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Deutschsprachige Zusammenfassung

Die Simulation und numerische Untersuchung großer, stark korrelierter, endlichdimen-
sionaler Quantensysteme, welche Fermionen enthalten oder einer Realzeitentwicklung
unterzogen werden sollen, ist noch immer ein faktisch ungelöstes Problem, hauptsächlich
bedingt durch das exponentielle Anwachsen der Dimensionen des Hilbertraumes der Quan-
tenzustände und das Auftreten des Vorzeichenproblems in Monte-Carlo-Rechnungen. In
diesem Gebiet hat die Benutzung von Tensornetzwerkmethoden, im eindimensionalen Fall
primär die Dichtematrixrenormalisierungsgruppe (DMRG) und Matrixproduktzustände
(MPS), in den letzten Jahren erheblich an Bedeutung gewonnen.

Diese Arbeit fast zuerst mittels eines umfassenden Berichts über den aktuellen For-
schungsstand in der veröffentlichen Literatur sowie konkreter Algorithmen und Implemen-
tierungshilfen die Benutzung nichtabelscher Symmetrien, wie zum Beispiel SU(2)Spin, in
beliebigen Tensornetwerken zusammen. Die Implementierung solcher Symmetrien kann zu
einer erheblich effizienteren Repräsentation von Zuständen im Tensornetzwerk führen. Die-
ser Teil der Arbeit ist auch als implementierungsorientierte Einführung in Tensornetzwerke
sowie die Benutzung nichtabelscher Symmetrien in denselben gedacht.

Als Zweites wird eine Reihe technischer Verbesserungen an MPS-Methoden vorgestellt.
Hier sind vor allem ein schnelleres Konvergenzschema für DMRG, ein systematischer
Ansatz für die Konstruktion von Matrixproduktoperatoren und eine verbesserte Krylov-
Zeitentwicklungsmethode sowie die Kombination einiger anderer allgemein bekannter
Techniken in einem umfassenden Tensornetzwerktoolkit, SyTen, zu nennen. Der Erfolg
dieser Verbesserungen wird an zahlreichen numerischen Beispielen demonstriert.
Zum Dritten wird dieses Toolkit bei der Untersuchung zweier Modelle, die aktuell all-

gemeiner Forschungsgegenstand sind, eingesetzt: Eine eindimensionale Spinkette in einem
alternierenden externen magnetischen Feld wird untersucht und das durch analytische
Argumente vorhergesagte Confinement der elementaren Spinon-Anregungen mittels Real-
zeitentwicklung und numerischer Auswertung des dynamischen Strukturfaktors festgestellt.
Weiterhin wird das Hubbard-Modell in zwei Dimensionen ausführlich bei verschiedenen
Systemgrößen, Gittergeometrien, Wechselwirkungsstärken U und Elektronendichten n
mit bis zu 30 000 SU(2)Spin-symmetrischen Zuständen – ungefähr äquivalent zu 100 000

Zuständen in anderen Implementierungen – untersucht. Hinweise auf eine mögliche Pha-
senkoexistenz zwischen 0,85 . n . 0,95 wurden bei mittlerer Wechselwirkungsstärken
U = 4 und U = 6 gefunden. Weiterhin wurden konsistent kurzperiodische Modulationen
der Elektronendichte im Grundzustand bei n ≈ 0,875 festgestellt.
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Abstract

The simulation and numerical study of large, strongly correlated quantum systems
containing Fermions or using real-time evolution in finite dimensions is still an essentially
unsolved problem, primarily due to the exponential growth of the Hilbert state space with
system size and the occurence of the so-called sign problem in Monte Carlo studies. In this
area, the use of tensor-network methods, for one-dimensional systems chief among them
the density matrix renormalisation group (DMRG) and matrix-product states (MPS),
has grown in importance in recent years.
This thesis first recapitulates the use of non-abelian symmetries such as SU(2)Spin in

arbitrary tensor networks with an extensive review of the published literature including
detailed algorithms and implementation hints. Implementing such symmetries can lead
to a considerably more efficient representation of states in the tensor network. This part
is intended to be suitable as an implementation-oriented introduction to tensor networks
in general and the implementation of non-abelian symmetries in particular.

Second, it introduces a series of technical improvements for the MPS methods. These
improvements include a faster convergence scheme for MPS-DMRG, a systematic approach
to the construction of matrix-product operators and an improved Krylov time evolution
method as well as the combination of several well-known techniques into a single tensor
network toolkit, SyTen. The effectiveness of these improvements is demonstrated in
numerical examples.
Third, the toolkit is applied to the study of two models of current research interest:

A one-dimensional spin chain in a staggered external magnetic field is studied and
confinement of the elementary spinon excitations, as predicted by analytical arguments,
found numerically using real-time evolution and evaluation of the dynamical structure
factor. Additionally, the Hubbard model in two dimensions is studied extensively at various
system sizes, geometries, interaction strengths U and filling factors n using up to 30′000

SU(2)Spin-symmetric states equivalent to approx. 100′000 states in other MPS-DMRG
implementations. Hints of a possible phase coexistence in the region 0.85 . n . 0.95 are
found at intermediate interaction strengths U = 4 and U = 6 as well as a consistently
striped ground state in the region n ≈ 0.875.
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List of Publications

Parts of the content of this thesis have been published before or will be published soon.
Specifically:

1. The contents of Secs. 2.4.4 and 2.4.5 on matrix-product operator compression
routines and numerical examples have been published in Ref. [1].

2. The DMRG3S method explained in Sec. 3.4 and in particular the numerical experi-
ments in Sec. 3.4.2 have been published in Ref. [2].

3. The improvements to the Krylov time evolution method presented in Sec. 4.1.4 have
been developed in close collaboration with Andreas Swoboda and Nils Linden and
are currently being prepared for publication.3

4. The results on spinon confinement in one-dimensional spin chains presented in
Sec. 4.2.1 have been contributed to Ref. [4].

5. The project on the Hubbard model in two dimensions (Chapter 5) was conducted
in close collaboration with Leo Stenzel and parts of the data analysed in Sec. 5.4
was also analysed by him in Ref. [5].

The SyTen tensor networks library developed during the work on this thesis with
contributions by Andreas Swoboda, Felix Lachenmaier, Leo Stenzel, Nils-Oliver Linden
and Teresa Reinhard was already used to produce data contained in the following works:

1. The numerical experiments in Sec. VII of Ref. [1] (cf. Sec. 2.4.5 here).

2. The numerical experiments on time evolution methods conducted by Andreas
Swoboda and to be published in Ref. [3] (cf. Sec. 4.1.4 here).

3. The DMRG and finite MPS-time evolution data in Ref. [4] (cf. Sec. 4.2.1 here).

4. Leo Stenzel’s Master thesis on the Hubbard model, Ref. [5] (cf. Chapter 5 here).

5. Felix Lachenmaier’s Bachelor thesis on a parallelised version of the time-evolution
block decimation method, Ref. [6] (cf. Sec. 4.1.2 here).

6. Moritz Hahn’s Master thesis on the Kagomé lattice, Ref. [7].
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1 Introduction

The study of strongly correlated quantum systems has seen a major surge in importance
in recent years for many reasons. Among them are the still-unsolved high-temperature
superconductors, improvement of experimental techniques whose theoretical explanations
require going beyond mean-field approximations and the novel field of cold atomic gases
which allow for the quantum simulation of nearly entirely arbitrary systems. Correspond-
ingly, there have been many improvements to the numerical techniques used to study
such systems. However, the two most reliable and likely oldest numerical techniques
for the study of quantum-mechanical systems, exact diagonalisation and Monte Carlo
sampling, face two major difficulties when confronted with large strongly correlated
systems: the former fails to obtain system sizes larger than the correlation length due to
the exponentially increasing dimension of the Hilbert state space, the latter is susceptible
to the sign problem occuring in the study of Fermionic systems or even real-time evolution
of otherwise harmless bosonic systems.

Due to this shortcoming of the established methods, the use of tensor network algorithms
has grown in importance. Tensor networks are a way to represent lowly-entangled states
efficiently. This is done by a series of truncating basis transformations which result in
bases for parts of the system in which the state in question can be represented most
efficiently. Effectively, these transformations discard all unneeded parts of the Hilbert
spaces of subsystems, leading to highly efficient representations of states whose cost only
grows polynomially in system size, at least for such lowly-entangled states.
Thankfully, the area law of entanglement was proven to hold for ground states of

local gapped Hamiltonians in one dimension8 and with a logarithmic correction9 also for
ground states of critical Hamiltonians in one dimension. This area law states that the
entanglement of a subsystem with the remainder of the larger system grows linearly in
the surface area of the subsystem, not its volume. Practically, this means that in one
dimension the entanglement of a subsystem with the remainder of a system eventually
saturates, as its surface area is constant. While no results of similar strength are known
for higher-dimensional systems, area laws are either proven to hold in some cases or
assumed to (nearly) hold in others.
The tensor networks exploiting this area law will be introduced in Chapter 2 with

primarily the one-dimensional case, where tensor network states and operators are called
matrix-product states (MPS) and matrix-product operators (MPO), in mind. The focus
will be on the implementation and use of arbitrary global symmetries of the system
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which can be used to great effect in increasing computational efficiency. Furthermore,
the contents of an earlier paper1 on the generic construction of efficient MPOs will be
re-presented.
Chapter 3 is a review of the density-matrix renormalisation group (DMRG) method

which was the first permanent introduction of tensor network methods to the field of
condensed matter physics and is one of the most efficient approaches to calculating
ground states of one-dimensional quantum systems currently available. The method will
be reviewed in detail including recent extensions, among them the subspace expansion
method presented in a first paper.2

Chapter 4 reviews and discusses available time-evolution methods for MPS and their
application to calculate Green’s functions, dynamical structure factors and time-dependent
observables. Four improvements to the Krylov method, subject of an upcoming paper,3

will be presented. As an example application, we calculate the dynamical structure factor
in a one-dimensional spin chain embedded into an external magnetic field representing a
mean-field coupling to other chains in three-dimensional space. The associated data was
contributed to a recent paper.4

Finally, Chapter 5 discusses the application of hybrid-space10–12 DMRG to the two-
dimensional Hubbard model. Via the implementation of non-abelian symmetries, we were
able to reach much larger numbers of states than previous works (by a factor of approx.
3). Unfortunately, this was not sufficient to converge the system on cylinders of width
substantially larger than previous calculations. However, we were able to confirm previous
findings and provide some hints towards a possible phase coexistence region.
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2 Tensor Networks

We will start with a very brief account of the history of the density matrix renormalisation
group and tensor network methods (Sec. 2.1), followed by an equally brief summary
of the relevance of symmetries and so-called “good quantum numbers” in the field of
condensed matter physics (Sec. 2.1.1). Sec. 2.2 will continue with an introductory review
to symmetry-protected tensor networks that can also serve as a motivation for the SyTen

tensor network toolkit which was created during this PhD thesis.
With this powerful tool in hand, it is possible to define matrix-product states (Sec. 2.3)

and matrix-product operators (Sec. 2.4) as the natural tensor network representations of
states and operators on decomposable finite Hilbert spaces of one-dimensional quantum-
mechanical systems. In particular, we will present a generic algorithm for the construction
of efficient Matrix Product Operator representations, published as part of this thesis in
Ref. [1].

2.1 Introduction

After the introduction of the density matrix renormalisation group (DMRG) by Steve
White in the early 1990s,13 this original, infinite-system DMRG algorithm soon grew to
importance as the method of choice to find the ground states of one-dimensional quantum
systems. The method was quickly expanded to handle not only infinite systems but also
finite systems and in particular long-range correlations by first growing the system using
the infinite method and then iteratively sweeping over the finite system of the desired
size until convergence has been achieved. For a more detailed review of this relatively
early work, see for example Ref. [14].

In the late 1990s, it was then realised15,16 that DMRG is in fact a variational method
over the set of matrix-product states (MPS, to be defined in Sec. 2.3), which can arguably
be seen as an example of the simplest useful tensor network. Concepts very similar
to MPS have been used in the numerical linear algebra community under the name of
tensor trains17 and also appeared on multiple occasions throughout the 20th century.18–20

Since around 2005,21,22 MPS-based DMRG has become more and more popular and can
certainly be called the state of the art for ground-state search on one-dimensional quantum
systems nowadays. Its various variants and implementation details will be discussed in
more detail in Chapter 3.

It is also possible to write down one-dimensional MPS defined on infinite-size systems
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with a finite unit cell length, named infinite matrix-product states (iMPS)23 or variational
uniform matrix-product states (VUMPS).24 Either of those approaches then allows the
variational ground-state search on an infinite system at costs very comparable to those of
finite-size DMRG.

Furthermore, with the help of the tensor network view of DMRG, there are not one but
two possible avenues to tackle two-dimensional problems: First, if the two-dimensional
system is finite, it is always possible to map it to a one-dimensional system with longer-
range interactions.25 Second, one can write down an inherently two-dimensional tensor
network description of a quantum-mechanical state, called projected entangled pair state26

(PEPS) and then attempt to act on this state either via variational optimisation27 or
imaginary time-evolution28 to find the ground state. The latter method also allows the
study of infinite systems (though with finite unit cell) in a somewhat less one-dimensionally
biased way in the form of iPEPS.29,30 However, both approaches suffer from a very large
computational cost compared to one-dimensional calculations.

Finally, the combination of global symmetries and tensor networks is a topic of ongoing
research. Previous works in this area include the initial introduction of non-abelian
SU(2) symmetries in the original DMRG,31,32 the translation of that formalism to MPS-
based DMRG,22 the application of abelian U(1) and Zk symmetries to finite and infinite
PEPS,33–35 and finally the first descriptions of generic tensor networks with non-abelian
symmetries.36,37

2.1.1 Symmetries

Before introducing symmetry-protected tensors, it is useful to motivate the use of symme-
tries in tensor networks and fix some terminology.

Assume a finite-dimensional Hilbert space H ∼ CN representing a quantum-mechanical
state space, a Hamiltonian Ĥ : H → H representing our Hamiltonian of choice on that
space and a computational basis {|σi〉}Ni=1 spanning H. Throughout this work, {Ai}(N)

i(=1)

will denote the set of i-indexed elements Ai where the range of i (here, [1, . . . , N ])
is either clear from context or explicitly given. {|σi〉}Ni=1 hence stands for the set
{|σ1〉, |σ2〉, . . . , |σN 〉}.

Then, if there is an operator Ô : H → H s.t. [Ĥ, Ô] = 0, Ĥ and Ô can simultaneously
be diagonalised and have a simultaneous eigenbasis {|ei〉}i. In particular, this means that
we can assign each eigenstatei |ei〉 of Ĥ a single eigenvalue Oi of Ô. Further, we know
that this eigenvalue of Ô is preserved under application of Ĥ. This by itself is not very
useful, it only tells us that Ĥ in the eigenbasis {|ei〉}i is block-diagonal – but of course Ĥ
in this basis is already diagonal!

However, now assume that the states {|σi〉}i are also eigenstates of Ô. For complicated

iIn the case of degeneracies, it may be necessary to first select suitable linear combinations of eigenvectors
of Ĥ.
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Ô, this is not true in general, but for very simple operators Ô, it is often the case. If
this is indeed so, we can also label the states {|σi〉}i by those eigenvalues Oi – since Ĥ
still preserves them, we can then re-order Ĥ to bring it into a block-diagonal form in our
original computational basis. If we were then to attempt a brute-force diagonalisation of
Ĥ, we would not have to take into account the full N ×N matrix representing Ĥ but
only small blocks of that matrix.38 Further, we can fix the desired eigenvalue of Ô and
concentrate on that particular block.
In this case, we say that there are good quantum numbers {Oi}i by which we can

label the states {|σi〉}i. The Hamiltonian Ĥ is said to preserve the quantum numbers
if it commutes with Ô. It is useful to keep in mind that, from the point of view of
representation theory, this implies that there is some group G (usually SU(N), U(1) or
Zk in the context of condensed-matter physics) and that we can associate each state of
H to an irreducible representation (IREP) of that group. The label of that IREP then
coincides with the quantum number assigned to this state.31,32,37

A Brief Summary of Representation Theory

This section does not attempt to give a full introduction to (Lie) groups and representation
theory. In any case, such an introduction is also not necessary to follow the next sections.
However, it is certainly useful to define some basic concepts which may escape the memory
of the working physicist over time.
A group G is a set of objects with a binary operation ◦ satisfying certain properties.

Those properties are closure of the set under the operation ◦, associativity of the operation
and the existence of an identity element and an inverse element. For example {R,+} is
a group. {R,×} is not, since 0 has no inverse element. {Z,+} is a group, with n the
inverse element associated to −n, 0 the identity element and obvious closure under the
operation.

A specific group is then given by the relations of its group elements (i.e. which elements,
when combined with others under the binary operation, result in a specific third element).

It is possible to consider matrix groups, that is, groups which are defined by a set of
matrices and matrix multiplication as the group operation. Matrix groups have some
very favourable properties. The simplest example of a matrix group is possibly the
general linear group GL(n,R) which contains all n× n invertible real matrices. There are
sub-groups of GL(n,R): for example, the group of orthogonal n×n real matrices O(n) as
well as SO(n) for orthogonal matrices with determinant 1. Similarly, U(n) is the group
of unitary matrices of size n× n, with a sub-group SU(n) containing only those unitary
matrices with determinant 1. Crucially, the group of rotations in three-dimensional space
around a single axis can be associated to the group SO(2), while SO(3) corresponds to
the set of rotations around all axes in three-dimensional space.

On the other hand, a matrix representation of a group is a set of matrices which satisfy
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the group relations with matrix multiplication taking the place of the group operation.
That is, for group elements g1, g2 and g3 with g1 ◦ g2 = g3 and a matrix representation
which associates matricesM1,M2 andM3 to those group elements, we haveM1 ·M2 = M3

where · is the matrix multiplication operation. A representation is called faithful if it
associates a unique Mi to each gi. The trivial representation Mi = 1 always exists but is
not necessarily faithful.
Given a matrix group, e.g. SU(2), it is possible to take the matricesii of that group

1-to-1 as an initial representation of that group. It is then possible to find larger matrices
which still behave as described by SU(2) and also to find the smallest faithful matrix
representation, i.e. the smallest matrices with a 1-to-1 mapping to and from the group
elements. This smallest representation is called the fundamental representation of the
group. In some cases, it is possible to decompose the matrices of a representation into
invariant sub-blocks (e.g. if all of them are block-diagonal and hence don’t mix certain
parts of the space on which they act). In this case, the representation is called decomposable
and can be written as the direct sum of two other (non-trivial) representations. On the
other hand, if it is not possible to do so, the representation is called indecomposable. For
most practical purposes, representations which are indecomposable are also irreducible
(hence the name IREP above) and vice-versa.

Finally, in the case of matrix groups (and equally, matrix representations of linear
groups), it is possible to consider them as smooth manifolds generatable by exponentiation
of a linear combination of a finite set of generators. For example, all unitary 2 × 2

matrices with determinant 1 can be generated by appropriate choice of prefactors αk in
exp (i

∑
k αkσk), where σk are the Pauli matrices. This set of generators is not unique and

it may be helpful to choose another set of 2× 2 matrix generators instead (for example
the typical spin operators S±,z).

These matrix generators then fulfill certain commutation relations closely linked to the
group properties and identical with the commutation relations of the physical generators
of the associated physical symmetry (e.g. rotation in three dimensions generated by
angular momentum). Those commutations relations then define a Lie algebra, which we
can think of as the infinitesimal version of the Lie group. Generators of other IREPs of
the same group which are associated to the same algebra fulfill the same commutation
relations: For example, the generators of the 3× 3 matrix IREP of SU(2) have the exact
same commutation relations as the 2× 2 generators.

Now in order to define a certain representation of a group, it is only necessary to store
the generators of that representation (which are usually a small number of matrices). For
example, to describe a particular representation of SU(2)Spin, it is sufficient to store three
matrices: The Sz, S+ and S− operators. All representations of other elements of the
su(2) algebra can be written as linear combinations of those, while the representations of

iiIn the case of SU(2), those would be the matrices
(
α −β?
β α?

)
with α, β ∈ C and |α|2 + |β|2 = 1.
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elements of the group can be achieved via exponentiation.

2.2 Symmetry-Protected Tensors

The reasoning for the introduction of symmetry-protected tensors in DMRG or related
applications closely follows the argument given above for the case of exact diagonalisation:
Given an operator Ô which commutes with the Hamiltonian, it should be possible to
find a relatively simple computational basis for the Hilbert space which only contains
eigenstates of Ô. Furthermore, if we wish to find the ground-state of the Hamiltonian, we
can be certain that we will not have to mix states with different quantum numbers later
on, i.e. that the blocking of the computational basis is preserved. The following sections
will provide a generic introduction to tensors as used in condensed-matter physics, the
implementation of exactly-protected symmetries on such tensors and some basic tensor
operations required later on.

2.2.1 Definition and Graphical Representation

For now, define a tensor T as a map from a set of input vector spaces {KNa
a }a with

dimensions {Na}a to linear combinations of elements of a set of output vector spaces
{KNb

b }b with dimensions {Nb}b. The coefficients of this map are given by the elements of
the tensor. K is usually C, but a restriction to R may be possible and is computationally
cheaper. The differentiation between input and output vector spaces and indices is
relevant. For example, consider three input vector spaces A, B, C and two output vector
spaces D and E. To write down the tensor, we have to fix a basis in each space, let those
be {|a〉A}NAa=1, {|b〉B}NBb=1 etc. The tensor with coefficients T deabc then describes the map:

T : A⊗B ⊗ C → D ⊗ E (2.2.1)

T : |a〉A ⊗ |b〉B ⊗ |c〉C 7→
∑
de

T deabc|d〉D ⊗ |e〉E . (2.2.2)

T

a

b

c

d

e

Figure 2.1: The tensor T from Eq. (2.2.2) represented graphically. It maps states |a〉A ⊗
|b〉B ⊗ |c〉C from the input spaces A,B,C to linear combinations of states |d〉D ⊗ |e〉E in
the output state spaces D,E.
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We can graphically represent this tensor (cf. Fig. 2.1) by a blob with five legs corresponding
to each of the five vector spaces (and associated indices) with arrows indicating the
direction (input and output). T is said to have rank five, with for example the a leg (or a
index) having dimension dim(A).iii

It is useful to assume that neither of the two sets of input and output state spaces is
empty, i.e. that there is at least one input state space and at least one output state space.
If this is not the case, one should add a single 1-dimensional input (or output) leg. This
is equivalent to viewing a column vector v ∈ CN as a matrix v′ ∈ CN×1.

2.2.2 Physical Symmetries in Tensors

Abelian Symmetries

Let us continue with the previously-defined tensor T . Now assume that there is some
symmetry with associated group G (e.g. U(1) or SU(2)) such that we can identify each
of the states |a〉A etc. in A, B, C, D and E with an IREP a, b, c, d or e of that group G.
This means that firstly the states |a〉A etc. do not break the symmetry and that we can
secondly assign a single quantum number to each of those states. Even if a state does not
break the symmetry, the second requirement does not have to hold: For example, it is not
possible to assign a single quantum number to a superposition of two states with different
quantum numbers. In this case, one first has to decompose the not-uniquely-transforming
state into a direct sum (i.e. superposition) of states which do transform uniquely. Note
that of course different states |a〉A and |a′〉A may share the same quantum number a = a′,
dealing with such a degeneracy is no problem. An example is the abelian U(1)Sz rotational
symmetry, which allows us to label states |a〉A etc. by their Sz quantum numbers.

In the case of an abelian group G, the tensor T is then said to preserve the symmetry
if the statement

d⊗ e 6∈ a⊗ b⊗ c⇒ T deabc ≡ 0 (2.2.3)

holds, where ⊗ means the product of two representations and 6∈ denotes that the set of
IREPs arising from the decomposition of the left operand and that arising from the right
operand have no elements in common.
For U(1) symmetries and quantum numbers, i.e. IREP labels, qa, qb, qc, qd and qe one

can simplify this to the statement22

qd + qe 6= qa + qb + qc ⇒ T deabc ≡ 0 . (2.2.4)

In the case of U(1)Sz , this means that we can map input states with total quantum
number Szi = Sza+Szb +Szc only to output states with total quantum number Szo = Szd +Sze

iiiThis is in contrast to the numerical linear algebra community, where T has order five and the a leg or
a index has size dim(A). In this context, T has rank r if it can be expressed as the sum over r outer
products of five vectors.
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equal to Szi .
For Zk symmetries, we also have to take the periodicity with respect to k into account:

(qd + qe) mod k 6= (qa + qb + qc) mod k ⇒ T deabc ≡ 0 . (2.2.5)

Here, similarly, we can map for example a parity-odd input state only to a parity-odd
output state.

Effectively, these requirements can be used to reduce the in-memory size of the tensor:
After sorting the input and output states by their quantum numbers, we can write the
tensor as a sum of dense blocks which are allowed to be non-zero. Tensor operations
(defined later) then act sequentially on these dense blocks instead of the whole tensor.

Non-Abelian Symmetries

For symmetries with an associated non-abelian group, e.g. the total spin S with group
SU(2), an additional concern arises regarding the correct treatment of the inner multiplic-
ities of each IREP. For example, the IREPs of SU(2) with non-zero quantum numbers S′

not only contain one overall state S′ but actually 2S′+1 sub-states with different Sz quan-
tum numbers. In addition to the requirement posed by Eq. (2.2.3), these “sub-states” also
have to be treated correctly in order to preserve the overall non-abelian symmetry.31,34,37

Let us first look at the former requirement. Assume that we have input states with
quantum numbers of total spin Sa = 1

2 , Sb = 1
2 and Sc = 1. The product of these IREPs

can be decomposed as39

1

2
⊗ 1

2
⊗ 1 (2.2.6)

= (1⊕ 0)⊗ 1 (2.2.7)

= (1⊗ 1)⊕ (0⊗ 1) (2.2.8)

= (2⊕ 1⊕ 0)⊕ 1 . (2.2.9)

It is now obvious that if the product of the output IREPs contains a S = 1
2 IREP, there

is no way to map to this state given the above input and preserving the SU(2) symmetry.
The second requirement concerns the inner multiplicity37 of each state. Each state with

non-zero total spin S is actually composed of 2S + 1 states with different Sz quantum
numbers, which, by the SU(2) rotational symmetry, are required to behave identically.
Other non-abelian symmetries (e.g. spatial rotation SO(3)) behave in much the same way.
To preserve this symmetry, our tensor T now has to map each sub-state of e.g. the input
S = 1 state to its corresponding partner in the output S = 1 state (this is essentially
Schur’s lemma). Equivalently, one could require that not only the “visible” quantum
numbers associated to the group labels are preserved but also their hidden subdivisions,
e.g. the Sz = ±1, 0 labels hidden below the S = 1 label.



12 CHAPTER 2. TENSOR NETWORKS

The second requirement can be used to reduce the size of each dense block of the tensor
by decomposing it into a reduced, dense block and a set of very sparse tensors, one for
each symmetry in the system. The full block is then given as the tensor product of the
dense block and the symmetry-defined blocks.

2.2.3 Construction and Implementation of Symmetry-Protected Tensors

The implementation of symmetries allows two decompositions. It becomes possible to
decompose the full tensor T as a sum of dense blocks by the use of abelian symmetries
and their good quantum numbers. That is, we can write:

T =
⊕

i∈blocks

bi . (2.2.10)

where bi is a dense block which has a single good quantum number per symmetry on each
tensor leg (hence transforms uniquely) and the

⊕
denotes a tensor-sum: Two blocks with

different quantum numbers are placed “next to each other”, since they relate to different
states, while blocks with the same quantum number on a given leg relate to the same
states on that leg. In particular, blocks with identical quantum numbers on all legs should
be understood as being added together directly. Furthermore, for IREPs of non-abelian
symmetries with inner multiplicity not equal to one we can decompose every block bi as
the tensor product of a reduced, dense block mi and a set of symmetry-defined, usually
very sparse, tensors {cγi }γ , where γ runs over the list of symmetries defined in the system
(e.g. one SU(2) for particle-hole symmetry and one SU(2) for total spin).

