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Zusammenfassung

Diese Dissertation befasst sich mit der Anwendung der holographischen Dua-
litdt zwischen Eich- und Gravitationstheorien fiir die Untersuchung von ma-
gnetischen Storstellen in Modellen der Festkorperphysik. Wir verallgemei-
nern ein holographisches Kondo-Modell um zeitabhédngige Ph&nomene und
die Riickwirkung des Defektes auf die Geometrie in der dualen Gravitations-
theorie zu erforschen.

Wir entwickeln einen allgemeinen Ansatz, um diese Riickwirkung in holo-
graphischen Modellen zu beriicksichtigen, in denen Storstellen oder Réander
der Geometrie durch Hyperflichen der Kodimension eins im Inneren des
dualen Gravitationsmodells dargestellt werden. Dies erlaubt es uns die Ver-
schrinkungsentropie der Storstelle mit der Umgebung auf verschiedenen Léan-
genskalen zu berechnen. Wir bestimmen hierfiir die Volumen bestimmter
Minimalflachen in der dualen Gravitationstheorie, die proportional zu den
Verschrankungsentropien sind. Es wird gezeigt, dass die Defektentropie im
holographischen Kondo-Modell das sogenannte g-Theorem erfiillt, welches
besagt, dass die Freiheitsgrade unter einem Renormierungsgruppenfluss von
hohen zu niedrigen Temperaturen abnehmen.

Weiterhin untersuchen wir die zeitliche Evolution des holographischen
Kondo-Modells nachdem wir die Kopplung der Storstelle mit ihrer Umgebung
quenchen, d.h. ihren Wert im Verlaufe der Zeit sprunghaft &ndern. Wir be-
schrinken uns in diesem Teil der Arbeit auf vernachléassigbare Riickwirkung
der Geometrie. Die komplexen Eigenfrequenzen, also die sogenannten Qua-
sinormalmoden, der Freiheitsgrade auf dem Defekt werden durch die nume-
rischen Losungen der Evolutionsgleichungen bestimmt. Der Vorteil unserer
numerischen Methode liegt darin, dass keine holographische Renormierung
notwendig ist und das Modell auch fernab des thermischen Gleichgewichtes
untersucht werden kann. Ein Resultat ist, dass die zeitliche Entwicklung be-
reits kurz nach dem Quench allein durch die Quasinormalmoden sehr gut
approximiert werden kann. Wir untersuchen das dynamische Verhalten am
Phaseniibergang und bestimmen den dynamischen kritischen Exponenten nu-
merisch zu z = 2.

Am Ende der Arbeit geben wir einen Ausblick dariiber, wie beide Ansétze
kombiniert werden koénnen um die Riickwirkung auf die Geometrie nach
Quenchen zu berechnen. Hierfiir verwenden wir eine Linearisierung der Gra-
vitationsgleichungen, da in diesem Falle die linearisierte Riickwirkung aus
den obigen Ergebnissen integriert werden kann.
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Abstract

This thesis is about applications of gauge/gravity duality to the study of
impurities in strongly coupled condensed matter theories. In particular, we
are interested in generalisations of a holographic Kondo model involving time
dependence and backreaction to the geometry. The Kondo model adds an
interaction term between a magnetic impurity and its environment to a free
electron gas. In contrast to that, the holographic model considers strongly
interacting degrees of freedom apart from the impurity and takes a large-N
limit for the SU(N)-representation of the impurity. Similar to the large-N
Kondo model in condensed matter theory, a phase transition at a critical
temperature T, replaces the cross-over transition which is present at finite
N.

We elaborate a generic approach to backreaction in holographic mod-
els in which impurities are represented by codimension one hypersurfaces in
the bulk of the gravity dual. By applying this approach to the holographic
Kondo model, we compute the impurity entropy numerically by using the
Ryu-Takayanagi prescription, which states that entanglement entropy is rep-
resented by the volume of specific minimal surfaces in the gravity dual . It
is shown that the impurity entropy satisfies the g-theorem, which states that
the impurity degrees of freedom are screened as we follow the renormalisation
group flow from high to low energies. The framework is readily applicable
to different models in conformal field theories with defects, impurities or
boundaries.

