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Summary

The statistical analysis of “real-world” data is often confronted with the fact that most stan-
dard statistical methods were developed under some kind of idealization of the data that is
often not adequate in practical situations. This concerns among others i) the potentially defi-
cient quality of the data that can arise for example due to measurement error, non-response
in surveys or data processing errors and ii) the scale quality of the data, that is idealized as
“the data have some clear scale of measurement that can be uniquely located within the scale
hierarchy of Stevens (or that of Narens and Luce or Orth)”.

Modern statistical methods like, e.g., correction techniques for measurement error or robust
methods cope with issue i). In the context of missing or coarsened data, imputation techni-
ques and methods that explicitly model the missing/coarsening process are nowadays well-
established tools of refined data analysis. Concerning ii) the typical statistical viewpoint is a
more pragmatical one, in case of doubt one simply presumes the strongest scale of measure-
ment that is clearly “justified”. In more complex situations, like for example in the context of
the analysis of ranking data, statisticians often simply do not worry about purely measurement
theoretic reservations too much, but instead embed the data structure in an appropriate, easy
to handle space, like e.g. a metric space and then use all statistical tools available for this space.

Against this background, the present cumulative dissertation tries to contribute from different
perspectives to the appropriate handling of data that challenge the above-mentioned idea-
lizations. A focus here is on the one hand on analysis of interval-valued and set-valued data
within the methodology of partial identification, and on the other hand on the analysis of
data with values in a partially ordered set (poset-valued data). Further tools of statistical
modeling treated in the dissertation are necessity measures in the context of possibility theory
and concepts of stochastic dominance for poset-valued data.

The present dissertation consists of 8 contributions, which will be detailedly discussed in
the following sections:

Contribution 1 analyzes different identification regions for partially identified linear models
under interval-valued responses and develops a further kind of identification region (as well
as a corresponding estimator). Estimates for the identification regions are compared to each
other and also to classical statistical approaches for a data set on wine quality.
Contribution 2 deals with logistic regression under coarsened responses, analyzes point-identi-
fying assumptions and develops likelihood-based estimators for the identified set. The methods
are illustrated with data of a wave of the panel study “Labor Market and Social Security”
(PASS).
Contribution 3 analyzes the combinatorial structure of the extreme points and the edges of
a polytope (called credal set or core in the literature) that plays a crucial role in imprecise
probability theory. Furthermore, an efficient algorithm for enumerating all extreme points is
given and compared to existing standard methods.
Contribution 4 develops a quantile concept for data or random variables with values in a
complete lattice, which is applied in Contribution 5 to the case of ranking data in the context
of a data set on the wisdom of the crowd phenomena.
In Contribution 6 a framework for evaluating the quality of different aggregation functions of
Social Choice Theory is developed, which enables analysis of quality in dependence of group



viii

specific homogeneity. In a simulation study, selected aggregation functions, including an ag-
gregation function based on the concepts of Contribution 4 and Contribution 5, are analyzed.
Contribution 7 supplies a linear program that allows for detecting stochastic dominance for
poset-valued random variables, gives proposals for inference and regularization, and genera-
lizes the approach to the general task of optimizing a linear function on a closure system.
The generality of the developed methods is illustrated with data examples in the context of
multivariate inequality analysis, item impact and differential item functioning in the context
of item response theory, analyzing distributional differences in spatial statistics and guided
regularization in the context of cognitive diagnosis models.
Contribution 8 uses concepts of stochastic dominance to establish a descriptive approach for
a relational analysis of person ability and item difficulty in the context of multidimensional
item response theory. All developed methods have been implemented in the language1 R ([R
Development Core Team, 2014]) and are available from the author upon request.

The application examples corroborate the usefulness of weak types of statistical modeling
examined in this thesis, which, beyond their flexibility to deal with many kinds of data defi-
ciency, can still lead to informative substance matter conclusions that are then more reliable
due to the weak modeling.

1Some computational expensive parts have been outsourced to Fortran 95, for solving the linear and mixed
integer programs, special software (Gurobi: Gu, Rothberg, and Bixby [2012]), for which an R-interface exists,
was used.
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Zusammenfassung

Die statistische Analyse real erhobener Daten sieht sich oft mit der Tatsache konfrontiert, dass
übliche statistische Standardmethoden unter einer starken Idealisierung der Datensituation
entwickelt wurden, die in der Praxis jedoch oft nicht angemessen ist. Dies betrifft i) die mögli-
cherweise defizitäre Qualität der Daten, die beispielsweise durch Vorhandensein von Messfeh-
lern, durch systematischen Antwortausfall im Kontext sozialwissenschaftlicher Erhebungen
oder auch durch Fehler während der Datenverarbeitung bedingt ist und ii) die Skalenqualität
der Daten an sich: Viele Datensituationen lassen sich nicht in die einfachen Skalenhierarchien
von Stevens (oder die von Narens und Luce oder Orth) einordnen.

Modernere statistische Verfahren wie beispielsweise Messfehlerkorrekturverfahren oder robuste
Methoden versuchen, der Idealisierung der Datenqualität im Nachhinein Rechnung zu tragen.
Im Zusammenhang mit fehlenden bzw. intervallzensierten Daten haben sich Imputationsver-
fahren zur Vervollständigung fehlender Werte bzw. Verfahren, die den Entstehungprozess der
vergröberten Daten explizit modellieren, durchgesetzt. In Bezug auf die Skalenqualität geht die
Statistik meist eher pragmatisch vor, im Zweifelsfall wird das niedrigste Skalenniveau gewählt,
das klar gerechtfertigt ist. In komplexeren multivariaten Situationen, wie beispielsweise der
Analyse von Ranking-Daten, die kaum noch in das Stevensche “Korsett” gezwungen werden
können, bedient man sich oft der einfachen Idee der Einbettung der Daten in einen geeigneten
metrischen Raum, um dann anschließend alle Werkzeuge metrischer Modellierung nutzen zu
können.

Vor diesem Hintergrund hat die hier vorgelegte kumulative Dissertation deshalb zum Ziel,
aus verschiedenen Blickwinkeln Beiträge zum adäquaten Umgang mit Daten, die jene Ideali-
sierungen herausfordern, zu leisten. Dabei steht hier vor allem die Analyse intervallwertiger
bzw. mengenwertiger Daten mittels partieller Identifikation auf der Seite defizitärer Datenqua-
lität im Vordergrund, während bezüglich Skalenqualität der Fall von verbandswertigen Daten
behandelt wird. Als weitere Werkzeuge statistischer Modellierung werden hier insbesondere
Necessity-Maße im Rahmen der Imprecise Probabilities und Konzepte stochastischer Domi-
nanz für Zufallsvariablen mit Werten in einer partiell geordneten Menge betrachtet.

Die vorliegende Dissertation umfasst 8 Beiträge, die in den folgenden Kapiteln näher dis-
kutiert werden:

Beitrag 1 analysiert verschiedene Identifikationsregionen für partiell identifizierte lineare
Modelle unter intervallwertig beobachteter Responsevariable und schlägt eine neue Identi-
fikationsregion (inklusive Schätzer) vor. Für einen Datensatz, der die Qualität von verschiede-
nen Rotweinen, gegeben durch ExpertInnenurteile, in Abhängigkeit von verschiedenen physiko-
chemischen Eigenschaften beschreibt, werden Schätzungen für die Identifikationsregionen ana-
lysiert. Die Ergebnisse werden ebenfalls mit den Ergebissen klassischer Methoden für Inter-
valldaten verglichen.
Beitrag 2 behandelt logistische Regression unter vergröberter Responsevariable, analysiert
punktidentifizierende Annahmen und entwickelt likelihoodbasierte Schätzer für die entspre-
chenden Identifikationsregionen. Die Methode wird mit Daten einer Welle der Panelstudie

”
Arbeitsmarkt und Soziale Sicherung“ (PASS) illustriert.

Beitrag 3 analysiert die kombinatorische Struktur der Extrempunkte und der Kanten eines
Polytops (sogenannte Struktur bzw. Kern einer Intervallwahrscheinlichkeit bzw. einer nicht-
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additiven Mengenfunktion), das von wesentlicher Bedeutung in vielen Gebieten der Imprecise
Probability Theory ist. Ein effizienter Algorithmus zur Enumeration aller Extrempunkte wird
ebenfalls gegeben und mit existierenden Standardenumerationsmethoden verglichen.
In Beitrag 4 wird ein Quantilkonzept für verbandswertige Daten bzw. Zufallsvariablen vor-
gestellt. Dieses Quantilkonzept wird in Beitrag 5 auf Ranking-Daten im Zusammenhang mit
einem Datensatz, der das

”
Weisheit der Vielen“-Phänomen untersucht, angewendet.

Beitrag 6 entwickelt eine Methode zur probabilistischen Analyse der
”
Qualität“ verschiedener

Aggregationsfunktionen der Social Choice Theory. Die Analyse wird hier in Abhängigkeit der
Homogenität der betrachteten Gruppen durchgeführt. In einer simulationsbasierten Studie
werden exemplarisch verschiedene klassische Aggregationsfunktionen, sowie eine neue Aggre-
gationsfunktion basierend auf den Beiträgen 4 und 5, verglichen.
Beitrag 7 stellt einen Ansatz vor, um das Vorliegen stochastischer Dominanz zwischen zwei
Zufallsvariablen zu überprüfen. Der Anstaz nutzt Techniken linearer Programmierung. Wei-
terhin werden Vorschläge für statistische Inferenz und Regularisierung gemacht. Die Methode
wird anschließend auch auf den allgemeineren Fall des Optimierens einer linearen Funktion
auf einem Hüllensystem ausgeweitet. Die flexible Anwendbarkeit wird durch verschiedene An-
wendungsbeispiele illustriert.
Beitrag 8 nutzt Ideen stochastischer Dominanz, um Datensätze der multidimensionalen Item
Response Theory relational zu analysieren, indem Paare von sich gegenseitig empirisch stützen-
den Fähigkeitsrelationen der Personen und Schwierigkeitsrelationen der Aufgaben entwickelt
werden.

Alle entwickelten Methoden wurden in R ([R Development Core Team, 2014]) implementiert2.
Die Anwendungsbeispiele zeigen die Flexibilität der hier betrachteten Methoden relationaler
bzw.

”
schwacher“ Modellierung insbesondere zur Behandlung defizitärer Daten und unter-

streichen die Tatsache, dass auch mit Methoden schwacher Modellierung oft immer noch
nichttriviale substanzwissenschaftliche Rückschlüsse möglich sind, die aufgrund der inhaltlich
vorsichtigeren Modellierung dann auch sehr viel stärker belastbar sind.

2Computational aufwendige Teile wurden teilweise in Fortran 95 ausgelagert, für die Berechnung der linea-
ren und der gemischt ganzzahligen Programme wurde spezielle Software (Gurobi: Gu, Rothberg, and Bixby
[2012]), für die auch eine R-Schnittstelle existiert, genutzt.
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Contributions of the thesis

The 8 contributions of the thesis constitute 4 parts:

A Challenges for statistical modeling under partial identification in the context
of regression analysis

1) G. Schollmeyer, T. Augustin. Statistical modeling under partial identification: Di-
stinguishing three types of identification regions in regression analysis with interval
data. International Journal of Approximate Reasoning, 56:224-248, 2015.

2) J. Plass, T. Augustin, M. Cattaneo, G. Schollmeyer, Statistical modelling under epi-
stemic data imprecision: Some results on estimating multinomial distributions and
logistic regression for coarse categorical data. In: T. Augustin, S. Doria, E. Miranda,
E. Quaeghebeur, editors, ISIPTA ’15, Proceedings of the Ninth International Sym-
posium on Imprecise Probability: Theories and Applications, pages 247-256. Aracne,
2015.

B Computational challenges in the theory of imprecise probabilities

3) G. Schollmeyer. On the number and characterization of the extreme points of the
core of necessity measures on finite spaces. In: T. Augustin, S. Doria, E. Miranda,
E. Quaeghebeur, editors, ISIPTA ’15, Proceedings of the Ninth International Sym-
posium on Imprecise Probability: Theories and Applications pages 277-286. Aracne,
2015.

C Analysis of complex data structures

4) G. Schollmeyer. Lower quantiles for complete lattices. Technical Report 207, De-
partment of Statistics, LMU Munich, 2017a.
URL http://www.statistik.uni-muenchen.de/forschung/technical_reports/

index.html.

5) G. Schollmeyer. Application of lower quantiles for complete lattices to ranking data:
Analyzing outlyingness of preference orderings. Technical Report 208, Department
of Statistics, LMU Munich, 2017b. URL http://www.statistik.uni-muenchen.

de/forschung/technical_reports/index.html.

6) C. Jansen, G. Schollmeyer and T. Augustin. A probabilistic evaluation frame-
work for preference aggregation reflecting group homogeneity. Revised version un-
der review in Mathematical Social Sciences, original version available as a techni-
cal report under https://epub.ub.uni-muenchen.de/29269/, the revised version
can be found under http://gschollmeyer.userweb.mwn.de/prob_evaluation_

revision.pdf.

D Relational data analysis: Stochastic dominance for partially ordered sets

7) G. Schollmeyer, C. Jansen, and T. Augustin. Detecting stochastic dominance for
poset-valued random variables as an example of linear programming on closure sy-
stems. Technical Report 209, Department of Statistics, LMU Munich, 2017a.
URL http://www.statistik.uni-muenchen.de/forschung/technical_reports/

index.html.
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8) G. Schollmeyer, C. Jansen, and T. Augustin. A simple descriptive method for multi-
dimensional item response theory based on stochastic dominance. Technical Report
210, Department of Statistics, LMU Munich, 2017b. URL http://www.statistik.

uni-muenchen.de/forschung/technical_reports/index.html.
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Preface

Statistical data analysis in the vein of statistical modeling always also involves a step of
translating a substance matter problem into a more or less formal framework of statistical
modeling. During this step, usually some idealizations and schematizations, as well as some
value judgments about what is the adequate translation of the actual substance matter questi-
on into a mathematical/statistical question and what could be accepted as an answer, have to
be made. The present thesis is concerned with different situations of statistical data analysis,
where such idealizations involve a pronounced risk of weakening the adequacy of the data
analysis for solving the envisaged substance matter problem. This comprises for example

Imperfectly observed data, especially interval data in the context of the methodology of
partial identification.

