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SUMMARY 

Changes in lifestyle and environmental conditions give rise to increasing prevalence of liver 

and lung fibrosis, both having poor prognosis. Investigations about the underlying 

mechanisms of fibrosis revealed a dysbalance of the local renin angiotensin system (RAS) 

actively contributing to inflammation and fibrosis1. The carboxypeptidase angiotensin 

converting enzyme 2 (ACE2) is a family member of the RAS showing high potential to 

reestablish RAS balance leading to resolution of inflammation and fibrosis2. So far, first 

promising results in experimental liver and lung fibrosis have been reported upon 

administration of recombinant ACE2 protein or ACE2 gene therapy3–9. However, recombinant 

protein and gene therapy struggle with hurdles such as organ-targeted delivery, limited or 

challenging control of protein expression and immunogenicity among others10–12. These 

obstacles may be overcome with latest advances in RNA transcript therapy (RTT)13–19. 

The goal of this project was to establish strong and sustained ACE2 protein expression 

selectively in healthy and fibrotic liver and lung tissues. Special attention was paid on the 

protein being stably integrated into the cell membrane, a prerequisite for local enzymatic 

activity. For this purpose, in vitro transcribed chemically modified ACE2 mRNA (cmRNA) was 

designed and profound in vitro cmRNA transfection efficiency, protein expression and activity 

was shown. With the aim of organ targeted ACE2 protein expression, close investigations 

about protein maturation were performed indicating full glycosylation and correct folding of 

protein leading to trafficking and correct protein integration in the cell membrane. In parallel, 

several ACE2 cmRNA sequences were screened for strong and sustained protein expression in 

liver and lung cells and the best performing sequence was used for the following in vivo 

studies. 

For organ targeted delivery, the optimal combination of carrier and application route was 

determined by application of reporter protein cmRNA and evaluation of resulting protein 

expression. For liver targeted cmRNA delivery, systemic application of lipidoid based 

formulations led to selective protein expression in the liver. For lung targeted cmRNA 

expression, polymer and lipidoid based formulations were investigated for nebulization, 

intratracheal microspray or systemic application. In the context of ACE2 expression in fibrotic 

lungs and based on the results achieved by intravenous administration, systemic application 

was identified as the optimal administration route. In a next step, both liver and lung specific 

delivery agents were formulated with ACE2 cmRNA and intravenously applied leading to liver 
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or lung targeted translation of significant amounts of ACE2 protein. Finally, these formulations 

were applied in two experimental models of liver and lung fibrosis and could show successful 

delivery of ACE2 cmRNA to liver or lung respectively. In addition, first data about protein 

kinetics as well as requirements for dosing and carrier selection in future preclinical studies 

could be collected. 

In summary, an optimized ACE2 cmRNA sequence for liver and lung targeted ACE2 expression 

could be identified in this thesis. In vivo application in liver and lung targeted formulations led 

to strong protein expression in these organs, providing evidence that RTT is a promising 

approach for ACE2 based treatment of liver and lung fibrosis to be further explored in fibrotic 

disease models. 
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ZUSAMMENFASSUNG 

Ungesunder Lebensstil und Umwelteinflüsse führen zu kontinuierlich steigender Prävalenz 

von Leber- und Lungenfibrose, beide mit schlechten bis nicht vorhandenen 

Heilungsaussichten für die Patienten. Untersuchungen über die zugrunde liegenden 

Mechanismen fibrotischer Krankheiten zeigten ein deutliches Ungleichgewicht im lokalen 

Renin-Angiotensin-Systems (RAS) der betroffenen Organe, was erheblich zu 

Entzündungsreaktionen und daraus resultierender Fibrose beiträgt1. In diesem Kontext nimmt 

ACE2 (Angiotensin Converting Enzyme 2) – eine Carboxypeptidase innerhalb des RAS - eine 

spezielle Rolle ein, da sie durch ihre Funktionalität über großes Potential zur Auflösung von 

Entzündung und Fibrose verfügt. Dies wurde durch erste vielversprechende Daten in 

experimentellen Leber- und Lungenfibrosemodellen nach Behandlung mit rekombinantem 

ACE2 Protein oder ACE2 Gentherapie belegt 3–9. Für beide Therapieformen gibt es jedoch eine 

Reihe ungelöster Problemstellungen, wie organspezifische Verabreichung, Kontrollierbarkeit 

der Proteinexpression und Immunogenität10–12. Durch die aktuellen Entwicklungen in der RNA 

Transkripttherapie (RTT) erschließen sich dafür nun neue Lösungsansätze13–19. 

Zielsetzung dieser Arbeit war die Etablierung von profunder und selektiver ACE2 

Proteinexpression sowohl in gesundem als auch fibrotischem Leber- und Lungengewebe. 

Dabei wurde besonderes Augenmerk auf korrekte Proteinintegration in die Zellmembran 

gelegt, da es sich dabei um eine  unabdingbare Voraussetzung für die lokale Enzymaktivität 

handelt. Zu diesem Zweck wurde im ersten Schritt in vitro transkribierte chemisch modifizierte 

ACE2 mRNA (cmRNA) entwickelt und einer umfassenden in vitro Analyse bestehend aus 

Evaluation der Transfektionseffizienz, Proteinexpression und Proteinaktivität unterzogen. Um 

eine  organspezifische lokale ACE2 Proteinexpression zu garantieren wurden weiterführende 

Analysen der Proteinreifung durchgeführt. Damit konnte sowohl die vollständige 

Glycosylierung als auch korrekte Faltung des Proteins bestätigt werden, was zur korrekten 

Proteinintegration in die Zellmembrane führte. Gleichzeitig wurden mehrere ACE2 cmRNA 

Sequenzen einem Screening zur Bestimmung von Proteinexpressionsstärke und –dauer 

unterzogen und daraus die optimale Sequenz für weiterführende in vivo Analysen identifiziert. 

Im nächsten Schritt wurde mittels Reporterprotein cmRNA und daraus resultierender 

Proteinexpression die optimale Kombination von Carrier und Applikationsroute für die 

organspezifische Proteinexpression ermittelt. In der Leber konnte selektive und 

organspezifische Proteinexpression durch systemischer Applikation lipidoidbasierter 
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Formulierungen erzielt werden. Für lungenspezifische Proteinexpression wurden polymer- 

und lipidoidbasierte Formulierungen für Nebulisierung, intratrachealer Mikrosprayapplikation 

oder systemischer Applikation untersucht. Dabei wurde basierend auf diesen Ergebnissen und 

im Kontext der ACE2 Expression in fibrotischen Lungen die systemischen Applikation als 

optimale Route identifiziert. Im nächsten Schritt wurde in den Formulierungen die 

Reporterprotein cmRNA mit ACE2 cmRNA ersetzt, womit nach intravenöser Verabreichung 

sowohl in der Leber als auch der Lunge starke ACE2 Proteinexpression nachweisbar war.  

Diese Formulierungen wurden anschließend in zwei experimentellen Modellen der Leber- und 

Lungenfibrose angewandt, wobei die erfolgreiche Anreicherung von ACE2 cmRNA in Leber 

beziehungsweise Lunge nachgewiesen werden konnte. Zusätzlich konnten erste Daten zur 

Proteinkinetik als auch cmRNA Dosierung und Carrierauswahl für zukünftige präklinische 

Studien erhoben werden. 

Zusammenfassend konnte in der vorliegenden Arbeit eine optimierte ACE2 cmRNA Sequenz 

zur leber- und lungenspezifischen ACE2 Expression etabliert werden. Leber- und 

lungenspezifischer Formulierungen und anschließende in vivo Applikation dieser cmRNA 

führten zu signifikanter Proteinexpression in den Zielorganen. Damit erweist sich die RTT als 

vielversprechender Ansatz für die ACE2 basierte Behandlung von Leber- und Lungenfibrose, 

was es nun in fibrotischen Krankheitsmodellen weiter zu entwickeln gilt.
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1 INTRODUCTION 

1.1 Fibrotic Diseases 

Fibrotic diseases are one of the major causes of mortality and morbidity worldwide leading to 

serious economic burden and challenge for health services. It is estimated that 45 % of 

mortality can be attributed to fibrotic diseases in Western developed countries with likely 

higher numbers in developing countries. Fibrosis is defined as excessive connective tissue 

formation in response to severe or repetitive injury or dysregulated wound-healing which is a 

common pathologic manifestation of many chronic inflammatory diseases. It can affect nearly 

every organ with liver and lung showing rising prevalence due to changes in lifestyle or 

unfavorable environmental conditions20–22. The underlying mechanisms are very 

heterogeneous, however all fibrotic diseases share a common set of pathogenic features 

leading to disruption of normal tissue architecture causing organ dysfunction and ultimately 

organ failure or death1,23. 

On a cellular level, fibroblasts play a major role in fibrogenesis. In normal conditions, they are 

in a quiescent state supporting organ form and function. Upon injury, they are activated and 

differentiate into myofibroblasts. In addition, the pool of myofibroblasts is also fueled by 

circulating fibrocytes and local epithelial or endothelial cells undergoing epithelial to 

mesenchymal transition. Myofibroblasts are contractile cells, producing increased amounts of 

collagens, while reducing expression of extracellular matrix (ECM) degrading enzymes. In the 

normal wound healing process, myofibroblasts undergo apoptosis after completed wound 

healing. If this process becomes aberrant, these cells survive and secrete mediators attracting 

even more myofibroblasts triggering a vicious circle ultimately leading to fibrosis1,23. 

Currently many treatment options targeting myofibroblast recruitment and activation are 

under investigation. Transforming growth factor beta (TGFβ) is among the most studied 

cytokines for myofibroblasts activation, but also Wnt signaling, Hedgehog signaling, Notch 

signaling and a range of immunomodulatory cytokines are in focus23. In addition, the immune 

system was shown to play an important role in both, stimulating as well as resolving the 

fibrotic process1,23. Overall, therapeutic success of these attempts was so far limited24–26, and 

the discovery of the involvement of the renin-angiotensin-system (RAS) in fibrotic diseases 

raised new hope for therapeutic progress. It was shown that the organ-specific RAS is 

dysregulated in fibrotic diseases triggering excessive pro-inflammatory and pro-fibrotic 

signaling1. Therefore, reestablishing RAS hemostasis will be the underlying driver for this work. 
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1.1.1 Liver Fibrosis 

Liver fibrosis and subsequently liver cirrhosis are chronic liver diseases characterized by 

degeneration and necrosis of hepatocytes, and as a result replacement of liver parenchyma 

with fibrotic tissue. This process leads to destruction of normal liver architecture limiting 

proper organ function. Common associated complications are portal hypertension, ascites, 

upper gastrointestinal bleeding, jaundice and hepatic encephalopathy27.  

The most common causes of liver fibrosis are persistent alcohol abuse, viral hepatitis 

infections and nonalcoholic fatty liver disease (NAFLD). Regardless of the underlying cause, 

genetic polymorphisms are strong influencers of susceptibility and severity of the disease. Due 

to changes in lifestyle leading to increasing numbers of people suffering from metabolic 

syndrome worldwide, the focus of this study will be on liver fibrosis caused by NAFLD27.  

 Figure 1: Nonalcoholic fatty liver disease pathogenesis 

(A) Schematic of progression of NAFLD. (B) Histological sections illustrating normal liver, steatosis, NASH, and 
cirrhosis.124  
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NAFLD can be caused by genetic predisposition, but mainly by health problems associated 

with metabolic syndrome such as obesity, insulin resistance and adipose tissue lipolysis. The 

diet usually leading to metabolic syndrome is associated with hyperglycaemia and resultant 

compensatory hyperinsulinaemia. Due to its insulin-sensitivity, the liver is susceptible to 

hyperglycaemia-induced oxidative stress, leading to derangement of protein, carbohydrate 

and lipid metabolism and an inflammatory response. Increased lipogenesis and fatty acid 

uptake with simultaneously reduced very low density lipoprotein (VLDL) export and β-

oxidation leads to triglycerides accumulation in the liver, a stage called steatosis. Histological 

examinations at this disease stage typically show accumulations of fat vesicles in hepatocytes 

with mild lymphocytic, neutrophilic and other inflammatory infiltrates. This phase may 

progress to nonalcoholic steatohepatitis (NASH) where lipotoxicity, endoplasmic reticulum 

(ER) stress, mitochondria dysfunction and inflammation lead over time to varying degrees of 

fibrosis. Apart from glycogenated nuclei, hepatocytes at this stage often show damaged 

intermediate filaments (Mallory bodies), necrosis or ballooning, a typical form of hepatocyte 

cell death. Up to this stage, the fibrotic progress can be halted or in some cases even be 

reversed. If NASH progresses further to cirrhosis, fibrosis becomes nodular with bridging of 

fibrous septa. These architectural changes are too severe to be reversible and may eventually 

progress to hepatocellular carcinoma27,28.  

On a cellular and molecular level, liver fibrosis shows ECM accumulation, typical for fibrotic 

diseases as previously described. In the liver, this leads to loss of hepatocyte microvilli and 

endothelial fenestration, both being essential for liver function. In the case of liver fibrosis, 

hepatic stellate cells (HSCs) play a central role in disease onset as they are the main source of 

myofibroblasts in the liver. In the healthy liver they account for approximately 15 % of liver 

cells and are located in the perisunosoidal space. Their main function in the healthy quiescent 

state is storage of vitamin A in form of retinol ester and regulation of the liver immune system. 

Upon liver damage though, they differentiate into myofibroblasts in a two stage process. First, 

they are activated by injured neighboring cells – frequently Kupffer cells - through paracrine 

stimuli, such as reactive oxygen species, transcription factors, growth factors and 

inflammatory cytokines. In a second step, they undergo a phenotypic change leading to cell 

proliferation, contractility, fibrogenesis, cytokine release and retinoid loss. In case of 

elimination of the noxious stimulus, the fibrogenic response is resolved by up-regulation of 

apoptotic genes and increased secretion of ECM-degrading enzymes. If this process gets out 
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of control, a vicious circle of autocrine and paracrine signaling sustains the accumulation of 

ECM27,29. Currently, there are many treatment options under evaluation with special focus on 

the resolution of noxious stimuli, inhibition of inflammation and deactivation or apoptosis of 

activated HSCs26. 

1.1.2 Lung Fibrosis 

Idiopathic pulmonary fibrosis (IPF) is a chronic and fatal form of interstitial lung disease. It 

typically affects older adults with increased susceptibility in men and has a median survival or 

time to transplant of 2-5 years. Risk factors associated with IPF are age, exposure to smoke, 

metal or wood dust and mutation in the MUCB5 allele, which is involved in telomere length 

regulation. IPF patients suffer from a progressive decline in lung function increasingly limiting 

their physical activity30–32. 

From a pathologic point of view, IPF is defined as chronic pulmonary inflammation with areas 

of fibrosis and clusters of cystic airspaces also referred to as honeycombs (Figure 2). On chest 

X-rays, these patterns are typically found in the basal and peripheral areas of the lung. In 

addition, biopsy samples are taken for diagnosis, where fibrosis needs to be confirmed by 

interstitial scarring and the presence of fibroblast foci, dense collections of myofibroblasts and 

scar tissue22. 

The underlying mechanisms leading to IPF are still not fully understood. Previously, 

inflammation was considered the central driver of fibrosis. However, due to limited treatment 

success of anti-inflammatory drugs, the paradigm has now shifted towards a model of 

abnormal wound healing driven by persistent or recurrent alveolar epithelial microinjuries. In 

Figure 2: Histopathology of pulmonary fibrosis125
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this model, disease onset is considered to be triggered by persistent or recurrent injuries of 

alveolar epithelial cells (AEC) type II and interruption of the basal lamina (see Figure 3) 33. AECs 

undergo apoptosis while triggering the coagulation cascade and immune system activation. 

The resulting gap is filled with a fibrin clot while the activated AECs release profibrotic factors, 

leading to recruitment, proliferation and differentiation of fibroblasts into myofibroblasts. The 

resulting gap is filled with a fibrin clot which is then substituted by ECM produced by the 

surrounding myofibroblasts. Over time, a myofibroblast focus forms, where persistently 

activated myofibroblasts continue to secrete excessive amounts of ECM components. This 

process leads to thickening of the air-blood barrier and hence impaired gas exchange and lung 

compliance. The complexity of this process requires multiple cell-cell and cell-matrix 

interactions mediated by numerous biochemical factors such as growth factors, chemokines, 

cytokines, coagulation factors and reactive oxygen species. These factors can easily be 

influenced by host and environmental factors making disease treatment extremely 

challenging33,34. 

The complexity of this process shows quite evidently the necessity of combination therapy 

targeting multiple pathways. So far treatment options are very limited with pirfenidone and 

nintedanib being approved for treatment since 201425. They both exert anti-inflammatory and 

anti-fibrotic actions31,35, however can only slow and not halt disease progression. New 

treatment options are urgently required. 

  

Figure 3: Hypothesis for pathophysiological mechanisms of idiopathic pulmonary fibrosis development33 
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1.2 Angiotensin Converting Enzyme 2 (ACE2) 

1.2.1 Structure and Function of ACE2 

Angiotensin converting enzyme 2 (ACE2) is a close homolog of its counterpart angiotensin 

converting enzyme (ACE) and has come into research focus during the last two decades. Both 

enzymes act as metallo-carboxypeptidases within the RAS being well known for its effects on 

the regulation of blood pressure20. In addition to this main function, several additional 

physiologic and pathologic functions were discovered, describing nowadays the RAS system 

as a signaling cascade producing multiple biological active intermediates. These intermediates 

exert their functions along two main axes (Figure 4). Along the classical axis, ACE produces 

Angiotensin II (AngII) by cleaving Angiotensin I (AngI). AngII binds to AngII type 1 receptor 

(AT1R) or to AngII type 2 receptor (AT2R). Along the alternate axis, ACE2 cleaves AngII into 

Angiotensin (1-7) (Ang-(1-7)) which acts on MAS receptor. The final physiologic effects of the 

two axes are opposing each other. Stimulation along the classical axis leads to vasoconstriction 

and stimulation of fibrosis associated processes such as inflammation, epithelial to 

mesenchymal transition, cell proliferation and hypertrophy. All these effects can be 

counterbalanced by stimulation of the alternate axis. Under normal conditions, signaling 

through these two axes is balanced, however is significantly shifted towards increased 

signaling through the classical axis in case of fibrosis2.  

Drug development within the RAS system was initially focused around angiotensin converting 

enzyme inhibitors (ACEi) in the context of blood pressure regulation. However, with increasing 

knowledge about the physiologic and pathologic properties of the biological intermediates 

further down the proteolytic cascade, AT1 receptor blockers, AT2 receptor agonists, 

recombinant ACE2 or ACE2 activators and Ang-(1-7) analogues gained momentum7,36. With 

the exception of ACE2, the therapeutic purpose of all of these drugs was to either reduce pro-

inflammatory and pro-fibrotic signaling through AT1 receptor or to counterbalance AT1 

receptor signaling by increased MAS-receptor signaling. The effect of ACE2 regulators 

however, is unique in the RAS system, as they can achieve both. By cleaving AngII to Ang-(1-

7), ACE2 reduces stimulation of AT1 receptor signaling and at the same time increases anti-

inflammatory and anti-fibrotic signaling through MAS-receptor. The therapeutic effects of 

modulating the RAS system as just described were repeatedly shown for both, liver and lung 

fibrosis3–9,37.  
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The gene coding for ACE2 is located on chromosome X and is composed of 18 exons encoding 

for a cDNA with a total length of 3405 nucleotides. The open reading frame (ORF) consists of 

2418 nucleotides encoding 805 amino acids, while the 5’ untranslated region (UTR) consists 

of 103 nucleotides and the 3’ UTR of 884 nucleotides. ACE2 protein is expressed in endothelial 

cells mainly in the small intestine, testis, heart and kidney38.   

Figure 4: Schematic representation of the RAS system 

ACE: angiotensin converting enzyme, ACE2: angiotensin converting enzyme 2, NEP: Neprilysin, AT1R: Ang II type 
I receptor, AT2R: Ang II type II receptor. Interspaced lines show proteolytic activity of lower effectivity (adapted 
from Clarke2). 
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ACE2 is a typical type I integral membrane protein with the carboxyl terminus located in the 

cytosol. The detailed protein structure is shown in Figure 5 a. The N-terminus is flanked by a 

17-amino acid signal peptide followed by a conserved zinc metalloprotease consensus 

sequence (HEXXH motif). Crystal structure analysis showed seven potential N-linked 

glycosylation sites reflecting characteristics of a plasma membrane bound protein 

extracellular domain. Depending on glycosylation status, protein mass varies from 

approximately 120 kDa for glycosylated to 85 kDa for unglycosylated protein. In addition, the 

extracellular domain shows various potential phosphorylation sites. Close to the 

transmembrane domain, the cleavage site for ADAM metallopeptidase domain 17 (ADAM17) 

can be found generating a secreted form of ACE239. The transmembrane domain consists of 

22 amino acids followed by a cluster of charged residues which may serve as a stop-transfer 

sequence and leads in combination with calmodulin to retention of protein in the cell 

membrane 2,39. The short cytoplasmic tail shows a regulatory function in ectodomain shedding 

and severe acute respiratory syndrome infection.  ACE2 shows optimal activity in presence of 

zinc, chloride and fluoride at a pH of 6.5 40,41.  

The enzymatic core domain can be further divided into catalytic subdomains I and II, shown 

in red and blue color respectively (Figure 5 b). In the native form, the two domains form a 

deep open cleft with the zinc ion in its center (yellow sphere). Upon substrate binding to one 

subdomain, a hinge-bending movement is induced which closes the cleft to allow correct 

positioning of catalytic residues. A similar movement is induced upon inhibitor binding, closing 

the enzyme around the inhibitor42. 

