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1 Introduction 

1.1. Forward  

Signaling through the family of nuclear factor–kappaB (NF-κB) transcription 

factors is involved in the regulation of numerous genes that are activated in response 

to stressful conditions such as infection, inflammation or injury. Inflammation 

processes play pivotal roles in detrimental joint disorders including osteoarthritis (OA) 

and rheumatoid arthritis (RA), the most common degenerative conditions of the 

skeletal system. NF-κB signaling pathways have been indicated to control 

inflammation and cartilage destruction, which are participating in the in pathogenesis 

of rheumatic diseases. Consequently, the blockade of NF-κB pathways through 

pharmacological or gene therapeutic inhibition has been suggested as a potential 

strategy as treatment of OA and RA. Although blocking the components of NF-κB 

signaling cascades are attractive targets for therapy, its beneficial effects on normal 

skeletal physiology are largely unknown due to the absence of suitable animal 

models. In this research project, conditional gene targeting was applied in mouse   as 

an experimental model system in order to address the role of canonical NF-κB in the 

cartilage. Tissue-restricted inhibition of the canonical NF-κB pathway in cartilage was 

achieved by chondrocyte-specific deletion of the inhibitory κB kinase γ gene (IKKγ) 

encoding NF-κB essential modulator (NEMO), a key regulator of the NF-κB canonical 

pathway. NEMO is a regulatory subunit of the kinase responsible for deactivation of 

the inhibitor of NF-κB, therefore, NEMO deficiency leads to the lack of NF-κB 

activation. Analyzing such mouse model, we are able to broaden our understanding 

of NF-κB-mediated processes on the regulation of normal and pathological cartilage 

functions. 

1.2. Clinical relevance of cartilage disorders 

Primary disorders of cartilage such as osteochondrodysplasias and 

osteoarthritis (OA) are widely distributed clinical problems in our society. 

Osteochondrodysplasia refers to a heritable disease occurred from genetic mutations 
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that can affect the development of cartilage and/or bone. There are more than 400 

osteochondrodysplasias that are classified. Although each type of osteo-

chondrodysplasia is relatively rare, the summed prevalence of the disease group has 

raised as much as from 760 per 1 million births (Andersen and Hauge, 1989; 

Barbosa-Buck et al., 2012; Orioli et al., 1986; Rasmussen et al., 1996). 

Osteochondrodysplasia can be accompanied with various complications that affect 

auditory, cardiac, neurologic orthopedic, pulmonary and renal functions. Dwarfism is 

the most common symptom of osteochondrodysplasia. Some of them cause short-

limbed dwarfism, while the others cause short trunk dwarfism. Achondrodysplasia is 

one of the most common non-lethal osteochondro-dysplasia (frequency 1/20000) that 

causes disproportioned dwarfism	with an average adult height of 130 cm for men and 

of 125 cm for women (Krakow and Rimoin, 2010). It is resulted from a mutation of the 

fibroblast growth factor receptor-3 (FGFR-3) gene, an important regulator of bone 

growth. Due to the genetic dominance, one mutant copy of FGFR-3 gene is able to 

induce achondrodysplasia. It is either inherited from parents or arises from 

spontaneous gene mutation	(Richette et al., 2008). 

Osteoarthritis (OA), a debilitating disorder of the articular cartilage is widely 

distributed on the world. Overall, approximately 3.6 percent of the global population 

(250 million people) is suffered from knee osteoarthritis, one of the most prevalent 

forms of this disease (Vos et al., 2012). The limb OA predominantly occurs at the 

knee joint that accounts for 41% of all cases. Hands (30%) and hips (19%) are the 

secondary vulnerable joints for OA (Cushnaghan and Dieppe, 1991). Global analysis 

for the incidence has shown that OA is one of the most common musculoskeletal 

diseases (Millennium, 2003; Wieland et al., 2005). In Europe, a joint replacement is 

performed every 1.5 minutes due to OA. In Germany, osteoarthritis accounts for 

about 8 % of all orthopedic treatment (Merx et al., 2007). In the United States, the OA 

patients represented 25% of the total number of seeking medical helps and were 

responsible for half of non-steroid anti-inflammatory drugs (NSAIDs) prescriptions. It 

is estimated that approximately 500,000 joint replacements are performed per annum. 

In 2011, there were 964,000 patients hospitalized for OA treatment. The total cost of 

OA medication was approximately 1.48 billion (15400 per stay), which was the 

second-highest Medicare spending after septicemia (Pfuntner et al., 2006).  
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Generally, the articular cartilage lesions are poorly self-repaired. Partially 

healed phenomenon only appears in certain biological conditions. Articular cartilage 

lesions usually cause disability and pain symptoms, such as joint pain, locking 

phenomenon, reduce physical activity and function. In addition, articular cartilage 

lesions are usually considered to develop into a serious OA (Gilbert, 1998; Messner 

and Gillquist, 1996). According to previous studies, risk factors of OA have been 

verified (Riyazi et al., 2008; Zhang and Jordan, 2010). These factors include: (1) 

arthritis of finger joints and knee, especially in women (Gunther et al., 1998; Zhang 

and Jordan, 2008); (2) deformity of hip or femoracetabular impingements (Heliovaara 

et al., 1993); (3) race and gender (Felson et al., 2000; Zhang and Jordan, 2008); (4) 

obesity or metabolic disorders; sport injuries (Kujala et al., 1994); and (5) 

employment factors such as weighty physical work load. The incidence of lower limb 

OA reaches to the peak in 70-79-age bracket. In female population, the occurrence 

per 100000 person per years increases from 350 in 50-59 age bracket to 1700 in 70-

79 age bracket; in male population, the incidence rises from 280 in 50-59 age bracket 

to 1280 in 70-79 age bracket (Zhang and Jordan, 2008). The worldwide incidence 

and prevalence of OA are different, but in general are very high. Due to demographic 

changes and extension the human lifespan, it is estimated that the number of OA 

patients will continually increase.	 In the United States, it is predicted that additional 

19 million people will be affected by OA yearly between 1995 and 2020	(Iorio et al., 

2008). However, drug development of OA also advances side by side. Optimistically 

speaking, it is believed that effective therapeutic strategies for OA will be developed 

in the future. In general, chronic painful cartilage disorders are common invalidating 

conditions for athletes, occupational and aging population. Osteoarthritis not only 

influences patients’ life quality but also raises considerable medical expenses to the 

worldwide healthcare system. Therefore, it is pivotal to identify the key factors 

involved in the onset and progression of OA, and improve our understanding of its 

basic biology in order to develop effective therapeutical solutions for cartilage 

disorders. 
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1.3. Structure of articular cartilage 

Typically, the articular cartilage can be divided into four layers (Figure 1). Each 

layer has a different composition of the extracellular matrix (ECM). The superficial 

layer (also known as tangential layer) covers the surface of the joint. The ECM in this 

layer contains fine fibrils running parallel of the surface and only little amount of 

proteoglycans. The elongated cells within this layer are mostly inactive, but still 

contain the endoplasmic reticulum, Golgi membranes and mitochondria. Below the 

superficial zone is the transition zone. There are active chondrocytes with 

endoplasmic reticulum, Golgi membranes, mitochondria, glycogen, and intra-

cytoplasmic filaments. Besides, the collagen fibrils in transition zone are larger than 

those of the superficial zone, and they orientation is arcade-like. Chondrocytes in the 

deep zone (also known as radial layer) are similar to those in the transition zone. 

However, the cartilage cells are organized into a columns perpendicular to the 

surface. These cells still contain a large number of intermediate filaments and 

glycogen granules. This zone contains the largest collagen fibrils of articular cartilage 

running perpendicular of the surface and a huge amount of proteoglycans. The 

content of proteoglycans increases from the superficial to the deep zone, while the 

content of water decreases. The cartilage in the calcified layer is just above the 

subchondral bone and separated from the radial layer by the tidemark. Chondrocytes 

in the calcified zone have almost no cytoplasm and endoplasmic reticulum. 

 

Figure 1. Structure of the articular cartilage. The articular cartilage is organized into various vertical 
zones and represents a typical anisotropic tissue architecture. From the surface of articular cartilage to 
the subchondral bone, cartilage is composed of tangential, transitional, radial and calcified layers. 
Tidemark is located at the surface between the radial and calcified layers. Figure is adapted and 
modified from (Landínez-Parra et al., 2012). 
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1.4. Composition of articular cartilage 

1.4.1. Chondrocyte 

In cartilage tissue, chondrocyte is the only cell type which responsible for 

cartilage formation and functions. Chondrocytes originated from skeletalgenic 

mesenchymal stem cells (MSC) during embryonic development. At the site of future 

chondrogenic elements, mesenchymal stem cells proliferate and aggregate to form 

condensations in which MSCs differentiated into chondroblasts. Chondroblasts secret 

a typical cartilage ECM including collagen fibers, glycosaminoglycans and 

proteoglycans. The chondroblasts are trapped in cavities known as cartilage lacunae, 

which is enriched in interstitial fluid (Figure 2). The chondroblasts later become 

mature chondrocytes that usually stay inactive but are able to secrete and degrade 

the ECM. 

 

Figure 2. Safranin-orange stained section of the articular cartilage. The chondrocytes are trapped 
into lacuna of the cartilage matrix. 
 

1.4.2. Water 

The water content of cartilage is approximately 80% of wet weight. A small 

portion of the water is encased within the chondrocytes, but the bulk of water is 

presented in the pores of the matrix and intrafibrillar space (Maroudas et al., 1991; 

Torzilli, 1985). The content of water concentration reduces from 80% through the 

superficial and deep zones. The tissue fluid is enriched with Ca2+, Cl-, K+ and Na+ 

ions (Lai et al., 1991; Linn and Sokoloff, 1965). Water in the cartilage layers not only 
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functions as lubricating fluid but also facilitate the distribution of nutrients to 

chondrocytes. 

Principally, water within interfibrillar space is served as a gel. Through 

compression or applying a pressure gradient across the tissue, most of the water 

passes through the cartilage ECM. Owning to the high friction resistance of cartilage 

against water flow, cartilage permeability is very low. The friction resistance and the 

pressurization of water in cartilage ECM form the basic mechanisms supporting 

articular cartilage to withstand constant or repeated loads caused by body weight and 

movement of the skeleton. 

1.4.3. Collagens 

To date, there are 28 members of collagens discovered and expressed in 

various tissues. Every member in the collagen family contains triple helix structure 

from 3 polypeptide chains (α-chains). The polypeptide chains mostly consist of 

glycine and proline with occasional hydroxyproline, which stabilize the structure of 

collagen (James and Uhl, 2001). 

Collagens are the most abundant structural ECM molecules in cartilage and 

account for 60% of the dry weight	(Sophia Fox et al., 2009). Among all collagens in 

the cartilage ECM, 90% to 95% of collagens is type collagen II. Collagen II 

constitutes fibers that entrap with proteoglycan aggregates. Collagen types I, IV, V, 

VI, IX, and XI account for the remained 5%-10% in the articular cartilage. The 

cartilage fibrils besides collagen II, contain collagen IX and XI as minor components. 

In mammalian articular cartilage, proportion of collagen II, IX, and XI in cartilage 

fibrils does not alter substantially between zones. However, changes in composition 

of cartilage fibrils were observed in young versus adult articular cartilages (collagen 

IX: 10% vs. 1%, collagen XI: 10% vs. 3% and collagen II: 80% vs. 95%, respectively)	

(Eyre, 2002). The triple helix structure of fibrillar collagens accounts for the tensile 

and shear properties of articular cartilage and stabilizes the structure ECM. 



INTRODUCTION 

	 7	

1.4.4. Proteoglycans 

Proteoglycans are widely expressed glycosylated proteins in various types of 

tissues Proteoglycans consist of a linear core protein and coupling with multiple 

negative charged side chains glycosaminoglycan (GAG), which can be composed up 

to more than 100 monosaccharides (James and Uhl, 2001). Due to charge repulsion, 

all of the glycosaminoglycans chains in proteoglycan separate from each other. 

Articular cartilage consists of various proteoglycans such as fibromodulin, biglycan, 

decorin and aggrecan. 

The most abundant and the largest protein in cartilage ECM is aggrecan. 

Aggrecan core protein is substituted with about 100 chondroitin sulfate and multiple 

keratin sulfate GAG chains. Aggrecan molecules can bind to hyaluronan (HA) via link 

protein and subsequently form massive proteoglycan aggregates (Figure 3). 

Aggrecan is predominantly trapped between the collagen fibrils of cartilage ECM and 

it plays critical role in resisting of compressive loads due to water binding caused by 

the negative charged GAG chains. 

 

Figure 3: Cartilage extracellular matrix. According to the distance to chondrocyte, cartilage ECM 
can be divided into pericellular, territorial and interterritorial matrix. The pericellular matrix surrounds a 
chondrocyte and binds to the membrane receptors of ECM components; the territorial matrix locates 
between pericellular matrix and interterritorial matrix; the interterritorial matrix is the farthest matrix 
compartment from the chondrocytes. Each area is formed by macromolecular assemblies (e.g. 
collagen network and proteoglycan aggregates) which are modulated via numerous regulatory and 
adaptor proteins. Figure is adapted and modified from (Heinegard and Saxne, 2011). 
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The major function of non-aggregating proteoglycans is the interaction with 

collagens. Non-aggregating proteoglycans in articular cartilage such as decorin, 

biglycan and fibromodulin are much smaller than aggrecan. Although these 

proteoglycans have similar structure, they can be distinguished by the attached 

glycosaminoglycan chain. Biglycan predominantly distributes on the periphery of 

chondrocytes and contains a dermatan sulfate chain which is likely attached to 

collagen VI (Sophia Fox et al., 2009). Decorin and fibromodulin contain dermatan 

sulfate and kerain sulfate chains, respectively. They interact with collagen II fibrils 

and participate in interfibrillar stabilization and fibrillogenesis (James and Uhl, 2001). 

1.4.5. Noncollagenous glycoproteins 

In addition to proteoglycans, there are numbers of non-collagenous 

glycoproteins found within the articular cartilage	(Neame et al., 1999). Some of these 

proteins are participated in the structure organization and maintenance of cartilage 

ECM by interacting with collagens and/or proteoglycans. Thrombospondin-5/cartilage 

oligomeric matrix protein (COMP), proline- and arginine-rich end leucine-rich repeat 

protein (PRELP), matrilin-1, matrilin- 3 and fibronectin are know to stabilize the 

supermolecular assembly of the cartilage ECM (Bengtsson et al., 2000; Briggs et al., 

1995; Jenkins et al., 1990; Mann et al., 2004; Romberger, 1997; Wiberg et al., 2003). 

There are also proteins which play regulatory role in cell proliferation and 

chondrocyte metabolism such as glycoprotein-39 (gp-39), matrix gla protein (MGP), 

chondromodulins, cartilage-derived retinoic acid responsive protein (CD-RAP) and 

various growth factors (Roughley, 2001).  

By utilizing transcriptomic, proteomic and mass spectrometry techniques, 

proteins in cartilage ECM have been broadly characterized. However, the precise 

biological function of noncollagenous glycoproteins is still not completely understood.  
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1.5. Function of articular cartilage 

Articular cartilage works as shock absorber to distribute the compressive loads, 

minimize peak stresses on subchondral bone. It efficiently reduces friction resistance 

and provides weight-bearing surface. Owning to the remarkably elasticity of articular 

cartilage, it can be deformed and recover its original shape. Articular cartilage has 

been well characterized with a low level of mitotic and metabolic activities, lacks 

blood vessels, lymphatic vessels, and nerves compares to other soft tissues. 

Essentially, articular cartilage functions and stands alone.  Structure of cartilage is 

highly complexed and ordered. Unless affected by diseases or injuries, the structure 

of articular cartilage remains stable and unchanged (James and Uhl, 2001). 

1.5.1. Biomechanical function 

The biomechanical behavior of articular cartilage has been well studied. 

Articular cartilage contains solid ECM and a fluid phase with water and inorganic ions 

(e.g. sodium, calcium, chloride, and potassium), which represents 20% and 80% of 

wet weight of articular, respectively. Due to the proteoglycan aggregates and 

interstitial fluid, negative electrostatic repulsion forces is created and provides 

compressive resilience to articular cartilage (Mankin et al., 1994; Maroudas, 1979; 

Mow and Ratcliffe, 1997). 

When compressive load is applied to joint, the interstitial fluid pressure raises 

rapidly. Due to the local increase of fluid pressure, the interstitial fluid flows out of the 

ECM and generates large friction in the ECM (Frank and Grodzinsky, 1987; 

Maroudas and Bullough, 1968; Mow et al., 1984). The interstitial fluid flows back into 

ECM soon after the compressive load is removed. The low permeability efficiently 

prevents the interstitial fluid from rapidly flowing out of ECM in respond to 

compressive load. The covered cartilage layer on the both end of bones (e.g. femur 

and tibia) forms the joint with limited mechanical movements (James and Uhl, 2001). 

Articular cartilage is characterized by its viscoelasticity and demonstrates time-

dependent behavior when constant compressive loads or deformations are applied 

(Woo et al., 1987). Two mechanisms are involved in the viscoelasticity of articular 

cartilage. (1) Flow-dependent mechanism is based on the interstitial fluid and the 

friction resistance generated by this flow as mentioned above (Ateshian et al., 1997; 
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Mow et al., 1984; Mow et al., 1980; Simon et al., 1984). The dragging force from 

interstitial fluid and friction of ECM provide viscoelastic behavior of articular cartilage 

(Mow et al., 1980). (2) Flow-independent mechanism is attributed to the intrinsic 

viscoelastic property of collagen-proteoglycan supermolecular assemblies (Hayes 

and Bodine, 1978). Relying on the flow-dependent mechanism, the pressure of 

interstitial fluid counteracts the majority of total compressive load. The stress acts 

directly to solid matrix is largely reduced, viscoelastic property of solid matrix then 

covers the rest of the total load. 

Creep and stress-relaxation reaction in the articular cartilage also play 

important roles in response to compressive loads. The deformation of articular 

cartilage shows and increases with time when a constant compressive load is applied 

(Mow et al., 1984). The zonal organization of cartilage remarkably enhances the 

resistance against shear stress. Collagen fibrils within the cartilage stretch in 

response to shear stress (Hayes and Mockros, 1971; Setton et al., 1995) (Figure 4). 

The molecular composition and inter/intra-molecular interactions of collagen fibrils 

ensure the cartilage with moderate level of tensile responses (Figure 5). 

 

Figure 4: Strain curve of articular cartilage. The curve is consisted of 3 parts: toe region, linear 
region and fracture. Toe region is considered as relaxed state of collagen fibrils. The collagen fibrils 
linearly respond to the mechanical stress in toe and linear regions. With the increase of mechanical 
stress, excessive stress eventually results in cartilage fracture. Figure is adapted and modified from 
(Robi et al., 2013). 
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Figure 5: Deformation of cartilage ECM under tensile force. When mechanical stress is loaded, 
the collagen fibrils are stretched towards both ends. Figure is adapted and modified from (James and 
Uhl, 2001). 

1.6. Metabolism within the cartilage 

Articular cartilage receives nutrients from the synovial fluid due to the lack of 

penetrating blood vessels in the cartilage. Nutrients from synovial fluids diffuse into 

pores of cartilage ECM that are averagely 6 nm wide (Linn and Sokoloff, 1965; Mow 

et al., 1992). Thus, the metabolism of chondrocytes is mainly anaerobic.  

Chondrocytes play essential role in ECM deposition, maintenance and repair. 

Various chemical and biomechanical factors from peripheral microenvironment can 

mediate the metabolism of chondrocytes (James and Uhl, 2001). Cytokines (e.g. 

TNF-α and IL-1), regulator peptides (e.g. parathyroid hormone-related peptide, 

PTHrP), growth factors (e.g. IGFs, FGFs), and physiological loadings provide 

chemical and mechanical signal, respectively, which balance anabolic and catabolic 

cascades important for the homeostasis and remodeling of the articular cartilage. 

Controlled synthesis and degradation of cartilage macromolecules (like 

proteoglycans and collagens) are essential for the proper function of the cartilage. 

ECM surrounding the chondrocytes protects the potential damage from 

biomechanical forces. Cartilage ECM remains homeostatic by newly synthesized 
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macromolecules such as proteoglycans and collagens. The turnover rate of 

proteoglycan is ranged from hours to years (Masuda et al., 2003) whereas the 

turnover rate of collagens is over hundred years (Eyre et al., 2006). 

Turnover and degradation of cartilage are mainly accomplished by 

metalloproteinases includeing matrix metalloproteinases (MMPs), a disintegrin and 

metalloproteinase with thrombospondin motifs proteinases (ADAMTSs) and 

cathepsins. Metalloproteinases are synthesized as proenzymes, which need 

extracellular cleavage to be fully activated. Collagenases (MMP-1 and MMP-13) and 

gelatinases (MMP-2 and MMP-9) are responsible to disassemble fibrils of collagens 

and degradation of elastin and fibronectin, whereas stromlysin-1 (MMP-3), ADAMTS-

4 and ADAMTS-5 participate in core protein degradation of aggrecan (Poole et al., 

1987). Cathepsins are involved in aggrecan degradation (James and Uhl, 2001). 

The physiological architecture and function of articular cartilage is mainly 

maintained by joint motion and normal mechanical load. Lack of joint activity has 

been reported to cause cartilage degradation (Buckwalter and Mankin, 1998). 

Abnormal change of cartilage metabolism is often associated with inflammatory 

conditions accompanying osteoarthritis, which usually takes place when catabolism 

and anabolism of chondrocytes are imbalanced (Torzilli et al., 1999). 

1.7. The development of bone 

The development of bone is defined as bone formation and growth. 

Intramembranous ossification and endochondral ossification are responsible for the 

formation of all bone tissue from mesechymal condensation. Intramembranous 

ossification is a mechanism that predominately occurs in bones of the skull through 

the linch differentiation or bone-produced osteoblasts from skullgenic MSCs. 

Endochondral ossification is the other bone producing mechanism that transforms 

mesenchymal tissue into cartilage and sequentially into bone tissue. Endochondral 

bones grow in length at the epiphyseal growth plate mediated by a process, which is 

similar to endochondral ossification. This process continues throughout entire 

childhood and the adolescent years. When the growth of cartilage slows down and 

stops eventually, the growth plate is completely ossified and remains as an 

epiphyseal line. Even after adult stature is attained, bone development continues 
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throughout adulthood for increase of thickness or diameter, repair of fractures and 

remodeling of bone to meet change of lifestyle. 

1.7.1. Cartilage differentiation during endochondral bone formation 

Early skeletal development of endochondral bone contains two consecutive 

phases of morphogenesis and growth. In the former phase, the cartilaginous 

templates of skeletal elements are laying down from the mesenchyme, while in the 

latter phase the cartilage anlage grows into the mature skeleton. The longitudinal 

bone growth accounts for the size of organism. The skeletal development initiates 

from condensation of mesenchymal stem cells, which differentiates into 

chondroblasts (Figure 6) (Hall and Miyake, 2000; Morriss-Kay, 2001). After an 

intensive proliferation phase, chondroblasts differentiate into chondrocytes and 

secrete cartilage ECM that served as a template for the future bones. The typical 

cartilage ECM of endochondral bones contain a variety of collagens (II, IX, and XI), 

proteoglycans (aggrecan) and matrix proteins such as matrilins and cartilage 

oligomeric matrix protein (Morris, 2002). During human embryogenesis, condensation 

of mesenchymal stem cells can be observed at 6.5 weeks of the pregnancy. 

Chondrocytes differentiated from mesenchymal stem cells form the bone template 

(also known as cartilage anlagen), which can be observed from the 16th week of 

pregnancy (Uhthoff, 1988). The development of similar cartilaginous structures can 

be observed in mouse in between embryonic days E11.5 and E13.5 of the pregnancy 

(Kaufman, 1992). The transcription factors of SOX family play an important role in the 

initiation of chondrogenic differentiation (de Crombrugghe et al., 2001). SOX-9 

participates in the early stage of differentiation and induces the expression of the 

transcriptions factors SOX-5 and SOX-6, which are important for the differentiation of 

chondrocytes (Bi et al., 1999; Lefebvre et al., 2001). Moreover, SOX-9 can activate 

genes of cartilage ECM proteins including collagen II and XI (de Crombrugghe et al., 

2001). Growth factors such as bone morphogenetic proteins (BMPs), fibroblast 

growth factors (FGFs), and morphogens like Indian hedgehog (Ihh) also contribute to 

the cartilage formation, chondrocyte proliferation and differentiation (de Crombrugghe 

et al., 2001). 



INTRODUCTION 

	 14	

 

Figure 6: Endochondral bone formation. The mesenchymal stem cells condense and form the 
cartilaginous anlage surrounded by the perichondrium. Chondrocytes in the center of cartilage 
template initiate hypertrophic differentiation. The periosteal cells next to hypertrophic chondrocytes 
become osteoblasts (bone collar) followed by vascular invasion. Mature hypertrophic chondrocytes 
secrete calcified matrix and undergo apoptosis or transdifferentiate into osteoblasts. Chondroclasts 
following the invaded blood vessels degrade the calcified matrix, while osteoblasts produce the 
trabecular bone of the primary ossification center. The secondary ossification centers form at both 
ends of the long bones. The chondrocytes between primary and secondary ossification region form 
the cartilaginous growth plate, which is responsible for the longitudinal growth of bone. The groove of 
Ranvier is involved in the circumferential growth of the bone. 

1.7.2. Intramembranous ossification 

Intramembranous ossification is the other indispensable process that forms 

rudimentary bones during embryonic development. It is also known to be an 

important process in the recovery of bone fractures (Brighton and Hunt, 1991) and in 

the skull formation. Otherwise from endochondral ossification, no cartilage is created 

during intramembranous ossification. 

1.7.3. Endochondral ossification  

Endochondral ossification is an essential process to create bone tissue from 

cartilaginous templates during development of the mammalian skeletal system. It 

plays important role in longitudinal growth of the skeletal elements (Brighton and 

Hunt, 1986). In long bones, endochondral ossification begins at the middle of anlage 
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called the diaphysis (Figure 6). The perichondrium covering the cartilage templates 

differentiates into the periosteum at the level of diaphysis. A layer of undifferentiated 

cells (osteoprogenitor cells) within periosteum soon differentiate to be osteoblasts 

that are responsible for production and secretion of bone matrix. 