Precisely observed data with a non-standard measurement of scale, for example ranking
data.

Linear models, where the status of the model (as a descriptive or a structural model, to
put it in Freedmans terms ([Freedman, 1987])) is unclear and at the same time of crucial
importance.

Psychometric models of item response theory, where one can ask for the empirical status,
the scale of measurement and the metaphysic character of the assumed latent traits.

Probabilistic models that are only/could only be partially specified or that are genuinely
imprecise (a.k.a. imprecise probability theory).

Notions of inequality in the context of poverty/inequality analysis that can only be
concretized in a very non-decisive manner because of the need of avoiding a too restrictive
value judgment.

From the diversity of these points it becomes apparent, that the present cumulative thesis
is not devoted to one single specific topic of statistics, it is more or less bundled around diffe-
rent topics, also showing that by working on different problems one comes across during some
academic undertaking like a PhD, only a small amount of envisaged problems will come to an
acceptable solution, if at all. This cumulative dissertation contributes to a variety of topics
that are related to each other through the presence of some sort of non-ideal data or modeling
situation.

One first line of research at the beginning of this PhD was the mathematical analysis of
models of imprecise probabilities, namely the class of necessity measures that are special mo-
dels from possibility theory ([Dubois and Prade, 1988]), which mathematically could be also
seen as special cases of imprecise probability models (cf., e.g., [De Cooman and Aeyels, 1996]).
The interest in such models came from the former interest in the Dempster-Shafer theory of
evidence ([Shafer, 1976]) that was also partly a topic of my diploma theses written at the
institute of algebra at TU Dresden. The mathematical background of the author becomes
apparent in Contribution 3 describing the combinatorial structure of a polytope (called the
credal set or core in the literature) that is a useful tool for the mathematical description of
imprecise probability models.
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A second line of research is also a typical research focus of the working group Methodologi-
cal Foundations of Statistics and its Applications I am working in, namely the methodology of
partial identification that is also loosely connected to the theory of imprecise probabilities. The
methodology of partial identification is typically applied if one has to deal with imprecisely
observed data that, without imposing further additional assumptions, lead to only partial-
ly identified statistical models. Attempts of generalizing statistical methods (here concretely
linear regression) from precise data situations to the case of interval-valued observations, of-
ten come along with additional subtle conceptual questions that are genuinely addressing the
understanding of statistical modeling: Questions like “What is the empirical status of the
statistical model, is it the truly underlying structure (a structural model in Freedmans terms)
or more a descriptive tool (a descriptive model in Freedmans terms) guiding the statistical
analysis?” have to be thoroughly answered for a second time (the first time one hopefully en-
visaged the question for the point-identified case), because they lead to still more pronounced
differences in the partially identified case, compared to the point-identified case. Of course,
such conceptual questions seemingly usually lead not to new methods, but often only to a re-
lativization of existing methods that could also be seen as a form of non-constructive carping.
As the working group always gave some space for also discussing such conceptual questions, I
always felt comfortable being interested in such questions and did not have the feeling of wa-
sting worthy time. This said, I have to say some words about the general working atmosphere
in the working group and at the department of statistics, because it surely had a big influence
on the way the present thesis evolved:

One very valuable point was that beyond pure research, also teaching activities were al-
ways highly appreciated and both my supervisor Thomas Augustin and the whole professor-
ship had much credit of trust. This concerns especially firstly the possibility to play a part
in interdisciplinary seminars: Seminars related to the philosophy of science and especially to
the philosophy of probability together with Thomas Augustin, Marco Cattaneo, Christina
Schneider and Rudolf Seising were always exciting and a seminar with Clemens Draxler about
psychometric modeling initiated my interest in conceptual aspects of psychometric modeling
that also inspired Contribution 8. A second point was the possibility of doing self-reliant
teaching. The opportunity to give a lecture (supported by Lehre@LMU3) on mathematical
aspects of order- and lattice theory in the context of statistics led also to some ideas that
substantially influenced the evolution of Contributions 7 and 8. Especially concerning Con-
tribution 7, more or less by accident I became aware of some nice interrelations between two
seemingly unrelated fields, namely, firstly lattice theory ([Birkhoff, 1940]) in the concretion
of formal concept analysis ([Ganter and Wille, 2012]) as an applied mathematical theory for
“conceptual data analysis and knowledge processing” [Ganter and Wille, 2012, p. VII] and the
theory of statistical learning in the guise of Vapnik-Chervonenkis theory that can be seen as
the natural “continuation of the Kolmogorov-Glivenco-Cantelli line of theoretical statistics”
[Vapnik, 2006, p. 482]. Also Contribution 6 and the general interest in Social Choice theory,
mainly triggered by discussions with Christoph Jansen, has its multiple roots in both this
lecture and in a seminar about decision theory together with Christoph Jansen and Christina
Schneider. Contributions 4 and 5 arose from a general interest in dealing with distribution

3The program Lehre@LMU (http://www.uni-muenchen.de/studium/lehre_at_lmu/index.html)
aims at strengthening both research-oriented and practice-oriented teaching, see also http:

//www.mathematik-informatik-statistik.uni-muenchen.de/studium_lehre/lehre_lmu/index.html

for the activities of the faculty of mathematics, informatics and statistics.



xv

functions and my background in lattice and order theory.

Of course, most teaching experience has no directly visible trace in research, however, it
subtly shapes the own understanding of statistics. This is surely also true for some lose joint
activities with the Munich Center for Mathematical Philosophy (MCMP). A reading group
about the philosophy of statistics conducted by Barbara Osimani, and regular joint informal
meetings (called “Formal Informal”) organized by Marco Cattaneo from the statistics depart-
ment and Roland Poellinger from the MCMP gave still other types of insights, also especially
into the different “cultural background” of philosophers and statisticians.

Finally, the research seminar of the working group was the actual place for discussing the
own research and the research of the other working group members. The possibility to present
current research in a very informal way and the generous willingness of the participants to
spend much time in discussing topics that are, due to the broad field of research interests of
the working group, often only of direct interest for a subset of the participants, was actually
very helpful.

As a department of statistics and especially a working group and its surrounding is not
only an institution of research and teaching, but also an organic system build by its members,
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Contributing material: Overview, general aspects, remarks and perspectives

We now give an overview over all contributing papers. For a quick overview we begin every
contribution with a very brief summary, followed by a detailed description of the contribution.
Parts consisting of more than one contribution are firstly introduced by giving a short general
overview. For every of the four parts of the thesis, we additionally discuss interrelations bet-
ween contributions, possible further research that can be done and general aspects in separate
sections called Remarks and perspectives.

Part A: Challenges for statistical modeling under partial identification in the
context of regression analysis

In many applied situations of data analysis, the variables of actual interest cannot be directly
observed in the precision actually needed from a substance matter point of view. Data are often
rounded or heaped or are missing such that one generally only knows that the true unobserved
variables of actual interest lie in some observed intervals. Beyond classical correction methods
for rounding or heaping (cf., e.g., [Schneeweiß et al., 2010]), advanced statistical methods
for interval-censored data deal with this problem in a constructive way by either explicitly
modeling the coarsening process, or by identifying conditions like Missing At Random (MAR)
or Coarsening At Random (CAR) under which the coarsening process can be ignored in some
sense (see [Heitjan and Rubin, 1991]). Often cited works are Torelli and Trivellato [1993] for
heaping or Lindsey and Ryan [1998] for interval censoring. Recent applications illustrating the
flexibility of statistical modeling include for example Arulampalam et al. [2017], Allen et al.
[2017], Eid et al. [2016] dealing with heaped or rounded data, McDonough and Millimet [2017]
which is concerned with missing data in endogenous variables or Schomaker et al. [2015]
who simultaneously treat missing data and measurement error. However, for such classical
statistical approaches, the underlying statistical model has to be point-identified4 to allow
for an analysis. This is a very strong demand that often forces the researcher to impose further
substantial assumptions or to use a very narrow model class for modeling the coarsening
process to point-identify the model. These ways of point-identifying a statistical model are
thus necessarily often not only guided by substance matter considerations but are simply
driven by the demand of a point-identified model, no matter if the presumed point-identifying
assumptions are doubtful or reasonable from a substance matter point of view. Beyond this,
point-identifying assumptions like MAR or CAR are typically not statistically testable in many
situations, see Jaeger [2006] (cf., also Plass, Cattaneo, Schollmeyer, and Augustin [2017b] for
a somehow testable point-identifying assumption).
The methodology of partial identification, starting with early, mostly econometric works
like e.g., Frisch [1934], Reiersl [1941], Marschak and Andrews [1944], tries to go one step beyond
the paradigm of point-identification and treats the question of identification as a substance
matter question and not as a rhetoric question of convenience. If one refrains from the demand
of a point-identified model, then generally one cannot consistently estimate the true underlying
parameter(s) of the model. Thus, one does not estimate the true parameter(s), but instead
one estimates the so-called identification region. The identification region is the set of all
parameters that are empirically indistinguishable from the true parameter(s), i.e., the set of
all parameters that lead to the same distribution of all observable random variables like under

4A parametric statistical model is called point-identified, if for every two different parameters, the distribu-
tions of the corresponding observable random variables under these parameters also differ. Informally speaking,
this means that with an infinite amount of data one can exactly identify the true underlying parameter.
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the true parameter(s). Note that the identification region is not a statistical estimate, but
the unknown true set-valued estimand that could alternatively be understood as that set of
possible true parameters one could statistically infer with an infinite amount of data. Typical
for partial identification and maybe a little bit unusual in classical statistics is the explicit
decomposition of the statistical problem into the problem of identification and the problem
of statistical estimation that accounts for sampling uncertainty. In applications, the estimates
of the identification regions are then often still informative enough to allow for non-trivial
substance matter conclusions that are then somehow more reliable because of the avoidance
of imposing further assumptions.
However, the early works on partial identification were largely ignored in both econometrics
and statistics before the 1990’s. The works of Manski ([Manski, 1989, 1990]), starting in the
late 1980s, led to some revival of the partial identification view within empirical economics.
Works in the flavor of partial identification can nowadays be found in many areas (mainly in
econometrics) and in different contexts like for example interval data (e.g., [Manski and Tamer,
2002],) missing data (e.g., [Manski, 2005]), treatment effects (e.g., [Manski, 1990, Stoye, 2009],
measurement error/misclassification (e.g., [Molinari, 2008, Watson, 1964, Küchenhoff et al.,
2012]), entry games (e.g., [Gentry and Li, 2014, Ciliberto and Tamer, 2009]) or generally in
economic models with inequalities (e.g., [Romano and Shaikh, 2010, Chernozhukov et al.,
2013]). A somehow parallel development has taken place in biometrics and medical statistics
under the keyword systematic sensitivity analysis (e.g., [Gilbert et al., 2003, Vansteelandt
et al., 2006, Chiba and VanderWeele, 2011]): For a statistical model that is not point-identified
one specifies some reasonable nuisance parameter(s) with the property that if one knows this
nuisance parameter(s), then the model is identified and can be estimated. Then, one does a
statistical analysis for a whole range of the actually unknown nuisance parameter(s) to get
an impression about how big the influence of the sensitivity parameter on the result of the
analysis is. Apart from the field of partial identification and classical statistics, the analysis
of interval-valued data/imprecise data is also a research topic in imprecise probabilities (e.g.,
[Coolen and Yan, 2004, Utkin and Augustin, 2007, Couso and Sánchez, 2011]), in fuzzy set
theory (e.g., [Denœux et al., 2005, Spadoni and Stefanini, 2011]) or machine learning (e.g.,
[Do and Poulet, 2009, Carrizosa et al., 2007, Utkin and Coolen, 2011, Utkin and Chekh, 2015,
Steyer, 2017]). Also likelihood approaches for dealing with interval data have been established,
see, e.g., Zhang [2010], Cattaneo and Wiencierz [2012], Couso and Dubois [2017].

Contribution 1) G. Schollmeyer, T. Augustin. Statistical modeling under partial identifica-
tion: Distinguishing three types of identification regions in regression analysis with interval
data. International Journal of Approximate Reasoning, 56:224-248, 2015.

Short summary: In Contribution 1 we treat partially identified linear models
where the outcome variable is observed in intervals. In the framework of
partial identification we analyze different identification regions known from
literature, introduce and analyze a new kind of identification region and
furthermore provide estimation techniques for this region based on quadratic
programming. In an application example on wine quality assessed by experts
in dependence on 11 physicochemical covariates, we compare estimates of the
different identification regions with each other and to results from classical
statistical approaches of interval data analysis.
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Contribution 1 deals with linear regression of the form Y = Xβ + ε where X is precisely
observed, but Y can only be observed in intervals [Y,Y], so all we know about Y is that
Y ∈ [Y,Y]. A typical example of interval-valued observed Y is the answer to the question
about income in social surveys: To reduce the usually relatively high non-response rate to this
sensitive question, one often does not only directly ask the participants about their income.
Instead, after a direct question about income, one adds further categorized questions about
the income (like, e.g.: “Is your income between 200 and 299 Euro?”) to get further imprecise
information about participants that did not answer the direct question but are willing to
supply some imprecise information about their income. In such situations, one can expect
that the propensity to give only an imprecise answer or to completely refuse to answer is
dependent on the actual income. Thus, from a substance matter point of view, assumptions
like CAR seem to be not appropriate, here.
The contribution analyzes different variants of identification regions (and their estimation)
that arise from different choices of the exact underlying statistical model: Compared to the
point-identified case, the question of possible misspecification of the linear model plays a crucial
role: For the classical, point-identified linear model, a misspecification of the linear relationship
between X and E(Y | X) would make the notion of the “true parameter” meaningless, but
one can replace this notion by the notion of the parameter of the best linear predictor loss
(BLP). Actually, the question if one assumes an underlying true regression parameter or if one
is only interested in the best linear predictor plays no role w.r.t. the estimation: If one assumes
normally distributed homoscedastic noise, then both the true parameter, as well as the BLP-
parameter under squared loss are reasonably estimated by the least squares estimator. This
coincidence disappears in the partially identified situation. The question if one assumes a true
underlying parameter or if one anticipates the possibility of misspecification and only looks at
the BLP leads to two very different types of identification regions:

1. If one assumes a truly underlying linear relationship between E(Y | X) and X and under-
stands the model as a structural model in the sense of Freedman (cf., [Freedman, 1987])
one obtains a region that is called the Marrow Region in the contribution: Given the
interval-valued response [Y,Y] one takes every possible random variable Y ∈ [Y,Y] that
can be obtained through a linear relationship Y = Xβ + ε and takes as the identification
region the set of all associated parameter vectors β. This set can in fact be also empty in
some situations.

