
 

 

 

Aus dem  

Walter-Brendel Zentrum für experimentelle Medizin 

Direktor: Prof. Dr. med. dent Reinhard Hickel  

 
ENDOTHELIAL ACTIN DYNAMICS IN 

ANGIOGENESIS ASSESSED THROUGH 

ACTIN VISUALIZATION IN VIVO & 

FUNCTIONAL α-PARVIN  CHARACTERIZATION 

 

 

 

 

 

 

 

Dissertation  
Zum Erwerb des Doktorgrades der Medizin 

An der Medizinischen Fakultät der Ludwig-Maximilians-Universität München 

 

Alessia Fraccaroli 
(Bruneck, Italien) 

2017 

 

 



 

 

 

Mit Genehmigung der Medizinischen Fakultät  

der Universität München 

 

 

 

 

 

 

 

 

 

 

 

Berichterstatter:    Prof. Dr.med. Ulrich Pohl 

 

Mitberichterstatter:    PD Dr. Annette Müller-Taubenberg 

    Univ.-Prof. Dr. med Christian Weber 

    PD Dr. rer. nat. Gerald Schmid 

 

Mitbetreuung durch den  

promovierten Mitarbeiter:  Dr. Eloi Montanez 

 

Dekan:    Prof. Dr. med. dent. Reinhard Hickel  

 

Tag der mündlichen Prüfung: 19.10.2017 

 

 



 

I 

 

 

Eidesstattliche Erklärung 

 

 

Die Versuche zur vorgelegten Dissertation wurden in der Zeit von Februar 2012 bis Februar 

2015 in der Arbeitsgruppe „vascular biology“ von Dr. Eloi Montanez am Walter-Brendel 

Zentrum für experimentelle Medizin der LMU München durchgeführt. 

 

Hiermit erkläre ich, dass ich diese Arbeit selbstständig und nur unter Verwendung der 

angegebenen Quellen und Hilfsmittel angefertigt habe. Alle Erkenntnisse, die aus dem 

Schrifttum ganz oder annähernd übernommen sind, wurden als solche kenntlich gemacht und 

nach ihrer Herkunft unter Bezeichnung der Fundstelle einzeln nachweisbar gemacht. Die 

Abbildungen im Ergebnisteil, welche die Lifeact-EGFP Daten präsentieren sind aus 

Fraccaroli et al., Plos One 2012 entnommen worden. Ebenso die Abbilungen (Fig.) 18, 19, 20, 

und 21 aus Fraccaroli et al., Circulation Research 2015. 

 

Weiteres erkläre ich, dass die hier vorgelegte Dissertation nicht in gleicher oder in ähnlicher 

Form bei einer anderen Stelle zur Erlangung eines akademischen Grades eigereicht wurde. 

 

 

 

 

München, den        

        Alessia Fraccaroli 

 



 

II 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

An meine Großmutter... 
 



 

III 

 
 
 
 
 
TABLE OF CONTENTS: 
 

 

 

 
 

Eidesstattliche Erklärung         I 

Table of contents          III 

Abbreviations          VI 

List of tables, illustrations and figures       XI 

1. Introduction          1 

 1.1 Vessel development        1 

  1.1.1  Hallmarks of sprouting angiogenesis     3 

 1.2 The cytoskeleton – a cell’s framework      5 

  1.2.1 The actin cytoskeleton in angiogenesis    5 

  1.2.2 The actin cytoskeleton and its dynamics    7 

  1.2.3 Impaired actin dynamics in vascular dysfunctions   9 

  1.2.4 Visualization of the Actin cytoskeleton    10 

 1.3 The Integrins – integrating the outside with the inside    11 

  1.3.1 Integrin signaling – bidirectional, across the membrane  12 

  1.3.2 Integrin signaling in angiogenesis     15 

 1.4 The IPP complex in angiogenesis      17 

  1.4.1 Integrin linked kinase in angiogenesis     17 

 1.5 The Parvin         18 

2. Aims           21 

3. Materials and Methods        22 

 3.1 Materials          22 

  3.1.1 Reagents and Chemicals      22 



TABLE OF CONTENTS 

 

IV 

  3.1.2 Kits         23 

  3.1.3 Antibodies        24 

  3.1.4 Solutions        25 

  3.1.5 Media         27 

  3.1.6 Oligonucleotides       27 

  3.1.7 Equipment and disposals      28 

 3.2 Animals          29 

  3.2.1 Lifeact-EGFP transgenic mice      29 

  3.2.2 Inducible α- pv knockout mice     29 

 3.3 Postnatal mouse retina as an angiogenesis model    31 

  3.3.1 Whole retina immunohistochemistry     33 

  3.3.2 Proliferation assay       34 

 3.4 Immunohistochemistry in other tissues      35 

  3.4.1 Whole embryo immunohistochemistry     35 

  3.4.2 Skin immunohistochemistry      35 

  3.4.3 Skeletal muscle IHC/cremaster in vivo microscopy   35 

 3.5. Molecular biology methods       36 

  3.5.1 DNA isolation of mouse ear biopsies     36 

  3.5.2 Polymerase chain reaction      36 

  3.5.3 Agarose gel electrophoresis      37 

 3.6 Cell culture         37 

  3.6.1 Freezing and thawing of cells      37 

  3.6.2 Cell lines        38 

  3.6.3 siRNA Transfection       38 

  3.6.4 Protein lysis         38 

  3.6.5 Protein quantification: Bicinchoninic acid assay   39 

  3.6.6 SDS page        39 

  3.6.7 Immunoblot        39 

  3.6.8 Immunoflourescence of cells      40 

 3.7 Microscopic models        40 

  3.7.1 Confocal microscopy       40 

  3.7.2 In vivo microscopy       41 

 3.8 Statistical analysis        41 

4 Results          42



TABLE OF CONTENTS 

 

V 

 4.1 Imaging of endothelial actin cytoskeleton     42  

 4.2 Functional α-pv characterization       54 

5.  Statement of contributions        66  

6. Discussion          67 

7. Summary          76 

8. Zusammenfassung         78 

9. References          80 

Danksagung           84 

 



 

  VI 

 
 
 
 
 
ABBREVIATIONS: 
 

 
 
 
Aa Amino acid 

a.k.a Also known as 

ABD Actin binding domain 

ABP Actin binding protein 

AC Astrocyte 

ADP Adenosine diphosphate 

AJ Adherent junction 

Arp2/3 complex Actin related protein 2/3 complex 

ATP Adenosine triphosphate 

ATPase Adenosine triphosphatase 

AV Arterial-venous 

BCA Bicinchoninic acid  

BM Basement membrane 

BrdU Bromodeoxyuridine 

BSA Bovine serum albumin 

CAG Chicken- β-actin 

CD31  Cluster of differentiation glycoprotein 31  

Cdc42 Cell division cycle 42 

CdGAP Cdc42 GTPase activating protein 

Cdh5 Cadherin 5 

CH (domain) Calponin homology (domain) 

Coll Collagen 

CMV cytomegalovirus 



ABBREVIATIONS 

 

VII 

CVS Cardiovascular system 

Cy3 Cyanine dye 3 

Dll-4 Delta like ligand-4 

DMSO Dimethyl sulfoxide 

DNA Deoxyribonucleic acid 

E Embryonic day 

EC Endothelial cell 

ECM Extracellular matrix 

EDTA Ethylenediaminetetraacetic acid 

EGFP Enhanced green fluorescent protein 

EPC Endothelial precursor cell (angioblast) 

ERK Extracellular signal regulated kinase 

EtBr Ethidiumbromide 

F-actin Actin filaments 

FA Focal adhesions 

FCS Fetal calf serum 

FITC Fluorescein-5-isothiocyanat 

Fl floxed 

FN Fibronectin 

FX Focal complex 

G-actin Globular actin 

GAP GTPase activating protein 

GAPDH Glycerinaldehyd-3-phosphate-dehydrogenase 

encoding gene 

GDI Guanine nucleotide dissociation inhibitor 

GDP Guanosine diphosphate 

GEF Guanine nucleotide exchange factor 

Gel Gelatin 

GFAP Glial fibrillar protein  

GFP Green fluorescent protein 

GSK3β Glykogen synthase kinase 3 beta 

GTP Guanosine triphosphate 

GTPase Guanosine triphosphatase  

H&E Hematoxylin and eosin stain 



ABBREVIATIONS 

 

  VIII 

HUVEC Human umbilical vein endothelial cell 

IB4 Isolectin B4 

ICAM-2 Intercellular adhesion molecule 2 

IF Immunofluorescence 

Ig Immunoglobulin 

ILK Integrin-linked kinase 

OP intraperitoneal 

IPP complex ILK-PINCH-Parvin complex 

JAIL Junction-associated intermittent lamellipodia 

JNK Jun-amino-terminal kinase 

kDa Kilo Dalton 

KO Knockout 

LN Laminin 

M molar 

MAPK Mitogen activated protein kinase 

MMP metalloproteases 

MRTF Myocardin related transcription factor 

mTOR Mammalian target of rapamycin 

nM nanomolar 

n.s Non significant 

NG2 Anti-neuron glial 2 

NFκB Nuclear-factor κB 

OD Optical density 

ORF Open reading frame 

P Postnatal day 

Pax Paxillin 

PBS Phosphate buffered saline 

PC(s) Pericyte(s) 

PCR Polymerase chain reaction 

PECAM-1 Platelet endothelial cell adhesion molecule-1 

PFA Paraformaldehyde 

PI3K Phosphoinositide-3-kinase 

PINCH Particularly interesting Cys-His-rich protein 

PKB Protein-kinase B 



ABBREVIATIONS 

 

IX 

PM Plasmamemrane 

PS Penicillin/Streptomycin 

Pv Parvin 

Rac1 Ras-related C3 botulinum toxin substrate 1 

Ras  Rat sarcoma 

RGD Arginine-glycine-aspartatic acid 

RhoA Ras homologous 

RNA Ribonucleic acid 

RIPA Radioimmunoprecipitation assay 

RNA Ribonucleic acid 

ROCK Rho associated kinase 

RPM Rounds per minute 

RT Room temperature 

RTK Receptor tyrosine kinase  

s second 

Scr siRNA Scrambled small interfering RNA 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecylsulfate polyacrylamide gel 

electrophoresis 

SEM Standard error of the mean 

siRNA Small interfering RNA 

SRF Serum response factor 

SSC Saline-sodium-citrate 

TAE Tris-acetate-EDTA 

TBS Tris-buffered saline 

TBST Tris-buffered saline and Tween 20 

Tie2 Tyrosine kinase with immunoglobuline-like and EGF-

like domains -2 

TM Tissue macrophages 

U unit 

UV ultraviolett 

VE-Cad Vascular endothelial-cadherin 

VEGF Vascular endothelial growth factor 



ABBREVIATIONS 

 

   X 

VEGFR-2 VEGF Receptor-2 

vMC Vascular mural cells 

VN vitronectin 

vs. versus 

vSMC Vascular smooth muscle cells 

WASP Wiskott Aldrich syndrome protein 

WB Western Blot 

WHO World health organization 

WT Wildtype 

YS Yolk sacs 

α-pv Alpha-parvin 

α-pv
fl/fl

 α-pv
floxed/floxed

 

α-pv
∆EC

 Endothelial specific knockout of α-pv gene 

αSMA Alpha smooth muscle actin 

β-cat Beta-catenin 

β-pv Beta-parvin 

γ-pv Gamma parvin 

dNTPs Deoxynucleotides 

µM Micromolar 

cm Centimeter 

2D Two dimensional 

µg Microgram 

 
 
 
 
 



 

XI 

 
 
 
 
 
LIST of ILLUSTRATIONS, TABLES AND FIGURES: 
 

 

 

 

 

 

 

Illustrations 
 
Ill. 1 The vascular cell types 

Ill. 2 The tip and the stalk cell 

Ill. 3 Hallmarks of sprouting angiogenesis 

Ill. 4 Specialized actin structures in migrating ECs 

Ill. 5 Actin polymerization 

Ill. 6 Actin dynamics regulate gene expression via SRF 

Ill. 7 Integrin receptor family 

Ill. 8 Bidirectional integrin signaling 

Ill. 9 Integrin signaling 

Ill. 10  The IPP complex 

Ill. 11 Integrins in angiogenesis – a hypothetical model 

Ill. 12 Vector fragment containing Lifeact-EGFP 

Ill. 13 Site-specific recombinase technology 

Ill.14 2D-Imaging of retinal angiogenesis 

Ill. 15 Postnatal mouse retina angiogenesis model 

 

 

 

Tables 
 



LIST OF ILLUSTRATIONS, TABLES AND FIGURES 

 

XII 

Table 1 Reagents and chemicals 

Table 2 Kits 

Table 3 Antibodies 

Table 4  Solutions 

Table 5  Media 

Table 6 Oligonucleotides 

Table 7  Equipment and disposals 

 

 

 

Figures 
 
Fig. 1 Lifeact-EGFP is ubiquitously expressed during embryogenesis 

Fig. 2 Lifeact-EGFP is highly expressed in EC but practically absent from AC 

in the postnatal retina of Lifeact EGFP mice 

Fig. 3 Lifeact-EGFP expression is nearly absent in retinal tissue macrophages 

Fig. 4 Lifeact-EGFP is weakly expressen in vMC of the retinal vasculature 

Fig. 5 Lifeact-EGFP mice allow visualization of F-actin structures in vMC in 

skin and cremaster muscle 

Fig. 6 Postcapillary venues in the cremaster muscle from Lifeact-EGFP 

mouse 

Fig. 7  Lifeact-EGFP colocalizes with phalloidin 

Fig. 8 Lifeact-EGFP labels cortical actin, filopodia and stress fibers in retinal 

tip and stalk EC 

Fig. 9 Visualization of endothelial actin cytoskeleton in a sprout 

Fig. 10 Lifeact-EGFP is a marker for apical-basal cell polarity 

Fig. 11 Identification of α-pv
i∆EC 

mice 

Fig. 12  Loss of endothelial α-pv leads to impaired vessel sprouting and 

hypovascularization 

Fig. 13 Depletion of endothelial α-pv alters vessel morphology and patterning 

Fig. 14 Loss of endothelial α-pv results in a proliferation deficit 

Fig. 15 Loss of endothelial α-pv results in increased vessel regression 

Fig. 16 Abnormal vessel integrity in absence of endothelial α-pv 

Fig. 17 Mural cell coverage of retinal vessels in α-pv
i∆EC 

mice 



LIST OF ILLUSTRATIONS, TABLES AND FIGURES 

 

XIII 

 

Fig. 18 

 

Depletion of endothelial α-pv does not affect stability or maintenance 

of established vessels 

Fig. 19 Severe persistent retinal vascular pathology in α-pv
i∆EC 

mice 

Fig. 20 Depletion of α-pv impairs formation of FXs and migration of ECs 

Fig. 21 Loss of α-pv does not alter VEGF-A mediated ERK activation 



 

1 

 
 
 
 
 
1 INTRODUCTION: 
 

 

 

 

 

 

Blood vessels are the components of the cardiovascular system (CVS) that permit blood to 

circulate throughout the body. Forming an extensive network of arteries, capillaries and veins, 

they supply nutrients (such as amino acids (aas) and electrolytes), oxygen and hormones to all 

tissues in the body, and concurrently remove metabolic waste products (such as carbon 

dioxide and lactate) in order to maintain homeostasis [6]. 

The CVS is crucial in embryonic development (organogenesis), and remains of central 

importance throughout postnatal life, with its blood vessels participating in processes such as 

tissue regeneration occurring in wound healing, and tissue growth. Hence, it is not surprising 

that structural or functional vessel abnormalities contribute to many diseases, including 

cancer, ischemic retinopathies, stroke and metabolic disorders [14, 15].  

Closer insights in the regulation of vascular morphogenesis are therefore of fundamental 

importance in medicine. Understanding the processes involved in new blood vessel 

development as well as vessel stabilization might eventually lead to new therapeutic strategies 

for disease control [14]. 

 

1.1 Vessel development 

 

There are two distinct mechanisms describing how vessel formation and growth take place. 

Whereas vasculogenesis mainly takes place during embryogenesis and refers to the de novo 

formation of vessels from mesoderm derived endothelial precursor cells (EPCs) (angioblasts) 
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giving rise to a first primitive vascular plexus, angiogenesis describes the formation of new 

blood vessels from pre-existing ones, allowing the expansion of a vascular network by 

sprouting of endothelial cells (ECs) [6].  

The expansion of the vascular network is a highly dynamic, closely regulated process, 

involving coordinate interactions between ECs, extracellular matrix (ECM) components as 

well as soluble pro-angiogenic factors and chemokines constantly adjusting their crosstalk to 

organ tissue needs [6].  

The vascular network consists of small and large vessels. Arteries vary in levels of blood flow 

and pressure through diameter changes and supply organs with oxygenated blood. Veins 

return blood back to the heart. Capillaries allow gas exchange and nutrients as well as waste 

substances to pass across their walls. The vascular cell types involved in this tight regulation 

are: ECs, vascular smooth muscle cells (vSMC), pericytes (PC), fibroblasts (FB), and other 

connective tissue cell types. Each of them has distinct functions (Ill.1) [6, 16, 17]. 