At the same time, diaphyseal chondrocytes enlarge and become hypertrophic in 

the center of primary ossification and secrete mineralized matrix. The remaining 

calcified ECM is taken as a scaffold and consequently turns into bone trabecula by 

osteoprogenitor cells, which enter through the periosteal bud (Horton, 2003). 

Afterwards, trabecular bones are digested by osteoclasts and release an empty 

cavity known as bone marrow. 

1.7.4. Growth plate 

The growth plate (known as epiphyseal plate or physis) is a discoidal area that 

located between the epiphysis and diaphysis of long bones. It is formed during 

endochondral ossification and mediates a process that largely transforms the 

preexisting cartilaginous template into bone. The growth plate is responsible for 

longitudinal and lateral growth of bones and composed of three anatomically distinct 

but functionally interacting areas: 1) the cartilaginous growth plate, (2) the bony 

metaphysis and (3) the peripheral ossification groove of Ranvier	 (Ballock and 

O'Keefe, 2003; Brighton, 1978).  

1.7.4.1. Structure and function of the cartilaginous growth plate 

The cartilaginous growth plate is a hierarchically structured, anisotropic tissue 

which is responsible for longitudinal growth of endochondral bones during embryonic 

and early postnatal development. Chondrocytes within the growth plate are arranged 

into horizontal zones of resting, proliferating, prehypertrophic (a transition zone 

between the proliferative and hypertrophic zones) and hypertrophic. Vertically, cells 

organized into longitudinal columns from the proliferative zone (Figure 7). The 

structure and composition of these zones and columns in the cartilaginous growth 

plate are slightly different from species to species. In avians, he cartilaginous growth 

plate is characterized as less column structure with high cellularity and less matrix 
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production. Thus, the size of proliferation zone is the primary growth rate-determining 

factor for avians	 (Farquharson and Jefferies, 2000; Howlett, 1979; Kember et al., 

1990). The columns in the cartilaginous growth plate of mammalians are more 

distinct owning to the extensive cartilage matrix synthesis. The change of 

hypertrophic chondrocyte volume, besides chondrocyte proliferation and matrix 

production, is the most critical factor regulating longitudinal growth ion vertebrates 

(Breur et al., 1991; Hunziker, 1994). Due to the balance between growth and 

resorption at the cartilage-osseous junction of the metaphysis, the thickness of 

growth plate remains almost constant during development. 

The resting (or reserve) zone consists of small and rounded chondrocytes 

within the cartilage matrix. Nucleoside analog incorporation experiments show that 

chondrocytes in resting zone have slow cell cycle and rarely proliferate (Candela et 

al., 2014; Kember, 1971; Ohlsson et al., 1992). It was suggested that resting zone is 

a pool of chondro-precursors for chondrocytes supplying in the proliferating zone. 

Supporting this hypothesis, the surgical-removed rabbit growth plate was recovered 

by re-implantation of the resting zone	 (Abad et al., 2002).  The origin of resting 

progenitors is not clear, but it is suggested that these cells are migrating from the 

bone marrow or follow penetrating blood vessels of the epiphysis (Candela et al., 

2014). 

 

Figure 7: The cartilaginous growth plate. Resting zone is considered as a reservoir of rounded, 
precursor cells for chondrocytes in the proliferation zone (Kronenberg, 2003). In the proliferating zone, 
chondrocytes flatten with right angle of the longitudinal direction of the growth, mitotically active and 
produce cartilage matrix (Ogden and Rosenberg, 1988). In the prehypertrophic zone, the cells start to 
enlarge in size, and stop to divide as a part of the chondrogenic maturation program. In the 
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hypertrophic zone, the chondrocytes eventually can be 5–12 times larger in volume compared to cells 
in the proliferative zone (Ogden and Rosenberg, 1988). Terminally differentiated hypertrophic 
chondrocytes than either die by apoptosis or transdifferentiate into osteoblasts at the chondro-osseous 
junction (Pirog and Briggs, 2010). 

The proliferating zone is consists of flattened chondrocytes which forms 

characteristic, longitudinal columns. Experiments in rodents showed that only 

chondrocytes in upper half of the proliferative zone are with mitotic activity. 

Chondrocytes in the lower half zone merging with the prehypertrophic zone stop 

proliferating and undergo the process of maturation (Vanky et al., 1998). According to 

the location of the growth plate, the average cell cycle time is from 24 to 76 hours. 

(Vanky et al., 1998; Wilsman et al., 1996). From resting zone to proliferation zone, 

chondrocytes averagely divide four times and then move into the hypertrophic zone.	

(Farnum and Wilsman, 1993). Proliferating chondrocytes divide in a specific manner 

that is different from most of cell types in the body. The general cell biological rules of 

Hertwig for the orientation of the mitotic spindle and cell division plane describe two 

prominent features of dividing proliferating chondrocytes: (1) “the axis of the mitotic 

spindle takes the direction of the greatest protoplasmic masses” and (2) “the plane of 

division always cuts the axis of the spindle perpendicularly” (Figure 8)	(Hertwig, 1893). 

While these rules explain the oriented cell division observed in the proliferative zone, 

namely that the division axis is always perpendicular with the direction of the 

longitudinal growth (e.g. the proximo-distal axis of the bone), the extension of the 

column is characterized by the classical Dodds model. The behaviors of proliferating 

chondrocytes in the columns can be summarized as the follow: (1) mitotic 

chondrocytes lie perpendicular with the proximodistal (longitudinal) and elongate 

along the mediolateral axis of the bone; (2) cell division plane is parallel to the long 

axis of the columns; (3) the newly-divided cells initially lie horizontal relative to the 

longitudinal axis of columns; and (4) by regulating the length and width ratio, the 

daughter cells eventually move backward to the original vertical axis. This model has 

a close similarity to the developmental process of convergent extension which leads 

to tissue narrowing and elongation during organogenesis (Keller et al., 2000). To 

summarize, chondrocytes in the proliferating zone (1) undergo flattening process; (2) 

are oriented perpendicularly to the direction of longitudinal growth, and (3) the 

columns extend along the longitudinal axis. 
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Figure 8: Mechanisms of chondrocyte division and column formation. Chondrocytes in the 
proliferative zone elongate along the mediolateral (ML) axis with right angle to the longitudinal, 
proximodistal axis. Following Hertwig´s rules, the mitotic spindles form in the long axis of the cell and 
division plane cut perpendicular to this axis. The horizontally oriented daughter cells than rotate back 
to the proximodistal (PD) axis by sliding movements mediated by the matrix (classical Dodds model) 
or by transient cell-cell cell-cell connections (alternative models). Figure is adapted and modified from 
(Dodds, 1930).  

Numerous growth factors, morphogens and hormones are involved in the 

regulation of chondrocyte proliferation, maturation and oriented cell division. Besides 

of the mitotic activity, chondrocytes in the proliferation zone produce the vast amount 

of typical cartilage matrix components that includes aggrecan and collagen II.  

In the prehypertrophic zone, chondrocytes initiate expression of specific 

marker genes such as Indian hedgehog (Ihh), collagen X and parathyroid 

hormone/parathyroid hormone-related protein receptor (Ppr1). Most of the 

chondrocytes in prehypertrophic zone are larger than cells in the proliferation zone 

and are mitotically inactive.  

The chondrocytes in hypertrophic zone are round to polygonal in shape and 

their cell volume is enlarged 5-10 times compared to the chondrocytes in the 

proliferating zone (Hunziker, 1994). Hypertrophic chondrocytes predominantly 

deposit collagen X instead of aggrecan and collagen II. Mature, terminally 

differentiated hypertrophic chondrocytes either undergo apoptosis or 
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transdifferentiate into osteoblasts (Park et al., 2015; Yang et al., 2014; Zhou et al., 

2014).	 The hypertrophic chondrocytes near the metaphysis produce vascular 

endothelial growth factor (VEGF), which facilitates the invasion of blood vessels into 

the hypertrophic core; and matrix metalloproteinase 13 (MMP-13) which degrade the 

cartilaginous ECM (Ortega et al., 2004). Chondroclasts and osteoblast precursors, 

which follow the invasion of the vasculature, carry out the transformation of cartilage 

into bone. 

1.7.4.2. Metaphysis 

The vascular invasion starts from the metaphysis where the primary 

ossification occurs (Ballock and O'Keefe, 2003; Brighton, 1978).  The metaphysis 

contains two regions: (1) primary spongiosa and (2) secondary spongiosa. The initial 

trabecular network at primary spongiosa is generated from partially degraded 

intercolumnar area that extends from the hypertrophic zone. Eventually, the primary 

spongiosa mineralized to form woven bones and secondary spongiosa. At secondary 

spongiosa area, the primary trabecular network becomes lamellar trabecular bone. 

Besides its role in cartilage-bone remodeling, metaphysis also support the structural 

stability of the growth plate. 

1.7.4.3. Peripheral ossification groove of Ranvier 

The growth plate cartilage laterally is surrounded by a fibro-chondro-

osseoustissue, which is composed of the groove of Ranvier and the ossification ring 

of LaCroix (Brighton, 1978; Langenskiold, 1998).	The Ranvier groove is may serve as 

a storage pool of chondrogenic progenitor cells and contributes to the circumferential 

growth of bones (Karlsson et al. 2009; Shapiro et al. 1977). The ring of LaCroix help 

to maintain the structural stability of the growth plate at the chondro-osseous 

junctions (Rodriguez et al., 1985).  
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1.8. Chronic cartilage disorders 

1.8.1. Aetiology of cartilage lesions 

The chondral injuries can be divided into two major types: degenerative and 

focal lesions. Degenerative lesions commonly result from meniscal injuries, 

displacement of the joints, osteoarthritis (OA) or joint instability due to weakening of 

the ligaments. Focal lesions are mainly induced by osteochondritis dissecans, 

osteonecrosis and trauma (Falah et al., 2010). 

Sports injury and accidents represent most prevalent trauma that causes 

osteochondral lesions or breaking the cartilage-bone interfaces. The shear force may 

cause cartilage or even subchondral bone fractures. Up to 50% of osteochondral 

lesions at the knee joint are the consequences of the dislocation of patella  (Boden et 

al., 1997). Osteochondritis dissecans (OD), first described by König in 1988, causes 

microtrauma in femoral condyles in 60% of OD patients (Bianchi et al., 1999). 

Osteonecrosis can be primary (also known as spontaneous osteonecrosis) or 

secondary, as a consequence of, for example, alcoholism, steroid therapy and 

meniscectomy (Patel et al., 1998). The cartilage lesions after age 40 are mainly 

caused by OA. In all cases, the appearance of degenerative lesion may diverge from 

each other. Such cartilage lesion progresses to subchondral bone hardness leading 

to reduced stress absorption and vulnerable cartilage ECM (Falah et al., 2010). 

Cartilage lesions and damage of subchondral bone are, in many cases, getting more 

severe because of weight bearing stress. Ligament (especially the anterior cruciate 

ligament, ACL) injury causes meniscal and knee instability, which in turn lead to 

cartilage injury (Stanitski, 1995). Previous studies have showed that about two third 

of articular cartilage lesions are linked to meniscal tears (Lewandrowski et al., 1997). 

Owning to its complex etiology, the effect of preventive treatment options of cartilage 

lesions is still controversial (Falah et al., 2010). 

1.8.2. Cartilage injuries among athletes 

There is a rising tendency of chondral injuries in professional athletes (Chow 

et al., 2004). Apart from the prominent occurrence of cartilage damage in high-end 
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competitive sports, the enhanced incidence of articular cartilage injuries is positively 

correlated with the increasing participation in leisure sports (e.g. football and 

basketball) (Arendt and Dick, 1995; Jones et al., 2001; Mithofer et al., 2005). 

Cartilage damages of the knee joints are reported as one of the most common 

reasons that accounts for sustained disability of athletes (Drawer and Fuller, 2001; 

Engstrom et al., 1990). Injuries of the articular cartilage are often associated with 

osteochondral fractures, patellar dislocations and avulsions of ligaments (Bartz and 

Laudicina, 2005; Moti and Micheli, 2003; Smith and Tao, 1995). Focal lesions in the 

femoral condyles are found in approximately 50% of the athletes who receive ACL 

reconstruction with increasing population of female athletes (Arendt and Dick, 1995; 

Piasecki et al., 2003). The cartilage injuries often strongly affect athletic performance 

and progress to early joint degeneration (Felson et al., 2000; Kujala et al., 1995). 

Since the cartilage injuries are barely self-repaired, articular cartilage lesions 

in young and physically active people have been considered as a challenge of 

treatment (Buckwalter, 1999; Jackson et al., 2001). Newly invented surgical 

techniques have attempted to address cartilage repair, joint replacement and even 

the possibility of regeneration (Alford and Cole, 2005a; Alford and Cole, 2005b; 

Brittberg et al., 1994; Moti and Micheli, 2003; Steadman et al., 2003). Because of the 

mechanical overload of the joint, articular cartilage injuries in athletes especially 

require the repair on the surface, which should bear massive impact in highly 

intensive sports (Jackson et al., 2001). The assessments of articular cartilage repair 

of athletes are mainly focused on functional scores, mobility and the chance to go 

back to sports (McAdams et al., 2010). 

In the population of athletes, the evaluation of the progression of knee 

cartilage destruction has been well documented (Drawer and Fuller, 2001; Engstrom 

et al., 1990; Felson et al., 2000; Lane et al., 2004; Roos, 1998). Healthy, normal 

articular cartilage is characterized with the best weight-bearing ability depending to 

the activity. Articular cartilage in teenagers and in people active in sports are 

thickened, and synthetize more glycosaminoglycans due to the increased weight-

bearing impacts of the joint (Roos and Dahlberg, 2005). Generally, articular function 

is positively correlated to repetitive loading in healthy athletes. However, any athletic 

activity above the threshold of this linear correlation can cause injuries of articular 

cartilage (Kiviranta et al., 1992). Massive, non-physiological mechanical stress may 
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result in chondrocyte apoptosis, activation of degradative enzymes and, 

consequently, and depletion of cartilage macromolecules such as proteoglycans 

(Arokoski et al., 1993; Jackson et al., 2001; Lohmander et al., 1994; Pearle et al., 

2005). Afterwards, the initial phase of the disease starts caused by cartilage 

breakdown, increased compressive stress and occurrence of cartilage lesions 

(McAdams et al., 2010). Meniscal injury, malalignment or ligament instability are 

known to further enhance articular cartilage degradation, which without medical 

treatments results in sustained dysfunction of articular cartilage and eventually leads 

to OA (McAdams et al., 2010). 

1.8.3. Osteoarthritis 

OA is a multifactorial and highly complex disease of the synovial joints 

affected by genetic and environmental elements (Buckwalter and Martin, 2006). OA 

is most prevalent in the joints of hip, knee and hands (Figure 11). Pain and functional 

impairment (dysfunction and joint stiffness) are the common characteristics of OA. 

Approximately 80% of the OA patients have movement limitations to certain level that 

cause imperfect performance in work, sport and everyday life. Importantly, 20% of 

OA patients aren’t able to perform most of the daily activities (Wieland et al., 2005). 

 

Figure 9: Predominant sites of OA. The common OA-occurring joints such as knee, hip, finger, 
shoulder and spine are indicated. Figure is adapted and modified from (Wieland et al., 2005). 
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OA is a slowly developing process of usually single joints that characterized by 

sustained cartilage destruction associated with occasional signs of synovitis (Figure 

12). The occurrence of OA increases with age, eventually affecting half of elderly 

people over 65 years (Badley and Wang, 1998; Millennium, 2003; Wieland et al., 

2005). Rheumatoid arthritis (RA), in contrast to OA, is fast-developing and 

generalized inflammatory disease driven by autoimmune processes that primarily 

affects younger people. Although, RA is much less common than that OA (Millennium, 

2003; Wieland et al., 2005), RA has tempted more attention than osteoarthritis in the 

past. 

 

Figure 10: Healthy versus OA-affected knee joint. Compared to healthy knee, OA-affected knee is 
characterized by cartilage breakdown, meniscal lesions and inflamed synovium. With the progression 
of OA, osteophytes and bone sclerosis may develop. Figure is adapted and modified from (Wieland et 
al., 2005). 

Multiple biological molecules are involved in cartilage breakdown at the onset 

and during the progression of OA. These molecules suppress restoration of cartilage 

and result in imbalance of cartilage metabolism (Figure 13). A shift from anabolic to 

catabolic processes in chondrocytes plays a pivotal role in the pathology of OA. In 

primary OA with no clearly identified disease-causing factors, the cartilage ECM 

production of chondrocytes is impaired due to the disproportion of catabolic and 

anabolic activities. Excessive catabolic processes in OA chondrocytes result in 

sustained and advanced damage of the articular cartilage. Secondary OA is defined 
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as the early-onset degeneration of articular cartilage due to defined factors such as 

joint malformations (dysplasias), diabetes and mechanical overload.  

Remodeling of cartilage ECM involves both proteinases like matrix 

metalloproteinases (MMPs) and caspases, and proteinase inhibitors such as tissue 

inhibitors of metalloproteinases (TIMPs). In normal articular cartilage, the activities of 

these molecules are tightly regulated at multiple levels including cytokine/growth 

factor signaling pathways, matrix-matrix and cell-matrix interactions (Figure 14). 

However, the exact nature of the pathways and the potential cross-talks among the 

different cascades are still partially understood. 

 

Figure 11: Vicious cycle of osteoarthritis. The connections between etiological factors, 
pathophysiological events and consequence are demonstrated. The pathophysiological events 
frequently affect and enhance each other. Figure is adapted and modified from (Wieland et al., 2005). 
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Figure 12: Mechanisms controlling articular cartilage function. Transmembrane receptors such 
as integrins, growth factor and cytokine receptors, discoidin domain receptor 2 (DDR-2) receive 
mechanical and chemical signal from the cartilage ECM. The following signal transduction processes 
are mediated via multiple intracellular signaling cascades involving MAPKs, PI3K, Smad, Wnt, 
GTPase, NF-κB, Hedgehog and Notch. As net effect, gene expression, cell survival, proliferation and 
actin dynamics are regulated to maintain cartilage homeostasis and differentiation. Figure is adapted 
and modified from (Legate et al., 2009). 

Cartilage resident matrix proteins interact with each other in a complex 

manner to define the physical framework for cells and to control the availability, 

activity and cell surface presentation of bioactive molecules. Almost all ECM proteins, 

directly or indirectly, bind to and activate cellular receptors such as integrins, which in 

turn stimulate intracellular signaling pathways regulating cellular behavior such as 

gene expression, proliferation, survival and cytoskeletal reorganization (Legate et al., 

2009). The pericellular matrix (PCM) – surface receptors interactions are suggested 

to play critical role in transmitting signals from cartilage ECM into chondrocytes, 

which maintain homeostasis of matrix metabolism (Knudson and Loeser, 2002). 

Alterations of cartilage ECM such as injury, proteolytic degradation and chronic 

stress, which interfere matrix-cell signaling, largely increase the risk of OA incidence 

(Roos and Dahlberg, 2005). 
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1.8.4. Current, non-surgical treatment options for cartilage injury  

According to age, daily activities, and the deterioration level of the lesion, 

current treatment options include open or arthroscopic surgery and conservative 

therapy. 

A conservative treatment aims for easing the symptoms rather than healing 

cartilage damage. Surgery is not recommended to apply for mild cartilage injuries or 

small lesions because it may do more secondary damage (Falah et al., 2010). Thus, 

clinicians may suggest several alternative treatments that are non-surgical and 

specific for patient's condition (Fritz et al., 2006). One of the most common 

treatments is medication such as hormones, analgesics and non-steroidal anti-

inflammatory drugs (NSAIDs). Other common treatments consist of physical therapy, 

weight control and the use of bracing combined with food nutrients with possible 

chondroprotective effect (e.g. chondroitin phosphate, glucosamine, ascorbic acid). 

Acetaminophen is commonly used for pain ease and is the first-line oral 

medication for osteoarthritis even though the detail mechanism is remained unclear. 

The effect of pain relief is nearly as good as NSAIDs (Jordan et al., 2003). However, 

the following clinical studies implied that NSAIDs and COX-2 inhibitors are with better 

efficacy than acetaminophen (Lee et al., 2004a; Neame et al., 2004; Wieland et al., 

2005; Zhang et al., 2004). 

 

Figure 13: Current treatments for OA. Various therapeutic strategies, according to different level of 
OA, are used to prevent joint degradation. Figure is adapted and modified from (Wieland et al., 2005). 

NSAIDs are usually applied to the OA patients that are poorly respond to 

acetaminophen (Figure 15) (Jordan et al., 2003). NSAIDs exert its anti-inflammation 

by blocking cyclooxygenase COX-1 and COX-2. Previous study indicates that COX-2 

is induced at the inflammatory site (Vane et al., 1998). The effects of anti-

inflammatory and pain relief from NSAIDs are associated with inhibition of 
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prostaglandin and with direct influence on the nervous system (Samad et al., 2001). 

Several reviews have showed the effect of distinct NSAIDs given to knee OA patients 

is comparably similar (Warner et al., 1999; Watson et al., 2006). Application of the 

NSAIDs should always consider patient acceptance, safety and costs (Watson et al., 

2006; Wieland et al., 2005). COX-2 selective inhibitors were first described in 1999. 

Compared to non-selective COX-2 inhibitors, such selective COX-2 inhibitors have 

lower side effect, e.g. lower gastrointestinal complications (Warner et al., 1999). With 

regards to pain relief and improvement of OA patients, effect of selective COX-2 

inhibitors is similar to NSAIDs (Bensen et al., 1999; Day et al., 2000). In the cases of 

patients which barely respond to NSAIDs and selective COX-2 inhibitors, opioid 

analgesics are also considered. 

Chondroprotective nutrients such as glucosamine and chondroitin sulfate are 

common health care products that used worldwide and approved by European 

League Against Rheumatism (EULAR) (Jordan et al., 2003). However, the effects of 

such chondroprotective agents are still dubious and so far no clear indications that 

they would effectively stop or reverse the progression of OA (Chard and Dieppe, 

2001; McAlindon et al., 2000; Zerkak and Dougados, 2004). 

Administration of topical medications is noticed with lower systemic side 

effects than systemically applied drugs. Short-term, local administrated NSAIDs has 

proved to reduce knee OA (Lin et al., 2004). The effect of long-term local 

administration still remains unclear. Apart from NSAIDs, studies showed that topical 

application of capsaicin and salicylates also reduce knee OA but less effective than 

NSAIDs (Mason et al., 2004). 

Intra-articular injection is another way to apply topical administration in OA 

patients. Injection of long-lasting corticosteroids is considered as ideal treatment 

against knee pain (Jordan et al., 2003). The effect of intra-articular injection can 

reach to the peak within a week and gradually wear off until the 4th weeks (Ayral, 

2001; Gossec and Dougados, 2004). It is still unclear if multiple injections of steroids 

might accelerate progression of OA. The efficacy of steroid injection is also agonistic 

(Creamer, 1999). 

In cartilage and the synovial cavity, hyaluronic acid (HA) is one of the most 

common matrix components. HA is associated with multiple tasks such as cell-cell 
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interactions, inhibition of prostaglandin E2 (PGE2) synthesis and lubrication (Brandt 

et al., 2000; Lohmander et al., 1996). The level of HA is usually decreases in OA joint. 

To compensate the loss of HA; intra-articular injection of HA can be applied (Brandt 

et al., 2000). Compared to placebo injection, however, HA injection shows only slight 

improvement of knee OA. Thus, re-evaluation and further analysis of HA application 

are required to determine its beneficial effect (Jordan et al., 2003; Lo et al., 2003). 

1.8.5. Inhibition of NF-κB pathway by pharmacologic agents 

To date, there are more and more NF-κB inhibitors discovered. For example, 

glucocorticoids can effectively inhibit NF-κB pathway via modulating various 

intracellular signaling pathways (De Bosscher et al., 2000a; Garg and Aggarwal, 

2002; Payne and Adcock, 2001; Yamamoto and Gaynor, 2001). It is known that 

glucocorticoids increase expression of IκB, which enhances cytosolic preservation of 

NF-κB (Auphan et al., 1995; Scheinman et al., 1995). Glucocorticoids are also 

suggested to mask the DNA-binding ability of NF-κB by interacting with glucocorticoid 

receptor and NF-κB binding components (De Bosscher et al., 2000b). In some cell 

types, the activated glucocorticoid receptor can inhibit the activation of NF-κB by 

direct binding (De Bosscher et al., 1997). Some of NSAIDs (aspirin, salycilate and 

sulindac) are able to efficiently inhibit activity of IKK and IκB phosphorylation, which 

in turn results in the blockade of NF-κB activation (Tegeder et al., 2001). Likewise, 

sulfasalazine, a medication against RA, is proved to inhibit the phosphorylation of IκB 

(Wahl et al., 1998). 

Immunosuppressants such as cyclosporin A and tacrolimus can also block 

NF-κB activation. In T lymphocytes, macrophages and lymphoma cells, Cyclosporin 

A is found to inhibit degradation of IκBα via lowering proteasome activity (Frantz et al., 

1994; Meyer et al., 1997). Tacrolimus sequesters c-Rel in the cytoplasm of certain 

cell types (Jurkat cells, B- and T-lymphoctes), which consequentially blocks the 

activation of NF-κB pathway (Su and Semerjian, 1991; Venkataraman et al., 1995). 

Agents such as curcumin, flavonoids (Bremner and Heinrich, 2002), diacehrein 

(Mendes et al., 2002), glucosamine (Largo et al., 2003), lactacystin (Cuschieri et al., 

2004), leflunomide (Manna et al., 2000), pyrrolidine dithiocarbamate (Cuzzocrea et 

al., 2002), thalidomide (Meierhofer and Wiedermann, 2003), vitamin C (Carcamo et 
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al., 2002) and vitamin E (Calfee-Mason et al., 2004), are reported to suppress NF-κB 

activation. 

