the TH17 and Treg frequency, we also determined
the relative mRNA expression of the TH17 cell-specific
transcription factor RORγT, as well as TGF-β and the
Treg-specific transcription factor FoxP3 by quantitative
real-time PCR. A diminished RORγT mRNA expression
was in line with the reduced number of TH17 cells, while
a notably elevated FoxP3 and TGF-β mRNA expression
confirmed the increased Treg frequency. Regarding patient
subgroups, we found no differences in respect of the
anti-inflammatory T-cell shift and mRNA expressions be-
tween patients suffering from orofacial pain, postherpetic
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neuralgia and other types of peripheral neuropathies
(Table 3). The question arises whether the observed
changes are of clinical relevance, particularly in view of
the overall low portion of the specific T-cell subsets.
Furthermore, it would be interesting and relevant to
investigate whether the immune changes can also be
found in the affected tissue.
Our results are, at first glance, unexpected since the

majority of previously published data describes the
association between pain and ‘immune activation’ based
on investigations of TH1 and TH2 cells, as well as cyto-
kines. This previous TH1/TH2 paradigm has, however,
been revised and updated with the discovery of TH17 cells
and the more specific detection of Tregs. Our findings,
together with recently published data regarding various
T-cell subsets, point to a strong association between pain
and ‘immune suppression’. Interestingly, the T-cell response
in the present study is comparable with our recent findings
in patients with CLBP, who also presented with high pain
and stress levels, but had no signs of neuropathic pain
[20]. There is a general consensus that neuropathic and
nociceptive pain are distinct entities, although basic
research clearly reveals a huge overlap of underlying
pathophysiological mechanisms, including neurotransmit-
ters and cytokines [2]. Our results show for the first time
that in both neuropathic and nociceptive pain the adaptive
immune system is altered in the same anti-inflammatory
way. The context of chronic stress and immune suppres-
sion has been described for many years, although not
extensively with regard to TH17 cells and Tregs [34]. An
anti-inflammatory T-cell shift has been found in patients
with chronic mild depression or chronic fatigue syndrome
[35-37], and both disorders are frequently associated with
all types of chronic pain.
Concerning the cellular mechanisms, T-cell differenti-

ation mainly depends on the cytokine milieu of the
microenvironment, but other pathways have also been
shown to be involved. For example, the hypothalamic-
pituitary-adrenal axis mediates immune regulation through
binding of stress hormones like adrenocorticotropic hor-
mone or cortisol to their cognate receptors at the surface of
T-cells. Furthermore, the sympathetic nervous system is
known to induce immune dysregulation via adrenaline and
noradrenaline [38]. These processes in turn play an import-
ant role in negative emotional states, such as stress and
depression. Our patients with neuropathic pain also suf-
fered from stress and psychological burden as revealed by
the enhanced KAB values. We therefore hypothesize that
the altered immune responses in both of our studies might
reflect a particular chronic pain-related stress reaction

Conclusions
In summary, we found a TH17/Treg imbalance with
increased anti-inflammatory Tregs and decreased pro-
inflammatory TH17 cells in patients with neuropathic
pain. These results are quite similar to our previous
findings in patients with nociceptive CLBP who did
not show any signs of neuropathy, but similar pain and
stress levels. Therefore, it remains to be clarified in
future studies whether the immune changes represent an
underlying pathophysiological mechanism or an epiphe-
nomenon induced by ongoing pain and stress.

Additional files

Additional file 1: Figure S1. Exemplary density plots of 10 healthy
controls and 10 patients with neuropathic pain showing pro-inflammatory
TH17 cells.

Additional file 2: Figure S2. Exemplary density plots of 10 healthy
controls and 10 patients with neuropathic pain showing anti-inflammatory
Tregs.
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Abstract

Chronic low back pain (CLBP) is a leading cause of disability and costs in health care systems worldwide. Despite extensive
research, the exact pathogenesis of CLBP, particularly the individual risk of chronification remains unclear. To investigate a
possible role of the adaptive immune system in the pathophysiology of CLBP, we analyzed T cell related cytokine profiles, T
cell related mRNA expression patterns and the distribution of T cell subsets in 37 patients suffering from nonspecific CLBP
before and after multimodal therapy in comparison to 25 healthy controls. Serum patterns of marker cytokines were
analyzed by Luminex technology, mRNA expression of cytokines and specific transcription factors was measured by real-
time PCR, and distribution of TH1-, TH2-, TH17- and regulatory T cell (Tregs) subsets was determined by multicolor flow
cytometry. We found that CLBP patients exhibit an increased number of anti-inflammatory Tregs, while pro-inflammatory
TH17 cells are decreased, resulting in an altered TH17/Treg ratio. Accordingly, FoxP3 and TGF-b-mRNA expression was
elevated, while expression of IL-23 was reduced. Serum cytokine analyses proved to be unsuitable to monitor the adaptive
immune response in CLBP patients. We further show that even after successful therapy with lasting reduction of pain, T cell
subset patterns remained altered after a follow-up period of 6 months. These findings suggest an involvement of TH17/Treg
cells in the pathogenesis of CLBP and emphasize the importance of these cells in the crosstalk of pain and immune
response.
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Introduction