Furthermore, we apply numerical methods to investigate the temporal
evolution of the impurity degrees of freedom after quenching the Kondo cou-
pling in the probe limit. We extract quasinormal modes, i.e. the complex
eigenfrequencies of the degrees of freedom, in both phases by solving the
partial differential equations governing the system. Moreover, by quenching
the coupling parameter right onto its critical value, criticality in the dynamics
of the system is revealed. We quantify the dynamic critical exponent z = 2
of the system, which matches our expectations from dynamical mean-field
theory.

Last, but not least, we give an outlook on a way to combine both ap-
proaches to evaluate the backreaction due to such quenches. The goal of this
study is the extraction of the spatio-temporal evolution of the Kondo cloud
via our holography model. By restricting ourselves to a linearisation of the
gravity equations, we can directly use the data gained in the previous part,
i.e. the evolution of the field content on the hypersurface, to integrate the
linearised backreaction.



v

This thesis is based on original work by the author and collaborators,
which has been obtained under the supervision of Prof. Dr. Johanna Erd-
menger between June 2014 and August 2017 at the Max Planck Institute for
Physics in Munich, Germany. A list of relevant publications, chronologically
order, given by

[1] J. Erdmenger, M. Flory, and M.-N. Newrzella. Bending branes for
DCFT in two dimensions. JHEP, 01:058, 2015.

[2] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, and J. M. S. Wu.
Entanglement Entropy in a Holographic Kondo Model. Fortsch. Phys.,
64:109-130, 2016.

(3] J. Erdmenger, M. Flory, C. Hoyos, M.-N. Newrzella, A. O’Bannon,
and J. Wu. Holographic impurities and Kondo effect. Fortsch. Phys.,
64:322-329, 2016.

[4] J. Erdmenger, M. Flory, M.-N. Newrzella, M. Strydom, and J. M. S.
Wu.  Quantum Quenches in a Holographic Kondo Model. JHEP,
04:045, 2017.

[5] J. Erdmenger, M. Flory, M.-N. Newrzella, M. Rozali, and J. M. S. Wu.
Spatio-temporal evolution of the Kondo cloud in a holographic Kondo
model. To be published.



Contents

1 Introduction

2 Gauge/gravity duality

2.1 Superstring theory in a nutshell . . . . . . ... ... ... ..

2.2 AdS/CFT correspondence . . . . . ... ... ... ......
2.2.1 Maldacena limit in type IIB string theory . . . . . ..
2.2.2 Field-operatormap . . . . . . ... ... ... ...
2,23 Summary ...

2.3 Generalisations of AdS/CFT . . . ... ... ... ... ....
2.3.1 Digression: Statistical ensembles and potentials
2.3.2 Finite temperature . . . . . .. ...
2.3.3 Finite chemical potential . . . . . . . . ... ... ...
2.3.4 Entanglement entropy . . . . ... ... .. ... ...

3 Holographic Kondo model
3.1 Kondo model in condensed matter theory . . . . . . . ... ..
3.1.1 Kondo model and solution techniques . . . . . . . . ..
3.1.2 Summary . . ...
3.2 The holographic model . . . . . . ... ... ... ... ....
3.2.1 From type IIB string theory to the Kondo model . . .
3.2.2 Holographic bottom-up Kondo model . . . . . . . . ..
3.2.3 Generalisations of the holographic model . . . . . . . .
3.2.4  Summary . ...

4 Static backreaction
4.1 A framework for backreaction . . . . ... ... ... ... ..
4.2 Holographic defect entropy . . . . . . .. .. .. ... ...
4.3 Background solution: The normal phase . . . . ... ... ..

13
14
23
23
28
31
32
32
36
40
43

49
49
50
o4
54
95
o6
64
66



vi CONTENTS
4.4 The condensed phase . . . . . . ... ... ... L. 81
4.4.1 Reduction of the equations of motion . . . . . .. . .. 82

4.4.2 Boundary analysis . . . .. ... .. ... . 83

4.4.3 Computational strategy . . . . . ... ... ... ... 85

4.5 Analysis of theresults . . . . . . ... ... ... ... 86
4.5.1 Embeddings at different temperatures. . . . . . . . .. 89

4.5.2 Defect entropy . . . .. ... 89

4.5.3 Zero temperature and a holographic g-theorem . . . . . 91

4.6 Summary . ... ... 95

5 Quenches in the probe limit 97
5.1 Time dependent boundary analysis . . . . .. ... ... ... 98
5.2 Computational strategy . . . . . .. ... ... ... ... .. 99
5.3 Classification of quenches . . . . . . . . .. ... ... .. ... 102
5.4 Extraction of quasinormal modes . . . . . .. . ... ... .. 105
5.5 Quasinormal mode analysis . . . . .. .. ... ... ... 114
5.5.1 Quasinormal modes in the normal phase . . .. .. .. 115