 

  

Figure 5: Structure of ACE2 protein 

(a) Structure and functional domains of ACE2 protein. (b) Crystal structure of ACE2 protein. 
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1.2.2 ACE2 in Liver Fibrosis 

The complexity of the fibrotic process has brought about numerous treatment attempts to 

get control of disease progression. Within these attempts, the RAS and its biological active 

intermediates were subject of intense investigations, as there was increasing evidence of a 

dysbalanced RAS in liver fibrosis. As reviewed by Moreira de Macedo et al.43, it was frequently 

observed that in areas of active hepatic fibrogenesis, ACE and AT1 receptor genes were 

upregulated, triggering inflammation and fibrosis. In addition, stimulation of AT1 receptor 

with AngII led to contraction and proliferation of HSCs. At the same time, counter-regulatory 

signaling through the alternate axis was also found to be upregulated in cirrhotic human and 

rat livers, probably as a protective measure. 

Based on this evidence, it has been tried to manipulate RAS signaling by stimulation or 

inhibition of several of the biological intermediates. Blocking the classical RAS signaling in the 

liver has been investigated by application of ACE inhibitors (eg. Captopril or Lisinopril) or AngII 

receptor blockers (ARBs, eg. Telmisartan or Losartan). The anti-fibrotic effects of these 

treatments have been shown in NASH patients as well as experimental animal models of liver 

fibrosis44–46. Stimulation of the alternate pathway by treatment with Ang-(1-7) led to 

improvement in metabolic comorbidities as well as fibrosis in experimental rat models43. 

However, as already stated, ACE2 would be the most effective enzyme within the RAS to 

induce a shift in the system’s balance due to its dual effect of reducing signaling through the 

classical axis at the same time of increasing signaling through the alternate axis. Interestingly, 

unlike observations in IPF patients, the hepatic injury itself is sufficient to trigger this 

rebalancing process as ACE2 levels in livers from cirrhotic patients with hepatitis C as well as 

in the livers of bile duct ligated (BDL) rats were markedly increased47. These observations were 

confirmed in an ACE2 knockout (k.o.) model, where the lack of ACE2 was studied in aged k.o. 

mice as well as in k.o. mice subjected to liver injury by bile duct ligation for 14 days. K.o. mice 

at 12 months of age showed hepatic inflammation and collagen deposition which was 

confirmed to be AngII dependent. Upon liver injury, a marked increase in fibrillary collagen 

deposition was observable in the ACE2 k.o. animals as well as an increased number of 

activated myofibroblasts and inflammatory cell infiltrates in the liver tissue. In order to 

evaluate the therapeutic effect of ACE2, a group of BDL ACE2 k.o. animals was treated daily 

with 2 mg/kg recombinant ACE2 by intraperitoneal injection. This group showed significantly 

reduction in liver fibrosis4. Mak et al. extended the time frame of therapeutic ACE2 delivery in 
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BDL in two additional models of liver fibrosis by using adeno-associated ACE2 gene therapy 

and showed ACE2 associated anti-inflammatory and anti-fibrotic effects for a sustained period 

of up to 8 weeks3. 

1.2.3 ACE2 in Lung Fibrosis 

There is multiple experimental and clinical evidence that a dysbalanced RAS is actively 

contributing to lung fibrosis. The gene encoding for Angiotensinogen, was found to be strongly 

induced in patients with pulmonary fibrosis48. Proteolytic cleavage of Angiotensinogen is 

resulting in increased AngII levels, leading to inflammation, AEC apoptosis and initiation of 

fibrosis through fibroblast proliferation49 and differentiation into myofibroblasts excessively 

secreting ECM50. Apoptotic AEC contribute themselves to increased AngII levels be sustained 

secretion of angiotensin as well as AngII51. At the same time, it was found that ACE2 mRNA 

levels, ACE2 protein expression and activity were severely decreased in lung tissue from IPF 

patients, may be caused by cell-cycle dependent down-regulation of ACE26. Under normal 

conditions, ACE2 is mainly secreted by AEC type II cells showing a quiescent phenotype. 

However, in the case of lung fibrosis, AECII proliferate and at the same time downregulate 

ACE2 expression52. This downregulation of ACE2 additionally contributes to the accumulation 

of AngII in fibrotic lungs. So far, there have been attempts to decrease AngII levels by 

treatment with ARBs and ACEi, however they could  stabilize lung function only for the first 

12 months53, without any positive effects on patient’s long-term survival54. 

The physiologic function as well as therapeutic potential of ACE2 were first studied in ACE2 

k.o. models. Although there were no histological changes detectable between the lungs of 

saline treated wild type animals and ACE2 k.o. animals after 21 days, lung collagen content 

almost doubled in the k.o. animals. Upon bleomycin induced lung injury however, the effects 

of loss of ACE2 expression were striking. ACE2 k.o. animals showed increased levels of lung 

fibrosis compared to all control groups resulting in reduced exercise capacity and lung 

function. Daily intraperitoneal injection of recombinant human ACE2 of 2 mg/kg could 

significantly attenuate bleomycin induced lung injury5. Wang et al. performed a similar 

experiment with bleomycin induced lung injury in mice. They studied the therapeutic effect 

of a single intraperitoneal injection of recombinant human ACE2 at 0.2 mg/kg (given 

immediately after bleomycin treatment) for a period of 28 days. Their findings showed that 

ACE2 did not have significant effects on the pathological changes in early disease states, 

mainly characterized by alveolitis, but showed marked attenuation of fibrosis at later time 
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points. Closer investigations about the mode of action of ACE2 revealed that ACE2 could 

inhibit or mitigate early excessive AEC proliferation and subsequent excessive cell loss, as well 

as fibroblast proliferation and differentiation into myofibroblasts55. Based on these 

encouraging results, lenti-viral application of ACE2 was investigated. For this purpose, rats 

were pre-treated with lenti-ACE2 viral particles via intratracheal injection. Two weeks later, 

animals were subjected to bleomycin for establishment of lung fibrosis. Pretreatment with 

lenti-ACE2 led to a significant reduction in morphologic changes in lungs of bleomycin treated 

animals as well as in a significant reduction in hydroxyproline content in these lungs. 

Interestingly, similar effects were achieved by pre-treatment with lenti-Ang-(1-7)56. The 

therapeutic effect of ACE2 was also shown in an experimental mouse model of lung fibrosis 

by treatment with human umbilical cord mesenchymal stem cells after lentiviral ACE2 gene 

transfection. Disease progression was analyzed weekly for up to 28 days post treatment. 

Administration of ACE2 transfected stem cells resulted in significant alleviation of bleomycin 

induced lung injury already detectable at early time points (7 days) and being sustained until 

the end of the study (28 days)8. 

1.3 mRNA Transcript Therapy 

1.3.1 mRNA 

Messenger RNA (mRNA) is a family of RNA molecules essential for protein translation. The 

process of protein translation starts inside the nucleus, with transcription of DNA into pre-

mRNA. Pre-mRNA is then processed into mature mRNA by splicing, addition of a 5’ cap and 

polyadenylation at the 3’ end. In the next step, mature mRNA is exported from the nucleus 

into the cytoplasm where ribosomes translate the nucleotides of mRNA with the help of 

transfer RNA into a polymer of amino acids. After post-translational modifications the mature 

protein is shuttled to its place of destination57. 

mRNA itself is a single strand sequence whose building blocks are the four ribonucleotides 

adenosine 5'-monophosphate (AMP), guanosine 5'-monophosphate (GMP), cytidine 5'-

monophosphate (CMP) and uridine 5'-monophosphate (UMP). This sequence is encoding the 

amino acid sequence of the protein. Figure 6 shows the simplified structure of a fully matured 

mRNA molecule. In the cytoplasm mRNAs are subjected to exo- and endo-nucleases which 

can cleave RNA. Therefore, mRNA is protected on the 5’ end by a 7-methylguanosine cap 

structure and on the 3’ end by a poly-A-tail from enzymatic degradation58. The core of the 
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mRNA consists of a coding region, a sequence of codons which are translated by the ribosomes 

into proteins, which is flanked by a start codon on the 5’ end and a stop codon on the 3’ end. 

UTRs are located upstream and downstream of the coding sequence. They are key elements 

for translation initiation, elongation and termination as well as intracellular localization and 

mRNA stability57,59,60. 

1.3.2 mRNA Transcript Therapy 

During the last decades, therapeutic application of recombinant protein was intensively 

investigated and moved forward into the clinical setting. In recombinant protein therapy a 

fully functional protein is administered aiming at raising protein levels to physiological or even 

higher levels depending on the therapeutic requirements. Upon application, the recombinant 

protein needs to enter the systemic circulation in order to be delivered to the desired tissue. 

This implies, that the protein is distributed throughout the body, hence organ or even cell 

targeting is very challenging. In addition, proteins which exert their function inside the cell or 

in a membrane bound form, will not reach their targeted location, but are systemically 

distributed. Depending on the type of protein, short protein half-life may be as well limiting 

therapeutic application10. In addition to that, recombinant proteins can be recognized as 

foreign antigens by the host provoking an immune response, as they were not produced by 

the host itself11. In gene therapy, DNA is entered with or without the help of a viral delivery 

system into the cytoplasm. In the case of non-viral gene transfer by pDNA, the transfected 

plasmid DNA (pDNA) needs to cross the nuclear membrane to reach its final point of 

destination. However, this entails an increased risk of insertional mutagenesis12, a problem 

also faced by retroviral, lentiviral and adeno-associated gene transfer61. 

The limitations faced by recombinant protein and gene therapy fueled research in the field of 

mRNA transcript therapy (RTT). mRNA exerts its function in the cytoplasm, providing the 

opportunity to establish protein expression in proliferating as well as quiescent cells, which is 

especially important in applications in quiescent or harmed tissues. In the cytoplasm, mRNA 

is translated by the cell’s distinct protein translation machinery without need to enter the 

nucleus, hence there is no risk of insertional mutagenesis. In comparison to recombinant 

Figure 6: Structure of human mRNA57
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protein therapy, RTT is not limited to secreted proteins, making it a promising alternative for 

expression of intracellular or membrane bound proteins. Due to enzymatic mRNA degradation 

mechanisms in the cytoplasm, protein expression is naturally self-limited. This offers the 

advantage of well controllable protein expression being key to fine-tunable dosing regimen in 

clinics12,16,62. 

1.3.3 Current Technologies in Transcript Therapy and mRNA Delivery Systems 

Despite these favorable properties, progress of RTT into the clinical setting was for a long time 

hampered by unfavorable immunogenicity, RNA instability and lack of suitable delivery 

agents. A major improvement was achieved by introduction of chemical modifications in 

in vitro transcribed mRNA (cmRNA). By artificially incorporating naturally occurring modified 

nucleosides such as pseudouridine, 2-thiouridine, 5-methylcytidine or N6-Methyladenosine, 

the immune reaction of the cell was markedly reduced as reviewed by Vallazza et al.17. Most 

modifications avoid activation of toll like receptor 7 and 8, while some modifications, such as 

pseudouridine and 2-thiouridine avoid activation of retinoic acid inducible gene I and protein 

kinase R. Reduced cmRNA recognitions by the immune system consequently leads to reduced 

clearing of cmRNA by the immune system. This in turn increases cmRNA stability leading to 

potent protein translation. The optimal choice of chemical modifications and their proportion 

in relation to unmodified nucleosides heavily depends on the type of protein, the targeted cell 

type and state and therefore needs to be evaluated for each individual application. Further 

improvements in cmRNA stability and immunogenicity were achieved by implementing 

special cap structures as well as optimizing the length of the poly(A) tail17. Stability as well as 

amount of protein translated was further increased by substitution of natural UTRs with UTRs 

from proteins known for strong, stable and sustained expression such as human globins or 

cytochrome b-245 alpha (CYBA) chain16,63–65. Another technique, frequently used to induce 

strong protein translation is codon optimization. In this technique, translation rates are 

markedly increased by replacing rare codons with abundant codons without modifying the 

amino acid sequence of the encoded protein.66,67 Immunogenicity of cmRNA can be mainly 

attributed to activation of pattern recognition receptors, which are highly effective in 

identifying and eliminating viral RNA. It has been shown, that modification of specific 

nucleotides led to markedly reduced activation of the innate immune system and enhanced 

RNA translation efficiency18,19. Considering the aforementioned properties of RNA transcript 

therapy, RTT can be considered a strong, adjustable and safe alternative to recombinant ACE2 
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protein or viral gene delivery for the treatment of liver and lung fibrosis. The main possibilities 

of mRNA modifications are summarized in Figure 7. 

Despite the fact that many cells can spontaneously uptake naked mRNA, this mechanism is in 

most cases too inefficient as it is saturated at mRNA doses too low to be used in therapeutic 

applications68. Therefore, suitable formulations are required to facilitate entry into cells and 

to protect cmRNA against extracellular RNase-mediated degradation. The main challenge in 

the design of formulations is the achievement of sufficient net level of encoded protein and 

to reach a high number of cells in a specific organ or a specific cell type. 

The liver is an organ with limited cell turnover, hence delivery systems relying on cell division 

such as viral vectors are very inefficient for hepatocyte transfection. This could be solved by 

application of adenoviral and adeno-associated viral delivery methods, however both have an 

increased risk of inducing an immune response. Lipidoid nanoparticles have been proven an 

interesting alternative for the delivery of small inhibitory RNA (siRNA) in the liver and special 

adjustment of the nanoparticle composition for the specific purpose could also render them 

valuable for mRNA delivery68,69. For the in vivo experiments presented in this thesis, 

specifically designed lipoplexes developed by Jarzebinska et al. for targeting hepatocytes will 

be used. These lipoplexes consist of a cationic lipid, two helper lipids and a polyethylene glycol 

(PEG) lipid for shielding14.  

Various systems for delivery of nanoparticles in the lung have been studied due to the lungs 

large alveolar surface area suitable for drug absorption, low thickness of the epithelial barrier 

and extensive vascularization. mRNA formulations are usually prepared in form of 

nanoparticle suspension which can be delivered by use of a nebulizer or intratracheal 

Figure 7: Structural modifications for tuning mRNA pharmacokinetics16
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microspray. In addition to that, recent advances in formulations of polymer-lipid nanoparticles 

could solve the obstacle of liver uptake of nanoparticles70 while specifically targeting lung 

tissue, which adds systemic administration as an interesting delivery alternative13. The choice 

of the most appropriate delivery system however, heavily depends on the targeted disease 

and requires intensive fine tuning of carrier, application method and frequency. 

1.3.4 Aim of the Study 

As previously stated, promising results of ACE2 therapy in experimental liver and lung fibrosis 

have been reported3–5,55,56,71,72. In human clinical trials, safety and tolerability of systemically 

applied recombinant ACE2 was shown10,73. However, reestablishing the local RAS balance 

seems to be most important in the diseased state43, which can best be achieved by a localized 

translation of membrane anchored ACE2. This may be achieved with the recent advances in 

RTT13–15.  

Therefore, the aim of this thesis was to design therapeutic ACE2 cmRNA and combine it with 

liver and lung targeted formulations. First, in vitro validation of ACE2 cmRNA transfection 

efficiency, protein expression and activity was performed. Second, due to the importance of 

translation of a membrane anchored protein, necessary post-translational modifications as 

well as final protein localization were verified. 

After this initial in vitro proof of concept, liver and lung targeted delivery systems were 

evaluated for organ specific protein translation by use of reporter cmRNA. In parallel, an in 

vitro screen of eight modified ACE2 sequences was performed as described in the master 

thesis of Huber M.74 to identify the optimal ACE2 cmRNA composition for liver and lung 

delivery. Upon identification of the respective potent carrier formulations, the best 

performing ACE2 sequence was administered in vivo, leading to substantial ACE2 protein 

expression in both, liver and lung. 

Finally, therapeutic application of organ targeted ACE2 cmRNA was tested in a model of liver 

and a model of lung fibrosis. These first therapeutic ACE2 cmRNA applications gave a deeper 

understanding of the strengths and current challenges of therapeutic cmRNA in the treatment 

of complex fibrotic diseases as well as the pharmacodynamic properties of ACE2 cmRNA in 

experimental disease models. Based on these results, an outlook for future anti-fibrotic 

application will be given. 
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2 MATERIALS and METHODS 

The experiments of this thesis are documented in the following laboratory books of the Ethris 

GmbH: 0063, 0088, 0123 and 0148 

2.1 Materials 

2.1.1 ACE2 cmRNA Sequences 

For the study, one natural and one codon optimized version of the open reading frame (ORF) 

were designed. The full sequence for both is described in the appendix. In addition 4 different 

versions of the untranslated regions (UTRs) were designed. 

Table 1: UTR sequences used in this study 

Abbreviation Full Name Sequence 

Natural Human ACE2 with natural 5’ and 3’ 
UTRs 

GGGAGAC(Nat)GCCACCATG____TGA(Nat)-PolyA 

Minimal Human ACE2 with minimal 5’ UTR GGGAGACGCCACCATG____TGA-PolyA 

hαG Human ACE2 with minimal Human 
alpha Globin 5’ UTR 

GGGAGAC(hαG)GCCACCATG____TGA-PolyA 

CYBA Human ACE2 with human 
cytochrome b-245 alpha poly- 
peptide 5’ and 3’ UTRs 

GGGAGAC(CYBA)GCCACCATG____TGA(CYBA)-PolyA 

Luc Firefly Luciferase GGGAGAC___- PolyA 

 

2.1.2 Cell Lines 

Table 2: Cell lines used 

Product Supplier Number Date of authentication 

A549 cells DSMZ ACC-107 22.04.2016 

HepG2 cells  DSMZ ACC-180 22.04.2016 

HEK293 cells  DSMZ ACC-305 22.04.2016 

The documents for the authentication can be found in the appendix. Cross-contamination was 

checked by short tandem repeat profiling.  

2.1.3 Cell Culture Media and Supplements 

Table 3: Cell culture media and supplements used 

Product  Supplier 

Dulbecco`s Modified Essential Medium (DMEM)/F-12, 
L-Glutamine, 15 mM Hepes 

Gibco Life Technologies 

Fetal calf serum (FCS), heat-inactivated Gibco Life Technologies 

Gentamycine Sigma Aldrich 

Hank’s balanced salt solution Gibco Life Technologies 
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Hydrocortisone Rotexmedica 

Insulin Novo Nordisk 

Minimum Essential Medium (MEM) GlutaMAX Gibco Life Technologies 

Non Essential Amino Acids Sigma Aldrich 

Normal Horse Serum Vector Laboratories 

Normal Goat Serum Thermo Fisher Scientific 

Phosphate-buffered saline (PBS) Gibco Life Technologies 

Penicillin/Streptomycin solution Gibco Life Technologies 

Roswell Park Memorial Institute (RPMI) 1640 Medium 
(1X)+ GlutaMAX™ 

Gibco Life Technologies 

Trypsin/EDTA solution Sigma 

TrypLE™ Gibco Life Technologies 

Williams‘ E medium PAN-Biotech 
 

2.1.4 Transfection Reagents 

Table 4: Transfection reagents used 

Product  Supplier 

In-house transfection reagent (C12-(2-3-2)/DPPC/chol-
esterol/DMG-PEG2k lipoplexes in aqueous solution) 

Ethris GmbH 

Lipofectamine® MessengerMAX™ Thermo Fisher Scientific 

Liver lipidoid formulation (LLF) – LF92/LF44 Ethris GmbH 

Pulmonary Lipid Formulation (PLF) - PEG co-polymer Ethris GmbH 
 

2.1.5 Kits 

Table 5: Assay kits used 

Product Supplier 

NucleoSpin® RNA Plus Machery-Nagel 

Pierce™ bicinchoninic assay (BCA) Protein Assay Kit Thermo Fisher Scientific 

Protein Deglycosylation Mix II New England Biolabs 

ProcartaPlex™ Multiplex Immunoassay custom kits Affymetrix eBioscience 

Standard Sensitivity RNA Analysis Kit Advanced Analytical Technologies 

Transcriptor First Strand cDNA Synthesis Kit Roche Diagnostics 

 

2.1.6 Primers 

Table 6: Primers used for qPCR  

Name Species Sequence (forward) Sequence (reverse) 

Primers supplied by Eurofins 
   

Angiotensin converting 
enzyme 2 cmRNA (in vitro) 

Artificial ggccaatcactacgaggact tccactccgttcacctcata 

Angiotensin converting 
enzyme 2cmRNA (in vivo) 

Artificial  aatacgtggtgctgaagaacg agtcgccgtagtcctcgtag 

Angiotensin converting 
enzyme 2 

Homo sapiens ccagtggatgaaaaagtggtg gtttcatcatggggcacag 
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Beta-2-microglobulin Homo sapiens ttctggcctggaggctatc tcaggaaatttgactttccattc 

Mitochondrial ribosomal 
protein L19 

Homo sapiens ggaatgttatcgaaggacaagg caggaagggcatctcgtaag 

Succinate dehydrogenase, 
subunit A 

Homo sapiens tccactacatgacggagcag ccatcttcagttctgctaaacg 

Mitochondrial ribosomal 
protein L19 

Mus musculus cgagtacagcacctttgacg ggcttcattttaactttcagcttg 

Succinate dehydrogenase, 
subunit A 

Mus musculus ttgagatccgtgaaggaagag tagacgtgtggccagttgc 

 

Primers supplied by Biorad 

     

Beta actin Homo sapiens Type: PrimePCR™ SYBR® Green Assay 

Glucuronidase beta Mus musculus Type: PrimePCR™ SYBR® Green Assay 

TATA box binding protein Homo sapiens Type: PrimePCR™ SYBR® Green Assay 

 