Low back pain (LBP) is a common condition with a lifetime

prevalence of nearly 84%. Although most patients recover

completely within 4–8 weeks, a subset of patients is prone to

develop chronic low back pain (CLBP). CLBP has become a major

challenge for public health care systems worldwide [1]. The

prevalence of CLBP is about 23%; around 12% of the afflicted

patients are severely disabled [2,3]. Still, mechanisms driving the

chronification of low back pain syndromes remain largely elusive.

Pathological physical conditions such as microtraumata, incorrect

posture and degenerative processes as well as psychological factors

such as overtaxing, emotional distress and inadequate coping have

been described to contribute to the pathogenesis of CLBP [4,5].

Increasing evidence indicates a pivotal role of the immune system

in acute and chronic pain [6].

Recent studies have reported enhanced serum levels of pro-

inflammatory cytokines in various pain syndromes [7,8,9,10]. In

the pathogenesis of CLBP, a possible impact of TNF-a was

suggested [11]. Moreover, an increased expression of Il-17 in

herniated and degenerated lumbar intervertebral discs has been

reported, indicating a possible role of this cytokine in the

chronification of pain [9].

While the innate immune system has been found to play an

important role in acute pain [12], T-Lymphocytes as key players of

the adaptive immune system are supposed to be of major

importance [13,14] in the pathogenesis of chronic pain. In

patients with complex regional pain syndrome (CRPS) and in

those suffering from abacterial chronic pelvic pain [15,16], a

TH1/TH2 imbalance with increased numbers of TH1 cells has

been shown. In recent years, TH1/TH2 dichotomy has been

expanded by two further CD4+ T cell lineages, Th17 and

regulatory T cells (Tregs). These two T-cell subsets play prominent

roles in immune functions: Th17 cells exerting pro-inflammatory

effects are key players in the pathogenesis of autoimmune diseases

and protection against bacterial infections, while Tregs function to

restrain excessive effector T-cell responses. The role of both T cell

subsets has extensively been analyzed in tumor growth and in the

development of inflammatory and autoimmune diseases

[17,18,19,20,21]. Recently published data also indicate an

involvement of both T cell subsets in the development of chronic

pain [22,23,24,25]. For example, in patients with postherpetic

neuralgia (PHN), increased Treg numbers have been found [26].

In addition, there is evidence that these cells play a central role in

endogenous recovery from neuropathic pain [27]. Due to the

antagonistic functions of TH17 and Treg cells, and in analogy to
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the well-known TH1/TH2 paradigm, the ratio between TH17

and Tregs is increasingly used to characterize immune responses.

In CLBP, however, specific alterations in the adaptive immune

system have not conclusively been analyzed, yet.

In the current study, we investigated cytokine profiles and T

helper cell subset compositions in CLBP patients and healthy

controls. Our results indicate that CLBP is associated with

characteristic alterations of T helper cell subsets: The TH17/

Treg ratio was significantly decreased. We further provide

evidence that these alterations persist even in those patients

exhibiting significant pain reduction after participation in a

standardized multimodal therapy program.

Materials and Methods

Ethics statement
The study followed the principles of the Declaration of Helsinki

and was approved by the Ethics Committee of the LMU Munich.

Subjects
During a prospective recruitment period of two years (Septem-

ber 2011 until September 2013), all patients seeking treatment for

nonspecific CLBP at our pain clinic were assessed for study specific

inclusion and exclusion criteria. Inclusion criteria were CLBP

defined as low back pain persisting longer than two month, not

attributable to a recognized specific pathological condition (e.g.,

disc herniation, any type of radiculopathy or other neuropathic

pain, infection, tumor, osteoporosis, trauma, structural deformity

or inflammatory disorders) and planned participation in a specific

4 week multimodal outpatient program (see Therapy). Exclusion

criteria were concomitant autoimmune, chronic, inflammatory,

neoplastic-, and psychiatric diseases, drug abuse and pregnancy as

well as any preexisting long-term medication with opioids, non-

opioid analgesics or co-analgesics. Healthy pain free volunteers

without any signs or history of CLBP and concomitant diseases

were asked for their participation in the study as controls. In total,

37 patients and 25 healthy controls matching the criteria listed

above provided written informed consent and were enrolled in the

study. None of the enrolled individuals had been treated with

corticosteroids or had received immunomodulatory agents cur-

rently or in the past. Acute inflammatory diseases at the time of

blood sampling were ruled out by measurement of body

temperature and laboratory assessment of C-reactive-Protein

(CRP) as wells as total- and differential leucocyte count. This

study is registered on German Clinical Trial Register (Registration

Trial DRKS00005954), but was not registered before enrollment

of participants since all patients received only standard treatment

and no further study-related interventions. The authors confirm

that all ongoing and related trials for this drug/intervention are

registered.

