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Summary 

 The gastrointestinal tract of mice and men harbors a highly diverse microbiota that confers 

protection to the host against infections with enteric pathogens such as Salmonella enterica serovar 

Typhimurium (S. Tm). This phenomenon is termed as colonization resistance (CR). The tremendous 

complexity of the intestinal ecosystem precludes investigating the contribution of individual strains to 

host-bacterial interactions as well as studying their individual role in CR. Therefore, we established a 

gnotobiotic mouse model which harbors a defined consortium of mouse-derived bacteria able to confer 

CR against S. Tm. This bacterial consortium was named as the Oligo-Mouse Microbiota (Oligo-MM) and 

comprises twelve isolates abundant in the mouse intestine which are assigned to five major eubacterial 

phyla (Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia and Proteobacteria). Firstly, this work 

presents isolation and characterization of the individual members of the consortium and the generation of 

a gnotobiotic mouse line stably colonized with the Oligo-MM. Secondly, the establishment of Oligo-MM 

specific molecular tools including a qPCR assay and probes for fluorescence in situ hybridization (FISH) 

is reported. Furthermore, draft genome sequences were generated for all strains and enabled functional 

metagenomic analysis. All strains were deposited at the German Type Culture collections (DSMZ). 

Finally, an innovative approach which combines mouse infection experiments and comparative 

metagenomics was employed to identify bacterial mechanisms potentially involved in CR against S. Tm. 

In conclusion, the Oligo-MM consortium will be a useful tool to understand the role of single species in a 

complex microbial ecosystem and decipher molecular mechanisms underlying host-microbiota pathogen 

interaction. 

 Gut inflammation and disease induced by S. Tm is the result of the interplay between S. Tm 

virulence factors, the mucosal immune system, physical barriers and the microbiota. The intestinal mucus 

layer is known to provide protection against enteric infections and mucus-deficient mice have been shown 

to be more susceptible to infection with enteric pathogens such as S. Tm when compared to control mice. 

Anterior gradient homolog 2 (AGR2) is a member of the protein disulfide isomerase family involved in 

correct folding and export of the major component of the colonic mucus layer, MUC2. In the second part 

of this thesis, AGR2ko mice deficient in mucus secretion were employed to investigate the role of the 

intestinal mucus layer and the microbiota in S. Tm infection using the antibiotic-treated Salmonella colitis 

model. Surprisingly, streptomycin (sm)-treated AGR2ko mice were shown to be protected to early S. Tm-

induced colitis in contrast to their heterozygous littermate controls (AGR2het). This effect was not seen in 

mice pretreated with a different antibiotic, ampicillin. Microbiota composition analysis combined with 

indicator taxa analysis identified bacterial members assigned to the Deferribacteres phylum as candidates
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 of protective microbiota in sm-treated AGR2ko mice. Additionally, expression of the S. Tm type III 

secretion system 1 (T3SS-1) was found to be downregulated in sm-treated AGR2ko mice. This reveals 

microbiota-mediated regulation of T3SS-1 as novel potential mechanism involved in reduced symptoms 

of S. Tm-induced colitis. Finally, germfree rederivation of AGR2ko and AGR2het mice and generation of 

isobiotic mice using the Oligo-MM consortium will serve as toolbox to disentangle the mechanisms 

involved in protection against S. Tm in mucin-deficient mice. 
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Zusammenfassung  

 Der gastrointestinale Trakt von Menschen und Mäusen wird jeweils von einer höchst diversen 

mikrobiellen Gemeinschaft, genannt Mikrobiota, besiedelt, welche den Wirt vor Infektionen durch 

enterische Pathogene wie Salmonella enterica serovar Typhimurium (S. Tm) schützt. Dieses Phänomen 

wird als Kolonisationsresistenz (KR) bezeichnet. Die enorme Komplexität des intestinalen Ökosystems 

erschwert die genaue Untersuchung der individuellen Bakterien in Bezug auf ihre Interaktion mit dem 

Wirt, sowie ihre individuelle Rolle bei der KR. In dieser Arbeit wurde ein definiertes Konsortium von 

mausstämmigen Bakterien etabliert, welches KR gegenüber S. Tm im gnotobiotischen Mausmodell 

vermittelt. Dieses bakterielle Konsortium wird als die Oligo-Maus Mikrobiota (Oligo-MM) bezeichnet 

und enthält zwölf dem Mausdarm entstammende Isolate, welche fünf eubakterielle Hauptphyla 

(Firmicutes, Bacteroidetes, Actinobacteria, Verrucomicrobia und Proteobacteria) repräsentieren. Diese 

Studie beschreibt erstens die Isolierung und Charakterisierung der individuellen Stämme des Konsortiums 

und die Erstellung einer gnotobiotischen Mauslinie, die stabil mit Oligo-MM kolonisiert wird. Zweitens 

wird die Entwicklung von Oligo-MM-spezifischen molekularen Werkzeugen wie einem spezifischen 

quantitativen PCR-Assay sowie von Sonden für die Fluoreszenz in situ Hybridisierung (FISH) 

beschrieben. Des Weiteren wurden Genomsequenzen für alle Stämme generiert, welches die funktionelle 

metagenomische Analyse ermöglichte. Alle Stämme wurden im Deutschen Zentrum für Mikroorganismen 

und Zellkulturen (DSMZ) hinterlegt. Letztendlich wurde ein innovatives Vorgehen angewandt, welches 

Mausinfektionsexperimente und vergleichenden Metagenomanalysen kombiniert, um bakterielle 

Mechanismen zu identifizieren, die möglicherweise eine Rolle bei der KR gegen S. Tm spielen. 

Zusammenfassend wird das Oligo-MM Konsortium zum molekularen Verständnis der Rolle einzelner 

Bakterien im komplexen mikrobiellen Ökosystem beitragen und die molekularen Mechanismen der 

Erreger-Wirtsinteraktion entschlüsseln.  

 Durch S. Tm hervorgerufene Darmentzündungen und Infektion sind das Ergebnis des 

Zusammenspiels von S. Tm Virulenzfaktoren, dem mukosalen Immunsystem, physischen Barrieren und 

der Mikrobiota. Der Darmschleimhaut bietet Schutz gegen Darminfektionen. Im Vergleich zu 

Kontrollmäusen sind Muzin-defiziente Mäuse anfälliger für Infektionen durch Erreger wie S. Tm. 

Anterior gradient homolog 2 (AGR2) ist ein Mitglied der Proteindisulfidisomerase Familie, welche für die 

korrekte Faltung und den Export der Hauptkomponente der Darmschleimhautschicht, MUC2 

verantwortlich ist. Im zweiten Teil dieser Arbeit wurden AGR2ko Mäuse mit defekter Muzinsekretion 

verwendet, um die Rolle der intestinalen Muzinschicht und der Mikrobiota bei der S. Tm Infektion im 

antibiotika-behandelten Salmonella Kolitismodell zu untersuchen. Überraschenderweise waren 

Streptomycin (Sm)-behandelte AGR2ko-Mäuse geschützt gegen frühzeitige S. Tm-induzierte Kolitis im



Zusammenfassung 
 
 

xxiv 
 

Vergleich zu ihren heterozygoten Wurfgeschwistern (AGR2het). Dieser Effekt wurde nicht bei Mäusen 

beobachtet, welche mit einem anderen Antibiotikum, Ampicillin, vorbehandelt wurden. Die Analyse der 

Mikrobiota-Zusammensetzung in Kombination mit einer Indikator-taxa-Analyse konnte bakterielle 

Vertreter des Phylums Deferribacteres als Kandidaten der protektiven Mikrobiota in Sm-behandelten 

AGRko-Mäusen identifizieren. Zudem war die Expression des S. Tm Typ III Sekretionssystems (T3SS-1) 

in Sm-behandelten AGR2ko-Mäusen deutlich herunterreguliert. Dieses Resultat identifiziert die 

Mikrobiota-gesteuerte Regulation des T3SS-1 als neuen potentiellen Mechanismus bei der Pathogenese 

der S. Tm-Infektionen. Schlussendlich wird die Rederivierung keimfreier AGR2ko- und AGR2het-Mäuse 

und die Züchtung von isobiotischen Mäusen unter Verwendung vom Oligo-MM Konsortiums zur 

Aufklärung der genauen Mechanismen beitragen, die in Mucin-defizienten zum Schutz gegen S. Tm 

beitragen. 
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 Introduction 1.

 The gut harbors the most dense and complex microbial ecosystem within the human body, termed 

as microbiota (Ley, Lozupone et al. 2008). This thesis focuses at the role of the gut microbiota in enteric 

infections. The first part of the introduction takes a glance at the complexity of the gut microbiota, its 

various functions and the challenge to study the interactions between the gut microbiota, the host and the 

enteric pathogens such as Salmonella enterica serovar Typhimurium (S. Tm) in experimental animal 

models. The second part introduces the techniques to analyze the gut microbiota composition. In the third 

part, the human enteropathogen S. Tm is introduced. The fourth part gives an overview on colonization 

resistance against enteric pathogens and experimental animal models developed to study it. Finally, the 

last part introduces the intestinal mucus layer, its protective role towards the host and its various 

interactions with the gut microbiota. 

 

  The mammalian gut microbiota 1.1.

 Composition of the microbiota in humans and mice  1.1.1.

 The gastrointestinal tract is inhabited by approximately 1000 bacterial species, making up 1012 

cells per gram of large intestinal content (Marchesi and Shanahan 2007). In order to study the functions of 

the gut microbiota and its role in health and disease, most of the in vivo studies have so far employed a 

well-defined model organism: the laboratory mouse (mus musculus).  

 The composition of the gut microbiota of humans and mice is rather similar at the taxonomic 

phylum level. The microbiota of both is dominated by anaerobic bacteria belonging to the Firmicutes and 

the Bacteroidetes making up 90 %. The Actinobacteria, the Proteobacteria, the TM7 and the 

Verrucomicrobia are present at a lower abundance (Figure 1A) (Eckburg, Bik et al. 2005, Ley, Backhed et 

al. 2005). However, at the taxonomic genus level, the gut microbiota of humans and mice is rather 

different. Opposite to the mouse microbiota, the gut microbiota of humans harbors more Prevotella, 

Faecalibacterium and Ruminococcus genera. On the other side, the gut microbiota of mice harbors more 

Lactobacillus, Alistipes, Turicibacter and Mucispirillum genera than the human microbiota (Krych, 

Hansen et al. 2013, Nguyen, Vieira-Silva et al. 2015) (Figure 1B). Such differences were also shown at 

the taxonomic family level (Seedorf, Griffin et al. 2014) and may hamper direct translation of data 

obtained from mouse experiments to the human system. 
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Figure 1. Phylogenetic comparison of the intestinal microbiota composition of humans and mice. 

(A) Intestinal microbiota composition of humans and mice is very similar at the taxonomic phylum level. Divisions 
detected in mouse cecum and in human colonic microbiota are indicated by the mouse symbol (Ley, Backhed et al. 
2005) and the human-head symbol (Eckburg, Bik et al. 2005), respectively. “H” denotes additional divisions 
represented in the human fecal microbiota, as determined from GenBank entries. Divisions dominant in mice and 
humans are colored red, rarer divisions are blue, and undetected divisions are black. The bar indicates changes per 
nucleotide. Taken from (Ley, Backhed et al. 2005) with permission. Copyright 2015 National Academy of Sciences, 
U.S.A. (B) Similarities and discrepancies of both microbial ecosystems at the taxonomic genus level in feces using 
four human datasets and five mouse datasets. Genera with significant differences (P<0.05) between human and 
mouse microbiota are annotated with an asterisk. Taken from (Nguyen, Vieira-Silva et al. 2015) under the terms of 
the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0). 

 

 The effects of the microbiota on its host 1.1.2.

 The enormous amount of microorganisms which are directly adjacent to the single-layered 

intestinal epithelial border requires that host and commensal microbiota develop strategies to coexist. In 

most cases, the interactions appear to be of mutual benefit for both the gut microbiota and its host. It is 

well known that the gut microbiota inflicts beneficial effects on its natural host. However, in some cases, 

the gut microbiota can also be deleterious for the host. 

 

 Education of the immune system  1.1.2.1.

 Starting right after birth, the gut microbiota educates the immune system (Lotz, Gutle et al. 2006). 

This phenomenon has been intensively studied in humans, where newborns encounter the first bacterial 

invaders while passing through the maternal vagina. Controversially, another study detected bacteria even 

http://creativecommons.org/licenses/by/3.0
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in the placenta, suggesting that bacterial colonization could occur before birth (Aagaard, Ma et al. 2014). 

However, these results are highly discussed in the field (Aagaard 2014). Thus, members of the vaginal 

microbiota constitute the first microbial community established in the gut and some members of this 

microbiota stably colonize. Further on, once in the gut, these pioneer colonizers enter in contact with the 

epithelial border (Dominguez-Bello, Costello et al. 2010). This first contact is essential for educating the 

immune system of newborns (Lotz, Gutle et al. 2006), participating in milk digestion (Gagnon, Savard et 

al. 2015) and aiding other commensals to colonize the gastrointestinal tract (Penders, Thijs et al. 2006). It 

is known that when the first microbial community differs from the community of vaginal microbiota (e.g. 

babies born by caesarian), newborns harbor another gut microbiota in their early age. This correlates with 

the risk of developing asthma and multiple allergies later in life, in humans (Kero, Gissler et al. 2002). 

Moreover, germfree mice colonized with bacterial strains isolated from humans have an impaired immune 

system compared to animals colonized with murine isolates (Chung, Pamp et al. 2012). Therefore, both 

the microbiota composition and its adaptation to its host are important to educate the immune system. 

 In adult mice, it is well documented that the members of the gut microbiota can influence the 

intestinal immune system and the barrier function. They can influence the innate immune system by 

inducing the production of antimicrobial peptides (e.g. REGIIIβ, REGIIIγ) (Vaishnava, Behrendt et al. 

2008) and by maturating lymphoid tissues via their recognition by host pattern recognition receptors 

(PRR) (Bouskra, Brezillon et al. 2008). Moreover, they can influence the adaptive immune system by 

inducing regulatory immune responses (Atarashi, Tanoue et al. 2013), by promoting the differentiation of 

T helper cell (Th17) (Atarashi, Nishimura et al. 2008) and by inducing the production of secretory 

immunoglobulin A (Macpherson and Uhr 2004). Finally, the gut microbiota can influence the barrier 

function by modulating the structure of mucus layers (Johansson, Jakobsson et al. 2015) and regulating 

intestinal epithelial permeability (Stefka, Feehley et al. 2014). 

 

 Influence of the gut microbiota on gut morphology and nutrition 1.1.2.2.

 Besides, the gut microbiota is known to influence the intestinal morphology, physiology and 

motility (Berg 1996). Using germfree animals, it was shown that commensals increase the number of 

goblet cells (Stefka, Feehley et al. 2014) and the production of mucus (Jakobsson, Rodriguez-Pineiro et al. 

2015). They also participate to microvilli formation, increase the rate of the epithelial cell turnover, and 

contribute to the development of the gut-associated lymphoid tissues, the Peyer´s patches and the 

mesenteric lymph nodes (Falk, Hooper et al. 1998, Round and Mazmanian 2009, Ohland and Jobin 2015). 
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 Furthermore, the gut microbiota fulfills a variety of metabolic functions, which can contribute to 

nutrition and is therefore beneficial for the host (Nicholson, Holmes et al. 2012). The metabolites shaped 

and modified by the gut microbiota are termed metabolome. The microbiota can promote glucose 

absorption as well as catabolize host dietary nutrients (Backhed, Ding et al. 2004) and mucus glycans 

(Johansson, Jakobsson et al. 2015). Additionally, bacterial metabolites such as amino acids (Zheng, Xie et 

al. 2011), carbohydrates (Flint, Scott et al. 2012) or vitamins (Koenig, Spor et al. 2011) can have also 

beneficial effects on the host. Finally, the microbiota ferment dietary fibers and complex-carbohydrates 

into short-chain fatty acids (SCFA) such as butyrate (Donohoe, Holley et al. 2014), propionate and acetate 

(Caspari and Macy 1983). The SCFA, in particular butyrate, are known to influence epithelial cell 

proliferation (Donohoe, Collins et al. 2012), mucosal immune response and mucus secretion (Vanhoutvin, 

Troost et al. 2009). However, these effects are controversial and highly discussed in the field (Hamer, 

Jonkers et al. 2010, Bultman and Jobin 2014). 

 

 Environmental and host factors influencing the intestinal microbiota 1.1.3.

composition 

 Under healthy conditions, the composition of the gut microbiota differs largely within and 

between individuals depending on different factors such as aging and ethnic group (Yatsunenko, Rey et al. 

2012), intestinal location (Zhang, Geng et al. 2014), lifestyle habit (Ley, Hamady et al. 2008), foregoing 

infection (Gradel, Nielsen et al. 2009), diet (Carmody, Gerber et al. 2015), pregnancy (Koren, Goodrich et 

al. 2012), previous antibiotic therapy (Liou and Turnbaugh 2012), atmospheric pressure (Adak, Maity et 

al. 2014) and housing conditions in case of experimental animals (Ma, Bokulich et al. 2012, Rogers, 

Kozlowska et al. 2014). Severe changes in the composition of the gut microbiota, termed as dysbiosis, 

have further been associated with various diseases. In this section, some factors involved in dysbiosis are 

described in more details. 

 

 Diet 1.1.3.1.

 The diet can promote dysbiosis (Goodman, Kallstrom, 2011). Dietary habits such as herbivore, 

carnivore or insectivore lifestyles are known to influence the gut microbiota in humans and in other 

organisms (Ley, Hamady et al. 2008, Ley, Lozupone et al. 2008). Nutrient sources such as high fat and 

high sugar diets (Carmody, Gerber et al. 2015), carbohydrates (Aguirre, Eck et al. 2015), artificial 

sweeteners (Suez, Korem et al. 2014) or vitamins (e.g. vitamins A and B12) (Cha, Chang et al. 2010, 



Introduction 
 
 

5 
 

Degnan, Barry et al. 2014) can also affect the composition of the gut microbiota. For example, the 

artificial sweeteners increase the Bacteroidales and decrease the Clostridiales. This dysbiosis can lead to 

an increase of glucose intolerance and metabolic disorders (Suez, Korem et al. 2014). Furthermore, Faith 

et al. developed a modeling approach to predict the reaction of microbiota after a change of diet, based on 

the diet composition. This model could allow the manipulation of the microbiota to improve global human 

health and prevent or treat various diseases (Faith, McNulty et al. 2011).    

 

 Antibiotic treatment 1.1.3.2.

 Antibiotic treatment promotes severe dysbiosis, despite the high abundance of antibiotic 

resistances in the microbiome (Sommer, Dantas et al. 2009, Maurice, Haiser et al. 2013). Dysbiosis can 

have deleterious effects on the host. Antibiotic-induced dysbiosis is associated with an increased adiposity 

suggesting that a dysbiotic microbiota is more efficient in extracting energy from the diet than a 

conventional microbiota (Flint 2012, Liou and Turnbaugh 2012). Moreover, antibiotic-induced dysbiosis 

can facilitate enteric infections by both genuine and opportunistic pathogens (e.g. Clostridium difficile, 

vancomycin-resistant Enterococcus and Salmonella enterica serovar Typhimurium) and inhibit immune 

responses (e.g. production of the antibacterial lectin RegIIIγ) (Brandl, Plitas et al. 2008, Ng, Ferreyra et al. 

2013). Further, long-term disturbances triggered by antibiotic treatment are associated with several 

pathologies such as colitis, diarrhea and allergies (Hill, Siracusa et al. 2012, Varughese, Vakil et al. 2013, 

Satokari, Fuentes et al. 2014). Additionally, in a dose-dependent manner, antibiotics are also known to 

influence the quorum-sensing systems of the gut bacteria (Struss, Pasini et al. 2012). 

 

 Inflammation and infection 1.1.3.3.

 Chronic and acute intestinal inflammation in humans and mice are associated with severe 

dysbiosis. In particular, in chronic inflammatory disease, relative abundance of Firmicutes and 

Bacteroidetes was shown as shifted and relative abundance of Deferribacteres and Proteobacteria was 

observed as increased (Morgan, Tickle et al. 2012, Schwab, Berry et al. 2014). However, it is unclear 

whether this dysbiosis is responsible for inflammation or occurs consequently. During infection, 

enteropathogens trigger inflammatory responses using different virulence factors such as flagella and type 

three secretion systems (T3SS). This leads to dysbiosis (Belzer, Gerber et al. 2014) as well as drastic 

changes in the gut ecosystem such as increased hypoxia (i.e. diminished availability of oxygen) (Harris, 

Carter et al. 2011), increased mucus secretion (Xue, Zhang et al. 2014) and massive induction of immune 
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response  (e.g. cytokines, IL-1β, interferon-γ) (Rhee, Walker et al. 2005, Muller, Hoffmann et al. 2009) 

(also reviewed in (Kaiser, Diard et al. 2012)). 

 

 Host genotype 1.1.3.4.

 For both humans and mice, it is known that host genotype shapes the gut microbiota. In humans, 

this was shown by a study on monozygotic and dizygotic twin pairs (Goodrich, Waters et al. 2014). In 

mice, evidence comes from genetically modified mouse models (Ley, Backhed et al. 2005, Krych, Hansen 

et al. 2013). However, it remains unclear whether genetic mutations have direct or indirect effects on 

microbiota composition. For example, the major component of the intestinal mucus layer is mucin 2 

(MUC2). MUC2-deficient mice were shown to harbor a different microbiota as compared to wild-type 

(WT) mice (Sovran, Loonen et al. 2015). However, it is unclear whether this difference is due to their lack 

of intestinal mucus layer (Van der Sluis, De Koning et al. 2006), their different profile of gene expression 

compared to their WT littermates (e.g. for genes involved in immune response, lipid metabolism pathways 

and cell-cycle control) (Sovran, Loonen et al. 2015) or other consequences of muc2 mutation. Therefore, 

various strategies aim to decrease variations in microbiota composition such as cohousing WT and mutant 

mice, using littermates as reference group, standardizing diet, minimizing stress factors, and so on 

(Laukens, Brinkman et al. 2015). 

 

 In conclusion, regarding the high complexity of the interactions between the gut microbiota and 

its host, it is challenging to understand host-microbiota relationships at a molecular level. Therefore, one 

of the strategies to study these interactions is to simplify the system by using well-characterized animal 

models in combination with well-defined microbiota and specific-analytical methods. 

 

  Analytical tools to study the gut microbiota composition and function 1.2.

 A variety of different analysis tools has been developed to analyze the composition and the 

localization of the gut microbiota. While methods based on counting of 16S rRNA gene copies as well as 

bacterial culture methods can be used to study relative abundance of individual microbial taxa, 

fluorescence in situ hybridization (FISH) allows the localization and the quantification of single cells in 

situ. We used three different analysis methods to compensate the bias of each of the single methods. The 

strengths and limitations of each method are outlined below. 
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 High-throughput amplicon sequencing and quantitative PCR of bacterial 1.2.1.

16S rRNA genes 

 High-throughput 16S rRNA amplicon sequencing is one of the most powerful approaches to study 

microbiota composition (Sogin, Morrison et al. 2006). It provides a relatively cheap and high-throughput 

dataset of sequences, which can be used to describe the gut microbiota composition to a low taxonomic 

level, and offers the parallel analysis of a large amount of samples in a short time scale. However, results 

vary depending on the analysis platform, the amplified 16S rRNA gene region (i.e. primer bias), the 

sequencing depth, the 16S rRNA gene used for taxonomic assignment and the bioinformatics analysis 

pipeline used (Koren, Knights et al. 2013, Schmidt, Matias Rodrigues et al. 2015). Furthermore, chimera 

generated during PCR amplification constitute another source for errors (Edgar, Haas et al. 2011). 

 The quantitative polymerase chain reaction (qPCR) assay provides more sensitive and specific 

detection of bacterial strains than other gDNA-based methods. It is currently also cheaper than the 

amplicon sequencing technique. However, it does not allow the detection of bacterial contaminants as it 

only detects targeted bacterial strains. 

 

 Meta-omics analyses 1.2.2.

 While metagenomics is used to predict the functional capacity of the entire gut microbiota 

community using genomic DNA (gDNA) sequencing, metatranscriptomics is used to get an overview on 

the transcriptional activity using RNA sequencing (Gill, Pop et al. 2006, Xiong, Frank et al. 2012). 

Importantly, two subjects with similar metagenomic profiles can have different metatranscriptomic 

activities (Franzosa, Morgan et al. 2014). This can be because metabolic pathways predicted to be in the 

same microbiota can be in different bacteria. Moreover, functional analyses are biased regarding how 

genes are related to the reference proteins. 

 Recently, metaproteomics and metabolomics analyses have been used to identify the functional 

activity of a microbial community in more details (Nicholson, Holmes et al. 2005, Verberkmoes, Russell 

et al. 2009). 

 

 In conclusion, gDNA-based methods are powerful tools to study microbiota composition and 

functionome. However, they can bias the data due to gDNA extraction efficiency as Gram-negative and 

Gram-positive bacteria have different cell walls, which exhibit different susceptibility to lysis methods 
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(Salonen, Nikkila et al. 2010, Maukonen, Simoes et al. 2012). This leads to a bias in favor of Gram-

negative bacteria, which are easier to lyse. Bacterial genomes can harbor one to several copies of the same 

16S rRNA gene, which can be either identical or different. This also leads to misestimation of the relative 

abundance of bacterial strains and can complicate the taxonomic assignment (Watanabe, Kojima et al. 

2013). 

 

 Fluorescence in situ hybridization  1.2.3.

 Fluorescence in situ hybridization (FISH) uses probes targeting the 16S rRNA. FISH probes are 

fluorescently labelled to specifically detect bacterial communities at the single-cell level, study ecological 

niches in tissue sections and determine the relative abundance of individual microbial community 

members using image analysis software such as the digital image analysis in microbial ecology software 

(DAIME) or BacSpace (Daims, Lucker et al. 2006, Earle, Billings et al. 2015). It can also be combined 

with other techniques such as high-resolution secondary ion mass spectrometry (NanoSIMS) to visualize 

bacterial metabolic activities in vivo (Berry, Stecher et al. 2013). However, despite the efforts made to 

optimize the FISH protocols, the fluorescent signal intensity, the microscopic resolution and the image 

analysis, it is challenging to establish a specific FISH protocol for gut tissues. This is mainly due to the 

high bacterial density in the gut and the auto-fluorescence of the gut tissue and plant fibers. 

 

 Bacterial isolation and culture 1.2.4.

 Bacterial isolation and culture is essential to characterize the physiological properties of bacterial 

strains in vitro, determine its genome sequence and perform proof of experimental concept. The genome 

sequence allows gaining insights into function and metabolic pathways of the organism and facilitating the 

development of specific analytical tools. Eventually, strategies for genetic manipulation can also be 

developed based on the genomic information. However, despite 52 phyla identified in the domain 

Bacteria, only half of them have cultured representative strains (nicely reviewed in (Rappe and 

Giovannoni 2003)). Therefore, efforts are made to circumvent technical problems (e.g. working under 

anaerobic atmosphere) and to develop new cultivating methods such as enrichment culture (Clavel, 

Henderson et al. 2006), high-throughput methods (Connon and Giovannoni 2002), gel microdroplet 

approach (Zengler, Toledo et al. 2002) or synergistic bacterial growth (Kaeberlein, Lewis et al. 2002). 
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  Salmonella enterica serovar Typhimurium - a model human 1.3.

pathogen to study microbiota-pathogen interaction in the gut 

 Salmonella enterica serovar Typhimurium (S. Tm) is a facultative anaerobic, non-spore-forming, 

Gram-negative bacterium, which is taxonomically assigned to the Enterobacteriaceae family. In humans, 

food-borne infections with nontyphoidal Salmonella strains (e.g. S. Tm) lead usually to self-limiting 

diarrhea and can, in some cases, also cause bacteremia (e.g. young children and immunocompromised 

patients) (Fabrega and Vila 2013). To infect successfully its host, S. Tm harbors a tremendous amount of 

virulence factors encoded within five Salmonella pathogenicity islands (SPI) in the chromosome and a 

virulence plasmid (pSLT). Initiation and amplification of the pro-inflammatory signals by S. Tm results in 

activation of macrophages and dendritic cells (Rydstrom and Wick 2007), granulocyte transmigration in 

the gut lumen, mucosal edema, epithelial damage, reduced numbers of mucus-loaded goblet cells (Barthel, 

Hapfelmeier et al. 2003) and mucin secretion (Day, Mandal et al. 1978). Moreover, S. Tm has to compete 

with the gut microbiota and deal with the inflammatory milieu in the gut. Here, the pathogenesis of S. Tm 

is reviewed with its most relevant virulence factors, followed by S. Tm interaction with the gut microbiota 

in the healthy and inflamed gut. 

 

 Mechanisms of Salmonella Typhimurium pathogenesis 1.3.1.

 The majority of studies have been performed in a mouse model for S. Tm-induced colitis, the 

streptomycin-treated (sm-treated) mouse colitis model (Barthel, Hapfelmeier et al. 2003). S. Tm 

pathogenesis is schematized below (Figure 2).  

 After infection of sm-treated mice, S. Tm reaches the intestine and crosses the mucus layer in 

order to reach the epithelial border using chemotactic flagella-mediated motility (Stecher, Hapfelmeier et 

al. 2004). Using different adhesins, S. Tm attaches to the enterocytes in the small intestine preferentially, 

where M cells of the Peyer’s patches are infected (Gerlach, Jackel et al. 2007). 

 So far, three mechanisms for S. Tm entry into host cells have been described. (1) After its 

adhesion to epithelial cells, S. Tm employs a type three secretion system (T3SS) termed as T3SS-1 and 

encoded on Salmonella pathogenicity island 1 (SPI-1). Using a needle complex and a translocon 

machinery, T3SS-1 injects at least fourteen different effector proteins into the host cell (Kaiser, Diard et al. 

2012). This leads to actin cytoskeletal rearrangement, internalization of S. Tm via a Trigger-like 

mechanism, and initiation of gut inflammation through the induction of pro-inflammatory cytokines (e.g. 

IFNγ, IL-1β and MIP2) (Hapfelmeier, Ehrbar et al. 2004, Patel and Galan 2005). (2) After its adhesion to 
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epithelial cells, S. Tm uses an outer membrane protein (OMP) termed the Rck, which is encoded on pSLT, 

to enter epithelial cells via a Zipper-like mechanism. Rck interacts with its host receptor (still unknown) to 

manipulate the host signaling and trigger S. Tm internalization. S. Tm is the first pathogen to be described 

as able to induce both Zipper and Trigger mechanisms for host cell invasion (Velge, Wiedemann et al. 

2012). (3) S. Tm is directly sampled from the gut lumen by dendritic cells, which open the tight junctions 

and send dendrites to the lumen (Rescigno, Rotta et al. 2001). 

 Once inside the phagocytic or non-phagocytic cells, S. Tm is contained in a Salmonella-containing 

vacuole (SCV) (Garcia-del Portillo, Foster et al. 1992). In order to survive and replicate intracellularly, S. 

Tm expresses a second T3SS, termed as T3SS-2 and encoded on SPI-2, as well as corresponding effectors 

proteins (Figueira and Holden 2012). Among other, the SPI-2-encoded effector proteins are reported to 

block fusion of the SCV with lysosomes (Uchiya, Barbieri et al. 1999), to manipulate the vesicular 

trafficking pathway (e.g. transcytosis of the SCV to the basolateral membrane) (Garvis, Beuzon et al. 

2001) and to induce the formation of Salmonella-induced filaments (Garcia-del Portillo, Zwick et al. 

1993). Eventually, T3SS-2 activity enables intracellular replication, induction of profound inflammation 

and systemic spread (Hapfelmeier and Hardt 2005). 

 Effector proteins encoded by T3SS-1 and T3SS-2 can also induce systemic dissemination of S. 

Tm to other organs such as mesenteric lymph nodes, liver, spleen and gallbladder (Lawley, Chan et al. 

2006). To favor dissemination, S. Tm can induce epithelial and macrophage cell death (Monack, Raupach 

et al. 1996, Paesold, Guiney et al. 2002). These events trigger acute and chronic inflammatory responses 

through the activation of cytokines such as IFNγ (Monack, Bouley et al. 2004). Moreover, S. Tm has 

several mechanisms to promote its survival in the host such as turning into non-replicating persisters 

within macrophages or inducing biofilm formation (Papavasileiou, Papavasileiou et al. 2010, Helaine, 

Cheverton et al. 2014). During persistent infection, S. Tm can be transmitted to a new host using fecal 

shedding (Lam and Monack 2014). 
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Figure 2. Schematic representation of Salmonella Typhimurium pathogenesis. 

1. Adhesion: After ingestion, S. Tm swims towards the gut epithelium along chemotactic gradients. After penetrating 
the mucus layer, it adheres to the epithelial surface using diverse adhesins. 2. Host cell invasion: In order to invade 
into epithelial cells, S. Tm can use two mechanisms. Firstly, S. Tm can use its T3SS-1 to inject several effector 
proteins into the cellular cytoplasm. T3SS-1 effectors are also known to induce the expression of pro-inflammatory 
cytokines. Secondly, S. Tm uses its Rck invasin to interact with the epithelial cell. In both cases, it triggers actin 
rearrangement and lead to the engulfment of S. Tm into the epithelial cell. The host receptor of Rck invasion remains 
unknown. Finally, S. Tm can also be sampled by dendritic cells directly from the gut lumen. 3. Intracellular 
survival and replication: Once inside the host cells, S. Tm uses its T3SS-2 to inject effector proteins into the cell 
cytoplasm. Thereby, it manipulates the host cell (e.g. vesicular trafficking pathways) in order to survive and replicate 
into the Salmonella-containing vacuole (SCV). T3SS-2 effectors are also known to cause tissue-wide inflammation. 
Moreover, macrophages are able to phagocytose S. Tm, which can survive intracellularly and replicate. 4. 
Dissemination: In order to disseminate, S. Tm uses different mechanisms, which remain unclear. For example, S. 
Tm can induce epithelial cell apoptosis and dendritic cell pyroptosis. 



Introduction 
 
 

12 
 

 Salmonella Typhimurium outcompetes the gut microbiota and benefits 1.3.2.

from the gut inflammation 

 Upon infection, S. Tm encounters a dense and autochthonous microbiota that prevents S. Tm 

infection. In order to successfully colonize and infect its host, S. Tm has developed several strategies to 

outcompete the microbiota (Figure 3). 

 The ability of S. Tm to colonize the gut correlates with the presence of close related species 

(Stecher, Chaffron et al. 2010). S. Tm can also exploit hydrogen and sugars (e.g. sialic acid), which are 

microbiota-derived to colonize the gut (Maier, Vyas et al. 2013, Ng, Ferreyra et al. 2013). Using flagella 

and chemotaxis, S. Tm follows the gradient of high-energy nutrients (e.g. mucin-derived sugars and 

electron acceptors) and reaches the epithelial cells to initiate inflammation (Stecher, Hapfelmeier et al. 

2004). Moreover, S. Tm can exploit inflammation to outcompete the microbiota. Indeed, the mucosal 

inflammation increases the release of mucins and other glycoconjugate nutrients, which favors S. Tm 

colonization and helps the remaining pathogens in the lumen to sense the epithelial border (Stecher, 

Barthel et al. 2008). Moreover, during inflammation, polymorphonuclear neutrophils (PMN) that 

transmigrate into the intestinal lumen release reactive oxygen species (ROS) and reactive nitrogen species 

(RNS) to kill S. Tm (Loetscher, Wieser et al. 2012). The by-products of releasing ROS and RNS are 

tetrathionate and nitrate, respectively, which are used by S. Tm as respiratory electron acceptors (Winter, 

Thiennimitr et al. 2010, Rivera-Chavez, Winter et al. 2013). This ability to perform anaerobic respiration 

boosts S. Tm growth and enables it to outcompete obligate anaerobic commensals (Rivera-Chavez, Winter 

et al. 2013). Furthermore, to survive inflammatory responses, S. Tm developed resistances against some 

anti-microbial peptides (e.g. RegIIIβ) (Stelter, Kappeli et al. 2011). Other antimicrobials are released to 

enable the acquisition of essential micronutrients. It is the case for the acquisition of iron against which 

the mucosa excretes the enterochelin-sequestering protein lipocalin-2 (Lcn2) to limit iron availability. S. 

Tm bypasses this host-defense by producing the salmochelin, which is an Lcn2-resistant glycosylated 

enterochelin derivative (Raffatellu, George et al. 2009). Similarly, calprotectin is released by PMNs to 

sequester zinc in the inflamed gut. S. Tm overcomes this calprotectin-mediated zinc chelation by 

expressing a zinc transporter (ZnuABC), which is known to enhance S. Tm growth and allow S. Tm to 

overgrow the gut microbiota (Liu, Jellbauer et al. 2012). 

 In conclusion, in order to infect its host successfully, S. Tm developed strategies to overgrow the 

gut microbiota, to benefit from mucosal inflammation and to resist host-defense mechanisms. All together, 

these mechanisms negatively affect gut microbiota in particular the anaerobic commensals, which are 
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presumably more sensitive to inflammation and to antimicrobials (Stecher, Robbiani et al. 2007). 

However, the gut microbiota can also play a protective role during S. Tm infection. 

 

 

Figure 3. Schematic representation of S. Tm growth within the normal and the inflamed gut. 

Upon entering the intestinal tract, S. Tm encounters the gut microbiota, which is already established and well-
adapted to the gut ecosystem. To successfully colonize and invade the gut, S. Tm uses different mechanisms. 1. S. 
Tm utilizes the microbiota-derived products (e.g. H2). 2. S. Tm uses mucus-derived carbohydrates, which are 
degraded by mucolytic bacteria (e.g. sialic acid). 3. S. Tm uses chemotaxis and motility to penetrate the mucus layer 
and reach the epithelial border. Moreover, S. Tm benefits from inflammation as it 4. senses the chemotactic gradient 
emanating from the mucus layer, which is increased by inflammation. 5. S. Tm uses tetrathionate and nitrate, which 
result from inflammation, as anaerobic electron acceptor. 6. S. Tm resists antimicrobials such as lipocalin and 
calprotectin. 

 

  Colonization resistance 1.4.

 Previous studies have shown that antibiotic treatment (e.g. with streptomycin) enhanced infections 

by enteropathogens such as Salmonella spp. (Miller, Bohnhoff et al. 1956), E. coli, Klebsiella pneumonia 

and Pseudomonas aeruginosa in mice (van der Waaij, Berghuis-de Vries et al. 1971). Similar observations 

were also reported for other enteropathogens such as Shigella sonnei (Pongpech, Hentges et al. 1989), 

Clostridium difficile (Reeves, Koenigsknecht et al. 2012), Enterococcus faecium (Ubeda, Bucci et al. 
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2013) and S. Tm (Stecher, Robbiani et al. 2007). These studies highlight the protective role of the gut 

microbiota for its host against enteric pathogens. This is termed as colonization resistance (CR). Here, I 

first review the direct and indirect CR effects mediated by the gut microbiota on enteropathogens, and 

then the animal models used to study CR in vivo. 

 

 Direct effects of the gut microbiota on the enteric pathogens 1.4.1.

 The gut microbiota can interfere with pathogen growth and inhibit enteric infections in many 

ways. One potential mechanism is the competition for nutrients or micronutrient. This has been postulated 

as the Freter’s nutrient-niche hypothesis. It states that a bacterium cannot invade a resident microbiota if 

its metabolic niche is already occupied by other strains (Freter, Brickner et al. 1983). Competition 

mechanisms include nutrients such as amino acid and sugars as well as micronutrients like iron and H2 

(Deriu, Liu et al. 2013, Maier, Vyas et al. 2013, Sassone-Corsi and Raffatellu 2015). Supporting this idea, 

microbiota complexity positively correlates with CR against enteric pathogens in many cases (e.g. S. Tm) 

(Stecher, Chaffron et al. 2010). Another mechanism of CR is the production of antimicrobial compounds 

and toxins by the microbiota. Some commensals are known to secrete antimicrobial peptides called 

microcins or bacteriocins, which kill bacterial competitors including pathogens (e.g. E. coli Nissle, 

Clostridium difficile, Bifidobacterium spp. and Lactobacillus spp.) (Allison, Fremaux et al. 1994, 

Nedialkova, Denzler et al. 2014, Buffie, Bucci et al. 2015). Moreover, fermentation of carbohydrates leads 

to production of short chain fatty acids (SCFA) such as acetate, propionate and butyrate. Acetate is known 

to prevent the release of Shiga toxin during infection with enterohaemorrhagic E.coli (EHEC) and to 

modulate the expression of invasion genes of S. Tm in the large intestine (Durant, Corrier et al. 2000, 

Lawhon, Maurer et al. 2002, Fukuda, Toh et al. 2011). Propionate and butyrate are known to repress 

virulence (e.g. S. Tm) (Lawhon, Maurer et al. 2002). Furthermore, commensals (e.g. strains belonging to 

the Bacteroidetes phylum) can secrete antibacterial toxins using the type VI secretion system (T6SS) in a 

contact-dependent manner (Russell, Wexler et al. 2014). Finally, another mechanism of CR is the 

competition between commensals and enteropathogens for adhesion to the host epithelium. However, this 

was shown in cell cultures only (Alemka, Clyne et al. 2010, Ren, Li et al. 2012) and mechanisms by 

which adherent commensals inhibit attachment and virulence of enteropathogens remain unclear (Greene 

and Klaenhammer 1994). 
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 Indirect effects on pathogen colonization 1.4.2.

 Studies using germfree mice clearly demonstrate the essential role of the microbiota for educating 

the gut immune system and inducing maturation of the epithelial border (Backhed 2012). One potential 

mechanism is the effect on the innate immune system. Microbial colonization is associated with the 

induction of innate immune responses such as expression of antimicrobial peptides (e.g. C-type lectins and 

α-defensins) (Cash, Whitham et al. 2006, Vaishnava, Behrendt et al. 2008), cytokines (e.g. IL-1β and IL-

22) (Satoh-Takayama, Vosshenrich et al. 2008, Hasegawa, Kamada et al. 2012) and inducible nitric oxide 

synthase (Allen, Lafuse et al. 2012). Additionally, the gut microbiota can also trigger adaptive immune 

responses and interfere with the differentiation of T cell subpopulations such as Th17 cells, which are 

involved in pro-inflammatory responses and regulatory T cells, which play a role in the anti-inflammatory 

immune responses and tolerance (Atarashi, Tanoue et al. 2011). The microbiota also promotes 

differentiation and activation of B cells, as well as secretion of Immunoglobulin A (Hapfelmeier, Lawson 

et al. 2010). This plays an important role in maintaining the gut homeostasis. Thirdly, by interacting with 

epithelial cells, commensal bacteria can also protect from enteric infections. Microbiota-released SCFA 

can provide nutrition for colonocytes, modulate host signaling pathways, suppress inflammation and 

increase the mucosal barrier function by promoting the formation of tight junctions (reviewed in (Ploger, 

Stumpff et al. 2012)). Butyrate was also shown to stimulate mucus expression and secretion 

(Shimotoyodome, Meguro et al. 2000, Gaudier, Rival et al. 2009). 

 

 Mouse models developed to study the colonization resistance and the 1.4.3.

underlined mechanisms 

 It is well-established that conventional mice are more resistant to enteric infections (e.g. S. Tm 

and Citrobacter rodentium) as compared to germ-free mice (Kamada, Kim et al. 2012). However, the 

conventional microbiota harbors approximately 1000 bacterial species, making up 1012 cells per gram of 

large intestinal content  (Marchesi and Shanahan 2007). Therefore, mice which harbor a simplified and 

well-defined gut microbiota (i.e. gnotobiotic mice) have been developed to study the contribution of single 

bacterial strain to CR. Numerous studies have used mice harboring bacteria derived from humans 

(Fukuda, Toh et al. 2011, Ganesh, Klopfleisch et al. 2013, Lee, Donaldson et al. 2013, Faith, Ahern et al. 

2014, Slezak, Krupova et al. 2014). However, human microbiota colonized mice were shown to exhibit an 

impaired immune system and an increased susceptibility to Salmonella infection, as compared to mice 

colonized with a murine microbiota (Chung, Pamp et al. 2012). Moreover, Seedorf et al., provided 

evidence that a mouse-adapted microbiota better invades and colonizes the mouse gut than 
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xenomicrobiota (Seedorf, Griffin et al. 2014). Therefore, mice harboring a limited mouse-adapted 

microbiota were developed (Itoh and Mitsuoka 1985, Reeves, Koenigsknecht et al. 2012). As an example, 

the altered Schaedler flora (ASF) harbors eight strains and has been widely used (Dewhirst, Chien et al. 

1999). However, mice colonized with the ASF strains were shown to exhibit large cecal size (Wymore 

Brand, Wannemuehler et al. 2015), abnormal T cell repertoire (Geuking, Cahenzli et al. 2011), lack of 

colonization resistance (Stecher, Chaffron et al. 2010) and abnormal metabolic capacity (Norin and 

Midtvedt 2010, Berry, Stecher et al. 2013). These observations highlight the importance of improving 

current gnotobiotic mouse models based on murine isolates to study CR mechanisms. 

 

  The intestinal mucus layer 1.5.

 Composition of the mucus layer 1.5.1.

 The mucus layer represents one of the first physical barriers encountered by the gut microbiota 

and the enteropathogens. In the large intestine, the mucus layer is mainly composed of a secreted gel-

forming mucin named MUC2 (Gum, Hicks et al. 1994). MUC2 forms a network composed of a core 

protein, rich in the amino acids proline, threonine and serine (PTS), which are repeated in tandem and 

constitute the PTS domain. In the endoplasmic reticulum (ER), the core protein is dimerized at the C-

termini and trimerized at the N-termini via disulfide bonds (Figure 4A) (Asker, Axelsson et al. 1998, 

Godl, Johansson et al. 2002). The polymer is then conveyed to the Golgi apparatus where the PTS domain 

is heavily O-glycosylated, becoming the mucin domain. This resulting mature mucin is finally condensed 

into granulae before being secreted by specialized cells termed goblet cells (Johansson, Gustafsson et al. 

2010). When released on the apical side of the intestinal epithelium, MUC2 expands and divides into 2 

layers: the inner mucus layer, which is firmly adherent and close to the epithelial border, and the outer 

mucus layer, which is loose and closer to the gut lumen (Figure 4B). In healthy conditions, the inner layer 

is devoid of bacteria, while the outer layer can be colonized (Figure 4C) (Johansson, Phillipson et al. 

2008). Proteomic analysis suggests that the loose property of the second mucus layer results from 

proteolytic cleavage of the firm mucus layer by host endogenous proteases (Johansson, Thomsson et al. 

2009). However, the role of mucin-degrading bacteria cannot be entirely excluded (e.g. Bifidobacterium 

spp., Ruminococcus spp., Akkermansia muciniphila) (Hoskins, Agustines et al. 1985, Png, Linden et al. 

2010, Subramani, Johansson et al. 2010). 
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Figure 4. Structure and organization of the intestinal mucus layer. 