2.1.7 Antibodies and Dyes 

Table 7: Antibodies and dyes used for Western Blot and FACS 

Antigen Catalog# Supplier 

Primary antibodies 

Goat anti Angiotensin converting enzyme 2 pAb AF933 R&D Systems 

Rabbit anti Glycerinaldehyd-3-phosphate-Dehydrogenase mAb 5174 Cell Signaling 

Goat anti Luciferase pAb G7451 Promega 

Rabbit anti Vinculin pAb ab91459 Abcam 

Secondary antibodies 

Donkey anti goat Immunoglobulin G (IgG) pAb sc2020 Santa Cruz Biotechnology 

Goat anti rabbit IgG pAb sc2004 Santa Cruz Biotechnology 

Rabbit goat IgG pAb A-11087 Thermo Fisher Scientific 

Dyes and Staining Reagents 

Propidium iodide  Sigma-Aldrich 

Hematoxylin  Roth 

Tetramethylrhodamine conjugated wheat germ agglutinin W849 Thermo Fisher Scientific 

ImmPRESS HRP anti-goat IgG (peroxidase) polymer detection kit MP-7405 Vector Laboratories 

Vectastain Elite ABC HRP kit (peroxidase) PK-6100 Vector Laboratories 

RNAscope 2.5 HD Reagent Kit-BROWN 322300 Advanced Cell Diagnostics 

RNAscope Negative Control Probe – DapB 310043 Advanced Cell Diagnostics 

RNAscope Positive Control Probe – Rn-Ppib 313921 Advanced Cell Diagnostics 

 

2.1.8 Chemicals 

Table 8: Chemicals used for cell culture 

Chemical Supplier 

Angiotensin II human Sigma Aldrich 

Calcium chloride Sigma Aldrich 

CollagenR Serva 

Collagenase (Type NB 4G) Serva 

Collagenase type I Biochrome 

Dimethyl sulfoxide (DMSO) Sigma Aldrich 

Egtazic acid (EGTA) Sigma Aldrich 
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Ethanol Roth 

Glucose Applichem 

GTP New England Biolabs 

HEPES Gibco Life Technologies 

Ketamin Sigma Aldrich 

L-Glutamine Biochrome 

MgSO4 x 7H2O Roth 

Percoll GE Healthcare 

Potassium dihydrogen phosphate Sigma Aldrich 

Sodium chloride Roth 

Tunicamycin Sigma Aldrich 

Water for injection (WFI) B. Braun 

Xylazin Sigma Aldrich 

Table 9: Chemicals used for in vitro transcription 

Chemical Supplier 

2-Propanol Sigma Aldrich 

Adenosine triphosphate (ATP) Sigma Aldrich 

Ammonium acetate Applichem 

Bsp199l/BstBI Thermo Fisher Scientific 

Buffer Tango Thermo Fisher Scientific 

Chloroform Sigma Aldrich 

DNASE I Thermo Fisher Scientific 

Ethanol Roth 

Guanosine triphosphate (GTP) New England Biolabs 

Inorganic Pyrophosphatase Thermo Fisher Scientific 

mRNA Cap 2’-o-Methyltransferase New England Biolabs 

Poly(A) Polymerase (E.coli) NEB 

Poly(A) Polymerase Buffer NEB 

RiboLock Rnase Inhibitor Thermo Fisher Scientific 

rATP Jena Biosciences 

rGTP Jena Biosciences 

rCTP Jena Biosciences 

rUTP Jena Biosciences 

5-Iodo-rUTP Jena Biosciences 

5-Iodo-rCTP Jena Biosciences 

S-Methyladenosine New England Biolabs 

Sodium acetate Roth 

T7 polymerase Thermo Fisher Scientific 

Vaccina virus capping enzmye New England Biolabs 

Water for injection (WFI) B. Braun 
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Table 10: Other chemicals 

Chemical Supplier 

1,4-Dithiothreitol (DTT) Roth 

2-Propanol Sigma Aldrich 

2-Mercaptoethanol Sigma Aldrich 

3,3’Diaminobenzidine Roth 

4-(Dimethylamino)benzaldehyde Sigma Aldrich 

Bolt® Lithium Dodecyl Sulfate (LDS) sample buffer (4 x) Thermo Fisher Scientific 

Bolt® sample reducing agent (10 x) Thermo Fisher Scientific 

Bolt® 2-(N-morpholino)ethanesulfonic acid (MES) buffer Thermo Fisher Scientific 

Bolt® 3-(N-morpholino)propanesulfonic acid (MOPS) 
buffer 

Thermo Fisher Scientific 

Bovine serum albumin Sigma Aldrich 

Branched poly(ethylenimine) Sigma Aldrich 

Captopril Santa Cruz Biotech 

Chloramine-T hydrate Sigma Aldrich 

Citric Acid Sigma Aldrich 

Coenzyme A Sigma Aldrich 

Complete, EDTA-free Roche 

Dimethyl sulfoxide Sigma Aldrich 

D-Luciferin Synchem 

DX600 Bachem 

Edetic acid (EDTA) Roth 

Ethanol Roth 

FluorSave Merck Chemicals 

Gelatine alba Caesar&Loretz GmbH 

Hydrochloric acid (10 mol/l) Applichem 

Hydrochloric acid (1 N) Roth 

Hydrogene peroxide Roth 

Laemmli Sample Buffer (4X) Biorad 

L-Hydroxyproline Millipore 

Magnesium sulfate  Roth 

Mca-YVADAPK(Dnp)-OH R&D Systems 

Mca-APK(Dnp) Caslo 

MES Roth 

Methanol ≥ 99 % Roth 

MgCO3 Roth 

(MgCO3)4Mg(OH)2 x 5H2O Roth 

MLN4760 Exclusive Chemistry Ltd 

NuPage® Antioxidant Thermo Fisher Scientific 

NuPage® Sample Reducing Agent Thermo Fisher Scientific 

NuPAGE® LDS Sample Buffer (4X) Thermo Fisher Scientific 

NuPAGE® MOPS SDS Running Buffer (20X) Thermo Fisher Scientific 

Paraformaldehyde 20 % Solution Electron Microscopy Sciences 

p-Dimethylaminobezaldehyde Sigma Aldrich 

Perchloric acid (70 %) Sigma Aldrich 
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Potassium chloride Roth 

Powdered milk Roth 

Precision Plus Protein™ Dual Color Standards  Bio-Rad 

Pierce™ Protease and Phosphatase Inhibitor Mini Tablets Thermo Fisher Scientific 

Recombinant human ACE2 R&D Systems 

RNAlater™ Invitrogen 

Sodium chloride Roth 

Sodium deoxycholate Roth 

Sodium dodecyl sulfate (SDS) Roth 

Sodium hydroxide Roth 

Tris buffered saline (TBS) Bio-Rad 

Tricine Roth 

Tri sodium citrate dihydrate Roth 

Tris(hydroxymethyl)aminomethane (Tris) Roth 

Tris-HCl Roth 

Triton X-100 Sigma Aldrich 

Tween® Roth 

Water for injection (WFI) B. Braun 

Xylol Roth 

ZnCl2 Roth 

 

2.1.9 Consumables 

Table 11: Consumables used in this work 

Product Supplier 

0.2 µm 4 mm sterile filters EMD Millipore 

Bolt® 8 % Bis-Tris Plus gels (10 pockets)  Thermo Fisher Scientific 

Bolt® 4-12 % Bis-Tris Plus gels (10, 12 and 15 pockets)  Thermo Fisher Scientific 

Centrifuge Tube 15 and 50 mL Corning Incorporated 

Corning® 96 Well Black Flat Bottom Polystyrene Not 
Treated Microplate 

Corning Incorporated 

Costar™ 96-Well White Plates Thermo Fisher Scientific 

Costar™ cell culture plate, flat bottom, 96, 24 and 6 wells Corning Incorporated 

Costar Microcentrifuge Tube: 0.65 mL, 1.50 mL, 2.00 mL, 
5.00 mL 

Corning Incorporated 

Costar™ Stripette 5, 10, 25, 50 mL Corning Incorporated 

Countess™ Counting Slides  Thermo Fisher Scientific 

Diamond® Tipack™ D1200ST, D300ST, D200ST and DL10ST Gilson 

Eppendorf Safe-Lock Tubes 0,65; 1,7; 2,0 mL Eppendorf 

LightCycler®480 Multiwell Plate 96, white Roche 

Luminata Western HRP Merck Chemicals 
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NuPAGE™ Novex™ 4-12% Bis-Tris Midi Protein gels (20 and 
26 pockets) 

Thermo Fisher Scientific 

T75 Corning® cell culture flasks, angled neck, cap (vented) Sigma Aldrich 

T175 Corning® cell culture flasks, angled neck, cap (vented) Sigma Aldrich 

Trans-Blot® Turbo Transfer Pack Midi 0.2 μm 
PVDF 

Bio-Rad 

Trans-Blot® Turbo Transfer Pack Mini 0.2 μm 
PVDF 

Bio-Rad 

Vivaspin 20 - 100 kDA MWCO PES Filter Sartorius 

 

2.1.10 Technical Equipment 

Table 12: List of technical equipment used in this work 

Name Device  Supplier 

15-300 μL (12 channels), 
I39816B  

Multichannel pipette Eppendorf 

15-300 μL (8 channels), 
L29846B 

Multichannel pipette Eppendorf 

Aeroneb Solo Mesh nebulizer Aerogen 

Attune® acoustic focusing 
cytometer 

Flow cytometer Thermo Fisher Scientific 

Axiovert 25 Microscope Carl Zeiss AG 

BoltR® Mini Gel Tank  Gel electrophoresis tank Thermo Fisher Scientific 

BIOSAFE®-System Nitrogen tank Cryotherm 

Centrifuge 5810R  RNA-Centrifuge Eppendorf 

ChemiDoc™ XRS System Molecular imager BIO-RAD 

Duomax 1030  Plate shaker Heidolph Instruments 

Fragment Analyzer Fragment Analyzer Advanced Analytical 
Technologies 

Hettich Mikro 220  Centrifuge Hettich Zentrifugen 

Invitrogen™ countess 
automated cell counter 

Cell counter Invitrogen™ 

IR Sensor MCO-17AIC CO2 
Incubator 

Cell incubator Sanyo 

IVIS® Lumina XR  Imaging System Caliper Life Sciences 

KDS-210-CE Dual Syringe 
Infusion/Withdrawal 
Pump 

KD Scientific 

Laminar Flow  Flow BDK Luft- und 
Reinraumtechnik 
GmbH 

Leica DMi8 Inverted Light Microscope Leica Mikrosysteme 

Leica DM2000 LED Light Microscope Leica Mikrosysteme 

LightCycler® 96 Real-Time PCR 
System 

qPCR machine Roche 
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Lumat LB 9507 Single Tube Luminometer Berthold Technologies 

MagPix® Luminex CCD Imager Xmap Technologies 

Mastercycler® gradient Thermocycler Eppendorf 

Microcentrifuge 5415R/5415D Microcentrifuge  Eppendorf 

NanoDrop2000 UV-Vis Spectrophotometer Thermo Fisher Scientific 

New Brunswick™ Innova® 
Upright Freezers 

Freezer New Brunswick 

Pipetboy acu Pipette INTEGRA Biosciences AG 

PIPETMAN Classic™: 2, 20, 200 
and 1000 µl 

Pipettes Gilson 

PowerPac3000  Power supply BIO-RAD 

Reacti-Therm™ III Heating/Stirring module Pierce 

Refrigerated centrifuge 3K15  Refrigerated centrifuge Sigma 

Tecan Infinite® 200 PRO  Plate reader Tecan 

Thermomixer® compact  Thermomixer C Eppendorf 

Titramax 1000  Plate shaker Heidolph instruments 

Trans-BlotR Turbo™ Transfer 
System 

Western blotting transfer 
system 

BIO-RAD 
 

Varifuge 3.0® 
 

Centrifuge Heraeus Sepatech GmbH 

Vortex Genie 2 
 

Vortexer Scientific Industries 
 

Wallac Victor2 1420 Multilabel 
counter 

Plate reader PerkinElmer Inc 

Water bath model 1003 Water bath GFL 

Zetasizer™ Nanoseries Particle and molecular size 
analyzer 

Malvern 

 

2.1.11 Software 

Table 13: Software used for measurements and analysis 

Product  Supplier 

Attune® Cytometric Software V2.1  Thermo Fisher Scientific 

ChemiDoc™XRS System  BIO-RAD 

FlowJo® V10 FlowJo 

GraphPad Prism® Version 6.01 GraphPad Software Inc. 

Image Lab™ Software  BIO-RAD 

Living Image V 4.3.1 Caliper Life Sciences Inc. 

Magellan™ - Data Analysis Software Tecan 

LightCycler® 96 System Roche 
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2.2 Methods 

2.2.1 cmRNA and Lipoplex Preparation 

2.2.1.1 cmRNA Preparation 

Chemically modified mRNA (cmRNA) was synthesized by in vitro transcription of the 

respective plasmid DNA templates. For this purpose, plasmid vectors were digested with 

BstBI/BsP119l and purified chloroform/ethanol precipitation. Prior in vitro transcription, a mix 

of ribonucleotides was prepared containing adenosine-triphosphate (25 mM), guanosine-

triphosphate (25 mM), uridine-triphosphate (16.25 mM), cytosine-triphosphate (23.125 mM) 

as well as the chemically modified ribonucleotides 5-iodo-cytosine-triphosphate (1.875 mM) 

and 5-iodo-uridine-triphosphate (8.75 mM). For in vitro transcription, the ribonucleotides 

were mixed with the linearized plasmid template and T7 RNA polymerase and incubated for 

6 h at 37 °C. Afterwards, residual DNA was digested with DNAse I for 45 min at 37 °C and the 

mix was twice precipitated with ammonium-acetate at 2.5 m at 4 °C for a minimum of 30 min 

and washed with 70 % ethanol. The final cmRNA pellet was re-suspended in water for injection 

(WFI) and concentration and purity was determined with NanoDrop 2000C 

spectrophotometer. Additional quality control was performed by running the cmRNA on a 1 

% agarose gel. The RNA was then purified by ultrafiltration through a PES spinfilter (100 kDa). 

To enhance RNA stability at the 5’ end of the transcript, a C1-m7G cap structure was 

enzymatically added by incubation with 0.5 mM guanosine-triphosphate, 0.2 mM S-

Methyladenosine, mRNA Cap 2´-o- Methyltransferase and vaccinia virus capping enzyme for 

75 min at 37 °C. Afterwards, mRNA was subjected twice to ammonium-acetate precipitation 

followed by two washing steps in 70 % ethanol. The RNA was then filtered through a 0.2 µm 

sterile filter and denatured for 20 min at 68 °C for post polyadenylation. For this purpose, 

denatured RNA was mixed with adenosine-triphosphate and Poly(A) polymerase and 

incubated for 60 min at 37  °C. Postpolyadenylation was stopped by addition of ice cold 

ammonium-acetate and two washing steps with 70 % ethanol. This process was repeated 

twice. The cmRNA was filtered through a 0.2 µm sterile filter and concentration and quality 

was measured on a NanoDop 2000C spectrophotometer and with the Standard Sensitivity 

RNA Analysis Kit on a Fragment Analyzer. 

Table 1 gives an overview of the different cmRNA sequences designed. The structure of the 

natural human ACE2 UTRs (Nat) was retrieved from NCBI GenBank (NM_021804.2). The 

human alpha globin (hαG) 5’ UTR was designed with omission of the first 30 nucleotides of 
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the hαG reference sequence (NM_000517.4) and introduction of an additional ‘G’ to give a 

full Kozak element upstream of ATG. Cytochrome b-245 alpha (CYBA) UTRs were designed as 

previously described75. 

2.2.1.2 cmRNA Lipoplex Formation and Application 

For initial proof of concept, in-house transfection reagent was used at an N/P ratio (molar 

ratio of amino groups of lipid to phosphate groups of cmRNA) of 8. In brief, cmRNA in aqueous 

solution was rapidly injected into the appropriate amount of in-house transfection reagent, 

followed by 5 min incubation at room temperature (RT) for self-assembly of cmRNA and 

lipoplexes. Lipofectamine MessengerMax was used for transfection of murine primary cells 

according to manufacturer’s protocol. cmRNA was prepared at a concentration of 1 µg/µl in 

H2O and mixed with Lipofectamine MessengerMax with a cmRNA-to-transfection reagent 

ratio of 1:1.5 (vol/vol). In general, 2 µg of cmRNA per well was used for experiments 

performed in 6-well plates, 250 ng and 25 ng of cmRNA per well for 24-well plates. For all 

experiments, cells were seeded in a number to reach 70 % confluence within 24 h. After 24 h, 

medium was renewed and lipoplexes were added dropwise. Medium was replaced 4 h after 

transfection for cells transfected with Lipofectamine MessengerMAX. 

For liver targeted in vivo experiments, cmRNA was formulated in LLF as previously described14. 

Polyethylenimine (PEI) formulation for aerosol application was prepared by mixing equal 

volumes of branched polyethylenimine (brPEI) at a concentration of 0.65 mg/ml with cmRNA 

at a concentration of 0.5 mg/ml in a total volume of 10 ml at a speed of 40 ml/min using a 

syringe pump system. The mix was incubated for 20 min at RT for complex formulation and 

then kept on ice until application. Particles were then analyzed on a Zeta-Sizer and showed a 

diameter of 80-120 nm. Lung targeted lipoplexes were prepared by mixing cmRNA with PLF in 

aqueous solution and applying it to a mix of preassembled lipid micelles. After incubation for 

15 min at RT for self-assembly of cmRNA in this pulmonary lipid formulation, the mix was 

transferred into Dulbecco’s phosphate-buffered saline (PBS) supplemented with 2 % sucrose. 

Lipoplexes were injected in the tail vein at a final volume of 150 µl per animal with a cmRNA 

dose of 1 mg/kg. 

  



MATERIALS and METHODS 
 

26 
 

2.2.2 Cell Culture 

2.2.2.1 Primary Murine Liver Cells 

Liver cells were isolated from 8 weeks old male C57BL/6J mice. For hepatocyte isolation, 

animals were sacrificed and liver was perfused via the portal vein with EGTA buffer (25 mM 

HEPES [pH 8.5], glucose 5.7 g/l, 103 mM NaCl, 2.4 mM KCl, 1.23 mM KH2PO4, 0.480 mM L-

Glutamine, 15 % (v/v) non essential amino acids  and 0.5 mM EGTA) followed by a 10 min 

perfusion with collagenase buffer (25 mM HEPES [pH 8.5], glucose 5.7 g/l, 103 mM NaCl, 

2.4  mM KCl, 1.23 mM KH2PO4, 0.480 mM L-Glutamine, 12 % (v/v) Amino acids, 2 mM CaCl2, 

3.5 mM MgCl2 supplemented with 0.12 U/ml type NB 4G collagenase). In the next step, liver 

was excised, transferred to a petri dish and cut open to flush out hepatocytes with suspension 

buffer (25 mM HEPES [pH 7.6], glucose 5.7 g/l, 103 mM NaCl, 2.4 mM KCl, 1.23 mM KH2PO4, 

0.480 mM L-Glutamine, 15 % (v/v) Amino acids, 1.1 mM CaCl2, 0.4 mM MgSO4, 0.17 % bovine 

serum albumin). Cells were washed twice with suspension buffer and were then subjected to 

a Percoll gradient. In brief, the cell suspension was fractionated by centrifugation at 600 g for 

20 min, without brake. The upper layer containing dead cells was removed and the lowest 

layer was filled up with suspension buffer. Cells were once washed with suspension buffer, 

counted with Trypan blue and seeded on CollageneR  coated 6-well plates in Williams’ E 

medium supplemented with 0.22 mM L-Glutamine, 0.02 M HEPES [pH 7.4], 0.5 % 

Penicillin/Streptomycin, 100 mg/l Gentamycine, 110 nM Hydrocortisone, Insulin, 1.6 % 

dimethyl sulfoxide (DMSO) and 10 % fetal calf serum (FCS). After cell attachment, medium 

was changed to culture medium including 1 % FCS. Cells were cultured in a humidified 5 % 

CO2 incubator at 37 °C with exchange of culture medium every 2-3 days. 

2.2.2.2 Primary Murine Lung Cells 

For isolation of lung fibroblasts 16 weeks old male C57BL/6J mice were anesthetized with 

Ketamin/Xylazin and lungs were flushed with PBS via the right heart ventricle. Lung tissue was 

removed, transferred into a petri dish, cut in small pieces and digested in collagenase solution 

DMEM/F-12, supplemented with 26.5 U/ml collagenase type I for 2 h at 37 °C and gentle 

shaking. The digested tissue was filtered, washed with PBS and seeded in culture medium 

(DMEM/F-12, 10 % heat-inactivated FCS and 1 % Penicillin/Streptomycin). Cells were passaged 

when reaching 90-95 % confluency. Cells were cultured in a humidified 5 % CO2 incubator at 
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37 °C with exchange of culture medium every 2-3 days and all experiments were performed 

within passage 4 and 6. 

2.2.2.3 Human Cell Lines 

A549 and HEK293 cells were purchased from DSMZ and cultured in MEM GlutaMAX. HepG2 

were purchased from DSMZ and cultured in RPMI 1640 + GlutaMAX. Absence of cross-

contaminations within the cell lines were regularly checked by short tandem repeat profiling 

within the 2 years of in vitro experiments. Medium of all three cell lines was supplemented 

with 10 % heat-inactivated FCS and 1 % Penicillin/Streptomycin. Cells were cultured in a 

humidified 5 % CO2 incubator at 37 °C. Cell culture medium was renewed twice a week and 

cells were passaged at 70 % confluency. For long term storage, cells were transferred in cell 

culture medium containing 20 % heat inactivated FCS and 10 % DMSO and brought to -80 °C 

at a controlled cooling rate of minus 1 °C per minute. Afterwards, they were transferred to 

liquid nitrogen. For thawing, cells were heated to 37 °C by dropwise addition of cell culture 

medium including all supplements. Residual DMSO was removed by centrifugation before 

transferring cells into cell culture flasks. Freshly thawed cells were kept in culture for at least 

one week before starting experiments. 