5.5.2  Quasinormal modes in the condensed phase . . . . .. 116

5.6 Critical dynamics . . . . . . .. .. L Lo 118
5.7 Far away from equilibrium . . . . . ... ... 122
5.8 Beyond the probe limit . . . . . .. ... ... 0L 125
5.9 Summary . . ... .. 129

6 Conclusion and outlook 131
A Geodesic normal flows 139
B Numerical approach to backreaction 147

C Numerical time evolution scheme 153



Chapter

Introduction

“The ancient Japanese considered the Go board to be a mi-
crocosm of the universe. Although, when it is empty, it appears
to be simple and ordered, the possibilities of gameplay are end-
less. They say no two Go games have ever been alike — just like
snowflakes. So, the Go board actually represents an extremely
complex and chaotic universe. And that’s the truth of our world,
Max! It can’t be easily summed up with math, there is no simple
pattern.”

Sol — 7 [6]

At first, gravity seems to be the most natural thing to a human being.
However, if we investigate it more closely, its role in our understanding of
nature remains obscure. According the Einstein’s general relativity, the grav-
itational force does not depend on space or time in the sense that it is just
space and time. It sets the stage for a play of quanta along with a variety
of unexpected behaviour. So far, we seem to understand a fair part of the
physics of the quanta. The yet unsolved challenge is, actually, to understand
the stage.

Black holes and entropy

To begin with, general relativity allows for black hole solutions which are
beyond common imagination. Usual matter configurations like dust clouds
can eventually collapse under their own gravitational potential to form event
horizons, which can be considered as the defining boundary of a black hole.
Once you are inside an event horizon, you can never get back outside, no
matter how hard you try. However, the strangest part is that, according to
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classical general relativity, you probably would not even notice when crossing
the horizon. As you are reading this sentence, you could perfectly well be
swallowed up by a black hole. Their event horizon is a non-local object in
the sense that for finding its exact location, you’d need to know everything
about the future evolution in all of spacetime, which is clearly unfeasible to
measure, let alone to predict.

At first, black holes were considered to be unrealistic mathematical arte-
facts of Einstein’s equations. Then, throughout the last decades, it became
apparent that (supermassive) black holes most likely exist at least at the
centers of galaxies. In 2002, the authors of [7] reported the observation of
stars bound in orbit around the center of mass of the milky way. The star
with smallest orbit, called S2, has an orbital radius which does not allow for
a collisionless passage next to any known massive objects inside — apart from
a black hole.

Most recently, experiments have probably confirmed their existence once
and for all. In [8], the LIGO and VIRGO collaborations reported an obser-
vation of gravitational waves on September 14, 2015 at approximately 09:50
UTC. Their observation matches precisely the theoretical expectations for a
signal after two black holes merge into a larger one, thereby unleashing an
equivalent of around three solar masses in the form of gravitational waves
into the environment. Following this, another black hole merger was observed
on December 26, 2015 [9]. Both measurements had a significance of more
than 5o, which is the threshold to claim the detection of a signal.

Apart from black holes, general relativity is infamous for not being renor-
malisable as a quantum theory. This is already apparent from power-counting
arguments: The Einstein-Hilbert action is given by

A

= 4 1.1
S 167TGN/d:c\/§R, (1.1)

where ¢ is the metric, GG is Newton’s gravitational constant and R is the
scalar curvature. The action is supposed to have units energy xtime. With
the ingredients of (1.1), this means the mass dimension of the gravitational
coupling is given by [G x| = 2—d in d spacetime dimensions, which is negative
in the 341 dimensions we live in. This means that perturbation theory needs
more and more terms appearing in each additional loop order in order to
renormalise the theory up to that order, i.e. to render the results finite. Each
of those counter terms comes along with an additional parameter to be fixed
by experiments. Unlike for renormalisable theories, this procedure does not
break down at some point in canonically quantised general relativity and due
to the fact, that we cannot measure infinitely many parameters, the theory
is non-renormalisable.