(A) MUC2 contains cysteine-rich N- and C-terminal parts, four complete von Willebrand D domains (D1-D4) and 
PTS domains, which are rich in proline, threonine and serine. In the endoplasmic reticulum, MUC2 is dimerized at 
the C-termini and trimerized at the N-termini. In the Golgi apparatus, PTS domains are heavily O-glycosylated and 
become the mucin domain. Finally, mucin is condensed and stored into granulae in goblet cells before being 
secreted. (B) The secreted mucus is organized into two layers: the inner mucus layer, which is firmly adherent and 
close to the epithelial border (Firm) and the outer mucus layer, which is a nonattached, soluble mucus layer (Loose). 
(A-B) Taken from (Johansson, Larsson et al. 2011) with permission. (C) MUC2 immunostaining (green) revealed 
MUC2-positive goblet cells and mucus layers in distal colon. Bacteria (red) were detected by FISH using a general 
bacterial probe (Eub338). The inner mucus layer (s) is devoid of bacteria, which are only detected in the outer mucus 
layer. Scale bar: 20 µm. Taken from (Johansson, Phillipson et al. 2008) with permission. Copyright (2005) National 
Academy of Sciences, U.S.A.  

 

 Interactions of the mucus layer with the gut microbiota and the 1.5.2.

enteropathogens 

 The mucus layer represents an essential and dynamic platform of interactions between the host 

and the gut bacteria. 

 Firstly, the mucus layer is an ecological niche. Indeed, the outer mucus layer harbors a different 

microbial composition as compared to the gut lumen (Li, Limenitakis et al. 2015). The bacterial strains 

hosted by the mucus layer can degrade and feed on the mucus layer. They are termed mucolytic bacteria 

(e.g. Bacteroides acidifaciens and Akkermansia muciniphila) (Berry, Stecher et al. 2013, Marcobal, 

Southwick et al. 2013). Furthermore, bacteria hosted by the mucus layer can benefit from bacterial- or 

host-derived substrates others than mucin. For example, E.coli can use fucose released from mucin by 

Bacteroides thetaiotaomicron and host-derived phospholipids enclosed in the outer mucus layer (Pacheco, 

Curtis et al. 2012, Li, Limenitakis et al. 2015). Finally, bacteria can also bind to the mucus layer. This can 

affect pathogen invasion and virulence (e.g. S. Tm), as well as allow bacteria to adhere to the mucus layer 

and avoid regular shedding (Cheng and Bjerknes 1983, Huang, Lee et al. 2011, Hansson 2012, Zarepour, 

Bhullar et al. 2013). 
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 Besides being a nutrient source for bacteria, the mucus layer represents a physical and a chemical 

barrier. First, it has a protective role against enteric pathogens (e.g. Yersinia enterocolitica, Citrobacter 

rodentium and S. Tm) as well as commensal bacteria (Johansson, Phillipson et al. 2008, Zarepour, Bhullar 

et al. 2013). Second, it represents also a chemical barrier, as it binds numerous antimicrobial compounds 

targeting pathogens and commensals (Vaishnava, Behrendt et al. 2008). This limits bacterial contact from 

the mucosal epithelium and thus, contributes to maintain the gut homeostasis. 

 Finally, mucus layer benefits from commensals. Among others abnormalities, germfree mice 

exhibit a thinner mucus layer compared to conventional mice (Johansson, Phillipson et al. 2008). This 

suggests that the microbiota has beneficial effects on maturation of the mucus layer. For examples, 

Bacteroides thetaiotaomicron can use fucose as an energy source to generate a microbial signal that 

induces host fucosylated glycan synthesis (Hooper, Xu et al. 1999). Then, fucosylated glycans can be 

cleaved by commensals such as B. thetaiotaomicron that release fucose, which was shown to repress 

virulence gene expression of EHEC (Keeney and Finlay 2013). Moreover, B. thetaiotaomicron can release 

acetate, which also modulates the expression of genes involved in synthesis and glycosylation of mucin. 

Consequently, this leads to an increase in the number of goblet cells of the colonic epithelium (Wrzosek, 

Miquel et al. 2013). Finally, acetate can be used by Faecalibacterium prausnitzii to produce another 

SCFA, such as butyrate (Wrzosek, Miquel et al. 2013). SCFA are known to be beneficial for the epithelial 

border and modulate mucin gene expression (Gaudier, Jarry et al. 2004, Bultman and Jobin 2014). 

 

 Mouse models developed to study the role of the mucus layer 1.5.3.

 Mouse models harboring defective or altered mucus layer exhibit different phenotypes. In MUC2-

deficient mice, intestinal bacteria penetrate the inner mucus layer and enter in direct contact with intestinal 

epithelial cells (Johansson, Ambort et al. 2011). In consequence, MUC2ko mice develop spontaneous and 

severe colitis as well as tumors, depending on their genetic background (e.g. MUC2ko, Winnie and Eeyore 

mice) and hygiene conditions (Heazlewood, Cook et al. 2008, Bao, Guo et al. 2014). Moreover, these mice 

are known to be more susceptible to enteric infections and chemically induced colitis (Heazlewood, Cook 

et al. 2008, Bergstrom, Kissoon-Singh et al. 2010). Their histopathology is characterized by epithelial cell 

dysfunction, abnormal number and morphology of goblet cells, and endoplasmic reticulum stress 

(Heazlewood, Cook et al. 2008). 

 Mice lacking TMF/ARA160, a Golgi-associated protein expressed in colonic enterocytes, and 

mice exhibiting defective core 1-derived O-glycans in intestinal epithelial cells (TM-IEC C1galtko mice) 

harbor an altered mucosal architecture (e.g. thicker mucus or abnormal glycosylation) (Bel, Elkis et al. 
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2014, Sommer, Adam et al. 2014). These mice are more resistant to chemically induced colitis and do not 

develop spontaneous colitis (Bel, Elkis et al. 2014, Sommer, Adam et al. 2014). Moreover, studies showed 

that abnormal mucus layer affects the gut microbiota composition (Sommer, Adam et al. 2014) and that 

the colitis phenotype can be transmissible by fecal transplantation (Bel, Elkis et al. 2014). Furthermore, 

mice lacking the blood group glycosyltransferase β-1,4-N-acetylgalactosaminyltransferase 2 (B4galnt2) 

exhibit also an altered mucin structure. B4galnt2-deficient mice show different microbiota composition 

and lower susceptibility to S. Tm-induced inflammation, as compared to mice expressing B4galnt2 

(Rausch, Steck et al. 2015). 

 

 The protein disulfide isomerase AGR2 and its functions 1.5.4.

 Anterior gradient homolog 2 (AGR2) is a member of the protein disulfide isomerase family 

(Persson, Rosenquist et al. 2005), which is expressed in several cell types such as mucus-containing 

goblet, Paneth and enteroendocrine cells (Wang, Hao et al. 2008). AGR2 localizes to the ER lumen and is 

indirectly associated with ER membrane-bound ribosomes (Higa, Mulot et al. 2011). It was shown to be 

essential for correct folding and export of MUC2 (Park, Zhen et al. 2009), and to be involved in 

maintenance of ER homeostasis (Zhao, Edwards et al. 2010). AGR2 was also found to be secreted in 

intestinal mucus layer (Bergstrom, Berg et al. 2014). However, the extracellular functions of AGR2 remain 

unknown. Finally, AGR2 can be used as diagnostic marker for cancers (Kovalev, Shishkin et al. 2006), as 

dysregulation of AGR2 gene expression has been associated with tumor growth and metastasis in several 

cancers such as brain (Hong, Wang et al. 2013), ovarian (Sung, Choi et al. 2014) and pancreatic cancers 

(Ramachandran, Arumugam et al. 2008). 

 In order to study the role of AGR2 in vivo, AGR2ko mice were generated using different targeting 

constructs and promoters for the expression of Cre recombinase (Park, Zhen et al. 2009, Zhao, Edwards et 

al. 2010, Gupta, Wodziak et al. 2013). Compared to AGR2wt mice, all AGR2ko mice show a decrease 

secretion of heavily glycosylated proteins (e.g. mucins), loss of intestinal goblet cells, none or few MUC2 

protein detectable, body weight loss and morphologic abnormalities (e.g. enlarged stomach, small and 

large intestine). AGR2ko mice can also show dysregulation of immune response (e.g. increased expression 

of several pro-inflammatory cytokines), increased neutrophil infiltration and increased ER stress response. 

Moreover, premature death was observed and associated to intestinal obstruction (Gupta, Wodziak et al. 

2013) and severe spontaneous terminal ileitis and colitis (Park, Zhen et al. 2009, Zhao, Edwards et al. 

2010). It has been suggested that severity of spontaneous colitis could be due to mouse genetic 

background and housing conditions (e.g. in gnotobiotic facility). 
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 In this study, I used AGR2 mouse model from Park et al. In these AGR2ko mice, MUC2 core 

protein is undetectable in colon and mice show only mild spontaneous colitis in healthy conditions 

(Figure 5A,B). Finally, AGR2ko mice are more susceptible to colitis (e.g. dextran sodium sulfate (DSS)-

induced colitis) than their AGR2wt littermates (Figure 5C,D) (Park, Zhen et al. 2009). 

 

 

Figure 5. Presentation of the AGR2 mouse model from Park et al. 

(A) Immunohistochemical detection of MUC2 (brown) in colon shows that AGR2ko (AGR2-/-) mice are devoid of 
intestinal mucus layer. (B) Hematoxylin and eosin (H&E) staining of colon from AGR2ko and AGR2wt (AGR2+/+) 
mice. AGR2ko mice show loss of colonic goblet cells and enlarged colon. (C-D) AGR2ko and AGR2wt mice were 
exposed to DSS (1.5 % in drinking water) for 7-8 days. (C) H&E staining of colon from DSS-exposed mice. AGR2ko 
mice show severe epithelial damage compared to AGR2wt mice. (D) Percentage of AGR2ko (empty circle) and 
AGR2wt (full circle) mice that develop bloody stools during DSS exposure. AGR2ko mice are more susceptible to 
DSS-induced colitis than AGR2wt mice. Scale bars: 50 µm. Taken from (Park, Zhen et al. 2009) with permission.
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 Objectives 2.

 The conventional gut microbiota confers colonization resistance (CR) to infection with 

enteropathogens, including S. Tm. CR is absent in mice harboring a low complexity microbiota (LCM). 

However, CR is restored by cohousing of LCM mice with a conventional donor animal (Stecher, Chaffron 

et al. 2010). This observation underlines the importance of a complex gut microbiota in establishing 

normal CR. The mammalian gut is inhabited by 500-1,000 bacterial species (Marchesi and Shanahan 

2007). So far, the identity of CR mediating bacteria has remained unknown. Furthermore, it is unclear if a 

reduced and defined number of bacteria might be able to restore CR in gnotobiotic mice. For identifying 

and characterizing potentially protective members of the microbiota and eventually study CR in a 

mechanistic manner, I aimed to generate a gnotobiotic mouse model. A number of gnotobiotic mouse 

models, most of them based on humanized microbiota have been established in the past. To my 

knowledge, none of these models was shown to restore CR against S. Tm. 

 In the first part of this thesis, I aimed to establish a defined consortium of murine commensal 

bacteria and test for their ability to restore CR against S. Tm in gnotobiotic mice. To this end, I planned to 

optimize methods for bacterial cultivation and develop analytical tools to characterize and specifically 

detect each strain in vivo and test their ability to provide CR against S. Tm. 

 Salmonella Typhimurium uses chemotaxis and motility to reach the epithelial border and to 

induce colitis (Stecher, Hapfelmeier et al. 2004). The intestinal mucus layer consisting of highly 

glycosylated mucins forms a tight physical barrier and prevents access of both commensals and pathogens 

from the single-layered epithelial border. Several commensals can breakdown mucin glycoproteins and 

thereby release carbon sources (e.g. fucose), which can be used as nutrient source by other non-mucolytic 

bacteria and pathogens (Pacheco, Curtis et al. 2012, Berry, Stecher et al. 2013, Ng, Ferreyra et al. 2013). 

Therefore, the mucus layer takes a two-sided role in bacterial infections, which has hitherto been only 

poorly studied. 

 In the second part of my thesis, I aimed to investigate the role of the mucus layer during S. Tm 

infection, using mucin-deficient mice. As mice lacking the major intestinal mucin MUC2 develop 

spontaneous colitis at early age (Van der Sluis, De Koning et al. 2006) and thus cannot be used to study S. 

Tm pathogenesis, we used mice deficient in anterior gradient homolog 2 (AGR2). AGR2-deficient mice 

show absent MUC2 secretion but do not develop spontaneous colitis at young age (Park, Zhen et al. 

2009). Therefore, I used the AGR2-deficient mouse model to investigate the role of the mucus layer 

during S. Tm infection. 
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 Materials and Methods 3.

 Materials 3.1.

 Chemicals, Consumables and Instruments 3.1.1.

Table 1. Chemicals, kits and reagents 

Item Supplier 

ABTS Biozol (Eching) 

Acetic acid Roth (Karlsruhe) 

Agar BactoTM Becton Dickinson (New Jersey, US) 

Agarose Sigma-Aldrich Chemie (Munich) 

Bovine serum albumin GE Healthcare Life Sciences (Freiburg) 

Brain Heart Infusion Oxoid, Thermo Fisher Scientific biosciences (St. Leon-
Rot) 

Chloroform Roth (Karlsruhe) 

CloneJETTM PCR Cloning kit Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Cysteine (-L) Hydrochloride Monohydrate Sigma-Aldrich Chemie (Munich) 

Cystine (-L) Sigma-Aldrich Chemie (Munich) 

4',6-diamidino-2-phenylindole (DAPI) Roth (Karlsruhe) 

ddH2O  Ampuwa 

Defibrinated horse blood Oxoid, Thermo Fisher Scientific biosciences (St. Leon-
Rot) 

Defibrinated sheep blood Oxoid, Thermo Fisher Scientific biosciences (St. Leon-
Rot) 

D-glucose Roth (Karlsruhe) 

DirectPCR-Tail Peqlab, VWR (Erlangen) 

DreamTaq PCR Master Mix (2x) Thermo Fisher Scientific biosciences (St. Leon-Rot) 

EDTA Roth (Karlsruhe) 

Ethanol Roth (Karlsruhe) 
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Item Supplier 

FastStart Essential DNA Probes Master Roche (Rotkreuz) 

GeneRuler 1kb DNA Ladder Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Glycerol Rothipuran Roth (Karlsruhe) 

Hemin Sigma-Aldrich Chemie (Munich) 

Hexadecyltrimethyl ammonium bromide 
(CTAB) Roth (Karlsruhe) 

HRP-streptavidin Biozol (Eching) 

Isopropanol Roth (Karlsruhe) 

K2HPO4 Roth (Karlsruhe) 

KCl Fluka, Sigma-Aldrich Chemie (Munich) 

KH2PO4 Roth (Karlsruhe) 

Lipocalin-2/NGAL DuoSet (Mouse) R&D Systems (Minneapolis, US) 

Lysozyme from hen egg Sigma-Aldrich Chemie (Munich) 

MacConkey agar Roth (Karlsruhe) 

Menadione Sigma-Aldrich Chemie (Munich) 

Mucin from porcine stomach Sigma-Aldrich Chemie (Munich) 

NaCl Roth (Karlsruhe) 

Na2HPO4 unhydrated  Roth (Karlsruhe) 

Na2CO3 Merck Chemicals (Schwalbach) 

Na2S.9H2O Sigma-Aldrich Chemie (Munich) 

Normal goat serum Biozol (Eching) 

Tissue-Tek Optimal Cutting Temperature 
(O.C.T.) compound Sakura Finetek, (Torrance) 

Tween-20 Roth (Karlsruhe) 

Palladium chloride Sigma-Aldrich Chemie (Munich) 

Pancreatic digest of casein Becton Dickinson (New Jersey, US) 

Paraffin, Paraplast Plus Roth (Karlsruhe) 

Paraformaldehyde Roth (Karlsruhe) 
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Item Supplier 

Phalloidin FluoProbes® 647 Interchim (Montluçon) 

Phenol/chloroform/isoamylalcohol Roth (Karlsruhe) 

Primer and probe synthesis  Metabion (Martinsried) 

Proteinase K Roth (Karlsruhe) 

Proteose peptone No 3 Becton Dickinson (New Jersey, US) 

Sodium acetate Roth (Karlsruhe) 

Sodium dodecyl sulfate (SDS) Serva (Heidelberg) 

Sucrose (D-Saccharose) Roth (Karlsruhe) 

Sytox green nucleic acid stain Invitrogen, Thermo Fisher Scientific biosciences (St. 
Leon-Rot)  

Tris MP Biomedicals (Eschwege) 

Tryptone  Roth (Karlsruhe) 

Trypticase soy broth Oxoid, Thermo Fisher Scientific biosciences (St. Leon-
Rot) 

Vectashield mounting medium Biozol (Eching) 

Xylol Roth (Karlsruhe) 

Yeast extract  MP Biomedicals (Eschwege) 

Yeast t-RNA Roche (Rotkreuz) 

 

Table 2. Antibiotics used in this study 

Antibiotic Supplier Final concentration 

Ampicillin Roth (Karlsruhe) 100 µg/ml 

Chloramphenicol Roth (Karlsruhe) 30 µg/ml 

Kanamycin sulfate Roth (Karlsruhe) 30 µg/ml 

Streptomycin sulfate Roth (Karlsruhe) 50 µg/ml 
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Table 3. Specific instruments and materials 

Item Supplier 

Agencourt AMPure XP kit Beckman Coulter (USA) 

Aluminum crimp seals (diam. 11 mm) Sigma-Aldrich (Munich) 

Aluminum crimp seals (diam. 20 mm) Sigma-Aldrich (Munich) 

Blank antimicrobial susceptibility disks Oxoid, Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Bottle-Top-Filter (0.2 µm) A.Hartenstein (Wuerzburg) 

Butyl-rubber stoppers (diam. 11 mm) Sigma-Aldrich (Munich) 

Butyl-rubber stoppers (diam. 20 mm) Geo-Mocrobial Technologies 

Crimper (diam. 11 mm) Sigma-Aldrich (Munich) 

Crimper (diam. 20 mm) VWR (Erlangen) 

Cryotome CM1950 (Leica, Wetzlar) 

Cryotubes Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Decrimper (diam. 20 mm) VWR (Erlangen) 

Diagnostic slides (10 wells, 76 x 25 x 1 
mm) Thermo Fisher Scientific biosciences (St. Leon-Rot) 

Electroporation cuvette (1mm) Eppendorf (Wesseling-Berzdorf) 

Filter Millex (0.22 µm) Merck Chemicals (Schwalbach) 

Flexible vinyl Anaerobic Airlock chamber Type B Coy laboratory products 

Flexible film isolator Harlan (Rossdorf) 

Glass beads (0.5-0.75 mm) Schieritz & Hauenstein 

Glass beads (<106 µm) Sigma-Aldrich (Munich) 

Gnotocages Han, Bioscape (Emmendingen) 

LightCycler480 Multiwell Plate 96, white Roche (Rotkreuz) 

LightCycler96 Roche (Rotkreuz) 

Nanodrop Thermo Fisher Scientific biosciences (St. Leon-Rot) 

NucleoSipn Gel and PCR Clean-up kit Macherey-Nagel (Düren) 

NucleoSipn Plasmid kit Macherey-Nagel (Düren) 

Plasmid Plus Midi Kit Qiagen (Hilden) 
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Item Supplier 

QIAamp DNA Stool Mini Kit Qiagen (Hilden) 

Superfrost Plus slides (75 x 25 x 1 mm) A.Hartenstein (Wuerzburg) 

Wheaton glass serum bottles (1.5 ml) Sigma-Aldrich (Munich) 

Wheaton glass serum bottles (100 ml) Sigma-Aldrich (Munich) 

 

 

 Oligonucleotides, probes and antibodies 3.1.2.

Table 4. Oligonucleotides and probes 

Designation Sequence (5´ - 3´) Specificity Reference 

16S rRNA gene amplification, cloning and sequencing 

fD1 CGATATCTCTAGAAGAGTTTGAT
CCTGGCTCAG All bacteria* Adapted from (Weisburg, 

Barns et al. 1991) 

fD2 CGATATCTCTAGAAGAGTTTGAT
CATGGCTCAG All bacteria* Adapted from (Weisburg, 

Barns et al. 1991) 

rP1 GATATCGGATCCACGGTTACCTT
GTTACGACTT All bacteria* Adapted from (Weisburg, 

Barns et al. 1991) 
fD1-EcoRV-
XbaI 

CCGATATCTCTAGAAGAGTTTGA
TCCTGGCTCAG All bacteria* Adapted from (Weisburg, 

Barns et al. 1991) 
fD2-EcoRV-
XbaI 

CCGATATCTCTAGAAGAGTTTGA
TCATGGCTCAG All bacteria* Adapted from (Weisburg, 

Barns et al. 1991) 
rP1-EcoRV-
BamHI 

CCGATATCGGATCCACGGTTACC
TTGTTACGACTT All bacteria* Adapted from (Weisburg, 

Barns et al. 1991) 

16S-27f AGAGTTTGATCMTGGCTCAG All bacteria* (Lane, Stackebrandt et al. 
1991) 

pJet1-FP ACTACTCGATGAGTTTTCGG pJET 1.2 Fermentas 

pJet1-RP TGAGGTGGTTAGCATAGTTC pJET 1.2 Fermentas 

338F-M13 GTAAACGACGGCCAGTGCTCCT
ACGGGWGGCAGCAGT All bacteria* (Gronbach, Flade et al. 

2014) 

1044R-rM13 GGAAACAGCTATGACCATGACT
ACGAGCTGACGACARCCATG All bacteria* (Gronbach, Flade et al. 

2014) 

A-M13 

CCATCTCATCCCTGCGTGTCTCC
GACTCAG/MID 
sequence/GTAAACGACGGCCAGT
G 

All bacteria* (Gronbach, Flade et al. 
2014) 

B-rM13 
CCTATCCCCTGTGTGCCTTGGCA
GTCTCAGGGAAACAGCTATGAC
CATGA 

All bacteria* (Gronbach, Flade et al. 
2014) 
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Designation Sequence (5´ - 3´) Specificity Reference 

M13_F GTAAAACGACGGCCAG pCR®2.1-TOPO® Invitrogen 

M13_R CAGGAAACAGCTATGAC pCR®2.1-TOPO® Invitrogen 

AGR2 gene specific primers 
AGR2-KO-
fwd ACCTACATGGCCTTCCTTCC Agr2ko-specific (Park, Zhen et al. 2009) 

AGR2-wt-
fwd TATCCAGGCTCAGCAGGTTT Agr2wt-specific (Park, Zhen et al. 2009) 

AGR2-rev ACCATCAAGGGTCTGTTGCT Agr2ko and Agr2wt (Park, Zhen et al. 2009) 

16S rRNA specific FISH probes 

YL2_180 CACCATGCGGTGGGGCGGAGCA YL2 Unpublished 

YL27_180 AGATGCCTCCCCTCGGCCACA YL27 Unpublished 

YL31_180 CCATGCGACCCAACTGCATCA YL31 Unpublished 

YL32_180 CCATGCGGCACTGTGCGCTTA YL32 Unpublished 

Muc1437 CCTTGCGGTTGGCTTCAGAT YL44 (Derrien, Collado et al. 
2008) 

BET940 TTAATCCACATCATCCACCG YL45 (Demaneche, Sanguin et 
al. 2008) 

YL58_180 CCATGCAGCCCTGTGCGCTTA YL58 Unpublished 

YL58_180_
negctrl TAAGCGCACAGGGCTGCATGG None of the    

Oligo-MM strains Unpublished 

I46_180 AGTATGCGCTCTGTATACCTA I46 Unpublished 

I48_180 TCATGCGATCTTGATATCCTA I48 Unpublished 

I49_180 GCCATGTGGCTTTTGTTGTTA I49 Unpublished 

KB1_180 GCCATGCGGCATAAACTGTTA KB1 Unpublished 

KB18_180 CCATGCGATAAGATAATGTCA KB18 Unpublished 

EUB338 I GCT GCC TCC CGT AGG AGT Most bacteria (Amann, Binder et al. 
1990) 

EUB338 III GCT GCC ACC CGT AGG TGT Verrucomicrobiales (Daims, Bruhl et al. 1999) 
Designations of unpublished FISH probes were followed by the starting position (e.g. xxx_180) of the probe when 
aligned to the 16S rRNA gene of E. coli. * targeting the 16S rRNA of most of the bacteria. 
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Table 5. MID barcodes for 454 multiplexing 

Designation MID sequence 

MID1 ACGAGTGCGT 

MID2 ACGCTCGACA 

MID3 AGACGCACTC 

MID4 AGCACTGTAG 

MID5 ATCAGACACG 

MID6 ATATCGCGAG 

MID7 CGTGTCTCTA 

MID8 CTCGCGTGTC 

MID9 TAGTATCAGC 

MID10 TCTCTATGCG 

MID11 TGATACGTCT 

MID12 TACTGAGCTA 

MID13 CATAGTAGTG 

MID14 CGAGAGATAC 

MID15 ATACGACGTA 

MID16 TCACGTACTA 

MID17 TCGATCGAGT 

MID18 CAGTCAGTAG 

MID19 ACACTGACAC 

MID20 GTACGATCGT 

Designation MID sequence 

MID21 TGCGTGAGCA 

MID22 ACAGCTCGCA 

MID23 CTCACGCAGA 

MID24 GATGTCACGA 

MID25 GCACAGACTA 

MID26 GAGCGCTATA 

MID27 ATCTCTGTGC 

MID28 CTGTGCGCTC 

MID29 CGACTATGAT 

MID30 GCGTATCTCT 

MID31 TCTGCATAGT 

MID32 ATCGAGTCAT 

MID33 GTGATGATAC 

MID34 CATAGAGAGC 

MID35 ATGCAGCATA 

MID36 ATCATGCACT 

MID37 TGAGCTAGCT 

MID38 GATGACTGAC 

MID39 CACAGTCACA 

MID40 TGCTAGCATG 
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Table 6. 16S rRNA gene specific primers and hydrolysis probes for qPCR assay 

Designation Sequence (5´ - 3´) Specificity 

Isol46_Exonucl._fwd ACGGTAGCTAAAACCGGATAGGT  

Isol46_Exonucl._rev GCCTTGATGGGCGCTTTAA I46 

Probe_Isol46 FAM-TACAGAGCGCATACTCAGT-BHQ1  

Isol49_Exonucl._fwd GCACTGGCTCAACTGATTGATG  

Isol49_Exonucl._rev CCGCCACTCACTGGTGATC I49 

Probe_Isol49 HEX-CTTGCACCTGATTGACGA-BHQ1  

YL58_Exonucl._fwd GAAGAGCAAGTCTGATGTGAAAGG  

YL58_Exonucl._rev CGGCACTCTAGAAAAACAGTTTCC YL58 

Probe_YL58 FAM-TAACCCCAGGACTGCAT-BHQ1  

YL27_Exonucl.2_fwd TCAAGTCAGCGGTAAAAATTCG  

YL27_Exonucl.2_rev CCCACTCAAGAACATCAGTTTCAA YL27 

Probe2_YL27 HEX-CAACCCCGTCGTGCC-BHQ1  

YL31_Exonucl.2_fwd AGGCGGGATTGCAAGTCA  

YL31_Exonucl.3_rev CCAGCACTCAAGAACTACAGTTTCA YL31 

Probe2_YL31 FAM-CAACCTCCAGCCTGC-BHQ1  

YL32_Exonucl.2_fwd AATACCGCATAAGCGCACAGT  

YL32_Exonucl.2_rev CCATCTCACACCACCAAAGTTTT YL32 

Probe2_YL32 HEX-CGCATGGCAGTGTGT-BHQ1  

KB1_Exonucl._fwd CTTCTTTCCTCCCGAGTGCTT  

KB1_Exonucl._rev CCCCTCTGATGGGTAGGTTACC KB1 

Probe_KB1 FAM-CACTCAATTGGAAAGAGGAG-BHQ1  

YL2_Exonucl._fwd GGGTGAGTAATGCGTGACCAA  

YL2_Exonucl._rev CGGAGCATCCGGTATTACCA YL2 

Probe_YL2 HEX-CGGAATAGCTCCTGGAAA-BHQ1 YL2 
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Designation Sequence (5´ - 3´) Specificity 
KB18_Exonucl.2_fwd TGGCAAGTCAGTAGTGAAATCCA  

KB18_Exonucl.2_rev TCACTCAAGCTCGACAGTTTCAA KB18 

Probe2_KB18 FAM-CTTAACCCATGAACTGC-BHQ1  

YL44_Exonucl._fwd CGGGATAGCCCTGGGAAA  

YL44_Exonucl._rev GCGCATTGCTGCTTTAATCTTT YL44 

Probe_YL44 HEX-TGGGATTAATACCGCATAGTA-BHQ1  

YL45_Exonucl._fwd AGACGGCCTTCGGGTTGTA  

YL45_Exonucl._rev CGTCATCGTCTATCGGTATTATCAA YL45 

Probe_YL45 FAM-ACCACTTTTGTAGAGAACGA-BHQ1  

Isol48_Exonucl._fwd GGCAGCATGGGAGTTTGCT  

Isol48_Exonucl._rev TTATCGGCAGGTTGGATACGT I48 

Probe_Isol48 HEX-CAAACTTCCGATGGCGAC-BHQ1  

ASF356_Exonucl.2_fwd CGGCAAGGTAAGCGATATGTG  

ASF356_Exonucl.2_rev CGCTTTCCTCTCCTGTACTCTAGCT ASF356 

Probe2_ASF356 FAM-TAACTTAAGGATAGCATAACGAACT-BHQ1  

ASF360_Exonucl.4_fwd TGAGTGCTAAGTGTTGGGAGGTT  

ASF360_Exonucl.4_rev CGGAGTGCTTAATGCGTTAGCT ASF360 

Probe4_ASF360 FAM-CCGCCTCTCAGTGCT-BHQ1  

ASF361_Exonucl._fwd TCGGATCGTAAAACCCTGTTG  

ASF361_Exonucl._rev ACCGTCGAAACGTGAACAGTT ASF361 

Probe_ASF361 HEX-TAGAGAAGAAAGTGCGTGAGAG-BHQ1  

ASF457_Exonucl._fwd GACTGGAACAACTTACCGAAAGGT  

ASF457_Exonucl._rev CAGGTCTCCCCAACTTTTCCT ASF457 

Probe_ASF457 FAM-TAATGCCGGATGAGTTATA-BHQ1 ASF457 

ASF500_Exonucl._fwd AGGCGGGACTGCAAGTCA  
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Designation Sequence (5´ - 3´) Specificity 
ASF500_Exonucl._rev CAAATGCAGGCCACAGGTT ASF500 

Probe_ASF500 HEX-ATGTGAAAACCACGGGC-BHQ1  

ASF502_Exonucl.3_fwd GACCCCAGTACCGCATGGTA  

ASF502_Exonucl.3_rev TCAGACGCGGGCCTATCTTA ASF502 

Probe3_ASF502(SB2) HEX-AGAGGTAAAAACTGAGGTGGT-BHQ1  

ASF519_Exonucl._fwd TGTGGCTCAACCATAAAATTGC  

ASF519_Exonucl._rev GCATTCCGCCTACCTCAAATAT ASF519 

Probe_ASF519 HEX-TTGAAACTGGTTGACTTGAG-BHQ1  

Salmo_Exonucl._fwd TGGGAAACTGCCTGATGGA  

Salmo_Exonucl._rev CTTGCGACGTTATGCGGTATT S. Typhimurium 

Probe_Salmo FAM-ATAACTACTGGAAACGGTGGC-BHQ1  

Univ_Exonucl.2_fwd TGCATGGYYGTCGTCAGC  

Univ_Exonucl.2_rev CRTCRTCCCCRCCTTCCTC All strains 

Probe2_Univ. HEX-AACGAGCGCAACCC-BHQ1  

All primers and probes were designed by Markus Beutler and are unpublished. Identity of Oligo-MM strains are 
indicated in blue, identity of ASF strains are in orange. Salmo: targets S. Typhimurium; Univ: targets all strains. 
Fwd: forward primer; Rev: reverse primer; Probe: hydrolysis probe labelled at the 5’ end either with FAM (6-
carboxyfluorescein) or HEX (6-carboxyhexafluorescein) and conjugated at the 3’ end with BHQ1 (black hole 
quencher 1). 

 

Table 7. Primary antibodies 

Antibody Origin Supplier Final concentration 

α-Salmonella B test serum 
anti-O Rabbit Becton Dickinson (New 

Jersey, US) 1:400 

α-MUC2 H-300 Rabbit Santa cruz (Heidelberg) 1:200 
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Table 8. Secondary antibodies 

Antibody Origin Supplier Final concentration 

α-rabbit IgG dylight 549 Goat Jackson ImmunoResearch 
(Baltimore, US) 1:400 

 

 Plasmids and strains 3.1.3.

Table 9. Plasmids in S. Tm 

Plasmid Genotype Reference 

pM973 T3SS-2 (SPI-2) promotor ssaG coupled with GFPmut2 
coding sequence 

(Hapfelmeier, Stecher et al. 
2005) 

pM974 T3SS-1 (SPI-1) promotor of the sicAsipBCDA operon 
coupled with GFPmut2 coding sequence 

(Ackermann, Stecher et al. 
2008) 

pM979 Constitutively expressed GFPmut2 coding sequence 
(ribosomal rpsM promoter) 

(Stecher, Hapfelmeier et al. 
2004) 

pWKS30 Ampicillin resistance cassette (Wang and Kushner 1991) 

 

Table 10. Plasmids generated to sequence the full 16S rRNA genes of the Oligo-MM and ASF strains 

Plasmid Backbone Origin of the insert Restriction enzymes Reference 

pSAB3 pJET 1.2 YL27 NotI Unpublished 

pSAB4 pJET 1.2 YL58 HindIII Unpublished 

pSAB6 pJET 1.2 I46 NotI Unpublished 

pSAB7 pJET 1.2 I48 HindIII Unpublished 

pSAB8 pJET 1.2 I49 HindIII Unpublished 

pSAB9 pJET 1.2 KB1 NotI Unpublished 

pSAB10 pJET 1.2 ASF502 NotI Unpublished 

pSAB12 pJET 1.2 KB18 HindIII Unpublished 

pSAB13 pJET 1.2 ASF500 NotI Unpublished 

pMB1 pJET 1.2 S. Tm M557 HindIII Unpublished 

pM1452 pCR®2.1-TOPO® YL2 HindIII Unpublished 

pM1456-1 pCR®2.1-TOPO® YL31 HindIII Unpublished 

pM1457-1 pCR®2.1-TOPO® YL32 HindIII Unpublished 
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Plasmid Backbone Origin of the insert Restriction enzymes Reference 

pM1459-1 pCR®2.1-TOPO® YL44 HindIII Unpublished 

pM1460-1 pCR®2.1-TOPO® YL45 NcoI Unpublished 

pM1411-1 pSB-Bluescript ASF356 NotI Unpublished 

pM1412-4 pSB-Bluescript ASF360 NotI Unpublished 

pM1413-1 pSB-Bluescript ASF361 NotI Unpublished 

pM1414-1 pSB-Bluescript ASF457 NotI Unpublished 

pM1417-1 pSB-Bluescript ASF519 NotI Unpublished 

 

Table 11. S. Tm and E. coli strains 

Strains Lab-internal 
strain designation Genotype Reference 

S. Tm strains 

S. Tmwt SB300 S. Tm strain SL1344  (Hoiseth and Stocker 1981) 

S. Tmwt,gfp SB300_pM973 S. Tm carrying plasmid pM973 Unpublished 

S. Tmwt,amp SB300_pWKS30 S. Tm carrying plasmid pWKS30 
(Wang and Kushner 1991) 

(Stecher, Denzler et al. 
2012)  

S. Tmavir M557 invG; sseD::aphT (Hapfelmeier, Ehrbar et al. 
2004) 

S. TmcheY M957 cheY::cm (Stecher, Barthel et al. 
2008) 

S. Tmavir2 M2702 invG; ssaV (Maier, Vyas et al. 2013) 

S. Tmavir2psicAgfp M2702_pM974 S. Tm carrying plasmid pM974 Unpublished 

S. Tmavir2,cheY SAB1-1 invG; ssaV; cheY::cm Unpublished 

E. coli strains 

E. coli DH5α   Invitrogen 
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 Media and buffers 3.1.4.

Liquid media and buffers were prepared as described in the following tables and sterilized by autoclaving 

at 121 °C, 1 bar, 20 min, unless otherwise stated. 

 

Table 12. Luria-Bertani (LB) medium 

Components Per liter medium 

NaCl 5 g 

Yeast Extract  5 g 

Tryptone  10 g 
All components were dissolved in dH2O. 

 

Table 13. LB agar and soft agar 

Components Per liter medium 

NaCl 5 g 

Yeast Extract  5 g 

Tryptone  10 g 

Agar* 15 g 
All components were dissolved in dH2O. * Soft agar: add 7 g/L instead. 

 

Table 14. LB 0.3 M NaCl 

Components Per liter medium 

NaCl 17.53 g 

Yeast Extract  5 g 

Tryptone  10 g 
All components were dissolved in dH2O. 
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Table 15. Brain-heart infusion (BHI) medium* 

Components Per liter medium 

Brain Heart Infusion 37 g 

Distilled water (dH2O) 1 L 

Autoclave and then add under anaerobic and sterile 
conditions: 

Cysteine-HCl.H2O# 0.25 g 

Na2S.9H2O# 0.25 g 
All components were dissolved in dH2O. # Sterile filtered. * for BHI agar, add 15 g/L agar. 

 

Table 16. Anaerobic Akkermansia medium (AAM) 

Components Per liter medium 

Brain Heart Infusion 18.5 g 

Trypticase soy broth 15 g 

Yeast extract 5 g 

K2HPO4 2.5 g 

Hemin 1 mg 

Glucose 0.5 g 

Distilled water (dH2O) 1 L 

Autoclave and then add under sterile conditions: 

Na2CO3 (5% stock solution)¤ 0.4 g 

Cysteine hydrochloride# 0.5 g 

Menadione# 0.5 g 
Fetal calf serum (complement-
inactivated)# 3 % 

Mucin from porcine stomach¤  0.25 % 

All components were dissolved in dH2O except for the hemin, which was resuspended in ethanol p.a. supplemented 
with NaOH until it is entirely dissolved and for the menadione, which was resuspended in ethanol p.a. ¤ Autoclaved. 
# Sterile filtered. 

 



Materials and Methods 
 

36 
 

Table 17. Schaedler blood agar 

Components Per liter medium 

Pancreatic digest of casein 10 g 

Proteose Peptone No 3 5 g 

Glucose 5 g 

Yeast extract 5 g 

Tris 3 g 

Hemin 10 mg 

L-Cystine 0.4 g 

Agar 15 g 

Autoclave and then add under sterile conditions: 
Fetal calf serum (complement-
inactivated)# 3 % 

Defibrinated sheep or horse 
blood 50 ml 

All components were dissolved in dH2O except for the hemin, which was resuspended in ethanol p.a. supplemented 
with NaOH. # Sterile filtered. (Schaedler, Dubs et al. 1965). 

 

Table 18. WSB broth/agar 

Components Per liter medium 

Wilkinson-Chalgreen 
Anaerobe broth (Oxoid) 33 g 

Glucose 4 g 

Hemin 10 µg 

L-Cystine 0.4 g 

Agar* (Serva) 15 g 

Autoclave, cool to 50 °C and then add sterily: 

Defibrinated sheep blood 50 ml 
All components were dissolved in dH2O except for the hemin, which was resuspended in ethanol p.a. supplemented 
with NaOH. * Optional. 
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Table 19. AII medium 

Components Per liter medium 

Brain Heart Infusion (Oxoid) 18.5 g 

Yeast Extract (Oxoid)  5 g 

Trypticase soy broth (Oxoid) 15 g 

K2HPO4 2.5 g 

Hemin  10 µg 

Glucose 0.5 g 

Palladium chloride* 0.33 g 

Agar* (Serva) 15 g 

Autoclave and then add under anaerobic conditions: 

Na2CO3
¤ 42 mg 

Cysteine hydrochloride# 50 mg 

Menadione# 5 µg 
Fetal calf serum (complement-
inactivated)# 3 % 

All components were dissolved in dH2O except for the hemin, which was resuspended in ethanol p.a. supplemented 
with NaOH and for the menadione, which was resuspended in ethanol p.a. * Optional. Adapted from (Aranki and 
Freter 1972). ¤ Autoclaved. # Sterile filtered. 

 

Table 20. Peptone-glycerol broth 

Components Per liter broth 

Peptone  20 g 

Glycerol 50 ml 
All components were dissolved in dH2O. 
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Table 21. Phosphate Buffered Saline (PBS) 10X 

Components Per liter buffer 

NaCl 80 g 

KCl 2 g 

Na2HPO4 unhydrated  6,1 g 

KH2PO4 2,4 g 

All components were dissolved in dH2O. 

 

Table 22. TE Buffer 

Components Final concentration 

Tris-HCl 10 mM 

EDTA 1 mM 
All components were dissolved in ddH20. pH was adjusted to 8.0 with NaOH. 

 

Table 23. CTAB/NaCl Buffer 

Components Final concentration 

CTAB 10 % 

NaCl 0.7 M 
All components were dissolved in ddH20. 

 

Table 24. Paraformaldehyde (PFA) 4 % 

Components Per liter buffer 

ddH2O 300 ml 

PFA 40 g 

NaOH (1 M) 100 µl 

PBS (10X) in ddH2O, pH 7.4 100 ml 
Components were heated up to 60 °C and stirred vigorously until PFA is dissolved. DdH2O was filled up to 1 L and 
pH was adjusted. Buffer was sterile filtered and stored at -20 °C. 
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Table 25. Sucrose 20 % 

Components Per liter buffer 

Sucrose (D-Saccharose) 200 g 

PBS (1X) in ddH2O 1 L 
Buffer was sterile filtered and stored at 4 °C. 

 

Table 26. Composition of hybridization buffers (HB) for FISH 

Formamide (%): 0 5  10  15  20  25  30  35  40  45  50 55 70 

5 M NaCl 180 180 180 180 180 180 180 180 180 180 180 180 180 

1 M Tris / HCl 20 20 20 20 20 20 20 20 20 20 20 20 20 

ddH2O 799 749 699 649 599 549 499 449 399 349 299 249 99 

Formamide 0 50 100 150 200 250 300 350 400 450 500 550 700 

10 % SDS 1 1 1 1 1 1 1 1 1 1 1 1 1 
Volumes are in µl. 

 

Table 27. Composition of washing buffers (WB) for FISH 

Formamide (%): 0 5  10  15  20  25  30  35  40  45  50 55 70 

5 M NaCl 9.0 6.3 4.5 3.2 2.2 1.5 1.0 0.7 0.5 0.3 0.2 0.1 0 

1 M Tris / HCl 1 1 1 1 1 1 1 1 1 1 1 1 1 

0.5 M EDTA 0 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

ddH2O to 50 ml 
Volumes are in ml. 

 

Table 28. Blocking buffer for ELISA 

Components Per liter buffer 

Bovine serum albumin (BSA) 20 g 

PBS (1X) in ddH2O 1 L 
Buffer was freshly prepared each time (not autoclaved, not sterile filtered). 
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Table 29. Washing buffer for ELISA 

Components Per liter buffer 

Tween-20 0.5 ml 

PBS (1X) in ddH2O 1 L 
Buffer was freshly prepared each time (not autoclaved, not sterile filtered). 

 

Table 30. Substrate buffer for ELISA 

Components Per liter buffer 

NaH2PO4  13.8 g 

dH2O 1 L 
Buffer was autoclaved, stored at RT and pH was adjusted to 4.0. 

 

Table 31. Percoll gradient 

20 % Percoll: 

Components Per liter DMEM 

Percoll 200 ml 
 

40 % Percoll: 

Components Per liter 1X PBS 

Percoll 400 ml 
One volume 40 % Percoll was gently pipetted under 1 volume 20 % Percoll, using a Pasteur pipette. Percoll gradient 
solution was stored at 4 °C. 
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 Methods 3.2.

 Bacterial culture methods 3.2.1.

 Cryoconservation of bacteria 3.2.1.1.

S. Tm and E. coli strains. Bacteria streaked out from cryostocks were grown overnight (o.n.) on agar 

plates supplemented with the appropriate antibiotics at 37 °C. A single bacterial colony was inoculated in 

3 ml LB medium (with the appropriate antibiotics) and grown o.n. at 37 °C on a wheel rotor. Further, the 

o.n. culture was spun down at 4 °C for 20 min at 5,000 rpm. The supernatant was removed and the 

bacterial pellet was resuspended in 1 ml peptone-glycerol broth and stored in cryotubes at -80 °C. 

Anaerobic bacterial strains. 0.5 ml of pre-reduced 20 % glycerol supplemented with palladium crystals 

was aliquoted in 1.5 ml anoxic glass vials and sealed in the anaerobic chamber and autoclaved. 

Afterwards, 0.5 ml of actively growing anaerobic cultures, grown in respective culture media, was added 

into the autoclaved vials and immediately frozen at -80 °C. 

Strain deposition at the German type culture collection (DSMZ). Except of the strains ASF492, which 

could not be cultivated, all ASF and Oligo-MM12 strains were deposited at the German type culture 

collection (DSMZ; Deutsche Sammlung von Mikroorganismen und Zellkulturen). Individual strains were 

sent as a frozen stock to the DSMZ. There, the frozen stocks were revived and the resulting cultures were 

lyophilized and sent back in order to confirm the strain purity and identity using Gram staining, 16S rRNA 

gene amplification and sequencing, as described below. The corresponding accession numbers are listed in 

Table 32. 
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Table 32. Accession numbers of the strains deposited at DSMZ 

Strain ID Accession number 

ASF356 DSM26116 

ASF360 DSM28184 

ASF361 DSM 28185 

ASF457 DSM 26150 

ASF500 DSM 29473 

ASF502 DSM 26118 

ASF519 DSM 26086 

YL2 DSM 26074 

YL27 DSM 28989 

YL31 DSM 26117 

YL32 DSM 26114 

YL44 DSM 26127 

YL45 DSM 26109 

YL58 DSM 26115 

I46 DSM 26113 

I48 DSM 26085 

I49 DSM 32035 

KB1 DSM 32036 

KB18 DSM 26090 
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 Bacterial culture conditions 3.2.1.2.

Aerobic culture conditions. Bacteria from -80 °C cryostocks were grown o.n. on LB agar supplemented 

with the appropriate antibiotics at 37 °C. For mouse experiments, a single colony was inoculated in 3 ml 

LB medium containing 0.3 M NaCl (LB0.3), supplemented with the appropriate antibiotics and grown at 

37 °C on a wheel rotor for 12 h. Further, the o.n. culture was diluted 1:20 in fresh LB0.3 medium and 

grown at 37 °C on a wheel rotor for 4 h. The subculture was washed in ice-cold 1X PBS and the bacterial 

pellet was resuspended in cold 1X PBS at a concentration of ~1.108 cfu/ml. 

Anaerobic culture conditions. Anaerobic media, solutions and glass bottles were pre-reduced at least 2 

days before use under anoxic conditions (Formiergas: 3 % H2, Rest N2) in an anaerobic chamber. 

Cryostocks were defrozen at 37 °C into a water-bath. A single vial was inoculated into a sealed wheaton 

bottle containing 10 ml of pre-reduced medium. Liquid cultures were gassed (7 % H2, 10 % CO2, rest N2) 

and incubated until growth was observed. Anaerobic bacterial strains were grown either in anaerobic 

brain-heart infusion (BHI) broth or in anaerobic Akkermansia medium (AAM). To improve growth of 

YL44, AAM was supplemented with gastric mucin. 

Bacterial cultures for genomic DNA extraction and genome sequencing. Bacterial cultures were set up 

as described above except for that media were filtered using a bottle-top-filter system (0.2 µm) before 

autoclaving. 