2.2.3 Animal Studies 

All studies were approved by the Government of Upper Bavaria or by the ‘Norddeutsches 

Landesamt für Verbraucherschutz und Lebensmittelsicherheit’ (LAVES) (Germany) and all 

animal experiments were carried out according to the guidelines of the German law of 

protection of animal life. Studies in the STAM model of liver fibroses were performed in Japan 

approved by the Japanese ministry of environment and all animal experiments were carried 

out according to the Japanese standards relating to the care and management of laboratory 

animals and relief of pain and the Japanese guidelines for proper conduct of animal 

experiments. 

2.2.3.1 Mice 

Animal studies for evaluation of organ targeted delivery were performed in female Balb/c at 

Ethris GmbH. The study of ACE2 application in a bleomycin induced model of pulmonary 

fibrosis was performed in male C57Bl/6J mice at Fraunhofer ITEM (Hannover). All animals 

were purchased from Charles River (Sulzfeld, Germany). The study of ACE2 application in the 
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STAM model for analysis of liver fibrosis was performed at Stelic MC, Inc. (Tokyo, Japan) in 

Japan and animals were purchased and treated by Stelic. At the start of the experiment they 

were 9-11 weeks of age weighing approximately 20 g. At the end of the study, organs were 

collected and stored at -80 °C or transferred into RNALater. 200 µl of blood serum was 

collected for analysis of blood parameters and stored at -80 °C for later analysis.  

2.2.3.2 Rats 

Studies in rats were performed by Fraunhofer ITEM (Hannover) with male Wistar rats, 

purchased from Charles River. They were 7 weeks old and around 330 g of weight at the start 

of the experiments. At the end of the experiment lungs were excised, transferred to a petri-

dish and stored at -80 °C for examination. 

2.2.4 cmRNA Quantification and Relative Gene Expression Analysis 

For total RNA isolation, fresh tissue sections were incubated in RNA Later overnight at 4 °C. 

Tissues were then transferred into Eppendorf tubes and stored at -80 °C for later analysis. 

Total RNA was isolated with the Nucleospin RNA Plus Kit. For analysis of in vivo samples, 30 

mg of tissue was homogenized in 350 µl lysis buffer using FastPrep-24 tissue / cell 

homogenizer. In vitro samples were lysed directly by addition of lysis buffer (LBP) into cell 

culture plates. All samples were processed with the Nucleospin RNA Plus kit following 

manufacturers’ instructions. RNA quality and quantity was analysed on a NanoDrop. 1 µg of 

total RNA was transcribed into cDNA using Transcriptor First Strand cDNA Synthesis Kit using 

oligo dT primers. Samples were heated with the Mastercycler to 65 °C for 10 min, then RNAse 

inhibitor, dNTP mix and reverse transcriptase were added and heated to 55 °C for 30 min. 

Reverse transcriptase was inactivated by heating to 85 °C for 5 min. For determination of 

absolute cmRNA values, cDNA standard series with cmRNA spike in (from 1.0 x 10-7 to 1 ng) in 

untransfected tissue samples were prepared. Real-time qPCR was performed with 

SsoAdvanced Universal SYBR Green Supermix on a Roche Light Cycler 96. The program setting 

was as follows:  

Table 14: Settings for real-time qPCR measurement 

Pre-incubation 1 cycle 95 °C for 600 sec 

3 step amplification 45 cycles 
95 °C for 5 sec 

60 °C for 1 sec 
72 °C for 1 sec 

Melting 1 cycle Ramp up to 95 °C in 10 sec 
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Experiments were performed in triplicates with the following reference genes: 

• Determination of human endogenous ACE2 mRNA (Figure 9): β-2-microglobulin, 

MRPL19 and SDHA 

• Determination of murine endogenous ACE2 mRNA (Figure 9): GusB, MRPL19 and SDHA 

• In vitro analysis of ACE2 cmRNA uptake in human cells (Figure 10): β-actin and TATA-box 

binding protein 

• In vitro analysis of ACE2 cmRNA uptake in murine cells (Figure 10): MRPL19, SDHA and 

GUSB 

Δ ct (ACE2 cmRNA – mean reference genes) was calculated for relative gene expression 

according to Pfaffl76, while absolute cmRNA values were interpolated using Graph-Pad prism. 

Half-life was calculated applying a one phase exponential decay function with automatic 

outlier elimination in Graph-Pad prism. 

 

2.2.5 Protein Analysis 

2.2.5.1 Hydroxyproline Assay 

Hydroxyproline is a major structural component of collagen and can therefore be used for 

indirect collagen quantification in tissues.  For the assay, approximately 50 mg of frozen liver 

tissue was transferred into 500 µl WFI and homogenized in a FastPrep-24 tissue homogenizer.  

For hydrolysis, the homogenate was supplemented with HCl at a final concentration of 5 N 

and boiled overnight at 120 °C. After passing the homogenate through a 0.2 µm filter, 10 µl of 

the homogenate or L-Hydroxyproline standard (from 3.15 ng/µl to 150 ng/µl) was transferred 

into a clear 96-well plate and dried at 70 °C until complete liquid evaporation. Samples were 

then incubated with 100 µl chloramine-T solution (0.84 % chloramine-T, 42 mM sodium 

acetate, 2.6 mM citric acid and 39.5 % (vol/vol) isopropanol at pH 6.0) for 10 min at RT. Next, 

100 µl of DMAB solution (0.248 g p-dimethylaminobezaldehyde dissolved in 0.27 ml 60 % 

perchloric acid and 0.73 ml isopropanol) was added and heated to 50 °C for 60 min. Absorption 

measurement was performed at 558 nm on a plate reader. 

2.2.5.2 Flow Cytometry Analysis 

Correct protein integration into the plasma membrane was assessed by flow cytometry. Cells 

were washed with PBS, detached with TrypLE and re-suspended in flow cytometry buffer (PBS 

supplemented with 10 % FCS). Then, cells were incubated with primary antibody against ACE2 
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in flow cytometry buffer (concentration 5 µg/µl) for one hour at 4 °C. After washing with flow 

cytometry buffer, anti-goat AF488 antibody was added (dilution 1:400) for one hour at 4 °C. 

Cells were washed again in flow cytometry buffer, stained with propidium iodide 

(concentration 1 µg/ml) for discrimination between life and dead cells and analyzed on a flow 

cytometer. 

2.2.5.3 Protein Quantification by Western Blot 

In vitro samples were washed once with ice cold PBS and lysed either in 200 µl (6-well plates) 

or 75 µl (48-well plates) ACE2 lysis buffer ((1 M NaCl, 0.5 mM ZnCl2 and 75 mM TrisHCl [pH 

7.5], 0.5 % Triton X-100) for 10 min on ice. Cells were then scratched off the plates and lysate 

was transferred into Eppendorf tubes. For in vivo samples, tissue pieces were transferred in 

RIPA buffer (50 mM Tris [pH 8.0], 150 mmol/l NaCl, 1.0 % Triton X-100, 0.5 % sodium 

deoxycholate, and 0.1 % sodium dodecyl sulfate) and homogenized using FastPrep-24 

homogenizer. All lysates were centrifuged for 10 min at 14000 rpm at 4 °C to remove cell 

debris and supernatant was collected for protein analysis. 

The amount of total protein in the cell lysates was determined by BCA (bicinchoninic assay) 

Protein Assay Kit according to manufacturer’s instruction. The assay was performed in 96-well 

plates with 5 µl of in vitro cell lysate or 10 µl of in vivo cell lysate and 200 µl of BCA reaction 

reagent. After incubation for 20-30 min at 37 °C, the colorimetric reaction was measured at 

590 nm with a plate reader. 

For the experiment proofing full glycosylation of ACE2 protein, parts of the lysates 

enzymatically deglycosylized by treatment with the NEB Protein Deglycosylation Mix II 

following manufacturer’s instructions for denaturing conditions. Cell lysates were then 

separated by SDS-PAGE. For this purpose, 2-75 µg of total protein was supplemented with Bolt 

LDS Sample Buffer and Bolt Sample Reducing Agent and heated to 70 °C for 10 min at 350 rpm 

for protein denaturation. Samples were then loaded on a 4-12 % polyacrylamide gel and run 

for 30 to 45 min at 160 V. For verification of disulfide bonds, 2 µg of total protein was 

supplemented with Laemmli Sample Buffer with or without 2-mercaptoethanol and heated to 

90 °C for 5 min at 350 rpm. Then, samples were loaded on a 8 % polyacrylamide gel and run 

for 30 min at 160 V.  After protein separation, proteins were transferred from the gel to a 

polyvinylidene membrane using preassembled transfer packages (Trans-Blot Turbo Transfer 

Packages) placed in a Trans-Blot Turbo Transfer system for 30 min at 25 V. Membranes were 
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then transferred in NET-gelatin buffer (50 mM Tris [pH 7.5], 150 mM NaCl, 0.05 % Triton X-

100, 5 mM EDTA and 0.25 % gelatin) for 1 h at RT to block free protein bindings sites on the 

membrane. Incubation with primary antibody (ACE2 0.1 µg/ml, GAPDH 1:10000, Luciferase 

1:300, Vinculin 1:10000) was performed in NET-gelatin overnight at 4 °C and gentle shaking. 

After washing membranes three times for 10 min in NET-gelatin buffer, they were incubated 

for one hour at RT with secondary antibody at a dilution of 1:10000 coupled to horse radish 

peroxidase. Membranes were washed again three times for 10 min in NET-gelatin buffer and 

then incubated for 5 min with peroxidase substrate (Luminata Western HRP). For 

chemiluminescence signal detection, membranes developed in a ChemiDoc XRS System. 

2.2.5.4 ACE2 Activity Assay 

ACE2 activity was determined by cleavage of a fluorogenic peptide substrate (Mca-Y-V-A-D-A-

P-K(Dnp)-OH). Once the substrate is cleaved, the fluorophore (Mca) is separated from its 

quencher (Dnp), resulting in increased fluorescence intensity of the sample. In order to 

distinguish fluorescence created by ACE2 from fluorescence created by other peptidases, a 

specific ACE2 inhibitor (DX600) was used. The difference in fluorescence intensity of inhibitor 

treated versus untreated samples corresponds to ACE2 activity. 

For ACE2 activity determination in cell culture, samples were lysed as described for western 

blotting. 30 µg of total protein extract was incubated ± DX600 for 20 min at RT in ACE2 reaction 

buffer ((1 M NaCl, 0.5 mM ZnCl2 and 75 mM TrisHCl [pH 7.5]). 10 µM of synthetic substrate 

Mca-Y-V-A-D-A-P-K(Dnp)-OH was added to a total volume of 100 µl and incubated for at least 

60 min at 37 °C. 

Ex vivo samples were prepared as described by Joyner et al. (Joyner). In brief, frozen liver and 

lung samples were homogenized in ACE2 reaction buffer (1X Complete, 25 nM HEPES buffer, 

125 nM NaCl, 10 µM ZnCl2 [pH 7.4]) followed by a centrifugation at 2500 g for 5 min. 

Supernatant was collected and spun for 10 min at 28000 g. The resulting pellet was re-

suspended in reaction buffer before over-night incubation with 0.5 % Triton X-100 at 4 °C and 

gentle shaking. Samples were centrifuged for 5 min at 28000 g, supernatant was collected and 

total protein content measured by BCA. For the assay, 20 µg of protein was incubated for 20 

min at RT in ACE2 reaction buffer containing 10 µM ACE inhibitor Captopril. 1 mM of ACE2 

inhibitor MLN4760 was added followed by another incubation for 20 min at RT. Finally, 1 mM 

of substrate Mca-A-P-K(DnP) was added and samples were incubated for 1 h at 37 °C. 
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Fluorescence of all samples was measured on a Tecan Infinite 200 PRO plate reader with 

excitation at 320 nm and emission at 405 nm. 

2.2.5.5 Firefly Luciferase Activity Measurements 

For determination of in vivo luciferase activity, animals having received Luc2 cmRNA were 

anesthetized followed by 3 mg intraperitoneal and 1.5 mg intra-nasal application of D-luciferin 

substrate dissolved in PBS at 30 mg/ml [pH 7.0].  Bioluminescence for the whole animal was 

measured 10 min later using an IVIS Lumina XR Imaging System with an exposure time of 1 

min. Then, organs were excised, placed on a petri-dish and reimaged on the IVIS system. 

For quantification of ex vivo firefly luciferase activity, 60-90 mg of frozen lung tissue were lysed 

in luciferase lysis buffer (25mM Tris-HCL, 1 % Triton X-100, 1X Complete). 100 µl of luciferin 

substrate (0.47 mM D-Luciferin, 0.27 mM Coenzyme A, 33.3 mM 1,4-Dithiothreitol, 0.53 mM 

ATP, 1.1 mM MgCO3, 2.7 mM Magnesium sulphate heptahydrate, 20 mM Tricine, 0.1 mM 

EDTA disodiumsalt dihydrate) was added to the tissue homogenate and photon emission was 

measured for 1 sec in a tube luminometer. 

2.2.5.6 Cytokine Measurements 

Cytokine levels in plasma were determined with ProcartaPlex™ Multiplex Immunoassay 

custom kits provided by Affymetrix eBioscience on a Magpix instrument. The assay uses 6.5 

μm magnetic beads labelled with a pattern of red and infrared fluorophores, giving each bead 

a unique spectral signature. On each magnetic bead, a monoclonal capture antibody is 

attached which binds to the targeted cytokine and in a second step to a biotinylated secondary 

antibody coupled to streptavidin-phycoerythrin. For signal detection, the magnetic beads are 

first captured by a magnet in front of a CCD camera. Then, the red light emitting diodes (LEDs) 

excite the dye mixture inside the bead, which identifies the cytokine measured. Finally, the 

green LEDs excite the phycoerythrin reporter tag which generates the analytical signal used 

to quantify the cytokine level. 
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75 µl of plasma was treated according to manufacturer’s instruction. In brief, upon standard 

preparation, antibody magnetic beads were prepared and 50 μL were transferred to each well 

of the 96-well plate provided in the kit. After one washing step with washing buffer at RT, 25 

μL of standards and samples were added to the dedicated wells. While shaking, the plate was 

incubated for 15 min at RT. Subsequently, the plate was transferred to 4 °C and incubated 

overnight. The next day, the plate was shaken at RT for 15 min. Following two washing steps 

at RT, 25 μL of the detection antibody was added and incubated for 20 min at RT. After two 

more washing steps, 50 μL streptavidin-phycoerythrin was added and incubated for 30 min at 

RT. After two additional washing steps and bead suspension data acquisition was done with 

the Magpix instrument. The following cytokines were measured: IL-10, IL-1β, IL-2, IP-10, IL-6, 

IFNα, IFNγ, IL-12p70 and TNFα. Cytokine data were analyzed by nonlinear regression.  

 

 

Figure 8: Principle of the cytokine measurement 

Each bead set identifies a specific cytokine measured.126 
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2.2.6 Immunocyto- and Immunohistochemistry 

2.2.6.1 Immunocytochemistry 

For visualisation of ACE2, cells were cultured on coverslips in 6-well plates and afterwards co-

stained for immunofluorogenic detection of ACE2 protein at the cell membrane. After washing 

with PBS, cell membranes were stained by addition of tetramethylrhodamine conjugated 

wheat germ agglutinin in Hank’s balanced salt solution (concentration 20 µg/ml) and 

incubation for 10 min in the incubator. Samples were washed with PBS and fixed in 4 % 

paraformaldehyde for 10 min at RT. Cells were washed again and permeabilized for 10 min in 

PBS supplemented with 0.2 % Triton X-100 at RT. After another washing step, cells were 

blocked in blocking solution (PBS supplemented with 10 % FCS and 0.05 % Triton X-100) for 

30 min at RT. Slides were then incubated for one hour with primary antibody against ACE2 in 

blocking solution at RT followed by another washing step in PBS. Secondary anti-goat AF488 

antibody and DAPI for visualisation of the nuclei, were diluted in blocking solution and samples 

incubated for 1 h at RT. After a final wash, slides were mounted in FluorSave and viewed under 

a Leica DMi8 microscope. 

2.2.6.2 Immunohistochemistry 

Liver and lung tissues were excised, fixed for 24 h in 4 % buffered formaldehyde solution and 

embedded in paraffin for histological examination. Tissues were then sectioned into 3-4 μm 

slices, deparaffinized in Xylol and rehydrated in a decreasing ethanol series. For antigen 

retrieval, tissue sections were incubated in 10 mM sodium citrate buffer [pH 6.0] for 30 min 

using a waterbath at 96 °C. The tissues were washed in PBS, quenched for 5 min in 3 % H2O2 

and washed again.  

For luciferase staining, sections were blocked for 1 h at room temperature in 2.5 % horse 

serum in PBS. The sections were then incubated with primary anti-luciferase antibody in PBS 

supplemented with 0.3 % Triton X-100 at 4 °C overnight. Tissue sections were washed in PBS 

and incubated with ImmPRESS Reagent for 30 min at RT. The ImmPRESS reagent is a 

peroxidase micropolymer coupled to a secondary anti-goat antibody, allowing highly sensitive 

signal detection with reduced background signals. After washing again with PBS, 

3,3’diaminobenzidine substrate at 0.5 mg/ml in PBS was added for 1-8 min at RT.  

For ACE2 staining, the tissue sections were additionally subjected to an avidin/biotin block for 

15 min at RT, followed by a brief wash. Then tissues were blocked in Vectastain serum blocking 
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reagent D for 30 min at RT, followed by an overnight incubation at 4 °C with primary anti-ACE2 

antibody in 10 % normal goat serum in PBS supplemented with 0.2 % Triton X-100. After 

washing with PBS, the sections were incubated with Vectastain biotinylated secondary anti-

goat IgG antibody diluted according to manufacturer’s protocol for 30 min at RT. Slides were 

washed again and incubated in Vectastain ABC complex, a preformed Avidin/Biotinylated 

enzyme complex, which serves as a signal multiplier due to very high affinity of avidin for 

biotin and four biotin binding sites. After incubation for 30 min at RT, 3,3’Diaminobenzidine 

substrate was added at 0.5 mg/ml in PBS for 1 min at RT and the reaction was stopped by 

washing tissue sections in distilled water. For counterstaining, sections were briefly dipped in 

hematoxylin and then washed under running water. Evaluation was performed with a Leica 

DM2000 LED. 

2.2.6.3 Sirius red Staining 

Sirius red staining is a dye used for staining collagen and amyloid. As excessive collagen 

deposition is a major hallmark of fibrotic diseases, quantitative analysis of the percentage of 

sirius red staining area in tissue sections is frequently used for fibrosis scoring. Sample 

preparation, sirius red staining, hematoxylin staining and tissue analysis for the liver disease 

model was done by Stelic MC, Inc. Tokyo, Japan. 

2.2.6.4 In situ Hybridisation 

In situ hybridization of liver tissues was performed by ACD (Advanced Cell Diagnostics, 

Hayward, CA, USA), and lung tissues were analyzed by ITEM (Hannover, Germany) using 

RNAscope 2.5 HD Reagent Kit-Brown following manufacturer’s instructions. For detection of 

ACE2 cmRNA, a targeted probe was designed by ACD based on the cmRNA sequence provided, 

while a probe detecting murine ACE2 was derived from GenBank (NM_ 027286.4). RNAscope 

dapB (bacterial dapB) was used as a negative and RNAscope PPIB (Cyclophilin B) as a positive 

control. Samples were counterstained with hematoxylin and viewed under a brightfield 

microscope. 
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2.2.7 Statistical Analysis 

Each experiment was performed with at least three technical replicates per sample. In 

addition, quantitative analysis of flow cytometry samples was performed with a minimum of 

three biological replicates. Results are shown as mean ± standard error. Statistical analysis 

was performed using GraphPad Prism 6. Pair-wise comparison of in vitro experiments was 

conducted by two-tailed Student’s t-test and group comparisons of in vivo experiments were 

done by one-way ANOVA, followed by Dunnett’s multiple comparison test. A P value ≤ 0.05 

was considered statistically significant (* ≤ 0.05, ** ≤ 0.01). 
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3 RESULTS 

3.1 Proof of Concept for ACE2 Delivery in vitro 

3.1.1 ACE2 cmRNA Transfection and Translation in vitro 

In the first set of experiments, RNA delivery of in-vitro-transcribed (IVT) chemically modified 

ACE2 RNA (ACE2 cmRNA) and its successful translation into ACE2 protein was investigated. As 

a generic test system, human embryonic kidney cells HEK293 were chosen as they are 

frequently used for transient transfection experiments. Additionally, with the aim of liver and 

lung targeted protein translation in subsequent in vivo studies, the following cells were 

selected: alveolar epithelial derived cells A549 and hepatoma derived cells HepG2 as human 

cell lines and hepatocytes and lung fibroblasts as primary murine cells. 

First, all cells were screened for their endogenous levels of ACE2 mRNA (Figure 9). Endogenous 

levels in pulmonary cells were either not detectable as in the case of lung fibroblasts or at 

detection limit in the case of A549. All other cells showed moderate levels of ACE2 mRNA 

relative to the reference gene panel.  

Next, cells were transfected with ACE2 cmRNA or Luciferase cmRNA as control and analyzed 

24 h after transfection (Figure 10). In order to analyze cellular uptake of cmRNA, total RNA 

was collected and 1 µg was transcribed into first-strand cDNA. Relative expression of ACE2 

cmRNA was analyzed by real-time PCR against a set of reference genes (Figure 10 a). 