In total, one can then write

T =
⊕

i∈blocks

(
mi

⊗
γ

cγi

)
(2.2.11)

To construct such a symmetry-protected tensor, first consider a rank-2 tensor with one
input and one output space. In this case, we know that the input and output quantum
numbers on each block must coincide, the resulting tensor is block-diagonal. Further,
since the IREPs must coincide, each inner state of a non-abelian input IREP must be
mapped to its exact equivalent in the output IREP, i.e. the cγi must be proportional to
identity matrices of the size of the corresponding IREP. Note that there is a freedom
in the choice of prefactors: multiplying a certain mi by a scalar α preserves the overall
tensor value if one of its partners cγi is multiplied by 1/α. Additionally, for consistency it is
useful to also include the cγi tensors even for IREPs with inner multiplicity equal to one,
e.g. S = 0. In those cases, the cγi tensors are simply singleton values of appropriate rank.
For example, assume that we have a rank-2 tensor with a single input and a single

output index as well as a single SU(2) symmetry, namely the total spin, with quantum
numbers S = 0, 1

2 and S = 1 occuring on the input and output index. These quantum
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numbers can then be used to label the blocks as b0,0, b 1
2
, 1
2
and b1,1. A block b0, 1

2
cannot

appear, as it would break the SU(2) symmetry. The tensor is hence

T = b0,0 ⊕ b 1
2
, 1
2
⊕ b1,1 =


b0,0 0 0

0 b 1
2
, 1
2

0

0 0 b1,1

 , (2.2.12)

where each bi,i is a dense matrix KNi×N ′i of the appropriate size and content which
implements the tensor map. However, now also exploiting the known inner structure of
each IREP, namely that it treats each Sz value identically due to the rotational symmetry,
we can rewrite each bi,i as a tensor product

bi,i = mi,i

⊗
1di×di (2.2.13)

with the identity matrix 1di×di and di = 2S + 1 in this case being the inner multiplicity
of the associated IREP. Each of those di states of 1di×di corresponds to one Sz value.
Each column of mi,i corresponds to one of cols (mi,i) degenerate states with the same
S quantum number and which – precisely due to the rotational SU(2)Spin symmetry –
actually occurs di times.
For the S = 0 case, nothing changes, but for the other two, the side lengths of the

dense matrices are reduced to a half and a third of their original size respectively at the
cost of a 2× 2 and 3× 3 identity matrix! This already demonstrates why the explicit use
of such non-abelian symmetries is so interesting in tensor network methods.
After the construction of the rank-2 tensor, it is natural to continue with the rank-3

tensor. In this case, the cγ coincide exactly with the Clebsch-Gordan coefficients (CGC),
as they describe valid combinations of two input states into one output state (or vice
versa). There are then two possibilities of implementation: Either one can rely on the
fact that closed expressions for these coefficients are known exactly for SU(2). This works
for both the original DMRG and MPS-DMRG and has been the first method by which
non-abelian symmetries have been implemented in DMRG in 2002 by Ian McCulloch.31

While MPS-DMRG can be expressed purely in terms of rank-3 tensors, higher-dimensional
tensor networks become somewhat more difficult to implement.36 Furthermore, groups
for which appropriate closed expressions for these coefficients are not known (e.g. SU(3)

or Sp(2n)) cannot be used.
Alternatively, one can calculate the coefficients explicitly from the decomposition of

product representations and then handle those coefficients during all tensor operations.
This second approach was first suggested by Andreas Weichselbaum in 2012.37 SyTen

also follows this approach. Unless the reduced tensors are very small, the overhead from
the additional, sparse symmetry tensors cγ is negligible in practice, while they at the
same time allow for much greater flexibility during tensor products, the implementation of
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other symmetries and higher-rank tensors without an explicit decomposition into rank-3
tensors, as was suggested to be necessary by Sukhwinder Singh et al.36

Calculation of Rank-3 Clebsch-Gordan Coefficients

This subsection describes how to build the product representation of two IREPs and how
to decompose that product representation into a series of irreducible representations. As
a by-product of this decomposition, the Clebsch-Gordan coefficients (CGC) for the tensor
decomposition above are calculated. The following is fairly technical and likely only
required if one wishes to implement this decomposition oneself. The presented algorithm
closely follows the diagram given in Appendix B of Ref. [37].
The calculation requires the raising (R), lowering (L) and z-operators (Z), i.e. the

generators of the algebra, of the involved IREPs. Given two input IREPs a and b of an
arbitrary group G, we can directly calculate the raising Rρ, lowering Lρ and z-operators
Zρ of the product representation ρ (which in general is not an irreducible representation).
Accounting for the case of multiple operators per IREP with an additional label i, we
have with the Kronecker product ⊗:

Rρi = Rai ⊗ 1bi + 1ai ⊗Rbi (2.2.14)

Lρi = Lai ⊗ 1bi + 1ai ⊗ Lbi (2.2.15)

Zρi = Zai ⊗ 1bi + 1ai ⊗ Zbi (2.2.16)

As an example, let us consider G = SU(2), a = 1
2 , b = 1. In this case, we have:

Rρ1 =

(
0 1

0 0

)
⊗

1 0 0

0 1 0

0 0 1

+

(
1 0

0 1

)
⊗

0
√

2 0

0 0
√

2

0 0 0

 (2.2.17)

=



0
√

2 0 1 0 0

0 0
√

2 0 1 0

0 0 0 0 0 1

0 0 0 0
√

2 0

0 0 0 0 0
√

2

0 0 0 0 0 0


(2.2.18)

Lρ1 =

(
0 0

1 0

)
⊗

1 0 0

0 1 0

0 0 1

+

(
1 0

0 1

)
⊗

 0 0 0√
2 0 0

0
√

2 0

 = (Rρ1)
T (2.2.19)

Zρ1 =

(
1
2 0

0 −1
2

)
⊗

1 0 0

0 1 0

0 0 1

+

(
1 0

0 1

)
⊗

1 0 0

0 0 0

0 0 −1

 (2.2.20)
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=



3
2 0 0 0 0 0

0 1
2 0 0 0 0

0 0 −1
2 0 0 0

0 0 0 1
2 0 0

0 0 0 0 −1
2 0

0 0 0 0 0 −3
2


(2.2.21)

The decomposition of ρ into IREPs then occurs as described in Alg. 2.1. Applied to
the example of G = SU(2), a = 1/2 and b = 1, the decomposition proceeds as follows:

1. The first maximum weight state is m1 = (1, 0, 0, 0, 0, 0)T

2. Applying the only lowering operator, Lρ1, on m1 gives the states (with orthonormal-
isation):

m1 = (1, 0, 0, 0, 0, 0)T (2.2.22)

m2 = (0,
√

2/3, 0,
√

1/3, 0, 0)T (2.2.23)

m3 = (0, 0,
√

1/3, 0,
√

2/3, 0)T (2.2.24)

m4 = (0, 0, 0, 0, 0, 1)T (2.2.25)

m4 is annihilated by Lρ1.

3. These states have eigenvalues z1 = 3/2, z2 = 1/2, z3 = −1/2, z4 = −3/2 with respect
to Zρ1 , m1 hence defines the IREP label (this should be true in general).

4. The IREP label is c = 3/2.

5. The operators of the new IREP are given by O
3/2
1 = CTOρ1C, specifically (and as

expected):

C =



1 0 0 0

0
√

2/3 0 0

0 0
√

1/3 0

0
√

1/3 0 0

0 0
√

2/3 0

0 0 0 1


(2.2.26)

R
3/2
1 =


0
√

3 0 0

0 0 2 0

0 0 0
√

3

0 0 0 0

 = L
3/2
1

T
(2.2.27)
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Algorithm 2.1 The decomposition of an arbitrary representation ρ into IREPs. The
original factor IREPs a and b are only necessary if the Clebsch-Gordan coefficients Ccci

aai;bbi
are to be calculated. orthogonalise(x,Y) orthogonalises x against all states in Y and
normalises x. eigval({Oi}di , x) returns a tuple of size d, containing the eigenvalue of x
with respect to each operator Oi.

1: procedure irep-decomposition(REP ρ = {Rρi , L
ρ
i , Z

ρ
i }

deg(G)
i , IREP a, IREP b)

2: A ← {} . Set of all found states
3: T ← {} . Set of states found from current max weight state
4: R ← {} . Set of found IREPs with associated CGC spaces
5: repeat
6: q ← find-max-weight-state(dim(ρ),A)
7: repeat . Generate chain of orthogonal states in T
8: T ← T ∪ {q}
9: i← 1
10: repeat . Generate new orthogonal state by any lowering operator
11: q′ ← Lρi q
12: q′ ← orthogonalise(q′, T )
13: i← i+ 1
14: until q′ 6= 0 ∨ i > deg(G)
15: q ← q′

16: until q = 0

17: sort(T ,eigval({Zρi }
deg(G)
i )) . sort by Zρi eigenvalues in descending order

18: c← eigval({Zρi }
deg(G)
i , T [0]) . IREP c defined by z-eigenvalues

19: M ← hstack(T ) . M ∈ Kdim(ρ)×|T |, projector onto span (T )
20: for O ∈ {R,L,Z} ∧ i ∈ [1,deg(G)] do
21: Oci ←MTOρiM . Definition of raising, lowering and z-operators
22: end for
23: for ci ∈ [1, dim(c)] do . Definition of Clebsch-Gordan coefficients Ccci

aai;bbi
24: for ai ∈ [1,dim(a)] do
25: for bi ∈ [1,dim(b)] do
26: Ccci

aai;bbi
←
〈
T [ci]

∣∣∣edim(a)
ai ⊗ edim(b)

bi

〉
27: end for
28: end for
29: end for
30: A ← A∪ T
31: T ← {}
32: R ← R∪ {[c, {Rci}

deg(G)
i , {Lci}

deg(G)
i , {Zci }

deg(G)
i ,Ccci

aai;bbi
]}

33: until dim(ρ) = |A| . Space exhausted
34: return R
35: end procedure
36: procedure find-max-weight-state(dimension d, set of states S)
37: for i ∈ [1, d] do
38: m← edi . i-th standard vector of size d
39: m← orthogonalise(m,S)
40: if m 6= 0 return m end if
41: end for
42: end procedure
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Z
3/2
1 =


3/2 0 0 0

0 1/2 0 0

0 0 −1/2 0

0 0 0 −3/2

 (2.2.28)

6. For example the Clebsch-Gordan coefficient C
3/2,1/2
1/2,1/2;1,0 is defined by 〈m2|e2

1 ⊗ e3
2〉 =

〈(0,
√

2/3, 0,
√

1/3, 0, 0)T |(0, 1, 0, 0, 0, 0, )T 〉 =
√

2/3. m2 is used since we are looking
for the second (1/2) state in the c = 3/2 IREP. e2

1 and e3
2 are used as we are interested

in the combination of the first (1/2) state of the two-dimensional a = 1/2 IREP and
the second (0) state of the three-dimensional b = 1 IREP.

7. We have found only four out of six states, so we would have to repeat this procedure
with a new maximum weight state.

The next maximum weight state is found as follows:

1. Starting at i = 1, we have m = e6
1. Orthogonalised against the four previous states,

this is zero, so we continue with the next i.

2. At i = 2, we have initially m = e6
2 = (0, 1, 0, 0, 0, 0)T . After orthogonalisation

against the four other states, this is m = (0,
√

1/3, 0,−
√

2/3, 0, 0). This has non-zero
norm and hence can be used as the new maximum-weight state.

When repeating the first procedure with this new maximum weight state, we will find two
additional states belonging to the d = 1/2 IREP. The dimension of ρ is then exhausted
and we can conclude that for the IREPs of SU(2)

1/2⊗ 1 = 3/2⊕ 1/2 . (2.2.29)

Once the rank-3 CGC spaces are known, one can build arbitrary tensors from combina-
tions of rank-3 tensors.

2.2.4 Tensor Operations

There are three nontrivial tensor operations of interest to be discussed: contractions of two
tensors, addition of two tensors and the expansion of one tensor by another. Multiplication
by a scalar is somewhat trivial, as one only has to multiply each reduced dense block mi

of the tensor by that scalar.

Tensor Contractions

Tensor contractions are a generalisation of matrix-matrix products. Given two tensors
Ao1,o2,...
i1,i2,...

and Bp1,p2,...
j1,j2,...

and a set C of pairs {im, p′m} or {on, j′n} which relate to the same
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f

Figure 2.2: Graphical representation of a matrix-matrix product Rpm =
∑

nB
p
nAnm (left)

and a more complicated tensor product Rdabf =
∑

ceC
de
abcD

c
ef (right).

vector space (once as output and once as input), we can define a new tensor

Rq1,q2,...k1,k2,...
=
∑
C

Ao1,o2,...
i1,i2,...

Bp1,p2,...
j1,j2,...

(2.2.30)

where the set {km}m contains all input indices i and j of A and B not contained in C
and similarly the set {qm}m contains all output indices not contained in C.
The matrix-matrix product is a special case of this tensor contraction. Given two

matrices A : Km → Kn and B : Kn → Kp, we can calculate a new matrix R : Km → Kp

as

Rpm =
∑
n

Bp
nA

n
m = B ·A . (2.2.31)

Such contractions can be represented graphically by connecting the contracted legs of
the tensors (cf. Fig. 2.2). By convention, the expression A ·B will denote the contraction
over all common indices of A and B.
The implementation of a tensor contraction proceeds in three steps: First, we pair

blocks a of A and b of B such that the quantum numbers on the contracted legs match.
Secondly, for each of these pairs, the new block r is given as

r =

(∑
C

mamb

)⊗
γ

(∑
C

cγac
γ
b

)
. (2.2.32)

The
∑

C operation is now just a sparse or dense tensor product, the objects m and c have
no further subdivisions, labels or somesuch. The best way to implement the dense sum
is to reshape ma and mb into matrices such that contracted and uncontracted indices
are put together as rows and columns (and vice versa for mb), use a standard BLAS
call to execute the product of the two and then reshape the result into the desired form
with the desired index ordering.iv The cγ are very sparse, so that a coordinate format is

ivNote that the reordering can be avoided if the input tensors indices and output tensor indices are
ordered correctly. While asymptotically irrelevant (reordering takes time O(mn+ np+mp) while the
matrix multiplication requires approximately O(mnp) operations), very often the dense tensors are
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likely the best way to store them. The contraction can then be implemented by hand
very easily and at negligible computational cost – in real calculations, usually 5-10% of
runtime are spent on handling the cγ while 80-90% of runtime are spent inside Blas or
Lapack functions dealing with the dense subblocks mi.
Thirdly, there will likely be many blocks ri with parallel CGC tensors. That is, if we

have a tensor R which contains two blocks, p and q, with identical IREP labels and the
CGC tensors of the two for all symmetries are exactly parallel cγp = αγcγq with αγ ∈ R,
we should add up the corresponding reduced dense tensors:

R =

(
mp

⊗
γ

cγp

)
+

(
mq

⊗
γ

cγq

)
(2.2.33)

=

(
mp

⊗
γ

cγp

)
+

(
mq

⊗
γ

αγcγp

)
(2.2.34)

=

(
mp +

(∏
γ

αγ

)
mq

)⊗
γ

cγp . (2.2.35)

Adding up blocks with parallel CGC spaces will be called reducing the tensor in the
following. Note that for rank-2 tensors, all CGC spaces will be parallel. For rank-3 tensors,
the spaces associated to SU(n ≤ 2) will be parallel, while larger groups (e.g. SU(3)) will
result also in non-parallel CGC spaces. The latter is a result of the outer multiplicity of
those groups. Finally, for rank-4 tensors, all non-abelian groups will produce non-parallel
CGC space tensors. This effect can already be observed in the introductory example of
this section – in the IREP decomposition of the product of SU(2) IREPs 1

2 ⊗ 1
2 ⊗ 1, the

IREP 1 occurs twice (cf. Eq. (2.2.9)). There are hence two different ways to get from
three input IREPs (from three input vector spaces) to one output IREP (on one output
vector space). While for SU(2), we need at least three input vector spaces to observe this
effect, for groups with outer multiplicity, such as SU(3), two input vector spaces/input
IREPs suffice to generate the same output IREP multiple times.

Tensor Addition

The addition of two tensors is possible if they are defined on the same vector spaces, the
tensors are then said to be compatible. Since it is not necessary to store all-zero blocks,
such a compatibility is given if, for every leg and for every symmetry sector (i.e. distinct
set of IREPs on that leg), the reduced, dense tensors either have the same size or only
one of the addends has tensor blocks for this symmetry sector. For the addition, the
reduction algorithm also used during the tensor contraction can be employed.

relatively small and hence receptive to such optimisations.
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Tensor Expansion

The tensor expansion increases one or more of the associated vector spaces additively by
another set of vector spaces. It is best explained via some examples:
For two dense vectors, the expansion would be the concatenation of the two vectors,

creating a vector of different length. For two dense matrices A and B, we can either
a) expand the columns by placing the matrices next to each other (the number of rows
then have to match), b) expand the rows by placing the matrices atop of each other (the
number of columns then have to match) or c) expand both rows and columns, placing the
matrices as diagonal blocks of a larger matrix. For higher-rank tensors, the operation
occurs analogously. This expansion only acts on the dense blocks of the tensor, the
symmetry-protected CGC elements are left untouched.
For the implementation, we have to distinguish the case where only one tensor has

blocks in a given symmetry sector of an expanded leg (in which case we can keep those
blocks the same) or where both tensors have blocks in that sector. In this case, we have
to expand the reduced, dense blocks of each of the blocks and place the contents either in
the first half or the second half of the enlarged blocks. The following tensor reduction
will then take care of all required additions.

2.2.5 Fusing and Inverting Tensor Legs

When working with tensor networks, it is sometimes necessary to combine two indices of a
tensor into a single, larger index or to switch the direction of a tensor leg. Such operations
can only be done by inserting appropriate resolutions of identity tensor operators into
the overall tensor network. Changing the legs of a single tensor is not in general a useful
operation and of course changes the meaning of the tensor, to e.g. act on a combined or
dual space.

As an example, consider a rank-4 tensor T abcd where we wish to combine the two indices
c and d into a larger index γ, for example in order to do a singular value decomposition
on this common index. If T was not a symmetry-protected tensor but simply a dense
collection of scalars, we would only have to re-shape those scalars. However, such an
operation would destroy the symmetry of the tensor when done naively.v Instead, we
generate a pair of rank-3 tensors Sc′d′γ and F γcd which resolve to a set of identity tensors
when contracted over their common index γ (cf. Fig. 2.3):∑

γ

Sc
′d′
γ F γcd = 1c

′
c 1

d′
d (2.2.36)

vIn the special case of SVD or similar decomposition over just a single leg, it is possible to implement it
without an explicit previous reshaping, see Sec. 2.3.2
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S F

c′

d′

γ
c

d

=

cc′

dd′
SF γγ′

c

d

= γγ′

Figure 2.3: Left: A fusing tensor F and a splitting tensor S contracted over their single
common index γ result in a rank-4 tensor which acts as the identity between two legs
each. Right: F and S contracted over their two common indices c and d result in a rank-2
identity tensor.

and similarly to a single identity tensor when contracted over c and d instead:∑
cd

Scdγ F
γ′

cd = 1γ
′
γ . (2.2.37)

Returning to our example, we would first calculate

T ′abγ =
∑
cd

T abcd S
cd
γ , (2.2.38)

act on T ′ with the operation we had in mind and afterwards contract with F to get

T ′′abcd =
∑
γ

T ′abγ F
γ
cd =

∑
γ

∑
c′d′

T abc′d′S
c′d′
γ F γcd =

∑
c′d′

T abc′d′1
c′
c 1

d′
d = T abcd . (2.2.39)

As can be seen, if our operation was the identity, we have T ′′ = T . This of course does not
hold if we changed T ′ in some other way in-between the initial fusing and later splitting.
In the reduced dense tensor sector, the reduced blocks of F and S are simply the

expected rank-3 identity tensors, while the CGC spaces are exactly the spaces arising
from a IREP decomposition of the IREPs on the legs c and d. Conveniently, those are
the same regardless of whether both c and d are incoming or both c and d are outgoing
indices, hence the tensors F and S have identical structure except for inverted tensor
legs.36

For such a fusing or splitting of indices to work, it is necessary that either both indices
are incoming or both indices are outgoing indices. In general, this is not true, we may
wish to act on a matrix-like structure (e.g. for SVD) while combining an outgoing and
an incoming index. This problem can be avoided by another insertion of the identity:
Given the tensor above, we can construct a fuse of the indices a and a†, where a† has
the same structure as a except that all IREPs are adjointed: For SU(2), this changes
nothing, U(1) and Zk IREPs x are changed into −x (or −x mod k). We then project
the generated fusing leg γ onto the dummy vacuum sector, hence generating effectively a
rank-2 tensor with two incoming indices, Iaa† . A similar operation can give us a tensor
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with two outgoing indices Oaa† . Once we fix the normalisation of each CGC space by the
square root of its dimension in either I or O (cf. Ref. [36], Eq. (B80)), we can ensure
thatvi ∑

a†

Iaa†O
a′a† = 1a

′
a . (2.2.40)

With this further identity in hand, it is now possible to contract e.g. Iaa† with T abcd to
arrive at T ′ba†cd, combine the indices a† and c in the same way as before with S, operate
on the resulting rank-3 tensor and first revert the combination with F and then the
direction inversion with O.

2.3 Matrix-Product States

Matrix-product states (MPS) are a potentially very efficient way to represent quantum-
mechanical states on a global Hilbert space H which can be decomposed as the tensor
product of a set of L local Hilbert spaces {Hi}Li=1, s.t. H =

⊗L
i Hi. The basic idea is

to build, via successive basis transformations, a basis in which the desired state can be
expressed most efficiently and then store both the set of transformations as well as the
representation of the state in this basis.
Let {|σi〉}σ be a set of di basis states of the spaces Hi. We can then write any pure

quantum state |ψ〉 ∈ H as

|ψ〉 =
∑
σ1

∑
σ2

· · ·
∑
σL

cσ1σ2···σL |σ1〉 ⊗ |σ2〉 ⊗ · · · ⊗ |σL〉 . (2.3.1)

The rank-L tensor c will in general have
∏L
i di (or if all di = d, dL) entries. Storing

this tensor explicitly is manageable for small systems (e.g. spins with d = 2, L = 10,
|c| = 210 = 1024), but due to the exponential growth quickly becomes impossible for
larger systems.
However, it is clear that at least for some states, there are also efficient (meaning

polynomial in system size) parametrisations. For example, we can describe a fully
ferromagnetic product state on a spin chain of arbitrary length perfectly well with “all
spins up”, without having to explicitly specify dL coefficients. The magic of MPS is now
to achieve an efficient parametrisation even for strongly correlated quantum states. The
cost of that parametrisation primarily depends on the entanglement in the system,40 but
for example for ground-states of gapped Hamiltonians, we know that entanglement obeys
an area law41 and the cost of the MPS parametrisation of such states in one dimension
will be effectively linear in system size.

viCorrect index ordering is crucial here to obtain the identity tensor – accidentally contracting a and a†

will result in zero tensors for U(1) IREPs, while exchanging a and a† during the creation of either one
will result in spurious minus signs for SU(2) IREPs – they are called non-abelian for a reason!
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c

σ1 σ1 · · · σL

M1 M2 · · · ML

m0 mLm1 m2 mL−1

σ1 σ1 · · · σL

Figure 2.4: Left: The tensor c from equation (2.3.1) with the physical indices associated
to the local spaces Hi coming in from above. Right: A MPS with four tensors explicitly
shown. Physical indices from the local spaces Hi come in from above corresponding
to states |σi〉. The direction of bond indices is from right-to-left. The tensor c can be
restored by contracting over all bond indices {mi}L−1

i=1 . The special indices m0 and mL are
shown as dashed lines – the former corresponds to the symmetry sector of the state itself,
the latter to the vacuum sector; both are essentially one-dimensional dummy indices.

2.3.1 Definition

Specifically, the MPS formalism attempts to decompose the tensor c from Eq. (2.3.1) into
a series of L rank-3 tensors {Mmi−1

i;σimi
}Li=1 such that the contraction of those tensors over

all bond indices {mi}i results in the tensor c:

cσ1σ2···σL =
∑
m1

∑
m2

· · ·
∑
mL−1

Mm0
i;σ1m1

Mm1
i;σ2m2

· · ·Mm2
i;σ3m3

· · ·MmL−1

i;σLmL
(2.3.2)

In a non-symmetry-protected view, the tensor c and the {M}i are just dense tensors.
Then for consistency, the indices m0 and mL must be one-dimensional dummy indices to
ensure that c and the tensor product have the same shape.vii

If we wish to use symmetry-protected tensors, there are two potential issues: Firstly, we
have to fix the directions of the tensor legs in a consistent manner. In the SyTen toolkit,
the tensor Mmi−1

i;σimi
has incoming indices σi (which is also called physical index ) and mi

(right bond index ) and an outgoing index mi−1 (left bond index ). This is graphically
represented in Fig. 2.4.
Secondly, to actually implement symmetries, we must assign each index the good

quantum numbers associated to the symmetry. For the physical indices, those are simply
the quantum numbers also associated to the local, physical states. The bond indices
can then be labelled consistently assuming that we fix the rightmost index mL. It is
convenient to associate this index to the vacuum, i.e. all labels zero. This naturally results
in the leftmost index m0 carrying the quantum numbers of the state itself – if there

viiThere exists an alternative description whereby we trace out the remaining first and last index. This
description implements periodic boundary conditions of the underlying system in the MPS, but
implemented naively has some computational disadvantages. Since periodic boundary conditions of
the system Hamiltonian can also be implemented with “open boundary condition” MPS, I will not
discuss the other description further. However, see also Ref. [42, 43] for potentially more efficient
approaches beyond the scope of this thesis.
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are five particles in the state, the one-dimensional m0 index will have quantum number
N = 5.

Construction of an MPS

Given a tensor c, it is in theory possible to iteratively decompose it into a MPS by a
series of tensor leg combinations and singular value decompositions. As this is impractical
in all but the simplest cases, it won’t be discussed here. The following alternatives exist:

• For normalised product states, each Mmi−1

i;σimi
is a 1× 1× di dimensional tensor. The

entries are either one or zero, depending on whether the particular σi occurs in the
product state or not.

• As a special case of the above, a Néel spin state can be found by generating the
MPS tensors iteratively. Given a right-hand basis from the previous iteration (or
the vacuum) and the local physical basis, an isometry tensor which explores the
entire available left-hand basis is generated. Then, all states but a single one from
the absolute-value-wise smallest spin quantum number sector are discarded. For
example, the local basis {| ↑〉, | ↓〉} combined with a right-hand basis of a single
state with Sz = 1

2 gives two states in total, one with Sz = 0 and one with Sz = 1.
The former is chosen, resulting in a new right-hand basis on the next iteration with
Sz = 0. The state built in this way will either have Sz = 0 for even chain lengths
or Sz = ±Szl where Szl is the minimal local spin for odd chain lengths.

• A “random” state can be generated by first building a state corresponding to the
vacuum (either no particles or a Néel state for spins) and then acting with random
local operators in random places until a state transforming as desired has been
found. By using different weights for different operators according to the expected
change in distance to the target state, this can be made very fast and result in
decent initial states for e.g. DMRG ground-state search. A measure for the expected
change in distance would be based on the current quantum number of the state
(Nc = 5), the target quantum number we wish to achieve (Nt = 10) and the change
in quantum numbers given by the transformation of the operator (N∆ = ±1 for
c(†)), e.g. as sign (Nc −Nt)N∆.

Generality of a symmetry-protected MPS

It is fairly straight-forward to see that a MPS which transforms globally irreducibly (i.e. has
a well-defined particle number, Sz quantum number or somesuch) can be constructed
from symmetry-preserving tensors if the local basis also preserves the symmetry. Assume
the opposite, that some tensor of the system does not preserve the symmetry of the
system and hence has (e.g.) a state on its left outgoing leg which does not transform
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Ai

A†i

σimi−1

mi

m̃i

=

mi

m̃i

Bi

B†i

σi mi

mi−1

m̃i−1

=

mi−1

m̃i−1

Figure 2.5: Left: A left-normalised MPS tensor Ai contracted with its conjugate A†i over
the physical and left indices σi and mi−1 results in a left-hand identity tensor mapping
mi to m̃i, represented by a single line. Right: Similarly, a right-normalised MPS tensor
Bi contracted with its conjugate B†i over the physical and right indices σi and mi results
in a right-hand identity tensor mapping m̃i−1 to mi−1.

irreducibly. However, given such a reducible state mixing quantum numbers, subsequent
tensors cannot “disentangle” those states and hence, when arriving at the left edge of
the MPS chain, the overall state still transforms reducibly, not irreducibly as originally
assumed. Put another way, we cannot combine a local eigenstate of the symmetry and
some state which transforms reducibly in a tensor product to build a global eigenstate of
the symmetry. If the states on the first (or last) site transform irreducibly, then also the
combined states on sites 2 through L (or 1 through L− 1) have to transform irreducibly.
By applying this reasoning again to the second site, we can iteratively argue that every
tensor of the state has to preserve the global symmetries.
Note that this argument of course does not hold for states which do not transform

irreducibly. Hence if one wants to study symmetry breaking, it is absolutely necessary to
allow the breaking of the symmetry in question in the first place by not implementing
the symmetry-to-be-broken as part of the symmetries preserved in the tensor network.

2.3.2 Left- and Right-Normalisation

The left- and right-normalisation of MPS tensors is a computationally very useful tool.
Specifically, a tensor Ami−1

i;σimi
is said to be left-normalised if and only if

∑
mi−1σi

A
mi−1

i;σimi

(
A
mi−1

i;σim̃i

)†
= 1m̃imi . (2.3.3)

The dual-space conjugation † is defined for tensors as firstly complex-conjugating every
element and secondly inverting the direction of every tensor leg, i.e. (Xm

n )† = X?n
m with ?

denoting complex conjugation. It is also customary to draw a conjugated MPS tensor with
a downward physical leg (in part to ease contraction with its unconjugated counterpart).
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Similarly, the tensor Bmi−1

i;σimi
is right-normalised if and only if

∑
miσi

B
mi−1

i;σimi

(
B
m̃i−1

i;σimi

)†
= 1

mi−1

m̃i−1
. (2.3.4)

These contractions are graphically presented in Fig. 2.5. By convention, in the context of
MPS, the letter A is used for left-normalised tensors only, the letter B for right-normalised
tensors and the letter M for unnormalised tensors. Triangles are used instead of circles
to denote normalised tensors (also cf. Fig. 2.8 later).