 

 Streptomycin halo assay 3.2.1.3.

This assay was performed by Diana Ring (AG Stecher, MvP, Munich).  

E. coli strain DH5α (Invitrogen) was streaked out on LB agar plates from -80 °C cryostocks and incubated 

o.n. at 37 °C. Next, a single colony was grown in 3 ml LB medium for 12 h, on a wheel rotor, at 37 °C. 

LB agar plates were overlaid with either 6 ml LB soft agar mixed with 100 µl of an o.n. culture of E. coli 

DH5α or 15 ml LB soft agar mixed with 250 µl bacterial culture, depending on agar plate size. Blank 

antimicrobial susceptibility disks (Oxoid) were laid on each plate and 5 µl sample was spotted on each 

disk. A standard curve was performed using serial dilutions of streptomycin from 500 mg/ml to 5x10-13 

mg/ml with 10-fold diluting steps. Plates were incubated o.n. at 37 °C and inhibition zone (halo) size was 

measured using a ruler. Size of the blank disk was substrated to all values. 
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 Bacterial strains 3.2.2.

 Salmonella strains 3.2.2.1.

Salmonella spp. strains used in this study are listed in Table 11. The M2702 derivative SAB1-1 (invG; 

ssaV; cheY::cm) was constructed by P22 transduction of cheY::cat (CmR) allele from the S. Tm strain 

M957 into the recipient strain M2702 (invG; ssaV). 

 

 The Altered Schaedler Flora strains 3.2.2.2.

The Altered Schaedler Flora (ASF) strains ASF356, ASF360, ASF361, ASF457, ASF500 and ASF519 

were obtained from Charles River Laboratories. 

In order to isolate ASF502, an ASF-colonized C57Bl/6 mouse (ETH, Zurich) was killed and imported into 

an anaerobic chamber. The cecum content was resuspended in pre-reduced 1X PBS and plated on 

Schaedler blood agar (Table 17). Plates were exported into an anaerobic jar and incubated at 37 °C under 

anaerobic conditions. Single colonies were restreaked on fresh agar until pure growth is observed, and 

then transferred into 10 ml AAM and incubated at 37 °C. Strain identity was confirmed by 16S rRNA 

gene sequencing and sequences were blasted against NCBI blast (Altschul, Gish et al. 1990) and the 

Ribosomal Database Project (RDP) (Wang, Garrity et al. 2007). 

Taxonomic classification of the ASF strains is detailed further in Table 35.  

 

 Isolation of the Oligo-MM strains 3.2.2.3.

Isolation of I46, I48 and I49 strains by Ricco Robbiani (ETH, Zurich). Fecal pellets were collected 

from C57Bl/6J mice (Janvier, ETH, Zurich), directly resuspended in PBS and plated on Wilkins-Chalgren 

agar supplemented with 5 % defibrinated sheep blood (WSB agar). Plates were incubated in an anaerobic 

atmosphere (7 % H2, 10 % CO2, rest N2) at 37 °C for 3-5 days. Strains were identified by 16S rRNA gene 

sequencing and sequences were blasted against RDP. 

Isolation of YL2, YL27, YL31, YL32, YL44, YL45 and YL58 strains by Yvonne Loetscher (ETH, 

Zurich). C57Bl/6J mice (Janvier, ETH, Zurich) harboring a conventional gut microbiota were killed and 

then imported into an anaerobic chamber. Cecum contents were resuspended into a diluting fluid as 

described in (Aranki, Syed et al. 1969) and either directly plated on AII agar or plating on WSB agar after 

a heat treatment at 80 °C for 10 min or a chloroform-treatment as previously described (Itoh and Freter 
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1989). Plates were transferred into anaerobic jars, gassed (7 % H2, 10 % CO2, rest N2) and incubated at 37 

°C for one week. Single colonies were restreaked on fresh agar until pure growth is observed, and then 

transferred into pre-reduced AII liquid medium and incubated at 37 °C, in anaerobic conditions. Strains 

were identified by 16S rRNA gene sequencing and sequences were blasted against RDP. 

Isolation of KB1 and KB18 strains. Feces from a TCRMOG92-106/I-As transgenic (RR) SJL/J mouse 

(Berer, Mues et al. 2011) was heat-inactivated at 70°C for 15 min and frozen at -20°C (Kerstin Berer, 

MPI, Munich). Fecal pellets were imported in the anaerobic chamber and resuspended into pre-reduced 

1X PBS. Serial dilutions were either plated on BHI agar or transferred into BHI medium. Freshly 

inoculated bottles were heated for 1h at 70 °C and cooled down on ice. Agar plates and liquid bottles were 

incubated at 37 °C under anaerobic conditions (7% H2, 10% CO2, rest N2) until growth was observed. 

KB1 was isolated as a single colony from a BHI agar plate after an o.n. incubation. KB18 was isolated 

using a serial dilution approach and 8 days incubation. Strains were identified by 16S rRNA gene 

sequencing and sequences were blasted against NCBI and RDP. 

 

Table 33. Isolation and cultivation of the Oligo-MM strains 

Strain 
ID Mouse line of origin Isolation 

media 
Culture 
media Reference 

YL2 C57Bl/6J AII agar AAM or BHI Unpublished 

YL27 C57Bl/6J AII agar AAM or BHI Unpublished 

YL31 C57Bl/6J WSB agar AAM or BHI Unpublished 

YL32 C57Bl/6J WSB agar AAM or BHI Unpublished 

YL44 C57Bl/6J WSB agar AAMMucin Unpublished 

YL45 C57Bl/6J WSB agar AAM or BHI Unpublished 

YL58 C57Bl/6J WSB agar AAM or BHI Unpublished 

I46 C57Bl/6J WSB agar AAM or BHI Unpublished 

I48 C57Bl/6J WSB agar AAM or BHI Unpublished 

I49 C57Bl/6J WSB agar AAM or BHI Unpublished 

KB1 TCRMOG92-106/I-As 
transgenic (RR) SJL/J BHI agar AAM or BHI Unpublished 

KB18 TCRMOG92-106/I-As 
transgenic (RR) SJL/J BHI medium BHI Unpublished 

Taxonomic classification is detailed further in Table 35. 
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 Preparation of bacterial inocula as frozen stocks 3.2.2.4.

Oligo-MM10. The ten Oligo-MM strains (YL2, YL31, YL32, YL44, YL45, YL58, I46, I48, I49 and KB1) 

were anaerobically and individually grown. Then, OD600 of the cultures was determined. Purity of 

bacterial culture was confirmed by Gram staining. Further on, actively growing cultures were imported 

into the anaerobic chamber and mixed in a 1:1 ratio according to their OD600 measurements (except for the 

YL45 bacterial culture, which is translucent). In order to cryopreserve the frozen stock at -80 °C, 1 vol. 

bacterial mixture was mixed to 1 vol. 20 % glycerol solution supplemented with palladium black crystals, 

as previously described. Mixtures were aliquoted in 1.5 ml glass vials, sealed with butyl-rubber stoppers 

and frozen at -80 °C. 

ASF6. Similarly to the procedure described above, six ASF strains (ASF356, ASF360, ASF361, ASF457, 

ASF502 and ASF519) were anaerobically grown and actively growing cultures were imported into the 

anaerobic chamber. For each ASF strain, 3 ml culture was centrifuged 5 min, 8,000 rpm at 4 °C and cell 

pellets were directly frozen at -20 °C for further analyses. Cultures were mixed all together in a 1:1 ratio 

according to their OD600 measurements and aliquoted such as 1 vol. bacterial suspension was mixed with 1 

vol. glycerol solution supplemented with palladium black crystals. Mixtures were aliquoted in 1.5 ml glass 

vials, sealed with butyl-rubber stoppers and frozen at -80 °C. To inoculate ASF7 mixture, ASF6 inoculum 

was supplemented by ASF500 which was inoculated to mice as actively growing culture. 

For each bacterial inoculum, 3-6 ml of the mixture was centrifuged 5 min, 8,000 rpm at 4 °C and pellets 

were directly frozen at -20 °C for DNA extraction to confirm strain identity and presence using amplicon 

sequencing or/and qPCR. 

 

 Molecular biology methods 3.2.3.

 Genomic DNA extraction 3.2.3.1.

Genomic DNA extraction from bacterial cultures. Genomic DNA extraction was performed using a 

standard phenol/chloroform/isoamylalcohol protocol. Concentrations indicated in the next paragraph are 

given as final concentration. Briefly, bacterial pellets of Gram-positive strains were resuspended in TE 

buffer (Table 22) supplemented with 0.5 % SDS and 20 mg/ml lysozyme. Then, bacterial suspensions 

were incubated at 37 °C for 1 h 30 min. Further on, suspensions were supplemented with 0.1 µg/ml 

proteinase K and incubated at 55 °C for 1 h. The bacterial pellets of Gram-negative strains were directly 

resuspended in TE buffer supplemented with 0.5 % SDS and 0.1 µg/ml proteinase K, then incubated at 55 

°C for 1 h. Next, 0.64 M NaCl and 0.1 volume (vol.) CTAB/NaCl buffer (Table 23) were added and 



Materials and Methods 
 

47 
 

incubated at 65 °C for 10 min. Then, 1 vol. of phenol/chloroform/isoamylalcohol and the suspensions 

were mixed, and then centrifuged. Supernatants were transferred into a new tube and gDNA was 

precipitated with 0.7 vol. isopropanol and 0.1 vol. 3 M sodium acetate. Tubes were mixed and centrifuged 

at full speed at 4 °C for 30 min. Genomic DNA was washed with 1 vol. ice-cold 70 % ethanol p.a. and 

centrifuged at 4 °C for 15 min. Finally, gDNA was dissolved using 20-50 µl TE buffer and stored at 4 °C 

for further whole genome sequencing or at -20 °C for other applications. Genomic DNA concentration 

was determined using Nanodrop (Peqlab Biotechnology) and DNA integrity was confirmed by agarose gel 

electrophoresis. 

Genomic DNA extraction from mouse intestinal contents and Oligo-MM10 inoculum. Small intestinal, 

cecal and fecal gDNA were extracted using the QIAamp DNA Stool Mini Kit (Qiagen) following the 

manufacturer’s instructions with two modifications: protocol was initialized by a bead-beating step (3 

min, 50 Hz) in buffer ASL using 2 glass bead sizes (0.5-0.75 mm and <106 µm) and lysozyme was added 

to the lysis buffer at a 20 mg/ml final concentration. 

Genomic DNA extraction from mouse biopsies. In order to genotype genetically modified mouse lines 

(i.e. AGR2 and MUC2 mice), murine gDNA was extracted using biopsies from tails or ears. Briefly, tail 

biopsies were suspended in 200 µl DirectPCR-Tail reagent (Peqlab Biotechnology) supplemented with 0.4 

mg/ml final concentration of proteinase K. After an o.n. incubation at 55 °C, 500 rpm, proteinase K was 

heat-inactivated at 85 °C for 45 min. Further on, suspensions were centrifuged 2 min at 11,000 rpm and 

directly used as a template for PCR or frozen at -20 °C. In order to extract gDNA from ear biopsies, the 

same protocol with adapted volumes of DirectPCR-Tail reagent (100 µl instead of 200 µl). 

 

 RNA extraction and microarray analysis 3.2.3.2.

Intestinal epithelial cell (IEC) isolation. Cecal IEC isolaton was performed together with Eva Rath 

(TUM-ZIEL, Freising-Weihenstephan, Germany) using a standard Percoll gradient protocol. 

Concentrations indicated in the next paragraph are given as final concentration. Briefly, after mouse 

sacrifice, cecum was sampled and cecal epithelial cells were exposed by inversion. In tube 1, tissues were 

resuspended in 1 volume (vol.) DMEM, supplemented with 1 mM DTT and vortexed for 1 min. Then, 

tissue suspensions were incubated at 37 °C for 15 min, at 200 rpm and vortexted for 1 min. Cecal tissues 

were transfered into a new tube (tube 2) with 1 vol. 1X PBS supplemented with 1.5 mM EDTA, then 

vortexed for 1 min. Cecal tissue suspensions were incubated at 37 °C for 10 min, at 200 rpm and vortexed 

for 1 min. Meanwhile, IEC suspensions in tube 1 were centrifuged at 4 °C for 7 min, at 300xg and IEC 

pellets were resuspended in 5 ml DMEM, and then stored on ice. In tube 2, Cecal tissues were discarded 
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and IEC suspensions were centrifuged at 4 °C for 7 min, at 300xg. Then, IEC pellets were resuspended 

with the 5 ml DMEM from tube 1. IEC suspensions were carefully pipetted onto the Percoll gradient 

(Table 31) and centrifuged at 4 °C for 30 min, at 600xg. IEC were isolated from the Percoll gradient using 

a Pasteur pipette into a new tube, supplemented with 0.025 vol. DMEM, and centrifuged at 4 °C for 5 min, 

at 300xg. IEC were washed once in 1X PBS, and then resuspended in adequate buffer. 

IEC RNA extraction. The RNA was extracted by Eva Rath (TUM-ZIEL, Freising-Weihenstephan, 

Germany). Total RNA was isolated from cecal IEC using the column-based RNeasy Mini kit (Qiagen, 

Hilden, Germany) according to the manufacturer’s instructions. RNA quality and concentration was 

determined by spectrophotometric analysis (ND-1000 spectrophotometer, NanoDrop and Agilent 

bioanalyzer) and the RNA integrity number was >6 for all samples. Total RNA was sent to Mark 

Boekschoten (WU Agrotechnology & Food Sciences, Wageningen, Netherlands). 

Microarray analysis. The analysis was performed by Mark Boekschoten (WU Agrotechnology & Food 

Sciences, Wageningen, Netherlands). Genome-wide mRNA expression profiles were analyzed using the 

Gene set enrichment analysis (GSEA) approach, as described in (Subramanian, Tamayo et al. 2005). Gene 

sets were considered as significantly down- or upregulated when False Discovery Rate value (FDR q-val) 

was below 0.25. 

 

 16S rRNA gene amplification and sequencing 3.2.3.3.

Polymerase chain reaction (PCR) on bacterial genomic DNA targeting the 16S rRNA gene was carried out 

in order to clone and sequence the amplicon. PCR was performed as previously described (Weisburg, 

Barns et al. 1991). Briefly, one PCR reaction contained 0.125 µM each forward primers (fD1 and fD2, 

Table 4), 0.25 µM reverse primer (rP1, Table 4), 2 X DreamTaq PCR Master Mix and 200-300 ηg 

bacterial genomic DNA. PCR was performed using a peqSTAR 2X Gradient Thermocycler (Peqlab 

Biotechnology). PCR conditions were: 95 °C for 5 min, followed by 35 cycles of 95 °C for 30 s, 50 °C for 

30 s and 72 °C for 1 min. After 72 °C for 10 min, as final elongation step, PCR tubes were held at 8 °C for 

short term storage. A portion of all PCR products was subjected to agarose gel electrophoresis on a 1 % 

agarose gel. When a single PCR product band was detected at 1.5 kb, PCR products were purified directly 

from the PCR mix using NucleoSpin Gel and PCR Clean-up kit. When multiple amplicons were present, 

the 1.5 kb band was extracted from the gel using the same kit. Concentration of PCR products was 

determined using Nanodrop (Peqlab Biotechnology). Next, PCR products were directly cloned in plasmid 

vectors, as described below. 
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 AGR2 gene amplification 3.2.3.4.

In order to genotype AGR2 mice, PCR was performed using gDNA extracted from mouse biopsies. PCR 

protocol was adapted from (Park, Zhen et al. 2009). Briefly, one PCR reaction contained 0.25 µM each 

primers (AGR2-KO-fwd, AGR2-wt-fwd and AGR2-rev) (Table 4), 2 X DreamTaq PCR Master Mix and 

2 µl template genomic DNA taken from supernatant. PCR was performed using a peqSTAR 2X Gradient 

Thermocycler (Peqlab Biotechnology). PCR conditions were: 94 °C for 5 min, followed by 30 cycles of 

95 °C for 45 s, 59 °C for 45 s and 72 °C for 2 min. After 72 °C for 7 min, as final elongation step, PCR 

tubes were held at 8 °C for short term storage. PCR products were subjected to agarose gel electrophoresis 

on a 2 % agarose gel. A single PCR product band was detected at 267 bp for AGR2wt genotype and at 374 

bp for AGR2ko genotype. 

 

 Generation of plasmids containing full length 16S rRNA gene 3.2.3.5.

PSAB-labelled plasmids. Plasmids labelled with pSAB (Table 10) were generated using the CloneJETTM 

PCR Cloning kit (Thermo Fisher Scientific biosciences) and following manufacturer’s instructions. 

Briefly, 75 ηg purified PCR products amplified using primers fD1, fD2 and rP1 were blunted for 5 min at 

70 °C. Next, blunted products were inserted into 50 ηg pJET1.2 cloning vector and incubated at RT for 30 

min. Ligation mixture was transformed into electro-competent E. coli DH5α, as detailed in section 

3.2.3.9. Inserts were sequenced by GATC Biotechnology (Sanger sequencing approach) using universal 

primers pJet1-FP and pJet1-RP (Table 4). 

PM-labelled plasmids. To generate plasmids pM1456-1, pM1457-1, pM1459-1 and pM1460-1 (Table 

10), the 16S rRNA gene was amplified using the primers fD1-EcoRV-XbaI, fD2-EcoRV-XbaI and rP1-

EcoRV-BamHI (Table 4). Next, purified PCR products were inserted in the linear pCR®2.1-TOPO® vector 

in a 5 min cloning step, using the TOPO® Cloning kit and following manufacturer’s instructions 

(Invitrogen). Inserts were sequenced from both sides (Microsynth, Balgach, Switzerland) using the 

primers M13_F (GTAAAACGACGGCCAG, Invitrogen) and M13_R (CAGGAAACAGCTATGAC, 

Invitrogen). This work was performed by Yvonne Loetscher (ETH, Zurich). To generate plasmids 

pM1411-1, pM1412-4, pM1413-1, pM1414-1 and pM1417-1 (Table 10), 16S rRNA gene was amplified 

using fD1-EcoRV-XbaI, fD2-EcoRV-XbaI and rP1-EcoRV-BamHI primers. Next, purified PCR products 

were inserted in linearized pSB-Bluescript SK II vector (Stratagene). To generate pM1411-1, pM1412-4 

and pM1413-1, pSB-Bluescript SK II vector was linearized using EcoRV; for pM1414-1 using 

NotI/HindIII and for pM1417-1 using NotI/BamHI. To generate pM1414-1, 16S rRNA gene sequence was 
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previously cloned in pCR®2.1-TOPO® vector and from there cloned in pSB-Bluescript SK II vector. These 

plasmids were generated by Prof. Bärbel Stecher. 

Next, plasmid vectors were transformed in electro-competent E. coli DH5α, as detailed in section 3.2.3.9. 

Plasmids are listed in Table 10. 

 

 16S rRNA gene-based taxonomic assignment of the bacterial strains 3.2.3.6.

Identification of bacterial strains was achieved by sequencing the 16S rRNA gene previously cloned in 

plasmid vectors from both sides by GATC Biotechnology (Sanger sequencing approach) using appropriate 

primer pairs. Resulting sequences were trimmed and assembled using the software CLC DNA Workbench 

(version 6.0.2) and 16S rRNA gene sequences were blasted against the Ribosomal Database Project 

(RDP) (Wang, Garrity et al. 2007), NCBI blast (Altschul, Gish et al. 1990), Greengenes (DeSantis, 

Dubosarskiy et al. 2003) and Silva (Quast, Pruesse et al. 2013) databases in order to taxonomically assign 

the bacterial strains newly isolated. After comparison of all databases, SINA (Silva Incremental Aligner), 

the Silva Web Aligner, was preferred for taxonomic assignments. 

 

 Plasmid extraction 3.2.3.7.

Plasmids previously transformed in electro-competent bacterial strains E. coli DH5α or S. Tmwt as 

described in section 3.2.3.9. were extracted using NucleoSpin Plasmid kit according to the manufacturer’s 

instructions. Briefly, transformed E. coli or S. Tm strains were streaked out from cryostocks on LB or 

MacConkey agar, respectively, supplemented with appropriate antibiotics and incubated o.n. at 37 °C. 

Next, single colony was picked to inoculate 3-5 ml LB culture supplemented with appropriate antibiotics 

and incubate o.n. at 37 °C under agitation. Overnight cultures were spun down at 4 °C for 15 min at 5,000 

rpm and plasmids were extracted from bacterial pellets according to the manufacturer’s instructions. 

Extracted plasmids were transformed in appropriate S. Tm strains, used to sequence 16S rRNA gene or 

linearized to generate standard curves for qPCR. 

 

 Preparation of electro-competent bacteria 3.2.3.8.

A single bacterial colony was inoculated in 3-10 ml LB medium and grown o.n. at 37 °C on a wheel rotor. 

Further, o.n. culture was used to inoculate (1:20) 10-100 ml LB medium, incubated at 37 °C and 180 rpm. 
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At an OD600 of 0.5-0.8, the culture was chilled on ice for 30 min and subsequently spun down at 4 °C, 15 

min and 4,500 rpm. The supernatant was removed and pelleted cells were washed three times in 1 vol. 

sterile ice-cold dH2O, one time in 0.5 vol. sterile dH2O and one time in 0.1 vol. sterile ice-cold 10 % 

glycerol, respectively. After each step bacteria were spun down at 4 °C, 15 min and 4,500 rpm. Finally, 

bacteria were suspended in 0.02 vol. ice-cold 10 % glycerol, distributed into 80 µl aliquots, which were 

shock-frozen in liquid nitrogen and stored at -80 °C. 

 

 Electro-transformation of plasmid DNA 3.2.3.9.

A frozen stock of electro-competent cells was thawed on ice and 1-10 µl of the plasmid DNA was added. 

Bacteria were incubated for 10 min on ice, subsequently transferred into an ice-cold 1 mm electroporation 

cuvette and pulsed at 1,800 V/cm, 5 ms using Gene Pulser Xcell (Bio-Rad). Following this, 900 µl LB 

medium was added and bacteria were incubated for 1 h in a thermomixer at 37 °C and 850 rpm. 

Afterwards, bacteria were spun down at room temperature (RT) for 2 min, 10,000 rpm and 900 µl from 

the supernatant were removed. Pelleted cells were suspended in the remaining liquid and plated on LB 

agar plates supplemented with the appropriate antibiotic(s). 

 

 P22-transduction 3.2.3.10.

Preparation of P22–lysates. A single colony of the S. Tm donor strain was inoculated in 3 ml LB 

medium supplemented with 5 mM CaCl2 and grown o.n. at 37 °C on a wheel rotor. Further, 500 µl of the 

o.n. culture were added to 10 µl P22-lysate (kindly provided by Prof. Dr. M. Hensel) and incubated for 15 

min at 37 °C. Next, the mixture was used to inoculate 5 ml LB culture, which was incubated o.n. at 37 °C 

on a wheel rotor. On the next day 50 µl chloroform were added to the o.n. culture followed by an 

incubation for 30 min at 37 °C. Next, the culture was spun down at 4 °C, for 10 min at 4,500 rpm and the 

supernatant was filtered through (0.45 µm) and 20 µl chloroform were added to the 1.5 ml filtrate. Filtered 

lysate was stored at 4 °C for further use. Sterility of the lysate was verified by plating 50 µl on LB agar 

followed by an o.n. incubation at 37 °C. 

P22-transduction. A single colony of the S. Tm recipient strain was inoculated in 3 ml LB medium 

supplemented with 5 mM CaCl2 and grown o.n. at 37 °C on a wheel rotor. Next, 100 µl of the o.n. culture 

were added to 10 µl P22-lysate and incubated for 15 min at 37 °C. Subsequently, the bacteria-phage 

mixture was added to 900 µl LB medium supplemented with 10 mM EGTA and incubated in a 

thermomixer at 37 °C and 850 rpm. After 1 h incubation, the bacterial culture was spun down at RT for 2 
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min at 10,000 rpm and 900 µl of the supernatant were removed. Pelleted bacteria were resuspended in the 

remaining liquid and plated on 10 mM EGTA LB agar plates supplemented with the appropriate 

antibiotic(s). 

 

 Genome sequencing 3.2.3.11.

Complete genome sequence of strain KB18 was obtained by PacBio sequencing (DSMZ, Braunschweig, 

Germany). For the remaining eleven Oligo-MM strains, whole-genome shotgun sequencing was 

performed using the Illumina technology (Eurofins Genomics GmbH, Ebersberg, Germany). Libraries of 

500 bp insert size were prepared from the isolated genomic DNA and sequenced as 300 bp paired-end 

runs on an Illumina MiSeq v3 instrument. Raw Illumina reads were de novo assembled using the careful 

mode of SPAdes version 3.5.0 (Bankevich, Nurk et al. 2012) with a minimum read coverage cutoff of 20 

and minimum contig length of 500 bp. The quality of the Illumina draft genome assemblies was assessed 

with QUAST (Gurevich, Saveliev et al. 2013). Automatic annotation of the twelve Oligo-MM genomes 

was performed with RAST (Aziz, Bartels et al. 2008) to obtain a general overview of the genetic and 

functional content. Filtered raw reads from Illumina MiSeq sequencing of the eleven Oligo-MM genomes 

have been deposited in the Sequence Read Archive (SRA) under SRA Study Accession Number 

SRP060697 and following SRA Esperiment Accession Numbers: I46-SRX1092348, I48-SRX1092357, 

I49-SRX1092347, KB1-SRX1092355, KB18-SRX1092360, YL2-SRX1092353, YL27-SRX1092362, 

YL31-SRX1092358, YL32-SRX1092359, YL44-SRX1092354, YL45-SRX1092361 and YL58-

SRX1092352. 

 

 Metagenomics analysis 3.2.3.12.

Metagenomics analysis was performed by Carina Pfann and Ass.-Prof. David Berry (DOME, University 

of Vienna, Austria). The functional and metabolic capacity of the Oligo-MM community was predicted 

from annotated shotgun genomes and compared to those of the ASF community and of a conventional 

mouse gut microbiota by mapping against the KEGG (Kyoto Encyclopedia of Genes and Genomes) 

database. Input files for assembled Oligo-MM (see above) and ASF genomes (Wannemuehler, Overstreet 

et al. 2014) were either single genomes or artificial metagenomes, created by merging contigs of each 

community into a multi-fasta file. Metagenomic reads, derived from eight different samples to cover the 

heterogeneity of a conventional mouse gut microbiota (Sequence Read Archive accession numbers 

SRX313003 (JCVI 2013), DRX013306 (Milk 2014) and ERX166941 (Nanjing University 2013), and 
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MG-RAST accession numbers M4W0E1C1225, M4W0E2C1220, M4W1E1C1240, M4W1E2C1241 and 

M4W12E2C1226 (Wang, Linnenbrink et al. 2014)), were merged and assembled with Ray-Meta version 

2.3.1 with default parameters (Boisvert, Raymond et al. 2012). KEGG mapping was performed using a 

custom pipeline. Gene prediction was done with Prodigal version 2.60 (Hyatt, Chen et al. 2010, Hyatt, 

LoCascio et al. 2012) and the predicted protein files of the three groups (Oligo-MM, ASF and 

conventional) were aligned separately against a reduced KEGG database 

(http://huttenhower.sph.harvard.edu/kegg/) using RAPSearch version 2.23 (Ye, Choi et al. 2011, Zhao, 

Tang et al. 2012). Custom Python scripts were used for assignment against the KEGG database and to 

obtain information about the presence and completeness of each KEGG module, expressed as value 

between 0 (module complete, dark green) and 4 (module absent, white). 

 

 16S rRNA gene amplicon sequencing 3.2.3.13.

Generation and barcoding of 16S rRNA gene sequences. The variable regions V3-V6 of the 16S rRNA 

gene were amplified by PCR using gDNA extracted from intestinal contents or the Oligo-MM10 inoculum 

as detailed in section 3.2.3.1. PCR comprised two consecutive steps. In the first step, primers targeting the 

16S rRNA gene (italic) and specific primers carrying the 5’M13/rM13 adapters (bold) 338F-M13 

(GTAAACGACGGCCAGTGCTCCTACGGGWGGCAGCAGT) and 1044R-rM13 

(GGAAACAGCTATGACCATGACTACGCGCTGACGACARCCATG) are used to amplify the V3-V6 

region of the bacterial 16S rRNA gene. One PCR reaction contained 500 ηM of each primer (338F-M13 

and 1044R-rM13, see Table 4), 2 X DreamTaq PCR Master Mix and 50 ηg template gDNA. PCR reaction 

was performed in duplicates using a peqSTAR 2X Gradient Thermocycler (Peqlab Biotechnology). PCR 

conditions were: 95 °C for 10 min, followed by 20 cycles of 95 °C for 30 s, 55 °C for 30 s and 72 °C for 

45 s and a final elongation step at 72 °C for 10 min. Duplicate reactions were pooled and loaded on a 1 % 

agarose gel in order to confirm successful PCR amplification. After purification of PCR products using 

the NucleoSpin Gel and PCR Clean-up kit and manufacturer’s instructions, concentration and quality of 

the purified PCR products were assessed using Nanodrop (Peqlab Biotechnology). In order to barcode 

each PCR product with a specific MID sequence and to add the 454-specific Lib-L tag, a second PCR was 

performed using M13/rM13-specific primers containing the 454-specific Lib-L primers (underline) A-

M13 (CCATCTCATCCCTGCGTGTCTCCGACTCAG/MID sequence/GTAAACGACGGCCAGTG) 

and B-rM13 (CCTATCCCCTGTGTGCCTTGGCAGTCTCAGGGAAACAGCTATGACCATGA). The 

40 different MID 10 bp error-correcting barcodes for multiplexing are listed in Table 5. PCR was 

performed using 400 ηM of each primer (A-M13 and B-rM13). These primers extended the first PCR 

products and this extension was visualized on a 2 % agarose gel. 

http://huttenhower.sph.harvard.edu/kegg/
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Purification of barcoded 16S rRNA gene sequences. In order to purify barcoded 16S rRNA gene 

sequences, amplicons of the second PCR were pooled and purified by ethanol precipitation. Briefly, the 

total volume was adjusted to 400 µl using ddH2O. Then, 0.1 vol. 3M sodium acetate and 2.5 vol. ethanol 

p.a. were added, mixed and centrifuged for 30 min, at 13,000 rpm, 4 °C. DNA pellets were suspended in 

1.25 vol. 70 % ethanol and centrifuged for 15 min, at 13,000 rpm, 4 °C. Finally, DNA was air-dried and 

suspended in 50 µl ddH2O. In a second time, purified PCR products were run on a 0.8 % agarose gel, 

bands corresponding to the barcoded 16S rRNA gene sequences were excised and amplicons were 

extracted using the NucleoSpin Gel and PCR Clean-up kit. Amplicons were eluted in ddH2O, further 

purified using Agencourt AMPure XP kit and finally resuspended in ddH2O. Concentration and quality of 

the purified barcoded amplicon sequences were assessed using a Nanodrop (Peqlab Biotechnology). 

Samples were stored at -20 °C. 

Amplicon sequencing platform. Amplicon sequencing was performed at Eurofins, on a 454 GS FLX 

Titanium platform from one side (Lib-L-A) according to the recommended procedures (454 Roche). 

Bioinformatic analysis. Sequence analysis was performed by Dr. Debora Garzetti (AG Stecher, MvP, 

Munich). The QIIME (Quantitative Insights Into Microbial Ecology) (Caporaso, Kuczynski et al. 2010) 

software package version 1.8 was used for read denoising and pre-processing, OTU clustering, taxonomic 

assignment, alpha diversity analysis and Principal Coordinate Analysis (PCoA) (Krzanowski 2000). 

Briefly, OTU clustering was performed at the 97 % similarity level using an open-reference method, based 

on a custom sequence collection of the full length 16S rRNA gene sequences of the 12 Oligo-MM and 5 

ASF strains (ASF360, ASF361, ASF457, ASF502 and ASF519). Taxonomy was assigned by the RDP 

classifier against either the Silva database (Quast, Pruesse et al. 2013) or the custom sequence collection. 

Alpha diversity was determined using the metric of observed species as measure of within-sample 

diversity. In order to compare all samples at equal sequencing depth for diversity analyses, the minimum 

number of reads present in all the analyzed samples was chosen as rarefaction level. Statistically 

differentially abundant operational taxonomic units (OTUs) were identified using LEfSe with α=0.01 and 

LDA score=2.0 (Segata, Izard et al. 2011). Microbiota composition shown in section 5. was analyzed the 

same way than detailed above except of the denoising step that was not performed. 
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 Quantitative PCR of bacterial 16S rRNA genes 3.2.3.14.

Quantitative polymerase chain reaction (qPCR) was established by Markus Beutler (AG Stecher, MvP, 

Munich). 

Generation of template plasmid DNA for standard curves. Plasmids containing full length 16S rRNA 

gene sequences from the 12 Oligo-MM strains, 7 ASF strains (ASF356, ASF360, ASF361, ASF457, 

ASF500, ASF502 and ASF519) and Salmonella Typhimurium M557 (Table 11) were transformed in E. 

coli DH5α. From 100 ml o.n. cultures, plasmids were purified using the Plasmid Plus Midi Kit following 

manufacturer’s instructions. Next, plasmid DNA was linearized using appropriate restriction enzymes, 

which have no restriction site within the 16S rRNA gene sequence. After digestion, linearized plasmids 

were cleaned up using NucleoSpin Gel and PCR Clean-up kit and following manufacturer’s instructions. 

Design of 16S rRNA specific primers and hydrolysis probes. In order to design 16S rRNA specific 

primers and hydrolysis probes, Primer Express 3 (Applied Biosystems, Life Technologies) software was 

applied to an alignment of full length 16S rRNA gene sequences. To enable duplex qPCR assays, 

hydrolysis probes were 5’-labelled with either 6-carboxyfluorescein (FAM) or 6-carboxyhexafluorescein 

(HEX). Additionally, each probe was conjugated with the black hole quencher 1 (BHQ1) at the 3’ end. 

Primers and probes were synthesized by Metabion (Table 6). 

Standard curves and qPCR conditions. Standard curves were determined using linearized plasmid as 

DNA template. Stocks of 10 ηg/µl each linearized plasmid were prepared and 16S rRNA gene copy 

numbers were calculated in order to prepare 10-fold dilutions (from 108 to 10-2 gene copies per µl). 

Plasmid DNA was diluted in 100 ηg/µl yeast t-RNA solution (Roche). Standard curves were run in 

triplicates only once to evaluate single qPCR assays. In further experiments, software LightCylcer96 

version 1.1 reproduced standard curves based on single DNA template with known DNA quantity as well 

as the efficiency derived from the standard curve of each qPCR assay which was initially run. Efficiency 

of each qPCR was calculated based on the slope of standard curves (qPCR efficiency: (10(-1/slope of standard 

curve)-1) x 100) using 1:10 dilution of linearized plasmid, as DNA template. Efficiencies of qPCR reactions 

were within the range of 90-110 %. QPCR reactions were performed in 96 well plates using the thermo 

cycler LightCycler96 (Roche). One PCR reaction (total volume: 20 µl) contained 300 ηM of each primer, 

250 ηM of the corresponding hydrolysis probe (see Table 6), FastStart Essential DNA Probes Master and 

5 ηg template gDNA. PCR reactions with DNA templates extracted from feces or cecal content were run 

in duplicates. PCR conditions were: 95 °C for 10 min, followed by 45 cycles of 95 °C for 15 s and 60 °C 

for 1 min. Fluorescence for each cycle was recorded after the step at 60 °C. Quantification cycle (Cq) as 

well as the baseline were automatically determined by the software LightCycler96 version 1.1 (Roche). 
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 Fluorescence in situ hybridization (FISH) 3.2.3.15.

Design of specific probes. In order to design strain-specific oligonucleotides, full length 16S rRNA gene 

sequences were aligned using CLC DNA Workbench 6.0.2 software (Table 4). To increase the fluorescent 

signal intensity, the oligonucleotides were double-labelled with either fluorescein isothiocyanate (FITC), 

cyanine 3 (Cy3) or Cy5 at the 3’ and 5’ ends (Table 34). All FISH probes were synthesized by Metabion 

(Munich). 

 

Optimization of probe specificity. To optimize the hybridization conditions of each probe, formamide 

(FA) concentration series were performed using a standard FISH protocol as previously described (Daims, 

Stoecker et al. 2005). The concentration of FA was increased in the hybridization buffer, while the 

concentration of NaCl was decreased in the washing buffer, concomitantly (Tables 26 and 27). Further 

on, all individual probes were tested with the optimal concentrations of FA on target and non-target strains 

in order to confirm their specificity (Table 34). 

 

Table 34. Fluorophores and optimal formamide (FA) concentrations established for the FISH probes 
targeting the Oligo-MM strains. 

Designation Fluorophores Fluorescence signal* Work in vivo Optimal formamide 
concentration 

YL2_180 2xCy3 Yes No 20 % 

YL27_180 2xCy3 or 2xFITC Yes Yes 30 % 

YL31_180 2xCy3 Yes  Yes 35 % 

YL32_180 2xCy3 or 2xFITC Yes Yes$ n.d. 

Muc1437 2xCy3 or 2xFITC Yes Yes 30 % 

BET940 2xCy3 Yes Yes 30 % 

YL58_180 2xFITC Yes Yes 30 % 

YL58_180_negctrl 2xFITC No  Yes n.d. 

I46_180 2xCy3 Yes  Yes$ n.d. 

I48_180 2xCy3 or 2xFITC Yes No n.d. 

I49_180 2xCy3 or 2xFITC Yes No n.d. 

KB1_180 2xCy3 Yes  Yes$ n.d. 

KB18_180 2xCy3 No  No n.d. 
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* The intensity of the fluorescence signal was evaluated at 35 % FA concentration on the corresponding pure 
bacterial culture, which was PFA-fixed. n.d.: not determined. $ Work but need to be optimized. 

 

Fixation of bacterial samples. One volume (vol.) of actively growing culture was directly fixed in 3 vol. 

of ice-cold 4 % paraformaldehyde (PFA) and incubated for 3 to 12 h at 4 °C. Later on, the suspension was 

washed 3 times in ice-cold 1X PBS in order to remove residual PFA. Finally, the pellet was suspended in 

1 vol. ice-cold 1X PBS and 1 vol. ice-cold 96 % ethanol p.a. Then, PFA-fixed samples were kept at -20 

°C. For FISH analysis, 3 to 5 µl were spotted on a 10-well epoxy-coated slide, dried for 5 min at 46 °C 

and directly used for FISH. 

Fixation of mouse samples. Cecum were fixed in 4 % paraformaldehyde (PFA) for 12 h at 4 °C, washed 

in 20 % sucrose o.n. at 4 °C, cryo-embedded in O.C.T., flash frozen in liquid nitrogen and then stored at -

80 °C. Cecal cryosections (5-7 µm thick) were mounted on superfrost plus glass slides using a cryotome 

CM1950 (Leica, Wetzlar) and air-dried at RT, at least o.n. 

 

FISH. Fluorescence in situ hybridization (FISH) was performed using double-labelled 16S rRNA-targeted 

oligonucleotide probes according to a standard protocol (Daims, Stoecker et al. 2005). Briefly, fixed-

bacterial or -mouse samples were dehydrated using increasing concentrations of ethanol 50 %, 80 % and 

96 % for 3 min each and were air-dried. Hybridization buffers (HB) were prepared as described in Table 

26 and vigorously mixed by vortexing. The FISH probes were added to HB at 5 ηg/µl final concentration 

and pipetted on the air-dried samples. Hybridization was performed for 4 h in a humid chamber saturated 

with HB at 46 °C in an oven, where the samples were protected from light. Later on, the slides were 

washed for 10 min at 48 °C in a water-bath using washing buffer (WB) (Table 27), rinsed 5 sec into ice-

cold ddH2O and air-dried. DAPI staining was performed using a solution of 1 µg/ml final concentration in 

ddH2O for 30 min at 4 °C in the dark. Sections were mounted with Vectashield and sealed with nail 

polish. Slides were observed under a Leica TCS SP5 confocal microscope (Leica, Wetzlar) within 24 h. 

TIFF images (1024 x 1024) were obtained using the software LAS AF (Leica, Wetzlar) and analyzed 

using the software DAIME (Digital Image Analysis in Microbial Ecology, version 2.0) (Daims, Lucker et 

al. 2006). In order to remove fluorescent background, FITC and Cy3 channels were subtracted to Cy3 and 

FITC channels, respectively (twice for YL44 analysis and thrice for YL58 analysis). Biovolume 

quantification was performed on object layers extracted from TIFF images using automatic 2D 

segmentation RATS (Robust Automated Threshold Selection) algorithm (Kittler, Illingworth et al. 1985) 

and ignoring objects up to 5 pixels. 

 

 



Materials and Methods 
 

58 
 

 Immunofluorescence microscopy 3.2.3.16.

Fixation and preparation of cecal cryosections. Cecum were fixed in 4 % paraformaldehyde (PFA) for 

12 h at 4 °C, washed in 20 % sucrose o.n. at 4 °C, cryo-embedded in O.C.T., flash frozen in liquid 

nitrogen and then stored at -80 °C. Cecal cryosections (5-7 µm thick) were mounted on superfrost plus 

glass slides using a cryotome CM1950 (Leica, Wetzlar) and air-dried at RT, at least o.n. 

Fixation and preparation of paraffin-embedded cecal sections. In order to preserve the mucus layer on 

epithelial surfaces, cecum were fixed in water-free Carnoy’s solution (60 % absolute ethanol, 30 % 

chloroform, 10 % glacial acetic acid) and stored one to two weeks at 4 °C. Fixed-cecum were dehydrated 

twice in absolute ethanol for 30 min each and then, twice in absolute xylol for 1 h each. Further on, cecum 

were incubated in a 1:1 xylol/paraffin solution for 1 h at 60 °C. In order to remove xylol, xylol/paraffin 

solution was replaced by paraffin and incubated at 60 °C for 45 min. This step was repeated until xylol 

was evaporated. Then, cecal tissues were embedded in paraffin into histo-cassettes and cooled down at 

RT. Using a microtome type Reichert-Jung Hn-40, paraffin sections (5 µm thick) were stretched at 45 °C 

in 80 % ethanol bath in order to preserve the mucus layer, dried o.n. under the hood and incubated 2-3 h at 

37 °C. Before dewaxing, sections were fixed on the slide for 10 min at 60 °C. This protocol was adapted 

from (Johansson and Hansson 2012). 

Immunofluorescent staining of cecal cryosections. Prior immunofluorescent staining, cecal cryosections 

were fixed in 4 % PFA for 5 min at 4 °C. Paraffin-embedded cecal sections were dewaxed using xylol for 

10 min at 60 °C then xylol for 10 min at RT and rehydrated using decreasing concentrations of ethanol 

100 %, 95 % and 80 % for 5 min each at RT. This step was adapted from (Johansson and Hansson 2012). 

Immunofluorescent staining was performed as described in (Stecher, Robbiani et al. 2007). Cecal sections 

were washed in 1X PBS and blocked with 10 % (w/v) normal goat serum in PBS for 1 h. S. Tm was 

stained using a polyclonal rabbit anti-Salmonella O antigen group B serum (α-Salmonella B, 1:400, 10 % 

normal goat serum) and a dylight 549-conjugated goat anti-rabbit antibody (α-rabbit-dylight 549, 1:400, 

10 % normal goat serum). The specificity of α-Salmonella B antiserum was checked extensively by 

analyzing cecum cryosections from uninfected mice, as negative controls. MUC2 was stained using a α-

MUC2 H-300 (1:200, 10 % normal goat serum) and a dylight 549-conjugated goat anti-rabbit antibody (α-

rabbit-dylight 549, 1:400, 10 % normal goat serum). DNA was stained with sytox green (0.1 µg/ml final 

concentration) and/or DAPI (1 µg/ml final concentration). F-actin was stained with phalloidin 

FluoProbes® 647 (1:300, 10 % normal goat serum). Sections were mounted with Vectashield and sealed 

with nail polish. Slides were observed under a Leica TCS SP5 confocal microscope (Leica, Wetzlar) 

within 24 h. TIFF images were obtained using the software LAS AF (Leica, Wetzlar). 
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Intracelullar immunofluorescent staining in epithelial tissue cryosections. This staining and the 

corresponding analysis shown in Figure 27 were performed by Dr. Mikael Sellin (ETH, Zurich), as 

described in (Sellin, Muller et al. 2014). Briefly, cecal tissue was fixed in 4 % PFA/4 % sucrose, saturated 

in PBS/20 % sucrose, embedded in O.C.T., flash frozen in liquid nitrogen and stored at -80 °C. 

Cryosections (20 µm thick) were air-dried, rehydrated with PBS, permeabilized using 0.5 % Triton X-100 

and blocked with 10 % normal goat serum. For quantification of S. Tm in whole tissue, epithelium and 

lamina propria, cryosections were stained for ICAM-1/CD54 (clone 3E2, Becton Dickinson), AlexaFluor-

647 conjugated phalloidin (Molecular Probes) and DAPI (Sigma-Aldrich). Samples were mounted with 

Mowiol (Calbiochem). A Zeiss Axiovert 200 m microscope with 10x-100x objectives, a spinning disc 

confocal laser unit (Visitron) and two Evolve 512 EMCCD cameras (Photometrics) were used for 

imaging. For quantification of S. Tm, imaging was performed at 400x and 1,000x. Postcapture processing 

and analysis used the Visiview (Visitron) and Image J x64. Intracellular S. Tm was manually enumerated 

blindly in six to nine nonconsecutive sections per mouse. All data represent averages/section. 

 

 Lipocalin-2 quantification 3.2.3.17.

Lipocalin-2 (Lcn2) levels were determined by enzyme-linked immunosorbent assay (ELISA) in cecal 

content. This assay was performed by Diana Ring (AG Stecher, MvP, Munich) using kit and protocol 

from R&D Systems (Minneapolis, US). Briefly, 96-well plates were coated with Lcn2 capture antibody 

(1:200, 1X PBS) and incubated o.n. at 4 °C. On the next day, plates were washed 3 times using washing 

buffer (washing step) and incubated with blocking buffer for 1 h, at RT. After another washing step, plates 

were loaded with standard and mouse samples (Standard: starting concentration at 60 ηg/ml, then 1:3 

dilutions until 0.027 ηg/ml in blocking buffer. Mouse samples: undiluted, 1:20 and 1:200 in 1X PBS) then 

incubated 1 h, at RT. After two washing steps, plates were loaded with Lcn2 detection antibody (1:200, 

blocking buffer) and incubated 1 h, at RT. After two washing steps, plates were loaded with HRP-

streptavidin (1:1000, 1X PBS) and incubated 1 h, at RT. Plates were finally washed six times in washing 

buffer and developed with liquid substrate using 0.1 mg/ml ABTS diluted in substrate buffer and 

supplemented with 0.05 % H2O2 just before use. Afer 30 to 45 min at RT, absorbance was measured at 

λ405 using a plate reader. Lipocalin-2 was detected in the concentration range of 0.25-60 ηg/ml. Detection 

limit (DTL) was calculated for each experiment using the lowest concentration of Lcn2 detected in the 

assay (Lcn2, ηg/ml) respective to the highest amount of cecal content (AC, g) such as:  

DTL = lowest Lcn2
20

X 100
highest Ac

.  
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DTL was comprised between 0.18 and 0.57 ηg/mg cecal content, as shown in figures (red dotted line). 

 

 Mouse experiments 3.2.4.

 Mice used in this study 3.2.4.1.