Figure 9: Levels of endogenous ACE2 mRNA 

Endogenous ACE2 mRNA for all cells, normalized to a panel of reference genes for each cell type. n.d. not 
detectable. 
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The difference in abundance (ct values) of ACE2 cmRNA to the mean abundance of reference 

genes is shown (Δ ct). Strongly negative Δ ct values indicate prominent ACE2 cmRNA 

abundance in samples compared to reference gene abundance. In all ACE2 cmRNA treated 

cells, cmRNA was successfully taken up, while no ACE2 cmRNA could be detected in control 

cmRNA or untransfected samples. 

 

Figure 10: Detection of cmRNA and encoded protein 24 h after transfection in different cell types 

(a) Relative expression of ACE2 cmRNA. (b) ACE2 protein expression with GAPDH as loading control. (c) ACE2 
activity. *p<0.05, **p<0.01 
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In a next step, it was verified whether ACE2 cmRNA was successfully translated into ACE2 

protein (Figure 10 b). For this purpose, A549, HepG2 and HEK293 were seeded in 24-well 

plates and transfected with 250 or 25 ng of ACE2 cmRNA, while primary cells were seeded in 

6-well plates and transfected with 2 µg of ACE2 cmRNA. Cells were lysed after 24 h and total 

protein concentration was determined by bicinchoninic assay (BCA). 5-10 µg of total protein 

was loaded on by SDS-PAGE and probed for ACE2 and glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH) as a loading control. The three human cell lines showed clear dose 

dependent expression levels for ACE2 protein. Likewise, transfection of primary liver and lung 

cells with ACE2 cmRNA led to clearly detectable ACE2 protein levels. Weak ACE2 signals in 

control or untransfected samples especially in HEK293 may be explained by detection of 

endogenous ACE2 by the antibody used as the antibody does not discriminate between 

cmRNA derived and endogenous ACE2 protein. 

Finally, it was determined if the ACE2 protein detected by Western Blot shows enzymatic 

activity. ACE2 activity assay was performed with 30 µg of total protein (Figure 10 c). ACE2 

activity is shown as fold induction to ACE2 activity measured in untransfected samples. All 

ACE2 cmRNA transfected samples showed a significant signal induction in ACE2 activity with 

p-values < 0.01. As for Western Blotting, the ACE2 activity assay cannot differentiate between 

ACE2 activity derived from endogenous or cmRNA derived protein, hence ACE2 activity in the 

different cell lines shall not be compared side by side. 

These findings demonstrate, that ACE2 cmRNA transfection leads to translation of an 

enzymatically active protein in human and murine liver and lung cells. 

3.1.2 ACE2 Posttranslational Modifications 

ACE2 is a type I integral membrane protein with the core domain located at the extracellular 

surface. For correct integration into the membrane, these proteins have to undergo 

posttranslational modifications. This process and its results were analyzed in a next set of 

experiments. 

Glycans are pivotal for proper folding, assembly and trafficking of membrane proteins. In 

order to verify N-linked glycosylation of ACE2 protein, a transfection experiment was set up 

with A549 cells, in which half of the samples were treated with Tunicamycin prior transfection 

(Figure 11 a). Tunicamycin prevents glycosylation of asparagine residues by inhibition of N-

Acetylglucosamine transferase, hence protein size will be reduced due to reduced number of 
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glycans bound to the protein77. Cells were seeded in 6-well plates and transfected with 2 µg 

ACE2 cmRNA of luciferase cmRNA as control and lysed 24 h after transfection. Part of the cell 

lysate of the ACE2 cmRNA transfected sample which was not treated with Tunicamycin was 

subjected to enzymatic deglycosylation. 10 µg of total protein was used for Western Blotting. 

ACE2 cmRNA transfected samples without Tunicamycin pretreatment, showed an ACE2 

protein with a size of 120 kDa, which corresponds to the mature, fully glycosylated form of 

the protein78. Upon treatment with Tunicamycin or retrospective deglycosylation, the size of 

ACE2 protein was markedly decreased. These findings indicate glycosylation of ACE2 cmRNA 

derived protein. In addition, ACE2 forms 3 disulfide bridges during posttranslational 

maturation79, which was shown by processing of ACE2 transfected cell lysate under reducing 

and non reducing conditions on SDS PAGE. Reducing conditions led to unfolding of protein, 

resulting in reduced migration capacity of the protein, hence the ACE2 protein band was 

detected at a higher level than under non reducing conditions (Figure 11 a).  

Correct protein integration and expression on the cell surface was verified by fluorescence 

activated cell sorting. All three human cell lines were transfected with ACE2 cmRNA and 24 h 

later a surface staining for ACE2 protein was performed (Figure 11 b and c). If ACE2 is correctly 

integrated into the plasma membrane, the core domain faces towards the extracellular space 

and will be recognized by the antibody. The experiment was repeated three times for each 

cell line (Figure 11 b) and showed that ACE2 cmRNA transfection leads to a significant 

induction in fluorescent intensity in these samples compared to control transfected and 

untransfected samples. Figure 11 c shows respective representative histograms for each cell 

line, where increased ACE2 expression in ACE2 transfected cells leads to a shift to the right of 

the curve for these samples. As the primary antibody used in this experiment is not able to 

discriminate between endogenous and cmRNA derived protein, a direct side by side 

comparison of the expression levels in the different cell lines is not appropriate. 
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To localize cmRNA derived protein, A549 and HepG2 were transfected with ACE2 cmRNA and 

stained 24 h after transfection. By additional staining of the plasma membrane with a 

membrane marker (wheat germ agglutinin) it can be visually verified that the protein is 

located at the plasma membrane indicating integration into the membrane (Figure 12). In 

both cell lines, samples transfected with ACE2 cmRNA stained positive for ACE2 protein, while 

transfection with control cmRNA (luciferase) showed weak background signal in HepG2, which 

may be due to staining of endogenous levels of ACE2 protein in these cells. The immunocyto-

chemical images revealed ACE2 protein localization throughout the cytoplasm and on the 

plasma membrane. The accumulations found throughout the cytoplasm showed a dotted 

pattern, indicating for protein enrichment in vesicular structures probably involved in protein 

maturation or trafficking to the plasma membrane. Presence of ACE2 protein at the plasma 

Figure 11: Posttranslational processing of ACE2 protein 

(a) Upper panel: glycosylation of ACE2 protein in presence/absence of Tunicamycin. Lower panel: breaking of 
disulfide bonds under reducing conditions. The same sample was applied repeatedly. (b) Flow cytometry analysis 
of ACE2 expression on the cell surface. *p<0.05, **p<0.01. (c) Representative histograms of flow cytometry
experiment for each cell line. 
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membrane was apparent by co-localization of ACE2 protein with wheat germ agglutinin which 

is shown in white color in the overlay images.  

Taken together, it was shown that ACE2 cmRNA derived ACE2 protein undergoes biological 

post-translational modifications leading to correct protein integration into the plasma 

membrane. 

3.1.3 Optimization of ACE2 cmRNA for in vivo Application 

After having successfully verified that the sequence of ACE2 cmRNA leads to the translation 

of an active membrane bound form of ACE2 protein, a separate comprehensive evaluation 

was set up to further optimize the cmRNA sequence for strong protein translation. This 

evaluation was done in form of a master thesis project by Huber M74. The major findings are 

summarized in the following. 

Figure 12: Immunofluorescent staining for ACE2 

Left panels – ACE2 cmRNA transfected, Right panels – control cmRNA transfected green: A549, blue: nucleus, 
violet: cell membrane, white: green and violet overlay (a) A549. (b) HepG2. 
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For sequence optimization, eight different ACE2 cmRNA sequences were designed. They 

shared the same open reading frame (ORF) encoding ACE2, a C1-m7G cap and a poly(A) tail of 

approximately 120 nucleotides which was found to be the optimal length65. In addition to the 

natural ACE2 untranslated region (UTR) mRNA sequence, three different modifications of the 

UTR being known for high level of protein translation75,80,81 were introduced, namely minimal 

5’ UTR, human alpha globin (hαG) 5’ UTR and cytochrome b-245 alpha (CYBA) 5’ with 3’ UTR. 

For all four sequences, one natural and one codon optimized version of the ORF were 

designed. 

For the cmRNA sequence evaluation, A549 and HepG2 cells were transfected and lysed after 

5 different time points for cmRNA and protein kinetics evaluation. ACE2 protein expression 

analyzed by Western Blot showed ACE2 translation in both cell lines upon transfection with 

Figure 13: Screening of ACE2 cmRNA sequences 

(a) Western Blot for samples taken after 6 h, 24 h, 48 h, 72 h and 144 h. (b) ACE2 Activity assay 24 h after 
transfection. c.o. codon optimized 
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codon optimized ACE2 cmRNA sequences for up to 144 h (Figure 13 a, A549 left panel, HepG2 

right panel). Strongest protein translation was observed for codon optimized hαG cmRNA 

followed by codon optimized minimal cmRNA. Data obtained by Western Blot were confirmed 

by an ACE2 activity assay (Figure 13 b; A549 left panel, HepG2 right panel). In both cell lines, 

ACE2 enzymatic activity was significantly increased for samples transfected with codon 

optimized hαG cmRNA and codon optimized minimal cmRNA relative to untransfected 

samples.  

Based on these results, codon optimized minimal and codon optimized hαG cmRNA were 

identified as the best performing sequences with regards to cmRNA stability, protein 

translation and kinetics. As the codon optimized hαG cmRNA sequence showed a slightly 

longer half-life (approximately 13 h in A549 and 9 h in HepG2) than the minimal sequence, it 

was used in all subsequent in vivo studies. 
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3.2 Proof of Concept for ACE2 Transcript Therapy in the Liver 

Dysregulation of the local RAS system is significantly contributing to inflammation and fibrosis 

in liver fibrosis82,83, and counterbalancing this process has been shown to have promising 

therapeutic effects4,6,8,55,56. In order to establish ACE2 cmRNA delivery in the liver, a set of 

experiments was planned. First, a carrier formulation was selected which was selectively 

targeting liver tissue, leading to substantial local protein translation without causing 

intolerable toxicity. These requirements were best verified by in vivo application of a 

formulation holding luciferase cmRNA. Upon successful transfection, organ targeting can 

easily be verified by whole animal imaging and by ex vivo luciferase activity. In a next step, the 

experiment was repeated with ACE2 cmRNA instead of luciferase cmRNA and ACE2 protein 

translation was validated. Finally, the ACE2 cmRNA formulation was tested in a disease model 

of liver fibrosis and tolerability, protein expression and therapeutic effects were evaluated. 

3.2.1 Liver Targeted cmRNA Delivery 

For the purpose of liver targeted cmRNA delivery, lipoplexes (LLF (liver lipidoid formulation) 

in the following) as described by Jarzebinska et al. were used14. These lipoplexes consist of a 

cationic lipid, two helper lipids and a polyethylene glycol (PEG) lipid for shielding. In a first 

study, firefly luciferase cmRNA was formulated in LLF. This formulation was intravenously (i.v.) 

applied in female Balb/c mice at 1 mg/kg while the sham group was treated with phosphate-

buffered saline (PBS). All animals were sacrificed 6 h after application. Immediately after 

death, D-luciferin was injected intraperitoneally and IVIS images were taken. All animals 

showed strong and selective cmRNA uptake in the liver (Figure 14 a). Afterwards, liver, lung 

and spleen of each animal were dissected and reimaged in the IVIS. A clear signal was detected 

in the liver, but not in the other organs (Figure 14 a). Organs were then homogenized and 

luciferase activity was measured (Figure 14 b). The results confirmed the IVIS data as there 

was significant luciferase activity in liver homogenates compared to spleen and lung. 

Parts of the dissected livers were embedded in paraffin and stained for luciferase protein with 

anti-luciferase antibody. Figure 14 c shows the typical structure of a liver lobule. In the case 

of intravenous injection, lipoplexes enter the liver via the interlobular artery and then diffuse 

to the central vein. Looking at the venous blood flow through the liver, an oxygenation and 

nutrient gradient with strong enrichment close to the afferent vessels and low enrichment 

close to the efferent vessels is typical (Figure 14 d). The stainings for luciferase protein showed 
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a very similar protein distribution, mirroring the blood flow through the organ. Strong protein 

enrichment was observed close to the portal region, where afferent vessels enter the liver, 

with a gradual decrease towards the efferent central vein (Figure 14 e). In the sham treated 

animals, no luciferase protein could be detected. 

 

 

 

Figure 14: Liver targeted delivery of firefly luciferase cmRNA 

i.v. administration of 1 mg/kg luciferase cmRNA in LLF, 6 h post treatment 

(a) Firefly luciferase activity detected by IVIS imaging. (b) Luciferase activity in organ homogenates. RLU relative 
light units**p<0.01 (c) Architecture of liber lobule127. (d) Oxygenation and nutrient zones in the liver lobule127. 
(e) Luciferase stainings for cmRNA and Sham treated animals. 



RESULTS 
 

47 
 

3.2.2 Liver Targeted ACE2 cmRNA Delivery 

After having successfully verified targeted and selective enrichment of LLF complexed cmRNA 

and protein translation in the liver using reporter cmRNA, delivery of ACE2 cmRNA in LLF was 

evaluated. Two doses of ACE2 cmRNA (4 and 2 mg/kg) and a single dose (2 mg/kg) of control 

cmRNA in LLF was formulated and intravenously injected in female Balb/c mice, while sham 

treated animals received PBS. Animals were sacrificed 6 h after treatment and organs were 

taken. 

First, the amount of ACE2 cmRNA taken up by the liver was analyzed by real-time PCR (Figure 

15 a). For this purpose, total RNA of liver tissue was extracted and transcribed into first-strand 

cDNA. Absolute values of ACE2 cmRNA in the liver were measured by real time PCR using an 

ACE2 cmRNA dilution series. PCR analysis showed a clear dose-dependent uptake of 0.032 ± 

0.007 ng ACE2 cmRNA/µg total RNA for a dose of 4 mg/kg and 0.016 ± 0.002 ACE2 cmRNA/µg 

total RNA for a dose of 2 mg/kg. There was no ACE2 cmRNA detected in the control group. 

Second, part of the liver was embedded in paraffin and in situ hybridization was performed to 

see where the cmRNA is deposited. ACE2 cmRNA was visualized in black and endogenous 

ACE2 mRNA in pink color. ACE2 treated animals showed clear cmRNA uptake by hepatocytes 

next to diffuse detection of cmRNA in liver sinusoids throughout the organ (Figure 15 b). Sham 

treated animals showed only endogenous levels of ACE2 mRNA. Part of the liver was 

homogenized and analyzed by Western Blot (Figure 15 c). GAPDH was used as a loading 

control while cell lysate of ACE2 cmRNA transfected hepatocytes was used as a positive 

control. ACE2 cmRNA was successfully translated as shown by a clear increase of ACE2 protein 

abundance in the ACE2 treatment groups. Control cmRNA treated animals showed 

background levels of ACE2 protein. Successful glycosylation of ACE2 protein was verified by 

retrospective enzymatic deglycosylation. In order to confirm full protein functionality, part of 

the liver was used to perform an ACE2 activity assay (Figure 15 d). Control cmRNA treated 

animals showed endogenous levels of ACE2 activity while significant increase in ACE2 activity 

of ACE2 cmRNA treated groups was detected. 
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Overall, in vivo studies using reporter cmRNA have confirmed that LLF is a suitable delivery 

agent for selectively targeting cmRNA to the liver. Subsequent formulation of ACE2 cmRNA in 

LLF led to a homogenous ACE2 cmRNA in the liver leading to a significant increase of ACE2 

protein translation and activity in the liver. 

 

Figure 15: Liver targeted delivery of ACE2 cmRNA 

i.v. administration of 4 and 2 mg/kg ACE2 cmRNA in LLF, 6 h post treatment 

(a) Absolute quantification of ACE2 cmRNA. (b) In situ hybridization of liver tissue; black: ACE2 cmRNA, red: 
endogenous ACE2. (c) Upper panel: ACE2 protein abundance. Lower panel: glycosylation of ACE2 cmRNA derived 
protein. (d) ACE2 activity. FI Fluorescence intensity **p<0.01 
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3.2.3 ACE2 cmRNA Application in a Model of Non Alcoholic Steatohepatitis 

Based on the results of cmRNA application in healthy mice, a study for therapeutic application 

of cmRNA in a NASH model was designed. For the investigations, a two-hit model was 

selected, established and provided by Stelic Inc. (STAMTM). The selected model uses one 

chemical and one diet based challenge for disease establishment in male C57/Bl6 mice (Figure 

16). The first challenge is given after birth by a subcutaneous injection of 200 µg 

Streptozotocin leading to harm of β-cells in the pancreas with subsequent induction of mild 

diabetes84. The second challenge starts in week 4 by continuous feeding of high fat diet leading 

to obesity, impaired glucose tolerance, dyslipidemia, increased expression of regulators of 

lipogenesis and expression of proinflammatory cytokines85. 

In the liver, export of triglycerides to the periphery is hampered, leading to significant lipid 

accumulation in the organ which results in increased liver weights in the animals while total 

body weight is decreased86. This leads to an increased liver to body weight ratio in diseased 

animals. The associated liver damage is usually associated with increase liver parameters. The 

effects of the high fat diet is also apparent in serum parameters such as glucose and 

cholesterol, resembling the situation in humans, where these parameters are increased in 

patients suffering from metabolic syndrome87. 

Between week 5 and 6, steatosis onset can be observed which progresses to fibrosis between 

week 9 and 12 and at later stages to cirrhosis and finally hepatocellular carcinoma. Patients 

usually present in the late steatosis or early fibrosis phase. In the animal model on hand, this 

correlates to a time window between week 6 and 9 after the initial first hit. Therefore, the 

Figure 16: Establishment of STAM model and study outline  
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treatment was started at the beginning of week 6 and was followed for a time frame of 3 

weeks. Mice were randomly allocated to the following groups: 

Table 15: Group allocation for NASH model 

Group 
Number 

STAM established? Treatment Group 
size 

(start) 

Group 
size   

(end) 

1 Yes ACE2 cmRNA - 2x/week  8 5 

2 Yes ACE2 cmRNA - 1x/week  8 8 

3 Yes Sham (2 % sucrose) - 2x/week 8 7 

4 No None 8 8 
 

In an additional pre-experiment for dose determination in Balb/c mice (data not shown), 

substantial ACE2 protein expression was seen down to a cmRNA dose of 0.25 mg/kg. 

Therefore, and for the purpose of keeping toxicity at a minimum, the dose for this study was 

set at 0.25 mg/kg/treatment formulated in LLF. The sham group received 2 % sucrose per 

treatment. The treatment was repeated iteratively every 3 or 4 days for group 1 and group 3, 

while group 2 was treated every 7 days. Group 4 was used was healthy control group, hence 

neither disease was established nor any treatment was applied. The treatment regimen was 

followed for 3 consecutive weeks, with final treatment at the beginning of week 4. In total, 

seven administrations were given to group 1 and 3 and four administrations to group 2. 

Animals were sacrificed 24 h after final treatment and body and liver weights were recorded. 

In addition, part of the liver was embedded in paraffin for histological examination, while the 

remaining part and blood serum were frozen and stored at -80 °C for later analysis. 

Figure 17 a summarizes body and liver weight data at the end of the study. Body weight was 

not changed due to ACE2 treatment, while liver weight was significantly increased in both 

ACE2 treatment groups. The resulting liver to body weight ratio did not show any changes due 

to ACE2 treatment. Metabolic parameters such as glucose and cholesterol were not improved 

after ACE2 treatment. In group 2, glucose levels were increased compared to group 1 and 

group 3. The status of liver injury was evaluated by a panel of liver parameters (Figure 17 b). 

Lactate dehydrogenase (LDH) is an enzyme which is released into blood stream only upon 

tissue damage. As LDH is widely distributed in the body, it is a rather generic parameter used 

for identification of acute or chronic tissue damage.88 Treatment with ACE2 cmRNA led to 

significant increase of this enzyme. In order to identify the organ being the cause of increased 

LDH levels, additional parameters need to be considered. In the case of liver injury, alanine  
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Figure 17: Weight and serum parameters after ACE2 cmRNA treatment 

i.v. administration of 0.25 mg/kg ACE2 cmRNA in LLF, 24 h post treatment 

(a) Body, liver weight and liver to body weight ratio at the end of treatment period. (b) Serum parameters at 
the end of treatment. For all statistical calculations, group 3 was used as reference group; *p<0.05, **p<0.01 
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aminotransferase (ALT), aspartate aminotransferase (AST) and glutamate dehydrogenase 

(GLDH) are frequently used. All three enzymes show strong presence in the liver among other 

organs and are elevated in acute hepatic injury (ALT and AST) or in chronic liver disease 

(GLDH).89,90 Values of these enzymes were significantly increased in group 2, while animals of 

group 1 showed the same values as sham treated diseased animals. Overall, ACE2 treatment 

did not improve the status of liver damage.  

For evaluation of the amount of ACE2 cmRNA deposited in the liver, part of the liver was 

homogenized, total RNA extracted and 1 µg of total RNA transcribed into cDNA. Absolute 

values of ACE2 cmRNA in the liver were measured by real time PCR as described in the 

previous experiment. Both ACE2 treatment groups showed significant uptake of ACE2 cmRNA 

with a mean of 0.1 pg/µg total RNA (Figure 18 a). In both control groups, no cmRNA was 

detected. Despite presence of ACE2 cmRNA in the liver, there was no ACE2 protein induction 

due to transfection detectable by Western Blot. 

Next, the effect of ACE2 cmRNA treatment on fibrosis progression was evaluated, both 

quantitatively and qualitatively. For quantitative evaluation, content of hydroxyproline in the 

liver was determined (Figure 18 b). Hydroxyproline is a major structural component of 

collagen necessary for stabilizing collagen helices91, hence collagen quantity can directly be 

derived from hydroxyproline content in the tissue. The results from the hydroxyproline assay 

did not show a reduction in hydroxyproline due to treatment with ACE2 cmRNA.  

