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Zusammenfassung

Die vorliegende Dissertation widmet sich der Anwendung der Eich-Gravitations-

Dualität im Bereich der Physik der kondensierten Materie und Systemen weit

außerhalb ihres thermischen Gleichgewichts.

Die ursprüngliche Form und gleichzeitig das am besten verstandene Beispiel der

Dualität ist die AdS/CFT Korrespondenz, die einen bemerkenswerten Zusammen-

hang zwischen einer Gravitationstheorie (AdS für Anti-de Sitter) und einer kon-

formen Feldtheorie (CFT für conformal field theory) herstellt. Ihr Kernelement ist

eine genaue Zuordnungsvorschrift zwischen Eigenschaften und Objekten der bei-

den beteiligten Theorien. Verallgemeinerungen der ursprünglichen Korrespondenz

ermöglichen ihre Anwendung auf Fragestellungen verschiedener Forschungsfelder

innerhalb der Physik, oft zusammengefasst unter dem Begriff Holographie. Insbe-

sondere ist die Dualität ein bedeutsames Instrument um stark gekoppelte Systeme

zu untersuchen. Der Fokus der vorliegenden Dissertation liegt auf der Anwendung

der Eich-Gravitations-Dualität auf Hochtemperatursupraleiter und Systeme au-

ßerhalb ihres thermischen Gleichgewichts, charakterisiert durch einen stationären

Wärmestrom.

Als erstes untersuchen wir holographische Hochtemperatursupraleiter. Wir analy-

sieren ob und mit welcher Genauigkeit es möglich ist, die Ergebnisse eines jüngeren

Experiments zur Temperaturabhängigkeit der Energie und Zerfallsbreite fermio-

nischer Anregungen von realen Hochtemperatursupraleitern mit holographischen

Methoden zu rekonstruieren. Eine wesentliche Charakteristik der experimentellen

Daten ist der rapide Anstieg der Zerfallsbreite mit steigender Temperatur, gänzlich

verschieden von konventionellen Supraleitern. Wir verwenden dafür zunächst das

einfachst mögliche Modell eines holographischen Supraleiters. Das Ergebnis unse-

rer Analyse ist, dass das experimentell beobachtete Verhalten mühelos auch im

holographischen Modell auftritt. Darüber hinaus lässt sich mit einer Feineinstel-

lung der Modellparameter eine erstaunlich genaue Beschreibung auf quantitativer

Ebene erzielen.

Im nächsten Schritt konstruieren wir einen holographischen Supraleiter, dessen

bereits bekannte normalleitende Phase in vielen Eigenschaften den experimentell

beobachteten ‘seltsamen’ Metallen ähnelt. Diese weisen aufgrund starker Korrela-

tion im Gegensatz zu Fermi-Flüssigkeiten unter anderem einen linearen Anstieg

i



des elektrischen Widerstands mit der Temperatur auf. Eine der Erweiterungen ge-

genüber dem im vorstehenden Absatz genannten Modell besteht darin, dass das

System nicht mehr translationsinvariant ist. Wir untersuchen den Effekt der gebro-

chenen Translationsinvarianz auf die supraleitende Phase und im Besonderen auf

die Temperaturabhängigkeit der Zerfallsbreite fermionischer Anregungen. Auch

hier zeigt sich das gleiche qualitative Bild.

Als letztes wenden wir uns der Anwendung der AdS/CFT Korrespondenz auf

Nichtgleichtgewichtssysteme zu. Im konkreten Fall betrachten wir die zeitliche Ent-

wicklung eines Systems, das zunächst aus zwei unterschiedlich temperierten eindi-

mensionalen Wärmebädern aufgebaut ist. Nachdem diese in Kontakt gebracht wer-

den, bildet sich ein stationärer aber sich räumlich ausbreitender Wärmestrom aus.

Wir berechnen die Verschränkungsentropie mithilfe der holographischen Methode

und untersuchen ihren zeitlichen Verlauf. Je nach (relativer) Temperaturen der

beiden Wärmebäder, beobachten wir verschiedene Charakteristika. Des Weiteren

überprüfen wir die Gültigkeit von Ungleichungen für die Verschränkungsentropie

in diesem System.

Diese Dissertation basiert auf der Arbeit, die die Autorin als Doktorandin unter

der Betreuung von Prof. Dr. Johanna Erdmenger am Max-Planck-Institut für Phy-

sik in München im Zeitraum von Januar 2014 bis August 2017 durchgeführt hat.

Die Ergebnisse wurden wie folgt publiziert:

[1] J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and

P. Witkowski, Time evolution of entanglement for holographic steady

state formation, JHEP 10 (2017) 034, [1705.04696],

[2] N. Poovuttikul, K. Schalm, A.-K. Straub and J. Zaanen, Fermionic exci-

tations of a holographic superconductor, to appear .
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Abstract

In this thesis we study applications of gauge/gravity duality to condensed matter

physics and systems far away from thermal equilibrium.

The original form of the duality is the AdS/CFT correspondence, which estab-

lishes an intriguing link between a gravity theory (AdS for Anti-de Sitter) and a

conformal field theory (CFT). At its core is a one-to-one map between objects and

properties of those two theories. Generalisations of the original correspondence al-

low to apply it to problems of other fields of research in physics. This more broadly

defined duality is known as holography and is an important tool to study strongly

coupled systems. The focus of this thesis are applications of gauge/gravity dual-

ity to high-temperature superconductors and systems out of thermal equilibrium,

characterised by a steady heat current.

First, we study a holographic high-temperature superconductor. More specifi-

cally, we analyse if and to what extend it is possible to use holographic methods

to describe the results of a recent experiment on high-temperature superconduc-

tors. The experiment measured the temperature dependence of the gap and pair-

breaking term of fermionic excitations. An essential feature of the experimental

data is the rapidly growing pair-breaking term as temperature increases. This

behaviour is unfamiliar from conventional superconductors. We first employ the

simplest holographic model of a superconductor. The result of our analysis is that

the experimentally observed behaviour emerges naturally within the holographic

model. Moreover, upon a fine tuning of the parameters one can reach a remarkably

good agreement on a quantitative level.

As a next step we construct a holographic superconductor whose normal state

is known to share a number of properties with strange metals in the laboratory,

the most prominent being the linear increase of the electrical resistivity with tem-

perature. One of the generalisations compared to the preceding superconductor

model is that it is not translationally invariant. We investigate the effect of the

broken translational invariance on the superconducting state and in particular the

temperature dependence of the pair-breaking term. The qualitative picture is the

same as before.

We then apply the AdS/CFT correspondence to a system far away from ther-

mal equilibrium. We investigate the time dependence of two one-dimensional heat
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baths at different temperatures, which are brought into contact. Attempting to

reach thermal equilibrium, a steady state in a growing region centred around the

initial contact surface emerges. We analyse the entanglement entropy by means

of its geometrical holographic dual and find that, depending on the temperature

configuration of the heat baths, its time evolution is distinctly characterised. Fur-

thermore, we check the validity of entanglement inequalities in this time dependent

setup.

This dissertation is based on work the author did during a PhD fellowship under

the supervision of Prof. Dr. Johanna Erdmenger at the Max-Planck-Institut für

Physik in Munich, Germany from January 2014 to August 2017. The relevant

publications are:

[1] J. Erdmenger, D. Fernandez, M. Flory, E. Megias, A.-K. Straub and

P. Witkowski, Time evolution of entanglement for holographic steady

state formation, JHEP 10 (2017) 034, [1705.04696],

[2] N. Poovuttikul, K. Schalm, A.-K. Straub and J. Zaanen, Fermionic exci-

tations of a holographic superconductor, to appear .
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Chapter 1

Introduction

An intriguing new link between gravity and quantum field theory turns out to

connect a number of puzzles of different branches of physics by mapping their

dynamics to each other. In other words, this new link puts together already

existing techniques and concepts in a new way and thereby gives these concepts

a previously untapped field of application. It provides a common language for

physicists of different backgrounds.

The link, known as AdS/CFT correspondence [3–5], has its roots in string theory

and states the equivalence of two very specific theories: N = 4 Super-Yang-Mills

theory in four dimensions with gauge group SU(N), which is conformally invariant

(CFT), and type IIB supergravity on AdS5 × S5 (AdS). Even though this conjec-

tured correspondence has not been proven yet, there is a lot of evidence in favour

of it. The crucial feature, responsible for the importance of the duality, is that

it relates a strongly coupled quantum field theory and a weakly coupled classical

gravity theory. While the former generally poses a significant challenge, dealing

with the latter is conceptually well established. The AdS/CFT correspondence

thus offers a unique insight into the interplay between the fundamental principles

of physics.

Its profound relevance is not restricted to its admittedly fascinating implications

for fundamental theoretical considerations. The duality, understood as a means

to provide two equivalent descriptions of the very same physics, has proven to

be a remarkably successful tool to study strongly coupled systems, to which the

standard approach of perturbation theory is not applicable. These applications of

gauge/gravity duality are based on the holographic dictionary, which gives a precise

prescription on how to translate between the two theories. This dictionary is a one-
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2 Chapter 1. Introduction

to-one map between properties and objects of the two involved theories. Moreover,

the structure of the original dictionary, which is restricted to the original AdS/CFT

proposal, points the direction to extrapolate it in order to construct more general

dualities, summarised by the term gauge/gravity duality or holography.

The origin of the latter term is that the AdS/CFT correspondence is the best

understood explicit realisation of the holographic principle. The holographic prin-

ciple is based on the observation that the entropy of a black hole scales with the

area of its event horizon [6], indicating that all of the information is stored on the

surface of the black hole. At the same time, since black holes are the most compact

objects in a gravity theory, there cannot be a volume in space with more entropy

than a black hole extended over the same volume. As a conclusion, the holographic

principle [7,8], states that the physical information content of a (d+1)-dimensional

gravity theory can be equivalently described by a theory without gravity in d di-

mensions. In analogy with the black hole and its event horizon, this d-dimensional

theory can be thought to be the theory on the boundary of the (d+1)-dimensional

spacetime. Specifically, in the AdS/CFT correspondence the four-dimensional con-

formal field theory is believed to contain the exact same physical information as

the gravity theory in the five-dimensional Anti-de Sitter spacetime, which often is

referred to as the bulk.

The immediate consequence of the holographic principle realised by gauge/gravity

duality is that a strongly coupled quantum system can be elegantly described by

geometrising its properties following the guidance of the holographic dictionary.

The attempt of applying the duality to systems whose underlying microscopic

theories are different from N = 4 Super-Yang-Mills theory, has been rewarded

many times with striking results. The most famous example is the ratio of shear

viscosity and entropy density η/s, which was shown to take the universal value

η/s = ~/4πkB for any field theory with an isotropic Einstein-gravity dual [9–12].

The experimentally measured value for the quark-gluon plasma is very close to

this universal result [13]. In contrast, for weakly coupled systems, this ratio is in

general large and behaves as η/s ∼ 1/λ2 [10] in units of ~ and kB, where λ is

the coupling constant. The discrepancy between the measured and theoretically

predicted value at weak coupling, lead to the conclusion that the quark-gluon

plasma is strongly coupled.

Aside from the application to phenomena of particle physics, gauge/gravity duality

by now has entered at least two more fields of research: condensed matter physics
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and quantum information theory, and thereby connected them to black hole physics

and string theory. Physics, as one of the natural sciences, started with the goal of

identifying the fundamental building blocks of nature. The current answer to this

question is that they are quantum fields which continuously fill all of space and

whose quantum excitations lead to matter as we observe it. The question about

the nature of those excitations, whether they are point particles as in the standard

model or strings as in string theory, is not settled. However, all of the research

done along the way opened up new questions from which new branches of research

emerged. The beauty of holography is that it unites them, in a sense that it can be

utilised to shed light on unresolved questions in different branches. Notably, this

insight goes beyond the mere use of the gauge/gravity duality as a tool. Rather it

appears to be a manifestation of the similarity of physics in the strongly coupled

regime, irrespective of the specific problem’s microscopic degrees of freedom.

The common feature of situations where gauge/gravity duality is applicable and

has proven to be useful, is strong coupling and long range quantum entangle-

ment. In those cases, effective degrees of freedom emerge and replace the ones

of the microscopic theory. This often results in universal low-energy properties,

irrespective of the different microscopic details. The universal holographic result

for η/s can thus be regarded as representing a possible universality class of real

physical systems with similar values for that ratio. A further example in the con-

text of condensed matter physics is the linear increase of the electrical resistivity

with temperature in strange metals [14]. Holographic models, understood as grav-

ity theories with a field theory dual, serve as toy models to investigate universal

properties of a whole class of systems.

This thesis investigates applications of gauge/gravity duality to two different kinds

of systems. On the one hand, we study holographic superconductors. In addition

to the canonical analysis of for example the electrical conductivity, we probe the

holographic superconducting state with fermionic degrees of freedom. This allows

us to directly compare our holographically obtained results with experimental ob-

servations on high-temperature superconductors and we find a strikingly good

agreement. On the other hand, we utilise the duality to investigate properties

of the entanglement entropy in far from equilibrium systems. The results of this

thesis are thus an example of the diversity of problems where holographic methods

lead to new insight.

The holographic approach to condensed matter physics is known as AdS/CMT
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correspondence, where ‘CMT’ stands for ‘condensed matter theory’. This field of

application started with the holographic realisation of a superconductor [15–17].

Similarly to a real superconductor, the holographic version is characterised by a

critical temperature at which the system undergoes a phase transition and below

which the direct current (DC) conductivity is infinite. This is all the more impres-

sive as the holographic dual of the normal conducting state is believed to resemble

the mysterious experimentally observed strange metals. One of the analogies is

the emergent local quantum criticality in the infrared (IR), which refers to an

emergent scale invariance restricted to time and energy while the system is still

local in space [18, 19]. Holographically, the phase transition to superconductivity

is caused by an instability of a scalar field in the bulk. More precisely, the setup

is an AdS-Reissner Nordström (AdS-RN) geometry which contains an electrically

charged black hole, a U(1) gauge field and the charged scalar mentioned above.

In the holographic dual of the normal conducting state, the scalar vanishes iden-

tically. However, it becomes unstable at a certain temperature of the dual field

theory. This instability leads to a new ground state, where the scalar acquires

a non-trivial profile and thereby spontaneously breaks the U(1) gauge symmetry

in the gravity theory. The heuristic picture is that in the process, the black hole

is partially discharged. The ‘missing charge’ is then accommodated outside the

event horizon by the scalar field. We explain this mechanism and establish the

required entries of the holographic dictionary in chapter 3. The discovery of the

holographic superconductor is of major importance for both, the condensed matter

theory and the black hole physics perspective. On the one hand, it can be regarded

as a generalisation of BCS theory, the theory describing conventional superconduc-

tors [20]. On the other hand, the stable scalar in the vicinity of a black hole is a

so-called black hole ‘hair’ and contrasts the no-hair theorem. This observation led

to a number of new solutions to Einstein’s equations. In fact, the achievements of

AdS/CMT mostly are due to the thermodynamic and dissipative nature of classi-

cal black holes. Providing new insights into both sides of the duality is a common

and very appreciated property of gauge/gravity duality.

The possibility to apply gauge/gravity duality to systems far away from thermal

equilibrium is a manifestation of one of its most important and useful proper-

ties [21–24]. As an example, lattice models used as tools to study strongly coupled

theories rely on working with Euclidean time and are thus not capable of describing

real time processes. In contrast, there are no conceptual problems with time de-

pendence in theories of gravity. One of the striking results is that strongly coupled
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systems reach the hydrodynamic regime, where the system can be appropriately

described by long wavelength fluctuations around thermal equilibrium, long before

reaching thermal equilibrium [25–28]. This is of course particularly interesting in

the context, that systems with a holographic dual are understood to be in a regime

of long-range quantum entanglement. Studying out-of-equilibrium systems using

holography can thus provide new insight into the interplay between the equili-

bration process and quantum physics. In this thesis we are especially interested

in properties of steady states, which are typically the result of connecting two

reservoirs and thus special examples of systems far away from equilibrium.

An interesting quantity related to the quantum properties of a system is entan-

glement entropy, which is a measure of quantum entanglement. As a non-local

quantity it provides a perspective different from the one obtained by studying

correlation functions. The AdS/CFT correspondence is not only a weak-strong

coupling duality but also maps the quantumness of the field theory to a classical

gravity theory. In a seminal work [29, 30] a holographic dual of the entanglement

entropy in a quantum field theory was proposed. The by now proven [31] proposal

gives it a geometric counterpart: It states that the entanglement entropy of a re-

gion A within a quantum field theory is proportional to the area of the minimal

surface in the bulk, attached to the boundary of the region A. In this context it

is useful to have the heuristic picture in mind, in which the quantum field theory

‘lives’ on the boundary of the higher dimensional bulk, governed by the dual grav-

ity theory. In this thesis we utilise the entanglement entropy to study the time

evolution of quantum information in a steady state setup.

We now give an overview of the achievements presented in this thesis.

First, we work with the minimal setup of a holographic superconductor presented

in reference [16]. Our goal is to describe the results of a recent experiment on

high-temperature superconductors [32] with holographic methods. This experi-

ment accurately quantified for the first time the long observed strong temperature

dependence of the pair-breaking term in those materials and found that it behaves

vastly different from conventional superconductors. In this thesis we aim for a

comparison with the experiment on a quantitative level which is to be highlighted

in the context of the mostly qualitative comparisons between holographic results

and observed properties of real physical systems. More specifically, we probe the

superconducting state with fermionic degrees of freedom in a way which may be

called a ‘holographic photoemission experiment’ [33]. To this end, a holographic
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probe fermion is coupled to the superconducting background, while backreaction

of the fermionic field to this background is not considered. We choose to work

with the version of the coupling established in reference [33], the results therein

imply that this coupling allows the setup to have a holographic dual of the gap

which is necessary to describe the experimental results. We reconstruct the su-

perconducting backgrounds and solve for the dynamics of the fermionic field to

obtain the spectral density function whose pole structure can be directly com-

pared to the experiment. The author developed all of code required to address

those tasks. In contrast to the pioneering work in [33], we focus on the case of

finite temperature. In the next step the author explored the qualitative effect of

the setup’s various parameters on the spectral density’s pole structure in order to

eventually tune the parameters such that the result mimics the experimental one.

We find that not every feature can be mapped to the holographic results, however

the form of the strong temperature dependence of the pair-breaking term turns out

to appear naturally in the holographic context and does not require any fine tun-

ing of the parameters. Upon such a tuning, a remarkable quantitative accordance

between holographic and experimental results can be realised. This is a major

achievement of this thesis and manifestly substantiates the conjecture, that there

is indeed an underlying connection between holographic superconductors and real

high-temperature superconductors. In particular, this is important as almost all

of the previous results in this direction are based on comparing the metallic phase

only. Our results will be published in [2].

Motivated by the results about the fermionic excitations of the simplest possible

holographic superconductor model we then aim to find similar results in a more

‘realistic’ model, based on the holographic strange metal investigated in [34]. In

particular, translational symmetry is explicitly broken with the consequence that

momentum can dissipate and the observed universality of the electrical resitivity’s

temperature dependence in real strange metals can be described. In this thesis we

extend the model such that it undergoes a phase transition to superconductivity.

We then study the effect of momentum dissipation on the properties of the super-

conducting phase. Our results are in accordance with work on similar holographic

models [35, 36], which appeared before our analysis was completed. Probing the

superconducting phase with fermionic degrees of freedom, we find the same quali-

tative picture as for the simpler model. This indicates that the similarity to real

high-temperature superconductors in this aspect may indeed be a more general

feature of their holographic counterparts. The contribution of the author to this
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result includes the development of all the required code and the analysis of the

setup.

The second focus of this thesis is a far away from equilibirium system in which a

steady heat current emerges as a consequence of bringing together two indepen-

dently thermalised infinite heat baths at different temperatures. Our results are

presented in [1]. The heat current is the result of the attempt of this assembled sys-

tem to reach thermal equilibrium. However, since the two heat baths are treated as

infinite reservoirs, the final state of the system is an infinitely extended steady heat

current. A holographic dual of this final state in d dimensions was given in [37],

whose results are in accordance with results in two dimensions from a field theory

perspective [38–40]. Based on the holographic model of [37], we study the time

evolution of the entanglement entropy in the case of one-dimensional heat baths,

dual to a gravity theory in three spacetime dimensions. With a partly analytical,

partly numerical method we find two distinct behaviours, depending on the initial

temperature configuration. If the temperature difference is large, the change of the

entanglement entropy asymptotes to a linear behaviour. For small temperatures of

the same order of magnitude, the entanglement entropy changes with a powerlaw.

We present an analytical derivation of those two limits. Moreover, we check the

validity of entanglement inequalities. The author contributed to the development

of the numerical machinery and set the ground for the semi-analytical approach.

The structure of the thesis is as follows. In chapter 2 we motivate and introduce

the AdS/CFT correspondence, after briefly reviewing relevant concepts and tech-

niques of string theory. Moreover, we establish the holographic dictionary and

give an overview over the most important generalisations of the original conjec-

ture. In chapter 3 we explain the important entries of the holographic dictionary

for applications to condensed matter physics and put it in context with methods of

condensed matter theory and current challenges within this field. The remaining

chapters contain the author’s original work. Chapter 4 investigates a holographic

superconductor probed with fermionic degrees of freedom. The results are com-

pared with experimental results on a quantitative level and very good agreement

is found. We present our results on a more complicated and at the same time

supposedly more realistic holographic model of a superconductor in chapter 5. In

particular we probe the superconducting state with fermionic degrees of freedom

using the same method as in the previous chapter. Chapter 6 is based on refer-

ence [1] and presents our results on the properties and time dependence of the

holographic entanglement entropy in a system far away from thermal equilibrium.
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We conclude in chapter 7, summarising the results and giving an outlook for possi-

ble future research building on the results obtained in this thesis. The appendices

A-C provide background information and several technical details.

Throughout this thesis we set the speed of light, the reduced Planck constant and

the Boltzmann constant to one, c = ~ = kB = 1. We always use the mostly plus

metric convention, where only the time component of the metric has a minus sign.



Chapter 2

AdS/CFT

In this chapter we introduce the holographic duality in its original form and discuss

some generalisations of it. In section 2.1 we present the relevant concepts of string

theory. The AdS/CFT conjecture is then motivated and explained in section 2.2.

2.1 Preliminaries

2.1.1 String theory and branes

In string theory the fundamental objects are spatially extended strings, sweeping

out a 1+1 dimensional worldsheet rather than the one dimensional wordline of

point particles. The dynamics of free strings is described by the Nambu-Goto

action which is classically equivalent to the Polyakov action [41,41–45]

S =
1

2πα′

∫
M

d2σ
√
−h ηMNh

αβ∂αX
M∂βX

N , (2.1)

where h is the metric of the (1+1)-dimensional worldsheet M and XM are the

coordinates of the string in the D-dimensional target space in which the string

lives. In the case of free strings the target space is flat and η is the D-dimensional

Minkowski metric. The prefactor is the string tension T = 1/2πα′ where α′ = `2
s

parametrises the string scale `s. The defining gauge symmetries of the Polyakov

action are diffeomorphism and Weyl invariance of the worldsheet metric h, i.e. it

is conformally invariant [42,46]. The three independent components of h are com-

pletely fixed by these two symmetries.

There are two types of strings: open and closed strings. They differ by the bound-

9
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ary conditions they satsify. Closed strings satisfy periodic boundary conditions

XM(τ, σ + 2π) = XM(τ, σ), with σ ∈ [0, 2π). The endpoints of open strings

where σ ∈ [0, π), are subject to either Neumann or Dirichlet boundary condi-

tions. The former ensures the absence of momentum flow at the strings’ endpoints:

∂σX
M(τ, 0) = ∂σX

M(τ, π) = 0. The latter fixes the positions of the endpoints by

demanding δXM(τ, 0) = δXM(τ, π) = 0. If an open string satisfies the Dirichlet

condition for the time component and p spatial components of the target space,

its endpoints are restricted to a (p+ 1)-dimensional hypersurface called Dp-brane.

The quantum spectrum of the bosonic Polyakov spectrum contains a tachyon, a

state with negative mass. The associated tachyonic instability can be cured by

fermionic superpartners ψM of the bosonic coordinate fields XM . A consistent su-

persymmetric string theory requires the target space to be (D = 10)-dimensional.

Unlike the bosonic fields, the fermionic fields ψM do not satisfy unique boundary

conditions. The choice between different sets of conditions results in a choice be-

tween different types of string theory. The relevant type for the original AdS/CFT

conjecture is type IIB string theory [3].

In the low energy limit only massless modes of the two quantum spectra of closed

and open strings, respectively, are relevant. The massless state in the closed string

sector is a spin-2 state and can be decomposed into a traceless symmetric, an anti-

symmetric and a scalar part. Each part is understood to be a quantum fluctuation

of a corresponding field in the target space: the target space metric GMN , the

Kalb-Ramond field BMN and the dilaton Φ.

The massless excitation in the open string sector is a spin-1 state. This state is de-

composed into p+1 components parallel and D-(p+1) components perpendicular

to the Dp-brane. The former transform as a vector under diffeomorphisms on the

Dp-brane, whereas the latter transform as a scalar. The vector part is identified

with a U(1) gauge field Aa, a = 0, ..., p, living on the Dp-brane. The scalar exci-

tations can be regarded as transverse fluctuations of the Dp-brane itself, turning

it into dynamical object within string theory [46].

This classification of the massless spectra in the open and closed string spectra

allows us to write down a low-energy effective action for each sector. Low-energy

refers to small α′, i.e. small string length `s. They are extensions of the Polyakov

action (2.1) and describe a probe string in a background formed by the fields
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identified above. For the bosonic part of the closed string sector this gives

S =
1

4πα′

∫
M

d2σ
√
−h
[
GMNh

αβ∂αX
M∂βX

N + iBMNε
αβ∂αX

M∂βX
N

+ α′ΦR(2)

]
.

(2.2)

The Ricci scalar R(2) of the worldsheet metric h does not contain dynamical in-

formation, as h can be fixed by the conformal symmetry. Instead it evaluates to

an integer related to the topology of the string worldsheet. The dilaton is related

to the string coupling gs = eΦ0 , where we split Φ = Φ0 + Φ̃, a constant and a

dynamical part. In the case of a free string, the target space reduces to Minkowski

space, B vanishes, the dilaton Φ is constant and (2.2) reduces to (2.1).

The dynamics of a probe string in an open string background is determined by a

low-energy effective action given by

S =
1

4πα′

∫
M

d2σ
√
−h ηMNh

αβ∂αX
M∂βX

N +

∫
∂M

dτAaẊ
a , (2.3)

where a = 0, ..., p labels the direction on the Dp-brane. The second integral runs

over the spatial boundary, the endpoints of the string, because it is those endpoints

which are connected to the Dp-brane where the abelian gauge field A lives.

We must now ensure that the conformal symmetry of the Polyakov action for the

free string (2.1) is still present in the generalised versions (2.2) and (2.3). For

this purpose the background fields can be regarded as dynamial couplings whose

β-functions have to vanish in order to preserve the conformal symmetry. Those β

functions can be obtained as equations of motion from an action for the background

fields. In the case of the closed string sector this action results in the type IIB

superstring action whose bosonic part reads

S
(b)
IIB =

1

(2π)7`8
s

∫
d10X

√
−G

[
e−2Φ

(
R + 4(∂Φ)2

)
− 2

(D − 2− p)!
F 2
p+2

]
(2.4)

where Fp+2 is the field strength of the form field Ap+1, Fp+2 = dAp+1. For the type

IIB sector, p can only take the odd values p = 1, 3, 5. Moreover, the five form F̃5

has to be self dual: F̃5 = ∗F̃5 [43]. The equations of motion following from the

type IIB action are Einstein’s equations for the Einstein frame metric G(E), which

is related to the string frame metric G ≡ G(S) as G(E) = e−Φ̃/2G(S). Performing

this redefinition results in an extra factor of g2
s , due to separating the constant
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part of the dilaton in (2.4). The prefactor of the corresponding Einstein frame

action is then 1/8πGN ≡ 1/2κ2
10 ∼ g2

s/`
8
s .

With the same logic we obtain for open string sector the Dirac-Born-Infeld (DBI)

action whose bosonic part is given by

S
(b)
DBI = −Tp

∫
dp+1ζe−Φ̃

√
−det (P [Gab] + P [Bab] + 2πα′Fab) , (2.5)

where Tp = 1/gs(2π)p(α′)(p+1)/2 is the brane tension and F = dA the field strength.

P denotes the pullback of G and B onto the Dp-brane: P [Gab] = GMN∂aX
M∂bX

N .

The action (2.5) is of the same form as the Nambu-Goto action for the (1+1)-

dimensional string and can be thought of describing a probe Dp-brane in a poten-

tially curved target space. By the open-closed string duality [46,47], the Dp-brane

is a source of closed string excitations as well and hence is a gravitating object.

Taking this into account, the DBI action (2.5) represents only the lowest order

in the string coupling gs of string perturbation theory and hence is only valid for

gs � 1 [48].

In the remainder of this section we discuss one specific solution of each of type IIB

superstring theory (2.4) and the DBI action (2.5). These solutions will form the

gravity and field theory part, respectively, of the AdS/CFT conjecture.

2.1.2 Type IIB supergravity on AdS5×S5

Extended p dimensional objects, p-branes, embedded in the D-dimensional target

space are solitonic solutions to supergravity [48]. In particular, we are interested

in flat (p + 1)-dimensional magnetically charged solutions of the type IIB string

theory (2.4). A typical solution of this kind involves an event horizon. For a

(D = 10)-dimensional target space, such a solution is given by [48]

ds2 = − f+(ρ)√
f−(ρ)

dt2 +
√
f−(ρ)δijdx

idxj +
f−(ρ)−

1
2
− 5−p

7−p

f+(ρ)
dρ2

+ ρ2f−(ρ)
1
2
− 5−p

7−pdΩ2
8−p ,

(2.6)

with the emblackening factors f± and the dilaton given by

f±(ρ) = 1−
(
r±
ρ

)7−p

, e−2Φ(ρ) = g−2
s f−(ρ)−(p−3)/2 . (2.7)
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The p-brane carries N units of the magnetic charge [48]

N = (4π)
p−5

3 Γ

[
7− p

2

]−1

g−1
s (α′)

p−7
2 (r+r−)

7−p
2 . (2.8)

In the extremal limit r+ = r− the metric (2.7) reduces to

ds2 =
1√
H(r)

ηµνdx
µdxν +

√
H(r)

(
dr2 + dΩ

)
, (2.9)

where we switched from the string frame in (2.4) and (2.7) to the Einstein frame.

The new coordinate r is related to ρ by r7−p = ρ7−p − L7−p, with L = r+, such

that

H(r) = 1 +

(
L

r

)7−p

, eΦ(r) = gsH(r)
3−p

4 . (2.10)

The horizon is now located at r = 0. Note that in the extremal limit a regular

solution is only possible for p = 3, where also the dilaton, and hence the string

coupling gs, are constant. The case of p = 3 is the relevant one for the original

AdS/CFT conjecture.

There are two types of low energy excitations in this extremal p-brane space (2.9).

Low energy refers to the energy measured by an observer at r →∞. This observer

measures the energy E of an object at position r to be E =
√
−gttEr compared

to the energy Er measured by an observer at position r. Close to horizon r � L

and far away r � L this relation becomes

E

Er
=
√
−gtt = H(r)−1/4 ∼

1 for r � L ,

r
L

for r � L .
(2.11)

This means that low energy excitations can either be long-wavelength excitations

in the asymptotically flat region r � L, or excitations of arbitrary wavelength,

and hence energy arbitrary Er, close to the horizon r � L. Close to the horizon,

the geometry given in (2.9) reduces to the AdS5 × S5 geometry

ds2 =
r2

L2
ηµνdx

adxb +
L2

r2
dr2 + L2dΩ5 , (2.12)

where the first two terms constitute the Anti-de Sitter part and the last term

the five-dimensional sphere. The isometry group of (2.12) is SO(4, 2) × SO(6).