Germfree C57Bl/6 mice were purchased from the Clean Mouse Facility (CMF, University of Bern, 

Switzerland) and housed under germfree conditions. They were directly inoculated with a mixture of 

either five ASF strains (ASF360, ASF361, ASF457, ASF502, ASF519) or four ASF strains (ASF356, 

ASF361, ASF502, ASF519). These mice were termed ASF5 and ASF4, respectively. C57Bl/6 mice 

colonized with the defined Oligo-MM12 consortium and termed as Oligo-MM12, were generated and 

provided by Prof. McCoy and Prof. Macpherson (University of Bern, Switzerland). Specific pathogen-free 

(SPF) C57Bl/6J mice harboring a conventional microbiota were purchased from Janvier (Le Genest-Saint-

Isle). AGR2tm1.2Erle mice, termed in this study as AGR2, were obtained from David Erle (Park, Zhen et al. 

2009), bred and kept under SPF conditions at the MvP mouse facility in individually ventilated cages 

(IVCs). AGR2 germfree mice, termed in this study as AGR2GF, were rederived from AGR2 heterozygous 

(AGR2het) and homozygous (AGR2ko) conventional mice by Prof. Bleich and Dr. Basic (Hannover 

medical school, Hannover). Gnotobiotic mice ASF5, ASF4, Oligo-MM12 and AGR2GF were bred under 

germfree conditions in flexible film isolators (Harlan Laboratories). 

 

 Animal inoculation experiments 3.2.4.2.

All gnotobiotic experiments were performed in gnotocages (Han, Bioscape, Emmendingen), at the Max-

von-Pettenkofer Institute (LMU, Munich). Gnotobiotic mice, 6 to 8 week old, were orally and rectally 

inoculated with about 100 µl bacterial mixture of frozen stocks (SPF cecum content, Oligo-MM10 

consortium, ASF6 consortium, other single strains) or actively growing culture (e.g. ASF500). 

 

 Animal infection experiments 3.2.4.3.

Germfree and gnotobiotic animal infection. Animals were infected by oral gavage with S. Tmavir or S. 

Tmwt in 50 µl 1X PBS at 12 to 24 week old depending on previous treatments. Strain identity and 

corresponding infective doses are indicated elsewhere, in result and legend parts. 
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SPF animal infection. SPF C57Bl/6 and AGR2 mice were housed in IVCs, pretreated by oral gavage 

either with streptomycin (25 mg/mouse) or ampicillin (25 mg/mouse) one day prior infection and infected 

by oral gavage with S. Tm. Strain identity and corresponding infective doses are indicated elsewhere, in 

result and legend parts. 

All mice were sacrificed in S2 conditions by cervical dislocation. Live bacterial loads in feces, cecal 

content, liver, spleen and mLN were determined by plating on MacConkey agar with respective antibiotics 

(streptomycin 50 μg/ml and ampicillin 100 μg/ml). 

 

 Ethics statement 3.2.4.4.

All animal experiments were reviewed and approved by the local ethics committee (55.2-1-54-2532-49-

11, 55.2-1-54-2532-13-15 and 55.2-1-54-2532-145-14) and performed according to the legal 

requirements. 

 

 Histopathological analysis 3.2.4.5.

Histology of the cecum was done at necropsy. Cecal tissue was embedded in Tissue-Tek Optimal Cutting 

Temperature (O.C.T.) compound, flash frozen in liquid nitrogen and stored at -80 °C. Cryosections (5 µm 

thick) of the cecal tissue were stained using hematoxylin and eosin (H&E), and then scored as described in 

(Stecher, Robbiani et al. 2007). Briefly, evaluation scored submucosal edema (score 0-3), 

polymorphonuclear neutrophils infiltration into the lamina propria (score 0-4), loss of goblet cells (score 

0-3) and epithelial damage (score 0-3). The total histopathological score for each tissue section was 

determined as the sum of all of these individual scores. Combined score 0-3: no to minimal signs of 

inflammation that are not sign of a disease. Combined score 4-7: moderate inflammation. Combined score 

above 8: severe inflammation. 

 

 Statistical analysis 3.2.4.6.

Determination of significance of differences among mouse groups was assessed using the exact Mann-

Whitney U test (MW) for comparison of two groups and the one-way ANOVA nonparametric Kruskal-

Wallis test for comparison of more than two groups. Statistical tests were performed using the software 

GraphPad Prism version 5.01 for Windows (GraphPad Software, La Jolla California USA, 
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www.graphpad.com). P values of less than 0.05 (two-tailed for MW) were considered as statistically 

significant. * P<0.05, ** P<0.01, *** P<0.001. 

 

http://www.graphpad.com/
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 Results – Establishment of a novel gnotobiotic mouse model to 4.

study host-microbiota-pathogen interactions 

 Gnotobiotic mice harboring a defined gut microbiota are widely used to study the complex 

mechanisms involving host-microbiota-pathogen interactions. Moreover, it is well established that the gut 

microbiota coevolves with its host (Seedorf, Griffin et al. 2014). Most of the gnotobiotic mouse models 

currently used is based on bacterial strains isolated from humans (Faith, Ahern et al. 2014, Slezak, 

Krupova et al. 2014). Up-to-date, the bacterial community of the Altered Schaedler Flora (ASF) model is 

the only one involving only mouse-derived bacteria (Dewhirst, Chien et al. 1999). However, ASF strains 

are not available in public strain collections, yet. 

 In this first chapter, I will present the establishment of a novel gnotobiotic mouse model based on 

a collection of mouse-derived strains. In order to generate a mouse-derived consortium, we isolated and 

characterized twelve intestinal commensal strains from specific pathogen-free (SPF) mice, the Oligo-

Mouse Microbiota (Oligo-MM). To colonize germfree mice in a reproducible manner, we established a 

method to inoculate the Oligo-MM as a single dose. To specifically detect the Oligo-MM strains and 

analyze microbial community composition, we developed three Oligo-MM specific analysis tools: a 16S 

rRNA gene-based amplicon sequencing approach, a quantitative fluorescence in situ hybridization (FISH) 

approach and a quantitative PCR assay. Moreover, we show that the Oligo-MM mediates colonization 

resistance (CR) against the human enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). 

Therefore, the Oligo-MM is a highly useful reductionist model system to study host-microbiota-pathogen 

interactions. 

 The Oligo-Mouse Microbiota, a consortium of mouse-derived 4.1.

commensal strains 

 Isolation of the Oligo-MM strains 4.1.1.

 To isolate mouse-derived commensal strains, we used cecal and fecal specimen from conventional 

mice raised in SPF conditions (Table 33). In order to sample cecal contents, mice were sacrificed, 

imported into an anaerobic chamber and dissected under anoxic conditions. To increase the proportion of 

spore-forming bacteria, a part of the fecal samples was sampled, heat-treated and directly frozen at -20 °C. 

Cecal and fecal contents were resuspended in anaerobic media and either plated on rich media or directly 
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used to inoculate liquid cultures. Furthermore, plates and cultures were incubated under anaerobic 

conditions. Once obtained in pure culture, the strains were grown using different anaerobic media, as 

detailed in Materials & Methods (3.2.1.2). We also established a method to cryopreserve anaerobic 

strains in glass vials at -80 °C using reducing agents, such as palladium black. 

 

 Morphology and taxonomic assignment of the Oligo-MM strains 4.1.2.

 In order to confirm the purity of each culture, we performed Gram staining and assessed bacterial 

morphology by light microscopy. We observed rather heterogeneous morphologies between individual 

pure cultures (Figure 6). 

 

Figure 6. Morphology of the Oligo-MM strains.  

Pure cultures (late logarithmic or stationary growth 
phase) were Gram-stained and bacteria were 
imaged using a light microscope (100-fold 
magnification). Color code refers to the phylum: 
bright blue: Actinobacteria; light orange: 
Bacteroidetes; red: Proteobacteria; purple: 
Verrucomicrobia and green: Firmicutes. Scale bar: 
10 µm. For taxonomic assignment, refer to Table 
35. 

 

 

  

 To taxonomically assign each strain, we used 16S rRNA gene sequencing. The full length 16S 

rRNA genes were amplified, cloned into a plasmid vector and sequenced. The 16S rRNA genes were 

aligned against different 16S rRNA databases (RDP, SILVA, NCBI blast, Greengenes) for taxonomic 

assignment (Table 35). 

 Finally, we isolated more than sixty strains from the mice. Out of this initial collection, we 

selected strains to meet the following criteria. The strains are cultivable in a reproducible fashion, 

cryopreservable and represent a diverse range of bacterial phyla abundant in the murine gut. In this way, 

twelve strains (the Oligo-MM12, Table 35) were selected: six strains were assigned to the phylum 

Firmicutes (YL31, YL32, YL58, I46, I49 and KB1), one strain to the Bacteroidetes (I48), one strain to the 

Actinobacteria (YL2), one strain to the Proteobacteria (YL45) and one strain to the Verrucomicrobia 
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(YL44). Two strains were included at a later time point: one strain assigned to the phylum Firmicutes 

(KB18) and one to the Bacteroidetes (YL27). The initial characterization was performed using only the 

first ten strains (the Oligo-MM10). Finally, among the Oligo-MM12 strains, four were taxonomically 

assigned as species Incertae Sedis, suggesting that they represent a novel species or even genus. 

 

Table 35. Taxonomic assignment of the Oligo-MM strains 

Taxonomic  
classification 

Strain 
ID 

Taxonomic  
Identity (Genus) 

SINA alignment 
score 

phylum Actinobacteria 
  class Actinobacteria 
    order Bifidobacteriales 
      family Bifidobacteriaceae 

 
 
 
YL2 

 
 
 
Bifidobacterium 

 
 
 

0.998 
phylum Bacteroidetes 
  class Bacteroidia 
    order Bacteroidales 
      family Bacteroidaceae 

 
 
YL27 
I48 

 
 
Bacteroidales; Incertae Sedis 
Bacteroides 

 
 

0.989 
0.999 

phylum Proteobacteria 
  class Betaproteobacteria 
    order Burkholderiales 
      family Sutterellaceae 

 
 
 
YL45 

 
 
 
Parasutterella 

 
 
 

0.978 
phylum Verrucomicrobia 
  class Verrucomicrobiae 
    order Verrucomicrobiales 
      family Verrucomicrobiaceae 

 
 
 
YL44 

 
 
 
Akkermansia 

 
 
 

0.998 
phylum Firmicutes 
  class Bacilli 
    order Lactobacillales 
      family Enterococcaceae 
      family Lactobacillaceae 
  class Clostridia 
    order Clostridiales 
      family Lachnospiraceae 
       
      family Ruminococcaceae 
   
class Erysipelotrichia 
    order Erysipelotrichales 
      family Erysipelotrichaceae 

 
 
 
KB1 
I49 
 
 
YL32 
YL58 
YL31 
KB18 
 
 
I46 

 
 
 
Enterococcus 
Lactobacillus 
 
 
Lachnospiraceae; Incertae Sedis 
Blautia 
Flavonifractor 
Ruminococcaceae; Incertae Sedis 
 
 
Erysipelotrichaceae; Incertae Sedis 

 
 
 

0.998 
0.999 

 
 

0.997 
0.997 
0.989 
0.986 

 
 

0.996 
Full length 16S rRNA gene sequences were aligned against the SILVA database using SINA alignment. 
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 Representation of the ASF and Oligo-MM strains in a conventional murine 4.1.3.

gut microbiota 

In order to determine if the isolated strains are abundant members of a conventional mouse 

microbiota, we generated a phylogenetic tree including full-length 16S rRNA gene sequences of a normal 

microbiota, the Oligo-MM12 and 8 ASF (ASF356, ASF360, ASF361, ASF457, ASF492, ASF500, ASF502 

and ASF519; ASF8) strains. We used full-length 16S rRNA gene sequences from the cecum of 

unmanipulated SPF mice harboring a conventional microbiota (Stecher, Robbiani et al. 2007). In this 

study, cecal contents from conventional mice were recovered and cecal DNA was extracted. The full 

length bacterial 16S rRNA genes were amplified by PCR, cloned into plasmid vectors and the inserts were 

sequenced. To this data set were included the full-length 16S rRNA gene sequences from the ASF8 and 

Oligo-MM12 strains. 

 

 Phylum distribution and abundance 4.1.3.1.

The ASF and Oligo-MM12 consortia harbor members taxonomically assigned to three and five of the 

most abundant bacterial phyla, respectively, from the seventeen phyla identified in the murine gut so far 

(Linnenbrink, Wang et al. 2013). In our dataset, we identified 7 different bacterial phyla. Two phyla, the 

Cyanobacteria and the Tenericutes, were only found in the samples from conventional mice (Figure 7). 

These two phyla were of low abundance, as only four and two reads were assigned to the Tenericutes and 

the Cyanobacteria, respectively (Table 36). One phylum was unique to the Oligo-MM12: the 

Actinobacteria (YL2). The phylum Deferribacteres, representing 4.2 % of the total reads in the 

conventional mouse gut (Table 36) is represented in the ASF (ASF457) but not in the Oligo-MM12. 

Compared to other studies, we found that another phylum, the TM7, was neither detected in the 

conventional mouse gut nor represented by ASF8 or Oligo-MM12 (Krych, Hansen et al. 2013). To 

conclude, ASF8 and Oligo-MM12 consortia represent three and four phyla, respectively found in the 

conventional mouse gut and one phylum, the Actinobacteria, was unique to the Oligo-MM12. 
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Figure 7.  Representation of Oligo-MM and ASF strains in a conventional mouse microbiota 
based on 16S rRNA gene sequences. 

Full length 16S rRNA gene sequences of the 12 Oligo-MM strains (red) as well as the 8 ASF 
strains (blue) (Dewhirst,  Chien et al.  1999) were compared against a set of 865 full-length high 
qualit y 16S rRNA gene sequences from 2 types of convent ional unmanipulated SPF mice (Stecher,  
Robbiani et al.  2007). All sequences were aligned against  the SILVA database version 111 NR 
(Quast,  Pruesse et al.  2013) using MEGABLAST version 2.2.28+ on a 97 % ident it y level,  yielding 
47 different  taxonomic ident it ies.  The best hit  of each of the 47 taxonomies from the database was 
used for the generat ion of a mult iple sequence alignment  using Infernal,  respect ively.  A 
phylogenet ic tree was generated using fast tree (Price,  Dehal et al.  2009). The number of sequences 
per taxonomic ident ity in the convent ional mice is indicated (e.g.  mice=20). The Oligo-MM 
strains,  which have at least one representat ive in the mouse dataset, are highlighted in bold.  Color 
code refers to  the phylum: br ight  blue: Actinobacteria; light  orange: Bacteroidetes; red: 
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Proteobacteria; purple: Verrucomicrobia; green: Firmicutes; light  blue: Deferribacteres and 
white: others.  Data analysis was performed by Hans-Joachim Ruscheweyh, Universit y of 
Tubingen. 

 

 OTU distribution and abundance 4.1.3.2.

For seven Oligo-MM12 strains, representatives at the OTU (Operational Taxonomic Unit) level were 

detected in the conventional mouse microbiota. Five were apparently not present in this community. 

However, we used other mice for isolation of the Oligo-MM strains (Table 36). Interestingly, YL27 was 

assigned to the most abundant taxon (i.e. S24-7) of the mouse microbiota. In contrast, three ASF strains 

were represented at the OTU level while five were not detected. We conclude that the Oligo-MM12 

consortium is quantitatively and qualitatively more complex than the ASF consortium and represents a 

diverse spectrum of the mouse microbiota. However, this data shows that a significant number of taxa 

represented in a conventional microbiota are not included in either consortium of strains. 

 

Table 36. Quantitative representation of Oligo-MM and ASF strains in a conventional mouse microbiota 

Phylum Class Family Genus Species Reads* Strain ID 

Bacteroidetes Bacteroidia S24-7     295 YL27 

Firmicutes Clostridia Lachnospiraceae     137   

Firmicutes Clostridia Ruminococcaceae     44   

Firmicutes Clostridia Ruminococcaceae Incertae Sedis   39 KB18 

Bacteroidetes Bacteroidia Porphyromonadaceae Parabacteroides goldsteinii 39 ASF519 

Verrucomicrobia Verrucomicrobiae Verrucomicrobiaceae Akkermansia muciniphila 34 YL44 

Deferribacteres Deferribacteres Deferribacteraceae Mucispirillum   34 ASF457 

Bacteroidetes Bacteroidia Bacteroidaceae Bacteroides   23 I48 

Bacteroidetes Bacteroidia Rikenellaceae Alistipes   21   

Firmicutes Clostridia Ruminococcaceae Oscillibacter   20   

Firmicutes Bacilli Lactobacillaceae Lactobacillus   18   

Firmicutes Clostridia Ruminococcaceae Anaerotruncus   14   

Bacteroidetes Bacteroidia Porphyromonadaceae Odoribacter   11   

Firmicutes Clostridia       11   

Bacteroidetes Bacteroidia S24-7     9   

Bacteroidetes Bacteroidia Bacteroidaceae Bacteroides acidifaciens 9   

Firmicutes Clostridia Lachnospiraceae Incertae Sedis   8   

Proteobacteria Deltaproteobacteria Desulfovibrionaceae Bilophila   7   

Firmicutes Clostridia Lachnospiraceae Coprococcus   6   
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Phylum Class Family Genus Species Reads* Strain ID 

Firmicutes Clostridia Ruminococcaceae Flavonifractor plautii 4 YL31 

Firmicutes Clostridia Ruminococcaceae Ruminococcus   4   

Tenericutes Mollicutes Anaeroplasmataceae Anaeroplasma   4   

Bacteroidetes Bacteroidia Prevotellaceae uncultured   4   

Firmicutes Bacilli Lactobacillaceae Lactobacillus reuteri 3 I49 

Firmicutes Clostridia Lachnospiraceae Roseburia   3   

Firmicutes Clostridia Peptococcaceae     3   

Proteobacteria Betaproteobacteria Alcaligenaceae Parasutterella   2 YL45 

Firmicutes Erysipelotrichi Erysipelotrichaceae Allobaculum   2   

Cyanobacteria 4C0d-2       2   

Bacteroidetes Bacteroidia Rikenellaceae     1   

Bacteroidetes Bacteroidia Porphyromonadaceae Parabacteroides distasonis 1   

Bacteroidetes Bacteroidia Porphyromonadaceae Parabacteroides   1   

Firmicutes Clostridia Ruminococcaceae Incertae Sedis   1 ASF500 

Firmicutes Clostridia Ruminococcaceae Anaerotruncus colihominis 1   

Firmicutes Clostridia Ruminococcaceae     1   

Firmicutes Clostridia Lachnospiraceae     1   

Proteobacteria Deltaproteobacteria Desulfonatronaceae Desulfonatronum   1   

Firmicutes Bacilli Enterococcaceae Enterococcus   -  KB1 

Firmicutes Erysipelotrichi Erysipelotrichaceae Incertae Sedis   - I46 

Firmicutes Clostridia Lachnospiraceae Clostridium clostridioforme - YL32 

Firmicutes Clostridia Lachnospiraceae Blautia   - YL58 

Actinobacteria Actinobacteria Bifidobacteriaceae Bifidobacterium   - YL2 

Firmicutes Clostridia Lachnospiraceae Eubacterium plexicaudatum - ASF492 

Firmicutes Clostridia Lachnospiraceae Clostridium   - ASF356 

Firmicutes Clostridia Lachnospiraceae Clostridium   - ASF502 

Firmicutes Bacilli Lactobacillaceae Lactobacillus   - ASF360 

Firmicutes Bacilli Lactobacillaceae Lactobacillus animalis - ASF361 
The number of sequences per taxonomic identity in the conventional mice (reads) is listed in descending order. 
Oligo-MM strains as well as their respective abundance in conventional microbiota are highlighted in bold (right 
column). Color code refers to the phylum: bright blue: Actinobacteria; light orange: Bacteroidetes; red: 
Proteobacteria; purple: Verrucomicrobia; green: Firmicutes; light blue: Deferribacteres and white: others. * Number 
of 16S rRNA gene sequences per taxonomic identity in conventional mice is taken from Stecher et al., 2007 (Stecher, 
Robbiani et al. 2007). Total number of reads analysed: 818 reads. 
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 Deposition of the Oligo-MM strains at the German type culture collection 4.1.4.

(DSMZ) 

Despite their broad application in preclinical research, ASF strains are not publicly available, which 

hampers in vitro and in vivo studies and limits utility of gnotobiotic ASF mouse model to analyze host-

microbiota-pathogen interactions. Therefore, in order to ensure long-term preservation and public 

accessibility, each strain was deposited in the German type culture collection (DSMZ; Deutsche 

Sammlung von Mikroorganismen und Zellkulturen). Briefly, each strain was sent to the DSMZ as a frozen 

vial, where lyophilized bacterial glass ampoules were generated. The ampoules were recovered from the 

DSMZ and strain purity and identity was confirmed by 16S rRNA gene sequencing. The accession 

numbers of the strains are listed in Table 32. 

 

 The Oligo-MM10 can be reproducibly transplanted to gnotobiotic 4.2.

mice from a frozen mixture 

To test whether the Oligo-MM strains can stably colonize the murine intestine, we aimed to inoculate 

ten of the strains (Oligo-MM10) into gnotobiotic ASF-colonized mice and follow bacterial colonization 

over time. To achieve this, we first established a protocol which allows reproducible colonization of 

gnotobiotic mice using a standard inoculum. 

In order to standardize inoculation of the Oligo-MM10 into gnotobiotic mice and to avoid repeated 

anaerobic culturing which might lead to significant experimental variation, we tested a method to 

inoculate the Oligo-MM10 mixture from frozen stocks. We reasoned that a frozen mixture containing all 

strains could be used as direct inoculum and thereby limit variations as e.g. introduced by bacterial growth 

state. In order to prepare the frozen stock, each Oligo-MM10 strain was grown individually. Actively 

growing cultures were mixed under anaerobic conditions and frozen at -80 °C as glycerol stocks. Frozen 

vials were thawed and used directly to orally and rectally inoculate mice under germfree conditions. 

Next, we tested if gnotobiotic mice could be reproducibly colonized with the Oligo-MM10. The mice 

used in these explorative experiments were colonized with a low-complexity microbiota harboring five 

ASF strains (the ASF5 mice) and bred in a germfree isolator. For the experiments, ASF5 mice were 

exported from the isolator and transferred into gnotocages. In order to monitor the Oligo-MM10 

composition over the course of 43 days, we performed two independent experiments where ASF5 mice 

were inoculated with the frozen Oligo-MM10 or left untreated as controls. In the first experiment, mice 
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were sacrificed either at day 0 before Oligo-MM10 inoculation (d0, ASF5) or at days 10 and 20 (d10, d20, 

ASF5 + Oligo-MM10). In the second experiment, mice were sacrificed at days 22 and 43 (d22, d43, ASF5 + 

Oligo-MM10) or left untreated for 43 days (d43, ASF5). All mice were housed in gnotocages throughout 

the experiments to avoid any possible contaminations (Figure 8A). 

 

 

Figure 8. Oligo-MM10 inoculation in ASF5 mice using frozen stocks harboring 10 Oligo-MM strains is efficient 
and reproducible. 
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Gnotobiotic mice stably colonized with 5 ASF strains (ASF360, ASF361, ASF457, ASF502 and ASF519; ASF5) 
were inoculated under germfree conditions with a frozen vial containing either 10 Oligo-MM strains (I46, I48, I49, 
KB1, YL2, YL31, YL32, YL44, YL45, YL58; Oligo-MM10) or the sterile media, as a negative control (no 
transplant). Briefly, Oligo-MM10 strains were separately grown to exponential phase and mixed before freezing. 
Frozen vials were defrozen at room temperature and directly used for oral and rectal inoculation. Microbial 
transplantation was performed at two independent occasions as indicated with star (*) and hash (#) symbols. In the 
first experiment, feces were sampled at days 0 (d0) and mice were sacrificed at d10 and d20 post-inoculation. In the 
second experiment, mice were sacrificed at d22 and d43 post-inoculation. Three mice were left untreated, as a 
negative control (ASF5, d43). (A) Experimental design. (B) Microbial composition of the Oligo-MM10 inoculum was 
determined using a hydrolysis probe based quantitative PCR assay with strain-specific primers and hydrolysis probe 
combinations. Data are expressed as relative abundance. (C-D) Microbiota composition of (C) feces at days 0, 10, 
20, 22 and 43 and (D) small intestine at days 10 and 20 was determined using amplicon sequencing. Sequencing data 
were processed using the QIIME pipeline and taxonomy was assigned using the Silva database. Data are presented as 
relative abundance at the taxonomic family level (1 mouse per column). Color code is indicated in taxonomic legend 
box. Taxonomic affiliation of the Oligo-MM and ASF strains is indicated (brackets). 

 

To confirm the presence of the individual Oligo-MM strains in the frozen Oligo-MM10 stock, bacterial 

gDNA was extracted and microbiota composition was analyzed by 16S rRNA amplicon sequencing and 

quantitative PCR (qPCR). In order to analyze the Oligo-MM10 composition over time, gDNA was 

extracted from fecal samples. In addition, DNA was extracted from small intestinal contents. Microbiota 

composition was analyzed by 16S rRNA amplicon sequencing and qPCR at different time points. Data 

were analyzed using the QIIME pipeline (Quantitative Insights Into Microbial Ecology) (Caporaso, 

Kuczynski et al. 2010) using either an open-reference database or a custom database containing all the 

twelve Oligo-MM and five ASF strains. To get an overview on microbial complexity, the alpha diversity 

was calculated using the amplicon sequencing data. We also determined the relative cecal weight which is 

known to be indicative for microbiota complexity (Bleich and Hansen 2012). 

All ten Oligo-MM strains were detected in the frozen Oligo-MM10 inoculum (Figures 8B and 9C). 

Interestingly, I46 was not detected with the qPCR assay, while it was detected by the amplicon sequencing 

analysis. Processed data of qPCR and amplicon sequencing are shown in annexed Tables 37, 38 and 39. 

Furthermore, about 70 % and 80 % of the fecal microbiota population were assigned to Gram-negative 

strains using qPCR and amplicon sequencing, respectively (Figures 8C, 9A and 12). Analysis of the fecal 

microbiota revealed that the majority of the Oligo-MM10 strains are detectable in the mouse gut at day 10, 

20, 22 and 43 post-inoculation. Their colonization appeared to be stable over 43 days (Figures 8C and 

9A). Interestingly, about 80 % of the fecal microbiota was assigned to Gram-negative bacteria (i.e. to 

Verrucomicrobia and Bacteroidetes) despite the inoculation of a relatively high number of Gram-positive 

strains (7 out of 10 strains, belonging to the phyla Firmicutes and Actinobacteria). Most of the Gram-

positive strains are present only at very low abundance and four strains, YL2, KB1, I46 and I49, were not 

detected in fecal samples by amplicon sequencing (Figures 8C and 9A). 
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Figure 9. Data from Figure 8 analyzed using open-reference approach based on a custom 16S sequence 
database. 

Microbiota composition was analyzed using the QIIME pipeline and taxonomy was assigned against a custom 
sequence database of the full length 16S rRNA gene sequences of the Oligo-MM12 and the ASF5 strains. (A) Fecal 
microbiota composition at days 0, 10, 20, 22 and 43. (B) Microbiota composition of the small intestine at days 10 
and 20. (C) Microbial composition of the frozen inoculum. Data are presented as relative abundance at the 
taxonomic genus level (1 mouse per column). Color code is indicated in taxonomic legend box. Taxonomic 
affiliation of the Oligo-MM and ASF strains is indicated (brackets). 

 

Significant differences in microbiota composition analyzed by amplicon sequencing were observed 

between the feces and the small intestine (Figures 9A,B). Three strains, YL2, KB1 and I46, were 

undetected in the feces but detectable in the small intestine. As I49 was assigned to the same genus as 

ASF360 and ASF361 (i.e. Lactobacillaceae, genus Lactobacillus), even though the Lactobacillus genus 

was detected, its absence remained unclear. We noticed similarities when comparing amplicon sequencing 

data processed with an open-reference database and a custom sequence collection (Figures 8D and 9B). 
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Furthermore, we found that cecal and fecal microbiota had comparable microbiota composition (Figure 

10). 

 

 

Figure 10. Comparison of fecal and cecal microbiota composition of ASF5 mice colonized with the Oligo-MM10 
consortium analyzed using open-reference approach based on a custom 16S sequence database. 

Data from Figure 9. Briefly, fecal and cecal microbiota compositions at days 10 and 20 (d10 and d20, respectively) 
were determined using amplicon sequencing. Sequencing data were processed using the QIIME pipeline and 
taxonomy was assigned against a custom sequence collection of the full length 16S rRNA gene sequences of the 12 
Oligo-MM (YL2, YL27, YL31, YL32, YL44, YL45, YL58, KB1, KB18, I46, I48, I49) and 5 ASF strains (ASF360, 
ASF361, ASF457, ASF502, ASF519). Data are presented as relative abundance at the taxonomic genus level and is 
representative of 1 experiment (1 mouse per column). Color code is indicated in taxonomic legend box. Taxonomic 
affiliation of the Oligo-MM and ASF strains is indicated (brackets). 

 

In conclusion, we established a method to reproducibly inoculate the Oligo-MM10 consortium as a 

frozen stock to gnotobiotic mice. These data point out that the majority of the Oligo-MM10 strains stably 

colonize the mouse gut over a time-course of 43 days. Besides the taxonomic profile, we also analyzed 

microbiota complexity using alpha diversity based on amplicon sequencing data and relative cecal weight. 

To calculate alpha diversity of the fecal microbiota, we used amplicon sequencing data (Figure 11A). 

To determine relative cecal weight, we recorded mouse and cecal weights from the two previous 

independent experiments as well as six extra control mice colonized with ASF5 (Figure 11B). 
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Figure 11. Microbiota complexity of ASF5-colonized mice increases after Oligo-MM10 inoculation. 

(A) Alpha diversity was determined as the observed species metric using amplicon sequencing data from Figure 8. 
Data are presented as mean and standard deviation. (B) Mouse cecum and body weight were recorded at different 
days post-inoculation and at three independent occasions as indicated with dollar ($), star (*) and hash (#) symbols. 
Data were plotted as relative cecal weight (%). Bars represent the median. ASF5 mice at d0 and d43 are depicted as 
half-empty circle and empty circle, respectively. ASF5 mice inoculated with the Oligo-MM10 consortium for 10, 20, 
22 and 43 days are depicted as square, triangle, inverted triangle and diamond, respectively. Mann-Whitney U test: * 
P<0.05. One-way ANOVA Kruskal-Wallis test: (B) P=0.0178. 

 

It has been shown that germfree mice exhibit a relative cecal weight of about 10 % (Stecher, Chaffron 

et al. 2010). At day 0, the relative cecal weight of ASF5 mice ranged between 6 to 8 %. We observed a 

slight decrease of the relative cecal weight after ten days of Oligo-MM10 inoculation. Interestingly, we 

noticed a second significant decrease at day 43 post-inoculation (Figure 11B). Surprisingly, the relative 

cecal weight of ASF5 mice was increased (from 6-8 % at d0 to 8-9 % at d43 post-inoculation). The reason 

for this remains unclear. Moreover, ASF5 + Oligo-MM10 mice showed increased microbiota complexity 

from day 10 to day 43 post-inoculation, as compared to ASF5 mice (Figure 11A). This correlates 

decreased relative cecal weight with increased microbiota complexity, as it was also previously observed 

(Itoh and Mitsuoka 1985). 

 Taken together, we established a method to efficiently and reproducibly colonize gnotobiotic mice 

with a well-defined anaerobic microbial consortium, the Oligo-MM10. Colonization of all Oligo-MM10 

strains was confirmed along the murine intestinal tract (except of YL2, which could not be detected). 

Importantly, we established the most complex-defined mouse-derived microbiota described until now. In 
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the next step, we set out to generate a mouse colony stably colonized with the Oligo-MM strains over 

several generations, the Oligo-MM mice. 

 

 The Oligo-MM12 stably colonizes the murine gut and is vertically 4.3.

transmitted over at least 4 filial generations 

 Next, we aimed to inoculate Oligo-MM strains into germfree mice in order to generate a mouse 

colony stably colonized with the Oligo-MM over consecutive filial generations.  

 To create the Oligo-MM12 consortium, we included two additional strains, YL27 and KB18. YL27 

was assigned to the Bacteroidales and KB18 to the Ruminococcaceae (for further details, refer to 

Figure 7). These strains were included as these two phylotypes belong to the most abundant in 

conventional mice (Table 35). Colonization of germfree mice was performed by Prof. Kathy McCoy at 

the University of Bern (Switzerland) using our established protocol. Two germfree breeding pairs (termed 

F0) were inoculated with the Oligo-MM12 and bred under germfree conditions in an isolator. Two 

breeding pairs from the F2 generation were shipped to our germfree facility and further bred in a germfree 

isolator. For each generation (from F0 to F4), feces from individual adult mice was sampled. Fecal DNA 

was extracted and microbiota composition was determined by qPCR (Markus Beutler, AG Stecher). 

Briefly, specific 16S-targeted primers and hydrolysis probes were designed to detect each 16S rRNA gene 

by absolute quantification. Relative abundance of each strain is shown by the fraction of individual 

divided by the sum of all. Besides lower costs compared to amplicon sequencing, one of the advantage of 

the qPCR assay is that it allows a more accurate quantification of the Oligo-MM12. However, bacterial 

contaminants cannot be detected. 
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Figure 12. Oligo-MM12 consortium stably colonizes germfree mice and is vertically transmitted over at least 4 
filial generations. 

Germfree C57Bl/6 mice were inoculated with a frozen mixture containing 12 Oligo-MM strains (I46, I48, I49, KB1, 
KB18, YL2, YL27, YL31, YL32, YL44, YL45, YL58; Oligo-MM12) and bred for 4 generations in germfree isolators 
at the Clean Mouse Facility, University of Bern (F0-F1) and Max-von-Pettenkofer Institute (F2-F4). Fecal samples 
were collected at each generation (F0 to F4). After gDNA extraction, fecal microbiota composition was determined 
using a hydrolysis probe based quantitative PCR assay. Data are given as relative abundance. One column represents 
one fecal sample. 

 

 We found that composition of the Oligo-MM12 remained stable over 4 filial generations (Figure 

12 and annexed Table 44). More than 90 % of the microbial population was composed of three strains 

(YL44; Verrucomicrobia and I48, YL27; Bacteroidetes). About 4 % of the fecal microbiota was assigned 

to YL45 (Proteobacteria). The Firmicutes strains made up only 5 % of the microbiota detected in the 

feces of Oligo-MM12-colonized mice. In decreasing order of abundance, we detected YL31, YL32 and 

YL58. I49, KB1 and KB18 were just above detection limit while the isolates I46 and YL2 were never 

detected with this approach. However, I46 was re-isolated by plating cecal content of a F3 generation 

mouse. Thereby, we confirmed that I46 colonized the Oligo-MM12 mice, even though it was not detected 

by qPCR (data not shown). 

 Surprisingly, we noted that the majority (95 %) of the fecal microbiota in Oligo-MM12 mice were 

Gram-negative strains, mainly assigned to the Verrucomicrobia (YL44) and the Bacteroidetes (YL27, 

I48). The minority left (5 %) was Gram-positive strains assigned to the Firmicutes. We reasoned that this 

might be due to a general low DNA extraction efficiency from the Gram-positive strains. 

 To conclude, we confirmed that eleven of the twelve Oligo-MM12 strains can colonize murine 

intestinal tract over 4 filial generations. Regarding YL2, we assume that this strain does either not 
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colonize the intestine of adult mice or is below the detection limit in the feces or present at higher 

abundance in other regions of the intestinal tract or is not viable after freezing. In conclusion, the Oligo-

MM12 stably colonizes the murine gut and is vertically transmitted over at least four generations. Up-to-

date, this Oligo-MM12 mouse colony represents the second gnotobiotic mouse model, after the ASF mice, 

harboring a defined consortium of mouse-derived bacterial strains. 

 

 The Oligo-MM12 consortium partially restores colonization resistance 4.4.

against Salmonella 

 It has been shown in a previous study that ASF-colonized mice lack colonization resistance (CR) 

against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm) (Stecher, 2010). 

Regarding the importance of studying the mechanisms of CR in the gut, we tested whether the Oligo-

MM12 microbiota was able to restore CR against S. Tm. 

 In order to determine whether the Oligo-MM12 consortium conferred CR against S. Tm, we used 

ASF-colonized mice harboring five ASF strains (ASF5), which lack colonization resistance. One group of 

ASF5 mice was inoculated with the Oligo-MM12 strains (ASF5 + Oligo-MM12), one group with cecum 

content from a conventional donor mouse (ASF5 + CON) and one mock-inoculated with sterile media as 

control. After microbiota transplantation, the microbiota was allowed to stabilize for 40 days (Figure 

13A). It has been shown that a complex conventional microbiota can restore CR in germfree mice against 

enteropathogens such as S. Tm (Stecher, Chaffron et al. 2010). For infection, we used an avirulent S. Tm 

strain (S. Tmavir) (Hapfelmeier, Ehrbar et al. 2004) as intestinal inflammation induced by S. Tmwt can alter 

microbiota composition and thereby alleviate colonization resistance (Stecher, Robbiani et al. 2007, 

Winter, Thiennimitr et al. 2010). Therefore, we can separate colonization resistance from S. Tm-mediated 

virulence mechanisms. 

 First, we determined gut microbiota composition and complexity at day 40 post-transplantation. 

We analyzed the fecal microbiota composition using 16S amplicon sequencing as well as qPCR and 

determined microbiota complexity of each experimental group by calculating the alpha diversity. To test 

whether the Oligo-MM12 restores CR against S. Tmavir, we orally infected mice with 106 colony forming 

unit (CFU) S. Tmavir and determined the bacterial load at day 1 post-infection (d1 p.i.) in feces and at d2 

p.i. in cecum content and mesenteric lymph nodes (mLN). In addition, we also determined the relative 

cecal weight at d2 p.i. 
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Figure 13. Fecal microbiota composition and diversity 40 days after transplantation with Oligo-MM12 or 
complex microbiota. 

(A) Experimental design. C57Bl/6 mice colonized with 5 ASF strains (ASF5 mice) were inoculated with either the 
Oligo-MM12 (ASF5 + Oligo-MM12; square, 4 mice) or frozen cecum content harvested from a conventional mouse 
(ASF5 + CON; triangle, 5 mice) or mock-inoculated with sterile media as a control (ASF5; circle, 5 mice). After 40 
days (d40), mice were orally infected with 106 CFU of an avirulent strain of S. Tm (S. Tmavir). Feces were sampled at 
day 1 post-infection (p.i.). At day 2 p.i., mice were sacrificed, organs sampled and the relative cecal weight was 
determined. (B) Alpha diversity was determined at d40 as the observed species metric. Data are presented as mean 
and standard deviation. ASF5; circle, ASF5 + Oligo-MM12; square, ASF5 + CON; triangle. (C) Fecal microbiota 
composition at d40 was determined using 16S rRNA gene amplicon sequencing. Sequencing data were processed 
using the QIIME pipeline and taxonomy was assigned against the Silva database. Data are presented as relative 
abundance at the taxonomic family level. One column represents one mouse. Color code is indicated in taxonomic 
legend box. Taxonomic affiliation of the Oligo-MM and ASF strains is indicated (brackets). 

 

 Using alpha diversity measurement, we confirmed that the three mouse groups harbored different 

microbiota complexities. In decreasing order, microbiota of ASF5 + CON mice was strikingly more 

complex than the microbiota of ASF5 + Oligo-MM12 mice, which was more complex than the microbiota 

of ASF5 mice (Figure 13B). Using 16S amplicon sequencing, we analyzed fecal microbiota composition. 

In ASF5 mice, four taxonomic family levels were detected suggesting that the five ASF strains would be 

present in the ASF5 mouse group (Figure 13C). However, both ASF360 and ASF361 strains are affiliated 
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to Lactobacillaceae. Therefore, we used a qPCR assay to detect more specifically bacterial strains. 

Contrary to ASF361 which was present in all ASF5 mice, ASF360 was never detected (Figure 14). Its 

presence remains unclear. In ASF5 + Oligo-MM12 mice, ten taxonomic family levels out of twelve were 

detected using 16S amplicon sequencing (Figure 13C). However, Erysipelotrichaceae and 

Deferribacteraceae were only detected in very low abundance. As for ASF5 mice, several strains were 

affiliated to the same taxonomic family. Using qPCR, we detected YL31 among the Ruminococcaceae as 

well as YL32 and YL58 among the Lachnospiraceae (Figure 14). Interestingly, ASF457 was better 

detected using qPCR. Finally, in ASF5 + Oligo-MM12 mice, the bacterial strains YL2, KB1, I49, KB18, 

ASF502, ASF360 and ASF361 were either not colonizing or under detection limit. In ASF5 + CON mice, 

microbiota composition analysis revealed fifteen different OTUs at the taxonomic family level (Figure 

13C). 

 

 

Figure 14. Fecal microbiota composition of ASF5 mice colonized with the Oligo-MM12 or mock-inoculated, 
analyzed using a hydrolysis probe based quantitative PCR assay. 

Fecal DNA from the experiment described in Figure 13 was analyzed to determine fecal microbiota composition 
using a hydrolysis probe based quantitative PCR assay. Data are given as relative abundance of the summed total 
reads of the individual strains. One column represents one fecal sample. 

  

 In summary, we confirmed the presence of four bacterial strains in ASF5 mice and ten strains in 

ASF5 + Oligo-MM12 mice. We showed that the majority of the Oligo-MM12 strains were present in ASF5 + 

Oligo-MM12 mice. Furthermore, we also set up three experimental groups with an increased microbiota 

complexity such as four different OTU at the taxonomic family level are present in ASF5 mice, ten in 

ASF5 + Oligo-MM12 mice and fifteen in ASF5 + CON mice.  
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 Next, we aimed to study CR in these three mouse groups. Therefore, we infected mice with 106 

CFU S. Tmavir and determined the bacterial load at d1 p.i. in feces and at d2 p.i. in cecum content and 

mLN. We also determined the relative cecal weight at d2 p.i. 

 At day 1 p.i., total pathogen loads were significantly reduced in feces from ASF5 + Oligo-MM12 

mice compared to the ASF5 mice (Figure 15A, p-value 0.0079) showing that Oligo-MM12 consortium 

increases CR of ASF5-colonized mice. Interestingly, there was no significant difference between the ASF5 

+ Oligo-MM12 and the ASF5 + CON mice. At day 2 post-infection, S. Tmavir loads were still significantly 

lower in ASF5 + Oligo-MM12 mice compared to ASF5 mice (Figure 15B). Similarly, in mLN, S. Tmavir 

loads were intermediate in ASF5 + Oligo-MM12 mice (Figure 15C). Relative cecal weight was 

significantly reduced in ASF5 + Oligo-MM12 mice. Mice transplanted with CON microbiota exhibited a 

low relative cecal weight which is in the normal range of conventional mice (Figure 15D) (Stecher, 

Chaffron et al. 2010). 

 These data indicate that the Oligo-MM12 consortium partially restored CR against S. Tmavir. 

Furthermore, the data suggest that a number of strains from a conventional microbiota are still missing in 

order to provide full colonization resistance. However, our data indicated that microbiota complexity 

positively correlates with CR. This could be due to the higher metabolic and functional diversity of a more 

complex microbiota. 

 In order to test this idea, we analyzed and compared the functionome of each microbial 

consortium using metagenomics analysis. 
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Figure 15. Oligo-MM12 consortium partially restores colonization resistance against S. Tmavir. 

S. Tmavir load at day 1 p.i. in (A) feces and at day 2 p.i. in (B) cecum and (C) mesenteric lymph nodes (mLN). (D) 
Relative cecal weight at day 2 p.i. Dotted lines: detection limit. Bars indicate medians. Mann-Whitney U test: ns=not 
significant (P≥0.05), ** P<0.01. One-way ANOVA Kruskal-Wallis test: (A) P=0.0045, (B) P=0.0025, (C) P=0.0024, 
(D) P=0.0019. 

  

 Functional analysis correlates functional capacity of intestinal 4.5.

microbiota and CR against Salmonella 

 To analyze and compare the functionome of each microbial consortium, we first performed whole-

genome shotgun sequencing of each Oligo-MM strains. Using either single shotgun genomes of Oligo-

MM and ASF strains (Wannemuehler, Overstreet et al. 2014) or metagenomes of conventional mice 

(JCVI 2013, Nanjing University 2013, Milk 2014, Wang, Linnenbrink et al. 2014), we generated artificial 

metagenomes which correspond to the three experimental communities: ASF5, ASF5 + Oligo-MM12 and 

ASF5 + CON. To determine the presence and completeness of functional modules in each community, 

predicted protein sequences were aligned against the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

database (Ogata, Goto et al. 1999) and gene families were organized into different functional units 

(Kanehisa, Goto et al. 2014). 
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 We found that, ASF5 + CON community encodes proteins belonging to more functional modules 

than ASF5 + Oligo-MM12 and ASF5, in decreasing order (Figure 16). This observation positively 

correlates with gut microbiota complexity and CR against S. Tmavir (Figures 13B and 15). Based on this, 

we hypothesized that the more functional modules are present within a gut community, the higher is the 

functional capacity of the community and, therefore, the more CR against S. Tmavir is observed. However, 

deciphering CR mechanisms appears challenging using functionome predictions based on complex gut 

communities. 

 Next, we aimed to study CR mechanisms by using decreased microbiota complexity based on 

ASF and Oligo-MM strains only. 
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Figure 16. Functionome analysis correlates functional diversity with colonization resistance. 

Heat maps illustrating KEGG module presence predicted for each artificial metagenome. Briefly, single shotgun 
genome sequences of 5 ASF and 12 Oligo-MM strains were used to create artificial metagenomes (ASF5 and Oligo-
MM12, respectively). KEGG analysis was performed to analyze functional diversity of microbiota ASF5, ASF5 + 
Oligo-MM12 and ASF5 + CON. A metagenome from 8 conventional mice was used (JCVI 2013, Nanjing University 
2013, Milk 2014, Wang, Linnenbrink et al. 2014). (A) KEGG modules absent from ASF5 microbial consortium and 
fully or partially present in ASF5 + CON and ASF5 + Oligo-MM12, respectively. (B) KEGG modules predicted as 
present in all three microbial communities, except of putative peptide transport system (M00583) which is only 
present in ASF5 + Oligo-MM12 community. Each line represents one KEGG module. Color code refers to 
completeness indicator of KEGG module: dark green: module complete; light green: 1 block missing; apple-green: 2 
blocks missing and white: module not present. 1: ASF5 + CON; 2: ASF5 + Oligo-MM12 and 3: ASF5. 

  

 Colonization resistance of Oligo-MM12 mice can be increased by 4.6.

transfer of ASF7 

 Our previous results showed that transplantation of the Oligo-MM12 can increase CR of ASF5 

mice against S. Tmavir and that functional capacity of the microbiota community correlated positively with 

CR. In order to better study the correlation between CR and functionome, we used two well-defined 

microbiota: the Oligo-MM12 and a consortium of eight ASF strains (ASF356, ASF360, ASF361, ASF457, 

ASF492, ASF500, ASF502, ASF519; ASF8). We first predicted and compared the functionome of CON 

community, the Oligo-MM12 and the ASF8, using metagenomics and KEGG module analysis, as described 

in Figure 16. 

 We found that CON community encodes proteins belonging to more functional modules than 

Oligo-MM12 and ASF8, in decreasing order (Figure 17). Interestingly, we also found that some functional 

modules are present in ASF8 community but absent from Oligo-MM12 (Figure 17A).  