Figure 18: Deposition of ACE2 cmRNA and effect on hydroxyproline content of ACE2 cmRNA treatment 

i.v. administration of 0.25 mg/kg ACE2 cmRNA in LLF, 24 h post treatment 

(a) Absolute quantification of ACE2 cmRNA. (b) Liver hydroxyproline content. 
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For qualitative evaluation of fibrosis, sirius red and hematoxylin stainings of liver tissue slides 

were prepared. Sirius red is frequently used for staining of hepatic collagen as it binds to most 

hepatic collagens with collagen type I and III being the major components. These binding 

properties correlate well with the readout of the hydroxyproline assay92, hence the 

combination of these two techniques allows a comprehensive evaluation of fibrosis stage. 

Figure 19 shows one representative sirius red image of each group. Animals of group 1, 2 and 

3 showed mild to moderate hepatic fibrosis with collagen deposition around large vessels and 

between hepatocytic plates. Quantitative evaluation of the sirius red stainings showed a slight 

decrease in collagen due to treatment with ACE2 once per week and a significant decrease in 

the group treated twice per week.  

 

In order to evaluate disease progression, hematoxylin stainings were evaluated using a three 

step scoring system. The scoring system is summarized in Table 16 and consists of three 

individual scores (steatosis, inflammation and ballooning) which are added up to an overall 

score reflecting NAFLD status. Steatosis is an abnormal accumulation of lipid droplets in the 

cytoplasm of hepatocytes resulting from metabolic or toxic insults, among others. Ballooning 

reflects hepatocyte injury caused by alterations of the intermediate filament cytoskeleton. 

These cells appear to be swollen with a rarefied cytoplasm and a centrally located small, dark 

Figure 19: Effects of ACE2 cmRNA treatment on fibrosis 

 i.v. administration of 0.25 mg/kg ACE2 cmRNA in LLF, 24 h post treatment 

 (a) Representative sirius red images of each group. (b) Quantification of sirius red staining area 
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nucleus. Finally inflammation is characterized by a mixed inflammatory cell infiltrate mostly 

found between lobuli93.  

Table 16: NAFLD scoring system93 

Item Definition Score 

Steatosis % of hepatocytes showing abnormal 
accumulation of fat droplets: 

< 5 % 

5 % - 33 % 

> 33 % - 66 % 

> 66 % 

      
aaa       

0 

1 

2 

3 

Lobular inflammation No foci 

< 2 foci per 200 x field 

2-4 foci per 200 x field 

> 4 foci per 200 x field 

0 

1 

2 

3 

Ballooning None 

Few balloon cells 

Many cells / prominent ballooning 

0 

1 

2 
 

All groups presented with an overall mild steatosis without any ACE2 treatment effect 

observable. For ballooning, no clear statement of the effect of ACE2 cmRNA treatment can be 

postulated as both ACE2 treatment groups showed mild to moderate ballooning in the 

majority of the animals compared to an overall mild ballooning in the vehicle group (Figure 20 

a and Figure 20 c). Inflammation was present in predominantly moderate intensity in the sham 

treated group (Figure 20 a and d). For ACE2 treatment groups, there was a trend towards 

lower grade of inflammation observable with increasing ACE2 cmRNA dosing. Healthy 

untreated animals did not show steatosis, ballooning or inflammation. The unweighted sum 

of these individual scores are summarized in Figure 20 e. There was a trends towards 

decreased NAFLD level visible, however the effect did not reach significance value. 

Overall, evaluation of liver collagen content and histologic examination of liver tissues lead to 

the conclusion that ACE2 cmRNA treatment could not halt or reverse disease progression. 

However, there is a trend observable that frequent ACE2 cmRNA administration of two 

applications per week leads to amelioration of inflammation and fibrosis as well as 

improvement of acute liver injury parameters. 
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Figure 20: NAFLD scoring 

 i.v. administration of 0.25 mg/kg ACE2 cmRNA in LLF, 24 h post treatment 

(a) Representative hematoxylin stainings for each group used for NAFLD scoring. Distribution of scores within 
each group: (b) Steatosis, (c) Ballooning and (d) Inflammation. (e) Overall NAFLD score per group. 
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3.3 Proof of Concept of ACE2 Transcript Therapy in the Lung 

Similar to liver fibrosis, the local RAS system is dysbalanced in lung fibrosis. Contrary to liver 

fibrosis, local ACE2 expression is downregulated and reestablishment of pulmonary ACE2 

expression showed therapeutic effects5,8,55,56. In order to establish lung targeted ACE2 cmRNA 

delivery, a similar study outline as for liver targeted treatment was chosen. First, a carrier 

formulation for selective delivery into the lungs was identified by use of reporter cmRNA or a 

mix of reporter and target cmRNA. In a second step, reporter cmRNA was replaced by ACE2 

cmRNA, in order to verify substantial translation of ACE2 upon cmRNA delivery with the 

delivery method established in step one. In a third step, the same formulation was applied in 

a disease model in order to evaluate therapeutic effects.  

There are two main administration routes for drug delivery into the lung, namely pulmonary 

and systemic delivery. Due to the differences in the drug clearance mechanisms of each route 

and due to morphologic changes in diseased tissue, considerable differences between the two 

application routes with regards to drug bio-availability have to be considered. The most 

common techniques for pulmonary delivery of cmRNA are aerosol inhalation (nebulization) 

and intratracheal (i.t.) instillation. Systemic delivery is usually performed by intravenous (i.v.) 

or intraperitoneal (i.p.) injection. 

3.3.1 Nebulization of cmRNA 

Aerosol application offers a convenient and minimal invasive way of delivering small particles 

into the lung. It has been shown that protein expression can be induced upon delivery of pDNA 

or mRNA94,95, however it had to be tested, if sufficient quantities of ACE2 protein can be 

expressed by this delivery route to rebalance the local RAS system. As aerosol application of 

branched polyethylenimine (brPEI) formulations is usually well tolerated by the mice, 

repeated dosing potentially leading to cmRNA accumulation and hence stronger protein 

translation was included in the experimental set up. For the experiment, 3 groups of six 

animals of female Balb/c mice were formed (Figure 21 a). Group 1 received a single aerosol 

application, group 2 received aerosol on 4 consecutive days and group 3 received sham 

treatment (nebulization of water) on 4 consecutive days. The aerosol consisting of 1.8 mg 

(90 %) ACE2 cmRNA and 0.2 mg (10 %) luciferase cmRNA formulated in brPEI was freshly 

prepared every day directly before application. 10 % luciferase cmRNA was included for the 
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purpose of additional proof of cmRNA delivery and for exclusion of cmRNA enrichment in 

other organs. For the treatment, all animals of one group were placed in a whole body 

nebulization chamber connected to a mesh nebulizer (Figure 21 b). The nebulizer was further 

connected to a pariboy compressor, which generated the pressure necessary for nebulization. 

For continuous airflow generation, the nebulization chamber was equipped with a fume 

extractor. Nebulization treatment lasted for approximately 15-20 min. The animals were 

sacrificed 24 h after the last treatment and lung, liver and spleen were excised and 

homogenized for luciferase assay and Western Blot. 

Luciferase activity was selectively measurable in the lung, while liver and spleen did not show 

any activity (Figure 22). Luciferase was detectable in animals treated once, though it was not 

of significant magnitude compared to sham treated animals. Repeated aerosol application 

however led to significant increased luciferase activity compared to single aerosol as well as 

sham treatment with p<0.01 in both cases. 

 

Figure 21: Study outline and nebulization apparatus 

(a) Study outline. (b) Nebulization apparatus. 
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In a next step, lung homogenates were analyzed for ACE2 protein expression by Western Blot. 

No ACE2 protein could be detected in any of the treatment groups, indicating that ACE2 

protein expression was below detection limit. Due to this fact, ACE2 activity assay was not 

performed. 

Taken together, the experiment showed that nebulization of brPEI complexed cmRNA is 

suitable for lung targeted cmRNA delivery and that repeated dosing leads to increased protein 

translation. With empirical evidence of ACE2 being downregulated in IPF patients6, ACE2 

expression levels at or below detection limit were certainly not high enough to further 

investigate therapeutic applicability of this administration route.  

  

Figure 22: Luciferase activity 

Aerosol administration of 2 mg ACE2 cmRNA in brPEI, 24 h post treatment,  **p<0.01 
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3.3.2 Intratracheal Application of cmRNA 

Based on the weak protein expression achieved in the nebulization experiment, a new set of 

experiments was planned. 

3.3.2.1 Polymer versus Lipidoid Formulation of cmRNA 

The previous experiments showed that LLF based formulation led to strong protein translation 

in the liver upon i.v. delivery. However, its administration via the airways was not yet 

investigated. Pre-experiments have shown that nebulization is not suitable for delivery of lipid 

nanoparticles but that they need to be applied directly into the lung by use of an i.t. spray. 

The spray is introduced into the trachea and down the primary bronchi to the first bifurcation, 

a procedure which requires full anesthesia of the animal. The formulation is then delivered by 

manual force application producing an aerosol of the liquid formulation. The first i.t. 

experiment was designed as a side by side comparison between polymer and lipidoid based 

formulation to identify the best delivery agent. The evaluation was done with luciferase 

cmRNA in male Wistar rats, which were divided in two groups of 3 animals each. Based on the 

dosing regimen of the previous mouse experiments, the dose was set 10 times higher for rats. 

The animals were of 330 g at the start of the experiment, resulting in a dose of 0.45 mg/kg. 

The first group was treated with luciferase cmRNA formulated in brPEI and the second group 

received the same cmRNA formulated in LLF. The animals were sacrificed 6 h after application 

and lungs were collected. 

Given the nature of the i.t. spray device, aerosol delivery in the lung is not as homogeneously 

distributed as in the case of nebulization. Final deposition of the aerosol heavily depends on 

the exact positioning of the device inside the trachea as well as the exact positioning of the 

animal. Therefore, considerable variations in the final distribution of the aerosol have to be 

expected. In order to avoid false results with regards to transfection efficiency and protein 

expression, lung samples of all lung lobes as well as the central respiratory system were taken 

for homogenization. Western Blot analysis of these homogenates revealed a clear band for 

luciferase protein delivered in lipidoid formulation with no band detectable for the polymer 

formulation (Figure 23 a). Vinculin served as a loading control and homogenized heart tissue 

was used as negative control, as the heart tissue will not be transfected by i.t. delivery. The 

luciferase activity assay performed with the lung homogenates confirmed these results. Figure 

23 b shows the results per animal in the same order as on the Western Blot. There was no 
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signal detectable for the polymer based formulation and strong signal for the lipidoid based 

formulation. 

The side by side comparison of these two formulations demonstrated that the lipidoid based 

formulation was superior in inducing protein translation upon i.t. spray application. 

3.3.2.2 Intratracheal Delivery of ACE2 cmRNA in Lipidoid Formulation 

Based on the results of the previous experiment, lipidoid based formulation was selected for 

i.t. ACE2 cmRNA delivery. Due to the strong protein signals achieved with 0.45 mg/kg cmRNA 

and due to increased toxicity of lipidoid based formulation compared to polymer based 

formulation observed in the previous experiment, dosing was reduced to 0.3 mg/kg in rats. 

Three groups of 5 animals each were formed with group 1 receiving ACE2 cmRNA, group 2 

receiving control cmRNA and group 3 receiving sham treatment. The control cmRNA, all start 

codons of the ACE2 cmRNA sequence were scrambled to stop codons, leading to abortion of 

the protein translation process. Again, 10 % of luciferase cmRNA was included in each 

formulation. Sham treated animals received a single instillation of PBS. Animals were again 

sacrificed 6 h after treatment and lungs were excised. The left lung was fixed in formalin and 

embedded in paraffin while the right lung was frozen at -80 °C. 

As described in the previous experiment, a mixture of lung tissue was homogenized and a 

luciferase activity assay performed (Figure 24 a). The results showed significant luciferase 

activity in cmRNA treated animals compared to sham treated animals, indicating successful 

Figure 23: Luciferase translation post intratracheal cmRNA application 

i.t. administration of 0.45 mg/kg ACE2 cmRNA in brPEI or LLF, 6 h post treatment 

(a) Luciferase protein expression with Vinculin as loading control. (b) Luciferase activity of lung homogenates 
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protein translation due to cmRNA transfection of pulmonary cells. In order to quantify ACE2 

cmRNA delivered into the lung, total RNA was extracted from a mix of lung tissue and 1 µg of 

total RNA was used for cDNA production (Figure 24 b). Total ACE2 cmRNA was determined 

against an ACE2 cmRNA dilution series. ACE2 cmRNA treated animals showed significant 

uptake of ACE2 cmRNA in lung tissue. It has to be noted that the absolute values have to be 

interpreted with care as the i.t. application method and sampling lead to high variance in data. 

In situ hybridization and hematoxylin stainings were done in paraffin embedded lung tissues. 

In situ hybridization is a sensitive method to detect RNA, but does not allow conclusions about 

ACE2 protein expression. In the in situ hybridization, ACE2 treated animals showed high ACE2 

cmRNA deposition close to central airways, while lung periphery showed only scattered ACE2 

cmRNA staining (Figure 24 c, upper left panel). Strong signal enrichment was seen in 

cytoplasm rich cells located in alveolar walls, often being situated in alveolar angles, indicative 

for  alveolar epithelial cells (AEC) type II (Figure 24 c, lower left panel) or macrophages. 

Figure 24: Reporter protein translation and ACE2 cmRNA acundance post i.t. application of ACE2 cmRNA 

i.t. administration of 0.3 mg/kg ACE2 cmRNA in or LLF, 6 h post treatment 

(a) Luciferase Activity. (b) Absolute quantification of ACE2 cmRNA. (c) In situ hybridization for a representative 
ACE2 cmRNA treated (left panel) and sham treated (right panel) animal.  
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Furthermore, there were numerous free small positively staining particles in bronchial 

airways, deposited on top of ciliated cells as well as in alveolar lumina. No positive signal was 

seen in the in situ hybridization of the PBS control group (Figure 24 c, right panel). 

Lung homogenates of four animals per group were analyzed by Western Blot (Figure 25 a). 

GAPDH was used as loading control and recombinant human ACE2 protein as positive control. 

Control treated animals showed endogenous levels of ACE2 protein96, while ACE2 treated 

animals showed increased levels of protein. Part of the lysate was then used for an ACE2 

activity assay (Figure 25 b). As already observed in the Western Blot, ACE2 treated animals 

showed induced ACE2 activity while animals of the control group showed endogenous levels 

of ACE2. In the hematoxylin-eosin stained lung tissue of ACE2 treated animals, up to 

moderate, alveolar infiltration with neutrophils and mild fibrin extravasation was found. Both 

was accentuated to central regions of the lung (Figure 25 c).  

Figure 25: ACE2 protein translation post i.t. application and inflammatory reation  

i.t. administration of 0.3 mg/kg ACE2 cmRNA in or LLF, 6 h post treatment 

(a) ACE2 Protein expression with GAPDH as a loading control. (b) ACE2 activity. *p<0.05, **p<0.01. (c) 
Representative hematoxylin-eosin stainings.  
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These data lead to the conclusion that ACE2 cmRNA administered by i.t. spray application 

leads to moderately induced ACE2 protein expression. This protein induction is accompanied 

by an acute inflammatory reaction.  

3.3.3 Intravenous Application of cmRNA 

The previous experiments based on i.t. application showed an inflammatory reaction which 

raised doubts about its tolerability in diseased animals. In addition to that, protein expression 

was not more than moderately induced in i.t. treated healthy lungs and due to low ventilation 

in fibrotic lungs of IPF patients, even lower protein expression had to be expected. Therefore, 

i.v. application as the second delivery route to the lung was investigated. 

3.3.3.1 Pulmonary Lipid Formulation of cmRNA 

For the investigations, a lipoplex containing an Ethris in-house PEG co-polymer (called PLF 

(pulmonary lipid formulation) in the following) was identified in pre-experiments which 

showed strong and selective enrichment in the lungs. As for liver specific cmRNA delivery, 

targeted cmRNA delivery was first evaluated by use of reporter cmRNA. For this purpose, 

firefly luciferase cmRNA was formulated in a PLF and intravenously injected in mice at a dose 

of 1 mg/kg. 6 h after injection, animals were sacrificed and in vivo luciferase activity was 

determined. Two representative animals and their organs (lung, liver, heart, kidney, brain and 

spleen) are shown in Figure 26 a. Strong luciferase signal was detected selectively in lungs, 

whereas other organs did not show any signal. 

Having identified PLF as a selective delivery agent for lung application, a mixture of 90 % ACE2 

cmRNA or 90 % control cmRNA and 10 % luciferase cmRNA in PLF was prepared. This 

formulation was intravenously applied to Balb/c mice at a dose of 1 mg/kg while sham treated 

animals received a single injection of phosphate buffered saline. After 6 h, animals were 

sacrificed and lung, liver, spleen, heart and kidney were collected. Half of the lung was 

embedded in paraffin for histologic analysis. The organs were then homogenized and 

luciferase activity was determined for each organ (Figure 26 b). Pairwise comparison of the 

organs gave significantly stronger luciferase activity in lungs compared to other organs. Next, 

paraffin embedded lung tissue was stained for ACE2 protein (Figure 26 c, left panels). Due to 

the fact, that the antibody did not differentiate between murine (endogenous) and human 

ACE2 protein, cells containing endogenous and/or exogenous ACE2 stained with a brown 
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color. The lung tissue of sham treated animals showed patterns related to endogenous ACE2 

expression96. Additionally, ACE2 cmRNA treated animals showed positive staining of cells in 

the alveolar walls with strong membrane and moderate cytoplasmic staining. The morphology 

of these cells is indicative for both, AEC type I and for AEC type II. Furthermore, staining of 

macrophages is suspected. Overall, the application of cmRNA resulted in mild to moderate 

focally disseminated free alveolar erythrocytes (Figure 26 c, right panels). Sham treated 

animals did not show morphologic reactions to the treatment. Protein abundance in organ 

homogenates was determined by Western Blot with GAPDH as a loading control and 

recombinant human ACE2 protein as positive control. Sham and control treated animals 

showed endogenous ACE2 activity analogue to the immunohistochemical stainings, while 

ACE2 treated animals showed clearly induced bands for ACE2 (Figure 26 d). 

Taken together, this experiment proved that intravenous administration of ACE2 cmRNA in 

the respective lipid formulation selectively targeted to the lung and is able to induce ACE2 

protein translation. 
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Figure 26: Intravenous application of ACE2 cmRNA 

i.v. administration of 1 mg/kg ACE2 cmRNA in or PLF, 24 h post treatment 

(a) Firefly luciferase activity detected by IVIS imaging. (b) Luciferase activity in organ homogenates. **p<0.01. (c) 
Immunohistochemical stainings for ACE2 – left panel. Hematoxylin-eosin stainings – right panel. (d) ACE2 protein 
abundance with GAPDH as loading control and recombinant human ACE2 as positive control. 
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3.3.3.2 ACE2 cmRNA Application in a Model of Idiopathic Pulmonary Fibrosis 

Having identified a carrier formulation for selective ACE2 cmRNA delivery into the lung 

resulting in significant ACE2 protein abundance, a disease model for lung fibrosis was selected. 

Bleomycin induced lung fibrosis is frequently used to study drug effectiveness in the treatment 

for IPF. In this model a single or repeated bleomycin administration is used to trigger lung 

fibrosis. This leads to an acute inflammatory reaction followed by a fibrotic response. The 

underlying mechanism is not fully understood but clearly involves tissue damage by reactive 

oxygen species. Although the model does not fully mimic disease progression in humans 

especially in the acute inflammatory phase, it offers the advantage of high reproducibility and 

a clear defined disease staging97,98. In the current study, the model was induced by a single i.t. 

bleomycin administration of 0.05 units in C57Bl/6 mice. All animals were given bleomycin on 

day 0 and treated by intravenous injection of ACE2 cmRNA or 2 % sucrose on day 7 according 

to the following outline: 

Table 17: Group allocation for IPF model 

Group 
Number 

Treatment Group size 
(start) 

Group size 
(end) 

Endpoint 

1 Sham (2 % sucrose) 4 3 6 h 

2 Sham (2 % sucrose) 4 3 5 days 

3 cmRNA (ACE2 90 %, Luc 10 %) 4 4 6 h 

4 cmRNA (ACE2 90 %, Luc 10 %) 4 4 48 h 

5 cmRNA (ACE2 90 %, Luc 10 %) 4 3 5 days 

As already described in previous experiments, a mixture of ACE2 cmRNA and reporter cmRNA 

was applied for additional verification of cmRNA delivery. cmRNA treated animals received a 

dose of 1 mg/kg cmRNA formulated in PLF, while sham treated animals received 2 % sucrose 

in PBS. The total volume applied was 150 µl. In order to get a first understanding of the in vivo 

kinetics, different endpoints were chosen for the groups. The first endpoint was set 6 h in post 

application order to evaluate effectiveness of transfection and for comparison with previous 

experiments. For this endpoint, a separate control group was allocated. The next endpoint 

was set after 48 h to verify cmRNA half life and protein expression at that time point. The last 

endpoint was set after 5 days again for evaluation of cmRNA and protein expression as well 

as for verification of anti-fibrotic effects of the treatment. An additional control group was 

included for day 5 in order to evaluate disease progression. At each endpoint, blood plasma 
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was taken for analysis of cytokines and lungs were excised. The left lungs were prepared for 

immunohistochemical evaluation and the right lungs were frozen for cmRNA and protein 

analysis. 

Luciferase assay of lung homogenates proofed lung targeted delivery of cmRNA. Luciferase 

activity was detectable 6 h post application (Figure 27 a). Luciferase activity was not 

measurable at later time points, which may be due to the short half-life of luciferase protein. 