Is canonically quantised general relativity hence useless? Not quite. If
you consider it as an effective field theory, valid up to some energy scale
E, you are fine. Effective field theories know their place and seen as such,
general relativity predicts its own breakdown at high energies, essentially set

by the Planck scale
EP: \/hC5/GN, (12)

where A is the reduced Planck constant and ¢ the speed of light. The higher
order terms we must add to the Einstein-Hilbert action (1.1) come along
with factors E/Ep of increasing order, so they are suppressed at low energies
compared to the Planck scale. Thus, we can quantise gravity and work with
it as long as we do not spoil its validity by going to higher energies than Ep.
The point is rather that canonically quantised general relativity is not UV
complete, i.e. not valid at arbitrary high energy scales. A UV completion of
general relativity would be known as a true candidate for quantum gravity.

In a seminal paper, Hawking [10] considered the quantisation of general
relativity around the background geometry of a matter configuration collaps-
ing under its own potential and eventually turning into a black hole. The
striking result of this paper is that black holes emit particles of any available
kind with a thermal spectrum. Due to this, we can assign thermodynamic
properties like a temperature and entropy to black hole event horizons. That
black holes carry entropy was first suggested by Bekenstein [11], who also
conjectured the dependency of the entropy on the black hole parameters.
Hawking’s computation confirmed this conjecture up to constant factors,
such that the entropy of a black hole is nowadays known as the Bekenstein-
Hawking entropy. It reads

3A
Sp = % , (1.3)
where A is the area of the black hole event horizon and kp is Boltzmann’s
constant.

This formula is striking for a quite some reasons. First of all, it connects
thermodynamics, gravity, quantum theory and areas of minimal surfaces all
in one simple equation. Then, it naturally leaves the question of the mi-
croscopic origin of the entropy. Lastly, we know that event horizons are
natural boundaries for our knowledge as no information may ever approach
an observer outside of it.

A black hole must decay over time if it emits energy in the form of particles
in a thermal spectrum. Then, what is its ultimate faith? Does it emit
thermalised radiation until the end or is the spectrum changing? Does this
process stop at some point, is there a remnant?
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All of these questions remain unsolved but provoked a very different dis-
cussion about the apparent incompatibility of general relativity and quantum
theory, the so-called black hole information loss paradox. In a nutshell, this
paradox is given by the following: Consider a quantum field theory which is
in a pure state such that at least part of the configuration collapses into a
black hole. A basic principle of quantum theory is unitary time evolution,
given by the operator e’*, where H denotes the Hamilton operator. Unitary
evolution means that no information about the system is ever lost. However,
if the spectrum of a black hole is truly thermal, it does not contain any useful
information about its microstates anymore. What happens to the informa-
tion that falls into the black hole, is it stored in some way inside or right at
the event horizon, or does it get lost in the process of black hole formation?

Holographic principle and gauge/gravity duality

Another implication of the Bekenstein-Hawking entropy (1.3) lies in the yet
unknown microscopic description, although progress in the framework of
string theory was made e.g. by Strominger and Vafa [12]. In the microcanon-
ical ensemble, the entropy is a measure for the number of degrees of freedom
of the theory. In a classical theory, you would expect that the number of
degrees of freedom scales with the spatial volume, however (1.3) explicitly
shows an area law: The entropy of a black hole scales with its surface area.
This led ‘t Hooft [13] and Susskind [14] to the formulation of the holographic
principle. It provides guidance for the formulation of quantum gravity, telling
that its degrees of freedom should scale with the surface of the worldvolume
on which the theory is defined.

In 1997, Juan Maldacena published a seminal paper [15], in which he
provided a very concrete example of the holographic principle, known as the
AdS/CFT correspondence. Starting from type IIB string theory, he demon-
strated that at low energies (in comparison with the Planck energy), two
completely different theories must be regarded as physically equivalent: One
of them is a conformal field theory (CFT) which is N' = 4 SU(N) Super
Yang-Mills theory in 3+1 dimensions. The other one is type [IB superstring
theory, a possible candidate for a theory of quantum gravity, placed in AdSs
x S°, which has 4+1 uncompactified dimension. Hence, the conjecture really
states a duality between a quantum field theory without the notion of gravity
and a theory of quantum gravity in one additional dimension. Or, to turn
it around, the degrees of freedom of quantum gravity can equally well be
defined by a theory on its surface, which precisely matches the expectations
from the holographic principle.