Process of Normalisation: QR or SVD

A key property of MPS is a certain gauge freedom: Given two MPS tensors Mi and Mi+1,
we only actually care about their contraction over their common MPS bond index. In
turn, if we can find a decomposition such that

M
mi−1

i;σimi
=
∑
m′i

A
mi−1

i;σim′i
T
m′i
mi , (2.3.5)

we may multiply the transfer tensor T also into Mi+1 instead:

Mi+1 →
∑
mi

T
m′i
miM

mi
i+1;σi+1mi+1

= M
m′i
i+1;σi+1mi+1

. (2.3.6)

A singular value decomposition or a QR decomposition may be used to compute a
normalised tensor Ai (or Bi) and a transfer tensor T from an input tensor Mi. The
QR decomposition has the advantage that it is computationally cheaper, while the SVD
decomposition allows the compression of the state (cf. Sec. 2.3.4). The decompositions,
when applied to matrices and without regard for tensor leg directions, are defined here as
follows:

Mab → Qac ; Rcb s.t.
∑
a

QacQ
?
ac̃ = 1cc̃ (2.3.7)

and R upper triangular (2.3.8)

and Mab =
∑
c

QacRcb (2.3.9)

Mab → Uac ; Scd ; Vdb s.t.
∑
a

UacU
?
ac̃ = 1cc̃ (2.3.10)

and
∑
b

VdbV
?
d̃b

= 1dd̃ (2.3.11)

and S diagonal, real and with Si,i ≥ Si+1,i+1 (2.3.12)

and Mab =
∑
cd

UacScdVdb (2.3.13)
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Figure 2.6: Left: Decomposition of a rank-4 tensor T over a single leg l into tensors U , S
and V . The contraction over the legs l′ and l′′ of U , S and V would result in the original
tensor T . Of course, instead of U , one can also take V to correspond to the original tensor.
Right: The contraction of U and U † results in an identity tensor on the space of l′.

The QR or SVD decomposition over one leg (mi in Eq. (2.3.5)) of an arbitrary-rank
tensor proceeds as described in Alg. 2.2. It makes extensive use of the fact that the only
valid rank-2 symmetry tensors are proportional to the identity and that contractions of
valid symmetry tensors also result in valid symmetry tensors, which allows us to transfer
the scaling factor easily from the then-orthonormal symmetry tensors into the reduced
tensor, where it is handled by the matrix decomposition. A possible result of such a
decomposition is depicted in Fig. 2.6.

2.3.3 Level-1 Operations on MPS

Three operations are very easy to implement on MPS and will be reviewed here briefly:

Scalar Multiplication

Given a MPS described by tensors {Mi}i, multiplication by a scalar α can be implemented
by multiplying the dense reduced components of the blocks of the first tensor M1 by α.

Scalar Product

Given two states |ψ〉 and |φ〉 with associated MPS representations {Mi}i and {Ni}i, the
scalar product 〈φ|ψ〉 can be calculated by the complete contraction of all tensors. This
is best represented graphically (cf. Fig. 2.7). It must be stressed that this contraction
should work from left to right, i.e. first contracting M1 ·N †1 = C1, then the result with
M2 and N †2 etc.

MPS-MPS Addition

If two states transform in the same way on their leftmost dummy index, their sum will
again transform uniquely on this leg. The MPS tensors {Ri}i representing the sum of two
MPS {Mi}i and {Ni}i can be written via tensor expansion on the MPS bond indices as

R1;σ1 =
(
M1;σ1 N1;σ1

)
(2.3.14)
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Algorithm 2.2 The decomposition of a tensor either via SVD or QR decomposition over
a single leg. In the SVD, either U or V can be used to take the place of the original
tensor and result in an orthogonal basis upon contraction; in the QR, only Q can be used.
The transfer tensor into the next site is then given either by S · V or R. In principle, any
matrix decomposition can be used in Line 14 depending on the required properties of the
resulting tensors.
The loop from Line 4 to Line 12 rescales each dense block such that the associated CGC
block results in an identity matrix when contracted over all but the l-th leg. This is
reversed in Line 17 so the values in cγi are never actually changed.
If the target tensor is the U tensor from the SVD or the Q tensor from the QR decompo-
sition, the collection on Line 13 re-shapes each block such that all indices but the l-th
index build the rows and the l-th index is the sole column index. Those blocks should
then be stacked on top of each other. It is necessary to remember which rows of the
combined matrix m belongs to which block ri for the following re-distribution. If the
target tensor is the V † tensor from the SVD, rows and columns have to be interchanged
in the previous two sentences.
1: procedure tensor-decomposition(Tensor T , Leg l)
2: for each Sector s on leg l do
3: Collect all blocks bi ∈ T which transform as s on l into the set S.
4: for block {ri, cγi } = bi ∈ S do
5: αi ← 1
6: for each symmetry γ in the system do
7: tll′ ←

∑
all but l,l′ c

γ
i (cγi )

†

8: tll′ = α′1ll′
9: αi ← αi · α′

10: end for
11: ri ← αi · ri
12: end for
13: Collect all ri ∈ S into matrix m
14: Decompose m→ u · s · v or m→ q · r
15: Distribute u, v or q into r′i
16: for block bi ∈ S do
17: Add {r′i/αi, cγi } to tensors U , V or Q
18: end for
19: Add {s,1γ} and {v,1γ} to tensor S and V or {r,1γ} to R
20: end for
21: return tensors U , S, V or Q and R
22: end procedure
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M1 M2 M3 M4 M5

N †
1 N †

2 N †
3 N †

4 N †
5

Figure 2.7: The scalar product of two MPS represented by tensors {Mi}i and {Ni}i.
The tensors on top are conjugated, with directions of legs reversed and entries complex-
conjugated. The right-hand side dashed line connects the two vacuum sectors of the
right-hand side dummy indices. The left-hand side dashed line connects the two sector
indices containing the transformation information of each of the two states. Since the
scalar product results in a scalar value, no legs of the tensor network are left open after
the contraction operation completes.

R1<i<L;σi =

(
Mi;σi 0

0 Ni;σi

)
(2.3.15)

RL;σL =

(
ML;σL

NL;σL

)
(2.3.16)

where Xi;σi is a matrix in the MPS bond dimensions. Note that in principle, it is also
possible to add two states which do not transform the same way, i.e. where it is not
possible to place the leftmost tensors M1;σ1 and N1;σ1 in the same row since their m0

indices transform differently. This would then result in a non-uniquely transforming
state with a non-trivial leftmost basis. Something very similar occurs when handling a
state transforming as S 6= 0 under SU(2)Spin. In this case, the symmetry tensors are not
one-dimensional but actually 2S + 1-dimensional, even on the leftmost leg. Taking care of
such states correctly (in particular during scalar products) is crucial to obtaining correct
data, but results naturally from an otherwise correct tensor implementation.

2.3.4 Schmidt Coefficients and MPS Truncation

If all MPS tensors to the left of a given bond k are left-normalised as described above
(with the transfer tensors successively multiplied into the next right-hand neighbour), then
the left-hand MPS bond basis is orthonormal (as it results from a series of orthonormal
transformations of an orthonormal basis). If we attempt the same for the right-hand MPS
bond basis, we will generally require an additional singular value tensor on this bond.
This tensor results from the last right-hand side normalisation, but we cannot multiply
it into the left-hand side without destroying the other normalisation. Graphically, this
situation is represented in Fig. 2.8. We can then write the MPS as

|ψ〉 =
∑
σ

∑
m

Am0
1;σ1m1

· · ·Amk−1

k;σkmk
Smk
m′k
B
m′k
k+1;σk+1mk+1

· · ·BmL
L;σLmL−1

|σ〉 (2.3.17)
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A1 A2 A3 S3 B4 B5

Figure 2.8: A MPS of five sites; the leftmost three sites are left-normalised while the two
right sites are right-normalised. A singular value tensor S3 lives on the third bond and
contains the Schmidt coefficients.

which, with the orthonormality of the left- and right-hand side and the diagonalicity of
S
m′k
mk = Si, is equivalent to

|ψ〉 =

t∑
i=1

Si|αi〉 ⊗ |βi〉 (2.3.18)

where states |αi〉 and |βi〉 are orthonormal states on the left- and right-hand side of the
system, defined via the series of basis transformations contained in Aj≤k and Bj>k. This
decomposition is exactly the Schmidt decomposition of the state between subsystems of
size k and L− k respectively.44 It is always possible to choose the Si ∈ R, furthermore,
they can be sorted in descending order, Si ≥ Si+1.

The von Neumann entanglement entropy between the subsystems to the left and right
of the bond k is given as21

Sj≤k,j>k =
−∑t

i=1 S
2
i log2

(
S2
i

)∑t
i=1 S

2
i

. (2.3.19)

The denominator here is simply the normalisation condition, for a normalised state, it will
be 1. The number t of Schmidt coefficients Si is given by the dimension of the k-th MPS
bond – if the system has little entanglement (t small), the MPS bond dimension is small,
if it is strongly entangled (t large), that bond dimension also has to be large. The set
of Schmidt coefficients can be considered the entanglement spectrum of the system: For
most ground-states, they will decay exponentially to zero, while for strongly entangled or
critical states, the decay will be algebraic.
This decomposition also provides a way to truncate a MPS, i.e. to approximate a

state |ψ〉 (w.l.o.g. assumed to be normalised) by a different state |ψ′〉 with a smaller
MPS bond dimension. By setting the smallest coefficients in the tensor S to zero, we
can generate this new state |ψ′〉 while closely monitoring the induced error. For this,
first note that the norm of a state in the format of Eq. (2.3.17) or Eq. (2.3.18) is given
by
∑

mkm
′
k
S
m′k
mkS

?mk
m′k

=
∑t

k=1 S
2
k . Second, if two states |ψ〉 and |ψ′〉 share the left- and

right-hand Schmidt basis |αk〉 and |βk〉, with different coefficients Sk and S′k, then their
overlap is given by 〈ψ′|ψ〉 =

∑t
k=1 SkS

′
k.

Hence, if we select S′k = Sk if k ≤ r and S′k = 0 if r < k ≤ t, we will generate a state

|ψ′〉 with norm
√
R =

√∑r
k=1 S

2
k . Further, let D =

∑t
k=r+1 S

2
k be the squared sum of
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discarded singular values, D ∈ [0, 1] and note that R+D = 1. We then consider the error
induced by such a truncation from t to r singular values between normalised states |ψN 〉
and |ψ′N 〉 = R−1/2|ψ′〉 and find:∣∣∣∣∣∣|ψ′N 〉 − |ψN 〉∣∣∣∣∣∣2 =

∣∣∣∣∣∣R− 1
2 |ψ′〉 − |ψ〉

∣∣∣∣∣∣2 (2.3.20)

=
1

R
〈ψ′|ψ′〉 − 2R−

1
2 〈ψ′|ψ〉+ 〈ψ|ψ〉 (2.3.21)

= 1− 2
√
R+ 1 (2.3.22)

= 2− 2
√

1−D = 2− 2

√√√√1−
t∑

k=r+1

S2
k (2.3.23)

∣∣∣∣∣∣|ψ′N 〉 − |ψN 〉∣∣∣∣∣∣ =

√√√√√2− 2

√√√√1−
t∑

k=r+1

S2
k (2.3.24)

Making use of the triangle inequality, it is obvious that if we truncate |ψ′N 〉 on another
bond creating a new state |ψ′′N 〉, the error between |ψN 〉 and |ψ′′N 〉 is bounded by the sum
of the individual errors:∣∣∣∣∣∣|ψ′′N 〉 − |ψN 〉∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣|ψ′′N 〉 − |ψ′N 〉∣∣∣∣∣∣+

∣∣∣∣∣∣|ψ′N 〉 − |ψN 〉∣∣∣∣∣∣ (2.3.25)

Then, given a normalised state |ψN 〉, we can bound the error incurred by a series of SVD
truncations on each bond resulting in a new normalised state |ψ′N 〉 as

∣∣∣∣∣∣|ψ′N 〉 − |ψN 〉∣∣∣∣∣∣ ≤ L∑
i=1

√√√√√2− 2

√√√√1−
ti∑

k=ri+1

S2
i;k . (2.3.26)

In comparison to this simple calculation, there exists a different bound proven45 by
Frank Verstraete, namely that

∣∣∣∣∣∣|ψ′N 〉 − |ψN 〉∣∣∣∣∣∣ ≤
√√√√2

L∑
i=1

ti∑
k=ri+1

S2
i;k (2.3.27)

which is the commonly-used bound21,45 and stricter if the SVD has been used to truncate
more than once, e.g. on different bonds. In the case of only a single truncation via a
single SVD, Eq. (2.3.24) gives the exact induced error and is hence in particular suitable
for DMRG (cf. Chapter 3).
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2.3.5 Variational Orthogonalisation

Given a MPS |ψ〉, it may be desirable to orthogonalise it against a set of other MPS{
|oA〉, |oB〉, . . . , |oM 〉

}
, resulting in a new MPS |r〉. One application of this is the Krylov

time evolution algorithm, explained in Sec. 4.1.4. In principle, this orthogonalisation
is possible using MPS-MPS scalar products and addition with a Gram-Schmidt-like
procedure. However, the increase in bond dimension resulting from a MPS-MPS addition
may require a subsequent truncation operation which inevitably leads to a loss of precision
and hence orthogonality. In contrast, the variational algorithm presented here works at the
desired bond dimension and precision throughout, hence preserving orthogonality between
the vectors to within the machine epsilon. This algorithm is not new, but a certain lack
of detailed explanations in the published literature motivates this re-presentation here.
Assume that the input MPS |ψ〉 on a system of size N is given as a series of tensors
{Ψi}Ni=1, the M target-orthogonal vectors are given as {{OAi }Ni=1, . . . , {OMi }Ni=1} and our
current best estimate for the resulting state is |r〉, stored in MPS form as {Ri}Ni=1. We
wish to minimise ∣∣∣∣∣∣|ψ〉 − |r〉∣∣∣∣∣∣ (2.3.28)

under the constraint that 〈r|oJ〉 = 0 ∀ J ∈ [1,M ]. Using a series of Lagrange multipliers46

λJ , this is equivalent to minimising

〈r|ψ〉+ 〈r|r〉+

M∑
J=A

λJ〈r|oJ〉 (2.3.29)

with respect to 〈r| and λJ , where we have already removed terms not dependent on 〈r|
nor λJ .
To obtain an individual optimal site tensor Ri, we must partially differentiate this

function with respect to R†i and each λJ . The resulting equations are

−ψE +Ri +

M∑
J=A

λJoJE = 0 (2.3.30)

oJE ·R†i = 0⇔ oJ†E ·Ri = 0 ∀J ∈ [A,M ] (2.3.31)

where XE denotes the environment tensor generated by taking the overlap between
|r〉 and |x〉 and removing the tensor R†i . Note that we assume the state |r〉 to be in
mixed-canonical form with respect to site i. We can rewrite these equations as follows:
Let r be the vectorisation of the target tensor Ri, similarly ψ the vectorisation of the
environment tensor ψE , let o be a matrix which contains the orthogonal environment
tensors oJE as its columns and let λ be a vector which contains the Lagrange multipliers.
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With this, the above becomes:

r = ψ − oλ (2.3.32)

0 = o†r (2.3.33)

By left-multiplying the first equation with o†, we can equate its left-hand side to zero to
obtain:

0 = o†ψ − o†oλ (2.3.34)

⇒ λ =
(
o†o
)−1

o†ψ . (2.3.35)

Here, the object o†ψ is simply the vector of overlaps between target-orthogonal vectors
〈oJ | with the input vector |ψ〉 and the matrix o†o is the matrix of overlaps between the
target-orthogonal vectors. Due to its relatively small size, it can be inverted exactly
(using e.g. a SVD). This then gives the vector of Lagrange multipliers λ which, when
inserted into Eq. 2.3.32 gives us the optimal value for the tensor Ri. Proceeding in this
fashion through the MPS, we can optimise each individual site tensor sequentially. The
full procedure is summarised in Alg. 2.3.
Two caveats have to be observed here: First, the above approach intentionally limits

each individual orthogonalisation to the space spanned by a single tensor, i.e. does not
allow for a potentially necessary increase in bond dimensions. In practice, this means
that the result may well differ from the “exact” result produced using MPS-MPS addition
and the Gram-Schmidt procedure, however, the difference is usually negligible and the
exact orthogonality with the vectors |oJ〉 much preferable. If for some reason the incurred
errors are unacceptably large, e.g. because the bond dimensions of the input states are
already very small and do not allow for a good variational approach, one may use the
same procedure but optimise two neighbouring tensors at a time, in this way introducing
a variable bond dimension which may be increased as necessary. The SVD necessary
to split the merged MPS tensors again will, however, usually introduce some sort of
truncation after the orthogonalisation. For this reason, one should first use the two-site
orthogonalisation and then a few additional sweeps with the single-site orthogonalisation.
The latter does not require truncations and hence orthogonalises exactly.

Second, when starting at the boundary of a MPS, the variational space may be very
small (e.g. only containing d parameters on the first site). Orthogonalising a state against
multiple other states while restricted to such a small space may prove impossible. Our
solution to this problem is to only orthogonalise against certain states on an initial sweep
if the norm of the resulting tensor Ri does not become too small. Once the centre of
the MPS chain is reached, there are usually sufficiently many parameters to allow full
orthogonalisation. During a second sweep, this criterion is then ignored, resulting in
a null state only where necessary due to the imposed restrictions. If there are many
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Algorithm 2.3 Variational orthogonalisation of a MPS {Ψi}Ni=1 against a series of MPS
{|oj〉}j using the single-site variant. |oj〉 do not have to be orthogonal among each other.
A two-site variant would work equivalently and simply merge two neighbouring MPS
tensors into one prior to all operations and split them afterwards using a SVD.
1: procedure variationally-orthogonalise(MPS {Ψi}Ni=1, M MPS {{Oji }Ni=1}Mj=1)
2: Right-normalise the MPS {Ψi}i
3: Ri ← Ψi ∀ i ∈ [1, N ] . Initialise returned MPS {Ri}
4: ψL0 ← 1

mR0
mΨ

0
ψRL+1 ← 1

mΨ
L+1

mRL+1

. Dummy leftmost/rightmost contraction

5: for i ∈ [L, 2] do ψRi ← R†i ·Ψi · ψRi+1 end for . iterative overlaps from right
6: for j ∈ [1;M ] do . Add orthogonal states one-by-one

7: oj;L0 ← 1
mR0

mO
j

0

oj;RL+1 ← 1
mO

j

L+1

mRL+1

. Dummy leftmost/rightmost contraction

8: for i ∈ [L, 2] do oj;Ri ← R†i ·O
j
i · o

j;R
i+1 end for . iterative overlaps from right

9: while not converged do
10: for i ∈ [1, L− 1] do . Left-to-right sweep
11: ψE ← ψLi−1 ·Ψi · ψRi+1

12: for k ∈ [1, j] do okE ← ok;L
i−1 ·Oki · o

k;R
i+1 end for

13: Ri ← orthogonalise(ψE , {okE}
j
k=1, is first while-loop iteration?)

14: Left-normalise Ri → RAi , T ; Ri ← RAi ; Ri+1 ← T ·Ri+1

15: ψLi ← ψLi−1 ·R†i ·Ψi

16: for k ∈ [1, j] do ok,Li ←k;L
i−1 ·R

†
i ·Oki end for

17: end for
18: for i ∈ [L, 2] do . Right-to-left sweep
19: ψE ← ψLi−1 ·Ψi · ψRi+1

20: for k ∈ [1, j] do okE ← ok;L
i−1 ·Oki · o

k;R
i+1 end for

21: Ri ← orthogonalise(ψE , {okE}
j
k=1, false)

22: Right-normalise Ri → T,RBi ; Ri ← RBi ; Ri−1 ← Ri−1 · T
23: ψRi ← ψRi+1 ·R†i ·Ψi

24: for k ∈ [1, j] do ok,Ri ←k;R
i+1 ·R

†
i ·Oki end for

25: end for
26: end while
27: end for
28: return {Ri}Ni=1

29: end procedure
30: procedure orthogonalise(ψE , {okE}

j
k=1, bool careful)

31:
(
o†o
)
kl
← okE

† · olE ∀ k, l ∈ [1, j]

32:
(
o†ψ
)
k
← okE

† · ψE ∀ k ∈ [1, j]

33: λ←
(
o†o
)−1 ·

(
o†ψ
)

. Use SVD here,
(
o†o
)
may be degenerate

34: for k ∈ [1, j] do
35: if ¬ careful ∨ ||ψE − λk · okE ||/||ψE || > 10−3 then
36: ψE ← ψE − λk · okE . Do not kill ψE in first iteration
37: end if
38: end for
39: return ψE
40: end procedure
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Figure 2.9: A binary tree tensor network state of five sites. The child legs of tensors
B, C and D are dummy legs associated to the vacuum and behave the same way as the
rightmost MPS leg mL. The parent leg of the root node, rp, contains the transformation
information of the state and is equivalent to the leftmost MPS legm0. The interconnecting
legs bp, cp, ap and dp take the role of MPS bond indices. Each tensor is associated to a
physical site index σi.

target-orthogonal states, it is usually helpful to add them one-by-one to the set of states
against which the sweeping procedure orthogonalises to avoid too many constraints hitting
the unoptimised state at once. In any case, it is usually beneficial to sweep multiple times
over the system due to the variational nature of the approach.

2.3.6 Generalisation to Tree Tensor Networks

Tree tensor networks in this context are connected, loop-free networks of tensors. Each
tensor may have one or more child tensors and each but one tensor has exactly one
parent tensor. For implementation purposes, in particular in the context of SyTen, it is
advantageous to concentrate on binary tree tensor network states (BTTS): Each tensor is
a rank-4 tensor with one physical index, 2 child indices and one root index. The latter
three take the role of the previous MPS bond indices. If the tensor has no children or if it
is the root node, the associated indices are dummy indices much like the rightmost and
leftmost MPS indices. Fig. 2.9 gives an example of a BTTS with five tensors.
Such loop-free networks behave largely the same way as standard MPS: Nodes can

be normalised in one of three directions (towards the left child, the right child and its
parent) rather than two, but apart from this difference, every concept carries over as is.
In particular, it is possible to efficiently calculate the Schmidt decomposition and hence
optimal truncation at a given bond by appropriately normalising all other nodes to point
towards this bond. Furthermore, the contraction of one state with another is equally
efficiently possible by working upwards over each leg and discarding child leg contractions
once the parent has been calculated.
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Figure 2.10: Graphical representation of a matrix-product operator on five sites. The
MPO acts on a MPS from above by connecting the physical legs of the MPS with the
lower physical legs of the MPO.

2.4 Matrix-Product Operators

This section starts with a definition of matrix-product operators (MPOs) in Sec. 2.4.1
and how to construct MPOs representing single-site operators (Sec. 2.4.2). It continues
with an overview of MPO-MPO and MPO-MPS arithmetic (Sec. 2.4.3) as well as MPO
compression (Sec. 2.4.4) and concludes with some examples of MPOs constructed by
combinations of these ingredients. While Secs. 2.4.1 and 2.4.3 are mostly a review of
well-known facts, Sec. 2.4.4 contains an investigation of the failure of SVD compression
when applied to MPOs carried out during this PhD thesis as well as a newly-designed
MPO compression algorithm.

2.4.1 Definition

Similar to matrix-product states, matrix-product operators are a potentially extremely
efficient way to represent large matrices. They are in particular useful to define the
Hamiltonian matrices describing the behaviour of one-dimensional quantum-mechanical
systems.
Given a Hilbert space H = ⊗Li Hi with {|σi〉}σi being a set of di basis states of the

space Hi, we can write any operator Ĥ : H → H as

Ĥ =
∑
σ1τ1

∑
σ2τ2

· · ·
∑
σLτL

cσ1σ2···σL
τ1τ2···τL |τ1〉 ⊗ |τ2〉 ⊗ · · · ⊗ |τL〉 〈σ1| ⊗ 〈σ2| ⊗ · · · ⊗ 〈σL| . (2.4.1)

The rank-2L tensor c of size
∏
i d

2
i can then be decomposed in much the same way as a

state |ψ〉 into a series of L rank-4 tensors {W σiwi
i;τiwi−1

}i, namely (cf. Fig. 2.10)

cσ1σ2···σL
τ1τ2···τL =

∑
w1

∑
w2

· · ·
∑
wL

W σ1w0
1;τ1w1

W σ2w1
2;τ2w2

· · ·W σLwL−1

L;τLwL
. (2.4.2)

In the same way that the leftmost MPS bond indexm0 labels the transformation properties
of the state, the leftmost MPO bond index w0 defines the transformation properties of
the operator. A particle creation operator will for example transform as N = 1 on w0.
This IREP combines with the IREP of the state if we apply the operator to a state to
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result in (one or moreviii) IREPs of the target state.
Of course, much as for generic states |ψ〉, for a generic operator Ĥ, the MPO bond

dimensions wi will grow exponentially with system size. However, for most physical
Hamiltonians with finite-range interactions in one dimension, this size is constant and very
small (e.g. |wi| = 5). For another, very large class of physical Hamiltonians, modelling
systems as diverse as the two-dimensional Fermi-Hubbard model on a cylinder or the full
four-operator interaction from quantum chemistry, the MPO bond dimension grows at
most polynomially (linear in the former and quadratic in the latter case) in system size.
Usually, if there is reason to assume that the ground-state of a Hamiltonian can efficiently
be represented as a matrix-product state, then the Hamiltonian itself can efficiently be
represented as a matrix-product operator.
The construction of a MPO representation of a given matrix can, roughly speaking,

proceed using three different approaches: First, if the matrix is given as a dense Kn×n

matrix, a series of SVD factorisations can be used to achieve a MPO representation of the
desired length. In the context of condensed matter physics, this approach is irrelevant, as
n ∼ dL and hence by far too large even for systems of moderate size L ≈ 100. Second, if
an analytic expression of the matrix is available, e.g. of the form

∑
i ŝi · ŝi+1, it is possible

to construct a finite-state machine (FSM) that corresponds closely to the MPO form. For
details on this approach, see Ref. [21] pp. 142. It works generally very well as long as the
system is sufficiently simple to capture all rules required to construct the MPO in a small
FSM. However, once the system becomes more complicated, the complexity of the FSM
grows very quickly.11 In turn, a considerable amount of effort has to be put into every
new model under study which makes the method not very generic. Third, it is possible to
construct MPO representations using only the analytical representation without resorting
to finite-state machines.
This last approach has been published as part of this thesis in Ref. [1] and will be

presented here in three steps: We start with the definition of single-site operators. By
implementing MPO arithmetic, it becomes possible to construct e.g. Ĥ =

∑
i ĉ
†
i · ĉi+1 +h.c.

via a series of multiplications and additions in a very simple fashion (especially when using
a programming language implementing object-oriented semantics such as C++). Finally,
to achieve the most efficient MPO representation, a compression method is used, of which
we present three together with a suggestion for an in our experience optimal compression
procedure based on combining two of these compression methods.

2.4.2 MPOs for Single-Site Operators

Single-site operators (SSO) are those operators which act nontrivially only on a single
site, examples include the particle annihilator ĉi on site i, the spin operator along the
viiiFor example, applying a S = 1 operator on a S = 1 state will result in three states transforming as

S = 0, S = 1 and S = 2. In principle, it is also possible to represent such nonuniquely transforming
states with MPS, but one usually projects into just a single sector instead.
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Figure 2.11: Graphical representation of MPOs for ŝz3 and ŝ+
3 on a five-site system.

Numbers 1, 0 and letters z denote the incoming and outgoing Sz quantum numbers on
each tensor leg. By convention, the leftmost MPO bond index w0 transforms the same as
the represented operator, while the rightmost MPO bond index wL always transforms as
the vacuum of the system. The MPO acts on the MPS below it, mapping states with
Sz = z to those with Sz = z + 1 in the second example on the third site.

z-axis ŝzi on site i or the local particle number operator n̂i on site i. The site i is called
the active site, since the operator acts there. The MPO representations of SSO are very
simple, as they have MPO bond dimension 1 throughout the system. They are hence
fully described by a set of L matrices of size di × di.

Bosonic Single-Site Operators

The easiest case is that of bosonic operators transforming trivially with respect to the
implemented symmetries, e.g. ŝzi or n̂i. If no symmetries are implemented, all bosonic
operators behave this way. To construct the MPO representation of ŝzi , we only need the
local representation, given as diag(−S,−S + 1, . . . , S − 1, S), and an identity operator
acting on each site but i. In the case of a homogenous system, these are all the same and
we can construct the MPO for ŝzi as

W<i = 1i Wi = szi W>i = 1i . (2.4.3)

This construction can occur on-the-fly so that we only have to store one identity tensor
of size (1, 1, d, d) and one active site tensor of the same size.

Operators which do change a quantum number, such as ŝ+
i or ĉ†i , are more complicated.

Since each tensor has to locally preserve symmetries and hence quantum numbers, the
additional quantum number must be carried from the active site i to the left (or right)
edge of the system, depending on convention. In turn, the chain of identity operators to
the left of the active site must allow for this quantum number on their MPO bond indices,
while those on the right of the active site only carry the vacuum quantum numbers (cf.
Fig. 2.11). Since those quantum numbers are part of the tensor structure, it is necessary
to store different identity operator tensor representations for the left and right half of
the system. Because all involved tensors are very small, it is possible to always store left-
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Figure 2.12: Graphical representation of the fermionic creation operator c†3↑ on a five-site
system. Labels correspond to the fermionic particle quantum numbers. To the left of
site 3, the identity tensors 1 have been replaced by parity tensors p implementing the
non-local CAR.

and right identities and avoid the additional logic to differentiate between operators with
identical left- and right identity chains and those with differing chains.