ECs cover the inner layer of a vessel and play a critical role in tissue homeostasis and growth. 

They form a semi-selective barrier for bioactive molecules; they mediate angiogenesis and 

interact with adjacent vSMC during vessel growth and transition of molecules as well as 

white blood cells from the blood into the interstitial fluid. vSMCs and PCs envelope the 

surface of a vascular tube, have contractile function and stabilize vessels. They do not just 

serve as scaffolds, but communicate with ECs by direct physical contact and paracrine 

signaling pathways. Alterations in function result in vascular disease [18]. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Ill.1 The vascular cell types within the vessel wall. For more information regarding the distinct cell 

types see text. Ill. Taken from https://www.thermofisher.com/de/de/home/life-science/cell-

culture/primary-cell-culture/pcc-misc/vascular-biology.html 
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1.1.1 Hallmarks of sprouting angiogenesis 

 

ECs play a key role in angiogenesis. They line the inner surface of the vessel creating a 

barrier between blood and tissue thereby controlling the extravasation of macromolecules. 

When nutritional and oxygen demands within the tissue exceed the supply provided by the 

vessels, the tissue releases signals to stimulate the formation of new blood vessels [16]. These 

signals are sensed by ECs and promote sprouting angiogenesis. 

The main tissue-derived pro-angiogenic factor is the vascular endothelial growth factor 

(VEGF) [17]. Signals as hypoxia induce the release of growth factors as VEGF. Upon binding 

to its cognate receptors on the endothelium (VEGFR), PCs detach from vessel walls and ECs 

are activated. VEGF as well as integrin signaling allow EC specification into distinct cellular 

fates: the tip and the stalk phenotype (Ill.2). Depending on their position they adopt distinct 

functions in the forming sprout [17, 19, 20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

By Neuropilin, VEGF/VEGFR, NOTCH / delta like 4 (DLL4) and JAGGED-1 signaling a tip 

cell is selected in sprout formation. The tip cell releases metalloproteases (MMPs) to degrade 

the surrounding basement membrane (BM) and so frees the way through the ECM for the 

growing vessel. 

The tip cells show high planar polarity. They are located on the tip of the forming vessel and 

lead the new sprouts. By protruding filopodia and lamellipodia they scan the 

microenvironment for

Ill.2 The tip (in green) and the stalk cell (in blue). Phenotypic and molecular differences upon 

EC activation by growth factors (extracellular gradient in orange) [9]. 
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chemotactic signals while migrating towards the angiogenic stimulus. The tip cells are 

primarily migratory and do not proliferate [6, 8]. 

The stalk cells trail behind the tips. They proliferate, elongate the sprouting vessel, form the 

lumen, deposit a basement membrane, and establish tight cell-cell junctions to stabilize the 

stalk. When two tip cells from neighboring sprouts meet, they anastomose in order to form 

new vessel branches. EC proliferation ceases and PCs are recruited to stabilize the new 

vessels (PDGFR/PDGF-B, Ang-1 signaling) [6]. 

Once blood flow is initiated the activated ECs transit into a quiescent phenotype, the phalanx 

cells (Ill.3). The endothelium establishes apical-basal polarity, with the luminal (apical) side 

faced to blood and the abluminal (basal) side facing the vascular tissue. The sprouting process 

iterates until pro-angiogenic signals abate. 

The initial vascular plexus is remodeled through extensive pruning and selective branch 

regression, ultimately establishing an efficient and mature hierarchical vascular network in 

order to allow optimized blood flow for tissue perfusion and oxygenation [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

The key pathway in tip/stalk cell specification is the Notch signaling pathway, an 

evolutionary conserved cell-cell contact-dependent communication mechanism. Notch is the 

receptor and is mainly expressed by stalk cells, whereas delta like ligand-4 (DLL-4) as Notch-

Ligand characterizes a tip cell [17].  

VEGF-A release is induced by hypoxia and amongst others binds to VEGF-receptor-2 

(VEGFR-2) on ECs. Through downstream pathways DLL-4 expression is induced. The 

Ill.3 Hallmarks of sprouting angiogenesis adapted from [6]. (1) EC activation and 

tip/stalk cell selection; (2) tip cell migration and stalk cell proliferation allowing 

elongation of the sprout; (3) branching coordination; (4) anastomosis, stalk elongation and 

lumen formation; (5) perfusion and maturation. 

(1) (2) (3) (4) (5) 
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respective cells thereafter acquire a tip cell phenotype. Through DLL-4 binding to its receptor 

(Notch) on the adjacent cells, the Notch intracellular domain is released and translocated to 

the nucleus where it stimulates the transcription of Notch target genes [6]. Thereafter the cell 

acquires a stalk cell signature [6, 9, 19].  Through lateral inhibition the tip cell prevents its 

immediate neighbor to adopt the same phenotype. 

 

Sprouting angiogenesis involves coordinate EC specification, adhesion, migration, 

polarization and proliferation. Its regulation involves physical interactions of ECs to ECM as 

well as the establishment of homotypic adhesions between adjacent ECs.  

The cellular and molecular machinery underlying EC dynamics largely depends on the 

organization and dynamic rearrangement of the endothelial actin cytoskeleton. The 

cytoskeleton provides a structural framework of a cell that determines a cell’s shape. It is a 

dynamic structure that is frequently reorganized, when cells move, change shape or divide. It 

enables a cell to migrate, to form spike-like protrusions and to polarize their actin 

cytoskeleton in the direction of migration [8, 20]. 

 

 

1.2 The Cytoskeleton - a cell’s framework 

 

The cytoskeleton is a network of fibers of proteins contained within a cell’s cytoplasm. It 

represents a dynamic structure providing cell stability by parts of it constantly being 

destroyed, renewed or newly constructed. There are three types of cytosolic filaments within a 

eukaryotic cell: (1) the actin filaments (a.k.a. microfilaments), (2) the intermediate filaments 

and (3) microtubules. Their main functions consist in maintaining cell structure, enabling 

cells to respond to mechanical forces as well as allowing cell movement. They are critical 

in cell division (1,2), in intracellular transport (1,2), in stabilization of the nucleus by 

connecting it to the plasma membrane (PM) and in regulation of signal transduction (3) [21].   

 

 

1.2.1 The actin cytoskeleton in angiogenesis 

 

A pro-angiogenic factor can induce F-actin polymerization enabling the arrangement of actin 

structures with fundamental roles in cell movement:  (1) lamellipodial actin network at the 
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leading edge of a cell, (2) unipolar filopodial bundles beneath the plasma membrane and (3) 

contractile actin stress fibers in the cytoplasm (Ill.4) [8]. 

Lamellipodia are sheet-like cytoplasmic protrusions that form at the leading edge of migrating 

cells and contain a short-branched network of actin filaments that produce the physical force 

for the protrusion of the leading edge [8, 20, 22]. Filopodia on the other hand, are spike-like 

membrane projections that contain long parallel actin filaments arranged into tight bundles. 

These particular structures act as sensors of motile stimuli and elongation of these filaments - 

in response to these stimuli - pushes the leading edge forward and promotes cell migration[8, 

20, 22]. Through integrin receptors lamellipodial and filopodial protrusions adhere to their 

surrounding ECM. Integrins so form focal contact points that connect the cytoskeleton to the 

ECM, allowing stress fibers - consisting of short actin/myosin filaments with mixed polarity 

along their length - to contract, thus pulling the cell towards these anchors, and inducing 

forward movement by retraction of the trailing edge [8, 20, 22]. 

 

 

 

 

 

Cell receptors are responsible for cell-cell junction formation. The latter allow the 

establishment of a dynamic link to the actin cytoskeleton, via the formation of actin filament

 

A B 

Ill.4: Specialized actin structures in migrating EC. (A) Schematic showing polarized cell with 

lamellipodia, filopodia and stress fibers (from:http://mcdb3280colorado.pbworks.com/w/page/15225500/-

Actin). (B) Migrating retinal endothelial tip cell. Arrowheads point to F-actin filaments (Lifeact-

EGFP:green) depicting filopodia, lamellipodium and stress fibers [11]. 
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associated protein complexes along transmembrane adhesion sites. The cytoplasmic domain 

of the core cell-cell contact molecule vascular endothelial (VE)-Cadherin interacts with 

proteins associated with the actin cytoskeleton, thereby anchoring the junctions to the cellular 

scaffold. This provides stabilization of newly formed vessels and regulates vessel 

permeability [23]. Angiogenesis requires a fast and local remodeling of EC-cell junctions 

[24]. Therefore, they represent highly dynamic structures that are disrupted and reformed at 

high frequency by local spatiotemporal rearrangements of the actin cytoskeleton [25]. 

 

 

1.2.2 The actin cytoskeleton and its dynamics 

 

The major cytoskeletal component of ECs (and other cells) is the actin, which orchestrates the 

multiple steps in angiogenesis (Ill.3). It provides the framework for the formation of 

specialized cellular structures crucial for cell motility, polarization and proliferation.  

Actin is composed of 43-kDA monomeric globular subunits (G-actin) that polymerize to form 

twisted strings of filamentous actin (F-actin). Actin filaments are polar with a fast-growing 

and slow-growing end, the assembly of which is tightly associated with the hydrolysis of ATP 

by intrinsic ATPase activity. ATP-bound monomeric G-actin is incorporated into growing 

filaments at the barbed end and ATP hydrolyzed to ADP as actin monomers are shifted along 

the filaments towards the pointed end [26, 27]. Most cells keep a large pool of G-actin to 

maintain the ability to quickly reorganize the cytoskeleton when exposed to environmental 

changes (Ill.5). 

 

 

 

 

 

  

 

 

 

  
 

 

Ill.5 Actin polymerization. Schematic representation. (Adapted from [8]) 
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Tight spatiotemporal control of actin dynamics is indispensable in order to assure the 

assembly and disassembly of actin fibers, such as bundles, and for controlled rearrangement 

or breakdown of these structures. Regulation involves integrin signaling (Integrins and their 

associated proteins will be discussed in detail in a separate chapter), Rho GTPases and 

numerous additional proteins, collectively referred to as actin-binding proteins (ABPs). 

Upon the above mentioned, the Rho GTPases function as key regulators of actin dynamics. 

The best-studied three representatives of the family that comprises more than 22 members are 

Ras homologous (RhoA), Ras- related C3 botulinum toxin substrate 1 (Rac1) and cell division 

cycle 42 (Cdc42). As all G proteins, they “molecularly switch” between inactive GDP bound 

and active GTP bound state. In the latter Rho GTPases specifically interact with diverse 

effector proteins inter alia, to control cytoskeletal dynamics [28]. RhoA thereby promotes 

stress fiber formation and maturation of nascent adhesions (NA) through its effector, the Rho-

associated serine/threonine kinase (ROCK) [29]. Rac1 and Cdc42 instead promote membrane 

protrusions at the leading edge of migrating cells. Rac1 has been shown to be associated with 

lamellipodia formation by promoting actin related protein 2/3 complex (Arp2/3) activity, 

whereas Cdc42 is responsible for filopodia extension through activation of Wiskott Aldrich 

syndrome protein (WASP) [30]. The tight regulation of these processes includes 

spatiotemporal control of the Rho GTPases, which respectively is mediated by three classes of 

regulatory proteins: guanine nucleotide exchange factors (GEFs), GTPase activating proteins 

(GAPs) and guanine nucleotide dissociation inhibitors (GDIs) [31]. GEFs facilitate the 

exchange of GDP for GTP and thus are required for the activation of Rho GTPases [31]. 

GDIs instead inhibit the nucleotide exchange and sequester Rho GTPases in an inactivated 

state in the cytosol [32]. 

By controlling both the recruitment and activity of multiple GEFs and GAPs, integrins are 

critically involved in the regulation of Rho GTPases and hence in cytoskeleton dynamics [33]. 

This is one of the many aspects explaining how integrins interact with actin dynamics. 

 

F-actin dynamics itself contribute to the control of gene expression on a nuclear level by 

regulating myocardin-regulated transcription factors (MRTFs), which function as cofactors of 

serum response factor (SRF) in the regulation of cytoskeletal genes [5, 34]. 

SRF is a ubiquitously expressed transcription factor that regulates transcription of genes 

involved in cell proliferation, cell motility and cell adhesion over environmental stimuli 

(Ill.6).
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Activated by Rho GTPases, actin polymerization starts and leads to the incorporation of G-

actin into the growing filaments, resulting in a consumption of G-actin and liberation of G-

actin-bound MRTFs. The dissociated MRTFs translocate to the nucleus where they bind to 

SRF and so initiate the transcription of actin/actin regulating genes and rearrange cell shape. 

Once the growth-factor receptor signal abates nuclear G-actin facilitates the nuclear export of 

MRTFs to terminate the MRTF-SRF mediated transcription [35]. 

 

 

1.2.3 Impaired actin dynamics in vascular dysfunctions 

 

Recent studies associate deregulation of actin dynamics to retinal vascular pathologies leading 

to blindness [34, 36]. Mostly this seems caused by retinal hypovascularization due to altered 

SRF–MRTF mediated signals in ECs, which compromises the motility of these cells. Changes 

in the dynamic rearrangement of actin filaments upon VEGF signaling are transmitted to the 

genome by actin-directed release of MRTF and induce deranged response of gene expression. 

As a consequence to impaired endothelial SRF-MRTF signaling, vessel 

Ill.6 Actin dynamics regulate gene expression via SRF. 

For details see text. G-actin in red, MRTF in green [5].  
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homeostasis is altered. The respective mouse lines show impaired endothelial tip cell 

filopodia protrusion, resulting in incomplete angiogenesis with less vascularized areas. They 

seem similar to those found in familial exudative vitreoretinopathies, such as the Norrie 

Disease (ND), where the hypovascularizations primarly affecting the retina, cause excessive 

neovascularization ultimately culminating in vision loss [36].  

In summary this results highlight the importance of the actin cytoskeleton in vascular biology 

as well as in medicine. Hence, it is essential to be able to visualize these actin dependent 

processes in vitro and in vivo in order to get distinct perception of physiological as well as 

pathological angiogenesis and allied disease. 

 

 

1.2.4 Visualization of the actin cytoskeleton 

 

A lack of tools for in vivo imaging of F-actin structures in individual ECs in mammals has so 

far precluded an understanding of how ECs regulate their actin cytoskeleton during 

angiogenesis. Our knowledge on the organization and regulation of the endothelial actin 

cytoskeleton is mainly based on in vitro studies, which are missing essential physiological 

features, such as composition of the ECM, blood flow and mechanical input from the tissue. 

It is thus a purpose of this thesis to describe a tool, found during analysis of Lifeact-EGFP 

mice, which overcomes this enduring problem and might help to get deeper understanding of 

actin dynamics and their regulation. 

 

There are diverse in vitro approaches enabling the visualization of the actin cytoskeleton, 

relying on the use of fluorescent markers. 

Historically, one of the first compounds used to visualize the actin cytoskeleton was the 

fungal toxin Phalloidin, originating from the mushroom Amanita phalloides. For 

immunostaining purposes it is coupled to different flourophores. By selectively binding along 

the sides of actin filaments it inhibits their depolymerization leading to cell death by 

paralyzing the cell’s cytoskeleton, yet allowing F-actin imaging only in fixed cells [37]. 

A widely used alternative for visualizing the F-actin network without disturbing actin 

dynamics and functionality is to express green fluorescent protein (GFP)-actin in cells, thus 

allowing live cell imaging of the cytoskeletal processes. However GFP fusions to actin 

binding domains have certain limitations of use as they show reduced functionality compared 

to endogenous protein, they compete with their cellular counterparts, change the subset of F-
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actin structure and do not label all actin within the cell. Moreover their use is restricted to 

cells that can be transfected [38, 39]. 

The marker Lifeact overcomes these limitations. It does not interfere with cytoskeletal 

dynamics in vitro or in vivo. Up to now, the 17-aa long peptide is the shortest actin marker for 

living cells. It has low binding affinity for F-actin and seems to be the best marker available to 

study F-actin dynamics [38]. (For more information see materials and methods). 

 

Although the markers mentioned above are extensively been used to investigate actin 

dynamics in various cell types and experimental models, they are still of restricted utility 

when looking at primary cells, tissues and whole animals. Transgenic mouse strategies are 

significant tools in addressing those limitations. Several transgenic mouse lines that express 

the GFP-actin gene under the control of tissue specific promoters have been created and 

described in literature: GFP-actin mice [40, 41]. They should permit to study actin dependent 

processes in the mouse and visualize actin expression patterns throughout embryonic 

development [41]. It is being argued though, that there is notable variability in GFP 

expression patterns within transgenic strains, with none of them giving ubiquitous GFP 

expression [42]. 

 

This being the case, the structural organization, dynamics and regulation of F-actin in 

mammals in vivo are still not well understood. 