Since its origins, the AdS/CFT conjecture has been elaborated and more



entries have been added to what is called the holographic dictionary. This
entire framework of mapping quantum field theories to theories, which in-
clude dynamic gravity, is referred to as gauge/gravity duality. The duality is
supposed to work as long as the asymptotics are those of Anti de-Sitter space.
So, one can add relevant operators that leave the UV of the quantum theory
the same, but perturb its behaviour at low energies, which corresponds to the
geometry away from the asymptotic boundary in the gravity dual. Hence,
the gravity dual must not necessarily be Anti de-Sitter throughout the bulk,
but only asymptotically.

Black holes, once more, play a prominent role in gauge/gravity duality.
If we consider a conformal field theory at finite temperature, its gravity
dual is supposed to contain a black hole, where the temperature of the field
theory is identified with the Hawking temperature of the black hole [16].
Moreover, globally conserved currents are dualised into gauge field in the
gravity theory. The currents can be sourced by chemical potentials and
the interplay between temperature and chemical potential gives rise to the
possibility of phase transitions. Depending on the dimensionality and the
ingredients, complex phase diagrams can emerge.

Another popular element of the dictionary is given by entanglement en-
tropy. It is a measure for the loss of information we suffer if we restrict our
attention to a subsystem of a quantum theory. Recall that the entropy of a
black hole, given in (1.3), scales with the area of the event horizon, which
is actually a minimal surface for a fixed time slice of the geometry. The
same formula remarkably also holds true for cosmological event horizons, as
shown in [17] by Gibbons and Hawking. Both kinds of event horizons provide
fundamental boundaries to our knowledge about the world we live in.

Inspired by this, Ryu and Takayanagi proposed in [18,19] that minimal
surfaces in the bulk of the gravity dual are linked to the entanglement entropy
of subspaces in the field theory. The minimal subspaces are chosen such that
they asymptotically approach the boundaries of the subregions in the field
theory, whose entanglement entropy is to be computed. The holographic
formula for the entanglement entropy of a subregion A in the field theory
w.r.t. to its environment is then suggested to be given by

ming area(5)

S|@M — 0A. (14)
This is just the Bekenstein-Hawking formula (1.3) with the following adap-
tions: On the left-hand side we now have the entanglement entropy of a
subregion A, rather than a thermal entropy, and the area of the event hori-
zon on the right-hand side is exchanged for the area of a minimal surface A in
bulk of the gravity dual, which approaches the boundary 0A of the subregion
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A asymptotically. This proposal was generalised to a covariant description
in [20] and was reinforced by the results of [21,22].

Emergence of spacetime

It is thrilling to find such a deep connection between quantum information
theoretic quantities, like entanglement entropy, and simple minimal surfaces
in a theory of gravity. This, along with further hints, led quite a couple of re-
searchers to the conclusion that there must exist a deep general relationship
between (quantum) information theory and gravity. Many believe, roughly
stated, that gravitation and spacetime actually emerges from the entangle-
ment structure of an underlying pure quantum theory. In such a theory,
gravity might not be a fundamental force. Even more drastically, it might
not have any notion of space and time at all. This concept goes by the name
emergence of spacetime.

Nowadays, string theory appears to be a good, if not the best, candidate
for quantum gravity in the sense that it is a quantised theory and generically
gives rise to the gravitational force. The quanta of the metric find their
origin in the quadrupole momenta of closed strings. A drawback is that
it suffers from background dependence. That is, you first need to assume
some background geometry to find its quanta as excitations of the strings.
Gauge/gravity duality yields a possible way to define string theory in a truly
background independent manner.

There are even more radical proposals, though. One motivated by pure
mathematics finds its foundations in the search for a non-commutative ver-
sion of differential geometry and is called is the spectral action principle
developed by Connes et al. [23-25]. In their work, they start from a pure
quantum description containing so-called spectral triples and eventually find
that Riemannian geometry emerges from this, if the square root of the line
element ds? is given by the Dirac operator ID.

In gauge/gravity duality, lots of publications showed that one can in
principle reconstruct the dual gravity geometry by considering the renormal-
isation group flow of the quantum theory, for an overview see e.g. [26-29].

Other authors, such as Verlinde, Padmanabhan and Jacobson [30-32],
describe general relativity as an entropic force whose origin can be explained
by the area law of entanglement entropy of an underlying quantum field
theory. That the entanglement entropy of quantum field theories naturally
satisfies an area law is well established nowadays, see e.g. [33,34].