Therapy
The multimodal outpatient program (MRIP, ‘‘Muenchner

Ruecken Intensiv Programm’’) performed at the University of

Munich is a clinically established outpatient program for patients

with chronic low back pain. In line with specific recommendations

for the treatment of chronic disabling low back pain [2,3,28], the

program follows a bio-psycho-social approach and comprises

medical (examination, education), physical (exercise), work-related

and behavioral therapy components. The program is conducted

by specialists from at least four professional groups with different

backgrounds (e.g. physicians, physiotherapists, psychotherapists,

occupational therapists). The group size is limited to 10 patients.

The duration of the program is 4 weeks, 5 days a week and 8 hours

a day.

Outcome assessment
Pain and stress levels were routinely evaluated by standardized

questionnaires before treatment, at the end of the program and six

months after completion of the program (follow-up). Patients were

asked to rate their recalled average pain intensity using an 11-

point numerical rating scale (NRS): 0 means ‘‘no pain’’ and 10

means ‘‘worst pain imaginable’’. Self-perceived stress was evalu-

ated using the Short Questionnaire on Current Burden (KAB,

‘‘Kurzfragebogen zur aktuellen Beanspruchung’’). The KAB is

able to repeatedly determine an individual’s psychological state

under the conditions of acute or chronic stress and is highly

sensitive to short-term or situational changes during a stressful

experience [29]. The rating is based on a 6-point scale ranging

from 1 to 6 for all six matched adjectives. Higher KAB values

indicate increased perceived stress levels. Responders were defined

as patients with improvements in NRS by $50% due to the

treatment program. Healthy controls were asked to fill out

questionnaires once.

Blood sampling
Blood samples were taken from all patients before treatment, at

the end of the program and at the follow-up six months after

completion of the program. Blood samples from healthy volunteers

were taken once at enrollment.
Cytokine Assessment. Blood samples were collected, cen-

trifuged and stored in polypropylene aliquot tubes at 280uC.

Samples were then assessed for levels of T cell related cytokines

using a human cytokine multiplex immunoassay by Myriad Rules-

Based Medicine Inc., Austin, Texas, USA. The multiplex

microbead assay is based on Luminex technology and measures

proteins in a similar manner to standard sandwich ELISA, with

comparable sensitivity and range. Regarding the detection limits,

the LLOQ (Lower Limit of Quantitation) for the cytokines were:

TNF-a: 23.0 pg/ml, IFN-c: 1.5 pg/ml, IL-4: 29.0 pg/ml, IL-6:

11.0 pg/ml, IL-10: 6.9 pg/ml, IL-17: 4.0 pg/ml, IL-23: 0.59 pg/

ml. The LLOQ is the lowest concentration of an analyte in a

sample that can be reliably detected and at which the total error

meets the laboratory’s requirements for accuracy [30].

Flow cytometric staining and analysis
After collection of heparinized venous blood samples, peripheral

blood mononuclear cells (PBMCs) were separated by density

gradient preparation over Ficoll-Uropoline (Sigma Aldrich,

Taufkirchen, Germany). Hereupon, PBMCs were cryopreserved

in RPMI freezing media containing 10% FCS and 10% DMSO

[31] and stored at 230uC for 24 h and then at 2196uC until

measurement. After storage, samples were thawed rapidly in a

water bath at 37uC and washed twice to eliminate DMSO. For

TH1, TH2 and TH17 analysis, cells were stimulated 5 h with cell

stimulation cocktail including protein transport inhibitors (Phorbol

12-myristate 13-acetate (PMA), ionomycin, brefeldin A and

monensin, eBioscience, San Diego, CA, USA) according to the

manufacturer’s protocol. Subsequently, cells were extracellulary

stained with anti-human CD4 antibody and consecutively fixed

and permeabilized (Fix-Perm-Solutions A and B, Life Technolo-

gies, Darmstadt, Germany) for intracellular staining with anti-

human INF-c (detection of TH1 cells), IL-4 (detection of TH2

cells) and IL-17 antibody (detection of TH17 cells, all Biolegend,

San Diego, CA, USA). T cell distribution was measured by FACS

analysis with the Attune Acoustic Focusing Cytometer (Life

Technologies, Carlsbad, USA). Tregs were identified and quan-
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tified using multicolor flow cytometry after surface staining of