In recent years, new therapeutic strategies have been innovated for specific 

suppression of essential components activating NF-κB pathway (Bacher and Schmitz, 

2004; Feldmann et al., 2002; Firestein, 2004; Lewis and Manning, 1999; Smolen and 

Steiner, 2003). Decoy oligonucleotides (ODN), peptides specifically masking NLS of 

NF-κB, and proteasome inhibitors are applied to block NF-κB activation in animal 

models (Elliott et al., 2003; Epinat and Gilmore, 1999). Daily intake of bortezomib, a 

Food and Drug Administration (FDA)-approved proteasome inhibitor, can effectively 

reduce activity of NF-κB in streptococcal cell wall (SCW)-induced arthritis in a rat 

model (Roman-Blas and Jimenez, 2006). The decline of NF-κB activity is related to 

metabolism of nitric oxide (NO), and decreased levels of of IL-1 and IL-6 in the serum 

(Kawakami et al., 1999). In a collagen II induced rheumatoid arthritis rat model, intra-

articular injection of ODN can directly bind to NF-κB and therefore block its activity by 

masking the DNA-binding sequence of NF-κB. ODN significantly eases the paw-

swelling accompanied with reduced IL-1β and TNF-α in the inflammatory synovium, 

which suppressing the destruction of joint (Tomita et al., 1999). Similarly, injecting 

NF-κB decoy ODN into the knee joints of an animal OA model induced by ACL 

transection, ODN significantly ameliorated knee OA owing to the largely decreased 

IL-1β and TNF-α in cartilage and synovial (Fujihara et al., 2000). 

Novel therapeutic strategies using antisense oligonucleotides and RNA 

interference also aim for specific inhibition of NF-κB components. Lock nucleic acid 

(LNA), a type of modified nucleotides with better DNA and RNA binding affinity and 

specificity, was first introduced in 1997 (Jepsen and Wengel, 2004). Morpholino 

oligomers, which contain an ODN structure, are nucleic acid analogs that used to 

modify expression of gene (Jepsen and Wengel, 2004; Kawai et al., 2005). RNA 

interference, including micro RNA (miRNA) and small interfering RNA (siRNA), is 

defined as a post-transcriptional process of gene silencing. The target mRNA is 

specifically cleaved by siRNA-induced ribonucleoprotein complex and sent for 

degradation (Huppi et al., 2005; McManus and Sharp, 2002; Pinkenburg et al., 2004). 

It has shown a great inhibition efficacy of NF-κB by siRNA, witnessed by  the 

eliminations of downstream signaling factors such as COX-2, iNOS and MMP-9 in 

IL1β- and TNFα-treated rat chondrocytes (Lianxu et al., 2006). 
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1.8.6. Operative treatment options  

The idea of surgical intervention is to repair the damage and facilitate the 

regeneration of injured cartilage to its original state. However, regenerated tissue is 

mainly fibrocartilage with small HA level after surgery (Odenbring et al., 1992). Ideally, 

surgical treatments should orient to patients with considerations of repair associated 

problems before the operation (Falah et al., 2010; Fritz et al., 2006). Arthroscopy is 

minimally-invasive and the most common surgical procedure, which can repair 

cartilage function, relieves pain and reduces the risk and progression of OA. Under 

certain circumstances such as infection, misaligned joint and obesity, surgical 

intervention for cartilage lesions should not be performed (Falah et al., 2010). 

1.9. The NF-ĸB/Rel family of transcription factors 

The mammalian NF-ĸB family of ubiquitously expressed transcription factors 

consists of five members: NF-ĸB1 (p50 and its precursor p105, NF-ĸB2 (p52 and its 

precursor p100), RelB, c-Rel and RelA/p65 (Ghosh and Karin, 2002). NF-ĸB 

members are able to form homo- and heterodimers that in various cell types are 

cytoplasmatically-sequestered by inhibitors of NF-ĸB (IĸBs) (Figure 9). 

Phosphorylation of IĸB by IĸB kinase (IKK) complex leads to degradation of IĸB, 

which in turn can release active NF-ĸB dimers and allow them to translocate into 

nucleus for the control of gene regulation (Hayden and Ghosh, 2004; Perkins, 2007). 
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Figure 14: The members of NF-κB, IκB and IKK families. (A) The NF-ĸB family contains five 
subunits: RelA (p65), RelB, c-Rel, p50/p105 (NF-κB1) and p52/p100 (NF-κB2). NF-κB1 and NF-κB2 
are processed and become fully-activated p50 and p52, respectively. All members of NF-κB family 
possess a N-terminal RHD (Rel-homology) domain, which is responsible for dimerization, nuclear 
localization and DNA binding. The Rel subunits are characterized with C-terminal transcriptional 
activation domains (TADs). (B) The IκB family is composed of IκBα, IκBβ, IκBε and BCL-3. The IκB 
subunits contain ankyrin-repeat motifs (ANK). (c) The IKK family contains 3 members: IKKα, IKKβ and 
IKKγ, which later one also known as NF-κB essential modifier (NEMO). These three IKK subunits 
together form the IKK complex. LZ, RelB-transactivation-domain containing a putative leucine-zipper-
like motif; PEST, domain rich in proline (P), glutamate (E), serine (S) and threonine (T); ZF, zinc-finger 
domain; HLH, helix–loop–helix; NBD, NEMO-binding domain. Figure is adapted and modified from 
(Perkins, 2007). 

All members of the NF-κB family contain a Rel-homology domain (RHD) at the 

N-terminus, which is involved in dimerization and DNA binding. The Rel subfamily 

members are also characterized by the presence of one or two C-terminal 

transcriptional activation domains (TADs) (Figure 9). Apart from the similar structure 

and the DNA binding capability, NF-κB members are reported to have different 

functions (Gerondakis et al., 1999; Hoffmann et al., 2003).  
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In unstimulated healthy mammalian cells, members of Rel family are mainly 

restricted in the cytoplasm together with the IκB proteins (Hayden and Ghosh, 2004). 

The IκBs are known to sequester NF-κB subunits and prevent their translocation into 

the nucleus by masking the nuclear localization signal (NLS) in the RHD. Due to the 

partial masking effect of IκBα, NF-κB/IκBα complexes are able to translocate into 

nucleus without any stimulation. Owning to the nuclear export sequence (NES) on 

IκBα, the complexes are soon exported back to cytoplasm (Hayden and Ghosh, 2004; 

Perkins, 2007). 

Ankyrin-repeat motifs are characteristic for the NF-κB subunits p105 and p100, 

and can be found in IκB proteins as well (Figure 9). The function of p100 and p105 is 

similar to IκB proteins because they help the cytoplasmic sequestration of NF-κB-

subunit dimers (Hayden and Ghosh, 2004; Perkins, 2007). There are several 

mechanisms to process of p100 and p105, which are necessary for the activation of 

p50 and p52. The homodimers of p50 and p52 are able to interact with BCL-3 in the 

nucleus. In contrast to IκBs, BCL-3 is working as a transcriptional coactivator 

(Hayden and Ghosh, 2004; Perkins, 2007). Due to the ability to avoid IκBs regulation, 

p50 and p52 homodimers stay consititutively in the nucleus. When members of Rel 

subfamily form heterodimers with p50 or p52, they are no longer able to escape the 

regulation of IκBs (Hayden and Ghosh, 2004; Perkins, 2007). The p52–RelB complex 

is the only exception that evades the regulation due to its low affinity for IκBα 

(Dobrzanski et al., 1994). 

1.9.1. The NF-κB  signaling pathways 

There are three NF-κB activation pathways. The most common one is the 

canonical, classical pathway (Figure 10), which is triggered by a range of 

inflammatory stimuli such as interleukin-1 (IL-1), tumour necrosis factor-α (TNFα), 

engagement of the T-cell receptor (TCR) and lipopolysaccharide (LPS) (Hayden and 

Ghosh, 2004). The activation of canonical pathway is characterized by the serine 

phosphorylation of IκBα at the amino acid positions 32 and 36, followed with its 

proteosomal degradation (Hayden and Ghosh, 2004; Perkins, 2007). In various types 

of cell, IκBβ and IκBε are phosphorylated and degraded slower than IκBα (Hayden 

and Ghosh, 2004; Perkins, 2006; Perkins, 2007). 
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In the NF-κB canonical pathway, phosphorylation of IκB is the consequence of 

IKK-complex activation (Hayden and Ghosh, 2004). There are three components in 

the IKK complex, IKKα (IKK1), IKKβ (IKK2) and NF-κB essential modifier (NEMO, 

also known as IKKγ) (Hayden and Ghosh, 2004). IKKβ has been proved as the major 

IκB kinase in NF-κB canonical pathway (Bonizzi and Karin, 2004; Pasparakis et al., 

2006). 

The non-canonical or alterative pathway can be induced by stimuli such as 

LPS, CD40, B-cell-activating factor of the TNF family, and the latent membrane 

protein-1 (LMP1) of Epstein–Barr virus (Bonizzi and Karin, 2004; Perkins, 2003). The 

activation of IKK complex, which lack Nemo, by the NF-κB-inducing kinase (NIK) 

processes p100 into p52 (Bonizzi and Karin, 2004; Perkins, 2006). Afterwards, the 

p52 complex shuttles into the nucleus for gene regulation. p52-RelB dimers have 

higher affinity for a subset of κB elements and regulate certain NF-κB target genes 

(Figure 10). The non-canonical pathway has been suggested to be regulated by IKKα 

homodimers instead of the larger IKK complex (Bonizzi and Karin, 2004; Perkins, 

2006).  

Certain stimuli such as hypoxia, reoxygenation and hydrogen peroxide cause 

Tyr42 phosphorylation of IκBα, which is subsequentially degraded or dissociated 

from the NF-κB complex (Perkins, 2006; Perkins and Gilmore, 2006). Exposure to 

ultraviolet (UV) light or constitutively activation of HER2 in breast cancer cells also 

triggers PEST domain phosphorylation of IκBα by casein kinase-II (CK2) (Perkins, 

2006). Both phenonmenons are IKK-independent and lead to NF-κB activation which 

is classified as atypical NF-κB pathway.  
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Figure 15: Activation of NF-κB pathways. The canonical pathway is depended on IKKβ activation 
and induced by many stimuli (e.g. IL-1 and TNFα). The IKK complex is activated by Ser32 and Ser36 
phosphorylation of IκBα, which is subsequently degraded. Later, p50/RelA dimer is released and 
translocated into the nucleus. In certain situation such as genotoxic stress, NF-κB essential modifier 
(NEMO) is processed by ataxia telangiectasia mutated (ATM) checkpoint kinase in nucleus and enters 
the cytoplasm for the activation of IKK complex afterwards. Tyrosine kinases and casein kinase-II 
(CK2) are known to mediate the activation of atypical NF-κB signaling. The non-canonical NF-κB 
pathway is regulated by NF-κB-inducing kinase (NIK), which activates IKKα and the following 
modification of p100. The active p52/RelB dimer (non-canonical) regulates distinct genes comparing to 
canonical/atypical NF-κB signaling. Figure is adapted and modified from (Perkins, 2007). 

1.9.2. Activation of the IKK complex 

The NF-κB canonical pathway activation can be induced by numbers of 

external stimuli, which usually trigger membrane receptors and/or inner signaling 

pathways (Chen, 2005; Hayden and Ghosh, 2004; Kawai and Akira, 2006; 

Krappmann and Scheidereit, 2005; Perkins, 2006). The regulatory subunit NEMO is 

elementary for IKK complex activation. NF-κB activating stimuli cause Lys63-linked 
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ubiquitylation of NEMO (Burns and Martinon, 2004; Chen, 2005; Krappmann and 

Scheidereit, 2005; Perkins, 2006). The Lys63-linked ubiquitylation is known to 

promote interactions between proteins with ubiquitin-binding domains (Burns and 

Martinon, 2004; Chen, 2005; Krappmann and Scheidereit, 2005; Perkins, 2006). 

Transforming growth factor-beta (TGFβ)-activated kinase-1 (TAK1) is recruited after 

ubiquitylation of NEMO and phosphorylates IKKβ at Ser177 and Ser181 (Burns and 

Martinon, 2004; Chen, 2005; Krappmann and Scheidereit, 2005; Perkins, 2006). 

Among NF-κB activating stimuli, genotoxic stimuli are also known to initiate 

NEMO-dependent IKKβ activation in NF-κB canonical pathway (Figure 10) (Janssens 

and Tschopp, 2006). Under certain	 circumstances, NEMO interacts with ataxia 

telangiectasia mutated (ATM) and translocates into nucleus for following sumoylation 

and phosphorylation (Wu et al., 2006). The mono-ubiquitylation is then substituted for 

the sumoylation of NEMO-ATM complex, which is exported back to cytoplasm and 

activates the IKK complex. 

1.9.3. NF-ĸB pathway in skeletal development and arthritis  

Previous studies using genetic-engineered mice have gained us valuable 

information of NF-ĸB pathway during skeletal development. p50/p52 double knockout 

mice displayed an arrest of osteoclast maturation, which results in imbalance of bone 

production/resorption and sequentially causes osteopetrosis. The mutant phenotype 

is cured by bone marrow transplantation, which indicates the components of 

hematopoietic system are also affected (Iotsova et al., 1997). The IKK1 knockout 

mice die shortly after birth and show impaired skeletal development and epidermal 

differentiation (Li et al., 1999a). Overexpressing wild type IKK1 in epidermal cells of 

IKK1-null mice rescues the skin as well as the skeletal phenotype. The appropriated 

morphogenesis of skeletal components originated from mesoderm likely requires 

epidermal-mesenchymal interactions (Sil et al., 2004). Owning to the normal 

development of cartilage and bone in rescued mice, IKK1 seems to be replaceable in 

skeletal development. The p65-null, NEMO-null and IKK2-null mice die in early- or 

mid-embryonic stage due to liver degeneration and massive hepatic apoptosis (Beg 

et al., 1995; Li et al., 1999b; Rudolph et al., 2000). The heterozygous NEMO-

deficient (+/-) female mice display skin lesions similar to the human genetic disorder 

incontinentia pigmenti (Schmidt-Supprian et al., 2000).  
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Studies of human cell culture, tissue explant cultures and patient samples 

have indicated the involvement of NF-ĸB activation in rheumatatic disorders such as 

RA, OA, juvenile RA, psoriatic and septic arthritis (Roman-Blas and Jimenez, 2006). 

IKKs, p65 and p50 are involved in synovitis and are abundant in OA and RA. IKK2 

activation has been suggested to be a critical step in NF-ĸB-mediated cytokine and 

collagenase upregulation in synoviocytes in response to TNF-α and IL-1β stimulation 

(Aupperle et al., 2001). In the inflammatory arthritis animal models such as collagen 

type II or rat adjuvant induced arthritis, activation of NF-ĸB is one of the earliest 

events in disease progression and associated with the level of MMP-13 and MMP-3 

(Makarov, 2001; Mor et al., 2005). The intra-articular injection of adenoviral construct 

carrying IKK2 gene results in severe arthritis coupling with synovial swelling, 

indicating the essential role of IKK2 in synovial inflammation (Tak et al., 2001). In RA 

rat model, inhibition of IKK2 has proved to ease damage to cartilage and bone 

(Schopf et al., 2006). Similar to synoviocytes, NF-ĸB appears to be pivotal in 

mediating inflammatory and catabolic processes in articular chondrocytes: 1) NF-ĸB 

is activated in articular cartilage chondrocytes upon stimulation with TNF-α and IL-1β; 

2) it regulates the expression of MMP-1, -3 and -13 in response to proinflammatory 

cytokines (Roman-Blas and Jimenez, 2006); 3) chemical inhibition of IKK in IL-1-

treated cartilage explants blocked collagen II and aggrecan degradation by 

suppressing the expression of collagenases and ADAMTS-5 (Pattoli et al., 2005); 4) 

NF-ĸB is rapidly activated by physical trauma induced by articular cartilage 

explantation and cutting (Gruber et al., 2004); 5) proteolytic cleavage fragments of 

collagen II and fibronectin (Fn) have NF-ĸB-dependent cartilage destructive activities 

(Ding et al., 2009); 6) elimination of IKK1 and IKK2 by shRNAs in osteoarthritic 

chondrocytes has showed the protective potential to increase cartilage ECM 

production (Olivotto et al., 2008). These scientific evidences imply that blockade of 

the NF-ĸB pathway through pharmacological or gene therapeutic inhibition is a 

potential strategy against OA and RA. However, since NF-ĸB is believed to exert 

positive physiological functions such as its anti-apoptotic effect on CD95-induced 

apoptosis (Kuhn et al., 2000), further in vivo studies are needed to clarify the natural 

roles of NF-ĸB signaling in the skeletal system in order to develop effective therapy 

for joint diseases. This is especially relevant in cartilage, as chondrocyte apoptosis is 

considered to be an important early event in induction of disease. 
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1.10. Model to study NF-κB canonical pathway in cartilage 
development 

Although numerous animal species are used for studying the development and 

function of skeletal tissues, mouse (Mus musculus) is one of the most common 

genetic model organisms owing to its easily-manipulated genome. Mouse strains with 

engineered gene mutations have been increasingly used to understand the complex 

interaction between ECM, cytokines, receptors, signaling molecules  and 

transcription factors during OA (Aszodi et al., 2006; Raducanu and Aszodi, 2008). 

Because the skeletal development and the genome are very similar between human 

and mouse, genetically-modified mice have shown precious insights of the 

differentiation and function of the mammalian cartilaginous skeleton. 

Transgenic and gene knock-out experiments have significantly contributed to 

the clarification of the physiological functions of NF-ĸB signaling pathways 

(Pasparakis et al., 2006). Inhibition of the canonical NF-ĸB pathway by ablating the 

genes coding for p65/RelA, NEMO or IKK2 by conventional knockout (constitutive 

null mutation) results in early to mid-embryonic lethality owing to hepatic apoptosis 

and liver degeneration (Beg et al., 1995; Li et al., 1999a; Rudolph et al., 2000). 

Owing to the early lethal phenotype of mice with constitutive deletion of genes, 

conditional gene targeting strategies utilizing the Cre/LoxP recombination system 

(Rajewsky et al., 1996) have been developed to dissect the function of NF-ĸB 

pathways in an inducible and/or tissue-specific manner. Inhibition or forced activation 

of NF-ĸB in these mice as well as the classical transgenic mice overexpressing 

constitutively active or dominant-negative proteins have revealed the critical role of 

NF-ĸB/Rel proteins in various cells and tissues including lymphocytes, myeloid and 

epithelial cells, neurons and skeletal muscle (Pasparakis et al., 2006). By utilizing the 

NEMO conditional knockout mice, we are able to analyze the role of canonical NF-

ĸB-mediated processes in the regulation of normal and pathological cartilage 

functions. 
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2. Aim and milestones of the thesis 

The NF-κB transcription factors are believed to be important for articular 

cartilage destruction during osteoarthritis and rheumatoid arthritis through their 

capacity to mediate protease induction by pro-inflammatory cytokines such as IL-1 

and TNFα, cartilage injury directly, or articular cartilage degradation products such as 

fibronectin fragments. Consequently, numerous studies have been devoted to 

develop therapeutic strategies aiming to treat these debilitating rheumatoid 

conditions by inhibition the canonical NF-κB signaling pathway. However, the exact 

role of NF-κB in cartilage physiology is unclear, hampering the discovery of effective 

strategies that consider both the beneficial and deleterious effects of NF-κB activation 

on cartilage pathology.  

The hypothesis of this study is that a suitable mouse model with inhibited 

canonical NF-κB signaling in chondrocytes could significantly contribute to our 

knowledge about the function of NF-κB in cartilaginous tissues. The main objective of 

the proposed research is the analyses of the NEMO-Col2a1cre conditional knockout 

mice, in which the canonical NF-κB pathway is inhibited genetically in chondrocytes, 

to promote our understanding of NF-κB-mediated processes on the regulation of 

normal and pathological cartilage functions. 

 

The following milestones are defined: 

 

1. Understand the impact of NEMO-deficiency on endochondral bone formation. 

 

2. Clarifying the role of canonical NF-κB pathway in cartilage metabolism using 

hip explant culture. 

 

3. Investigate the role of canonical NF-κB pathway in cartilage responses upon 

ex vivo-induced hip injury. 

 

4. The involvement of canonical NF-κB pathway in the development of 

spontaneous osteoarthritis with aging. 
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3. Materials and Methods 

3.1. Animal 

3.1.1. Mouse housing and breeding 

The floxed NEMOfl/fl female mice were generated from C57BL/6J background 

(Schmidt-Supprian et al., 2000, generously provided by Dr. Marc Schmidt-Supprian, 

Max Planck Institute for Biochemistry, Martinsried, Germany). Due to NEMO gene is 

located on X-chromosome, intercrosses between NEMOfl/fl females and wild-type 

C57BL/6J male resulted in a ratio of 50% heterozygous NEMOfl/+ females and 50% 

NEMOfl/Y males. Next, homozygous NEMOfl/fl females and NEMOfl/Y males were 

obtained from inbreeding of homozygous NEMOfl/fl females with NEMOfl/Y males.  

NEMOfl/YCOL2a1Cre males were generated from intercrosses of NEMOfl/fl female 

with Col2a1Cre male (Sakai et al., 2001). In this study, we used NEMOfl/Y male as 

control group to compare difference with NEMOfl/YCol2a1Cre male.  

All mice were housed under standard laboratory conditions with controlled 

temperature and ventilation, under a 12:12 h light/dark cycle and fed ad libitum. Mice 

were sacrificed vial cervical dislocation and tissues dissection was done post mortem. 

3.1.2. Mouse genotyping 

Genomic DNA (gDNA) was isolated from 2-3 mm length mouse tail were lysed 

overnight (O/N) at 55°C in 0.2 ml lysis buffer. The digestion was neutralized at 95°C 

for 10 minutes. After centrifugation to spin down non-digested tissue, the solution 

was placed on ice and used directly for PCR reaction. The PCR products were 

visualized by agarose gel electrophoresis in 1x TAE solution with 0.05 µl/ml ethidium 

bromide on the UV imager. Instruments, chemicals, buffers and PCR condition were 

listed in table 1 and 2. 



MATERIALS AND METHODS 

	 40	

 



MATERIALS AND METHODS 

	 41	

 

3.2. Primary chondrocyte isolation 

Primary mouse chondrocytes were isolated from rib cage. Pups were sacrificed 

soon after birth and briefly disinfected with 70% ethanol. From this point on, all the 

procedures were carried out in sterile conditions in a primary cell culture laminar flow 

hood (Heraeus Instruments, Jena, Germany). Isolated rib cages were placed in 

Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12 Ham 1:1 (DMEM/F12) 

(Thermo Fisher Scientific, USA) media, adherent tissues were removed with sterile 

surgical forceps. The pre-cleaned ribs were put into DMEM/F12 media containing 2 

mg/ml type II collagenase (Worthington, USA) at 37°C for 30 minutes. The partially 

digested perichondrium around ribs was again carefully removed with dissecting 

forceps and scissors (DUMONT, Switzerland). Afterwards, cleaned ribs were 

replaced to fresh DMEM/F12 media containing type II collagenase in a humidified 

atmosphere (5% CO2, 95% air and 37°C) for 3 h. After enzymatic digestion, the cell 

suspension was centrifuged at 500g for 5 minutes. The supernatant was discarded 

and pelleted cells were resuspended in fresh DMEM/F12 media supplemented with 

10% fetal bovine serum (FBS) (Thermo Fisher Scientific, USA) and 1% 
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penicillin/streptomycin (Pen/Strep) mixture (Biochrom, UK). Primary chondrocytes 

were counted and plated as passage 0.  

3.3. Cell culture 

3.3.1. Primary cells and culture media 

Primary chondrocytes were isolated from the rib cages of NEMO knockout 

mice and their wild-type littermate as described above. Since primary cells were 

rapidly loss of characteristics in vitro, all experiments were performed at low passage 

number (no more than passage 4). Primary chondrocytes were cultured in complete 

DMEM/F12 enriched with 10% FBS, and 1% Pen/Strep mixture.  

3.3.2. Passaging and counting cells 

Chondrocyte monolayer was washed with 1x PBS (Biochrom, UK) and then 

detached by covering with 1x Trypsin/EDTA (Biochrom, UK) for 5 min at 37°C. A 

double volume of complete DMEM/F12 media was added to neutralize the effect of 

trypsin. Cells were pelleted by centrifugation at 500g for 5 minutes. The supernatant 

was removed and cells were resuspended thoroughly with complete DMEM/F12. 100 

µl cell suspension was transferred and mixed with equal amount of Trypane blue 

(Thermo Fisher Scientific, USA), an aliquote of 10 µl mixture was injected into a 

Neubauer chamber (Brand, Grafrath, Germany) for counting. Cells were counted in 

the four quadrants and the total number of cells per ml was determined. Cells were 

then plated into new culture flasks (Thermo Fisher Scientific, USA) and incubated in 

Water Jacketed CO2 Incubator TC 230 (Thermo Scientific, USA) under constant 

conditions of 37°C and 5% CO2. Cells were maintained at a maximum of 80% 

confluence and media-renewed every third day. 

3.3.3. Cryopreservation and thawing of cells 

	 To cryopreserve the primary murine chondrocytes, freezing medium consisting 

of 70% of DMEM/F12 media, 20% of FBS and 10% of dimethylsulfoxide (DMSO) 
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(Sigma-Aldrich, USA) was used. After trypsinization, cells were pelleted by 

centrifugation at 500g for 5 min. The supernatant was removed and cells were 

resuspended in pre-cooled freezing media and aliquoted into cryovials (Thermo 

Scientific, USA), which were then placed in freezing container (Sigma-Aldrich, USA) 

stored at -80°C freezer or liquid nitrogen tank (Thermo Scientific, USA). To thaw cells, 

cryovials were placed in a water bath at 37°C until suspension melted. Afterwards, 

cells were mixed with fresh media into a 15 ml Falcon tube and spinned down for 5 

min at 500g. Next, the supernatant was aspirated and the cells were resuspended in 

fresh and pre-warmed complete DMEM/F12 media and finally transferred into culture 

flask T-75 (Thermo Fisher Scientific, USA). Complete DMEM/F12 media was 

changed after 24h in order to remove non-attached/dead cells.  