 Previously, we hypothesized that the more functional modules are present within a gut community 

and the more CR against S. Tmavir is observed. Therefore, we aimed to generate a microbiota with 

increased number of functional modules by transplanting Oligo-MM12 mice with ASF8 microbiota. 
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Figure 17. Functionome analysis correlates microbiota complexity with functional diversity. 
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KEGG analysis was performed to analyze functional diversity of microbiota ASF8, Oligo-MM12 and CON. (A) Heat 
maps illustrating KEGG module presence predicted for each artificial metagenome. (B) KEGG modules predicted as 
present in all three microbial communities, except of putative peptide transport system (M00583) which is only 
present in Oligo-MM12 community. Each line represents one KEGG module. Color code refers to completeness 
indicator of KEGG module: dark green: module complete; light green: 1 block missing; apple-green: 2 blocks 
missing and white: module not present. 1: CON; 2: Oligo-MM12 and 3: ASF8. 

 

 To test whether transplantation of Oligo-MM12 mice with additional ASF strains would influence 

functionome predictions and CR, we used mice stably colonized with four ASF strains (ASF356, ASF361, 

ASF502, ASF519; ASF4) and mice stably colonized with the twelve Oligo-MM strains (Oligo-MM12). 

ASF4 and Oligo-MM12 mice were bred in different isolators and mice were transferred into gnotocages 

prior to the start of the experiment. In order to test whether transplantation of additional bacterial strains 

may influence CR, we inoculated a consortium of seven ASF strains (ASF356, ASF360, ASF361, 

ASF457, ASF500, ASF502, ASF519; ASF7) in either ASF4 or Oligo-MM12 mice. In addition, we 

transplanted ASF4 and Oligo-MM12 mice with sterile media, as controls (Figure 18A). Frozen inoculum 

of ASF7 was prepared as described in Materials & Methods (3.2.2.4.). After inoculation, the microbiota 

was allowed to stabilize for 40 days in gnotocages under germfree conditions. To analyze microbiota 

composition, feces were sampled at day 40 post-inoculation, fecal DNA was extracted and microbiota 

composition was analyzed by qPCR. At day 40 post-inoculation, all mice were orally infected with 5x106 

CFU S. Tmavir. Total pathogen loads were determined at day 1 post-infection (d1 p.i.) in feces and at d2 

p.i. in cecal content and in the mLN. We also calculated the relative cecal weight as a marker of 

microbiota complexity. 

 



Results 
 
 

90 
 

 

Figure 18. Establishment of gnotobiotic mice harboring an increased microbiota complexity. 

(A) Experimental design. C57Bl/6 mice harboring either 4 ASF strains (ASF356, ASF361, ASF502 and ASF519; 
ASF4) or 12 Oligo-MM strains (YL2, YL27, YL31, YL32, YL44, YL45, YL58, KB1, KB18, I46, I48, I49; Oligo-
MM12) were either inoculated with 7 ASF strains (ASF4 + ASF7, 5 mice; empty circle and Oligo-MM12 + ASF7, 6 
mice; empty square, respectively) or sterile media as control (ASF4, 3 mice; circle and Oligo-MM12, 6 mice; square, 
respectively). Seven ASF strains were orally and rectally inoculated with 6 ASF strains prepared as a frozen stock 
(ASF356, ASF360, ASF361, ASF457, ASF502, ASF519) and 1 ASF (ASF500) as actively growing culture. After 40 
days, mice were orally infected with 6x106 CFU S. Tmavir. Feces was sampled at day 1 post-infection (p.i.). At day 2 
p.i., mice were sacrificed and organs sampled. Relative cecal weight was determined at day 2 p.i. (B) Fecal 
microbiota composition was determined using a hydrolysis probe based quantitative PCR assay. Data are shown as 
relative abundance. One column represents one mouse. 
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 At day 40 post-inoculation, three bacterial strains were detected by qPCR in fecal samples of 

ASF4-colonized mice, four in ASF4 + ASF7, seven in Oligo-MM12 and twelve in Oligo-MM12 + ASF7 

(Figure 18B). Six bacterial strains (ASF360, ASF500, ASF502, YL2, I46, KB18) were never detected and 

two (I49 and KB1) were only found in feces at low levels. 

 At day 1 p.i., total pathogen loads were significantly reduced in feces from Oligo-MM12-colonized 

mice compared to ASF4 mice showing that stable colonization with the Oligo-MM12 consortium confers 

CR against S. Tmavir (Figure 19A, p-value 0.0275). Surprisingly, ASF4 mice harbouring three additional 

ASF strains (ASF4 + ASF7 mice) had higher pathogen loads compared to the Oligo-MM12 mice (p-value 

0.0043). This suggests that, in this case, the three additional ASF strains ASF360, ASF457 and ASF500 

(with only ASF457 being detected by qPCR) decreased CR against S. Tmavir. At day 2 p.i., S. Tmavir loads 

were still significantly lower in Oligo-MM12 mice as compared to ASF4 mice (Figure 19B, p-value 

0.0238). Similarly, S. Tmavir loads were significantly lower in Oligo-MM12 + ASF7-colonized mice as 

compared to ASF4 + ASF7-colonized mice (p-value 0.0043). Strikingly, pathogen loads were significantly 

lower in mice harbouring the Oligo-MM12 + ASF7 consortium as compared to their Oligo-MM12-colonized 

littermate controls (p-value 0.0043) suggesting that the increase of microbiota complexity correlates with 

the increase in CR, in this case. Thus, the addition of ASF strains can only increase CR in the context of 

the Oligo-MM12. This suggests that ASF strains might occupy different niches in ASF4-colonized mice as 

compared to Oligo-MM12 mice. Interestingly, very low or no pathogen colonization was observed in mLN 

of Oligo-MM12- and Oligo-MM12 + ASF7-colonized mice, respectively, whereas mLN of ASF4- and ASF4 

+ ASF7-colonized mice were significantly higher colonized by S. Tmavir, as compared to Oligo-MM12-

colonized mice (Figure 19C, p-values 0.0357 and 0.0079, respectively). Relative cecal weight was 

significantly reduced in Oligo-MM12- and Oligo-MM12 + ASF7-colonized mice as compared to ASF4- and 

ASF4 + ASF7-colonized mice (Figure 19D). 
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Figure 19. Microbiota complexity correlates with increased colonization resistance against S. Tmavir. 

S. Tmavir load at day 1 p.i. in (A) feces and at day 2 p.i. in (B) cecum and (C) mesenteric lymph nodes (mLN). (D) 
Relative cecal weight at day 2 p.i.. Dotted lines: detection limit. Bars represent medians. Mann-Whitney U test: ** 
P<0.01. One-way ANOVA Kruskal-Wallis test: (A) P=0.0013, (B) P=0.0009, (C) P=0.0013, (D) P=0.0028. 

 

 In conclusion, these results clearly show that Oligo-MM12-colonized groups are more resistant 

against S. Tmavir colonization than ASF4-colonized groups. 

 In order to investigate potential CR mechanisms, we analyzed and compared the functionome of 

each microbiota using metagenomics and KEGG module analysis as described in Figure 16. We 

hypothesized that analyzing these well-defined consortia combined with their respective CR phenotypes 

observed during S. Tmavir infection would help us deciphering potential functional modules responsible for 

CR against S. Tmavir. 

 We found that Oligo-MM12 + ASF7 community encodes proteins belonging to more functional 

modules than Oligo-MM12, ASF4 + ASF7 and ASF4, in decreasing order (Figure 20A). As previously 

noticed in Figure 16, this observation correlates with gut microbiota complexity and CR property against 

S. Tmavir (Figures 18B and 19B). When comparing Oligo-MM12- with ASF4-colonized mouse groups, the 

analysis revealed that functional modules pointed out in block “B” was present in Oligo-MM12- but not in 

ASF4-colonized mouse groups (Figure 20B). Combined with S. Tmavir infection experiment (Figure 19), 
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it suggests that either a part or all of these functional modules (e.g. nitrate respiration and osmotic stress 

response) may be implicated in CR mechanisms against S. Tmavir. When comparing Oligo-MM12 + ASF7 

and Oligo-MM12 communities, we found that encoded proteins belonging to functional modules showed in 

block “D” are present in Oligo-MM12 + ASF7-colonized mice but not in Oligo-MM12 community (Figure 

20D). Together combined with S. Tmavir infection experiment (Figure 19), it suggests that functional 

modules found in this “D” block (e.g. type VI secretion system and envelope stress response) may be 

important for CR. We have previously shown that S. Tmavir loads in feces, cecal content and mLN of 

ASF4- and ASF4 + ASF7-colonized mice were similar (Figure 19A-C). According to this functionome 

analysis, ASF4 + ASF7 community showed encoded proteins belonging to functional modules presented in 

block “C” and in a subpart of block “D” which are absent of ASF4 community (Figure 20C,D) which 

suggests that these functional modules may not play a direct role in CR against S. Tmavir. As an example, 

type VI secretion system might not be a good candidate involved in CR mechanisms against S. Tmavir or 

may be differentially activated in the context of Oligo-MM12 + ASF7 mice as compared to ASF4 + ASF7-

colonized mice.  

 We conclude that by using this approach, we are able to generate hypotheses about potential 

pathways and functions involved in CR. 
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Figure 20. Functionome analysis indicates potential metabolic pathways involved in CR against S. Tm 

KEGG module analysis was performed to analyze functional capacity of ASF4, ASF4 + ASF7, Oligo-MM12 and 
Oligo-MM12 + ASF7 microbiota. In silico assemblies (artificial metagenomes) of individual genome sequences were 
generated. (A) Overview. Heat map illustrating presence and absence of KEGG modules in each artificial 
metagenome. (B-D) Zoom in of rectangles. (B) Modules only present in Oligo-MM12-colonized groups. (C) Modules 
absent from ASF4 mice and present in other groups. (D) Modules entirely or partially present in ASF-colonized 
groups. Each line represents one KEGG module. Color code refers to completeness indicator of KEGG module: dark 
green: module complete; light green: 1 block missing; apple-green: 2 blocks missing and white: module not present. 
1: Oligo-MM12 + ASF7; 2: Oligo-MM12; 3: ASF4 + ASF7 and 4: ASF4. 

 

 Next, we aimed to decipher single bacterial strains involved in CR against S. Tm. To this end, we 

combined previous results from functional analysis of artificial metagenomes with functional analysis of 

single ASF and Oligo-MM strains. 

 Firstly, we found that some KEGG modules potentially involved in CR against S. Tmavir were 

specific to few strains only (Figure 21A). For example, KEGG module predicted to be involved in 

envelope stress response (M00450) is only found in ASF502; KEGG modules predicted to be involved in 

osmotic stress response (M00445 and M00461) are only present in YL45 and KB1, respectively. More 

generally, KEGG modules predicted to encode proteins involved in respiration, dissimilation, reduction or 

assimilation of nitrate are present in the bacterial strains YL45, I48, I49, ASF457 and ASF519 (Figure 

21A). Secondly, we found that some KEGG modules were more likely specific of either Gram-positive or 

Gram-negative strains (blocks “C” and “D”, respectively) (Figure 21B). Finally, other KEGG modules 

(block “E”) were mostly predicted as conserved functions in all bacterial strains (Figure 21B). 

Importantly, the incompleteness of KEGG modules (i.e. one or two block missing) could be due to 

sequencing errors or incomplete databases. Most likely, the genomes of these organisms contain a high 

fraction of genes with unknown functions, which remains to be described. All together, these observations 

suggest that CR might be explained by the presence or the absence of certain KEGG modules. 

 In conclusion, further experiments are required to determine the contribution of individual strains 

and their functions in CR against S. Tm. 
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Figure 21. KEGG module analysis of single ASF and Oligo-MM strains. 

Heat map illustrating the functionome analysis of 8 ASF strains (ASF356, ASF360, ASF361, ASF457, ASF492, 
ASF500, ASF502 and ASF519) and 12 Oligo-MM strains (YL2, YL27, YL31, YL32, YL44, YL45, YL58, KB1, 
KB18, I46, I48, I49) using KEGG analysis. (A) Modules mostly specific of few strains. (B) Modules present or 
absent in all strains and mainly present in Gram-positive strains (block C), Gram-negative strains (block D) or 
conserved (block E). Each line represents one KEGG module. Color code refers to completeness indicator of KEGG 
module: dark green: module complete; light green: 1 block missing; apple-green: 2 blocks missing and white: 
module not present. Each column represents one strain. 

 

 To conclude, using this well-defined experimental design combined with metagenomics and 

functionome analyses, we generated new hypotheses and isolated functional modules which could be 

involved in CR against S. Tmavir. As an example, we showed that nitrate respiration and stress responses 

may be potentially involved in CR mechanisms (Figures 19 and 20). We also pointed at other pathways 

specific to conventional microbiota, which remain to be described (Figures 15 and 16). Finally, we 

demonstrated that the Oligo-MM model is a powerful tool to study CR mechanisms using metagenomics, 

functionome analysis, qPCR, 16S rRNA gene-based amplicon sequencing and single strain cultivation. 

 

 Establishment of a fluorescence in situ hybridization assay to detect, 4.7.

localize and quantify individual Oligo-MM strains 

 The majority of research groups studies gut microbiota composition by gDNA extraction-based 

approaches such as qPCR and 16S rRNA gene amplicon sequencing. However, it becomes more and more 

apparent that such techniques misestimate the true ratio between Gram-positive and Gram-negative 

bacteria, as Gram-positive bacteria are partially refractory to cell lysis in DNA extraction protocols. This 

leads to underestimate the abundance of Gram-positive strains. Moreover, such techniques do not provide 

any information on bacterial localization in the gut, which impedes ecological and interactional studies. 

 In order to detect and localize single bacterial strains in tissue sections, we established a 

fluorescence in situ hybridization (FISH) assay. To quantify the abundance of specific bacterial 

populations and confirmed gDNA extraction-based data, we also developed a computational approach 

using the software digital image analysis in microbial ecology (DAIME) (Daims, Lucker et al. 2006). 

 FISH was performed as described in Materials & Methods (3.2.3.15.). Briefly, full-length 16S 

rRNA genes of ASF and Oligo-MM strains were computationally aligned and specific probes were 

designed using CLC DNA Workbench 6.0.2 software. To increase the fluorescence signal, each 

oligonucleotide probe was double-labelled with either fluorescein isothiocyanate (FITC) or cyanine 3 
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(Cy3). To target the entire eubacterial population, a 1:1 mixture of Eub338 I (Amann, Binder et al. 1990) 

and Eub338 III (Daims, Bruhl et al. 1999) (Eub338 I/III) was double-labelled with cyanine 5 (Cy5). After 

optimization of fluorescence signal using formamide concentration series (Table 34), probe specificity 

was tested on all other strains. FISH was performed on PFA-fixed cecal cryosections and images were 

taken using confocal microscopy. Images were analyzed using the DAIME software (Daims, Lucker et al. 

2006). It is known that intestinal cells and plant fibers emit auto-fluorescence which hampers 

computational image analysis. In order to deplete this unspecific auto-fluorescent background, FITC and 

Cy3 channels were subtracted from Cy3 and FITC channels, respectively, using the DAIME software. 

 Gut environment harbors different bacterial niches. For example, microbiota composition of 

mucus layer differs from the gut lumen (Li, Limenitakis et al. 2015). First, we wanted to test whether we 

could detect mucosal enrichment of a bacterial population using this approach. It is known that 

Akkermansia muciniphila is able to degrade mucin (Derrien, Vaughan et al. 2004). Therefore, we used the 

Oligo-MM strain YL44. We hypothesized that YL44 might be enriched at the cecal mucus layer. 

 To confirm that Muc1437 probe allowed detection of YL44 in vivo, we used gnotobiotic mice 

colonized with a low complexity microbiota (LCM) as negative control and LCM mice colonized with 

YL44 (LCM + YL44) for 21 days, as positive control. We performed FISH and DAIME analysis on these 

mice as well as on Oligo-MM12-colonized mice (Oligo-MM12) to analyze the distribution of bacterial 

population across cecal cross-sections. Sections were hybridized with Muc1437-Cy3 and Eub338 I/III-

Cy5, and then DNA was stained with DAPI. Confocal images were taken and merged images were 

virtually sliced from the epithelial border to the gut lumen (40 µm thick) and slicer templates were applied 

to grey level images (Figure 22D-F). Biovolume of targeted bacterial population (Muc1437-Cy3+) was 

calculated relative to biovolume of all Eub338 I/III-Cy5+ population. 
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Figure 22. Establishment of a FISH assay to localize and quantify single strains in the Oligo-MM12 mouse gut. 

Gnotobiotic mice stably colonized with a low complexity microbiota (LCM) (A, D, G) were inoculated with YL44 
for 21 days (LCM + YL44) (B, E, H). Mice were stably colonized with 12 Oligo-MM strains (I46, I48, I49, KB1, 
YL2, YL27, YL31, YL32, YL44, YL45, YL58, KB18; Oligo-MM12) (C, F, I). Upper right squares in A-C are the 
respective zoom in. (A-C) FISH on PFA-fixed cecal cryosections targeting all bacteria (Eub338-I/III, blue), YL44 
(Muc1437, red) or gDNA (DAPI, grey). Scale bars: 25 µm. White line: epithelial border. (D-F) Slicer template 
generated by DAIME. Same magnification as for (A-C). Colors represent the different virtual layers from the 
epithelial border (dark red) to the gut lumen (light blue). Thickness: 40 µm. (G-I) YL44 biovolume quantification 
relative to Eub338 probe signal using DAIME in (G) LCM-colonized mouse (3 mice, 12 pictures), in (H) LCM + 
YL44-colonized mouse (3 mice, 34 pictures) or in (I) Oligo-MM12-colonized mice (5 mice, 33 pictures). Detection 
limit is given by signal detected in (G): 0.65 %. Data are given as mean and standard deviation. Mann-Whitney U 
test: *** P<0.001. One-way ANOVA Kruskal-Wallis test: (G) P=0.6514, (H) P<0.0001, (I) P=0.0643. 
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 On cecal cross-sections of LCM-colonized mice, we observed low Muc1437 signal (Figure 

22A,G). As this signal was not co-localized with Eub338 I/III signal, we concluded that the signal derived 

from unspecific binding of the probe to the cecal content, which might be due to the fluorophore itself 

(Cy3, in this case). We confirmed this hypothesis using another fluorophore (FITC) which appeared to 

exhibit less unspecific binding (data not shown). On cecal sections of LCM + YL44-colonized mice, we 

observed that Muc1437 probe hybridized to small coccoid bacterial cells similar to YL44 which seemed to 

be enriched at the epithelial border (Figure 22B). When calculating YL44 relative biovolume, we 

confirmed that YL44 was significantly enriched between 0 and 40 µm from the epithelial border 

compared to deeper layers within the lumen (Figure 22H). However, on cecal sections of Oligo-MM12-

colonized mice, YL44 was homogenously distributed in cecal cross-section (Figure 22C). This was 

confirmed by the relative biovolume showing no enrichment between 0 and 240 µm from the epithelial 

border (Figure 22I). 

 To sum up, we established a new approach combining FISH and DAIME analysis in order to 

specifically detect and quantify a bacterial population through cecal cross-sections. We showed that YL44 

was enriched at the epithelial border in LCM + YL44-colonized mice but not in Oligo-MM12-colonized 

mice. This suggests that the distribution of YL44 bacterial population in mouse cecum is dependent on 

microbial context. 

 Due to different composition of their cell wall, Gram-negative and Gram-positive bacteria exhibit 

distinct cell wall permeability. This can also affect bacterial lysis during gDNA extraction, which is used 

for qPCR or 16S rRNA gene-based microbiome analysis (Salonen, Nikkila et al. 2010, Maukonen, Simoes 

et al. 2012). Therefore, we wanted to validate this approach for a Gram-positive strain assigned to the 

Lachnospiraceae family (YL58). By FISH, we aimed at comparing relative biovolumes of YL58 and 

YL44 which are Gram-positive and -negative strains, respectively, with relative 16S rRNA gene copy 

abundance determined using qPCR and 16S rRNA gene-based amplicon sequencing in stably colonized 

Oligo-MM12 mice. To specifically target YL58, we designed probe YL58_180 (Table 4). In order to test 

binding specificity, we used another negative control approach and designed the YL58_180_negctrl probe. 

YL58_180_negctrl probe is the reverse-complement sequence of YL58_180 and is not targeting any of the 

Oligo-MM strains. Finally, we compared the relative abundance of 16S rRNA gene copy numbers with 

the relative biovolume for both strains. All three analyses were performed on Oligo-MM12 mice (Figure 

23). 
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Figure 23. Detection and relative quantification of, YL58, a Gram-positive strain present in Oligo-MM12 
mouse cecum. 

FISH on PFA-fixed cecal cryosections of Oligo-MM12 mice targeting all bacteria (Eub338-I/III), gDNA (DAPI) and 
either none as negative control (YL58_180_negctrl, reverse complement probe of YL58_180) (A) or YL58 
(YL58_180) (B). (A) Background and unspecific signal relative to Eub338-I/III signal quantified using DAIME (3 
mice, 9 images). (B) YL58 biovolume quantification relative to Eub338-I/III signal using DAIME (5 mice, 39 
images). Colors represent the different virtual layers from the epithelial border (dark red) to the gut lumen (light 
blue). Thickness: 40 µm. Detection limit is given by signal detected in (A): 0.17 %. Data are presented as mean and 
standard deviation. One-way ANOVA Kruskal-Wallis test: (A) P=0.2248, (B) P=0.7612. 

 

 We found that YL58 was homogeneously distributed in Oligo-MM12-colonized mice between 0 

and 240 µm from the epithelial border (Figure 23). As the FISH and DAIME analysis were not performed 

on all Oligo-MM strains, biovolume data were determined as relative to Eub338 I/III signals. Therefore, 

we could not directly compare gDNA-extraction and rRNA-based approaches. Interestingly, we could 

show that 26.1±6.1 % and 24±7.7 % 16S rRNA gene copy abundance of YL44 were detected using qPCR 

and 16S rRNA gene-based amplicon sequencing, respectively, whereas about 8.3±5 % was detected using 

FISH (Figure 24). We also found that 0.34±0.09 % and 0.24±0.07 % 16S rRNA gene copy abundance of 

YL58 were detected using qPCR and 16S rRNA gene-based amplicon sequencing, respectively, whereas 

more than 20 % was detected using FISH. 
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Figure 24. Detection and relative quantification of YL58 and YL44 by FISH analysis reveals misestimation of 
this strain using gDNA-based quantitative approaches. 

Quantitative real-time PCR (qPCR), amplicon sequencing (454-seq) and FISH were performed on the same Oligo-
MM-colonized mice (n = 4, F2 generation, 8-9 weeks old females) in order to compare different analysis methods. 
Fecal gDNA were extracted using a modified QIAmp DNA Stool kit protocol including a bead-beating step and 
relative bacterial abundance was determined by qPCR and amplicon sequencing, as described in Figures 9 and 12. 
Relative abundance of 16S rRNA gene copies is given in percentage. FISH was performed as previously described 
(see Figures 22 and 23) on cecal cryosections. Relative biovolume abundance is given in percentage. Color code 
refers to the strain: purple: YL44 and green: YL58. 

 

 In conclusion, we validated FISH and DAIME analysis for a Gram-positive strain, YL58. We 

showed that in cecum of Oligo-MM12-colonized mice YL58 was equally distributed between 0 and 240 

µm from the epithelial border. Moreover, our results point out at under- and over-estimation of the 

abundance of Gram-positive and –negative strains, respectively, using qPCR and 16S rRNA gene-based 

amplicon sequencing, as compared to FISH approach. 
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 Results - The role of the mucus layer and the microbiota during 5.

Salmonella enterica serovar Typhimurium infection 

 The intestinal mucus layer is widely known to provide protection against enteric infections. 

Mucus-deficient mice were shown to be more susceptible to infection with enteric pathogens such as 

Citrobacter rodentium and Salmonella enterica serovar Typhimurium (S. Tm) as compared to 

heterozygous mice (Bergstrom, Kissoon-Singh et al. 2010, Zarepour, Bhullar et al. 2013). However, 

mucus-deficient mice also develop spontaneous colitis already at young age, which hampers analyzing the 

course of enteric pathogen infections and induction of inflammation (Van der Sluis, De Koning et al. 

2006, Wenzel, Magnusson et al. 2014). Anterior gradient homolog 2 (AGR2) is a member of the protein 

disulfide isomerase family (Persson, Rosenquist et al. 2005). Expressed in mucus-producing cells, AGR2 

is essential for correct folding and export of MUC2, the major component of the cecal and colonic mucus 

layer (Park, Zhen et al. 2009). Contrary to previous studies (Zhao, Edwards et al. 2010), we never 

observed spontaneous colitis of AGR2-deficient (AGR2ko) mice in our animal facility. 

 The second chapter of this thesis deals with the role of the intestinal mucus layer and the 

microbiota in enteric S. Tm infection of AGR2ko mice. We observed that streptomycin-treated AGR2-

deficient (AGR2ko) mice but not ampicillin-treated mice were protected against early S. Tm-induced 

colitis (day 1 p.i.) as compared to heterozygous littermate controls (AGRhet). Analyses of the composition 

of the intestinal microbiota revealed that this protective effect might be due to a differential microbiota 

composition in AGR2ko vs AGR2het mice rather than the genetic background of the mice. Microbiome 

analyses of streptomycin- versus ampicillin-treated animals enabled us to narrow down potential 

protective candidates against S. Tm-induced colitis. In addition, by using GFP-reporters of S. Tm 

virulence gene expression, we could show that expression of the type III secretion system 1 (T3SS-1) was 

downregulated in the protected group and significantly less S. Tm were found to invade the mucosa of 

streptomycin-treated (sm-treated) AGR2ko mice. 
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  AGR2ko mice exhibit a defect in MUC2 secretion in the cecal mucosa 5.1.

 In 2009, Park et al., showed that AGR2 wild-type (AGR2wt) mice secrete the intestinal mucin 

MUC2 but not AGR2ko mice (Park, Zhen et al. 2009). In order to investigate whether AGR2het mice also 

secrete MUC2 in cecum, we performed immunofluorescent staining of MUC2, a major component of the 

cecal mucus layer. As Bergström et al., we found that cecal goblet cells of AGR2het mice secreted MUC2 

which was absent in AGR2ko littermates (Figure 25) (Bergstrom, Berg et al. 2014). Thus, we decided to 

use AGR2het mice as controls to study the role of the mucus layer in the AGR2ko mouse model. In order to 

obtain a higher proportion of KO genotype in littermate experimental groups, we bred AGR2het X AGR2ko 

mice. 

 

Figure 25. AGR2ko mice show defective mucin 

secretion compared to AGR2het littermate controls. 

Immunofluorescent staining of MUC2 on paraffin 
embedded cecal sections of AGR2ko and AGR2het mice. 
Mice were sacrificed before (untreated) or 24 h after 
streptomycin treatment (sm-treated), cecal tissue was 
sampled, fixed in Carnoy’s solution and embedded in 
paraffin. Immunofluorescent staining was performed on 
sections (5 µm thick) using DAPI (light grey) and sytox 
green (green) to visualize nuclei and bacterial DNA, 
respectively, as well as anti-MUC2 H-300 antibody (red) 
to visualize MUC2 production in goblet cells as well as 
intestinal secretions (arrows). Pictures were taken using 
confocal microscopy and are representatives of 2 
independent experiments (5-6 mice per group, 3 pictures 
per mouse). Scale bar: 40 µm. 

 

 

 AGR2ko mice show significantly attenuated inflammation 1 day post 5.2.

S. Tm infection compared to littermate controls in sm-treated mice 

 Because the intestinal microbiota is known to provide colonization resistance (CR) against S. Tm 

in specific pathogen-free (SPF) mice, we used streptomycin (sm) treatment to decrease microbiota density 

and allow S. Tm to colonize mouse intestine and induce colitis (Barthel, Hapfelmeier et al. 2003). To test 

whether mucins were still secreted in AGR2het mice after sm-treatment, we also used immunofluorescent 
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staining targeted MUC2. We observed that sm-treated AGR2het cecal epithelial cells were still covered by 

mucus layer while AGR2ko were not showing MUC2 secretion (Figure 25). 

 It is already known that mice deficient in mucus secretion are more susceptible to infection with 

different enteric pathogens. However, it remains unclear whether this increased susceptibility to infections 

is correlated with spontaneous colitis. The lack of MUC2 allows the microbial community to come in 

direct contact with the epithelial border, penetrate deeply in the normally sterile crypt space or even 

invade into epithelial cells. This leads to spontaneous colitis in the majority of mucus-deficient mouse 

models such as Muc2ko, AGR2ko and Winnie mouse models (Van der Sluis, De Koning et al. 2006, Zhao, 

Edwards et al. 2010, Eri, Adams et al. 2011). 

 In order to determine whether AGR2ko mice, which exhibit reduction of MUC2 secretion in the 

large intestine, are more susceptible to S. Tm infection as compared to AGR2het littermates, we infected 

sm-pretreated mice with 105 to 106 CFU S. Tm wild-type (S. Tmwt) harbouring a plasmid that encodes 

GFP under control of the SPI-2 promoter pssaG (S. Tmwt,gfp). S. Tmwt,gfp infection was performed one day 

after sm-treatment (25 mg/mouse). Mice were sacrificed and total pathogen loads were determined at days 

1, 2 and 3 p.i. in cecal content and mesenteric lymph nodes (mLN). As markers of inflammation and 

pathology, we determined the inflammation marker lipocalin-2 (Lcn2) concentrations in cecal content and 

assessed cecal inflammation using a histopathological score, respectively. We also recorded the mouse 

weight over-time. 

 At days 0, 1 and 2 p.i., weight loss of sex and age matched AGR2ko mice was significantly more 

pronounced in AGR2ko mice, in particular 24 h after sm-treatment (Figure 26A, p-value <0.0001). The 

reason for this currently remains unclear. At d1 p.i., total pathogen loads were significantly increased in 

cecal content of AGR2ko mice as compared to AGR2het mice (Figure 26B, p-value 0.0195). This 

difference disappeared from d2 p.i. on. AGR2ko and AGR2het mice show similar increase of pathogen 

loads in mLN over-time showing an increased tissue invasion and/or S. Tmwt,gfp cell replication (Figure 

26C, p-value 0.0099). Surprisingly, despite increased S. Tmwt,gfp loads in cecal content of AGR2ko mice, 

AGR2ko mice showed less inflammation in the cecum at d1 p.i. as compared to AGR2het mice (Figure 

26D,F, p-value 0.0004). This has been confirmed by significantly reduced Lcn2 levels on the cecal 

content at d1 p.i. (Figure 26E). 
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Figure 26. AGR2ko mice show attenuated inflammation 1 day post-S. Tmwt oral infection compared to 
AGR2het mice. 

AGR2het and AGR2ko mice were orally gavaged with a single dose of streptomycin (sm; 25 mg/mouse). One day 
after sm-treatment (d0), mice were orally gavaged with 105 to 106 CFU S. Tmwt harbouring pM973 plasmid, which 
constitutively expresses GFP (S. Tmwt,gfp). Infected and uninfected mice were sacrificed either before infection (d0) 
or post-infection (p.i.) at days 1, 2 or 3 (d1, d2 or d3). (A) Mouse weight was recorded over-time and is relative to 
the initial weight recorded before sm-treatment. Data are given as percentage. (B-C) S. Tmwt,gfp load was determined 
at days 1, 2 and 3 p.i. in (B) cecum and (C) mesenteric lymph nodes (mLN) by plating. (D) Histopathological 
analysis of cecal tissue of the infected mice shown in (A-E). Cecal tissue sections were stained using hematoxylin 
and eosin. The degree of submucosal edema, neutrophil infiltration and epithelial damage was scored in a double-
blinded manner. Data are given without the goblet cells score. 0-3: no pathological changes; 4-7: moderate 
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inflammation; above 8: severe inflammation. (E) Lipocalin-2 amount in cecal content at day 1 p.i. was determined 
using ELISA on 4-5 mice per group, randomly chosen. Data are given as ηg lipocalin per mg cecal content. (F) 
Representative hematoxylin and eosin stained sections of infected mice at day 1 p.i. shown in (D). Magnification: 
100-fold. Enlarged sections (squares) are shown in the lower panels. Dotted red lines: detection limit. Bars represent 
the median. Mann-Whitney U test: ns=not significant (P≥0.05), * P<0.05, ** P<0.01, *** P<0.001. One-way 
ANOVA Kruskal-Wallis test: (A) P<0.0001, (B) P=0.0195, (C) P=0.0099, (D) P=0.0004. 

 

 Intriguingly, these data indicate that AGR2ko mice, which lack the intestinal mucus layer, are 

better protected against S. Tmwt,gfp-induced inflammation in cecum, as compared to AGR2het mice. This 

observation could be explained by (1) altered immune defense or mucosal metabolism and nutrient 

transport mechanisms in the cecal mucosa of mice (2) differential S. Tmwt,gfp loads in cecal tissues due to 

altered tissue invasion efficiency (3) or different pharmacokinetics of streptomycin and/or as a 

consequence (4) different microbiota composition in AGR2ko vs AGR2het mice. 

 

 Microarray analysis 5.3.

 Next, we wanted to analyze whether AGR2ko and AGR2het mice exhibit different gene expression 

profiles in the cecal epithelium. We hypothesized that this difference (e.g. increased immune defenses) 

may lead to the decreased susceptibility to S. Tm-induced inflammation observed at d1 p.i. 

 In order to analyze genome-wide mRNA expression in the cecal epithelium of AGR2ko and 

AGR2het mice, we isolated cecal epithelial cells and extracted total RNA. Then, we performed microarray 

analysis and interpreted genome-wide mRNA expression profiles using the Gene set enrichment analysis 

(GSEA) approach (Subramanian, Tamayo et al. 2005). Gene sets are groups of genes that share common 

biological function, chromosomal location or regulation. They are defined based on prior biological 

knowledge and experimental results. Gene sets were considered as significantly down- or upregulated 

when the False Discovery Rate value (FDR q-val) was below 0.25, which means that less than 25 % of the 

gene set of interest is estimated as false positive. This setting is considered as reasonable in the setting of 

an exploratory discovery (Subramanian, Tamayo et al. 2005). The analysis was performed by Mark 

Boekschoten (WU Agrotechnology & Food Sciences, Wageningen, Netherlands). 

 Three gene sets were found as significantly enriched in AGR2ko mice as compared to AGR2het 

littermates e.g. gene sets involved in cholesterol biosynthesis (Annexed Table 49). This could be due to 

dysregulation of endoplasmic reticulum (ER) responses, as cholesterol is mainly synthetized by ER (van 

Meer, Voelker et al. 2008). Most of gene sets found to be downregulated in AGR2ko mice as compared to 
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AGR2het littermates were predicted to be involved in cell cycle, metabolism, damage response and cancer 

pathways. These results are in line with previous work showing that AGR2ko mice exhibit elevated 

endoplasmic reticulum stress response and differential gene expression involved e.g. in breast cancer 

genesis (Zhao, Edwards et al. 2010, Li, Wu et al. 2015). Only few gene sets involved in immune responses 

(e.g. interleukin-2 signaling and immunoregulatory interactions between a lymphoid and a non-lymphoid 

cells) were found to be downregulated in AGR2ko mice (Annexed Table 50). 

 It is tempting to speculate that the few gene sets involved in immune response mechanisms could 

play a role in lowering the inflammatory response to S. Tm infection in AGR2ko mice. However, even if 

this type of analysis provides large amounts of predictions, verification of all results is required to confirm 

these predictions and can be tested using appropriated KO mouse models. In parallel, we followed another 

approach to decipher protective mechanisms against S. Tm present in AGR2ko mice. 

 

 Presence of S. Tm in cecal tissue is reduced in AGR2ko mice as 5.4.

compared to littermate controls 

 It has been well characterized that in order to infect mucosal tissues and cause disease, S. Tm 

employs several virulence factors. The most important are two type III secretion systems (T3SS) T3SS-1 

and T3SS-2, located on Salmonella pathogenicity island 1 (SPI-1) and SPI-2, respectively (Kaiser, Diard 

et al. 2012). Whereas T3SS-1 mediates epithelial cell invasion, T3SS-2 allows S. Tm to survive and 

replicate intracellularly in epithelial cells as well as in different cell types in the lamina propria (Patel and 

McCormick 2014). Together, T3SS-1 and T3SS-2 cooperate to promote bacterial tissue invasion and lead 

to the induction of a strong mucosal inflammatory response, causing severe enterocolitis in mice. As 

previously shown, AGR2ko mice are better protected against S. Tmwt,gfp-induced cecal inflammation than 

their AGR2het littermates. Therefore, we hypothesized that this might be reflected by lower S. Tm tissue 

loads in AGR2ko mice compared to AGR2het mice. 

 In order to test this hypothesis, we used part of cecum sampled at day 1 p.i. from the animal 

experiment presented in Figure 26. The lamina propria was stained using an ICAM-1/CD54 antiserum. 

The epithelium was visualized by actin-staining with conjugated phalloidin. S. Tmwt,gfp expresses GFP 

only when it resides in a S. Tm-containing vacuole, intracellularly. Immunostaining and image analysis 

were performed by Mikael Sellin (ETH, Zurich), as described in (Sellin, Muller et al. 2014). 

 At day 1 p.i., loads of the T3SS-2 reporter strain S. Tmwt,gfp in epithelial cells and in lamina 

propria were significantly reduced in AGR2ko mice as compared to their AGR2het littermates (Figure 27A, 



Results 
 
 

110 
 

p-value 0.0159 and 0.0159, respectively). This suggests that S. Tmwt,gfp is less invasive and/or that there is 

less replication of intracellular bacteria in the mucosa of AGR2ko as compared to AGR2het mice. Overall, 

S. Tmwt,gfp loads were higher in epithelial cells as compared to lamina propria, as also shown previously 

(Figure 27A, p-value 0.0317 and 0.0286, respectively) (Hapfelmeier, Stecher et al. 2005). The cecal 

mucosa of AGR2ko mice was thinner as compared to AGR2het mice due to the absence of inflammation 

(Figure 27B). 

 

 

Figure 27. Presence of S. Tm in cecal tissue is reduced in AGR2ko mice as compared to littermate controls. 

AGR2het and AGR2ko littermate mice were orally gavaged with a single dose of streptomycin (sm; 25 mg/mouse). 
After 24 h, mice were orally infected with 5x106 CFU S. Tmwt,gfp, which constitutively expresses GFP. At day 1 p.i., 
mice were sacrificed, cecal tissue was fixed in 4 % PFA and frozen in O.C.T. at -80 °C. Intracellular immunostaining 
of cryosections (20 µm thick) and image analysis were performed by Mikael Sellin, as described in (Sellin, Muller et 
al. 2014). For quantification of S. Tmwt,gfp, imaging was performed at 400x and 1,000x and intracellular S. Tmwt,gfp 
was manually enumerated blindly in six to nine nonconsecutive sections per mouse. 4-5 mice per group. (A) S. 
Tmwt,gfp load in tissue per 20 µm section in epithelial cells (circles) and in lamina propria (triangles). All data 
represent mean/section of S. Tmwt,gfp numbers. Filled symbols; AGR2het mice, empty symbols; AGR2ko mice. (B) 
Representative confocal images of cecal sections from AGR2het and AGR2ko mice. Scale bar: 100 µm. Mann-
Whitney U test: * P<0.05. One-way ANOVA Kruskal-Wallis test: (A) P=0.0033. 
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 All together, these observations indicate that the protective effect found at day 1 p.i. in AGR2ko 

mice may be due to different invasion properties of S. Tmwt,gfp and that the mucus layer might be directly 

or indirectly involved. However, the mechanisms modulating S. Tmwt,gfp invasion still remain unknown. 

 The intestinal microbiota is known to provide CR against S. Tm (Stecher, Chaffron et al. 2010, 

Deriu, Liu et al. 2013). Moreover, both the mucus layer and antibiotic-treatment have been shown to 

affect and modulate the intestinal microbiota. Thus, we next aimed at studying the effect of sm-treatment 

and the mucus layer on microbiota density and composition. 

 

 Microbiota of AGR2ko mice is less susceptible to streptomycin-5.5.

treatment than the microbiota of AGR2het littermates despite similar 

sm concentration along the intestinal tract of both AGR2ko and 

AGR2het mice 

 In order to investigate how oral sm-treatment influences microbiota density in the cecum, we 

stained commensal bacteria on cecal cryosections of untreated and sm-treated AGR2ko and AGR2het mice, 

sacrificed 24 hours after treatment with 25 mg of streptomycin. We used sytox green to visualize 

commensal bacteria and quantified bacteria per area unit within the cecal lumen. 

 Twenty-four hours after sm-treatment, cecal microbiota density of AGR2het mice decreased by 

about 98 % (median) as compared to AGR2het untreated mice. No difference was noted in cecal microbiota 

density of untreated littermates. Microbiota density of sm-treated AGR2ko mice was significantly higher 

compared to their sm-treated AGR2het littermates (Figure 28A,B, p-value <0.0001) showing that sm-

treatment is less efficient on the microbiota of AGR2ko than AGR2het mice. This could be due to (1) 

different pharmacokinetics of streptomycin or (2) different microbiota composition in AGR2ko vs AGR2het 

mice. 
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Figure 28.   Microbiota of AGR2ko mice is less susceptible to streptomycin treatment than the microbiota of 
AGR2het littermates. 

AGR2het and AGR2ko littermate mice were either orally gavaged with a single dose of streptomycin (sm; 25 
mg/mouse) or left untreated. After 24 h, mice were sacrificed, cecum were fixed in 4 % PFA and frozen in O.C.T. at 
-80 °C. Cryosections (7 µm thick) were stained using phalloidin (purple, actin), sytox green (green, bacterial DNA) 
and DAPI (blue, nuclei DNA). Confocal images were taken at the epithelial border and luminal bacteria were 
manually counted in a blind manner such as 4 areas (20 µm2 each) per picture were randomly counted, 3 pictures per 
mouse and 3-4 mice per condition. (A) Representative confocal images of cecal sections from AGR2het and AGR2ko 
mice untreated or pre-treated with streptomycin (after sm-treatment). Scale bars: 50 µm. (B) Luminal bacterial 
counts. Bars represent the median. Dotted red line represents the detection limit. Mann-Whitney U test: * P<0.05, 
*** P<0.001. One-way ANOVA Kruskal-Wallis test: (B) P<0.0001. 

 

 The mucus layer has been shown to play a role in antibiotic absorption (Goddard 1998, 

Hagesaether, Christiansen et al. 2013). To test whether sm was differently absorbed in AGR2ko vs AGR2het 

mice, we measured sm concentration in different parts of the intestinal tract at different time points after 

sm-treatment using a bioassay. We determined the sm concentration in the small intestine, the cecal 

content and the feces, as well as in the serum. To study the dynamics of sm distribution, we sacrificed 

mice at different time points after oral sm-treatment at 1, 3, 8 and 24 h after sm-treatment (25 mg/mouse). 

 Interestingly, no difference was observed between AGR2ko and AGR2het mice along the intestinal 

tract and in the serum (Figure 29). This indicates that the increased microbiota density observed in Figure 

28 might be due to differential microbiota composition in AGR2ko mice as compared to AGR2het mice 

rather than different rates of sm absorption due to differences in the intestinal mucus layer. 
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Figure 29. Microbiota of AGR2ko and AGR2het mice encounter same amount of effective streptomycin over-
time along the intestinal tract. 

AGR2het and AGR2ko mice were orally gavaged with a single dose of streptomycin (sm; 25 mg/mouse). After 1 h, 3 
h, 8 h or 24 h post-sm treatment (hours p.sm), mice were sacrificed. Serum and intestinal contents were sampled and 
concentration of sm was determined using a halo assay. Briefly, blank antimicrobial susceptibility disks were laid on 
top of sm-sensitive E. coli DH5α strain and 5 µl mouse sample was spotted on each disk. Plates were incubated o.n. 
at 37 °C and inhibition zone (halo) size was measured using a ruler. Size of the blank disk was substrated to all 
values. Later on, halo size values were correlated with a standard curve and sample weight or volume in order to 
determine the exact sm concentration. Untreated littermate mice were taken as negative controls (untreated) to 
exclude other inhibitory effects in the intestinal content. (A) Sm concentration in serum is given as µg/ml. (B) Sm 
concentration in the whole small intestine content is expressed in µg. (C) Sm concentration in cecal content is given 
as µg/mg content. (D) Sm concentration in feces is given as µg/mg feces. Filled symbols; AGR2het mice, empty 
symbols; AGR2ko mice. Dotted red lines: detection limit. Bars represent the median. Mann-Whitney U test: * 
P<0.05, ns=not significant. One-way ANOVA Kruskal-Wallis test: (B) P=0.0039, (C) P=0.0009, (D) P=0.0014.  

 

 In order to analyze microbiota composition of AGR2ko and AGR2het mice, bacterial gDNA was 

extracted from feces and microbiota composition was analyzed by 16S rRNA amplicon sequencing. Data 

were analyzed using the QIIME pipeline (Quantitative Insights Into Microbial Ecology) (Caporaso, 

Kuczynski et al. 2010) using an open-reference database. To identify different taxon distribution in 

AGR2ko vs AGR2het mice, we performed a LDA Effect Size (LEfSe) analysis (Segata, Izard et al. 2011). 

LEfSe algorithm allows the identification of features (e.g. enriched bacterial taxa) that characterize the 

differences between two or more biological conditions (e.g. genotype and antibiotic treatment). 
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 Overall, we observed similar microbiota composition at the taxonomic family and genus levels in 

AGR2ko and AGR2het mice (Figure 30A,B). However, Principal Coordinate Analysis (PCoA) showed 

distinct clustering between AGR2ko and AGR2het microbiota (Figure 30C). Strikingly, LEfSe analysis 

revealed that 10 taxa assigned to Prevotellaceae, Bacteroidales, Anaeroplasmatales and Clostridiales were 

enriched in AGR2ko mice as compared to AGR2het mice. On the other hand, 4 taxa assigned to 

Erysipelotrichaceae and Marvinbryantia were enriched in AGR2het mice as compared to AGR2ko mice 

(Figure 30D). Thus, higher microbiota density observed in AGR2ko mice after sm-treatment could be due 

to different microbiota composition. 
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Figure 30. Comparison of microbiota composition of AGR2ko and AGR2het untreated mice analyzed using 16S 
rRNA gene amplicon sequencing. 

Fecal microbiota composition of AGR2ko and AGR2het untreated mice was determined using 16S rRNA gene 
amplicon sequencing. Sequencing data were processed using the QIIME pipeline and taxonomy was assigned against 
the Silva database. Data are given as relative abundance at the taxonomic (A) family and (B) genus levels. One 
mouse per column. Color code is indicated in taxonomic legend boxes. (C) Corresponding Principal Coordinate 
Analysis (PCoA) plots of Weighted UniFrac distances of 16S rRNA genes. Color code refers to AGR2 genotype: 
green: AGR2ko and purple: AGR2het. One mouse per dot. (D) Bacterial taxa enriched in fecal microbiota of AGR2ko 
and AGR2het untreated mice analyzed using LEfSe analysis. Color code refers to AGR2 genotype: green: AGR2ko 
and red: AGR2het. 
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 Streptomycin-treatment leads to pronounced alteration of gut 5.6.

microbiota composition in both AGR2het and AGR2ko mice 

 We have shown that sm-treated AGR2ko mice are better protected against S. Tm-induced 

inflammation at d1 p.i. and harbored higher microbiota density in cecum where S. Tm invasion was also 

significantly reduced as compared to their AGR2het littermate controls. These data point at a protective 

effect of the AGR2ko microbiota during S. Tm infection and after sm-treatment. 