2. If one understands the model only as a descriptive model (in the sense of Freedman)
that takes the assumed linear relationship between E(Y | X) and X only as a crude
approximation guiding the data analysis, one presumably would go a different way: One
would look at every arbitrary random variable Y ∈ [Y,Y] (also if it does not fit to a linear
relationship with X) and would compute the BLP. Finally, one would collect every such
obtained BLP in a set. This type of identification region is called Collection Region in
the contribution. Due to its construction, the Collection Region is always a superset of the
Marrow Region.

These two identification regions have already been considered in the literature: The Mar-
row region was studied for example in Chernozhukov et al. [2004, 2007], where confidence
regions for the Marrow region were developed. The Collection Region was used for example
in Beresteanu et al. [2011], Beresteanu and Molinari [2008], Černỳ and Rada [2011], Rohwer
and Pötter [2001]. A first analysis of the differences between the two regions can be found
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in Ponomareva and Tamer [2011]. Contribution 1 also analyzes the two identification regi-
ons and furthermore contrasts them with another identification region developed in Section
4 of the contribution. It turns out that the Marrow Region is not continuously dependent
on the distribution of the observable random variables. (Actually it is not even continuous
w.r.t. the weak-*-topology applied to the conditional expectations and the support function
of the identification region.) This also means that in the case of misspecification, the Marrow
Region can be very small (it can actually also be empty). But this does not mean that one has
much information about the true parameter, it could also only mean that the model is simply
misspecified and the Marrow Region only pretends much information about the (non-existing)
true parameter. In contrast to this, the continuity properties and also the asymptotic proper-
ties of the Collection Region are satisfactory, but in some situations the Collection Region
seems to be unnecessarily too uninformative.

Beyond the analysis of the two identification regions the contribution also develops a new kind
of identification region (called Set-loss Region, see Section 4 of the contribution) that could
be understood as a compromise between the two other regions. The idea is here to look not at
single parameter vectors β, but at whole (convex and compact) sets Γ of parameter vectors.
(Technically, this is done by describing compact and convex sets by their support functions.)
For a given interval-valued response [Y,Y] one searches for that set Γ of parameter vectors,

whose predictions Ŷ := infβ∈ΓXβ and Ŷ := supβ∈Γ Xβ fits best to the observed intervals Y

and Y w.r.t. a given metric. This typical statistical approach of minimizing a metric (or a
loss function), which in our situation turns out to be a projection onto a convex cone of a
Hilbert space, has then nice continuity properties. The Set-loss Region can be estimated by
relying on sample analogues (cf., Section 4.3 of the contribution) that share the same nice
continuity properties. To compute the Set-loss Region one has to solve a quadratic program,
see Section 4.2 of the contribution. From a statistical point of view, the estimation problem is
very similar to the problem of nonparametrically estimating a convex function under square
loss. Thus, nice asymptotic properties like asymptotic normality cannot be expected, here (cf.,
Groeneboom et al. [2001]).
Finally, the identification regions are also investigated by means of a data example where the
quality of red wine, measured by the median of the ratings of 3 experts, in dependence of
different physicochemical properties of the red wine is analyzed. Beside the analysis with the
methodology of partial identification, we also analyzed the data set with classical methods,
firstly by replacing the interval-valued response with the interval-midpoints and secondly by
the application of an interval censoring model.
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Contribution 2) J. Plass, T. Augustin, M. Cattaneo, G. Schollmeyer, Statistical modelling
under epistemic data imprecision: Some results on estimating multinomial distributions
and logistic regression for coarse categorical data. In: T. Augustin, S. Doria, E. Miranda,
E. Quaeghebeur, editors, ISIPTA ’15, Proceedings of the Ninth International Symposium
on Imprecise Probability: Theories and Applications, pages 247-256. Aracne, 2015.

Short summary: Contribution 2 deals with logistic regression under partial
identification that is due to coarsened responses. On the one hand we stu-
dy point-identifying assumptions (Coarsening at Random and Subgroup Inde-
pendence) and on the other hand we provide a likelihood-based method for
estimating the identified set based on an observation model. Finally, we also
address the possibility of incorporating further substance matter assumptions
on the coarsening process for the response variable. We illustrate the method
with data from the German panel study “Labor Market and Social Security”
(PASS).

Contribution 2 is concerned with partial identification in regression analysis under coarsened
responses variables, too. Here, we deal with logistic regression under categorical covariates.
Since we focus on the case of categorical covariates, the difference between the point-identified
and the partially identified situation w.r.t. the question of misspecification seems to bo less
pronounced. (Note that e.g., for the simplest case of one categorical covariate, the logistic link
essentially imposes no additional structural assumption.) Concretely, we consider a binary re-
sponse Y ∈ {0, 1} that can only be observed in a coarsened form as Y with Y ∈ 2{0,1}, and one
only knows that Y ∈ Y . We are interested in the relationship between Y and the covariate(s)
X. We use here an observation model Q that explicitly models the conditional distribution of
Y | x and Y | x for every possible value x of X. The main difficulty is then the estimation
of the coarsening probabilities in the observation model. Since Y cannot be observed, the
coarsening probabilities are generally only partially identified. For estimation, we use here a
maximum likelihood approach. Instead of directly maximizing the likelihood, in a first step
we maximize the likelihood L(θ) = Pθ(Y1 = y1, . . . ,Yn = yn | X1 = x1, . . . , Xn = xn) of the
observable events w.r.t. the parameters θyx := Pθ(Y = y | x). From the estimated parameters

θ̂yx = P̂ (Y = y | x), in a second step, with the help of the observation model, we deductively
obtain the set of all coarsening probabilities and the set of all values P (Y = y | x) of actual
interest, that are compatible with the estimates θ̂yx = P̂ (Y = y | x) of the first step.

The explicit modeling with an observation model also allows for imposing further substan-
ce matter assumptions, if such assumptions are reasonable. For example, in specific situa-
tions it can be reasonable to assume that we have P (Y = {0, 1} | X = x, Y = 0) =
P (Y = {0, 1} | X = x, Y = 1) (This is exactly the Coarsening At Random assumption.5)
or P (Y = {0, 1} | X = x, Y = 0) ≤ P (Y = {0, 1} | X = x, Y = 1), or P (Y = {0, 1} | X =
x, Y = y) = P (Y = {0, 1} | X = x′, Y = y) for arbitrary x, x′. The last assumption is called
Subgroup Independence in the contribution and can be understood as an assumption that

5The Coarsening At Random assumption is usually not directly statistically testable, however, in principle
one could test the assumption with further validation studies, where Y can be observed.
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is dual to the Coaresning At Random assumption, because, informally speaking, one assumes
that the coarsening is independent of the values of the covariates, where for CAR one assumes
independence from the values of the response. Except from degenerate cases, the Subgroup
Independence assumption is point-identifying, but at the same time, opposed to CAR, the
Subgroup Independence assumption is also statistically testable to some extent, see Plass,
Cattaneo, Schollmeyer, and Augustin [2017b], where also an appropriate likelihood-ratio test
is developed.

Remarks and perspectives Part A

Contribution 1 is an extended version for a special issue on the Eighth International Sympo-
sium on Imprecise Probability: Theories and Applications (ISIPTA 2013) that is based on an
ISIPTA conference paper ([Schollmeyer and Augustin, 2013]). In the ISIPTA conference paper
one can find further more algebraic/lattice theoretic and geometric analyses of the Marrow
Region and the Collection Region that were not included in Contribution 1 because of a more
application oriented focus of the contribution.

Based on Contribution 2, a follow-up paper (Plass, Cattaneo, Augustin, Schollmeyer, and
Heumann [2017a]) further develops the conceptual ideas more into the direction of a con-
ceptualization in the spirit the Marrow region by relying on further parametric assumptions.
There, we develop estimates as well as confidence regions based on the profile likelihood func-
tion. An application of the methods of Contribution 2 in the context of small area estimation
can be found in Plass, Omar, and Augustin [2017].

Ill-posedness: Contribution 1 made clear that beyond the question of identification, wi-
thin the methodology of partial identification, the model-understanding plays a crucial role
and one should analyze the derived methods also w.r.t. their continuity properties to make
sure that one does not hopelessly try to solve ill-posed problems. So, we have to distinguish the
question about identification from the question of ill-posedness/ill-conditioning. The question
of ill-posedness seems to be not explicitly addressed in the literature about partial identifi-
cation very often. In Contribution 2, ill-posedness is also not explicitly addressed, but the
results of Contribution 2 are all given in closed form such that one can easily analyze pos-
sible ill-conditioning of the estimation functions. The difference between identification and
ill-conditioning becomes especially clear in the point-identifying assumption of Subgroup In-
dependence in Contribution 2: If one has at least one categorical covariate with at least two
possible values, then the parameters of interest are usually point-identified, but as one can
see from the equations (18) at page 254, if for both values x of the covariate the conditional
distribution of Y given x is very similar or identical (this would be exactly the homogeneous
case were X has no influence on Y), then the estimation functions (18) can be arbitrary ill-
conditioned or still undefined (because one would get a fraction 0/0).

Nonparametric alternatives: For the case of linear regression, if one does not believe
in the linear relationship, one can also think about nonparametric approaches. Actually, some
nonparametric approaches like kernel regression methods (see [Nadaraya, 1964, Watson, 1964])
can easily deal with imprecisely observed responses, since, at least for a fixed band-width, the
nonparametric regression result of a kernel regression is monotonically increasing in the re-
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sponse vector6. However, especially in the social sciences, in the context of action planning, one
is mainly interested in one single number for every covariate that describes the global effect of
increasing the covariate about one unit: ‘ ‘One wants to know how much achievement a given
amount of integration will bring, how many dollars will buy a given amount of health, or what
increased chance of conviction results from pretrial detention... . The [regression] coefficients
do not describe the behavior in the sample, but instead delineate the process at work.” [Achen,
1982, p. 69]. This demand is understandable but should obviously not lead to a Panglossian
attitude that ignores the possibility that the true underlying relationship is very non-linear,
which could possibly discredit the usefulness of the schematic linear modeling. Furthermore,
in the context of partial identification, we have the additional problem that the linear relati-
onship cannot be rigorously tested7. A further point is also getting more problematic in the
partially identified situation: Since one cannot straight forwardly assess the fit of the model,
one has no direct way of doing model selection. Furthermore, if one takes a descriptive model
perspective, then already in the point-identified case one has to face the problem, that gene-
rally, the BLP-parameter for one covariate depends upon which other covariates were selected.
Thus, thought through the end, the true BLP-parameter for a selected covariate is not a fixed
parameter, but a random parameter.8

Inference: Concerning inference, in the partially identified situation one has to firstly
decide, which kind of coverage property one is actually interested in. One can demand that a
coverage region covers either the true unknown parameter or the whole true unknown iden-
tification region with probability greater than or equal to a prespecified level γ. Both in
Chernozhukov et al. [2007, 2004], as well as in Beresteanu and Molinari [2008] the second
covering property is used. In Beresteanu and Molinari [2008], one utilizes random set theory
and the confidence regions are obtained by using the metric structure of the parameter-space
co (Rp) of all compact and convex subsets of Rp, equipped with the Hausdorff distance

dH(A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b) , sup
b∈B

inf
a∈A

d(b, a)

}
,

where d is the Euclidean distance in Rp and p is the number of covariates including the
intercept. One issue with this approach is that it is not affine equivariant: If for example one
multiplies one covariate with a constant, then this would possibly result in a very different

6For an application of a two-step semi-parametric procedure, see [Manski and Tamer, 2002]. There, one
firstly estimates the conditional expectations E(Y | x) and E(Y | x) nonparametrically via kernel regression.
Then one can “deduce” from the estimated conditional expectations an estimate for the identification region
of the parameters with a modified minimum-distance approach. Another interesting application of kernel
techniques in the context of local linear regression ([Fan, 1993]) under interval-valued outcomes can be found
in the third contribution of [Peng, 2017].

7Actually, it is maybe a little bit too schematic to distinguish only between assumptions that are testable
and assumptions that are not, because in the sense of the Duhem-Quine problem of under determination, every
assumption is not testable in isolation, it is only testable via the interplay with other assumptions.

8For the point-identified case there is currently much research about model selection and especially inference
after model selection in the framework of a descriptive model understanding, where one firstly has to think
about the meaning of the model parameters. For example in Berk et al. [2013] one directly deals with inference
concerning the true BLP parameters obtained by projecting the conditional expectation of the response onto the
finally selected covariates. Another nice approach is the “Leave one covariate out” approach in Lei et al. [2017].
There, similarly to variable importance measures used in random forests ([Breiman, 2001], cf., also [Strobl et al.,
2008] who discuss problems of bias towards correlated predictor variables and propose a conditional variable
importance measure that reflects the true impact of each predictor variable more reliably.) one measures the
importance of one covariate by the difference in prediction power if that covariate is excluded from prediction.
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confidence region for the transformed covariates. One way out of this invariance issue would
be to standardize every covariate before doing the actual analysis. However, it could still
appear that the obtained confidence regions are very broad in one parameter direction where
actually the statistical uncertainty is very low compared to other directions. (This seems
to also apply to the confidence procedure in Chernozhukov et al. [2007, 2004]). The reason
seems to be the following: To construct the confidence region, Beresteanu and Molinari [2008]
use as a test statistic the Hausdorff distance between the true identification region and the
estimated regions and then they simply invert this unidimensional statistic. Because of this
unidimensionality, one cannot flexibly account for different “shapes” of the distribution of
the set-valued estimates in this approach. Similarly, in Chernozhukov et al. [2007, 2004] the
authors use a characterization of the identified set as the set of minimizers of a real-valued
criterion function Q : Rp −→ R. As a confidence region the authors then take an α-cut
CI = {θ ∈ Rp | Qn(θ) ≤ α} of an empirical analogue Qn of the criterion function Q, where
α is an appropriately chosen real-valued threshold. Thus, also here one seems to have no
flexibility for accounting for different shapes.