3.4. Tissue culture techniques 

3.4.1. Femoral head explant culture 

Femoral heads were harvested from euthanized 4-week-old control and 

NEMOfl/YCol2a1Cre mice. The experimental procedures were briefly describes as 

followed: (1) the euthanized mouse was placed in dorsal recumbency and sprayed 

with 70% ethanol; (2) the dissecting scissors were used to cut skin open at the mid-

abdomen of mouse; (3) grasp the skin with hands and gently pull toward the feet to 

expose the underlying hind limb; (4) the little dissecting scissors were used to cut 

muscle around hip joint; (5) tissue forceps were used to grasp the mid of femur and 

carefully disarticulate the hip joint (Figure 16)	 (Stanton et al., 2011). The femoral 

head was then exposed and collected from cutting the femoral neck and cultured in 

300 µl of serum-free DMEM/F12 media supplemented with streptomycin-penicillin in 

a 48-well cell culture plate (Thermo Fisher Scientific, USA) for 4 days. The femoral 

heads were treated with 100 ng/ml TNF-α (R&D, USA) or 10 ng/ml IL-1 (R&D, USA) 

from the first and third day of the culture. At the end of the experiment, femoral heads 

were fixed in 4% paraformaldehyde (PFA) (Merck, Germany)/PBS solution. 
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3.4.2. Mechanically-induced hip injury 

Articular cartilage of femoral head was harvested from euthanized 4-week-old 

control and NEMOfl/YCol2a1Cre mice. The isolation procedures are mostly the same 

as described in 3.4.1. To mimic mechanical injury, the articular cartilage of femoral 

head was carefully pilled off by tissue forceps (Figure 16) and frozen in isopropanol 

chamber in liquid nitrogen. Half of harvested femoral head articular cartilage was 

frozen immediately. To observe the genes responding to mechanical injury, the other 

half of the articular cartilage of femoral head was cultured at 37°C for 4 hours in 

DMEM/F12 media and frozen down afterwards. Frozen samples were then subjected 

to Taqmen Low-Density Array (TLDA) experiment that carried out in Tonia Vincent’s 

lab (Kennedy Institute of Rheumatology, UK) 

 

Figure 16: Isolation of articular cartilage of femoral head. a: the underlying leg was exposed after 
pulling skin toward the mouse feet. b: the femoral head was disarticulated by tissue forceps and visible. 
c: tissue forceps pinched the neck of femoral head. d:  applied pressure to tissue forceps caused 
breakage at femoral physis and the articular cartilage of femoral head was released (Stanton et al., 
2011). 

3.4.3. Metatarsal explant culture  

Embryos were harvested from pregnant female mice of wild-type or 

NEMOfl/YCol2a1Cre at E15.5 postcoitum. Tissue forceps were used to remove 

surrounding tissue and release metartarsals (Figure 17). The 2nd, 3rd and 4th 

metatarsals were selected for explant culture and incubated in 48-well cell culture 
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plates. Metatarsal explants were cultured in BGjb media (Thermo Scientific, USA) 

supplemented 1% streptomycin/penicillin with or without 100 ng/ml BMP-2 (R&D, 

USA), 100 ng/ml FGF-2 (R&D, USA), 100 ng/ml TGFβ-1 (R&D, USA) or 10 ng/ml 

IGF-1 (R&D, USA) for 5 days. The metatarsals were fixed in 4% PFA/PBS solution, 

paraffin-embedded and sectioned as 7 µm thick. 

 

Figure 17: Dissection procedure of metatarsal isolation. The euthanized E15.5 mouse embryo 
was surface-sterilized with 70% ethanol. By holding tibia with one pair of tissue forceps, used the other 
pair of forceps carefully remove the surrounding tissue underneath metatarsals. Metatarsals were 
pulled away with tarsal and separated each other with tweezers (Song et al., 2015). 

3.5. mRNA analysis 

3.5.1. Total RNA isolation 

Isolation of total RNA from primary chondrocytes was performed with the 

Qiagen RNeasy Mini kit (Qiagen, Netherlands) according to the manufacturer’s 

instruction. Briefly, Cells were lysed in Buffer RLT supplemented with 1% β-

mercaptoethanol and homogenized by passing through a QIAshredder spin column 

(Qiagen, Netherlands). 1 ml of 70% ethanol was add to the homogenized lysatem 

and mixed by pipetting. Afterwards, samples were loaded into RNeasy Mini Spin 

Column and subjected to an on-column genomic DNA digestion with 10 U of DNase 

(Qiagen, Netherlands). Column was washed twice with Buffer RPE and dried by 

centrifugation at maximum speed. Finally total RNA was eluted in RNase-free water 

and measured with NanoDrop 1000 (Thermo Scientific, USA) at A260 and at 

A260/A280, respectively for the evaluation of the RNA concentration and purity. 
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3.5.2. Complementary DNA (cDNA) synthesis 

 cDNA synthesis was performed with the Transcriptor First-Strand cDNA 

Synthesis Kit (Roche, Switzerland). Briefly, 1 µg of total RNA, hexamer-random 

primers (50 ng/µl) and 10mM dNTPs were heated for 5 min at 65°C. The denaturated 

RNA was then added to a mixture of PCR buffer, 40U of RNase inhibitor, 0.1M 

dithiothreitol (DTT) and 15U of reverse transcriptase for 1 hour at 50°C. The newly 

synthesized cDNA was tested for the expression of a housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) to evaluate the synthesis 

quality and to normalize the input of different samples. 

3.5.3. Polymerase chain reaction (PCR) 

Semi-quantitative RT-PCR for the genes of interest were performed adding a 

normalized amount (determined by the expression of GAPDH) of cDNA to a master 

mix containing PCR buffer, 1.5 mM MgCl2, 0.2 mM dNTPs, 0.25 pmol gene-specific 

primers and 1 U Taq DNA polymerase (Roche, Switzerland) in the PCR thermal 

cycler. Instruments and chemicals were the same as used in mouse genotyping 

(Table 1). Sequence of primers, PCR condition and size of PCR products were 

showed in table 3. 
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3.6. Western blotting 

3.6.1. Protein extraction from monolayer culture 

Cells were washed 2 times in PBS and lysed with radioimmunoprecipitation 

assay buffer (RIPA) containing protease inhibitor cocktail (PIC). Chemicals and buffer 

were showed in table 4. Cell scrapers (Sigma-Aldrich, USA) were used to collect cell 

lysates. After centrifugation at 14000 rpm, 4°C for 30 minutes, the supernatants were 

transferred to new eppendorf and stored at -20°C. 
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3.6.2. Protein quantification 

The total protein concentration was measured using the bicinchoninic acid 

(BCA) protein assay kit (Thermo Fisher Scientific, USA). Briefly, the protein 

concentration was determined based on a chemical reaction where BCA interact with 

the cuprous cations that are reduced by the proteins in an alkaline media. As a result 

an intense purple-colored reaction is observed and the intensity of the color 

correlates with the protein concentration. The protein amount was calculated using a 

standard curve that is built by serial bovine serum albumin (BSA) (Thermo Fisher, 

Scientific USA) dilutions. The optical density measurements were performed at 450 

nm on a FC Microplate Reader (Fisher Scientific, USA). 

3.6.3. SDS-Polyacrylamide gel electrophoresis (PAGE) 

Protein extracts (ca. 20 µg) were mixed with 4x Laemmli buffer and boiled for 

5 min at 99°C. The protein mixtures were spinned down and loaded on 12% 

acrylamide gels. The electrophoresis was performed in 1x running buffer composed 
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of 0.25 M Tris-base pH 8.3, 1% SDS and 1.92 M glycine. As molecular weight 

standard, PageRuler Plus prestained protein ladder (Thermo Scientific, USA) was 

used. The electrophoresis was run at constant 60 mA in an electrophoresis tank (Bio-

Rad, USA). Information of instruments, chemicals and buffers were listed in table 5. 
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3.6.4. Protein transfer 

The protein transfer was performed by applying the vertical wet transfer 

method. Briefly, the gel loaded with proteins was equilibrated for 15 min in 1x blotting 

buffer. Meanwhile, the polyvinylidene fluoride (PVDF) membrane was activated by 

soaking into methanol for few seconds, rinsed in water and placed in 1x blotting 

buffer. The western blot “sandwich” was then assembled and the protein transfer was 

performed in a trans-blot system (Bio-Rad), O/N at 4°C with a constant voltage of 30 

V. Afterwards, membranes were proceed for immunodetection or stored in a 0.1% 

PBS/Tween-20 (PBST) washing solution at 4°C until use. The instruments, chemicals 

and buffers were listed in table 6. 
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3.6.5. Protein immunodetection 

For immunodetection, PVDF membranes were blocked with 5% skimmed milk 

(Merck, Germany) in 0.1% PBST buffer for 1 hour at room temperature (RT) under 

gently shaking. Afterwards, PVDF membranes were incubated O/N with appropriate 

dilutions of primary antibody in blocking buffer at 4°C. The membrane was washed 

10 min for 3 times with 0.1% PBST solution and incubated with diluted, 

corresponding horseradish peroxidase (HRP)-conjugated secondary antibody in the 

blocking solution at RT for 1 hour. Finally, the membrane was washed 10 min for 3 

times with 0.1% PBST buffer. Proteins on PDVF membrane were visualized by using 

chemi-luminescent Amersham ECL plus solution and the luminiscent image analyser 

Image Quant LAS 4000 mini (GE Healthcare, USA). Antibodies used in western 

blotting were listed in table 7. 

 

3.6.6. Gelatin/collagen Zymography 

Cultured media from femoral head explant (see 3.4.1) were centrifuged at 

maximum speed at 4°C to remove cell debris and subjected to Gelatin Novex 

Zymogram Gels (Thermo Fisher Scientific, USA) and collagen I SDS-polyacrylamine 

gel. The electrophoresis was performed in 1x running buffer and coupled with 

PageRuler Plus prestained protein ladder (see table 5). The electrophoresis was run 

at constant 60 mA in an electrophoresis tank (see table 5). After electrophoresis, the 
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gels were incubated in 1x Novex Zymogram Renaturing Buffer (Thermo Fisher 

Scientific, USA) for 30 min at room temperature with gentle agitation. The gels were 

incubated in 1x Novex Zymogram Developing Buffer (Thermo Fisher Scientific, USA) 

for 30 min with gentle agitation and fresh 1x Novex Zymogram Developing Buffer at 

37°C O/N. Afterwards, the gels were stained with coomassie staining solution, 

destained with destain solution and dried by using DryEase Mini-Gel Drying System 

(Thermo Fisher Scientific, USA). Instruments, chemicals and buffers for zymography 

are listed in table 8. 
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3.7. NF-κB reporter assay 

3.7.1. Transfection 

Cignal NF-κB reporter assay kit (Qiagen, Netherlands) was utilized to monitor 

NF-κB activity in NEMOfl/YCol2a1cre chondrocytes. Experimental procedure was 

followed the handbook of the kit. 1x104 Primary wild-type/NEMOfl/YCol2a1cre 

chondrocytes were trypsinized and resuspended in reduced serum medium 

modification of minimal essential media (Opti-MEM) (Thermo Scientific, USA). 

Transient transfection of Cignal reporter was carried out in 4D-Nucleofector Core Unit 

(Lonza, Switzerland). 1x103 transfected cells were then seeded into 96-well cell 

culture plate and incubated for 24 hours. After 24 hours incubation, media were 

replaced with complete DMEM/F12 media. 

3.7.2. Dual-Luciferase assay 

The luciferase assay was performed by using a dual-luciferase reporter assay 

system (Promega, USA) according to manufacturer’s instructions. The cells were 

washed with PBS twice and mixed with 20 µl passive lysis buffer after 10 ng/ml IL-1 

treatment for one hour. After gently shaking at room temperature for 15 minutes, the 

lysate was transferred to new 96-well cell culture plate with 100 µl luciferase assay 

reagent. SAFIRE2 Microplate Reader (Thermo Fisher Scientific, USA) was used to 

measure firefly luciferase activity. 100 µl Stop&Glo® Reagent was add into each well 

to measure Renilla luciferase activity that normalized for cell death caused by the 

treatment. 

3.8. Time-lapse migration and adhesion assay 

2x104 primary chondrocytes were seeded sparsely in 6-well cell culture plate. 

The cell culture plate was then put into environment control chamber with heating 

unit, CO2 controller (Pecon, Germany). The system included a stage top 

environmental control chamber (Pecon, Germany) and an automated XY stage 

controller (Proscan, Canada). AxioCam MRc (Carl Zeiss, Germany) and Axiovision 
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Rel. 4.8 (Carl Zeiss, Germany) were used for automated image acquisition. Images 

were acquired with a 10X UPLANFL Ph1/0.30 objective in bright field mode and 

using a defined time interval. The observation of cell adhesion, spreading and 

migration was lasted for 48 hours and analyzed by ImageJ. 

 

3.9. Cell attachment assay 

96-well cell culture plate was pre-coated with 10 µg/ml fibronectin (R&D, USA), 

10 µg/ml vitronectin (R&D, USA), 10 µg/ml laminin (R&D, USA), 10µg/ml collagen 

type I (R&D, USA), 10 µg/ml collagen type II (R&D, USA), 10% FBS and 1% BSA for 

1 hour at 37°C. Pre-coating solution was replaced with 1% BSA to block non-specific 

binding sites for 1 hour at 37°C. After washing with PBS, 1x105 wild-type and 

NEMOfl/YCol2a1cre chondrocytes were seeded into the plate and incubated for 1 

hour. Afterwards, cells were wished with PBS, fixed with 96% ethanol for 10 minutes, 

stained with 0.1% crystal violet/H2O for 30 minutes at room temperature and lysed 

with 0.1% Triton X-100/H2O. The optical measurement was performed at 595 nm on 

a microtiter-plate reader (Thermo Scientific, USA). 

3.10. Immunofluorescence staining 

Primary chondrocytes 

Primary wild-type and NEMOfl/YCol2a1Cre chondrocytes (1x104 cells/cm2) 

were grown in presence of complete DMEM/F12 media on chamber slides (Thermo 

Scientific, USA) for at least two or three days under normal culture conditions. 

Afterwards, cells were rinsed in PBS and fixed with 4% PFA for 20 min at room 

temperature (RT).  

For immunodetection, fixed cells were rehydrated in PBS (3x5 min at RT) and 

permeabilized with 0.2% Triton X-100/PBS for 15 min. Image-iT FX Signal Enhancer 

(Invitrogen, USA), a solution which reduces the unspecific binding of secondary 

antibodies, was applied for 30 min. Slides were placed in 2% BSA/PBS solution for 

one hours at RT and then incubated with primary antibodies (Table 9) O/N at 4°C. 

After PBS washing (5 minutes for 3 times), corresponding secondary antibodies 

conjugated with fluorescence were applied to slides for 1 hour at RT. Finally, slides 
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were washed with PBS (3 times for 5 minutes at RT) and a nuclear counterstaining 

was performed with 4', 6-diamidino-2-phenylindole (DAPI) for 5 min. After PBS 

washing (3 times for 5 minutes), slides were mounted with Fluoromont Anti-Fading 

Mounting Media (Sigma- Aldrich, USA). Negative controls for antibody were carried 

out on the same slide by omitting the primary antibody. Primary, secondary 

antibodies and dyes were listed in table 10. Photomicrographs were taken with 

Axiocam MRm camera mounted on Axio Observer Z1 Microscope (Carl Zeiss, 

Germany). 

Knee sections 

 Knee sections of 2-week-old mice were dewaxed, rehydrated, peroxidase-

blocked, hyaluronidase-treated and incubated in 1% BSA/PBS solution. Sections 

were then incubated with anti-NEMO antibody (1:1000, Table 9) O/N at 4°C. After 

washing with PBS for 3 times, sections were incubated with Alexa Fluor 488-

conjugated Phalloidin and Alexa Fluor 546 Dye for 1 hour at room temperature. 

Finally, sections were PBS-washed, counterstained with DAPI for 5 min and mounted 

with Fluoromont Anti-Fading Mounting Media. Photomicrographs were taken with 

Axiocam MRm camera mounted on Axio Observer Z1 Microscope. 
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3.11. Whole-mount skeletal staining 

The gross morphology of the whole skeleton was analyzed by Alician 

blue/Alizarin red staining of E13.5 – E16.5 and newborn. Euthanized embryo and 

newborn specimens were deskinned and eviscerated, fixed in 95% ethanol for 3 days 

and then transferred into acetone for 1 day. Staining was performed in the alizarin 

red/alcian blue solution for 3 days at 37°C. Samples were rinsed in water and cleared 

for 3 days in 1% potassium hydroxide (Merck, Germany) followed by clearing in 

KOH/glycerol (0.8% and 20%, respectively) solution for 1 week. Samples were then 

transferred into 0.5%/50%, 0.3%/80% KOH/glycerol solution and finally 100% 

glycerol for long-term storage. The humerus, femur, and tibia were dissected from ten 

control and ten double NEMOfl/YCol2a1Cre mice and measured longitudinally using a 

fine calibrated ruler. Chemicals and buffers used were listed in table 10. 
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3.12. Histology 

3.12.1. Fixation 

Hind limbs of euthanized mouse were de-skinned, the muscles around knee 

joints removed and rinsed in PBS. Knee joints were fixed in pre-cooled 4% PFA O/N, 



MATERIALS AND METHODS 

	 58	

fixed samples were washed 15 min in PBS for 3 times with slow shaking at room 

temperature. 

3.12.2. Decalcification 

Decalcification of bony tissues was achieved by incubating PFA-fixed samples 

in a 20% EDTA/PBS solution (pH 8) for approximately 4 weeks. Chelating agents 

such as EDTA captured the calcium ions and soften bones. 20% EDTA/PBS solution 

was renewed twice per week. 

3.12.3. Embedding 

Decalcified samples were ready either for cryo or paraffin embedding. For 

frozen sectioning, specimens were firstly rinsed 15 min in PBS for 3 times and were 

then placed in an ascending solution of sucrose/PBS: 10 and 15% for 2 hour each 

and 20% O/N at 4°C. The next day, specimens were embedded in FSC 22 Frozen 

Media (Leica, Germany) in plastic base mould disposable cassettes (Leica, Germany) 

placed on a copper plate on dry ice. Samples were stored wrapped in parafilm 

(Sigma-Aldrich, USA) at 20°C until use. 

For paraffin sectioning, specimens (placed in embedding cassettes 

(Proscitech, Australia)) were firstly rinsed 15 min in PBS for 3 times and then passed 

through ascending row of ethanol solution (50, 70, 80, 90 and 2x100 %, one hour for 

each step), xylol (5 min for 2 times) and melted Paraplast Paraffin Tissue Embedding 

Media (60°C, 1 hour for 3 times) (Leica, Germany). Afterwards, specimens were 

embedded in paraffin tissue embedding media in stainless steel base embedding 

cassettes (Leica, Germany) on Tissue Embedding Center (IMEB, USA). 

3.12.4. Sectioning 

Cryosectioning was performed with a Cryotome Microm HM500 (Thermo 

Scientific, USA) and slices of 10 µm thickness were collected on SuperFrost glass 

slides (Thermo Scientific, USA) and stored at -20°C. 
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Paraffin blockes specimens were cut with a Rotary Microtome HM360 (Thermo 

Scientific, USA) and slices of 8 µm were collected on SuperFrost glass slides. Slides 

were kept O/N at 37°C and then stored at room temperature. 

3.12.5. Hematoxillin and eosin (H&E) staining 

For a first screening of the general tissue morphology H&E staining was 

performed. Paraffin sections of 8 µm thickness were rehydrated through a 

descendent ethanol row (100, 90, 80 and 70% for 5 min each) and a final step in 

dH2O. 0.1% Mayer’s Hematoxillin Solution (Merck, Germany) was applied for 5 min, 

followed by intense washing with tap water. Next, slides were rinsed in dH2O and 

incubated in 0.1% eosin (Sigma-Aldrich, USA) solution for 5 min. After rinsing in 

dH2O, slides were dehydrated in an ascending ethanol row (70, 80, 90, 100 and 

100% for 5 min each) and cleared by two steps in xylol for 5 min each. Finally, slides 

were mounted with DPX mounting media (Sigma-Aldrich, USA). Pictures were taken 

on an Axiovert 100 microscope using AxioCam ICc3 colour camera (Carl Zeiss). 

3.12.6. Safranin orange staining 

After dewaxing in xylene and stepwise rehydration in ethanol (100, 90, 80 and 

70% for 5 min each), and distilled water (dH2O), the sections were stained with 0.1% 

Safranin-O (Sigma-Aldrich, USA) for 3 min. Afterwards, sections quickly went through 

95%, 100% ethanol, xylene and mounted with DPX mounting media. 

3.12.7. Von Kossa staining 

Sections of E16.5 embryo were dewaxed, rehydrated and exposed to bright 

light with Silver nitrate (Merck, Germany) for 30 min. Sections were washed with 

distilled water and incubated with 2.5% sodium thiosulphate (Merck, Germany) for 5 

min. After washing with dH2O, sections were counterstained with safranin orange for 

3 min and quickly went through 95%, 100% ethanol, xylene and mounted with DPX 

mounting media.  
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3.12.8. Toluidin blue staining 

Sections were rehydrated (described above) and stained with 0.1% Toliudine 

blue in toluidine buffer pH 2.5 (0.1M K2HPO4 and 0.1M HCl (Merck, Germany)) for 10 

mins, followed by staining with 2% K3Fe (CN6) for 3 min, excessive staining reagents 

were removed by WATTMAN paper (Sigma-Aldrich, USA). Sections were finally air-

dried, mounted with DPX mounting media. 

3.12.9. Tartrate-resistant acid phosphatase staining (TRAP) 

Acid Phosphatase, Leukocyte (TRAP) Kit (Sigma-Aldrich, USA) was used to 

perform the TRAP staining on E15.5 sections. According to manufacturer’s 

instruction, paraffin-fixed sections were rehydrated and incubated in pre-warmed  

staining solution (37°C) containing 0.5 ml Fast Garnet GBC Base solution (Sigma-

Aldrich, USA), 0.5 ml Sodium Nitrite Solution (Sigma-Aldrich, USA), 0.5 ml Naphthol 

AS-BI Phosphate Solution (Sigma-Aldrich, USA), 2 ml Acetate Solution (Sigma-

Aldrich, USA), 1 ml Tartrate Solution (Sigma-Aldrich, USA) and 45ml Deionized water 

(Thermo Scientific, USA) at 37°C for 1 hour. Afterwards, sections were rinsed in 

deionized water and counterstained in Hematoxylin solution, Gill No 3 (Sigma-Aldrich, 

USA) for 2 min followed by tap water washing for 5 min. Sections were then air-dried 

and mounted with DPX mounting media. 

3.12.10. Immunohistochemistry staining (IHC) 

After dewaxing and rehydration, specimens were placed in 0.01% hydrogen 

peroxide (H2O2) (Merck, Germany)/methanol (Merck, Germany) solution for 20 min at 

room temperature to block endogenous peroxidase activity. After washing with PBS, 

antigen retrieval was achieved by incubating specimens with 0.2% Bovine Testicular 

Hyaluronidase (Sigma-Aldrich, USA)/PBS solution for 30 min at 37°C. Specimens 

were then washed with PBS and blocked with 1% BSA/PBS solution for 1 hour and 

incubated with primary antibody/blocking solution O/N at 4°C. Primary antibodies 

used in IHC staining were listed in table 11. Afterwards, the specimens were washed 

by PBS and incubated with Biotinylated Anti-mouse IgG Reagent from Mouse on 

Mouse (M.O.M. Kit) (Vector Laboratories, USA) for 1 hour. The specimens were then 
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wash by PBS and incubated with Vectastain ABC solution from Vectastain Elite ABC 

Kit (Vector Laboratories, USA) for 30 min at room temperature. For color detection, 

specimens were placed in 3,3′-diaminobenzidine (DAB) solution (pH7.2) containing 

0.05% DAB (Sigma-Aldrich, USA) and 0.015% H2O2 in PBS for 7 min in dark. After 

color detection, specimens were washed in dH2O, counterstained in Mayer’s 

Hematoxylin Solution, dehydrated and mounted with DPX mounting media.  

 

3.12.11. Measurement of growth plate 

H&E stained knee sections of 2-week-old and 4-week-old mice were pictured 

and analyzed in Adobe Photoshop CS2 (Adobe, USA). All measurements were 

performed in the central two-thirds of growth plate sections. The area of total growth 

plate (TGP) was defined from the top of resting zone (RZ) through proliferating zone 

(PZ) to the bottom of hypertrophic zone (HZ). The height of TGP, RZ+PZ and HZ 

were presented as mean ± standard deviation (SD). 

3.12.12. Analysis of proliferating columns in growth plate 

All measurements were performed in the central two-thirds of growth plate 

sections. Using Photoshop CS2, the axis of proliferating columns in growth plate and 

the horizontal angle were measured. The shape of columns was determined by ratio 

of horizontal axis / vertical axis. It was generally accepted that proliferating column 



MATERIALS AND METHODS 

	 62	

were supposed to be oval shape and ratio below 0.7. Columns with ratio over 0.7 

were more round-liked in shape. The horizontal angle of vertical axis were also 

measured (Figure 18), most of the columns were perpendicular to the growth plate 

under normal development. 

 

Figure 18: Schematic representation of methods to analyze shape and angle of columns. Shape 
was determined by the ratio defined as horizontal axis of column / vertical axis of column (e.g. 0.1 
represented slit-shaped columns, 1 represent round-liked column). Horizontal angle (angle between 
vertical axis and horizontal line) of proliferating columns was measured. 

3.13. Non-radioactive in situ hybridization 

Plasmid linearization and generation of RNA probes 

DNA templates were linearized with restriction enzymes for RNA in vitro 

transcription (Table 12). 10 µg of plasmid DNA were linearized with restriction 

endonucleases and buffers according to manufacturer’s instruction (restriction 

endonucleases and buffers were all from New England BioLab, USA). Linearized 

DNA were purified through Nucleospin column (Macherey-Nagel, Germany) and in 

vitro transcripted with T3 RNA polymerase in 10x transcription buffer with digoxigenin 

(DIG) labeled ribonucleotides (Roche, Switzerland) for 2 hour at 37°C. Afterwards, 

transcription was examined by electrophoresis in 2% agarose gel. The transcripted 

RNA was purified after DNA digrestion with G-50 spin columns (GE Healthcare Life 

Science, USA), suspended in RNase-free water and restored in -80°C. 
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Unfixed, cryo-embedded sections of newborn limb were fixed in 4% 

PFA/Diethyl pyrocarbonate (DEPC)-PBS (pH 9.5) solution for 1 hour and rinsed in 

DEPC-PBS (pH 9.5). The sections were placed in 1% Triton X-100/DEPC-PBS (pH 

9.5) solution for 20 min, then 5x saline-sodium citrate (SSC)/50% formamid solution 

for 15 min and pre-heat (80°C) hybridization solution with 2 µl RNA probe 

(approximately 200 ng) at 95°C for 2 min. Afterwards, the sections were covered with 

parafilm and placed in humid chamber soaked with 2x SSC/50% formamid at 55°C 

O/N followed by washing with pre-heat washing solution I and II at 55°C for 30 min. 