Emergence of spacetime also plays a role in condensed matter theory,
in which the application of tensor networks is common, see [35] for an
overview. Especially, the multi-scale entanglement renormalisation ansatz



(MERA) yields a tensor network appropriate for the description of ground
states of conformal field theories [36]. Upon defining the unitary gates as
some sort of volume elements, the emerging geometry resembles that of Anti
de-Sitter space, thus essentially providing some kind of discrete gauge/gravity
duality [37].

The structure of MERA tensor networks was the starting point for still
another discussion, in which holography is applied to investigate quantum
error correction codes [38-41|. Those are algorithms for quantum computers,
which are supposed to make sure that the logical qubits used in quantum
computations are protected from the environment, as interaction typically
results in a collapse of the wave function. Generically, the ansatz to solve
this problem is by distribution the logical qubits, which are used in the
computation, across multiple physical qubits, which are the hardware of the
quantum computer.

A completely different topic, in which the emergence of spacetime poten-
tially could play a role, is about self-learning algorithms, which are fundamen-
tal in the quest of creating artificial intelligence. Today, deep learning [42]
is one the most prominent approaches to teach classical computers how to
identify patterns in data, needed e.g. for image recognition, text translation,
or self-driving cars. It provides state-of-the art results in many of these tasks.
Learning algorithms typically define a way in which information is processed
along some computational graph. As the name suggests, deep learning usu-
ally abstracts information by processing it in a very deep graph. It consists
of input layers, a variety of hidden layers and output layers, where the in-
formation flow goes from input to hidden (to hidden to ...) to output layers,
which models the neural network in human brains.

It is not completely understood, why deep learning works so well, which is
sometimes summarised as “the unreasonable effectiveness of deep learning”.
Especially, the design of the networks usually follows trial and error. There
were some papers recently [43-45], which provided hints that some deep
learning algorithms naturally implement something like a renormalisation
group flow. The idea is that those layers farer away from the input layers
carry more and more abstract versions of the data provided. For example, in
image recognition, concepts like ‘line’; ‘ellipse’, ‘eye’, ‘face’, ‘human’, ‘crowd’
would represent a natural flow from hidden to output layers. Typically,
convolutional neural networks are used in image recognition, which display
a hyperbolic network geometry, similar to Anti de-Sitter space or MERA
tensor networks, respectively.

We must obviously keep in mind that the topics of emergent spacetime
and many of the examples here still involve quite a lot of speculations. Some
of them might turn out to bare deep relationships between quantum entan-
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glement and gravity. Others might reveal themselves as beautiful ideas that
are plain wrong.

Applications of gauge/gravity duality

Gauge/gravity duality involves emergent spacetime in the holographic direc-
tion and finds various applications in the landscape of modern theoretical
physics. One of the probably most famous results is a universal bound of the
ratio of shear viscosity n of entropy density s in strongly coupled quantum
field theories [46]. The bound reads

h
471']63’

» |3

< (1.5)
and seems so far to be satisfied by heavy-ion collisions [47]. There has been
progress both in understanding the spectra of mesons in large-N QCD [48,
49] and why the quark-gluon plasma thermalises so rapidly after heavy-ion
collisions [50-52]. As for applications to condensed matter theory we find,
among many others, holographic models for the (fractional) quantum Hall
effect [53-55], superconductivity [56,57], and impurities in host metals [58-
60].

A holographic Kondo model

This thesis will focus on the last application and, more precisely, on the holo-
graphic Kondo model presented in [60]. Jun Kondo introduced his famous
model about magnetic impurities in some host metal in [61], governed by the
Hamiltonian

H=Hy+JS 5, (1.6)

where Hy denotes the free Hamiltonian governing the degrees of freedom of
the host metal, J denotes the Kondo coupling constant and the operator
parametrised by J is a spin-spin interaction between the host metal and the
magnetic impurity, S , localised at some point 7. If J is antiferromagnetic,
the localised Kondo interaction imprints itself in a logarithmic contribution
to the resistivity of the host metal, in dependence of the temperature T of
the system. At some T, this leads to a minimum in the resistivity, which
is experimentally confirmed [62] and hence called the Kondo effect in this
context.