The excitations in the near-horizon and asymptotic flat region decouple from each
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other [48]. In the low energy limit α′ → 0, where only low energy excitations are

allowed, this decoupling can be schematically expressed as

SIIB → SIIB on AdS5×S5 + Sfree IIB . (2.13)

It is important to stress that throughout this subsection we assumed the super-

gravity limit of (2.4) to hold. This limit is justified only when the inverse curvature

of the brane is smaller than the string length scale `s � L. Moreover, the string

coupling has to be small gs < 1 in order to suppress string loop corrections. Com-

paring the prefactor of (2.4) in the Einstein frame with the definition of Newton’s

constant GN ∼ `8
P in terms of the Planck length `P , the smallness of the string

coupling implies `P < `s. In combination with equation (2.8) the supergravity

limit can be expressed by [48]

N > Ngs � 1 . (2.14)

2.1.3 N=4 Super-Yang-Mills theory

The DBI action (2.5) describes the Dp-brane as an object on which open strings

end and on which a Maxwell gauge field lives. Instead of just a single Dp-brane

one can also consider a stack of N coincident branes. Open strings can now end in

N2 different ways on them. This extends the U(1) symmetry of a single brane to

a non-abelian U(N) ' U(1) × SU(N) symmetry. In the low-energy limit α′ → 0

the DBI action in flat space can be expanded in α′ and to leading order is given

by [44]

SDBI = −(2πα′)2

2
T3

∫
d4ζ Tr

(
1

4
F 2 + ...

)
, (2.15)

where the ‘...’ refers to terms independent of the gauge field A. Moreover, the

U(1) modes decouple from the SU(N) modes [48]. The standard prefactor of a

Yang-Mills theory 1/4g2
YM, according to this action, is related to gs through

4πgs = g2
YM . (2.16)

D3-branes are 1/2 BPS states and preserve half of the 32 supercharges [49]. This

manifests itself as maximal supersymmetry N = 4 of the Super-Yang-Mills (SYM)



2.1. Preliminaries 15

theory on the brane. As mentioned before, the DBI action (2.5) describes a dy-

namical brane in potentially curved background. Only the probe limit, in which

string loop corrections are suppressed, allows us to decribe the dynamics of the

stack of N Dp-branes with equation (2.15). The effective expansion parameter in

this case is Ngs and this limit translates into the condition [48]

Ngs � 1 . (2.17)

To summarise, in the low energy limit the DBI action (2.5) for a stack of N

coincident Dp-branes reduces to N = 4 SYM theory plus free type IIB gravity

SDBI → SN=4 SYM + Sfree IIB . (2.18)

N = 4 SYM theory with gauge group SU(N) is the gauge theory part of the

AdS/CFT conjecture. Let us therefore have a closer look at its most important

properties. Supersymmetry is a spacetime symmetry which extends the bosonic

Poincaré algebra by fermionic supercharges Qi, i = 1, ...,N that change the spin

of states by 1/2. The maximal spin of a theory without gravity is spin 1 and hence

N = 4 is the maximal supersymmetry which is encoded in a SU(4) ' SO(6) global

symmetry of the theory. Its field content is grouped in just one supermultiplet. As

the gauge field A transforms in the adjoint representation of the gauge symmetry

and all members of the supermultiplet have to transform alike, the theory does

not contain fields transforming in the fundamental representation. In addition

to the maximal supersymmetry, the theory is also conformally invariant. The β-

function of the only coupling present in N = 4 SYM theory vanishes to all orders

in perturbation theory and does not get non-perturbative corrections either [50].

The global superconformal symmetry is represented by the supergroup SU(2, 2|4)

whose maximal bosonic subgroup is SO(4, 2)× SU(4).

In the context of the AdS/CFT conjecture we will be interested in the limit of

large number of colours N →∞. Introducing the ‘t Hooft coupling

λ = g2
YMN , (2.19)

renders this limit well defined in perturbation theory. The large N limit can now

be realised by taking N →∞ while at the same time keeping λ fixed. This is the

so-called ‘t Hooft limit [51]. Feynman diagrams can be classified according to their

scaling behaviour with N . An expansion in 1/N results in a topological expansion
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of diagrams where planar diagrams are the leading contribution. The ‘t Hooft

limit is therefore a semi-classical limit [51]. Strong coupling then corresponds to

large values for the ‘t Hooft coupling λ. In this case perturbation theory breaks

down.

2.2 AdS/CFT conjecture

2.2.1 Maldacena’s original argument

We discussed extremal 3-branes in the supergravity limit Ngs � 1 (2.14), from

the perspective of the closed string sector, and a stack of N coincident D3-branes

in the string loop perturbation limit Ngs � 1 (2.17). In the low energy limit they

reduce to type IIB supergravity on AdS5 × S5 plus free type IIB gravity (2.13)

in flat space and N=4 SYM theory plus type IIB gravity in flat space (2.18),

respectively.

It was stated in [47] that Dp-branes in the opposite limit, i.e. Ngs � 1, may

be described by extremal p-branes. Based on that, Maldacena concluded that the

D3-branes and extremal 3-branes, and hence N = 4 SYM theory and type IIB

supergravity on AdS5 × S5, are ultimately two different descriptions of the same

thing but in two different limits of Ngs [3]. Or put differently, that the two theories

are (continuously) converted into each other going from Ngs � 1 to Ngs � 1.

The relation between the parameters of the two theories according to equations

(2.8) and (2.19) can be combined into

4πgs = gYM =
λ

N
, L4 = 4πgsNα

′2 = λα′2 . (2.20)

Given this relation, the analogue of the supergravity limit N > Ngs � 1 implies

for N = 4 SYM

N →∞ and λ→∞ . (2.21)

Maldacena then conjectured that N = 4 SYM in this limit is equivalent to the low

energy supergravity on AdS5 × S5, where

gs → 0 and α′ → 0 . (2.22)
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This conjecture goes under the name of AdS/CFT conjecture. ‘AdS’ represents

the gravity part of the equivalence and ‘CFT’ represents the conformal field theory

part. Equations (2.21) and (2.22) constitute the so-called Maldacena limit which is

the weak form of the conjecture. There are two stronger formulations. The strong

form still requires the ‘t Hooft limit N →∞ but allows the ‘t Hooft coupling λ to

take any value. In this case the string coupling gs = λ/N is small and perturbation

theory in gs corresponds to the perturbative epansion in 1/N on the field theory

side. Looking at the second relation in (2.20) it becomes clear that finite λ allows

α′ = `2
s to be finite as well. This relaxes the low energy bound on the supergravity

side of the equivalence. The strongest form of the conjecture states the equivalence

of N = 4 SYM theory and type IIB string theory on AdS5 × S5 for any value for

N and λ and hence any value for gs and α′ . However, to date it is not possible

to explicitly formulate a consistent quantum theory of gravity that allows strong

string coupling. Given the profound knowledge about weakly coupled quantum

field theories which would be dual to a strong string coupling limit, one might

hope that the AdS/CFT conjecture can give insight to this problem. For the rest

of this thesis only the weak form is relevant in which case the equivalence relates

the strongly coupled conformal field theory to the weakly coupled classical gravity

theory.

A key observation about the conjecture concerns the symmetries of the two the-

ories: the superconformal group SU(2, 2|4) representing the global symmetry of

N = 4 SYM theory is the same as the gauge group of the gravity theory. The

matching of the symmetries is most accessible of we look at the maximal bosonic

subgroup SO(4, 2)× SO(6) which is precisely the isometry group of AdS5 × S5.

A proof of the conjecture can only be presented with the help of a fully quantum

theory of strings, which to this date is not available. It is however a widely accepted

consensus that it is true as there is a lot of evidence in favour of the conjecture.

Some quantities and object were explicitly calculated on both sides and were found

to be the same. One example are correlations functions of 1/2 BPS operators [48].

They are protected by non-renormalisation theorems and can thus be computed in

the weakly coupled limit of N=4 SYM theory. Another example is the spectrum

of chiral operators which does not depend on the coupling either. Other tests such

as the c-theorem are of qualitative nature [52,53].
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2.2.2 Field-operator map

The power of the AdS/CFT correspondence lies in the practical nature of its

consequences. The equivalence of the two theories allows to establish a one-to-

one map between their respective constituents and properties. This is called the

holographic dictionary and in the course of the first two chapters of the thesis we

will add more and more entries to that dictionary.

The map relates the generating functional of the conformal field theory given by

ZCFT [J∆] =

∫
Dφ exp

(
iSCFT + i

∫
ddxJ∆O∆

)
=

〈
exp

(
i

∫
ddxJ∆O∆

)〉
CFT

,

(2.23)

where J∆ is the source of the operator O∆ of dimension ∆, to the generating

functional on the gravity side of the duality. Making use of the non-dynamical

boundary at r → ∞ in (2.12) it is possible to formulate the gravity theory’s

partition function as a Dirichlet problem [54], where the fields φ asymptote to φ0

at the boundary

Zgravity [φ0] =

∫
‘φ→φ0‘

Dφ exp (iSgravity [φ]) . (2.24)

This relation, known as GKPW formula, first formulated by Gubser, Klebanov,

Polyakov [4] and Witten [5], equates those two generating functionals

Zgravity [φ0] =

〈
exp

(
i

∫
ddxφ0O∆

)〉
CFT

. (2.25)

The crucial element is that the sources J∆ of the conformal field theory operators

O∆ are equivalent the ‘boundary values’ φ0 of the gravity theory fields φ. The

GKPW formula thus establishes a field-operator map between operators O and

their gravity duals φ. Note that in the large N limit, the gravity theory is classical

and the generating functional (2.24) reduces to its saddle point where only the

on-shell (os) solution contributes

Zgravity [φ0] = exp
(
i Sos

gravity [φ]
)
. (2.26)

The GKPW formula suggests the intuitive picture that the field theory lives on

the conformally flat boundary of the AdS space and that the ‘boundary values’ of
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the gravity theory fields really are the sources of the appropriate conformal field

theory operator. In this picture the inner of the AdS space is often referred to

as bulk. A matching of gravity fields and conformal field theory operators has

to obey the condition that they should reside in the same representation of the

supergroup SU(2, 2|4) [49].

To illustrate the field-operator map at work, let us look at the canonical example

of a probe scalar field in the bulk, which can be thought of as the gravity dual of

a single trace operator. It is described by the following action

S [φ] =

∫
dd+1x

√
−g
(

1

2
(∇φ)2 +

m2

2
φ2

)
⇒ ∇2φ−m2φ = 0 . (2.27)

The equation has two solutions characterised by their asymptotic behaviour at the

AdS boundary

φ = φ0r
∆+−d + ...+ φ1r

∆+ + ... (2.28)

where ∆+ is the larger root of ∆(∆−d) = m2L2. We can now clarify the meaning of

the ‘boundary value’ in the context of the GKPW formula: It is the leading mode

of the expansion at the boundary. The two modes sometimes also are referred to

as non-normalisable (leading) and normalisable (subleading) mode. Performing a

scale transformation (xµ, r) → (λxµ, λ−1r) under which the AdS metric (2.12) is

invariant. The scalar field must be invariant as well and therefore φ0,1 must scale

as

φ0 → λd−∆+φ0 , φ1 → λ∆+φ1 . (2.29)

φ0 plays the role of the source of the operator O dual to φ. According to the

conformal field theory side of the GKPW formula this implies that under such

a scale transformation the operator must behave as O → λ∆+ , thus ∆+ is the

dimension of the operator O. We can use the GKPW formula (2.25) to compute

its one-point function

〈O〉 =
1

ZQFT

δZQFT

δφ0

= lim
r→∞

i
δSgravity

δφ0

∝ φ1 . (2.30)

Note that we left out a subtlety concerning the divergences that arises in the above

procedure. We will address this topic in the next section. The above example

demonstrates that the sourced operator is proportional to the normalisable mode
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and its dimension is directly related to the mass of the bulk field [55, 56]. This

mass-dimension relation provides another interesting information about the probe

scalar. A closer inspection of the above equation reveals that the scalar mass can

be negative without becoming unstable. The stability bound allows all masses

which obey

m2L2 ≥ −d
2

4
. (2.31)

This is called the Breitenlohner-Freedman (BF cound) [57,58].

There are two further important examples of dual field-operator pairs. The first

is the conformal field theory’s stress energy tensor T . It couples to perturbations

of the flat metric and hence the dual gravity field is the bulk metric itself. The

second is a global U(1) conserved current J . It is dual to a Maxwell field A in

the bulk. This is characteristic of the gauge/gravity duality: global symmetries

of the conformal field theory are dual to gauged symmetries on the gravity side.

The reason is that the bulk gauge symmetry also demands invariance under ‘large’

gauge transformations which reduce to global symmetries on the boundary of the

geometry [48]. We thus can extend the holographic dictionary by two more entries

gµν ↔ 〈Tµν〉 , Aµ ↔ 〈Jµ〉 , (2.32)

where µ and ν label the directions of the conformal field theory and can thus be

regarded as the AdS boundary indices.
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2.3 Holography

2.3.1 Holographic principle

The holographic principle has its origin in Bekenstein’s observation that the en-

tropy of a black hole scales with the area A of its horizon [6]

SBH =
A

4GN

, (2.33)

where GN is Newton’s constant. The black hole is the most compact object and

hence this directly implies that the maximal entropy of any spatial volume V can,

in a theory with gravity, only scale with the area A enclosing the volume. This

is counterintuitive from a thermodynamical or even quantum field theory point

of view, where entropy is proportional to the volume V . Two decades later the

idea of the holographic principle was born [7]. It states that the information of a

(d + 1)-dimensional quantum gravity theory can be stored on the d-dimensional

surface and completely be captured by a theory without gravity. The holographic

principle has its name from the metaphorically similar hologram where the third

dimension of an object is reconstructed via interference and coherence properties

of light. After Susskind specified the idea of the holographic principle by giving it

a possible realisation within string theory [8], the AdS/CFT conjecture is its first

explicit realisation [3].

It seems that from a gravity perspective a non-gravitating quantum field theory at

one fewer dimension is the minimal framework to describe its information content.

From a quantum field theory perspective, the additional geometrical dimension has

an interpretation on its own. The radial coordinate r in (2.12) represents an energy

scale, where r →∞ is the ultraviolet (UV) limit of the gauge theory and r → 0 the

infrared (IR) fixed point. The origin of this interpretation is the observation that

UV divergencies can be identified with divergencies at the AdS boundary [55].

Moreover, the renormalisation group (RG) flow of the quantum field theory is

naturally represented by Einstein’s equations on the gravity side. This can be

viewed as a further entry in the holographic dictionary: RG flows of quantum field

theories have a geometric interpretation in terms of the radial coordinate of their

dual gravity theories. There are various examples of this interpretation such as

the holographic c theorem [52,53], which states the existence of a real and positive

function decreasing monotonically along the RG flow.
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It is then natural to expect that there is a geometric version of the quantum field

theory renormalisation procedure. The gravity dual of the UV-cutoff ε is the in-

verse radial coordinate near the boundary ε = 1/r. Thus instead of evaluating

expressions related to the field-operator map (2.25) and (2.30) directly on the AdS

boundary, they have to be evaluated on a slice located just inside the boundary

at r = 1/ε. Adding appropriate counterterms to the gravity action removes the

dependence on the cutoff ε, similarly to the quantum field theory renormalisation,

and one can send ε → 0 [59]. This procedure is known as holographic renormali-

sation. Reference [55] provides a comprehensive introduction to this topic.

2.3.2 Other types of gauge/gravity dualities

The AdS/CFT conjecture as discussed above is the result of the identification of

two interpretations of N coincident D3 branes in type IIB string theory in a ten-

dimensional spacetime. It results in an equivalence between a (3+1)-dimensional

quantum field theory and a (4+1)-dimensional classical gravity theory. There are

further holographic dualities also motivated directly from string theory. Let us

mention the two canonical examples. The first example is the duality between

ABJM theory in 2+1 dimensions, taking the role of the quantum field theory

side, and eleven dimensional supergravity on AdS4 × S7/Zk [60]. The second

example maps N = (4, 4) superconformal field theory in 1+1 dimensions to type

IIB supergravity in AdS3×S3×M4, see e.g. [48]. Just like for the original AdS/CFT

correspondence the dualities involve a quantum field theory at one fewer dimension

than the involved AdS space.

All of the dualities contain supersymmetry. Of course this arises naturally from

a supersymmetric string theory. But its presence is also important on a technical

level as it constrains the theories involved and in particular is responsible for many

observables to be independent of the coupling strength.

2.3.3 Holographic models

Maldacena’s original conjecture has its origin in string theory. Both, supergravity

on AdS5×S5 and N = 4 SYM are well defined limits of consistent string theories.

We recognised the weak form of the conjecture as a weak-strong coupling duality

and a classical-quantum duality. It is well known that strongly coupled systems

are difficult to handle theoretically as the otherwise powerful perturbation theory
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is not applicable in those cases. AdS/CFT seems to be a promising candidate for

a method to study strongly coupled systems. However, the two theories involved

in the AdS/CFT proposal are quite special due to their high degree of symmetry.

Nonetheless, it turns out that more general models, referred to as gauge/grav-

ity duality, can describe less symmetric strongly coupled systems. The duality is

thus a powerful tool to investigate phenomena due to strong coupling. It can be

successfully applied to universality classes of systems, whose properties are gov-

erned by common principles or symmetries rather than the individual microscopic

details. The most prominent example is the ratio of shear viscosity and entropy

density which is generically bounded from below by η/s ≥ 1/4π for theories with

a holographic dual [9–12]. A value very close to this bound was found for the

quark-gluon plasma which is assumed to be strongly coupled [13]. Up to date, no

other method is capable of generating a value for η/s anywhere near this bound.

Backed up with this remarkable success, it is tempting to try to reduce the original

conjecture to a minimal set of features: classical Einstein-Hilbert gravity on an

asymptotic AdS space and a quantum field theory with a conformal symmetry in

the UV at strong coupling. The corresponding action of such a setup is given by

S =
1

2κ2

∫
dd+1x

√
−g [R− 2Λ] , (2.34)

where Λ = −d(d− 1)/2L2 is the negative cosmological constant of AdS space and

κ is the (d+ 1)-dimensional gravitational constant.

Based on this approach it is possible to for example extend the field content of

the dual quantum field theory or even give up conformal symmetry in the IR,

see chapter 3. There are two different classes of those more general holographic

models: the top-down- and the bottom-up-models. Top-down models are dualities

between two theories that are consistent truncations of string or M-theory. They

are obtained in the same way as the original conjecture but with different brane

constructions. In contrast, bottom-up models start off with classical gravity on

AdS space (2.34) supplemented by a set of fields which mimic properties of the dual

quantum field theory one is interested in. The field content of bottom-up models

is often motivated by consistent truncations of string or M-theory. However, the

fixing of the coupling constants that generically accompanies such truncations is

ignored. Bottom-up models treat the coupling constants as free and independent

of each other. A prominent example for a bottom-up model is the holographic

superconductor [16]. This model co-founded the field of AdS/CMT, where the
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holographic duality is applied to condensed matter theory (CMT).

2.3.4 Extensions of the original conjecture

Let us give a few explicit examples of extensions of the original AdS/CFT conjec-

ture. All of them have been widely used to construct holographic models. But they

also break conformal invariance in the IR. We can thus expect only qualitative in-

sight into the properties of strongly coupled systems. The list is far from complete.

More information on this topic can be found in the references [49] and [14]. The

most important one is to give the quantum field theory a finite temperature. A

thermal field theory is related to a theory at zero temperature by a Wick rotation

t → iτ along with the compactification of the Euclidean time coordinate τ on a

circle with radius β = 1/T . The partition function of a thermal field theory is

given by

Zthermal =

∫
Dφ exp (−SQFT) = exp

(
−Sos

gravity

)
, (2.35)

where we used the GKPW formula (2.26) in the last step. For the grand potential

Ω this implies

Ω = − 1

β
logZthermal =

1

β
Sos

gravity . (2.36)

The gravity dual of a thermal field theory is a geometry with a black brane, a

geometry with a planar horizon [61]1. The simplest realisation is the (d + 1)-

dimensional AdS-Schwarzschild solution

ds2 =
r2

L2

(
−f(r)dt2 + dx2

)
+

L2

r2f(r)
dr2 with f(r) = 1−

(rh

r

)d
, (2.37)

where f is the emblackening factor given in terms of the horizon radius rh. The

temperature of the thermal field theory is then equal to the Hawking temperature

of the black brane. The latter is related to the surface gravity of the black hole

horizon and can be derived from equation (2.37) by Wick rotating to Euclidean

time τ and compactifying it close to the horizon with radius 2π in order to avoid

a conical singularity. Identifiying the compactification radius with the field theory

1In this thesis only black branes are relevant. However, for the sake of convenience, we will
inaccurately refer to them as black holes, which technically are characterised by a spherical
horizon geometry.
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analogue β gives the Hawking temperature

T =
1

4π

√
−g′tt(rh)grr′(rh) , (2.38)

for any diagonal metric with an emblackening factor. In the case of the (d + 1)-

dimensional AdS-Schwarzschild metric the black hole temperature is T = d rh/4π.

The AdS/CFT correspondence equates the Hawking temperature with the tem-

perature of the dual thermal field theory.

Closely related to the temperature entry in the holographic dictionary is the iden-

tification of the black hole’s Bekenstein-Hawking entropy (2.33) on the gravity side

of the duality with the thermal entropy STFT of the thermal field theory side

STFT ≡ SBH =
2π

κ2
d+1

(rh

L

)d−1√
Πi=1,...,d−1giiVd−1 . (2.39)

For the last step we used κd = 8πGN,d and introduced Vd−1 =
∫

dd−1x, which

corresponds to the spatial volume of the dual field theory. The squareroot factor

contains the potentially non-trivial metric components gii evaluated at the horizon.

In the case of the AdS-Schwarzschild metric (2.37) they are gii = 1.

For many applications of the gauge/gravity duality to condensed matter systems

it is inevitable to have a holographic realisation of compressible matter. More

precisely, a holographic dual for a finite charge density is required, which can

be varied, i.e. compressed smoothly. The charge density operator is the zeroth

component of a charge current (2.32). As global symmetries of the field theory

correspond to gauged symmetries of the gravity side, the holographic realisation

of a charge current and hence of a finite charge density is a U(1) gauge field in the

bulk [14,49]. We discuss this entry of the holographic dictionary in more detail in

the next chapter 3.2.

We argued above that all the fields in N = 4 SYM transform in the adjoint repre-

sentation. Conclusively the AdS/CFT conjucture does not involve any fundamen-

tal degrees of freedom like the Standard Model quarks or leptons. Reference [62]

presented their holographic realisation by adding Nf probe Dp-branes leading to

a U(Nf ) flavour symmetry.

A conceptually rather different application of holography concerns the measure-

ment of quantum information or quantum entanglement. Entanglement entropy

is generically a quantity difficult to access with conventional methods as it is by
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definition related to long range quantum entanglement and cannot by captured

by a perturbative approach on microscopic scales. The holographic dual of the

entanglement entropy between a region A, with boundary ∂A, and its complement

Ac is given by the area of the minimal surface in the bulk attached to ∂A at the

AdS boundary divided by 4GN, analogously to (2.33) [29, 63]. This entry of the

holographic dictionary manifests the close relationship of quantum physics and ge-

ometry established by the AdS/CFT correspondence. The concept of holographic

entanglement entropy is discussed in more detail in chapter 6.



Chapter 3

Holography and condensed

matter physics

In this chapter we introduce the application of the AdS/CFT correspondence to

condensed matter physics, known as AdS/CMT, where CMT stands for condensed

matter theory. In the past years, AdS/CMT offered an entirely new perspective

on open problems in condensed matter theory [14, 49, 54, 64, 65]. It translates

its traditional language to the language of high energy physics. The success of

the AdS/CMT duality is an astonishing example of the profound insight that

seemingly unrelated fields of physics can be described by the same concepts. In

section 3.1 we review basic elements of condensed matter theory formulated in the

traditional language and thereby laying the ground for the holographic picture in

the remaining sections of this chapter 3.2-3.5.

3.1 Basic elements of condensed matter theory

3.1.1 Fermi liquid theory

Landau’s Fermi liquid theory was established more than five decades ago and is

an important part of what may be called the standard model of condensed matter

theory. It is capable of describing a wide range of observed metallic states. The

model of interacting fermions captures almost all metals and superconductors. Yet

it can be viewed as an example of a compressible state of quantum matter, where

compressible refers to the property, that the density can be varied continuously.

Quantum matter refers to a state of matter with long-range quantum entangle-

27
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ment. The source of its quantum nature are its constituents themselves. Fermions

are doomed to obey the Pauli exclusion principle and the wave function of the

whole system has to be antisymmetric under the exchange of any two fermions.

The principles of quantum physics are thus naturally relevant on a macroscopic

scale.

Let us introduce Laundau’s fermi liquid theory as its concepts will reappear when

we take the holographic perspective on condensed matter theory. Consider N free

fermions in a box with volume V . Their dispersion relation is given by E = k2/2m

in terms of the fermion massm and the absolute value of the momentum k = |k|. In

order to construct the ground state at zero temperature, we have to fill the energy

eigenstates starting at low energies until all of the N fermions are placed. Taking

the two options for the spin orientation into account the required momentum space

volume is determined by

N = 2

∫
Vk

ddk
V

(2π)d
. (3.1)

The dispersion relation only depends on the absolute value k of the momentum

and thus Vk is a d-dimensional sphere with radius

kF = 2(d−1)/d
√
πn1/dΓ

(
1 +

d

2

)1/d

, (3.2)

where n = N/V is the particle density. The ground state of the free electron

system is therefore a sphere of radius kF in momentum space inside of which all

the states are filled while all states outside the sphere are empty. The boundary of

the sphere is called Fermi surface. The energy associated to kF according to the

dispersion relation is the Fermi energy EF .

If we were to add an extra fermion to the system we would have to invest at least the

Fermi energy, since all the states with less energy are already occupied. The energy

necessary to add a fermion to a system is called the chemical potential µ which in

this case is equal to the Fermi energy. The chemical potential is a thermodynamic

variable of the grand canonical ensemble, a system with a fixed number of particles.

Alternatively ,we could also remove a fermion just inside the Fermi surface. Those

lowest energy excitations are called particle and hole, respectively. As they are

assumed to be close to the Fermi surface, i.e. k−kF � kF their dispersion relation
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can be obtained by linearising around the Fermi momentum

ε(k) = E(k)− EF = E(k)− µ =
kF

m
(k − kF) +O

(
(k − kF)2 ) . (3.3)

In general the volumes and particle numbers are assumed to be large, therefore the

excitations can cost arbitrarily few energy measured from the chemical potential,

the excitations are gapless.

What happens if we allow the fermions to interact? Laundau’s fermi liquid theory

postulates that the system behaves qualitatively similar as the non-interacting

gas [66]. This implies that the ground state of the system is still given by a Fermi

surface and that the dispersion relation for particle excitations (3.3) is still valid

for quasiparticle excitations with an effective mass m∗. It can be shown that the

generic local interactions in the vicinity of a Fermi surface necessarily result in

quasiparticles which makes the second statement self-consistent. Quasiparticles

are excitations which live long enough the reveal their particle-like properties,

i.e. whose decay rate Γ � ε. They show up as poles in the retarded Green’s

function

GR ∼ 1

ω − vF (k − kFF ) + Σ(ω, k)
, (3.4)

where vF = kF/m∗ and Σ is the self energy

Σ ∼ iω2 . (3.5)

Note that in this notation ω is measured with from the chemical potential µ.

The success of the Fermi liquid theory reliess on the fact that it can be shown

to be a stable fixed point of a generic theory of quasiparticles. It holds even

for intrinsically strongly coupled systems as long as the interactions between the

quasiparticles are weak. Strong interactions of the fundamental constituents man-

ifest themselves in large effective masses m∗. They can be as high as 103 times

the electron mass. Such high values for the effective mass indicate that the Fermi

surface is on the verge of being destroyed by quantum fluctuations [14].

At finite temperature we expect the sharp spectrum to smoothen out, as thermal

fluctuations can excite some fermions to a state above kF such that some of the

states below kF are empty. The probability for states of energy E to be occupied
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at finite temperature is given by the Fermi-Dirac statistics

f(E) =
(

1 + e
E−µ
T

)−1

. (3.6)

The logic of the Fermi liquid theory still applies and makes predictions for the low

energy behaviour of a system. Two examples that will become important later in

this chapter, concern the electrical resistivity ρ and the specific heat c [66]:

ρ− ρ0 ∼ T 2 and c ∼ T . (3.7)

There are however a number of examples in which the observed low energy proper-

ties do not match the predictions from Fermi liquid theory, the so-called non-Fermi

liquids. A prominent example are strange metals. At the same time those are also

assumed to be the best candidate to be approached with holographic methods.

We will discuss strange metals and their superconducting counterpart, the high

temperature superconductors, in more detail at the end of this section 3.1.3.

Photoemission spectroscopy is the canonical experiment to study the Fermi surface

of a material. It is based on the photoelectric effect: the material is hit with a

beam of high energy photons which kick out electrons. The energy and momentum

that is missing in the detected electrons as compared to the initial photons allow to

draw conclusions about the properties of the electronic structure of the material.

Photoemission experiments essentially measure the spectral density function

A(ω, k) =
1

π
ImGR . (3.8)

3.1.2 BCS superconductivity

The electrical resistivity of metals is determined by the scattering of the conduct-

ing electrons with phonons, the collective excitations in a lattice and impurities of

the material as well as the interaction between the electrons themselves. With de-

creasing temperature it is natural to expect that the electrical resistivity decreases

as the phonons freeze out. However, it should remain finite at zero temperature

due to the scattering with the impurities of the material. In the beginning of

the twentieth century the phenomenon of superconductivity was discovered. The

electrical resistivity of mercury suddenly became immeasureably small below a cer-

tain temperature, the critical temperature. Decades later Bardeen, Cooper, Robert

Schrieffler were the first to present a microscopic theory of superconductivity, the
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BCS theory [20,67].

In BCS theory, superconductivity is the result of each two electrons forming Cooper

pairs. These boson-like states in turn form a coherent ground state, allowing the

electrons to move collectively and thereby transporting charge with no electrical

resistivity. The crucial ingredient for the electrons to condense into a Cooper

pair is an attractive interaction that overcomes their Coulomb repulsion. The

attractive potential can be arbitrarily weak for the BCS theory to apply and the

origin of the attraction is not relevant either. However, in most materials the

interaction is mediated by the lattice. In this case the intuitive picture is given by

the following: As an electron moves through the lattice of positively charged ions,

the lattice is deformed because of the Coulomb attraction between electron and

ion. The electron thus leaves behind lattice ions that temporarily form a region

in which the positive charge dominates before they relax back into their normal

position. This in turn generates an attractive potential for another electron. The

two electrons enter a correlation with each other. It is crucial that this mechanism

is retarded in time. While the ions relax back into their equilibrium position the

first electron can travel, creating a sufficient distance to the second electron and

allowing this attractive interaction to overcome the Coulomb repulsion between

them [68].

At zero temperature, when the superconductor is in a macroscopic quantum state

consisting of a condensate of the Cooper pairs, the correlation of the electrons due

to the Pauli exclusion principle is turned into a correlation of all Cooper pairs

constructed from these electrons. Therefore in order to break up one Cooper pair

the energies of all other Cooper pairs has to be changed. As a result the single-

particle excitations in a superconductor cost a finite amount of energy in contrast to

normal metals, where the excitation of an electron can be realised with an arbitrary

small portion of energy. The minimal excitation energy is called the gap ∆ of

the spectrum. Based on the presence of a sufficiently weak attractive interaction

between the electrons, BCS theory allows to derive a quantitative prediction for

this most characteristic property of superconductors at zero temperature. It is

given by

∆(0) = 1.764 kbTc . (3.9)

Experimentally values between 1.5 and 2.5 are found [68]. The stronger the attrac-

tive interaction between the electrons, the higher is the value, until at some point
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BCS theory breaks down. We can see that within BCS theory the gap ∆ also sets

the critical temperature. In fact the size of the gap, and hence the strength of the

interaction, sets all relevant thermodynamic properties of the BCS superconductor.

Besides the critical temperature the knowledge of the temperature dependence of

the gap allows to derive the heat capacity, the free energy and the enthalpy. It is

also related to the Debye frequency which represents the maximal frequency with

which the atoms in the lattice can oscillate. This renders the gap the only relevant

scale of the system.

With increasing temperature, as the thermal fluctuations get stronger, they even-

tually become large enough to break up the Cooper pairs. In turn, with fewer

Cooper pairs around, the minimal excitation energy decreases and the gap in the

spectrum closes. At the critical temperature all the pairs and the gap are gone.

Just before the critical temperature is reached, the gap shows mean-field behaviour

∆(T ) ∼ (1− T/Tc)1/2 . (3.10)

In the superconducting state the notion of a Fermi surface is no longer applicable.