PBMCs with mAbs specific for anti-human CD4, CD25 and

CD127 and intracellular staining with an anti-human FoxP3

antibody. The frequencies of CD4+CD25high and

CD4+CD25highCD127lowFoxP3+ T cells were expressed as

percentage of total CD4+ T cells by sequential gating on

lymphocytes. Isotype controls (Biolegend, San Diego, CA, USA)

were given for compensation and confirmation of antibody

specificity.

RNA isolation and synthesis of cDNA
CD4+ cells were isolated from PBMCs by magnetic separation

with Whole Blood CD4 MicroBeads (MACS Miltenyi Biotec,

Auburn, CA, USA). Subsequently, total RNA was isolated using

the mirVana miRNA Isolation Kit followed by a DNase-digest

with Turbo DNA-free Kit (Ambion). Quantity and purity of the

isolated RNA were measured using a NanoDrop ND-1000

spectrophotometer (Peqlab). After amplification of total RNA

using TargetAmp 1-Round aRNA Amplification Kit (Epicentre

Biotechnologies, Madison, WI, USA) and purification using

RNeasy Mini Kit (Qiagen), cDNA synthesis was performed with

SuperScript III First Strand Synthesis System (Invitrogen) and

random hexamers (Qiagen).

Quantitative real-time PCR (qPCR)
Quantitative RT-PCR was performed in duplicates with the

LightCycler 480 instrument (Roche Diagnostics, Mannheim,

Germany) using LightCycler 480 Probes Master and RealTime

ready single assays (Roche Diagnostics) and UPL probes. The

RealTime ready single assays contain target specific primers and a

Universal ProbeLibrary LNA probe. Primer sequences and qPCR

characteristics are given in Table 1. The cycling conditions

comprised an initial denaturation phase at 95uC for 10 min,

followed by 45 cycles at 95uC for 10 s, 60uC for 30 s and 72uC for

1 s. Relative mRNA expression was calculated by Relative

Quantification Software (Roche Diagnostics) using an efficiency-

corrected algorithm with standard curves and reference gene

normalization against the reference genes succinate dehydroge-

nase complex subunit A (SDHA) and TATA box binding protein

(TBP) as described in [32].

Statistical analyses
All statistical analyses were performed using SigmaStat 12.0

(Systat Software, Chicago, USA). Every statistical analysis was

started with testing for normal distribution using the Shapiro Wilk

Test. Testing for differences between groups was accomplished by

the T-Test for all data with normal distribution (IL-17, IL-23,

TGF-b-mRNA, CD25+CD25high) and the nonparametric Mann-

Whitney Rank Sum Test for all data without normal distribution

(IL-6, IL-10, IL-23-mRNA, IFN-c-mRNA, FoxP3-mRNA,

RORcT-mRNA, Tregs, TH17 cells, TH17/Treg Ratio, TH1/

TH2 Ratio). Values are expressed as mean 6 standard deviation

(SD) in the text and figures and p-values#0.05 were considered

statistically significant.

Results

Subjects and treatment variables
23 female and 14 male patients were enrolled. The median age

of the patients at inclusion was 44.5 (range 21–73) years. The

control group consisted of 25 (13 female/12 male) healthy pain

free individuals aged 43.0 (range 24–54) years.

At inclusion, the average pain intensity of the patients was NRS

3.37 (62.4) at rest and NRS 4.18 (62.5) during movement. The

average pain duration was 70.1 (678.3) months. Using the KAB to

evaluate the intensity of self-perceived stress, patients rated

average KAB values at inclusion with 3.31 (60.83). The average

KAB of healthy controls was 1.80 (60.64).

Upon therapy, 13 of 37 patients (35%) showed a significant

reduction of pain scores (NRS) within 4 weeks, as defined by a

decrease of pain ratings of $50%. They were therefore defined as

therapy responders. Follow-up responders were defined as patients

with persisting favorable effects according to the aforementioned

criteria after 6 months.

Serum cytokine profiles
Serum protein levels of TNF-a, IFN-c and IL-4 were neither

detectable in the peripheral blood of CLBP patients nor in blood

samples of healthy controls. Generally, for both CLBP patients

and healthy controls, the serum levels of IL-6, IL-10, Il-17 and IL-

23 were found to be just marginally above the detection

thresholds. No differences were found for IL-6, IL-10 and IL-17

(Figs. 1A, 1B, 1C). However, only levels of the pro-inflammatory

cytokine IL-23 were found to be significantly higher in patients

with CLBP before initiation of therapy as compared to healthy

controls. (IL-23: 0.9460.29 pg/ml in healthy controls vs.