However, one animal did not show luciferase activity at any timepoint, indicative for a failed 

treatment. This animal is shown in the figures but was excluded from statistical analysis. 

For ACE2 cmRNA quantification, total RNA was extracted and 500 ng was transcribed to cDNA. 

Real time PCR analysis showed uptake of 0.4 ng ACE2 cmRNA per µg total RNA after 6 h (Figure 

27 b). As shown in the luciferase activity assay, one animal was excluded for analysis, being 

the major reason for limited statistical relevance of the data. Following the 6 h timepoint, 

there was a gradual decrease of ACE2 cmRNA detectable with little, but still measurable 

amounts of cmRNA even 5 days after treatment. Based on these data, a half-life of 

approximately 15 h was calculated (Figure 27 c). ACE2 cmRNA was then visualized in the in 

situ hybridization of embedded lung tissues (Figure 27 d). The cmRNA shows up as brown 

colored dots and with a homogenous distribution of positive stained cells in the alveolar walls 

of ACE2 treated animals, which were interpreted to be AEC type I and type II cells. 

Furthermore, single alveolar macrophages as well as single endothelial cells of large vessels 

with ACE2 cmRNA were found. As expected, no staining for ACE2 cmRNA was found in the 

sham treated group. 

Lung homogenates were then probed for ACE2 protein by Western Blot. There was no 

induction in ACE2 protein expression detectable between ACE2 treated and sham treated 

animals. 

 



RESULTS 
 

68 
 

 

Figure 27: Reporter protein translation and ACE2 cmRNA abundance post i.v. application of ACE2 cmRNA 

i.v. administration of 1 mg/kg ACE2 cmRNA in or PLF, 24 h post treatment 

(a) Luciferase Activity. (b, c) Absolute quantification of ACE2 cmRNA. (d) In situ hybridization for a representative 
ACE2 cmRNA treated (left panel) and sham treated (right panel) animal.  
 

The immune response following cmRNA treatment was analyzed using a standard cytokine 

panel reflecting both Th1 as well as Th2 response including IL-10, IL-1β, IL-2, IP-10, IL-6, IFNα, 

IFNγ, IL-12p70 and TNFα (Figure 28). Values obtained for IL-1β, IL-2 and IL-12p70 were below 

detection limit, hence neither disease nor cmRNA treatment stimulated secretion of these 

cytokines. IL-6 and TNFα being two acute phase cytokines were moderately and slightly 

increased 6 h post application. The single high value of IL-6 in the 6 h sham group is considered 

to be an outlier as all other animals showed low levels of IL-6. The acute inflammation in the 

first 6 h post cmRNA treatment triggered a slight increase in IL-10, a negative regulator of the 

immune response. Administration of cmRNA typically induces upregulation of interferons, due 

to presence of single stranded RNA. This was reflected by a minor induction of the IFNγ levels. 



RESULTS 
 

69 
 

Subsequently, interferons trigger upregulation of IP-10, important for immune cell 

recruitment. Taken together, all cytokines show a similar pattern over time. cmRNA treatment 

seems to stimulate an acute immune response briefly after application which is resolved 

within 48 h. The disease itself does not seem to provoke strong induction of any of the 

analyzed cytokines. 

For disease evaluation all slides were stained with hematoxylin-eosin (Figure 29). Fibrosis was 

detectable by fibrous thickening of alveolar walls as well as in peribronchial and perivascular 

regions leading to disruption of normal lung architecture. Furthermore, chronic inflammation 

was detectable by alveolar and interstitial cellular infiltration. 

Figure 28: Cytokine analysis 
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Figure 29: Representative hematoxylin-eosin stainings of ACE2 treatment lungs 

i.v. administration of 1 mg/kg ACE2 cmRNA in or PLF, 24 h post treatment 

 

A grading for fibrosis and inflammation with a scoring system from 0 (none) to 5 (very severe) 

was applied. As shown in Table 18, scoring data of inflammatory reaction and fibrosis differed 

in between animals in each group. Thus, no obvious reduction of inflammatory reaction or 

fibrotic progression could be seen. Nevertheless, no enhancing effect on disease progression 

could be seen either. 
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Overall, ACE2 cmRNA could be detected in lungs of bleomycin induced pulmonary fibrosis. 

However, ACE2 protein was below detection limit and ACE2 treatment did not have any effect 

disease progression.  

Table 18: Fibrosis and Inflammation scores 
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4 DISCUSSION 

In the treatment of liver and lung fibrosis, reestablishment of a well-balanced renin-

angiotensin-system (RAS) was repeatedly shown to have promising therapeutic 

effects.4,5,8,20,37,44,45,55,56,71 The most effective intermediate of the RAS system to achieve this 

goal is ACE2 due to its dual function of downregulating the RAS classical axis and upregulating 

the RAS alternate axis. The topic of this thesis was a comprehensive in vitro and in vivo 

evaluation of the therapeutic application of ACE2 transcript therapy in the treatment of liver 

and lung fibrosis.  

4.1 In vitro Analysis 

Having identified ACE2 as target protein, an in-vitro-transcribed chemically modified ACE2 

sequence was designed. This sequence was subjected to an intense in vitro screen in HEK293 

cells as a generic test system as well as human and murine cells of liver (HepG2 and primary 

hepatocytes) and pulmonary (A549 and primary lung fibroblasts) origin in order to reflect 

future application in liver and lung. ACE2 cmRNA was successfully taken up by all tested cells 

and translated into an enzymatically active protein (Figure 10). 

As described in Figure 5, the extracellular domain of ACE2 protein holds a cleavage site which 

generates a secreted form of ACE2 upon cleavage by ADAM1739. The mode of action of a 

secreted molecule resembles the situation after administration of a recombinant protein, 

which enters systemic circulation and is distributed throughout the body. Administration of 

recombinant human ACE2 in experimental liver4 and lung fibrosis55 showed first promising but 

also negative results. On the one hand, the treatments showed overall anti-inflammatory and 

anti-fibrotic progresses, but could on the other hand not halt collagen deposition, a major 

problem in fibrosis in a model of lung fibrosis6. This raises the question if it would be more 

effective to increase the dosing of recombinant protein or to aim for a local delivery system 

with greater efficacy. The current state of knowledge points more towards higher 

effectiveness of local delivery. For instance, high tissue AngII levels are frequently found in 

fibrosis, while systemic AngII levels are barely affected43. In addition to these findings, there 

is limited understanding of the physiological relevance of soluble ACE2 and the terminal half-

life of recombinant ACE2 protein in humans7 is limited to 10 h, both being strong indicators 

for the need of an effective organ targeted local delivery system for ACE2 cmRNA. With the 

latest advances in mRNA transcript therapy (RTT), organ targeted local delivery as well as local 
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protein translation should be feasible. Therefore, it was essential to first clarify in vitro if 

cmRNA derived ACE2 protein is processed to a stably expressed transmembrane protein. First 

of all, it was verified that ACE2 is glycosylated and forms disulfide bonds, crucial steps for 

integration into the plasma membrane (Figure 11). In a next step it was confirmed that the 

direction of ACE2 integration into the plasma membrane is in the correct orientation with the 

N-terminus in the extracellular space and the C-terminus in the cytoplasm. This was shown by 

a flow cytometry experiment of unpermeabilized cells detecting the ACE2 core domain 

located on the cellular surface (Figure 11). In addition, fluorescent stainings of ACE2 cmRNA 

transfected A549 and HepG2 showed co-localisation of ACE2 protein with a plasma membrane 

marker. It was further observed that ACE2 seems to be enriched in vesicular structures which 

may be part of the posttranslational maturation machinery (Figure 12).  

After verification that ACE2 cmRNA meets all requirements to be expressed in form of a local 

membrane anchored protein, the ACE2 cmRNA sequence was further optimized with regard 

to its pharmacokinetic and pharmacodynamics properties in liver and lung cell lines. These 

evaluations are summarized in the master thesis of Huber M.74 and consisted of a screen of 

eight different ACE2 cmRNA sequences which were manipulated in their UTRs and codon 

usage. The sequences were analyzed for their intracellular half-life, protein abundance, 

enzymatic activity and translation kinetics in A549 and HepG2 and resulted in the 

identification of two codon-optimized ACE2 cmRNA sequences being the most promising 

candidates. Due to its prolonged half-life, the ACE2 cmRNA sequence flanked by 5’ human 

alpha globin 5’ UTR element was chosen for subsequent in vivo evaluations.  

4.2 In vivo Analysis 

After having verified full functionality and integrity of ACE2 cmRNA derived protein, liver and 

lung in vivo application was tested.  

4.2.1 Liver 

Liver targeted cmRNA delivery was first evaluated by a formulation of luciferase cmRNA in 

lipidoid nanoparticles as described by Jarzebinska et al.14 These particles were intravenously 

applied in mice and led to strong and liver specific protein translation (Figure 14 a and b). 

Immunohistochemical stainings indicate that systemic application of a lipidoid based cmRNA 

formulation seems to be a potent delivery mechanism for reaching a high number of 

hepatocytes, which was already shown for delivery of siRNA as well as mRNA16,99–101. The 
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current understanding of the underlying mechanism is, that lipoplexes enter the liver lobuli 

via fenestrated capillaries, which - unlike other type of capillaries - lack a diaphragm. This 

makes them highly permeable for small molecules, and lipoplexes are easily taken up into the 

interstitium, where they are transported by ligand-based targeting or diffusion from the 

afferent to the efferent vessels100–102. This is clearly visible in the histochemical stainings for 

luciferase protein showing a gradual decrease of protein abundance from the afferent to the 

efferent vessels as observed for nutrients and oxygen saturation in the liver (Figure 14 e). This 

observation highlights a major advantage of RTT over recombinant protein therapy and viral 

pDNA delivery, namely the ability to reach a large pool of cells even beyond physical barriers 

such as endothelium in both mitotic and non-mitotic cells. With the aim of shifting the local 

balance of the RAS system towards resolution of fibrosis, reaching hepatocytes, being the 

most abundant cell type in the liver, can be considered a major achievement for strong 

translation of the target protein. In a second step, the same delivery method was applied to 

ACE2 cmRNA and led to a markedly increased ACE2 protein translation and activity 6 h after 

treatment (Figure 15). Based on previous in vitro findings about ACE2 cmRNA kinetics, ACE2 

protein translation for up to 5 days can be expected. This time frame lies above levels reached 

by recombinant ACE2 therapy in human and experimental models10, and below levels reached 

by adeno-associated viral ACE2 therapy3, emphasizing once more the advantages of RTT for a 

flexible dosing regimen for potential future clinical application. 

Next, a first evaluation of ACE2 cmRNA application in a NASH disease model was set up in 

order to get an understanding of cmRNA deposition, protein expression kinetics and anti-

fibrotic effects of ACE2 for future large scale preclinical experiments. So far multiple 

NAFLD/NASH models have been established resembling human disease progression in its 

macroscopic and microscopic morphology, the degree of inflammation and fibrosis. However, 

a gene expression analysis between disease models and human tissue samples disclosed that 

the gene expression patterns between models and humans are more distinct than previously 

thought. Within this analysis, high fat diet enriched models showed a closer link to human 

NAFLD than other models103. Due to high prevalence of NAFLD within patients suffering from 

metabolic syndrome and the increasing problems associated with western diet, a model based 

on high fat diet was considered most appropriate. Compared to other high fat diet based 

models, the STAM model does not only reproduce NAFLD associated indications but as well 

NASH associated indications. The model is based on induced insulin resistance in combination 
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with high-fat diet and induces physiological alterations associated with metabolic syndrome 

simultaneously to pathologic patterns associated with NAFLD and NASH in humans with high 

reproducability104. It has previously been used in multiple studies for evaluation of anti-fibrotic 

treatment105 and was therefore considered appropriate for the investigation of ACE2 RTT in 

the progression of NASH. 

Treatment with ACE2 was started in the late phase of NAFLD, which correlates to the 

timepoint where NAFLD patients present with elevated liver parameters for the first time106. 

The treatment regimen was followed for 3 consecutive weeks with a dose of 0.25 mg/kg ACE2 

cmRNA in LLF once (group 2) or twice (group 1) per week. First, establishment of the disease 

model was verified by increased liver/body weight ratio (Figure 17), elevated blood 

parameters (Figure 17) and elevated levels of hydroxyproline in the liver (Figure 18). With 

regards to ACE2 treatment, body weight, plasma glucose and cholesterol were not affected 

while liver weights were increased in ACE2 treated animals (Figure 17 a and b). Evaluation of 

fibrosis progression was based on observed accumulation of liver collagen as well as on 

histologic examinations of liver tissue for steatosis, ballooning and inflammation. Collagen 

content was determined quantitatively in a hydroxyproline assay and qualitatively on 

histologic slides stained for sirius red. While there was no treatment effect seen in the 

quantitative evaluation, a significant reduction in collagen was detected in the histologic 

examination. Despite the proposed correlation of the readouts of these two assays92, the 

hydroxyproline assay may be less sensitive in detecting therapeutic effects as the differences 

between control groups and all other groups were less pronounced than in the sirius red 

analysis. Evaluation of histologic sections showed no effect of ACE2 cmRNA treatment on 

steatosis and ballooning. Inflammation however, seemed to improve with increased ACE2 

dosing. These observations are in line with findings by Mak et al.3, who found ACE2 gene 

therapy instilled by an adeno associated viral vector to be anti-inflammatory in acute as well 

as chronic liver injury. However, these findings are contradictory to the results of Österreicher 

et al.4, who concluded post recombinant protein therapy that ACE2 does not play a role in 

acute but in chronic liver injury4. These differences may be explained by the fact that 

Österreicher et al. started the treatment at the timepoint of disease initiation, while in the 

study at hand and the study by Mak et al. ACE2 therapy was started 2 weeks after disease 

establishment. Steatosis, ballooning and inflammation were combined to an overall NAFLD 
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score which showed a minor trend towards NAFLD improvement with increasing frequency of 

ACE2 treatment.  

Taken together, ACE2 cmRNA treatment did not have any effect on metabolic syndrome  

which is contradictory to previous studies having shown a protective role of the alternate RAS 

axis on obesity-associated complications43. Despite the high transfection efficiency of lipidoid 

based formulation in the liver, it may be worth considering a different carrier solution in a 

model already challenged by high amounts of lipids in a high fat diet. Similar considerations 

about the suitability of a lipidoid carrier may be drawn from the animal dropout rates which 

were highest in group 1 undergoing two treatments per week. While the group sizes were too 

small to allow a judgement about treatment toxicity, the dropout rates observed emphasize 

the need of low toxicity of the formulation due to disease severity. With regards to fibrosis 

progression, ACE2 cmRNA treatment did not halt or reverse liver fibrosis, but there was a 

trends towards disease improvement observable for the group treated twice per week. One 

of the underlying reasons for the limited therapeutic efficacy in this experiment could be 

found in deposited ACE2 cmRNA levels 20 fold lower than expected. As shown in the earlier 

experiments for evaluation of organ targeted ACE2 delivery (Figure 15 b), a dose dependent 

deposition of ACE2 in the liver was observed. Extrapolating these values to the ACE2 cmRNA 

dose applied in the NASH study (0.25 mg/kg), one would expect an ACE2 cmRNA deposition 

of at least 0.002 ng/µg total RNA compared to the achieved 0.1 pg/µg total RNA. The most 

evident causes for the low transfection efficiency are either differences in the mouse strains 

used (Balb/c in organ targeted experiments versus CBl57/6 in NASH study) or limited 

nanoparticle uptake due to loss of endothelium fenestration in liver fibrosis, as already 

observed in liver tumors69.  

In conclusion, intravenous administration of codon-optimized ACE2 cmRNA with hαG 5’ UTR 

formulated in lipidoid nanoparticles leads to strong protein translation in the liver. Application 

of ACE2 in a NASH disease model showed a first trend towards reduction of inflammation and 

fibrosis. 

4.2.2 Lung 

With the objective of clinical application of ACE2 treatment, the in vivo investigations were 

started with the least invasive form of pulmonary delivery in form of nebulization. It was 

previously shown that delivery of pDNA or mRNA is able to enhance protein translation in the 
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lung94,95 and that brPEI is an effective delivery agent for aerosol application of pDNA107,108. 

However, it had to be determined if mRNA formulations with brPEI would be effective enough 

to establish ACE2 expression levels high enough to shift the local RAS balance towards anti-

inflammatory and anti-fibrotic signaling. It was speculated, that even higher ACE2 protein 

expression could be achieved by repeated dosing every 24 hours due to protein accumulation. 

The results of the experiment showed, that protein accumulation per se was achievable for 

luciferase (Figure 22), however protein accumulation for ACE2 protein was not high enough 

to lead to detectable protein levels. There are multiple reasons for the low protein expression, 

one of them being the route of application in form of nebulization which does not guarantee 

deposition of a predefined amount of nanoparticles. On the way through the nebulization 

chamber, the particles interact with different types of surfaces and it has to be assumed that 

a large amount of particles are lost without reaching the animal’s pulmonary system. Once 

reaching the pulmonary system, particle deposition may also show high intra-individual 

variances due to differences in breathing rates and depths as well as differences in direct 

contact time with the aerosol due to animal movements and body position during the 

nebulization procedure. Many of these obstacles can be avoided by i.t. microspray application, 

though the application is much more invasive and would be less convenient in use for future 

patients. By installation of a tube down the trachea, it is guaranteed that no particles will be 

lost outside the pulmonary system or in the upper respiratory tract. I.t. microspray application 

is suitable for both, polyplex as well as lipidoid based carriers. Therefore, a side-by-side 

comparison between a polyplex based carrier (brPEI) and a lipidoid based carrier (LF44) was 

set up in order to identify the most effective carrier. In this side by side comparison done in 

rats, protein activity achieved by 0.45 mg/kg reporter cmRNA in the lipidoid based formulation 

was markedly stronger than protein activity achieved by the polyplex based formulation 

(Figure 23). These findings are in line with previous investigations, showing that interaction of 

poly- and lipoplexes with bronchoalveolar lavage fluid components can alter the particles’ 

surface charge and consequently have a strong impact on transfection efficiency109. It was 

shown that lipoplexes kept an overall positive charge, while polyplexes changed form a 

positive to a negative surface charge. A negative surface charge hinders interaction of the 

polyplex with the negative charged cell surface resulting in lower transfection efficiency. 

Based on these findings, a lipidoid based formulation of ACE2 cmRNA was applied i.t. which 

resulted in a weak but detectable induction of ACE2 protein expression. Histologic evaluations 
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showed deposition of larger amounts of ACE2 cmRNA in the central airways compared to 

distant alveoli. This observation confirms on the one hand, that the droplets created by the 

microspray device are small enough to reach alveoli, but highlights on the other hand the 

devices’ limitations in homogenous aerosol distribution. The predominantly central 

deposition of the ACE2 cmRNA may also explain the overall weak induction in ACE2 protein 

expression as most of the particles do not seem to reach the alveoli as their final destination 

but are caught in the bronchial system. The bronchial system is equipped with the mucociliary 

escalator, an effective clearing system pushing trapped material in a layer of mucus towards 

the mouth110. Transfection efficiency of the remaining ACE2 cmRNA having reached the alveoli 

is determined by the rate of deposition and the rate of clearance by macrophages as well as 

the immune response evoked by macrophage activation. 

The treatment itself led to slightly increased breathing rates and temporary unresponsive 

behavior of the animals. 6 h after treatment, neutrophil infiltration and fibrin extravasation 

reaching up to moderate levels were found in the lung tissues of ACE2 cmRNA transfected 

animals (Figure 25 b). These findings indicate an acute pulmonary inflammatory reaction to 

the i.t. application of lipoplexed cmRNA since none of the PBS-treated animals presented with 

histopathological findings. Unfortunately, time and resource constraints did not allow detailed 

investigations if toxicity is caused by the lipoplex, by the ACE2 cmRNA or by both molecules. 

The combination of weak ACE2 protein expression and the observed inflammatory reaction – 

although maybe being solely an interim acute reaction to the aerosol – led to the conclusion, 

that i.t. microspray application of ACE2 cmRNA may not be the appropriate treatment for 

severely diseased animals, needing strong ACE2 protein expression in order to shift the RAS 

balance. Therefore, it was decided to continue in vivo investigations for lung application via 

systemic cmRNA delivery. 

Despite the inconvenience of intravenous drug administration, which may need to be 

repetitive in the case of cmRNA, systemic drug delivery may be more effective than pulmonary 

delivery for several reasons. First, IPF is characterized by an interstitial pneumonia with basal 

predominance and epithelial cell stress and apoptosis especially adjacent to fibroblast foci111. 

Previous in vitro studies have shown that AEC produce more AngII in response to injury, while 

at the same time ACE2 mRNA is reduced. This makes AEC even more prone to injury and AngII 

induced apoptosis6,112–114. Therefore delivering ACE2 cmRNA especially to these areas of 

epithelial cell death may be essential for therapeutic success. Unfortunately, due to 
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destruction of the lung parenchyma, these areas are poorly ventilated, making them hard to 

reach for drug delivery via the airways. Looking at the vascularization of fibrotic lungs, it was 

shown that fibroblast foci themselves are poorly vascularized while adjacent non-fibrotic 

areas, where AEC apoptosis is taking place, are highly vascularized115,116. Second, in a study 

comparing the distribution and uptake patterns of oligonucleotides and pDNA packed in lung 

targeted cationic lipoplexes showed that i.v. administration resulted in a very homogenous 

distribution of oligonucleotides and pDNA in the lung, while i.t. distribution led to highly 

localized distribution as observed in the previous experiment117. It has to be noted, that in the 

study just mentioned, i.t. application was done by instillation as compared to microspray in 

this thesis. Based on these findings and the limited success of markedly inducing ACE2 protein 

expression upon i.t. cmRNA delivery, a lipid based cmRNA formulation for intravenous 

application in mice was prepared. Identical to the previous in vivo studies, organ selectivity of 

the formulation had to be evaluated first. This was verified by application of 1 mg/kg luciferase 

cmRNA in mice, which induced strong and selective protein translation in the lung (Figure 26 

a and b). All other organs did not show significant protein levels which is especially important 

for application of ACE2 due to its potential effects on blood pressure regulation. 