The dispersion relation, showing up in the denominator of the fermion correlator,

is then given by [14]

ω = vF (k − k∗F)2 + ∆− iΓ , (3.11)

where the gap ∆ and the pair-breaking term Γ are functions of temperature. The

latter can be regarded as the counterpart of the self energy Σ (3.4) for super-

conductors. It is related to the inverse lifetime of the Cooper-pairs. For BCS

superconductors it is generically very small [32]

Γ� ∆ (3.12)

and almost temperature independent. We will see in the next chapter that the

pair-breaking term shows a very different behaviour in high-temperature super-

conductors compared to BCS superconductors. The momentum k∗F is the remnant

of the Fermi momentum and now indicates the surface in momentum space with

minimal excitation energy. More precisely, if k = k∗F the minimal energy required

to excite an electron is given by the gap ∆ [68].

It seems plausible that for stronger and stronger correlations of the constituents,

the superconducting state can be uphold at ever higher temperatures. Mate-
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rials with a critical temperatures higher than about 30K are referred to as high-

temperature superconductors. There are a number of techniques within condensed

matter theory that address the phenomenon of high temperature superconductiv-

ity. However, these techniques lack a predictive and quantitative description of

their experimentally observed phenomena. We will discuss this in more detail in

the next subsection.

3.1.3 Challenges in CMT

Fermi liquid theory, introduced in subsection 3.1.1, describes a wide range of exper-

imentally studied metallic states. There are, however, also materials which behave

drastically different in their thermodynamic properties. These are referred to as

non-Fermi liquids. A natural question to ask is which of their aspects are respon-

sible for this deviation. Photoemission experiments, which indirectly measure the

behaviour of the retarded Green’s function, show that their spectral densities still

exhibit a peak, albeit much broader than the Fermi liquid quasiparticle peak at

the Fermi momentum. This indicates that the quasiparticle assumption no longer

applies, resulting in a breakdown of the Fermi liquid theory. It is a longstanding

challenge to understand the physics of phases without quasiparticles. It is believed

that non-Fermi liquids belong to the class of quantum matter, where long-range

and collective quantum entanglement governs the system’s properties on a macro-

scopic scale. There are two main classes of non-Fermi liquids. Heavy fermion

systems and the metallic or non-superconducting phase of high-temperature su-

perconductors.

At very small temperatures, heavy fermion systems can be described by a Fermi

liquid with high effective fermion mass m∗. As temperature is increased this de-

scription rapidly falls apart and the systems exhibits emerging collective proper-

ties which is characteristic of a local quantum critical state [14]. A local quantum

critical state is characterised by an emerging scaling symmetry of energy and tem-

perature while it is local in space. We will see in the next few sections that local

quantum criticality is a generic phenomenon of holographic metals.

One of the most distinctive properties of the metallic phase of high-temperature

superconductors, often referred to as strange metals, is that the electrical resistivity
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scales linearly in temperature over a wide range of temperature [69].

ρ ∝ T . (3.13)

This ‘linear T resistivity’ is remarkably simple, given the various kinds of electron

scatterings at different temperature scales in those complex materials. Morover

the residual resistivity ρ0 (3.7) at zero temperature vanishes. It is those simple

scaling behaviours which hint to quantum criticality where macroscopic scaling

takes over. Studying the spectral density of strange metals one finds the following

behaviour of the self energy

Σ(ω) = a log(ω) + i b ω , (3.14)

where a and b are real coefficients. This behaviour was given the name marginal

Fermi liquid behaviour.

At the same time, high-temperature superconductors cannot be described by con-

ventional BCS theory, which is also based on the quasiparticle picture. Its most

characteristic property, the high critical temperature is still lacking a theoretical

explanation so far. In chapter 4 we will discuss a comparably recent experiment

which quantified another characteristic feature, namely a strong temperature de-

pendence of the pair-breaking term Γ [32].

Holographic metals have proven to share a number of the properties of non-Fermi

liquid theories and high-temperature superconductors. The results of this thesis

join the ranks of those insights. It is worth noting that the holographic perspective

actually refers to the ‘strangest’ metals and optimally doped superconductors,

the regime where the deviations from Laundau’s Fermi liquid and BCS theory

are maximal. It is hoped that holography can nonetheless reveal the underlying

principles of non-Fermi liquid behaviour and high-temperature superconductivity

on a more general level.

3.2 Finite density systems in holography

Let us now take the holographic perspective on condensed matter systems and

address the question to what extend the problems raised above can be solved. An

essential ingredient for applying gauge gravity duality to condensed matter systems

is finite density. The simplest model to obtain such finite density or compressible
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matter phases is realised by Einstein-Maxwell theory [70]

S =

∫
dd+1x

√
−g

[
1

2κ2
(R− 2Λ)− 1

4
F 2

]
, (3.15)

where we extended the minimal model (2.34) by a Maxwell field A, minimally

coupeld to the gravity sector. It essentially introduces a chemical potential µ

whose dual operator is a finite charge density % in the field theory. The equations

of motion of the above action (3.15) are solved by

ds2 =
r2

L2

(
−f(r)dt2 + δijdx

idxj
)

+
L2

r2f(r)
dr2 , A = Atdt , (3.16)

with

f(r) = 1−
(

1 +
µ2

r2
hγ

2

)(rh

r

)d
+

µ2

r2
hγ

2

(rh

r

)2(d−1)

, (3.17)

At(r) = µ

(
1−

(rh

r

)d−2
)
, (3.18)

where γ2 = dL2/(d− 1)κ2. The solution describes a charged black hole of charge

Q2 = µ2/r2
hγ

2 and horizon radius rh which gives the dual boundary theory a finite

temperature. The spacetime asymptotes to AdSd+1 as r → ∞ and is called AdS-

Reissner Nordström (AdS-RN) spacetime. The chemical potential

µ = lim
r→∞

At (3.19)

acts as a bulk electrostatic potential which transports the information about the

charged horizon to the boundary field theory and sources an electric current at

the boundary. As only the time-component of A is switched on, only the charge

density operator % = J 0 is non-zero

% ≡ 〈%〉 = lim
r→∞

δSos

δAb
t

= lim
r→∞

( r
L

)d−3

A′t =
(d− 2)rd−2

h

Ld−3
µ . (3.20)

Moreover by equation (2.38) the temperature is given by

T =
1

4πrh

(
d− (d− 2)µ2

γ2r2
h

)
. (3.21)

Note that we have now two scales in our theory: the temperature T and chemical

potential µ. The conformal symmetry of the dual field theory is thus explicitly
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broken. However, as the bulk space still assymptotes to AdS space at the boundary,

the UV fixed point is still conformal. In the bulk, where the field theory is thought

to be on its way to the IR fixed point, the two scales demand to be treated as

just one. Every dimensionful quantity can now be expressed in units of either

the temperature or the chemical potential. In the literature both possibilities are

present. In this thesis we will canonically choose to express dimensionful quantities

in units of the chemical potential. Low or high temperature then really means

T/µ� or � 1, respectively.

For µ2/r2
h = γ2d/(d − 2), the AdS-RN black hole has the special property of

reaching zero Hawking temperature at a finite value of the horizon radius rh. This

is in contrast to for example the ordinary Schwarzschild solution (2.37), where zero

temperature is associated with zero horizon radius. In this limit the black hole is

called extremal and f ′(r∗) = 0, where the extremal horizon radius is denoted by r∗.

The extremal black hole has the unusual property, that its Bekenstein-Hawking

entropy (2.33) is nonzero at zero temperature

s∗ =
1

4G

(r∗
L

)d−1

. (3.22)

The holographic dictionary tells us to identify the Bekenstein-Hawking entropy

with the entropy of the dual field theory. Consequently the extremal RN black

hole is dual to a field theory with finite ground state entropy. A property which

is alien to any real world situations.

The geometry near the horizon of extremal black hole is an AdS2 × Rd−1 space

ds2
T=0 =

L2
2

ζ2

(
−dt2 + dζ2

)
+
L2

2

r2
∗
δijdx

idxj . (3.23)

where we introduced the radius L2 = L/
√
d(d− 1) of the emergent AdS2 space

and the radial coordinate ζ = (z − z∗) with z = L/r. ζ measures the distance

away from the extremal horizon z∗. The geometry near the horizon corresponds

to the IR regime of the field theory. It is invariant under the rescaling

t→ λ t , xi → xi , ζ → λ ζ . (3.24)

This particular scaling symmetry indicates local quantum criticality of the dual

field theory, where a scaling symmetry emerges only in the time direction but not

in the spatial directions which constrains the criticality to be local in momentum
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space1. This property that was experimentally detected for empirical strange met-

als as well. Thus to some extend the holographic AdS-RN metal is a strange metal

because of its properties in the IR, but in many ways it is not. We will see in

the next section that apart from the undesired behaviour of the entropy density

at zero temperature, the universal behaviour of the DC resistivity (3.13) is not

reproduced by the minimal Einstein-Maxwell model (3.15). Neither is the scaling

of the conductivity at large frequency [71]. A wide range of different holographic

models have been created and studied to address these shortcomings of the simple

Einstein-Maxwell theory [72–75]. Often they asymptote to the same boundary

behaviour, i.e. have the same UV completion, but differ in the IR, where most of

the properties of interest manifest themselves. Note that the underlying physics of

the gravity theory is different from the microscopic physics of any of the systems

we are trying to model. In a sense we simply express the processes in a different

language. The fact that this approach is successful, suggests that the dynamics of

the effective, not necessarily microscopic, degrees of freedom can be mapped onto

each other.

3.3 Holographic transport coefficients

The thermodynamic equilibrium of a system can be described with just a few

thermodynamic variables, such as the temperature and pressure. However in par-

ticular in the context of condensed matter physics the truly interesting properties

of a system can be revealed only by perturbing the system and observing its re-

action. The information about this reaction or response is encoded in so-called

transport coefficients. Different transport coefficients characterise the system’s

response to different perturbations. In the history of AdS/CFT an important co-

efficient is the shear viscosity η mentioned before, as it is part of the celebrated

η/s result. It measures the resistance of a material to an externally applied shear

force. Another important coefficient is the electrical or optical conductivity σ. It

characterises the electric current as the response to an externally applied electric

field. If the electric field is constant in time the systems responds with the direct

current (DC) conductivity σDC.

1This emergent scale invariance can be related to the Lifshitz scaling t → λzt, xi → λxi by
the redefinition λ→ λ1/z with z →∞. The parameter z is the dynamical critical exponent.
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3.3.1 Method

Transport coefficients are computed from Kubo formulae which are based on linear

response theory. Imagine a small external perturbation Jj which couples to some

operator Oi of a theory with Hamiltonian H0. In presence of the perturbation the

Hamiltonian is modified to

H(t) = H0(t) +Hext(t) = H0(t) +

∫
d(d−1)xOi(x)Jj(x) . (3.25)

Naturally the expectation value of this operator changes

〈Oi(x)〉J = 〈O(x)〉0 + i

∫
dt′Θ(t− t′) 〈[Hext(t),Oi(x)]〉 (3.26)

= 〈Oi(x)〉0 − i
∫

dd Θ(t− t′) 〈[Oi(x),Oj(x′)]〉 Jj(x′) , (3.27)

where in the last step the expansion of the time evolution operator to linear order

in Hext was used. Defining the retarded Green’s function GR
ij(x, x

′) = iΘ(t −
t′) 〈[Oi(x),Oj(x′)]〉, we can now write down the Kubo formula in momentum space

δ 〈Oi(k)〉 = −GR
ij(k) Jj(k) . (3.28)

For the locality in momentum space to valid, we need translational invariance of

the original theory H0. Note that the retarded Green’s function vanishes before

the perturbation is switched on at t′ < t and is computed with the unperturbed

Hamiltonian H0. In words, the Kubo formula gives a linear relation between the

response δ 〈O(k)〉 and the small external perturbation J . The correlator −iGR is

identified with the transport coefficient. A canonical example is Ohm’s law. The

small external source Ai induces an electric current δ 〈Ji(k)〉. As Ai is proportional

to the electric field Ei = −∂tAi ∼ iωAi the Kubo formula (3.28) gives

δ 〈Ji(k)〉 = − 1

iω
GR
ij(k)Ej(k) ≡ σij(k)Ej(k) , (3.29)

where we assumed that in absence of the external electric field there is no electric

current J .

Coming back to the holographic duality, the question we have to address is: How

can an external perturbation as discussed above be implemented in the a truly

microscopic field theory and what is its gravity dual? The answer is that we

do not need to actually implement it in this way. The reason is the fluctuation
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dissipation theorem [76] which states that the response of GR of a system to a small

external perturbation is given by the retarded Green’s function of a spontaneous

microscopic fluctuation around the equilibrium state. This in turn is a standard

exercise within quantum field theory. The GKPW formula (2.25) is thus essential

for the holographic dual of this procedure. For the causal correlator it states

GR
ij(x, x

′) = − i 〈TOi(x)Oj(x′)〉 = −i δ2ZQFT [J ]

δJj(x′)δJi(x)

= i
δ2Sos

gravity [φ]

δJj(x′)δJi(x)

∣∣∣∣
φ(r→∞)=J

.

(3.30)

T denotes the time ordering operation. Thus to compute a retarded correlator,

and hence transport coefficient, of a given quantum field theory with holographic

dual in the language of gravity we first need to perturb the field φ, whose boundary

value represents J . For the leading order of the response δ 〈O〉 the gravity action

has to be expanded to second order in those perturbations δφ, which results in

linear equations of motion for δφ.

As an example let us look again at the electrical conductivity of the finite den-

sity model introduced in 3.2. Note that every conceptual step in the following

discussion applies to any other transport coefficient as well. In the case of the

conductivity the Maxwell field A takes the role of φ and we start by2

Ax → Ax + ax . (3.31)

where ax satisfies the following equation of motion in momentum space

(
r2fa′x

)′
+
ω2

f
ax = 2κ2L4 (A′t)

2
ax . (3.32)

This equation is valid only for a perturbation constant in space. Close to the black

hole horizon rh the equations demand ax to behave as

ax ∼ e−iωt
(
aR (r − rh)−iω/4πT + aA (r − rh)+iω/4πT

)
h(r) , (3.33)

where T is the equilibrium temperature. Defining r̃ = log(r− rh)/4πT this can be

2The correct way to implement the perturbations is to introduce fluctuations for all the fields
of the gravity theory and all of their respective components of perturbations. In the present case,
with the background as given in 3.2, however, the equation of motion of ax can be shown to be
independent of any other fluctuation.
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rewritten as

ax ∼ aRe−iω(t+r̃) + aAe−iω(t−r̃) . (3.34)

In this notation it is clear that aR parametrises a wave that moves towards the

black brane horizon and aA one that moves away form it. The latter represents

an acausal process because classically nothing can leave the black hole. A finite

aA imposes a boundary condition at the past horizon. In contrast, the former

describes a causal process and a finite aR imposes a boundary condition at the

future even horizon. Choosing aA = 0 is the so-called ingoing boundary condition

that is gives rise to the retarded Green’s function of the boundary theory via (3.30).

The equation of motion (3.32) is a second order differential equation. To uniquely

fix the solution, two boundary conditions have to be imposed. The first is the

ingoing boundary condition. The second is given by the boundary value (non-

normalisable mode) ab
x of ax which is dual to the small external perturbation J

in the field theory. Equation (3.32) can be solved numerically only. The resulting

on-shell action is of the form

Sos
gravity =

∫
dω ab

x(−ω)F(ω, r)ab
x(ω)

∣∣∣∞
rh
, (3.35)

where F is a differential operator in the radial coordinate r. It was shown in [77]

via a Schwinger-Keldysh approach that the retarded Green’s function is given by

GR(ω) = −2 lim
r→∞
F(ω, r) . (3.36)

It is important to stress that the result in (3.36) is highly nontrivial. We just com-

puted a real time correlator in a thermal field theory which is naturally formulated

in terms of the Wick rotated time coordinate. Real time computations thus require

to deal with complex Euclidean time. To date AdS/CFT is the only framework

that allows to study real time properties of strongly correlated systems at all. This

is one of the main reasons for the importance of AdS/CFT on a practical level.

Equation (3.36) can be rephrased into a more practical prescription of how to

compute the transport coefficient of interest

Sos
gravity =

∫
dω c ab

x(−ω)as
x(ω)

∣∣∣∞
rh

⇒ GR(ω) = −2c
as
x(ω)

ab
x(ω)

, (3.37)

where as
x is the normalisable mode or subleading term of the boundary expansion
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of ax and c is some constant. The systematic generalisation to the case of several

coupled fluctuations and hence a whole set of coupled operators and sources on

the field theory side is explained in detail in [78].

3.3.2 Electrical conductivity in holography

From a gravity theory perspective the electrical conductivity is given by

σ(ω) = − 1

iω
GR
JJ (ω) = 2c

as
x(ω)

iω ab
x(ω)

. (3.38)

The Kramers-Kronig relations relate the imaginary and real part of the conduc-

tivity3. In particular, a pole in the imaginary part Imσ ∼ ω−1 implies a δ-peak

in the real part Reσ ∼ δ(ω) giving rise to an infinitely high DC conductivity.

There are two scenarios in which this happens. The first is the absence of momen-

tum dissipation. In this case, once there is an electrical current, understood as a

stream of moving charged particles, the current will persist, because there is no

mechanism to stop it. This results in perfect, i.e. infinite, DC conductivity. The

phenomenological Drude model provides a more quantitative explanation. The

average velocity v at which a charged particle moving through a material satisfies

m
dv

dt
= −mv

τ
+ eE , (3.39)

in terms of the particle’s mass m and its charge e. The average time τ between

collisions parametrises the momentum dissipation. With the current density given

by J = env, the electrical conductivity (3.29) behaves as

σ(ω) = ν
τ

1− iωτ
with ν =

e2n

m
. (3.40)

In chapter 5 we will find exactly this behaviour in a holographic context. As

dissipation is switched off by τ →∞, the conductivity acquires a pole σ ∼ −1/iω.

Holographically the origin of the pole is the effective mass term of the Maxwell

field fluctuation (3.32) generated by the background field At: In the zero frequency

3The Kramers-Kronig relations are given by the following: Reσ(ω) = P
π

∫
dω′ Imσ(ω′)

ω′−ω and

Imσ(ω) = −Pπ
∫

dω′Reσ(ω′)
ω′−ω , where P is the principal value.
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limit the subleading term, on dimensional grounds, behaves as

as
x ∼ r2fa′x

∣∣
r→∞ ∼ 2κ2L4r4 (A′t)

2
ab
x

∣∣
r→∞ , (3.41)

and thus as
x ∼ O(ω0) which by equation (3.29) leads to a pole in the imaginary

part of the conductivity proportional to the effective mass term4.

Infinite DC conductivity is also a characteristic of superconductors which we in-

troduce in the next section.

In appendix A we present a different approach to compute the DC conductivity

with holographic methods. It is based on the so-called Einstein relation which

allows to express σDC entirely in terms of quantities characterising the thermody-

namic equilibrium.

3.4 Holographic superconductivity

The discovery of holographic superconductor can really be seen as the start of Ad-

S/CMT, the application of holography to condensed matter problems. The holo-

graphic superconductor was first suggested by Gubser [15] and then implemented

as a holographic bottom-up model by Hartnoll, Herzog and Horowitz [16,17]. Let

us review this original minimal setup [64,79].

We start by extending the minimal bottom-up model (2.34) once more to

S =

∫
dd+1x

√
−g

[
1

2κ2
(R− 2Λ)− 1

4
F 2 − |Dχ|2 ±m2 |χ|2

]
, (3.42)

where we added a minimally coupled complex charged scalar field χ to the Einstein-

Maxwell theory (3.15). The covariant derivative is Dµ = ∂µ − ieAµ. It is still

consistent to only switch on the time component of the Maxwell field but the

metric ansatz has to be generalised to

ds2 =
r2

L2

(
−f(r)dt2 + g(r)δijdx

idxj
)

+
L2

r2f(r)
dr2 , A = At(r)dt . (3.43)

The equations of motion from the action (3.42) are solved by the AdS-RN solution

4The parameter κ parametrises the backreaction of the matter fields to the geometry. κ = 0
corresponds to ignoring their effect on the then fixed background (3.16). This explicitly breaks
diffeomorphism invariance of the bulk and thereby also its field theory dual the translation
invariance. Consistently, the 1/iω pole of the conductivity is removed (3.41).
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when χ ≡ 0. However, as the temperature is lowered a second branch of solutions

develops, the holographic dual of a superconducting state. To understand this let

us look at the equation of motion for χ independently

χ′′ +

(
4

r
+
f ′

f
+
g′

g

)
χ′ −

(
L2m2

r2f
− L4e2A2

t

r4f 2

)
χ = 0 . (3.44)

Note that of course the metric fields f and g and the Maxwell field At are dynamical

as well. However, the logic of the holographic superconductor forgoes without

considering their dynamics. There are two effects which contribute to an arising

instability of the scalar as temperature is decreased. Firstly, recall that a scalar in

an AdS background is only stable above the BF bound (2.31). Thus a scalar mass

M which satisfies that BF bound in the asymptotic AdS4 with radius L geometry

can still violate the BF bound of the emerging AdS2 space with radius L2 in the IR

(3.23). This has the consequence that as temperature is lowered and the geometry

resembles more and more the IR geometry (3.23) the scalar can become unstable5.

The second effect is due to the coupling to the Maxwell field At which effectively

reduces the mass of the scalar (3.44). At grows with decreasing temperature until

eventually causes the effective mass to violate the BF bound. The instability

results in a non-trivial profile of the scalar field χ(r) 6= 0. To summarise, we find

the following allowed range for the scalar mass

−9

4
< L2m2 < −3

2
+

3e2L6

4κ2
, (3.45)

where the upper bound is derived from the BF bound of AdS2 space and the

contribution of the Maxwell field evaluated at T = 0. Choosing L2M2 = −2, in

accordance with this range (3.45), the scalar’s boundary behaviour according to

(2.28) is given by

χ =
χ1

r
+
χ2

r2
+O

(
r−3
)
. (3.46)

We do not want to source the non-trivial profile explicitly so we impose the bound-

ary condition χ0 = 0, switching off the non-normalisable mode. Nonetheless below

a certain temperature, χ1 can be finite which leads to a spontaneous breaking of

the U(1) gauge symmetry. The dual field theory operator has the interpretation

5With this logic it seems possible that there is a scalar instability even for a neutral scalar
e = 0. This indeed was found and discussed in [17].
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of a condensate ∆

∆ ≡ χ2 . (3.47)

Comparing the field theory grand potential (2.36) of the two branches of solutions

it can be shown, that the dual of the solution with the scalar condensate indeed

is energetically preferred over the dual of the AdS-RN solution. The transition to

the new ground state behaves like a second order phase transition which goes in

line with the mean field behaviour of the scalar condensate6

∆ ∼ (1− T/Tc)1/2 (3.48)

close to the critical temperature Tc.

The development of the scalar profile can be thought of as a discharging process

of the black hole due to pair production close to the horizon. The result goes

as a ‘hair’ of the black hole. Note that this is not in contradiction with the ‘no-

hair’ -theorems, which state that black holes in flat space have to be uniquely

characterised by a few charges, like their mass or electrical charge. In flat space,

matter can only either fall into the black hole or radiate away to infinity. In AdS

space however, the situation is different because the charged matter is trapped

within the boundary but at the same time pushed away from the black hole by

the electromagnetic force. As a result it is allowed to equilibrate in the vicinity

of the horizon. This ‘work around’ the no-hair theorem lead to the discovery of

many now black hole solutions.

It remains to show that the name giving feature of superconductor holds for this

new type of solution: the infinite DC conductivity. Let us look at the equation of

motion for the perturbation ax of the Maxwell field, analogously to the last section

(3.32)7

(
r2fa′x

)′
+
ω2

f
ax =

(
2κ2L4 (A′t)

2
+ 2e2|χ|2

)
ax +

L2e2At|χ|2

r2f
δgtx . (3.49)

Comparing this equation to the one in the previous section it is clear that the

scalar field term contributes to the effective mass of ax, in fact increases it. The

6The mean field behaviour is a consequence of the large-N limit [79].
7In contrast to the holographic setup in 3.3.2, it is now no longer possible to consistently

switch on only the Maxwell field fluctuation. However, we use equation (3.49) at this point only
on a conceptual level.
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logic of (3.41) applies here despite the additional term proportional to the metric

fluctuation δgtx. We can conclude that the presence of the condensate indeed

contributes to the infinite DC conductivity and hence represents a superconducting

phase of the dual field theory.

In addition to the infinite conductivity, a superconductor is also characterised by a

gap in the fermion spectrum (3.11). This gap reappears in the frequency dependent

behaviour of the electrical conductivity: Aside from the δ-peak at ω = 0, at low

frequency the optical conductivity vanishes for frequencies smaller than the gap.

This can be thought of shifting the superconducting degrees of freedom at low

energy into the δ-peak. Holographic superconductors do not show a true gap in

the optical conductivity. However, it is suppressed exponentially and the order of

magnitude of the gap is set by the condensate ∆ (3.47) [17], this may be called a

pseudogap behaviour [14].

The situation where one part of the charge is still behind the horizon while the

other part escaped and formed a condensate in the bulk corresponds to a state

where part of the charge carriers is still in the normal phase while the other part

forms a superconductor. Once again the microscopic physics of holographic super-

conductor may be different from BCS theory, where charged quasiparticles form

Cooper pairs. The systems with a holographic dual are truly quantum and have

no quasiparticles.

At closer inspection we just discussed spontaneous symmetry breaking of the U(1)

gauge symmetry in the bulk. However, according to the holographic dictionary,

gauge symmetries of the gravity theory are dual to global symmetries of the quan-

tum field theory [50]. The photon in holographic superconductors is thus not

dynamical and the holographic superconductor really is a holographic superfluid.

Luckily this is not relevant for many of the properties of a real superconduc-

tor [79, 80]. For example the Meissner-Ochsenfeld effect, where magnetic fields

are expelled form the superconductor is captured by the holographic model as

well [17].
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3.5 Holographic probe fermions

3.5.1 Probe fermions in AdS/CFT

With the origin of the AdS/CFT correspondence in mind it seems natural that

somehow the duality in principle also includes fermions. In the context of this

thesis we consider ‘probe’ fermions only. By this we mean that the fermionic fields

are understood not to backreact on neither the geometry nor any other bosonic

matter field that may be part of the holographic model at hand. We mentioned

in the course of the first section of this chapter that a fermionic system naturally

has a quantum nature. Probe fermions in holography can thus be thought of as

a quantum correction of the bulk theory which is dual to 1/N corrections of the

boundary theory [14]8.

The first step is to naively write down the action for a charged probe fermion ψ

in a finite density holographic background

Sbulk = N
∫

d4x
√
−g i

[
ψ̄ΓµDµψ −mψ̄ψ

]
, (3.50)

where the covariant derivative is given by

Dµ = ∂µ +
1

4
ωabµΓab − i eAµ . (3.51)

The spin connection ωabµ accounts for the fact that the fermions are placed in a

curved space. It describes the way in which the basis of the flat tangent space is

oriented along a path in the curved spacetime. Roman indices a, b, ... indicate the

flat tangent space, while greek indices µ, ν, ... label the indices of the real curved

space. The gamma matrices Γµ in the action are related to the gamma matrices Γa

in the flat tangent space via the vielbein eaµ, defined by gµν = eaµe
b
νηa,b, Γµ = eµaΓa.

The overall factor N is a normalisation factor which is fixed to be negative by the

requirement of bulk unitarity [84].

The field-operator map in the case of fermions is more subtle than in the case of

bosonic fields and operators discussed in 2.2.2. Unsurprisingly a bulk spinor field

is dual to a spinor operator in the boundary theory. The GKPW formula for a

8Taking holographic fermions beyond the probe limit is highly non-trivial and to date it is
not entirely clear how to approach this matter in full generality. For work in this direction see
for example [81–83].
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spinor operator O is given by

exp
(
iSos

gravity [χ0, χ̄0]
)

=

〈
exp

(
i

∫
ddx

(
χ̄0O + Ōχ0

))〉
, (3.52)

where ψ0 is understood to be the boundary value of the fermionic field ψ. However,

a spinor in d dimensions has 2[(d+1)/2] complex components, where [x] denotes the

integer part, and thus the boundary spinor only has half of the components of

the bulk spinor. This poses a question about what the field-operator map means

in the case of fermions. In appendix B we explicitly show that one half of the

components of the bulk spinor ψ is the conjugate momentum of the other half.

Roughly speaking this means that only one half of the components are independent.

On a technical level, this means that one can only impose boundary conditions for

half of the components thereby automatically fixing the values of the other half

at the asymptotic AdS boundary. Moreover, a bulk Dirac spinor field ψ is dual

to a chiral spinor operator O for even boundary dimensions d and dual to a Dirac

spinor operator O for d odd [84].

The dimension to bulk mass relation of the fermion operator similarly to the scalar

field is given by [48]

∆f =
d

2
+mL . (3.53)

3.5.2 Holographic Fermi surface

Remarkably, the probe fermions allow to holographically analyse the ‘electrical’

structure of the holographic materials. This is sometimes referred to as the ‘holo-

graphic photoemission experiment’ and requires a holographic version of the spec-

tral density function (3.8) defined in the beginning of this chapter. From here on

we fix the number of boundary dimensions to d = 3.

The Dirac equation according to the action (3.50) is given by

0 = (ΓµDµ −m)ψ . (3.54)

Following reference [85] we choose the basis of the gamma matrices to be

Γa =

(
0 γa

γa 0

)
, Γr =

(
1 0

0 −1

)
, ψ =

(
ψ+

ψ−

)
. (3.55)
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where the a = t, x, y. The underlined indices label the explicit directions in the

flat tangent space and γa are the gamma matrices of the boundary field theory.

The decomposition of the spinor ψ in the two two-component spinors ψ+ and

ψ− follows from the discussion in the appendix (B.1). The spin connection in

the equation of motion can be removed by rescaling the the two two-component

spinors ψ± = (−ggrr)−1/4F± which after a Fourier transformation F±(x, r) =∫
dωdke−iωt+ik·xF±(ω, k, r) gives

0 =

√
gii
grr

(∂r ∓m
√
grr)F± ± i

(
−
√

gii
−gtt

(ω + eAt) γ
0 + k · γ

)
F∓ . (3.56)

In order to construct the spectral density function we need to compute the retarded

Green’s function. The first step is to determine the near boundary behaviour of

the spinors. It is entirely determined by the first term in the equations of motion

(3.56), as the coupling to the Maxwell field At is subleading

F+ = a rm + b r−m−1 , F− = c rm−1 + d r−m , (3.57)

where each two of the two-coefficients are directly related by

b =
ikµγ

µ

2m+ 1
d , c =

ikµγ
µ

2m− 1
a , (3.58)

with kµ = (−(ω + µ), k). It becomes clear that the four component spinor indeed

only has two independent coefficients at the boundary in accordance with previ-

ously explained fact that the dual spinor on the field theory side has only half as

much components as the bulk spinor. The source, by definition the leading term,

and the one point function of the boundary operator O according to (2.30) and

(3.52) are

χ0 = a = lim
r→∞

r−mF+ , 〈O〉 = d ∼ F− . (3.59)

The two point function G is defined by

d = i GOO†γ
0a . (3.60)

The additional factor of γ0 [85] corrects the two point function G ∼
〈
{O, Ō}

〉
one gets from the holographic prescription to the one we are actually interested

in G ∼
〈
{O, O†}

〉
. To get the retarded Green’s function one has to choose the
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appropriate boundary conditions at the horizon. This is explained in more detail

in the next chapter by means of an explicit example. The Green’s function in the

setup discussed here turns out to be diagonal [85], where the two entries can be

mapped onto each other by kx → −kx9. Choosing the component, where the non-

trivial structure of the Green’s function is located at positive values for k = kx,

we can finally define the holographic spectral density as

A(ω, k) =
1

π
ImG22(ω, k) . (3.61)

The analysis of the spectral density function revealed something that may be called

a ‘holographic fermi surface’ [85,86]. In fact, it seems that the probe fermion ansatz

together with the knowledge about the holographic strange metal is capable of

interpolating between what behaves as a Fermi liquid, albeit a non-Landau Fermi

liquid, to a marginal Fermi liquid and finally to a true non-Fermi liquid. They

manifest themselves as characteristic features of the spectral density function A
depending on the parameter regime.