 

 

1.3 The Integrins - integrating the outside with the inside  

 

Integrins are considered one of the main regulators of the endothelial actin cytoskeleton 

during angiogenesis. Together with growth factor receptors, they function as mediators 

between the surrounding tissue and cell behavior by sensing environmental changes and 

propagating many intracellular signals thereby orchestrating multiple steps in angiogenesis 

(see above). Integrins are the main cell-ECM receptors. They show remarkable plasticity as 

they constantly remodel in response to changes in the ECM and adapt cytoskeletal 

organization, cell migration and signaling processes according to environmental changes. 
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Integrins are a family of glycosylated heterodimeric transmembrane cell adhesion receptors 

that contain an α and a β subunit each, that associate to form different receptors in order to be 

able to bind to distinct ECM components [13]. Both subunits contribute to the binding 

specificity of a given integrin heterodimer for its extracellular ligand. So far 18 α- and 8 β-

subunits have been described in mammals and are known to form 24 different heterodimers 

with overlapping substrate specificity and cell type specific expression patterns (Ill.7) [13, 

43].  

 

 

 

 

 

1.3.1 Integrin signaling – bidirectional, across the membrane  

 

Most of the integrins are not constitutively active. They can be expressed in an inactive state 

on cell surfaces, where they neither show a ligand binding nor a signaling activity. 

Thenceforward, they are able to undergo conformational changes and switch to states with 

high ligand binding affinity and signaling activity. The conformational changes are induced 

by intracellular signals. Cytoplasmic proteins bind to the β integrin tails and thereby enable 

the separation of α- and β-transmembrane and cytoplasmic segments, facilitating ligand 

binding to the extracellular domain [44].  

 

This concept of regulation of integrin function from within the cell has commonly been called 

“inside-out signaling” and has to be distinguished from “outside-in signaling” [13]. Affinity

Ill.7: The Integrin receptor family. 

Schematic representation of the integrin 

heterodimers sorted by their main ligand 

binding specificity and leukocyte-

specific expression, resulting in a 

classification into four major groups: 

(a) Integrins binding to tripeptide 

sequence RGD (arginine-glycine-

aspartic acid). Ligands for this groupe 

include fibronectin (FN) and Vitronectin 

(VN) 

(b) Collagen binding β1 heterodimers 

(c) Laminin (LN) binding β1 

heterodimers 

(d) Leukocyte specific integrins. 

(Ill. from [13]) 
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modulation is essential to control ligand binding and integrate cues from the extracellular 

environment across the PM with the cell’s interior organization. 

 

Upon binding to ECM components integrins switch to an activated state and cluster in order 

to provide a firm adhesion to the ECM. The synergistic effect of multiple weak interactions is 

known as avidity and requires collective binding of multiple integrin interactions, each resting 

upon single weak ligand-receptor engagement. Based on size, morphology, localization and 

protein composition, several types of such adhesive units can be distinguished. A vast number 

of cytoplasmic adaptor and signaling molecules are recruited to the adhesion sides and allow 

their maturation starting from nascent adhesion [45], over focal complexes (FX) to focal 

adhesions (FA) and fibrillar adhesions [46] (Ill.8). 

 

 

 

 

FAs are sites of tight adhesion between the membrane and the ECM on one hand, and the 

membrane and actin cytoskeleton on the other. Their assembly follows Integrin-mediated 

recruitment of signaling molecules, whereupon they sense mechanical forces, transduce 

survival and growth signals between ECM and interacting cell. They provide a structural link

Ill.8 Bidirectional integrin signaling. Schematic depicts conformational changes of the receptors, the 

biogenesis of FA illustrating the connection of the integrins with the actin cytoskeleton and signaling 

properties. For more information see text. Taken from [1] 
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allowing the anchorage of stress fibers to the membrane as well as to integrins, hence 

allowing cell migration [1, 43, 47] (Ill.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Integrins themselves 

do not possess own enzymatic activity; rather their signaling properties 

rely on their ability to recruit specific signaling and adaptor proteins to 

their cytoplasmic domain at the adhesion site. Over 180 molecules are found to be associated 

with the integrin adhesions [48]. Among a wide array of proteins involved in the ”integrin 

adhesome”, three have been shown to have major impact on vascular development; the 

integrin-linked kinase (ILK), PINCH and parvin (pv). Taken together they form the ternary 

IPP-complex (named after its components in order of their discovery) [1, 47]. IPP signaling is 

achieved through its direct interaction with factors that function as upstream regulators of 

many different signaling pathways (Ill.10). Along these lines the complex acts through 

phosphorylation of downstream targets and/or through binding upstream effectors. In this way 

the IPP is able to influence cell invasion, proliferation, tissue morphogenesis, survival, 

spreading, migration, motility and last but not least angiogenesis [1]. 

Ill.9: Integrin signaling. A Signals 

converge on actin polymerization 

enabling cellular contractility and 

cell migration. Receptor activation 

further leads to changes in 

transcriptional program and protein 

expression affecting cell behavior. 

(Ill adapted from [2]) B FA in 

HUVECs. Immunostaining in 

green αpv marking FA, red 

Phalloidin marking F-actin. 

 

MIGRATION 
 CELL-SHAPE 
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However, little is known about how exactly signals initiated by integrins are molecularly 

integrated by ECs to assure the appropriate endothelial actin cytoskeleton organization 

required for successful angiogenesis. 

To solve this question recent efforts concentrate on the specific roles of the individual integrin 

associated proteins. So far in the mammalian system loss of expression of β1 integrin, ILK, 

PINCH1 and pv was shown to cause early embryonic death in mice, even so these mutants 

display subtle differences in their phenotypes, which provide allusive hint that distinct defects 

might underlie these phenotypes [1]. 

In this thesis we will focus on the IPP partner pv, and analyze its functions within the 

angiogenic process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.3.2 Integrin signaling in angiogenesis 

 

In sprouting angiogenesis filopodia (through integrins on their surface) make contact with 

ECM components and initiate the formation of FA. These FA grant stress fibers an anchoring 

point through which they induce a cell’s forward movement by pulling the cell body towards 

these sites. On molecular level FA are sides of transduction from the ECM to the EC involved 

in various intracellular signaling cascades [49]. 

 

 

Ill.10 The IPP-complex with some interaction partners. Arrow marks Parvin. Ill. form [1] 
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Integrin expression is dynamically regulated in response of tissue alterations induced by 

growth factors or changes in the surrounding stroma. Depending on activation status EC 

express several integrins, including the β1 integrins α1β1, α2β1, α3β1, α4β1, α5β1, α6β1 and 

α9β1, the αV integrins αvβ3 and αvβ5, as well as α6β4 [49, 50]. Numerous genetic and 

pharmaceutical studies revealed their critical function within the vasculature. Among them the  

αvβ3 has been shown to be unregulated after growth factor stimulation and plays a key role in 

the initial steps of angiogenesis. On EC surface it co-localizes with proteolytically active 

MMP-2 and so enables cell-mediated degradation of the surrounding ECM, facilitating tip 

cell migration. On molecular level αvβ3 assists growth factor signaling via extracellular signal 

regulated kinase (ERK) signaling, it also activates the small GTPases Rac 1 and Cdc 42 

during spreading and migration. For regulated proliferation and survival it facilitates the 

interaction with signaling cascades including focal adhesion kinase (FAK) – 

phosphoinositide-3-kinase (PI3K) - Akt, ERK and nuclear factor (NF)κB. By recruitment of 

caspase-8 to the plasma membrane it also plays a crucial role in apoptosis regulation [4, 51] 

(Ill.11). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ill.10 Integrins in angiogenesis – a hypothetical model.[4] Growth factors bind to their receptors and 

activate multiple signaling cascades. They induce αV integrin expression allowing cells to invade the 

sourrounding tissue and activate Ras/MAP kinase signaling cascades. Inhibition of αV integrin raises p53 

activity and facilitates apoptosis. 
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β1 subunit (thus all β1 integrin heterodimers) was shown to have major impact on vascular 

development and angiogenesis. While EC lacking β1 integrin displayed impaired proliferation 

and vessel branching [43], endothelial-specific deletion of the β1 subunit in mice resulted in 

embryonic lethality due to multiple vascular defects. Although vasculogenesis and the 

formation of larger vessels did not seem to be affected, angiogenesis was severely 

compromised in those mice [50]. 

 

 

1.4 The IPP complex in angiogenesis 

 

Integrin receptor activation through ligand binding results in the formation of an integrin 

adhesion complex transducing signals into the cellular machinery.  Part of the integrin 

intracellular molecular rearrangement is the IPP complex, which supports integrin activation 

through stabilization of active conformation and provides a linkage to cytoskeletal proteins 

and signaling molecules. Its components: the ILK, the PINCH and the pvs function as a stable 

structural and functional unit controlling cell adhesion, migration and spreading [1, 52]. They 

act by modification of Akt/protein kinase B (PKB), glykogen-synthase-kinase 3 beta 

(GSK3β)/β-catenin, jun-amino-terminal kinase (JNK), α-PIX/Rac1 signaling pathways [1].  

Deletion of a single partner of the heterotrimeric complex disturbs mechanical anchorage and 

signaling properties, thus leading to proteasome-mediated degradation as well as to 

embryonic lethality if knocked out in vivo [53].  

 

It is appealing to understand which role every single partner plays in angiogenesis. The best-

characterized regarding angiogenesis is the ILK. The role of pv still remains uncertain. 

 

 

1.4.1 Integrin linked kinase in angiogenesis 

 

One of the best functionally characterized components of the IPP-complex is the ILK, a serin-

threonin protein kinase containing a catalytic domain at the C-terminus, a central pleckstrin 

homology-like domain and 4 ankyrin-like repeats at the N-terminus. ILK functions as an 

important component in the focal adhesion complex, which anchors actin filaments to integrin 

receptors and the cell membrane [54]. 
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Several studies were made to identify ILK’s function within ECs. Most of them were in vitro 

studies using small interfering (si)RNA to knockdown ILK expression. Loss of endothelial 

ILK thereby resulted in disruption of mechanical anchoring as well as in changes of EC shape 

in respective cells. To that effect Guo L. et al. reported disordered F-actin assembly and 

severely compromised cell morphology characterized by reduced lamellipodia and filopodia 

formation in ILK depleted ECs. These might be reasons for altered EC-migration [54]. 

Besides alteration in structure in ILK depleted cells, many up- and downstream signaling 

pathways controlling migration, cell growth, survival, invasion, cell motility and contraction 

in vascular development and in angiogenesis were affected by the loss of ILK [54]. 

Regarding these molecular signaling pathways, the best analyzed in angiogenesis are the 

VEGF-dependent signaling cascades.  

It has been shown that ILK knockdown inhibited VEGF mediated angiogenesis by interfering 

with VEGF-induced cell-attachment and spreading as well as VEGF induced cell migration. 

[55] Most likely this is due to functional and structural disruption of the actin cytoskeleton. 

The small GTPases Rac and Cdc42 involved in actin dynamics are decreased by ILK 

knockdown [56] through alterations in PAK-interactive exchange factor α [57]. 

Downregulation of ILK inhibited VEGF stimulated proliferation [55] by inducing a cell cycle 

arrest in G1/S phase through reduction of cyclin D1 [58]. 

Even so VEGF levels per se were lower in transfected cells, thereby limiting all VEGF-

VEGFR-2 dependent cell functions. ILK depleted cells showed significantly suppressed 

VEGF-induced phosphorylation of p38 mitogen-activated-protein-kinase (MAPK) and 

PI3K/Akt in ECs. JNK and ERK phosphorylation was not affected [55]. 

 

ILK is an important regulator of EC during angiogenesis, which provides a functional link 

between growth factor signaling and actin cytoskeleton [55]. 

 

 

1.5 The Parvins 

 

Pvs are a family of adaptor proteins that localize to FAs and facilitate the interaction of 

integrins with the actin cytoskeleton. Three members have been identified so far, that differ 

from each other in expression patterns and binding partners. Whereas α-pv shows 
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ubiquitous expression, β-parvin (β-pv) is enriched in heart and skeletal muscle and γ-parvin’s 

(γ-pv) occurrence is restricted to hematopoietic cells.  

The most prominent structural feature the members of the pv-family share, are two tandem 

arranged calponin homology (CH) domains in the C-terminal region (Ill.10). This tandem 

arrangement recurs in many actin-binding proteins (ABPs) [59] and facilitates microfilament 

binding [60]. One interaction partner all pv members share is the ILK, to which they bind 

using the second of the two CH domains (CH2). Direct actin binding instead could only be 

demonstrated for α-pv [60]. β-pv and γ-pv were shown to just indirectly link the IPP complex 

to the cytoskeleton via α-actinin [61], a further ABP, the latter never binding to α-pv, though 

[62]. Both, α- and γ-pv bind paxillin with their CH2 domain, which through its interaction 

with vinculin provides an additional link to the actin cytoskeleton, leading to further 

stabilization of the FA.  

 

Moreover, pvs interact with other important regulatory proteins, including regulators of the 

Rho GTPases, coupling the integrin- to the receptor tyrosine kinase (RTK) signaling, Hic5, 

Cdc42 GTPase activating protein (CdGAP), αPIX (Ill.9). This again highlights the prominent 

functions of α-pv in integrin mediated adhesion and actin dependent processes such as cell 

shape regulation and cell migration [1]. 

 

Montanez et al. in 2009 analyzed the functions of α-pv in vivo generating α-pv mutant mice. 

The ubiquitous deletion of α-pv gene in mice led to embryonic lethality around embryonic 

day (E) 10.5-E14.5, largely associated with severe cardiovascular defects. The group was able 

to show that loss of α-pv results in aberrant vascular network formation, impaired vessel 

maturation as well as abnormal heart development. Studies mainly focused on the function of 

α-pv in vascular mural cells (vMC) and revealed its contribution to RhoA/ROCK signaling. 

Interestingly Montanez et al. also found that the other members of the IPP complex remained 

unaffected by disruption of α-pv, as the occurring upregulation of β-pv levels seem to 

stabilize ILK and PINCH levels and localize them into FAs also in absence of α-pv. They 

claim that α-pv and β-pv exist in two different complexes containing ILK. However, shape 

and spreading defects are solely attributable to the absence of α-pv and cannot be 

compensated by β-pv [2]. 

Further it has been shown that α-pv is upregulated during the angiogenic process.  
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All together these findings underline α-pv’s importance in vascular development. Yet its 

specific role in EC has not been studied. It remains unclear how α-pv functions in the 

regulation of endothelial actin cytoskeleton during sprouting angiogenesis. 
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2 HYPOTHESIS & AIMS: 
 

 

 

 

 

 

 

I. Lifeact-EGFP 

 

We first hypothesized that endothelial expression of Lifeact-EGFP may allow to study actin dynamics 

in a model of angiogenesis. We therefore performed a careful analysis of the expression patterns of 

Lifeact-EGFP - in respective mice - in the vascular system throughout the body, searching for areas 

where there was a preferential endothelial Lifeact-EGFP expression allowing analysis of actin 

dynamics. 

By using Lifeact-EGFP mice, we aimed to establish a fast and easily applicable tool for in/ex vivo 

visualization of actin dependent processes in ECs during angiogenesis. 

 

 

II. α- Parvin 

 

Disrupted ß1 integrin signaling, as well as impaired ILK signaling has a major impact on vascular 

development through compromised EC-proliferation and branching during the angiogenic process. Pv 

is involved in this integrin signaling. In 2009 Montanez et al. first demonstrated, that ubiquitous 

deletion of α-pv in mice led to embryonic lethality, mostly due to aberrant vascular network formation. 