A simple idea to account for the above issue could be to do not look at the metric structure
of co (Rp), but to utilize the structure of co (Rp) as a partially ordered set that is additio-
nally equipped with an addition, namely Minkowski addition9: To do inference, one can draw
bootstrap samples and would obtain a sample of convex sets. Then, one can try to define as
a “descriptive” confidence region a convex set that is a superset of at least γ · 100% of the
bootstrapped sets and that is minimal w.r.t. this property. This would of course only give a
descriptive confidence region that does not necessarily (also not asymptotically) have the right
covering probability. One reason for this is best explained if we think of convex compact sets
as represented by its support functions: Every convex and compact set A ⊆ Rp can uniquely
be described by its support function hA via

hA : Rp −→ R : u 7→ sup
a∈A
〈u, a〉.

Then, for two sets A,B ∈ co (Rp) we have A ⊆ B ⇐⇒ ∀u ∈ Rp : hA(u) ≤ hB(u) and
the Minkowski addition can be described in terms of support functions by pointwise addition
as hA⊕B(u) = hA(u) + hB(u). The bootstrap samples can thus be understood as bootstrap
samples of special functions for which one could try to get some sort of a joint confidence
band. If the distribution of the support functions is not symmetric, which one can expect,
the bootstrap will generally be biased. One can try to deal with this issue by applying some
kind of symmetrization procedure, for example by appropriately mirroring10 the confidence
band like it also done in the univariate reversed percentile method (called basic bootstrap
confidence interval in [Davison and Hinkley, 1997]). Actually, this will only work well if one
has a situation that is close to a pure translation family, otherwise, the mirroring can make
the coverage still worse, see the explanations given in Hesterberg [2015] for the univariate
case. Alternatively, one can try to additionally account for scale heterogeneity by applying a
further transformation to construct a t-type statistic that is approximately pivotal. However,
since by dealing with the space of convex compact sets or with the space of support functions,
respectively, one has an infinite-dimensional space and the question, if and when the bootstrap

9The Minkowski sum of two sets A and B is simply the set A⊕B := {a+ b | a ∈ A, b ∈ B}.
10By mirroring the confidence band one possibly would obtain an associated boundary of the mirrored

confidence band that is actually no support function of some convex compact set, but this is no problem if
one already thinks not in the space of support functions but in the linear span of the space of the support
functions.
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will actually work, seems to be far from clear (at least for the author11). Thus, this idea was not
directly followed by the author in subsequent studies, but it actually inspired the development
of a simple descriptive notion of a quantile for samples/random variables with values in a
complete lattice described in Contribution 4. Note here that the set of all convex compact sets
of Rp, together with the set inclusion builds a complete lattice.

Part B: Computational challenges in the theory of imprecise probabilities

Contribution 3) G. Schollmeyer. On the number and characterization of the extreme points
of the core of necessity measures on finite spaces. In: T. Augustin, S. Doria, E. Miranda,
E. Quaeghebeur, editors, ISIPTA ’15, Proceedings of the Ninth International Symposium
on Imprecise Probability: Theories and Applications pages 277-286. Aracne, 2015.

Short summary: In Contribution 3 we analyze the combinatorial structure of
the extreme points and the edges of a convex polytope (called credal set or core
in the literature) that plays an important role in the analysis of non-additive
set functions used in theories of imprecise probabilities. We supply an effective
procedure for enumerating all extreme points that could be used for efficient
computations in imprecise probabilities. In a small study, we also compare the
enumeration procedure with standard enumeration procedures like the reverse
search method and the double description method.

The theory of imprecise probabilities (for an introduction, see, e.g., Augustin et al. [2014])
comprises a bunch of different theories12that attempt at generalizing classical probability theo-
ry to allow for an appropriate handling of different facets of the pleomorphic meaning of the
broad terms “uncertainty” and “ambiguity” that are traditionally modeled only within one
single mathematical paradigm, namely the concept of precise probabilities. Mathematically,
much of these attempts boil down to use non-additive set-functions instead of finitely additi-
ve or σ-additive ones. (For a general mathematical introduction to measure- and integration
theory for such non-additive measures, see [Denneberg, 1994].) For the mathematical analysis
of non-additive set functions ν : A −→ [0, 1], where A is some σ-algebra on some space Ω, the
so-called credal set is an important tool. The credal set of a non-additive measure ν is the
set

M(ν) := {p | p probability measure on (Ω,A), ∀A ∈ A : p(A) ≥ ν(A)}

of all classical (finitely additive or σ-additive, depending on the theory) probability measures
that are in a sense compatible with the non-additive measure ν. For finite Ω the credal set is
a convex polytope with finitely many extreme points. Characterizing the polytope and espe-
cially efficiently computing the extreme points is of interest in different areas of application,

11Some informal simulations showed different results, for the collection region, where the asymptotics of the
estimated confidence regions are very regular, cf. [Beresteanu and Molinari, 2008], the results were acceptable,
but for the Set-loss Region the results were not so promising.

12This bundle ranges from robust Bayesian analysis ([Insua and Ruggeri, 2012]) over generalized frequentist
methods ([Fierens, 2009]), logical probability ([Weichselberger, 2007]), lower previsions ([Troffaes and De Coo-
man, 2014]), interval probability ([Weichselberger, 2001, 2000]), nonparametric predictive inference ([Coolen
and Augustin, 2009] to belief functions ([Shafer, 1976]) and possibility theory ([Dubois and Prade, 1988]).
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for example in decision making (cf., e.g., [Utkin and Augustin, 2005], [Jansen, Schollmeyer,
and Augustin, 2017b, Jansen, Augustin, and Schollmeyer, 2017a]) or in statistical hypothesis
testing under imprecise probabilistic models (see [Augustin, 1998]). More generally, the aspect
of computation in the context of imprecise probabilities is a very prominent topic in this field,
because much of the computations that are very simple for the case of precise probabilities
become easily very hard for imprecise generalizations. Works that try to make computations
practically manageable include for example Bronevich and Augustin [2009], Destercke [2011]
where one tries to approximate complex models by simpler models, Antonucci et al. [2015]
where linear programming techniques are used or Utkin and Augustin [2005] which additio-
nally utilizes duality theory of linear programming. Beyond imprecise probability theory, the
credal set is also an object of interest in cooperative game theory13 (cf., e.g., [Shapley, 1971,
Gillies, 1959, Bondareva, 1963, Derks et al., 2000, Studený and Kroupa, 2016, Yokote, 2017,
Abe and Funaki, 2017]), see [Studený and Kratochv́ıl, 2017] for a recent discussion of the
relations between concepts used in imprecise probabilities and notions used in game theory.
Contribution 3 is concerned with a special class of non-additive measures, namely necessity
measures that play a role in possibility theory ([Dubois and Prade, 1988]). A necessity measure
is a non-additive set function ν satisfying14

∀A,B,∈ A : ν(A ∩B) = min{ν(A), ν(B)}.

One can show that necessity measures are mathematically special kinds of so-called coherent
lower probabilities15 (see [De Cooman and Aeyels, 1996]). The contribution analyzes the exact
combinatorial structure of the credal set of necessity measures. In Wallner [2007] it is shown
that for the general case of lower coherent probabilities on a finite space Ω, the credal set has
at most |Ω|! extreme points and that this bound is sharp16. For the special case of necessity
measures, in Miranda et al. [2003] it is shown that the number of extreme points is bounded
by the sharp bound 2|Ω|−1 and in Kroupa [2008] further bounds are given in the language of
possibility measures.17 There, it is shown that the associated credal set is a simple polytope
and general bounds for simple polytopes are used to get bounds for the number of extreme
points.

The contribution sharpens these known results and gives an exact combinatorial descrip-
tion of the extreme points providing also exact formulae for the number of extreme points
and furthermore supplies an efficient enumeration method for the extreme points. The con-
tribution makes substantial use of the representation of necessity measures as special kinds
of belief functions which can be efficiently described by their Moebius-inverses18. The enume-
ration method is efficient in the sense of not enumerating any extreme point twice, the time

13There, it is called core instead of credal set.
14Here, we only consider the case of a finite space Ω.
15A lower coherent probability is a non-additive measure satisfying ν(A) = inf

p∈M(ν)
(p(A)) for all sets A of

the domain of ν. Note that in the context of lower probabilities one does not demand the domain of ν to be a
σ-algebra and furthermore one takes all finitely additive classical probability measures (called linear previsions
in this context) in the construction of the credal set.

16Actually, this result was already achieved earlier by [Derks and Kuipers, 2002] in the context of cooperative
game theory.

17A possibility measure is the dual measure associated to a necessity measure: If ν is a necessity measure,
then the associated possibility measure µ is defined via µ(A) = 1− ν(Ac).

18The Moebius inverse of a set-function ν : 2Ω −→ R on a finite set Ω is that uniquely defined set function
m : 2Ω −→ R satisfying ∀A ⊆ Ω : ν(A) =

∑
B⊆Am(B). A belief function is a normalized set function (i.e.:

ν(∅) = 0; ν(Ω) = 1), whose Moebius inverse is non-negative (i.e.: ∀A ∈ A : m(A) ≥ 0).



11

complexity is O(m · |F(ν)|), where m is the number of extreme points and F(ν) is the set of
the so-called focal elements of ν, that is the set of all sets A ∈ F where the Moebius inverse
is positive. (The cardinality |F(ν)| is bounded by |Ω| for the case of necessity measures.) The
enumeration procedure is also compared to standard enumeration procedures for polytopes
like the reverse search method ([Avis and Fukuda, 1996, Avis, 2000]) or the double descrip-
tion method ([Motzkin et al., 1953, Fukuda and Prodon, 1996]). Because the combinatorial
description of the extreme points obtained in the contribution is very explicitly in nature,
the associated enumeration procedure is more efficient than the above mentioned standard
methods, furthermore it allows for a closed form for the number of extreme points as

m = |A1| ·
k∏
i=2

(|Ai\Ai−1|+ 1),

where A1 ⊂ A2 ⊂ . . . ⊂ Ak is the increasingly ordered set of the focal elements. (For the case
of necessity measures, the focal elements are always linearly ordered w.r.t. set inclusion.)

Beyond the extreme points, also the edge structure is analyzed in the contribution: A sharp
characterization of adjacent extreme points and a closed form of the number of edges of the
polytope as

1

2
|A1| ·

k∏
i=2

(|Ai\Ai−1|+ 1) ·

(
|A1| − 1 +

k∑
i=2

|Ai\Ai−1|

)
is given. In a final step, a general enumeration procedure for arbitrary belief functions is also
proposed.

Remarks and perspectives Part B

Contribution 3 gave the exact number of the extreme points and an efficient enumeration
procedure for computing all extreme points. However, since a necessity measure can have up
to 2|Ω|−1 extreme points in the worst case, enumerating all extreme points is still very hard
due to the mere amount of extreme points. Furthermore, for many computations one actually
does not need the extreme points, because necessity measures are quite simply structured. For
example, the lower expectation of a random variable X w.r.t. a necessity measure ν can be
simply computed as a Choquet integral or with the help of the Moebius inverse (cf., e.g., [Trof-
faes and Hable, 2014, p. 332f]). Beyond computational aspects, note also that though necessity
measures are mathematically special cases of coherent lower probabilities, their interpretation
can be quite different: For coherent lower probabilities under the epistemic interpretation (cf.,
[Couso and Dubois, 2014]), one assumes that there is a precise probability measure that is
unknown and the credal set describes all precise probability measures that cannot be excluded
as candidates for the underlying unknown true probability measure. Such an interpretation
motivates emphasis on the extreme points of the credal set as the extreme possible true mea-
sures. However, in the context of possibility theory, a necessity measure does not need to allow
for such an interpretation, see Couso and Dubois [2014]. Thus, one has to be careful when
combining non-additive measures stemming from different theories.

In the meanwhile, also results for the extreme points of the credal set of so-called probability
boxes (p-boxes, for short) are available. The class of p-boxes is a class of coherent lower
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probabilities whose credal sets are generated as the set of all probability measures whose
distribution function F lies between some lower distribution function F and some upper
distribution function F . This class is a superclass of the class of necessity measures and is
usually interpreted in an epistemic fashion, i.e., one assumes that there is a true measure
with cumulative distribution function F lying in the interval [F , F ]. Probability boxes have
a wide range of application (see [Ferson et al., 2002]) including also applications in classical
statistics: For example, if one quantifies the statistical sampling uncertainty of the empirical
distribution function of a sample of a random variable with the help of a nonparametric
Kolmogorov-Smirnov type confidence band ([Kolmogorov, 1941, Smirnov, 1939, Feller, 1948,
Miller, 1956]) then one has essentially a p-box. For the case of p-boxes on a finite space Ω, in
Montes and Destercke [2017] sharp bounds for the maximal number of extreme points and an
enumeration procedure for computing the extreme points are given.

Part C: Analysis of non-standard data structures

In multivariate statistics, there is a broad literature (cf., e.g., [Mosler, 2013]) aiming at gene-
ralizing the concept of a quantile and especially the median as a measure of location to the
multivariate situation. One basic tool for establishing such generalizations is the notion of data
depth and the notion of outlyingness. A depth-function measures how deep a certain data point
lies w.r.t. a data cloud or w.r.t. a probability distribution. Dually, an outlyingness-function
measures the outlyingness of data points. The concept of data depth as initially proposed19

by Tukey [1975] as a graphical tool for visualizing bivariate data, initiated a broad line of
research establishing further notions of data dept like simplicial depth ([Liu et al., 1990]), Oja
depth ([Oja, 1983]), zonoid depth [Koshevoy and Mosler, 1997] or Lp depth ([Zuo and Serfling,
2000]) to cite just a few. A more recent proposal for data depth is the Monge-Kantorovich
depth ([Chernozhukov et al., 2017]) based on the Monge-Kantorovich theory of measure trans-
portation, where one uses an optimal transportation map between a distribution of interest on
Rd and a reference distribution on the d-dimensional unit ball. In contrast to the most other
data depth notions, Monge-Kantorovich depth is also able to capture non-convex aspects of
the data. Data depth has a broad range of applications in multivariate data analysis, like
for example in description of multivariate distributions (e.g., [Liu et al., 1999, Serfling, 2004,
Wang and Serfling, 2005]), outlier detection (e.g., [Serfling, 2006, Zhang, 2002]), multivariate
density estimation (e.g., [Fraiman et al., 1997]), depth-based classification or clustering (e.g.,
[Ruts and Rousseeuw, 1996, Christmann, 2002, Jörnsten, 2004]), rank and sign tests (e.g.,
[Brown and Hettmansperger, 1989, Hettmansperger and Oja, 1994], or linear regression (e.g.,
[Rousseeuw and Hubert, 1999]).