Fermionic Single-Site Operators

The local anti-commutation relations of fermionic operators can be implemented by a
suitable definition of the active site tensor. However, non-local anti-commutation relations
also have to be implemented.47 To do so, we first employ the natural ordering of MPO
sites from e.g. left to right through the system to define an ordering of the fermionic
operators. It is then sufficient to place parity operators instead of identity operators
either to the left or right of the active site (cf. Fig. 2.12). Constructed in such a fashion,
the MPO representing a fermionic operator can be treated in exactly the same way as
any other MPO.

Non-Homogenous Systems

It is sometimes useful to model a non-homogenous system. For example, this could be
a spin chain with alternating S = 1 and S = 1/2 spins48,49 or a system with alternating
bosonic and fermionic sites modeling electrons and phonons.50 Alternatively, the underlying
system could also be homogenous, but due to the explicit implementation of quantum
numbers (e.g. momentum k along a ring), it becomes necessary to assign different sites
different quantum numbers: an electron on the i-th site has momentum 2πi/L, such that a
state with an electron on the first site has (say) total quantum numbers N = 1, Sz = 1/2,
k = 2π/L while an electron on the third site has total quantum numbers N = 1, Sz = 1/2,
k = 6π/L.10 To implement this properly, we have to assign the local one-electron basis
states on site one the momentum quantum number 2π/L while the local one-electron basis
states on site three have momentum quantum number 6π/L.
Such a system can be implemented by associating a specific type to each site with

the requirements that all sites of the same type carry the same local Hilbert space. The
S = {1, 1/2} spin chain would have two types of sites, as would the mixed bosonic/fermionic
system while the momentum-space ring would have L different types of sites.

Then, to be able to construct a MPO representation of a single-site operator, we need
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Figure 2.13: An identity MPO component with arbitrary non-abelian symmetries generated
from a fusing and a splitting tensor.

to define an active site tensor for each type of site and, for each type of site on which the
operator could act, a proper left and right identity for all sites to the left and right of
that site for a total of T + 2T 2 rank-4 tensors for each single-site operator, where T is
the number of different types of sites. However, this is not a problem: The tensors are all
of dimension (1, 1, di, di) with di typically small. Additionally, the number of types T is
usually much smaller than the total system size – even in the case of the momentum-space
system, one often combines multiple rings into a hybrid-space cylinder of a given length.11

The total number of types is then given by the circumference of the cylinder, which is
often bounded by 10 or at most 20 due to computational costs associated with wider
cylinders.25,51

Non-Abelian Single-Site Operators

The representations of single-site operators which transform according to a non-abelian
symmetry are often the only place where one has to explicitly handle the Clebsch-Gordan
coefficient spaces. Two possible avenues exist:
First, by generating a fusing and a splitting tensor, it becomes possible to generate a

rank-4 identity MPO component with two physical indices and two MPO bond indices
(cf. Fig. 2.13). This procedure is independent of the symmetries involved and works for
both abelian as well as non-abelian symmetries. Care must be taken to correctly order
the legs as to connect the physical and auxiliary indices with each other as opposed to
connecting a physical to an auxiliary leg. If the MPO in question is diagonal in the
local basis (e.g. occupation number n̂ or parity p̂), one can then multiply each block
of the generated identity by the appropriate prefactor (for n̂, 0, 1 and 2) to build the
local component of the corresponding MPO tensor. This approach is also applicable if
the left and right MPO bond basis are not identical. In this case, the Clebsch-Gordan
tensors will have the correct structure for the MPO component in question (e.g. for a spin
operator going from S = 0 on the RHS MPO basis to S = 1 on the LHS MPO basis), but
additional tweaking of coefficients will still be necessary.

Second, the MPO component tensors can of course be defined explicitly. This is often
a faster and more flexible method to build the correct MPOs than the generation of the
fusing and splitting tensors. However, it does require a bit of work up-front to figure
out the correct prefactors. The ĉ spinor operator which annihilates particles in the
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Fermi-Hubbard model is tabulated in Tab. 2.2a while the ŝ local spin-flip operator is
given in Tab. 2.2b.

For spin chains, the ŝ spin operator is tabulated in Tab. 2.2c for the S = 1/2 case and in
Tab. 2.2d for the case of S = 1. In particular for the spin chains, the generation via fusing
and splitting tensors as outlined above combined with the appropriate normalisation
factor of −

√
S2 + S is preferable to a hard-coded implementation, as one may want to

consider arbitrary large values for S.

2.4.3 MPO Arithmetic

Six arithmetic operations involving MPOs and MPS can reasonably be defined. Most
of these are either very simple or well-covered elsewhere, so they will only briefly be
reviewed. However, there does not seem to be a good definition of the MPO-MPO dot
product in the public literature, so it will be covered slightly more extensively here.
These operations can be used to iteratively build up a MPO given an analytical

description of the operator. For example, to build a MPO representation of Ĥ =∑L
i=1 ŝ

†
i · ŝ(i+1)%L, we accumulate L results of dot products of SSO-MPOs and then sum

those products together. The resulting MPO will represent Ĥ.

Scalar Multiplication

The multiplication of a MPO {Wi}i by a scalar α proceeds exactly as in the MPS case:
The dense blocks of the first tensor W1 are multiplied by α. As a slight improvement to
evenly spread that value throughout the tensor, it can be considered to multiply W1 by
α/
√
|α| and WL by

√
|α|. In the case of a SSO-MPO which acts trivially everywhere but

on the k-th site, it is best to multiply the tensor on that site by α.

MPO-MPO Scalar Product

The scalar product of two MPOs Â = {Ai}i and B̂ = {Bi}i can be written as

tr
(
ÂB̂†

)
=

∑
στww′

Aσ1w0
1;τ1w1

B?τ1w
′
1

1;σ1w′0
· · ·AσLwL−1

L;τLwL
B?τLw

′
L

L;σLw
′
L−1

. (2.4.4)

This trace can in particular be used to calculate the Frobenius norm of an operator, but
is much more rarely used than the scalar product of two MPS.

MPO-MPO Multiplication

Given two MPOs Â = {Ai}i and B̂ = {Bi}i, it is straightforward to calculate the MPO
representation of the operator R̂ = ÂB̂ (with B̂ applied first). Each pair of site tensors
Ai and Bi is contracted over the upper (for Bi) or lower (for Ai) index and the two left
and right indices are merged into one fat index using a fusing tensor on the left hand and
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Table 2.1: The active MPO component tensors of different non-abelian spinors are written
out, a single block of the tensor per line. Columns of the tables are the quantum numbers
of the right, left, up and down MPO tensor leg and the Clebsch-Gordan coefficient tensor
blocks. Subscripts of the quantum numbers are the sizes of the associated Clebsch-Gordan
subspaces and hence the corresponding size of the CGC tensor. Indices of the CGC
tensor blocks ci are zero-indexed and in the same order as the columns, i.e. r, l, u, d. The
reduced, dense blocks are always singleton tensors with entry 1 and hence not given
here. For the definition of the dot product · see Sec. 2.4.3; in particular, note that for
the dot product Â† · Â, only the MPO form of Â is required, not the definition of the
corresponding creator Â†.

(a) The ĉi = (−ĉi↓, ĉi↑)T annihilation operator in a U(1)Charge × SU(2)Spin-symmetric Fermi-
Hubbard system. The hopping term between sites i and j is ĉ†i · ĉj |S=0 =

∑
σ=↑,↓ c

†
iσciσ. Note that

ĉ†i · ĉi|S=0 = n̂i, while
√

3/4ĉ†i · ĉi|S=1 = ŝi. The minus sign in the first CGC tensor corresponds
to the minus sign arising from the implementation of the local anticommutation relation.

QR QL QU QD CGC
(0, 0)1×1 (−1, 1/2)1×2 (0, 0)1×1 (1, 1/2)1×2 c0,0,0,1 = −1 ; c0,1,0,0 = +1
(0, 0)1×1 (−1, 1/2)1×2 (1, 1/2)1×2 (2, 0)1×1 c0,0,0,0 = +1 ; c0,1,1,0 = +1

(b) The ŝi local spin flip operator in the same U(1)Charge × SU(2)Spin-symmetric Fermi-Hubbard
system as above. This operator should be the same as

√
3/4ĉ†i · ĉi|S=1.

QR QL QU QD CGC

(0, 0)1×1 (0, 1)1×3 (1, 1/2)1×2 (1, 1/2)1×2
c0,0,0,1 = −

√
1/2 ; c0,1,0,0 = 1/2

c0,1,1,1 = −1/2 ; c0,2,1,0 =
√

1/2

(c) The ŝi local spin operator of a S = 1/2 Heisenberg spin chain. The SU(2)-invariant spin-spin
interaction is ŝi · ŝj |S=0 =

∑
a=x,y,z ŝ

a
i ŝ
a
j . Note that this operator is essentially the same as the

spin-flip operator of the Fermi-Hubbard model.
QR QL QU QD CGC

(0)1 (1)3 (1/2)2 (1/2)2
c0,0,0,1 = −

√
1/2 ; c0,1,0,0 = 1/2

c0,1,1,1 = −1/2 ; c0,2,1,0 =
√

1/2

(d) The ŝi local spin operator of a S = 1 Heisenberg (or Haldane) spin chain. The SU(2)-invariant
spin-spin interaction is ŝi · ŝj |S=0 =

∑
a=x,y,z ŝ

a
i ŝ
a
j .

QR QL QU QD CGC

(0)1 (1)3 (1)3 (1)3

c0,0,0,1 = −1 ; c0,0,1,2 = −1
c0,1,0,0 = 1 ; c0,1,2,2 = −1
c0,2,1,0 = 1 ; c0,2,2,1 = 1
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Ri

τAi

σRi

wRiwRi−1 =

Ai

Bi

τAi = τRi

σBi = σRi

Fi SiσAi = τBi

wBi−1

wAi−1

wRi−1

wBi

wAi

wRi

Figure 2.14: Product of two MPOs for the tensors on a single site i. The product is
built the same way on all sites i ∈ [1, L] of the system. Matching physical indices are
contracted and the two left and right MPO bond indices merged into one on each side.

a splitting tensor on the right hand. This is best represented graphically, cf. Fig. 2.14.
It is noteworthy that the MPO bond dimension will increase to the product of the two
input MPO bond dimensions, i.e. wRi = wAi w

B
i .

MPO-MPO Addition

The sum of two MPOs Â = {Ai}i and B̂ = {Bi}i, R̂ = Â+ B̂ is defined exactly the same
as for MPS with result tensors (written as matrices in the MPO bond dimensions):

Rσ1
1;τ1

=
(
Aσ1

1;τ1
Bσ1

1;τ1

)
(2.4.5)

Rσi1<i<L;τi
=

(
Aσii;τi 0

0 Bσi
i;τi

)
(2.4.6)

RσLL;τL
=

(
AσLL;τL

BσL
L;τL

)
. (2.4.7)

The resulting MPO bond dimension is the sum of the two input bond dimensions,
wRi = wAi + wBi .

MPO-MPS Application

Naively, the product of a MPO Ô = {Oi}i with a MPS |ψ〉 can be evaluated very similarly
to the product of two MPOs, except that the lower “MPO” is actually a MPS and
hence only has one physical index. The resulting state has a very large bond dimension
mR
i = wOi m

ψ
i , which is usually immediately truncated to some m̃R

i � mR
i . It is hence

advisable to pick a different application strategy, e.g. the zip-up algorithm (cf. Ref. [52],
Sec. 2.1.3) or a variational approach (cf. Ref. [21], Sec. 4.5.2). Especially the former
algorithm has proven to be very successful and essentially as accurate as the naive method
in practice while the intermediate tensors produced by it are only of size m̃R

i ×di×wOi mψ
i
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compared to the large tensors of size wOi m
ψ
i ×di×wOi m

ψ
i produced by the naive application

method.
For MPOs with a relatively large bond dimension, it may be better to settle on a

variational optimisation of a MPS to represent the result of the operator application.
This proceeds in exactly the same way as the variational orthogonalisation described
in Sec. 2.3.5, except that the “target” environment tensor is given by a contraction of
the input MPS, input MPO and current estimate MPS rather than just the input MPS
and current estimate MPS. To introduce flexibility in the MPS bonds, it is advisable to
introduce a subspace expansion step as described in Sec. 3.4.1, in effect growing the bond
dimension to the minimal necessary m̃R

i instead of first generating a very large bond
dimension and then truncating it. Notably, with this variational operator application, it
is possible to simultaneously orthogonalise against a set of MPS as well with exactly the
same procedure as described in Sec. 2.3.5.

MPO-MPO Dot Product

The dot product of two MPOs is again an operator. It is particularly useful to implement,
in a SU(2)-invariant way, the usual term

ĉ†i · ĉj =
(
ĉ†i;↑ ĉ†i;↓

)
·
(
ĉj;↑
ĉj;↓

)
=
∑
σ

ĉ†i;σ ĉj;σ (2.4.8)

in Fermionic systems where ĉ is a spinor and ĉ† the dual-space conjugate of ĉ or the term
ŝ†i · ŝj in spin systems. It must be stressed that the dual-space conjugates of the spinors
ĉ or ŝ used here are not the usual spinors one would write down for e.g. the creation
operator ĉ†! As such, implementing two spinors ĉ and ĉ† and taking their MPO-MPO
product ĉ†ĉ will not work.31,37 Instead, these expressions are best thought of as fulfilling

〈p|
((
Â† · B̂

)
|q〉
)

=
〈
pÂ
∣∣∣B̂q〉 ∀|p〉, |q〉 , (2.4.9)

which gives a convenient interpretation in terms of a tensor network that is already
available in a straight-forward manner.

Extracting the operator Â† · B̂ from the tensor network in drawn Fig. 2.15 representing
Eq. (2.4.9), and writing it as a MPO is not trivial and requires the insertion of three
identities as follows:

Concentrating on the inner block of four tensors, we can insert two identities to bring
this into MPO format (cf. Fig. 2.16). Then also notice that the upper leg of each A†i
connects to the MPS 〈p|, i.e. is the lower leg of Ai, which means that we have to connect
the upper leg of the original tensor A with the upper leg of Bi during the evaluation of
the product. The total connection network inside the MPO to obtain Ri representing
R̂ = Â† · B̂ is then given in Fig. 2.17. At the left and right boundary, we have to decide on
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p†1 p†2

A†
1 A†

2

B1 B2

q1 q2

FUL
†

FDL

SUR
†

SDR

=

FCL FCR

p†1

q1

R1

p†2

q2

R2

Figure 2.15: The graphical representation of Eq. (2.4.9), which gives rise to the tensor-
network expression for MPO-MPO dot products. Also compare with Fig. 2.7, which
is the same expression but without the additional operators in the center. The fusing
and splitting operators on the inner legs of each MPO-MPS product have already been
resolved to identity operators. Labels have been left off, as they are clear from the context
(but note that the original upper legs of Ai now connect as the lower legs of A†i to Bi).

a quantum number sector, this is equivalent to taking ĉ† · ĉ either in the S = 0 (hopping
or particle number) or S = 1 (spin-flip) sector. Given this sector, we can construct the
leftmost tensor combining the two leftmost MPO indices as the split into the wa0 leg and
this sector. Similarly, on the rightmost site, we fuse the vacuum and the rightmost leg
waL together and contract the resulting fused leg with wbL.

2.4.4 Compression of a Matrix-Product Operator

MPO arithmetic is very useful, in particular, as we will see, to construct MPO represen-
tations of more complex operators. However, both addition and the two multiplications
(multiplication and dot product) will inevitably grow the bond dimension of a MPO.
While this cannot be avoided in general, there is still often room for compression of a
MPO towards a smaller bond dimension while representing the same operator. The easiest
example is the MPO representation of Â+ Â: Obviously, this will have twice the bond
dimension of Â, while the same effect could be achieved by multiplying the first tensor of
Â by a factor of two.
For MPS, SVD compression is a perfectly suitable tool, however, when applying the

same methodology to a MPO, we face four issues: First, doing a SVD on a matrix with a
very sparse structure will in general result in a dense matrix. MPO tensors often have
such an extremely sparse structure; preserving that structure may allow for computational
gain and a better introspection, as each element of the tensor can easily be associated to
some term in the original operator.

Second, MPOs are not normalised, i.e. their Frobenious norm is not one. Indeed, it is
easy to see that the Frobenius norm of an identity operator on a L-site system of local
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B1 B2

=

A†
1 A†
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B1 B2

i o

=

A†
1 A†

2

B1 B2

i o

S F

Figure 2.16: The centre part of Fig. 2.15, which would be repeated as necessary for a
larger MPO. Insertion of two identities in the form of the input-input/output-output
tensors and the splitting/fusing tensors allows us to combine the two inner indices into
one to bring this into the standard MPO format.

A?i

Bi

o i

τRi

σRi

SF wRiwRi−1

Figure 2.17: The final connection diagram for the inner tensors Ri representing the
MPO-MPO dot product. We use A?i to express that, while the directions of each leg have
changed, they are still in their original places (i.e. the upper physical leg of Ai is painted
upwards, not downwards as is the case in Fig. 2.16). Named indices are those of the
resulting tensor Ri.
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physical dimension d is
√
dL, hence exponential in system size. This large norm will be

concentrated in the single unnormalised tensor when applying a naive SVD to a MPO –
we would hence have L− 1 tensors with elements of order 1 and orthonormal columns or
rows and one tensor with exponentially large elements. That is poison to preserving any
degree of accuracy during floating-point calculations.
Third, and as a result of the second point, different MPOs may have wildly different

norms. The SVD will truncate based on that norm. Hence compressing the sum 1̂ + P̂

where P̂ projects e.g. on the fully ferromagnetic state (and has norm 1) will result in just
1̂ once the system is sufficiently large. This is equivalent to compressing |ψ〉+ ε |φ〉 with
ε very small and |φ〉 , |ψ〉 of norm 1 via SVD. Of course, the small contribution will be
discarded and we are left with |ψ〉.

Fourth, the terms in a MPO often have a very specific meaning to the point that many
of the exact zeros mentioned before correspond to unphysical or unwanted interactions
(e.g. a three-operator term). Applying a SVD will in general introduce spurious small
terms of the order of the machine epsilon there which then could potentially break
e.g. particle number conservation against the expectations of the user. When using
symmetry-protected tensors to implement all desired symmetries, this is slightly less
relevant, but could still give rise to e.g. four-operator interactions in a strictly two-operator
Hamiltonian.

In the following, we will present three compression methods to alleviate these problems:
the rescaled SVD is a trivial extension of standard SVD which avoids the exponential
build-up in a single tensor. The deparallelisation (DPL) method is able to compress
simple MPOs very well and often results in expressions which one would also write down
analytically. The delinearisation (DLN) is an extension of the DPL and compresses also
more complex operators nearly perfectly. Both DPL and DLN avoid the loss of sparsity
(and hence the introduction of spurious terms), preserve contributions of very different
norms (e.g. 1̂ + P̂ ) and spread the norm of the operator evenly throughout the system.

Rescaled SVD

The standard SVD, employed to compress a MPO, would work as follows: First, either via
a series of QR decompositions or SVDs without truncation of the singular value spectrum,
each tensor from right to left is brought into right-normalised form. Then, the first tensor
is decomposed via SVD, resulting in a left-normalised first tensor, a singular value tensor
and a transfer tensor. The singular value tensor is truncated to remove singular values
associated to numerical noise. This is best detected algorithmically, for most MPOs,
there is a clear cut-off in the singular value spectrum. The singular value tensor and the
transfer tensor are then multiplied into the second site before the decomposition proceeds
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Figure 2.18: The singular value spectrum of a Fermi-Hubbard Hamiltonian on a one-
dimensional chain of the specified length on the central bond. Without rescaling, the
singular values grow exponentially with system size. With rescaling, the magnitude of
the singular values is essentially constant, the remaining differences can be explained by
numerical details. (First published in Ref. [1].)

there. Specifically, we have by reshaping, SVD and combination into the new tensors:

W
σiwi−1

i;τiwi
→Mγ

wi →
[
Uγ
w′i

] [
S
w′i
w′′i
V
w′′i
wi

]
→W ′σiwi−1

i;τiw′i
T
w′i
wi . (2.4.10)

The rescaling now introduces a simple factor α here:

W
σiwi−1

i;τiwi
→Mγ

wi →
[
αUγ

w′i

] [
α−1S

w′i
w′′i
V
w′′i
wi

]
→W ′σiwi−1

i;τiw′i
T
w′i
wi . (2.4.11)

where α is chosen as the average of the singular values in S after compression (i.e. after
the near-zero terms have been discarded). The effect of this rescaling can be observed in
Fig. 2.18. This figure gives the singular-value spectrum prior to truncation on the central
bond of a 1-dimensional Fermi-Hubbard Hamiltonian on systems of varying size. Without
rescaling, we can clearly see that the singular values grow exponentially with system size,
to the point where the numerical noise grows as large as 1014. With rescaling, however,
the singular values are largely independent of system size; hence resulting in the desired
behaviour.

Deparallelisation

The deparallelisation (DPL) of a tensor with respect to a given leg is based on the same
overall framework as described in Alg. 2.2 except that the decomposition of the dense
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matrix via SVD (Line 14) is replaced by a deparallelisation of the dense matrix. We will
hence only present the decomposition via deparallelisation of a dense matrix here. The DPL
results in a single transfer matrix and tensor, much like the QR decomposition, instead
of the two matrices/tensors generated by the SVD. We want to have a decomposition
M →M ′ ; T fulfilling the properties:

• all columns of M ′ are also columns of M

• no two columns of M ′ are parallel to each other

• Mab =
∑

cM
′
acTcb.

Such a decomposition can be achieved using Alg. 2.4. It has been used extensivley in
the Matrix Product Toolkit53 but to our knowledge not been published elsewhere, in
particular in the connection with matrix-product operators.
As an example, consider the matrix

M =

(
0 1 2 3

1 1 0 3

)
. (2.4.12)

When supplied to the deparallelise algorithm, we would obtain matrices

M ′ =

(
0 1 2

1 1 0

)
; T =

1 0 0 0

0 1 0 3

0 0 1 0

 . (2.4.13)

In practice, the matrices encountered during MPO compression usually have many more
parallel columns, which gives this method a certain degree of effectivity and makes it
fully sufficient in the case of relatively simple MPOs. However, as can be observed in the
example above, it is not guaranteed to obtain the optimal result. Clearly there is more
room for compression by not only deparallelising columns but also delinearising them –
that is, to remove linearly dependent columns (such as the third column of M).
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Algorithm 2.4 The deparallelisation algorithm applied to a dense matrix. To apply it
to a tensor, substitute it in Alg. 2.2 Line 14. An equivalent method can be defined to
deparallelise the rows as deparallelise-rows.
1: procedure deparallelise-cols(Matrix M)
2: F ← {} . List of tuples to construct T
3: K ← {} . List of kept columns
4: for each Column c of M do
5: if norm(c) ≡ 0 then . Zero columns proportional to first with factor 0
6: F ← F + [1, 0]
7: continue
8: end if
9: Bool found ← false

10: for i ∈ [1, |K|] do . Search for kept parallel column
11: if c ≡ α · K[i] then . c parallel to i-th kept column
12: F ← F + [i, α] . Create c using i-th column with factor α
13: found ← true
14: break
15: end if
16: end for
17: if ¬found then
18: K ← K + c . Add c to list of kept columns
19: F ← F + [|K|, 1] . Create c using |K|-th column with factor 1
20: end if
21: end for
22: if |K| = 0 then . No non-zero columns in M
23: return M ′ = 0rows(M)×1 ; T = 01×cols(M) . Zero row and column vectors
24: end if
25: M ′ ← hstack(K) ∈ Krows(M)×|K|

26: T ← 0|K|×cols(M) . Initialise as zero matrix
27: for i ∈ [0, |F|] do . Construct T from stored factors in F
28: r ← F [i]1
29: Tri ← F [i]2
30: end for
31: return M ′ ; T
32: end procedure
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Algorithm 2.5 The outer parts of the DLN method. inner-delinearise is defined in
Alg. 2.6.
1: procedure delinearise(Matrix M , Matrix ∆, Bool relaxed)
2: if relaxed then
3: Set all ∆ab ≡ 0 to εD
4: end if
5: (MC , TC ,∆C)← inner-delinearise(M,∆)
6: (MCR, TR,∆CR)← inner-delinearise(MC†,∆C†)
7: if cols(TR

†
) < cols(MC) then

8: return TR† ; MCR† · TC
9: end if

10: if cols(MC) < cols(M) then
11: return MC ; TC

12: end if
13: return M,1cols(M)×cols(M)

14: end procedure

Delinearisation

The basic idea of the delinearisation method (DLN) is to find a minimal set of columns in
the matrix which are sufficient to reconstruct the original matrix with the side-condition
that no cancellation to exact-zero may occur. This latter requirement is necessary to
ensure that we do not introduce spurious small terms. To fulfill this requirement, we
need to construct a threshold tensor ∆ of the same format as our original tensor Wi with
elements defined as:

∆
σiwi−1
τiwi = εD

∑
σiτi

∣∣∣∣∣∣W σiwi−1

i;τiwi

∣∣∣∣∣∣ , (2.4.14)

where εD is a small threshold, e.g. 10−8. During Alg. 2.2, the dense blocks of this tensor
∆ are reshaped in exactly the same way as the dense blocks of tensor Wi, resulting in
two matrices Mab (from Wi) and ∆ab (from ∆). ∆ab gives an error estimate for the Mab.
In particular, ∆ab ≡ 0 if Mab arises from a zero operator in the original Wi tensor. This
way, we can distinguish zeros in Mab coming from part of an otherwise non-zero operator
(e.g. off-diagonal elements of n̂) from those coming from exactly-zero operators. The latter
would give rise to the non-physical interactions we wish to avoid. However, sometimes it
may be beneficial to allow such cancellations to achieve the optimal result. This is called
the relaxed delinearisation.
The delinearisation algorithm is described in Alg. 2.5. It is relatively complex, as

attempts are made to break cyclic linear dependencies without introducing cancellation
to zero nor entirely new columns (as a QR decomposition would do). It is split into an
outer part, which attempts delinearisation of both rows and columns, an inner part, which
deparallelises rows and delinearises the matrix columns and the innermost part which
only attempts to find linearly dependent columns. The initial deparallelisation is done to
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Algorithm 2.6 The inner part of the matrix delinearisation. See Alg. 2.4 for
deparallelise-rows. ∆p in line 2 are selected as smallest elements from the cor-
responding column of ∆ from non-zero rows which were parallel to the kept row. The
permutation of columns in line 3 should result in an as much upper-triangular form as
possible.
1: procedure inner-delinearise(Matrix M , Matrix ∆)
2: (R,Mp,∆p)← deparallelise-rows(M,∆)
3: (MpP ,∆pP , P )← Sort columns of Mp

4: K ← {} . Set of kept columns
5: C ← {} . Set of coefficients
6: for each column µ ∈MpP and associated δ ∈ ∆pP do
7: if x← delinearise-solve(µ, δ,hstack(K)) then
8: C ← C + x . Store coefficients if successful
9: else

10: K ← K + µ . Store column if linearly independent
11: end if
12: end for
13: MpC ← stack(K)
14: Construct ∆pC from columns associated to MpC in ∆pP

15: Construct transfer matrix TC from C times the permutation matrix P
16: MC ← R ·MpC

17: ∆C ← R ·∆pC

18: if cols(MC) = cols(M) then
19: return M ; ∆ ; 1cols(M)×cols(M)

20: end if
21: return MC ; ∆C ; TC

22: end procedure
23: procedure delinearise-solve(Column µ, Column δ, Matrix A)
24: Remove columns from A which are non-zero where δ is exactly zero
25: loop
26: Attempt to solve Ax = µ for x using QR with row and column scaling
27: for each xi in x do
28: if |xi| < ε ∨ |xi| > 1/ε then . Avoid very small/large xi
29: xi ← 0
30: remove i-th column from A
31: continue to next outer loop iteration
32: end if
33: end for
34: If any xi ≈ ±1, set xi = ±1
35: if each (Ax− µ)i of residual is smaller than δi × cols(A) then
36: return coefficients x as success
37: end if
38: return no coefficients and failure
39: end loop
40: end procedure
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remove as many columns as possible and make the subsequent QR decompositions both
faster and more accurate. The sorting of columns will achieve an upper-triangular form if
possible and prefer sparser over denser columns. Since the first columns are more likely
to be kept, this also increases the sparsity of the resulting tensor. The combination of
row- and column delinearisation often succeeds in breaking cyclic linear dependencies and
hence achieve optimal compression.

Suggested MPO Compression Procedure

The rescaled SVD method is fairly stable if one only wishes to compress a Hamiltonian or
similar operator composed of sums of terms with roughly equal norms. After an initial
left-to-right sweep without compression to achieve an orthogonal basis, one can compress
the MPO iteratively sweeping right-to-left with compression, either detected based on
the singular value cutoff or to some fixed maximal bond dimension or minimal singular
value. The resulting MPO will have optimal bond dimension, but small contributions will
have been discarded, spurious operators introduced and sparsity will be lost.