Administration of the same proprietary lipid formulation containing 1 mg/kg ACE2 cmRNA led 

to equally strong ACE2 protein translation in the lung (Figure 26 d). Histologic evaluation 

showed a very homogenous expression of ACE2 cmRNA derived protein in AECs throughout 

the whole organ, confirming externalization of i.v. applied lipid nanoparticles from systemic 

circulation into the lung parenchyma and successful transfection of lung epithelial cells (Figure 

26 c). The externalization mechanism was not studied further and it is assumed that a 

combination of particle size as shown for antibody conjugated nanoparticles by Azarmi et al.70 

and electrostatic interaction between charged molecules and the cell surface117 lead to 

retention of the nanoparticle in the lung and subsequently to externalization of the particle. 

Closer evaluations of the immunostainings showed that sham treated animals expressed ACE2 

in AEC type II cells, which is in line with endogenous ACE2 expression patterns previously 

observed in mice118. ACE2 cmRNA treated lungs also expressed ACE2 in macrophages and 

more importantly AEC type I. These findings are especially valuable for therapeutic application 

in IPF, as unlike rodent lungs, human lungs also express ACE2 in AEC type I96,119, rendering 

them an enormous pool for locally active ACE2 protein to break the vicious circle of AngII 

stimulated ACE2 downregulation and apoptosis. Establishing ACE2 translation in AEC type I 
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could so far neither be achieved by recombinant protein therapy55 nor by lentiviral-mediated 

ACE2 overexpression56. 

Based on these promising results, a first evaluation of ACE2 cmRNA application in a bleomycin 

induced mouse model of lung fibrosis was designed for evaluation of cmRNA deposition and 

protein expression kinetics. 1 mg/kg ACE2 cmRNA including 10 % luciferase cmRNA spike was 

prepared in PLF and intravenously applied. The treatment provoked an acute inflammatory 

reaction as shown by a panel of representative cytokines (Figure 28) which was resolved 

within 48 h. It was not investigated, whether the acute inflammatory reaction was triggered 

by the cmRNA or the lipid formulation. With cmRNA being optimized for minimal immune 

reaction, part of the cytokine induction can also be attributed to the liposomes, which has 

already been observed before120. ACE2 cmRNA was successfully taken up in the lung tissue 

and was detectable up to 5 days. The calculated half-life of approximately 15 h is similar to 

the half-life achieved in vitro74 (approximately 13 h) and gives important information for the 

calculation of treatment regimens for future studies. However, ACE2 protein could not be 

detected in this study as compared to i.v. application in healthy Balb/c mice (Figure 26). Taking 

into considerations the low luciferase activity levels, the reasons for ACE2 protein expression 

below detection limit may be found in low transfection efficiency due to differences in lung 

architecture between healthy and diseased lungs, differences in genetic backgrounds of the 

two mouse strains or both. The changes in lung architecture are clearly visible comparing 

histological images of Figure 26 b of a healthy lung to Figure 29 b of bleomycin treated lungs. 

Bleomycin treatment led to an obvious fibrotic reaction, though still graded on average as 

‘slight’, resulting in thickening of the air-blood-barrier, possibly severe enough to block 

transfection or nanoparticle extravasation. Apart from this apparent optical difference in lung 

architecture, differences in mouse strains (Balb/c versus CBl75/6) may as well contribute to 

differences in transfection efficiency. Considerable differences in gene expression between 

mouse strains were already observed following i.v.121 as well as aerosol based pDNA mediated 

gene delivery122. It is speculated that differences in the genetic background lead to differences 

in immune system mediated nanoparticle clearance, nanoparticle uptake, intracellular 

trafficking, endosomal release and translation rates122. Due to undetectable ACE2 protein 

expression, there was no significant positive effect on inflammation and fibrosis detectable at 

the end of the study. However, there was a minor trend towards improvement in 

inflammation and fibrosis observable 48 h after treatment. Due to the limited group size, 
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these data would need additional experimental confirmation. At this point it has to be noted, 

that in all other previous studies ACE2 overexpression was established either before56 or at 

the time point of disease inititation5,123, which calls into question the clinical applicability of 

these findings. Apart from the study performed by Min et al.8, this study is the first to provide 

data with ACE2 treatment started after clear establishment of lung fibrosis which resembles 

much closer the setting in future therapeutic applications. 

4.2.3 Conclusion and Outlook 

In summary, it was shown that establishment of sustained local ACE2 translation selectively 

in liver or lung is achievable with latest RNA technology. This was accomplished by a 

combination of lipidoid and lipid nanoparticles serving as carrier systems and especially 

designed ACE2 cmRNA sequences. These achievements highlight the strengths of RTT over 

recombinant protein and gene therapy, where protein half-life10 and overall duration of 

protein expression61, immunogenicity11, patients’ safety12 as well as organ or cell targeting are 

still challenging. 

As shown by other groups 3,4,8,55,56 and the positive trends observable upon ACE2 treatment 

in the experimental NASH and IPF models, ACE2 has substantial therapeutic potential for anti-

inflammatory and anti-fibrotic treatment. Hence ACE2 transcript therapy should be further 

optimized to leverage its full potential as well in diseased animal models. 

Thinking of next steps, it would be most effective to first clarify the underlying causes of the 

reduced ACE2 transfection rates and protein expression levels observed in the disease models. 

For this, it would be easiest and animal resource-saving, to repeat the experiments performed 

in this thesis either in healthy CBl57/6 or in diseased Balb/c animals. These data can be directly 

compared to the data in this thesis for the respective healthy or diseased animals and clarify 

at the same time the question about dependency of the data on genetic differences and/or 

on disease state. Based on this knowledge, protein expression limitations can be overcome 

either by increasing the dosing regimen or optimizing the dosing frequency for higher protein 

expression. However, careful evaluation of the tolerability of this measure has to be taken. If 

these evaluations do not improve ACE2 protein expression and therapeutic efficacy of ACE2, 

modifications in the delivery agents should be considered. Once the ideal combination of 

delivery agent and cmRNA dose is identified, a study evaluating pharmacodynamics and 

kinetic properties of this formulation mix has to be performed. Based on these findings, the 
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treatment regimen for a large scale study to evaluate ACE2 therapeutic efficacy needs to be 

defined.
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5 ABBREVIATIONS 

ACE    angiotensin converting enzyme  
ACE2    angiotensin converting enzyme 2 
ACEi    angiotensin converting enzyme inhibitors 
ADAM 17   ADAM metallopeptidase domain 17 
AEC    alveolar epithelial cell 
ALT    alanine aminotransferase 
AMP    adenosine 5'-monophosphate  
Ang-(1-7)   angiotensin (1-7) 
AngI    angiotensin I 
AngII    angiotensin II 
ARB    angiotensin II receptor blockers 
AST    aspartate aminotransferase 
AT1R    angiotensin II type 1 receptor 
AT2R    angiotensin II type 2 receptor 
ATP    adenosine triphosphate 
Balb/c    mus musculus laboratory inbred strain 
BCA    bicinchoninic assay 
BDL    bile duct ligated 
brPEI    branched polyethylenimine 
CBl57/6   mus musculus laboratory inbred strain 
cDNA    complementary DNA 
CMP    cytidine 5'-monophosphate 
cmRNA   chemically modified RNA 
c.o.    codon optimized 
CYBA    cytochrome b-245 alpha 
Da    dalton 
DAPI    4',6-diamidino-2-phenylindole 
DMEM    dulbecco`s modified essential medium 
DMSO    dimethyl sulfoxide 
DNA    deoxyribonucleic acid 
dNTP    deoxy nucleotide tri phosphate 
DTT    1,4-Dithiothreitol 
ECM    extracellular matrix 
eg.    exempli gratia (for example) 
EGTA    egtazic acid 
EDTA    edetic acid 
ER    endoplasmic reticulum 
FCS    fetal calf serum 
FI    fluorescence intensity 
g    gram 
GAPDH   glycerinaldehyd-3-phosphate-dehydrogenase 
GLDH    glutamate dehydrogenase 
GMP    guanosine 5'-monophosphate 
GTP    guanosine triphosphate 
hαG    human alpha globin 
HSC    hepatic stellate cell 
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IgG    Immunoglobulin G 
IPF    idiopathic pulmonary fibrosis 
i.p.    intraperitoneal 
i.t.    intratracheal 
i.v.    intravenous 
IVT    in vitro transcribed 
k    kilo 
k.o.    knock out  
l    liter 
LDH    lactate dehydrogenase 
LDS    lithium dodecyl sulfate 
LED    light emitting diode 
µ    micro (10-6) 
m    milli (10-3) 
MEM    minimum essential medium 
MES    2-(N-morpholino)ethanesulfonic acid 
MFI    mean fluorescence intensity 
min    minutes 
MOPS    3-(N-morpholino)propanesulfonic acid 
mRNA    messenger ribonucleic acid 
NAFLD    nonalcoholic fatty liver disease 
NASH    nonalcoholic steatohepatitis  
NEP    neprilysin 
n    nano (10-9) 
ORF    open reading frame 
p    pic (10-12) 
PBS    phosphate-buffered saline 
pDNA    plasmid DNA 
PEG    polyethylene glycol  
PEI    polyethylenimine 
poly(A)    poly adenosine 
PVDF    polyvinylidene fluoride 
qPCR    quantitative polymerase chain reaction 
RAS    renin-angiotensin-system 
RLU    relative light units   
RNA    ribonucleic acid 
rpm    rounds per minute 
RPMI    roswell park memorial institute 
RT    room temperature 
RTT    mRNA transcript therapy 
SD    standard deviation 
SDS    sodium dodecyl sulfate 
SEM    standard error or the mean 
siRNA    small interfering RNA 
TBS    Tris buffered saline 
TGFβ     transforming growth factor beta 
Tris    tris(hydroxymethyl)aminomethane 
U    unit 
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UMP    uridine 5'-monophosphate 
UTR    untranslated region 
VLDL    very low density lipoprotein 
WFI    water for injection 
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9 APPENDIX 

9.1 Cell Authentication 
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9.2 Angiotensin Converting Enzyme 2 Open Reading Frames 

9.2.1 Open Reading Frame non Codon Optimized 

UCAAGCUCUUCCUGGCUCCUUCUCAGCCUUGUUGCUGUAACUGCUGCUCAGUCCACCAUUGAGGAACAGGCCAAGA
CAUUUUUGGACAAGUUUAACCACGAAGCCGAAGACCUGUUCUAUCAAAGUUCACUUGCUUCUUGGAAUUAUAACA
CCAAUAUUACUGAAGAGAAUGUCCAAAACAUGAAUAAUGCUGGGGACAAAUGGUCUGCCUUUUUAAAGGAACAGU
CCACACUUGCCCAAAUGUAUCCACUACAAGAAAUUCAGAAUCUCACAGUCAAGCUUCAGCUGCAGGCUCUUCAGCAA
AAUGGGUCUUCAGUGCUCUCAGAAGACAAGAGCAAACGGUUGAACACAAUUCUAAAUACAAUGAGCACCAUCUACA
GUACUGGAAAAGUUUGUAACCCAGAUAAUCCACAAGAAUGCUUAUUACUUGAACCAGGUUUGAAUGAAAUAAUGG
CAAACAGUUUAGACUACAAUGAGAGGCUCUGGGCUUGGGAAAGCUGGAGAUCUGAGGUCGGCAAGCAGCUGAGGC
CAUUAUAUGAAGAGUAUGUGGUCUUGAAAAAUGAGAUGGCAAGAGCAAAUCAUUAUGAGGACUAUGGGGAUUAU
UGGAGAGGAGACUAUGAAGUAAAUGGGGUAGAUGGCUAUGACUACAGCCGCGGCCAGUUGAUUGAAGAUGUGGA
ACAUACCUUUGAAGAGAUUAAACCAUUAUAUGAACAUCUUCAUGCCUAUGUGAGGGCAAAGUUGAUGAAUGCCUA
UCCUUCCUAUAUCAGUCCAAUUGGAUGCCUCCCUGCUCAUUUGCUUGGUGAUAUGUGGGGUAGAUUUUGGACAAA
UCUGUACUCUUUGACAGUUCCCUUUGGACAGAAACCAAACAUAGAUGUUACUGAUGCAAUGGUGGACCAGGCCUG
GGAUGCACAGAGAAUAUUCAAGGAGGCCGAGAAGUUCUUUGUAUCUGUUGGUCUUCCUAAUAUGACUCAAGGAUU
CUGGGAAAAUUCCAUGCUAACGGACCCAGGAAAUGUUCAGAAAGCAGUCUGCCAUCCCACAGCUUGGGACCUGGGG
AAGGGCGACUUCAGGAUCCUUAUGUGCACAAAGGUGACAAUGGACGACUUCCUGACAGCUCAUCAUGAGAUGGGG
CAUAUCCAGUAUGAUAUGGCAUAUGCUGCACAACCUUUUCUGCUAAGAAAUGGAGCUAAUGAAGGAUUCCAUGAA
GCUGUUGGGGAAAUCAUGUCACUUUCUGCAGCCACACCUAAGCAUUUAAAAUCCAUUGGUCUUCUGUCACCCGAUU
UUCAAGAAGACAAUGAAACAGAAAUAAACUUCCUGCUCAAACAAGCACUCACGAUUGUUGGGACUCUGCCAUUUAC
UUACAUGUUAGAGAAGUGGAGGUGGAUGGUCUUUAAAGGGGAAAUUCCCAAAGACCAGUGGAUGAAAAAGUGGU
GGGAGAUGAAGCGAGAGAUAGUUGGGGUGGUGGAACCUGUGCCCCAUGAUGAAACAUACUGUGACCCCGCAUCUC
UGUUCCAUGUUUCUAAUGAUUACUCAUUCAUUCGAUAUUACACAAGGACCCUUUACCAAUUCCAGUUUCAAGAAG
CACUUUGUCAAGCAGCUAAACAUGAAGGCCCUCUGCACAAAUGUGACAUCUCAAACUCUACAGAAGCUGGACAGAA
ACUGUUCAAUAUGCUGAGGCUUGGAAAAUCAGAACCCUGGACCCUAGCAUUGGAAAAUGUUGUAGGAGCAAAGAA
CAUGAAUGUAAGGCCACUGCUCAACUACUUUGAGCCCUUAUUUACCUGGCUGAAAGACCAGAACAAGAAUUCUUUU
GUGGGAUGGAGUACCGACUGGAGUCCAUAUGCAGACCAAAGCAUCAAAGUGAGGAUAAGCCUAAAAUCAGCUCUU
GGAGAUAAAGCAUAUGAAUGGAACGACAAUGAAAUGUACCUGUUCCGAUCAUCUGUUGCAUAUGCUAUGAGGCAG
UACUUUUUAAAAGUAAAAAAUCAGAUGAUUCUUUUUGGGGAGGAGGAUGUGCGAGUGGCUAAUUUGAAACCAAG
AAUCUCCUUUAAUUUCUUUGUCACUGCACCUAAAAAUGUGUCUGAUAUCAUUCCUAGAACUGAAGUUGAAAAGGC
CAUCAGGAUGUCCCGGAGCCGUAUCAAUGAUGCUUUCCGUCUGAAUGACAACAGCCUAGAGUUUCUGGGGAUACA
GCCAACACUUGGACCUCCUAACCAGCCCCCUGUUUCCAUAUGGCUGAUUGUUUUUGGAGUUGUGAUGGGAGUGAU
AGUGGUUGGCAUUGUCAUCCUGAUCUUCACUGGGAUCAGAGAUCGGAAGAAGAAAAAUAAAGCAAGAAGUGGAGA
AAAUCCUUAUGCCUCCAUCGAUAUUAGCAAAGGAGAAAAUAAUCCAGGAUUCCAAAACACUGAUGAUGUUCAGACC
UCCUUUUAG 

 

 

9.2.2 Open Reading Frame Codon Optimized 

AGCAGCAGCUCUUGGCUGCUGCUGAGCCUGGUGGCCGUGACAGCCGCCCAGAGCACAAUUGAGGAACAGGCCAAGA
CCUUCCUGGACAAGUUCAACCACGAGGCCGAGGACCUGUUCUACCAGAGCAGCCUGGCCAGCUGGAACUACAACACC
AACAUCACCGAAGAGAACGUGCAGAACAUGAACAACGCCGGCGACAAGUGGAGCGCCUUCCUGAAAGAGCAGUCCAC
CCUGGCCCAGAUGUACCCGCUGCAGGAAAUCCAGAACCUGACCGUGAAGCUGCAGCUGCAGGCUCUGCAGCAGAACG
GCAGCAGCGUGCUGAGCGAGGACAAGAGCAAGCGGCUGAACACCAUCCUGAAUACCAUGUCCACCAUCUACAGCACC
GGCAAAGUGUGCAACCCCGACAACCCCCAGGAAUGCCUGCUGCUGGAACCCGGCCUGAACGAGAUCAUGGCUAACAG
CCUGGACUACAACGAGCGGCUGUGGGCCUGGGAGUCUUGGAGAAGCGAAGUGGGCAAGCAGCUGCGGCCCCUGUA
CGAGGAAUACGUGGUGCUGAAGAACGAGAUGGCCAGAGCCAACCACUACGAGGACUACGGCGACUACUGGCGGGGA
GACUACGAAGUGAAUGGCGUGGACGGCUACGACUACAGCAGAGGCCAGCUGAUCGAGGACGUGGAACACACCUUCG
AGGAAAUCAAGCCUCUGUACGAGCAUCUGCACGCCUACGUGCGGGCCAAGCUGAUGAACGCCUACCCCAGCUACAUC
AGCCCCAUCGGCUGUCUGCCUGCCCAUCUGCUGGGCGACAUGUGGGGCAGAUUCUGGACCAACCUGUACAGCCUGA
CAGUGCCCUUCGGCCAGAAACCCAACAUCGACGUGACCGACGCCAUGGUGGAUCAGGCCUGGGACGCCCAGCGGAUC
UUCAAAGAGGCCGAGAAGUUCUUCGUGUCCGUGGGCCUGCCCAAUAUGACCCAGGGCUUCUGGGAGAACUCCAUGC
UGACCGACCCCGGCAAUGUGCAGAAAGCCGUGUGUCACCCCACCGCCUGGGAUCUGGGCAAGGGCGACUUCCGGAU
CCUGAUGUGCACCAAAGUGACCAUGGACGACUUUCUGACCGCCCACCACGAGAUGGGCCACAUCCAGUACGACAUGG
CCUACGCCGCCCAGCCCUUCCUGCUGAGAAAUGGCGCCAACGAGGGCUUCCACGAAGCCGUGGGAGAGAUCAUGAGC
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CUGAGCGCCGCCACCCCCAAGCACCUGAAGUCUAUCGGACUGCUGUCCCCCGACUUCCAGGAAGAUAACGAGACAGA
GAUCAACUUUCUGCUGAAGCAGGCCCUGACCAUCGUGGGCACCCUGCCCUUCACCUACAUGCUGGAAAAGUGGCGG
UGGAUGGUGUUUAAGGGCGAGAUCCCCAAGGACCAGUGGAUGAAGAAAUGGUGGGAGAUGAAGCGCGAGAUCGU
GGGCGUGGUGGAACCCGUGCCACACGACGAGACAUACUGCGACCCUGCCAGCCUGUUUCACGUGUCCAACGACUAC
UCCUUCAUCCGGUACUACACCCGGACCCUGUACCAGUUCCAGUUUCAAGAGGCCCUGUGCCAGGCCGCCAAGCACGA
AGGACCUCUGCACAAGUGCGACAUCAGCAACAGCACCGAGGCCGGACAGAAACUGUUCAACAUGCUGCGGCUGGGCA
AGUCCGAGCCUUGGACACUGGCCCUGGAAAACGUCGUGGGCGCCAAGAAUAUGAACGUGCGCCCCCUGCUGAACUA
CUUCGAGCCCCUGUUCACCUGGCUGAAGGACCAGAACAAGAACAGCUUCGUGGGCUGGUCCACCGACUGGUCCCCA
UACGCCGACCAGAGCAUCAAAGUGCGGAUCAGCCUGAAGUCCGCCCUGGGCGAUAAGGCCUACGAGUGGAACGACA
ACGAGAUGUACCUGUUCCGGUCCAGCGUGGCCUAUGCUAUGCGGCAGUACUUUCUGAAAGUGAAGAAUCAGAUGA
UCCUGUUCGGCGAAGAGGAUGUGCGGGUGGCCAACCUGAAGCCCCGGAUCAGCUUCAACUUCUUCGUGACCGCCCC
CAAGAACGUGUCCGACAUCAUCCCCCGGACCGAGGUGGAAAAGGCCAUCAGAAUGAGCAGAAGCCGGAUCAACGACG
CCUUCCGGCUGAACGACAAUAGCCUGGAAUUCCUGGGCAUCCAGCCCACCCUGGGCCCUCCAAAUCAGCCCCCUGUG
UCCAUCUGGCUGAUCGUGUUUGGCGUCGUGAUGGGCGUGAUCGUCGUGGGAAUCGUGAUCCUGAUCUUCACCGG
CAUCCGGGACCGGAAGAAGAAGAACAAGGCCAGAAGCGGCGAGAACCCCUACGCCAGCAUCGACAUCUCCAAGGGGG
AGAACAACCCCGGCUUCCAGAACACCGACGACGUGCAGACCAGCUUCUGA 