Most treatments of data depth are basically devoted to the Euclidean d - space as a
linear space and put focus on affine invariance20 as a desirable property21. This property
seems natural especially if one has a geometrical understanding of Rd (cf. also [Chaudhuri,

19An idea very similar to Tukey’s half-space depth was already used in [Hodges, 1955] for a bivariate sign
test.

20This means that the depth-function is invariant under a simultaneous affine transformation of both the
considered data point and the data cloud/probability distribution, cf., [Mosler, 2013, p. 3].

21An axiomatic approach to data depth can be found in Liu et al. [1990] and Zuo and Serfling [2000], who
propose four properties that could generally be considered desirable for a statistical depth function: a) affine
invariance, b) maximality at the center, c) linear monotonicity relative to the deepest point and d) vanishing
at infinity.
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1996]). However, in some situations of application like for example in multidimensional po-
verty/inequality analysis (cf., e.g., Alkire et al. [2015]) or in the analysis of multidimensional
psychological latent constructs like for example “autoritarism” (cf., e.g., Duckitt et al. [2010]),
a geometrical understanding is not suggesting itself. An order theoretic underpinning looking
at the point-wise ordering, where for example a person could be termed as less poor than
another person if she is less poor w.r.t. all considered dimensions of poverty, seems to be more
natural in such cases.

Contribution 4) G. Schollmeyer. Lower quantiles for complete lattices. Technical
Report 207, Department of Statistics, LMU Munich, 2017a. URL http://www.

statistik.uni-muenchen.de/forschung/technical_reports/index.html.

Short summary: Contribution 4 develops a quantile concept for the case of
data or random variables with values in a complete lattice. The concept turns
out to be related to the notion of data depth known from multivariate stati-
stics. In the contribution we analyze how different properties, like for example
uniqueness or representation invariance, which is a concept very similar to the
notion of affine invariance in multivariate data depth, can be achieved for the
case of lattice-valued data.

Contribution 4 develops a generalization of the univariate quantile concept for random varia-
bles/samples with values in a complete lattice (V,≤). The contribution analyzes, to which
extent one can generalize the notion of a quantile and which intuitively desirable proper-
ties like i) representation invariance, ii) “non-arbitraryness”, iii) generality, iv) uniqueness,
v) “simplicity”, vi) sharpness and vii) richness of the obtained quantile system can still be
reached in this generalized context. It turns out that an asymmetric approach leads to an
acceptable result: For a real-valued random variable, a lower quantile with level α ∈ (0, 1] can
be characterized as that real number z ∈ R that is minimal in the set

Mα := {x ∈ R | P (X ≤ x) ≥ α},
where P is the underlying image measure of the underlying random variable X or the empirical
measure associated to the considered data sample, respectively. The above characterization
straightforwardly generalizes to the case of random variables with values in a partially ordered
set (poset). However, in the general situation of poset-valued random variables, the set Mα can
contain more than one minimal element (or also no minimal element), such that the property
iv) uniqueness (and also property v) “simplicity”) comes into trouble. Because of reasons of
symmetry, it is not always possible to reasonably choose in a non-arbitrary way one element
from the set of minimal elements of Mα to reach uniqueness. If the underlying space is not only
a poset but a complete lattice, then instead of choosing from the set Mα one can alternatively
simply take the infimum

∧
Mα as a candidate for a quantile. This candidate has already

very promising properties, it is unique, unambiguously defined and furthermore the elements∧
Mα are always comparable for different levels α, a fact that contributes to the property v)

“simplicity”. Depending on the complexity of (V,≤), the system Q := {
∧
Mα | α ∈ [0, 1]} of

quantiles can be arbitrarily sparse. Additionally, property vi), sharpness, demanding that every
quantile q ∈ Q should be minimal in the set {x ∈ V | P (X ≤ x) ≥ P (X ≤ q)}, is generally
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not satisfied. Fortunately, at least property vi) can be rescued by a further construction: Since
the family K := {q ∈ V | q minimal in {x ∈ V | P (X ≤ x) ≥ P (X ≤ q)}} is a kernel system22

(cf., [Kwuida and Schmidt, 2011]), one can construct the modified quantile system

Q∗ := {
∨
{z ∈ K, z ≤ q} | q ∈ Q}

that now satisfies also property vi). While the quantile system Q∗ allows for a qualitative
kind of data analysis (the elements of Q∗ are actually elements of the underlying ordered set
(V,≤)), the mapping

λ : V −→ [0, 1] : x 7→ P (X ≤
∧
{q ∈ Q∗ | q ≥ x})

(called level-function in the contribution) can be used for a quantitative kind of data analysis.
Here, λ can be understood as a generalization of the univariate distribution function F : R −→
R : x 7→ P (X ≤ x). Opposed to the usual distribution function, the function λ still has a
nice pivot type property in the general situation of random variables with values in an only
partially ordered set: Under weak conditions one has ∀α ∈ Im(X) : P (λ ◦ X ≤ α) = α. In
many situations, the function λ could be understood as a kind of outlyingness-function: If for
example (V,≤) is the set of all convex sets of Rd, ordered by set inclusion and if we treat
points x in Rd as singletons {x}, then the function λ is a sort of outlyingness function that is
dual to (a transformation of) Tukey’s half-space depth ([Tukey, 1975]).

Contribution 5) G. Schollmeyer. Application of lower quantiles for complete lattices to ran-
king data: Analyzing outlyingness of preference orderings. Technical Report 208, Depart-
ment of Statistics, LMU Munich, 2017b. URL http://www.statistik.uni-muenchen.

de/forschung/technical_reports/index.html.

Short summary: In Contribution 5 we apply the lattice-valued quantile con-
cept of Contribution 4 to the analysis of ranking data. We analyze a data set
of the wisdom of the crowd phenomena for ranking data where 26 university
students had to rank the former 44 US presidents according to their presumed
order of presidency. The quantile concept allows for a notion of outlyingness
of the supplied rankings. We analyze commonalities of selected outlying stra-
ta of rankings, ranging from analyzing only the most central rankings to the
analysis of the whole set of rankings. We also indicate how one can use the
quantile concept to construct an aggregation function in the context of Social
Choice Theory. In a final step we additionally sketch how to utilize the quantile
concept for developing tests of model fit for statistical models of ranking data
like the Insertion Sorting Rank model (Biernacki and Jacques [2013]) or the
Thurstonian model ([Thurstone, 1927], cf. also [Lee et al., 2014]).

The proposed quantile concept of Contribution 4 is applied to the analysis of ranking data in
Contribution 5. Ranking data appear for example in Social Choice Theory where a set of n

22In this context, a kernel system is a subset of V that contains the least element of V and that is furthermore
closed under arbitrary suprema.
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voters rank a set C = {C1, . . . , Cq} of q alternatives (for example candidates running for an
office). One can see this as dealing with n data points in the space of all binary relations on
the candidate set C. The set of all binary relations on C, ordered by set inclusion, builds a
complete lattice and thus we can fully exploit the quantile concept for samples with values in
a complete lattice developed in Contribution 4. The order theoretic notion of outlyingness can
then be used for example to cluster the rankings given by the n voters by increasing outly-
ingness strata. One can analyze for a given outlyingness threshold c the commonalities of the
orderings with an outlyingness lower than c by looking for example at the intersection of all
such orderings. In Contribution 5 we analyze a data set that is related to the wisdom of the
crowd phenomena in the context of ranking data, see [Lee et al., 2014]. There, 26 students were
asked to rank the former 44 US-presidents according to their presumed order of presidency.

Beyond the descriptive analysis of ranking data, the contribution also shortly sketches,
how characteristics of the obtained commonalities of the strata can be used to analyze the
appropriateness of statistical models for ranking data. Concretely, one can quantify for the
obtained partial orderings, how close they are to interval orders23. To do so, one can simply
count the number of counterexamples to the condition x < y & z < w =⇒ x < w or z < y
that characterizes an interval order (cf., [Fishburn, 1970]). For the ranking data set of the
44 former US-presidents it seems that for example for a Thurstonian model (cf., [Thurstone,
1927]) or for the Insertion Sort Rank model (ISR, cf., [Biernacki and Jacques, 2013]), the
actually obtained orderings are far more close to an interval order as one would expect under
the assumed statistical models.

In the context of Social Choice Theory it is also possible to use the order theoretic outlying-
ness concept developed in Contribution 4 to construct a straightforward aggregation function
for n-tuples of orderings on some space C of alternatives, called profiles in the context of So-
cial Choice Theory: To aggregate the n orderings R1, . . . , Rn given by n voters about different
alternatives (for example candidates in an election) into one “consensus” ordering that repres-
ents the groups preferences, one can simply choose that profile(s) of the group that is (are) the
most central one(s) in the group to represent the groups preferences. (If there are more than
one most central ordering, then one can either choose arbitrarily one of them or alternatively,
one can apply a further aggregation rule to the most central orderings.) With this procedure,
which is called commonality sharing and that is further analyzed in Contribution 6, one
would get a kind of aggregation function that could be seen as a completely order theoretic
generalization of the univariate median24. This generalization of the median actually differs
from another generalization of the median to ranking data, namely the Kemeny rule (cf., [Ke-
meny, 1959]) that can be understood as another generalization of the univariate median in the
sense that it is defined as the minimizer of a L1-norm.

23An interval order is a strict partial order (V,<) satisfying ∀x, y, z, w ∈ V : x < y & z < w =⇒ x <
w or z < y. If V is countable, then (V,<) is an interval order iff there exist real-valued functions l and u on
V such that ∀x ∈ V : u(x) > l(x) and x < y ⇐⇒ u(x) < l(y), see Fishburn [1970]. This is the reason for the
name interval order.

24Note that in the simple univariate case, a median is exactly a value that is most central w.r.t. the data
points or the underlying probability distribution.
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Contribution 6) C. Jansen, G. Schollmeyer, T. Augustin. A probabilistic evaluation fra-
mework for preference aggregation reflecting group homogeneity. Revised version under
review in Mathematical Social Sciences, original version available as a technical report un-
der https://epub.ub.uni-muenchen.de/29269/, the revised version can be found under
http://gschollmeyer.userweb.mwn.de/prob_evaluation_revision.pdf.

Short summary: In Contribution 6 a probabilistic framework for evalua-
ting the quality of different aggregation functions of Social Choice Theory is
developed. The analysis is done in dependence on a notion of group specific
homogeneity, for which a minimal axiomatization, as well as a concrete ho-
mogeneity measure satisfying the axioms are proposed. In a simulation study,
selected aggregation functions, including the commonality sharing rule based
on Contributions 4 and 5 are analyzed.

The aggregation procedure described above, called “commonality sharing” in Contribution
5, is analyzed together with other classical aggregation functions known from Social Choice
Theory in Contribution 6. The analysis is based on a statistical framework that incorporates
information about the homogeneity of the group involved in the group decision. One supposes
that the homogeneity of groups can vary very much from group to group. Answering the que-
stion of what is a good aggregation function could thus also be very dependent on the groups
homogeneity. The contribution is therefore concerned firstly with formalizing a notion of ho-
mogeneity. In our contribution, we give a minimal set of conditions, a reasonable measure
of homogeneity should satisfy (namely i) sensitivity for consensus, ii) anonymity and iii)
monotonicity w.r.t. a switch of voters to the majority). We also give a concrete measure of
homogeneity that satisfies these conditions and also discuss other measures known from Social
Choice Theory (e.g., Kendall’s and Smith’s W that does not satisfy our requirements). For
a statistical analysis of the performance of aggregation functions under different scenarios of
homogeneity, actually the complete distribution of the randomly observed profiles for a group
is needed. Since from an applicational point of view, because of the high dimensionality of the
profile space, the specification of a reasonable underlying distribution seems to be very hard to
achieve, we go here an indirect way: Instead of specifying the distribution of the profiles, one
only specifies (for example data-based or expert-based) the distribution of the homogeneity,
quantified by the homogeneity measure from above. Because of its one-dimensionality, the
specification of the distribution of the homogeneity measure is far easier than the specification
of the whole profile distribution. To statistically analyze the performance of different aggrega-
tion functions, in a second step one has to specify a “quality measure” that quantifies how
well a consensus order supplied by an analyzed aggregation function represents the groups
preferences.

Given the specified distribution of the homogeneity measure one can then analyze the dis-
tribution of the quality measure. Since different distributions of the profile can lead to the
same distribution of the homogeneity measure, the distribution of the quality measure is not
uniquely identified and there is a whole set of possible distributions of the quality measure
compatible with the specification of the homogeneity measure. To analyze the quality measure
one thus has at least two different possibilities: One can a) either analyze the distribution of
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the quality measure under the whole set of all profile distributions that are compatible with
the specified distribution of the homogeneity measure, or one can b) try to single out one spe-
cific distribution of the quality measure compatible with the specification of the distribution of
the homogeneity measure, for example that distribution which maximizes entropy. While a) is
thought of in the spirit of imprecise probabilities where one gets a whole set of distributions of
the quality measure, from which one can compute for example upper and lower expectations,
the approach b) can be understood as some objective Bayes type analysis, where one gets one
precise distribution of the quality measure that can be used to compare the performance of
different aggregation functions.
In a short simulation study, we analyzed six common aggregation functions including Keme-
ny’s rule, as well as the commonality sharing procedure from Contribution 5. It turned out
that, as expected, if one uses an L1-type quality measure, then Kemeny’s rule performs better
than the other aggregation rules because it actually is defined as the optimizer of this qua-
lity measure. Also for other quality measures used in the study the general picture does not
change much. (But Kemeny’s rule is not every time the “best”, for very heterogeneous groups,
a dictator-ship type aggregation function performs a little bit better w.r.t. the chosen quality
measure.) Compared to the other rules, the commonality sharing rule behaves very similar
to Kemeny’s rule, which is not so surprising given that both Kemeny’s rule, as well as the
commonality sharing rule are different generalizations of the median to ranking data.