At large temperatures T/µ� 1 the system is completely determined by the con-

formal symmetry. In this case the spectral density is given by

A(ω, k) ∼
√
k2 − ω2

2(2∆f−d−2)
(3.62)

where ∆f is the scaling dimension of the boundary fermion operator (3.53).

At small temperatures T/µ � 1 one has to distinguish between large and small

∆f corresponding to an irrelevant and relevant operator in the UV, respectively.

Different scaling dimensions can be realised by different masses m of the fermionic

field. For a charged fermion in the presence of a Maxwell field this classification

has to be generalised to consider the limit of large or small values of the ratio

m/e [14].

In reference [19] a matching method was developed which allows to obtain a semi

analytical expression for the correlators at low frequencies ω/µ � 1. The idea is

to compute the low energy Green’s function in the IR and the UV and in the end

numerically determine the unknown coefficients. This allows to trace the origin of

the spectral density’s Fermi liquid like behaviour and to for example read off scaling

9Note that without loss of generality one can set ky = 0, as the problem is rotationally
invariant.
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exponents. For m/e� 1 the spectral density generically takes this form [19]

A(ω, k) ∼ ω2νk , (3.63)

where the scaling exponent νk, according to equation (57) of [19] and adapted to

the notation and conventions in this thesis, is given by

νk =

√
m2L2

6
+
k2L2

6r2
∗
− e2L2

3
, (3.64)

with r∗ the extremal AdS RN horizon radius. This is called the pseudogap be-

haviour [14].

In the case of m/e � 1 the spectral density shows sharp peak at zero frequency

but finite momentum k/µ ∼ 1, much like a Fermi liquid. Upon closer inspection, it

turns out that this peak does not behave in the Landau Fermi liquid manner [14].

Expanding the general expression of the Green’s function in the IR around kF,

where kF denotes the location of the pole, gives

GR(ω, k) ' Z

ω − vF(k − kF)− Σ(ω, k)
+ ... , (3.65)

where the residue Z is a complex number. The frequency behaviour of the self-

energy Σ is given by

Im Σ(ω, k) ∼ ω2ν with ν ≡ νkF
. (3.66)

Recall that the Laundau Fermi liquid is characterised by Im Σ ∼ ω2 (3.5). De-

pending on the value of ν, the system exhibits three different regimes. For ν > 1/2

the life time of excitations, given by the inverse of the imaginary part of Σ is larger

than their energy ω. In this regime the quasiparticle picture should be applicable

and the system can be classified as a (non-Landau) Fermi liquid. For ν < 1/2

the inverse lifetime to energy relation is reversed which prohibits a quasiparticle

nature of the excitations. The peak in the spectral density can be interpreted as

some structure in momentum space which allows for massless excitations. This

regime is classified as the non-Fermi liquid regime.

In the case of ν = 1/2 the above expansion (3.65) is not quite right as for this

special value of the scaling exponent a cancellation of divergencies takes place
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resulting in a self energy of the form

Re Σ ∼ ω logω , Im Σ ∼ ω , (3.67)

Remarkably this is precisely the behaviour observed experimentally for marginal

Fermi liquids (3.14), appearing seemingly naturally in the holographic perspective.

In the next chapter we present a thorough analysis of the spectral density function

in the context of a holographic superconductor. We engineer the parameters of the

setup such that the normal state corresponds to the holographic marginal fermi

liquid.
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Chapter 4

Fermionic excitations of a

holographic superconductor

4.1 Introduction and summary

It is widely believed that the materials with a high-temperature superconducting

phase are governed by strongly interacting quantum field theories. This is partly

supported by the fact that, in their normal state, the temperature dependence

of the transport coefficients differs from the prediction of Landau-Fermi liquid

theory1 (see e.g. [89] and references therein). At the same time, gauge/gravity

duality and in particular AdS/CMT has revealed a close relationship [14, 54] be-

tween field theories describing ‘metals’ with a holographic dual and the normal

state of high-temperature superconductors, usually referred to as strange metals.

Thus one could expect that holography is capable of describing properties of high-

temperature superconductors as well.

A recent experiment [32] on high-temperature superconductors offers an ideal play-

ground to test how close the relation between holographic and real superconductors

really is. It quantified for the first time the long observed strong temperature de-

pendence of the pair-breaking term Γ(T ) in high-temperature superconductors in

greater detail. Moreover, it relates this feature to their special properties, see

also [90, 91]. This behaviour is vastly different from BCS superconductors. The

two measured quantities, namely pair-breaking term Γ, related to the inverse life-

1From the renormalisation group flow point of view, all small perturbation around free
fermions at finite density are irrelevant [87, 88]. This explaines why the Landau-Fermi liquid
theory is capable of describing all conventional metals.

53
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time of the Cooper-pairs in the case of conventional superconductors2 , and the

gap ∆ in the excitation spectrum, are straightforwardly related to the spectral

density function A, whose gravity dual we established in 3.5. The idea we pursue

in this chapter is to describe the experimental results of [32] for optimally doped

high-temperature superconductors with holographic methods. More precisely, we

attempt to compare the results on a quantitative level.

To this end we use the concept of probe fermions in a gravity setup representing a

fermionic excitation of a ground state of the holographic metal 3.5, which may be

referred to as a ‘holographic photoemission experiment’. The fermionic excitation

in the gauge/gravity duality setup has been intensively studied over the past few

years. In what is referred to as bottom-up constructions [19,85,86,92], one utilises

the freedom in the bulk action to engineer fermionic excitations similar to those

found in families of non-Fermi liquids. Interestingly, [93] showed with a different

approach called semi-holography that the fermion two-point functions obtained

holographically can also be found in a simple QFT construction consisting of a

singlet fermion coupled to a strongly interacting sector dual to the IR geometry.

Such a construction works extremely well to capture holographic results at zero

temperature, see also [94] for a more recent discussion.

In this chapter we work with the bottom-up approach, more precisely we put

probe fermions following the pioneering work of [33] in a holographic supercon-

ductor background constructed with the minimal setup of [17]. The reason to

work with this minimal setup is to minimise the risk of observing additional fea-

tures originating from more complicated gravity constructions and to avoid larger

numbers of model-parameters. In chapter 5 we generalise our analysis to a holo-

graphic superconductor model whose normal state is more similar to real strange

metals as compared to the one studied in this chapter. Moreover, the choice to

follow reference [33] for the probe fermion setup is due to the fact, that this setup

was shown to possess a physically sensible holographic version of a gap ∆, which

is essential for our analysis. In contrast to the original work [33] we work at finite

temperature.

After briefly introducing the holographic background we work with in section 4.2,

we describe the fermion setup in detail in section 4.3. In section 4.4 we explain

the different steps of our analysis, discuss the model-parameters and establish

the map between the holographically accessible quantities and the experimentally

2Even though there is at the moment no general theory of high-temperature superconductors,
it is believed that generalisations of the ideas of BCS theory 3.1.2 are at work in those materials.
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measured ones. Section 4.5 contains our results: we explore the effect of the model

parameters on the temperature dependence of gap ∆ and pair-breaking term Γ

and find that the latter seemingly naturally behaves similar to what was observed

in the experiment. Moreover, we show that tuning the parameters leads to a

quantitive accordance between holographic and experimental results. A summary

is given in section 4.6.

The author of this thesis wrote the code to reconstruct the backgrounds of [17],

to compute the spectral density function and extract its pole structure which is

the central object of this chapter. Moreover the author analysed the resulting pole

structure with respect to the model parameters and identified the set of parameters

which yield to good quantitative agreement with the experimental results.

4.2 Superconducting background

Setting out to quantitatively describing the experimental results in [32] with holo-

graphic methods, we decided to work with the minimal setup to realise a holo-

graphic superconductor introduced in the previous chapter 3.4. In short, one

places a charged scalar field into an AdS-RN background. At sufficiently low tem-

peratures this setup develops an instability which on the field theory side leads to

a phase transition to superconductivity. The action we use in this chapter is given

by

S = Ssc + Sbdy , (4.1)

where Ssc is the action given in (3.42) and Sbdy contains the counter terms to

renormalise the theory

Sbdy =

∫
∂aAdS

d3x
√
−γ

(
2K − 4

L
− |χ|

2

L

)
. (4.2)

Note that we now work in a convention where the factor 1/2κ2 multiplying the

gravity terms in (3.42) is scaled out and the matter fields are redefined accordingly.

This choice is also responsible for the extra factor of 2 of the gravity related

boundary terms in (4.2) as compared to for example [59]. As mentioned before,

when computing one-point functions and correlators using the GKPW formula

(2.25), the functional derivatives have to be evaluated at a slice located at r = 1/ε,
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just inside the boundary of the asymptotic AdS space. Including the boundary

terms Sbdy to the functional derivative, also evaluated at r = 1/ε, causes the

divergencies to cancel. The equations of motion for this action are

0 =A′′t +

(
2

r
+
g′

g

)
A′t −

e2χ2At
r2h

,

0 =χ′′ +

(
4

r
+
g′

g
+
h′

h

)
χ′ −

(
L2M2

r2h
− e2L4A2

t

r4h2

)
χ ,

0 = g′′ − g′2

4g
+

(
4

r
+
h′

2h

)
g′ +

(
3

r2
− 3

r2h
+
e2L4A2

tχ
2

4r4h2
+
L2M2χ2

4r2h
+
L4A′2t
4r2h

+
h′

rh
+
χ′2

2

)
g ,

0 =h′′ +

(
5

r
+
g′

2g

)
h′ +

(
3

r4
− g′2

4g2
+
χ′2

2

)
h− 3

r2
+
L2M2χ2

2r2
− e2L4A2

tχ
2

r4f

− 3L4A2
t

4r2
,

0 =
3

r2
− 3

r2h
− e2L4A3

tχ
2

2r4h2
+
L2M2χ2

2r2f
+
L4A′2t
4r2h

+
2g′

rg
+
h′

rh
+
g′h′

2gh
+
g′2

4g
.

(4.3)

The complex scalar field in the radial gauge Ar = 0 can be chosen to be real.

In the subsequent sections we study probe fermions in the superconducting state

of the above setup. At zero temperature this was done before in [33] on which this

project is based. We do not give any details on how to numerically construct the

superconducting state in this chapter as we discuss the procedure in the context of

a different holographic superconductor in the next chapter. The superconducting

background used in this chapter is discussed in detail in e.g. [17].

4.3 Fermion setup

4.3.1 Action

For the analysis of the fermions ψ we use the following action for the fermions

Sfermion =

∫
dx4
√
−g
[
i ψ (ΓµDµ −mf )ψ

+
(
η∗5χ

∗ψTCΓ5ψ + η5χψCΓ5ψ
T
)]

,

(4.4)
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with the covariant derivative

Dµ = ∂µ +
1

4
ωµabΓ

ab − iefAµ , (4.5)

and mf and ef the fermion mass and charge, respectively. This is the action which

was constructed and used in the pioneering work [33]. The particular form of the

coupling of the charged scalar χ and the fermion parametrised by η5, first of all,

is allowed by U(1) gauge invariance if one demands

eb = 2 ef , (4.6)

where the index b refers to the bosonic scalar χ. In principle there are a number

of other terms which are allowed as well. We discuss some of them in the last

section 4.6. However, it seems that at least in the limit T → 0 only the one

we included here (4.4) results in a dispersion relation conceptually similar to the

one of the BCS superconductor (3.11). The same schematic form is also observed

experimentally for high-temperature superconductors. As was pointed out in [33]

the physical interpretation of this coupling is that it describes the pairing up of

modes at the Fermi surface in resemblance of conventional superconductors.

The effect of the charge conjugation operation C on the spinor and the gamma

matrices can be expressed as

ψc = CΓtψ∗
(
CΓt

)
Γµ
(
CΓt

)−1
= Γµ∗, (4.7)

For convenience we use the same gamma matrix basis as [19,33], namely

Γt =

(
iσ1 0

0 iσ1

)
Γx =

(
−σ2 0

0 σ2

)
Γy =

(
0 σ2

σ2 0

)
Γr =

(
−σ3 0

0 −σ3

)
,

(4.8)

written in terms of the Pauli matrices σi. The chirality matrix is given by

Γ5 =

(
0 iσ2

−iσ2 0

)
. (4.9)

This basis is designed to give a relatively simple set of equations of motion for

the case where the momentum k is aligned with the x-axis. This choice is allowed

because of the rotational symmetry of the problem. In the following we use k ≡ kx.

Moreover this basis allow us to write the charge conjugation matrix as CΓt = Γr.
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The Γ-matrices of real and tangent space are related as explained below equation

(3.51).

4.3.2 Equations of motion

The equations of motion for the fermionic field ψ is given by

0 = (ΓµDµ −mf )ψ − 2iχ η5 Γ5CΓtψ . (4.10)

As the metric only depends on the radial coordinate, the spin connection takes the

simple form

1

4
ωabµe

µ
cΓcΓab =

1

4
Γr∂r log(−ggrr) . (4.11)

It can removed from the equations of motion by the field redefinition F = (−ggrr)1/4ψ

resulting in

0 =
(
ΓµD′µ −mf i

)
F − 2iχ η5 Γ5CΓtF , (4.12)

with D′µ = ∂µ − iefAµ. By expanding the spinor into its Fourier modes F(x, r) =∫
dωdke−iωt+ik·xF(ω, k, r) and by decomposing the Dirac spinor into two two-

component spinors F = (F1 F2)T , the equations further reduce to

0 =
(√

grrσ3∂r +mf ±
√
gxxiσ2k −

√
gttσ1efAt

)
F1,2(k, r)

∓ 2iσ1χ η5F∗1,2(−k, r) .
(4.13)

Note that the complex conjugated spinors are evaluated at minus the momentum

k. It is clear that F1 couples to F∗2 and F2 to F∗1 , but the two pairs decouple from

each other. The two sets of equations can be mapped onto each other by applying

the transformation k → −k and η5 → −η5. This is similar to the discussion in

section 3.5. We will also need the equations of motion for the complex conjugated

spinor F∗ which is obtained by simply complex conjugating the above equations

of motion (4.13).
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4.3.3 Green’s function

The construction of the Green’s function is slightly different in this case as com-

pared to the one sketched in 3.5. The reason is the coupling to the charged

conjugated spinor, which doubles the number of spinors involved. Let us review

the analysis of [33] and go through the steps in detail to gain intuition about the

nature of the η5 coupling.

Given the choice of gamma matrices (4.8), the projection operators Γ± = 1
2

(1± Γr)

on the two modes ψ± are

Γ+ =


0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 , Γ− =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

 . (4.14)

This means that the spinor F , as opposed to equation (3.55), has the structure

F = (F1 F2)T = ((F1)1 (F1)2 (F2)1 (F2)2)T

∼ ((ψ−)1 (ψ+)1 (ψ−)2 (ψ+)2)T ,
(4.15)

where the last step relates the notation in this chapter to the notation in the

appendix B.1. The boundary behaviour of F according to the equations of motion

(4.13) takes the standard form

F(k) ∼ rmf


0

a1

0

a2

 + r−mf


d1

0

d2

0

 , (4.16)

because the coupling terms parametrised by ef and η5 are subleading. Note that

we ommited the terms corresponding to the ones labelled by the prefactors b and

c in (3.57). They do not explicitly contribute to the correlator and are directly

proportional to d and a, respectively (3.58). Thus as in equation (3.59) the non-

normalisable or leading mode is related to the ψ+ mode while the normalisable or

subleading mode is related to ψ−.
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The charge conjugate spinor extends the field operator map (3.52) to

exp
(
iSos

gravity [χ0, χ̄0]
)

=

〈
exp

(
i

∫
ddx

(
χ̄0O + Ōχ0 + (χ̄c)0Oc + Ōc (χc)0

))〉
,

where

χ0 = lim
r→∞

r−mf

(
(F1)2

(F2)2

)
, (χc)0 = lim

r→∞
r−mf

(
(F∗1 )2

(F∗2 )2

)
, (4.17)

and Oc = CγtO∗ is the complex conjugated spinor at the boundary. At the

boundary the charge conjugation operator Cγt can be shown to be given by the

unity matrix.

Due to the coupling to the charge conjugate operator the complete Green’s function

is now a 4× 4 matrix. It is given by

(
GOO† GOO†c
GOcO† GOcO†c

)
=


GO1O†1

0 0 GO1O2

0 GO2O†2
GO2O1 0

0 GO†1O
†
2
GO†1O1

0

GO†2O
†
1

0 0 GO†2O2

 , (4.18)

Recall that in subsection 3.5.2 the Green’s function (3.60) was a diagonal 2 × 2

matrix. It corresponds to the top left part of the above matrix. Moreover, just

like the two entries of (3.60) can be mapped onto each other by k → −k, we

can map the two sectors here in the same way, if we additionally take care of the

mapping prescription for the coupling η5. There is then a small subtlety on which

Green’s function one should study. In [19,85,95,96], it was demonstrated that the

2-point function extracted from spinors F1 and F2 have poles for ω → 0 at different

momenta. This becomes apparent by writing the spinor ψ in the Nambu-Gorkov

form where in the absence of condensate, the 2-point function of one sector has a

pole at {(ω = 0, k > 0)} while the other has a pole at {(ω = 0, k < 0)} [96]. Here

we will focus on the Green’s function which has non-trivial structure in the k > 0

region, which can be obtained by studying the {F2,F∗1} channel.

GR,2 =

(
GO2O†2

GO2O1

GO†1O
†
2
GO†1O1

)
. (4.19)

This choice essentially corresponds to focussing on the (2, 2) entry of the Green’s

function in 3.5.2. The construction of the Green’s function can now be performed
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analogously to the procedure outlined in that subsection. However, due to the

coupling of the two spinors, the 2× 2 matrix is not diagonal.

The normalisable and non-normalisable modes are related by the Green’s function(
d2

d1∗

)
= GR,2

(
a2

−a1∗

)
, (4.20)

where the index ‘R’ refers to the retarded Greens function and the index ‘2’ to

the fact that we are interested in the (F2, F∗1 ) channel. The minus sign is a result

of anti-commuting source and operator in (4.17) such that the Green’s function

has the correct form. To explicitly construct all four components of the retarded

Green’s function one needs two linearly independent sets of solutions I and II.

With those we can define a 2× 2 matrix

G =

((
F I2
)

1

(
F II2

)
1(

F∗I1

)
1

(
F∗II1

)
1

)−1( (
F I2
)

2

(
F II2

)
1

−
(
F∗I1

)
2
−
(
F∗II1

)
2

)
, (4.21)

where we used equation (4.16). By construction G is related to the retarded Greens

function GR,2 by

GR,2 = lim
r→∞

r2mf G . (4.22)

The equations of motion for the 2-component spinors (4.13) can be rearranged to

equations of motion for G. This requires a dynamical equation for F∗ which can

be obtained from (4.13) by a complex conjugation and the redefinition k → −k.

This results in the following expression

0 =
(√

grr∂r + 2mf

)
G

+ G

(
√
gxxkσ3 −

√
gtt
(
ω + efAtσ

3
)

+ 2iψ

(
0 η5

−η∗5 0

))
G (4.23)

+

(
−
√
gxxkσ3 −

√
gtt
(
ω + efAtσ

3
)
− 2iψ

(
0 η5

−η∗5 0

))
.

The analytic structure of each component in GR,2 is qualitatively similar. We

follow the logic outlined above and define the spectral density as

A(ω, k) ≡ 1

π
ImGO2O†2

(ω, k) =
1

π
Im (GR,2)1,1 , (4.24)
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in accordance with (3.61).

Solving the first order differential equation of G requires one boundary condition

which we impose at the black hole horizon. Being interested in the causal response

function we choose the ingoing boundary condition for the spinor F . Let us go

through the steps to see how those manifest themselves in G. The ansatz for the

near-horizon behaviour of F1,2 is given by

F∗1 = (r − rh)α1
(
ch
F1∗,0 + ch

F1∗,1

√
r − rh +O (r − rh)

)
, (4.25)

F2 = (r − rh)α2
(
ch
F2,0 + ch

F2,0

√
r − rh +O (r − rh)

)
, (4.26)

where the chs are two-component vectors. Plugging this into the equations of

motion 4.13 and solving the leading coefficients we find two possible values for

each exponent α1,2

α1,2 = ± iω

4πT
. (4.27)

For F2 the situation is exactly the same as in (3.34). The ingoing boundary

condition corresponds to α2 = −iω/4πT . For F∗1 this is slightly more subtle.

We need to impose the ingoing boundary condition for the spinor F(k, r) =

(F1(k, r)F2(k, r))T , but (4.26) really is an equation for (F1(−k, r))∗. The effects

of the complex conjugation and the evaluation at minus the momentum k cancel,

and thus the ingoing boundary condition is realised by α2 = −iω/4πT as well. For

the components leading coefficients ch we get the relations

(
ch
F1∗,0

)
1

= ∓i
(
ch
F1∗,0

)
2
,
(
ch
F2,0

)
1

= ±i
(
ch
Fh2,0

)
2
. (4.28)

The two possibilities for the relative sign are determined by the choice of the sign

of the exponent α. The ingoing boundary condition corresponds to the second

option. As advertised above, the set of equations has two linearly independent

sets of solutions which may be constructed by

I
(
ch
F1∗,0

)
1

= 1 and
(
ch
F2,0

)
1

= 0 , (4.29)

II
(
ch
F1∗,0

)
1

= 0 and
(
ch
F2,0

)
1

= 1 , (4.30)

respectively. Plugging the relation between the leading order coefficients (4.28)
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into the definition of the Green’s function matrix G we find

G(rh) =

(
i 0

0 i

)
. (4.31)

In the following sections we present the numerical analysis of the spectral density

function for the system (4.1) and (4.4). To compute A, we solve the equations of

motion for G numerically by intergrating the equations starting at the horizon rh

using equation (4.31). However, in holography it is the least of cases possible to

start to integrate the equations at the horizon rh itself due to its singular nature.

Instead, one starts integrating at rh + ε which is why we solve for the higher order

coefficients in the horizon expansion of G as well. The next to leading order of the

expansion is given in the appendix B.2.

4.4 Analysis

4.4.1 Model parameters

The holographic model, consisting of the AdS-RN superconductor (4.1) and the

probe fermions (4.4), has five external parameters

{eb , mb , ef , mf , η5} , (4.32)

We already noted that the two Maxwell charges are not independent (4.6). More-

over the setup assumes the fermions to be probe, which means that we do not

consider backreaction on the superconducting background. For this assumption to

be justified the coupling to the charged scalar field has to be small

η5 < 1 . (4.33)

For simplicity we restrict our analysis to massless fermions

mf = 0 . (4.34)

This choice has proven to be sufficient to model the experimental data. Fur-

thermore it allows us formulate another important condition in a straightforward

manner. In the course of the brief discussion of the phenomenology of the normal
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state of high temperature superconductors, the strange metals, it was mentioned

that they show marginal fermi liquid behaviour (3.14). Holographically the same

behaviour is found in the case of the Green’s function’s IR scaling exponent ν = 1/2

(3.67). To capture as many features of the experimental setup as possible with

our holographic model, we engineer the parameters (4.32) such that the scaling

exponent ν takes the desired value in the holographic normal state given by the

AdS-RN metal. The relation (3.64) between ν = νkF
, fermion charge ef and mass

mf , however, is not sufficient. The reason is that it provides just one equation

for two unknowns, the second being the Fermi-momentum kF = kF(ef ,mf ). For

mf = 0, it is possible to obtain an analytical expression for kF(ef ), see equation

(6.15) in [97]

6ν + iẽ

k̃F

(
2i+

√
2
) =

2F1

(
1 + ν − iẽ

6
, 1

2
+ ν −

√
2ẽ
3
, 1 + 2ν, 2

3

(
1 + i

√
2
))

2F1

(
ν − iẽ

6
, 1

2
+ ν −

√
2ẽ
3
, 1 + 2ν, 2

3

(
1 + i

√
2
)) , (4.35)

where ẽ and k̃F are related to ef and kF by

ef =
ẽr∗
µ∗

, kF =
k̃Fr∗
µ∗

, µ∗/r∗ = 2
√

3 . (4.36)

The origin of the appearance of µ∗, the extremal value of the chemical potential, is

the fact that this relation is derived at T = 0 (3.21), where the Fermi momentum

is properly defined. r∗ is the horizon radius of the extremal black hole and 2F1 is

the hypergeometric function. Together with (3.64) we can solve for the fermion

charge ef , such that ν = 1/2 we find

ef ≈ 0.78, eb = 2 ef ≈ 1.56 . (4.37)

The predicted value for the Fermi momentum at zero temperature is then kF/µ∗ ≈
0.48. This implies that the spectral density exhibits a sharp peak at A(0, kF). We

confirm this numerically which at the same time provides a first test on the code

we use in the following.

In trying to holographically obtain the experimental results [32] we thus are left

with just two independent parameters

{mb , η5} . (4.38)

The mass of the condensing scalar mb is restricted to the range derived from
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the BF bounds of the UV and the IR geometry (3.45). It essentially sets the

temperature Tc at which the system undergoes the phase transition to supercon-

ductivity. An ever higher mass corresponds to an ever lower critical temperature

until eventually the scalar is stable at any temperature. This is the case for masses

above L2m2
b ≈ −0.59. Practically it becomes increasingly difficult to numerically

construct solutions with a condensate at small temperatures. Our analysis stops

therefore at L2m2
b = −3/43 at which the critical temperature is Tc/µ ≈ 0.013 in

units of the chemical potential.

4.4.2 Procedure

Ultimately we are interested in comparing the temperature dependence of the gap

∆(T ) and the pair-breaking term Γ(T ) with their experimental counterparts. In

the notation of equation (3.65) they are given by

∆ = Re Σ and Γ = −Im Σ , (4.39)

respectively. The way to access the self energy is by studying poles of the spectral

density function A. Given its definition (3.61), or equivalently (4.24), it is clear

that choosing k = kF, the self energy manifests itself as a peak along the real

frequency axis: the location of the peak is related to the gap while its width is

related to the pair breaking term. More precisely those relations can be quantified

as the imaginary and real part of the location of a pole ωp of A in the complex

frequency plane

∆ = Imωp and Γ = −Reωp . (4.40)

Let us elaborate on the choice of the momentum k =‘kF’. Technically the notion of

a Fermi momentum is not physically sensible for a system in the superconducting

state. What we really mean is that we choose the momentum k at which the term

proportional to (k − kF) in equation (3.65) vanishes. We refer to this value as

k∗F, the momentum which leads to a minimal size of the gap. In analysing the

spectral density function, this value is naturally characterised by a peak in A(0, k)

at η5 = 0, as shown in figure 4.1. One expects that upon increasing T < Tc it

continuously merges with the value of the peak in the normal conducting (AdS-RN)

3We omit the factor L2 for the scalar mass mb in the remainder of this chapter.
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Figure 4.1: The spectral density A evaluated at ω = 0 as a function of the mo-
mentum k for five different temperatures T/Tc, with Tc/µ = 0.023. The coupling
to the condensate is switched off η5 = 0 and the mass of the scalar field is set to
m2
b = −5/4.

background at the critical temperature Tc. Interestingly k∗F is almost independent

of the temperature T . A representative example is given by

k∗F/µ =

0.394 at T/Tc = 0.1 ,

0.395 at T/Tc = 1
for m2

b = −5/4 . (4.41)

For our analysis we always choose k∗F ≡ k∗F(T/Tc = 0.1) which is the lowest tem-

perature we study for each set of parameters. Note that at Tc, the spectral density

function typically is already in the regime where it shows the conformal behaviour

(3.62).

Once we set the value of the momentum k∗F, we can proceed to find the poles

ωp of A(k∗F, ω) ≡ A∗(ω) in the complex frequency plane. Figure 4.2 (a) shows

a representative pole structure. To get the locations of the poles, we generate a

random grid and evaluate the spectral density function on each point of the grid.

Roughly speaking, the poles manifest themselves as the points, where the sign of

A changes abruptly. We use

ωp =
1

2
(ωmax + ωmin) , (4.42)
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Figure 4.2: (a) A∗(ω) as a function of a complex frequency. Large positive values
correspond to lighter colors and small (negative) values to dark colors. The pole
of the spectral density is located in the center of the two extreme regions, where
the sign of A abruptly changes. (b) The locations of the poles depend on the
temperature. The coupling to the condensate is set to η5 = 0.25 and the mass of
the scalar field is given by m2

b = −5/4.

where ‘max’ and ‘min’ refer to the values of the frequency, where A takes its max-

imal and minimal value, respectively. Here, ω is understood as a two component

vector, set up by its real and imaginary part. To increase the precision of this

approach we average over five different random grids for each pole. The movement

of the poles through the complex frequency plane as a result of changing the tem-

perature is shown in figure 4.2 (b). As temperature increases, the pole structure

becomes more and more unreliable and the deviations of the individual data points

compared to their average increases. This is something to keep in mind for the

interpretation of the results.

4.5 Results

4.5.1 Behaviour of the model

In subsection 4.4.1 we established that the system we study has two independent

parameters (4.38). We now analyse their effect on the gap ∆ and the pair-breaking

term Γ.
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Figure 4.3: The spectral density A(ω, k) for two different coupling strengths η5 = 0
(left) and η5 = 0.125 (right). The colour coding is the same as in figure 4.2. We
fix m2

b = −5/4 and T/Tc = 0.33, with Tc/µ = 0.023. We find that k∗F = 0.39.

The coupling of the condensed scalar field χ and the fermionic fields ψ parametrised

by η5 leads to the formation of a gap in the first place. Recall that a gap manifests

itself as a peak in the spectral density A∗(ω) along the momentum axis. This

is illustrated in figure 4.3. It shows that at η5 = 0, A∗ peaks at ω = 0. Finite

η5 breaks up the line into two ‘arches’, whose turning points, the point at which

they are closest to the real frequency axis, are both located at k∗F. The gap ∆

is half of the distance between the two turning points which arrange themselves

symmetrically with respect to the frequency axis.

Figure 4.4 illustrates the behaviour of the gap ∆ as the temperature increases. The

two peaks represent the two turning points of the arches at positive and negative

frequencies. We observe that the two peaks approach each other as the critical

temperature is approached. However, at a temperature T/Tc < 1 the gap is gone

due to the thermal broadening of the peaks. The smaller the value of η5, the lower

is the temperature at which this effect sets in. Nonetheless the two peaks merge to

just one at the critical temperature independent of η5 or mb. This is to be expected

because the scalar condensate which multiplies η5 in the action (4.4) vanishes at

Tc. At the critical temperature we have

∆(Tc) = 0 . (4.43)

The overall temperature dependence closely resembles the familiar behaviour of
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Figure 4.4: The spectral density A∗(ω) for two different coupling strengths η5 =
0.025 (left) and η5 = 0.125 (right) evaluated at temperatures T/Tc = 0.11, ..., 1.
With increasing temperature the gap becomes smaller. We fix m2

b = −5/4, which
implies Tc/µ = 0.023.
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Figure 4.5: The gap ∆ as a function of temperature for different values of η5 at
m2
b = −5/4 (left) and for different scalar masses m2

b at η5 = 0.125 (right). The
corresponding critical temperatures are Tc/µ = 0.060, 0.031, 0.023, 0.014.

BCS superconductors (3.10). The maximal value of ∆ at small temperatures can

be varied strongly by tuning η5, where larger values of η5 generate larger gaps, see

figure 4.5 (a). Upon varying the mass mb, we find that larger masses lead to larger

gaps.

In the view of our goal to compare those holographic results with the experimental

data, the absolute values are not relevant. Instead, for each set of parameters, we

need to rescale the data such that its associated ‘holographic units’ match the

‘experimental units’. A sensible way to approach this matching in the case of the

gap ∆ is to normalise both, the holographic (h) and the experimental (e) at the

minimal temperature Tmin ≈ 0.1Tc for which an experimental result is provided.

∆̃h =
∆h

∆h(Tmin)
and ∆̃e =

∆e

∆e(Tmin)
. (4.44)
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Figure 4.6: The rescaled gap ∆̃ as a function of temperature for different values
of η5 at m2

b = −5/4 (left) and for different scalar masses m2
b at η5 = 0.125 (right).

The corresponding critical temperatures are Tc/µ = 0.060, 0.031, 0.023, 0.014.

The holographic result for different values different couplings η5 and of the mass

mf are presented in figure 4.5 (left) and (right), respectively. The previously

so pronounced difference between the different couplings η5 and masses mb has

significantly reduced. We find that the form of the temperature dependence does

not strongly depend on either of the two parameters.