Here, we hypothesized that endothelial α-pv itself might have an independent and crucial role in 

vascular development. Thus, we aimed to characterize the role of α-pv on the regulation of endothelial 

actin cytoskeleton in sprouting angiogenesis. 
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3 MATERIAL & METHODS: 
 

 

 

 

 

 

 

3.1 Material 
 
 
3.1.1 Reagents and Chemicals 

 
Component Vendor 

Agarose Sigma-Aldrich 

Alexa Fluor 488 Isolectin B4 LifeTechnologies 

BrdU (5-bromodeoxyuridine) Invitrogen 

BSA (bovine serum albumin) AppliTech 

Calcium chloride dihydratate Roth 

Desoxynucleotide (dNTP) Solution Mix Qiagen 

Dimethylsulfoxid (DMSO) Roth 

Endothelial Cell Growth medium Promocell 

Ethanol (100% (vol/vol)) AppliChem 

Fetal calf serum (FCS) superior Biochrom 

Flouromount-G Southern Biotech 

Formaldehyd AppliChem 

Formamide  Sigma-Aldrich 

GelRed Biotum 

GeneRuler
TM

 DNA ladder Mix (100bp-10kb) Fermentas 

Glycerol Sigma 

Hydrochloric acid (HCl 37%(wt/vol)) AppliChem 
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Isopropanol AppliChem 

Lipofectamine 2000 Reagent Invitrogen 

Loading Dye PCR samples Qiagen 

Magnesium chloride hexahydrate Qiagen 

Magnesium chloride tetrahydrate Qiagen 

Nonfat-dried milk bovine Sigma-Aldrich 

Paraformaldehyde (PFA) Sigma-Aldrich 

PBS Provided by the pharmacy of “Klinikum 

Großhadern” 

Peanut oil Sigma-Aldrich 

Penicillin/Streptomycin (PS) Sigma-Aldrich 

Phalloidin-Alexa-546 Invitrogen 

Protease-Inhibitor Tablet Roche 

Protein PageRuler
TM

  Thermo Scientific 

Proteinase K (RNAse free) Sigma-Aldrich 

SDS ultrapure AppliChem 

Sodium chloride (NaCl) AppliChem 

Tamoxifen free base Sigma-Aldrich 

Taq DNA polymerase Peqlab 

TO-PRO-3 iodide Cambridge 

Triton-X-100 AppliChem 

Trypsin PAN 

VEGF-human (recombinant) PeproTech 

Viagen Direct PCR-tail PEQLAB Biotechnology 

β-Mercaptoethanol AppliChem 

 
 

 

 

3.1.2 Kits 

 
Name Vendor 

BCA kit Biorad 

Enhanced chemiluminescence kit Millipore 

PCR kit  Qiagen 

Peqlab 
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3.1.3 Antibodies 

 
Antibody Species Concentration Vendor 

Alexa Fluor 488 anti-rat-ab donkey 1:200 (IF) Invitrogen 

Alexa Fluor 546 anti-mouse-ab goat 1:200 (IF) Invitrogen 

Alexa Fluor 546 anti-rabbit-ab donkey 1:200 (IF) Invitrogen 

Anti-BrdU Pure mouse 1:50 (IF) BD Bioscience 

Anti-Caspase 3 – cleaved rabbit 1:50 (IF) Cell signaling 

Anti-CD31 rat 1:100 (IF) BD Pharmingen 

Anti-Claudin 5 rabbit 1:100 (IF) Invitrogen 

Anti-Collagen IV rabbit 1:50 (IF) Biorad 

Anti-Cy3 conjugated αSMA rabbit 1:100 (IF) Sigma 

Anti-Erg1/2/3 rabbit 1:100 (IF) Santa Cruz 

Anti-GAPDH mouse 1:5000 (WB) Millipore 

Anti-GFAP rabbit 1:75 (IF) Dako 

Anti-ICAM-2 rat 1:200 (IF) BD Pharmingen 

Anti-ILK rabbit 1:1000 (WB) Cell Signaling 

Anti-mouse IgG H&L Chain specific 

peroxidase conjugated 
goat 1:2000 (WB) Calbiotech 

Anti-NG2 rabbit 1:100 (IF) Chemicon 

Anti-p-38 rabbit 1:1000 (WB) Cell Signaling 

Anti-p-Akt rabbit 1:1000 (WB) Cell Signaling 

Anti-p-histone H3 rabbit 1:100 (IF) Upstate 

Anti-p-MAPK (42/44) mouse 1:1000 (WB) Cell Signaling 

Anti-p-paxillin rabbit 1:50 (IF)-1:1000 (WB) Cell Signaling 

Anti-Paxillin mouse 1:1000 (WB) BD Biosciences 

Anti-rabbit IgG H&L Chain specific 

peroxidase conjugated 
goat 1:2000 (WB) Calbiotech 

Anti-total-Akt rabbit 1:1000 (WB) Cell Signaling 

Anti-total-MAPK (42/44) rabbit 1:1000 (WB) Cell Signaling 

Anti-VE-Cadherin mouse 1:100 (IF) eBioscience 

Anti-α-parvin rabbit 1:100 (IF)-1:1000 (WB) Cell signaling 
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3.1.4 Solutions 

 
Solution Ingredients 

Blocking buffer for WB 1X TBS 

0,1% Tween-20 

5% (w/v) nonfat-dried milk  

  

BrdU solution 3 mg/ml BrdU in PBS 

  

DNA Lysis buffer 99% Viagen Direct PCR tail 

1% Proteinase K  

  

Fixative PFA-PBS (4% (wt/vol) 

  

Formamide-SSC 50% formamide 

5% SSC (20x)  

  

Laemmli sample buffer 277.8 mM Tris-HCl pH 6.8, 

4,4% LDS 

44.4% (w/v) glycerol  

0.02% bromophenol blue 

  

Pblec 1% Triton X-100 

1mM CaCl2 

1mM MgCl2 

1mM MnCl2 PBS (pH6.8) 

  

Permeabilization buffer 0.1% Triton X-100 in PBS 

  

Radioimmunoprecipitation assay (RIPA) lysis and 

extraction buffer 

25 mM Tris-HCl (pH 7.6) 

150 mM NaCl 

1% NP-40 

1% sodium deoxycholate 

0,1% SDS 

  

Retina-blocking buffer 1%BSA  

0,3% Triton X-100 



MATERIALS & METHODS 

 

   26 

  

Retina-washing buffer 0,1 % Triton X-100 in PBS 

  

  

  

SSC (20x) (saline-sodium-citrate) 3M NaCl 

300 mM sodium citrate  

14N HCl (pH 7.0) 

  

Tamoxifen solution 10% tamoxifen stock solution (10mg/ml) 

90% peanut oil 

  

Tamoxifen stock solution 10 mg/ml tamoxifen  

25% ethanol (100% (vol/vol)) 

75% peanut oil 

  

1X Tris-buffered saline (TBS) 50 mM Tris-Cl 

150 mM NaCl (pH 7.6) 

  

TBST (washing buffer WB) 1X TBS 

0,1% Tween-20 

  

Transfer buffer for WB 25 mM Tris Base 

192 mM glycine 

20% methanol (pH 8.5) 

  

Tris-acetate EDTA (TAE) buffer (1X) 40 mM Tris 

20 mM acetic acid 

1 mM EDTA (pH 8.0) 

  

Tris-glycine/SDS (Running bufferm WB) 25 mM Tris-base 

190 mM glycine 

0,1% SDS (pH 8.3) 

  

1M Tris-HCl pH 8 1M Tris in ddH2O 

pH adjusted with HCl 
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3.1.5 Media 

 
Medium Vendor 

Endothelial Cell growth medium Promocell 

Medium 199 Gibco, LifeTechnologies 

Opti-Mem  reduced serum Gibco, LifeTechnologies 

  

Medium Ingredients 

HUVEC culture medium 50% Endothelial Cell growth medium + 2,5% 

Supplement mix  

50% Medium 199 +  

20% FCS +  

1% PS 

  

Freezing medium 90% FCS 

10% DMSO 

  

Starving medium (1%) Medium 199 

1% FCS 

1% PS 

  

Stimulation medium  Starving medium  

50 ng/ml VEGF-A 

 
 
 
 
3.1.6 Oligonucleotides 

 
Primer Sequence 

APE2f (forward) 5’-GAAGGAATGAACGCCATCAAC-3’ 

APloxPf (forward)  5’-CTGAGTGACATGGAGTTTGAG-3’ 

APloxPr (reverse) 5’-GGACTTGTGGACTAGTTAGAC-3’ 

CreF (forward)  5’-GCCTGCATTACCGGTCGATGCAACGA-3’ 

CreR (reverse):  5’-GTGGCAGATGGCGCGGCAACACCATT-3’ 

siRNA (Sigma-Aldrich) Sequence 
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α-pv SASI_Hs01__00165014 5’-CGACAAUGGUCGAUCCAAA-3’ 

α-pv SASI_Hs01__00165015 5’-GAACAAGCAUCUGAAUAAA-3’ 

Scrambled control  SIC001 Sigma Aldrich 

 
 
 
 
3.1.7 Equipment and disposals: 

 
Equipment Vendor 

Centrifuge Rotina 35R Hettich-Lab-Technologies 

Confocal microscope SP5 Leica SP5, Leica 

Dissection forceps no.5 Fine Science Tools 

Dissection microscope/Stereomicroscope Zeiss Stemi SV11 

Elisa Reader Tecan Infinite F200 

Fluorescence microscope Zeiss Axiophot 

Imaging system PCR Intas Science Image 

Incubator Binder 

Injection needle 27G x ½’’ BD Microlance 3, BD Becton Dickinson 

Injection needle 30G x ½’’ BD Microlance 3, BD Becton Dickinson 

Inverted microscope Zeiss Axiovert 25 

Microcentrifuge with rotor for 2-, 1.5 ml tubes Eppendorf Centrifuge 5410 

Rocker-Shaker (mini) PMR 30; Grant-Bio 

Short-blade scissors Fine Science Tools 

Spring scissors Fine Science Tools 

Sterile bench Steril VBH compact 

Thermoblock Eppendorf Thermomix comfort 

Thermocycler PCR PTC-100
® 

Peltier Thermal Cycler, MJ Research 

Waterbath HAAKE SWB25 

Western Blot imaging software Wasabi software 1.4, Hamamatus Photonics 
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3.2 Animals 
 

All experiments with mice were performed in accordance to German guidelines and 

regulations. The Committee on the Ethics of Animal Experiments of the Ludwig-Maximilians 

University, Munich, approved the protocols. 

 

 

3.2.1 Lifeact-EGFP transgenic mice 

 

For ex vivo visualization of the actin cytoskeleton Lifeact-EGFP mice have been used [10]. 

Lifeact is a 17 aa long peptide derived from yeast, that comprises the first 17 aa of the 

ABP140 in saccharomyces cerevisiae. To study actin dynamics in living cells it has been 

fused to EGFP on its C-terminal end. Through direct binding to F-actin it allows in vitro and 

in vivo visualization of the cytoskeleton without affecting neither actin organization nor its 

dynamics [38]. 

In 2010 Riedl et al. first generated Lifeact-EGFP mice to study F-actin dynamics in primary 

cells and whole animals [10]. Therefore they created a construct based on the pCAGGS 

vector and inserted the Lifeact-EGFP sequence. In order to obtain broad expression patterns 

the vector contains a cytomegalovirus (CMV) enhancer sequence upstream to a chicken actin 

(CAG) promoter, which drives the Lifeact-EGFP expression. 

Lifeact-EGFP mice can be tested for a fluorescent signal by using a UV-lamp. 

 

 

 

 

 

 

3.2.2 Inducible α-Pv knockout mice: α-pvfl/fl;Cdh5(PAC)-CreERT2 

 

To determine the roles of α-pv in ECs during vessel sprouting, we generate specific EC 

deletion of α-pv in mice: α-pv
fl/fl

;Cdh5(PAC)-CreERT2 (herein referred to as α-pv
i∆EC

). 

Ill.12: Vector fragment containing Lifeact-EGFP. Linearization of the vector used for pronuclear 

injection. The sequence comprising CMV-enhancer, CAG promoter, chimeric intron, Lifeact-EGFP and 

a Poly-A sequence ensures ubiquitous expression. [10] 
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Therefore Cdh5-CreERT2 mice [63] were bred into a background of animals carrying a loxP-

flanked α-pv gene (α-pv
floxed/floxed (flox/flox)

). Cre activity and respective gene deletion, was 

induced in newborn mice by intraperitoneal (IP) injection of 50 µl of Tamoxifen solution 

(Sigma-Aldrich; 1mg/ml; generated by diluting a 10 mg/ml tamoxifen stock solution in 1:4 

ethanol: peanut oil (Sigma-Aldrich) with additional peanut oil) once daily at postnatal days 

(P)1, P2, P3. Phenotypes of mutant mice were analyzed at days P6, P7, P8.5 or P16, as 

indicated. Littermate animals were used as controls. 

 

 

Inducible gene deletion in vivo: 

Up to date the best gene deletion in vivo is achieved with the conditional Cre-loxP system. It 

involves the insertion of two loxP sites flanking the gene or region of interest (α-pv in our 

case) by homologous recombination in cultured embryonic stem cells. A site-specific DNA 

recombinase Cre recognizes the marked sites as substrate, removes the DNA segment and 

generates a nonfunctional, truncated allele. Temporal control of the recombinase can be 

accomplished by the use of a Tamoxifen-inducible version of the Cre (CreERT2) (Ill.12, 13) 

[3]. 

EC specific expression of the inducible Cre was obtained by the use of mice carrying the Cre 

recombinase under the control of the cadherin-5 (Cdh5) promoter (Cdh5-CreERT2) (Ill.12). 

 

 

 

 

 

 

 

 

 

 

 

 

Ill. 13 Site-specific recombinase technology used to inactivate α-pv in the postnatal endothelium. For 

more information see text 
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3.3 Postnatal mouse retina as an angiogenesis model 
 

The postnatal mouse retina model is a powerful, widely used ex vivo system for the analysis 

of physiologic and pathologic angiogenesis [3]. Moreover once combined with novel tools in 

mouse genetics, such as the inducible Cre-loxP site-specific recombinase technology, it 

allows investigation of signaling pathways that control retinal vascular development. 

 

Development of retinal vasculature 

Blood vessels in the retina undergo extensive changes and reorganization during 

development. Before birth mouse pups have an immature retinal vasculature involving 

hyaloid vessels, which supply the inner retinal portion with oxygen and nutrients by a 

diffusion process. Immediately after birth hyaloid vessels regress and start to be replaced by a 

vascular plexus that emerges from the optic nerve. Within the first week after birth, sprouting, 

proliferation and directional migration of ECs from the center towards the periphery leads to 

the formation of a primitive vascular plexus that covers the inner layer of the retina. Thereby 

vessels at the growing edge are less mature than more central ones. At P8 the outer margin is 

reached and onwards the ECs start to grow perpendicularly in order to fuel the deeper retinal 

layers (Ill.14 A). After about 21 days of substantial remodeling the vasculature matures into a 

hierarchical network of arteries, capillaries and veins [64].  

In these premise, an advantage of the postnatal mouse retina model is the possibility of 

capturing all mentioned stages of vascular differentiation within a single system with 

spatiotemporal separation. Likewise it represents a fast tool, with a two-dimensional flat 

primary plexus easy to image after immunohistochemistry [64] (Ill.13). 
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The postnatal mouse retina model [3] 

The procedure starts with 3 IP injections of Tamoxifen (selective estrogen receptor 

modulator) (Ill.14A, Ba) in order to induce gene deletion. According to which step of 

angiogenesis aims to be analyzed pups are injected and sacrificed respectively within the first 

3 weeks of life, eyes removed and fixed in 4% paraformaldehyde (PFA) (Ill.14b). After 

fixation, the cornea (Ill.14c, d), iris (Ill.14e), vitreous (Ill.14f) and hyaloid vessels (Ill.14g) are 

removed through dissection under a stereomicroscope. Immunostaining follows blocking- and 

permeabilization step. Finally, 4 incisions (as indicated Ill.14h) are made to flatten the 

samples and prepare them for whole mount.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vessel remodel 
Vessel maturation 

Sprouting 
angiogenesis 

a 

Ill.14: 2D-Imaging of retinal angiogenesis. Retinal vascular plexus is depicted with vessel growing 

direction from the bottom of the image to the top. Within the angiogenic front on top, vessel 

sprouting and branching can be analyzed (yellow box). Moving towards the bottom of the picture 

vessels get more mature and allow examination of vessel stabilization and maturation (green box). 

Moreover in the central plexus vessel remodeling, regression and arterio-venous differentiation can 

be studied (red and blue box). Image taken from [12]. 
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3.3.1 Whole retina immunohistochemistry: 

 

Dissection and labeling of retinas was performed as previously described [3]. Eyes were 

collected from P6 onwards, as indicated, and fixed in 4% paraformaldehyde (PFA) on ice for 

2 hours.  Retinas were then dissected and stained as whole mounts. Therefore they were 

incubated in retinal blocking buffer (1%BSA and 0,3% Triton X-100), washed twice in Pblec 

i 

Ill.15: Postnatal mouse retina angiogenesis model. A Scheme illustrates different time points for 

Tamoxifen injections and corresponding stages of vascular development being affected. B shows 

single protocol steps of the postnatal angiogenesis model (a-h) and confocal image after IHC (i). 

Images modified from [3] and [7]. 

b 
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(1% Triton X-100, 1mM CaCl2, 1mM MgCl2 and 1mM MnCl2 PBS [pH6.8]), and incubated 

overnight at 4°C with Isolectin-B4, in order to label the retinal endothelium. Further 

antibodies diluted in Pblec were added to highlight other retinal components. (For antibody 

information and dilutions see antibody table in materials part.) 

Primary antibodies were followed by 2-hour incubation of an anti-rabbit, anti-mouse or anti-

rat IgG Alexa in 488 nm, 546 nm or 633 nm (1:200). Alexa 546 nm conjugated Phalloidin 

(1:100) (Invitrogen) was used for visualization of the actin cytoskeleton. 

Whole mount of retinas was performed by the use of a low-intensity stereomicroscope light 

(Zeiss STEMI SV11). 4 incisions were made to flatten the retinas and Flouromount-G 

(Southern Biotech) pipetted drop wise onto them. 