The coupling J turns out to be running in the temperature 7', i.e. at low
temperatures the coupling is becoming stronger until perturbation theory
breaks down. It diverges at one-loop order at some finite temperature Tk,
the Kondo temperature. What happens beyond that, and especially why



the experimentally observed resistivities do not diverge logarithmically as
suggested by the Kondo model in the perturbative regime, is referred to
as the Kondo problem. In a way, the Kondo problem captures the same
phenomenological ingredients as QCD: The coupling features asymptotical
freedom at very high energies and the system becomes strongly coupled at
low energies, leading to non-applicability of the high energy theory.

It is a fruitful playground for the development of various techniques in
quantum field theory. Wilson’s numerical renormalisation group method [63]
was the first successful approach to the Kondo problem. It solved the RG
flow entirely, which involves a cross-over approximately around the Kondo
temperature.

In 2013, Erdmenger et al. [60] published yet another approach to the
Kondo problem. They suggested a holographic model motivated in a D-brane
construction in type IIB string theory. Upon taking the Maldacena limits
and reducing the degrees of freedom to the relevant ones to find a gravity
dual of the Kondo model, they found a tractable bottom-up model. Here, the
impurity is mapped to a codimension one hypersurface which carries localised
degrees of freedom, a scalar field and a gauge field. At low temperatures, the
model features a phase transition similar to the what is found in holographic
superconductors, and the scalar field condenses. This phenomenology is very
similar to a large-INV conformal field theory ansatz used to solve the original
Kondo model.

Results presented in this thesis

In this thesis, we will present two main extensions to the bottom-up model
of [60], which are given by backreaction to the geometry and time depen-
dence of the Kondo coupling. Backreaction is found to imprint itself in a
non-trivial embedding of the hypersurface dual to the impurity. We apply
the Israel junction conditions, which are matching conditions for the metric in
general relativity, in order to find the equations of motion of the hypersurface
embedding. We solve those equations numerically and analyse the impurity
entropy which can be computed from the embeddings. As for time depen-
dence of the Kondo coupling, we quench the system between both phases of
the holographic model. From the evolution of the fields, we extract quasi-
normal modes and investigate the critical dynamics at the phase transition.
The original results achieved by the author of this thesis are given by the
following:

1. The construction of a generic framework to incorporate backreaction
of impurities to the bulk geometry of the gravity dual via the Israel
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junction conditions. This partly overlaps with the results of [64,65],
in which boundaries in conformal field theories have been handled in
a similar way. The framework has already been presented by Mario
Flory in [66], with whom the author closely collaborated. The results
have been published in [1].

. The numerical computation of entanglement entropies and impurity

entropies in the given framework applied to a holographic Kondo model
presented in [60]. The author developed the numerics used for the
computations in this project and most of the numerical analysis. The
results have been published in [2].

. The construction of a numerical evolution scheme to compute the tem-

poral behaviour of the fields constrained to the defect hypersurface
in [60]. Most of the implementation has been worked out and pub-
lished by Migael Strydom in [67]. There are two essential differences
to this theses: Firstly, the gauge fixing has been changed in order to
be able to compare the numerical results with [68], which shows ex-
cellent agreement. Secondly, the algorithm presented in [67] has been
further optimised by introducing analytic Jacobian matrices at each
step in the time evolution algorithm, which increases the performance
by more than an order of magnitude.

. The numerical analysis of the results after quenching the Kondo cou-

pling has been performed by the author. We argue that the behaviour
of the normal mode hint towards the formation of the Kondo resonance
below the critical temperature. Furthermore, the critical dynamics at
the phase transition is shown and fits to the expectations from dynam-
ical mean-field theory, in accordance with the large-N ansatz for the
Kondo model. Results have been published in [4].

. The computational approach to linearised backreaction and compu-

tation of the impurity entropy after quenching the system has been
worked out in large parts by the author in collaboration with Moshe
Rozali. Results are to be published in [5].

Structure of this thesis

This thesis is structured as follows: In the following chapter 2, we introduce
the reader to the relevant concepts of superstring theory and sketch the
derivation of the original AdS/CFT correspondence by Juan Maldacena [15]
and its generalisations to systems at finite temperature and finite chemical
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potential. We will have a focus on how we can calculate the entanglement
entropy between subregions on the field theory side by computing the area
of minimal surfaces on the gravity side, which was suggested by Ryu and
Takayanagi [19]. This will play an important role in chapter 4, where we
compute the impurity entropy by utilising this element of the holographic
dictionary.