1.2160.43 pg/ml in CLBP patients; p = 0.009; Fig. 1D).

mRNA expression of T cell cytokines
As measurements of specific cytokine profiles in serum turned

out to be not conclusive, we determined the mRNA expression of

cytokines and T cell specific transcription factors directly in the

compartment of CD4+ cells of CLBP patients and healthy

volunteers. By means of qPCR, we evaluated the mRNA

expression of the TH1 cytokines TNF-a and IFN-c, the TH2

cytokines IL-4 and IL-10, FoxP3 and TGF-b indicative for Tregs,

and IL-6, IL-17, IL 23 and the transcription factor RORcT

specific for TH17 cells.

The expression of the TH1 specific cytokine IFN-c did not

exhibit significant differences in CLBP patients as compared to

healthy controls (IFN-c: 4.1963.54 in CLBP patients vs.

3.6062.20 in healthy controls, n.s., Fig. 2A). Expression levels of

TNF-a, IL-4 and IL-10 were neither detectable in CD4+ T cells of

CLBP patients nor in healthy controls. As shown in Fig. 2B, the

expression of IL-23 in CD4+ T cell samples of CLBP patients was

found to be significantly decreased compared to healthy controls

(IL-23: 4.8862.44 in CLBP patients vs. 7.7363.77 in healthy

controls, p = 0.006). The expression of both TGF-b and the

transcription factor FoxP3 was significantly increased in CD4+

cells of CLBP patients compared to healthy controls, thereby

implying an increased Treg abundance (TGF-b: 0.2160.07 in

CLBP patients vs. 0.1460.05 in healthy controls, p = 0.014,

Fig. 3A, FoxP3: 0.2160.14 in CLBP patients vs. 0.1460.06 in

healthy controls, p = 0.009, Fig. 3B). Regarding factors specific for

TH17 cells, the expression of IL-6 and IL-17 was neither

detectable in CD4+ samples of CLBP patients nor in healthy

controls. Expression levels of RORcT did not differ in CLBP

patients and healthy controls (RORcT: 0.02860.02 in CLBP

patients vs. 0.02560.01 in healthy controls, n.s., Fig. 3C). Taken

together, qPCR results promoted the hypothesis that CLBP

patients may exhibit altered distribution patterns of Treg and

TH17 subsets whereas TH1/TH2 balance appeared to be

unchanged.
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CLBP patients exhibit an increased Treg frequency while
the TH17 frequency is decreased

To test this hypothesis, we next evaluated the distribution of T

cell subsets in blood samples of patients and healthy volunteers by

flow cytometric analyses. The relative number of Tregs was

assessed by using two different staining protocols: First, with

antibodies specific for CD4+CD25high cells and second, specific for

CD4+CD25highCD127lowFoxP3+ cells (Gating strategy is displayed

on Fig. 4). TH17 cells were identified by intracellular staining with

anti-human IL-17 antibody (gating strategy is displayed on Fig. 5).

Table 1. RT-PCR Assay Characteristics and Primer Sequences.