Let us now turn to the pair-breaking term Γ. As in the case of the gap, the pair-

breaking term should continuously merge with its normal phase counterpart at the

critical temperature, which is set by mb. Furthermore, the peak in the spectral

density is naturally sharper at smaller temperatures and asymptotes to zero as

T → 0. Combining those two insights, one expects that Γ(T = 0) = 0, increasing

as temperature increases up to its final value at Tc, where larger masses mb result

in smaller values for Γ(Tc). The right panel of figure 4.7 shows that this intuition

is indeed correct. The coupling strength η5 only marginally affects Γ(Tc), see the

left panel of figure 4.7.

For the pair-breaking term the rescaling prescription is dictated by the other end

of the data, at the critical temperature. More precisely, let us define the rescaling

in terms of a maximal temperature Tmax ≤ Tc. The reason is that, as we mentioned

before, the data close to the critical temperature becomes less reliable and possibly

does not provide the best reference. The normalised pair-breaking term for the

holographic data is given by

Γ̃h =
Γh

Γh(Tmax)
. (4.45)

The analogue prescription for the experimental data is a bit more subtle and is
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Figure 4.7: The pair-breaking term Γ as a function of temperature for dif-
ferent values of η5 at m2

b = −5/4 (left) and for different scalar masses m2
b

at η5 = 0.125 (right). The corresponding critical temperatures are Tc/µ =
0.060, 0.031, 0.023, 0.014.
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Figure 4.8: The rescaled pair-breaking term Γ̃ with Tmax = 0.88Tc as a function
of temperature for different values of η5 at m2

b = −5/4 (left) and for different
scalar masses m2

b at η5 = 0.125 (right). The corresponding critical temperatures
are Tc/µ = 0.060, 0.031, 0.023, 0.014.

addressed in the next subsection. The results for Γ̃h are shown in figure 4.8. We

observe, that also in this case, the strong dependence on mb is merely an absolute

scaling dependence than a functional one.

4.5.2 Comparison with experimental results

The analysis of the parameters’ (4.38) effects on the gap ∆ and the pair-breaking

term Γ provide a solid ground for the attempt to imitate the experimental results

[32] with holographic methods. In particular we are interested in the optimally

doped case presented in the top right of figure 2 therein. This choice is due

to the general assumption that holographic strange metals and high-temperature
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(b) holographic data

Figure 4.9: (a) Experimental data taken from figure 2 (top right) in [32] for the gap
∆ (�) and Γ (H) in units of eV as a function of temperature T/Tc where Tc = 91K.
(b) The corresponding holographic data at η = −0.125 and m2

b = −5/4, where
Tc/µ = 0.023.

superconductors are likely most similar to the optimally doped case, where the

unfamiliar properties, such as the high critical temperature are most pronounced.

This choice is, however, not crucial for our results.

We should mention that, just like in our holographic analysis, the data towards the

critical temperature becomes more and more noisy and hence we will not compare

the last two data points at T/Tc ≈ 0.93 and T/Tc ≈ 0.99. Figure 4.9 shows the

experimental data (a) contrasted with a representative sample of the holographic

data (b). Even though they look qualitatively similar, we immediately observe

two features of the experimental data that can definetely not be immitated by our

holographic model. The first is the finite gap ∆ at the critical temperature, which

we established in the previous subsection to vanish by definition for all values of

the parameters mb and η5. We discuss the physical interpretation of this feature

given in [32] in section 4.6. The second is the finite value of the pair-breaking term

towards zero temperature. And even more strangely it is Γ(0.22Tc) > Γ(0.33Tc).

Although we did not analyse our model all the way down to T = 0 we argued that

holography predicts Γ(T = 0) = 0. The numerical analysis for small temperatures

confirms this picture. The offset’s origin in the experiment is not explained by the

authors.

Given those limitations of our endavour we focus on comparing the pair-breaking

term Γ. After all, it is its strong temperature dependence and its large absolute

size that constitute the main result of the experiment as it is vastly different from

conventional superconductors. As a start let us note that we also find that gap
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Figure 4.10: The fitted rescaled pair-breaking term Γ̃ with Tmax = 0.88Tc as a func-
tion of temperature compared to the fitted experimental data for different values
of η5 at m2

b = −5/4 (left) and for different scalar masses m2
b at η5 = 0.125 (right).

The corresponding critical temperatures are Tc/µ = 0.060, 0.031, 0.023, 0.014.

and width are of the same order of magnitude

∆h ∼ Γh . (4.46)

In order to go beyond the qualitative resemblance 4.9 and (4.46), we introduce a

fit function for the rescaled pair-breaking term

Γ̃fit(T ) = (T/Tmax)α , (4.47)

where Γ̃(T )h given by equation (4.45) and the experimental version given by

Γ̃e(T ) =
Γe − Γe(Tmin)

Γe(Tmax)− Γe(Tmin)
. (4.48)

This definition has the effect of artificially shifting the experimental data such that

Γ̃→ 0 as the temperature goes to zero. Extrapolating the data we find Γe(Tmin) ≈
0.0028eV. Moreover as announced above we ignore the last two data points at

T/Tc ≈ 0.93 and T/Tc ≈ 0.99 for both, the holographic and the experimental

dataset.

As the next step let us apply the fit function for the results presented in figure

4.8, to pronounce the effect of the scalar mass mb and coupling η5. Plotting the

fit functions in figure 4.10, we observe both increasing mb and decreasing η5 bring

us closer to the fitted experimental data for the pair-breaking term.

We end this section by presenting the holographic data set 4.11 that is the most
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Figure 4.11: Comparison between the rescaled experimental (4.48) and holographic
(4.45) temperature evolution of the rescaled pair-breaking term Γ̃. For generating
the holographic data we used η5 = 0.025 and m2

b = −3/4, with Tc = 0.013.

similar to the experimental one, while at the same time is about the best we can do

with our numerical method: m2
b = −3/4 and η5 = 0.025. Albeit a small remaining

difference in the scaling exponent αe ≈ 5.12 and αh ≈ 4.85, the two temperature

evolutions are remarkably similar.

4.6 Summary and outlook

In this chapter we studied the properties of holographic probe fermions in the

background of the AdS-RN superconductor. The goal was to describe experimental

results about the temperature dependence of the gap ∆ and the pair-breaking

term Γ for an optimally doped high-temperature superconductor with holographic

methods. The gap represents the minimal energy which is necessary to excite the

coherent superconducting ground state. The pair-breaking term parametrises the

inverse lifetime of the pairs which compose that ground state.

The experimental data showed three characteristic features. The first is that the

gap vanishes at a temperature Tpair > Tc higher than the critical temperature.

This is unfamiliar from any to date available theoretical description of supercon-

ductors. The intuitive picture presented in [32] is that the critical temperature in

high-temperature superconductors is not determined by the mere possibility for

the electrons to pair up, but that there has to be a critical density of pairs long
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lived enough to form a coherent state. This is directly related to the second charac-

teristic feature. The pair-breaking term was measured to be strongly temperature

dependent and to be of the same order of magnitude as the gap, in particular at

the critical temperature they found that ∆ ≈ 3Γ. Recall that the pair-breaking

term of BCS like superconductors is almost temperature independent and negligi-

bly small compared to the gap (3.12). This phenomenon can be utilised to furnish

the above intuitive picture. At temperatures above Tc, the pairs break up rapidly,

preventing the formation of a superconducting ground state. Below the critical

temperature it is still strong enough to break up enough pairs to be responsible

for a filling of the gap instead of let it close. The third feature, albeit not of

the same relevance, is that the pair-breaking term seems to be non-zero at zero

temperature, equivalent of a persisting finite width of the peak.

Backed up with the encouraging results of probe fermions in a holographic strange

metal and holographic setup capable of generating a gap in the spectrum of a

probe fermion in a superconducting background at T = 0, we studied the tem-

perature evolution of ∆ and Γ in the background of what supposedly could be a

holographic high-temperature superconductor. We derived the finite temperature

ansatz of the model constructed in [33] in the background of the simplest holo-

graphic superconductor (3.42). By demanding that the normal state, realised by

the AdS-RN theory, behaves as effectively as possible like a marginal fermi liquid,

we reduced the number of external parameters to only two. The mass mb of the

condensing charged scalar field and the coupling strength η5 between the probe

fermion and that scalar.

We then studied how the gap and the pair-breaking term are affected by changes

of those two parameters and which of the characteristic features can be mimicked

with our holographic model. We find that ∆(Tc) = 0 for all of the parameter

configurations. This is result is to be expected because above the critical tem-

perature the ground state reduces to the AdS-RN strange metal which does not

show a gap. Moreover, one expects a continuous transition between the normal

and superconducting state due to the continuously vanishing scalar condensate,

which effectively multiplies the term in the action responsible for the gap. How-

ever, on top of this, we observed that the peaks spread out thermally such that at

temperatures T < Tc the gap has filled before it closed. This effect is stronger for

smaller values of η5. This was presented in [33] as well. It is not clear whether the

superposition of the thermal broadening of the peaks and the closing of the gap

can be related to the new interpretation of ∆ in high-temperature superconductors
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put into play by in [32].

We did find the strong temperature dependence of the pair-breaking term. More-

over, we also observed that Γ ∼ ∆, both in accordance with the experiment.

We were able to quantitatively approach to temperature evolution of Γ, which

we mathematically formulated as a powerlaw behaviour (4.47). Knowing the ef-

fect of the two external parameters, we were able to identify a set of parameters

{m2
b , η5} = {−3/4, 0.025} which leads to a remarkably similar pair-breaking term.

Note that the value for the scalar mass is comparably high and scratches the

bound above which the system no longer exhibits a phase transition to supercon-

ductivity and that the value of the pair-breaking term at the critical temperature

is controlled by the critical temperature. In order to go beyond the scalar mass

m2
b = −3/4, one should resort to a different numerical method to both, solve

the background and also solve the equations of motion for the probe fermion. A

possible approach in this direction is to implement a pseudo-spectral method.

Figure 4.11 shows one of the major achievements of this thesis, as a quantitative

matching of properties of real physical systems and holographic models is very

rare in AdS/CMT. Importantly, this result is directly related to the supercon-

ducting state on both sides and shows for the first time a close relation between

real and holographic high temperature superconductors. Our results ‘close’ the

square consisting of the normal and superconducting state of real and holographic

strange metals: the relation between the metallic phases already passed two tests

on a quantitative level, namely the linear increase of the electrical resistivity with

temperature [34] and a power-law dependence of the electrical conductivity in a

mid-infrared regime [71]. The holographic metal and superconductor are directly

connected by construction and the relation between the real strange metal and

high-temperature superconductor is a widely accepted idea. In this picture this

thesis explicitly furnishes the assumed relation between the two superconducting

states.

The good qualitative and and also quantitative agreement between the holographic

and experimental data for Γ(T ) is the main result of this chapter. Note however

that, in the bottom-up approach, there is no clear procedure to determine the

action for bulk fermion. In fact, various effects other than the one studied here

can be obtain by adding couplings between fermion and other fields (allowed by

gauge invariance), see e.g. [96, 98–101]. Likewise, it is not entirely clear what

exactly the coupling between probe fermion and charged scalar utilised in this
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chapter represents on the dual boundary field theory. A proper understanding of

the η5-coupling we implemented in our model in terms of a top-down interpretation

should certainly be a goal of future research in this direction.

One of the most abvious questions is addressed in the next chapter 5, namely is

it possible to obtain similar results with a different holographic superconductor?

Of particular interest naturally are superconductors with a normal phase closer to

the real world strange metals as for example the model studied in [34].
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Chapter 5

A holographic superconductor

with momentum relaxation

5.1 Introduction and summary

Ever since the first holographic realisation of a superconductor [16], holographic

superconductivity has been an active and fruitful field of research. The original

model is a bottom-up construction starting with the ‘minimal’ holographic model

(2.34) supplemented with a U(1) gauge field and a charged scalar. By now count-

less models have been developed and investigated among which are also top-down

constructions, see for example [102].

The goal of describing real high-temperature superconductors in mind, one has to

include a mechanism of momentum dissipation to the boundary field theory. This

is equivalent of breaking translational invariance in the bulk because it leads to a

non-conservation of the dual stress-energy tensor. Recall that without momentum

dissipation the DC conductivity is infinite also in the normal conducting or metallic

phase, see 3.3.2.

The first mechanism to implement momentum dissipation into holographic models

were holographic lattices [71, 103–107]. Another way is to explicitly break bulk

translation invariance by including a mass term for the graviton [108]. It is how-

ever, not clear how those massive gravity theories should be interpreted from the

quantum field theory perspective. Reference [109] suggested a relation between

lattice models and a specific massive gravity theory.

A comparably simple, yet effective way to realise a breaking of translational sym-

79
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metry is to include spatially dependent sources within the boundary field theory in

the form of massless scalar fields ξi ∼ αxi, with i = 1, ..., d− 1, suggested in [110].

Such a scalar shift symmetry has the advantage that the geometry of the bulk

is still isotropic and homogeneous. Note that the on-shell gravity action in the

presence of those scalar fields looks exactly like the on-shell action of the massive

gravity theories in a holographic context. From the boundary field theory per-

spective, those scalar fields may be regarded as linearised exponential potentials

analogous to the electrostatic periodic potentials in a lattice [111]. Holographic su-

perconductors with this method of breaking translational invariance are presented

in [35,36].

In this thesis we study a holographic superconductor model based on the model

investigated in [34]. Its distinguishing feature is the origin of the linear increase of

the DC electrical resistivity ρDC with temperature: This model has the property

that ρDC ∼ η ∼ s, where η is the shear viscosity and s the entropy density. From

a (non-holographic) hydrodynamic perspective this is true for a system which has

minimal viscosity, a property directly related to intrinsic strong coupling. The

above relation requires in particular that the entropy density scales linearly in

temperature as well and vanishes at T = 0. Such a hydrodynamic behaviour in

metals can be motivated from [112]. Recall from the discussion in 3.2, that this fea-

ture cannot be realised by a model based on the AdS-RN background. Instead the

model presented in [34] includes a dilaton field acting as a dynamical gauge cou-

pling and leading to the vanishing of the black hole at T = 0, i.e. s(T = 0) = 0 due

to the relation given in (2.33). We add a charged scalar which as we show causes

a phase transition to superconductivity and change the mechanism for momentum

dissipation from a massive graviton in [34] to the neutral scalar fields ξi mentioned

above. Close to when we were finishing our analysis of the superconductor work on

similar holographic superconductors appeared [35, 36]. We emphasise that there

are many more requirements for the action to faithfully represent strange metals.

For example the holographic model cannot reproduce the temperature dependence

of Hall angle found in such materials. It is pointed out in [113] that the correct

temperature dependence of DC resistivity and Hall angle can be obtained in more

complicated Einstein-Maxwell-dilaton theories with momentum relaxation. Such

a setup has been found recently in [114] and is arguably consistent once one relaxes

the constraint from the null energy condition [115].

The encouraging results of the previous chapter about the accordance of the tem-

perature dependence of the pair-breaking term Γ(T ) between the minimal holo-
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graphic and a real high-temperature superconductor are the main motivation to

investigate this more complicated but also more realistic model. We find the same

qualitative behaviour of Γ(T ) in the current chapter indicating that it is a more

general feature of holographic superconductors.

We start by discussing the action of the holographic model we use in section 5.2.

Section 5.3 contains a review of the properties of the normal conducting state of

the model as well as own results. The superconducting ground state is analysed in

section 5.4. The analysis of the fermionic spectral density analogous to the analysis

in previous chapter is presented in 5.5. We summarise and suggest directions for

future research in the last section 5.6 of this chapter.

The author’s contribution to the results presented in this chapter is writing the

code to numerically construct the superconducting state and to investigate its

properties such as the free energy and the eletrical conductivity. The analytic

groundwork presented in subsection 5.4.2 is original work done by the author of

this thesis, as well as the generalisation of the methods used in chapter 4 and the

corresponding analysis of the fermionic spectral density.

5.2 Holographic model

5.2.1 Setup

The superconductor we investigate in this chapter is based on the following action

for the normal conducting state

Sdilaton =

∫
d4x
√
−g
[
R− 1

4
eφF 2 − 3

2
(∇Φ)2 +

6

L2
cosh (Φ)

]
. (5.1)

This Einstein-Maxwell-dilaton model was studied from the holographic perspective

in [72] and further analysed in [34]. It is the low energy limit of a solution to eleven

dimensional supergravity [116]. The ansatz for the solution is given by

ds2 = − r
2

L2
h(r)dt2 +

r2

L2
g(r)dx2 +

r2

L2
g(r)dy2 +

L2

r2
h(r)−1dr2,

A = At(r)dt, Φ = Φ(r) .

(5.2)

As in the previous chapter, this ansatz implies the radial gauge for the Maxwell

field: Ar = 0.
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One of the main reasons we are interested in this model is that its entropy density

vanishes at zero temperature, see 5.3.1. This is in contrast to the AdS-RN metal,

which has a degenerate ground state (3.22) hinting at a severe instability of the

system. The vanishing entropy density is due to the dilaton. In fact the exponent

with which the entropy density close to T = 0 scales with temperature can be

varied depending on the form of the gauge coupling and the dilaton potential [74],

which in our case are given by eΦ and cosh Φ, respectively.

In reference [34] this model was studied in the context of realising a linear increase

of the electrical resistivity with temperature. We explained in section 3.3 that a

physically sensible electrical conductivity requires breaking of translational invari-

ance of the boundary field theory. This can be realised by an explicit breaking of

translational invariance of the bulk ground state which was implemented in refer-

ences [108,110,117] by including mass terms for the graviton. In this thesis we add

two neutral scalar fields to the gravity theory, which break translational invariance

in an isotropic and homogeneous way

Saxion =

∫
d4x
√
−g
[
− 1

2

∑
i=1,2

(∇ξi)2

]
, (5.3)

with

ξi
(
xi
)

= αxi . (5.4)

Explicitly writing out the massive gravity term used in the above references yields

the same terms in the on-shell gravity action as using adding Saxion to Sdilaton.

The advantage of using the neutral scalar fields is to avoid possible issues with

ghosts which are present in massive gravity theories, see e.g. [118]. The breaking

of translational invariance is now controlled by the parameter α, to which we also

refer as strength of momentum dissipation.

As the last ingredient to our holographic superconductor model we add a charged

scalar field χ, minimally coupled to gravity and the U(1) gauge field, similarly to

the original holographic superconductor 3.4

Sscalar = −
∫

d4x
√
−g
[
gµν |Dχ|2 +m2 |χ|2

]
. (5.5)

The action of the holographic superconductor model subject of this chapter is
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given by

S = Sdilaton + Saxion + Sscalar + Sbdy , (5.6)

where Sbdy contains the boundary terms, necessary to give the bulk theory a well

defined variational principle and at the same time renormalises the theory

Sbdy =

∫
∂aAdS

d3x
√
−γ
[
2K − 4

L
− |χ|

2

L
− 3

2L
φ2 +

1

2L

∑
i=1,2

(
∂[γ]αi

)2
]
. (5.7)

The first two terms are related to the gravity part of the action. They are the

Gibbons-Hawking terms and the so-called infinite-volume term, see [55, 59] for

detailed explanations. Note that as in (4.2), there is an additional factor of 2

compared to the analysis in [59]. This is due to our convention to rescale the

fields of the gravity theory in such a way that the prefactor 1/2κ2 of the gravity

part disappears. The remaining three terms renormalise the one-point functions

of the operators dual to the fields on the boundary. γ is the induced metric on the

asymptotically AdS (aAdS) boundary of the bulk.

In the remainder of this section we establish the necessary background and tools

to numerically construct the solutions of the fields appearing in the action (5.6)

which are dual to a superconductor. The novelty of this model is that its nor-

mal conducting state, i.e. (5.6) without the charged scalar was shown in [34] to

resemble the real strange metals which are the normal state of high-temperature

superconductors. Other models with the same implementation of translational

symmetry breaking are investigated in references [35,36,119].
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5.2.2 Equations of motion

In order to study the properties of this holographic model in thermodynamic equi-

librium we need to construct its ground state by solving the equations of motion

0 =A′′t +

(
2

r
+
g′

g
− φ′

)
A′t −

2L2e2e−φχ2At
r2h

,

0 =φ′′ +

(
4

r
+
g′

g
+
h′

h

)
φ′ +

2 sinh(φ)

r2h
+
L2eφA′2t

6r2h
,

0 =χ′′ +

(
4

r
+
g′

g
+
h′

h

)
χ′ −

(
L2m2

r2h
− e2L4A2

t

r4h2

)
χ ,

0 = g′′ − g′2

4g
+

(
4

r
+
h′

2h

)
g′ +

(
3

r2
− 2 cosh(φ)

r2h
+
e2L4A2

tχ
2

2r4h2
+
L2α2χ2

2r2h

+
L2eφA′2t

4r2h
+
h′

rh
+

3φ′2

4
+
χ′2

2

)
g +

L4m2

2r4h
,

0 =h′′ +

(
5

r
+
g′

2g

)
h′ +

(
3

r2
− g′2

4g2
+

3φ′2

4
+
χ′2

2

)
h− 2 cosh(φ)

r2
− L4α2

2r4g

+
L2m2χ2

2r2
− 3e2L4A2

tχ
2

2r4h
− 3L2eφA′2t

4r2
,

0 =
3

r2
− cosh(φ)

r2h
+
L4α2

2r4gh
+

(
L2m2

2r4h2
− e2L4A2

t

2r4h2

)
χ2 +

L2eφA′2t
4r2h

+
2g′

rg

+
g′2

4g2
+
h′

rh
+
g′h′

2gh
− 3φ′2

4
− χ′2

2
.

(5.8)

Note that choosing the radial gauge for the Maxwell field Ar = 0, by the radial

component of the Maxwell equation, demands a constant phase of the charged

scalar field which we fixed to zero χ∗ = χ. The UV BF bound on the charged scalar

mass is the same as for the AdS-RN metal (2.31). As in the original holographic

superconductor 3.4 we choose to work with the scalar m2L2 = −2.

There are five second order differential equations and one contraint equation whose

radial derivative can be shown to vanish by using the remaining equations. It

represents a conserved quantity. Taking a closer look at the equations, we see

that it has three scaling symmetries which we can utilise to simplify our numerical

analysis of the model

I g → λ g , α →
√
λα ,

II r → λ r , At → λAt , α → λα ,

III L → λ−1 L , m → λm , α → λ2 α , e → λ e , At → λAt .

(5.9)
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In particular, we can use the third relation to fix the AdS radius L = 1 and

the second relation to set the horizon radius rh = 1. Note that as mentioned

in chapter 3.2, the Maxwell field At, and hence the chemical potential, and also

the translational symmetry breaking parameter α scale in the same way as the

radial coordinate. This explicitly shows that it is consistent to express the energy

dimensions of quantities in units of the chemical potential.

5.2.3 Boundary expansion

The boundary behaviour of the background fields whose solution constitutes the

systems ground state reveals information about the model’s structure. The system

is described by five second order equations of which one can consistently be re-

placed by the first order constraint equation. Thus a priori there are 2× 5− 1 = 9

boundary conditions that have to be fixed in order to uniquely determine a solu-

tion.

For an expansion of the fields close to the black hole horizon, we start by intro-

ducing ten coefficients, two for each field. Demanding regularity at the horizon for

all of those five fields, yields five conditions which fix five of the ten coefficients.

As the constraint equation vanishes automatically at the horizon when the regu-

larity conditions are met, it does not provide additional information. The horizon

expansion is then parametrised by five coefficients ch

At(r) = ch
At,1 (r − rh) +O

(
(r − rh)2 ) , χ(r) = ch

χ,0 +O (r − rh) ,

φ(r) = ch
φ,0 +O (r − rh) , h(r) = ch

h,1 (r − rh) +O
(

(r − rh)2 ) ,
g(r) = ch

g,0 +O (r − rh) ,

(5.10)

where the index i = 0, 1 of the coefficients refers to the order in (r − rh) they

accompany. For the UV boundary at r → ∞ let us also start with the initial set

of ten coefficients cb

At(r) = cb
At,0 + cb

At,1r
−1 +O

(
r−2
)
,

χ(r) = cb
χ,1r

−1 + cb
χ,2r

−2 +O
(
r−3
)
,

φ(r) = cb
φ,1r

−1 + cb
φ,2r

−2 +O
(
r−3
)
,

h(r) = cb
h,0 + c̃b

h,1r
−1 + c̃b

h,2r
−2 + cb

h,3r
−3 +O

(
r−4
)
,

g(r) = cb
g,0 + c̃b

g,1r
−1 + c̃b

g,2r
−2 + cb

g,3r
−3 +O

(
r−4
)
,

(5.11)
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where again the index i = 0, 1, 2, 3 of the coefficients refers to the corresponding

order of r−1. The coefficients c̃b’s are functions of the independent ones c. The

relations are given in the appendix in equation (C.30). As predicted by the holo-

graphic dictionary, each field has a non-normalisable and a normalisable mode and

their scaling dimension with respect to the radial coordinate is fixed by the nature

of the field, its mass and the number of dimensions. At the boundary the constraint

equation indeed provides additional information and automatically fixes cb
h,0 = 1.

To recapitulate, we already imposed five conditions at the horizon. This means

that in order to completely specify a solution four more conditions are needed at

the boundary. The minimal condition at r → ∞ is that the space asymptotes

to AdS space which demands cb
g,0 = 1. Moreover we impose the following three

conditions at infinity

cb
At,0 = µ , cb

χ,1 = 0 , cb
φ,1 = φ0 . (5.12)

The first condition really means that when constructing the solutions numerically,

we demand a certain value for the chemical potential µ. The second condition

assures that the charged scalar field is not sourced at the boundary but rather

spontaneously acquires a profile as the temperature is lowered. The third condi-

tion expresses that in order to completely specify a solution we need to fix the

normalisable mode of the dilaton as well.

The equations of motion (5.8) are solved with a standard procedure called shooting

method. The first step is to express the value the fields and their derivative at

the horizon, given a set of numerical values for the independent coefficients at the

horizon. With this information the solution can be integrated starting at rh + ε all

the way to the AdS boundary at r → ∞. At the same time, one needs to check

that the solution to the five second order differential equations also obeys the extra

first order constraint equation. A solution generated like gives a numerical value

for nine of the ten coefficients cb in (5.11), recall that one coefficient cb
h,0 = 1

automatically takes the correct value. The numerical values for the other nine

coefficients will typically not obey the boundary conditions (5.12). To meet those

conditions, one has to vary the five horizon parameters ch until (5.12) is satisfied.

This is implemented with a ‘find root’ routine.

Of course the above numerical procedure requires numerical values for the horizon

radius and the AdS radius which are fixed without loss of generality to rh = L = 1

with the help of the scaling symmetries (5.9). To speed up the search for a solution
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which meets the imposed boundary conditions one can also relax the condition for

cb
g,0 and restore it afterwards by applying the first scaling symmetry. The external

parameters α and e have to be assigned a numerical value as well. In summary

the solutions to (5.8) are parametrised by

T/µ , φ̄0 ≡ φ0/µ , e and ᾱ ≡ α/µ , (5.13)

where we traded the chemical potential µ for the temperature T and consequently

express all the dimensionful quantities in units of µ.

5.3 Normal state

We now summarise the properties of the holographic model (5.6) in the normal

state by which we refer to the solutions where the charged scalar is zero χ ≡ 0. As

found in [34] they resemble the properties of a real strange metal in many ways.

Moreover we apply the method outlined in [117] to our setup in order to obtain an

explicit expression for the DC resistivity and analyse the frequency dependence of

the electrical conductivity.

5.3.1 In thermal equilibrium

The equations of motion (5.8) have the following analytical solution

h(r) = g(r)

(
1− L4α2

2 (r +Q)2 −
(rh +Q)

(
2 (Q+ rh)2 − L4α2

)
2 (r +Q)3

)
,

At(r) =

√
3Q

L2

(
1− rh +Q

r +Q

)√
2 (Q+ rh)2 − L4α2

2 (rh +Q)
,

g(r) =

(
1 +

Q

r

)3/2

, φ(r) =
1

3
log (g(r)) χ(r) = χ∗(r) = 0 .

(5.14)

It is parametrised by the translational symmetry breaking parameter α and the

parameter Q associated to the Maxwell field At. Note that based on the analysis

in the previous subsection (5.13) one would expect three parameters in absence of

the scalar. The above solution thus cannot represent the most general solution.
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Instead the non-normalisable mode of the dilaton is fixed to

φ0 =
Q

2
. (5.15)

The Bekenstein-Hawking temperature and hence the temperature of the field the-

ory dual to (5.14) according to (2.38) is given by

T =

√
rh

(
6 (rh +Q)2 − L4α2

)
8πL2 (rh +Q)3/2

, (5.16)

and the chemical potential according to equation (3.19) evaluates to

µ =
1

L2

(
3Q(Q+ rh)

(
1− α2L4

2(Q+ rh)2

))1/2

. (5.17)

For the chemical potential to be real valued one has to demand 2 (Q+ rh)2 ≥ L4α2.

The physically sensible parameter, however, is the ratio of T/µ, referred to as

temperature in the remainder of this section. In contrast to the AdS-RN solution,

the holographic model discussed here can reach small temperatures only by a small

horizon radius and scales as

T/µ ∼
√
rh/Q . (5.18)

In particular, zero temperature is reached for rh = 0.

The IR geometry of (5.14) is different from the one of the AdS-RN metal (3.23).

To construct it, we start by setting rh = 0, as it represents zero temperature and

then expand the radial coordinate around zero. Redefining the radial coordinate

by r = L2γ
ζ

the metric becomes

ds2 = −L
4 (6α2 − L4α2) γ3

2Q3/2ζ3
dt2 +

Q3/2γ

ζ
dx2 +

Q3/2γ

ζ
dy2 +

8L4Q3/2γ

6Q2 − L4α2
dζ2 .

(5.19)

We now define γ in such a way that the temporal and radial part represent a

conformal-to-AdS2 spacetime. This is realised by

γ =
4Q3/2

6Q2 − L4α2
. (5.20)

where we used the positivity constraint from the chemical potential 2Q2 > L4α2.
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Finally, the IR geometry of the dilaton strange metal is given by

ds2 =
4Q3L2

(6Q2 − L4α2)2 ζ

[
8L2

ζ2

(
−dt2 + dζ2

)
+

6Q2 − L4α2

L2

(
dx2 + dy2

)]
. (5.21)

which is conformal to AdS2 × R2. As such it transforms as ds2 → λ−1ds2 under

a scaling transformation of the temporal coordinate which leaves the spatial ones

untouched [34]

t→ λ t , xi → xi , ζ → λ−2 ζ . (5.22)

This amounts to a local quantum critical state with hyperscaling violation. More

presicely, we have z → ∞ and θ/z = −1, where θ is the hyperscaling violation

exponent [74]. It also determines the scaling of the entropy density with temper-

ature. Calculating it from the corresponding entry of the AdS/CFT dictionary

(2.33) gives

s/µ2 =
r2

hg(rh)

4GL2µ2
=

2πL2

3κ2

√
rh/Q

√
1 + rh/Q

(
1 +

3ᾱ2

2(1 + rh/Q)

)
∼ T/µ , (5.23)

where the units are properly taken care off by the chemical potential. For small

temperatures, i.e. small rh, it scales linearly in temperature as advertised in the

introduction to this chapter.

The charge density 〈%〉 ≡ % according to the prescription in (3.20) is given by

%/µ2 = −L2r2
bdyA

′
t(rbdy)/µ2 =

1√
3L

√
1 + rh/Q

√
1 +

3m̄2

2 (1 + rh/Q)
∼ (T/µ)0 ,

(5.24)

and is independent of temperature in the small temperature regime.

5.3.2 Electrical conductivity

In section 3.3 we explained the concept of transport coefficients and how they can

be computed using the holographic methodology. In short, we have to perturb

the equilibrium and calculate the linear respone functions which in holography

are equal to Green’s functions of the appropriate perturbations. In most cases this

requires an often numerically constructed solution for the perturbations. However,

sometimes it is possible to make use of the membrane paradigm which allows to
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determine the low energy or IR behaviour of the transport coefficient solely in terms

of horizon parameters [11]. Reference [117] showed that the membrane paradigm

is applicable to the holographic strange metal with broken translational invariance

for firstly a metal based on the AdS-RN solution and secondly for the present

model with a dilaton field. In [117] the breaking of the translational symmetry in

the bulk is realised by a mass term for the graviton which is conceptually different

from (5.6), albeit, when evaluated on-shell the actions of the two models are the

same. For the calculation of the optical conductivity this difference between the

models results a different set of fluctuations that are relevant. While the in the

massive gravity approach apart from the Maxwell fluctuation δAx only the gravity

fluctuations δgtx and δgxr need to be taken into account, our approach requires to

additionally consider the scalar field fluctuation δξx.