Algorithm 2.7 MPO compression algorithm: A full sweep with DPL removes most
superfluous terms and speeds up the following, more expensive sweeps with DLN. Only
after no further improvements can be done without allowing cancellation to zero do
we accept it. Even then, if that allows no improvement either, no spurious terms are
introduced.
1: procedure compress-mpo(MPO {Wi})
2: compress-mpo-sweep({Wi}, deparallelisation)
3: repeat
4: compress-mpo-sweep({Wi}, delinearisation)
5: until no change in bond dimensions
6: repeat
7: compress-mpo-sweep({Wi}, relaxed delinearisation)
8: until no change in bond dimensions
9: return {Wi}

10: end procedure
11: procedure compress-mpo-sweep(MPO {Wi}, Method method)
12: for i ∈ [1, L− 1] do

13: Decompose with method : W σiwi−1

i;τiwi
→W

′σiw′i−1

i;τiwi
T
w′i
wi

14: Wi ←W ′i
15: Wi+1 ← T ·Wi+1

16: end for
17: for i ∈ [L, 2] do

18: Decompose with method : W σiwi−1

i;τiwi
→ T

wi−1

w′i−1
W
′σiw′i−1

i;τiwi

19: Wi ←W ′i
20: Wi−1 ←Wi−1 · T
21: end for
22: end procedure
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Alternatively, Alg. 2.7 provides a stable compression method based on DPL and DLN
which is relatively fast (the asymptotic scaling of all methods is identical in any case),
preserves both sparsity and small contributions and only introduces spurious contributions
if absolutely necessary.

2.4.5 Examples of Generated MPOs

The construction method was applied to three exemplary Hamiltonians: nearest-neighbour
interactions on a spin chain, the Fermi-Hubbard model on a cylinder in hybrid real-
/momentum space and, as a proof of principle, a four-body long-range quantum chemistry
toy model Hamiltonian. In all three cases, the construction is very straightforward after
the definition of the necessary local tensors. However, the three compression methods
(rescaled SVD, DLN and DPL) on their own handle the increasing complexity differently
well.

Spin Chain with Nearest-Neighbour Interactions

Consider the Hamiltonian

Ĥ =
L∑
i=1

hŜzi +
∑

a=x,y,z

L−1∑
i=1

JaS
a
i S

a
i+1 (2.4.15)

without any explicitly preserved symmetry. It is relatively easy to set up a finite-
state machine by hand which corresponds to the MPO representing this Hamiltonian.21

Alternatively, we can very easily construct it using the generic construction algorithm,
even with just DPL-based compression. Plotting the dimension of each bond over the
system length (cf. Fig. 2.19), we recover the optimal bond dimension of five in the bulk
and even a slight improvement at the edges, where only |w1| = |wL−1| = 4 is strictly
necessary. At the same time, introspection of the tensor yields essentially the analytic
solution, namely (with h = Ja = 1):

Wbulk =


1 sz sz sy sx

0 1 0 0 0

0 sz 0 0 0

0 sy 0 0 0

0 sz 0 0 0

 . (2.4.16)

It is also possible to construct powers Ĥn of this Hamiltonian using the standard
MPO-MPO multiplication and subsequent compression. We used coefficients h = 1,
Jx = 1

2 , Jy = 1
3 , Jz = 1

5 . The maximal bond dimensions of the resulting MPOs
quickly grow (cf. Tab. 2.3). We compare the results from SVD and DLN with earlier
data,54 where a variational method was used to find an optimal low-dimensional MPO
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Figure 2.19: The bond dimensions of the MPO representation of Ĥ from Eq. (2.4.15)
plotted over the relative system size for different sizes. The saturation to the optimal
result at |wi| = 5 is very obvious. (First published in Ref. [1].)

Table 2.3: Relative sparsity and bond dimension in the center of the L = 100 chain for
MPO representations of Ĥn.

Order Ĥn 1 2 3 4 5 6 7
SVD: wL/2 5 9 16 32 51 64 92
DLN: wL/2 5 9 16 32 51 81 126
DLN: Sparsity 81% 84% 82% 89% 88% 88% 85%
Variational Method:54 wmax 5 9 16 32 51 79 110

representation of the XXZ-Hamiltonian (the DPL on its own quickly resulted in very
suboptimal representations).

For small powers, all three methods give identical bond dimensions. Starting at n = 6,
the SVD consistently gives the smallest bond dimension, while the DLN method results
in somewhat larger dimensions than the variational approach. It may be that the SVD
discards some very small contributions which are preserved by the other two methods or
that the other two methods fail to find the optimal representation. To numerical accuracy,
the MPOs generated by SVD and DLN behave identically, however.

It should be noted that when taking very large powers of Ĥ, the singular value spectrum
becomes increasingly smooth instead of exhibiting the drastic cut-off seen in Fig. 2.18. It
hence becomes also increasingly appropriate to use a singular value threshold or even a
maximal bond dimension to find good approximations for Ĥn. In this case, the SVD is
the method of choice to at least estimate the error compared to the exact representation,
which is not readily available from the variational approach. A comparison

1−
tr
(
ÔexactÔfit

)
√∣∣∣∣∣∣Ôexact

∣∣∣∣∣∣ ∣∣∣∣∣∣Ôfit

∣∣∣∣∣∣ (2.4.17)
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after the variational optimisation has completed is usually of little value, since the involved
large numbers easily lend themselves to numerical cancellation and loss of accuracy.

Fermi-Hubbard Model on a Cylinder in Hybrid Space

The study of two-dimensional models is an area of ongoing research. While tensor network
methods do not suffer from the sign problem encountered in Monte Carlo, calculations on
large system sizes are still very difficult. The usual approach in the context of DMRG
and MPS is to consider a cylinder of some length L and circumference W . The surface
of the cylinder is then mapped onto a one-dimensional chain.25 The periodic boundary
condition along the y-axis allows the implementation of a Fourier transformation into
momentum space along that axis.11 After this transformation, it becomes possible to
explicitly implement momentum conservation (associated to a group ZW ). This allows
for a further reduction of the sizes of the dense blocks in the tensor and much larger bond
dimensions than the fully real-space approach. For details of this transformation and the
mapping, cf. Sec. 5.3. The result is a Hamiltonian

Ĥ ′ = −
L∑
x=1

W∑
α=1

2 cos
(

2π
α

W

)
ĉ†x,α · ĉx,α (2.4.18)

+−
L−1∑
x=1

W∑
α=1

(
ĉ†x,α · ĉx+1,α + ĉ†x,α · ĉx+1,α

)
(2.4.19)

+
1

2

L∑
x=1

W∑
α=1

 W∑
βγ=1

1

W
ĉ†x,α · ĉx,β × ĉ†x,γ · ĉx,α−β+γ

− ĉ†x,α · ĉx,α
 . (2.4.20)

Constructing this Hamiltonian using a finite-state machine is essentially impossible.ix On
the other hand, using the formalism presented above, the construction is still easy to
implement. Comparing the different compression methods for different system widths
(cf. Fig. 2.20), we find that SVD and DLN result in identical bond dimensions and sizes
for the dense blocks (3 independent of system width). DPL gives minimally larger bond
dimensions. The largest dense block resulting from DPL is however much larger than that
found with DLN or SVD. Since computational effort cubically depends on these sizes,
this is an important difference. Investigating the relative sparsity of the dense blocks
produced by DLN, we find that 8% of stored values are exactly zero and 46% are ±1. In
comparison, the SVD produced entirely dense blocks. Hence even at size 3× 3, the DLN
results in a considerably simpler MPO structure.
Independent of the compression method, we find the expected approximately linear

growth of the maximal bond dimension with the cylinder width: This linearity is due to
the momentum conservation in the interaction term, which, once two sites on one half of

ixThis didn’t stop Motruk11 et. al. from doing it to achieve first results.
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Figure 2.20: Maximal MPO bond dimension wmax (left axis) and maximal block size
bmax (right axis) for the Fermi-Hubbard Hamiltonian on a cylinder. The centre bond of
each ring has the largest dimension and also the largest dense block, while the inter-ring
connections are smallest independent of the compression method. (First published in
Ref. [1].)

the cylinder and a third on the second half are fixed, results in only one valid location on
the second half for the fourth site.

Four-Body Quantum Chemistry Hamiltonian

As a last example, we consider a toy model for the quantum chemistry Hamiltonian

Ĥ = Vijkl
∑
στ=↑↓

L∑
ijkl

ĉ†iσ ĉ
†
kτ ĉlτ ĉjσ . (2.4.21)

Vijkl are chosen randomly with absolute value less than two and the necessary symmetry
Vijkl = Vjilk. Construction of this Hamiltonian with the generic construction method
is very expensive (L4 MPO-MPO additions and many compression sweeps) and not
suitable for larger systems. For small L ≤ 35, it is however possible to generate the
Hamiltonian in a sufficiently short time. Using some preprocessing such as an initial SVD
decomposition of Vijkl, it should be possible to also construct the Hamiltonian for larger
systems. Nevertheless, we can apply the compression methods and check that they arrive
at good MPO representations.
The maximal bond dimension always occurs at bond L/2 for systems of even length

and bonds L/2− 1 and L/2 for systems of odd length. Analytically, we find that it should
be possible to sum up the terms of the Hamiltonian to give a scaling wL/2 = 2L2 + 3L+ 2.
The constant term 2 can be explained by either all i, j, k, l being to the left or right of
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but fails to find the optimal representation for large L. (First published in Ref. [1].)

the central bond. The prefactor 3 of the linear term corresponds to L terms with one
out of i, j, k, l being on the left side and three on the right side (or vice versa) plus the L
contributions each with i = j or k = l. Finally, there are L2 ways to distribute two out of
i, j, k, l on the left or right half of the system. This is in agreement with recent results55

which also find a leading term 2L2.
Fig. 2.21 gives the maximal bond dimension for different system sizes as returned by SVD

and DLN. The SVD always results in the optimal bond dimension. The DLN fails to find
that optimal representation for larger system sizes, but still scales decidedly quadratically.
We can hence conclude that even on such a difficult operator, the constructive approach
is a viable candidate at least for small systems, e.g. to allow quick proto-typing or
investigation of simple cases. Alternative approaches55,56 suffer from a general need to
adapt them to each model and hence come with a certain over-head attached before
research can start.

2.5 Concluding Remarks

In this section, the usefulness of symmetries in tensor network applications has been
motivated and a framework for symmetry-protected tensors has been defined. While based
on earlier work by Ian McCulloch31 and Andreas Weichselbaum,37 the implementation in
the form of SyTen has been done entirely independently with great focus on generality,
modularity, ease of code-reuse and adaptability to other problems both by the original
author as well as current and future collaborators.
Based on this framework, matrix-product states and matrix-product operators as
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commonly known in the literature have been defined. The MPO dot product is clearly
defined for the first time in the published literature in this thesis, while the other MPS
and MPO operations have been reviewed briefly. Extensive work was done together with
Ian McCulloch to build a better MPO compression algorithm, culminating in the very
general Delinearisation procedure1 capable of compressing arbitrary MPOs without
loss of precision to their (nearly) optimal form.

With these building blocks in hand, it is now possible to introduce the density-matrix
renormalisation group as the variational optimisation of a MPS in the next chapter.
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3 Density Matrix Renormalisation Group

This chapter will review the Density Matrix Renormalisation Group (DMRG) as a
variational optimisation algorithm to find the ground state for a given Hamiltonian. It
will concentrate on the application of DMRG to matrix-product states (MPS) using
matrix-product operators (MPO), i.e. MPS-DMRG; for definitions of and details on
MPS and MPO see Secs. 2.3 and 2.4 in Chapter 2. The strictly single-site DMRG
method (DMRG3S), developed during this thesis, will be presented here again and will
be explained in detail.
However, while the generalisation of MPS-DMRG to tree-tensor networks is again

straightforward, it will not be discussed explicitly here. Equally out-of-scope is the
application of DMRG to the solution of infinite one-dimensional systems in the form of
iDMRG23 or VUMPS.24

3.1 Ideas behind MPS-DMRG

Given a hermitian operator Ĥ represented as a MPO {Wi}i, the aim of MPS-DMRG is
to find the state |ψ〉 represented as a MPS {Mi}i which minimises the energy

min|ψ〉

(
E =

〈ψ| Ĥ |ψ〉
〈ψ|ψ〉

)
. (3.1.1)

This problem is equivalent to minimising 〈ψ| Ĥ |ψ〉 under the constraint that 〈ψ|ψ〉 = 1

and hence can be solved using a Lagrangian multiplier46 λ, resulting in

min|ψ〉
(
〈ψ| Ĥ |ψ〉 − λ 〈ψ|ψ〉

)
. (3.1.2)

The next key ingredient is then to optimise the MPS tensors {Mi}i iteratively one after
the other. When optimising Mi, differentiation with respect to M †i and equating to zero
for the extremal point results in the generalised eigenvalue equation

Hi;effMi − λNiMi = 0 (3.1.3)

Hi;effMi = λNiMi (3.1.4)

where Hi;eff is a rank-6 tensor given by the contraction of all {Wk}k and the {Mk}k 6=i
and {M †k}k 6=i on sites k other than i. Similarly, Ni is the rank-4 tensor given by the
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Figure 3.1: Graphical representation of the basic DMRG eigenvalue equation (3.1.5).
Dashed tensor legs of the tensor M3 on the left-hand side correspond to the Hi;effMi

product to be evaluated. Brackets denote the intermediate contractions to be calculated
(cf. Alg. 3.1).

contraction of just the {Mk}k 6=i and {M †k}k 6=i. A crucial simplification now occurs if all
{Mk}k<i are left-normalised and all {Mk}k>i are right-normalised. In this case, the tensor
Ni is simply a two-fold identity tensor and we have the standard eigenvalue problem:

Hi;effMi = λMi (3.1.5)

This equation is best represented graphically, cf. Fig. 3.1. Solving it for the lowest
eigenvalue λ and associated eigenvector Mi will result in the locally optimal MPS tensor.

3.2 1DMRG: Single-Site DMRG

The single-site variant of the DMRG method, 1DMRG, is the easiest variant to implement.
It is not advisable to use it in practice as it suffers from severe convergence problems.
In particular, it is very likely to get stuck in a local energy minimum or unfavourable
symmetry sector. However, all other variants of DMRG are relatively simple extensions
of this easiest method. Hence, the 1DMRG method will be used to define the overall
framework; essentially a stepping stone towards the more useful variants.

The 1DMRG method is described in Alg. 3.1. It first calculates the partial contractions
of the MPO sandwiched between the MPS tensors from the right edge of the system to the
left edge of the system and stores those contractions as Ri (cf. Fig. 3.1). It then sweeps
back and forth over the system. During each sweep, each site is visited and updated
using the left- and right contractions Li−1 and Ri+1 and the local MPO tensor Wi to
represent Hi;eff. This local update is done using a sparse eigenvalue solver, aiming for the



3.2. 1DMRG: Single-Site DMRG 63

Algorithm 3.1 1DMRG, the single-site DMRG algorithm without any extensions.
1: procedure 1dmrg(MPS {Mi}i, MPO {Wi}i)
2:

[
{Bi}i, L0, {Ri}L+1

i=2

]
← 1dmrg::Setup({Mi}i, {Wi}i)

3: while not converged do . e.g. until change in energy, i.e. λ, is small
4:

[
{Ai}i, {Li}L−1

i=0 , RL+1

]
← 1dmrg::Sweep-Right({Bi}i, L0, {Ri}L+1

i=2 )

5:
[
{Bi}i, L0, {Ri}L+1

i=2

]
← 1dmrg::Sweep-Left({Ai}i, {Wi}i, {Li}L−1

i=0 , RL+1)
6: end while
7: return {Bi}i
8: end procedure
9: procedure 1dmrg::Setup(MPS {Mi}i, MPO {Wi}i)

10: Right-normalise the MPS, {Mi}i → {Bi}i, discard the norm
11: RL+1 ← split(m̃L → wL ×mL) . S in Fig. 3.1
12: for i ∈ [L, 2] do . Iteratively calculate contractions of MPO with MPS

13: R
wi−1mi−1

i;m̃i−1
←∑

m̃′iwimi
Rwimii+1;m̃i

B
mi−1

i;σimi

(
B
mi−1

i;τimi

)†
W

σiwi−1

i;τiwi

14: end for
15: Lm̃0

0;w0m0
← fuse(m0 × w0 → m̃0) . F in Fig. 3.1

16: return
[
{Bi}i, L0, {Ri}L+1

i=2

]
17: end procedure
18: procedure 1dmrg::Sweep-Right(MPS {Bi}i, MPO {Wi}i, L0, {Ri}L+1

i=2 )
19: for i ∈ [1, L− 1] do
20: Solve Eq. (3.1.5): (Wi · (Li−1 ·Mi)) ·Ri−1 = λMi for M̃i

21: Left-normalise M̃i → AiT
22: Discard Ri+1

23: Mi ← Ai
24: Mi+1 ← T ·Bi+1

25: Li ← ((Li−1 ·Ai) ·Wi) ·A†i
26: return

[
{Ai}i, {Li}L−1

i=0 , RL+1

]
27: end for
28: end procedure
29: procedure 1dmrg::Sweep-Left(MPS {Ai}i, MPO {Wi}i, {Li}L−1

i=0 , RL+1)
30: for i ∈ [L, 2] do
31: Solve Eq. (3.1.5): (Wi · (Li−1 ·Mi)) ·Ri−1 = λMi for M̃i

32: Right-normalise M̃i → TBi
33: Discard Li−1

34: Mi ← Bi
35: Mi−1 ← Ai+1 · T
36: Ri ← ((Ri+1 ·Bi) ·Wi) ·B†i
37: end for
38: return

[
{Bi}i, L0, {Ri}L+1

i=2

]
39: end procedure
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lowest possible eigenvalue. The eigenvalue solver best suited for DMRG is the Lanczos
method, as it only requires the application of Hi;eff onto the local Mi. This operation can
be done efficiently at cost O

(
2m3dw +m2d2w2

)
in the order displayed in the algorithm.

Alternatively, if the effective d is 1, the alternative ordering ((Li−1 ·Wi) ·Mi) ·Ri+1 allows
for the precomputation of the first product prior to all Lanczos iterations, which can speed
up calculations. When using quantum numbers, the local Hilbert space often decomposes
into one-dimensional blocks, leading to this effective d = 1.
A common alternative is the Davidson method.57 However, using its preconditioner

is not trivial and hence often left out.i In practice, both Lanczos and Davidson achieve
comparable results, with either choice having the edge in some problems.

Constructing the left and right contractions incurs a cost O(2m3dw+m2d2w2) for each
contraction. The SVD costs O(m3d), as does the multiplication of the transfer tensor
T into the next MPS tensor. The cost of the overall DMRG method scales linearly in
the system length L and cubically in the MPS bond dimension m. It scales primarily
linearly in the local physical dimension d and the MPO bond dimension w. However,
there are subleading terms of quadratic order in d and w. In the 1DMRG algorithm, the
eigensolver step usually takes between 75% and 95% of the total runtime.
A matter of ongoing research is hence the improvement of the DMRG eigensolver

to require fewer applications of Hi;eff onto the MPS tensor (typically, one uses 5 to 20
Lanczos iterations, depending on the problem at hand, with a trade-off between fewer
sweeps and fewer eigensolver iterations).
In this spirit, it should be noted that there were two relatively recent approaches to

combine DMRG-obtained MPS results with traditional projector or Lanczos methods to
obtain improved ground state estimates.58,59 These methods start from a ground state
obtained via DMRG and then generate a set of orthonormal states. The former approach
by Emanuele Tirrito et. al. does this based on the normally-discarded singular values,
while Rui-Zhen Huang et. al. proposed a Lanczos method implemented on top of the
MPS structure. Both approaches then diagonalise the Hamiltonian projected into this
generated space to obtain a better ground state approximation. While the first method
claims an effective increase in bond dimension by a factor of approx. 1.2, the second
method only converges to the ground state approximation after many hundred Lanczos
iterations. As such, simply increasing the bond dimension during the initial DMRG
calculation is usually a faster and cheaper way to achieve better energy estimates.

3.2.1 Parallelisation of DMRG

By its nature, DMRG is a largely serial process, updating a single site at a time, with the
updated result potentially affecting all other tensors and hence influencing future updates.

iFor example, the ITensor toolkit uses the Davidson method without preconditioning in its DMRG
implementation.



3.3. Previous Approaches to Avoid Convergence Failures 65

As such, there is no straightforward or trivial way to parallelise DMRG apart from the
parallelisations possible within tensor-tensor operations in general (such as parallelising
over different symmetry blocks or parallelising dense matrix operations). At the moment,
the most prominent way to parallelise DMRG is the real-space parallelisation60 introduced
by Miles Stoudenmire and Steve White in 2013 (see also Ref. [61] for a detailed explanation).
This method relies on the assumption that updating MPS tensors far from each other
can happen nearly independently by a number of different workers which sweep through
parts of the whole system. Unfortunately, the number of sequential operations required
to transmit information from the left edge of the system to the right edge of the system
remains unchanged. Therefore, the method is useful when applied to large systems late
during the calculation, when most updates result in minor local changes, but not, for
example, global redistributions of particles. Additionally, the amount of RAM required
grows linearly in the number of workers, while for example tensor-block parallelisation only
barely increases the amount of necessary memory. Another “layer” of parallelisation55,62

may be provided by decomposing the Hamiltonian MPO into a sum of mutually-orthogonal
MPOs, where the added bond dimensions of the summands is approximately equal to the
bond dimension of the compressed sum. In this way, one may distribute each part of the
Hamiltonian to its own worker, which only calculates the application of this particular part
onto the state on each bond. The workers then have to send and receive only the relatively
small state tensors from a central master, while most of the expensive contractions can
occur in parallel.
However, due to the multiplicative nature of such parallelisations, it is quite feasible

to use a few tens of cores for a single DMRG calculation: for example, one could use 4
real-space DMRG workers, split the Hamiltonian into at least two orthogonal components,
each using 8 cores for tensor-block parallelisation and up to two cores each for dense
matrix operations to employ a total of 128 cores. Combine this with multiple calculations
for different parameter values and using a cluster to its full extent is often possible.
In practice, tensor-block parallelisation nearly always works better than real-space

parallelisation at least for a small number of cores and the parallelisation of dense matrix
operations achieves very little gain as soon as sufficiently many symmetries are used.
MPO-based parallelisation has not been implemented yet and hence also not been tested
within the SyTen toolkit.

3.3 Previous Approaches to Avoid Convergence Failures

The 1DMRG algorithm as written above suffers from severe convergence issues on all
but the most trivial problems. The most striking example is certainly its requirement to
keep the left and right MPS bond basis constant: This leads to a failure to include other
relevant quantum number sectors (when using symmetries) and to redistribute particles
over a larger scale (in any case).
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Figure 3.2: Sz quantum number distribution on a L = 20 Heisenberg spin chain. An
asymmetric initial state with its three rightmost spins all pointing up is prepared (black
circles). The basic 1DMRG algorithm then fails to properly add new quantum number
sectors and does not restore the overall symmetry (α = 0, red squares), resulting in a
high energy of Eα=0 = −6.35479. If some perturbation is added (cf. Sec. 3.4), the overall
symmetry can be restored (blue diamonds) and the true ground-state energy is achieved
at Eα6=0 = −8.6824724 (Figure and data first published as part of Ref. [2]).

The former failure is particular easy to illustrate (cf. also Ref. [2]): We consider a
Heisenberg spin chain of L = 20 spins and start from an initial random state with the
three rightmost states pointing up. The resulting Sz quantum number distribution can be
plotted on each bond (Fig. 3.2, black circles). Then running the 1DMRG algorithm on this
system leads to the distribution plotted with red squares: Crucially, while some sectors
have been removed, no new sectors have been added (red always occurs together with
black, never on its own) and the overall mirror symmetry of the system is not restored.
Multiple avenues exist to improve the 1DMRG algorithm to avoid convergence issues

such as this one: Three of them will be discussed briefly in the following before the next
section introduces the strictly-single site DMRG method with subspace expansion.

3.3.1 Two-Site DMRG

Today’s two-site DMRG method,16 2DMRG, based on MPS is motivated by the original
DMRG method13,14 with its system and environment blocks. The primary difference
from the 1DMRG method introduced above is the optimisation of two sites at a time.
That is, two neighbouring MPS component tensors are contracted over their common
index and the resulting rank-4 tensor is optimised in largely the same way as in 1DMRG
before being split via SVD into two rank-3 tensors again. The difference has the following
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consequences: First, the cost of DMRG now scales in the leading term quadratically
and in subleading terms (in the MPS bond dimension) cubically in the local physical
dimension.63 Especially for bosonic systems, this is very unfavourable. Second, the MPS
bond between the two optimised tensors is now also a variational parameter: this means
that the size of the MPS bond indices can be adapted throughout the calculation and
that it is possible to distribute particles through the system, as the left/right basis on
this bond can change.
In practice, the method works reliably, but is firstly very slow to pick up long-range

correlations64 (as only nearest-neighbour sites can e.g. exchange particles) and secondly
extremely slow as soon as the local physical dimension becomes large. However, it is still a
reliable tool to get first results. Furthermore, the truncation error obtained from the SVD
to split the rank-4 tensor into two after each optimisation serves as a useful parameter over
which to extrapolate observables such as the energy or occupation numbers.14,65 For a
particular impressive example of such extrapolation, see Ref. [12], where both occupation
numbers and energy where extrapolated to great success from a truncation error t ≈ 10−5

to zero.

3.3.2 Density-Matrix Perturbation

The density matrix perturbation method proposed by Steve White in 200564 was the
first extension to single-site DMRG to give reliable results. This was the first form of
an additional enrichment step inserted after the optimisation step. Its main idea is to
construct the reduced density matrix (RDM) on one bond, add a perturbation term
to it and use the diagonalisation of that perturbed density matrix to select relevant
states. However, if one were to restrict the RDM to the states available on that bond,
no perturbation would be possible. Hence, it is necessary to first artificially increase the
dimension of the bond in question. This is done by replacing one of the neighbouring
site tensors with an isometry combining the nearest-neighbour bond states and the local
physical states into a new bond space of dimension di ×m. The RDM constructed on
this bond hence has dimension d2

im
2
i . During a left-to-right sweep, the perturbation term

is calculated from the left-contraction of the Hamiltonian contracted with its complex
conjugate over one of the pairs of MPS-indices and the MPO indices (cf. Fig. 3.3),
multiplied by a small prefactor α. Similarly, during a right-to-left sweep, the perturbation
is calculated using the right-contractions of the Hamiltonian. This perturbation adds
some global information and leads to a faster inclusion of long-range correlations.64

Calculation of this perturbation term scales as O(d3m3w). While the scaling in the
MPS and MPO bond dimensions is on-par with the other operations of DMRG, the scaling
with the local physical dimension is comparatively bad. For small physical dimensions
(e.g. d = 2 for a spin S = 1/2 system) this is very acceptable, especially since it only
has to be done once per site and allows for the faster 1DMRG method. However, it may
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Figure 3.3: Left: The perturbation term added to the reduced density matrix in White’s
perturbation scheme during a left-to-right sweep.64 The tensor A2 has been renamed to
I2 to denote that it is a non-truncating isometry combining the spaces m1 and d2 into
the (larger, thick) bond m2 = d2 ×m1.
Right Top: The reduced density matrix on the second bond in the enlarged space is given
as the singular value tensor on the second bond contracted with itself over its right index.
Right Bottom: The singular value tensor S2 contracted with the isometry I2 gives the
original MPS site tensor A2.

still be advantageous to avoid this scaling. Furthermore, it should be pointed out that a
standard implementation of the method in the form of the Centermatrix Wavefunction
approach (which works directly on the S2 tensor of Fig. 3.3 during the local update) does
not allow for the optimal contraction sequence normally offered by the 1DMRG algorithm
and hence also scales quadratically in d.
During the work on this thesis, extensive numerical experiments where done to firstly

evaluate whether other perturbation terms yield better convergence and secondly which
value of the small prefactor α is optimal at which point during the DMRG convergence.
For the first point, two other perturbation terms were tested: First, a symmetrised
version which also adds the corresponding right-contractions to the density matrix and
second an environment term22 which contracts left- and right-contractions into one overall
term. However, neither of the two had a clear advantage over the original scheme but
performed roughly comparably in terms of convergence per computational effort, with the
environment scheme converging slightly faster per sweep at slightly higher computational
effort per sweep.
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The second point of interest was an optimal scheme to select the mixing factor α. In
the original publication it was set at 10−4 during the first few sweeps and then at 10−6.
However, it was found that selecting a much larger value initially of order 1 greatly sped
up convergence. By considering the decrease in energy during the eigensolver step and
the increase in energy during the subsequent perturbation it then becomes possible to
adaptively increase or decrease the value of the mixing factor. This scheme has first been
published in Ref. [2] and is explained in detail in Sec. 3.4.1.