Gene Primer Sequence

SDHA Roche RealTime Ready Single Assay ID 102136

TBP Roche RealTime Ready Single Assay ID 101145

FoxP3 Roche RealTime Ready Single Assay ID 113503

IL-4 for 59TGCCTCACATTGTCACTGC 39

rev 59GCACATGCTAGCAGGAAGAAC 39, UPL probe #38

IL-6 for 59GATGAGTACAAAAGTCCTGATCCA 39

rev 59CTGCAGCCACTGGTTCTGT 39, UPL probe #40

IL-10 for 59TGCCTTCAGCAGAGTGAAGA 39

rev 59GCAACCCAGGTAACCCTTAAA 39, UPL probe #67

IL-17 for 59TGGGAAGACCTCATTGGTGT 39

rev 59GGATTTCGTGGGATTGTGAT 39, UPL probe #8

IL-23 for 59CAGCTTCATGCCTCCCTACT 39

rev 59GACTGAGGCTTGGAATCTGC 39, UPL probe #14

TGF-b for 59ACTACTACGCCAAGGAGGTCAC 39

rev 59TGCTTGAACTTGTCATAGATTTCG 39, UPL probe #31

TNF-a for 59CAGCCTCTTCTCCTTCCTGAT 39

rev 59GCCAGAGGGCTGATTAGAGA 39, UPL probe #29

IFN-c for 59GGCATTTTGAAGAATTGGAAAG 39

rev 59TTTGGATGCTCTGGTCATCTT 39, UPL probe #21

RoRcT for 59CAGCGCTCCAACATCTTCT 39

rev 59CCACATCTCCCACATGGAC 39, UPL probe #69

doi:10.1371/journal.pone.0104883.t001

Figure 1. Concentrations of serum cytokines, determined by using a Human Cytokine multiplex immunoassay. No differences are
found analyzing serum protein levels of IL-6, IL-10 and IL-17 between patients and healthy controls (Fig. 1A, 1B, 1C). Protein levels of pro-
inflammatory cytokine IL-23 are significantly higher in the peripheral blood of patients with CLBP compared to healthy controls. Values are expressed
as mean 6 standard deviation. (IL-23: 0.9460.29 pg/ml in healthy controls vs. 1.2160.43 pg/ml in CLBP patients; p = 0.009; Fig. 1D).
doi:10.1371/journal.pone.0104883.g001
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Figure 2. Expression levels of T cell related cytokine mRNA measured by qPCR. TNF-a, IL-4 and IL-10 were neither detectable in CD4+ T
cells of CLBP patients nor in healthy controls. The expression of IFN-c did not exhibit significant differences in CLBP patients as compared to healthy
controls (IFN-c: 4.1963.54 in CLBP patients vs. 3.6062.20 in healthy controls, n.s.; Fig. 2A) whereas IL-23 expression of in CD4+ T cell samples of CLBP
patients was found to be significantly decreased (4.8862.44 in CLBP patients vs. 7.7363.77 in healthy controls, p = 0.006; Fig. 2B).
doi:10.1371/journal.pone.0104883.g002

Figure 3. Expression levels of T cell subset related mRNA measured by qPCR. TGF-b and FoxP3 mRNA expression, specific for Tregs, was
significantly higher in patients with CLBP than in healthy controls (TGF-b: 0.2160.07 in CLBP patients vs. 0.1460.05 in healthy controls, p = 0.014; Fig.
3A), (FoxP3: 0.2160.14 in CLBP patients vs. 0.1460.06 in healthy controls, p = 0.009; Fig. 3B). TH17 specific expression of IL-17 was neither detectable
in CD4+ samples of CLBP patients nor in healthy controls. Expression levels of RORcT did not differ in CLBP patients and healthy controls (RORcT:
0.02860.02 in CLBP patients vs. 0.02560.01 in healthy controls, p = n.s.; Fig. 3C).
doi:10.1371/journal.pone.0104883.g003
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Figure 4. Gating strategy for the detection of Tregs. PBMCs extracellular stained with PerCP labeled anti-human CD4-antibody, PE labeled anti
CD25-antibody, Brilliant Violet (BV570) labeled anti CD127-antibody and intracellular stained with Alexa Fluor (AF488) labeled anti-human FoxP3-
antibody. Lymphocyte population was gated from PBMCs according to forward scatter (FSC) characteristics and side scatter (SSC) characteristics (left).
Gated lymphocytes were then separated in CD4+CD25high cells/T cells (middle) and CD4+CD25highCD127lowFOXP3+ cells/CD4+T cells (right, named
Treg). Upper row represents the result of a healthy control with less CD4+CD25high T cells (3.28%) and less CD4+CD25highCD127lowFoxP3+ T cells
(1.94%) compared to a patient with CLBP (lower row, 5.74% and 3.11%).
doi:10.1371/journal.pone.0104883.g004

Figure 5. Gating strategy for the detection of TH1 and TH17 cells. PBMCs stimulated with cell stimulation cocktail for 5 h followed by
intracellular staining with Brilliant Violet (BV421) labeled anti-human IL-17 antibody and FITC labeled anti-human IFN-c antibody.
doi:10.1371/journal.pone.0104883.g005
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With both Treg staining protocols, a significantly increased

frequency of Tregs was seen in CLBP patients as compared to

healthy controls. FACS analysis applying the CD4+CD25high

staining protocol resulted in 4.4560.88% CD4+CD25high cells in

CLBP patients vs. 3.4960.5%, CD4+CD25high cells in healthy

controls (p,0.001, Figure 6A). CD4+CD25highCD127lowFoxP3+

staining as a more specific staining protocol for Tregs revealed

similar results with 2.8961.07% Tregs in CLBP patients vs.