We will now present the procedure for our model. Let us start by perturbing

the thermal equilibrium described by the analytic solution (5.14) on the gravity

side. Just as in section 3.3, the field theory dual is isotropic and without loss of

generality we can focus on the conductivity along the x-direction. For zero spatial

momentum, there are four perturbations that couple to the perturbation of interest

which is the one of the Maxwell field δAx. Their linearised equations of motion

are given by

0 =
(
eφr2hδA′x

)′
+ L2eφr2gA′t

(
δgtx
r2g

)′
+
L4ω2eφδAx

r2h
+ iL2ωeφA′tδgxr,

0 =
(
r4ghδξ′x

)′ − L2α
(
r2hδxr

)′
+
L4ω2gδξx

h
− i L6αωδgtx

r2h
,

0 =
(
r2gδgtx −

(
r2g
)′

+ eφr2gA′tδAx + ir2gδgxr

)′
− iL2mωδξx

h
− L4α2δgtx

r2h
,

0 =
(
r2gδgtx −

(
r2g
)′

+ eφr2gA′tδAx + ir2gδgxr

)
− iα2r2hδgxr

ω
− iαr4ghδξ′x

L2ω
.

(5.25)

Following [117], we start by eliminating δgtx with the constraint

0 = (rδg̃xr)
′ +

iL4ωδgtx
r2h

− L2ω2gδξx
hα2

(5.26)

which is simply the second equation along with the definition δg̃xr = r2h(δgxr −
r2gδα′x/L

2α). Using this constraint equation the system reduces to two equations

which only depend on δAx and δg̃xr plus one equation with all three remaining

fluctuations. As we are interested in the dynamics of δAx only, it is sufficient to
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focus on the former. They are given by

0 = r2e−φ
(
r2eφhδA′x

)′
+
L4ω2

h
δAx −

e−φ

g2

(
L2Q2

r2
δAx +

L2α2Q
iωr2

δg̃xr

)
,

0 = r4g

(
h

g
δg̃′xr

)′
+
L4ω2

h
δg̃xr −

1

g

(
iωL4QδAx + L4α2δg̃xr

)
.

(5.27)

We introduced the conserved charge density Q

Q = r2eφgA′t with Q′ = 0 , (5.28)

where the conservation equation is actually the Maxwell equation from (5.8). These

equations can now be mapped to the equations of motion on page 13 in [117] with

the identifications

f = h/g , Z(φ) = geφ , and χ = 0 . (5.29)

The left hand sides of those identifications corresponds to the notation in [117]

where the right hand sides to our notation. The additional factors of g2 do not

alter the form of the conserved current. Note that in contrast to their convention we

work in a coordinate system where the AdS boundary is at r →∞. Conclusively

the logic of the original work applies here as well and the remaining calculations

can be mapped onto each other by (5.29). The crucial observation that allows the

membrane paradigm to take it from here, is that the determinant of the mass-

matrix in (5.27) vanishes. The two eigenstates are

δλ1 =

(
eφg +

Q
α2r2

)−1(
eφgδAx −

Q
iωL2

δg̃tx

)
.

δλ2 =

(
eφg +

Q
α2r2

)−1(
1

iω
δg̃rx +

L2Q
α2

δAx

)
.

(5.30)

where δλ1 is the massless mode obeying the following equation of motion

0 = r2g

((
eφg +

Q
α2r2

)
hr2

g
δλ′1 −

Qh
L2r2g

(
r2eφg

)′
δλ2

)′
+
L4ω2

h

(
eφg +

Q
α2r2

)
δλ1 . (5.31)
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In the zero frequency limit this reduces to a conservation equation for the current

Π =

(
eφg +

Q
α2r2

)
hr2

g
δλ′1 −

Qh
L2r2g

(
r2eφg

)′
δλ2 . (5.32)

One can now define a radially dependent conductivity

σDC(r) = lim
ω→0

Π(r)

iωδλ1(r)
. (5.33)

which at the boundary reduces to the standard form of the conductivity in holog-

raphy (3.37). In the zero frequency limit σDC is constant and hence be evaluated

at the horizon, where the δλ2 part of the conserved current does not contribute,

as it has a double zero at rh. The result is given by

σDC = lim
ω→0

Π(rh)

iωδλ1(rh)
= eφ

(
1 +
Qe−φ

α2r2g

)
, (5.34)

An expansion in α for small momentum relaxation of the electrical resistivity, the

inverse of the conductivity, results in

ρDC =
r2

hg(rh)

Q2
α2 +O

(
α4
)

=
ᾱ2√

1 + rh/Q

√
rh/Q+O

(
ᾱ4
)
∼ T/µ. (5.35)

We see that even though in our case we have the additional neutral scalar field

responsible for the momentum dissipation the result is exactly the same. In par-

ticular the proportionality ρ ∝ T ∝ s also holds here. Note that comparing

σDC = ρ−1
DC with the DC conductivity in (3.40) in the context of discussing the

Drude model, it is clear that referring to ᾱ as the scale of momentum relaxtion

is justified, because it is related to the average time τ between collision through

τ ∼ ᾱ−1.

A investigation of the full (non-expanded) resistivity reveals that the linear be-

haviour with temperature is a good approximation up to temperatures of about

T/µ ∼ 0.05. Moreover, the physical reasoning behind [34] demands the momen-

tum relaxation to be weak. We will therefore restrict our analysis to small values

of ᾱ as well.
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5.4 Superconducting state

5.4.1 Superconducting instability

Due to the Maxwell field the mass of the charged scalar is effectively lowered (5.8)

m2
effL

2 = m2L2 − e2L4A2
t

r2h
. (5.36)

We established earlier in this thesis, that this term is more relevant as temperature

is decreased and eventually causes the scalar to become unstable. Recall that in

this chapter we fix m2L2 = −2. The closer the scalar mass is to the UV BF bound

m2
BFL

2 = −9/4, the higher is the critical temperature.

One way to investigate the precise temperature where the instability sets in, is to

compute the quasinormal modes. The idea to treat the scalar as a time dependent

fluctuation around the normal conducting ground state (5.14). The corresponding

equation of motion for the Fourier modes of χ(t, r) =
∫

dωe−iωtχk(r) reads as

follows

0 = χ′′k +

(
4

r
+
g′

g
+
h′

h

)
χ′k −

(
L2m2

r2h
− L4 (eAt + ω)2

r4h2

)
χk . (5.37)

The quasinormal modes are given by the poles of the retarded two-point function

GR, which in the case of the scalar fluctuation by the method outlined in 3.3.1 is

proportional to

GR
χχ ∝

rχ′k
χk

∣∣∣∣
r→∞

, (5.38)

where it is understood that the scalar fluctuation satisfies the ingoing boundary

conditions (3.34). In general, there are several quasinormal modes, whose locations

ωQNM in the complex frequency plane change in temperature. The one which

triggers the instability is the one crossing the real axis, i.e. changing the sign of

the imaginary part ImωQNM, at ω = 0. The then positive imaginary part of the

pole by χ ∼ exp(−iωQNM) represents an exponential growth of the scalar and

hence indicates the instability. The temperature at which this happens is the

critical temperature Tc.

We find that Tc increases as the scalar’s charge is e increased, i.e. the instability
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sets in at a higher temperature. This is not surprising because the effective mass

meff is lowered by finite values for the charge (5.36). Upon changing the parameter

ᾱ which controls the breaking of translational symmetry, we observe that higher

values lead to a smaller critical temperature. This behaviour is less obvious from

the above mass relation, because the background fields explicitly depend on ᾱ in

a nontrivial way. However, plugging in the normal state solution (5.14), one finds

that

∂ᾱmeff ∝ −ᾱ +O
(
ᾱ2
)
, (5.39)

i.e. the effective mass meff is increased due to small values of ᾱ. Let us give a few

examples for the critical temperature

Tc/µ = 0.043 for e = 2.0 , ᾱ = 0.08 ,

Tc/µ = 0.041 for e = 2.0 , ᾱ = 0.16 ,

Tc/µ = 0.023 for e = 2.0 , ᾱ = 0.35 ,

Tc/µ = 0.100 for e = 2.5 , ᾱ = 0.08 ,

Tc/µ = 0.175 for e = 3.5 , ᾱ = 0.08 .

(5.40)

Given that the DC resistivity ρDC is only linear in temperature for temperatures up

to T ∼ 0.05 we will restrict to e = 2 in the following. The monotonous behaviour of

the critical temperature depending on the two external parameters e and ᾱ agrees

with the analysis in [36] holographic superconductor model based on an AdS-RN

geometry but with the same mechanism of breaking translational invariance. For

values of the charge investigated here, it moreover agrees with the results in [35].

However, they find that the critical temperature increases for very small values of

the charge.

5.4.2 Superconducting ground state

For the superconducting instability to actually cause a phase transition to a su-

perconductor the thermodynamic state associated to the condensate has to be

thermodynamically preferred. This can be checked by comparing the grand po-

tential of the normal conducting solution (5.14) to the one of solutions with a

charged scalar profile. The holographic dictionary states that the grand potential

of a thermal field theory is proportional to the Euclidean on-shell action of the

gravity theory (2.36). For the model that we are discussing in this chapter (5.6),
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the on-shell action can be expressed in two different ways

Sos
1 /βV2 =

r6g2

L4

(
1

g r2

)′ ∣∣∣∣1/ε
rh

− α2

(
1

ε
− rh

)
+ Sbdy/βV2 , (5.41)

Sos
2 /βV2 =

r2g

L2

(
eφAtA

′
t −
(
r2h

L2

)′)∣∣∣∣1/ε
rh

+ Sbdy/βV2 , (5.42)

where V2 represents the integral over the boundary coordinates x and y and β the

integral over the compactified time coordinate. The parameter ε ∼ 1/r is the UV

cut-off and is taken to ε → 0 when the whole expression, including the boundary

terms which act as a renormalisation, is evaluated. To obtain those expressions,

one has to rewrite the action as a total radial derivative plus a term which is

proportional to the equations of motion. It is a generic feature that there are two

versions of the total derivative leading to Sos
1 = Sos

2 . To understand this feature’s

origin it is instructive to write out (5.41) and (5.42) in terms of the boundary

coefficients cb,h introduced in subsection 5.2.3, see equations (5.11) and (C.30),

Sos
1 /βV2 =

cb
g,0c

b
h,3

L4
+ α2

(
cb
g,3

cb
h,3(cb

φ,1)2
+
cb
φ,2

cb
φ,1

− rh

)
, (5.43)

Sos
2 /βV2 = −

ch
g,0c

h
h,1r

4
h

L4
+
cb
At,0

cb
At,1

cb
g,0

L2
+

3cb
g,3

L4
−

2cb
g,0c

b
h,3

L4
. (5.44)

On the other hand, the thermodynamic quantities of the model can be expressed

in terms of those coefficients as well

T =
r2

hc
h
h,1

4πL2
, s = S/V2 =

2πr2
hc

h
g,0

κ2L2
µ = cb

At,0 , % = −
cb
At,1

L2
, (5.45)

where we used (2.38) to compute the temperature T , (2.33) for the entropy density

s, (3.19) for the chemical potential µ and the appropriate adaption of equation

(3.20) for the charge density %. There is a small subtlety in computing the entropy

density. The reason is that the general formula for the entropy in the holographic

context (2.33) requires the canonical normalisation of the gravity action which

we omitted here. Thus when we check the thermodynamic relation we have to

compensate for it by including a factor of 2κ2.

And there is one last ingredient for the physical interpretation of the two expres-

sions of the on-shell action. It is the stress energy tensor of the field theory which
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is sourced by the bulk metric. Applying the field-operator map (2.30) we obtain

〈
T tt
〉

=
3cb
g,3

L4cb
g,0

−
2cb
g,0c

b
h,3

L4
, 〈T xx〉 = 〈T yy〉 = −

cb
g,0c

b
h,3

L4
. (5.46)

It is now clear that the two expressions for the grand potential density Ω/V2 simply

represent the thermodynamic relation for the grand potential

Ω1/V2 = −Sos
1 /βV2 ≡ −p , (5.47)

Ω2/V2 = −Sos
2 /βV2 = ε− T s− µ % . (5.48)

where the energy density is defined as ε = 〈T tt〉. The pressure p of the thermody-

namic equilibrium state of the field theory is appropriately defined by the grand

potential density (5.47). Note that in our model the pressure is not given by the

spatial component of the stress energy tensor

p = 〈T xx〉 − α2

(
cb
g,3

cb
h,3(cb

φ,1)2
+
cb
φ,2

cb
φ,1

− rh

)
. (5.49)

The difference is sourced by the translational invariance breaking parameter α.

This can be regarded as analogous to a situation where a constant magnetic field

is applied leading to a magnetisation [120]. Another observation is that the trace

of the stress-energy tensor does not vanish

〈
T µµ
〉
6= 0 . (5.50)

This is a clear sign that the UV conformal symmetry is broken, i.e. the microscopic

quantum field theory dual to our holographic model is deformed from conformality,

see for example [121,122].

When comparing the grand potential Ω it is important to take care of the units

and compare the appropriate pair of solutions . The former can be summarised to

(T/µ)s = (T/µ)n , ᾱs = ᾱn ,
(
Ω/µ3

)
s

vs.
(
Ω/µ3

)
n
, (5.51)

where the indices refer to what will soon be identified as the normal conducting

state (n) and the superconducting state (s). Note that the normalisation with

respect to the chemical potential denoted by the bar has to be performed with the

value of the chemical potential in the respective branch of solutions. Morevoer
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Figure 5.1: (a) The grand potential Ω as a function of temperature for the normal
conducting state and the superconducting state, which is identified to be thermo-
dynamically preferred for T/µ < Tc/µ ≈ 0.044. We fix e = 2 and ᾱ = 0.04. (b)
The scalar condensate ∆ as a function of temperature for four different values of
ᾱ = 0.04, 0.08, 0.2, 0.3 at e = 2.

there is a subtlety related to the non-normalisable mode φ0 of the dilaton field.

We identified φ0 as one of the free parameters which has to be fixed in order to

completely specify the solution (5.13). At the same time, the normal state solution

(5.14) corresponds to a special solution, where φ0 is already fixed, effectively as a

function of the temperature (5.15). If we are to compare the numerical supercon-

ducting state solution to the special analytic normal state solution this function

has to be matched

(
φ̄0 (T/µ)

)
s

=
(
φ̄0 (T/µ)

)
n
, (5.52)

Using the boundary condition for the dilaton Φ, we numerically construct solutions

with a non-trivial charged scalar profile below the critical temperature Tc using

the shooting method explained in 5.2.3.

Figure 5.1(a) shows that the numerically constructed solution with a non-vanishing

charged scalar representing the superconducting state, is indeed thermodynami-

cally preferred over the normal state solution below a certain critical temperature

Tc.

The condensate of the charged scalar by equation (3.47) close to the critical tem-

perature exhibits a mean-field behaviour (3.48)

∆/µ2 = cb
χ,2/µ

2 ∼ (1− T/Tc)1/2 , (5.53)
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as shown in figure 5.1(b). We also observe the decreasing value for the critical

temperature for increasing values of ᾱ, discussed in the previous subsection 5.4.1.

It remains to show that this new phase really describes a superconductor in a sense

that the conductivity shows a δ pole at zero frequency.

5.4.3 Electrical conductivity

We now turn to the electrical conductivity in the supposedly superconducting

ground state of the holographic model (5.6) studied in this chapter. The goal is

to see a pole of the form 1/iω in the imaginary part Imσ(ω) at zero frequency.

This pole, by the Kramers-Kronig relation is equivalent to a δ-peak of the DC

conductivity ReσDC.

To compute the electrical conductivity we use the holographic method explained

in detail in 3.3.1. As for the normal conducting state analysis, we choose without

loss of generality to focus on the conductivity in the x-direction. The first step,

perturbing the ground state really means adding perturbations to every component

of every field present in the gravity background (5.2). In general, the fluctuation

δAx does not decouple from the rest of the fluctuations. Thus before we can

follow the prescription, we have to identify to which of the fluctuations it couples.

This can be done based on symmetry considerations. Being interested in the

time-dependence only, we do not consider a spatial dependence and the set of

perturbations we need to take into account to compute the optical conductivity is

{δAx, δgxt , δgxr , δξx} . (5.54)

In this thesis we work with a gauge invariant approach. By this we mean that

we consider only field combinations of (5.54) which are invariant under symmetry

transformations of the U(1) symmetry and diffeomorphism transformations. This

has the advantage that at any time we can be sure that the quantities we compute

are physical and not influenced by specific gauge choices. We explain this approach

in detail in appendix C. The gauge invariant combinations, Φ1,2, in terms of the

original perturbations are given by

Φ1(ω, r) = δgxt (ω, r) +
iω

α
δξx(ω, r) , Φ2(ω, r) = δAx(ω, r) (5.55)

where Φ(t, r) =
∫

dωe−iωtΦ(r). Note that Φ2 now represents the relevant Maxwell
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field fluctuation. Our set of fluctuations can then by described as {Φ1, Φ2, δg
x
r , δξx},

however all of the physical information is now encoded in the dynamics of the two

gauge invariant combinations Φ1,2. Their equations of motion decouple from the

ones for the other two and read

0 =Φ′′1 +

(
4

r
+
g′

g
+
α2h2g′ + ω2gh′

ω2g2h− α2gh2

)
Φ′1 +

L2eφA′t
r2g

Φ′2 +
L4 (ω2g − α2h)

r4gh2
Φ1

+

(
2L4α2At |χ|2

r4gh
+
L2ω2eφA′t (−g′h+ gh′)

r2gh (ω2g − α2h)

)
Φ2 , (5.56)

0 =Φ′′2 +
α2gA′t

−ω2g + α2h
Φ′1 +

(
2

r
− g′

g
+
h′

h
+ φ′

)
Φ′2

+

(
L4ω4

r4h2
− 2L2e−φ |χ|2

r2h
− L2ω2eφA′2t g

r2h (ω2g − αh)

)
Φ2 .

The equations for δgxr and δξx are given in the appendix (C.28). This implies that

in order to compute the conductivity we only need to solve (5.56). We can now

apply the procedure of 3.3.1.

First, we first impose the ingoing boundary conditions at the horizon

Φi(ω, r) = (r − rh)−
iω

4πT
(
ch

Φi,0 +O (r − rh)
)
. (5.57)

Then, in order to obtain the on-shell action as in (3.37) we investigate the be-

haviour of Φ1,2 at the asymptotically AdS boundary at r →∞

Φ1(ω, r) = cb
Φ1,0(ω) + c̃b

Φ1,1(ω)r−2 + c̃b
Φ2,2(ω)r−2 + cb

Φ1,3(ω)r−3 +O
(
r−4
)

(5.58)

Φ2(ω, r) = cb
Φ2,0(ω) + cb

Φ2,1(ω)r−1 +O
(
r−2
)

where c̃b are functions of the cb’s, the independent boundary coefficients.

Using the groundwork presented in the appendix, in particular equation (C.29),

we find that the on-shell action is given by

Sos/V2 =

∫
dω

[
− 3α2cΦ1,0cΦ1,3

2L4 (α2 − ω2)
+
cΦ2,0cΦ2,1

2L2
+ contact terms

]
, (5.59)

where the contact terms represent further terms proportional to the product of

different boundary values of all perturbations Φ1,2, δξx and δgxr. They would

appear as a constant shift and thereby not contributing to the pole structure

of the retarded Green’s function. From a physical perspective, because those
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terms do not contain a subleading or normalisable term which corresponds to the

sourced operator of the boundary field theory, they do not represent any dynamical

information about the response of the field theory to external perturbations.

The comparison with equation (3.37) reveals c = 1/2L2 and tells us that the

electrical conductivtiy of the system dual to the gravity model with action (5.6)

is given by

σ(ω) =
cΦ2,1(ω)

iωL2cΦ2,0(ω)

∣∣∣∣
cbΦ1,0=0

, (5.60)

where the condition that cb
Φ1,0 = 0 makes sure we do not source a heat current dual

to Φ1. Sourcing Φ1 alters the subleading term cΦ2,1 in a way, that it can no longer

be traced back to an external electrical field cΦ2,0 only. A detailed elaboration

on this holographic operator mixing is presented in [78]. On a technical level the

condition cb
Φ1,0

= 0 can be obtained by tuning the ratio of free parameters of the

near horizon expansions ch
Φ1,0

/ch
Φ2,0

to an appropriate value.

We numerically solve the equations of motion (5.56) and compute the optical con-

ductivity for different scales of momentum dissipation and different temperatures.

We find that the imaginary part shows a 1/iω-peak, and hence the real part has

a delta pole at zero frequency Re(σ) ∼ δ(ω). This proves that the new ground

state identified in the previous subsection, indeed is a superconducting state, see

figure 5.2. Moreover, increasing the temperature towards the critical temperature

has the effect, that the real part of the conductivity more and more resembles the

Drude-like behaviour of the normal phase.

5.5 Fermionic correlators

In the previous chapter 4 we found a remarkably good agreement between a holo-

graphic and a real high-temperature superconductor in the context of a (holo-

graphic) photoemission experiment. More precisely, we investigated the pole

structure of a probe fermion’s spectral density in the superconducting state of

the simplest holographic superconductor model 4.2. Comparing the so-called pair-

breaking term Γ, which has the interpretation as the inverse lifetime of a gen-

eralised version of Cooper pairsn, revealed a agreement on a quantitative level

between the holographic results and the results of [32]. Part of the motivation

to study this more complicated superconductor was to investigate whether this
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Figure 5.2: Imaginary part of the conductivity Im(σ) in the superconducting phase
at three different temperatures T/µ = 0.0033, 0.007, 0.0014 (top to bottom). We
fix e = 2 and ᾱ = 0.35 and thus Tc/µ = 0.023.

accordance is restricted to the simpler but also less realistic model based on the

AdS-RN setup or whether the similarity is a more general feature of holographic

superconductors. The Einstein-Maxwell-dilaton superconductor is of particular

interest since its normal conducting state behaves similar to real strange metals in

many ways.

We work with exactly the same setup for probe fermion as in chapter 4. For

convenience we repeat the corresponding action (4.4)

Sfermion =

∫
dx4
√
−g
[
i ψ (ΓµDµ −mf )ψ

+
(
η∗5χ

∗ψTCΓ5ψ + η5χψCΓ5ψ
T
)]

.

(5.61)

The discussion of section 4.3 is independent of the background and in order to

apply the ansatz to the present holographic model, we simply use the solutions for

the metric gµν , Maxwell field At and charged scalar χ constructed in 5.4, which

alters the horizon expansion of the Green’s function matrix G, albeit not to leading

order, see (B.9)-(B.12).

In the context of this chapter we do not aim for a quantitative comparison of

the holographic and experiment results. The issue is that the IR scaling of the

spectral density can be computed analytically for the AdS RN strange metal which

allowed us to fix the model parameters in such a way that this scaling matches

the experimentally observed marginal Fermi liquid behaviour. This is not the case
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Figure 5.3: The figure shows a representative data set for the gap ∆ (�) and pair-
breaking term Γ (H). We use η5 = 0.125 and e = 2, ᾱ = 0.16 with Tc/µ = 0.041.

for the holographic strange metal including the dilaton 5.1. Instead, we show the

effect of the coupling η5 between the charged scalar and the probe fermion and the

momentum dissipation scale α on the a qualitative level.

First of all, we note that the qualitative picture shown in figure 5.3 of the gap

∆(T ) and the pair-breaking term Γ(T ) as a function of temperature is similar to

the result in the right panel of figure 4.9 in the previous chapter.

Moreover, we observe the same effect of the coupling η5 on the increase rate of the

pair-breaking term as compared to the results for the AdS-RN superconductor,

compare the right panels of figures 4.9 and 5.3. Again, increasing η5 results in

a flattened growth of Γ. To obtain the data shown in figure 5.3 we rescaled the

temperature and pair-breaking term as described in equation (4.45) and fitted the

data as in (4.47), choosing Tmax = Tc. Figure 5.4(a) shows Γ(T ) for three different

values of ᾱ which are chosen such that they roughly exhaust the allowed range.

Similarly to the effect of η5, increasing ᾱ leads to a smaller value of the exponent

of the fitted curve.

We can regard this result as a proof of principle, that the experimentally observed

temperature dependence of the pair-breaking term for high-temperature super-

conductors can also be described in the context of the holographic model (5.6)

investigated in this chapter. This suggests that this behaviour could be a more

general feature of holographic superconductors. In combination with the experi-

mental observation that this behaviour also seems to be a more general feature of
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(a) e = 2, m̄ = 0.16 (b) e = 2, η5 = 0.125

Figure 5.4: Fitted (4.45) and rescaled (4.47) pair-breaking term Γ̃(T ) for different
values of the coupling η5 (left) and for the momentum dissipation scale ᾱ (right).
To rescale and fit the data we use Tmax = Tc, where Tc is the respective value of
the critical temperature given in (5.40).

real high-temperature superconductors [32], our results furnish the idea that they

are intrinsically related to their holographic counterparts.

5.6 Summary and outlook

In this chapter we studied a model of a holographic superconductor whose normal

state is characterised by the linear increase of the DC resistivity at small temper-

atures and a Drude like behaviour of the electrical conductivity, as observed for

real strange metals. This is in contrast to the AdS-RN model investigated in the

previous chapter, where σDC ∼ δ(ω) in the normal state as well. The origin of

the linear scaling of ρDC and the resolution of the δ-peak into a Drude peak is the

implementation of a mechanism breaking translational invariance. The mechanism

we chose here, is to include d − 1 = 2 neutral massless scalar fields ξi explicitly

breaking translational invariance of the gravity theory’s ground state while leaving

it isotropic and homogeneous.

We first established the holographic model including a dilaton field (5.6) and then

reviewed its most important features in the normal or metallic state where the

charged scalar field is identically zero χ ≡ 0. In particular we repeated the analysis

of [34] showing the entropy density scales linearly in temperature as well and

vanishes for T = 0 (5.23).

Based on this holographic strange metal we added a charged scalar field minimally
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coupled to the U(1) gauge field and gravity. In section 5.4 we showed that the scalar

becomes unstable at a critical temperature Tc which triggers a phase transition to

a new ground state, with χ 6= 0 and which is thermodynamically preferred to

the χ ≡ 0 state. The value of critical temperature depends on the two external

parameters, the scalar charge e and the scale of momentum relaxation ᾱ. The

behaviour of Tc upon changing those parameters, agrees with the results of [35,36]

in the overlapping parameter regimes, where holographic superconductors with the

same mechanism of breaking translational invariance but based on the AdS-RN

metal. Studying the electrical conductivity confirmed that the new ground state

has a δ-peak at ω = 0 and hence is a superconducting state.

Aside from the interest in the properties of a holographic superconductor whose

normal phase resembles real strange metallic phases, the main reason for our anal-

ysis was to investigate the fermionic spectral density in exactly the same way as in

the previous chapter 4. More precisely, our goal was to see whether the remarkable

agreement between the temperature dependence of the pair-breaking term Γ(T ) in

holography and experimentally studied high-temperature superconductors, holds

up for a more realistic model as well. In the previous chapter though, due to the

simple AdS-RN metallic state, we were able to engineer the charge of the probe

fermion such that the IR scaling of the fermionic spectral density resembles the

marginal Fermi liquid behaviour of strange metals. We could not realise this for

the dilaton model of this chapter and therefore restricted our analysis to a quali-

tative level, investigating the effect of the momentum dissipation scale ᾱ and the

coupling η5 between probe fermion and charged scalar χ. We find that the overall

qualitative behaviour of the energy gap ∆(T ) and the pair-breaking term Γ(T ) is

the same as for the AdS-RN superconductor and also changing the parameter η5

still has the same effect. As for the momentum dissipation scale ᾱ we find that the

it leads to an analogous change of Γ(T ) as η5. Increasing ᾱ flattens the profile of

the pair-breaking term’s temperature dependence. To summarise, we can regard

this as an indication that a quantitative matching with the experimental data is

possible with the holographic superconductor model including the dilaton field as

well. This requires a way of fixing the fermion parameters to achieve marginal

Fermi liquid behaviour in the normal state which is an interesting subject for

further research.

Based on the results of the previous and the present chapter, it is tempting to

speculate that the behaviour of Γ(T ) in [32] is generic for holographic supercon-

ductors. However, in order to make such a claim more classes of holographic
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superconductors would have to be studied.

As for the holographic superconductor itself a direction for future research is to

investigate Homes’ relation, which is an empirical law stating a universal relation

between the superconducting charge density %s at zero temperature and the DC

conductivity σDC at the critical temperature

%s(T = 0) = c σDC(Tc)Tc , (5.62)

where in the case of high-temperature superconductors the constant is experimen-

tally found to be c ≈ 4.4. Recall that it is the universal behaviours of whole

classes of strongly coupled systems which are predestined to be investigated from

a holographic perspective. An example of a holographic study of Homes’ relation

is presented in [123]. It would be interesting to see whether this relation is realised

in our model.
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Chapter 6

Quantum information in far from

equilibrium systems

6.1 Introduction and summary

The subject of the previous two chapters were systems in thermal equilibrium,

slightly perturbed by external sources. Studying the correlators of the sourced op-

erators, allowed us to gather information about the transport properties and the

‘electronic structure’ of the field theory duals. As advertised in the introduction,

the applications of the gauge/gravity duality are impressively diverse. We now

turn to a different application, or rather we pose a different set of questions about

the quantum field theory. In this chapter we are interested in away from equilib-

rium situations and instead of local correlators we study the long-range quantum

entanglement.

Gauge/gravity duality has the useful property that there is no conceptual problem

to study strongly systems far away from equilibrium, albeit in practise, solving

Einstein’s equations for a time dependent setup can be a challenge. The crucial

difference to for example the lattice method is that the duality allows us to work

with real instead of Euclidean time. Investigating strongly coupled out of equilib-

rium systems is thus a popular field of research [21–24], see [124–126] for reviews.

More specifically, there is a great interest in quantum quenches, which in the con-

text of holography are classified as ‘global’ when the entire gravity dual evolves

from an initial non-equilibrium configuration and as ‘local’ in the case of a sudden

change at a specificed locus in spacetime. Important results on holographic global

quenches are given in references [127–135] and on local quenches in [136–145].

107
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In this thesis we are interested in a situation similar to a local quench in many

ways. More specifically we investigate the time evolution of an initial configuration

given by two semi-infinite heat baths at two different temperatures TL and TR. At

time t = 0 they are connected at x = 0, such that the initial temperature profile

is given by

T (t = 0, x) = TLθ(−x) + TRθ(x) . (6.1)

From then on the two heat baths are allowed to interact resulting in a heat current

〈JE〉, which transports energy from the hotter reservoir to the colder one in an

attempt to thermally equilibrate the system. However, as the two heat baths are

assumed be at a constant temperature, the system never reaches thermal equi-

librium. The rate of the energy transport is constant in time, while the region

over which the current extends is growing. Eventually, at late times, the steady

heat current conquers the whole space. The setup is illustrated in figure 6.1. It is

Figure 6.1: The initially seperated heat baths, equilibrated at temperatures TL

and TR are connected and a heat current JE emerges. Figure taken from [1].

straight forward to construct the holographic dual of the initial state, knowing that

a finite temperature of the boundary field theory is dual to a black hole geometry

in the bulk, see 2.3.4. The bulk setup equivalent to the initial temperature profile

(6.1) is thus given by cutting two black hole geometries with Bekenstein-Hawking

temperatures TL and TR at x = 0 and gluing together one part of each. Of course,

such a spacetime is not a solution to general relativity, just like the field theory

setup is not a thermodynamic equilibrium state. Einstein’s equations then dictate

the time evolution of the geometry and hence allow to draw conclusions on the

field theory dual.

We focus on the case of d = 2, i.e. we are interested one-dimensional heat baths

with a gravity dual in three spacetime dimensions. Three-dimensional gravity is

special in the sense that it is not-dynamical and at every point in spacetime the

geometry can be transformed to locally look like the vacuum, in our case AdS3.

Due to this special property our holographic model has an exact analytical solution

describing the time evolution of the setup’s gravity dual [37]. As we discuss in the
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next section, this solution is characterised by two infinitely sharp ‘shockwaves’

moving at the speed of light away from the connection point at x = 0. In between

the two wavefronts a region characterised by a steady heat current emerges, to

which we refer as ‘steady state regime’.