Remarks and perspectives Part C

As already noted, if in Contribution 4 one takes the lattice co (Rd) of all convex compact
sets of Rd ordered by set inclusion and if one identifies data points x ∈ Rd with singletons {x},
then the level-function λ can be seen as an outlyingness-function that is dual to (a transfor-
mation of) Tukey’s half-space depth. However, since we are now thinking in the space co (Rd),
we can also deal with imprecisely observed data, namely with convex data. Thus, the me-
thod is slightly more general than Tukey’s half-space depth, here. In particular, one can also
use it (and this was actually the motivation for the development of the lattice-valued quan-
tile concept, compare the remarks and perspectives part A) to get a descriptive method for
analyzing the distribution of set-valued estimators (for example the estimators for the iden-
tification regions of Contributions 1 and 2) by firstly drawing B bootstrap samples that lead
to B bootstrapped set-valued estimates from which one can then compute a γ · 100% lower
quantile to get an insight into the spread of the set-valued estimator. Of course, there are far
more non-conventional applications of the quantile concept thinkable, since one only needs the
structure of a complete lattice: For example in the context of symbolic data analysis (cf., e.g.,
[Bock and Diday, 2012]), if one is interested for instance in the constitution of the households
in a country w.r.t. age, then one has to deal with distribution-function-valued data. Since the
space of all distribution functions with the ordering F ≤ G ⇐⇒ ∀x ∈ R : F (x) ≤ G(x)
builds a lattice,25 one can use the quantile approach to get a rough descriptive insight into the
distribution of the age distributions in the households.

Furthermore, the quantile concept can also be applied in the context of formal concept
analysis (see, e.g., [Ganter and Wille, 2012]): In formal concept analysis one starts with a
so-called formal context (G,M, I), where G is a set of objects, M is a set of attributes and

25Generally, this lattice is not complete, but this is only a technical subtlety that will not lead to any
problem, here.
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I ⊆ G ×M is a binary relation between G and M with the interpretation (g,m) ∈ I ⇐⇒
object g has attribute m. In the context of data analysis, G is typically the set of observed data
points and M models the multivariate attributes of the data points. For example in a social
survey, G = {g1, . . . , gm} is a set of m respondents that were given a set M = {m1, . . . ,mn} of
n statements and gIm then means that respondent g agrees with the statement m. In formal
concept analysis one then builds up a hierarchy of so-called formal concepts that are pairs
(A,B) where A is a set of objects and B is a set of attributes with the property that

1. Every object g ∈ A has every attribute m ∈ B (i.e.: ∀g ∈ A∀m ∈ B : gIm).

2. There is no further object g ∈ G\A that has also all attributes of B (i.e.: ∀g ∈ G :
(∀m ∈ B : gIm) =⇒ g ∈ A).

3. There is no further attribute m ∈ M\B that is also shared by all objects g ∈ A (i.e.:
∀m ∈M : (∀g ∈ A : gIm) =⇒ m ∈ B).

A formal concept can be understood as the mathematical formalization of a concept that says
which objects belong to the concept and which attributes characterize the concept. The set
A of a formal concept (A,B) is called extent and the set B is called intent of the concept.
The set of all formal concepts is naturally equipped with the subconcept relation26

(A,B) ≤ (C,D) ⇐⇒ A ⊆ C &B ⊇ D,

which means that the formal concept (A,B) is a subconcept of the concept (C,D) (i.e.:
(A,B) ≤ (C,D)) iff it is more specific in the sense that, compared to the concept (C,D),
less objects belong to the concept (A,B) which share more common attributes. The basic
theorem on concept lattices ([Ganter and Wille, 2012, p. 20]) then states that the set of
all formal concepts equipped with the subconcept relation builds a complete lattice. This
complete lattice, called concept lattice, can then be used together with the quantile approach
to get a notion of outlyingness of formal concepts, which would translate in our example
to an outlyingness for response patterns the respondents gave to the different statements of
M . (To every respondent one can naturally relate the most specific formal concept that has
this respondent in its extent and the set of all statements the respondent agreed to in its
intent.) This notion of outlyingness in some sense captures the extremeness of opinions with
respect to the analyzed population of respondents. Note also that the basic theorem on concept
lattices furthermore states that every complete lattice can be represented as a lattice of formal
concepts. Thus, if we think in terms of concept lattices, we do not lose any of the generality
of the lattice-valued quantile approach. Actually, also the generalization of Tukey’s half-space
depth from above can be thought in this language, and can also be implemented in terms of
formal concept analysis by looking at an appropriate formal context (G,M, I). To do so, one
has to take G as the set of all points in Rd that where present in the data set, either as precise
point valued observations or as convex-set-valued observations. The set M has to be taken as
the set of all half-spaces spanned by d points that are either precisely observed points or the
extreme points of observed convex sets. Then, one has to define (g,m) ∈ I ⇐⇒ point g (or
convex set g) lies (completely) in the half-space m. Finally, one can compute the quantiles in
the corresponding concept lattice. (To do so, one does not have to compute the whole concept
lattice.) Of course, for data in R2 one could do the computation far more efficiently by adopting

26Actually, for formal concepts (A,B) and (C,D) one automatically has A ⊆ C ⇐⇒ B ⊇ D. Thus, one
could equivalently define (A,B) ≤ (C,D) ⇐⇒ A ⊆ C or (A,B) ≤ (C,D) ⇐⇒ B ⊇ D.
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the O(n log n)-algorithm given in Rousseeuw and Ruts [1996] to the case of convex-set-valued
data.

Part D: Relational data analysis: Stochastic dominance for partially ordered sets

Stochastic (first order) dominance is a partial ordering between random variables that
captures a notion of one variable being stochastically clearly “higher” in outcome than ano-
ther random variable. It has many applications in a variety of disciplines like for example
welfare economics (cf., e.g., [Arndt et al., 2012, 2015]), decision theory (cf., e.g., [Levy, 2015]),
portfolio analysis (cf., e.g., [Kuosmanen, 2004]), nonparametric item response theory (cf., e.g.,
[Scheiblechner, 2007]), medicine (cf., e.g., [Leshno and Levy, 2004]), toxicology (cf., e.g., [Da-
vidov and Peddada, 2013]) or psychology (cf., e.g., [Levy and Levy, 2002]) to name just a few.
For real-valued random variables, stochastic dominance principles, which in its roots can be
traced back to the work of J. Bernoulli ([Bernoulli, 1713], cf. [Schneeweiß, 1967, p. 38]) are a
broadly researched topic with well developed theory and many applications (e.g., already the
bibliography [Bawa, 1982] contains more than 400 references, cf., also [Mosler and Scarsini,
1993] or [Levy, 1992]). For multivariate first order stochastic dominance, though theoretically
also well established (cf., e.g., [Lehmann, 1955, Levhari et al., 1975, Kamae et al., 1977] for
characterizations of stochastic dominance), empirical applications of multivariate stochastic
dominance like for example Arndt et al. [2015] seem to be rare, which is maybe due to the
computational hardness of checking dominance in the multivariate situation.

G. Schollmeyer, C. Jansen, and T. Augustin. Detecting stochastic dominance for poset-
valued random variables as an example of linear programming on closure systems. Tech-
nical Report 209, Department of Statistics, LMU Munich, 2017. URL http://www.

statistik.uni-muenchen.de/forschung/technical_reports/index.html.

Short summary: Contribution 7 gives a method for detecting first order
stochastic dominance for random variables with values in a partially orde-
red set (poset). The method makes substantial use of linear programming and
is furthermore generalized to linear optimization on closure systems. Beyond
checking for stochastic dominance, also proposals for statistical inference and
regularization based on Vapnik-Chervonenkis theory are given. The generality
of the developed methods are illustrated on data examples in the context of
multivariate inequality analysis, item impact and differential item functioning
in item response theory, analyzing distributional differences in spatial statistics
and guided regularization in the context of cognitive diagnosis models.

In Contribution 7, first order stochastic dominance for random variablesX, Y : (Ω,F) −→
(V,F ′,≤) with values in a partially ordered set (poset)27 (V,≤) is analyzed. There, the fo-
cus is not on analytically given random variables, instead, a method for detecting stochastic
dominance for random variables that are given by empirical samples and their associated em-
pirical laws is established. (Of course, statistical inference is also treated in the contribution.)

27This includes especially the multivariate case of Rd where the natural order x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} :
xi ≤ yi is used. Note also that every finite poset (V,≤) can mathematically be represented as a multivariate
case where the dimension equals the order dimension of (V,≤), cf. [Dushnik and Miller, 1941, Trotter, 2001].
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Since for poset-valued random variables the values are generally not totally ordered, first order
stochastic dominance is not simply characterized by the distribution function, anymore. One
elegant characterization in the poset-valued situation is the upset-characterization

X ≤SD Y ⇐⇒ ∀A ∈ U((V,≤)) : P̂ (X ∈ A) ≤ P̂ (Y ∈ A), (1)

where U((V,≤)) is the set of all upsets of (V,≤). A set A ⊆ V is called an upset if for arbitrary
a, b ∈ V we have a ∈ A & b ≥ a =⇒ b ∈ A. Intuitively, the notion of an upset A can be
understood as formalizing a reasonable concretion of the notion of “big values” by saying for
an upset A that a value x is big if it is in A and stating that x is not big if it is not in A: Every
such set A formalizing a reasonable concretion of the term big should satisfy the property that
if a value a ∈ V is termed big, and if b ≥ a, then also b should be termed big. The statement
of stochastic dominance X ≤SD Y then could be verbalized as “The probability of X taking
big values is smaller than or equal to the probability of Y taking big values, independent of
the concretion of the term big. Since the family of all upsets is usually very large, explicitly
checking (1) is practically not possible and thus, the upset characterization is commonly not
used for checking stochastic dominance.

A linear programming approach for detecting stochastic dominance

In the contribution we still use the upset characterization28 for detecting stochastic do-
minance. The reason is that in the field of order and lattice theory, the family of upsets is
actually a well understood closure system29. It turns out that checking first order stochastic
dominance in fact can efficiently be done by solving a linear program of the form

max
A upset

P̂ (X ∈ A)− P̂ (Y ∈ A). (2)

and checking, if the maximal value of (2) is lower than or equal to zero.30 Here, one needs
not to explicitly look at every upset A, instead, upsets A can efficiently be represented by its
indicator functions. The condition of being an upset can be nicely incorporated by inequality
constraints since the indicator functions of upsets are exactly the isotone {0, 1}-valued functi-
ons. The main simplifying fact is here that the integrality constraints (i.e. the demand that the
decision variables are integer, here concretely, binary) on the indicator functions can actually
be dropped by only demanding that all involved decision variables are in the real-valued in-
terval [0, 1]. So, here one has to solve not a binary, but only a linear program. Concretely, one
has to solve a linear program with |V | decision variables and |l |+2|V | inequality-constraints,
where l is the covering relation associated to ≤ and where for the poset V it is enough to look
at that values of V that were actually observed in the sample. This means that the problem
is of course manageable in realistic situations of application. In the contribution, we also ana-
lyze a dataset in the context of inequality analysis where n = 1515, |V | = 922 and |l | = 3122.

28Other techniques of checking dominance can be found e.g. in [Mosler and Scarsini, 1991, Østerdal, 2010]
where a characterization of stochastic dominance in terms of a mass transportation problem is utilized.

29A closure system S on a space Ω is a family S ⊆ 2Ω of subsets of Ω that contains Ω itself and is closed
under arbitrary intersections.

30If the actually observed maximal value of (2) is zero, then we know X ≤SD Y , but beyond this, the
minimal value of (2), i.e., the optimal value of (2) obtained by replacing maximization with minimization, gives
furthermore some sort of a measure of the extent of dominance which additionally can be used for statistical
testing. This is an advantage compared to dominance checking approaches based on a mass transportation
characterization, cf., Sections 3.3 and 3.2.2 of the contribution.
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A generalization: Linear programming on closure systems

The reason for the ease of translating the problem of detecting stochastic dominance into a
linear program, especially the fact that one can drop the integrality constraints, lies main-
ly in the order theoretic fact that the family of all upsets is not only a closure system, it
is furthermore also closed under arbitrary unions. A natural question is then: “Are similar
techniques also applicable for closure systems that are not closed under arbitrary unions?” It
turns out that also general closure systems can be described by inequality constraints and thus
the optimization of a linear function on a general closure system can still be done via binary
programming, but with the main difference that the integrality constraints of the involved
binary programs generally cannot be dropped or can only partially be dropped. To illustra-
te the usefulness of being able to solve a binary program on a closure system, we briefly
sketch two situations of statistical data analysis (discussed in Section 4.1 and 4.2 and app-
lied in Section 6.4 and 6.2 of the contribution) where closure systems somehow naturally arise:

Exemplary closure systems relevant for statistical applications

Spatial statistics: The closure system of all convex sets of R2 (cf., Sections 4.1 and 6.4
of the contribution) could be interesting in the context of spatial statistics. For example in
ecology, one would possibly be interested in differences in the spatial distribution of different
species, for example female and male pacific cods in the Bering Sea, analyzed in Syrjala [1996].
For the statistical analysis one can use for example generalizations of the Kolmogorov-Smirnov
test or the Cramér von Mises test as discussed in Syrjala [1996]. Another way of statistical
analysis would be to generalize31 the Kolmogorov-Smirnov test slightly differently by looking
at every convex area of the Bering Sea, computing the difference in the proportions of male
and female cods and finally analyzing the maximal and minimal difference over all convex sets.
This would be exactly solving a binary program on the closure system of all convex sets32 of
R2. While the maximal difference of proportions of female and male cods provides a quantity
that can be used for a statistical test, the convex set where the maximimum/minimum of
the difference in proportions is actually attained can give further descriptively interesting
insights into the data situation. To solve the binary program one has to efficiently describe
the underlying closure system. A direct description by explicitly enumerating all convex sets
is very hard due to the high number of convex sets: For n points (x1, . . . , xn) of R2 the
closure system H := {A ∩ {x1, . . . , xn} | A ⊆ R2, A convex } can have 2n sets in the worst
case. However, it is possible to describe a closure system by the help of so-called formal
implications33 known from formal concept analysis: A formal implication is a pair (A,B) of
subsets of the underlying space (in our case {x1, . . . , xn}), usually denoted by A −→ B, with

31Compared to other generalizations, like, e.g., Peacock [1983], Fasano and Franceschini [1987] or Justel et al.
[1997], the generalization described here is completely independent of the choice of the used coordinate system.
Of course, there are other, computationally much more manageable consistent and affine invariant possibilities
of generalization, e.g., by applying consistent, affine invariant data depth functions, like, e.g., Tukey’s half-
space depth. (concerning consistency, cf., [Koshevoy, 2002, Hassairi and Regaieg, 2007, Cuesta-Albertos and
Nieto-Reyes, 2008]).