1.9360.66% Tregs in healthy controls (p = 0.001, Figure 6B). The

frequency of TH17 cells, however, was found to be significantly

decreased in CLBP patients as compared to healthy volunteers

(TH17: 0.4660.24% in CLBP patients vs. 1.1460.73% in healthy

controls, p = ,0.001, Figure 6C). Conclusively, ratios of Th17/

CD4+CD25high resp. Th17/CD4+CD25highCD127lowFoxP3+

were significantly decreased in CLBP patients as compared to

healthy controls (Th17/CD4+CD25high: 0.1260.08 in CLBP

patients vs. 0.3360.23 in healthy controls, p,0.001, Fig. 7A;

Th17/CD4+CD25highCD127lowFoxP3+: 0.2360.17 in CLBP pa-

tients vs. 0.6460.79 in healthy controls, p,0.001, Fig. 7B).

TH1/TH2 balance is not altered in CLBP patients
As depicted in Fig. 7C, TH1/TH2 balance did not reveal

significant differences between CLBP patients and healthy

controls; however, a trend towards a decreased TH1/TH2 ratio

was observed (TH1/TH2: 9.7667.27 in CLBP patients vs.

14.72612.81 in healthy controls, p = n.s.).

T cell ratios remain altered in CLBP patients after
multimodal therapy

To evaluate the impact of therapeutic interventions on the

observed T cell subset alterations in CLBP patients, the

distribution of TH cells subsets (TH1, TH2, TH17 and Tregs)

was analyzed in the group of therapy responders before,

immediately after therapy and 6 months later. As depicted in

Fig. 8A, these patients showed an ongoing decrease of NRS by $

50% due to the treatment program. The pain reduction was also

accompanied by a decrease of the KAB values. However, as

shown in Figure 8B, this therapeutic effect was not reflected in any

respective adaptation of the T cell subsets.

Discussion

Pathomechanisms driving the chronification of low back pain

still remain largely elusive. While a growing body of evidence

suggests a pivotal role of adaptive immune responses in the

pathogenesis of chronic pain, these issues have not conclusively

been analyzed for CLBP, yet.

Our results indicate that CLBP is associated with characteristic

alterations of T helper cell subsets: The ratio between regulatory T

cells, playing a vital role in controlling adaptive immune responses,

and TH17 cells, one of the key effector T cells mediating

autoimmunity [33], was significantly decreased. We further

provide evidence that these alterations persist even in these

patients exhibiting significant pain reduction after participation in

a standardized multimodal therapy program [3].

Assuming that cytokines as central mediators of cellular

immunity may mirror immune cell functions, we first analyzed

seven T cell related cytokines (TNF-a, IFN-c, IL-4, IL-6, IL-10,

IL-17, IL-23) in serum samples of CLBP patients and healthy

controls. TNF-a, IFN-c and IL-4 were below the detection limits

in patients as well as in healthy controls, and the results of the

remaining four analytes were only slightly above the detectable

limit. Values for the proinflammatory cytokines IL-6 and IL-17 in

Figure 6. Flow cytometric quantification of Tregs and TH17 cells. Results show significantly higher percentage of anti-inflammatory Tregs in
patients with CLBP in both staining protocols (CD4+CD25high cells: 4.4560.88% in CLBP patients vs. 3.4960.53% in healthy controls, p,0.001; Fig. 6A),
(CD4+CD25highCD127lowFoxP3+ cells: 2.8961.07% in CLBP patients vs. 1.9360.66% in healthy controls, p = 0.001; Fig. 6B). Number of TH17 cells as
percentage of T cells in peripheral blood show significantly lower percentage of pro-inflammatory TH17 cells in patients with CLBP (TH17 cells:
0.4660.24% in CLBP patients vs. 1.1460.73% in healthy controls, p,0.001; Fig. 6C).
doi:10.1371/journal.pone.0104883.g006
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blood samples of CLPB patients were slightly elevated as

compared to controls. However, this finding may be of limited

clinical relevance as normal plasma concentrations for IL-6 of

healthy controls are about 1 pg/ml with immense increases

in situations of severe systemic infection ranging up to 10.000-fold.

Our results demonstrate only an 1.5-fold increase in IL-6 levels in

patients with CLBP, which could even occur after physical activity

or in obesity [34]. However, the relevance of cytokine measure-

ments should generally be regarded with caution as serum levels of

most cytokines are influenced by a complex interplay of

macrophages/monocytes, fibroblasts, endothelial2/epithelial cells

and dendritic cells thus complicating the extrapolation from

plasma cytokines to immune cell functions. Moreover, ranges of

detection exhibits considerable variances between the different

assays used [35]. Even different types of Luminex-based platforms

exhibit differences in their ability to measure serum levels of

cytokines and thus, may be more useful in studies in which relative

rather than absolute changes in cytokines are of interest [36,37].