3.3.3 Multi-Grid DMRG

Multi-Grid DMRG (MG-DMRG) was first proposed by Michele Dolfi et. al. in 2012.66

The idea is to map a very large system of e.g. L = 512 sites to a series of smaller systems
by combining two neighbouring sites into one and truncating the local state space. For
example, in a bosonic system this could work by combining two spaces holding up to
N bosons each into a single combined state holding up to 2N bosons. Once the system
only has a few physical sites (e.g. L0 = 4), DMRG is run to obtain a ground-state
approximation. This approximation is then mapped onto the larger system of L1 = 8 sites
and taken as an initial state for the next DMRG calculation. The procedure is repeated
until the original system length is reached.
The 2012 paper presents an example of a large bosonic system in a slowly modulated

optical lattice and shows how standard DMRG fails to re-distribute particles properly
while MG-DMRG essentially always achieves a very even distribution. This problem was
reproduced during the work on this thesis. However, it was found that using single-site
DMRG with some sort of perturbation and many sweeps (up to e.g. 100) resulted in an
equally even distribution of particles at comparable computational effort.
Furthermore, while the method is well-applicable to problems where states in the

combined space of two sites are not 1-to-1 associated with a given quantum number, it
becomes very costly to use it while conserving many quantum numbers, as the combined
state space is still decomposed into many small quantum number blocks. One hence either
has to discard some of those blocks, making entire regions of phase space inaccessible to
the coarser grid, or deal with a very large local dimension. On the other hand, if there
are only few quantum numbers preserved, the combined space is only decomposed into a
few blocks which can be truncated internally and it is possible to keep one representative
of each quantum number sector.

3.4 Strictly Single-Site DMRG (DMRG3S)

The subspace expansion variant of DMRG was developed during the work on this thesis
and first published in Ref. [2]. The variant allows for the optimisation of strictly a
single-site tensor, as opposed to the 2DMRG variant or the Centermatrix Wavefunction
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approach to implement the density matrix perturbation method. As such, it aims to scale
as O(m3dw) with only sub-leading terms in m scaling worse than O(dw). This scaling
is in contrast to the scaling of the 2DMRG method (O(m3d2w)) or the density matrix
perturbation method (O(m3d3w)).
The resulting strictly single-site DMRG algorithm, (1)DMRG3S, proceeds in exactly

the same way as the standard 1DMRG algorithm Alg. 3.1 with the addition of a subspace
expansion step as enrichment after each solution (i.e. after lines 20 and 31 of Alg. 3.1
respectively). This enrichment step is explained in detail in the next section before
the results of some numerical experiments are presented in Sec. 3.4.2. Summarising
conclusions and acknowledgements are given in Sec. 3.4.4.

3.4.1 Subspace Expansion

The subspace expansion method was originally introduced in the numerical linear algebra
community67,68 as part of the AMEn algorithm. It relies on the fact that if only the
product of two matrices is of relevance, it becomes possible to extend both matrices in
such a way that the product of the two matrices stays invariant. As an example, consider
two matrices A ∈ Rm×n and B ∈ Rn×p where we are only interested in their product
A ·B ∈ Rm×p. We can then expand A by another matrix P column-wise into A′ and as
long as we also expand B row-wise with zeros into B′, the product will stay invariant:

A ·B →
[
A P

]
·
[
B

0

]
= A ·B + P · 0 = A ·B (3.4.1)

This method works equally well for MPS, except that the matrices A, B and P in
the example above carry an additinal index σi or σi+1 (during a left-to-right sweep)
respectively. That is, for the expansion over the bond mi from the left with expansion
term P

mi−1

i;σimPi
, we write:

Mi;σi → M̃i;σi =
[
Mi;σi Pi;σi

]
(3.4.2)

Mi+1;σi+1 → M̃i+1;σi1 =

[
Mi+1;σi+1

0

]
(3.4.3)

such that M̃i and M̃i+1 share a common bond of dimension mi +mPi while their other
dimensions remain unchanged. It is easy to see that this operation leaves the overall MPS
unchanged, since the elements of Pi;σi will only be multiplied by zero.

The advantage is now that the optimisation step on the next site (in this case one step
to the right) can use the larger, new space of size mi + mPi to its left. If no elements
of the enlarged space are suitable to lower the energy, they can be discarded by simply
keeping their associated factors zero. This results in a flexibility in the left- and right
basis states of each MPS tensor while at the same time keeping well within the required
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Figure 3.4: The expansion term used in DMRG3S during a left-to-right sweep after
optimisation of the third site tensor M3.

computational cost at just O
((
m2
i +m2

Pi

)
d
)
not counting the cost to calculate Pi.

After the expansion, the SVD proceeds as normal, selecting the most relevant mi states
from the larger set of mi + mPi states. Note that while the states from the expansion
term will still have prefactor zero after the SVD as well, some of the original states will
have been discarded. This will usually lead to a slight increase in energy (unless the
expansion states are actually lower in energy).

Expansion Term

The original work by Sergey Dolgov and Daniel Kressner in the numerical linear algebra
community focused on using the local components of the exact residual, written as a MPS,
as the expansion term in the subspace expansion. This leads to some very favourable
guarantees regarding global convergence to the minimum, provided the required number
of states is used.

Unfortunately, calculating this residual exactly is very costly; furthermore, the guarantee
to globally converge does not necessarily hold as soon as truncation of the MPS bond
dimensions is used. We hence proposed an alternative expansion term of the form

Pi = αLi−1MiWi (3.4.4)

where we contract over all possible indices and combine the RHS MPO and MPS indices
into one larger index. This expansion term is pictured in Fig. 3.4. The scalar prefactor α
serves to control the magnitude of the perturbation. It can be motivated by observing
that if one were to apply the MPO {Wi}i to the current MPS {Mi}i, then the site tensor
on the i-th site is given as WiMi. The left-contraction Li−1 can then be seen as projecting
the left-hand side basis of this new site tensor into the basis of the original site tensor.
As such, the states on the RHS of the new site tensor are precisely those generated by
the Hamiltonian throughout the entire left or right half of the system and hence again
provide some global information similar to the reduced density matrix perturbation.
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An important optimisation here which was not published in our first paper is to restrict
the splitting half-isometry combining the MPS and MPO RHS bond indices to only access
a subset of the full space which is normally of size mi×wi. This can be done very easily by
only constructing a near-isometry of the selected size; in our experience, restricting that
size to approx. 10-15 per quantum number block serves to speed up calculations with very
much equal convergence behaviour. However, in some cases, in particular complicated
spin systems, this may lead to a over-representation of high-quantum-number sectors (as
all sectors can grow by an equal number of states during each expansion). In this case, it
may be more appropriate to restrict each block to a small percentage (5% to 10%) of its
full size.

Fig. 3.2 illustrates how the subspace expansion is able to add additional states on the
bonds (once the prefactor α is non-zero). The resulting quantum number distribution
(blue diamonds in Fig. 3.2) is symmetrical and furthermore corresponds to the true
ground-state distribution and energy.

Optimal Choice of the Mixing Factor α

When choosing a value for the scalar coefficient α, the mixing factor, multiple concerns
have to be taken into account: First, setting it to zero (literally) nullifies the expansion.
Second, if the expansion term is not a better ground state estimate than the current value
of Mi, the expansion will result in a slightly higher energy and hence offset the energy
gain achieved by the previous eigensolver step. Third, if the expansion term does have a
lower energy than the current value of Mi, it would be ideal to have a very large mixing
factor. Fourth, if the current state is an eigenstate of the Hamiltonian, the perturbation
term will be parallel to the current MPS tensor, implying that the state is unchanged by
the subspace expansion (even with subsequent truncation). Note that the last point holds
for the perturbation term as described above in subspace expansion, but not generally for
any enrichment term. In particular, when using White’s density matrix perturbation, it
does not hold.
The second case is in particular common if the true ground state of the Hamiltonian

cannot be properly captured with the current maximal bond dimension. In this case, the
DMRG eigensolver attempts to find the absolute lowest energy state under the constrain
of the limited bond dimension, while the expansion term as written above tends to favour
an eigenstate of the current bond dimension. The resulting competition leads to an
increase in energy if the mixing factor is non-zero and is the most commonly-observed
behaviour. In those cases, the mixing factor should slowly be reduced to zero to allow for
convergence at the current bond dimension.
The third case, that the energy of the perturbed state is lower than the energy of the

eigensolver, is in particular common during the initial sweeps of the calculation.
Finally, the fourth case occurs if the selected bond dimension is sufficient to represent
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the ground state of the Hamiltonian. In this case, a useful test is to increase the mixing
factor until it becomes (relatively) large: if the expansion then still does not result in a
perturbation of the state, one can be reasonable certain to have found the ground state of
the Hamiltonian: If the state was an eigenstate, but not the ground state, it is extremely
unlikely that the optimisation would not have found a single site tensor with slightly
lower energy.ii Conversely, if the lowest-energy state found by the optimisation was not
an eigenstate of the Hamiltonian, the expansion term would have resulted in a very large
perturbation of the state.

In the original paper introducing the density matrix perturbation method, the suggestion
was made to start with a value of (e.g.) α = 10−4 and decrease it during the calculation
to as low as 10−6.

However, it was found that a much larger value initially, e.g. α = 100 is not unreasonable
during the initial sweeps. If the bond dimension is not sufficient, the value should then
slowly be reduced during the calculation. This can be achieved by adapting α after each
local iteration based on the energy reduction resulting from the eigensolver optimisation
compared to the energy increase resulting from the SVD following the expansion.
An examplary algorithm to update α is given in Alg. 3.2. In this algorithm, cases C1

and C2 are those typically encountered: both optimisation and truncation decrease and
increase the energy respectively and an attempt is made to keep the ratio between the
two changes between 5% and 30%. Case B occurs if the perturbation resulted in a lower
energy; in this case, we increase the mixing factor considerably. If the optimisation does
not result in a decrease of energy while the truncation does increase the energy, case A1
triggers to reduce the mixing factor. Alternatively (case A2), if neither operation changes
the energy beyond some threshold ε ≈ 10−9, the mixing factor will be increased slightly.
Over time, the mixing factor will grow to either escape a local minimum or illustrate that
even with a large mixing factor, the expansion does not result in measurable truncation –
this occurs if we are converged to the true ground state.

3.4.2 Numerical Experiments

To test the strength of the new approach, we apply it to four different systems: first,
a S = 1 Heisenberg spin chain, second dilute bosons on an optical lattice, third the
Fermi-Hubbard model and fourth free fermions. Calculations using the Centermatrix
Wavefunction implementation of the density matrix perturbation method are also done
as well as pure two-site DMRG calculations. While one would usually slowly increase the
bond dimension during a DMRG calculation, each algorithm prefers a different “staging
iiThis assumes that the ground state is contained in the Krylov space spanned over the initial state
by Ĥ or conversely that the ground state is reachable using imaginary time evolution with Ĥ. If
the Hamiltonian does not connect the ground state to the initial state, some perturbative term
(usually some form of hopping) has to be introduced initially and then slowly taken to zero to allow
exploration of the full Hilbert space. While rare in model Hamiltonians, the situation does occur
relatively frequently when attempting to handle more complicated systems.
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Algorithm 3.2 Method to dynamically adapt the mixing factor α in the DMRG3S
subspace expansion method. Numerical values, in particular the limits at the end, are
entirely heuristic and require some implementation-dependant fine-tuning.
1: procedure dmrg3s::adaptAlpha(α, Einitial, Eoptimised, Etruncated)
2: ∆opt ← Einitial − Eoptimised . Energy decrease during optimisation
3: ∆trunc ← Etruncated − Eoptimised . Energy increase due to truncation
4: if abs (∆opt) < ε ∨ abs (∆trunc) < ε then
5: if abs (∆trunc) > ε then
6: f ← 0.9 . Case A1
7: else
8: f ← 1.001 . Case A2
9: end if

10: else
11: r ← abs (∆trunc) /abs (∆opt)
12: if ∆trunc < 0. then
13: f ← 2 ∗ (r + 1.) . Case B
14: else if r < 0.05 then
15: f ← 1.2− r . Case C1
16: else if r > 0.3 then
17: f ← 1/(r + 0.75) . Case C2
18: end if
19: end if
20: f ← max(0.1,min(2, f)) . Limit multiplicative factor between [0.1, 2]
21: α← α · f
22: α← max(10−11,min(100, α)) . Limit α between [10−11, 100]
23: return α
24: end procedure

description”, i.e. a different number of sweeps at each bond dimension as well as a different
increase in bond dimensions. To make results comparable, we have decided to fix the
bond dimension from the first sweep onwards and then repeat the experiment using three
different bond dimension to observe behaviour at different values of m – while not optimal
for any of the algorithms presented, the collected data should allow for a reasonable
comparison.

Hence, for each system, an appropriate maximal bond dimension mmax is selected based
on its physical properties. Each algorithm is then run at this bond dimension as well as at
two lower bond dimensions mmax/2 and mmax/4. Calculations are run until convergence
based on the relative change in energy between two subsequent sweeps. The runtime to
convergence is taken as the CPU time used until the converged energy value was output
for the first time.
The error in energy relative to some near-exact value E0 is plotted over the number

of local updates as well as CPU time consumed during the calculation. Unfortunately,
this error in energy is not directly comparable to the variance 〈Ĥ2〉 − 〈Ĥ〉2, nor to the
2DMRG truncation error and very different physical states may lie very close in energy.
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Convergence to the best possible value in the energy is hence of utmost importance.
Calculations were performed on a single core of a Xeon E5-2650 with the DMRG3S,

CWF-DMRG and 2DMRG implementations in the Matrix Product Toolkit.53 The
DMRG3S and 2DMRG methods have later also been implemented in the (newer) SyTen

toolkit with comparable characteristics.
The results are summarised in Figs. 3.5 and Tabs. 3.1 and will be discussed in detail

in the following paragraphs. These figures and tables were all previously published in
Ref. [2].

The S = 1 Heisenberg spin chain on L = 100 sites with periodic boundary conditions
is described by the Hamiltonian

Ĥ =
100∑
i=1

ŝi · ŝ(i+1)%100 . (3.4.5)

This system is a standard benchmarking system with a well-known near-exact ground-
state energy64 value E0 = −140.148 404. The periodic boundary conditions result in a
somewhat non-local optimisation problem, as the entanglement between the first and last
site has to be introduced by the DMRG method during the calculation. Furthermore,
while the system itself is non-critical, the PBC do increase the number of states required to
represent the ground state accurately. As such, we choose mmax = 800 with calculations
also run at m = 200 and m = 400. Only the U(1) symmetry of the problem was exploited
to facilitate comparison with other implementations.

During the calculation, DMRG3S initially exhibits a smaller convergence rate per sweep
than CWF-DMRG. After the fourth to fifth sweep, however, convergence rates per sweep
are comparable (at low accuracies) or greatly improved (at high accuracies), while the
computational effort of each sweep is much lower with DMRG3S than with CWF-DMRG.
The relative speed-up of DMRG3S over CWF-DMRG is then approx. 2.6, 1.3 and 2.7 for
m = 200, 400 and 800. The 2DMRG method, on the other hand, failed to pick up the
periodic boundary conditions properly, resulting in an approximately ten times larger
relative error in energy. The runtime to convergence of 2DMRG is hence not directly
comparable.

Dilute Bosons on an optical lattice are used as an example of a non-homogeneous
system due to the modulated potential. The lattice consists of 10 unit cells of the periodic
external potential, each discretised as 16 sites. Each of those sites can carry at most
nmax = 5 bosons. The Hamiltonian of the system is

Ĥ = +

160∑
i=1

n̂i

{
cos2

(
2π
i− 0.5

16

)
+ (n̂i − 1)

}
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−
159∑
i=1

{
ĉ†i ĉi+1 + h.c.

}
. (3.4.6)

n = 80 bosons are placed in the system initially, making use of the U(1)Charge symmetry
of the Hamiltonian.

The system is relatively easy for DMRG assuming a good initial distribution, however,
creating this distribution requires large-scale reshuffling of particles (which, in part,
motivated the MG-DMRG variant66). We hence allow m = 50, 100, 200 states which
is sufficient to describe the ground state. The ground-state energy is taken as E0 =

−103.646 757, which is achieved by all three algorithms at m = 200 due to their
reshuffling and basis optimisation abilities. If one were to apply the single-site update
without perturbation or expansion, it would fail very badly here.

At small bond dimensions, the improved convergence behaviour per sweep leads to a
speed-up of DMRG3S over CWF-DMRG of approximately 2. At larger bond dimensions,
CWF-DMRG also converges relatively well, but its numerical operations become more
costly, leading again to a speed-up of 2 between DMRG3S and CWF-DMRG. In compari-
son, the larger local dimension leads to slower calculations for 2DMRG, resulting in a
total speed-up of 3.3 between DMRG3S and 2DMRG at m = 200.

The Fermi-Hubbard model in one dimension at intermediate interaction strength
already proves a difficult problem and relatively large bond dimensions are required to
represent the ground state accurately. Furthermore, in combination with the free fermions
in the next section, we can study how criticality and increased entanglement affect the
three methods. We consider a system of L = 100 sites with open boundary conditions at
quarter-filling. The Hamiltonian is given by

Ĥ = −
99∑
i=1

∑
σ=↑,↓

[
ĉ†i,σ ĉi+1,σ + h.c.

]
+

100∑
i=1

n̂i,↑n̂i,↓ . (3.4.7)

U(1)Charge and U(1)Sz symmetries are both employed with a total of fifty fermions and
Stotal
z = 0. The selected bond dimensions are m = 300, 600 and 1200. At m = 1200, all

methods converge to the value E0 = −84.255 525 4.
Comparing the convergence of DMRG3S and CWF-DMRG, we can see that DMRG3S

converges faster both in the number of sweeps and in the computational time used, while
CWF-DMRG exhibits a very long tail of slow convergence. All three methods converge
to approximately the same energy values at the different bond dimensions. DMRG3S is
consistently the fastest method, while 2DMRG is slightly faster than CWF-DMRG at
small bond dimensions. At the largest bond dimension, DMRG3S is approximately 2.6

times faster than CWF-DMRG and approximately 3.9 times faster than 2DMRG.
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Free fermions in real-space are maximally delocalised and hence one of the most
difficult problems for MPS-DMRG to solve in one dimension. However, apart from the
increased entanglement, the other parameters of the system (local physical dimension,
MPO bond dimension etc.) are exactly the same as in the Fermi-Hubbard model of the
previous section. The free fermionic Hamiltonian is given by

Ĥ = −
99∑
i=1

∑
σ=↑,↓

ĉ†i,σ ĉi+1,σ + h.c. (3.4.8)

and we place N = 100 fermions in the system (half-filling). The values of m are the same
as before, m = 300, 600, 1200. E0 is given as −126.602 376.

The accuracy of all methods is essentially identical, meaning that the bond dimension
and not so much convergence problems are the limiting factor in this setting. However, the
time to convergence varies greatly, especially at large bond dimensions: with m = 1200

states, DMRG3S is more than twice as fast as CWF-DMRG and converges more than
six times faster than 2DMRG. At smaller bond dimensions, the differences are not as
stark, as the (equally expensive) sub-leading terms in m become more relevant in all three
methods.

Comparing with the easier Fermi-Hubbard model with finite interactions, convergence
becomes slower and the errors in energy become larger as we go to the non-interacting
system, as expected. Likely due to the more expensive calculations, the speed-up between
DMRG3S on the one hand and CWF-DMRG and 2DMRG on the other hand also becomes
more pronounced.
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(c) Fermi-Hubbard chain Eq. (3.4.7)
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Figure 3.5: Convergence behaviour of DMRG3S and CWF-DMRG applied to a series of
physical systems at three different bond dimensions. The energy is given with respect
to some near-exact reference value E0. The faster convergence of DMRG3S (solid lines)
compared to CWF-DMRG (dotted lines) over computational time (right panes) is obvious,
especially at the largest bond dimension (in black). Compared on a sweep-by-sweep
basis (left panes), CWF-DMRG sometimes fares better, in particular early during the
calculation. However, each individual sweep is always faster with DMRG3S. Curves for
2DMRG are not shown to preserve readability (First published in Ref. [2]).
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Table 3.1: Runtime to convergence of DMRG3S, CWF-DMRG and 2DMRG applied to
a series of physical systems at three different bond dimensions. The energy errors with
respect to some reference value E0 achieved by all three methods are comparable except
for the Heisenberg spin problem, where 2DMRG struggles to establish the long-range
interaction representing periodic boundary conditions. In all cases, DMRG3S takes
the least computational time, with the relative speed-up to 2DMRG and CWF-DMRG
increasing at higher accuracies and larger bond dimensions (First published in Ref. [2]).

(a) Heisenberg spin chain Eq. (3.4.5)
m = 200 m = 400 m = 800

DMRG3S Energy Error 2.1× 10−6 1.0× 10−7 7.1× 10−9

CWF Energy Error 2.8× 10−6 1.7× 10−7 7.1× 10−9

2DMRG Energy Error 1.1× 10−5 8.6× 10−7 1.0× 10−7

DMRG3S Runtime 583 s 1935 s 3990 s
CWF Runtime 1519 s 2695 s 11 133 s

2DMRG Runtime 762 s 3181 s 21 963 s

(b) Bosons on an optical lattice Eq. (3.4.6)
m = 50 m = 100 m = 200

DMRG3S Energy Error 2.9× 10−6 4.8× 10−8 < 10−9

CWF Energy Error 2.3× 10−6 3.9× 10−8 < 10−9

2DMRG Energy Error 1.9× 10−6 2.8× 10−8 < 10−9

DMRG3S Runtime 124 s 171 s 469 s
CWF Runtime 260 s 397 s 951 s

2DMRG Runtime 210 s 462 s 1550 s

(c) Fermi-Hubbard chain Eq. (3.4.7)
m = 300 m = 600 m = 1200

DMRG3S Energy Error 1.5× 10−6 7.5× 10−8 < 10−9

CWF Energy Error 1.5× 10−6 7.6× 10−8 < 10−9

2DMRG Energy Error 1.3× 10−6 6.4× 10−8 < 10−9

DMRG3S Runtime 474 s 1367 s 3955 s
CWF Runtime 1215 s 3917 s 10 122 s

2DMRG Runtime 727 s 2950 s 15 596 s

(d) Free fermions Eq. (3.4.8)
m = 300 m = 600 m = 1200

DMRG3S Energy Error 5.0× 10−6 2.8× 10−7 < 10−9

CWF Energy Error 3.8× 10−6 2.8× 10−7 < 10−9

2DMRG Energy Error 3.7× 10−6 2.6× 10−7 < 10−9

DMRG3S Runtime 533 s 1452 s 4643 s
CWF Runtime 863 s 2590 s 9586 s

2DMRG Runtime 794 s 4584 s 29 698 s
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3.4.3 Applied to DMRG with Local Basis Optimisation

Recent work69 introduced the local basis optimisation (LBO-MPS) method for MPS
applications. The LBO-MPS method works by first transforming the full local basis into
an optimised local basis on each site via a matrix Vi. This matrix then attaches to the
physical leg of the MPS rank-3 tensor Mi as usual. The advantage is that while the full
basis may be very large (e.g. containing between 0 and N = 500 bosons on each site),
the effective basis that is actually needed may be much smaller. If the boson number is
not conserved, Vi may transform the bare boson modes into some sort of effective modes
(of course depending on the model at hand) containing different superpositions of bare
modes. If the boson number is conserved, such superpositions are not allowed (Vi has to
be diagonal in the boson number), but we may still discard some or most of the states.
Florian Dorfner70 implemented this MPS-LBO method first for DMRG applications, using
the subspace expansion method presented here to dynamically select different sectors.
However, in that work they only considered non-conserved boson numbers and it turns
out that the expansion as presented there is not suitable to achieve convergence if the
boson number is conserved.
In the implementation for SyTen, a different expansion scheme was found which

appears to lead to convergence in all cases. The expansion starts after the optimisation
of the local Mi tensor and prior to the (say) left-normalisation. It first builds the full
basis tensor Mi = Mi · Vi on the local site and the corresponding expansion tensor as
described above. It then uses the subspace expansion on the full site tensor as usual and
afterwards decomposes the full tensor on site i again into the new matrix Vi (normalised
downwards) and the rank-3 MPS tensor. The tensor Mi is left-normalised with the usual
truncation. On the next site, Vi+1 will in general still be orthogonal to potential states
now-contained in Mi+1. Hence, after a local optimisation of Mi+1, we subspace-expand
Mi+1 upwards using Li ·Mi+1 · Vi+1 ·Wi+1 · Ri+2 with corresponding zero-padding in
Vi+1. The optimisation of Vi+1 can then take those states into account if appropriate and
a subsequent optimisation of Mi+1 may also use those states (as they are not orthogonal
anymore to Vi+1).
The scaling of the LBO-MPS-DMRG with this subspace expansion is slightly worse

than without: All other operations scale as O(m3dow) + O(m2ddow
2) where d is the

dimension of the full basis and do the optimised basis dimension. However, the SVD
following the expansion scales as O(m2d2) if m2 > d and O(m4d) if m2 < d. This means
that if d > dow

2, the scaling in d is now (possibly substantially) worse. If boson numbers
are conserved, the expansion term will often not exploit the full d-dimensional basis,
resulting in better behaviour.
It is useful to point out that while a truncation on the LBO bond between Vi and

Mi incurs the exact same error in the overall state as a truncation on the MPS bond
between Mi and Mi+1, it may still be preferable to incur a larger error in the LBO bond
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than the MPS bond. To this end it is useful to specify two different bond dimensions
and truncation thresholds, one applied to MPS-MPS tensor SVDs and one applied to
MPS-LBO matrix SVDs.

In practice, the method now also converges if the optimised boson number is conserved
with similar speed-ups as presented in Ref. [70]. Of course, the exact speed-up always
strongly depends on the system at hand, but an about 50% faster calculation is entirely
possible. Furthermore, since each optimisation occurs in a smaller Hilbert space, the
inner Lanczos optimisations are also more stable and faster, leading to nicer convergence
behaviour.

3.4.4 Conclusions and Acknowledgements

The DMRG3S method results in a theoretical speed-up of ≈ (d+ 1)/2 at each Lanczos
iteration step compared to the CWF-DMRG method, assuming that d2w/m is small.
Numerical experiments show a consistent speed-up over CWF-DMRG, both due to faster
numerical operations and faster convergence per sweep via the improved enrichment
step after each local optimisation. This speed-up is of particular importance during the
computationally most expensive last phase of calculations, where the desired accuracy
and the utilised bond dimension m are particularly high. Additionally, we provided
further evidence that 1DMRG methods with enrichment provide a consistent speed-up
over 2DMRG at approximately equal accuracies.

We would like to thank Sergey Dolgov, Dmitry Savostyanov and Ilya Kuprov for very
helpful discussions kickstarting the initial work on this method.
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4 Spinon Confinement: A Time
Evolution Study

The SyTen toolkit was used to calculate the dynamical structure factors and the excitation
gaps of a one-dimensional S = 1/2 spin chain inside a staggered magnetic field, which can
be used to model the behaviour of certain weakly-linked three-dimensional materials.4

These calculations will be motivated and discussed in detail in Sec. 4.2. First, however,
the opportunity will be used as an excuse to provide a brief overview over available
time-evolution methods for matrix-product states, as the time evolution is a crucial
ingredient for the calculation of the dynamical structure factor. The same methods can
also be used in the context of DMFT71 to calculate the necessary Green’s functions on
the embedded impurity systems or to evaluate arbitrary time-dependent quantities in
a generic setting, e.g. after a local or global quench or again in an embedding setting,
e.g. for time-dependent DMET.

4.1 Overview of Available Time Evolution Methods

In the following, we will consider methods which, given a state |ψ〉 and an operator Ĥ,
are able to provide a time-evolved state

|ψ(τ)〉 = exp
(
−τĤ

)
|ψ(0)〉 . (4.1.1)

τ here may be purely real (for imaginary time evolution) or purely imaginary (for real-time
evolution). Complex τ are also feasible, but are less applicable to practical situations. |τ |
will usually be very small, e.g. between 10−3 and 10−1.

Some length will be spend on a qualitative comparison of each method, but no large-scale
numerical comparison will be carried out within this thesis, as the individual methods
each have various strengths and weaknesses tested by different physical systems. A fair
comparison of all methods would hence require the inclusion of an impractically large
representative sample of these physical systems and in any case would not necessarily be
useful if the system in question was not contained within that sample.
We will generally assume that the states |ψ(0)〉 and |ψ(τ)〉 are expressed as matrix-

product states. Three of the four methods discussed in detail (Taylor expansion, TDVP
and Krylov approximation) only require the matrix-product operator representation
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of the operator Ĥ. The fourth method, TEBD, however does require some (analytic)
preprocessing and hence an analytical expression for Ĥ.

4.1.1 Taylor Expansion

The certainly most straightfoward way to evaluate Eq. (4.1.1) is to expand the exponential
as a Taylor series:

exp
(
−τĤ

)
= 1̂− τĤ +

τ2

2
Ĥ2 − τ3

6
Ĥ3 +

τ4

24
Ĥ4 − . . . . (4.1.2)

If τ is very small, this expansion will in principle be very accurate. If Ĥ is provided as a
MPO, it is possible to calculate Ĥn as Ĥ · Ĥn−1 at cost approximately O(wn), excluding
a certainly possible compression of the resulting MPO. For small n (e.g. n ≤ 5) and
relatively simple operators (w ≤ 10), this is feasible. Once the time-evolution operator
Û(τ) ≈ exp

(
−τĤ

)
is available, it can be applied to arbitrary states as often as necessary

at relatively small cost (compared to the initial construction of Û(τ)).
Unfortunately, of course, the method is severely limited by the range of convergence

of the Taylor series, which is in principle uncontrolled and the exponentially-increasing
cost to go to higher terms of the series. Furthermore, the time-evolution operator is not
unitary by construction, resulting in a change of the norm of the time-evolved state. For
simple systems and a few, small, time-steps, it is however an extremely simple method to
provide relatively good data, which is useful for the validation and testing of the more
advanced methods.