32Of course, the closure system of all convex sets is infinite, but it is actually enough to look at the finite
set of points where one actually did observe cods.

33Formal implications also play an important role in related fields like e.g. in mining association rules
([Agrawal et al., 1993, Piatetsky-Shapiro, 1991, Lakhal and Stumme, 2005]). There, some sort of stochastic
generalizations of formal implications, called association rules, are analyzed.
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the interpretation as the statement “All sets of a family of sets that contain all elements of A
always also contain all elements of B. A closure system can then be described by the set I of all
formal implications that are actually true for the closure system. To describe a closure system
by formal implications it is actually not necessary to enumerate all valid implications, but only
a so-called implication base, which is a minimal subset of the set of all valid implications that
generates the set of all valid implications in the sense that every closure system in which all
implications of the base are valid is such that also all other implications from I are valid. The
computation of an implication base is generally computationally expensive (cf., [Kuznetsov,
2004, Ryssel et al., 2014]), but for the special case of convex sets, because of Carathéodory’s
theorem about convex hulls34, one can explicitly give an implication base as

{{a, b, c} −→ co ({a, b, c}) | a, b, c ∈ {x1, . . . , xn}, co ({a, b, c}) ) {a, b, c}},

where co ({a, b, c}) denotes the intersection of the convex hull of the set {a, b, c} and the set
{x1, . . . , xn}. The demand of the validity of the formal implications can be incorporated into
the binary program via inequality constraints. All in all, this means that one can solve the
optimization problem by solving a binary program with n decision variables and O(n3) inequa-
lity constraints. Unfortunately, generally none of the integrality constraints can be dropped,
so the binary program would be very hard to solve already for medium sizes of n.

Item response theory: A further natural example of a closure system can be found in
dichotomous item response theory35 (IRT): Let M be a set of persons and let G be a set of
items in an IRT data set. Let furthermore be I ⊆ G × M the relation that describes the
responses of the persons to the items via (g,m) ∈ I ⇐⇒ person g solved item m. Then, a
natural closure system to consider is the closure system of all formal concept extents of the
formal context (G,M, I), i.e., the system

H := {SY := {g ∈ G | ∀m ∈ Y : (g,m) ∈ I} | Y ⊆M}.
of sets SY of that persons that solved at least all items from a given set Y . This closure sy-
stem is often also very large36. However, it appears that again it can efficiently be described
with methods of formal concept analysis. If one is interested in the analysis of item impact or
differential item functioning (DIF)37 for example with respect to gender, one can analyze in a
completely non-parametric manner differences in the proportions of female and male persons
who solved at least all items from a set Y of items and then look at that set Y for which
this difference is maximal/minimal. This is again a binary programming problem on a closure
system that can also be seen as a generalization of the classical Kolmogorov-Smirnov test
to a very high dimensional multivariate situation. The example given in Section 6.2 of the
contribution consists of a set of 45 items which corresponds to a Kolmogorov-Smirnov type
test in the 45-dimensional space {0, 1}45 which can be solved in an acceptable amount of time,

34Carathéodory’s theorem states that if a point x ∈ Rd lies in the convex hull of a set P of points, then
there exists a subset Q ⊆ P of at most d+ 1 points such that x lies also in the convex hull of Q.

35In item response theory one is concerned with a sound way of inferring the values of presumed underlying
latent traits like “intelligence” from manifest observed data like the answers of respondents to questions of a
test battery. For an introduction to item response theory, see, e.g., [Baker, 2001].

36For example the data set analyzed in the contribution has about 8.900.000.000 elements.
37One speaks of item impact of an item m, if for different groups of persons the probability of solving this

item differs. In a similar way, an item m shows differential item functioning, if the probability of solving the
item is different for different groups of persons that are comparable in the sense that they have the same
underlying abilities. For more details on differential item functioning, see, e.g., [Osterlind and Everson, 2009].
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which is due to the fact that in this situation, for the binary program, fortunately, much of
the integrality constraints can be dropped, see Section 4.2 of the contribution. Furthermore,
the “effective dimension” is actually not 45 here, which makes the computational, and also
the statistical complexity smaller. In terms of Vapnik-Cherovonenkis theory (see below), the
V.C.-dimension is only 22, here. If one is not only interested in differences between response
probabilities, but also in differential item functioning, which is present if not the unconditional
response probabilities, but the response probabilities conditional on the person abilities differ,
one can make use of reweighting techniques. In a first step one can reweight the subsamples
of female and male persons in such a way that the abilities (measured by item scores) are (ap-
proximately) identically distributed. In a second step, one can analyze the joint distribution
of the item scores and the response patterns. To do so, one can effectively use the method of
conceptual scaling known from formal concept analysis. (For a more detailed explanation, see
Section 2.2. and Section 6.2 of the contribution.) Since one uses the item scores for accounting
for the different distributions of the latent abilities in the male and the female group, the
resulting test for differential item functioning can be seen as some multivariate version of the
Mantel Haenszel procedure (see [Holland et al., 1988], cf., also, e.g., Strobl et al. [2015], Tutz
and Schauberger [2015], Tutz and Berger [2016] for other more modern tests for differential
item functioning.)

Inference: permutation tests, conservative distribution free Vapnik-Chervonenkis
bounds and regularization

The second part of the contribution is concerned with the analysis of the distribution of the
maximal value of the linear program (2) (or the corresponding binary programs for the general
case of linear optimization on a closure system) that can be also used as a reasonable test
statistic for a statistical test. For stochastic dominance in the univariate case, the maximal
value of (2) is exactly the test statistic D+ of the two-sample Kolmogorov-Smirnov test. In
contrast to this situation where the Kolmogorov-Smirnov test statistic is distribution free for
the class of continuously distributed random variables, the situation changes for multivariate
generalizations. Generally, a concise analysis of the distribution of the maximal value of the
program (2) seems to be difficult here, because the distribution of the test statistic is dependent
on both the exact structure of the involved closure system (which is usually only implicitly
given) and the interplay between the closure system and the underlying true law P .38value
a Thus, an alternative would be here to rely on permutation tests to do inference. However,
it is still possible to get analytical conservative bounds for inference based on concepts of
Vapnik-Chervonenkis theory39, see Section 5.2 of the contribution. Beyond giving conservati-
ve bounds, Vapnik-Chervonenkis theory also allows for a kind of “regularization” of the test
statistic by reducing the Vapnik-Chervonenkis dimension of the underlying closure system by
appropriately reducing the size of the closure system. The possibility of regularization is dis-
cussed in Section 5.3 of the contribution and illustrated exemplarily for two examples (namely
in the context of inequality analysis based on stochastic dominance (Section 5.3.1) and in the

38There actually exists some literature about the asymptotic distribution of the optimal value of a random
linear program (e.g., [Babbar, 1955, Sengupta et al., 1963, Prèkopa, 1966]) but this literature seemingly does
not apply here, because in our case, under the null hypothesis, the random objective function is symmetrically
distributed around the zero vector such that the assumption of a unique optimal basis for the asymptotic
linear program (cf. [Prèkopa, 1966, Theorem 5]) is not satisfied.

39For an introduction to Vapnik-Chervonenkis theory, see, e.g., [Devroye et al., 2013].
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context of cognitive diagnosis modeling that is related to nonparametric item response theory
(especially knowledge space theory) and also to formal concept analysis (Section 5.3.2)). For
the application of regularization techniques (called “taming” in the contribution) one needs
to compute the Vapnik-Chervonenkis dimension of the underlying closure system. Thus, cha-
racterizing and computing the Vapnik-Chervonenkis dimension of exemplary closure systems,
which is also of interest of its own, is also treated in Sections 5.2.1 and 5.2.2 of the contributi-
on. Actually, there is a close connection between the description of closure systems via formal
implications and the notion of shatterable sets from Vapnik-Chervonenkis theory that is ge-
nuinely involved in the definition of the Vapnik-Chervonenkis dimension of a family of sets,
see Section 5.2.1 of the contribution. Surprisingly, there seems to be not much research that
directly connects formal concept analysis and Vapnik-Chervonenkis theory, the only works in
this direction, the authors of the contribution are aware of, are the papers Anthony et al.
[1990a,b], Chornomaz [2015], Albano and Chornomaz [2017], Albano [2017a,b], Makhalova
and Kuznetsov [2017].

Applications of relational data analysis

In Section 6 of the contribution we also apply the developed techniques of relational data
analysis to different data examples and discuss the flexibility of relational data analysis to
deal with deficient or non-standard data. Section 6.1 is concerned with detecting first order
stochastic dominance in the context of multivariate inequality analysis. We use the German
General Social Survey (ALLBUS, [GESIS - Leibniz - Institut fur Sozialwissenschaften, 2015])
and analyze differences between the male and female respondents with respect to three dimen-
sions of multivariate inequality analysis40: Income, education and health. All three dimensions
have specific data aspects: For example income is not observed precisely, as is often the case.
For those respondents who answered the direct question about income one has precise values.
For those who did not answer the direct question, a categorized follow up question about the
income given in intervals [a, b) was additionally asked. Thus, one has some precise values, some
interval values and some missing values for respondents who completely refused to answer the
income questions. The relational method for checking dominance can easily deal with such
kind of data41 because one only has to specify, when a reported income is higher than another.
This could be done for example by treating all incomes as intervals42 and say for example that
an interval [a, b) is greater than an interval [c, d) if d ≤ a. Additionally, one has the flexibility
to impose further modeling assumptions. For example, one could assume that the coarsening
behavior is unknown but identical in both analyzed subgroups. Then, for analyzing stochastic
dominance one can furthermore conclude that reported intervals [a, b) and [c, d) with identical
end-points (i.e. a = c & b = d) are comparable (i.e. [a, b) ≤ [c, d) & [a, b) ≥ [c, d)). Of course,
it is also possible to replace the intervals by their mid-points in an ad hoc manner, but this
is not so much in the spirit of the proposed relational method of data analysis. Note further

40If one is interested for example in poverty in the sense of Sens capability approach (cf., [Sen, 1999]),
then of course one would have to analyze far more “dimensions of poverty”, in the contribution we only
exemplarily analyze dimensions of individual capability, cf., also [Arndt et al., 2006] for a feasibility study of
the operationalization of the capability approach for the Socio-Economic Panel (SOEP).

41Of course, the completely missing values are problematic because they are incomparable to any other
reported income. However, this is actually adequate because it reflects the fact that from a missing value,
without imposing some modeling assumptions, one has of course really no information about the income. The
only way to deal with this issue without statistical modeling seems to be here to shift the focus from the
population of actual interest to the population of the responders and to stay silent about the non-responders.

42A precise income of c Euro can be treated as the interval [c, c].
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that also more sophisticated ideas of statistical modeling are applicable, here: If one is able to
model the distribution of the true values within the intervals43, one can (at least in principle)
incorporate this distribution in the analysis. This can also help in treating item non-responders
(i.e. persons that did only answer some of the questions about the three dimensions). For the
concrete computation one may have to discretize this distribution if it is modeled continuously
in the first place. By incorporating different thinkable coarsening pattern scenarios one could
get a stylized form of a sensitivity analysis.

The dimension education of the ALLBUS survey is a totally ordered 9-level scale imple-
menting the International Standard Classification of Education (ISCED) 2011 (see [UNESCO
Institute for Statistics (UIS), 2012]) for Germany. However, the ISCED 2011 also allows for
other forms of implementation that would yield only a partially ordered measurement of sca-
le. For example, for two different highest educational achievements one can use expert-based
value judgments about which of them is “higher” w.r.t. multivariate poverty or if they are
incomparable. Another way would be to say that one bases the dimension education on the
whole educational path and say that a person A is more poor than another person B w.r.t.
the dimension Education only if both persons followed the same educational path but person
A stopped earlier with a lower highest educational achievement than person B. This partial
ordering would lead to a less decisive analysis, but it has the potential to reveal, how much
a more classical analysis would dependent on the choice of a totally ordered scale for the
dimension education.

Finally, the dimension health is the reported answer to the question about how the respon-
dents would describe their health status in general. For the answer, both a 5-category and a
6-category response scale were used in a split ballot design to test for a possible impact of dif-
ferent response scales. The method of stochastic dominance can deal with such issues of split
designs in different ways: Firstly one can do a separate analysis for every split, which would be
especially appropriate if systematic differences between the response scales are present. Results
of the analysis that are valid in both splits can then be seen as valid, independent of the choice
of the scale. Secondly, if both response scales adequately operationalize the same construct, one
can analyze all splits jointly by matching both scales to each other based on their respective
empirical distribution functions. This is possible because one knows that because the split-
ting was randomly assigned, the measured construct has the same distribution in every split.44

The analysis of stochastic dominance in our data example shows a nearly strict dominance:
The female subpopulation is nearly strictly dominated by the male subpopulation w.r.t. the
joint analysis of the three dimensions income health and education and the results are high-
ly statistically significant. This illustrates that “weak forms” of relational data analysis are
still able to provide non-trivial substance matter conclusions that are very reliable due to the
“weak conceptualizations” of involved terms like that of inequality.

Beyond stochastic dominance, also for general linear programming on closure systems we

43For example one could assume that the distribution of the unobserved values within the intervals is
independent of the presence of coarsening.