 

 

 

3.3.2 Proliferation assay 

 

Proliferating cells were labeled using Bromodeoxyuridine (BrdU) proliferation assay as 

decribed in [3]. BrdU is a thymidine analog that replaces thymidine during S-phase of 

dividing cells. The experiment was started with IP-administration of 300 µg BrdU 

(Invitrogen) per pup, 4 hours prior to sacrifice and eye collection. Subsequent to retinal 

labeling with Erg1/2/3 (Santa Cruz) to tag the nucleus and isolectin-B4 (LifeTechnologies) 

staining to highlight the vasculature, retinas were post-fixed in 4% PFA for 30 minutes, 

washed 3 times with PBS and incubated for 1 hour in formamide- sline sodium citrate (SSC) 

solution (50% formamide (Sigma Aldrich), 5% 20x SSC with additional ddH2O) to denature 

and expose the BrdU-labeled DNA. Further 30 minutes of incubation in a 6M HCl and 0,1% 

Triton X-100 solution completed the exposure of the halogenated nucleotide antigen, which 

then could be visualized after overnight incubation at 4°C with an anti-BrdU antibody (BD 

Bioscience). 

Quantification was carried out by comparison of BrdU-positive Erg1/2/3-positive EC and 

BrdU-negative Erg1/2/3-positive EC in high-resolution confocal images (Leica TCS SP5 II 

microscope). 
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3.4 Immunohistochemistry in other tissues 

 

 

3.4.1 Whole embryo immunohistochemistry 

 

Embryos were dissected in PBS at embryonic day (E) 10.5, yolk sacs and skin fixed overnight 

in fixation buffer (80% methanol, 20% DMSO). Samples were rehydrated in 0,1% Tween-20 

in PBS, incubated in blocking buffer (10% goat serum, 5% BSA in PBS) for 2 hours and 

exposed to primary antibodies overnight at 4°C. After 5-7 hours of washing with 0.1% 

Tween-20 in PBS samples were incubated with secondary antibodies overnight at 4°C and 

thereafter whole mounted [2]. 

 

 

3.4.2 Skin immunohistochemistry 

 

Samples were collected fixed and stained as previously described [65]. Tail and ear skin was 

cut into small pieces and incubated in 5mM EDTA in PBS at 37°C for four hours. 

 

 

3.4.3 Skeletal muscle immunohistochemistry/ Cremaster – in vivo microscopy 

 

Mice were anesthetized by IP injection of a ketamine/xylazine mixture (100 mg/kg ketamine 

and 10 mg/kg xylazine). The right cremaster muscle was exposed through ventral incision of 

the scrotum. Muscle then was opened ventrally in a poorly vascularized zone, using careful 

electrocautery to stop any bleeding, and spread over the pedestal of a custom-made 

microscopy stage. Epididymis and testicle were detached from the cremaster muscle and 

placed into the abdominal cavity. Throughout the procedure and after surgical preparation, the 

muscle was superfused with warm buffered saline. Tissue was fixed in 2% PFA and 

immunostained a whole mount following to in vivo microscopy [66]. 
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3.5 Molecular biological methods: 
 

 

3.5.1 DNA isolation of mouse ear biopsies 

 

A 0,3 cm tip of mouse ear was cut, placed into a microcentrifuge tube and 250 µl of lysis 

buffer (Viagen Direct PCR-tail; PEQLAB Biotechnology) and proteinase K (Sigma-Aldrich) 

(1:100 dilution) were added. Samples were incubated at 55°C overnight with gentle shaking. 

Next, samples were centrifuged for 10 minutes at 5000 RPM in a bench top microcentrifuge 

(Eppendorf centrifuge 5410) to pellet residual hair. The supernatant was carefully aspirated 

and transferred to a new tube. 1µl of each sample was used for PCR analysis. DNA was 

stored at 4°C. 

 

3.5.2 Polymerase chain reaction (PCR): 

 

For PCR, a thermocycler (PTC-100
®

 Peltier Thermal Cycler, MJ-Research) was used to 

amplify the target sequences and so allowed genotyping of the mice. Amplification reaction 

involved the sample of template DNA, two/three oligonucleotide primers, 1mM 

deoxynucleotide triphosphates (dNTPs, Qiagen), 10x reaction buffer (Qiagen), magnesium 

and a thermostable DNA polymerase (Taq-polymerase, PeQlab). 

PCR reactions started with a pre-incubation step, which denatures the template DNA at 95-

100°C. The second step was carried out at a lower temperature and enabled the 

oligonucleotide primers to anneal to the denatured DNA. Reaction proceeded with elongation 

of the primers at 72°C, the optimal temperature for the Taq-polymerase. 

 

For genotyping of α-pv-floxed mice, a PCR with three-primer system was used: 

APE2f (forward): 5’-GAAGGAATGAACGCCATCAAC-3’  

APloxPf (forward): 5’-CTGAGTGACATGGAGTTTGAG-3’ 

APloxPr (reverse): 5’-GGACTTGTGGACTAGTTAGAC-3’ 

 

Presence of the Cdh5-CreERT2 transgene was determined by PCR using the primers: 

CreF (forward): 5’-GCCTGCATTACCGGTCGATGCAACGA-3’ 

CreR (reverse): 5’-GTGGCAGATGGCGCGGCAACACCATT-3’
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3.5.3 Agarose gel electrophoresis: 

 

Agarose gel electrophoresis enables the visualization of the size fractioned PCR products. 

Prior to gel casting, dried agarose is dissolved in 1x TAE buffer by heating and is then poured 

into a mold, into which a comb is fitted until the mixture containing 1% agarose (Sigma-

Aldrich) is still wet. Gel Red (Ethidium-bromide-equivalent, Biotium) was added to the 

mixture according to manufacturer’s instructions in order to allow fluorescent visualization of 

the DNA fragments under UV light. Gels were then submerged in electrophoresis buffer 

(1xTAE), samples were mixed with 2µl of Loading Dye (Qiagen) and loaded into the sample 

wells. Gene ruler 1kDa (Fermentas) was used as a size marker. Electrophoresis then started by 

applying 100 mA for at least 60 minutes at room temperature (RT) (Biorad Power Pac 300 

and associated electrophoresis gel box). Thereafter gel was placed on a UV light box and 

DNA pictured by using the imaging system Gel iX20 Imager (Intas Science Imaging), 

allowing the discrimination of wildtype (wt) (1.1kb and 186bp), flox (240bp) and Cre-

mediated-recombined (595bp) alleles. 

 

 

 

3.6 Cells culture methods 

 

 
Cell culture was carried out in a sterile bench (Steril VBH compact) applying sterile working 

techniques. Cells were cultivated at 37°C, 5% CO2 and 95% humidity (incubator, Binder). 

Cells were centrifuged at 900-1000 RPM for 5 minutes, using a Rotina 35 R centrifuge 

(Hettich-Lab Technologies). 

 

 

3.6.1 Freezing and thawing of cells: 

 

Cells were stored at -80°C for short term (up to 6 months) or in liquid nitrogen for longer 

term. Regarding the freezing procedure, cells were centrifuged and medium was completely 

aspirated before re-suspending them in ice-cold freezing medium, transferring them to Cryo-

tubes and placing them on ice. 
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For thawing, cell-tubes were put in a 37°C waterbath (Haake SWB25). Cells were then 

immediately transferred into 6 ml of medium, centrifuged and resuspended in medium before 

plating them on culture plates. 

 

 

3.6.2 Cell lines 

 

Human umbilical endothelial cells (HUVECs) were purchased from Promocell (C-12203) and 

cultured with EC growth medium (Promocell): Medium 199 (Gibco, LifeTechnologies ) 1% 

Penicillin/Streptomycin (PS, Sigma-Aldrich), 20% Fetal Calf Serum (FCS, Biochrom);1:1.  

 

 

3.6.3 siRNA transfection 

 

HUVECs were transfected with a siRNA duplex against α-pv (Sigma, 

SASI_Hs01__00165014 and SASI_Hs01_00165015) and scrambled control (Sigma SIC001) 

using Lipofectamine 2000 (Invitrogen) according to manufacturer’s protocol. Briefly, 

Lipofectamine 2000 and siRNAs were diluted in reduced serum medium (OptiMem, Gibco, 

LifeTechnologies) and incubated on the cells. After 6 hours the Optimem medium was 

removed and replaced by HUVEC culture medium (Endothelial cell growth medium: Medium 

199 (1:1)). All experiments were carried out 48 hours after transfection. 

 

 

3.6.4 Cell lysis 

 

Cells were lysed in protein lysis buffer (150 mM NaCl, 50 mM Tris pH 7,4, 1 mM EDTA, 1% 

Triton-X100, supplemented with protease inhibitors (Roche)). They were scraped off the 

plate, then transferred to a microcentrifuge-tube and sonicated twice for 3 seconds to shear the 

DNA and so reduce sample viscosity. Following, cells were centrifuged at 12000 RPM for 10 

minutes at 4°C. The pellet was removed and either continued with protein quantification or 

sample storage at -20°C. 
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3.6.5 Protein quantification: Bicinchoninic acid assay (BCA)  

 

The biochemical assay was used to determine the total protein concentration in a solution. 

Reagents were prepared according to manufacturer’s instruction of BCA-kit (Biorad). After 

pipetting them upon the samples, protein concentration was exhibited by a color change of the 

sample solution from green to purple in proportion to the protein concentration, which was 

then measured using colorimetric techniques. The color change relies on a biochemical 

reaction where two molecules of bicinchoninic acid chelate a single Cu
+
 ion, forming a purple 

water-soluble complex. The amount of protein was quantified by measuring the absorption 

spectra of the sample solutions (Tecan, Infinite F200), which were compared with solutions of 

known protein concentration. 

 

 

3.6.6 SDS page  

 

Protein samples were homogenized in Laemmli sample buffer (277.8 mM Tris-HCl pH 6.8, 

4,4% LDS, 44.4% (w/v) glycerol, 0.02% bromophenol blue) and boiled for 5 minutes before 

lysates were loaded and resolved by 10% sodium dodecyl polyacrylamide gels (SDS-PAGE). 

The gel electrophoresis principle relies on electric potential, which, if applied to both ends of 

a gel, allows protein migration depending on size and charge, from the anode to the cathode, 

resulting in fractionation of the probe with specific protein locations within the gel. In order to 

estimate protein size a protein standard (Protein PageRuler
TM

 Thermo Scientific) was loaded 

in the first slot of the gel. Proteins then were separated by application of 90 Volt (V) for at 

least 60 min to the SDS-PAGE fully surrounded by running buffer (25 mM Tris-base, 190 

mM glycine, 0,1% SDS (pH 8.3)). 

 

 

3.6.7 Immunoblot 

 

Proteins were electrophoretically transferred from gels onto nitrocellulose membranes by 

using a transfer buffer (25 mM Tris Base, 192 mM glycine, 20% methanol (pH 8.5)) and 

applying amperage according to protein sizes. After the blotting process membranes were 

washed in washing buffer (Tris-buffered saline (TBS) and 0,1% Tween-20 (TBST)) and 

incubated for 1 hour at RT in nonfat-dried milk (Sigma-Aldrich) in order to prevent non-
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specific binding reactions. Primary antibodies (for antibodies and dilutions see table in 

materials part) were diluted in TBST and incubated on the membrane overnight at 4°C. After 

1 hour incubation with respective secondary antibodies (for antibodies and dilution see table 

in materials part) and further membrane-washing steps, bound antibodies were detected the 

following day using enhanced chemiluminescence (Millipore) and Wasabi software 1.4 

(Hamamatsu, Photonics). GAPDH was used a housekeeping gene. 

 

 

3.6.8 Immunofluorescence-staining of cells 

 

HUVECs were grown on coverslips in multi-well plates, where they were directly fixed using 

4% PFA. After 15 minutes of incubation at RT, the fixative was removed and washed out by 

rinse the cells twice in PBS for 5 min. Cells were then covered with PBS-0.1% Triton X-100 

for permeabilization. A 1-hour blocking step followed (HUVEC blocking buffer: 3% FBS, 

1% BSA, 1% Triton in PBS and thereafter the cells were incubated overnight with the 

primary antibody (for antibodies and dilution see table in materials). Fluorescently labeled 

secondary antibody incubation followed. Slides then were analyzed by confocal microscopy 

or long-term stored at 4°C, protected from light. 

 

 

3.7 Microscopic models 

 

3.7.1 Confocal Microscopy 

 

Images were acquired and processed using a Leica TCS SP5 II microscope, LAS Montage 

Imaging software (Leica) and the IMARIS Digital Imaging software (Biplane). Wide-field 

images were acquired using DeltaVision OMX V3 microscope (Applied Precision) in 

conventional mode and Cascade II:512 EMCCD cameras (Photometrics). SoftWoRx software 

(Applied Precision) was used for deconvolving the images with enhanced additive method. 
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3.7.2 In vivo Microscopy 

 

The setup for in vivo microscopy was centered on an AxioTech-Vario 100 Microscope 

(Zeiss), equipped with LED excitation light (Zeiss) for fluorescence epi-illumination. 

Microscopic images were obtained with a water dipping objective (20x, NA 0.5) and acquired 

with an AxioCam Hsm camera and Axiovision 4.6 software. 

 

 

 

3.8 Statistical analysis  

 

Samples were collected independently of one another for each experimental series. All 

measurements were performed with N ≥ 7 mice per genotype, obtained from minimum of 

three independent litters three times for each experimental series; the mean of the three 

repeats was used. The data shown are mean ± s.e.m.. All quantitative data were analyzed 

using unpaired Student’s t-Test using Excel (Microsoft) software after testing for normal 

distribution of the data. Error probabilities (P-values) lower than 0.05 (*), 0.01 (**) or 0.001 

(***) were considered significant. 

Qualitative microscopic data were not statistically tested. Descriptions on experimental 

microscopic observation are always based on minimum three independent experiments.  



 

   42 

 
 
 
 
 
4 RESULTS: 
 

 

 

 

 

 

 

4.1 Imaging of endothelial Actin cytoskeleton 
 

 

 

4.1.1 Lifeact-EGFP: Vascular expression pattern  

 

Lifeact is ubiquitously expressed during embryogenesis 

I started by analyzing Lifeact-EGFP expression in the mouse embryo. Therefore, I performed 

whole-mount immunostaining of E10.5 embryos with an antibody against cluster of 

differentiation (CD) 31 in order to visualize ECs. After confocal imaging and 3-dimensional 

reconstruction I found ubiquitous Lifeact-EGFP expression. Epithelial- and mesenchymal- as 

well as neuronal actin structures were demarked, precluding adequate imaging of F-actin 

structures in ECs (Fig.1). 
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Lifeact-EGFP is mainly expressed in EC in the postnatal mouse retina 

Next I studied Lifeact-EGFP in postnatal retinas of P5 and P10 Lifeact-EGFP mice. In the 

retina the vascular plexus develops in close association with a pre-existing network of retinal 

astrocytes (ACs). Therefore I combined Isolectin B4 (IB4) staining – for EC labeling - with 

an antibody against glial fibrillar protein (GFAP) to visualize ACs. The analysis revealed an 

overlap of Lifeact-EGFP expression with IB4 staining and absence of Lifeact-EGFP signal in 

GFAP tagged ACs, indicating that Lifeact-EGFP is highly expressed in ECs and almost 

absent in ACs. (Fig.2A, B, D). To further verify EC-identity of Lifeact-EGFP expressing 

cells, I preformed immunostaining with the endothelial specific-marker VE-Cad and found 

co-localization with Lifeact-EGFP expression. (Fig.2C, D) 

Fig.1: Lifeact-EGFP is ubiquitously expressed during embryogenesis. E10.5 Lifeact-EGFP transgenic 

embryo whole-mounts with CD31 (in red) immunostaining and Lifeact-EGFP depicted in green. (A) 3D 

reconstruction. (B) Confocal sections. Arrows point to intersomitic vessels; arrowheads indicate epithelial 

actin-rich apical site. Scale bars: 50 µm. Ep: Epithelial cell; Me: Mesenchymal cell; NT: Neural tube. 
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Fig.2: Lifeact-EGFP is highly expressed in EC but practically absent from AC in the postnatal retina of 
Lifeact-EGFP mice. Immunostaining of whole-mounted P5 retinas: IB4 (A in red), GFAP (B in red), VE-Cad 

(C in red). (D) pictures the angiogenic front and the central plexus (Lifeact-EGFP in green, GFAP in red, VE-

Cad in blue). Scale bars: A: 100 µm, B: 100 µm, C: 50 µm. af: angiogenic front; cp: central plexus; at: artery; 

vn: vein. 

D 
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The analysis also showed low Lifeact-EGFP expression in retinal tissue macrophages (TMs) 

(Fig.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next, I determined whether Lifeact-EGFP was expressed in retinal vascular mural cells 

(vMCs). To do this, I performed immunostaining of Lifeact-EGFP retinas with antibodies 

against alpha-smooth muscle actin (α-SMA) to mark vascular smooth muscle cells (vSMCs) 

and neuron glial antigen 2 (NG2) to visualize pericytes (PCs) (Fig. 4). I found weak Lifeact-

EGFP expression in vSMCs and PCs. 

 

Fig.3: Lifeact-EGFP expression is nearly absent in retinal tissue macrophages. IB4 (in red) staining of 

whole-mounted P5 (A) and P10 (B) retinas. Lifeact EGFP: green. Arrows point to IB4 positive tissue 

macrophages. Scale bars 20 µm. 
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Lifeact-EGFP is mainly expressed in vMC in skin and skeletal muscle 

 

Having obtained results that indicated that Lifeact-EGFP is highly expressed in the 

endothelium of postnatal retinas, I analyzed Lifeact-EGFP expression in vascular and 

lymphatic vessels in skin and skeletal muscle of Lifeact-EGFP mice. 