After washing with 0.2x SSC for 5 min and PBS (pH 7.4) for 3 times at room 

temperature, the sections were then incubated with an alkaline phosphatase-coupled 

antibody against DIG (Roche, Switzerland) diluted (1:500) in PBS (pH 7.4) containing 

10% FBS for 1 hour at room temperature. The sections were then rinsed in PBS (pH 

7.4) 5 min for 3 times, incubated with DIG III solution for 10 min and placed in 

staining solution for color development. After sufficient color reaction, sections were 

mounted with Aqua mounting media (Sigma-Aldrich, USA). Chemicals and buffers for 

in situ hybridization were described in table 13. 
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3.14. Sulpated glycosaminoglycan (sGAG) assay 

The sGAG in conditioned DMEM/F12 media of hip explant was examined by 

sGAG assay kit (Biocolor, UK). The assay was performed as manufacturer’s 

instruction. Briefly, Conditioned DMEM/F12 media were centrifuged at 10000g for 10 

minutes to remove cell debris and assay the supernatant. 10µl conditioned media 

from each group were added into 1ml 1x Blyscan Dye Reagent (Biocolor, UK) and 

incubated for 30 minutes. After centrifuging 10000g for 10 minutes and removing 

supernatant, insoluble sGAG-dye complex was seen at the bottom of the tube. 500 µl 

Dissociation Reagent (Biocolor) was added to resolve the GAG-dye complex. 

Transfer 200 µl well-mixed samples into 96-well plate and measure absorbance in 

microtiter-plate reader (Thermo Scientific, USA) at 656 nm. The data was exported to 

Office Excel 2003 (Microsoft, USA) for statistical analysis. 

3.15. Pathological Scoring System of Articular Cartilage 

The NEMOfl/YCol2a1Cre and wild-type mice were euthanized and knees were 

harvested at various time points. The samples were fixed in 4% PFA/PBS solution, 

decalcified in 20% EDTA/PBS and processed to paraffin embedding. Approximately 

250 serial, 7-µm-thick sections were collected from 1 specimen. Every 10th slide was 

chosen to stain with hematoxilin-eosin for general H&E or SO to view proteoglycans 

(PGs) depletion. About 8-10 serial sections representing the entire knee were 

evaluated from every mouse of age and genotype. Based on previous study of our 

laboratory, to assess pathological changes of the articular cartilage (Raducanu et. al., 

2009), we used a scoring system as follows: I, cartilage erosion (0–5; 0, smooth 

cartilage surface; 1, surface irregularities; 2, cleft to transition zone; 3, cleft to radial 

zone; 4, cleft to calcified zone; 5, exposure of subchondral bone bone; II, cellularity 

(0–3; 0, normal;1, hypercellularity; 2, clustering; 3, hypocellularity); III, tidemark 

integrity (0–1; 0, normal; 1, loss of tidemark); IV, GAG content in the pericellular 

matrix (PM) (0–2; 0, normal SO staining intensity; 1, focally increased intensity; 2, 

increased intensity throughout the cartilage); V, GAG content in the interterritorial 

matrix (ITM) (0–3; 0, normal SO staining intensity; 1, reduced staining; 2, focal patchy 

loss of staining; 3, 50% of cartilage without staining; VI, osteophyte formation (0–2; 0, 

none; 1, formation of cartilage; 2, formation of bone). Total scale (0–16) and OA 
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severity were as follows: 0–1, normal; 2–5, mild OA; 6–11, moderate OA; 12–16, 

severe OA (Raducanu et al., 2009).   

X-ray imaging 

1-year and 1.5-year-old NEMOfl/YCOL2a1Cre and control mice were euthanized 

and radiographs were taken with a sealed x-ray cabinet 43855A (Faxitron, USA) at 

35 kV, 2 mA and 2 sec of exposure time. 

3.16. Proliferation and Apoptosis Assays 

Proliferation of chondrocytes in vivo was monitored by incorporation of 

bromodeoxyuridine (BrdU) (Sigma-Aldrich, USA) into 2- and 4-week-old wild-type 

and NEMOfl/YCOL2a1Cre mice. 5 mg/ml BrdU/PBS solution was injected 

intraperitoneally and the injected amount was approximately 50 µg/g per body weight. 

Mice were euthanized 2 hours after injection, isolated knee joints were fixed, paraffin 

embedded, sectioned (7µm), stained with primary BrdU antibody (Table 11) and 

counterstained with hematoxylin. The number of labeled cells and total cell number 

were scored and analyzed by Photoshop CS2 and Office Excel 2003.  

To investigate primary chondrocyte proliferation in vitro, a Cell Proliferation 

Enzyme-Linked Immunosorbent (ELISA) Assay Kit (colorimetric) (Roche, Switzerland) 

was utilized to analyze the incorporation of BrdU during DNA synthesis following the 

manufacturer’s protocols. Briefly, 1x104 cells were seeded in 96 well culture plate and 

incubated with DEME/F12 media containing BrdU labeling Solution (working 

concentration of BrdU: 10 µM) (Roche, Switzerland) for 2 hours. Labeled cells were 

air-dried for 15 min and incubated with FixDenat Solution (Sigma-Aldrich, USA) for 30 

min at room temperature. After removing the FixDenat Solution, 100 µl anti-BrdU-

POD solution (Sigma-Aldrich, USA) was added to each well and incubated for 90 min 

at room temperature followed by washing 3 times with Washing Solution (Sigma-

Aldrich, USA). 100 µl Substrate Solution (Sigma-Aldrich, USA) was then added to 

each well and incubated for 20 min at room temperature. The absorbance of the 

samples was measured in microtiter-plate reader (Thermo Scientific, USA) at 370 nm. 
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 To detect apoptotic and necrotic cells in vitro, an Apoptotic/Necrotic/healthy 

Cells Detection Kit (PromoKine, Germany) was used. Primary chondrocytes of wild-

type or NEMOfl/YCol2a1Cre were treated with or without 100 ng/ml TNF-α for 24 

hours and proceeded as manufacturer’s instruction. The cells were washed twice 

with 1x Binding Buffer (PromoKine, Germany) and stained with solution containing 5 

µl fluorescein isothiocyanate (FITC)-AnnexinV (PromoKine, Germany), 5 µl ethidium 

homodimer III (PromoKine, Germany) and 5 µl Hoechst 33342 (PromoKine, Germany) 

for 15 min at room temperature in dark. Stained cells were washed twice and 

mounted with Binding Solution. Afterwards, sections were pictured using AxioCam 

MRm camera (Carl Zeiss, Germany) mounted on Axio Observer Z1 Microscope (Carl 

Zeiss, Germany) with 10x objective.  

3.17. Atomic force microscopy (AFM) 

All AFM measurements were carried out using a NanoWizard AFM instrument 

(JPK Instruments, Berlin, Germany) mounted on a modified microscope stage of an 

inverted optical microscope (Axiovert 200, Zeiss). The optical microscope with a 40x 

magnification was used to ensure the right positioning of the cantilever tip on the 

proliferating zone of growth plate. The AFM had a maximum horizontal scanning 

range of 100 x 100 µm2 and a vertical range of 15 µm. Prior to each measurement, 

the force constants of all cantilevers were determined individually using the thermal 

noise method (Butt, 1995). Calibrations were performed in PBS. In order to obtain an 

accurate calibration, three independent measurements were performed and the 

mean value was used for the experiment. All analyses were processed with the JPK 

Data processing software 4.0.23 (JPK instruments). The AFM observation was 

performed in collaboration with Carina Preis, under supervision of Prof. Hauke 

Clausen-Schaumann (Hochschule Munich, Germany). 

3.18. Taqman Low-Density Array (TLDA) microfluidic cards 

 Prof. Tonia L. Vincent (Kennedy Institute of Rheumatology, UK) and her group 

carried out this experiment and the following data analysis as described (Burleigh et 

al., 2012). Briefly, complementary DNA (cDNA) was generated from articular 

cartilage RNA using a Promega Reverse Transcription system. TLDA microfluidic 
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cards were custom designed for a set of 47 pre-determined genes that known to be 

strongly regulated following injury.  All thermo cycles were carried out on a 7900HT 

system (Thermo Scientific, USA). The 47 pre-determined genes were list in table 14. 
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3.19. Microscopy 

The microscopes and cameras used in this thesis were purchased from Carl 

Zeiss MicroImaging (Germany). Phase-contrast picturess of tissue histology staining 

were imaged using the AxioCam ICc3 colour camera (Carl Zeiss, Germany) mounted 

on AxioVert S100 Inverted Microscope (Carl Zeiss, Germany) with 10x objective.  
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3.20. Computer software and statistical analysis 

In this doctoral thesis a number of programs for processing and analyzing data 

were used. Primers sequences were designed using Clone Manager 9 (Sci-Ed 

software, USA). Photomicrographs were processed with AxioVision LE software (Carl 

Zeiss, Germany). Quantitative data, various graphs and charts were evaluated and 

created by using Microsoft Office Excel 2003 and GraphPad Prism 5 (GraphPad, 

USA). The student t-test was performed to compare two normal distributed sets of 

samples. Non-parametric Mann-Whitney U test was applied to compare sets of non-

normal distributed data. All data was presented as the mean ± SD. p value less than 

or equal to 0.05 was considered as statistically significance and symbolized as 1 star 

(*). p value less than or equal to 0.01 or 0.001 was symbolized as 2 (**) or 3 stars 

(***), respectively. Analysis of stained cells, cell number, bone length and metaphysis 

measurement were performed with Adobe Photoshop CS2. Morphometric analysis 

was peformed with ImageJ 1.41o. Bibliography of this thesis was managed with 

EndNote X7.5.3 (Thomson Reuters, USA). 
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4. Results 

4.1. Characterization of NEMOfl/YCol2a1Cre mice 

To study the function of the canonical NF-ĸB pathway in endochondral bone 

formation and articular cartilage, we have used the floxed (fl) NEMO mice (Schmidt-

Supprian et al., 2000, generously provided by Dr. Marc Schmidt-Supprian, Max 

Planck Institute for Biochemistry, Martinsried, Germany) and the Col2a1-Cre 

transgenic mouse line generated in the Aszodi lab (Sakai et al., 2001). The murine 

gene encoding NEMO is X chromosome localized, whereas in Col2a1-Cre mice cre 

is driven by the type II collagen regulatory regions, and efficiently deletes floxed 

genes in differentiated chondrocytes. To obtain mice lacking NEMO in cartilage, 

NEMOfl/fl females were crossed with Col2a1-Cre males. From such a cross, 

NEMOfl/Y-Col2a1Cre males were generated that lack NEMO expression in 

chondrocytes (Figure 19). 

 
Figure 19: Schematic representation of the generation of NEMOfl/YCol2a1Cre mice. The X 
chromosome-localized NEMO gene was floxed (fl) using the LoxP sites. The chromosome 
recombinase (Cre) was controlled by Col2a1 promoter, which was specifically active in differentiating 
chondrocytes. To achieve chondrocyte-specific deletion, floxed NEMO females were then crossed 
with males carrying the Col2a1cre transgene males.  
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4.1.1. RNA and protein expression of NEMO in NEMOfl/YCol2a1Cre 
chondrocytes were completely inhibited 

The offspring carrying floxed NEMO gene and Col2a1Cre transgene 

expressed abnormal NEMO mRNA with disrupted exon 2. Deletion of exon 2 of 

NEMO was examined by PCR primers designed for fragment from exon 1 to exon 3 

of NEMO gene (Figure 20A). The exon 1 to exon 3 in wild-type chondrocytes from 

PCR amplification gave 489 base pairs (bps) products. Due to the disruption of exon 

2 of NEMO gene in mutant chondrocytes, the size of PCR product was 301 bps. The 

exon 2 of NEMO gene was completely deleted in mutant chondrocytes, and, 

incomplete NEMO mRNA was suggested to translate abnormal NEMO protein. The 

NEMO protein was not detected in primary mutant chondrocytes (Figure 20B). 

Misfolded NEMO protein in mutant chondrocytes was likely degraded by 26S 

proteasome or existed as inclusion bodies within the cell.  

 

 
 

Figure 20: RT-PCR and WB results of wild-type (WT) and mutant (MT) chondrocytes. (A) 
Fragment from exon 1 to 3 of NEMO gene was amplified by RT-PCR. In wild-type chondrocytes, a 489 
bps product was observed that represented the length of exon 1 to 3. Owing to the deletion of exon 2 
of NEMO gene, a shorter PCR product (301 bps) was showed. (B) NEMO protein expression was 
clarified by western blotting (WB). No signal of NEMO protein was detected in mutant chondrocytes. 
The lack of full-length NEMO mRNA might lead to misfolding of protein structure or formation of 
aggregates known as inclusion bodies. 
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4.1.2. Activation of NF-κB canonical pathway was diminished in 
NEMOfl/YCol2a1Cre chondrocytes  

To examine the activation of NF-κB was diminished in NEMO-deficient 

chondrocytes, NF-κB reporter assay was applied to monitor the activity of NFκB-

regulated signal transduction pathways. The pro-inflammatory cytokines interleukin-1 

(IL-1β) was known to elevate chondrocyte catabolism and block chondrocyte 

anabolism partially via through the canonical NF-κB signaling.  IL-1β was applied to 

induce NF-κB activation in wild-type and mutant chondrocytes (Figure 21). In 

response to IL-1β, wild-type chondrocytes showed a significantly increase of NF-κB 

activation comparing to mutant chondrocytes. Due to the critical role that NEMO 

played in regulation of NF-κB canonical activation, we suggested that the canonical 

signaling of NF-κB in mutant chondrocytes was successfully blocked. A light NF-κB 

activation was detected in mutant chondrocytes toward IL-1β. It was possibly caused 

by contamination of normal NEMO-expressed cell types in the population of mutant 

chondrocytes. 

 
Figure 21: NF-κB reporter assay of wild-type and mutant chondrocytes. Primary chondrocytes 
were transiently transfected with NF-κB-responsive firefly luciferase construct and constitutively 
expressing Renilla luciferase construct (served as internal control for transfection efficiency). 24 hours 
after transfection, chondrocytes were incubated with complete DMEM/F12 (with 10% FBS and 1% 
pen/strep mix) or DMEM/F12 with 10ng/ml IL-1β for 24 hours. Dual Luciferase assay was performed 
48 hours after the transfection. By measuring the absorbance using an ELISA reader, promoter 
activity values are expressed as arbitrary units using a Renilla reporter for internal normalization. In 
response to IL-1β, activation of NF-κB arose to 140 folds of RLU compared to non-stimulate states. 
Owning to the lack of NEMO protein, NF-κB activation was largely reduced in mutant chondrocytes. As 
the essential role of NEMO in regulating NF-κB canonical signaling, we suggested that NF-κB 
canonical activation was shot down in mutant chondrocytes. The minor activation of NF-κB in mutant 
group was possibly from normally-NEMO-expressing cells in the population. Values were presented as 
mean±SD, ***: p<0.001. 
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4.1.3. IκBα sequestered p65 dimers in cytoplasm of NEMOfl/YCol2a1Cre 
chondrocytes  

IκBα was functioned to inhibit the NF-κB transcription factor. By masking the 

nuclear localization signals (NLS) of NF-κB proteins, IκBα kept NF-κB homo- or 

heterodimers sequestered in an inactive state in the cytoplasm (Jacobs and Harrison, 

1998). Among NF-κB activation, IκBα was phosphorylated and degraded through an 

ubiquitin-dependent process. Thus, degradation of IκBα was generally regarded as a 

marker of NF-κB canonical pathway activation. To test the phosphorylation of p65 

and degradation of IκBα followed by canonical NF-κB activation, primary wild-type 

and mutant chondrocytes were treated with IL-1 and incubated for different time 

periods (0, 5, 10, 15 and 20 minutes). A rapid phosphorylation of p65 and IκBα 

degradation were observed in wild-type chondrocytes upon 5 minutes IL-1 treatment. 

As we expected, neither phosphorylation of p65 nor degradation of IκBα was 

detected in mutant chondrocytes toward IL-1β stimulation (Figure 22). 

 
Figure 22: WB of wild-type and mutant chondrocytes in response to IL-1β induction from 
different time points. Primary chondrocytes were treated with 10 ng/ml IL-1β for several time periods 
(0, 5, 10, 15 and 20 minutes). Degradation of IκBα was considered as a marker of NF-κB canonical 
activation. IκBα degradation and p65 phosphorylation, which represented activation of NF-κB 
canonical pathway, were showed at 5 minutes of IL-1 treatment in wild-type chondrocytes. However, 
IκBα degradation and p65 phosphorylation was mostly suppressed in mutant chondrocytes.  

4.1.4. p65 in NEMOfl/YCol2a1Cre chondrocyte failed to relocate into nucleus  

In the activation of NF-κB canonical pathway, the NF-κB/Rel complexes were 

further activated by post-translational modifications (phosphorylation, acetylation, 

glycosylation) and translocate to the nucleus. Primary wild-type and mutant 

chondrocytes were treated with or without proinflammatory cytokines TNF-α and IL-1 

to induce NF-κB activation and the following nuclear relocation. The p65 dimers were 

relocated by its N-terminal nuclear localization signal (NLS) sequence due to the 
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proinflammatory stimuli (Figure 23, upper). On the contrary to wild-type chondrocytes, 

p65 in mutant chondrocytes were failed to translocate into nuclei. NF-κB conponent 

p65 was kept inactive, NLS-masked and sequestered in cytoplasm of mutant 

chondrocytes due to NEMO-deficiency (Figure 23, lower). 

 
Figure 23: Immunofluorescence staining of p65 in primary chondrocytes. Chondrocytes were 
pre-treated with TNF-α (20 ng/ml, 10 minutes) or IL-1 (10 ng/ml, 10 minutes) or complete media only. 
With treatment of TNF-α and IL-1β shortly before staining, p65 home- or heterodimer complexes were 
translocated into nucleus of wild-type chondrocytes. The lack of p65 nuclear translocation in mutant 
chondrocytes was found. The NLS sequence was still remain masked in mutant chondrocytes. 

4.1.5. Expression of NEMO was specifically prohibited in cartilage tissue of 
NEMOfl/YCol2a1Cre mice 

To clarify NEMO expression in vivo, immunofluorescence staining was applied 

to sections of hindlimb of newborn. Sections of knee joints were processed and 

stained with NEMO antibody. In wild-type mouse, NEMO expressed widely in 

muscles and cartilage (Figure 24, upper). No signal of NEMO was observed in 

sections of mutant knee, whereas other tissue in mutant mouse such as the muscle 

still expressed NEMO independently of the genotype (Figure 24, lower). Taken 

together, the NEMO conditional knockout mouse model was therefore successfully 

established, which characterized by specific prohibition of NF-κB canonical pathway 

activation in chondrocytes. 
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Figure 24: Immunohistochemistry using a NEMO-specific antibody on newborn limb section. 
NEMO was silenced in cartilage tissue of NEMOfl/YCol2a1Cre mice. Conditional knockout strategy 
worked successfully in NEMOfl/YCol2a1Cre mice. 

4.2. The influence of NEMO-deficiency on the skeleton development 
of the embryonic stage 

4.2.1. NEMOfl/YCol2a1Cre mice displayed similar skeleton development at 
embryonic stage 

Cartilaginous tissue development of mouse began approximately from 

embryonic day 13.5. To determine the role of NF-κB canonical pathway in 

development of cartilaginous skeleton, embryos at days 13.5-16.5 and newborns 

were selected for skeletal staining. All skeletal elements formed normally in 

NEMOfl/YCol2a1Cre embryos and no obvious difference in the lengths of long bones 

was found compared with wild-type at these stages (Figure 25, data of E13.5 and 

E14.5 not shown). Despite of the individual difference between every embryo during 

embryonic stage, the average size and skeleton were no statistically different. 

Interestingly, a trend of decreased size showed in neonatal mutants. Although the 
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difference was not statistically significant, it might provide hints for the following 

surveys. 

 
Figure 25: Total skeleton staining of different embryonic stages and newborn mice. Staining 
with alcian blue and alizarin red showed that the NEMOfl/YCol2a1Cre skeletons at E15.5, E16.5 and at 
the newborn stage apparently did not differ from that of wild-type mice. The skeletal staining of E13.5 
and E14.5 were also comparable between wild-type and mutant group (data not shown). Development 
of skeleton in mutant embryos was normal and similar to that of wild-type. 

4.2.2. Length and ossification of NEMO-deficient long bone were similar to 
wild-type 

To compare growth of long bones from wild-type and NEMOfl/YCol2a1Cre mice, 

the length of long bones from embryonic stages until newborn was quantified (Figure 

26, upper). From E13.5 to newborn, length of long bones in NEMOfl/YCol2a1Cre mice 

was almost identical (data of E13.5, E14.5 and E16.5 not shown). Interestingly, long 

bone length of newborn mutants was shorter as observed above (Figure 25). 

Although the difference was not significant, it displayed a possible trend that 

NEMOfl/YCol2a1Cre mice might likely be smaller after birth. Approximately at E15.5, 

endochondral ossification started from the middle of diaphysis of long bones. To 
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explore the influence of NEMO ablation in embryonic skeleton development, 

ossification region of forelimbs and hindlimbs was carefully measured (Figure 24, 

lower). Similar to length of long bones, ossified region of long bones in newborn 

NEMOfl/YCol2a1Cre mice presented the same pattern, even though there was no 

difference of ossification region at embryonic stage.  

 
Figure 26: Quantification of length and ossified region of long bones. The length and ossified 
region from humerus, femur and tibia from E15.5 and neonatal mice were measured. During 
embryonic development, length of long bones and ossified region from mutants were consistent with 
wild-type (data of E14.5 and E16.5 not shown). Note the reduced pattern of length and ossified region 
at newborn stage, length and ossification region of long bones from mutant were slightly shorter 
compared to wild-type. However, the difference was not significant. Values were presented as 
mean±SD, 

4.2.3. Skeleton differentiation in NEMOfl/YCol2a1Cre mice during embryo stage 
were fairly the same as wild-type 

Due to the important role of NF-κB pathway in chondrogenic differentiation, 

markers for osteogenic and chondrogenic differentiation were examined via in situ 

hybridization. Since the phenotype of NEMO-deficiency was likely showed after birth, 

the riboprobes that specific for cartilaginous markers such as Collagen II (cartilage 

marker) and X (hypertrophic cartilage marker), for skeletal development markers 

such as collagen type I (bone marker) were applied to the hindlimb sections of 
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newborns (Figure 27). Cartilage and bone differentiation markers expressed and 

distributed correctly in mutant epiphysis of tibia. The expression patterns in both wild-

type and mutant was the same. Col I was regarded as a bone differentiation marker 

that predominately expressed in bone tissue. The expression of Col I in mutant 

epiphysis was consistently distributed in bone tissue as wild-type (Figure 27, upper). 

Col II and Col X were markers for proliferating and hypertrophic chondrocytes, 

respectively. The expression and distribution of Col II and Col X were comparable to 

wild-type as well (Figure 27, lower). 

 
Figure 27: in situ hybridization on paraformaldehyde (PFA)-fixed sections of tibia epiphyseal 
cartilage from new born mice using DIG-labelled riboprobes specific for CoI I, Col II and Col X. 
Col I, Col II and Col X were expressed comparably in wild-type and NEMOfl/YCol2a1Cre mice. 

4.2.4. No difference was noticed in long bone morphology and proliferation 

To check the morphology of developed long bones, hematoxylin-eosin staining 

was performed to hindlimb sections of E15.5 and newborn mice (Figure 28). In gross 

observation of H&E stained sections, NEMOfl/YCol2a1Cre mice displayed normal 

structure of tibia epiphysis as wild-type. Due to the delayed growth of long bones and 

endochondral ossification we previously revealed, a BrdU incorporation experiment 

was performed to clarify the underlying reason that lead to the delay growth and 
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endochondral ossification (Figure 29). To our expectation, numbers of proliferating 

cells in tibia epiphysis were comparable during embryonic stage, whereas slightly 

less proliferation was detected in mutant epiphysis. Nevertheless, proliferation in 

mutant epiphysis was not significantly reduced as well. 

 
Figure 28: Hematoxylin-Eosin (H&E) staining of tibia epiphysis from E15.5 and newborn mice. 
Sections of E15.5 and newborn epiphyseal cartilage were processed and stained with H&E. 
Development and structure of mutant epiphysis at neonatal stage were more or less normal as wild-
type. 
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Figure 29: BrdU incorporation assay in tibia epiphysis from E15.5 and newborn stage. Sections 
of E15.5 and newborn epiphyseal cartilage incorporated with BrdU and stained with anti-BrdU 
antibody. Proliferating chondrocytes was presented as BrdU-positive cells (brown). The numbers of 
BrdU-positive cells were comparable to wild-type during embryonic stage. However, reduced 
proliferating activity was observed in mutant at newborn stage as reduced bone length and ossification 
we previous found. 

4.2.5. Vascular invasion and intramembranous ossification of NEMO-deficient 
skeleton were comparable to wild-type  

At day 14 of embryo development, chondrocytes in the center of the cartilage 

model mature to hypertrophy. One day later, the hypertrophic cartilage begins to be 

invaded by sprouting blood vessels, osteoclastic cells, and hematopoietic precursors; 

in the perichondrium, a bone collar is forming. To examine the impact of NF-κB 

canonical pathway in vascular invasion and bone formation, the invading vasculature 

was examined by histochemical staining for tartrate resistant acid phosphate (TRAP) 

activity (Figure 30, left). Ossification level was identified by SO-von Kassa staining 
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(Figure 30, right). The level of vascular invasion and ossification were fairly the same 

in wild-type and NEMOfl/YCol2a1Cre mice.  

 
Figure 30: TRAP and SO-von Kassa stained tibia of wild-type and mutant. TRAP staining and 
SO-von Kassa were performed to PFA-fixed E15.5 and E16.5 sections, respectively. Vascular 
invasion was showed as purple dots, and ossified matrix was stained as deep purple. The level of 
vascular invasion and ossified bone in embryonic development were mostly similar between wild-type 
and mutant. 