 In order to analyze microbiota composition of AGR2ko and AGR2het mice after sm-treatment, 

bacterial gDNA was extracted from feces then microbiota composition was analyzed by 16S rRNA 

amplicon sequencing. 

 Microbiota composition analysis of AGR2het and AGR2ko mice revealed deep changes after sm-

treatment, at taxonomic family and genus levels (Figure 31). There was a high variability in microbiota 

composition in the sm-treated mice. Based on these data, identification of candidates that could be 

protective in sm-treated AGR2ko mice appeared very challenging. 
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Figure 31. Fecal microbiota composition of AGR2ko and AGR2het mice shows pronounced alterations after 
streptomycin treatment. 

Fecal microbiota composition of AGR2ko and AGR2het mice before (untreated) and 1 day after sm-treatment (after 
sm) was determined using 16S rRNA gene amplicon sequencing. Sequencing data were processed using the QIIME 
pipeline and taxonomy was assigned against the Silva database. Data are given as relative abundance at the 
taxonomic (A) family and (B) genus levels. One mouse per column. Color code is indicated in taxonomic legend 
boxes. 
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  Ampicillin treatment renders AGR2ko mice susceptible to S. Tm-5.7.

induced colitis 

 Streptomycin is an aminoglycoside widely used against Gram-negative bacteria and well known 

to enable S. Tm expansion in gastrointestinal tract (Ng, Ferreyra et al. 2013). Other antibiotics such as 

ampicillin or metronidazole have been shown to increase colonization of enteric pathogens, such as S. Tm 

and Citrobacter rodentium (Endt, Stecher et al. 2010, Wlodarska, Willing et al. 2011). We hypothesized 

that some members of the intestinal microbiota, which would be sm-resistant might play a role in 

protecting sm-treated AGR2ko mice from S. Tmwt-induced inflammation. We reasoned that treatment with 

another class of antibiotics would target a different spectrum of the microbiota and thereby overcome 

differences in microbiota composition caused by sm. We used the broad spectrum antibiotic ampicillin 

(amp) which targets both Gram-positive and Gram-negative bacteria. To analyze the effect of amp on 

microbiota density of AGR2ko and AGR2het mice, we first stained commensal bacteria on cecal 

cryosections of amp-treated mice using sytox green and quantified single bacteria per area unit, as 

previously described in Figure 28. 

 After amp-treatment, microbiota density of AGR2het mice was reduced to the detection limit (1 

bacteria per area unit). Moreover, cecal microbiota density of AGR2ko mice was significantly reduced 

after amp-treatment as compared to sm-treated AGR2ko mice showing that microbiota of AGR2ko mice is 

more susceptible to ampicillin than to streptomycin (Figure 32). This observation already suggested that 

microbiota composition of AGR2ko mice differs after sm- and amp-treatment. 
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Figure 32. Microbiota of AGR2ko and AGR2het mice are highly susceptible to ampicillin treatment. 

AGR2het and AGR2ko littermate mice were orally gavaged with a single dose of either ampicillin (amp; 25 
mg/mouse) or streptomycin (sm; 25 mg/mouse). After 24 h, mice were sacrificed, cecal tissue was fixed in 4 % PFA 
and frozen in O.C.T. at -80 °C. Cryosections (7 µm thick) were stained using phalloidin (purple, actin), sytox green 
(green, bacterial DNA) and DAPI (blue, nuclei DNA). Confocal images were taken at the epithelial border and 
luminal bacteria were manually counted in a blind manner such as 4 areas (20 µm2 each) per picture were randomly 
counted, 3 pictures per mouse and 3-4 mice per condition. (A) Representative confocal images of cecal sections from 
AGR2het and AGR2ko mice after ampicillin or streptomycin treatment (after amp and after sm, respectively). Scale 
bars: 50 µm. (B) Luminal bacterial counts. Bars represent the median. Dotted red line represents the detection limit. 
Mann-Whitney U test: *** P<0.001. One-way ANOVA Kruskal-Wallis test: (B) P<0.0001. 

 

 In order to analyze microbiota composition of AGR2ko and AGR2het mice after amp-treatment, 

bacterial gDNA was extracted from feces then microbiota composition was analyzed by 16S rRNA 

amplicon sequencing. To get an overview on microbial complexity before and after sm- and amp-

treatments, we calculated the alpha diversity using the amplicon sequencing data. 

 As after sm-treatment, microbiota composition analysis of AGR2het and AGR2ko mice revealed 

pronounced changes after amp-treatment, at all taxonomic levels (Figure 33A,B). We observed higher 

microbiota variability in amp-treated AGR2het mice as compared to amp-treated AGR2ko mice (Figure 

33C). Using this analysis, we also showed that after antibiotic treatments, AGR2ko microbiota tended to be 

less complex than AGR2het microbiota, independently of the antibiotic used, although not statistically 

significant. Untreated AGR2ko and AGR2het mice harbored the most complex intestinal microbiota. 

Interestingly, sm-treated AGR2ko mice, which were better protected against S. Tmwt,gfp at d1 p.i. than their 

heterozygous littermates, harbor similarly complex microbiota as compared to amp-treated AGR2het mice. 
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This suggests that microbiota composition and not diversity may account for the protective function of the 

sm-treated AGR2ko microbiota. 

 

Figure 33. Analysis of microbiota composition of AGR2ko and AGR2het mice pretreated with ampicillin reveals 

gut microbiota composition different from sm-treated mice. 
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Fecal microbiota composition of AGR2ko and AGR2het mice before (untreated) and 1 day after amp-treatment (after 
amp) was determined using 16S rRNA gene amplicon sequencing. Sequencing data were processed using the QIIME 
pipeline and taxonomy was assigned against the Silva database. Data are given as relative abundance at the 
taxonomic (A) family and (B) genus levels. One mouse per column. Color code is indicated in taxonomic legend 
boxes. (C) Alpha diversity was determined as the observed species metric using the QIIME software package version 
1.8 from the amplicon sequencing data shown in Figures 31 and 33. Data are given as mean and standard deviation. 
Untreated mice are represented in orange, sm-treated mice in blue and amp-treated mice in red. AGR2het as full 
symbols and AGR2ko as empty symbols. 

 

 Next, we sought to determine whether amp-treated AGR2ko and AGR2het mice were susceptible to 

S. Tmwt-induced colitis. To test this, we treated AGR2ko and AGR2het mice with a single dose of ampicillin 

(25 mg/mouse) and orally infected them with 106 CFU S. Tmwt harbouring a plasmid which contains an 

ampicillin resistance cassette (S. Tmwt,amp). At 24 hours after amp-treatment, mice were sacrificed and total 

pathogen loads were determined in cecal content. As markers of inflammation and pathology, we 

determined the Lcn2 concentration in cecal content and quantified the histopathological changes in cecal 

tissues, respectively. 

 Similarly to sm-treated mice, at 24 hours after amp-treatment (d0), AGR2ko mice showed 

significant weight loss in contrast to AGR2het mice (Figure 34A, p-value <0.0001). The reason for this 

remains unclear. We reasoned that this weight loss might be attributable to antibiotic treatment and/or S. 

Tm infection. At d1 p.i., total pathogen loads were significantly increased in cecal content of AGR2ko 

mice as compared to AGR2het mice (Figure 34B). Interestingly, both AGR2ko and AGR2het mice showed 

similar signs of cecal inflammation, characteristic for this early time point after oral S. Tm infection 

(Figure 34C,E) (Stecher, Robbiani et al. 2007). Similar degree of inflammation was also confirmed by 

Lcn2 measurement in cecal content of AGR2ko and AGR2het mice (Figure 34D). This suggests that the 

differences in microbiota composition and not the host genotype account for the protection of sm-treated 

AGR2ko mice at early time point. 

 



Results 
 
 

122 
 

 

Figure 34. Ampicillin reduces colonization resistance against S. Tmwt in AGR2ko mice. 

AGR2het and AGR2ko mice were orally gavaged with a single dose of ampicillin (amp; 25 mg/mouse). After 24 h, 
mice were orally infected with 106 CFU S. Tmwt,amp (Stecher, Denzler et al. 2012) harbouring pWKS30 (Wang and 
Kushner 1991), which contains an ampicillin resistance cassette. Mice were sacrificed at day 1 p.i. (A) Mouse weight 
was recorded over-time and is relative to the initial weight recorded before amp-treatment. Data are given as 
percentage. (B) S. Tmwt,amp load was determined at day 1 p.i. in cecal content by plating. (C) Histopathological 
analysis of cecal tissue of infected mice. Cecal tissue sections were stained using hematoxylin and eosin. The degree 
of submucosal edema, neutrophil infiltration, epithelial damage was scored in a double-blinded manner. Data are 
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given without the goblet cells score. 0-3: no pathological changes; 4-7: moderate inflammation; above 8: severe 
inflammation. (D) Lipocalin amount in cecal content at day 1 p.i. was determined using ELISA on 5 mice per group, 
randomly chosen. Data are given as ηg lipocalin per mg cecal content. (E) Representative hematoxylin and eosin 
stained sections of infected mice at day 1 p.i. Magnification: 100-fold. Enlarged sections (squares) are shown in the 
lower panels. Dotted red lines: detection limit. Bars represent the median. Mann-Whitney U test: ns=not significant 
(P≥0.05), ** P<0.01, *** P<0.001. One-way ANOVA Kruskal-Wallis test: (A) P<0.0001. 

 

 These data indicate that both AGR2ko and AGR2het mice are equally susceptible to S. Tmwt,amp-

induced colitis at d1 p.i., after amp-treatment. Using microbiota composition analyses, we showed that 

pronounced changes of microbiota composition are not sufficient to allow S. Tmwt to induce inflammation 

in sm-treated AGR2ko mice. Sm-treated AGR2ko mice are protected against S. Tm-induced colitis but the 

reasons remain unclear. We speculated that some taxa or bacteria of the microbiota of sm-treated AGR2ko 

mice mediate protection. 

 

  Enrichment of Deferribacteres phylum correlates with protection 5.8.

against S. Tm-induced colitis 

 So far, our data show that sm-treated AGR2ko mice are protected against S. Tm-induced colitis. In 

contrast, all other groups (AGR2ko and AGR2het amp-treated and sm-treated AGR2het mice) were 

susceptible. We reasoned that sm-treated AGR2ko microbiota harboured members which could mediate the 

protective effect. In order to identify these members, we thoroughly compared the microbiota composition 

of all 4 groups using principal coordinate analysis (PCoA) and the microbiota composition of sm- and 

amp-treated AGR2ko mice using an algorithm for high-dimensional biomarker discovery: LEfSe (Segata, 

Izard et al. 2011). Using LEfSe algorithm, we aimed at identifying taxa which are uniquely enriched in the 

protective group (sm-treated AGR2ko mice). 

 Weighted UniFrac PCoA analysis revealed that antibiotic treated mice harbored different 

microbiota composition as compared to untreated mice (Figure 35A). Microbiota composition analyzed 

using LEfSe approach showed forty-eight OTUs enriched in sm-treated AGR2ko mice as compared to 

amp-treated AGR2ko mice. Enriched OTUs were assigned to six phyla: Firmicutes, Bacteroidetes, 

Actinobacteria, Proteobacteria, Deferribacteres and TM7. Three OTUs enriched in amp-treated mice 

were assigned to the phylum Firmicutes (Figure 35B). The taxa found to be enriched in AGR2ko protected 

mice may account for protection against S. Tm-induced colitis. 
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Figure 35. Comparison of microbiota composition of AGR2ko mice before and after sm- or amp-treatment. 

(A) Corresponding Principal Coordinate Analysis (PCoA) plots of Weighted UniFrac distances of 16S rRNA genes. 
Color code refers to pretreatment: orange: untreated; blue: after sm and red: after amp. One mouse per dot. (B) 
Bacterial taxa enriched in fecal microbiota of AGR2ko either after sm or after amp analyzed using LEfSe analysis. 
Color code refers to antibiotic treatment: green: after sm and red: after amp. 

 

 In order to further narrow down the potential candidates for protective bacteria, we compared the 

three susceptible mouse groups showing inflammation at d1 p.i. (amp-treated AGR2ko and AGR2het mice 

and sm-treated AGR2het mice) against the protected group (sm-treated AGR2ko mice).  

 We found that eight OTUs were enriched in sm-treated AGR2ko mice. Six enriched OTUs were 

assigned to the phylum Deferribacteres and two were assigned to the phylum Firmicutes (Figure 36). 

Regarding the high number of enriched OTUs assigned to the phylum Deferribacteres, we hypothesized 

that members assigned to this phylum (e.g. Mucispirillum spp.) might be involved in protection against S. 

Tm-induced colitis in sm-treated AGR2ko mice. 
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Figure 36. Comparison of AGR2ko and AGR2het mice after antibiotic treatment depending on their 
pathological score at day 1 p.i. 

LEfSe analysis was performed using streptomycin- and ampicillin-treated mice presented in Figures 26 and 34, 
respectively. Mice were ranged according to their pathological score at d1 p.i. 0-3: no pathological changes; 4-7: 
moderate inflammation; above 8: severe inflammation. AGR2ko sm-treated mice were considered as protected 
against inflammation (protected). AGR2ko & AGR2het amp-treated mice and AGR2het sm-treated mice were 
considered as susceptible to inflammation (susceptible). Color code refers to susceptibility to inflammation: green: 
susceptible and red: protected. 

 

  Generation of AGR2 germfree mice to study S. Tm-microbiota 5.9.

interactions under highly defined conditions 

 Our data so far point at highly complex interactions between the microbiota and the mucus layer. 

The interplay of these partners leads to protection against S. Tm-induced colitis. Using antibiotic treated 

mice, we could identify bacteria which might interact with S. Tm and the mucus layer and influence the 

outcome of the infection. However, future mechanistic analysis is not possible in mice harbouring a 

complex and undefined microbiota. Therefore, we sought to investigate the interplay of the microbiota, S. 

Tm and the mucus layer in a gnotobiotic mouse model. AGR2 mice were rederived germfree (AGR2GF) 

and bred in an isolator under germfree conditions, at the Hannover Medical School. 

 To test whether AGR2GF mice were susceptible to S. Tm infection, we orally infected them with 

107-108 CFU S. Tm. Already at 20h p.i., we observed high mortality of AGR2ko,GF mice and therefore did 

not follow up longer time points for ethnical reasons. At 20h p.i., mice were sacrificed. Total pathogen 

loads were determined in cecal content, mLN, spleen and liver. As a marker of inflammation and 

pathology, we determined the Lcn2 concentration in cecal content and quantified cecal histopathology, 

respectively. 

 At 20h p.i., we found similar pathogen loads in cecal content of AGR2GF mice (Figure 37A). 

Equivalent pathogen loads were also found in mLN, whereas spleen and liver showed higher S. Tm loads 

in AGR2ko,GF mice than in AGR2het,GF mice (Figure 37B). For both genotypes, we observed high 

histopathological score as well as high Lcn2 levels pointing at severe inflammation (Figures 37C,D). 
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Figure 37. AGR2 germfree mice are highly susceptible to S. Tm infection. 

AGR2het and AGR2ko littermates were orally gavaged with 107-108 CFU S. Tmwt. After 20 h, mice were sacrificed 
and S. Tmwt load was determined in (A) cecal content and in (B) mesenteric lymph nodes (mLN), spleen and liver by 
plating. (C) Histopathological score of cecal tissue of infected mice. Cecal tissue sections were stained using 
hematoxylin and eosin. The degree of submucosal edema, neutrophil infiltration and epithelial damage was scored in 
a double-blinded manner. Data are given without the goblet cells score. 0-3: no pathological changes; 4-7: moderate 
inflammation; above 8: severe inflammation. (D) Lipocalin-2 concentration in cecal content at 20 h p.i. was 
determined by ELISA on 2-3 mice per group, randomly chosen. Data are given as ηg Lcn2 per mg cecal content. 

 

 In conclusion, we demonstrated that the mucus layer was also involved in protection against S. 

Tm-induced colitis in AGR2GF mice but in the opposite way as compared to sm-treated AGR2 mice. 

Combined with previous data (cf Figure 26), we concluded that despite similar pathogen loads in cecal 

content of both conventional AGR2 and AGR2GF mice, conventional mice are better protected against S. 

Tm-induced inflammation than germfree mice. These data highlight the crucial role of intestinal 

microbiota to protect its host, even in absence of mucus layer. As the most striking protective effect was 

observed for sm-treated AGR2ko mice, it appeared plausible that microbiota members enriched in sm-

treated AGR2ko mice could be responsible for this protective effect, in a direct or indirect manner. Further 

gnotobiotic experiments need to be done to confirm this hypothesis. 
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 S. Tm T3SS-1 expression is downregulated in sm-treated AGR2ko 5.10.

mice 

 In order to invade intestinal epithelial cells and to trigger inflammation, S. Tm employs virulence 

factors including flagella-mediated motility and type III secretion systems (T3SS) (Kaiser, Diard et al. 

2012, Thiennimitr, Winter et al. 2012). Whereas motility allows S. Tm to penetrate the mucus layer and to 

access the epithelial border, the SPI-1 type III secretion system (T3SS-1) is required for epithelial cell 

invasion and induction of inflammation. Moreover, in murine gut tissue, most of S. Tm expresses T3SS-1 

(T3SS-1+) but in gut lumen and in vitro only 15 % of S. Tm population are T3SS-1+ (Ackermann, Stecher 

et al. 2008). So far, our data show that sm-treated AGR2ko mice exhibit delayed inflammation at day 1 p.i. 

as compared to sm-treated AGR2het littermates and amp-treated AGR2ko and AGR2het mice. Moreover, our 

microbiome analysis suggests that microbiota composition of sm-treated AGR2ko mice might be 

responsible for the protective effect. We hypothesized that deficiency of the mucus layer and/or the 

microbiota composition in sm-treated AGR2ko mice may affect T3SS-1 expression. 

 In order to test whether the T3SS-1 expression is altered in sm-treated AGR2ko mice, we infected 

sm- or amp-treated AGR2het and AGR2ko mice with 104-106 CFU S. Tm psicAgfp. S. Tm psicAgfp is a reporter 

strain for T3SS-1 expression which harbors gfp fused to the promoter of sicA, a component of the T3SS-1. 

Because S. Tm-induced inflammation leads to microbiota dysbiosis (Stecher, Robbiani et al. 2007), we 

used an avirulent S. Tm strain, S. Tmavir2psicAgfp. At day 1 p.i., mice were sacrificed and cecum was 

sampled, fixed and cryopreserved. Cecal cryosections were stained using polyclonal antibodies against S. 

Tm lipopolysaccharide (LPS, α-Salmonella B test serum anti-O) and DAPI (DNA). Confocal images were 

taken randomly at the epithelial border and in cecal lumen. LPS+ and GFP+ S. Tmavir2psicAgfp cells were 

counted in order to calculate the relative rate of T3SS-1 expression. 

 At day 1 p.i., all experimental groups showed similar S. Tmavir2psicAgfp loads (Figure 38E). S. 

Tmavir2psicAgfp in sm-treated AGR2ko mice exhibited significantly less T3SS-1 expression at the epithelial 

border and in the cecal lumen than in sm-treated AGR2het littermates (Figure 38A,B, p-value 0.0021 and 

0.0011, respectively and Figure 38C,D), suggesting that the mucus layer or the microbiota has an effect 

on T3SS-1 expression. Conversely to what was observed after sm-treatment, we found that after amp-

treatment, AGR2ko mice showed significantly increased T3SS-1 expression as compared to AGR2het 

littermates at epithelial border (Figure 38A, p-value 0.0170). This result indicates that the mucus layer 

might not be the only factor influencing T3SS-1 expression. Moreover, relative T3SS-1 expression was 

significantly reduced in sm-treated AGR2ko mice as compared to amp-treated AGR2ko mice, both at 
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epithelial border and in lumen (Figure 38A,B, p-value <0.0001), pointing at a role of intestinal microbiota 

in T3SS-1 activation. 

 

Figure 38. T3SS-1 expression is reduced in AGR2ko mice after streptomycin treatment as compared to 
ampicillin treatment.  
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AGR2het and AGR2ko littermate mice were orally gavaged with a single dose of either streptomycin (sm; 25 
mg/mouse) or ampicillin (amp; 25 mg/mouse). After 24 h, mice were orally infected with 104 CFU after sm or 106 
CFU after amp with S. Tmavir2psicAgfp, an avirulent T3SS-1 reporter strain. At day 1 p.i., mice were sacrificed, cecal 
tissue was fixed in 4 % PFA and frozen in O.C.T. at -80 °C. Cryosections (7 µm thick) were stained using anti-
Salmonella B test serum anti-O (red, LPS+ S. Tmavir2psicAgfp) and DAPI (blue, nuclei DNA). T3SS-1 expression was 
represented by GFP signal (green, GFP+). Confocal images were taken at the epithelial border and in the lumen. 
Bacteria were manually counted in a blind manner such as all LPS+ S. Tmavir2psicAgfp bacteria were counted first, and 
then the GFP+ cells which colocalized with LPS+ S. Tmavir2psicAgfp. 4-8 images at the epithelial border per mouse, 5-7 
images in the lumen per mouse and 3 mice per condition. (A-B) Bacterial counts (A) at epithelial border and (B) in 
cecal lumen. (C-D) Representative confocal images of cecal sections from AGR2het and AGR2ko mice after either sm 
or amp (C) at epithelial border or (D) in cecal lumen. Scale bars: 50 µm. e; epithelial border. (E) S. TmavirpsicAgfp load 
was determined at day 1 p.i. in cecum by plating with appropriate antibiotics. Bars represent the median. Dotted red 
line represents the detection limit. Circle; sm-treated mice, inverted triangle; amp-treated mice, full symbols; 
AGR2het, empty symbols; AGR2ko. Mann-Whitney U test: ns=not significant (P≥0.05), * P<0.05, ** P<0.01, *** 
P<0.001. One-way ANOVA Kruskal-Wallis test: (A) P<0.0001, (B) P<0.0001, (E) P=0.0752. 

 

 All together, these results indicate that the mucus layer might play an indirect role in T3SS-1 

activation by modulating the intestinal microbiota. Indeed, as previously shown, the intestinal microbiota 

differs in sm-treated AGR2ko mice, which are better protected against S. Tm-induced inflammation as 

compared to sm-treated AGR2het littermates as well as amp-treated AGR2ko and AGR2het mice. Therefore, 

it is tempting to speculate that the potentially protective microbiota of sm-treated AGR2ko might inhibit 

T3SS-1 activation and, consequently, delay intestinal inflammation. 
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 Discussion 6.

 The Oligo-MM: a defined microbial consortium to study microbiota-6.1.

host pathogen interaction in gnotobiotic mice 

 The Oligo-MM can be used as platform to identify bacteria and 6.1.1.

mechanisms underlying colonization resistance 

 Numerous approaches have been used to investigate CR mechanisms in vivo. Early studies 

already showed that antibiotic treatment alleviates the protective role of conventional microbiota against 

enteropathogen infection (Miller, Bohnhoff et al. 1956, van der Waaij, Berghuis-de Vries et al. 1971, 

Pongpech, Hentges et al. 1989). Attempts were made to identify CR mechanisms by characterizing 

physiology of the antibiotic-treated mice. For example, antibiotic treatment has been reported to inhibit 

innate and adaptive immune responses (e.g. intestinal expression of RegIIIγ and colonic Tregs) (Brandl, 

Plitas et al. 2008, Smith, Howitt et al. 2013), favor the expansion of oxygen-tolerant bacteria such as 

Enterobacteriaceae (Thijm and van der Waaij 1979) and decrease SCFA levels which are involved in CR 

(Lawhon, Maurer et al. 2002, Fukuda, Toh et al. 2011, Wichmann, Allahyar et al. 2013). Moreover, 

antibiotic treatment has been used in combination with transplantation of conventional or low complexity 

microbiota to identify bacteria that restore CR against enteropathogens (Koopman, Kennis et al. 1984, 

Stecher, Chaffron et al. 2010, Lawley, Clare et al. 2012). Nowadays, fecal transplantation from healthy 

human donors is successfully used in humans to treat intestinal infections (e.g. against C. difficile and 

Staphylococcus aureus) (Konturek, Haziri et al. 2015, Wei, Gong et al. 2015). However, the biggest 

limitation to study mechanisms underlying CR and identify protective bacteria remains the enormous 

microbiota complexity. Therefore, comparative microbiome analyses of protective vs susceptible cohorts 

were developed to identify candidate bacterial taxa that correlate with protection against infection 

(Schubert, Sinani et al. 2015). Elegantly, some studies went one step further and used gnotobiotic mouse 

models to prove that some candidate strains were indeed responsible for CR (Hsiao, Ahmed et al. 2014, 

Buffie, Bucci et al. 2015). Gnotobiotic mouse models which are colonized with individual bacteria or 

mixtures have been proven as a powerful tool to investigate mechanisms underlying CR (Reeves, 

Koenigsknecht et al. 2012, Ganesh, Klopfleisch et al. 2013). 

 In this study, we assembled a broad spectrum of phylogenetically different gut bacteria in order to 

establish a minimal bacterial consortium. In this way, we generated the first defined bacterial consortium 

of mouse-derived strains which was able to provide significant CR against S. Tmavir in mice (Figure 15).
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Next, we developed a completely new approach to identify possible CR mechanisms by comparing 

artificial metagenomes of the Oligo-MM12 strains to the “real” metagenome of conventional mice. In this 

way, we identified functions which might still be missing in Oligo-MM12 consortium. We hypothesized 

that these functions could play a role in CR. And indeed, we validated this hypothesis by using ASF 

strains, which harbor some of the metabolic pathways present in conventional microbiota but absent from 

Oligo-MM12. To my knowledge, this is the first time that a combinatory approach of cultivation and 

metagenomics is described in order to identify bacteria which confer functionality of a normal gut 

microbiota.  

 

 Which mechanisms underlie colonization resistance mediated by the Oligo-6.1.2.

MM? 

 An approach to analyze the functional capacity (functionome) of a microbial community is based 

on metagenomics and uses the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (Ogata, 

Goto et al. 1999) to classify genes into different functional units (Kanehisa, Goto et al. 2014). This 

approach has already been used successfully on single bacteria, for example, to predict metabolic 

pathways of S. Tm which might play a role during infection (Raghunathan, Reed et al. 2009). It has also 

been developed to predict the functional capacity of the gut microbiota under different conditions. For 

example, it was shown that zinc deficiency which leads to impairment of health status alters the metabolic 

capacity of gut microbiome by depleting pathways involved in lipid metabolism, carbohydrate digestion 

and mineral absorption. Combined with microbiota composition and host phenotype analyses, the authors 

correlated several bacterial OTUs (e.g. decrease of the taxonomic family Peptostreptococcaceae which 

belongs to the Firmicutes) with zinc depletion (Reed, Neuman et al. 2015). However, to confirm that these 

OTUs are indeed responsible for pathological states under zinc deficiency conditions, availability of 

bacterial strains as pure culture would be a valuable tool to perform proof of concept studies in gnotobiotic 

mice. 

 In our study, we performed functional analysis based on metagenomics to determine the presence 

and completeness of functional KEGG modules in individual strains and in different defined bacterial 

communities. We also identified KEGG modules that are present in conventional microbiota but absent of 

Oligo-MM12 (Figure 17). Based on this finding, we hypothesized that increasing the metabolic capacity of 

Oligo-MM12 could also increase CR against S. Tmavir. Therefore, Oligo-MM12 could be supplemented with 

bacterial taxa (e.g. ASF strains) which are predicted to possess these missing KEGG modules. We tested 

this hypothesis by transplanting the ASF7 consortium in Oligo-MM12 mice. We found that Oligo-MM12 + 
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ASF7-colonized mice showed increased CR against S. Tmavir as compared to Oligo-MM12-colonized mice 

(Figure 19). We concluded that ASF7-specific KEGG modules might play a role in CR (Figure 20, block 

“D”). These include T6SS, transport systems for nickel, sodium, heme, phosphanate, trehalose/maltose 

and rhamnose, as well as degradation systems for xylene, toluene and acylglycerol. It is known that T6SS 

of Vibrio cholerae displays antimicrobial activity against S. Tm (MacIntyre, Miyata et al. 2010). Using 

our metagenomics approach, we found that ASF457 possesses a T6SS. It would be interesting to test 

whether ASF457 plays a role in CR against S. Tm or whether some effector proteins are missing. 

 Yet, transplantation of conventional microbiota into ASF5 mice increased even further CR 

(Figure 15). This suggests that Oligo-MM12 + ASF7 consortium is not as functional as a conventional 

microbiota to restore CR and that some bacterial taxa are still missing in Oligo-MM12 to reproduce a 

conventional-like CR phenotype. Using comparative metagenomics analysis, we identified other KEGG 

modules that are specific for the conventional microbiota and might also play a role in CR. These include 

transport systems for carbohydrates and amino acids such as trehalose, glycerol, erythritol, histidine, 

taurine and lysine/arginine/ornithine. We also identified transport systems for hemin, tungstate, 

manganese/zinc/iron, sulfate, nitrate/nitrite as well as urea and vitamin B12. Of note, some of these 

components are already known to influence enteric infections. For example, consumption of vitamin B12 

by Bacteroides thetaiotaomicron decreases the level of Shiga toxin 2 which is the main virulence factor of 

EHEC (Cordonnier, Le Bihan et al. 2016). Additionally, we identified an enrichment of various 

cytochrome modules in the conventional microbiota. As our different defined consortia are mainly 

composed of strict anaerobic bacteria, it is reasonable to hypothesize that facultative anaerobic bacteria 

would also play a role in CR, as they would be competing for oxygen with S. Tm. It was already known 

that E. coli induces CR against S. Tm in GF mice (Hudault, Guignot et al. 2001). Remarkably, the 

hypothesis that facultative anaerobic (e.g. E. coli) could also induce CR when added to the Oligo-MM12 

has been successfully verified in our laboratory (unpublished data). These observations as well as the 

correlation between microbiota complexity and CR (Figure 19) are consistent with the Freter’s nutrient-

niche hypothesis (Freter, Brickner et al. 1983). It postulated that a bacterium cannot invade a resident 

microbiota if its metabolic niche is already occupied by other strains. This suggests that in order to invade 

a host, a bacterium (e.g. enteropathogen) would have to use a specific limiting nutrient more efficiently 

than the rest of the microbiota. 

 As previously mentioned, there are other mechanisms involved in CR. For example, the 

microbiota can also mediate gut epithelial cell maturation (e.g. via production of SCFA) (Ploger, Stumpff 

et al. 2012) and influence gut immune responses (e.g. via educating the host immune system) (Backhed 

2012, Smith, Howitt et al. 2013). An approach to elucidate the indirect effects of gut microbiota on its host 



Discussion 
 
 

133 
 

would be to colonize mice with different defined bacterial consortia and perform metatranscriptomics 

analysis on host cells to identify differential regulation of genes involved in immune defenses. This would 

generate hypotheses that could be tested using appropriate mouse KO strains, for example. Ultimate 

evidence could also be obtained using genetically modifying anaerobic commensals, which is hardly 

possible for now. 

 In conclusion, the approach we have taken is a powerful tool to study functional capacity of 

microbial communities as well as to identify bacterial taxa and metabolic pathways of interest. Moreover, 

the recent development of mouse-derived strain collections (e.g. the Mouse Intestinal Bacterial Collection 

(Lagkouvardos et al., submitted)) offers new perspectives to functionally mimic a conventional gut 

microbiota with a fully defined bacterial consortium. 

 However, comparative metagenomics analysis also presents some limitations. First, it can predict 

the presence of open reading frames (ORFs) but not their expression. It is also based on databases that 

only refer to known functions and pathways. Therefore, the completeness of databases as well as the 

sequence annotation and discovery are additional limitations. It is also plausible that some of our strains 

(e.g. representatives of novel species, genera or families) harbor pathways that remain to be discovered 

and described. Finally, in metagenomics datasets, a metabolic pathway is considered as complete whether 

or not its individual components (e.g. enzymes) are present in the same bacterium or in several different 

organisms. Nevertheless, this approach remains as a powerful tool to generate numerous hypotheses. 

Testing all these hypotheses is challenging particularly due to the fact that the methodology for genetic 

manipulation of anaerobic bacteria is still very limited. Thus, attempts have to be made in order to develop 

genetic systems for a wide number of commensal bacteria. 

 

 Minimal gut microbiota as a tool for gnotobiotic studies 6.1.3.

 An experimental strategy to decipher interactions between host and microbiota is first to study the 

host environment devoid of bacteria (i.e. under germfree conditions), and compare it to the situation after 

adding individual strains or defined bacterial consortia. Germfree (GF) mice are well known to harbor 

impaired intestinal environment, morphology, motility and physiology (Berg 1996). For example, GF 

mice show decreased numbers of goblet cells (Stefka, Feehley et al. 2014), lower rate of epithelial cell 

turnover (Falk, Hooper et al. 1998) and decreased mucus production (Jakobsson, Rodriguez-Pineiro et al. 

2015) as well as impaired immune system (Round and Mazmanian 2009). Due to these abnormalities, GF 

animals are more susceptible to infections with enteropathogens such as S. Tm and Listeria 

monocytogenes (Inagaki, Suzuki et al. 1996, Hudault, Guignot et al. 2001). In an attempt to study host-
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microbiota-pathogen interactions using a simplified gut ecosystem as well as to decipher the mechanisms 

that lead to gut normalization (i.e. restoration of a fully functional microbiota by fecal transplantation of a 

complex microbiota into GF mice), minimal gut microbiota were generated and inoculated to GF mice. 

 One of the first defined bacterial consortia was named as Schaedler flora and consists of six 

strains isolated from mice (Schaedler, Dubs et al. 1965). Later, this consortium was modified and became 

one of the most popular models of minimal mouse-derived microbiota: the “altered Schaedler flora” 

(ASF) (Orcutt, Giannim et al. 1987). The ASF encompasses eight different strains: Parabacteroides spp., 

Mucispirillum spp., Eubacterium spp., three Clostridium spp. and two Lactobacillus spp. (Dewhirst, Chien 

et al. 1999). Each strain has been fully sequenced and genome information is now publicly available, in 

contrast to the strains which are still protected by a patent (Wannemuehler, Overstreet et al. 2014, 

Wymore Brand, Wannemuehler et al. 2015). GF mice colonized with the ASF are partially normalized as 

compared to conventional mice (Wymore Brand, Wannemuehler et al. 2015). For example, ASF-

colonized mice show partial normalization of the cecum morphology (Schaedler, Dubs et al. 1965), the 

mucosal immune system and the innate defense (Stecher, Chaffron et al. 2010). However, their high 

susceptibility to S. Tm infection compared to GF and conventional mice suggest that ASF mice are not 

entirely normalized (Stecher, Macpherson et al. 2005, Stecher, Chaffron et al. 2010). This was also 

confirmed by other studies (Berry, Stecher et al. 2013, Maier, Vyas et al. 2013). Since then, other defined 

minimal gut microbiota, which are all based on human-derived strains have been developed. The 

laboratory of J. Gordon uses routinely GF mice colonized with human-derived microbiota to study host-

microbiota interactions (e.g. in response to diet changes). Thus, Faith et al colonized mice with ten 

sequenced bacterial species to study the response of this defined community to different diets (Faith, 

McNulty et al. 2011). Using a linear approach, they established a method to predict the variation in 

abundance of each strain according to the concentration of dietary ingredients fed to the mice. They also 

found that in response to diet changes, each bacterial strain rather changes its absolute abundance than its 

gene expression. However, this elegant and prediction model requires to know the exact bacterial species 

composition of the microbiota and therefore, cannot be applied to conventional microbiota. In another 

study, different human-derived bacterial consortia were used to identify microbial genes involved in the 

establishment of Bacteroides thetaiotaomicron in the gut (Goodman, McNulty et al. 2009). Using a 

transposon mutant library, it was shown that genes involved in competition for nutrients (e.g. synthesis 

and utilization of vitamin B12-dependent cofactors) as well as microbiota composition were critical for B. 

thetaiotaomicron fitness in the gut of gnotobiotic mice. Furthermore, a simplified human intestinal 

microbiota (SIHUMI) consisting of eight bacterial species was established in gnotobiotic rats (Becker, 

Kunath et al. 2011). Germfree rats colonized with SIHUMI showed metabolic functions such as 

production of SCFA and degradation of mucins, which were to some extent comparable to conventional 
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rats. Further on, SIHUMI was also inoculated in GF mice where it was shown to stably colonize the 

mouse gut overtime and to be vertically transmitted to the offspring (Ganesh, Klopfleisch et al. 2013, 

Woting, Pfeiffer et al. 2014). By modulating the bacterial composition of SIHUMI, Woting et al. 

investigated the role of two members of SIHUMI (i.e. Clostridium ramosum and Bifidobacterium longum) 

towards obesity and metabolic disorders in mice. They demonstrated that, in their animal model, C. 

ramosum was promoting diet-induced obesity independently of B. longum, which has been inversely 

correlated to obesity phenotypes in human (Woting, Pfeiffer et al. 2014, Woting, Pfeiffer et al. 2015). By 

supplementing SIHUMI consortium with two other strains, Akkermansia muciniphila and S. Tm, they 

showed that the mucin degrader A. muciniphila was able to exacerbate S. Tm-induced inflammation by 

interfering with the gut mucus homeostasis (Ganesh, Klopfleisch et al. 2013). 

 To date, GF mice colonized with human-derived strains termed as humanized gnotobiotic mice 

have been widely used and have provided valuable insights into host-microbiota interactions. The 

increased accessibility to human microbiota strain collections and genome sequences reflects a great 

potential to perform mechanistic studies and investigate molecular interactions between host, microbiota 

and pathogen. However, interactions between microbiota and its host cannot be completely mirrored by 

humanized gnotobiotic mice. In an elegant study, Seedorf et al. investigated the host-specificity of 

selection and colonization of mouse-adapted vs human-adapted microbiota (Seedorf, Griffin et al. 2014). 

Knowing that mice can efficiently exchange their gut microbiota due to coprophagic habits, GF mice were 

co-housed together with mice harboring either mouse- or human-adapted microbiota. After 14 days, gut 

microbiota of the previous GF mice exhibited 99.8 % of mouse-adapted taxa, showing that mouse-adapted 

microbiota invade and colonize mouse gut better than human-adapted microbiota. Similarly, some 

bacterial strains have been reported to be unable to colonize the mouse gut. For example, the human strain 

Lactobacillus reuteri F275 is unable to colonize Lactobacillus-free mice, contrary to rodent-adapted 

strains (Frese, Benson et al. 2011). This could be due to the presence of specific genes such as urease or 

xylose clusters, which are absent from human-adapted strains. Additionally, a mouse-derived microbiota 

was shown to better restore CR against enteropathogens (e.g. S. Tm) compared to human-derived 

microbiota (Chung, Pamp et al. 2012). Interestingly, the degree of CR was also reported to differ between 

gut microbiota of different mouse strains. Using microbiota transplantation experiments between mouse 

strains, Willing et al. showed that microbiota of NIH Swiss mice enhanced CR against Citrobacter 

rodentium compared to C3H/HeJ-associated mouse microbiota (Willing, Vacharaksa et al. 2011). They 

also found that this enhanced CR occurred in an IL-22 dependent manner, suggesting the importance of 

the cross-talk between mouse strain-specific microbiota and genetic determinants of its host. This was also 

confirmed by Chung et al. who reported that mice colonized with a human microbiota exhibit an impaired 

immune system as compared to mice colonized with a murine microbiota (Chung, Pamp et al. 2012). In 
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conclusion, these observations highlight the tremendous importance of using microbiota, which are 

specifically adapted to their host at a species level, or even genetic background. 

 For all these reasons, we used mouse-adapted bacteria to study the interactions between the mouse 

gut and its microbiota. Except for KB1 and KB18, all bacterial strains were isolated from C57Bl/6J mice 

and inoculated into C57Bl/6J gnotobiotic mice. To my knowledge, the Oligo-MM consortium is the first 

defined mouse-adapted microbiota described where all strains as well as their respective genome 

sequences are publicly available. I am convinced that this model will be a valuable tool to address 

questions related to host adaptation and specificity of the microbiota. For example, comparative genomic 

analysis of human- and mouse-adapted strains would highlight to which extends the knowledge acquired 

on host-microbiota interactions can be transposed from mouse to human gut. To my knowledge, this 

question has never been addressed using defined microbiota despite some reports questioning the 

relevance of mouse models for human health (Bibiloni 2012, Nguyen, Vieira-Silva et al. 2015). 

 

 What are the potential limitations of the Oligo-MM model? 6.1.4.

 Do all Oligo-MM strains colonize the mouse gut? 6.1.4.1.

 In this study, I established a gnotobiotic mouse model which harbors a defined consortium of 

mouse-adapted gut bacteria. While most of Gram-negative strains were detected at high abundance level 

using gDNA-based methods (i.e. 16S rRNA gene amplicon sequencing and qPCR), Gram-positive strains 

were barely detected, if at all. This difference of detection between Gram-negative and -positive strains 

was also reported elsewhere and can have many reasons (Goodman, McNulty et al. 2009, Faith, McNulty 

et al. 2011, Li, Limenitakis et al. 2015). For example, these strains may colonize below the detection limit 

or at different intestinal sites than in cecum and feces. Alternatively, their cell wall remains resistant to the 

DNA extraction method. Lastly, they may not colonize at all. In our study, KB18 and YL2, which are 

taxonomically assigned to the Ruminococcaceae; Incertae Sedis and Bifidobacterium spp., respectively, 

were detected at very low abundance in few mice using gDNA-based methods (Figures 12 and 18B; 

annexed Tables 45 and 48). YL2 was detected at low abundance in the small intestinal content using 

amplicon sequencing (Figure 9B; annexed Table 42). This suggests that YL2 either colonizes 

preferentially the small intestine or its abundance is too low compared to the other strains to be detected in 

cecal and fecal contents. KB18 might have a cell wall resistant to gDNA extraction, as its gDNA is 

already very hard to extract from pure culture (not shown) and its cell wall was shown to be impermeable 

to FISH probes (not shown) (Table 34). Therefore, presence of YL2 and KB18 in cecal and fecal contents 
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remains unclear. Similarly, I49 (Lactobacillus spp.) and KB1 (Enterococcus spp) were detected at very 

low abundance in cecal and fecal contents using qPCR and amplicon sequencing (Figures 12, 14 and 

18B; annexed Tables 45,47 and 48). They were both detected in small intestinal content (Figure 9B; 

annexed Table 42) and re-isolated on agar from the cecum of a F3 generation offspring stably colonized 

with the Oligo-MM12 consortium (not shown). This suggests that KB1 and I49 colonize and are vertically 

transmissible, despite their detection at low abundance. The fact that some Gram-positive strains are 

detected at higher loads in small intestine than in cecum can be due either to their preferences for small 

intestine niches or to an increased relative abundance, for example caused by a decreased relative 

abundance of bacterial OTUs such as the Bacteroidetes, which are highly represented in cecum but not in 

small intestine (Sarma-Rupavtarm, Ge et al. 2004). Finally, I46 (Erysipelotrichaceae; Incertae Sedis) was 

detectable using amplicon sequencing (Figure 8C and D; annexed Tables 39 and 40) and FISH (not 

shown) but not using qPCR. Moreover, we confirmed its colonization by re-isolating it on agar from the 

cecum of a F3 generation offspring (not shown). Therefore, we concluded that I46 colonized and was 

vertically transmitted. By comparing the 16S rRNA gene sequence of the assembled genome and of the 

16S rRNA gene-containing plasmid used to establish the qPCR, we found a mismatch in the 

primers/probe used to perform the qPCR. As we generated new I46-specific primers and probe, we 

detected I46 by qPCR in cecum, feces and inoculum at similar abundance level than I49 (data 

unpublished). 

 

 Are Gram-positive strains systematically underestimated? 6.1.4.2.

 Interestingly, in our model, the majority of strains abundantly detected with gDNA-based methods 

were Gram-negative strains (Figures 8 and 12). This can be due to several reasons. It is known that 

microbiota composition analysis using amplicon sequencing reveals higher abundance of Gram-negative 

than Gram-positive strains (Goodman, McNulty et al. 2009, Xiong, Frank et al. 2012, Li, Limenitakis et 

al. 2015, Rojo, Gosalbes et al. 2015). This observation could be due to the gDNA extraction method used. 

It was shown that members of the Bacteroidetes phylum (Gram-negative strains) are easier to lyze than 

Actinobacteria (Gram-positive strains) and that lysis efficiency depends also on the extraction method 

used (Salonen, Nikkila et al. 2010, Ferrand, Patron et al. 2014). When using 16S rRNA-based amplicon 

sequencing, number of sequencing reads which determines the detection limit can play a role as some 

bacterial strains such as Enterobacter hormachei and Proteus vulgaris have been shown as undetectable 

below 2,000-3,000 sequencing reads per sample (Belzer, Gerber et al. 2014). Importantly, primer sets used 

to amplify variable regions of 16S rRNA gene generally lead to underestimation of some key members of 

the gut microbiota such as Bifidobacterium longum, and consequently to overestimation of other members 
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like Bacteroides thetaiotaomicron (Milani, Hevia et al. 2013). In an attempt to investigate the degree of 

bias of microbiota composition analysis, some studies performed comparative analyses between culture, 

gDNA-based methods and FISH. Harmsen et al. analyzed human fecal microbiota using cultivation and 

FISH techniques (Harmsen, Gibson et al. 2000). They found that total count of anaerobic bacteria was 

generally higher using quantification by FISH as compared to plating (except for Clostridia strains). This 

observation was also confirmed elsewhere (Vieira-Pinto, Bernardo et al. 2007). However, they used only 

one type of agar medium per targeted phylum, despite the tremendous heterogeneity of gut microbiota. 

Another study analyzed human microbiota composition using FISH, 16S rRNA gene-based microarray 

hybridization and amplicon sequencing (Shankar, Hamilton et al. 2014). This study showed that amplicon 

sequencing data reveals higher variability of microbiota composition compared to microarray analysis. 

This could either be due to the fact that microarray allows detection of only 775 bacterial phylotypes or 

that amplicon sequencing targets the V6 hypervariable region of 16S rRNA gene while microarray 

hybridized the whole amplified gene. It could also be due to chimera formation that occurs during the 

amplicon sequencing process and which artificially blows up diversity or to PCR amplification biases 

(Chakravorty, Helb et al. 2007, Paliy, Kenche et al. 2009, Schwab, Berry et al. 2014). Interestingly, they 

reported that quantification of bacterial abundance was similar using FISH and microarray hybridization 

for the major microbial bacterial classes (i.e. Clostridia, Bacteroidia and combined Proteobacteria). 

However, they did not investigate underestimated microbial OTUs such as Actinobacteria and used 

conventional microbiota to compare gDNA- and rRNA-based techniques, as most of comparative studies. 

 In this thesis, we used gnotobiotic mice colonized with Oligo-MM12 strains to compare gDNA- 

and rRNA-based techniques. We showed that YL44, a Gram-negative strain, was detected at higher 

relative abundance using gDNA-based methods (i.e. 16S rRNA gene-based amplicon sequencing and 

qPCR) as compared to rRNA-based approach (i.e. FISH). Conversely, YL58 was less detected using 

gDNA-based methods than rRNA-based approach (Figure 24). We also highlighted the overestimation of 

the relative abundance of a Gram-negative strain and the underestimation of a Gram-positive strain, in our 

model. Therefore, we draw attention on the risk of global misestimation of bacterial strains depending on 

their cell wall composition which can lead to impaired analysis of microbiota composition. To my 

knowledge, this thesis reports the first study using gDNA- and rRNA-based techniques applied to a 

defined “mid-complex” microbiota in order to demonstrate systemic under- and overestimation of Gram-

positive and -negative strains, respectively. Our results also underline the importance of using 

complementary approaches to analyze microbiota composition. 