 

 

Fig.4: Lifeact-EGFP is weakly expressed in vMC of the retinal vasculature. α-SMA (A in red) or 

NG2 (B in red) staining of whole-mounted P5 retinas. Lifeact-EGFP in green. Arrows point to α-SMA-

positive cells (A) and NG2-positive PC (B). Scale bars: A: 50 µm, B: 20 µm and 50 µm. 
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Skin 

To characterize Lifeact-EGFP expression in the skin I preformed immunofluorescence stain 

using antibodies against CD31 and α-SMA on ear - and tail-skin (Fig.5) in two-month old 

mice.  

In contrast to the retina, I found that in the skin, Lifeact-EGFP was highly expressed in vMCs 

and weakly expressed in ECs. Moreover, I was not able to detect Lifeact-EGFP in lymphatic 

ECs, suggesting that Lifeact-EGFP is almost absent within those cells. 

 

 

Skeletal muscle 

In terms of skeletal muscle analysis, I analyzed Lifeact-EGFP expression in the cremaster-

muscle and found that Lifeact-EGFP expression was highly expressed in vMCs and almost 

absent in ECs (Fig.5B, D). 
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Fig.5: Lifeact-EGFP mice allow visualization of F-actin structures in vMC in skin and cremaster 

muscle. CD31 (in red) staining of whole-mounted tail skin (A) and ear (C and E). Lifeact-EGFP: green. 

(B and D) α-SMA (in red) and CD31 (in blue) double labeling of blood vessels in the cremaster muscle. 

Lifact-EGFP: green. Arrows point to endothelium and arrowheads point to vMC. Scale bars: A: 100 µm, 

B: 100 µm, C: 20 µm, D: 15µm, E: 100 µm. at: artery; cp capillaries; hf: hair follicle; lym: lymphatic 

endothelium; m: muscle.     
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As the cremaster muscle is a well-established in vivo model to study leukocyte-EC 

interactions and leukocyte extravasation [67], we analyzed whether Lifeact-EGFP was 

expressed in leukocytes. We observed that leukocytes expressed Lifeact-EGFP, enabling in 

vivo visualization of rolling and adherent leukocytes at the vessel walls of postcapillary 

venules (Fig.6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lifeact-EGFP an EC-specific actin marker in the retina 

 

My results indicate that in postnatal retinas of Lifeact-EGFP mice, Lifeact-EGFP is mainly 

expressed in the vascular endothelium, allowing imaging of the endothelial actin cytoskeleton 

with excellent contrast. Another widely used actin marker is fluorescent Phalloidin. Whole 

mount immunostaining of Lifeact-EGFP and WT retinas was performed and compared.  

(Fig.6) 

Phalloidin is not EC specific [17]. In the retinal vascular plexus phalloidin presented an 

unequal distribution of actin labeling. In line with previous data I confirmed that phalloidin 

mainly stained the angiogenic front of the vascular plexus where it highlighted leading edges 

and filopodia of tip cells (Fig.6) [17]. On the other hand, in the central plexus, phalloidin 

staining in ECs was weak. It labeled non-vascular structures, thus making it difficult to 

visualize and analyze endothelial actin cytoskeleton in consolidated vessels. 

Fig.6: Postcapillary venules in the cremaster muscle from Lifeact-EGFP 

mouse. Arrow marks adherent leukocyte. Arrowbar marks rolling leukocyte.  



RESULTS 

    50 

Lifeact-EGFP signal overlapped with phalloidin at the leading edges of the vascular front and 

filopodia of tip cells. Besides that, it was bright all over the entire vascular plexus, enabling 

visualization of F-actin in all types of specialized ECs, in various stages of the angiogenic 

process with almost no background (Fig.7). 

 

Taken together, these results show that in the retina Lifeact-EGFP labels endothelial F-actin 

in higher grade and better signal-to-noise-ratio compared to Phalloidin. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7: Lifeact-EGFP colocalizes with phalloidin. Whole-mounted P6 retinas with Phalloidin staining (in 

red). Lifeact-EGFP in green. Arrows point to the leading edges of tip cells that are highly enriched in actin 

filaments. 
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Visualization of single F-actin structures in situ 

 

The planar outgrowth of the inner vasculature in the retina allows high-resolution three-

dimensional (3D) imaging of the endothelium. Hence, all stages of the sprouting process can 

be efficiently analyzed in a single sample owing to spatiotemporal sequence of angiogenic 

network formation. Up to date, there is no tool able to show cytoskeletal details of the 

sprouting process within the angiogenic front. Our results indicated an extraordinary potential 

of Lifeact-EGFP in the visualization of endothelial specific F-actin in the postnatal mouse 

retina. Therefore we performed high-resolution confocal laser scanning microscopy and high-

power deconvolution imaging of sprouting vessels in P6 retinas of Lifeact-EGFP mice. 

Indeed, we found that in the migrating tip cells, Lifeact-EGFP brightly labeled cortical actin, 

filopodia as well as long and thin actin bundles in the cytoplasm, most likely representing 

stress fibers (Fig.8A, B, D). 
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The analysis also revealed that in stalk cells, Lifeact-EGFP highlighted endothelial junctions 

and short filopodia-like protrusions along the cell membrane (Fig.8 C, D). Similar protrusions 

were also observed in EC in the established plexus and in anastomosing tip cells at the fusion 

points (Fig.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lifeact-EGFP a marker for apical-basal-polarity 

Fig.8: Lifeact-EGFP labels cortical actin, filopodia and stress fibers in retinal tip and stalk EC. (A) 

Migrating tip cells. Arrows indicate filopodia, white arrowheads point to actin filaments in the cytoplasm and 

red arrowheads point to cortical actin. High-magnifiation deconvolution images of tip (B) and stalk cells (C) 

showing details of cytoskeletal organization (Lifeact-EGFP: green), with fine actin-rich filopodia protrusions 

and cortical actin cables, running along adherens junctions (VE-Cad: red) (D) VE-Cad (in red) and α-SMA (in 

blue) double labeling of vascular sprout. Lifeact-EGFP: green. Arrowheads indicate short actin filament 

protrusions in stak cells. 

Fig.9:  Visualization of endothelial actin cytoskeleton in a sprout during anastomosis of tip cells (A;B) 

(Lifeact-EGFP: white) Arrowheads point to short actin filament protrusions during fusion. 3-dimensional 

reconstruction of an EC sprout (C) (Lifeact-EGFP: white). Arrow points to actin filament protrusions. 
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Lumen formation requires EC polarity. The actin cytoskeleton reorganizes and allows the 

formation of a luminal and abluminal side of an EC. 

I whole-mounted retinas of Lifeact-EGFP mice and stained them with an antibody against 

intercellular adhesion molecule 2 (ICAM-2) (Fig.10), a marker allowing visualization of 

lumenized vessels by marking the apical EC membrane. High-resolution confocal images 

revealed a Lifeact-EGFP signal partially adjacent to ICAM-2 positive structures. Furthermore, 

Lifeact-EGFP expression was not simply restricted to the luminal site, but highlighted 

abluminal F-actin structures as well.  

 

 

 

 

 

 

 

 

Fig.10: Lifeact-EGFP is a marker for apical-basal cell polarity. Optical section of retinal 

vasculature of P5 Lifeact-EGFP transgenic mouse retinas. ICAM-2 staining (in red), Lifeact-EGFP 

(in green). Arrowheads point to the luminal endothelial membrane and the asterisk marks the 

abluminal side of the vessel. Scale bar: 20 µm. 
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4.2 Functional α-parvin characterization: 

 

 

To gain insights in the function of endothelial α-pv in vivo, our group intercrossed mice 

carrying a loxP-flanked α-pv gene (α-pv
fl/fl

) (unpublished data) with Cadh5(PAC)-CreERT2 

mice and induced α-pv gene deletion in ECs by administering three consecutive IP injections 

of Tamoxifen in newborns starting at P1. Cre-expression was confirmed by PCR on ear DNA 

(Fig.11a). Furthermore Western blot analysis of lung lysates from P7 α-pv
fl/fl

; Cadh5(PAC)-

Cre
ERT2

 (referred to herein as α-pv
i∆EC

) confirmed downregulation of α-pv expression when 

compared with lysates from Cre-negative control littermates (Fig.11b). 

 

 

 

 

 

 

 

 

 

 

 

 

IB4 staining of control and α-pv
i∆EC 

retinas showed significant reduction in radial expansion 

of the vascular plexus from the center towards the periphery (Fig.12 a, b). Migratory length in 

α-pv
i∆EC 

retinas was 17% lower than in littermate control mice, indicating a decreased retinal 

sprouting angiogenesis (Fig.12 a, b).  

Furthermore, the number of branch points was compared between α-pv
i∆EC

 and control mice 

to gather information about vessel density. The latter was significantly reduced in α-pv
i∆EC 

retinas
 
compared to control retinas (Fig.12 a, b). Next, I quantified vessel sprouting at the 

angiogenic front by counting the number of sprouts per vessel length and found a significant 

decrease in mutant retinas (Fig.12 a, b). Interestingly number of filopodia presented no 

difference in the absence of α-pv (Fig.12 c, d). 

Fig.11: Identification of α-pv
i∆EC

 mice. (a) PCR on ear DNA for CRE (750 bp) and 

FLOX (250 bp). (b)Western blot analysis of lung lysates from P7 control and α-pv
i∆EC

 

mice, three days after tamoxifen administration. VE-Cad was used as loading control. 

a b 
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Loss of endothelial α-pv alters vessel morphology and impacts on vessel patterning. 

Further analysis of IB4 labeled P6 retinas showed differences in vessel morphology between 

α-pv
i∆EC 

and control retinas. Whereas α-pv
i∆EC 

vessels displayed irregular shapes, with caliber 

Fig.12: Loss of endothelial α-pv leads to impaired vessel sprouting and hypovascularization. (a) IB4 

staining of whole-mounted P7 retinas from control and α-pv
i∆EC

 mice. Arrows point to vessel sprouts. (b) 

Quantification of vascular parameters as indicated. Values represent percentages of means versus (vs) 

respective controls ± s.e.m. P values are 0.024, 0.002, 0.001 and 0.004, respectively. (c) High magnification 

confocal image of tip cells and filopodia at the angiogenic front in control and α-pv
i∆EC

 P7 retinas. (d) 

Quantification of number of filopodia per vessel length. Values represent percentages of means vs controls ± 

s.e.m. (n ≥7 mice per genotype) 

a b 

d 
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fluctuation and unstable appearance, control vessels showed regular shapes (Fig.13 a). 

Moreover vessel patterning in α-pv
i∆EC

 retinas was abnormal compared to control. I found an 

increased number of arterial-venous (AV) cross-overs per retina (Fig. 13 b). Further I 

observed higher occurrence of small caliber vessel segments (IB4-labeled connections 

between two branch points) in α-pv
i∆EC

 retinas compared to control retinas. ICAM-2 staining 

showed no signal of the apical/luminal side marker on the small caliber vessel segments 

(Fig.13 c). 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b 

a 
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Postnatal deletion of endothelial α-pv compromises EC proliferation. 

Angiogenic growth of blood vessels requires proliferation of ECs [6]. To investigate whether 

the observed defects in vessel density were due to defects in cell proliferation, I performed 

BrdU incorporation assay in control and α-pv
i∆EC

 mice followed by co-labeling of BrdU, the 

EC-specific transcription factor Erg1/2/3 and IB4. I found a reduced number of proliferating 

ECs in α-pv
i∆EC 

retinas compared to control retinas, indicating
 
that α-pv positively controls 

proliferation of ECs (Fig.14). 

 

 

 

 

 

 

 

 

 

Fig.13: Depletion of α-pv alters vessel morphology and patterning. (a) P7 control and α-pv
i∆EC

 retinas 

labeled for IB4. (b) P7 control and α-pv
i∆EC

 retinas labeled for IB4. Arrows point to A/V cross-overs. A/V 

cross-overs per retina. Values represent percentages of means ± s.e.m. P value is 0.01  (c) P6 control and 

α-pv
i∆EC

retinas  labeled for IB4 and ICAM2. Ratio of ICAM2-positive vessel segments to IB4-positive 

vessel segments. Values represent percentages of means ± s.e.m. P value is 0.01. n ≥ 7 mice per genotype. 

c 
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Loss of endothelial α-pv results in ectopic vessel regression. 

Next, I analyzed whether depletion of α-pv from ECs impaired vessel integrity by performing 

whole-mount immunostaining of control and α-pv
i∆EC 

retinas using an antibody against 

collagen IV (Coll IV) and IB4, taking advantage of the fact that regressing ECs leave empty 

basal membrane sleeves rich in Coll-IV [3]. Confocal microscopy analysis showed a 

significant increase in Coll-IV segments lacking IB4 in α-pv
i∆EC 

retinas compared to control 

retinas (Fig.15 a, b), indicating comprised vessel stability in α-pv
i∆EC 

mice. Furthermore to 

analyse survival, I performed immunostaining of control and mutant retinas with an antibody 

against cleaved Caspase-3. Microscopic sample evaluation showed a significant increase in 

EC-apoptosis in absence of α-pv (Fig.15 c, d). 

Fig.14: Loss of endothelial α-pv results in a proliferation deficit. (a) P6 control and  α-pv
i∆EC 

retinas 

labeled for Erg1/2/3, IB4 and BrdU. (b) Quantification of EC area (IB4 positive area), EC nuclei 

(Erg1/2/3 positive nuclei) per EC area and ratio of EC/BrdU- positive nuclei to total EC nuclei. Values 

represent percentages of means ± s.e.m. P values are 0.007, 0.014 and 0.002, respectively. n ≥ 7 mice 

per genotype. 

b a 
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Depletion of α-pv affects vascular integrity by interfering with junctional formation.  

Blood vessel stability and maintenance of vascular integrity greatly depend on cell-cell 

junctions between ECs [23]. Therefore I performed whole-mount immunostaining for the 

junctional marker VE-Cad in α-pv
i∆EC

 and control retinas and found a diffuse and 

discontinued stain around cell boundaries in vessels of α-pv
i∆EC 

retinas compared to the sharp 

and continuous stain observed in vessels of control retinas (Fig. 16 a). Closer morphologic 

analysis revealed cytoplasmic dotted VE-Cad stain within several vessel segments of mutant 

mice as well as fragments of vessels partially disconnected from the vascular bed. The 

analysis also revealed a higher incidence of gaps between ECs in α-pv
i∆EC 

vessels compared 

to control vessels. 

c d 

 

Fig.15: Loss of endothelial α-pv
i∆EC 

results in increased vessel regression. (a) P8 control and α-pv
i∆EC 

retinas labeled for IB4 and collagen IV. Arrows point to empty collagen IV sleeves. (b) Ratio of IB4-

positive vessel segments to collIV-positive vessel segments. Values represent means ± s.e.m. P values are 

0.18 and 0.0004, respectively. (c) P7.5 control and α-pv
i∆EC  

retinas labeled for IB4 and cleaved-(active)-

caspase-3. Arrows point to cleaved caspase-3-positive vessel segments. (d) Relative ratio of cleaved 

(active)-caspase-3 positive vessel segments to total vessel segments. Values represent means versus control 

± s.e.m. P-value is 0.05. n ≥ 7 mice per genotype. 
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Vascular MC are recruited to newly formed vessels to reinforce and stabilize blood vessel 

[68]. Previous publications showed that α-pv is crucial for the recruitment of MCs to the 

vessel wall in embryos [2]. Therefore, I analyzed the coverage of retinal vessels by MCs in α-

pv
i∆EC

 mice. Whole-mount immunostaining of control and α-pv
i∆EC 

retinas using antibodies 

against α-SMA and NG2 (Fig.17) showed that the MC coverage of the retinal vessels lacking 

α-pv was comparable to control vessels, suggesting that depletion of α-pv did not have a 

significant effect on the recruitment of vascular SMCs and PCs to the vessel wall and the so 

imparted stability.  

 

Fig.16: Abnormal vessel integrity in abscence of endothelial α-pv. P7 and α-pv
i∆EC 

retinas labeled for 

VE-Cad. Arrow highlights gaps between ECs. (b) Altered cell junction morphology in α-pv
i∆EC 

mice. P6 

control and α-pv
i∆EC 

retinas labeled for VE-Cad, IB4 and claudin-5. Arrows highlight vessel segments 

with diffuse punctuated VE-Cad stain. 

a  
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Endothelial α-pv is not required for the stability and maintenance of established vessels. 

To ascertain whether α-pv
 
is required for stability of formed vessels, investigation of vascular 

remodeling and maturation has been completed through concurrent analysis of superficial and 

deep vascular plexus in the retina. Therefore I deleted α-pv gene with three consecutive 

Tamoxifen injections starting from day P5, and performed retina dissection at P10 [3]. The 

majority of the superficial vascular plexus could form in the presence of α-pv (radially 

expanding from P1-P7), the formation of the deep vascular layer instead occurred in absence 

of α-pv (spreading perpendicularly from P8 onwards before forming a planar deeper layer 

[64]) (Fig. 18). Examination of the superficial vascular plexus showed no difference in 

migratory length or vessel density (quantified by branch points per field and EC-area per 

field) between control and α-pv
i∆EC 

retinas, indicating no necessity of α-pv in the preservation 

of consolidated vessels. EC migration though was compromised as we observed a delay in 

deep plexus formation, the latter displaying the same defects we observed prior in P7 α-pv
i∆EC 

retinas (Fig. 18). 