Overall, these data suggest that serum levels of cytokines are not

suitable to monitor the adaptive immune response in CLBP and

prompted us to analyze the expression of cytokines directly in the

compartment of CD4+ cells as central players of the T cell

response. While no differences in the expression of TH1 and TH2

cytokines were observed, qPCR results clearly pointed to an

increased abundance of Tregs in CLBP patients, as expression of

both TGF-b and the transcription factor FoxP3 were significantly

increased. Moreover, expression of IL-23 was clearly decreased

supporting the assumption that TH17 frequency may be reduced.

IL-17 and RORcT, however, did not differ significantly between

CLBP and controls which may be due to the fact that the subset of

TH17 cells per se is only less than 2% of CD4+ cells. Thus,

resolving differences of cytokine expression without prior cell

sorting may be difficult. The opposite results of increased IL-23

protein levels and decreased IL23-mRNA-expression is in line

with a wide body of literature showing a big discrepancy between

mRNA expression and protein levels as a result of control

mechanisms. These can affect post-transcriptional, translational

and protein degrading processes [38,39].

Our findings encouraged us to investigate T cell subset

compositions by flow cytometric analyzes. We used standard

staining procedures to identify TH1, TH2, and TH17 cells,

whereas for identification of anti-inflammatory Tregs, both classic

extracellular staining of CD4+CD25high and a more specific extra-

and intracellular staining of CD4+CD25highCD127lowFoxP3+ was

applied. As activated human T cells can transiently express FoxP3

and CD25, differentiation of Tregs from activated effector T cells

by only using these two markers may suffer from inaccuracies.

CD127 is a newly described surface marker that allows

distinguishing regulatory T cells from other CD25+ cells [40].

For TH17 identification, we chose two experimental approaches:

determination the mRNA expression of the TH17 specific

transcription factor RORcT by qPCR, and FACS analyses of

IL-17 production, which has revealed as a very reliable method to

identify TH17 cells [41]. However, flow cytometry staining

protocols combining IL-17 with further markers, e.g. CD161 or

CCR6, may further refine these measurements and thus may be

implemented in future studies.

Flow cytometry clearly proved the assumed alterations of the

TH17/Treg balance, as a significantly increased frequency of

Tregs and decreased frequency of TH17 cells was observed in our

CLBP patients. Even in flow cytometric analyzes, no differences in

the TH1/TH2 ratio were detectable. There are several investi-

Figure 7. Ratios of TH17/CD4+CD25high, TH17/Tregs and TH1/TH2 cells. Ratios of Th17/CD4+CD25high and Th17/CD4+CD25highCD127low-
FoxP3+ were significantly decreased in CLBP patients as compared to healthy controls (Th17/CD4+CD25high: 0.1260.08 in CLBP patients vs.
0.3360.23% in healthy controls, p,0.001; Fig. 7A), (Th17/CD4+CD25highCD127lowFoxP3+: 0.2360.17 in CLBP patients vs. 0.6460.79 in healthy
controls, p,0.001; Fig. 7B). Ratio of TH1/TH2 cells in peripheral blood of patients with CLBP and healthy controls were tendencially decreased in
patients with CLBP, but did not reach significance (9.7667.27 in CLBP patients vs. 14.72612.81 in healthy controls, p = 0.19, Fig. 7C).
doi:10.1371/journal.pone.0104883.g007
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gations which point to a beneficial role of anti-inflammatory cells

and cytokines together with a detrimental function of a pro-

inflammatory immune response in pain patients [6,7,8,9]. In

contrast to these findings, our results showing an anti-inflamma-

tory shift on cellular level are in accordance with other chronic

diseases like mild depression or chronic fatigue syndrome [42,43].

A potential explanation for our findings on TH17/Treg balance

may therefore be that pain-related, long lasting chronic stress and

fatigue induces an ongoing dysregulation of immune cells towards

an anti-inflammatory phenotype [44,45,46]. On the other hand, it

may also be discussed that dysregulation of the TH17/Treg

balance may exist first, thus predisposing the affected individuals

to experience chronification of pain symptoms. The latter theory

may be supported by our surprising findings that the observed

TH17/Treg imbalance persisted despite clinical improvement

after multimodal therapy even after a follow-up period of 6

months.

In summary, we found a persisting TH17/Treg imbalance with

an increased count of anti-inflammatory Tregs and a decreased

number of pro-inflammatory TH17 cells in peripheral blood of

CLBP patients pointing to a strong association between chronic

pain and immune suppression rather than immune activation.

Importantly, these findings are not reflected by serum cytokine

concentration, indicating a major role of specific T cell subset

measurements in the analysis of pain-related immune responses.

Taken together, the results of the current study suggest an

involvement of TH17/Treg in the pathogenesis of CLBP and

emphasize the importance of these cells in the crosstalk of pain and

immune response.
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