4.2.6. In cytokine-induced growth, NEMO-deficient metatarsals demonstrated 
comparable growth pattern as wild-type 

To test the response of cytokine-induced growth, the metatarsal culture 

experiment was performed with cytokines such as BMP-2 and IGF-1 that were known 

to be partially regulated by NF-κB canonical pathway and play important role in 

skeleton development (Wu et al., 2008; Wu et al., 2011). The metatarsals were 

cultured for 5 days with BMP-2 or IGF-1 or BGjb media only (Figure 31A). The growth 

of metatarsal rudiments was not altered in NEMOfl/YCol2a1Cre mice upon BMP-2 or 

IGF-1 stimulation. Quantified charts confirmed again that there was no significant 

change of metatarsal growth between wild-type and mutant (Figure 31B). 
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Figure 31: Cytokines induced metatarsal growth. (A) Metatarsals isolated from E15.5 embryo were 
incubated with BGjb or BMP-2 or IGF-1 for 5 days. The second, third and fourth metatarsal bone 
rudiments were selected for this experiments. The growth of mutant metatarsal rudiments in BMP-2 
and IGF-1 groups was comparable to wild-type. (B) Quantification of metatarsal length confirmed 
again that cytokine-induced metatarsal growth was comparable between wild-type and mutant. 

	

The impact of NF-κB canonical pathway to embryonic skeleton development 

we had studied in various ways such as morphology, length, ossification, vascular 

invasion, proliferation and cytokine-induced growth. The results indicated that 

NEMO-deficient mutants were with normal skeleton development during embryonic 

stage. We suggested that NF-κB canonical pathway was likely optional for skeletal 

development in embryo stage.  
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4.3. The impact of NEMO-deficiency to skeleton development at 
postnatal stage 

4.3.1. Post-natal skeletal phenotype of NEMOfl/YCol2a1Cre mice 

	 To investigate the phenotype of NEMO-deficiency after birth, 2-, 4-week-old 

and 1-year-old NEMOfl/YCol2a1Cre mice were collected and compared morphological 

and skeletal differences. A moderate postnatal dwarfism was showed in 

NEMOfl/YCol2a1Cre mice that appeared to be a lifelong defect (Figure 32 left). To 

understand the impact of NEMO-deficiency in NEMOfl/YCol2a1Cre mice at post-natal 

stage, totally skeletons were took as X-ray pictures. Proportionally smaller of skeleton 

was found in NEMOfl/YCol2a1Cre mice, whereas all skeleton elements were 

apparently normal as wild-type (Figure 32, right). 

 
Figure 32: Gross analysis of 2-week-, 4-week- and 1-year-old mice. NEMOfl/YCol2a1Cre mice 
displayed dwarfism from age of 2 weeks, 4 weeks and 1 year (left). We suggested that the phenotype 
of NEMO-deficiency was lifelong that did not catch up. The x-ray picture at age of 1 year showed the 
proportional reduction of skeleton in mutant mice (right).  
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4.3.2. Length of NEMO-deficient long bones was significantly shorten 

As we found in fig. 30 that proportional smaller skeleton in NEMOfl/YCol2a1Cre 

mice, length of long bones was then measured. Neonatal, 2-, 4-week-old and 1-year-

old mice were selected to measure body weight, length of humerus, femur and tibia 

(Figure 33). Due to NEMOfl/YCol2a1Cre mice with integrally smaller skeleton, the 

average body weight of mutant was smaller as expected (Figure 33, left upper). The 

long bones of NEMOfl/YCol2a1Cre mice such as humerus, femur and tibia were 

averagely 2-3 mm shorter than wild-type (Figure 33A, B and C).  Consistent with the 

previous results, it was confirmed that ablation of NEMO specifically in chondrocytes 

resulted in the delayed growth of long bone after birth. We suggested that delay 

growth of long bones in mutant might be due to impaired secondary endochondral 

ossification that began at perinatal stage, which was responsible for the following 

skeleton growth. 

 
Figure 33: Measurement of body weight and long bone length of wild-type and 
NEMOfl/YCol2a1Cre mice. (A) The body weight of mutant was significantly smaller that was not 
surprised since NEMOfl/YCol2a1Cre mice were bearing proportional smaller skeleton. The 
measurement of long bones such as humerus (B), femur (C) and tibia (D) from NEMOfl/YCol2a1Cre 
mice was further confirmed that defect of NEMO ablation showed after birth. Averagely, length of 
humerus, tibia and femur were 2-3 mm shorter compared to wild-type. Values were presented as 
mean±SD, **: p<0.01, ***: p<0.001. 
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4.3.3. Metaphysis of NEMO-deficient long bone was characterized with shorten 
growth plate 

The secondary endochondral ossification was essential for skeleton growth 

during the postnatal and adolescent years. In long bones, the secondary ossification 

appeared in the epiphysis. The epiphyseal plates (known as growth plate) 

continuously generated more chondrocytes through mitosis and increase the length 

of long bones.  To know the impact of NEMO deficiency in growth plate, growth plate 

morphometric analysis was performed at 2 and 4 weeks of age. Total growth plate 

(TGP) was divided into resting zone (RZ), proliferating zone (PZ) and hypertrophic 

zone (HZ). Hematoxylin and eosin (HE)-stained sections through the tibiae revealed 

significantly shortened TGP, RZ+PZ and HZ in mutant growth plates at age of 2 

weeks (Figure 34A). At age of 4 weeks, we observed no statistically significant 

differences in zone lengths between wild-type and NEMOfl/YCol2a1Cre mice. Results 

were further confirmed with quantified measurements of TGP, RZ+PZ and HZ (Figure 

34B). At age of 2 weeks, the average length of wild-type total growth plates was 

approximately 600µm (resting+proliferating zone and hypertrophic zone were 350 

and 250µm, respectively). Length of total Growth plate of NEMOfl/YCol2a1Cre was 

400µm (RZ+PZ and HZ were about 250 and 150µm, respectively). The shorten PZ 

and HZ in mutant growth plate implied that proliferation of chondrocytes was likely 

affected. However, no statistically significant differences in zone lengths between 

wild-type and mutants at 4 weeks of age were found.  However, phenomenon of 

shorten growth plate at age of 2 weeks provided a hint that likely the proliferation of 

mutant chondrocytes was altered due to ablation of NF-κB canonical pathway. 
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Figure 34: Growth plate morphometric analysis of 2- and 4-week-old mice. (A) Analysis of 
cartilage development on H&E-stained sections through the tibia in 2 weeks and 4 weeks old mice. 
The TGP was consisted of RZ+PZ and HZ. (B) Quantified chart showed that the structure and the 
length of growth plate zones were significantly shorten in NEMOfl/YCol2a1Cre mice (TGP, total growth 
plate; RZ, resting zone; PZ, proliferative zone; HZ, hypertrophic zone). Values were presented as 
mean ± SD, *: p<0.05, **: p<0.01. 

4.3.4. NEMO-deficient chondrocytes displayed reduced proliferation activity 

As previous showed NEMOfl/YCol2a1Cre mice were characterized with 

proportional smaller skeleton. We suggested that proliferation of chondrocytes were 

likely altered. To test this hypothesis, BrdU incorporation assay was applied to 

identify chondrocytes in the S phase of the cell cycle in 2 and 4-week-old growth 

plate sections. Interestingly, at age of 2 and 4weeks, proliferation activity of mutant 

chondrocytes was decreased compare to wild-type chondrocytes (Figure 35A). In 

proliferating zone of growth plate, approximately 25% and 22% of wild-type 

chondrocytes were actively proliferating at age of 2 and 4 weeks, respectively. 

Whereas, there were 18% and 7% of NEMO-deficient chondrocytes were BrdU 

positive at age of 2 and 4 weeks, respectively (Figure 35B). To further confirm the 

decrease of proliferation, a BrdU ELISA assay was performed in primary 

chondrocytes (Figure 35C). As expected, proliferation of primary mutant 

chondrocytes was significantly reduced compared to wild-type. Thereby, impaired 
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proliferation in mutant chondrocytes was confirmed both in vivo and in vitro. Our 

preliminary PCR results showed that blockade of NF-κB canonical pathway might 

result in up-regulation of p16 mRNA, cyclin-dependent kinase inhibitor 2A, which 

prohibited cells entering S phase (Figure 33D). 

 
Figure 35: BrdU incorporation assay of PFA-fixed sections from mice knee joint. (A) Under 
microscope, there were less BrdU-positive cells in growth plate of NEMOfl/YCol2a1Cre mice at age of 2 
and 4 weeks. (B) Quantified results from A. (C) BrdU ELISA assay was performed to primary 
chondrocytes. Reduced proliferation of NEMO-deficient chondrocytes was confirmed both in vivo and 
in vitro. Values were presented as mean±SD, *: p<0.05, **: p<0.01, ***: p<0.001. (D) RT-PCR showed 
the increased level of p16 mRNA in NEMOfl/Y-Col2a1cre chondrocytes. 

4.3.5. Apoptotic cells were found in NEMO-deficient growth plate 

As previously mentioned that p65- or NEMO-null mice displayed early 

embryonic lethality coupling with liver degeneration and enhanced apoptosis. 

Blockade of NF-κB canonical pathway might lead to apoptosis of chondrocyte as well. 

To examine this, TUNEL assay was performed to sections of tibia at age 2- and 4-

week-old. Apoptotic cells were found in sections of the growth plate from 

NEMOfl/YCol2a1Cre mice at age of 2 and 4 weeks (Figure 36, arrows). Instead of 
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massive apoptosis, apoptotic cells in mutant growth plate were showed sporadically. 

It implied that mutant chondrocytes were more sensitive to apoptosis compared to 

wild-type. There was no apoptotic cell found in growth plate of wild-type mice.  

 
Figure 36: Apoptosis assay in tibia sections of wild-type and mutant. TUNEL assay was 
performed to sections of 2- and 4-week-old tibia. Notice that apoptotic cell (white arrow) appeared in 
growth plate of NEMOfl/YCol2a1Cre mice. 

4.3.6. In proinflammatory cytokine induced apoptosis, primary NEMO-deficient 
chondrocytes were more sensitive to TNF-α-induced apoptosis 

To further confirm this finding, primary chondrocytes were isolated and treated 

with TNF-α as reported that proinflammatory cytokines could effectively trigger cell 

apoptosis. Massive apoptosis was showed in wild-type chondrocytes as we expected 

(Figure 37, left lower). Abundant annexinV and ethidium homodimer signals 

represented late stage of apoptosis. Signal of ethidium homodimers was 

predominantly showed in mutant chondrocytes treated with TNF-α, whereas very few 

annexinV was detected. It seemed that apoptosis was triggered in most of NEMO-

deficient chondrocytes in response to TNF- α prior to wild-type chondrocytes (Figure 



RESULTS 

	 90	

37, right lower). It was also possible that NEMO-deficient chondrocytes underwent 

necrosis. 

 
Figure 37: Health/apoptotic/necrotic cells assay in primary chondrocytes with or without pro-
inflammatory cytokine stimulation. In response to TNF-α, wild-type chondrocytes displayed 
massive apoptosis. Further stage of apoptosis was mutant chondrocytes, which implied that apoptosis 
occurred prior than wild-type. 10 ng/ml TNF-α was 24 hours pre-treated before assay, cells with 
annexinV (green) and ethidium homodimer (pink) were in late stage of apoptosis. Cells with only 
ethidium homodimer were likely at the end stage of apoptosis or necrosis.  

4.3.7. Disoriented columns in proliferating zone of NEMOfl/YCol2a1Cre mice 

	 In low magnification, fat, oval-shaped columns were found in the mutant 

growth plate as fig. 32 showed. To study this interesting phenomenon, high 

magnification pictures were took for further analysis. It seemed that the PZ of mutant 

GP was composed of round-shaped proliferating columns whereas linear-shaped 

column distributed in wild-type GP, in age of 2 and 4 weeks (Figure 38A). When 

chondrocytes in growth plate proliferated, divided daughter cells were then soon 

formed a linear-shaped column by compression of surrounding ECM and its own 

migration ability. The disoriented columns indicated a possibility that migration ability 

of chondrocyte or ECM stiffness was altered in NEMOfl/YCol2a1Cre mice. To 
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understand whether cell number within column affected shape of columns, analysis 

to cell number within each column was performed. Interestingly, mutant at age of 2 

weeks, a 20% increase in 16-20 cells subset was found that represent 20% of total 

columns were consisted of 16-20 chondrocytes (Figure 38B). The formation of 

disoriented columns in mutant was likely because of over-averaged chondrocytes in 

a mutant column. At age of 4 weeks, mutant columns were bearing comparable cells 

within and displayed twisted shape coupling with column-column fusion.  

 
Figure 38: Hematoxylin and eosin (HE) staining of sections of 2- and 4-weeks old growth plate. 
(A) At high magnification, proliferating columns of mutant were disoriented and formed a fat-oval 
shape. Under normal circumstance, chondrocytes divided into 2 daughter cells and formed a linear 
column due to its own migration ability and the compressive stress from surrounded cartilage ECM. 
The disoriented proliferating columns implied that migration of mutant chondrocytes or stiffness of 
ECM might be altered. (B) Quantification of cell number in columns. Note an 20% increase of 16-20 
subset in mutant columns at age of 2 weeks, which might cause round-shape column formation with 
16 to 20 chondrocytes within (upper). Comparable composition of cells in columns was observed in 
both wild-type and mutant. However, fused and twisted columns were found in mutant growth plate. 
Abnormal proliferating columns might result in malformation of bone. 
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4.3.8. Fat-oval-shaped proliferating columns were pronounced in NEMO-
deficient growth plate 

To further investigate twisted columns in NEMOfl/YCol2a1Cre mice, we 

analyzed shape of and horizontal angle of columns. In survey of column shape 

difference, mutant columns displayed a shifting proportion of horizontal-vertical ratio 

toward 1 (Figure 39A, upper). In another word, there were more roundish-shaped 

proliferating columns in mutant growth plate at age of 2 weeks. Similar results were 

showed in mutant at age of 4 weeks as well (Figure 39A, lower). These disoriented, 

round-shaped proliferating columns in mutant growth plate might increase the 

incidence of bone malformation; however, bone malformation was likely 

imperceptible (no obvious malformation was noticed) and the implication was still 

remained unclear. As for analysis of horizontal angle of columns, results from wild-

type and mutant were fairly comparable (Figure 39B). Most of columns from both 

groups were more or less perpendicular to the growth plate. These preliminary 

results indicated NEMOfl/YCol2a1Cre mice were with more round-shaped columns 

and more chondrocytes within; however, no bone malformation was observed. More 

efforts are required to conclude this interesting finding. 

 
Figure 39: Analysis of proliferating columns in growth plate at age of 2- and 4-week-old mice. 
(A) Ratio of short-long axis analysis of proliferating columns. At age of 2 weeks, a proportional ratio 
shift from linear-shaped to round-shaped was observed. Similarly, results of 4-week-old showed the 
same shifted pattern that indicated mutants were with more round-like columns. (B) Analysis of 
horizontal angle showed a fairly the same distribution in both wild-type and mutant. 
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4.3.9. NEMO-deficient chondrocytes displayed a reduced migration activity 

At metaphyseal side, cartilage cells become aligned into well-defined columns 

due to compression of matrix and mobility of chondrocytes, known as zone of cellular 

proliferation (proliferating zone). Failure of these chondrocytes to thrive resulted in 

abnormal growth of bones. The disoriented columns that we previously discovered 

indicated a possibility that migration ability of chondrocyte or ECM stiffness was 

altered in NEMOfl/YCol2a1Cre mice. To examine our hypothesis of migration 

alteration in mutant chondrocytes, migration ability of chondrocytes was tested. A 24-

hours random migration assay was performed to check mobility of wild-type and 

mutant chondrocytes. Wild-type chondrocytes were able to explore averagely 100-

200 µm range from origin, whereas the exploring area of mutant chondrocytes was 

narrowed down to below 100µm (Figure 40A, left). Quantification of velocity shown 

mutant chondrocytes were with slower mobility compare to wild-type chondrocytes 

(Figure 40B, right). Further quantification showed that the average velocity of mutant 

chondrocytes was 0.2µm/min, which was half speed of wild-type chondrocytes. 

Consistent with our hypothesis, migration ability of mutant chondrocytes was 

impaired. 

 
Figure 40: Migration assay of primary chondrocytes. (A) 24-hours random migration assay of 
chondrocytes. Primary NEMOfl/Y and NEMOfl/YCol2a1Cre chondrocytes from frame by frame analysis 
of time-lapse was recording during a 20-mins observing period.  (B) The migration velocities of the 
respective cells are indicated (mean±SD, **: p<0.01, migration data of over 30 cells). Quantification of 
cell migration velocity indicated NEMOfl/YCol2a1Cre chondrocytes with reduced migration. 
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4.3.10. NEMO-deficient chondrocytes possess higher adhesion to 
cartilage ECM 

Generally, adhesion strength and dynamic could determine migration ability of 

cells. To clarify whether attachment of mutant chondrocytes to ECM ligands was 

altered, an adhesion assay was performed. Usual and abundant ECM components 

such as fibronectin, vitronectin, laminin, collagen I and collagen II were tested. 

Interestingly, NEMO-deficient chondrocytes exhibited higher binding affinity to both 

cartilaginous (collagen I, fibronectin, laminin) and non-cartilaginous (vitronectin, 

collagen I) ECM components (Figure 41A). The generally enhanced adhesion of 

mutant cells to ECM could affect migration ability of mutant chondrocytes, which may 

involve integrin-associated signaling pathways. In order to test if downstream 

signaling of integrins was effected by the lack of NEMO, primary chondrocytes were 

analyzed for IL-1-induced activation of mitogen activated protein (MAP) kinases, focal 

adhesion kinase (FAK) and AKT (or protein kinase B) by western blotting (Figure 

41B). Surprisingly, we could not detect any obvious difference in the timely 

phosphorylation status of FAK, AKT, ERK and p38 between the genotypes implying 

that integrin-associated signaling cascades are likely not affected in the absence of 

NEMO/canonical NF-κB pathway in chondrocytes.  

 
Figure 41: Increased adhesion to ECM ligands is not associated with obvious changes in 
integrin signaling pathways.  (A) Stronger adhesion of Nemo-deficient chondrocytes to ECM 
substrates. Components of ECMs (fibronectin, vitronectin, laminin, collagen I and collagen II) were 
pre-coated on plastic surface, than wild type and mutant chondrocytes were added and allowed to 
adhere for one hour. Mutant chondrocytes showed stronger binding affinity than wild type 
chondrocytes as verified by the increased absorbance at 540 nm after cresyl violet staining. (B) 
Western blotting of cultured primary chondrocytes with or without IL-1 stimulation shows no significant 
differences in activation of integrin-linked signaling molecules. 
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4.3.11. The stiffness of cartilage ECM from NEMOfl/YCol2a1Cre mice was 
fairly the same as wild-type 

To verified the last suggestion of possible reasons that resulted in disoriented 

columns in NEMOfl/YCol2a1Cre mice growth plate. The stiffness of ECM in 

disoriented columns in NEMOfl/YCol2a1Cre mice was tested by atomic force 

microscope (AFM). The vDflection of wild-type and mutant, which represented the 

topography of cartilage ECM, were comparable (Figure 42A). The composition of 

cartilage ECM in NEMOfl/YCol2a1Cre mice was fairly comparable to wild-type. The 

matrix elasticity analysis showed the same cartilage matrix stiffness between wild-

type and NEMOfl/YCol2a1Cre mice (Figure 42B). The elastic modulus (E) of wild-type 

and NEMOfl/YCol2a1Cre were 49±0.7kPa and 55.5±1.1kPa, respectively. The elastic 

moduli from both were in the range of normal elasticity modulus.  Even though the 

stiffness of mutant cartilage was approximately 5kPa more than of wild-type, no 

statistical significance was found. 

 
Figure 42: Atomic force microscope (AFM) observed comparable ECM orientation and elasticity. 
(A) Topology of cartilage ECM surface was presented as height and vDeflection. It showed 
comparable cartilage ECM surface between wild-type and mutant cartilage. (B) Elastic modulus from 
both groups was calculated. Similar ECM stiffness was concluded as were 49±0.7 kPa in wild-type 
and 55.5±1.1 kPa in mutant, respectively.  E=elastic modulus (calculation formula not shown).  



RESULTS 

	 96	

4.3.12. NEMO-deficient chondrocytes displayed larger spreading area in 
vitro 

During experiment of migration assay, we found that mutant chondrocytes 

were with larger spreading area (data not show). To confirm this observation, cell-

spreading assay was performed. With time after chondrocytes seeding to petri-dish, 

NEMO-deficient chondrocytes were observed with larger spreading area compared to 

wild-type chondrocytes (Figure 43A). The average cell spreading area of mutant 

chondrocytes could reach 6500 µm2; however, the spreading area of wild-type 

chondrocytes was half of mutant chondrocytes (Figure 43B). The average spreading 

time was approximately 6.5 hours post seeding, which was comparable between 

wild-type and NEMO-deficient chondrocytes (Figure 43C). Enlarged cell spreading 

area might be related to remodeling of actin cytoskeleton or alteration of adhesion 

molecules. To further investigate the spreading phenotype, we have seeded wild-

type and NEMO-deficient chondrocytes on fibronectin-coated glass slides and 

stained with paxillin to visualize focal adhesion sites, and with phalloidin to detect 

actin cytoskeletal structures. After 24 hours, we could not observe obvious 

differences in the appearance and number of focal complexes, and the organization 

of cytoskeletal elements including actin stress fibers, microfilaments and lamelopodia.  
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Figure 43: Abnormal spreading behavior of NEMOfl/YCol2a1cre chondrocytes. (A) Representative 
images of time laps recording showing cell spreading through the indicated time points on the plastic 
surface in the presence of serum. Note that NEMO-deficient chondrocytes spread into larger area than 
wild-type cells. (B) Quantification of cell spreading area. (C) Quantification of cell spreading time of 
wild-type and NEMOfl/YCol2a1Cre chondrocytes. Average spreading time was comparable between 
the genotypes. (D) On fibronectin coated glass slide, Nemo-deficient chondrocytes show comparable 
distribution of focal complexes (demonstrated by paxillin staining) and normal formation of cytoskeletal 
structures (actin stress fibers, micro-spikes, lamellopodia) compared with wild-type after 24 hours of 
seeding.  
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4.4. The role of NF-κB canonical pathway in cartilage metabolism 
using hip explant culture 

Degradation of proteoglycans and glycosaminoglycans breakdown were 
partially eased in hip cap of NEMOfl/YCol2a1Cre mice 

The proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor 

α (TNF-α) were known to elevate chondrocyte catabolism and block chondrocyte 

anabolism partially via through the canonical NF-ĸB signaling. To address to role of 

NF-ĸB in cartilage metabolism pathologically, in vitro experiments were performed 

with femoral head cartilage explants isolated from wild type and NEMOfl/YCol2a1Cre 

mice as described in a previous publication from the Aszodi lab (Raducanu et al., 

2009). After 4-days treatment of TNF-α and IL-1β, the loss of proteoglycans in 

articular cartilage was observed in wild type femoral head. However, the 

proteoglycan breakdown in articular cartilage from NEMO-deficient group was largely 

reduced (Figure 44A and 44B). Signals of aggrecan neoepitope G1-TEGE and 

VIDIPEN were pronounced at the surface and growth plate of wild-type articular 

cartilage that indicated where the massive cartilage ECM breakage occurred. As 

expected, the signals of G1-TEGE and VIDIPEN were much milder in articular 

cartilage of NEMOfl/YCol2a1Cre mice (Figure 44C and D). Blocking NF-κB signaling 

had been merged as very attractive and potential strategy against OA. Our results 

supported this view as well. However, the experiment time was relatively short 

compared to spontaneous progression of cartilage ECM breakdown. The protection 

from blocking NF-κB canonical signaling might only decelerate progression of ECM 

breakdown at early stage. More efforts were need to verify the effect of blocking NF-

κB canonical pathway in mid and later stage of cartilage ECM loss. 
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Figure 44: Reduced aggrecanolysis in NEMO-deficient hip explants upon cytokines treatment. 
Femoral heads were harvested from 4-week-old control and NEMOfl/YCol2a1Cre mice and cultured in 
serum-free DMEM with or without treatment with TNF-α (100 ng/ml) and IL-1 (10 ng/ml). (A) Safranin 
orange staining indicated only moderate loss of sulfated GAGs in mutant explants. (B) Immunostaining 
demonstrates that aggrecan retains in the mutant cartilage matrix after cytokine treatments. (C) 
Increased protrution of the ADAMTS4/5-induced aggrecan degradation neoepitope TEGE was 
observed in control but not in NEMOfl/YCol2a1cre explants. (D) Cytokines treatments increase the 
exposure of the MMP-induced aggrecan degradation neoepitope VIDIPEN in control but not in of 
NEMOfl/YCol2a1cre explants. 

	

To determine the glycosaminoglycans (GAG) concentration in media of wild-

type and NEMO-deficient groups, sulfate GAG (sGAG) assay was performed. In 

response to TNF-α and IL-1 stimuli, sGAG in media from cartilage of NEMO-deficient 

groups was much less than amount of GAG released into media largely increased in 

wild-type group (Figure 45). To our expectation, the loss of cartilage ECM triggered 

by inflammatory cytokines, could be effectively eased by blocking NF-ĸB canonical 

pathway during early stage of inflammation. 

 
Figure 45: Less soluble GAGs were detected in condition medium of NEMOfl/YCol2a1cre against 
cytokine-induced proteoglycan degradation. The blockade of NF-κB canonical pathway could 
effectively reduce proteoglycan breakdown during early stage of inflammation. 
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Next, we have investigated the expression and activity of selected matrix 

metalloproteinases (MMP) using immunohistochemistry and gel zymograpy. Using 

antibodies against gelatinases (MMP2 and MMP9, Figure 46A and 46B) and 

collagenases (MMP13, Figure 46C), we could not detect any genotype-specific 

difference in the expression of these MMPs upon immunostaining. Collagen and 

gelatin gel zymography further demonstrated normal activation of collagenases and 

gelatinases in mutant explants treated with the cytokines (Figure 46E). However, we 

did observe reduced expression of the aggrecan-degrading MMP3 in IL-1β and TNFα 

stimulated mutant explants compared with wild type (Figure 46D).  These results 

indicated that IL-1β and TNFα stimulation of aggrecanases and MMP3 was partially 

regulated by NF-κB and blocking NEMO may be an important approach for the 

development of intervention strategies for OA. 
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Figure 46: Cytokines-induced expression of MMP3 was decreased in mutant explants. No 
difference in the expression of MMP2 (A), MMP9 (B) and MMP13 (C) was observed between control 
and mutant explants after TNF-α (100 ng/ml) and IL-1 (10 ng/ml) treatment. (D) IL-1β and TNFα 



RESULTS 

	 103	

elevate MMP3 expression in control but not in NEMOfl/YCol2a1cre explants. (E) Collagen and gelatin 
zymography demonstrate no obvious difference in the activity of collagenases and gelatinases in 
control and mutant explants. 