Fig.17: Mural cell coverage of retinal vessels in α-pv
i∆EC 

mice. (a) Whole-mount labeling of P6 control and 

α-pv
i∆EC 

retinas for IB4 and αSMA. (b) IB4 and NG2 labeled α-pv
i∆EC 

retinas. 

a b 
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Deletion of α-pv in postnatal EC leads to severe persistent retinal angiopathy. 

In order to appreciate whether the retinal sprouting defects in α-pv
i∆EC 

mice were transient or 

persistent we analyzed the retinal vascular network at a later developmental stage, too. At 

P16, we repetitively found a delay in radial expansion as well as reduced vascular density 

indicating migration defects (Fig. 19). Intriguingly, nearly all sprouts in α-pv
i∆EC 

mice 

consisted of large clusters of tip cells lacking filopodia protrusions. They appeared ballooned, 

substantially enlarged most likely resembling to saccular aneurysms (Fig 19 a). 

Vascularization of the deeper retinal layer was severely affected, and very few vessels were 

formed compared to control littermate retinas (Fig 19 b, c). Some areas of mutant retinas 

completely missed deep plexus establishment, indicating an impaired development of the 

primary plexus until late stages of retinal vascularization. Quantification of the ratio between 

EC-area in the superficial plexus vs. EC-area in the deep plexus, using 40x confocal images 

and ImageJ-software shows significant decrease of EC-area (superficial/deep) in α-pv
i∆EC

 

retinas (Fig 19 d). 

 

Fig.18: Depletion of endothelial α-pv does not affect stability or maintenance of established vessels. IB4 

labeled P10 control and α-pv
i∆EC 

retinas. Superficial plexus conformation shows no difference between KO 

and WT mice, formation of the deep plexus is delayed in α-pv
i∆EC

mice. 
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Fig.19: Severe persistent retinal vascular pathology in α-pv
i∆EC

mice. (a) IB4 staining of P16 α-pv
i∆EC

 and 

control retinas, depicting the superficial vascular plexus with balloon-like sprout structures in mutant retinas, 

secondary invading deeper retinal layers. (b) Z-projection of a 3D reconstruction using Imaris. (c) IB4 stain 

showing the superficial and the deep vascular plexus. The deep vascular plexus in the mutants are immature 

(based in the number of tip cells) compared to controls and show a high number of tissue macrophages. (d) 

Quantification of the ratio between EC-area in the superficial plexus vs. EC-area in the deep plexus. Data is 

shown as mean (SD). P-value **** n ≥ 3 mice per genotype. 
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Depletion of α-pv in ECs leads to reduced FX formation and impaired cell spreading. 

To investigate the role of α-pv in the regulation of EC migration on a cellular level, we 

depleted α-pv in primary HUVECs by siRNA and first compared spreading and polarization 

of control and α-pv deficient HUVECs. When plated on gelatin, control cells underwent 

progressive spreading, developed multiple filopodial protrusions and polarized. F-actin 

labeling through phalloidin staining showed long and thin stress fibers across the cytoplasm 

and strong membrane ruffling (Fig. 20). There was no significant difference in spreading rates 

between α-pv deficient and control cells, when compared after 45 minutes on gelatin, 

indicating that α-pv is not required for initial spreading of EC. However, after 12 hours in 

culture, α-pv deficient cells had irregular shapes with aberrant membrane protrusions and had 

failed to polarize (Fig. 20). F-actin staining revealed a poorly organized F-actin cytoskeleton, 

characterized by an increase in staining of short actin bundles at the periphery of the cell and 

multiple filopodia-like structures around the cell borders (Fig. 20 c). 

 

   

  

 

 

 

Scr siRNA 

Fig.20: Depletion of  α-pv impairs formation of 

FXs and migration of ECs.  (a) Control and α-pv 

depleted HUVECs were cultured on gelatin for 45 

minutes and 12 hours and then immunolabeled for 

α-pv and F-actin. (a, right) Western blot of α-pv 

ILK protein levels in control and α-pv depleted 

HUVECs. GAPDH was used as a loading control. 

(b) Quantification of the surface area of cells after 

45 minutes on gelatin. (c) Control and α-pv 

depleted HUVECs cultured on gelatin; short actin 

bundles and filopodia like structures in the 

periphery. n ≥ 3 mice per genotype. 
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Unchanged VEGF-A mediated ERK-activation in the absence of α-pv 

To further examine proliferation we investigated α-pv’s role in the MAPK/ERK pathway. 

Therefore we performed a time course experiment, stimulating HUVECs - priorly transfected 

with either scrambled (scr) RNA or α-pv depleting siRNA - with the angiogenesis inducing 

mitogen VEGF-A. After 4 hours of starvation, HUVECs were stimulated with VEGF-A (50 

ng/ml) for 10 minutes. Control and α-pv depleted HUVECs showed no difference in ERK 

activation levels, measured by western blot analysis and respective quantification of phospho-

ERK protein levels, suggesting that α-pv is not required for VEGF-A mediated ERK-

activation (Fig.21).  

These results are comparable to ILK regarding the VEGF-A dependent MAPK/ERK pathway, 

which remains unaffected by the loss of IPP-complex partners [55]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a 

b 

Fig.21: Loss of α-pv does not alter VEGF-A 

mediated ERK activation. (a) Western blot 

analysis of control and α-pv depleted HUVECs 

shows no difference in VEGFR2 expression 

levels. After 10 min of VEGF-A stimulation there 

is no difference in VEGFR activation and Akt 

signaling. (b) Western blot analysis of control and 

α-pv depleted HUVECs after 10 min of VEGF-A 

stimulation, shows no difference in ERK 

activation levels. Total Erk protein levels were 

used as loading control. (c) Quantification of 

relative intensities. n ≥ 3. 
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5 STATMENT OF CONTRIBUTIONS: 
 

 

 

 

 

 

 

To give a complete picture of all the results during my thesis, I also mentioned some 

experiments were other people collaborated. Contributions are listed below. 

 

 

 

Experiment Person 

  

Tie2 embryo IHC Bettina Pitter 

Cremaster model Markus Rehberg 

OMX microscopy Claudio Franco 
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6 DISCUSSION : 
 

 

 

 

 

 

6.1 Angiogenesis: a therapeutic target in disease 

 

As listed in the Angiogenesis foundation web page 

(https://www.angio.org/learn/angiogenesis/), angiogenesis-based therapies are a unifying, 

wide-ranging approach for fighting disease. By restoring the organism’s natural balance 

through use of new medical treatments that either inhibit or stimulate angiogenesis, cancer 

progression can be arrested, limb amputations might be prevented, vision loss can be restored 

and general health thereby is improved. Over the past decades these angiogenesis therapies 

represented a heavily funded area of medical research, where millions have been invested for 

the development of new therapeutics. Over 300 angiogenesis interfering drugs were 

discovered so far, but most of them failed in demonstrating clinical benefit in trials, because 

of significant systemic adverse events and unacceptable toxicities occurring during their use. 

In summary, the drugs that entered actual clinical practice either function as (1) anti-VEGF 

(e.g. Bevacizumab) or – VEGFR antibodies, (2) immunomodulatory drugs with 

antiangiogenic properties, or receptor tyrosine kinase inhibitors targeting downstream VEGF 

signaling pathways [69]. However, over time cells develop resistance mechanisms to these 

drugs, not least through upregulation of compensatory pathways resetting the drug’s efficacy. 

Facing this current challenge, recent scientific efforts focus on simultaneous multiple pathway 

blockage as well as on finding new targetable effector molecules [69]. 

 



DISCUSSION 

 

  68 

Aiming at analyzing the principles underlying the regulation of angiogenesis patterns, the 

cytoskeleton itself gained more and more attention as the cell’s framework is involved in 

virtually all physiological and pathological processes including the cellular activities in 

angiogenesis [70]. It is essential for cell-cell interactions as well as cell shape rearrangement 

triggered by outside stimuli [70]. Alterations in structure result in disease characterized by 

abnormal migration, proliferation and cellular function [71]. 

 

 

 

6.1.1 Visualization of endothelial actin cytoskeleton in the mouse retina during 

angiogenesis: an important approach to understand the mechanisms behind 

structural cell regulation 

 

Angiogenesis requires coordinate changes in shape of ECs, orchestrated by the actin 

cytoskeleton [6]. The mechanisms that regulate this rearrangement in vivo, however, are 

poorly understood, mostly due to the difficulty to visualize F-actin structures with sufficient 

resolution. Our knowledge regarding endothelial actin dynamics during angiogenesis is 

predominantly based on in vitro studies using compounds as the fungal toxin phalloidin, 

which, however, do interfere with actin dynamics [17], or transfection of GFP-actin to 

visualize the cytoskeletal changes in a cell. Yet, there is no possibility to visualize F-actin 

structures without affecting its organization in situ [38, 39].  As many biological processes 

rely on the actin cytoskeleton, gaining insights into actin dynamics through better 

visualization tools of actin filaments in certain cells in vivo/in situ might add important new 

information to our understanding of cell adhesion, motility, proliferation and survival 

processes. 

 

To allow the visualization of F-Actin in intact, living cells, in 2010 a new mouse line was 

generated by Riedl et al. [10], meant to express Lifeact-EGFP ubiquitously. In order to obtain 

broad expression patterns, the vector upstream to the promotor driving Lifeact-EGFP 

expression contains a cytomegalovirus (CMV) enhancer sequence, so allowing visualization 

of F-actin in tissues and whole animals without affecting actin dynamics, cell physiology or 

tissue organization. 

These mice therefore are widely used in various disease models [10, 40], though up to now, 

the Lifeact-EGFP mouse-strain’s usability for vascular research remains unclear, as Lifeact-
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EGFP expression level and cellular expression patterns in the vascular system have not been 

studied, yet. Hence, we hypothesized that Lifeact-EGFP is sufficiently expressed in vascular 
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cells allowing a closer analysis of the vascular expression patterns of Lifeact-EGFP mice and 

might add important insights in the study of actin dynamics in vascular research. 

 

For vascular actin analysis in Lifeact-EGFP mice we used IHC of embryos (as described in 

material and methods) and the postnatal retinal angiogenesis model [3]. 

In accordance to previously published data our analysis showed that in the mouse embryo, 

Lifeact-EGFP is ubiquitously expressed, precluding adequate and selective imaging of F-actin 

structures in ECs during early organogenesis [10]. Briefly, the ubiquitous expression of 

Lifeact-EGFP impedes a detailed analysis of F-actin dynamics in vascular cells, which would 

be required for the understanding of how ECs regulate their actin cytoskeleton analogously to 

angiogenic stimuli. 

In contrast, the role of F-actin in postnatal angiogenesis could be more easily analyzed using 

the retina model as an established tool [3, 64]. Through the use of confocal microscopy, we 

found that Lifeact-EGFP expression in the retina was mainly restricted to the endothelium, 

with no Lifeact-EGFP expression in other retinal cell types as ACs or vMCs. This allowed us 

to get a static frame of actin rearrangement to filopodial structures as well as the established 

vascular plexus selectively focusing on actin filament arrangement with excellent contrast. 

 

Contrary to the retina, we found that in the skin and the skeletal cremaster muscle, Lifeact-

EGFP was only weakly expressed by ECs, though vSMCs showed remarkable expression, as 

well as some blood cells as leukocytes, enabling the visualization of leukocyte-vessel wall 

interactions, rolling, chemotaxis, phagocytosis and extravasation of leukocytes. Moreover, in 

the lymphatic endothelium of those organs, Lifeact-EGFP was almost absent.  

Variegated GFP actin expression patterns are a well-known problem in GFP transgenic mouse 

strains and were already described earlier in literature [40, 42, 72]. The reason for this 

selective patterning remains unclear, though we think it might be attributable to different 

promotor dependent activation in each cell type and tissue, as described previously by Oertel 

et al. in hepatoblasts, where GFP silencing in vitro occurred if GFP expression was driven by 

the CMV promotor/enhancer but not if driven by the albumin promotor [72]. Still, the reason 

for selective GFP expression through GFP silencing remains an unresolved quest. In other 

transgenic mouse lines, as the CMV-GFP strain, loss of GFP expression was shown to be lost 

with differentiation of the tissue. We did not perform a respective analysis in the Lifeact-

EGFP mice, though we assume that this might also influence Lifeact-EGFP expression in our 

case. Furthermore, it was speculated that epigenetic modification of the CMV regulatory 
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elements might be involved in the loss of GFP expression in the different mouse tissues, 

resulting in variegating expression patterns [42].  

Further studies are needed to unravel the exact functional background of these selective 

patterning. It was not an aim of this thesis to get deeper functional understanding concerning 

this issue. 

 

Through descriptive analysis of the postnatal retina model on Lifeact-EGFP mice, our data 

indicate, that imaging of the endothelial actin cytoskeleton in situ during vascular plexus 

formation can easily be performed and so acts as an excellent tool for vascular cell biology 

research regarding selective endothelial actin imagining. 

 

Up to now, actin visualization was mostly done using fluorescently labeled phalloidin. To 

validate our findings we compared Lifeact-EGFP and phalloidin staining and, to this end 

performed whole mount immunostaining of respective retinas. The analysis showed that 

phalloidin mainly stained the angiogenic front of the vascular plexus where it highlighted 

leading edges and filopodia of tip cells [17]. On the contrary, in the central plexus, phalloidin 

staining of ECs was weak. Moreover, it labeled non-vascular structures, thus making it 

difficult to visualize and analyze endothelial actin cytoskeleton in consolidated vessels. These 

results are consistent with previously published data, showing similar phalloidin staining 

patterns [17]. The more homogeneous immunostaining in Lifeact-EGFP retinas might be due 

to the different binding properties of the compared compounds. Whereas Phalloidin coupled 

to different flourophores selectively binds along the sides of actin filaments and inhibits their 

polymerization, Lifeact-EGFP directly binds to F-actin via an ABP-sequence, so probably 

allowing actin visualization more precisely [17, 38].  

A further advantage we observed in Lifeact-EGFP animals was the faster actin imaging of the 

cytoskeleton, the omission of additional treatment for further immunostaining and hence, 

reduced susceptibility for errors or methodological failure throughout the experiment. 

Pretreatment of the retinas as for example the permeabilization for the compound could be 

dismissed in Lifeact-EGFP retinas. The necessary pretreatment procedures might be a further 

reason for unselective, inhomogeneous immunostaining of phalloidin labeled retinas. 

 

Regarding in vivo studies, several transgenic mouse lines expressing the GFP-actin gene 

under the control of tissue specific promoters have been created and described. Among them 

there are the GFP-actin mice (CBA-GFP strain), GFP expression being under the control of a 
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CAG promoter and CMV enhancer [40, 41]. Compared to Lifeact-EGFP mouse strains 

though, tissue specific actin visualization is impaired in GFP actin mice, because ubiquitous 

promotors control the GFP expression. Moreover it has been argued that there is clear 

variability in GFP-expression patterns within the transgenic mouse strains, none of them 

giving reproducible or ubiquitous GFP-expression making it difficult to analyze the 

cytoskeleton reliably in vivo [42].  Both mouse strains are susceptible for bleaching after UV-

light exposure. CBA-GFP mice were originally constructed for transplantation experiments. 

Numerous studies have been made to validate their GFP expression in various tissues. In 2007 

Swenson et al. [42] analyzed three different mouse strains, in which GFP was considered 

ubiquitously expressed. Similar to Lifeact-EGFP mice, GFP expression was variable within 

the different organ tissues. CBA-GFP mice for instance had strong but variegated expression 

of GFP in adult liver, kidney, small intestine, and blood.  The author attributed it to the high 

proportion of GFP expressing peripheral blood cells, interfering with single organ tissue 

visualization. None of the mouse lines tested showed ubiquitous GFP expression in 

Swenson´s study [42]. These results are in line with our study showing selective, but different 

Lifeact-EGFP expression patterns in different cells according to the analyzed organ. In our 

study we took advantage of the variegated expression, showing its benefits in endothelial 

actin visualization within the postnatal mouse retina model. 

 

Compared to previously used tools, our results for the first time demonstrate that Lifeact-

EGFP can be used for the visualization of endothelial specific F-actin structures in the retina 

during the various angiogenic steps in situ. We demonstrated that they allow to selectively 

study ECs’ actin cytoskeleton: filopodia protrusion during the initiation of the sprouting 

process, cell spreading, cell polarization with demarcation of luminal and abluminal actin 

bundles, establishment of cell-cell contacts and lumen formation by highlighting F-actin 

structures at the luminal and abluminal side [6]. To our knowledge there is no other tool 

described in literature, which allows selective endothelial actin imaging with such great 

contrast. Combined to the postnatal retinal angiogenesis mouse model it allows to depict 

endothelial actin dynamics in situ as a static frame in sequence and accordance to 

angiogenesis hallmarks.  