Previous work on this setup is presented in [38–40], where the authors showed

that the asymptotic steady state can be described by a thermal distribution at a

shifted temperature. This result can be regarded as the holographic dual to the

finding that the steady state region on the boundary is dual to a boosted black

hole geometry in the bulk [37] at temperature
√
TLTR.

An interesting tool to study the quantum properties of this far away from equi-

librium system is entanglement entropy. Entanglement entropy can be regarded

as a measure of long range quantum entanglement and as such is generally hard

to compute in particular in strongly coupled systems. Utilising the holographic

prescription which unsurprisingly translates the problem to a geometrical problem,

we investigate the time evolution of the entanglement entropy in this setup.

The next section 6.2 provides a brief introduction to holographic entanglement

entropy. In section 6.3 we establish the initial state and time evolution of the

holographic setup dual to the specific system we are interested in (figure 6.1).

Section 6.4 presents the analytic approach to compute the entanglement entropy

and the analytically obtained results. The numerical methods and the numerically

obtained results are explained in section 6.5. We summarise our work presented

in this chapter in section 6.6 and give an outlook on possible future research.

The author of this thesis contributed to the development and implementation of the

numerical methods used to study the time evolution of the entanglement entropy.

Moreover she developed the basis for the analytical approach.

6.2 Holographic entanglement entropy

Entanglement entropy is a relatively simple measure of quantum entanglement, a

fundamental property of any quantum system. In contrast to the correlators we

focused on in the previous two chapters, it is a non-local quantity. More precisely,

it is a measure of the entanglement or quantum correlation of a subsystem A and

its complement Ac. It is defined as the von Neumann entropy of the reduced
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density matrix ρA = TrAc [ρ] of A

SA = −TrA [ρA log ρA] . (6.2)

The reduced density matrix can be thought of as a density matrix, where the

degrees of freedom of Ac are made unreadable for an observer in the subsystem A.

In this picture, the von Neumann entropy or entanglement entropy is the entropy

of A taking this restriction into account. Note that this logic is similar to the logic

leading to the Bekenstein-Hawking entropy (2.33) of black holes.

Recall that the AdS/CFT correspondence is a duality between a quantum field the-

ory and a classical gravity theory, in particular, properties of the former are given

a geometric interpretation. Somehow the information contained in the boundary

field theory must be encoded in the higher dimensional bulk. The first concrete

prescription was given in references [29, 30] by Ryu and Takayanagi. The idea is

essentially to simulate a horizon in the bulk hiding the information contained in

Ac [146]. This imaginary horizon is constructed as a co-dimension one hypersur-

face in a time slice of the bulk, anchored at the boundary ∂Ac = ∂A of the region

Ac. According to the prescription the entanglement entropy is, inspired by the

Bekenstein-Hawking entropy, given by the area of the minimal surface divided by

4GN

SA =
Area (γA)

4GN

, (6.3)

where Newton’s constant GN is understood to be evaluated for the number of

bulk dimensions d + 1. The hypersurface Σ with minimal area is characterised a

vanishing variation of the area functional

S =

∫
γA

dd−1y
√
γ . (6.4)

y are the coordinates of Σ and γ is the induced metric on that surface. If there is

more than one extremum the one with the minimal surface is chosen to be γA. The

conjectured equality between the quantum field theory entanglement entropy and

(6.3) was proven in [31]. The original RT prescription is restricted to static systems.

The covariant generalisation, the HRT prescription was given in [63]. In this case,

the equal time co-dimension one hypersurface γA in the bulk and region A at the

boundary are generalised to be a spacelike hypersurface and region, respectively.
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In the case of a two dimensional boundary, the boundary regions are one-dimensional

and so are the co-dimension one hypersurfaces. Thus one is really looking for a

geodesic whose endpoints at the boundary are located at the endpoints of the

interval. In a general background with metric g, geodesics obey the equation

0 =
d2xµ

ds2
+ Γµνλ

dxν

ds

dxλ

ds
. (6.5)

This form of the geodesic equation implies that s is the so-called affine parameter,

which is characterised by attributing a unit tangent vector |x′|2 = 1 to the geodesic

and by det(γ) = 1. According to equation (6.4) this implies that s really is the

length of the geodesic. The geodesic equations do not have an analytic solution

in general. However, for the BTZ black hole geometry we are interested in this

chapter, they do, see for example equations (3.25)-(3.27) in [147]. The resulting

entanglement entropy is

SBTZ =
L

4GN

log

[
1

π2ε2T 2
(cosh(2πT∆x)− cosh(2πT∆t))2

]
, (6.6)

where the integration was stopped at a cutoff surface at r = 1/ε, as the expression

is a priori divergent. Once again one has to employ a holographic renormalisation

procedure to obtain a finite expression. A common renormalisation scheme in the

context of holographic entanglement entropy is the minimal subtraction scheme,

where only the divergent part of (6.6) is removed

Sren
BTZ = SBTZ −

2L

4G
log ε . (6.7)

The equal time limit ∆t = 0 is given in (6.25) and its renormalised version, ob-

tained with the minimal subtraction scheme, in equation (6.26).

Later in this chapter 6.5.3 we will be interested in the situation of several inter-

vals. As an instructive example, let us briefly discuss the case of n = 2 intervals.

Attempting to compute the entanglement entropy of the union A∪B of two non-

adjacent intervals A and B and its complement (A ∪ B)c, one has to find the

appropriate configuration for the minimal bulk surface attached to those intervals.

There are, in principle, three different ways of connecting the four endpoints with

two geodesics. They are illustrated in figure 6.2. The entanglement entropy is

given by the option which leads to the minimal area [148–150]

S(A ∪B) = min {S(A) + S(B), S(AB1) + S(AB2)} . (6.8)
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Figure 6.2: There are two physical ways to construct the minimal surface as the
holographic dual of the entanglement entropy S(A∪B) for two intervals (left). The
third possible option for connecting the endpoints of the intervals is unphysical
(right). Figure taken from [1].

The third option, shown on the right in figure 6.2 can be shown to never yield

the smallest surface and is therefore ignored in (6.8) and described as unphysical.

Depending on the specific configuration of the two intervals A and B, AB1 or AB2

yields the the correct value for the holographic entanglement entropy. The result

has to obey two entanglement inequalities: the subadditivity and the triangle or

Araki-Lieb inequality

S(A ∪B) ≤ S(A) + S(B) , and S(A ∪B) ≥ |S(A)− S(B)| . (6.9)

It is straight forward to prove that they indeed hold in holography as well [151].

6.3 Holographic thermal steady state

6.3.1 Setup and initial geometry

The idea of this chapter is to study the time evolution of a system which at t = 0

is set up as two semi-infinite heat baths at temperatures TL and TR spread over

x < 0 and x > 0, respectively, which then are allowed to interact. Such a situation

can in principle be studied at arbitrary dimensions d with a (d − 2)-dimensional

contact area. In this chapter we discuss the special case of a d = 2 dimensional

boundary spacetime, where the contact area consequently is zero-dimensional.

We established in subsection 2.3.4 that a field theory at finite temperature is dual

to a black hole geometry. Black holes in three dimensional AdS space are referred
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to as BTZ black holes [152,153]. They appear as a solution of

S =
1

2κ2

∫
d3x
√
−g
(
R +

2

L2

)
(6.10)

and are described by the AdS-Schwarzschild metric (2.37). For the three dimen-

sional case it is given by

ds2 =
r2

L2

(
−f(r)dt2 + dx2

)
+

L2

r2f(r)
dr2 with f(r) = 1−

(rh

r

)2

, (6.11)

and the associated temperature by T = rh/2π. Connecting two semi-infinite heat

baths is then dual to the following geometry

ds2 =

ds2
TL

for x < 0 ,

ds2
TR

for x > 0 ,
at t = 0 . (6.12)

In the next step, we discuss the time evolution of this geometry.

6.3.2 Time evolution of the geometry

Bringing two heat baths at different temperatures into contact clearly is not an

equilibrium situation and a current transporting heat from the hotter to the colder

region will emerge immediately. What does this process look like from the per-

spective of the dual bulk geometry? This question is best addressed in Fefferman-

Graham coordinates where the dynamical solution to this problem for any tem-

perature profile is given by [37,154]

ds2 =
r̃2

L2
g̃µν(t̃, x̃, r̃) +

L2

r̃2
dr̃2 . (6.13)

The metric components are

g̃tt = −
[
1− L2

r̃2
(fR + fL)

]2

+

[
L2

r̃2
(fR − fL)

]2

, (6.14)

g̃tx = −2
L2

r̃2
(fR − fL) , (6.15)

g̃xx =

[
1 +

L2

r̃2
(fR + fL)

]2

−
[
L2

r̃2
(fR − fL)

]2

, (6.16)
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in terms of left moving fL(x+ t) and right-moving fR(x− t) wavefunctions. Their

explicit form is determined by the initial condition that there is no heat current

〈T tx〉 = 0 at the time t = 0. The one point function of the boundary stress energy

tensor for the above metric with equations (2.30) and (2.32) are given by

〈
T tt
〉

= 〈T xx〉 =
c

6π2L2
(fR + fL) ,

〈
T tx
〉

=
c

6πL2
(fR − fL) , (6.17)

where c is the central charge of the dual CFT. The initial condition thus demands

that fL(v) = fR(v) at t = 0, were their arguments both reduce to v = x. Plugging

this into the metric (6.14)-(6.14), taking the initial temperature profile (6.1) into

account and comparing it with the AdS-Schwarzschild metric in Fefferman-Graham

coordinates, one finds

fL,R(v) =
π2L2

2

(
T 2

L +
(
T 2

R − T 2
L

)
θ(v)

)
, (6.18)

in terms of the step function θ. As time evolves, a growing region t > x > −t
with a non-vanishing and constant heat current 〈T tx〉 emerges. The infinitely

sharp wavefronts with which this region supersedes the two heat baths move at

the speed of light. For higher dimensions d > 2 the nature of those shockwaves is

quite different. We briefly discuss this at the end of this chapter. In section 6.5 we

work with two different methods, of which one requires a smooth geometry, which

can be realised by

fL,R(v) =
π2L2

4

((
T 2

L + T 2
R

)
+
(
T 2

R − T 2
L

)
tanh(αv)

)
. (6.19)

In the limit α→∞ this solution reduces to the discontinuous version (6.18).

Going back the Schwarzschild coordinates, the metric describing the steady state

region takes the form of a boosted black hole

ds2
boost =

r2

L2

[
−f(r) (cosh θ dt− sinh θ dx)2 + (cosh θ dx− sinh θ dt)2]

+
L2

r2f(r)
dr2 ,

(6.20)

at the effective temperature T given by

T =
√
TLTR , χ =

TL
TR

, β =
χ− 1

χ+ 1
, β = arctanh β . (6.21)
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In this notation the full geometry can be expressed as

ds2 =


ds2

TL
for x < −t ,

ds2
boost for − t < x < t ,

ds2
TR

for x > t .

(6.22)

The discontinuous geometry is a result of gluing together the three different space-

time regions along co-dimension one hypersurfaces. Those hypersurfaces are the

bulk extension of the boundary shockwaves bounding the steady state region. The

geometrically appropriate way to glue regions in general relativity is to study the

Israel junction conditions [155]. When two hypersurfaces Σ1 and Σ2 are to be

identified, they have to have the same topology and induced metric γij. This is

assured by the following equation for the stress-energy tensor Sij defined on the

hypersurface

(
K+
ij − γijK+

)
−
(
K−ij − γijK−

)
= −κSij . (6.23)

The extrinsic curvatures of the hypersurface are computed with the induced met-

rices of the left and the right side, respectively. For our setup those Israel junction

conditions are satisfied and in particular, Sij vanishes identically. It is worth

pointing out the subtlety that in our case the glued spacetimes involve a black

hole horizon appearing to be cut into three pieces. This is explained in detail in

section 2 in [1] with the aid of a Kruskal diagram (see figure 2 therein). In short,

the result of the discussion is that the shockwaves do not touch any of the ‘three

horizons’ in a problematic way. Moreover in the coordinates we are using, the

hypersurfaces are spacelike and from a bulk perspective thus seem to be super-

luminal. Recalling that general relativity in three dimensions is not dynamical,

i.e. does not contain propagating degrees of freedom, it becomes clear, that in the

bulk theory no information is transported in the traditional sense. This feature is

essentially a manifestation of the fact that the BTZ black hole locally looks like

empty AdS space everywhere.
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6.4 Entanglement entropy: analytic approach

6.4.1 Essential analytic ingredients

In the context of this chapter we are interested in the entanglement entropy be-

tween equal time regions at the boundary, which are either completely contained

in the x < 0 or the x > 0 region and their complements. The two endpoints of an

interval of length ` are denoted by xl and xr with ` = |xr− xl|. In this chapter we

always work with the following boundary conditions

x>l > x>r > 0 or 0 > x<l > x<r and t>,<l = t>,<r = t>,< . (6.24)

As a consequence, the entanglement entropy of an interval ` and its complement at

the initial time t = 0 is simply given by the AdS-Schwarzschild or BTZ expression

SBTZ =
L

4GN

log

[
1

π2ε2T 2
L,R

sinh2 (π`L,RTL,R)

]
, (6.25)

for an interval located in the left (L) or right (R) heat bath, respectively. Renor-

malising the expression with the minimal subtraction scheme cancels the factor of

ε2

Sren
BTZ =

L

4GN

log

[
1

π2T 2
L,R

sinh2 (π`L,RTL,R)

]
. (6.26)

The steady state region, growing with time, eventually conquers the whole space

at t→∞. Knowing that this region is appropriately described by a boosted black

hole geometry, one can take the general expression for the entanglement entropy

in the unboosted geometry (6.6) and engineer the value of the time difference ∆t

in such a way, that the boost leads to an equal time interval. This is the case for

∆t =
TL − TR

2
√
TLTR

` , ∆x
TL + TR

2
√
TLTR

` , (6.27)

where ` is the length of the interval we actually interested in. Plugged into equation

(6.6) this yields

Sren
boost =

L

4G
log

[
1

π2TLTR

sinh (π`TL) sinh (π`TR)

]
. (6.28)
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Note that looking at two intervals A and B arranged symmetrically around x = 0,

relations (6.26) and (6.28) imply

SA(t = 0) + SB(t = 0) = SA(t→∞) + SB(→∞) . (6.29)

This relation may be referred to as some sort of conservation of entanglement

entropy, albeit the sum depends nontrivially on time while the shockwaves move

through the interval. The same relation was obtained in [156] for a slightly different

setup. We discuss this in section 6.5.2. The time period during which the interval

is traversed by the shockwave, x<l < t < x<r or x>l > t > x>r , is the only time

period where the entanglement entropy of that interval changes in time. Note that

this precise limitation is of course only true for infinitely sharp shockwaves (6.18)

and (6.22). The smoothened version (6.19) can only asymptotically be described

by those static spacetime regions.

Moreover, given the initial (6.26) and final (6.28) value of the entanglement entropy

of an interval A, the average entropy increase rate is bounded. The bound is fixed

by the temperature difference, see section 5.4 in [1] for a detailed discussion. Note

that (6.29) implies that while for one region the entanglement entropy increases

in time, it decreases for the other. It increases for an interval originally located in

the colder heat bath and decreases for an interval originally located in the warmer

heat bath.

Let us finally address this time dependent regime. In d + 1 = 3 bulk dimensions

many problems are solvable and we are given an analytic expression for the back-

ground. One might hope, that similarly to the gluing of spacetime regions it is also

possible to create a piecewise defined geodesic and obtain an analytic expression

for the time evolution of the entanglement entropy. It turns out, that this is not

quite the case, but it is possible to hold on to the analytic approach for a bit longer.

Recall that we are interested in intervals of the form (6.24). Those intervals will at

most host two of the three regimes. Hence the geodesic connecting the endpoints

through the bulk will at most pass through two of the three spacetimes (6.22) as

well. One is always the ordinary BTZ spacetime (6.11) and the other its boosted

analogue (6.20).

The idea is to connect a geodesic with one endpoint at the boundary located in

one regime at {t∗, x>l } to a geodesic in a different regime with endpoint {t∗, x>r }.
For concreteness we restrict to intervals at x > 0. As before, we define ` =

|x>r − x>l |. The two geodesics are connected (c) on the hypersurface separating
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the two associated bulk spacetimes which is characterised by xc = tc. Note that

neither of the geodesic is an equal time geodesic. It is only required that the two

endpoints of the final composite geodesic reach the boundary at the same time

t∗. The procedure is inspired by [157] and makes use of the peculiar properties

of general relativity in three dimensions. In order to resort to results of [157], we

switch to Fefferman-Graham coordinates x̃µ, which at the boundary are equal to

the Schwarzschild coordinates1. The final expression for the renormalised length

of the composite curve as a function of the connecting point x̃µc is given by

dR(zc, xc) = log
[
ζRR

+ cosh (2πTR(x− `))− ζRR
− cosh (2πTR(t− x))

]
+ log

[
ζLR

+ cosh (π (TL − TR) t+ 2πTRx)

− ζLR
− cosh (π (TL + TR) t− 2πTRx)

]
− 1

2
log
[
16π8T 2

LT
6
Rz̃

4
j

]
,

(6.30)

where the AdS radius is set to one, L = 1, and

ζXY
± = 1± π2TXTYz̃

2
c , x = x̃c − xl and t = t∗ − x>l . (6.31)

The latter is the time that passed since the shockwave entered the boundary in-

terval of interest. A similar expression dL can be obtained for an interval located

at x < 0. In order to turn this composite curve, consisting of two geodesics in

two different spacetimes, into a geodesic in the composite spacetime, d has to be

minimised with respect to the connecting point, i.e. {x̃c, z̃c} or equivalently {x, z̃c}

∂z̃cdR = 0 , ∂xdR = 0 . (6.32)

Those equations do not have analytical solutions and in order to study the entan-

glement entropy’s time evolution in full generality one has to resort to numerical

methods, see section 6.5. There are, however, two limits which allow an analyti-

cal advance. They are presented in the two following subsections. Note that the

entanglement entropy is related to the length of the geodesic through S = Ld/4GN.

6.4.2 Universal behaviour

The first case in which we can proceed to solve equation (6.32) analytically, is re-

alised when both temperatures are small. This can be implemented by introducing

1in addition to switching to Fefferman-Graham coordinates all of the analytic formulae related
to equation (6.30) are written in terms of the an inverted radial coordinate z = L/r.
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a small factor δ

TL,R → δ TL,R , (6.33)

keeping the relative order of magnitude of the two temperatures as it is. The arti-

ficially introduced smallness is to be understood in relation to the inverse interval

length. Expanding dR and its ‘left analogue’ dL in δ, one finds for the leading order

∂xdR ∝ ∂z̃cdL ∝ (`− t) (`+ 2t− 4x) t− (l − 2t) z̃2
c , (6.34)

∂z̃cdR ∝ ∂xdL ∝ (`− t) (t− 2x) (`+ t− 2x) t+ z̃4
c . (6.35)

Those expressions are extremised by

x = t , z̃c =
√

(`− t) t . (6.36)

We define the normalised entanglement entropy f as a function of the normalised

time ρ to be

fA(ρ) =
SA(t)− SA(t = 0)

SA(t→∞)− SA(t = 0)
with ρ = t/` . (6.37)

Note that ρ parametrises the time which passed between the arrival of the shock-

wave at the interval and the time at which the entanglement entropy is studied. It

is bounded by 0 ≤ ρ ≤ 1, where the maximal value is reached, when the shockwave

leaves the interval. The simple solution of (6.36) leads to the following universal

time evolution

f(ρ) = 3ρ2 − 2ρ3 +O(δ) (6.38)

to lowest order in the expansion parameter δ. This behaviour is universal in the

sense that it does not depend on the location or the length ` of the interval for

which the entanglement entropy is computed. The limitations of the universality

are dicussed in 6.5.2 by means of the numerical analysis. Interestingly, the above

time evolution of f has proven to be a good approximation beyond the analytic

validity of the expansion.
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6.4.3 Zero temperature limit

The second analytically tractable limit is the one where one of the temperatures

is zero, say TR = 0. In this case the geodesic length (6.30) is extremised by

x =
πtTL(`− t) coth (πtTL) + (`+ t)

2 + 2πTL(`− t) coth (πtTL)
, z2

c =
`(`− t

1 + πTL(`− t) coth (πtTR)
. (6.39)

For a high temperature of the left heat bath TL`� 1 the entanglement entropy of

the interval A with length ` increases linearly in time

SA =
L

4GN

πtTL . (6.40)

It is tempting to discuss this result in the context of entanglement tsunamis, see

e.g. [127, 131–133], which refers to the linear growth of the entanglement entropy

after a global quench of a sufficiently large region and an initial quadratic growth

[127–129,131–133,158]. Note however that our setup does not admit a quasiparticle

picture.

6.5 Enganglement entropy: numerical approach

6.5.1 Two complementary methods

Let us now turn to the numerical analysis of the entanglement entropy’s time

evolution. To this end we employ two different methods, the ‘shooting’ and the

‘matching method’2. The results in the regime where the two methods overlap

agree.

The shooting method, as the name already suggests, is similar to the shooting

method we described in the context of the holographic superconductor 5.2. The

idea is to integrate the geodesic equation (6.5) in the smoothened version of the

bulk geometry (6.19), starting from a specific locus in the bulk, in both directions

to the two endpoints of the geodesics xµL = xµ(s→ −∞) and xµR = xµ(s→∞) at

the boundary, s is the affine parameter. The set of initial conditions is provided by

xµ(s0) and (xµ)′(s0). We chose to start the integration at the geodesic’s turning

2We attempted a third method, called the ‘relaxation’ method, which is based on approaching
the solution by iteratively relaxing an initial guess, see e.g. [159]. It turned out, however, that
this method is not very effective nor stable for the equations we needed to solve.
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point s0 = 0. However, at the start of the procedure their numerical values are

unknown. Thus the solving procedure is the search for the correct set of numerical

values for xµ(s0) and (xµ)′(s0), which result in the desired endpoints (6.24). On

a technical level this is implemented with a ‘find root’ method which requires

an acceptable initial guess. For similar temperatures TL,R, a reasonable choice

is to take the analytically known values of xµ(s0) and (xµ)′(s0) for a geodesic in

the simple AdS-Schwarzschild spacetime given in equations (3.25)-(3.27) in [147].

Those initial conditions used in the dynamical spacetime (6.19) do not result in

a geodesic which satisfies the boundary conditions, but the endpoints will not be

far off either. This works very reliably for small temperature differences ∆T ≡
(|TL − TR|)/(TL + TR) ∼ 0.05 and for a not too sharp transition between the

three regions, i.e. α ≤ 30. Those requirements restrict the applicability of the

the shooting method in this setup. For the shooting method we used the minimal

substraction renormalisation scheme (6.7).

The second method, which we refer to as matching method is the numerical com-

pletion of the analytic approach in the previous section 6.4. Recall that the idea

is to construct the geodesic ranging from one point at the boundary xµL, located

in one region to the other xµR, located at a different but neighbouring region, as a

piecewise defined trajectory. The expression for the resulting length of the trajec-

tory as a function of the boundary conditions xµL,R and the point xµc at which the

two pieces meet is given in (6.30). This is the furthest we get analytically. From

here it remains to minimise dL,R with respect to the matching point to obtain the

trajectory of minimal length, the actual geodesic. This requires to find a numer-

ical solution of (6.32). Note that to derive this expression we used the minimal

subtraction scheme as well. Briefly, this undertaking can be split into two steps.

The first step is to find approximate solutions and check which of them result in

a positive length. The approximate solutions passing this test are then refined us-

ing Newton’s method. The final answer is given by the minimal positive geodesic

length between the two endpoints xµL,R. Note that solutions which correspond to

a geodesic going beyond the horizon were shown to be unphysical, i.e. they do

not result in a positive geodesic length. Furthermore the minimal distance dL,R

becomes complex valued for solutions which correspond to a null or timelike sep-

aration. The matching method is not constrained by restrictions similar to the

ones of the shooting method. It can be employed for large temperature differences

in relative and absolute values as well. It does however, rely on the assumption

that the coordinates xµ smoothly parametrise the border between the different
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Figure 6.3: Normalised entanglement entropy fA for the interval A in temper-
atures TL = 0.4 and TL = 10 compared to the universal formula (6.38) (left)
and deviations from it for TL = 0.2, 0.4, 10. (right). The interval is chosen to
∆xA ∈ [0.175, 1.35] and TR = 1.95. Figure taken from [1].

regions and that the metric components take care of possible discontinuities. The

Mathematica code used for this method in a supplementary file together with [1].

In the parameter regimes where both methods are applicable, the results agree,

providing a consistency check for each other. Note that the interval length is

understood to be measured in units of the AdS radius L and the temperatures in

units of its inverse L−1. For the numerical analysis we set L = GN = 1.

6.5.2 Corrections to the universal behaviour

Let us first address the universal behaviour for small temperatures and temperature

differences. In section 6.4 we presented an analytic formula for the universal time

evolution of the normalised entanglement entropy fA(ρ) of a region A (6.38). The

normalised time 0 ≤ ρ ≤ 1 (6.37) parametrises the time interval during which the

shock wave passes through the interval of interest. This formula is restricted to the

limit of small temperatures `TL,R < 1 and temperature differences ` |TL − TR| < 1.

The universality refers to the fact that this expression is independent of the interval

length ` and the location of the interval. The numerical analysis confirms this

universal behaviour and in addition to it allows to go beyond the small temperature

and temperature difference limit. Note that is was actually those numerical results

which inspired the analytical treatment.

Figure 6.3 shows the deviation from the universal time evolution upon increasing

the temperature of the left heat bath and thereby also increasing the difference

between the two temperatures, as we set TR = 1.95. Moreover at TL = 10 the

data hints at the linear time dependence of the normalised entanglement entropy

(6.40). Recall that the latter was derived at TR = 0. This situation is mimicked
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Figure 6.4: The normalised sum SA + SB (6.42) as a function of boundary time.
The deviation of the sum’s initial and final value seems to be bounded. Figure
taken from [1].

here by TL � TR.

Another way to quantify the deviations from the universal behaviour (6.38) is to

look at the sum of the entanglement entropies of two intervals A and B. The two

intervals are assumed to be of the same length ` and are arranged symmetrically

around x = 0. If the time evolution were truly independent of also the location of

the interval, the sum of SA and SB would have to be constant. This conclusion

becomes clear by inverting the definition of the normalised entanglement entropy

f (6.37)

SA(ρ) = SA(0) + [SA(t→∞)− SA(0)] f(ρ) , (6.41)

where SA(t → ∞) = SA(ρ = 1) for any interval A, since S is constant as soon

as the shockwave passed through the interval. Now we know from the analytical

perspective that the sums of the entanglement entropies of two symmetric intervals

A and B at t = 0 and t→∞ agree (6.29) and SA(t)+SB(t) = const if fA = fB = f .

The fact that this is not the case is illustrated in figure 6.4. Interestingly, the

normalised sum

SA(t) + SB(t)

2SA(∞)
(6.42)

appears to be bounded from above by approximately 1.025.

6.5.3 Entanglement inequalities

Let us now turn to a very interesting usage of the matching method, explained in

the beginning of this section. When it comes to the discussion of entanglement

entropy, inequalities often play a role. They arise in the context of more than just
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one region A and its complement Ac. In 6.2 we already mentioned two examples in

the case of two different regions: subadditivity and triangle or Araki-Lieb inequal-

ity. Three regions, A, B and C, already give rise to more complicated inequalities.

Among those the strong subadditivity is one of the most prominent examples

S(AB) + S(BC)− S(ABC)− S(B) ≥ 0 , (6.43)

where combinations of A, B and C indicate the union of the respective regions.

Note that there is a second inequality which sometimes is also referred to strong

subbadditivity. It is given in equation (6.10) in [1]. Another common example is

the monogamy of mutual information, also referred to as negativity of tripartite

information

I3(A : B : C) ≡S(A) + S(B) + S(C)− S(AB)− S(BC)

− S(AC) + S(ABC) ≤ 0 .
(6.44)

Inequalities for the entanglement entropies of several regions are of particular in-

terest from the perspective of holography. Given that they have to be obeyed from

a quantum physics point of view, it is interesting to see whether they are obeyed

in a holographic setup as well. It turned out that those inequalities are intricately

related to the energy conditions in the bulk. Thus they promise to give further

inside into both the details and the bigger picture of the holographic duality.

The matching method allows us to study inequalities in the context of the steady

state setup whose peculiarity it is to provide a simple yet nontrivial time dependent

framework. In this work we are interested in checking the strong subadditivity

(6.43) and monogamy of mutual information (6.44) for n = 3 regions, the positivity

of the four-partite information given in equation (6.18) in [1] for n = 4 regions as

well as the negativity of the five partite function (6.19) and further inequalities

given in equations (6.12)-(6.16) for n = 5 regions. This is the maximum number

of regions studied in [1].

The first challenge for that purpose is to construct the holographic duals of the

different unions of regions or intervals, as our setup only has one spatial dimension

at the boundary. Figure 6.2 illustrates that even in the case of two intervals

one has to think carefully about which of theoretically possible ways to connect

the intervals’ boundaries through bulk geodesics. The authors of [1] developed

an algorithm which allows to enumerate all of the possible configurations taking
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physical considerations into account. It turns out that their number is given by the

Catalan numbers. Furthermore, depending on which inequality one studies, some

of the configurations are equivalent to others upon a relabelling of the intervals A,

B, C, ... This topic is presented in detail in section 6.1 of [1].

Having established the possible configurations it remains to explicitly choose inter-

vals and temperatures at which the inequalities mentioned above are to be studied.

The idea is to choose a fixed number N = 20 of different locations at the boundary

and subsequently construct up to n = 5 non-adjacent intervals ending on those

points. In order to cover many orders of magnitude for the distances between the

boundary points, they are positioned in a fractal way

x = 0, 1− 2

α
, 1− 4

α2
, 1− 8

α3
, ..., 1 +

8

α3
, 1 +

4

α2
, 1 +

2

α
, 2 . (6.45)

The choice TL = 9 and TR = 1 gives representative results.

After studying several hundred thousands of different cases, we find that none

of the studied inequalities for n = 3 intervals are violated for any of those, as

expected based on [160,161]. The positivity of the four-partite function is violated

for a number of examples, which was also the result of [162] and [163] in a static

geometry. The same is true for the five-partite information. The inequalities

of [164], where they were proven in the static case, given in (6.12)-(6.16) in [1] are

satisfied for every single example that was studied.

6.6 Summary and Outlook

In this chapter we investigated a system far away from thermal equilibrium with

holographic methods. The system is characterised by an emergent steady heat

current between two initially separated heat reservoirs, see figure 6.1. In particular

we studied the time dependence of the entanglement entropy which measures the

information flow between the subsystems.

The choice to work with a d = 2 dimensional boundary theory provided us with

an exact analytic solution for the time evolution of the dual bulk spacetime, which

in turn allowed to partially employ analytical methods to study the entanglement

entropy 6.4. We then took two different limits of the initial temperature configu-

ration resulting in two manifestly distinct behaviours. The first is the limit, where

both temperatures are small. In this case we find a ‘S’-shaped increase/decrease of
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the entanglement entropy of an interval initially located in the colder/warmer heat

bath. To leading order this behaviour is universal, by which we mean that it does

not depend on the length of the interval nor on its location. In the second limit we

set one of the temperatures to zero, while the other is assumed to take large values

in units of the inverse interval length. The entanglement entropy then changes

linearly in time. This behaviour resembles the entanglement tsunami behaviour in

systems experiencing a global quench, see e.g. [127,131–133]. In analogy with this

one could think of the ‘S’-shape as an entanglement tide.

Outside those two limits, we resorted to numerics to complete the analytic ap-

proach 6.4. Firstly the numerical analysis confirms the two analytically obtained

results and shows, that the entanglement tide characterises the time evolution of

the entanglement entropy beyond the limits on the order of magnitude for which

the analytical computation is valid, see figure 6.3. Furthermore we checked the

validity of entanglement inequalities, in particular the inequalities for a large num-

ber of subsystems proven in [164] for the static case. Explicitly analysing them for

up to five subsystems on our time-dependent system, we did not find any example

where they are violated. However, our setup seems to violate the definiteness of

four- and five-partite information. This is surprising in the context that as our

system locally looks like the AdS3 vacuum everywhere, it satisfies most common

energy conditions. It would be interesting to explore this further to track the origin

of the violations in our setup.