44Of course, due to possibly different measurement error in different splits, the actual measurements can
differ in their distribution. But if the measurement errors are independent of the construct and from each
other, this will only produce a “smearing” of the measurements, which can lead to cases where stochastic
dominance w.r.t. the actual construct is actually present, but it is not present anymore for the measurements. A
transition of non-stochastic dominance w.r.t. the construct into stochastic dominance w.r.t. the measurements
can fortunately not happen, which shows the power of relational modeling.
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give application examples in the contribution: In Section 6.2 we use an IRT data set45 and
apply a high-dimensional Kolmogorov-Smirnov type test for joint item impact and differential
item functioning w.r.t. gender. It turns out that also for such a nonparametric procedure that
takes the whole joint distribution of all 45 item answers into account, one has still enough
power to detect systematic differences between male and female respondents. The analysis
of the involved statistical complexity shows that the Vapnik-Chervonenkis dimension of the
involved closure system is 22, which is less then half of the “formal” dimension of 45, indicating
that data sets are sometimes much more structured than one may think. This, together with
the possibility of regularization that also provides theoretical bounds in terms of Vapnik-
Chervonenkis theory, could help in making the “curse of dimensionality” (Bellman, 1957)
more into a “blessing” (Breiman, 2001). Additionally, in Section 5.3.2 of the contribution,
in the context of cognitive diagnosis models (see, e.g., [Rupp et al., 2010]), we discuss,
how one can incorporate external knowledge about the underlying closure system to efficiently
regularize it in a more guided manner. The discussed possibility of guided regularization
is illustrated in Section 6.3 with a subsample from the Trends in International Mathematics
and Science Study 2007 (TIMSS, [Mullis et al., 2005]). Finally, we also illustrate the usage of
the closure system of convex sets of R2 in spatial statistics. For a subsample of a data set of
dead and alive oak trees in a secondary wood in Urkiola Natural Park analyzed in Laskurain
[2008], we test for differences in the spatial distribution between dead and alive oak trees.

Contribution 8) G. Schollmeyer, C. Jansen, and T. Augustin. A simple descriptive me-
thod for multidimensional item response theory based on stochastic dominance. Tech-
nical Report 210, Department of Statistics, LMU Munich, 2017b. URL http://www.

statistik.uni-muenchen.de/forschung/technical_reports/index.html.

Short summary: Contribution 8 uses concepts of (multivariate first order)
stochastic dominance to establish a descriptive approach for a relational analy-
sis of person ability and item difficulty in the context of item response theory.
It is shown that the proposed descriptive approach avoids a paradox of mul-
tidimensional item response theory that was firstly described in Hooker et al.
[2009].

Contribution 8 develops a simple descriptive method for data analysis in the context of item
response theory. The applied technique consists in a more or less purely relational data ana-
lysis that relies on ideas of multivariate first order stochastic dominance. A useful feature of
stochastic dominance in this situation is that i) the data need only be of a partially orde-
red scale of measurement and ii) stochastic dominance provides the flexibility of suspending
judgment by neither saying “random variable X is stochastically greater than random va-
riable Y ” nor saying “Y is stochastically greater than X”. In item response theory one is
interested in the measurement of latent traits, for example the latent ability of persons or the
latent difficulty of a test item in a psychometric test. In a pre-philosophical manner, one can
argue that the notion “ability” always actually already asks for being complemented to an

45The data set is a subsample from the general knowledge quiz Studentenpisa conducted online by the
German weekly news magazine SPIEGEL (see [SPIEGEL Online, 2009]).
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“ability wherefore?” and thus, the concept ability seems to be a genuinely relational concept
that could appropriately be analyzed with a relational underpinning. Despite of this aspect,
classical models of item response theory do model the “ability” of persons and the “difficul-
ty” of items per se, either via real-valued parameters in the unidimensional Rasch model or
with real-valued vectors in multidimensional generalizations46. While the classical unidimen-
sional Rasch model is to some extent guided by measurement47 theoretic considerations48, for
non-Rasch type multidimensional IRT models, measurement theoretic argumentations seem
to be not very widely used in classical psychometric literature. However one judges the useful-
ness of questions concerning the need of measurement theoretic scrutinizations, in the context
of multidimensional item response theory, within many multidimensional models (including
multidimensional Rasch-type models, see [Jordan, 2013]), one is confronted with a paradox49

firstly described in Hooker et al. [2009]: If multidimensional IRT models are used in entrance
tests, it can be advantageous for applicants to deliberately answer some questions wrongly:
It can happen that by applying for example a multiple-hurdle rule ([Segall, 2010]) after esti-
mating multidimensional abilities, that a person is not approved though she solved all items
another person that was approved solved, plus some more. In measurement theoretic terms
one can see this as a violation of the homomorphism property w.r.t. the relation

“Person A is at least as able as person B , if she has solved every item solved by person B.” (R)

In contrast to many other thinkable meaningful relations concerning the presumed latent
structure, this relation can be clearly located within the empirical relational structure. To
deal with this seemingly paradoxical situation, one can follow different routes, for example, in
Hooker et al. [2009], one proposal was to do a constrained estimation of the ability parameters
that respects the empirical relation (R) from above.
Instead of “repairing” classical multidimensional IRT models, Contribution 8 goes a purely
descriptive, relational way: By utilizing ideas of stochastic dominance, we establish empiri-
cally supported partial orderings on the set of items and on the set of persons that model
the difficulties of items and the abilities of persons in a relational manner: If the difficulties
of different items in a psychometric test are known, then one can naturally define a person
A to be “more able” than a person B if for every item that was solved by person B there
bijectively exists another item solved by Person A which is as least as difficult as the item
solved by Person B. In a dual manner, if the abilities of the persons are given, then one can
introduce a difficulty-relation between items. Since beforehand one neither knows the difficul-
ties of items nor the abilities of persons, one has to simultaneously analyze pairs of ability-
and difficulty-relations that support each other. It turns out that from the hierarchy of such
empirically mutually supportive pairs builds one can easily compute the smallest and the
greatest element: In particular, the smallest element (i.e., the weakest pair of relations) is
related to so-called simple formal implications50 from formal concept analysis and the greatest
element provides some stronger stochastic type ordering of abilities and difficulties that can

46For a fundamental scrutinization of the quantitative nature of latent traits, see [Michell, 2008].
47The term measurement will be used in the sequel in the sense of representational measurement theory.
48If one is willing to understand the notion of the empirical relational structure in such a broad sense that

one is prepared to relate probabilities to the empirical relational structure, then with a great deal of goodwill,
one can see the Rasch model as an instantiation of an additive conjoint measurement situation, see [Perline
et al., 1979], for a contrary argumentation, see, e.g., Kyngdon [2008] or Heene [2013].

49Another point of view would actually be to see this paradox not as a paradox at all and to say that
everything is in best order.

50A formal implication A −→ B is called simple if A is a singleton.
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be understood as a type of a stochastic generalization of the simple formal implications of for-
mal concept analysis. All empirically mutually supportive pairs respect the relation (R) and
thus avoid the paradox. The developed descriptive method has some conceptual similarities
to descriptive approaches of item tree analysis (ITA, see [Van Leeuwe, 1974]) that are applied
for example in the context of knowledge space theory (cf., Doignon and Falmagne [2012]),
and which can be understood as another variant of a stochastic generalization of notions of
formal concept analysis. (Actually, there is a neat relation between formal concept analysis
and knowledge space theory, see [Rusch and Wille, 1996]). The Basic Local Independence Mo-
del (BLIM) from knowledge space theory is thus also analyzed in the contribution. It shows
up that for quasi-ordinal knowledge spaces and maximum likelihood estimation under fixed
careless-error and lucky-guess-probabilities, the paradox is also avoided.

Remarks and perspectives Part D

Contribution 8 made substantial use of the notion of stochastic dominance. Thus, for the
computation of empirically mutually supportive pairs the linear programming approach of
Contribution 7 can be used. To compute the ability relation between n persons one then has
to solve n2 linear programs, which can be very hard if n is very high. However, one can make
use of the structural properties of the ability relation. For example, if person A has solved more
items than person B then one already knows that person B cannot be more able than person
A. (The ability relation is a homomorphic image of the item score relation.) Furthermore, since
the ability relation is a preorder and thus transitive, if for example person A is more able than
person B and person B is more able than person C, then one already knows that person A is
also more able then person C and one does not have to check dominance for the pair (A,C)
explicitly. Also, if person A is more able than person B but not more able than person C,
then person B cannot be more able than person C. The transitivity of the ability relation and
the difficulty relation is naturally given due to the construction of these relations. This is a
main difference to descriptive techniques used in item tree analyis (ITA) like the classical ITA
algorithm or the inductive ITA algorithm that are sometimes used in knowledge space theory
(cf., e.g., [Schrepp, 1999, 2002]). There, instead of stochastic dominance, ideas of statistical
preference (cf., [De Schuymer et al., 2003b,a]) are used and one says that an item A is more
difficult than an item B if up to some amount of exceptions all persons who solved item A did
also solve item B. This relation, because of the involved exceptions, is not transitive and one
therefore has to somehow “repair” the intransitivity (see the algorithmic descriptions given in
[Schrepp, 2006]).
A naturally arising question relevant for both contributions is the question of generalization to
higher scales of measurement: Can one generalize the stochastic dominance checking approach
of Contribution 7 to data with a higher scale of measurement and can one introduce descriptive
ability and difficulty notions in the context of Contribution 8 that have more than a partially
ordinal character? It turns out, that for both contributions, reasonable generalizations can be
achieved:
Concerning Contribution 7, first order stochastic dominance can be alternatively characterized
in a decision theoretic manner as X ≤SD Y iff E(u ◦X) ≤ E(u ◦ Y ) for every bounded, non-
decreasing Borel-measurable utility function u : (V,≤) −→ R.51 If the underlying space (V,≤)
is equipped with a richer structure, then one can get a reasonable, more decisive notion of

51For this characterization one has to assume, that (V,≤), equipped with an appropriate topology builds a
partially ordered Polish space, cf., e.g. [Mosler and Scarsini, 1993].
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stochastic dominance by demanding E(u ◦X) ≤ E(u ◦ Y ) only for that utility functions that
also respect the underlying additional structure of V . One example would be the case where
V is a p-dimensional structure, where every dimension has a cardinal scale of measurement
but different dimensions cannot be compared. Then one naturally has the partially ordered
structure (V,≤) where x ≤ y ⇐⇒ ∀i ∈ {1, . . . , p} : xi ≤ yi. But additionally, one has a
natural relation R ⊆ ≤ × ≤ on pairs of comparable elements of V that can express for a pair
x < y “how much bigger“ y is, compared to x, in relation to other pairs x′ < y′. Concretely,
one can naturally define (x′, y′)R(x, y) iff the extent to which y is bigger than x is clearly
higher than the extent to which y′ is bigger than x′, which is the case if the difference between
x and y in every dimension is lower than the difference between x′ and y′. Thus

R = {((x′, y′), (x, y)) | ∀i ∈ {1, . . . , p} : y′i − x′i ≤ yi − xi}. (3)

and the notion of stochastic dominance can be modified to X ≤SD Y iff E(u◦X) ≤ E(u◦Y )
for all non-decreasing, bounded, Borel-measurable u : V −→ R that are additionally R-
homomorphisms, meaning that ∀((x′, y′), (x, y)) ∈ R : u(y′)− u(x′) ≤ u(y)− u(x) holds.52 To
compute the modified version of stochastic dominance one can directly work with the utility
functions and implement the homomorphism conditions via linear constraints. A more detailed
description of the implementation via linear programming is given in a more general context
of decision theory under severe uncertainty in Jansen, Schollmeyer, and Augustin [2017b].
For Contribution 8 one can also introduce some partial cardinal notion of item difficulty and
person ability. For example, for three items A,B and C one can say that item A “plus”
item B are more difficult than item C if for every person p who solved items A and B there
bijectively exists another person q that is not more able than person p and solved item C.
This could be also generalized to more than two items that are compared in “sum” to the
“sum” of other items. Of course, the computation of all such relations would be very hard,
especially the linear program of Contribution 7 seems to be not straightforwardly adoptable
to this generalized situation. Instead, a formulation as a mass transportation or a network
flow problem seems to be more promising, here.

52Note that this modification is conceptually already far different from classical first order stochastic domi-
nance. For example, in the case p = 1 it essentially translates to X ≤SD Y ⇐⇒ E(X) ≤ E(Y ), which is a
complete order on all random variables (with existing expectations). In particular, if for example Y takes very
low values with some probability, then w.r.t. ≤SD, it can be still higher than an arbitrary X, provided that
with some positive probability Y takes also high enough values that could compensate for the low values. This
property is very different to classical first order stochastic dominance where one cannot offset low values with
high values. Another modification in the spirit of second order stochastic dominance would be to restrict the
relation R of (3) to quadrupels ((x′, y′), (x, y)) with x ≤ x′ and y ≤ y′ to model a notion of decreasing returns
to scale. This seems to be more or less equivalent to the scaled convex order, cf., [Koshevoy and Mosler, 2007].
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Brief overall conclusion

As the more technical/detailed perspectives were already discussed in the corresponding
paragraphs for every contributing part, I would like to finish this overview with a more general
(and of course a little overstated) conclusion.

One of the background motivations behind this thesis was some wish in trying to contri-
bute a little bit to the development of methods for data analysis that are intended to provide
some flexibility for some sort of “careful data analysis” that tries to avoid a “rigorous attitu-
de” of statistical modeling “...which is write down a convenient model based on mathematical
convenience and now act as if thats exactly the truth and everything follows from that.” [Was-
sermann, 2016]. As we have seen in the discussion of ill-posedness in the context of partial
identification, also within the methodology of partial identification, which is often attributed
as some cautious type of analysis, it seems to be not enough to simply model situations of
partially identified models by using for example random set theory and then to stick back to
such a “rigorous type modeling” by again treating the new statistical model that now only
lives in a more complex space, as if it is exactly true.

Generally, statistical modeling seems to always come along with some form of schematiza-
tion, where one already knows that the model is not completely adequate. This subtly shapes
statistical modeling and in fact foils any type of “rigorous modeling” in such situations. At
the same time, attempts of “weak” or “cautious” modeling are well-advised to not squander
trust by using attributes like “reliable” only as a label.

To put the above reservations more into a perspective or a wish-list, I would finally like to
agree with Freedmans point of view in admitting that

“...a large part of...statistics is about what you would do if you had a model; and all
of us spend enormous amounts of energy finding out what would happen if the data
kept pouring in. I wish we could learn to look at the data more directly, without the
fictional models and priors. On the same wish-list: we stop pretending to fix bad
designs and inadequate measurements by modeling.” [Freedman, 1997, p.24]
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of random variables. In T. Bilgiç, B. D. Baets, and O. Kaynak, editors, Tenth International
Fuzzy Systems Association World Congress, pages 253–260. Springer, 2003a.

B. De Schuymer, H. De Meyer, B. De Baets, and S. Jenei. On the cycle-transitivity of the
dice model. Theory and Decision, 54(3):261–285, 2003b.

D. Denneberg. Non-additive Measure and Integral. Kluwer Academic Publishers, 1994.
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