4.1.2 Time-Evolution with Block Decimation (TEBD)

The TEBD algorithm (usually “time-evolution with block decimation”) was originally
developed72 by Guifré Vidal directly for the application to MPS in the early 2000s and
may well be one of the earliest uses of the matrix-product formulation as opposed to the
environment-system DMRG formulation. Equivalent ideas had been pursued from the
traditional DMRG viewpoint at the same time, culminating in a very fast adaption of
the TEBD to traditional DMRG.73,74 By now, the naming of this and related methods is
entirely confused, all of “tDMRG”, “tMPS”, “Trotter decompositions” and “TEBD” are
used21,75–77 (or explicitly not-used) to refer to the same underlying idea when applied
directly to MPS or to environment-system DMRG.
The key insight behind the method is that while exp

(
−τĤ

)
is difficult to compute,

exp
(
−τĤs

)
, where Ĥs only acts non-trivially on a very small part of the system, can be

calculated exactly. The go-to example is the one-dimensional spin chain with nearest-
neighbour interactions. There, we have
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Ĥ =

L∑
i=1

ŝi · ŝi+1 . (4.1.3)

Calculating exp
(
−τĤ

)
is impossible, but calculating exp (−τ ŝi · ŝi+1) only requires

the exponentiation of a (2S + 1)2 × (2S + 1)2 matrix, where S is the length of the local
spins. For example, in the case of S = 1/2, this matrix is a four-by-four matrix which can
be diagonalised (and hence exponentiated) exactly.
To make this method work, it is necessary to split Ĥ into parts ĤA, ĤB etc. which

only contain mutually-commuting small operators. In the example above, we could collect
all ŝi · ŝi+1 with i even into ĤA and all those with i odd into ĤB. exp (−τHA) etc. can
then be calculated exactly by individually exponentiating each of the contained parts.
This is essentially the first step towards a first-order Suzuki-Trotter78 decomposition,

namely writing

exp
(
−τĤ

)
= exp

(
−τĤA

)
exp

(
−τĤB

)
+O(τ2) . (4.1.4)

This approach has the advantage that, if exp
(
−τĤ{A,B}

)
is calculated exactly, even the

approximated evolution operator is unitary and hence preserves the norm of the state.
Similarly, a second-order decomposition

exp
(
−τĤ

)
= exp

(
−τ/2ĤA

)
exp

(
−τĤB

)
exp

(
−τ/2ĤA

)
+O(τ3) (4.1.5)

and a fourth-order decomposition

exp
(
−τĤ

)
= exp

(
−s

2
τĤA

)
exp

(
−sτĤB

)
exp

(
−sτĤA

)
× exp

(
−sτĤB

)
exp

(
−1− 3s

2
τĤA

)
× exp

(
−(1− 4s)τĤB

)
× exp

(
−1− 3s

2
τĤA

)
exp

(
−sτĤB

)
× exp

(
−sτĤA

)
exp

(
−sτĤB

)
exp

(
−s

2
τĤA

)
+ O(τ5) (4.1.6)

s =
1

4− 3
√

4
(4.1.7)

were found by Masuo Suzuki (cf. Ref. [79] for a good overview). Both the second- and
fourth-order decomposition have the additional advantage that they are symmetric in the
sense that exp

(
−τĤ

)
exp

(
τĤ
)

= 1̂. Once the time-evolution operator has been found
following the above prescription, it can be applied straight-forwardly to the state to be
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time-evolved.
Alternatively, the individual gates formed by the exponentials of ĤA and ĤB may be

applied one-by-one on the relevant bonds – this saves (minor) computational effort, as
we explicitly exploit the fact that the MPO bonds are one-dimensional on every other
bond. Additionally, this allows for a real-space parallelisation80 by applying each gate
individually. A bachelor student supervised during this PhD6 implemented the method
and found an acceptable speed-up compared to the unparallelised version. Unfortunately,
the additional error introduced due to a non-optimal truncation (each parallel truncation
necessarily assumes the rest of the state to be unchanged) led to a much larger error
resulting from the parallelised approach. There is reason to assume, however, that
with minor tweaks, this may become a viable parallelised method. Such tweaks could
include periodical serial re-orthonormalisation to propagate the information from the
time evolution thoughout the state.
The time evolution with TEBD is extremely fast and has only two well-controlled

error sources: the Trotter error arising from the decomposition and the truncation error
incurred during the evolution. Both can easily be taken as small as necessary, though of
course at increased computational effort.

The main drawback of this method is then the analytical effort required to decompose
the desired operator Ĥ into mutually-commuting parts as well as the restriction to
nearest-neighbour interactions: if longer-range interactions exist, the corresponding sites
have to be moved next to each other prior to each individual time-evolution step81 which,
however, increases the computational effort.

4.1.3 Time-Dependent Variational Principle (TDVP)

The time-dependent variational principle essentially attempts to find the time-evolved state
by deriving time-evolution equations for each individual site tensor of the MPS and solving
them subsequently. In the context of MPS, it was first proposed by Jutho Haegeman
et. al.82 That work also shows a very nice correspondence between TDVP-based time
evolution of each individual tensor and ground-state search DMRG: the latter is simply
the case of taking infinite steps along the imaginary axis during each individual tensor
update. Then, similarly to how limτ→∞

(
e−τĤ |ψ〉

)
will converge to the lowest-energy

state of Ĥ with which |ψ〉 has non-zero overlap, each infinitely-imaginary-time-evolved
tensor will approach the lowest-energy ground-state tensor as found by DMRG.
The TDVP has a number of very appealing features: First, it only requires a MPO

representation of the Hamiltonian Ĥ in the time-evolution operator Û(t) = e−τĤ , meaning
that no analytical decomposition (as for TEBD) is necessary. Second, it exists in both a
single-site and a two-site variant. The single-site variant scales in exactly the same way
as standard 1-DMRG, i.e. linearly in the local physical dimension. Third, the TDVP
inherently preserves both the norm and the energy of the state, i.e. is exactly unitary.



4.1. Overview of Available Time Evolution Methods 87

Fourth, similarly to the TEBD method and different from the Krylov method, it generates
the time-evolved state directly instead of first building a set of potentially very large
Krylov vectors which then may or may not cancel out to form the evolved state.
On the other hand, there are certain problems with it: compared to the exact TDVP

equation, the finite time-step of size ∆t incurs an error O(∆t3). Furthermore, we have
observed relatively large errors due to the TDVP projection itself (compared to an exact
method) as soon as the Hamiltonian is not restricted to nearest-neighbour interactions any
more. This can be understood intuitively when comparing the single-site TDVP (where
even a nearest-neighbour Hamiltonian Ĥ incurs an error due to the TDVP projection)
to the two-site TDVP, where such a Hamiltonian incurs no projection error.82 It is then
reasonable to assume that longer-range interactions require “three-site TDVP” to be
captured exactly. While this projection error can be measured and monitored in principle,
there does not seem to be a straight-forward way to avoid it. Worse, this error becomes
larger if many small timesteps are taken as compared to taking one larger time step – in
a certain sense, the TDVP equations provide the exact evolution followed by a projection
back onto the MPS manifold. Chaining many such projections then incurs a larger error
than only projecting back once. This implies a competition between the integration error,
which becomes smaller as the time step becomes smaller, and the projection error, which
becomes smaller as the number of time steps decreases.
However, in problems with very short-range interactions (nearest- or next-nearest-

neighbour only), the two-site TDVP provides nearly error-free and fast results. In very
complicated problems where the truncation errors dominate any other errors, even the
single-site TDVP is also competitive error-wise and much faster than all other methods.

4.1.4 Krylov Approximation

The method presented here under the name “Krylov approximation” is a variant of the Lanc-
zos algorithm. As such, it first builds an orthonormal space span

(
|ψ〉, Ĥ|ψ〉, Ĥ2|ψ〉, . . .

)
,

projects Ĥ into that space, diagonalises the resulting small matrix T and evaluates
Eq. (4.1.1) by approximating the action of the exponential onto |ψ〉 using that diagonali-
sation.
This approach is well-known in the general numerical linear algebra community83 for

its advantage of only needing to evaluate the action of the operator onto |ψ〉 instead of,
say, evaluating operator-operator products. It is in principle straightforward to use it
while representing the states

{
|ψ〉, Ĥ|ψ〉, Ĥ2|ψ〉, . . .

}
as MPS and the operator Ĥ as a

MPO.75,77 However, due to the special matrix-product structure, multiple caveats have
to be taken into account:

Loss of orthogonality is much more pronounced when using naive MPS-MPS arithmetic
to (re-)orthogonalise states. MPS arithmetic usually results in an increased bond dimension
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Algorithm 4.1 A re-ordered version of the classical Lanczos algorithm to generate a
Krylov subspace approximation of a Hermitian operator Ĥ. The matrix T represents Ĥ
projected into the low-dimensional space and can be exponentiated exactly. Well-known
bounds on the errors incurred by the projection are available.83 The most costly step
is the operator application with simultaneous orthonormalisation in Line 7, evaluation
of expectation values usually only takes 10%-20% of total runtime. A good measure of
convergence is the change in the approximation of e−τĤ |ψ〉 due to the last added vector
|vn〉.
1: procedure Krylov-Generate(MPO {Wi}i = Ĥ, normalised MPS {Mi}i = |ψ〉)
2: |v1〉 ← |ψ〉 . First Krylov vector
3: T11 ← 〈v1|Ĥ|v1〉 . Projected matrix representing Ĥ
4: i← 1 . Counter of Krylov vectors
5: while not converged do
6: i← i+ 1
7: |vi〉 ← Ĥ|vi−1〉 ⊥ {|vj〉}i−1

j=1 . Apply Ĥ and orthonormalise against all |vj〉
8: Ti,i−1 ← Ti−1,i ← 〈vi|Ĥ|vi−1〉 . bi in a usual Lanczos procedure
9: Ti,i ← 〈vi|Ĥ|vi〉 . ai in a usual Lanczos procedure

10: end while
11: return T , i, {|vj〉}ij=1

12: end procedure

which then has to be truncated to the desired precision again. However, this truncation
does not take the previously-achieved orthogonality into account and may well destroy it.
The solution to this is a variational orthogonalisation procedure (cf. Sec. 2.3.5) which
optimises a state to be orthogonal against a set of other states without increasing its
bond dimension.

The cost of operations differs between “dense” numerical linear algebra and tensor
networks. In particular, while for dense matrices X and vectors a, b, the expectation value
b ·Xa can only be evaluated by first applying X to a and then taking the overlap with
b, this is not true for tensor networks. In fact, evaluating 〈a|X̂|b〉 is much cheaper than
evaluating X̂|b〉 alone. This motivates a slight re-shuffling of the Krylov iterations which
results in only needing N−1 MPO-MPS applications in order to produce a N -dimensional
Krylov space. The re-ordered algorithm is summarised in Alg. 4.1.

The application of a MPO to a MPS may be very costly, in particular for large
MPOs. Furthermore, using either the zip-up method52 or the naive approach requires
subsequent orthogonalisation against (at least the previous two) other Krylov vectors.
However, when variationally applying a MPO to a MPS as summarised in Sec. 2.4.3
and previously published e.g. in Ref. [75], it is possible to orthogonalise against the
other Krylov vectors at the same time using the procedure outlined in Sec. 2.3.5. This
combination of two steps leads to a much faster and much more scalable algorithm –
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where before the computational cost for every additional Krylov vector grows very quickly
(in line with the initial exponential growth of the bond dimension by a factor of w during
every operator application step), now the computational effort per vector still grows, but
at a much slower rate.

Re-using the Krylov space may be feasible and potentially very advantageous. If Krylov
vectors have been built which proved sufficient to evaluated e−τĤ |ψ〉, the same space
may also suffice to evaluate e−2τĤ |ψ〉 and potentially 3τ, 4τ etc. If it doesn’t, adding
another Krylov vector to increase the maximal reach in time may still be preferable
over generating an entirely new set of vectors. A. Swoboda has developed an estimating
heuristic which compares the time that was required to build the last Krylov vector to
the potential maximal time achievable with an additional Krylov vector to make this
decision. The primary concern here is not a loss of orthogonality which potentially occurs
with very large subspaces, but rather the increasing cost to generate each Krylov vector:
without compression, bond dimensions of the MPS will grow by a factor of the MPO
bond dimension at each step, leading to potentially exponentially growing costs. Hence,
generating the first three vectors a second time may well be faster than building the
fourth Krylov vector, even if building a third vector was faster than regenerating the first
two vectors. Where exactly this trade-off occurs depends strongly on the system as well
as the initial state and time-step, necessitating a runtime heuristic to measure and adapt
the algorithm as needed.

The variational operator application with immediate truncation has the added benefit
that it allows for much larger Krylov vector spaces (with e.g. 10 or 20 vectors rather
than just 10), which allows to reach superlinearly longer time scales due to the quadratic
convergence behaviour of the Krylov method when the number of Krylov vectors is
relatively small.84

Combining the improvements in the previous four paragraphs leads to a scalable and
relatively fast Krylov-based time evolution method with an extremely well-controlled
error: the MPS truncation error is of course exactly the same as elsewhere, while there
is no inherent time-step error but only the (well-controllable and reducable) error from
an insufficiently large Krylov space. Furthermore, the method generalises very easily to
other tensor network states, such as MPS with a local basis optimisation or tree tensor
networks, as the only network-specific operation is the calculation of expectation values as
well as the operator application with simultaneous orthogonalisation against the previous
Krylov vectors.
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4.1.5 Other Methods and Summary

Various other methods exist to evaluate time-dependent quantities in a MPS setting.
Among those are Chebyshev polynomials,85,86 a decomposition of MPOs similar to
TEBD but also applicable to long-range interactions76 as well as Padé and Runge-Kutta
approximations of the exponential.77

However, for most practical purposes, the choice of method largely depends on the
desired precision and range of interactions. At low precision, it is no problem to reduce the
time-step error inherent in TDVP and TEBD below the truncation error; in particular the
TDVP then computes time-evolved states extremely quickly. At high precision, however,
this becomes more and more difficult: while the MPS precision increases exponentially
with the bond dimension, the time-step error only decreases polynomially with the
time-step size. To match a small truncation error, exponentially small time-steps are
necessary. In this area, the Krylov method can potentially overtake both other methods.
Additionally, both TEBD and TDVP incur additional errors or increased computational
complexity when used with long-range Hamiltonians – here, too, the Krylov method can
control errors with costs only increasing polynomially in the MPO bond dimension, not
the range of interactions itself.

4.2 Spinon Confinement in a Quasi One-Dimensional
Heisenberg Magnet

The material representing the quasi one-dimensional Heisenberg magnet is SrCo2V2O8

and was studied by Anup Bera and collaborators.4 Interestingly, it crystallises in a series
of twisted chains where the inter-chain interactions support long-range antiferromagnetic
order via an effective mean-field h and, crucially, the Co2+ ions can be described as
anisotropically coupled S = 1/2 Heisenberg spins in that staggered magnetic field h. While
S = 1/2 spin chains are generally critical, the original assumption was that the staggered
field h was sufficiently large to open a large gap and allow for an efficient treatment with
MPS. It turned out, however, that the experimentally necessary value of h is ≈ 0.0063, in
turn greatly complicating further MPS calculations and necessitating the involvement of
another iMPS-based method.87

The qualitative picture however carries over very well from large values of h ≈ 0.1

to this small-h regime, as can be seen from the good agreement between the MPS-
based calculations carried out using SyTen, the iMPS calculations done by Laurens
Vanderstraeten and finally the experimental results obtained by Bella Lake.

The effective Hamiltonian used to model the system under the assumption of the
mean-field inter-chain interactions is given as
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Ĥ =

L∑
i=1

Jŝzi ŝ
z
i+1 + Jε/2

(
ŝ+
i ŝ
−
i+1 + ŝ−i ŝ

+
i+1

)
− h(−1)iŝzi , (4.2.1)

where we identify sites L+ 1 ≡ 1 for periodic boundary conditions. The anisotropy is
given by ε while the magnitude of the staggered field is given by h. The system would
be SU(2)Spin-symmetric if ε = 1 and h = 0, as it stands for the experimentally relevant
h ≈ 0.0063 and ε ≈ 0.56, only the U(1)Sz symmetry is preserved.

The elementary excitations of this system are S = 1/2 spinons,88 arising from spin-charge
separation of the Co2+ ions in the original compound. The observed spinon confinement
then relates to a split of the spinon continuum observed in this compound above a
certain temperature into a series of bound S = 1 magnon modes below the ordering
temperature. Since our method currently works strictly at T = 0, we do not observe the
spinon continuum. However, when setting the external field h = 0, the typical continuum
of the standard Heisenberg spin chain, including gapless excitations, can in principle be
observed.i

Here, the quantities of interest are the dynamical structure factor, the excitation gap
and potentially the ordered magnetic moment. The dynamical structure factor is directly
related to the experimental data obtained via neutron scattering while the excitation gaps
relate to the energies of the bound states and hence δ-peaks in the dynamical structure
factor or neutron scattering data.

In the following, we will first discuss the calculation of the dynamical structure factor
using MPS-Krylov time evolution. This is followed by a brief discussion of the excitation
gap calculations and a more thorough comparison of experimental and theoretical results.

4.2.1 Dynamical Structure Factors with MPS

Given the time-evolution methods presented above, it is straightforward to calculate
real-time real-space two-point correlators. Specifically, we will evaluate quantities

Caa(t, j) ≡ 〈0|ŝaj (t)ŝa0(0)|0〉 − 〈0|ŝaj (t)|0〉〈0|ŝa0(0)|0〉 (4.2.2)

where a = x, y, z, j describes the position of the second excitation (the chain is centered on
site 0) and |0〉 is the ground state of the Hamiltonian. The subtraction of the ground-state
expectation values is necessary due to the staggered magnetic field leading to 〈0|ŝzi |0〉 6= 0.
The quantity Caa(t, j) can be evaluated by time-evolving the state ŝa0|0〉 to time t and
taking the overlap with a series of states ŝaj |0〉 while multiplying with the phase factor eiĤt

arising from the second Heisenberg-picture exponential. Exemplary illustrations of these
correlators Caa(t, j) are plotted via their absolute value in Fig. 4.1. There, the initially

iEntanglement growth during real-time evolution however makes it extremely difficult to obtain valid
dynamical structure factors as calculated during this project.
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Figure 4.1: Illustrative example of real-space real-time correlators Cxx(t, j) (left) and
Czz(t, j) (right) as obtained from the time evolution; plotted are the absolute values
of the correlators |Caa(t, j)|. The relative position j of the second operator is on the
horizontal axis while the time t is given on the vertical axis. Parameters for this plot are
ε = 0.2, h = 0.05.

strongly localised excitation spreads through the system over time. Since entanglement
grows in the system, only a maximal time tmax ≈ 65 can be reached using the MPS-Krylov
method. During this time frame, the excitation does not reach the edge of the system of
size L = 128, implying that the system size was chosen sufficiently large.

Once the real-space real-time correlators are obtained, it is straightforward to perform
a Fourier transformation into momentum space. Since the excitation is localised to
the central part of the system for all times t, this operation is very easy and does not
require any further numerical tricks. We obtain the momentum-space real-time correlators
Caa(t, k) as

Caa(t, k) =
1

L

L/2−1∑
j=−L/2

eijkCaa(t, j) . (4.2.3)

An exemplary illustration of this quantity for a = x, z is given in Fig. 4.2, again plotting
the absolute values of the correlators. As can be seen, the mirror symmetry around k = π

emerges very nicely without further input or symmetrisation.
However, given Fig. 4.2 and its underlying data, it becomes clear that the signal does

not decay in time t or at least not sufficiently quickly to observe this decay using MPS
time evolution methods. This makes the Fourier transformation into frequency space
problematic. Ideally, we would like to define73,89–92

Caa(ω, k) =

∫ ∞
−∞

dteiωtCaa(t, k) = 2

∫ ∞
0

dtRe
{
eiωtCaa(t, k)

}
, (4.2.4)
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Figure 4.2: Illustrative example of momentum-space real-time correlators Cxx(t, k) (left)
and Czz(t, k) (right) as obtained from the time evolution; plotted are the absolute values
of the correlators |Caa(t, k)|. The momentum k is on the horizontal axis while the time t
is given on the vertical axis. Parameters for this plot are ε = 0.2, h = 0.05.

where the second equality sign relies in temporal and spatial translation invariance, spatial
mirror symmetry over the site j = 0 as well as the hermiticity (or anti-hermiticity) of the
operators ŝa. Due to the limited time frame available, this transformation leads to strong
spectral leakage.93 Our solution is the multiplication of an additional damping factor e−ηt

such that
Caaη (ω, k) = 2

∫ ∞
0

dtRe
{
eiωte−ηtCaa(t, k)

}
. (4.2.5)

For one of the investigated choices ε = 0.2, this damping with η ≈ 1 was sufficient
to arrive at a clear signal due to a very strong input signal Caa(t, k). However, for the
experimentally relevant value of ε = 0.56, entanglement grew faster, leading to shorter
attainable times and hence stronger spectral leakage. Increasing η to alleviate this problem
lead to essentially no signal being left. To avoid this, we have decided to use a numerical
prediction method similar to the previously-implemented91 linear prediction method.
Since our signal does not decay exponentially, we cannot use the linear prediction itself,
but attempting to model

Caafit (t, k) ≈
M∑
m=1

ame
−itνm ; am ∈ C νm ∈ C (4.2.6)

was successful for M ≈ 10 using the NLopt library94 with its LD_SLSQP algorithm95 to
calculate the am and νm based on the achieved time frame. The expression can then be
used to extend the value to much longer maximal times t′max ≈ 1000. Using the extended
time frame, setting η ≈ 10−2 provides a clear signal without spectral leakage and clearly
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Figure 4.3: Dynamical structure factors as obtained from the MPS-Krylov calculation.
Parameters are h = 0.05, ε = 0.2 (left) and ε = 0.5 (right). Numerical extension in time
was used for the calculation with ε = 0.5, subsequently leading to less spectral leakage
than the (originally less problematic) case of ε = 0.2.

identifiable peaks.
Of course, this numerical extension in time via a sum of exponentials is essentially a

“poor-man’s Fourier transform” and as such should be treated with some care. Agreement
between the results thus obtained, other theoretical methods and the experimental data
at least somewhat justifies the approach.
Finally, the dynamical structure factor is then simply given as

Saa(ω, k) =
1

4π
Caa(fit),η(ω, k) . (4.2.7)

Its value at k = π is plotted in Fig. 4.3 for h = 0.05, ε = 0.2 and ε = 0.5 and is the
primary quantity to be compared with the experimental data. In the former case, no
extension in time was necessary when accepting minor spectral leakage, while the latter
case did require the numerical extension in time to remove spectral leakage sufficiently.
This leads to the counter-intuitively cleaner signal in the more difficult case.

4.2.2 Excitation Gaps

The dynamical structure factor gives the energy dependency of the relative weights of
excitations. In a system with confinement and bound excited states, there are (hopefully)
in principle relatively few relevant excitations directly above the ground state. This can be
verified directly by the finite number of peaks of the dynamical structure factor calculated
in the previous section and in particular the absense of a excitation (or spinon) continuum.
It then becomes feasible to calculate the excitation gap both within the Sz = 0 sector
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Figure 4.4: Excitation gaps into the transversal Sz = 1 sector for ε = 0.2 and ε = 0.5
for various values of h. Comparison with the experimentally-obtained data allows the
determination of the effective staggered field strength h. Zero-field values 0.1949 and
0.6242 provided by Fabian H.L. Essler.

(longitudinal excitations) and to the Sz = 1 sector (transversal excitations) with DMRG.
The former calculation first requires the ground state in that sector and then attempts
to find another low-energy state under the condition that it must be orthogonal to the
ground state. The latter calculation is simply a DMRG “ground state” calculation in a
different, namely Sz = 1, quantum number sector. Both calculations are extremely stable
if only the first excited state is required, but calculating higher excited states using this
method quickly becomes unfeasible. In the present system, this problem is excarberated
by the L-fold degeneracy of the first excitation energy, requiring L+ 1 orthogonal states
to get to the second excitation energy.

Nevertheless, the first excitation gap can be calculated reliably and very quickly. The
value also quickly converges to the thermodynamic limit when increasing the system size
– often, there is only negligible difference between the gaps for a L = 32 and L = 128

sites system. This then allows the determination of the effective staggered mean-field h
present in the experiment by calculating the excitation gap for a series of values for h
and comparing to the excitation energies measured experimentally.

For small values of h, field-theoretical results88,96,97 predict a scaling of the excitation
gap E1 ∝ h

2
3 . As evident from Fig. 4.4, this scaling can be reproduced nearly perfectly

for values of h up to ≈ 0.05, using the analytically-known values for the gap at h = 0 to
determine the constant term.
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4.2.3 Comparison with Analytical Approaches and Experimental Data

Recall the Hamiltonian of interest,

Ĥ =

L∑
i=1

Jŝzi ŝ
z
i+1 + Jε/2

(
ŝ+
i ŝ
−
i+1 + ŝ−i ŝ

+
i+1

)
− h(−1)iŝzi . (4.2.8)

Exact analytical treatment of this Hamiltonian is possible in two limits: First, the
strong anisotropy-weak field case h, ε� J can be treated with perturbation theory4,98,99

to obtain the ground-state and the elementary excitations as domain-wall states between
regions of the system in the ground state and continuous spin-flipped regions. The
different parity of the number of flipped spins then manifests in the transverse (for odd
parity, i.e. Sz = 1) and longitudinal (for even parity, i.e. Sz = 0) excitation sectors.
Additionally, it is easy to see that with the external magnetic field, the additional energy
of the excitation increases with the number of flipped spins. This is in contrast to the
case h = 0, where the energy difference only depends on the number of domain walls and
not their relative position. We can hence understand how the additional magnetic field
leads to a confinement of the S = 1/2 spinon excitations, binding them into a single S = 1

magnon excitation.
Alternatively, one may apply the powerful bosonisation approach100 to the problem.