4.5. Regulation of NF-κB in cartilage responses upon ex vivo 
induced hip injury 

Against mechanical stress, ARG-1, HAS-2, IL-18 and MMP-3 were significantly 
regulated in hip cap of NEMOfl/YCol2a1Cre mice compare to wild-type 

	 Joint injury significantly increased the risk of OA, therefore dissecting the 

pathways that were induced after trauma was important for understanding cartilage 

degeneration. It had been previously shown that physical damage of the articular 

cartilage rapidly activates the three major MAP kinases (ERK1/2, Jnk, p38) as well as 

NF-ĸB, which in turn triggered intracellular inflammatory signaling pathways (Gruber 

et al., 2004). To clarify the role of NF-κB in this process, we applied a mechanical 

injury model developed by Tonia L. Vincent (Kennedy Institute of Rheumatology 

Division, Imperial College School of Medicine, London, UK). Briefly, intact femora 

were isolated from 4-week-old wild-type and NEMOfl/YCol2a1Cre mice, and the injury 

was induced by forcing the hip cartilage from the underlying femoral head. The 

cartilaginous femoral heads were either immediately frozen in liquid nitrogen 

(negative control) or cultured in serum-free DMEM for 4 hours before snap freezing. 

RNA was extracted from the pulverized samples and RT-PCR was performed for a 

set of 47 pre-determined genes, which were known to be strongly regulated following 

injury using microfluidic Taqman low-density arrays. 

According to the microarray data, there were only few genes significantly 

regulated in NEMO-deficient group compared to wild-type. The only suppressed 

gene in NEMOfl/YCol2a1Cre hip upon injury was arginase I (ARG-1). Hyaluronan 

synthase-2 (HAS-2), interlukin-18 (IL-18) and matrix metalloprotease-3 (MMP-3) 

were up-regulated genes in NEMO-deficient group compared to wild-type (Figure 47). 

Arginase1 encoded arginase, which was an enzyme participating in urea cycle, a 

series of reactions that occurs in liver cells. Basically, ARG-1 was characterized by its 

role in metabolism. However, the role ARG-1 among mechanical stress in articular 

cartilage was still largely unknown. HAS-2 encoded hyaluronan synthase that was 
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responsible for production of hyaluronan, which was a component of cartilage ECM. 

Enhanced- regulation of HAS-2 gene in articular cartilage of NEMOfl/YCol2a1Cre 

mice was suggested a repair mechanism against the mechanical stress. 

Consequently, HAS-2 might continuously produce hyaluronan to replenish the loss of 

cartilage ECM resulted from mechanical stress. 

MMP-3 was known to play important role in degradation of cartilage ECM 

among injury. Enhanced MMP-3 expression in mutant articular cartilage implied an 

acceleration of cartilage ECM breakdown among mechanical stress. IL-18, a 

structure homolog of IL-1, was up-regulated as well. By sharing structure similarity 

with IL-1, IL-18 might be able to trigger the same signaling as IL-1 induced during 

injury. However, the role of IL-18 in injury-induced cartilage ECM degradation was 

remained unclear. 
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Figure 47: RT-PCR of 47 pre-determined, osteoarthritis-related genes using TaqMan 
microfluidic cards. It demonstrated that ARG-1 was the only down-regulated gene in 
NEMOfl/YCol2a1cre group compared to control; HAS-2, IL-18 and MMP-3 were the up-regulated genes 
response to mechanical damage in NEMOfl/YCol2a1cre group. 
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4.6. The role of NF-κB canonical pathway in spontaneous OA model 

NEMO-deficiency has no impact on age-associated, spontaneous osteoarthritis 
in mice  

Idiopathic OA is normally slow progressing; increased mechanical loading 

upon traumatic lesions could accelerate the disease. To assess the role of 

NEMO/canonical NF-κB in spontaneous osteoarthritis, H&E and toluidine blue 

stained sections of NEMOfl/Y and NEMOfl/YCol2a1Cre knee joints were examined for 

histological evidence of articular cartilage (AC) degeneration at age of 1 and 1.5 year. 

The knee joint overview of NEMOfl/Y and NEMOfl/YCol2a1Cre mice were similar with 

no significant difference (Figure 48). The collateral ligament and synovial tissue from 

both groups were still health, even at age of 1.5 year. The H&E and toluidine blue 

stained sections showed that all of the mice including 1- and 1.5-year-old displayed 

surface irregularity or rift to the transition zone and almost the same proteoglycans 

level of articular cartilage (Figure 49A and 50A). Hypercellularity was noticed in both 

1- and 1.5- year old models. According to the scoring system previously described in 

materials and methods, cartilage erosion and total OA score of 1-year-old and 1.5-

year-old articular cartilage were evaluated. Grade 2 erosions, represented as cleft to 

the transition zone, were observed in NEMOfl/Y and NEMOfl/YCol2a1Cre mice at age 

of 1 and 1.5 year (Figure 49B and 50B). Both groups of 1-year-old and 1.5 year-old 

were with total OA score 6-7, which indicating mild OA progression (Figure 49C and 

50C). Analysis of AC thickness (Figure 49D and 50D) and uncalcified/calcified region 

(Figure 49E and 50E) showed no difference as well. Results of AC thickness and 

uncalcified/calcified region measurement were almost the same between NEMOfl/Y 

and NEMOfl/YCol2a1Cre mice at age of 1 and 1.5 year. To summarize, no statistically 

difference of cartilage erosion, total OA score, AC thickness and unclacified/calcified 

region of AC was found between NEMOfl/Y and NEMOfl/YCol2a1Cre mice. 
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Figure 48: Knee overview of 1- and 1.5-year-old mice. NEMO-deficiency did not influence 
spontaneous knee osteoarthritis in mice. Representative H&E stained knee sections from (A) 1- and 
(B) 1.5-year-old mice of NEMOfl/Y and NEMOfl/YCol2a1Cre mice were comparable. No significant 
difference was observed in collateral ligament, synovial tissue (at higher magnification) and articular 
cartilage. 
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Figure 49: Evaluation of cartilage erosion, OA progression and AC composition at age of 1 year. 
(A) H&E and toluidine blue stained knee sections showed comparable cartilage damage in both 
groups. (B) According to erosion assessment, the level of cartilage damage was into transition zone. 
(C) Total OA score revealed that NEMOfl/Y and NEMOfl/YCol2a1Cre mice were with mild OA. (D) The 
AC thickness of wild type and NEMO-deficiency mice were almost the same. (E) The ratio of 
uncalcified and calcified region in AC was comparable as well. 
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Figure 50: Evaluation of cartilage erosion, OA progression and AC composition at age of 1.5 
year.  (A) H&E and toluidine blue stained knee sections showed comparable cartilage damage in both 
groups. (B) According to erosion assessment, the level of cartilage damage was into transition zone. 
(C) Total OA score revealed that NEMOfl/Y and NEMOfl/YCol2a1Cre mice were with mild OA. (D) The 
AC thickness of wild type and NEMO-deficiency mice were almost the same. (E) The ratio of 
uncalcified and calcified region in AC was comparable as well. 
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To examine the cartilage ECM breakage, IHC staining of aggrecan neoepitope 

such as G1-TEGE and VIDIPEN were performed. At age of 1- and 1-5-year-old wild 

type and NEMOfl/YCol2a1Cre mice, TEGE-stained signals were evenly distributed in 

articular cartilage (Figure 51A). VIDIPEN was sporadically detected in 1-year-old AC 

and largely increased in 1.5-year-old AC (Figure 51B). 

 The following immunostaining for aggrecanases MMP-2, -9 and -13 did not 

reveal significant differences between NEMOfl/Y and NEMOfl/YCol2a1Cre mice (Figure 

52). To conclude, these results have suggested that NEMO is likely a dispensable 

factor in spontaneous knee osteoarthritis. 

 

Figure 51: IHC staining of aggrecan neoepitopes. (A) In 1- and 1.5-year-old models, the signals of 
G1-TEGE were evenly distributed near the surface of articular cartilage. (B) Signals of VIDIPEN were 
sporadically found in 1-year-old cartilage and heavily increased in 1.5-year-old cartilage. Both groups 
at age of 1 and 1.5 year showed comparable G1-TEGE and VIDIPEN signals. 
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Figure 52: IHC staining of aggrecanases. (A) The signals of MMP2 were similar to G1-TEGE, which 
were distributed near the surface. (B) The signals of MMP-9 were pronounced in 1-year-old cartilage 
and slightly reduced in 1.5-year-old group. (C) MMP-13 was predominantly detected in subchondral 
bone. Comparison of NEMOfl/Y and NEMOfl/YCol2a1Cre at age of 1 and 1.5 year, expression of MMP-2, 
-9 and -13 were similar and no significant difference. 
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5. Discussion 

Nuclear factor–kappaB proteins control the expression of numerous genes in 

respond to stress conditions such as inflammation, infection or injury. In the recent 

years, pharmacological blockade of NF-κB canonical pathway has been suggested 

as a potential therapeutic treatment against bone degenerative disorders such as 

rheumatoid arthritis and osteoarthritis.  In spite of the suggested beneficial role of 

diminished NF-κB activation in amelioration of cartilage degradation, the role of the 

canonical NF-κB pathway in normal skeletal development still remains unclear, 

mainly because of the shortage of appropriate model animal. Using a Col2a1Cre 

transgenic mouse line, in this study we have successfully deleted the floxed Nemo 

gene in cartilage, which allowing us to clarify the role of canonical NF-κB signaling in 

skeletal physiology. 

5.1. The NEMO-mediated, canonical NF-κB pathway regulates 
postnatal growth of endochondral bones via the control of 
growth plate functions 

Previous studies have been revealed that conventional knock-outs of RelA (p65) 

and NEMO in mice result in diminished activation of the canonical NF-κB pathway 

and cause embryonic lethality between gestation days 12 and 16 (Beg et al., 1995; 

Rudolph et al., 2000). The embryonic lethality in both mutant strains was found due 

to apoptosis of hepatocytes and severe liver degeneration. Interestingly, no other 

abnormalities, including any skeletal defects, were reported in the p65-null and 

NEMO-null mice. In our study, conditional inactivation of NEMO in chondrocytes led 

to normal embryogenesis without signs of any skeletal malformations. Investigation of  

the skeleton of NEMOfl/YCol2a1Cre embryos and newborn animals using various 

techniques including whole-mount skeletal staining, morphometry, histological 

analysis, and proliferation assays showed that the skeletal appearance and skeletal 

growth of the mutants comparable to that of the wild-type mice. This observation 

indicates that NEMO/canonical NF-κB is dispensable for fetal skeletogenesis.   



DISCUSSION 

	 116	

In contrast to the embryonic stages, NEMOfl/YCol2a1Cre mice exhibited 

progressive growth retardation which begun at around 1 week of age and persisted 

throughout the whole life. Besides the skeletal phenotype, NEMO-deficient animals 

were fertile, had normal life span and showed no abnormal organ functions. On 

histological level, the observed postnatal dwarfism was characterized with shortened 

growth plate and reduced lengths of both the proliferating and hypertrophic zones. 

The growth plate shortening was accompanied with reduced BrdU incorporation rate 

in the proliferative zone, indicating that the canonical NF-κB pathway modulates the 

mitotic activity of proliferative chondrocytes. We have also found that p16 (also called 

cyclin-dependent kinase inhibitor 2A) mRNA is up-regulated in NEMO-deficient 

chondrocytes strongly implying a role of canonical NF-κB signaling in the control of 

cyclin dependent kinases. It has been shown in various cellular systems that p16 

plays critical regulatory function in cell cycle by suppressing G1/S transition (Hara et 

al., 1996; Rayess et al., 2012). A previous study has showed that expression of p16 

and NF-κB p65 is inversely correlated in melanocytes during melanoma progression 

(Ghiorzo et al., 2004). The fact that p16 was up-regulated in the cartilage of 

NEMOfl/YCol2a1Cre mice, further demonstrate that NEMO/ canonical NF-κB is a 

generalized signaling mechanisms which modulates cell cycle progression in different 

cell types, including chondrocytes. Mechanistically, several studies have indicated 

that p16 up-regulation keeps retinoblastoma proteins (pRB) un-phosphorylated, 

which results in decelerated progression from G1 to S phase. Whether or not the 

same mechanisms acting in the NEMO-deficient chondrocytes remains unresolved 

and needs to be elucidated in the future. 

BMP-2, a member of the TGFβ superfamily of growth factors, is known to play 

an important role in regulating embryonic and postnatal bone growth. A recent report 

has showed that BMP-2 expression is regulated by NF-κB signaling in growth plate 

chondrocytes both in vitro and in vivo (Feng et al., 2003). The NF-κB subunits p50 

and p65 bind to regulatory elements of the BMP-2 gene, and possibly regulating 

BMP-2 expression.  Importantly, p50/p52 double knockout mice with insufficient NF-

κB activation display reduced BrdU incorporation rate in proliferative growth plate 

chondrocytes accompanied by decreased BMP-2 expression.  In our study, we have 

not investigated BMP-2 expression in postnatal NEMOfl/YCol2a1Cre chondrocytes. 

However, we did not find a difference in chondrocyte proliferation upon BMP-2 

treatment between NEMO-deficient and control metatarsal explants suggesting that 
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the ablation of the canonical p50/p65 pathway may not be crucial for BMP-2 induced 

growth.  Nevertheless, the relation between BMP-2 expression and canonical NF-κB 

signaling in postnatal NEMOfl/YCol2a1Cre growth plate chondrocytes should be 

investigated with more details in the future. 

5.2. NEMO/canonical NF-κB signaling modulates chondrocyte survival in 

postnatal growth plate 

Under normal circumstances, terminally differentiated hypertrophic 

chondrocytes at the chondro-osseous either die by apoptosis or transdifferentiate into 

osteoblast (Zhou et al., 2014). Chondrocyte death is not typical in upper growth plate 

zones, and the appearance of apoptotic cells in the proliferative zone is usually 

associated with growth plate dysfunction. In the growth plate of NEMOfl/YCol2a1Cre 

mice, we have detected apoptotic chondrocytes scattered through the proliferative 

and upper hypertrophic zones by TUNEL assay. Although the rate of apoptosis was 

low in the mutant growth plate, we hypothesize that a constant cell death in the 

proximal growth plate zones could also contribute, besides the proliferation defect, to 

the dwarf phenotype of NEMOfl/YCol2a1Cre mice. Several studies have indicated the 

participation of NF-κB subunits in the control of apoptosis (Beg and Baltimore, 1996; 

Van Antwerp et al., 1996; Wang et al., 1996). Recently, it has been shown that p65 is 

constitutively activated by the NK homo-protein Nkx3.2 to support chondrocyte 

survival in proliferative chondrocytes (Park et al., 2007). The expression of Nkx3.2 is 

reduced in mature chondrocytes (Church et al., 2005; Provot et al., 2006). Moreover, 

chondrocyte apoptosis and NF-κB activation are inversely related during cartilage 

maturation. Interestingly, the constitutive activation of NF-κB mediated by Nkx3.2 in 

chondrocytes also requires IKK-β and NEMO (Yong et al., 2011). Apart from Nkx3.2-

mediated survival effect, it has known that several distinct elements are also involved 

in regulation of viability including β1-integrin and HIF-1α (Hirsch et al., 1997; Schipani 

et al., 2001). In our NEMO-deficient chondrocytes, Nkx3.2-mediated survival 

pathways might be blocked as well as canonical NF-κB signaling and could account 

for the increased apoptotic rate in the proliferative and upper hypertrophic zones of 

NEMOfl/YCol2a1Cre growth plate owning to the lack of NEMO expression and 

canonical NF-κB activation (Figure 53). However, further investigation is required to 

confirm this assumption. 
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Figure 53: NEMO is involved in Nkx3.2-mediated constitutive activation of NF-κB signaling. 
Nkx3.2, specifically expresses in proliferative chondrocytes in association with the NEMO-IKKβ 
complex, and constitutively activates RelA and maintains chondrocyte viability. However, the NEMO-
deficient chondrocytes are more vulnerable to apoptosis due to the destruction of NF-κB-Nkx3.2-
NEMO-IKKβ complex, which is likely responsible for the increased apoptotic rate in the proliferative 
zone of NEMO-deficient growth plate. Figure is adapted and modified from (Park et al., 2007). 

5.3. Primary NEMOfl/YCol2a1Cre chondrocytes exhibit severe death 
phenotype upon exposure to TNF-α 

Inflammation enhances cartilage degradation in the processes of osteoarthritis 

and rheumatoid arthritis, therefore blocking inflammatory cytokines such as tumor 

necrosis factor (TNF, TNFα) or interleukin-1 (IL-1) is a potential therapeutic approach 

for the prevention of the progression of these diseases. TNF signaling proceeds 

through NEMO/ NF-κB dependent and independent pathways, which are not only 

regulates the expression of pro-inflammatory proteins but are also involved in the 

control of death-survival decision of the cells. 

In most cell types, upon TNF engagement by TNF receptor-1 (TNRF-1), NF-κB 

activation is initiated by the binding of TNFR-1 associated death domain protein 
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(TRADD) to the cytoplasmic part of TNFR-1, which subsequently recruits receptor-

interacting serine-threonine protein kinase 1 (RIPK-1), TNFR-associated factor 2 

(TRAF-2) and the E3 type ubiquitin ligase clAP1 or clAP2 (Devin et al., 2000; Hsu et 

al., 1996; Kelliher et al., 1998; Ting et al., 1996). After RIPK-1 undergoing poly-

ubiquitination (Bertrand et al., 2008; Lee et al., 2004b; Wang et al., 2008; Wertz et al., 

2004), it interacts with the ubiquitin-binding domains of NEMO (Laplantine et al., 

2009). The binding of NEMO to RIPK-1 is a critical step to recruit the whole IKK 

complex and activation of the canonical NF-κB pathway (Ea et al., 2006; Li et al., 

2006). RIPK-1/NEMO-induced NF-κB activation leads to the expression of several 

anti-apoptotic genes (e.g. IAPs, Bcl-2 family subunits, cFLIP) and thus promotes cell 

survival (Micheau et al., 2001; Wang et al., 1998). TNF-induced NF-κB activation was 

considered as a late-stage pro-survival checkpoint in T lymphocytes (O'Donnell et al., 

2007). Apart from participating in NF-κB-regulated pro-survival function, NEMO was 

reported to possess a relatively early pro-survival activity that is independent from the 

canonical NF-κB pathway (Legarda-Addison et al., 2009). RIPK-1 is able to bind 

caspase-8 initiating a classical apoptosis pathway. NEMO, before TNF-induced NF-

κB activation, masks caspase-8 binding sites on RIPK-1, therefore it suppress 

apoptotic activity. The pro-apoptotic activity of RIPK-1 is appears when NEMO is 

absent (Legarda-Addison et al., 2009) or ubiquitination is not present (Bertrand et al., 

2008; O'Donnell et al., 2007; Wang et al., 2008). Consequently, a novel role of 

NEMO in pro-survival pathway has been suggested. According to above evidences, 

TNF signal transduction likely has two checkpoints. (1) Binding with of NEMO and 

attachment of non-degradative ubiquitin chains in RIPK-1 (early checkpoint). 

Afterwards, IKK complex is recruited by NEMO-RIPK-1 which in turn leads to (2) up-

regulation of NF-κB-mediated pro-survival genes (late checkpoint). Different from the 

temporary pro-survival effect provided by the primary checkpoint, the secondary 

checkpoint offers sustained expression of pro-survival genes. Hence, TNF-stimulated 

apoptosis could occur if one of the pro-survival checkpoints is abolished. Furthermore, 

a recent study using T lymphoma cells demonstrated that NEMO-deficiency results in 

hypersensitivity to necroptosis (or regulated necrosis) in the absence of caspase 

(apoptosis) inhibitors, which, again, does not depend on the activation of the 

canonical NF-κB pathway (O'Donnell et al., 2012). In summarizing the literature data, 

NEMO and NEMO/NF-κB signaling cascades fine-tunes the TNF-dependent outcome 

of cell survival or death (apoptosis or necroptosis). In our study, we have investigated 
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the respond of primary NEMO-deficient chondrocytes to TNF-α exposure in 

monolayer culture. As the lack of NEMO interferes with both the pro-survival function 

of TNF/NF-κB signaling and the anti-apoptotic/anti-necrotic function of RIPK-1, it is 

not surprising that the mutant cells showed massive cell death after TNF-α treatment 

(Figure 54). However, the used methodology to stain live, apoptotic, and necrotic 

cells do not allow to clearly discriminating among the potential cell death pathways in 

the absence of NEMO. The predominant staining of ethidium homodimer and the 

lack of significant annexin V-positive cell membrane could be interpreted as very late 

stage apoptosis with already prominent cell membrane degradation or late stage 

necroptosis. Clearly, further investigation is required to devote into this interesting 

issue. Importantly, blockage of the canonical NF-κB pathway in arthritic disorders by 

inhibiting NEMO function may induce chondrocyte death in the articular cartilage and 

countervail its beneficial effect on suppressing the expression of catabolic proteins in 

an inflammatory environment (see later).  

 

Figure 54: NEMO plays a key role in pro-survival activities against TNF-α stimuli. (A) In response 
to TNF-α induction, the poly-ubiquitylation of RIPK-1 and its binding with NEMO are regarded as the 
primary or early pro-survival checkpoint. The NF-κB-regulated pro-survival activities are served as the 
secondary or late pro-survival checkpoint. The lack of either checkpoint (or excessive TNF-α stimuli) 
results in apoptosis or necroptosis. (B) In NEMO-deficient chondrocytes, the canonical and intrinsic 



DISCUSSION 

	 121	

activations of NF-κB are both abolished, which eliminate both survival checkpoints and lead to 
massive apoptosis/necroptosis. Figure is adapted and modified from (Brenner et al., 2015).  

5.4. NEMO modulates growth plate architecture  

The proper geometry, size, number and orientation of growth plate 

chondrocytes are important factors which ensure longitudinal growth (Ascenzi et al., 

2011; Ivkovic et al., 2003). As a result of spatially coordinated proliferation and 

remodeling at the proximal and distal growth plate, respectively, the length of 

endochondral bones is gradually increasing during embryonic and early postnatal 

development. The normal epiphyseal growth plate consists of 3 major layers, namely 

the resting zone, the proliferating zone, and the hypertrophic zone along the proximo-

distal axis of the bone (Karsenty et al., 2009; Kronenberg, 2003). In the proliferative 

zone, chondrocytes undergo oriented cell division followed by rotational movements, 

and form linear columns with coin-like arrangements as seen on Figure 8. In 2 to 4 

weeks old NEMOfl/YCol2a1Cre mice we have observed a slight disorganization of 

proliferative chondrocytes characterized by a tendency for the formation of less 

elongated columns. Instead of organized into linear stacks, mutant chondrocytes 

arranged into more oval clusters indicating failure in cell migration. The mild 

disarrangement of NEMO-deficient chondrocytes in the proliferative zone might be 

caused by changes in cell-matrix interactions, in ECM stiffness, or both (Aro et al., 

2015; Prein et al., 2016; Raducanu et al., 2009). Using indentation-type atomic force 

microscopy, we did not find a significant difference in the elasticity of the cartilaginous 

matrix of the growth plate between mutant and control animals. This may indicate 

that the hypothetic migration deficit of NEMO-deficient growth plate chondrocytes 

could be caused by abnormal cell-matrix interactions and/or anchorage-dependent 

dysfunction of cytoskeletal proteins.  Consistent with this hypothesis, we have shown 

that NEMO deficient chondrocytes display increased binding to ECM ligands such as 

collagens, fibronectin and laminin in vitro. Furthermore, monitoring chondrocyte 

migration by life cell imaging on plastic surface in the presence of serum, we have 

found reduced spontaneous movements of NEMO-null chondrocytes compared to 

wild type. 

Chondrocyte shape and migration are ultimately determined by integrin-

mediated cell-matrix interactions. Integrins are heterodimeric transmembrane 
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receptors composed of alpha and beta subunits with the ability to bind various 

extracellular matrix ligands.  Multiple integrin heterodimers are present in 

chondrocytes including collagen binding (α1β1, α2β1, α10β1), fibronectin binding 

(α5β1, αvβ3 αvβ5) and laminin binding integrins. Integrins connect the cartilage ECM 

to the intracellular cytoskeletal system, and transmit chemical and biomechanical 

signals from the pericellular environment into the cell interior via focal adhesion 

complexes and various intracellular signaling pathways. This signaling network, 

called outside-in signaling, controls diverse cellular functions such as proliferation, 

survival, polarity and movement. Perturbed or diminished integrin signaling has 

severe influence on cytoskeletal dynamics controlled by the Rho family of small 

GTPases, or on calcium inflow important for proper cell behavior. The signaling 

process occurs via phosphorylation of kinases such as focal adhesion kinase (FAK) 

or mitogen-activated protein kinases (MAPKs) and could modulate the expression of 

transcription factors (e.g. NF-κB family subunits). Previous studies in genetically 

modified mice have identified that the lack of β1 integrins, the largest integrin 

subfamily, on chondrocytes severely impairs chondrocyte function in the growth plate 

and in the articular cartilage. Conditional-knockout of the β1 subunit in chondrocytes 

(β1fl/flCol2a1Cre mice) (Aszodi et al., 2003) or in limb bud mesenchymal precursor 

cells (β1fl/flPrx1Cre mice) (Raducanu et al., 2009) resulted in chondrocyte 

proliferation, survival, adhesion and migration defects.  Importantly, in both mouse 

model the orientation and columnar organization of growth plate chondrocytes were 

abnormal, which in some respect, resemble to the phenotype observed in the NEMO-

deficient growth plate.  Furthermore, accumulating evidence has pointed out the 

significance of integrins in determination of cell polarity in various tissues (Streuli, 

2009) such as keratinocytes (Lechler and Fuchs, 2005), mammary gland cells 

(Taddei et al., 2008) or Drosophila follicular epithelial cells (Fernandez-Minan et al., 

2007) through regulating the orientation of the mitotic spindle apparatus (Toyoshima 

and Nishida, 2007). In our NEMOfl/YCol2a1Cre mice we found much milder growth 

plate phenotype compared to the phenotypes reported in mice with chondrocyte-

specific deletion of β1 integrins. Indeed, the distribution of the integrin-associated 

focal adhesion protein paxillin in cultured chondrocytes (Figure 43D) and the 

activation of integrin signaling molecules such as MAPKs, AKT and FAK were 

apparently normal in NEMOfl/YCol2a1Cre mice (Figure 41B), suggesting that an 
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abnormal integrin function is probably not causative for the observed growth plate 

anomalies.  