 

 



Discussion 
 
 

139 
 

 Localization and quantification of individual bacterial strains using FISH 6.1.4.3.

 FISH exhibits several limitations that hamper its use to study bacterial niches and gut ecology in 

conventional microbiota. First, it is challenging to test probe specificity in complex and undefined 

microbial communities. Moreover, mono- or poly-labelled FISH probes can show different sensitivity to 

detect low abundant bacteria or bacteria with cell walls that exhibit low-permeability properties to probes 

(e.g. some Gram-positive strains) (Pernthaler, Preston et al. 2002). Finally, there is a real limitation to 

enumerate fluorescently labelled bacteria principally because gut ecosystem harbors many autofluorescent 

particles (e.g. plant fibers). Some studies report manual counting whether others developed automated 

enumeration approaches (Thiel and Blaut 2005, Earle, Billings et al. 2015). Up-to-date, one study 

established a software platform to allow quantification of bacteria as well as their localization in the gut 

(Earle, Billings et al. 2015). To this end, they used GF mice colonized either with a low-complexity 

microbiota or with a human conventional microbiota. In this thesis, we used a defined “mid-complex” 

microbiota and developed another approach using the DAIME software to quantify and localize bacterial 

strains. One of the advantages of DAIME is that it also allows spatial arrangement analysis of bacterial 

populations to study microbial population interactions, for example (Schillinger, Petrich et al. 2012). We 

showed that in Oligo-MM12-colonized mice, YL44 was enriched at the epithelial border in contrast to 

YL58 (Figures 22 and 23). Moreover, we also showed that the distribution of YL44 in mouse cecum was 

dependent on the microbiota context (Figure 22). Further investigations will be needed to understand the 

reasons of these different spatial distributions. These results highlight the importance of studying not only 

the gut microbiota composition, but also the bacterial population niches in the gut environment. Therefore, 

I am convinced that DAIME will be a powerful tool to study the behavior of single bacteria within the gut 

ecosystem. 

 

 How long do the Oligo-MM strains need to establish a stable microbial 6.1.4.4.

community in mouse gut? 

 It is known that colonization of the host with microbial community occurs in a dynamic way and 

depends on several parameters such as age and sex (Ge, Feng et al. 2006). However, very few studies 

analyzed the physiological changes induced by the microbiota after inoculation of GF animals. How long 

does a microbiota require to fulfil its functions in the mouse gut, to optimally interact with the host 

immune system or to strengthen the mucus layer? Recently, Johansson et al. reported that it takes seven to 

eight weeks for the colonic mucus to normalize and become impenetrable to microbial bacteria after 

conventionalization of GF mice. They also showed that colonizing microbiota undergoes dynamic changes 
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for three weeks post-colonization (Johansson, Jakobsson et al. 2015). In our study, we allowed the Oligo-

MM12 strains to stabilize for approximately 40 days before infection. Significant decrease of relative cecal 

weight at day 43 post-inoculation as compared to day 0 indicate that physiological changes occur even 

though microbiota composition remains quite stable from day 10 to 43 post-inoculation (Figures 9A and 

11B). However, we have not analyzed relative cecal weight correlated with microbiota dynamics further 

and it could be that 40 days may still not be enough for the microbiota to establish and completely 

normalize its host. Therefore, it would be interesting to study the metabolic dynamics post-inoculation 

into GF mice in order to analyze the time needed by the microbiota to fully protect the host against 

enteropathogens and to decipher the chronological events of mechanisms responsible for CR. 

 

 Culturomics as a tool to improve taxonomic calssification  6.1.4.5.

 Culturing of intestinal bacterial strains is one of the biggest limitations to study microbiota-host-

pathogen interactions, in particular regarding the human microbiome (Brown, de Vos et al. 2013). Since 

the development of sophisticated microbiome analysis techniques, molecular tools have supplanted culture 

techniques, as they are considered as time-consuming and challenging. In the early 21st century, some 

studies compared data obtained using 16S rRNA gene-based techniques with culturing approaches. In this 

way, it was shown that microbiota composition was slightly less complex as determined by culturing than 

by culture independent method such as by a 16S rRNA gene library (Wilson and Blitchington 1996). 

Moreover, Wilson et al. underlined the complementary use of both techniques, as half of species were 

only detected by 16S rRNA gene cloning while one third of species were only identified using culturing. 

Similarly, it was shown that Gram-negative bacteria are mostly underestimated using pyrosequencing, as 

compared to Gram staining and transmission electron microscopy (Hugon, Lagier et al. 2013). All 

together, these results highlight the need of using complementary techniques to analyze microbiota 

composition, as already noted above. It was estimated that only 60-80 % of fecal bacteria counted using 

microscopic techniques were uncultured (Langendijk, Schut et al. 1995, Hayashi, Sakamoto et al. 2002). 

More recently, Fodor et al. established a list of “most wanted” bacteria, which have less than 90 % 

identity to two major human-derived databases (i.e. GOLD-Human and Human Microbiome Project 

(HMP) databases), are present in at least 20 % of the samples from different human body sites and are still 

uncultured (Fodor, DeSantis et al. 2012). In order to isolate and cultivate these bacteria, efforts were made 

for examples to optimize growth media (Clavel, Henderson et al. 2006), generate novel culture methods 

such as synergistic growth and the use of gel microdroplets (Kaeberlein, Lewis et al. 2002, Zengler, 

Toledo et al. 2002, Rappe and Giovannoni 2003). One of the major advances made by the HMP and other 

sequencing projects was that about 5, 000 human-derived bacterial strains were isolated, cultured and their 
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genomes sequenced (Fodor, DeSantis et al. 2012). Several studies showed that cultivating a large 

repertoire of microbial OTUs was possible from few human donors (Goodman, Kallstrom et al. 2011). 

Increasing the number of culture conditions was termed as culturomics (Pfleiderer, Lagier et al. 2013, 

Lagier, Hugon et al. 2015). Development of culturomics is necessary not only to isolate novel bacteria, but 

also to improve the resolution of 16S rRNA amplicon and metagenomics studies as well as to ameliorate 

taxonomic classification and avoid misinterpretation of data (Fournier, Lagier et al. 2015, Lawson and 

Rainey 2015). Moreover, a complementation of public strain collections would facilitate standardization 

of gnotobiotic experiments, guarantee the availability of bacterial strains to the entire scientific 

community, enable the design of in vitro experiments to optimize the interpretation of “omics” datasets in 

combination with genome sequence databases (Bleich and Hansen 2012, Kim, Cho et al. 2012). Strain 

collections based on human isolates were readily implemented (e.g. to address clinically relevant 

questions). However, very few mouse-derived bacterial strains are currently available and fully sequenced. 

However, as explained before, the use of mouse-strains to colonize mouse gut is particularly important to 

study molecular and host-specific interactions between the commensals and their host. Therefore, efforts 

must also be made to isolate more mouse-derived strains, submit their genomes to sequencing and 

generate public genome databases and strain collections. Moreover, contrary to human pathogens, which 

have been extensively studied in the past, commensals have been poorly characterized. Thus, it appears 

essential to generate more commensal reference strains. In our study, we aimed at isolating and 

establishing culture methods of intestinal mouse-derived bacteria under anaerobic conditions. Our 

research lead us to isolate and characterize new genera such as KB18 (Ruminococcaceae; Incertae Sedis) 

and YL45 (Parasutterella spp.), which were taxonomically assigned using Silva database (Table 35). 

However, it is known that the Silva database contains sequences of unequal quality that can come from 

misidentified organisms and largely reflects uncultured taxa (Fodor, DeSantis et al. 2012, Ricker, Qian et 

al. 2012, Fournier, Lagier et al. 2015). Therefore, in order to better assign novel strains, we used another 

well-curated database, EzTaxon, which only contains sequences of type strains (i.e. cultured described 

species that are deposited in at least two recognized collections in two different countries) (Kim, Cho et al. 

2012). All sequences of this database were also subjected to phylogenetic analysis which leads to a 

complete hierarchical classification system. Therefore, we used 16S rRNA gene sequence alignment 

against EzTaxon database to identify novel species among Oligo-MM strains (i.e. with a match ≤ 97 % 

sequence identity to a type strain) (Table 37). This analysis revealed that the Oligo-MM12 consortium 

contains one novel species Bacteroides sp. nov. (I48), two members of a novel genus Clostridiales gen. 

nov. (KB18) and Sutterella_f gen. nov. (YL45), and one member of a novel family Barnesiella-like fam. 

nov. (YL27). Therefore, new names were proposed for these strains: Bacteroides caecimuris (I48), 

Acutalibacter muris (KB18), Turicimonas muris (YL45) and Muribaculum intestinalis (YL27) 
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(Lagkouvardos et al., submitted). By isolating novel strains, we aimed at exploring the potential of the so 

far uncultured majority of mouse intestinal bacteria. Up-to-date, we focused on members of the 

superkingdom Bacteria. However, it is known that members of the superkingdom Archaea such as 

Methanobrevibacter smithii and Methanosphaera stadtmanae can influence host immune homeostasis 

(Bang, Weidenbach et al. 2014). They have also been shown to interact with Bacteria members such as 

Bacteroides thetaiotaomicron which can modulate the metabolic landscape of the host (Samuel and 

Gordon 2006). In future experiments, it would be interesting to test whether Archaea representatives, 

alone or together with the Oligo-MM12, are also involved in CR. To my knowledge, it remains unknown. 

Table 37. Taxonomic assignment of the Oligo-MM strains using EzTaxon database 

Taxonomic  
classification 

Strain 
ID Taxonomic Identity Eztaxon besthit 

phylum Actinobacteria 
  class Actinobacteria 
    order Bifidobacteriales 
      family Bifidobacteriaceae 

 
 
 
YL2 

 
 
 
Bifidobacterium animalis 

 

phylum Bacteroidetes 
  class Bacteroidia 
    order Bacteroidales 
 
      family Bacteroidaceae 

 
 
YL27 
 
I48 

 
 
Barnesiella-like fam. nov. 
 
Bacteroides sp. nov. 

 
 

86.16 % Barnesiella 
intestinihominis 

96.86 % Bacteroides 
xylanisolvens 

phylum Proteobacteria 
  class Betaproteobacteria 
    order Burkholderiales 
      family Sutterellaceae 

 
 
 
YL45 

 
 
 
Sutterella_f gen. nov. 

 
 
 

93.92 % Parasutterella 
excrementihominis 

phylum Verrucomicrobia 
  class Verrucomicrobiae 
    order Verrucomicrobiales 
      family Verrucomicrobiaceae 

 
 
 
YL44 

 
 
 
Akkermansia muciniphila 

 
 

phylum Firmicutes 
  class Bacilli 
    order Lactobacillales 
      family Enterococcaceae 
      family Lactobacillaceae 
  class Clostridia 
    order Clostridiales 
      family Lachnospiraceae 
       
      family Ruminococcaceae 
   
class Erysipelotrichia 
    order Erysipelotrichales 
      family Erysipelotrichaceae 

 
 
 
KB1 
I49 
 
 
YL32 
YL58 
YL31 
KB18 
 
 
I46 

 
 
 
Enterococcus sp. 
Lactobacillus reuteri 
 
 
Clostridium clostridioforme 
Blautia sp.  
Flavonifractor plautii 
Clostridiales gen. nov. 
 
 
Clostridium innocuum 

 
 
 
 
 
 
 
 
 
 

92.09 % C. leptum 

Full length 16S rRNA gene sequences were aligned against the EzTaxon database. 
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 The AGR2ko mice: A mouse model to study the role of the mucus 6.2.

layer and the microbiota during S. Tm infection 

 Does mutation of AGR2 gene only affect the cecal mucus layer? 6.2.1.

 AGR2ko mice do not develop spontaneous colitis in contrast to other mucin-6.2.1.1.

deficient mouse models 

 In this study, the AGR2ko mouse model was used to study the role of the mucus layer during S. 

Tm infection as AGR2ko mice lack a functional intestinal mucus layer (Park, Zhen et al. 2009). Previous 

studies used other mucin-deficient mouse models to analyze the role of the mucus layer such as MUC2-

deficient, Winnie and Eeyore mice (Velcich, Yang et al. 2002, Heazlewood, Cook et al. 2008). Lack of an 

intestinal mucus layer allows the bacteria to come in direct contact with epithelial cells, penetrate into the 

normally sterile crypts and even into epithelial cells (Johansson, Phillipson et al. 2008). Therefore, these 

mice are known to develop spontaneous colitis and to be more susceptible to enteric infections and 

chemically induced colitis, although the colitis phenotype was also shown to vary depending on the mouse 

genetic background as well as housing hygiene conditions (Velcich, Yang et al. 2002, Van der Sluis, De 

Koning et al. 2006, Heazlewood, Cook et al. 2008, Bergstrom, Kissoon-Singh et al. 2010, Bao, Guo et al. 

2014). To my knowledge, AGR2ko mice have never been used to study the role of mucus layer during 

enteropathogen infection. In our study, AGR2ko mice did not develop spontaneous colitis when housed 

under SPF conditions. Surprisingly, they showed high mortality once rederived germfree. This is 

contradictory with other observations reporting that mucin-deficient mice generally do not develop colitis 

or high mortality when housed under germfree conditions (Sellon, Tonkonogy et al. 1998). The underlying 

reasons for this remain currently unknown. 

 

 AGR2ko and AGR2het mice exhibit differential phenotype and gene expression 6.2.1.2.

 It has been reported that AGR2ko mice exhibit other differences besides the absent mucus layer as 

compared to AGR2wt mice. In fact, mutation of AGR2 gene is also associated with body weight loss, 

premature death, intestinal morphologic abnormalities, dysregulation of immune responses, increased 

neutrophil infiltration in the intestinal epithelium and increased ER stress response (Gupta, Wodziak et al. 

2013). Moreover, dysregulation of AGR2 gene expression has also been associated with tumor growth and 

metastasis (Ramachandran, Arumugam et al. 2008, Hong, Wang et al. 2013, Sung, Choi et al. 2014). In 

this study, we focused on the mucus layer deficiency. However, we cannot exclude the possibility that 
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AGR2 gene mutation could also influence S. Tm infection by other mechanisms besides the mucus layer 

deficiency. 

 First, this is supported by the fact that AGR2 protein has been localized intracellularly and 

extracellularly (Bergstrom, Berg et al. 2014). Even though its functions remain unknown, we cannot 

exclude that AGR2 could exhibit an antimicrobial activity. Second, it is also supported by analyses of gene 

expression using DNA microarrays either on stomach or cecal tissues. In stomach tissues, 858 genes were 

found to show at least a 3-fold change in gene expression in AGR2ko vs AGRhet mice (Gupta, Wodziak et 

al. 2013). Among these genes, the authors highlighted the Reg family of genes such as RegIIIβ, which can 

kill Salmonella spp. (Stelter, Kappeli et al. 2011, van Ampting, Loonen et al. 2012). In agreement with this 

study, we found that gut epithelial gene expression varies for several gene sets between AGR2ko and 

AGRhet mice (Tables 49 and 50). Whereas few gene sets were found to be upregulated in AGR2ko mice 

(e.g. cholesterol biosynthesis), several gene sets were significantly downregulated in AGR2ko mice, as 

compared to AGR2het mice. Among them, we found genes involved in cell cycle, metabolism, damage 

response, cancer pathways and immune response (e.g. interleukin-2 signaling and immunoregulatory 

interactions between a lymphoid and a non-lymphoid cells). This suggests that AGR2ko mice exhibit 

decelerated epithelial turnover. In this thesis, we also showed that sm-treated AGR2ko mice exhibit 

attenuated susceptibility to S. Tm infection at d1 p.i. and decreased S. Tm numbers in cecal tissue (Figures 

26 and 27). Therefore, it would be reasonable to speculate that this protective effect against S. Tm-

induced inflammation could be due to a global downregulation of inflammatory immune responses or an 

upregulation of immune responses involved in S. Tm killing. Interestingly, several immune-related gene 

sets were found to be repressed in ileal epithelium of MUC2ko mice as compared to MUC2wt mice 

(Sovran, Loonen et al. 2015). Among these gene sets were found genes involved in Toll-like receptor-, 

immune- and chemokine-signaling. Genes involved in adaptive immune responses were also found to be 

downregulated in MUC2ko mice, although this downregulation depends also on mouse age. Therefore, due 

to the high complexity of regulation of immune responses, this hypothesis would require further 

investigation. Thus, the effects of differential gene expression remain unclear with respect to S. Tm 

infection between AGR2ko and AGRhet mice. 

  Furthermore, Sovran et al., also pointed out that MUC2het mice also exhibit differential gene 

expression as compared to MUC2wt mice. For instance, immune-related gene sets were upregulated in 

MUC2het mice as compared to MUC2wt mice (Sovran, Loonen et al. 2015). This differential gene 

expression suggests that heterozygous and wild-type mice may also exhibit different phenotypes. AGR2het 

and AGR2wt mice show a similar phenotype with respect to morphology of the mucus layer (Bergstrom, 

Berg et al. 2014). However, we did not investigate further neither the gene expression of AGR2wt 



Discussion 
 
 

145 
 

epithelial cells as compared to AGR2het cells, nor the response of AGR2wt mice to S. Tm infection. It could 

be that AGR2het mice exhibit a phenotype which is biased as compared to AGR2wt mice. Therefore, we 

would not have compared AGR2ko mice to mice harboring “normal” mucus layer and gene expression. 

This could have hampered the interpretation of the gene expression analysis, for example. 

 

 AGR2ko and AGR2het mice exhibit differential microbiota composition 6.2.1.3.

 In agreement with other studies we showed that mucin-deficient mice harbor different microbiota 

composition as compared to mice with an intact mucus layer (Figure 30) (Bel, Elkis et al. 2014, Sommer, 

Adam et al. 2014, Sovran, Loonen et al. 2015). This could be due to the fact that the mucus represents a 

potential ecological niche and nutrient source for bacteria (Li, Limenitakis et al. 2015). In 2014, Bel et al. 

showed that mice with altered mucus layer (i.e. mice harboring a thicker and more robust colonic mucus 

layer) had decreased susceptibility to chemically induced colitis and that this relative protection was 

transmissible using fecal transplantation (Bel, Elkis et al. 2014). In our study, we concluded that the gut 

microbiota of sm-treated AGR2ko mice conferred protection against S. Tm infection at early time-point 

(Figures 26 and 34). However, we did not analyze the transmissibility of this protection to AGR2het mice 

by transplantation of cecal content from sm-treated AGR2ko mice into AGR2het,GF mice, for example. Such 

an experiment would be important to confirm the protective role of the microbiota against S. Tm infection 

in AGR2ko mice. 

 Additionally, we used differential antibiotic treatment foregoing S. Tm infection to show that this 

protective effect could be due to bacterial taxa that are resistant to sm but not to amp. By applying 

indicator taxa analysis, we correlated this protective effect to the presence of bacterial members assigned 

to the phylum Deferribacteres (Figure 36). Up-to-date, this phylum has not been extensively investigated. 

On the one hand, some studies question whether it might play a deleterious role in periodontal diseases in 

humans (Hutter, Schlagenhauf et al. 2003, Kumar, Griffen et al. 2003, Saito, Leonardo Rde et al. 2006), in 

DSS-induced colitis in mice (Berry, Schwab et al. 2012) and during Citrobacter rodentium infection 

(Hoffmann, Hill et al. 2009) or whether it would be able to translocate from intestinal tract to hepatobilary 

system (Robertson, O'Rourke et al. 2005). On the other hand, the phylum Deferribacteres has also been 

associated with beneficial effects against DSS-induced colitis (Ooi, Li et al. 2013). Intriguingly, we had 

already correlated a bacterial member of this phylum (i.e. ASF457 assigned to Mucispirillum spp.) to 

increased CR against S. Tm due to a potential role of its T6SS in interfering with S. Tm growth (Figures 

19 and 20, block “D”). However, it remains unclear whether such a protective effect would also depend 

on the microbiota context. Moreover, bacterial taxa assigned to Ruminococcaceae and Clostridiales were 



Discussion 
 
 

146 
 

also found as enriched in sm-treated AGR2ko mice (Figure 36). It is reasonable to speculate that these taxa 

could also play a role in protection, as they have already been associated with recovery of colonization 

resistance against C. difficile and a vancomycin-resistant Enterococcus strain (Jump, Polinkovsky et al. 

2014). Thus, it would be interesting to test whether bacterial strains which are isolated from sm-treated 

AGR2ko mice would be protective against S. Tm-induced inflammation when inoculated to AGR2ko,GF 

mice alone or combined with the Oligo-MM12 consortium. 

 Finally, we also observed that microbiota of AGR2ko mice was less susceptible to antibiotic 

treatment than the microbiota of the other experimental groups (Figure 32B). It is known that the 

translocating activity of T3SS-1 is induced upon contact with epithelial cells (Zierler and Galan 1995). 

Thus, the residual sm-resistant microbiota might physically hamper S. Tm to reach the epithelial border. 

This hypothesis might deserve further investigation. 

  

 Which other mechanisms could protect sm-treated AGR2ko mice against S. 6.2.2.

Tm infection? 

 S. Tm exhibits reduced T3SS-1 expression in sm-treated AGR2ko mice 6.2.2.1.

 In order to invade epithelial cells and to trigger inflammation, S. Tm injects numerous effector 

proteins into the host cell via a T3SS encoded on SPI-1 and named as T3SS-1 (Kaiser, Diard et al. 2012). 

This T3SS-1 is essential for S. Tm internalization and to manipulate host-signaling pathways. Mechanisms 

involved in these processes have been well characterized (Fabrega and Vila 2013, LaRock, Chaudhary et 

al. 2015). In mouse gut lumen, it was shown that approximately 15 % of S. Tm cells expressed T3SS-1 

(Ackermann, Stecher et al. 2008). This was also confirmed in vitro (Hautefort, Proenca et al. 2003, 

Schlumberger, Muller et al. 2005). However, the mechanisms that regulate the bistable expression of 

T3SS-1 need to be further investigated. Several transcriptional regulators have been reported to modulate 

SPI-1 expression. For example, Fis is required for full activation of SPI-1 genes (Kelly, Goldberg et al. 

2004), whereas HilC and HilD can activate the transcription of HilA, which in turn activates the genes 

encoding for T3SS-1 as well as effector proteins (Bajaj, Hwang et al. 1995). Low oxygen levels found in 

the gut can also modulate SPI-1 gene expression as it influences DNA supercoiling topology. For 

example, relaxed DNA supercoiling can repress invA, a regulator encoded on SPI-1 (Galan and Curtiss 

1990) or activate hilC and hilD expression, which consequently can induce T3SS-1 expression (Cameron 

and Dorman 2012). Other environmental factors were found to repress T3SS-1 expression in vitro such as 

naringenin which is a citrus flavonoid (Vikram, Jesudhasan et al. 2011) and L-arabinose (Lopez-Garrido, 
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Puerta-Fernandez et al. 2015) as well as products released by the gut microbiota like SCFA (e.g. 

propionate and butyrate) and lactate (Durant, Corrier et al. 2000, Durant, Corrier et al. 2000, Lawhon, 

Maurer et al. 2002). Interestingly, lactic acid-producing bacteria were also found to alter SPI-1 expression 

in vivo but the mechanism remains unclear (Yang, Brisbin et al. 2014). 

 In this thesis, we showed that relative expression of T3SS-1 at epithelial border and in lumen of 

cecum of sm-treated AGR2ko mice was significantly reduced as compared to amp-treated AGR2ko mice 

(Figure 38A,B). Therefore, we reasoned that the gut microbiota might be able to influence T3SS-1 gene 

expression through mechanisms that remain to be determined. A reasonable approach to investigate these 

mechanisms in AGR2ko mice would be to test whether the effect is also recapitulated in gnotobiotic 

AGR2ko and AGR2het mice colonized with the Oligo-MM12 consortium. If yes, we could narrow down the 

bacterial isolates responsible for this effect and start deciphering the mechanism of interaction with S. Tm 

genes at a molecular level. If no, we could add different commensal strains isolated from sm-treated 

AGR2ko mice (e.g. bacterial strains assigned to the taxa Deferribacteres or Ruminococcaceae) and test 

their interaction with T3SS-1 expression in vitro and in vivo. It is tempting to speculate that the gut 

microbiota might be causal for the reduced T3SS-1 expression in S. Tm observed in sm-treated AGR2ko 

mice although other factors should also be considered. 

 

 Effects of antibiotic treatments on the host and on S. Tm   6.2.2.2.

 Not only can antibiotics severely damage the gut microbiota (Reikvam, Erofeev et al. 2011, 

Schubert, Sinani et al. 2015), but they can also have deleterious effects on the host. Long-term antibiotic-

induced dysbiosis has been associated with increased body adiposity, colitis, diarrhea and allergies (Hill, 

Siracusa et al. 2012, Liou and Turnbaugh 2012, Varughese, Vakil et al. 2013, Satokari, Fuentes et al. 

2014). Moreover, mice supplied with an antibiotic mixture (i.e. ampicillin, vancomycin, neomycin and 

metronidazole) can experience increased baseline morbidity and mortality depending on their genotype 

(Reikvam, Erofeev et al. 2011). Conversely, it was also reported that mice gavaged with a different 

mixture (i.e. vancomycin, neomycin, metronidazole and amphotericin-B) together with drinking water 

supplemented with ampicillin did not show distress or pain (Reikvam, Erofeev et al. 2011). The reason for 

this remains unclear. It could be due to the mode of antibiotic administration (i.e. continuously in drinking 

water or every 12 h by gavage), the duration of administration (i.e. seventeen days to several weeks) or 

other reasons such as genetic background, housing conditions, age, presence of opportunistic pathogens 

within the microbiota or microbiota composition (Ayres, Trinidad et al. 2012, Pham, Clare et al. 2014). 

The intestinal mucus layer was also shown to influence antibiotic permeation from gut lumen through 
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epithelial cells (Coghill, Hopwood et al. 1983, Goddard 1998). While ampicillin is known to be 

moderately well absorbed from the gut lumen, streptomycin is known not to be absorbed (Croswell, Amir 

et al. 2009). However, the effect of mucus deficiency on the absorption or the interactions of these 

antibiotics with epithelial cells remain unclear. Additionally, depletion of the gut microbiota by antibiotics 

can influence host gene expression and consequently, the host gut metabolic landscape (Lange, Buerger et 

al. 2016). In intestinal epithelial cells, 36 genes presenting at least a two-fold altered expression were 

upregulated in antibiotic treated mice (e.g. RegIIIβ) and 70 genes were downregulated (e.g. caspase 14) 

(Reikvam, Erofeev et al. 2011). Finally, the antibiotic novobiocin was shown to activate T3SS-1 genes 

expression by changing DNA topology (Cameron and Dorman 2012). Novobiocin is produced from the 

same bacterial genus as streptomycin (i.e. Streptomyces spp.) and belongs to the antibiotic class of 

aminocoumarins which are known to inhibit the DNA gyrase. Streptomycin is known to enhance 

susceptibility to infections by S. Tm and this effect was reported to be due to the depletion of microbiota 

by streptomycin (Ng, Ferreyra et al. 2013). However, the effects of sm on S. Tm virulence gene 

expression have never been studied in detail. In this thesis, the use of two antibiotics in AGR2ko mice 

allowed us to highlight the role of the microbiota in protection against S. Tm infection (Figures 26 & 34). 

However, we cannot rule out the possibility that antibiotics may influence S. Tm infection by modulating 

the gene expression and the physiology of AGR2ko mice (e.g. increased anti-inflammatory responses) or S. 

Tm. Thus, we could speculate that the protective effect observed against S. Tm in sm-treated AGR2ko 

mice could be due to interactions of sm with epithelial cells, which would be enhanced in AGR2ko due to 

the absence of a functional mucus layer. Moreover, in humans, the standard posology of sm and amp is 15 

mg/kg and 50-200 mg/kg, respectively. In mice, we used 25 mg/mouse, a much higher dose. This 

represents approximately 1250 mg/kg which is 6 to 83-fold more than in humans. Streptomycin is known 

to be more toxic (i.e. nephrotoxicity and ototoxicity, in humans) than ampicillin (Rybak, Abate et al. 

1999). Therefore, effects of sm and amp posology used for mouse experiment cannot be ignored although 

poorly characterized in mice. 

 



 
 
 

149 
 

 Appendix 7.

Table 38. Microbial composition of the Oligo-MM10 inoculum determined by qPCR 

 Strain ID Isol46 Isol49 YL58 YL31 YL32 YL44 KB1 YL2 YL45 Isol48 
Rel. abundance 0,00E+00 5,71E-03 3,78E-02 2,15E-01 1,51E-02 1,88E-01 9,57E-03 7,28E-03 2,45E-02 4,97E-01 
Amount of 16S rRNA gene copies per 5 ƞg fecal DNA are given as relative abundance and corresponding bar plots are presented in Figure 8B. 

 

Table 39. Microbial composition in feces determined by amplicon sequencing using the Silva database to assign taxonomy at the family level 

Days post-inoculation (d) d0 d0 d0 d0 d10 d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 224 227 228 222 223 227 228 224 225 230 231 
Microbiota ASF5 ASF5 + Oligo-MM10 
Taxon (Family level)             
Nocardiaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Microbacteriaceae 0,00E+00 5,50E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Promicromonosporaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 7,44E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroidaceae 1,17E-04 2,20E-04 5,64E-05 2,75E-04 1,32E-01 1,93E-01 1,23E-01 1,02E-01 1,99E-01 1,96E-01 2,99E-01 2,38E-01 
Porphyromonadaceae 9,09E-01 8,18E-01 9,14E-01 8,50E-01 1,81E-01 2,00E-01 1,72E-01 1,95E-01 2,41E-01 2,76E-01 2,23E-01 2,56E-01 
Prevotellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Rikenellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 6,75E-05 0,00E+00 0,00E+00 
S24-7 1,76E-04 5,50E-05 0,00E+00 5,50E-05 7,31E-05 0,00E+00 6,54E-05 0,00E+00 0,00E+00 0,00E+00 8,56E-05 7,48E-05 
Deferribacteraceae 5,69E-03 2,44E-02 6,10E-03 1,14E-02 7,31E-05 2,23E-04 0,00E+00 3,30E-04 1,42E-04 2,03E-04 4,28E-04 0,00E+00 
Lactobacillales;Other 3,99E-03 5,89E-03 4,01E-03 6,87E-03 0,00E+00 7,44E-05 0,00E+00 0,00E+00 0,00E+00 6,75E-05 8,56E-05 0,00E+00 
Enterococcaceae 0,00E+00 5,50E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,88E-04 1,98E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lactobacillaceae 8,06E-02 1,51E-01 7,59E-02 1,31E-01 3,66E-04 5,95E-04 0,00E+00 3,30E-04 3,54E-04 2,03E-04 3,42E-04 9,72E-04 
Lachnospiraceae 5,87E-05 2,75E-04 0,00E+00 3,85E-04 1,21E-01 1,48E-01 2,00E-01 3,13E-01 1,48E-01 2,01E-01 1,51E-01 1,65E-01 
Ruminococcaceae 5,87E-05 0,00E+00 0,00E+00 0,00E+00 2,34E-03 1,79E-03 4,57E-04 1,38E-03 3,19E-03 3,58E-03 1,11E-03 2,77E-03 
Clostridiales;__uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,85E-04 1,86E-03 6,54E-05 7,91E-04 4,25E-04 5,40E-04 3,42E-04 2,17E-03 
Rhizobiaceae 5,87E-05 5,50E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Alcaligenaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 3,66E-04 3,72E-04 5,88E-04 1,19E-03 7,79E-04 6,75E-04 6,85E-04 6,73E-04 
Comamonadaceae 5,87E-05 3,30E-04 0,00E+00 1,65E-04 0,00E+00 0,00E+00 0,00E+00 3,30E-04 1,42E-04 0,00E+00 0,00E+00 0,00E+00 
Desulfovibrionaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Verrucomicrobiaceae 5,87E-05 5,50E-05 5,64E-05 1,65E-04 5,62E-01 4,55E-01 5,03E-01 3,84E-01 4,08E-01 3,22E-01 3,24E-01 3,34E-01 
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Days post-inoculation (d) d22 d22 d22 d43 d43 d43 d43 d43 d43 
Mouse number 347 348 349 350 351 352 353 354 355 
Microbiota ASF5 + Oligo-MM10 ASF5 ASF5 + Oligo-MM10 
Taxon (Family level)          
Nocardiaceae 0,00E+00 0,00E+00 0,00E+00 5,80E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Microbacteriaceae 0,00E+00 0,00E+00 0,00E+00 5,80E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Promicromonosporaceae 0,00E+00 0,00E+00 0,00E+00 1,16E-04 0,00E+00 0,00E+00 8,39E-05 0,00E+00 0,00E+00 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,30E-04 0,00E+00 
Bacteroidaceae 3,85E-01 2,87E-01 3,54E-01 5,80E-05 1,38E-04 0,00E+00 4,18E-01 3,77E-01 4,01E-01 
Porphyromonadaceae 2,45E-01 2,50E-01 2,06E-01 9,25E-01 8,57E-01 8,42E-01 2,49E-01 2,66E-01 1,98E-01 
Prevotellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Rikenellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
S24-7 7,17E-05 4,88E-04 0,00E+00 5,80E-05 0,00E+00 0,00E+00 8,39E-05 0,00E+00 0,00E+00 
Deferribacteraceae 0,00E+00 1,63E-04 9,58E-05 1,36E-02 1,22E-02 1,51E-02 2,52E-03 3,90E-04 2,74E-04 
Lactobacillales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Enterococcaceae 1,43E-04 0,00E+00 0,00E+00 0,00E+00 6,91E-05 0,00E+00 0,00E+00 0,00E+00 2,74E-04 
Lactobacillaceae 5,74E-04 1,63E-04 9,58E-04 6,04E-02 1,29E-01 1,42E-01 5,87E-04 5,21E-04 1,92E-03 
Lachnospiraceae 6,74E-02 1,21E-01 1,96E-01 0,00E+00 2,07E-04 0,00E+00 1,80E-01 2,06E-01 1,53E-01 
Ruminococcaceae 3,87E-03 4,88E-04 1,63E-03 0,00E+00 0,00E+00 0,00E+00 4,11E-03 9,11E-04 1,92E-03 
Clostridiales;__uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae 1,65E-03 1,63E-04 6,71E-04 0,00E+00 0,00E+00 0,00E+00 8,39E-04 2,60E-04 9,14E-04 
Rhizobiaceae 0,00E+00 0,00E+00 0,00E+00 5,80E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Alcaligenaceae 1,48E-02 6,35E-03 6,61E-03 0,00E+00 0,00E+00 0,00E+00 8,98E-03 3,51E-03 6,67E-03 
Comamonadaceae 7,17E-05 0,00E+00 0,00E+00 1,16E-04 4,14E-04 8,44E-05 8,39E-05 0,00E+00 0,00E+00 
Desulfovibrionaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Verrucomicrobiaceae 2,81E-01 3,34E-01 2,34E-01 5,80E-05 9,67E-04 9,28E-04 1,36E-01 1,46E-01 2,36E-01 
Number of 16S amplicon sequencing reads is given as relative abundance and corresponding bar plots are presented in Figure 8C. 

 

Table 40. Microbial composition in small intestines determined by amplicon sequencing using the Silva database to assign taxonomy at the family level 

Days post-inoculation (d) d10 d10 d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 223 227 228 229 224 225 230 231 
Microbiota ASF5 + Oligo-MM10 
Taxon (Family level)          
Nocardiaceae 1,35E-04 2,01E-04 2,77E-04 2,52E-04 0,00E+00 0,00E+00 3,70E-03 1,53E-03 5,86E-03 
Microbacteriaceae 2,02E-04 5,35E-04 2,77E-04 1,89E-04 0,00E+00 5,61E-05 4,09E-03 2,11E-03 4,35E-03 
Promicromonosporaceae 0,00E+00 6,02E-04 2,08E-04 1,89E-04 6,25E-05 0,00E+00 1,16E-03 1,05E-03 2,73E-03 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroidaceae 1,35E-03 5,16E-02 6,24E-04 8,20E-04 5,62E-04 2,81E-04 6,79E-03 4,79E-04 3,34E-03 
Porphyromonadaceae 3,77E-03 5,47E-02 4,37E-03 3,22E-03 3,06E-03 4,66E-03 1,91E-02 1,53E-03 8,29E-03 
Prevotellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Rikenellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,61E-05 0,00E+00 0,00E+00 0,00E+00 
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Days post-inoculation (d) d10 d10 d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 223 227 228 229 224 225 230 231 
Microbiota ASF5 + Oligo-MM10 
Taxon (Family level)          
S24-7 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Deferribacteraceae 0,00E+00 6,68E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,54E-04 0,00E+00 0,00E+00 
Lactobacillales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Enterococcaceae 6,73E-05 3,61E-03 5,55E-04 4,42E-04 2,37E-03 0,00E+00 7,71E-05 9,58E-05 2,02E-04 
Lactobacillaceae 3,70E-03 5,27E-02 2,77E-04 8,83E-04 2,50E-04 1,07E-03 4,32E-03 9,77E-03 1,52E-03 
Lachnospiraceae 9,08E-03 1,37E-01 1,53E-02 1,10E-02 2,25E-03 1,51E-03 2,63E-02 1,55E-02 2,18E-02 
Ruminococcaceae 0,00E+00 2,67E-04 1,39E-04 3,15E-04 6,25E-05 4,49E-04 8,49E-04 1,63E-03 5,05E-04 
Clostridiales;__uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae 2,22E-03 3,74E-03 8,32E-04 2,14E-03 2,81E-03 9,54E-04 4,40E-03 1,15E-03 1,37E-02 
Rhizobiaceae 2,69E-04 4,68E-04 2,77E-04 1,89E-04 6,25E-05 5,61E-05 4,55E-03 2,87E-03 8,19E-03 
Alcaligenaceae 9,70E-02 2,43E-02 4,10E-02 4,98E-02 7,14E-02 2,91E-02 8,66E-02 1,15E-01 1,22E-01 
Comamonadaceae 2,15E-03 3,74E-03 2,08E-03 2,27E-03 3,12E-04 8,42E-04 3,24E-02 2,22E-02 5,31E-02 
Desulfovibrionaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Verrucomicrobiaceae 8,80E-01 6,67E-01 9,34E-01 9,28E-01 9,17E-01 9,61E-01 8,05E-01 8,25E-01 7,54E-01 
Number of 16S amplicon sequencing reads are given as relative abundance and corresponding bar plots are presented in Figure 8D. 

 

Table 41. Microbial composition in feces determined by amplicon sequencing using a custom sequence collection to assign taxonomy at the genus level  

Days post-inoculation (d) d0 d0 d0 d0 d10 d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 224 227 228 222 223 227 228 224 225 230 231 
Microbiota ASF5 ASF5 + Oligo-MM10 
Taxon (Genus level)             
Bifidobacterium 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 7,44E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroides 1,17E-04 2,20E-04 5,64E-05 2,75E-04 1,32E-01 1,93E-01 1,23E-01 1,02E-01 1,99E-01 1,96E-01 2,99E-01 2,38E-01 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 6,75E-05 0,00E+00 0,00E+00 
Parabacteroides 9,09E-01 8,18E-01 9,14E-01 8,50E-01 1,81E-01 2,00E-01 1,72E-01 1,95E-01 2,41E-01 2,76E-01 2,23E-01 2,56E-01 
Barnesiella 1,76E-04 5,50E-05 0,00E+00 5,50E-05 7,31E-05 0,00E+00 6,54E-05 0,00E+00 0,00E+00 0,00E+00 8,56E-05 7,48E-05 
Mucispirillum 5,69E-03 2,44E-02 6,10E-03 1,14E-02 7,31E-05 2,23E-04 0,00E+00 3,30E-04 1,42E-04 2,03E-04 4,28E-04 0,00E+00 
Enterococcus 0,00E+00 5,50E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,88E-04 1,98E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lactobacillus 8,46E-02 1,56E-01 7,99E-02 1,38E-01 3,66E-04 6,70E-04 0,00E+00 3,30E-04 3,54E-04 2,70E-04 4,28E-04 9,72E-04 
Blautia 0,00E+00 1,10E-04 0,00E+00 5,50E-05 7,31E-04 1,79E-03 7,84E-04 1,91E-03 8,50E-04 6,75E-04 1,37E-03 3,67E-03 
Lachnospiraceae;Incertae_Sedis 5,87E-05 1,65E-04 0,00E+00 3,30E-04 1,21E-01 1,46E-01 1,99E-01 3,12E-01 1,47E-01 2,00E-01 1,49E-01 1,62E-01 
Lachnospiraceae;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lachnospiraceae;uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 8,56E-05 0,00E+00 
Clostridiales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Flavonifractor 5,87E-05 0,00E+00 0,00E+00 0,00E+00 2,34E-03 1,79E-03 4,57E-04 1,38E-03 3,19E-03 3,58E-03 1,11E-03 2,77E-03 
Ruminococcaceae;Incertae_Sedis 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae;Incertae_Sedis 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,85E-04 1,86E-03 6,54E-05 7,91E-04 4,25E-04 5,40E-04 3,42E-04 2,17E-03 
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Days post-inoculation (d) d0 d0 d0 d0 d10 d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 224 227 228 222 223 227 228 224 225 230 231 
Microbiota ASF5 ASF5 + Oligo-MM10 
Taxon (Genus level)             
Bacteria;Other 5,87E-05 1,10E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Parasutterella 5,87E-05 3,30E-04 0,00E+00 1,65E-04 3,66E-04 3,72E-04 5,88E-04 1,52E-03 9,21E-04 6,75E-04 6,85E-04 6,73E-04 
Akkermansia 5,87E-05 5,50E-05 5,64E-05 1,65E-04 5,62E-01 4,55E-01 5,03E-01 3,84E-01 4,08E-01 3,22E-01 3,24E-01 3,34E-01 
 

Days post-inoculation (d) d22 d22 d22 d43 d43 d43 d43 d43 d43 
Mouse number 347 348 349 350 351 352 353 354 355 
Microbiota ASF5 + Oligo-MM10 ASF5 ASF5 + Oligo-MM10 
Taxon (Genus level)          
Bifidobacterium 0,00E+00 0,00E+00 0,00E+00 1,16E-04 0,00E+00 0,00E+00 8,39E-05 0,00E+00 0,00E+00 
Bacteroides 3,85E-01 2,87E-01 3,54E-01 5,80E-05 1,38E-04 0,00E+00 4,18E-01 3,77E-01 4,01E-01 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Parabacteroides 2,45E-01 2,50E-01 2,06E-01 9,25E-01 8,57E-01 8,42E-01 2,49E-01 2,66E-01 1,98E-01 
Barnesiella 7,17E-05 4,88E-04 0,00E+00 5,80E-05 0,00E+00 0,00E+00 8,39E-05 1,30E-04 0,00E+00 
Mucispirillum 0,00E+00 1,63E-04 9,58E-05 1,36E-02 1,22E-02 1,51E-02 2,52E-03 3,90E-04 2,74E-04 
Enterococcus 1,43E-04 0,00E+00 0,00E+00 0,00E+00 6,91E-05 0,00E+00 0,00E+00 0,00E+00 2,74E-04 
Lactobacillus 5,74E-04 1,63E-04 9,58E-04 6,04E-02 1,29E-01 1,42E-01 5,87E-04 5,21E-04 1,92E-03 
Blautia 1,08E-03 1,14E-03 3,83E-03 0,00E+00 0,00E+00 0,00E+00 1,51E-03 1,95E-03 3,38E-03 
Lachnospiraceae;Incertae_Sedis 6,64E-02 1,20E-01 1,92E-01 0,00E+00 2,07E-04 0,00E+00 1,79E-01 2,04E-01 1,50E-01 
Lachnospiraceae;Other 0,00E+00 1,63E-04 9,58E-05 0,00E+00 0,00E+00 0,00E+00 1,68E-04 2,60E-04 0,00E+00 
Lachnospiraceae;uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Clostridiales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Flavonifractor 3,87E-03 4,88E-04 1,63E-03 0,00E+00 0,00E+00 0,00E+00 4,11E-03 9,11E-04 1,92E-03 
Ruminococcaceae;Incertae_Sedis 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae;Incertae_Sedis 1,65E-03 1,63E-04 6,71E-04 0,00E+00 0,00E+00 0,00E+00 8,39E-04 2,60E-04 9,14E-04 
Bacteria;Other 0,00E+00 0,00E+00 0,00E+00 1,74E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Parasutterella 1,48E-02 6,35E-03 6,61E-03 1,16E-04 4,14E-04 8,44E-05 9,06E-03 3,51E-03 6,67E-03 
Akkermansia 2,81E-01 3,34E-01 2,34E-01 5,80E-05 9,67E-04 9,28E-04 1,36E-01 1,46E-01 2,36E-01 
Number of 16S amplicon sequencing reads are given as relative abundance and corresponding bar plots are presented in Figure 9A. 
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Table 42. Microbial composition in small intestines determined by amplicon sequencing using a custom sequence collection to assign taxonomy at the genus level 

Days post-inoculation (d) d10 d10 d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 223 227 228 229 224 225 230 231 
Microbiota ASF5 + Oligo-MM10 
Taxon (Genus level)          
Bifidobacterium 0,00E+00 6,02E-04 2,08E-04 1,89E-04 6,25E-05 0,00E+00 1,16E-03 1,05E-03 2,73E-03 
Bacteroides 1,35E-03 5,16E-02 6,24E-04 8,20E-04 5,62E-04 2,81E-04 6,79E-03 4,79E-04 3,34E-03 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,61E-05 0,00E+00 0,00E+00 0,00E+00 
Parabacteroides 3,77E-03 5,47E-02 4,37E-03 3,22E-03 3,06E-03 4,66E-03 1,91E-02 1,53E-03 8,29E-03 
Barnesiella 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Mucispirillum 0,00E+00 6,68E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,54E-04 0,00E+00 0,00E+00 
Enterococcus 6,73E-05 3,61E-03 5,55E-04 4,42E-04 2,37E-03 0,00E+00 7,71E-05 9,58E-05 2,02E-04 
Lactobacillus 3,70E-03 5,27E-02 2,77E-04 8,83E-04 2,50E-04 1,07E-03 4,32E-03 9,77E-03 1,52E-03 
Blautia 2,22E-03 5,62E-03 2,50E-03 2,40E-03 6,87E-04 7,29E-04 6,09E-03 4,69E-03 8,29E-03 
Lachnospiraceae;Incertae_Sedis 6,86E-03 1,31E-01 1,28E-02 8,58E-03 1,56E-03 7,86E-04 2,02E-02 1,08E-02 1,35E-02 
Lachnospiraceae;Other 0,00E+00 6,68E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lachnospiraceae;uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Clostridiales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Flavonifractor 0,00E+00 2,67E-04 1,39E-04 3,15E-04 6,25E-05 4,49E-04 8,49E-04 1,63E-03 5,05E-04 
Ruminococcaceae;Incertae_Sedis 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae;Incertae_Sedis 2,22E-03 3,74E-03 8,32E-04 2,14E-03 2,81E-03 9,54E-04 4,40E-03 1,15E-03 1,37E-02 
Bacteria;Other 6,05E-04 1,20E-03 8,32E-04 6,31E-04 6,25E-05 1,12E-04 1,23E-02 6,51E-03 1,84E-02 
Parasutterella 9,91E-02 2,81E-02 4,31E-02 5,21E-02 7,17E-02 2,99E-02 1,19E-01 1,37E-01 1,75E-01 
Akkermansia 8,80E-01 6,67E-01 9,34E-01 9,28E-01 9,17E-01 9,61E-01 8,05E-01 8,25E-01 7,54E-01 
Number of 16S amplicon sequencing reads are given as relative abundance and corresponding bar plots are presented in Figure 9B. 