Another subject for further research is certainly the higher dimensional d > 2

generalisation of the system studied in this work. The system itself was already

investigated in different contexts [37, 165–168]. A crucial difference is that in

contrast to the two-dimensional case addressed in this thesis, the waves pushing

back the heat baths are no longer sharp shockwaves. A natural generalisation

would be to think of smoothened shock waves. However, reference [167] pointed out

that due to the ‘entropic condition’ a shock-rarefaction wave solution is physically

preferred over the double-shock solution. A rarefaction wave is much wider in

space and it is a priori not clear whether it extends to the shockwave on the other

side and thereby excluding a formation of a steady state. Reference [168] argued,

based on numerical considerations, that this is not the case and a steady state

region still emerges in the higher dimensional case. It would be interesting to see

whether it is possible to obtain a shock-rarefaction solution with gauge/gravity

duality.
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Conclusion

This thesis investigated two different classes of applications of gauge/gravity dual-

ity. One of them are holographic superconductors in their ground state or thermal

equilibrium, probed by external perturbations like an electric current or a holo-

graphic version of a photoemission experiment. The other is a system far away

from thermal equilibrium investigated through the properties of its entanglement

structure during the system’s evolution in time.

We motivated and reviewed the origin of the duality in chapter 2 and established

the holographic dictionary. Chapter 3 provides a review of the methods and entries

of the holographic dictionary used for applications of the duality to condensed

matter systems, often referred to as AdS/CMT.

In chapter 4 we investigated a holographic superconductor by the means of a ‘holo-

graphic photoemission experiment’ which refers to studying the spectral density of

probe fermions added to the superconductor model. Our goal was to compare our

results with the results of a recent experiment about the temperature dependence

of the gap ∆ and pair-breaking term Γ of a high-temperature superconductor [32]

on a quantitative level. We worked with the simplest model of a holographic su-

perconductor, first proposed in [16]. The interaction of the probe fermions with

the superconductor were chosen such that a gap forms in the spectral density as

soon as the superconducting state is entered below the critical temperature [33].

Imposing a condition on the behaviour of the spectral density in the normal con-

ducting state, allowed us to reduce the number of parameters to only two. We

then investigated the effect of those two parameters, the coupling strength be-

tween fermion and superconducting condensate and a parameter regulating the

critical temperature, on the temperature dependence of ∆ and Γ. They manifest

127
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themselves as the imaginary and real part of a pole of the spectral density in

the complex frequency plane, respectively. Given our holographic model, the gap

vanishes unsurprisingly at the critical temperature, unlike the behaviour observed

in the experiment. However, we find that the experimentally measured tempera-

ture dependence of the pair-breaking is effortlessly described by the holographic

setup. Tuning the two parameters of our model appropriately, we were able to get

a remarkably good accordance between our holographic results on Γ(T ) and the

experimental ones on a quantitative level.

We presented our results on a new holographic model of a superconductor in chap-

ter 5. The unique characteristic feature of our model is that its normal state is

built on the basis of a model [34] which has proven to share two important proper-

ties with experimentally observed strange metals, the supposedly normal state of a

high temperature superconductor. The first is that its resistivity increases linearly

in temperature at small temperatures and the second is the appropriate scaling

of the entropy density as zero temperature is approached. The former requires a

holographic mechanism to break translational invariance to avoid momentum con-

servation in the dual field theory. This is implemented by an additional scalar field

in the gravity setup, whose magnitude gives the scale of the momentum dissipation.

We numerically show that there is a phase transition to superconductivity and in-

vestigate the effect of the momentum dissipation on the critical temperature, the

temperature dependence of the superconducting condensate and the electrical con-

ductivity. We then probe this holographic superconductor with external fermions

with the same approach as in chapter 4 and show that the non-conservation of mo-

mentum does not qualitatively alter the results obtained with the simpler model of

chapter 4. Thus this model generates a temperature evolution of the pair-breaking

Γ, similar to what was experimentally observed, as well.

The results of chapter 4 and 5 join the ranks of similarities between ‘holographic

metals’ and the ones studied in condensed matter laboratories. Showing the quan-

titative similarity of the fermionic spectral density of a superconductor is one of

the major achievements of this thesis. It would certainly be interesting to actually

fit the holographic results to experimental data and find the best fit parameters.

It should be noted that the best accordance found in the context of this thesis

is reached towards the boundaries of our numerical code. One therefore needs to

choose a method other than the shooting method to generate the backgrounds

close to zero temperature. At the same time, a different numerical method to in-

vestigate the pole structure of the spectral density function is required. Moreover,
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there is the possibility to add further coupling terms to the holographic model

between the superconducting condensate and the probe fermions to improve the

fit. Another important direction of further study is to better understand the origin

of the coupling employed in this thesis from a top-down string theory perspective.

This is important to answer the still unsettled question what the holographic du-

ality, despite of all the remarkable similarities between AdS/CFT and real world

physics, is capable of contributing to resolve real world physical puzzles.

In chapter 6 we studied the time evolution of two infinite heat baths, each of

which equilibrated at different temperatures and brought into contact at initial

time. This relatively simple setup facilitates a good theoretical handle on the sys-

tem, while at the same time revealing non-trivial properties. Out of the contact

area of the two heat baths, a steady heat current emerges and expands as time

evolves. The regime of the steady state was shown to allow for a description as a

thermal state at a shifted temperature both with field theoretical and holographic

methods [37–40]. In this thesis we focused on the case of one-dimensional heat

baths, i.e. they are defined in 1+1 dimensions with a holographically dual gravity

theory in 2+1 dimensions. The eminently simple properties of gravity in three di-

mensions made it possible to approach the system analytically to a certain extend.

After a brief review of the concept of holographic entanglement entropy, where

the field theory entanglement entropy is established to be dual to the area of a

minimal surface in the bulk, we apply this technique to the ‘steady state setup’.

We find that the entanglement entropy exhibits two distinct behaviours depending

on the absolute magnitude and the relative size of the two temperatures. In the

case where both temperatures are small, the entanglement entropy increases/de-

creases in a universal ‘S’-shaped way for entangling regions located in the initial

colder/warmer heat bath. In contrast, in the case where one temperature is man-

ifestly smaller than the other, the ‘S’ shape flattens and asymptotes to a linear

increase/decrease. As the latter resembles the behaviour of so-called entanglement

tsunamis, we named the former ‘entanglement tide’. Furthermore, we numerically

checked entanglement inequalities for three, four and five entangling regions. The

inequalities, proposed by [164] in the case of five regions, are to be understood as

generalisations of the well known inequalities for two intervals like the subadditiv-

ity. This is particularly interesting for our time-dependent setup. While some of

the addressed inequalities are clearly violated, others are not.

One very interesting subject for further study is the generalisation to a higher

dimensional setup. While the holographic dual of the asymptotic state is the
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same, a boosted black hole geometry, the details of the system’s evolution to

this final state are different. Most notably, the wavefronts with which the steady

state regime expands, are no longer sharp but diffuse as time proceeds. It would

be worthwhile to find out whether the two limits of the entanglement entropy’s

time evolution are a universal feature of the system irrespective of the number

of dimensions. In order to approach this question, one has to rely on numerical

methods to solve Einstein’s equations in higher dimensions, as an exact solution

is not available for d > 3, which is a technically challenging problem.
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Appendix A

Einstein relation

In this appendix we present a method to incorporate the Einstein relation [76] to

the holographic picture. It relates the electrical conductivity to the charge diffu-

sion constant, similarly to the relation between shear viscosity and the momentum

diffusion constant [169]. It allows to express the DC conductivity entirely in terms

of equilibrium quantities. Note that although we use them in the context of this

appendix, we do not introduce the ideas and methods of the hydrodynamic gra-

dient expansion and fluid/gravity duality in detail. See [170, 171] for pedagogical

reviews. Note that in this appendix we refer to the DC conductivity as the finite

part, ignoring the δ-peak contribution at zero frequency in absence of momentum

dissipation.

A.1 Einstein relation for a conformal fluid

The theory of hydrodynamics is an effective theory to describe long wavelength

fluctuations around thermal equilibrium. Starting from equilibrium expressions

for the stress-energy tensor and charge current as functions of quantities such as

temperature T , pressure p and chemical potential µ, one explicitly gives them a

space-time dependence and expands the stress energy tensor and charge current

in the gradients of those quantities. By using conservation equations one can then

solve iteratively for those gradients. Whilst the zeroth order describes an ideal

fluid, higher orders include dissipative effects.

The first order of the hydrodynamic expansion of the charge current Jµ for an

ordinary charged fluid can be written in two different ways, in terms of the charge

diffusion constant D or the DC conductivity σ ≡ σDC. Unlike the optical conduc-
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tivity, the charge diffusion constant is a natural quantity to appear in a hydrody-

namic consideration. The Einstein relation is based on the conversion of those two

expressions into each other and is given by [76]

σ = Dχ. (A.1)

χ is the charge susceptibility that thermodynamically is derived from the charge

density %(µ, T ) as a function of the chemical potential µ and the temperature T

by

χ =

(
∂%

∂µ

)
T

, (A.2)

where (x)T tells us to take the derivative, keeping the temperature fixed. In this

section we derive an expression for the charge susceptibility for a conformal fluid

in d dimensions with the help the the Einstein relation (A.1). The two versions of

the hydrodynamic expansion of the charge current to first order are given by

J µ
(1) = %uµ −DP µν∂ν%+ γ̃P µν∂νε , (A.3)

Jµ(2) = %uµ − σTP µν∂ν

(µ
T

)
+ γP µν∂νT , (A.4)

where the projector Pµν = ηµν + uµuν projects on the space perpendicular to the

fluid velocity uµ, normalised as uµuµ = −1. The contributions γ̃ and γ represent

the contribution of the energy density to the charge current and vanish in the case

of a conformal fluid. Moreover for conformal fluids the charge current J µ has to

transform homogeneously

J µ → e−dφJ̃ µ (A.5)

under a Weyl transformation gµν → e2φg̃µν in d spacetime dimensions and hence

it has to be built from Weyl-covariant terms only. It is therefore convenient to

introduce the Weyl-covariant derivative Dµ that for a scalar ϕ with weight w, i.e.

ϕ→ e−wφϕ̃ is given by

Dµϕ = ∇µϕ+ wϕ

(
uν∇νuµ −

1

d− 1
uµ∇νu

ν

)
. (A.6)
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Note that uµ → e−φũµ. In flat spacetime J µ
(1) is then given by

J µ
(1) = %uµ −DRP

µνDν% = %uµ −DRP
µν
[
∂ν%+ (d− 1)%uλ∂λuν

]
, (A.7)

as the charge density % has the weight w% = d− 1. Realising that µ/T has weight

w = 0, because µ → e−φµ̃ and T → e−φT̃ , it is clear that (A.4) already has the

desired form.

The next step is to convert J µ
(2) into J µ

(1) which essentially requires to exchange

the two variables µ and T for % and uµ. A convenient method is to employ the

conservation equation for the stress energy tensor ∂µT
µν = 0 in the direction

transversal to uµ

P µ
λ ∂νT

νλ = P µν∂νp+ d pP µνuλ∂λuν = P µν∂νε+ d εP µνuλ∂λuν = 0 . (A.8)

with the stress-energy tensor of an ordinary fluid T µν = εuµuν + pP µν in terms of

the energy density ε and the pressure p = ε/(d − 1) for conformal fluids. As the

energy density has weight wε = d, i.e. ε → e−dφε̃, a combination of ε and % with

weight zero is given by εd−1/%d and we have

∂ν

(
εd−1

%d

)
=

(
εd−2

%d+1

)
[(d− 1)%∂νε− d ε ∂ν%]

=

(
εd−2

%d+1

)[
(d− 1)%

(
∂ε

∂µ

)
T

− dε
(
∂%

∂µ

)
T

]
T∂ν

(µ
T

)
.

(A.9)

Using the projected conservation equation (A.8) one obtains

TP µν∂ν

(µ
T

)
=

[(
∂%

∂µ

)
T

+
(d− 1)%

dε

(
∂ε

∂µ

)
T

]−1

P µνDν%. (A.10)

The Einstein relation (A.1) we find that the appropriate definition of the charge

susceptibility in the case of a conformal fluid is given by

χCFT =

(
∂%

∂µ

)
T

+
(d− 1)%

dε

(
∂ε

∂µ

)
T

. (A.11)

A.2 Einstein relation in AdS/CFT

We are now ready to set up the Einstein relation for holographic fluids, which

are conformal by construction. The simples holographic model qualified for this
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taks is the AdS-RN setup introduced in section 3.2. At the same time this choice

allows us to resort to existing results in reference [172]. The idea is to compute the

charge susceptibility χCFT in thermodynamic equilibrium and the charge diffusion

constant D via the holographic version of the hydrodynamic expansion, known as

fluid/gravity correspondence. Assuming the Einstein relation (A.1) to hold we can

then derive an expression for the DC conductivity σ in d dimensions.

It is useful to extend our pool of thermodynamic variables, so far consisting of the

chemical potential µ ≡ qrh (3.19), the charge density % (3.20), the temperature T

(3.21) and the entropy density s (3.22), by the energy density ε and the pressure

p

ε = (d− 1)p =
M(d− 1)

2κ2
, (A.12)

in terms of the black hole mass M given by

M = 1 +
µ2

r2
hγ

2
. (A.13)

The charge diffusion constant D obtained via the fluid/gravity duality is given in

equation (1.4) f. in [173]. Converted to our conventions and notation it is

DR =
2 + (d− 2)M

(d− 2)dMrh

. (A.14)

The last step is to find a way to compute the thermodynamic derivatives in equa-

tion (A.11). The naive approach, which is to find explicit expressions for %(µ, T )

and ε(µ, T ), fails because it is not possible to analytically solve for rh(µ, T ) in

arbitrary dimensions. One way to avoid this is to find the condition on δrh such

that δT = 0, i.e. δT = #1δq + #2δrh = 0, use it to calculate δµ = #3δq and con-

clusively find δε
∣∣
T

= #4δµ and δρ
∣∣
T

= #5δµ. This leads to the following charge

susceptibility

χCFT =

(
sT

ε+ p

)2

rd−3
h D−1 , (A.15)

in terms of the diffusion constant D. Thus the prediction of the Einstein relation
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(A.1) for the DC conductivity σ is

σ =
(sT )2

(ε+ p)2
rd−3

h . (A.16)

It remains to compare this prediction with results obtained from a holographic

linear response calculation as explained in section 3.3 We are not aware of any

such calculation in arbitrary dimensions d > 2. However, for d = 3 the prediction

(A.16) agrees with the result derived in [174] in equation (8) in the limit of zero

magnetic field and zero frequency. For d = 4 we computed σ in an expansion in

small κ, which as we argued in the context of (3.41) parametrises the backreaction

of the Maxwell field onto the geometry.

σd=4 = rh

(
1− 2µ2κ2

r2
h

+O
(
κ4
))

, (A.17)

which to this order also agrees with the prediction of the Einstein relation (A.16).
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Appendix B

Fermionic operators in

holography

B.1 Boundary terms for fermions

When including fermionic fields to holographic models one is almost immediately

confronted with a puzzle. In the first two chapters of this thesis we built up

the intuition of the correspondence of quantum field theory operators and fields

of the dual gravity theory. Bulk scalar fields remain boundary scalar operators

(2.30), and bulk vector fields remain boundary vector operators (2.32), where

the radial component of the vector is usually taken care off by the choosing the

radial gauge. Moreover, the boundary conditions of those bulk fields determine

the source of the dual field theory operator. As mentioned in 3.5, in contrast to

those bosonic fields, the number of components of a spinor doubles upon increasing

the dimension it lives in by one. In particular, it seems that imposing boundary

conditions for all components of the bulk spinor somehow is dual to imposing twice

as many boundary conditions on the boundary spinor compared to its number of

components. It is therefore clear, that the field operator map for fermionic fields

has to be carefully adjusted. To resolve this puzzle it is instructive to split up the

bulk fermion field ψ into

ψ = ψ+ + ψ− , ψ± = Γ±ψ , Γ± =
1

2
(1± Γr) , (B.1)

which implies

Γr = Γ+ − Γ− , Γrψ± = ±ψ± . (B.2)
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Similarly to (2.25) we would like to find an expression for the on-shell action to

explicitly see the relation between the fermion operators of the boundary theory

and the fermionic fields in the bulk. The variation of the on-shell action is given

by

δSbulk = −
∫

ddx
√
−g
√
grr ψ̄Γrδψ + DE for ψ̄ + DE for ψ , (B.3)

where ‘DE’ stands for Dirac equation. The terms proportional to the Dirac equa-

tion of course vanish when the action is evaluated on-shell. Expressing (B.3) in

terms of ψ± the variation reduces to

Sos
bulk = −

∫
ddx
√
−g
√
grr
[
ψ̄−δψ+ − ψ̄+δψ−

]
. (B.4)

This suggests that one can choose boundary conditions for both ψ± at the bound-

ary. But just like in the case of bosonic fields, fermionic fields have to obey ingoing

boundary conditions. As the Dirac equation is only a first order differential equa-

tion, imposing a condition at the horizon and the AdS boundary would completely

fix the solution. This problem can be cured by adding a suitable boundary term

Sbdy = −
∫

ddx
√
−g
√
grrψ̄+ψ− , (B.5)

which gives rise to the following total variation of the fermionic on-shell action

Sos = Sos
bulk + Sbdy = −

∫
ddx
√
−g
√
grr
(
ψ̄−δψ+ + δψ̄+ψ−

)
. (B.6)

We now see that we really can only impose boundary conditions on just half of

the components of the bulk spinor ψ. This is also intuitively compatible with the

fact that the boundary spinor operator O only has half as many components as ψ.

The conjugate momentum of ψ+ is given by

Π+ =
δSos

δψ+

= −√g
√
grrχ̄− , Π̄+ =

δSos

δψ̄+

= −√g
√
grrχ− . (B.7)

We can thus identify χ+ with the source and χ− with the fermionic operator O of

the dual field theory.
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B.2 Horizon expansion of G

We now give more details about the horizon expansion of the Green’s function

matrix G, governed by the equations of motion (4.23) in chapter 4. G obeys the

equations of motion (4.23) and thus close to the horizon behaves as follows

G =Gh
0 +

((
Gh

1

)
1,1

(
Gh

1

)
1,2(

Gh
1

)
2,1

(
Gh

1

)
2,2

)
(r − rh)1/2 +O

(
(r − rh)3/2

)
. (B.8)

The leading term G0 is given in (4.31), satisfying the ingoing boundary conditions.

The coefficients for the next to leading order are given by

(
Gh

1

)
1,1

=
4
√
ch
h,1

(
k − i

√
ch
g,0Lmfrh

)
√
ch
g,0

(
ch
h,1 − 4iω

) , (B.9)

(
Gh

1

)
1,2

=
8iLη5rh

√
ch
h,1c

h
χ,0

ch
h,1 − 4iω

, (B.10)

(
Gh

1

)
2,1

= −
8iLη∗5rh

√
ch
h,1c

h
χ,0

ch
h,1 − 4iω

, (B.11)

(
Gh

1

)
2,2

= −
4
√
ch
h,1

(
k + i

√
ch
g,0Lmfrh

)
√
ch
g,0

(
ch
h,1 − 4iω

) . (B.12)

To this order the analogous horizon expansion of the Green’s function matrix G in

the Einstein-Maxwell-dilaton background of chapter 5 is the same.
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Appendix C

Gauge invariant fluctuations

C.1 Gauge invariant transport coefficients

C.1.1 Gauge transformations acting on fluctuations

In AdS/CFT the background solution represents the field theory ground state.

Perturbing this ground state gives access to its transport properties. As presented

in section 3.3, one adds a spacetime dependent fluctuating contribution to each of

the background fields. This also includes components of the background fields that

are zero in the ground state. As these perturbations are understood to be small,

the resulting correction of the action is only taken into account to second order in

fluctuations and hence to first order in the equations of motion. In order to obtain

information about the physical properties, the analysis of the fluctuations has to

be done in terms of gauge invariant modes by which we mean gauge invariant

combinations of the introduced perturbations. The prescription of how to obtain

these gauge invariant modes can be outlined in full generality. In this review of

the methodology we focus on the types of background fields which appear in this

thesis: the metric g, a Maxwell field A and both a charged χ and and non-charged

scalar φ. They all experience a non-zero change under a transformation of at least

one of the two gauge symmetries, diffeomorphism invariance and the U(1) gauge

symmetry.

Let us start by writing down the effect of infinitesimal gauge transformation on

those fields. The effect of a diffeomorphism symmetry transformation xµ → xµ−Σµ
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on the fields can be expressed as Lie derivatives along Σ

δΣgµν = LΣgµν = ∇µΣν +∇νΣµ , (C.1)

δΣAµ = LΣAµ = Σν∇νAµ + Aµ∇νΣ
ν , (C.2)

δΣχ = LΣχ = Σν∇νχ , δΣφ = LΣφ = Σν∇νφ . (C.3)

The gauge transformation of the U(1) Maxwell symmetry only affects the Maxwell

field itself and the charged scalar fields. The infinitesimal version is given by

δΛAµ = ∇µΛ , δχe = −ieΛ , (C.4)

where δχe represents any scalar field with charge e under the U(1) gauge symmetry.

The background parts of the fields g, A, χ and φ representing the ground state

of the field theory are fixed. The gauge transformations are thus understood to

affect the perturbations of the ground state only while leaving the ground state

itself unchanged. For each component of the fluctuations, we can now compute the

individual effect of the transformations on them. Let us arrange each individual

component of all perturbations δg, δA, δχe and δφ in a vector ϕ schematically

transforming as

ϕ → ϕ+ (δΣ + δΛ)ϕ , (C.5)

It is important to stress, that since we assume both the perturbations and the

gauge transformations to be small, we consider the transformed ϕ only up to

first order in perturbations or gauge transformations Σ and Λ, i.e. δΣ and δΛ are

computed from the background fields only.

C.1.2 Construction of gauge invariant combinations

We are then interested in constructing linear combinations of the elements of ϕ

that are invariant under the gauge transformations. The number of gauge invariant

combinations is the number of the dynamical degrees of freedom of the problem.

We start with a general ansatz

Φ =
∑
i

ciϕi , (C.6)
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and apply the gauge transformations on it

Φ → Φ + (δΣ + δΛ) Φ . (C.7)

The equation we have to solve is thus given by

(δΣ + δΛ) Φ = 0 . (C.8)

Φ is the weighted sum of all fluctuations. The transformations δΣ,Λ are different

for each of those, depending on what component of which field they are. Even-

tually we want to know what linear combination, i.e. what values for the ci yield

the gauge invariant modes, and thus spell out (C.8) and set the prefactors of all

appearances of δΣ,Λ to zero. Solving these equations allows us to express one part

of the constants ci in terms of the other part of constants. We call the latter

the independent coefficients c̃i. The choice of the set c̃i is not unique, their total

number Nindep however is equal to the number of propagating degrees of freedom.

The final step in constructing the gauge invariant modes is then to build Nindep

linear combinations with the coefficients c̃i and plug them into the ansatz (C.6).

Let us work through an explicit example, the Einstein-Maxwell dilaton model

5.6 we discussed in chapter 5. As argued in section 5.4 therein, only individual

groups among all fluctuations couple and hence the gauge invariant modes, the

propagating degrees of freedom can only be formed within those groups. Being

interested in the eletrical conductivity along the x-direction we focus on the group

which contains δAx. The ansatz for the gauge invariant combination in this group

is

Φ = c1δgtx + c2δgxr + c3δAx + c4δξx . (C.9)

We work in Fourier space and expand the fluctuations and the gauge transforma-

tion functions Σ and Λ in Fourier modes as

ϕi =

∫
dωe−iωtϕi,ω , Σ =

∫
dωe−iωtΣω , Λ =

∫
dωe−iωtΛω , (C.10)

for k = 0. Applying an infinitesimal gauge transformation on Φ, we get a correction
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of the following form

Φ→ Φ + δΦ =c1 (δgtx − iωΣx) + c2

(
δgxr − Σx

(2

r
+
g′

g

)
+ Σ′x

)
+ c3δAx (C.11)

+ c4

(
δξx +

L2mΣx

r2g

)
.

We see that δAx does not transform under a gauge transformation and hence

already is a gauge invariant mode.

In order to solve the equation (C.8), we note that the infinitesimal gauge trans-

formations are arbitrary and hence we treat their derivatives as independent. Had

we included all the fluctuations we would have found that the dependent part of

the constants ci expressed in terms of the independent ones c̃i do not mix those

groups. We find

c1 = c̃1 , c2 = 0 , c3 = c̃3 , c4 =
iωr2g

mL2
c̃1 . (C.12)

It is straightforward to construct two linear independent gauge invariant combi-

nations. We choose

I c̃1 =
L2

r2g
and c̃3 = 0 , (C.13)

II c̃1 = 0 and c̃3 = 1 , (C.14)

where we essentially rescaled the first invariant combination with the x-component

of the background metric’s inverse. The resulting gauge invariant modes are

Φ1(ω, r) = δgxt (ω, r) +
iω

α
δξx(ω, r) , Φ2(ω, r) = δAx(ω, r) . (C.15)

C.1.3 Radial gauge

In many papers the authors choose the radial gauge. This means that the gauge

symmetry is partially fixed in a way, that the radial components of the metric

perturbations and the vector field perturbations are and remain zero. In this case

the above procedure is modified such that the combinations are invariant under

the remaining symmetry transformations. Even though this choice highlights the

holographic dictionary, it is not necessary to explore the dynamical degrees of

freedom.
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For the sake of completeness let us explicitly compute the remaining gauge freedom

after choosing the radial gauge. The first step is to write down the effect of (C.1)-

(C.4) on the relevant fluctuations

δgtr → δgtr − iωΣr + Σ′t −
(

2

r
− h′

h

)
Σt , (C.16)

δgxr → δgxr + Σ′x −
(

2

r
− h′

h

)
Σx , (C.17)

δgyr → δgyr + Σ′y −
(

2

r
− h′

h

)
Σy , (C.18)

δgrr → δgrr + 2Σ′r +

(
2

r
+
h′

h

)
Σr , (C.19)

δAr → δAr + Λ′ − L2At
r2h

Σ′t +

(
2

r
+
h′

h

)
L2At
r2h

Σt . (C.20)

Note that we again work at zero spatial momentum k = 0. We then imagine to

perform a gauge transformation which results in δgtr = δgxr = δgyr = δgrr = δAr =

0 and subsequently only allow gauge transformations which preserve this choice.

This partially fixes the gauge symmetries. This results in first order differential

equations, solved by

Σt(ω, r) = σtr
2h(r) + iωr2h(r)σr

∫ r

rh

dr̃h(r̃)−3/2r̃−3 , (C.21)

Σx,y(ω, r) = σx,yr
2g(r) , Σr(ω, r) =

σr

r
√
h(r)

, (C.22)

Λ(ω, r) = λ0 + iL2ωσr

∫ r

rh

dr̃
At(r̃)

h(r̃)3/2r̃3
, (C.23)

where σµ and λ are unspecified integration constants which parametrise the re-

maining gauge freedom.

C.2 Electrical conductivity

C.2.1 Equations of motion

Now that we have identified the gauge invariant combinations for the sector of

fluctuations that we are interested in, the next step is to calculate the electrical

conductivity σ in the logic outlined in 3.3. We start by looking at the equations

of motion for the sector of interest, which contains the fluctuations appearing in
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(C.9). They are

0 = δg′′tx +

(
− 2

r2
− L4α2

r4gh
+
e2L4A2

tχ
2

r4h2
− 2g′

rg
− g′2

2g2
+

3φ′2

2
+ χ′2

)
δgtx (C.24)

+ iωδg′xr +

(
2iω

r
+
iωg′

g

)
δgxr + eφA′tδA

′
x +

2e2L2Atχ
2δAx

r2h
− iL2αωδξx

r2h
,

0 = δA′′x +

(
2

r
+
h′

h
+ φ′

)
δA′x +

(
L4ω2

r4h2
− 2e2L2e−φχ2

r2h

)
δAx (C.25)

−
(

2L2A′t
r3h

+
L2A′tg

′

r2gh

)
δgtx +

iL2ωA′tδgxr
r2h

,

0 = δξ′′x +

(
4

r
+
g′

g
+
h′

h

)
δξ′x +

L4ω2δξx
r4h2

, (C.26)

0 = δg′tx −
(

2

r
+
g′

g

)
δgtx +

(
iω − iq2h

ωg

)
δgxr + eφA′tδAx +

iqr2hδαx
L2ω

. (C.27)

Note that they are obtained by first expanding the action to quadratic order in

fluctuations and then calculating the equations via the variational principle with

respect to the fluctuations.

We now replace the original fluctuations δgtx and δAx by the gauge invariant

combinations (C.15). The other two perturbations δξx and δgxr are unaffected. It

is then possible to rewrite the four equations such that two of them only depend

on Φ1 and Φ2. They are given in the main text in equation (5.56). The remaining

two equations mix all four perturbations.

0 = δξ′′x +

(
4

r
+
g′

g
+
h′

h

)
δξ′x −

iL4αωΦ1

r4h2
− L2αδg′xr

r2g
−
(

2L2α

r3g
+
L2qh′

r2gh

)
δgxr ,

0 =

(
−iωr

2g

L2α
+
iqr2h

L2ω

)
δξ′x +

r2gΦ′1
L2

+ eφA′tΦ2 +

(
iω − iα2h

ωg

)
δgxr .

(C.28)

This in particular implies, that in order to compute the optical conductivity, related

to the mode Φ2 we only have to solve a set of two coupled equations.

C.2.2 On-shell action

The electrical conductivity is directly proportional to the retarded Green’s function

of Φ2 = δAx, see equations (3.29) and (3.30). After the discussion in subsection

3.3.2 the only thing that remains to be computed is the coefficient c in relation

(3.38). To do so, we need the on-shell action on the level of the fluctuations.
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First, we perform the radial integral of the action (5.6) by making use of the

equations of motion (C.24)-(C.27). Using the definition of the gauge invariant

modes (C.15) and expanding them in Fourier modes we obtain for the on-shell

action

Sos/V2 =

∫
dω

[
− eφr2g (2ω2g − α2h)A′tΦ1(ω, r)Φ2(−ω, r)

2L2 (ω2g − α2h)

− ieφr2ωgA′tδαx(−ω, r)Φ2(ω, r)

L2α
+
α2r4g2hΦ1(ω, r)∂rΦ1(−ω, r)

2L4 (−ω2g + α2h)

− eφr2hΦ2(ω, r)∂rΦ2(−ω, r)
2L2

±
(

2r3g2

L4
− 2r3g2

L4
√
h
− 3r3g2φ2

4L4
√
h

+
r4gg′

L4

)(
Φ1(−ω, r)Φ1(ω, r)

+
2iω

α
δξx(−ω, r)φ1(ω, r) +

ω2

α2
δξx(−ω, r)δξx(ω, r)

)
α2rg

2
√
h

(
2iω

α
δξx(−ω, r)Φ1(ω, r) +

ω2

α2
δξx(−ω, r)δαx(ω, r)

) ∣∣∣∣∞
rh

]
,

(C.29)

divided by the spatial volume V2 =
∫

d2x. According to the general approach of

section 3.3, the next step is to express the on-shell action in terms of boundary

coefficients and match the resulting expression with equation (3.37).

The ansatz for the boundary coefficients of the background fields and the per-

turbations are given in equations (5.11) and (5.58), respectively. Expanding the

corresponding set of equations at the boundary, we can solve for the coefficients c

in terms of the independent ones c̃. The relations between the coefficients for the

background fields that are required to rewrite the above on-shell action (C.29) are

given by

cb
h,1 = −2

3cb
g,3 + cb

g,0

(
3cb
φ,1c

b
φ,2 + 2cb

χ,1c
b
χ,2

)
cb
g,0

(
3
(
cb
φ,1

)2
)

+ 2
(
cb
χ,1

)2
,

cb
h,2 =

1

4

((
cb
h,1

)2 − 3
(
cb
φ,1

)2 − 2
(
cb
χ,1

)2
)
− L4α2

2cb
g,0

,

cb
g,1 = cb

g,0c
b
h,1 ,

cb
g,2 =

cb
g,0

8

((
cb
h,1

)2
+ 4cb

h,2 − 3
(
cb
φ,1

)2 − 2
(
cb
ψ,1

)2
)

+
L4α2

4
.

(C.30)

After choosing the radial gauge, which is required by the fact that we evaluate
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the expression action on a slice of fixed radial coordinate, we obtain the on-shell

action given in equation (5.59).
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