Regarding vascular biology research, this novel tool might add important information to the 

current knowledge about how the cytoskeleton rearranges according to the influences of 

growth factors and integrin signaling. Deeper understanding of the processes involved might 
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eventually allow to specifically target actin dynamics in order to stop allied disease as local 

progression of cancer through spreading and burking blood supply. 

 

 

 

6.1.2 α-parvin in vascular development 

 

The establishment and maintenance of a functional blood-supplying network involves a series 

of events requiring collective cell migration, coordinated sprouting and pruning as well as 

dynamic cell-cell contact remodeling between ECs in order to ensure effective vessel 

formation and firmness [6, 24]. Mechanisms involved in the tight regulation of angiogenesis 

rely on actin cytoskeleton dynamics whose regulation among others involves the β1 integrins 

and especially their downstream regulator and actin anchor, α-pv. 

 

As shown in previous publications ubiquitous deletion of α-pv gene in mice leads to late 

embryonic lethality (E10.5) caused by severe cardiovascular defects, hemorrhages and 

decreased vascular density [2]. In line with these results, mice lacking vascular endothelial β1 

integrins (Tie2-cre β1 Int 
fl/fl

 mice) showed a similar vascular phenotype[50, 73]. Early in vivo 

studies in the latter showed defective angiogenesis with a reduced number of blood cells, who 

led to early embryonic death (E9.5) [50]. In our analysis of mouse embryos lacking α-pv gene 

in ECs (Tie2-cre α-pv 
fl/fl

), lethality occurred later during embryonic development (E13.5). 

Leading death causes in both were hemorrhages; torturous vascular plexuses and an overall 

reduced vascular density. Hence, we speculate that the longer embryonic survival at the 

presence of similar defects occurring in embryonic development in Tie2-cre α-pv 
fl/fl

 mice 

might indicate that not all integrin functions related to endothelial action during vascular 

development are compromised in the absence of α-pv.  

 

We then looked at postnatal angiogenesis in α-pv
i∆EC

 mice, with inducible EC-selective gene 

silencing through tamoxifen injections (P1-P3). Endothelial specific deletion of the adapter 

protein α-pv in mice - at P7 - resulted in decreased vascular density mostly due to excessive 

vessel regression and reduced vessel sprouting in the retina.  

 

In sprouting angiogenesis tip and stalk cell specification is a key aspect in the establishment 

of a blood supplying vessel network and it is crucial for synchronized cell sprouting as well as
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migration and proliferation of ECs. The selection of tip and stalk cells is regulated by the 

Dll4/Notch signaling pathway. The promotion of Dll4 expression by VEGF-A on certain ECs 

leads to their differentiation into tip cells, and these then activate Notch in the neighboring 

cells, which makes them turn into stalk cells [6]. To limit tip cell formation thereby 

preventing excessive vessel sprouting, Dll4 expression in this case must be controlled through 

β1 integrin signaling [74]. Laminin (LN)/integrin signaling is necessary to induce 

physiologically functional levels of DLL4 expression and thus regulating branching frequency 

during sprouting angiogenesis in vivo. Loss of LN/integrin signaling results in insufficient 

Notch activation with excessive filopodia extension and increased tip cell formation as 

reflected by a hypersprouting, dense vascular phenotype [74]. In contrast to that, the reduced 

vessel sprouting together with the normal filopodia formation in α-pv
i∆EC 

retinas suggest that 

endothelial α-pv is not required for the integrin mediated regulation of tip cell specification, 

but it is essential for the elongation of sprouts and their radial expansion. 

Moreover, there are in vitro studies on cultured ECs lacking β1 integrins demonstrating a 

reduced migration and elongation capacity of ECs, so mechanistically explaining the 

defective vascularization process [73]. Although it is an in vivo vs in vitro comparison, this 

again confirms similar angiogenesis defects in β1 integrin- and α-pv missing ECs, suggesting 

that α-pv may not be the key player in the migration process [73].  

 

Vessel growth depends on EC proliferation via cell division and intercalation of ECs.  

According to the results presented in this thesis, α-pv positively regulates proliferation of ECs 

in vivo and their survival. In line with our results Huang et al. [75] showed that in an 

adenocarcinoma cell line of the lungs cell overexpression of α-pv led to tumor cell growth in 

vivo and in vitro through elevated proliferation. Therefor we speculate that α-pv’s influence 

on proliferation occurs EC-independently, making it a more universal function of α-pv.  

 

The reduced EC proliferation and EC apoptosis rates in developing vessels of α-pv
i∆EC

 mice 

led to a severe and persistent retinal angiopathy. Vessels displayed impaired cell-cell junction 

morphology as well as increased intercellular spaces between ECs, resulting in altered vessel 

morphology. Vessel networks of α-pv
i∆EC 

retinas displayed irregular shapes, with 

heterogeneity in vessel diameters and had a collapsing appearance. These vessel segments 

were characterized by failure of lumen formation as assessed through ICAM-2 negative 

immunostaining and leakiness of the immature vascular plexus.
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Leakiness in vessel originating from different sources occurs in many eye diseases [15] and 

lately was also reported to occur in tumor vessels, showing these structural and functional 

abnormalities thereby facilitating metastasis seeding [76]. Leakiness especially in eye disease 

is attributable to insufficient MC recruitment to the vessel walls [77]. Although previous 

publications were able to show that α-pv indeed is crucial for the recruitment of MCs to the 

vessel wall in embryos [2], here we discovered no difference in PC and vSMC coverage in the 

retinas of α-pv
i∆EC

 mice compared to WT retinas, indicating an EC autonomous role α-pv in 

vessel stabilization. 

However, α-pv
i∆EC 

mouse strains showed a phenotype characterized by leaky vessels 

displaying impaired cell-cell junction morphology, increased intercellular spaces between 

ECs, which may explain the severe persistent retinal angiopathy found in our studies. 

 

Cell-cell junctions are fundamental to maintain the integrity of newly formed vessels along 

with the stability provided by vascular mural cells, reinforcing the vessel wall. Impaired 

remodeling of junctions leads to vessel regression and ultimately culminates into vessel 

rupture and hemorrhages [23, 68, 78]. Cell junctions as visualized through VE-cad 

immunostaining showed a diffuse and discontinuous stain around cell boundaries in vessels of 

α-pv
i∆EC 

retinas compared to the sharp and continuous stain observed in vessels of control 

retinas, with fragments of vessels partially disconnected from the vascular bed. Therefore, we 

assume that endothelial α-pv loss in developing vessels weakens the integrity of VE-cadherin 

junctions. This finding is consistent with recently published data, showing that β1 integrins 

control blood vessel stability in the growing vasculature by preserving cell-cell junction 

integrity via cell-ECM adhesion. [79]. Interestingly we found that, if deletion of α-pv in ECs 

occurred at later time points (Tamoxifen injections at P5-P7) of development, already 

established vessels showed no compromised stability or patterning, indicating that endothelial 

α-pv is not required for the stability and maintenance of established vessels. 

In summary it can be stated, that α-pv deficient ECs display reduced integrin-mediated cell-

ECM adhesion structures, altered cell-cell junctions, and reduced cell migration.  These 

findings indicate that α-pv controls sprouting angiogenesis by regulating integrin-mediated 

processes required for the elongation of endothelial sprouts. The immature nature of the 

vascular plexus and matches with an inability of α-pv lacking ECs to effectively intercalate, 

as cell intercalation involves collective cell migration, which requires dynamic regulation of 

integrin-mediated cell-ECM adhesions and VE-cadherin-mediated cell-cell junctions [24].
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Upon EC specific deletion of α-pv (Tamoxifen injections at P1-P3), postnatal retinal defects 

of the vascular plexus persisted at P16 and were not compensated throughout development. 

Vessels were incapable to assert their shape generating avascular zones and distal 

micoraneurysms in the primary plexus, partially missing deep plexus formation. A similar 

phenotype was described upon postnatal ablation of MRTF-SRF [36] and showed strong 

similarities to human disease including Norrie disease (ND) [80]. So far the genetic lesions 

identified in ND affect the Wnt signaling pathway. This might elucidate the existence of a 

cross-talk between Wnt and actin-signaling in guaranteeing proper EC function during retinal 

angiogenesis. 

 

We showed that targeting endothelial α-pv and inhibiting its functions in ECs severely 

compromises angiogenesis. It interrupts stability and sprouting of a vascular network, leading 

to oxygen and nutrient deficit of the tissue next in-line. Similar results were shown recently 

by a taiwanese group analyzing α-pv role in adenocarcinoma of the lungs [75]. They 

overexpressed α-pv in ECs and found a larger number of branch points, increased vessel 

lengths and upregulation of VEGF-A expression as α-pv effects on sprouting angiogenesis. 

[75]. 

 

Of note in a study done in an adenocarcinoma cell line of the lungs, pv showed an important 

function in promoting tissue invasion of cancer cells, too, so promoting metastases formation 

[75]. In osteosarcoma and breast cancer cells pv phosphorylation was shown to be of central 

importance in matrix degradation through Src and MMPs for promotion of cell invasion [81]. 

α-pv blockage therefore might not just compromise angiogenesis, but might additionally 

block tumor progression directly through growth and metastasis inhibition [81], thereby 

representing an effective target for cancer therapy. 
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7 SUMMARY: 
 

 

 

 

 

 

 

Sprouting angiogenesis, the formation of new blood vessels from pre-existing ones, is not 

only required for organogenesis and homeostasis, but also contributes to the progression of 

many diseases including tumor growth. It involves coordinated ECs differentiation, migration 

and proliferation, as well as vascular stability relaying on adhesion of ECs to adjacent ECs 

and to the ECM. 

Key pathways directing the molecular machinery underlying EC dynamics and organization, 

involve the rearrangement of the endothelial actin cytoskeleton. 

The first part of my work consisted in an extensive study of the expression patterns of Lifeact-

EGFP – an actin marker - in the vascular system of Lifeact-EGFP mice. The results presented 

here show that 1) the Lifeact-EGFP mouse represents an excellent system to visualize and to 

characterize the actin cytoskeleton in individual EC in situ during vessel growth the early 

postnatal retinal angiogenic model is and 2) in the skin and skeletal cremaster muscle, 

Lifeact-EGFP is a powerful tool for imaging vMCs as PCs or vSMCs. Moreover, the 

postnatal retinal angiogenesis model in Lifeact-EGFP mice could be used as a tool in the 

investigation of actin in regulating morphogenic angiogenic processes such as migration, 

polarization and anastomosis of ECs, as well as lumen formation.  

In the second part, pv as one of the main regulators of the actin cytoskeleton dynamics was 

studied. Integrins, which cluster various adapter proteins and so allow the formation of FAs, 

influence and rearrange the endothelial actin organization α-pv localizes to FAs and facilitates 

the interaction of the integrins with the actin cytoskeleton, coupling integrin signaling to the 

RTK signaling. Here we show that selective inducible gene deletion of α-pv in ECs of mice 
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results in hemorrhages due to leaky vessels  and decreased vascular density. Postnatal EC-

specific deletion of α-pv leads to retinal hypovascularization due to reduced vessel sprouting 

and excessive vessel regression. In absence of endothelial α-pv vessels display impaired cell-

cell junction morphology, increased intercellular gaps, reduced EC proliferation and increased 

EC apoptosis. In vitro analysis of α-pv depleted HUVECs confirmed reduced cell motility, 

compromised formation of integrin-mediated cell-ECM adhesion structures, and alterations of 

the actin cytoskeleton. 

Our results underline the importance of α-pv, for the actin cytoskeleton changes which are 

required for the coordinated changes of EC-shape required for cell migration, the maintenance 

of intercellular junctions and FA formation. This thesis discloses new mechanisms by 

functionally analyzing α-pv as an essential endothelial regulator protein involved in blood 

vessel growth and vessel stabilization. This functional characterization might eventually lead 

to new therapeutic targets for the cure of angiogenesis allied disease. 

 



 

    78 

 
 
 
 
 
8 Zusammenfassung: 
 

 

 

 

 

 

 

Die Angiogenese subsumiert Spross- und Spaltungsvorgänge, welche zur Bildung neuer 

Blutgefäße aus bereits existierenden führen. Es handelt sich um einen komplexen Prozess, 

welcher die koordinierte Differenzierung, Adhäsion, Polarisation, Migration und Proliferation 

entsprechender Endothelzellen (EZ) beinhaltet und durch physikalische Interaktionen 

zwischen EZ und der extrazellulären Matrix (EZM), sowie durch lösliche angiogene 

Wachstumsfaktoren reguliert wird. Fehlfunktionen der einzelnen Prozesse führen zu 

Störungen in der Organogenese und unterhalten das Fortschreiten zahlreicher Krankheiten, 

darunter vieler Tumorarten und Augenerkrankungen. 

Eine zentrale Rolle in der Entwicklung und Erhaltung der Blutgefäße nimmt das Aktin-

Zytoskelett ein. 

Im ersten Abschnitt dieser Dissertation wurden gentechnisch veränderte Mauslinien (Lifeact-

EGFP Mauslinie) untersucht, in welchen das Aktin-Zytoskelett fluoreszierend markiert ist. 

Die hier vorgestellten Ergebnisse zeigen, dass 1) Lifeact-EGFP Mäuse eine exzellente 

Visualisierung und Charakterisierung des endothelialen Aktin-Zytoskeletts der einzelnen 

Zellen in situ während des Wachstumsvorgangs in dem Modell der postnatalen Maus-Retina- 

Angiogenese ermöglichen, und 2) dass in Haut und Cremastermuskel Lifeact-EGFP vor allem 

Aktinfilamente gefäßassoziierter glatter Muskelzellen markiert. Aus eben diesen Gründen 

wird hier die Kombination dieser Methoden zur Analysierung morphologischer angiogener 

Prozesse, wie beispielsweise Migration, Polymerisation, Anastomose sowie der Ausbildung 

des Lumens empfohlen.  
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Von besonderer Bedeutung in der Regulation des Aktin Zytoskeletts ist die Integrin- 

vermittelte Signaltransduktion und Adhäsion dieser Rezeptoren an ihren Liganden, die EZM. 

Integrine übermitteln Signale, indem sie Signal- und Adaptorproteine in fokale 

Adhäsionsstrukturen rekrutieren und dadurch die Neuorganisation des Aktinzytoskeletts 

regulieren. α-pv stellt eines dieser Adaptorproteine dar, welches in fokalen Adhäsionen 

lokalisiert ist und an der Wechselwirkung zwischen Integrin und Wachstumsfaktor-

vermittelten Signalwegen beteiligt ist. Auch kann α-pv an F-Aktin und Aktin-regulierende 

Proteine binden und so den Aktinfluss, Zellpolarität und Zellmigration beeinflussen. 

Der zweite Teil dieser Dissertationsarbeit charakterisiert α-pv’s Funktionen in der 

Angiogenese und zeigt, dass bei der induzierten Deletion von α-pv in der neonatalen Phase, 

die Gefäßentwicklung kompromittiert ist. Das Gefäßnetz ist in seiner Dichte reduziert. Es 

kommt  gehäuft zu Blutungen durch Leckagen in der Gefäßwand, letztendlich resultierend in 

Letalität. Als Folge postnataler endothelspezifischer α-pv Deletion kommt es in den 

entsprechenden Mäusen zu eingeschränkter Gefäßaussprossung und übermäßiger 

Gefäßregression. Die Gefäße weisen eine eingeschränkte Ausbildung von Zell-Zell-

Kontakten mit weiten Interzellularspalten zwischen den einzelnen Endothelzellen auf. 

Insgesamt zeigt sich eine verminderte Proliferation, sowie eine gesteigerte Apoptoserate in 

den untersuchten retinalen Gefäßen. Auch in vitro konnte in α-pv depletierten 

Nabelschnurendothelzellen (HUVECs) eine reduzierte Zellmotilität, sowie eine 

eingeschränkte Ausbildung von Integrin-vermittelten Zell-EZM–Adhäsionsstrukturen 

nachgewiesen werden, welche zusammenfassend in einer gestörten Verankerung sowie einer 

veränderten Zellmorphologie und verändertem Zellverhalten resultierten. 

In der Zusammenschau unterstreichen die Ergebnisse die Bedeutung eines engen 

Zusammenspiels zwischen α-pv, Integrinen und Aktin-Zytoskelett in der koordinierten EZ-

Veränderung, welche für Prozesse wie Migration und Aufrechterhaltung von Zell-Zell 

Kontakten notwendig ist. Diese Doktorarbeit gewährt Einblick in die Funktion von α-pv bei 

der Regulation des Verhaltens von EZ während der Angiogenese und wird uns ein besseres 

Verständnis darüber ermöglichen, wie die vaskuläre Morphogenese reguliert wird, und 

dadurch möglicherweise den Weg für eine zukünftige Entwicklung neuer therapeutischer 

Strategien zur Kontrolle von pathologischer Angiogenese inklusive entsprechender 

Krankheiten, wie beispielsweise Krebs, ebnen. 

.  
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