 

Table 43. Microbial composition in the frozen inoculum determined by amplicon sequencing using a custom sequence collection to assign taxonomy at the genus 
level 

Taxon (Genus level) Inoculum 
Bifidobacterium 0,00E+00 
Bacteroides 4,54E-01 
Bacteroidales;Other 0,00E+00 
Parabacteroides 7,33E-04 
Barnesiella 0,00E+00 
Mucispirillum 0,00E+00 
Enterococcus 4,77E-02 
Lactobacillus 3,27E-03 
Blautia 1,21E-02 
Lachnospiraceae;Incertae_Sedis 9,26E-02 
Lachnospiraceae;Other 0,00E+00 
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Taxon (Genus level) Inoculum 
Lachnospiraceae;uncultured 0,00E+00 
Clostridiales;Other 0,00E+00 
Flavonifractor 4,11E-02 
Ruminococcaceae;Incertae_Sedis 0,00E+00 
Erysipelotrichaceae;Incertae_Sedis 3,79E-02 
Bacteria;Other 0,00E+00 
Parasutterella 6,00E-04 
Akkermansia 3,10E-01 
Number of 16S amplicon sequencing reads are given as relative abundance and corresponding bar plots are presented in Figure 9C. 

 

Table 44. Microbial composition in feces and cecal content determined by amplicon sequencing using a custom sequence collection to assign taxonomy at the genus 
level 

 Feces 
Days post-inoculation (d) d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 227 228 224 225 230 231 
Microbiota ASF5 + Oligo-MM10 
Taxon (Genus level)        
Bifidobacterium 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroides 1,32E-01 1,23E-01 1,02E-01 1,99E-01 1,96E-01 2,99E-01 2,38E-01 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 6,75E-05 0,00E+00 0,00E+00 
Parabacteroides 1,81E-01 1,72E-01 1,95E-01 2,41E-01 2,76E-01 2,23E-01 2,56E-01 
Barnesiella 7,31E-05 6,54E-05 0,00E+00 0,00E+00 0,00E+00 8,56E-05 7,48E-05 
Mucispirillum 7,31E-05 0,00E+00 3,30E-04 1,42E-04 2,03E-04 4,28E-04 0,00E+00 
Enterococcus 0,00E+00 5,88E-04 1,98E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lactobacillus 3,66E-04 0,00E+00 3,30E-04 3,54E-04 2,70E-04 4,28E-04 9,72E-04 
Blautia 7,31E-04 7,84E-04 1,91E-03 8,50E-04 6,75E-04 1,37E-03 3,67E-03 
Lachnospiraceae;Incertae_Sedis 1,21E-01 1,99E-01 3,12E-01 1,47E-01 2,00E-01 1,49E-01 1,62E-01 
Lachnospiraceae;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lachnospiraceae;uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 8,56E-05 0,00E+00 
Clostridiales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Flavonifractor 2,34E-03 4,57E-04 1,38E-03 3,19E-03 3,58E-03 1,11E-03 2,77E-03 
Ruminococcaceae;Incertae_Sedis 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae;Incertae_Sedis 5,85E-04 6,54E-05 7,91E-04 4,25E-04 5,40E-04 3,42E-04 2,17E-03 
Bacteria;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Parasutterella 3,66E-04 5,88E-04 1,52E-03 9,21E-04 6,75E-04 6,85E-04 6,73E-04 
Akkermansia 5,62E-01 5,03E-01 3,84E-01 4,08E-01 3,22E-01 3,24E-01 3,34E-01 
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 Cecal content 
Days post-inoculation (d) d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 227 228 224 225 230 231 
Microbiota ASF5 + Oligo-MM10 
Taxon (Genus level)        
Bifidobacterium 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroides 1,87E-01 1,42E-01 1,84E-01 2,29E-01 1,88E-01 2,23E-01 2,11E-01 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
 Cecal content 
Days post-inoculation (d) d10 d10 d10 d20 d20 d20 d20 
Mouse number 222 227 228 224 225 230 231 
Microbiota ASF5 + Oligo-MM10 
Taxon (Genus level)        
Parabacteroides 3,26E-01 3,09E-01 2,97E-01 2,88E-01 2,94E-01 2,80E-01 3,26E-01 
Barnesiella 6,77E-05 0,00E+00 9,53E-05 1,38E-04 5,77E-05 0,00E+00 0,00E+00 
Mucispirillum 4,74E-04 4,40E-04 1,24E-03 2,77E-04 2,31E-04 6,42E-04 7,15E-04 
Enterococcus 0,00E+00 3,52E-04 9,53E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Lactobacillus 4,74E-04 5,28E-04 9,53E-05 8,99E-04 3,46E-04 3,42E-04 1,02E-04 
Blautia 1,56E-03 1,41E-03 4,77E-04 1,04E-03 1,15E-03 1,80E-03 1,53E-03 
Lachnospiraceae;Incertae_Sedis 2,39E-01 3,79E-01 3,11E-01 2,30E-01 2,84E-01 3,13E-01 3,12E-01 
Lachnospiraceae;Other 6,77E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,02E-04 
Lachnospiraceae;uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Clostridiales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Flavonifractor 2,71E-03 7,04E-04 1,72E-03 3,25E-03 2,83E-03 2,35E-03 3,06E-03 
Ruminococcaceae;Incertae_Sedis 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae;Incertae_Sedis 5,41E-04 8,81E-05 8,58E-04 1,11E-03 6,35E-04 2,99E-04 8,17E-04 
Bacteria;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,02E-04 
Parasutterella 1,22E-03 4,40E-04 9,53E-04 8,30E-04 1,21E-03 7,70E-04 1,43E-03 
Akkermansia 2,41E-01 1,66E-01 2,03E-01 2,45E-01 2,27E-01 1,78E-01 1,43E-01 
Number of 16S amplicon sequencing reads are given as relative abundance and corresponding bar plots are presented in Figure 10. 

 

Table 45. Oligo-MM12 fecal composition over generations analyzed by qPCR 

Mouse 
generation Strain ID 

  I46 I49 YL58 YL27 YL31 YL32 KB18 YL44 KB1 YL2 YL45 I48 
F0 0,00E+00 4,24E-04 9,56E-03 1,19E-01 1,82E-02 9,01E-03 0,00E+00 3,70E-01 9,88E-04 0,00E+00 5,92E-02 4,14E-01 
F0 0,00E+00 4,52E-04 1,10E-02 1,33E-01 2,29E-02 9,83E-03 1,86E-03 2,03E-01 6,22E-04 0,00E+00 4,74E-02 5,70E-01 
             F1 0,00E+00 0,00E+00 6,49E-03 1,16E-01 2,40E-02 7,83E-03 0,00E+00 3,61E-01 3,92E-04 4,37E-06 4,35E-02 4,41E-01 
F1 0,00E+00 0,00E+00 7,01E-03 1,16E-01 1,45E-02 2,48E-02 0,00E+00 2,96E-01 5,52E-04 6,47E-06 4,49E-02 4,96E-01 
F1 0,00E+00 3,04E-04 8,82E-03 1,12E-01 2,29E-02 1,10E-02 3,19E-05 2,47E-01 8,53E-04 0,00E+00 4,18E-02 5,55E-01 
Mouse Strain ID 
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generation 
  I46 I49 YL58 YL27 YL31 YL32 KB18 YL44 KB1 YL2 YL45 I48 
F1 0,00E+00 1,90E-04 7,22E-03 1,11E-01 1,96E-02 6,99E-03 6,42E-04 2,58E-01 8,88E-04 0,00E+00 5,65E-02 5,38E-01 
F1 0,00E+00 1,04E-03 8,77E-03 8,91E-02 2,88E-02 1,28E-02 0,00E+00 2,57E-01 1,42E-03 0,00E+00 6,17E-02 5,40E-01 
             F2 0,00E+00 6,39E-04 2,32E-03 9,96E-02 1,90E-02 1,41E-02 0,00E+00 1,97E-01 0,00E+00 0,00E+00 2,95E-02 6,37E-01 
F2 0,00E+00 9,36E-04 4,31E-03 9,28E-02 2,43E-02 2,08E-02 9,65E-07 1,86E-01 6,45E-05 0,00E+00 3,01E-02 6,41E-01 
F2 0,00E+00 7,79E-04 5,05E-03 1,02E-01 2,17E-02 1,84E-02 0,00E+00 2,56E-01 5,17E-05 0,00E+00 3,42E-02 5,62E-01 
F2 0,00E+00 2,55E-03 8,85E-03 1,02E-01 2,40E-02 1,19E-02 0,00E+00 1,70E-01 5,51E-05 0,00E+00 3,62E-02 6,45E-01 
F2 0,00E+00 1,99E-03 4,19E-03 1,05E-01 2,11E-02 1,83E-02 1,04E-06 2,25E-01 4,29E-05 0,00E+00 3,80E-02 5,87E-01 
  I46 I49 YL58 YL27 YL31 YL32 KB18 YL44 KB1 YL2 YL45 I48 
F2 0,00E+00 1,04E-03 4,06E-03 7,92E-02 1,98E-02 1,73E-02 0,00E+00 2,32E-01 0,00E+00 0,00E+00 3,56E-02 6,11E-01 
F2 0,00E+00 8,02E-04 4,56E-03 9,01E-02 2,08E-02 2,34E-02 0,00E+00 2,53E-01 1,41E-04 0,00E+00 3,00E-02 5,78E-01 
F2 0,00E+00 9,07E-04 3,97E-03 7,99E-02 1,70E-02 1,21E-02 0,00E+00 1,51E-01 1,01E-04 0,00E+00 3,29E-02 7,02E-01 
F2 0,00E+00 6,64E-04 4,07E-03 8,08E-02 1,86E-02 1,95E-02 0,00E+00 2,33E-01 1,17E-04 0,00E+00 3,72E-02 6,06E-01 
F2 0,00E+00 6,76E-04 4,33E-03 8,79E-02 1,88E-02 1,36E-02 0,00E+00 2,27E-01 1,12E-04 0,00E+00 3,45E-02 6,13E-01 
F2 0,00E+00 9,04E-04 3,82E-03 8,82E-02 1,75E-02 1,41E-02 0,00E+00 2,00E-01 4,79E-05 0,00E+00 3,63E-02 6,39E-01 
             F3 0,00E+00 1,86E-03 9,68E-03 9,98E-02 2,19E-02 1,94E-02 0,00E+00 2,27E-01 3,11E-04 0,00E+00 2,37E-02 5,96E-01 
F3 0,00E+00 8,94E-04 1,28E-02 1,07E-01 2,45E-02 3,41E-02 0,00E+00 2,55E-01 6,37E-04 0,00E+00 2,77E-02 5,38E-01 
F3 0,00E+00 2,52E-03 7,98E-03 1,02E-01 2,04E-02 1,99E-02 0,00E+00 2,66E-01 4,98E-04 0,00E+00 2,74E-02 5,54E-01 
F3 0,00E+00 1,90E-03 8,22E-03 1,00E-01 2,35E-02 2,00E-02 0,00E+00 2,02E-01 3,11E-04 0,00E+00 2,38E-02 6,20E-01 
F3 0,00E+00 2,36E-03 7,55E-03 1,06E-01 2,26E-02 2,54E-02 0,00E+00 2,22E-01 4,91E-04 0,00E+00 3,40E-02 5,80E-01 
F3 0,00E+00 2,77E-03 5,62E-03 9,89E-02 2,22E-02 1,56E-02 0,00E+00 2,64E-01 6,73E-04 0,00E+00 3,33E-02 5,57E-01 
             F4 0,00E+00 0,00E+00 8,41E-03 1,25E-01 1,96E-02 1,03E-02 0,00E+00 1,71E-01 1,66E-04 8,12E-06 1,83E-02 6,47E-01 
F4 0,00E+00 6,16E-04 7,11E-03 1,08E-01 1,74E-02 1,07E-02 0,00E+00 2,11E-01 7,34E-05 0,00E+00 2,18E-02 6,23E-01 
F4 0,00E+00 1,04E-03 8,44E-03 9,69E-02 1,72E-02 7,39E-03 0,00E+00 1,50E-01 2,57E-04 3,80E-06 2,30E-02 6,96E-01 
F4 0,00E+00 6,89E-04 7,22E-03 9,43E-02 1,71E-02 1,16E-02 0,00E+00 1,55E-01 1,45E-04 4,49E-06 1,89E-02 6,95E-01 
F4 0,00E+00 5,59E-04 5,48E-03 9,82E-02 1,63E-02 9,75E-03 0,00E+00 1,43E-01 7,52E-05 0,00E+00 2,38E-02 7,03E-01 
F4 0,00E+00 7,48E-04 7,06E-03 8,79E-02 1,88E-02 9,40E-03 0,00E+00 1,75E-01 1,17E-04 0,00E+00 3,21E-02 6,69E-01 
Amount of 16S rRNA gene copies per 5 ƞg fecal DNA are given as relative abundance of total bacteria. Refer to Figure 12 for the corresponding bar plots. 
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Table 46. Microbial composition in feces determined by amplicon sequencing using the Silva database to assign taxonomy at the family level 

Days post-inoculation (d) d41 
Mouse number 381 382 383 384 385 386 387 388 390 
Microbiota ASF5 ASF5 + Oligo-MM12 
Taxon (Family level)          
Nocardiaceae 0,00E+00 0,00E+00 6,63E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Microbacteriaceae 1,09E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Promicromonosporaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Bacteroidales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,41E-03 2,60E-03 2,93E-03 3,04E-03 
Bacteroidaceae 5,47E-04 0,00E+00 6,63E-05 1,60E-04 2,54E-03 4,04E-01 3,54E-01 3,83E-01 3,71E-01 
Porphyromonadaceae 9,45E-01 9,72E-01 9,11E-01 9,43E-01 9,55E-01 2,32E-01 2,33E-01 2,82E-01 2,28E-01 
Prevotellaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 7,77E-05 0,00E+00 0,00E+00 4,47E-04 
Rikenellaceae 1,09E-04 0,00E+00 0,00E+00 5,32E-05 0,00E+00 0,00E+00 0,00E+00 8,37E-05 0,00E+00 
S24-7 0,00E+00 3,17E-04 0,00E+00 1,06E-04 2,95E-04 1,95E-02 2,24E-02 2,25E-02 1,32E-02 
Deferribacteraceae 5,14E-03 7,93E-04 5,63E-03 1,07E-02 9,10E-03 1,55E-04 4,88E-04 3,35E-04 1,07E-03 
Lactobacillales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Enterococcaceae 0,00E+00 0,00E+00 1,33E-04 0,00E+00 1,18E-04 0,00E+00 0,00E+00 0,00E+00 8,95E-05 
Lactobacillaceae 4,34E-02 1,46E-02 7,47E-02 4,62E-02 3,15E-02 2,64E-03 4,88E-04 3,35E-04 7,16E-04 
Lachnospiraceae 5,14E-03 1,05E-02 7,55E-03 5,32E-05 1,77E-04 6,93E-02 2,12E-01 9,06E-02 2,62E-01 
Ruminococcaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,41E-03 1,46E-03 3,93E-03 2,51E-03 
Clostridiales;__uncultured 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Erysipelotrichaceae 1,09E-04 0,00E+00 0,00E+00 0,00E+00 0,00E+00 1,32E-03 2,44E-04 1,17E-03 6,26E-04 
Rhizobiaceae 0,00E+00 3,17E-04 6,63E-05 0,00E+00 5,91E-05 7,77E-05 0,00E+00 0,00E+00 0,00E+00 
Alcaligenaceae 0,00E+00 0,00E+00 0,00E+00 0,00E+00 5,91E-05 8,55E-03 8,79E-03 8,03E-03 6,98E-03 
Comamonadaceae 0,00E+00 6,34E-04 2,65E-04 1,06E-04 5,91E-05 2,33E-04 0,00E+00 0,00E+00 8,95E-05 
Desulfovibrionaceae 0,00E+00 0,00E+00 6,63E-05 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Verrucomicrobiaceae 5,47E-04 6,34E-04 0,00E+00 0,00E+00 1,18E-03 2,57E-01 1,65E-01 2,05E-01 1,10E-01 
 

Days post-inoculation (d) d41 
Mouse number 391 392 393 394 395 
Microbiota ASF5 + CON 
Taxon (Family level)      
Nocardiaceae 1,12E-04 9,85E-05 0,00E+00 0,00E+00 2,30E-04 
Microbacteriaceae 1,12E-04 0,00E+00 2,11E-04 0,00E+00 0,00E+00 
Promicromonosporaceae 0,00E+00 0,00E+00 0,00E+00 4,63E-04 1,15E-04 
Bacteroidales;Other 4,49E-04 6,90E-04 2,32E-03 6,95E-04 8,05E-04 
Bacteroidaceae 5,37E-02 2,89E-02 4,60E-02 2,61E-02 2,31E-02 
Porphyromonadaceae 2,28E-02 1,57E-02 2,22E-02 1,57E-02 1,93E-02 
Prevotellaceae 9,67E-02 5,57E-02 1,27E-01 1,84E-02 1,91E-02 
Rikenellaceae 5,43E-02 4,62E-02 9,47E-02 6,07E-02 6,90E-02 
S24-7 6,06E-01 7,18E-01 4,84E-01 5,79E-01 6,39E-01 
Deferribacteraceae 4,49E-04 5,91E-04 2,11E-03 1,85E-03 8,05E-04 
Lactobacillales;Other 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
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Days post-inoculation (d) d41 
Mouse number 391 392 393 394 395 
Microbiota ASF5 + CON 
Taxon (Family level)      
Enterococcaceae 0,00E+00 1,97E-04 0,00E+00 1,16E-04 0,00E+00 
Lactobacillaceae 1,76E-02 2,72E-02 2,42E-02 2,44E-02 5,20E-02 
Lachnospiraceae 1,16E-01 7,94E-02 1,61E-01 2,44E-01 1,33E-01 
Ruminococcaceae 1,82E-02 1,22E-02 2,41E-02 1,25E-02 1,79E-02 
Clostridiales;__uncultured 2,02E-03 1,77E-03 2,74E-03 3,36E-03 5,98E-03 
Erysipelotrichaceae 7,85E-04 1,87E-03 4,22E-04 1,97E-03 4,26E-03 
Rhizobiaceae 0,00E+00 0,00E+00 0,00E+00 1,16E-04 0,00E+00 
Alcaligenaceae 6,62E-03 7,68E-03 5,17E-03 4,98E-03 7,25E-03 
Comamonadaceae 8,97E-04 1,97E-04 6,33E-04 1,16E-03 1,15E-04 
Desulfovibrionaceae 3,59E-03 4,04E-03 3,27E-03 5,33E-03 7,94E-03 
Verrucomicrobiaceae 0,00E+00 9,85E-05 1,06E-04 0,00E+00 0,00E+00 
Number of 16S amplicon sequencing reads are given as relative abundance and corresponding bar plots are presented in Figure 13C. 

 

Table 47. Microbial composition in feces of ASF and Oligo-MM strains before infection determined by qPCR 

Mouse 
number 381 382 383 384 385 386 387 388 389 390 

Microbiota ASF5 ASF5 ASF5 ASF5 ASF5 
ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

I46 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
I49 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 5,12E-05 NA 0,00E+00 
YL58 0,00E+00 0,00E+00 0,00E+00   5,31E-03 3,63E-03 4,04E-03 NA 1,79E-03 
YL27 0,00E+00 0,00E+00 0,00E+00   4,20E-02 4,01E-02 4,03E-02 NA 4,25E-02 
YL31 7,92E-06 8,30E-05 1,76E-05   1,81E-02 1,35E-02 2,05E-02 NA 1,23E-02 
YL32 0,00E+00 0,00E+00 0,00E+00   8,94E-03 2,46E-02 1,11E-02 NA 1,90E-02 
KB18 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
YL44 0,00E+00 0,00E+00 0,00E+00   2,36E-01 2,22E-01 2,15E-01 NA 2,70E-01 
KB1 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 2,55E-06 NA 4,06E-05 
YL2 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
YL45 0,00E+00 0,00E+00 0,00E+00   2,66E-02 3,43E-02 3,01E-02 NA 4,23E-02 
I48 0,00E+00 0,00E+00 0,00E+00   4,85E-01 4,60E-01 4,83E-01 NA 3,57E-01 
ASF356 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
ASF361 7,24E-02 2,55E-02 7,28E-02 4,26E-02 3,58E-02 1,37E-03 6,68E-04 8,96E-04 NA 5,66E-04 
ASF457 7,31E-02 3,28E-02 7,79E-02 7,64E-02 7,16E-02 9,06E-04 7,66E-04 3,56E-04 NA 4,67E-03 
ASF519 8,54E-01 9,42E-01 8,49E-01 8,81E-01 8,93E-01 1,75E-01 2,01E-01 1,95E-01 NA 2,50E-01 
ASF360 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
ASF502(SB2) 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
ASF500 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 NA 0,00E+00 
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Mouse 
number 381 382 383 384 385 386 387 388 389 390 

Microbiota ASF5 ASF5 ASF5 ASF5 ASF5 
ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

ASF5 + 
Oligo-
MM12 

S. Tmavir 0,00E+00 0,00E+00 0,00E+00   0,00E+00 0,00E+00 0,00E+00 NA  
Amount of 16S rRNA gene copies per 5 ƞg fecal DNA are given as relative abundance and corresponding bar plots are presented in Figure 14. Grey filling stays for 
values below detection limit. 

 

Table 48. Microbial composition in feces of ASF- and Oligo-MM-colonized mice before infection determined by qPCR 

Mouse  number 996 997 998 999 1000 1001 1002 1003 

Microbiota ASF4 ASF4 ASF4 ASF4 + 
ASF7 

ASF4 + 
ASF7 

ASF4 + 
ASF7 

ASF4 + 
ASF7 

ASF4 + 
ASF7 

I46 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   I49 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL58 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL27 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL31 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL32 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   KB18 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL44 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   KB1 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL2 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   YL45 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   I48 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   ASF356 2,91E-02 2,18E-02 2,59E-02 1,12E-02 1,68E-02 1,77E-02 2,42E-02 2,35E-02 
ASF361 1,95E-01 1,21E-01 1,74E-01 2,00E-01 1,52E-01 1,43E-01 2,08E-01 2,14E-01 
ASF457 0,00E+00 0,00E+00 0,00E+00 8,74E-03 1,57E-02 1,22E-02 1,11E-02 1,35E-02 
ASF519 7,76E-01 8,57E-01 8,00E-01 7,80E-01 8,15E-01 8,27E-01 7,56E-01 7,49E-01 
ASF360 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 3,90E-05 0,00E+00 0,00E+00 
ASF502(SB2) 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,99E-06 0,00E+00 0,00E+00 
ASF500 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 2,42E-05 0,00E+00 1,26E-05 
S. Tmavir 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00   
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Mouse  number 942 943 944 945 946 947 948 949 950 951 952 953 

Microbiota Oligo-
MM12 

Oligo-
MM12 

Oligo-
MM12 

Oligo-
MM12 

Oligo-
MM12 

Oligo-
MM12 

Oligo-
MM12 + 

ASF7 

Oligo-
MM12 + 

ASF7 

Oligo-
MM12 + 

ASF7 

Oligo-
MM12 + 

ASF7 

Oligo-
MM12 + 

ASF7 

Oligo-
MM12 + 

ASF7 
I46 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
I49 1,76E-03 8,15E-04 5,12E-04 4,49E-04 5,97E-04 3,25E-04 5,99E-04 1,48E-03 1,22E-03 2,15E-03 1,28E-03 3,48E-04 
YL58 1,49E-02 1,50E-02 1,78E-02 7,21E-03 5,31E-03 1,16E-02 1,14E-02 1,19E-02 1,50E-02 1,44E-02 1,33E-02 1,56E-02 
YL27 1,45E-01 1,33E-01 1,39E-01 1,80E-01 1,96E-01 2,22E-01 7,57E-02 9,79E-02 7,56E-02 6,45E-02 6,36E-02 5,00E-02 
YL31 2,20E-02 1,59E-02 1,44E-02 9,40E-03 1,03E-02 7,15E-03 1,87E-02 1,69E-02 1,17E-02 1,95E-02 2,25E-02 1,75E-02 
YL32 3,06E-02 3,07E-02 3,98E-02 4,58E-02 1,55E-02 4,43E-02 8,92E-02 3,89E-02 7,76E-02 4,21E-02 9,55E-02 1,09E-01 
KB18 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
YL44 2,90E-01 2,69E-01 1,91E-01 3,35E-01 2,70E-01 1,91E-01 1,86E-01 1,52E-01 1,31E-01 2,64E-01 1,78E-01 1,53E-01 
KB1 4,45E-05 5,35E-05 8,75E-05 6,72E-05 2,66E-05 4,30E-05 8,52E-05 7,96E-05 5,52E-05 4,32E-05 2,90E-05 8,16E-05 
YL2 0,00E+00 6,57E-06 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 4,57E-06 
YL45 3,63E-02 3,80E-02 4,77E-02 4,55E-02 3,89E-02 4,76E-02 3,12E-02 3,35E-02 3,59E-02 3,16E-02 3,04E-02 4,29E-02 
I48 4,60E-01 4,98E-01 5,49E-01 3,77E-01 4,64E-01 4,76E-01 4,65E-01 5,33E-01 5,20E-01 4,63E-01 4,43E-01 4,42E-01 
ASF356 0,00E+00 0,00E+00 0,00E+00    0,00E+00 0,00E+00 5,80E-03 7,63E-03 0,00E+00 0,00E+00 
ASF361 0,00E+00 0,00E+00 0,00E+00    4,79E-03 3,08E-03 1,16E-05 0,00E+00 1,49E-03 1,96E-03 
ASF457 0,00E+00 0,00E+00 0,00E+00    1,62E-02 7,93E-03 1,76E-02 5,66E-03 1,19E-02 1,16E-02 
ASF519 0,00E+00 0,00E+00 0,00E+00    1,01E-01 1,03E-01 1,08E-01 8,56E-02 1,39E-01 1,57E-01 
ASF360 0,00E+00 0,00E+00 0,00E+00    0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
ASF502(SB2) 0,00E+00 0,00E+00 0,00E+00    0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
ASF500 0,00E+00 0,00E+00 0,00E+00    0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
S. Tmavir 0,00E+00 0,00E+00 0,00E+00    0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 0,00E+00 
Amount of 16S rRNA gene copies per 5 ƞg fecal DNA are given as relative abundance and corresponding bar plots are presented in Figure 18B. Grey filling stays 
for analysis not performed. 
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Table 49. Gene sets upregulated in cecal epithelium of AGR2ko mice as compared to AGR2het littermates 

NAME SIZE NES FDR q-val 
REACT_CHOLESTEROL BIOSYNTHESIS 16 2,109206 0,025354 
NCI_ANTHRAXPATHWAY 17 1,882678 0,155662 
BIOC_HIVNEFPATHWAY 50 1,898674 0,19743 
Only the significant upregulated gene sets are shown here (FDR<0.25). 

 

Table 50. Gene sets downregulated in cecal epithelium of AGR2ko mice as compared to AGR2het littermates 

NAME SIZE NES FDR q-val 
REACT_MITOTIC M-M_G1 PHASES 132 -2,63888 0 
REACT_DNA REPLICATION 145 -2,61878 0 
WIP_MM_DNA_REPLICATION 39 -2,50171 0 
REACT_G1_S TRANSITION 70 -2,49978 0 
REACT_MITOTIC G1-G1_S PHASES 78 -2,49747 0 
REACT_S PHASE 82 -2,49701 0 
REACT_CELL CYCLE, MITOTIC 224 -2,46865 0 
REACT_SYNTHESIS OF DNA 69 -2,4529 0 
REACT_DNA STRAND ELONGATION 22 -2,44621 0 
NCI_AURORA_B_PATHWAY 34 -2,25125 4,89E-05 
REACT_ACTIVATION OF THE PRE-REPLICATIVE COMPLEX 21 -2,26184 5,12E-05 
REACT_ASSEMBLY OF THE PRE-REPLICATIVE COMPLEX 50 -2,26748 5,38E-05 
REACT_G2_M CHECKPOINTS 30 -2,26886 5,66E-05 
REACT_M PHASE 73 -2,27245 5,97E-05 
REACT_MITOTIC PROMETAPHASE 70 -2,28769 6,33E-05 
REACT_TELOMERE MAINTENANCE 25 -2,36994 6,72E-05 
REACT_CHROMOSOME MAINTENANCE 25 -2,3835 7,17E-05 
REACT_MEIOTIC RECOMBINATION (MOUSE) 58 -2,40668 7,68E-05 
KEGG_DNA REPLICATION 34 -2,4071 8,27E-05 
REACT_CELL CYCLE CHECKPOINTS 85 -2,41208 8,96E-05 
REACT_REGULATION OF DNA REPLICATION 55 -2,23133 9,09E-05 
REACT_M_G1 TRANSITION 59 -2,43479 9,78E-05 
REACT_DNA REPLICATION PRE-INITIATION 59 -2,44487 1,08E-04 
REACT_ORC1 REMOVAL FROM CHROMATIN 53 -2,18705 2,94E-04 
REACT_REMOVAL OF LICENSING FACTORS FROM ORIGINS 55 -2,19737 3,06E-04 
REACT_SWITCHING OF ORIGINS TO A POST-REPLICATIVE STATE 53 -2,17222 3,52E-04 
NCI_FANCONI_PATHWAY 44 -2,17796 3,66E-04 
KEGG_SYSTEMIC LUPUS ERYTHEMATOSUS 98 -2,14963 6,09E-04 
REACT_ACTIVATION OF ATR IN RESPONSE TO REPLICATION STRESS 27 -2,12349 8,25E-04 
WIP_MM_G1_TO_S_CELL_CYCLE_CONTROL 60 -2,12509 8,53E-04 
REACT_MEIOTIC SYNAPSIS (MOUSE) 66 -2,11112 8,66E-04 
NCI_PLK1_PATHWAY 40 -2,12808 8,82E-04 
REACT_SCF(SKP2)-MEDIATED DEGRADATION OF P27_P21 43 -2,10127 0,001001 
REACT_MRNA SPLICING 72 -2,08338 0,001223 
REACT_G1_S DNA DAMAGE CHECKPOINTS 45 -2,07715 0,001311 
REACT_REGULATION OF INSULIN-LIKE GROWTH FACTOR (IGF) ACTIVITY BY INSULIN-
LIKE GROWTH FACTOR BINDING PROTEINS (IGFBPS) 25 -2,06927 0,001394 

REACT_CYCLIN E ASSOCIATED EVENTS DURING G1_S TRANSITION 47 -2,05732 0,0015 
REACT_PROCESSING OF CAPPED INTRON-CONTAINING PRE-MRNA 75 -2,05544 0,001516 
KEGG_HOMOLOGOUS RECOMBINATION 25 -2,05037 0,001537 
KEGG_NUCLEOTIDE EXCISION REPAIR 43 -2,05189 0,001548 
REACT_P53-DEPENDENT G1_S DNA DAMAGE CHECKPOINT 43 -2,05356 0,00156 
REACT_CDT1 ASSOCIATION WITH THE CDC6_ORC_ORIGIN COMPLEX 44 -2,03157 0,001958 
REACT_AUTODEGRADATION OF THE E3 UBIQUITIN LIGASE COP1 39 -2,02304 0,001997 
NCI_ATR_PATHWAY 37 -2,02674 0,002014 
REACT_MRNA SPLICING - MAJOR PATHWAY 72 -2,02518 0,002015 
REACT_P53-DEPENDENT G1 DNA DAMAGE RESPONSE 43 -2,02889 0,002037 
REACT_MRNA PROCESSING 90 -2,02392 0,002041 
WIP_MM_PROTEASOME_DEGRADATION 55 -2,01205 0,002272 
REACT_STABILIZATION OF P53 39 -2,00003 0,002515 
KEGG_CELL CYCLE 121 -2,00028 0,002566 
REACT_CYCLIN A_CDK2-ASSOCIATED EVENTS AT S PHASE ENTRY 48 -2,00287 0,002573 
REACT_MRNA SPLICING - MINOR PATHWAY 28 -1,97545 0,002993 
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NAME SIZE NES FDR q-val 
REACT_FORMATION OF A POOL OF FREE 40S SUBUNITS 54 -1,97385 0,003015 
REACT_UBIQUITIN-DEPENDENT DEGRADATION OF CYCLIN D1 40 -1,97948 0,003048 
REACT_UBIQUITIN MEDIATED DEGRADATION OF PHOSPHORYLATED CDC25A 39 -1,97548 0,003048 
REACT_APC_C-MEDIATED DEGRADATION OF CELL CYCLE PROTEINS 62 -1,98028 0,003107 
WIP_MM_CELL_CYCLE 84 -1,96911 0,003184 
REACT_ACTIVATION OF APC_C AND APC_C_CDC20 MEDIATED DEGRADATION OF 
MITOTIC PROTEINS 52 -1,96525 0,00322 

REACT_DNA REPAIR 68 -1,96541 0,003276 
REACT_CDC20_PHOSPHO-APC_C MEDIATED DEGRADATION OF CYCLIN A 51 -1,95604 0,0034 
REACT_REGULATION OF MITOTIC CELL CYCLE 62 -1,9504 0,003544 
KEGG_PROTEASOME 43 -1,95087 0,00355 
KEGG_RNA TRANSPORT 144 -1,95232 0,003555 
REACT_P53-INDEPENDENT DNA DAMAGE RESPONSE 39 -1,94757 0,003606 
REACT_APC_C_CDH1 MEDIATED DEGRADATION OF CDC20 AND OTHER APC_C_CDH1 
TARGETED PROTEINS IN LATE MITOSIS_EARLY G1 53 -1,94627 0,003633 

NCI_BARD1PATHWAY 27 -1,94294 0,003692 
REACT_APC_C_CDC20 MEDIATED DEGRADATION OF MITOTIC PROTEINS 51 -1,93892 0,003862 
REACT_UBIQUITIN-DEPENDENT DEGRADATION OF CYCLIN D 40 -1,93831 0,003885 
REACT_P53-INDEPENDENT G1_S DNA DAMAGE CHECKPOINT 39 -1,92998 0,004108 
REACT_CDK-MEDIATED PHOSPHORYLATION AND REMOVAL OF CDC6 39 -1,90627 0,005406 
KEGG_PYRIMIDINE METABOLISM 93 -1,88722 0,006725 
REACT_EUKARYOTIC TRANSLATION ELONGATION 50 -1,88791 0,006789 
REACT_REGULATION OF APC_C ACTIVATORS BETWEEN G1_S AND EARLY ANAPHASE 58 -1,88209 0,006994 
REACT_FORMATION AND MATURATION OF MRNA TRANSCRIPT 105 -1,88091 0,006999 
KEGG_SPLICEOSOME 112 -1,88231 0,00709 
REACT_SCF-BETA-TRCP MEDIATED DEGRADATION OF EMI1 43 -1,8763 0,007257 
REACT_APC_C_CDC20 MEDIATED DEGRADATION OF SECURIN 49 -1,87253 0,0074 
REACT_AUTODEGRADATION OF CDH1 BY CDH1_APC_C 45 -1,86714 0,007507 
REACT_METABOLISM OF RNA 52 -1,86747 0,007589 
REACT_EUKARYOTIC TRANSLATION TERMINATION 47 -1,86815 0,00766 
REACT_METABOLISM OF PROTEINS 155 -1,85895 0,007742 
REACT_CLEAVAGE OF GROWING TRANSCRIPT IN THE TERMINATION REGION 29 -1,85472 0,00778 
REACT_PROCESSING OF CAPPED INTRONLESS PRE-MRNA 19 -1,85761 0,007788 
REACT_POST-ELONGATION PROCESSING OF INTRONLESS PRE-MRNA 19 -1,85622 0,007821 
REACT_RNA POLYMERASE II TRANSCRIPTION TERMINATION 29 -1,85931 0,007823 
REACT_POST-ELONGATION PROCESSING OF THE TRANSCRIPT 29 -1,8522 0,007874 
KEGG_FANCONI ANEMIA PATHWAY 48 -1,85938 0,007905 
REACT_FORMATION OF THE TERNARY COMPLEX, AND SUBSEQUENTLY, THE 43S 
COMPLEX 26 -1,85979 0,007936 

REACT_TRANSLATION 74 -1,84872 0,00805 
WIP_MM_NUCLEOTIDE_METABOLISM 20 -1,84193 0,008685 
BIOC_AMIPATHWAY 18 -1,82941 0,009952 
REACT_REGULATION OF APOPTOSIS 47 -1,822 0,010711 
BIOC_CSKPATHWAY 18 -1,80562 0,012272 
KEGG_BASE EXCISION REPAIR 30 -1,80648 0,012324 
REACT_DEGRADATION OF BETA-CATENIN BY THE DESTRUCTION COMPLEX 48 -1,79582 0,013463 
REACT_REGULATION OF ORNITHINE DECARBOXYLASE (ODC) 39 -1,78143 0,014823 
NCI_FOXM1PATHWAY 38 -1,78206 0,014931 
REACT_L13A-MEDIATED TRANSLATIONAL SILENCING OF CERULOPLASMIN EXPRESSION 61 -1,78235 0,015087 
REACT_3 -UTR-MEDIATED TRANSLATIONAL REGULATION 61 -1,77266 0,016238 
REACT_GLOBAL GENOMIC NER (GG-NER) 21 -1,76667 0,016675 
REACT_GENE EXPRESSION 269 -1,76684 0,016819 
REACT_SIGNALING BY WNT 48 -1,76776 0,016868 
REACT_REGULATION OF ACTIVATED PAK-2P34 BY PROTEASOME MEDIATED 
DEGRADATION 38 -1,76081 0,017423 

KEGG_MISMATCH REPAIR 21 -1,75292 0,018473 
BIOC_MPRPATHWAY 19 -1,73406 0,022334 
REACT_PEPTIDE CHAIN ELONGATION 47 -1,70942 0,028406 
KEGG_MUCIN TYPE O-GLYCAN BIOSYNTHESIS 25 -1,70517 0,029303 
WIP_MM_CYTOPLASMIC_RIBOSOMAL_PROTEINS 40 -1,70072 0,030245 
REACT_TRANSCRIPTION 94 -1,69578 0,031367 
REACT_GTP HYDROLYSIS AND JOINING OF THE 60S RIBOSOMAL SUBUNIT 63 -1,69164 0,032061 
REACT_CAP-DEPENDENT TRANSLATION INITIATION 67 -1,68201 0,034675 
REACT_GLYCOLYSIS 20 -1,67923 0,035188 
BIOC_PROTEASOMEPATHWAY 19 -1,67813 0,035245 
KEGG_RNA DEGRADATION 69 -1,6728 0,036675 
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NAME SIZE NES FDR q-val 
NCI_MYC_ACTIVPATHWAY 69 -1,66482 0,038683 
REACT_REGULATION OF GLUCOKINASE BY GLUCOKINASE REGULATORY PROTEIN 19 -1,65724 0,040658 
REACT_DIABETES PATHWAYS 242 -1,6536 0,041503 
REACT_EUKARYOTIC TRANSLATION INITIATION 67 -1,64831 0,043037 
NCI_E2F_PATHWAY 70 -1,64553 0,043589 
REACT_RNA POLYMERASE II TRANSCRIPTION 66 -1,64173 0,044596 
BIOC_ATRBRCAPATHWAY 17 -1,63304 0,046842 
REACT_POST-TRANSLATIONAL PROTEIN MODIFICATION 46 -1,63401 0,046909 
REACT_POST-ELONGATION PROCESSING OF INTRON-CONTAINING PRE-MRNA 22 -1,62063 0,051481 
REACT_MRNA 3-END PROCESSING 22 -1,60823 0,056542 
NCI_IL2_STAT5PATHWAY 30 -1,60723 0,056543 
REACT_INSULIN SYNTHESIS AND PROCESSING 79 -1,60349 0,057755 
KEGG_RIBOSOME 52 -1,59794 0,059719 
WIP_MM_UREA_CYCLE_AND_METABOLISM_OF_AMINO_GROUPS 20 -1,58851 0,063692 
REACT_DEADENYLATION-DEPENDENT MRNA DECAY 38 -1,58351 0,065925 
KEGG_RIBOSOME BIOGENESIS IN EUKARYOTES 75 -1,5795 0,067435 
NCI_BETACATENIN_NUC_PATHWAY 75 -1,575 0,068098 
REACT_NUCLEOTIDE EXCISION REPAIR 33 -1,57644 0,068487 
REACT_GLUCOSE TRANSPORT 25 -1,57508 0,068566 
REACT_LOSS OF PROTEINS REQUIRED FOR INTERPHASE MICROTUBULE 
ORGANIZATIONÂ FROM THE CENTROSOME 47 -1,57293 0,068769 

REACT_HEXOSE TRANSPORT 25 -1,56983 0,068919 
REACT_METABOLISM OF MRNA 38 -1,56994 0,069386 
WIP_MM_PROSTAGLANDIN_SYNTHESIS_AND_REGULATION 31 -1,57075 0,069465 
REACT_METABOLISM OF AMINO ACIDS AND DERIVATIVES 143 -1,56706 0,069801 
NCI_IL2_PI3KPATHWAY 33 -1,56514 0,069807 
REACT_TRANSCRIPTION-COUPLED NER (TC-NER) 29 -1,56594 0,069856 
KEGG_PURINE METABOLISM 160 -1,56318 0,06992 
REACT_LOSS OF NLP FROM MITOTIC CENTROSOMES 47 -1,56399 0,069938 
REACT_METABOLISM OF CARBOHYDRATES 80 -1,55989 0,071042 
REACT_METABOLISM OF NUCLEOTIDES 48 -1,5477 0,076841 
NCI_AR_NONGENOMIC_PATHWAY 28 -1,54844 0,076942 
NCI_HIF1APATHWAY 16 -1,54586 0,077463 
NCI_TELOMERASEPATHWAY 62 -1,53903 0,080609 
REACT_RNA POLYMERASE I TRANSCRIPTION 19 -1,53105 0,084866 
BIOC_G2PATHWAY 20 -1,52354 0,088981 
REACT_INTERACTIONS OF THE IMMUNOGLOBULIN SUPERFAMILY (IGSF) MEMBER 
PROTEINS 22 -1,52007 0,090334 

REACT_SIGNALLING TO RAS 19 -1,51885 0,090515 
BIOC_G1PATHWAY 23 -1,52031 0,090774 
BIOC_CELLCYCLEPATHWAY 21 -1,51508 0,092355 
REACT_TRANSLATION INITIATION COMPLEX FORMATION 31 -1,50473 0,098421 
NCI_LKB1_PATHWAY 44 -1,50246 0,099352 
NCI_AURORA_A_PATHWAY 30 -1,50117 0,099488 
NCI_ATM_PATHWAY 32 -1,48536 0,110575 
REACT_RIBOSOMAL SCANNING AND START CODON RECOGNITION 32 -1,4811 0,113222 
KEGG_N-GLYCAN BIOSYNTHESIS 50 -1,4726 0,117979 
REACT_TRANSPORT OF MATURE TRANSCRIPT TO CYTOPLASM 16 -1,47305 0,118412 
REACT_RNA POLYMERASE I, RNA POLYMERASE III, AND MITOCHONDRIAL 
TRANSCRIPTION 40 -1,47309 0,11913 

REACT_RNA POLYMERASE I PROMOTER CLEARANCE 17 -1,46947 0,119743 
REACT_RNA POLYMERASE I TRANSCRIPTION INITIATION 16 -1,46426 0,123388 
REACT_GLUCONEOGENESIS 26 -1,45628 0,129265 
REACT_PYRIMIDINE METABOLISM 20 -1,44924 0,134292 
KEGG_THYROID CANCER 28 -1,44971 0,13471 
KEGG_COMPLEMENT AND COAGULATION CASCADES 75 -1,44683 0,135605 
REACT_MITOTIC G2-G2_M PHASES 64 -1,43883 0,142173 
REACT_G2_M TRANSITION 61 -1,43666 0,142694 
REACT_POST-TRANSLATIONAL MODIFICATION_ SYNTHESIS OF GPI-ANCHORED 
PROTEINS 22 -1,4369 0,143316 

REACT_INTERLEUKIN-2 SIGNALING 15 -1,43147 0,147157 
REACT_CENTROSOME MATURATION 54 -1,41709 0,160883 
REACT_IMMUNOREGULATORY INTERACTIONS BETWEEN A LYMPHOID AND A NON-
LYMPHOID CELL 35 -1,4148 0,162398 

REACT_GLUCOSE METABOLISM 45 -1,41358 0,162611 
REACT_RECRUITMENT OF MITOTIC CENTROSOME PROTEINS AND COMPLEXES 54 -1,40779 0,168082 
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NAME SIZE NES FDR q-val 
REACT_ASSOCIATION OF TRIC_CCT WITH TARGET PROTEINS DURING BIOSYNTHESIS 17 -1,40679 0,1682 
BIOC_CK1PATHWAY 15 -1,39683 0,178182 
REACT_LYSOSOME VESICLE BIOGENESIS 20 -1,39552 0,178755 
REACT_LIPID DIGESTION, MOBILIZATION, AND TRANSPORT 24 -1,39208 0,181467 
NCI_S1P_META_PATHWAY 21 -1,38572 0,187576 
WIP_MM_TNF-ALPHA_NF-KB_SIGNALING_PATHWAY 176 -1,38332 0,189235 
BIOC_GSK3PATHWAY 26 -1,37926 0,192819 
REACT_CHAPERONIN-MEDIATED PROTEIN FOLDING 31 -1,37413 0,198061 
KEGG_P53 SIGNALING PATHWAY 66 -1,36862 0,201454 
REACT_ACTIVATION OF THE MRNA UPON BINDING OF THE CAP-BINDING COMPLEX AND 
EIFS, AND SUBSEQUENT BINDING TO 43S 32 -1,36879 0,202359 

KEGG_BASAL TRANSCRIPTION FACTORS 42 -1,36913 0,203069 
KEGG_PENTOSE PHOSPHATE PATHWAY 30 -1,36495 0,204813 
KEGG_ENDOCRINE AND OTHER FACTOR-REGULATED CALCIUM REABSORPTION 55 -1,36413 0,204835 
REACT_CA-DEPENDENT EVENTS 21 -1,35546 0,214695 
REACT_MRNA CAPPING 21 -1,34927 0,221686 
NCI_MYC_PATHWAY 20 -1,34382 0,227491 
NCI_ILK_PATHWAY 39 -1,34218 0,228471 
BIOC_NO2IL12PATHWAY 15 -1,3403 0,229787 
NCI_PI3KPLCTRKPATHWAY 32 -1,33914 0,23023 
REACT_FORMATION OF THE EARLY ELONGATION COMPLEX 21 -1,3278 0,244622 
REACT_COOPERATION OF PREFOLDIN AND TRIC_CCT  IN ACTIN AND TUBULIN FOLDING 21 -1,32529 0,247185 
Only the significant downregulated gene sets are shown here (FDR<0.25). 
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