Cdc42 and Rac1, two members of Rho GTPases, controls cytoskeletal 

organization important for cell shape determination and cell movements. Mice lacking 

either Cdc42 or Rac1 also exhibit growth plate defects with misoriented chondrocyte 

columns (Nagahama et al., 2016; Wang et al., 2007), implying that cytoskelatal 

dynamics is important for normal morphogenesis of the growth plate. The abnormal 

migration and spreading behavior of Nemo-null chondrocytes in vitro may indicate 

impaired function of Rho GTPases and the cytoskeletal system (Figure 43A,B). In 

this study we have not determined the activation status of Rho GTPases, but 

immunofluorescence staining of the actin cytoskeletal system by phalloidin in Nemo-

deficient chondrocytes did not indicate any obvious abnormalities of stress fiber, 

micro-spike and lamellopodia formation, controlled by RhoA, Cdc42 and Rac1, 

respectively (Figure 43D). Nevertheless, additional studies should be performed in 

order to investigate any possible connection between canonical NF-κB signaling and 

Rho GTPases-mediated, cytoskeleton-dependent migration behavior of chondrocytes. 

5.5. Efficient ablation of NEMO in chondrocytes alleviate 
proteoglycan loss upon pro-inflammatory cytokine treatment in 
hip explant culture 

Pro-inflammatory cytokines IL-1β and TNF-α enhance the catabolic activities 

of cartilage and are known as critical players in cartilage degradation during arthritis 

with inflammatory component. Previous studies have shown the involvement of 

canonical NF-κB signaling in cartilage breakdown in response to stimulations with IL-

1β or TNF-α. In experiments of human OA chondrocytes, synovial and 

chondrosarcoma cells, NF-κB was reported to modulate the expression of matrix 

metalloproteinases including MMP-1, -2, -3, -9 and -13 (Amos et al., 2006; Liacini et 

al., 2003; Vincenti and Brinckerhoff, 2002). Furthermore, it has been shown that NF-

κB signaling also participates in the activation of ADAMTS-4 and -5, two critical 

members of the “a disintegrin and metalloprotease with thrombospondin motifs” 

family, which mediate aggrecan degradation during OA (Verma and Dalal, 2011; 

Yaykasli et al., 2015). Numerous publications have suggested the therapeutic 
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potential of blocking NF-κB signaling in the treatment of rheumatic diseases. To 

confirm this hypothesis, hip explant model with pro-inflammatory cytokines induction 

was used in our study to examine the early onset of cartilage degradation. 

Treatments of the hip explants with IL-1β and TNF-α ex vivo resulted in massive 

proteoglycan breakdown in the wild type group characterized by high amount of 

GAGs in the culture medium (Figure 45); reduced Safranin Orange staining and 

strong exposure of aggrecan degradation neo-epitopes including VIDIPEN and 

TEGE (Figure 44). NEMO-deficient cartilage displayed significantly reduced GAGs 

release into the medium, and showed less intensive immunostaining for the VIDIPEN 

and TGEG neo-epitopes in response to the stimulation of IL-1β and TNF-α (Figures 

44 and 45). The neo-epitopes VIDIPEN and TEGE are generated by the action of 

MMP-3 and ADAMTS-4/-5, respectively (Nagase and Kashiwagi, 2003; Westling et 

al., 2002). Our immunohistochemical staining demonstrated that the expression of 

MMP-3 induced by IL-1β and TNF-α was greatly reduced by blocking canonical NF-

κB signaling (Figure 46). In contrast, the deposition of MMP-2, -9 and -13 in were 

comparable between wild type and Nemo mutant explants. The expression of 

ADAMTS-4/5 was not assessed in our study due to the lack of antibodies working on 

section immunohistochemical staining. In summary, however, our results are 

consistent with previous studies (Marcu et al., 2010; Roman-Blas and Jimenez, 2006), 

and clearly demonstrate that the blockade of canonical NF-κB signaling can 

effectively protect the cartilage from pro-inflammatory cytokines induced proteoglycan 

loss by reducing expression of critical degradation enzymes such as MMP3 and 

probably ADAMTS-4/5. It should also mention that the protection against IL1β- and 

TNFα-induced proteoglycan breakdown was only partial, implying that we cannot fully 

prevent IL1β- and TNFα- triggered cartilage degradation by suppressing the NF-κB 

canonical pathway. Nevertheless, our findings strongly suggest that elimination of the 

canonical NF-κB signaling in articular cartilage chondrocytes has the therapeutic 

potential to ameliorate IL1β- and TNFα-induced cartilage degradation during OA 

progression. 

The blockade of NF-κB canonical signaling in rheumatoid diseases of the joint 

is still controversial owning to the unselective elimination of its various advantages 

(e.g. on chondrocyte survival), and issues of practical applications such as targeted 

delivery of the blocking agent(s) (Roman-Blas and Jimenez, 2006). Thus, subsequent 
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investigations are required to gain more detailed insights into the utility of NF-κB 

blockade for the development of effective therapeutic strategies against OA and RA. 

5.6. An ex vivo hip avulsion model does not indicate a particular 
importance of NF-κB canonical signaling in injury induced 
activation of inflammatory gene expression. 

Joint damage due to injury significantly elevates the risk of osteoarthritis; 

therefore analyzing the pathways that are induced upon trauma has unquestionable 

importance for better understanding cartilage degeneration. A previously study has 

showed that physical damage of the articular cartilage rapidly activates the three 

major MAP kinases (Erk, Jnk, p38) as well as NF-κB, which in turn triggers 

intracellular inflammatory signaling pathways (Gruber et al., 2004). Taking into 

account the advantage of using mice with ablated Nemo/canonical NF-κB pathway, 

we have performed an avulsion injury model to assess the contribution of NF-κB to 

injury-induced gene expression profile. We have performed expression analysis on a 

pre-determined, injury-induced panel of genes and, surprisingly, we found that very 

few genes showed differential expression in NEMO-deficient explants compared with 

control explants. The only gene suppressed in NEMOfl/YCol2a1Cre hips upon 

explantation of the cartilaginous cap of the hip was Arginase 1. In wild-type, ARG-1 

was the most upregulated gene upon injury. ARG-1 is known to participate in hepatic 

urea cycle, immune system and inflammation responses (Munder, 2009). The 

function of ARG-1 protein in cartilage so far is still unclear. Curiously, it seems to be 

regulated in a similar fashion to ADAMTS5, although ADAMTS5 was not significantly 

suppressed in our experiment. We suggest that the up-regulation of ARG-1 in wild-

type group is possibly due to the inflammation followed by mechanical-induced 

cartilage damage. Less-regulated ARG-1 in NEMOfl/YCol2a1Cre hip cap might 

represent lower catabolic metabolism compared to the wild-type group.  

We have observed the up-regulation of Hyaluronan synthase 2 (HAS-2) in 

NEMOfl/YCol2a1Cre hip caps suggesting the activation of a mechanism which aims to 

compensate mechanical stress-induced cartilage damage. HAS-2 protein is 

responsible for hyaluronan (HA) production, which possess multiple functions such 

as ECM cue for cell migration, space cram and joint lubrication (Spicer and Nguyen, 
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1999; Watanabe and Yamaguchi, 1996). HA is constitutively generated in the period 

of injuries to build a scaffold for the growth of fibroblasts and angiogenesis. Elevation 

of HA concentration in the blood is related to OA and RA. The up-regulation of HAS-2 

in NEMOfl/YCol2a1Cre articular cartilage may enrich cartilage ECM and provides a 

protective mechanism against mechanical stress. Thus, apparently the canonical NF-

κB pathway has a negative influence on hyaluronan-mediated anabolic processes 

induced upon injury.  

MMP-3 and IL-18 were also up-regulated in NEMOfl/YCol2a1Cre hip caps 

compared to wild-type. Degradation of aggrecan in degenerative articular cartilage 

was mainly due to the actions of MMPs and ADAMTSs (Struglics et al., 2006). MMPs 

are also known to cut collagen II into smaller parts, which could be cleaved by 

gelatinases (Tchetverikov et al., 2005). In injured or post-compressed human 

cartilage, the expression of MMP-3 is up-regulated, which is similar to MMP-3 

enhancement in the synovial fluid of traumatized-knee (Chubinskaya et al., 1999). 

The up-regulation of MMP-3 mRNA in NEMOfl/YCol2a1Cre hips upon injury may 

promote cartilage ECM breakdown. Interestingly, Nemo deficiency results in 

decreased deposition of MMP-3 in hips exposed to inflammatory cytokines (see 

before); and in elevated MMP-3 gene expression in hip caps exposed to mechanical 

stress. This discrepancy may indicate a differential role of the canonical NF-κB 

signaling in the control of MMP-3 expression, depending on the nature of external 

stimuli (inflammatory versus mechanical).  

IL-1β is initially produced as a non-active molecule which needs to be further 

processed to become fully functional. (Black et al., 1988; Hazuda et al., 1989; Mosley 

et al., 1987). Such processing is carried out by the IL-1β converting enzyme (ICE or 

caspase-1) (Black et al., 1989; Miller et al., 1993). Aside from IL-1, IL-18 (interferon 

gamma inducer) was also found as the substrate of ICE (Dinarello, 1998; Fantuzzi 

and Dinarello, 1999). IL-1 and IL-18 are structurally-similar, and both initially 

generated as non-active precursors (Ghayur et al., 1997; Gu et al., 1997). ICE is 

produced both in the cartilage and the synovial membrane; and the expression of 

ICE is significantly increased in OA-affected joints. ICE is proposed to be essential 

for maturation of IL-1β and IL-18 in OA-affected joints (Saha et al., 1999).	Moreover, 

the expression of IL-1β, IL-18 and ICE was remarkably increased in OA-affected 

cartilage. (Saha et al., 1999).  Although these observations indicate that IL-18 may 



DISCUSSION 

	 127	

play a role in OA progression, its exact function in OA is still unclear. The fact that 

upon injury IL-18 is up-regulated in NEMO-null hips compared to wild-type implicates 

that NF-κB signaling negatively regulates the expression of this cytokine in a 

mechanically challenged environment.  

Taken together, our ex vivo hip injury model demonstrated the upregulation of 

one “good” gene and two “bad” genes in the absence of NEMO. As for ARG-1, it is 

speculative whether these changes in gene expression are stood for beneficial or 

harmful response against mechanical stress in the cartilaginous NEMOfl/YCol2a1Cre 

hip cap. HAS-2 up-regulation can be recognized as a beneficial factor against the up-

regulation of the harmful MMP-3 and IL-18. Interestingly, although Gruber et al., 

(2014) previously showed that the activation of the NF-κB signaling pathway among 

the immediate response to mechanical injury of the articular cartilage, our expression 

analysis indicates that NEMO/canonical NF-κB has little influence on the expression 

of typical genes activated upon mechanical stress.   

5.7. NEMO/canonical NF-κB-deficiency has no apparent 
consequence on spontaneous, age-associated OA progression 
in mice 

Human osteoarthritis is a slowly progressing degenerative disorder of the 

articular cartilage in association with, but not caused by aging. Age-related changes 

in the cartilage ECM, chondrocyte senescence, genetic and epigenetic factors are all 

contribute for the onset and progression of the diseases (Loeser, 2013). Recent 

studies have indicated that age-related, or spontaneous, osteoarthritis may be 

promoted by low level of inflammation of the joint (Greene and Loeser, 2015). This 

age-associated inflammation is called “inflamm-aging” and NF-κB signaling could be 

involved in its regulation. In order to assess the role of Nemo/ NF-κB in spontaneous 

osteoarthritis, we have monitored osteoarthritis-like changes of the knee in aging 

wild-type and NEMOfl/YCol2a1Cre mice. Evaluating distinct levels of cartilage 

damage, tidemark integrity, chondrocyte cellularity, GAG content and osteophyte 

formation, these parameters give an overall estimation of OA progression. For our 

surprise, the assessment of OA progression indicated that NEMOfl/YCol2a1Cre mice 

displayed comparable cartilage erosion, chondrocyte cellularity and proteoglycan 
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loss as wild-type mice. No osteophyte formation is found in control and mutant mice. 

Importantly, careful analysis of the synovial tissue of the joint, we have found no 

evidence for inflammation or synovial changes in the genotypes. These results 

demonstrate that NEMO may have a dispensable role in naturally occurring primary 

osteoarthritis, at least in out rodent model. 

However, the impact of canonical NF-κB signaling in the development of 

secondary OA is still unclear. To further address this topic and investigate the effect 

of blocking canonical NF-κB pathway in post-traumatic OA, we will induce OA by 

surgical procedures in wild-type and NEMO-deficient mice. Transection of the 

anterior cruciate ligament transection (ACLT) in mouse results in severe OA 

development post-surgery, thus the ACLT mouse model creates a time-pressing 

window for studying the early symptoms of OA. Compared to ACLT model, 

destabilization of the medial meniscus (DMM) surgical instability model offers slower 

progression of OA and excellent reproducibility. Moreover, the OA symptoms and 

slow progression of mice receiving DMM surgery are similar to the mice from 

spontaneous OA models, which make the DMM model more suitable for assessing 

the early features of secondary OA than ACLT model. Therefore, the DMM model of 

osteoarthritis (Glasson et al., 2007) will be used in future experiments to confirm the 

potential of blocking NF-κB canonical signaling. 
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6. Conclusion 

1. The normal appearance of the pre-natal skeleton in NEMOfl/YCol2a1Cre mice 

implies that the canonical NF-κB signaling is dispensable embryonic 

development of endochondral bones.  

2. The dwarf phenotype of NEMOfl/YCol2a1Cre mice after birth demonstrates that 

Nemo/	NF-κB controls potnatal growth of the endochondral skeleton. 

3. The canonical NF-κB signaling modulates proliferation of postnatal growth plate 

chondrocytes through the control of p16 expression. 

4. In the absence of Nemo/canonical NF-κB signaling, cell survival of growth plate 

chondrocytes is compromised. 

5. In TNF-α induced cell death, NEMOfl/YCol2a1Cre chondrocytes were more 

sensitive to apoptosis. 

6. Nemo/NF-κB is important for postnatal growth plate morphogenesis by 

modulating the formation of longitudinal chondrocytes columns. 

7. Canonical NF-κB signaling/Nemo play roles for chondrocyte adhesion and 

spreading. 

8. Nemo-deficiency does not alter the biomechanical properties of the postnatal 

growth plate ECM. 

9. Ablation of NEMO in chondrocytes results in partial protection against pro-

inflammatory cytokine-induced proteoglycan lost in hip explants, suggesting that 

suppressing the canonical NF-κB cascade by blocking NEMO is a potential 

therapeutic intervention strategy to ameliorate inflammation-driven arthritis. 

10. Nemo/NF-κB has minor role for injury-induced inflammatory gene expression in 

a murine articular cartilage avulsion model. 

11. In rodent, canonical NF-κB signaling is dispensable for age-related spontaneous 

osteoarthritis. 

In summary, here we have reported that NEMO-deficient mice display a 

moderate postnatal dwarfism phenotype due to impaired proliferation and apoptosis 

of growth plate chondrocytes. Reduced migration and enhanced ECM ligand binding 

affinity of chondrocytes are likely responsible for the slightly disorganized columns in 

the growth plate of NEMO-deficient mice. Thus, the phenotype of NEMOfl/YCol2a1Cre 

mice demonstrates a moderate role of NF-κB canonical pathway in development of 
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the postnatal endochondral skeleton. We have proved by mouse genetics that 

NEMO/NF-κB is indispensable for mediating pro-inflammatory cytokines-triggered 

catabolism of the articular cartilage, but it have little of any effect in trauma-induced 

gene expression and age-associated, spontaneous osteoarthritis. 
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7. Summary 

NF–κB proteins are known to mediate expression of numerous genes 

responding to stress conditions such as inflammation, infection or injury. Studies of 

bone degenerative diseases have indicated the blockade of NF-κB canonical 

signaling as a potential strategy against arthritis. Owning to the absence of suitable 

animal models, the role of NF–κB signaling in normal skeletal physiology is still not 

completely understood. In this study, the X chromosome-localized gene encoding 

NF-κB essential modulator (NEMO), a key regulator of the canonical NF-κB pathway, 

was conditionally knocked-out using a chondrocyte-specific Col2a1cre transgene in 

mice. NEMOfl/YCol2a1cre mice showed the absence of the canonical NF–κB 

activation in chondrocytes; and exhibited moderate dwarfism postnatally 

characterized by shortened growth plate, mild disorganization of columnar 

chondrocytes and increased apoptosis/necrosis. Primary chondrocytes isolated from 

costal cartilage displayed reduced migration and proliferation. Pro-inflammatory 

cytokines induced proteoglycan depletion, monitored by the exposure of the 

aggrecan degradation neoepitopes and glycosaminoglycan release, was significantly 

less in NEMO-deficient hip explants compared with controls. Using an ex vivo hip 

avulsion model, microarray analysis demonstrated only a few changes in the 

expression of injury-induced genes compared to wild type. Assessing age-associated, 

spontaneous osteoarthritis of the knee joint, NEMOfl/YCol2a1cre mice displayed 

comparable articular cartilage destruction with controls. Taken together, the NEMO-

deficient conditional mouse model demonstrated that: 1) the canonical NF-κB 

signaling plays an important role in postnatal skeletal growth; 2) the catabolic effects 

of pro-inflammatory cytokines in cartilage can be partially eased by blocking the 

canonical NF-κB pathway; 3) Nemo-dependent NF-κB activation has moderate role 

for gene induction upon injury; and 4) NEMO/canonical NF-κB signaling is 

dispensable for spontaneous knee arthritis. The NEMOfl/YCol2a1cre mice, thus, 

provide a valuable model system for better understanding the role of canonical NF-

κB for the development and function of the cartilaginous skeleton. 
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8. Zusammenfassung 

Proteine der NF–κB-Familie beeinflussen die Expression einer Vielzahl von 

Genen, die auf zelluläre Stresssituationen wir Inflammation, Infektion oder 

Verletzungen reagieren. Studien von degenerativen Knochenerkrankungen haben 

die Bedeutung der Blockade des kanonischen NF–κB Signalwegs als potentielles 

Ziel zur Behandlungen von Osteoarthrose und rheumatoide Arthritis verdeutlicht. 

Durch den Mangel an geeigneten Tiermodellen ist die Rolle des NF-κB Signalwegs in 

der normalen Skelettphysiologie noch immer nicht vollkommen verstanden. In der 

vorliegenden Studie wurde das X-chromosomalliegende Gen NEMO (NF-κB 

essential modulator), ein Schlüsselregulierer im kanonischen NF-κB Signalweg, 

konditional, durch die Verwendung einer knorpelspezifischen Col2a1cre transgenen 

Mauslinie, gelöscht. NEMOfl/YCol2a1cre Mäuse zeigten ein Ausbleiben der 

kanonischen NF–κB Aktivierung in Chondrozyten und entwickelten postnatal einen 

mäßigen Kleinwuchs, der durch eine verkürzte Wachstumsfuge, eine leichte 

Unordnung der säulenförmigen Chondrozyten und eine erhöhte Nekrose/Apoptose 

verursacht wurde. Primäre Chondrozyten, die aus Rippenknorpel isoliert wurden, 

zeigten eine reduzierte Migration sowie Proliferation. Pro-inflammatorische Zytokine 

induzierten Proteoglykanverminderung, dass durch die Freisetzung von Aggrecan-

Neoepitopen und Glykosminoglykanen nachgewiesen wurde, war signifikant weniger 

in NEMO-deifizieren Hüftkopfexplantaten im Vergleich zu den Kontrollen. Durch die 

Verwendung eines Hüftkopfdistorsionmodells konnte eine Mikroarrayanalyse einige 

kleine Veränderungen in der Expression von verletzungsbedingten Genen im 

Vergleich zu Wildtypen aufgezeigt werden. Des Weiteren konnte durch die 

Beurteilung von altersbedingter, spontaner Osteoarthrose der Kniegelenke eine 

vergleichbare Zerstörung des artikulären Knorpels in NEMOfl/YCol2a1cre Mäusen 

und Kontrolltieren festgestellt werden. Zusammenfassend zeigte das NEMO-

defizitäre konditionale Mausmodell, dass 1) der kanonische NF-κB Signalweg eine 

wichtige Rolle für das postnatale Skelettwachstum spielt; 2) der katabolische Effekt 

von pro-inflammatorische Zytokinen im Knorpel durch die Blockierung des NF-κB 

Signalwegs verringert werden kann; 3) die Aktivierung von NF-κB durch NEMO einen 

moderate Rolle in der Geninduktion nach Verletzungen hat; und 4) NEMO-vermittelte 

kanonische NF-κB Signaltransduktion entbehrlich für spontane Kniearthrose ist. 
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NEMOfl/YCol2a1cre Mäuse stellen somit ein nützliches Modellsystem dar, um die 

Rolle von kanonischem NF-κB in der Entwicklung und Funktion des Knorpelskeletts 

zu verstehen.  
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10. List of abbreviations 

AC    Articular cartilage 

ACL    Anterior cruciate ligament 

ACLT Anterior cruciate ligament transection 

ADAMTS-5 A disintegrin and metalloproteinase with thrombospondin 

motifs 5 

AFM    Atomic force microscopy 

AKT    Protein kinase B (PKB) 

ARG-1   Arginase-1 

ATM    Ataxia telangiectasia mutated 

BCL    B-cell lymphoma 

BMP-2   Bone morphogenetic protein 2 

BrdU    5-bromo-2'-deoxyuridine 

BSA    Bovine serum albumin 

CD95    Cluster of differentiation 95 

cFLIP Cellular FLICE (FADD-like IL-1β-converting enzyme)-

inhibitory protein 

Col    Collagen 

CK-2    Casein kinase-II 

CRE    Chromosome recombinase 

COMP   Cartilage oligo matrix protein 

COX-2   Cyclooxygenase 2 

DDR-2   Discoidin domain-containing receptor 2 

DAPI    4,6-diamidino-2-phenylindole 

DMEM   Dulbeco's minimal essential medium 

DNA    Deoxyribonucleic acid 

dNTP    Deoxyribonucleotide triphosphate 

dKO    Double knockout 

DMM    Destabilization of the medial meniscus 

DMSO   Dimethyl sulfoxide 

DTT    Dithiothreitol 

dsRNA   Double strand RNA 
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ECM    Extracellular matrix 

EDTA    Ethylenediaminetetraacetic acid 

e.g.    Exempli gratia (for example) 

ELISA    Enzyme-linked immunosorbent assay 

ERK    Extracellular signal-regulated kinases 

FAK    Focal adhesion kinase 

FBS    Fetal bovine serum 

FGF    Fibroblast growth factor 

FGFR    Fibroblast growth factor receptor 

FITC    Fluorescein isothiocyanate 

Fn    Fibronectin 

GADPH   Glyceraldehyde 3-phosphate dehydrogenase 

GAG    Glycosaminoglycan 

gDNA    Genomic DNA 

gp-39    Glycoprotein 39 

GTP    Guanosine triphosphate 

HA    hyaluronan 

HAS-2    Hyaluronan synthase 2 

HER-2   Human epidermal growth factor receptor 2 

HLH    Helix-loop-helix 

HZ    Hypertrophic zone 

H&E    Hematoxyl & eosin 

ICE    IL-1β converting enzyme 

IGF    Insulin-like growth factor 

IL    Interleukin 

IĸB Nuclear factor of kappa light polypeptide gene enhancer in 

B-cells inhibitor 

IKK    IκB kinases 

iNOS    Inducible nitric oxide synthase 

ITM    Interterritorial matrix 

Jnk    c-Jun N-terminal kinase 

KO    Knockout 

LMP    Latent membrane protein 

LNA    Lock nucleic acid-antisense 
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LPS    Lipopolysaccharide 

LZ    RelB-transactivation domain 

MAPK    Mitogen-activated protein kinase 

MEF    Mouse embryonic fibroblasts 

MGP    Matrix gla protein 

ML    Mediolateral 

MMP    Matrix metalloproteinase 

mRNA    Messenger RNA 

MSC    Mesenchymal stem cell 

NBD    NEMO binding domain 

Nemo    NF-kappa-B essential modulator, also known as IKK-γ 

NF-ĸB Nuclear factor kappa-light-chain-enhancer of activated B 

cells 

NIK-1    NF-ĸB-inducing kinase 1 

NKx3.2   NK3 homeobox 2, also called Bapx-1 

NLS    Nuclear localization signal 

NO    Nitrogen oxide 

NSAID   Non-steroidal anti-inflammatory drug 

OA    Osteoarthritis 

OD    Osteochondritis dissecans 

ODN    Oligodeoxynucleotides 

OPN    Osteopontin 

p16    Cyclin-dependent kinase inhibitor 2A 

PBS    Phosphate-buffered saline 

PCM    Pericellular matrix 

PD    Proximaldistal 

PEST Domain rich in proline (P), glutamate (E), serine (S) and 

threonine (T). 

PFA    Paraformaldehyde 

PGE    Prostaglandin E 

PGs    Proteoglycans 

PI3K    Phosphoinositide 3-kinase 

PM    Periterritorial matrix 

PRb    Retinoblastoma protein 
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PTHrP   Parathyroid hormone-related peptide 

PVDF    Polyvinylidene fluoride 

PZ    Proliferating zone of growth plate 

RA    Rheumatoid arthritis 

RHD    Rel-homology domain 

RIPK-1   Receptor-interacting protein kinase 1 

RNA    Ribonucleic acid 

RNAi    RNA interference 

RT    Room temperature 

RT-PCR   Reverse transcriptase polymerase chain reaction 

RZ    Resting zone of growth plate 

SDS    Sodium dodecyl sulfate 

siRNA    Small interfering RNA 

SCW    Streptococcal cell wall 

SOX    Sex determining region Y box 9 

SUMO   Small ubiquitin-like modifier protein 

TAD    Transcriptional activation domain 

TCR    T-cell receptor 

TGP    Total growth plate 

TIMP    Tissue inhibitors of metalloproteinases 

TLDA 

TNF-α    Tumor necrosis factor alpha 

TNFR    Tumor necrosis factor receptor 

TRAP    Tartrate resistant acid phosphatase 

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end 

labeling 

ZF    Zinc-finger domain 
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