This approach is explained in great detail in Ref. [101, 102]. One first writes down
the fermionic model equivalent to the spin model using the standard Jordan-Wigner
transformation and then bosonises that fermionic model to arrive at a solvable (in
some limit) bosonic model which can be treated using standard analytical methods,
e.g. perturbation theory,103,104 to calculate both low-energy excitations and correlation
functions, valid close to the isotropic point ε ≈ 1. This approach also4 results in the same
physical picture of confined (at temperature T < TN ) spinons and discrete excitation
energies effected by the external magnetic field h.
Similarly, at T < TN , the experimental data agrees qualitatively extremely well with

both the results from the analytical approaches as well as the DMRG-MPS calculations
described in detail above.
To achieve quantitative agreement between experiment and theory, it was however

necessary to apply the novel uniform MPS techniques developed by Jutho Haegeman et
al.87,105 These techniques work directly in the thermodynamic limit and can calculate
the low-energy single-particle excitation spectrum in principle exactly, limited only by
the easily-controlled bond dimension of the uMPS ansatz states. With this method, the
experimental data can be reproduced excellently apart from a minor overall shift of the
energy.4 Since the actual interactions between the chains of SrCo2V2O8 are certain to
go beyond the simple mean-field approach used to model these interactions here, the
agreement is well within the expected range.
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5 The Hubbard Model in Two
Dimensions

The Hubbard Hamiltonian106 is defined as

Ĥ = t
∑
〈i,j〉

ĉ†i · ĉj
∣∣∣
S=0

+ U
∑
i

(
n̂2
i − n̂i

)
(5.0.1)

with ĉi the spinor of S = 1/2 Fermion annihilation on site i (cf. Sec. 2.4.2) and n̂i the
particle number operator on site i. The sum 〈i, j〉 runs over all pairs of nearest-neighbour
sites i and j of the underlying lattice and we have already made sure to write it in a
SU(2)Spin-symmetric form. The Hubbard model has a close sibling in the t-J model which
precludes double-occupation and models the effective super-exchange interaction107 of
the Hubbard Hamiltonian by an antiferromagnetic spin-spin interaction term between
nearest neighbours:

Ĥ = t
∑
〈i,j〉

ĉ†i · ĉj
∣∣∣
S=0

+ J
∑
〈i,j〉

(
ŝi · ŝj |S=0 −

1

4
n̂in̂j

)
. (5.0.2)

By precluding double occupation, this model works directly in the strong-coupling limit of
large U and it is generally assumed that the physical properties of the Hubbard and t-J
models close to half-filling (hole-doped) n . 1 are nearly identical and both are “equally
valid” candidate models to describe the cuprates. The t-J model is sometimes assumed to
be easier to treat numerically due to the smaller local Hilbert space of dimension d = 3

instead of d = 4.
The continuing interest in the Hubbard model lies in its property as being the arguably

simplest model containing correlated electrons (at U 6= 0) at arbitrary filling factors. As
such, the use of the model is not limited to theoretical model condensed matter physics
but extends to quantum chemistry and material science, where instead of an infinite
lattice with a certain periodicity, very much finite systems are studied with variants of the
Hubbard Hamiltonian describing individual orbitals instead of abstract sites of a model
Hamiltonian. While there are plenty of exciting applications85,108–111 in those areas, here
we will concentrate on first motivating the use of Hamiltonian (5.0.1) to model solid state
systems, review the published literature studying this model Hamiltonian and finally
provide some new results on ground-state properties of this Hamiltonian.
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5.1 Motivating the Hamiltonian Eq. (5.0.1)

Per se, the study of abstract Hamiltonians is certainly justified and worthwhile. In the
present case, however, we have the added benefit that this Hamiltonian is believed to
model the physics of correlated electrons on solid state lattices relatively well. Additionally,
the physics of novel superconductors are mostly dominated by two-dimensional, weakly-
coupled layers of square, periodic lattices.112,113 This, then, is the primary motivation for
the ongoing study of the Hubbard Hamiltonian in particular for two-dimensional systems.
The novel superconductors under discussion were found successively and at least

somewhat accidentally following the discovery by Georg Bednorz et. al. in 1986 that
compounds BaxLa5–xCu5O5(3–y) with x = {1, 0.75}, y > 0 become superconducting114 at
Tc ≈ 30 K. Already in 1987, Maw-Kuen Wu et. al. reported115 a transition temperature of
Tc ≈ 93 K for the compound (Y1–xBax )2CuO4. Since then, numerous other compounds
containing CuO4 (hence the name cuprates) have been found. While a few other classes
of high-temperature superconductors (such as iron pnictides116–118 and high-pressure
H2S119) have been found, the cuprates known since 1986 are entirely sufficient motivation
for us.
These cuprates all share the same basic structure of weakly-coupled two-dimensional

planes of CuO2 with the additional elements (such as yttrium and barium) and oxygen
ions placed between those planes. The CuO2 planes then form square rectangular lattices
with Cu ions sitting on the vertices of the lattices and O ions on the edges.112 Electron
hopping is then possible between the copper 3dx2−y2 and oxygen 2px and 2py orbitals
(with the pz-orbitals oriented out-of-plane). Without additional doping, i.e. for La2CuO4,
there is one hole per copper Cu+ ion,113 resulting in a half-filled 3dx2−y2 shell and filled
2px and 2py orbitals. It is the 3dx2−y2 orbital which imprints its x− y antisymmetry onto
the superconducting state120 and gives it the name d-wave superconductor (cf. Ref. [121]
for an extensive review).
Additional doping in the atomic limit of small hopping between neighbouring copper

and oxygen sites will then result in holes (or electrons) localised to either copper or oxygen
ions. The former case can be treated easily by neglecting the oxygen “sites” and arriving
at a single-band Hubbard model. In the latter case, Zhang et. al. argue113 that due to
the phase coherence of 2px,y and 3dx2−y2 orbitals, the effective set of low-energy states
on each vertex is equally given by a single electronic site, hence mapping the full problem
also to an effective single-band Hubbard model.
It is by now generally agreed that the ingredients of superconductivity are not fully

captured by the nearest-neighbour Hubbard Hamiltonian (5.0.1) alone but instead one
expects to at least need next-nearest-neighbour hopping terms to arrive at a supercon-
ducting state. Nevertheless, the complete solution of the “simple” Hamiltonian (5.0.1) is
still outstanding and would likely add significant new insights into the physical properties
of these materials.122
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In turn, the two-dimensional Hubbard Hamiltonian has also become a benchmarking
model to test new algorithmic approaches by combining difficulties for all existing methods:
away from half-filling, the sign problem makes quantum Monte-Carlo simulations difficult
while two spatial dimensions are traditionally difficult to capture with tensor network
approaches. At the same time, the problem is too strongly correlated and phases are in
too fierce competition for the density-matrix embedding theory110,111 (DMET) to provide
notable new insights122 and the coordinaten number is too small for the dynamical
mean-field theory (DMFT),123,124 exact in the limit of lattices with infinite coordination
number,123 to unfold its full potential.

5.2 Existing Literature on the Hubbard Hamiltonian

Already in 1963, Elliott Lieb and Fa-Yueh Wu solved the one-dimensional case of the
Hubbard Hamiltonian in the thermodynamic limit and close to half-filling exactly.125

According to their analysis, at any non-zero U , the ground state of the Hamiltonian is an
insulator while it is conducting in the case of no interactions. Unfortunately, an equally
elegant result does not exist for the two-dimensional case. However, both the Hubbard
model and the t-J model have been studied extensively.122,125–161 These studies have
largely resulted in four not internally consistent results. In the following, we will briefly
categorise the different results.
First, a number of studies134–139 have mostly restricted themselves to the case of

half-filling due to the strong sign problem134 in the “physically interesting” region of
approx. 7/8-ths filling. While there is no perfect consensus on whether the metal-insulator
transition at half-filling occurs at U = 0 or U > 0, all of these studies agree that at
half-filling and sufficiently large U & 4, the ground state is a Mott insulator with strong
antiferromagnetic correlations and very small double occupation (the t-J model ground
state of course has double occupation equal to zero).
Second, analytical arguments and some numerical evidence point towards a region of

macroscopic phase separation140–150 at least for sufficiently large U or sufficiently large
J/t. The existence of this phase separation is well-supported in the t-J model but not
entirely clear for the Hubbard model. Even then, the boundaries of the phase-separated
region are unclear. However, nearly all of these studies have found some form of d-wave
pairing potentially leading to a superfluid or superconducting state.
Third, some studies largely at U . 4 have found some form of uniform ground state

away from half-filling. Using a resonanting valence bond ansatz, Ref. [151] finds a d-wave
superconductor away from half-filling and a state competitive with antiferromagnetic
order at half-filling. In comparison, Ref. [126] claims a paramagnetic metallic state as
the ground state away from half-filling while a much more recent study131 only looks at
the region n < 0.7 and small U . 4 where they find superfluid states with either dxy (at
small n < 0.6) or dx2−y2 (at 0.6 < n < 0.7) pairing for small U and an additional phase
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with p-wave symmetry at very small n for arbitrary U .
Finally, a large number of studies152–161 consistently find a striped ground state for

any filling n 6= 1 at most interaction strengths. It should be stressed that the majority
of these studies are DMRG152–156 or iPEPS158,159 studies. This is problematic for two
reasons: First, one may assume that open boundary conditions in DMRG favour some
sort of striped ground state on finite systems: even in a uniform state, Friedel oscillations
would still result in stripe-like behaviour and the studied systems are usually far too small
to reliably extrapolate to the thermodynamic limit. Second, the unit cell configuration
supplied to iPEPS precludes some states entirely.158 There is hence an argument to be
made that while the stripes found using DMRG and iPEPS provide a strong argument
for a striped ground state or at least a striped low-energy state in close competition with
the ground state, the study of larger systems, ideally directly in the thermodynamic limit
using some as of now unknown method, is still necessary. A large and recent study161

attempts to answer this question at the point U = 8, n = 0.875 using numerous methods
and does find a consistently striped ground state but has not been evaluated extensively
yet.

While the exact phase boundaries are not yet determined conclusively, nearly all studies
so far agree on three primary results. Most conclusively, there is a Mott insulator with
strong antiferromagnetic correlations at n = 1. Further, some sort of d-wave pairing
generally occurs at n < 1 with dx2−y2 pairing more often found close to n = 1 and dxy
pairing found at n < 0.6. Additionally, some kind of phase separation is often found. At
large J/t in the t-J model, this is probably some sort of macroscopic phase separation
with large regions with and without holes, while there is strong evidence for “mesoscopic”,
i.e. striped, phase separation also in the Hubbard model. In the following, we will attempt
to argue that macroscopic phase separation also occurs at n ≈ 0.9 in the Hubbard model
for relatively modest U ≈ 4 . . . 6.

5.3 Hybrid Space Cylinders

Ideally, we would like to solve the two-dimensional Hubbard model directly in the
thermodynamic limit of an infinite square lattice. Unfortunately, if we also want to
use MPS (and not, say, PEPS), we have to map the two-dimensional problem onto a
one-dimensional chain first. Even when using iMPS (or VUMPS), we are hence restricted
to a finite length in one direction. However, it can easily be argued162 that such a system,
infinite in one dimension and finite in the other, is essentially a one-dimensional system
and that a finite system with a “sane” aspect ratio of width to length is a much better
description of an infinite two-dimensional system.

In MPS applications, it is then customary25,51 to consider a finite system with cylindrical
boundary conditions, i.e. open boundary conditions along one axis and periodic boundary
conditions along the other (cf. Fig. 5.1). Note that due to the mapping from two to one
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Figure 5.1: The lattice configuration used for our calculations on the Hubbard model.
Sites are denoted by black dots while the existing nearest-neighbour interactions are
shown via black lines. Note the periodic width-wise boundary conditions. Real-space
coordinates x and y label length- and width-wise coordinates while Greek labels α, β, . . .
will be used to label hybrid-space legs.

dimensions, two vertical slices of this cylinder are only connected by a single MPS bond.
If we assume the area law to hold even in two dimensions, the entanglement transported
over such a bond then grows linearly with cylinder width W which unfortunately implies
an exponential growth of the bond dimension m with cylinder width W . Therefore, only
relatively narrow cylinders of widths W . 8 can be considered.i This insufficiency is then
partly compensated by selecting periodic boundary conditions along this axis. While
those also increase the amount of entanglement in the system, it is generally assumed
that the system widths required to obtain valid results with open boundary conditions are
much larger (and hence exponentially more expensive) than those needed with periodic
boundary conditions (which at most increase m quadratically21). On the other hand,
increasing the system length L is much easier and typically leads to only a near-linear
increase in computational effort, which allows for a decent finite-size analysis in L even
with open boundary conditions.25

The necessity of the width-wise periodic boundary conditions however also allows
employing a Fourier transformation into momentum space along this axis. Under normal
circumstances, this would not be beneficial, as a long system with open boundary
conditions is typically much nicer behaved than a shorter one with periodic boundary
conditions. Furthermore, normally the Fourier transformation introduces unwanted long-
range interactions and entanglement. However, both objections are invalid here due
to the small cylinder width and the already-existing long-range interactions from the
2D-1D mapping. Additionally, one gains an extra quantum number in the form of the
conserved and now-accessible pseudomomentum k in the group ZW . This additional

iIf the local dimension is smaller, as for example in spin systems, the maximal width can of course be
increased. The same holds if the system contains very little entanglement in the first place.
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quantum number is the main benefit of the method: in real-space, it is not possible to
assign good pseudomomentum quantum numbers to the local states on each site and
hence also not possible to exploit that symmetry within a symmetry-protected tensor
network. In momentum space, this is possible and we can use the symmetry to further
reduce the effective sizes of our tensors. The effectiveness of this approach has been
tested extensively11,12 and found to be generally satisfactory, typically allowing for much
larger bond dimensions and less memory usage. In the following, we will briefly derive the
Hubbard Hamiltonian on the hybrid space lattice. Let us split the Hamiltonian (5.0.1)
into three parts corresponding to width-wise and length-wise hopping and the on-site
interaction U :

Ĥ = tĤW + tĤL + UĤU . (5.3.1)

The individual parts are then, with x and y used for real-space length- and width-wise
coordinates of a cylindrical lattice with length L and circumference/width W :

ĤW = −
L∑
x=1

W∑
y=1

ĉ†x,y · cx,(y+1) + ĉ†x,(y+1) · cx,y (5.3.2)

ĤL = −
L−1∑
x=1

W∑
y=1

ĉ†x,y · ĉx+1,y + ĉ†x+1,y · ĉx,y (5.3.3)

ĤU =
1

2

L∑
x=1

W∑
y=1

(
ĉ†x,y · ĉx,y × ĉ†x,y · ĉx,y − ĉ†x,y · ĉx,y

)
(5.3.4)

Here, Â × B̂ is the standard operator product of two MPOs while Â† · B̂ is the dot
product. The dot product is always taken in the S = 0 sector in the following. We can
then implement the Fourier transformation along the y-direction into momentum space as

ĉ†x,y =
1√
W

W∑
α=1

e−
2πi
W
αy ĉ†x,α (5.3.5)

ĉx,y =
1√
W

W∑
α=1

e
2πi
W
αy ĉx,α . (5.3.6)

We will use Greek letters for momentum-space labels. Note the different sign in the
exponent as well as the imaginary unit i: Even if t and U are entirely real, we unfortunately
now need complex numbers in our calculation to properly represent the Hamiltonian and
its eigenstates. Plugging this transformation into Eqs. (5.3.2) through (5.3.4), we arrive
at the expressions

Ĥ ′W = −
L∑
x=1

W∑
α=1

2 cos
(

2π
α

W

)
ĉ†x,α · ĉx,α (5.3.7)
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Ĥ ′L = −
L−1∑
x=1

W∑
α=1

(
ĉ†x,α · ĉx+1,α + ĉ†x,α · ĉx+1,α

)
(5.3.8)

Ĥ ′U =
1

2

L∑
x=1

W∑
α=1

 W∑
βγ=1

1

W
ĉ†x,α · ĉx,β × ĉ†x,γ · ĉx,α−β+γ

− ĉ†x,α · ĉx,α
 (5.3.9)

for the Hamiltonian. While Ĥ ′U is now long-range, this “range” is limited to the width
of the cylinder W and hence relatively small. The bond dimension of the MPO only
grows linearly in cylinder width while the maximal block size of the contained dense
blocks even stays constant due to the large number of available symmetries.1 When
implementing this Hamiltonian, one should take care to properly handle the additional
ZW pseudomomentum symmetry which in particular results in a non-homogeneous lattice
(cf. Sec. 2.4.2): particles on sites (x, α) carry momentum α, hence the creation operator
ĉ†x,α has to transform as S = 1/2, n = 1 and k = α.

5.4 Results with DMRG3S

In the following, we will first compare the obtained ground-state energies from our method
(DMRG3S) with those obtained by two key references12,122 which list their obtained
energy values at least for some system sizes. Afterwards, we will concentrate on our new
results for different filling factors n, which suggest the presence of a phase transition at
n ≈ 0.9.

5.4.1 Convergence and Energy Comparison

As a first check for the validity of our results, it is useful to compare the found ground-state
energies with those found by other studies of the 2D Hubbard model. Unfortunately,
relatively few such studies have given explicit energies, furthermore, it is difficult to
compare the values of methods which work directly in the thermodynamic limit to the
values given by DMRG, valid only for a certain cylinder circumference. While one
may attempt an extrapolation in the cylinder width, due to the small number of data
points (typically W = 4, 6), this is rather unreliably. In the following comparison, we
will primarily refer to the data from Ref. [12, 122], concentrating on the “hard” case of
n = 0.875 for various values of the interaction U = 4, 6, 8.
The first hurdle towards a useful comparison is the lack of a meaningful truncation

error in single-site DMRG. Since the magnitude of the expansion term (3.4.4) is largely
arbitrary, no useful information can be extracted from the subsequent truncation. In
comparison, two-site DMRG readily provides such a truncation error which allows for a
very useful extrapolation of the energy and other observables towards zero truncation
error. Typically, values given in the literature are the extrapolated values corresponding
to zero truncation error. Ehlers et al.12 give an excellent example of such a possible
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Figure 5.2: Comparison of bare data from DMRG3S with 2DMRG data by Ehlers et
al.12 in the process of extrapolation towards zero truncation error. Placement of the two
additional points along the x-axis is estimated given their bond dimensions.

extrapolation. In Fig. 5.2, we have extracted the unextrapolated data from Fig. 5 in
Ref. [12] for the case of L = 16, W = 6, U = 8 and n = 0.875 and inserted two data points
from our calculations, translating the number of SU(2)Spin-symmetric states mS = 10′000

and mS = 15′000 to the equivalent number of U(1)Sz -symmetric states. As can be seen,
while the value at mS = 10′000 is not well converged, the value at mS = 15′000 fits very
well with its expected magnitude.

Results for U = 8, n = 0.875 are most numerous, as we did many calculations for
different system sizes at this particular point. The results are compared with the two
other recent papers in Fig. 5.3. LeBlanc et al.122 only give values for L =∞ shown on the
y-axis accordingly. Ehlers et al.12 also provide data for finite systems, but extrapolated
to zero truncation error. At W = 4, it is easy to match this additional advantage using
a higher bond dimension (the red and green crosses hence overlap), at W = 6, this
extrapolation provides a considerable advantage resulting in lower energies (compare red
and green circles). No data was published elsewhere for W = 8 (double crosses) and
given the behaviour found in our data, this is not surprising: at this width, a very large
bond dimension would be required and even with 30′000 SU(2)Spin-symmetric states,
equivalent to approx. 85′000− 95′000 U(1)Sz -symmetric states, we cannot even capture
the (expected) lower energy for longer cylinders, as the additional entanglement and error
keeps the energy per site approximately constant. Nevertheless, we do find an energy
per site quite compatible with the previous results for W = 4 and W = 6, even though
evaluation of occupation numbers (e.g. cf. Fig. 5.4) reveals a wildly asymmetric state
which is unlikely to be the true ground state of the system.
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At U = 6, n = 0.875, we did relatively few calculations at different system sizes as we
concentrated on checking different filling factors n. At the same time, our first reference12

does not consider the case U = 6 at all while our second reference122 only gives data from
DMET and various Monte Carlo calculations but not from DMRG calculations. Our data
is plotted in Fig. 5.5. For comparison, we show the two extremal estimates from Ref. [122]
from DMET and UCSSD (unconstrainted coupled-cluster theory with single and double
excitations) calculations. While our data set is limited, it does not diverge too far from
e.g. the DMET results. Assuming a similar behaviour of the truncation extrapolation
as for U = 8 for W = 6 here, which would lower the extrapolated energy for W = 6 by
a few percent and taking into account the extrapolation into the TL with W =∞, all
differences in energy to DMET can be explained.

The case of U = 4, n = 0.875 is treated in both Ref. [12] and [122]. Our own data
on the square lattice is again limited, as we were more interested in results for different
values for n, but we also calculated some results on a diagonal lattice.25,122 All results
are combined in Fig. 5.6. Ref. [12] and Ref. [122] agree nearly perfectly on the value at
W = 6, L =∞, while our data for W = 4 agrees perfectly with the data from Ref. [12],
the corresponding symbols are placed on top of each other. At W = 6, DMRG3S is again
restricted due to the lack of a meaningful truncation error, leading to systematically
higher energies. The diagonal lattices tested here seem to converge faster with cylinder
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width: For W = 4 and W = 6, the extrapolations to L = ∞ agree nearly perfectly.
However, both the raw finite-size and the extrapolated energies are much higher than
those obtained from square lattices and also higher than e.g. the DMET comparison value.
This may be due to a different ground state being preferred by DMRG on such lattices
due to a simpler entanglement structure.

Some remarks regarding this comparison are in order. First, at small cylinder widths,
it is obviously possible to reproduce previous results up to a relatively high precision even
without extrapolation in the truncation error. This is possible here primarily due to a
larger effective bond dimension from using SU(2)Spin-symmetric states and secondarily
due to the faster convergence of DMRG3S with sweeps and, in particular, CPU time.2

Second, at larger cylinder widths, the additional gain in energy from the extrapolation
is much larger than the gain from using SU(2)Spin-symmetric states. Assuming a critical
ground state (and the observed entanglement spectra do suggest at most a power-law
decay of singular values5), this is not surprising: unless the additional factor of two to
three in the bond dimension from the non-abelian symmetries is sufficient to fully capture
the finite-size system, it will only provide a minor correction: truncating after (say) 10′000

or 30′000 states on a very slowly decaying spectrum makes a noticeable difference in the
truncation error, but both errors will be far away from zero (cf. Fig. 5.2). This problem
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is made worse by the fact that the bond dimension itself is not useful as an extrapolation
parameter. This has also been realised in other tensor network applications.163 As such,
the only course of action should be to follow up with one or two sweeps of 2DMRG
after each stage of DMRG3S has been completed to (relative) convergence: this way, one
exploits the faster convergence of DMRG3S while also obtaining a meaningful truncation
error. One could even consider restricting the 2DMRG update to e.g. the centre of the
chain or a small central part of the system. However, it should be kept in mind that
the extrapolation in the truncation error, while well-known and widely used, is not a
variational extrapolation, i.e. the resulting energy may very well be lower than the true
ground-state energy of the finite-size system.

Third, it is still not possible to get results for cylinders of width W = 8 in the Hubbard
model with DMRG. Other methods (e.g. DMET or iPEPS) do provide results directly in
the thermodynamic limit such that no extrapolation in the cylinder width is necessary
and while for narrow cylinders, nearly thirty years of continuous improvement have kept
DMRG competitive much longer than one would naively expect, it is questionable whether
this state will continue into the future.
Fourth and finally, it should be noted that the results obtained here were calculated

without so-called pinning fields used to stabilise a preferred stripe order elsewhere.12,122,161

This suggests that such pinning fields are not entirely necessary when calculations are
done at sufficiently large bond dimensions.

5.4.2 Hints of Phase Coexistence

Consider the energy per site e as a function of the filling factor n and recall the definition
of a convex function f : A→ B,

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y) ∀x, y ∈ A ∨ ∀α ∈ [0, t] . (5.4.1)

If we take f as e(n) with A ≡ [0, 1] and B ≡ R, we can take points x ≡ n − δ and
y ≡ n+ δ. In this case, the above inequality becomes

e(α(n− δ) + (1− α)(n+ δ)) ≤ αe(n− δ) + (1− α)e(n+ δ) (5.4.2)

The right-hand side of this equation is the weighted average energy of two phases at
densities n− δ and n+ δ respectively, while the weighted average density of those two
phases is given by the argument α(n− δ) + (1− α)(n+ δ) ≡ n̄ to e on the left-hand side.
If the inequality is not fulfilled, it is energetically favourable to split the single phase at
density n̄ into two co-existing phases of densities n− δ (with relative occurence α) and
n+ δ (with relative occurence 1−α). On the other hand, the phase at density n̄ is stable
if it is not possible to split it into two co-existing phases. It is hence obvious that any
physically-realised function e(n) must be convex.
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On the other hand, it may well be the case that an equation of state per-se violates
convexity around a phase transition point, the Van-der-Waals equation164 being a famous
example. Such cases necessitate a Maxwell construction165 which is typically constructed
in the pressure p-molar volume v diagram as a line segment of constant pressure between
two volumes (cf. Fig. 5.7, left). Translating the Maxwell construction into the energy-filling
factor diagram5,149,166 with correspondence ∂/∂n e(n) ∼ −p and n ∼ v−1 then results in
an area of constant slope. This constant slope “shortcuts” through a concave region of
the energy function eEOS(n) derived from the equation of state via a tanget line resulting
in the physical energy function e(n) and just barely restores convexity (cf. Fig. 5.7, right).
This constant slope secant directly corresponds to the left-hand side of Eq. (5.4.2). Note
that if the filling factor n was restricted to the region n < n′ with n′ the first zero-point
of the second derivative, it would not be possible to construct a secant below the energy
curve which touches that curve at two points. Hence, even though an area n . n′ is
unstable when considering the full range of n, this area would be stable if n was restricted
to n < n′. For this reason, the Maxwell-constructed dashed lines extend beyond the
region where ∂2/∂n2 e(n) < 0.

Therefore an area in e(n) with constant slope might indicate phase coexistence due to a
phase transition. The study of physical energy functions e(n) as they result from DMRG,
Monte-Carlo149,166 calculations or analytical arguments141 can thereby hint at a region of
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phase coexistence and hence also phase transition. In the following, some data points of
e(n) in addition to the extensive analysis already carried out in Ref. [5] will be presented
together with a brief summary of auxiliary arguments supporting the phase transition.

Our study of the phase coexistence region consists of DMRG calculations on lattices of
sizes 40× 4, 64× 4, 12× 6 and 16× 6. Extensive sweeping over the possible filling factors
n was done for the first case, in the other three, we limited ourselves to the physically
interesting region n ≈ 0.92. The values of U are 4 and 6 with little qualitative difference
found. Fig. 5.8 gives our results for U = 6, Fig. 5.9 those for U = 4.ii Linear fits have been
attempted in the range 0.9 ≤ n ≤ 1 with sums of residuals . 10−5 for U = 6 and < 10−5

for U = 4 for all fits. The Figs. 5.8 and 5.9 already show a remarkably linear behaviour
in this region with the data noticeably diverging from the linear fit for n . 0.85, see in
particular the inset in Fig. 5.8 for the behaviour of e(n) over the full range 0 ≤ n ≤ 1.
The data is in good agremeent with Fig. 2 of Ref. [149]. Contrary to Fig. 3 of Ref. [149],
our data however does not exhibit a minimum in the energy per hole as a function of hole
density eh(h) around a critical hole density hc ≈ 0.9. Instead, we find either a very noisy
curve for the larger systems or a monotonically increasing eh(h) for the 40× 4 system
(not shown). That is, while the raw energy per site appears to behave nicely and nearly
converged, the energy per hole is still very noisy. Longer calculations, ideally on shorter
and wider systems with many different boundary conditions would likely be necessary to
produce more reliable data.

Evaluating the first differences to get the slope of the obtained data is highly sensitive
towards the accuracy of the obtained energies and hence difficult, cf. Figs. 5.10 and 5.11.
Note especially that these figures would actually suggest a partly concave energy function
e(n) due to the numerous slight decreases in the slope ∂/∂n e(n) in the region n > 0.9.
However, when comparing the region n > 0.9 to the nicely-behaved regime n . 0.85, one
may find a very noisy relative plateau in the first differences or at least a relatively strong
divergence from the previous behaviour of strictly increasing differences. In particular,
the 40× 4 system (red crosses in Figs. 5.10 and 5.11) exhibits a narrow plateau in the
region 0.9 ≤ n ≤ 0.9375 and the 12× 6 system (green crosses), which was tested down to
n = 0.75, also shows a marked decrease in the growth of the first differences starting at
around n ≈ 0.9.
Interestingly, this plateau coincides relatively well with a final particle number dis-

tribution along the long axis of the cylinder which is much more asymmetric than at
n < 0.85 and n > 0.9375. Collected distributions for 40 × 4 are plotted in Fig. 5.12.
This behaviour is not found in the 12× 6 system (cf. Fig. 5.13). This may indicate that
while something (such as a phase transition) makes it much harder for DMRG to build a
iiA single data point for a single momentum value on a fixed lattice at a specific filling factor and

interaction strength requires 4-6 weeks of CPU time on 10 Broadwell-Xeon cores, scanning all possible
momenta on the ring multiplies this by a factor ofW and even just checking momenta k = 0 and k = π
by a factor of two. Due to this large amount of CPU-time spent, we had to limit most calculations to
the area around n ≈ 0.925.
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U = 6. While the data for lattice size 40× 4 is relatively smooth and may hint at a region
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Figure 5.12: Relative occupation profiles collected for the 40×4 system at U = 6 along the
long axis x of the cylinder. Plotted is nx,y − n over x (cf. Fig. 5.1). Occupation numbers
on each site y of a single ring x are identical due to the hybrid-space formulation. The
distributions for n ≤ 0.875 and n ≥ 0.9375 are very symmetric, while those in-between
display large asymmetries.
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Figure 5.13: Relative occupation profiles collected for the 12× 6 system at U = 6 along
the long axis x of the cylinder. Plotted is nx,y − n over x (cf. Fig. 5.1). Occupation
numbers on each site y of a single ring x are identical due to the hybrid-space formulation.
Most of the calculated distributions are very symmetric with only a single deviation at
n = 0.861̄.

symmetric ground-state for the long cylinder, this is much easier on the shorter cylinder
of just twelve sites. Note that even a macroscopic phase transition does not imply a
visible change in the density profile, since multiple ground states with different profiles
may overlap to result in one very symmetric overall density profile. In this respect, while
the irregularities observed around n ≈ 0.9 for the 40×4 system may hint at a problematic
situation for DMRG, they are not a required condition for phase coexistence. On the
other hand, they may simply be an artefact of convergence failure, though it is unclear
for what other physical reason DMRG should fail to converge at precisely those densities.

Outlook

In this section as well as the more extensive analysis of (parts of) the current data
presented in Ref. [5] we have shown that at least something is happening at around
n ≈ 0.9 in the Hubbard model at medium interaction strengths U ≈ 4 . . . 6. This by
itself is not surprising: We know that the Hubbard model at half-filling exhibits a Mott
insulator with strong antiferromagnetic correlations and, at lower filling factors, likely a
striped state with properties, though they have not yet been conclusively determined, at
least different from those of a Mott insulator. As such, a phase transition and potential
phase coexistence is not surprising but rather expected. However, our data, as well as the
previous results149,166 suggest a critical filling factor nc & 0.9, slightly above the value
n = 0.875 usually taken to approximate cuprate physics. It may therefore be interesting
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to first understand the full phase diagram of the standard Hubbard model, including
the determination of the critical filling factor nc before attempting to introduce more
complications necessary to approximate the physical cuprate systems.
Such “complications” will likely include next-nearest neighbour hopping already in-

vestigated in some cases,122 multi-band models currently only investigated with more
approximate methods such as DMFT,71,167,168 or longer-range interactions to more closely
model the existing Coulomb repulsion. While tensor network methods also provide for
excellent impurity solvers to be employed by embedding methods such as DMFT or
DMET, it will also be useful to solve (relatively small) systems directly, as the wealth of
information available from the tensor network wavefunction is unparalleled by embedding
methods.
In this context, it will most likely be necessary to abandon the 2D-1D mappings

currently used and focus on either full-2D networks such as iPEPS or intermediates such
as tree tensor states where each ring of the cylinder acts as a branch of the tree tensor.
The latter may be a reasonable choice as they reduce the number of large tensors from
L ·W to L and intra- not inter-ring entanglement is highest in our current calculations:
at equal accuracy, the intra-ring bonds are approximately 40% larger than the inter-ring
bonds.
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