In the next chapter 3, we introduce the framework in which the rest of
this thesis is settled. Starting with an overview on the original Kondo model
by Jun Kondo [61] and solution techniques in condensed matter theory, we
move on to discuss the proposed holographic model of Erdmenger et. al. [60]
who suggested a top-down model in type IIB string theory and developed a
tractable bottom-up model from it. We discuss the main results of this paper
and possible generalisation, some of which will be elaborated in the rest of
the thesis.

In chapter 4, we explain a framework to compute backreaction in generic
holographic models, in which boundaries or defects are represented by codi-
mension one hypersurfaces in the gravity bulk. We use this framework to
compute the impurity entropies in the holographic Kondo model of [60] via
numerical methods. The results are compared to known results from the field
theory side.

Chapter 5 is devoted to quenches in the holographic Kondo model of [60].
We explain the numerical approach to compute the evolution of the system
after the Kondo coupling k7 is changed in time by different quench proto-
cols. Afterward, the evolution of the system is used to extract the quasinor-
mal modes of the scalar operator. The numerical results are compared to
closely related results published in [68], in which different numerical meth-
ods have been deployed. We outline how to combine backreaction and time
dependence in 5.8 to investigate the spatio-temporal evolution of the Kondo
screening cloud after quenching the coupling. The actual computations are
left for future research.

Finally, we conclude the thesis in chapter 6 and suggest possible other
directions for future research.






Chapter

Gauge/gravity duality

“But as the Go game progresses, the possibilities become smaller
and smaller. The board does take on order. Soon, all the moves
are predictable. [...] So maybe, even though we’re not sophisti-
cated enough to be aware of it, there is a pattern. An order —
underlying every Go game.”

Max — 7 [6]

In 1997, Juan Maldacena published the first realisation of the holographic
principle [13,14], the AdS/CFT correspondence [15]. It describes a duality
between two distinct theories in the sense that gauge-invariant quantities like
expectation values, partition function or correlation functions are identical,
although the mathematical formalism to obtain them is completely different.
In particular, the AdS/CFT correspondence maps N = 4 Super Yang-Mills
theory in 341 dimensions to type IIB superstring theory on AdSs x S°. The
first theory is a supersymmetric gauge theory, whereas the other one yields
a good candidate for quantum gravity. Ever since, this duality has been
supplemented by additional ingredients like temperature, finite density or
entanglement entropy. There have been applications in various fields like
heavy-ion collisions, condensed matter theory and quantum information the-
ory. This nowadays established framework of mapping quantum field theories
to dual theories of gravity is called gauge/gravity duality or holography.

Its origins lie in superstring theory, from which it emerges in specific
models in the low-energy limit. In this chapter, we want to introduce the
most essential topics needed in order to understand Maldacena’s derivation.
We will give a very concise overview on superstring theory, with a focus on its
low-energy behaviour, which is given by supergravity. Equipped with these

13
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tools, we go on to explain the original duality between N = 4 Super Yang-
Mills and type IIB superstring theory on AdSs x S®. At the end, we show how
to incorporate temperature and finite density into the correspondence, and
have a focus on the definition of entanglement entropy and its holographically
dual description.

Due to the focus of this thesis on applications of gauge/gravity duality,
this chapter cannot provide a self-contained introduction to all of superstring
theory, the AdS/CFT correspondence, and its generalisations and applica-
tions. For further reading, we therefore refer the reader to [69-74], which
provide exhaustive overviews on the various topics.

2.1 Superstring theory in a nutshell

Quantum field theory as we know it from elementary particle physics deals
with the quantisation of fields which are to mimic point particles in spacetime.
We can start with the action of a massive point particle, which is the integral
over its worldline, viewed as an embedding v : [ — M of some interval I
into the ambient spacetime M with metric G, and given by*

Spp = —M/ds = —M/dT\/%G, (2.1)
¥ I

where M denotes the particles rest mass and ds is the square root of the line
element on the particles path. It can be rewritten in terms of the pullback
v+G of the metric to the particles one-dimensional worldline. The interval [
denotes the range of the auxiliary time-like coordinate 7, which parametrises
the path 7.

Bosonic string theory

In contrast, string theory starts with extending the dimensions of the underly-
ing objects to be quantised. Instead of point particles with a one-dimensional
worldline, it deals with strings which span a 1+1-dimensional worldsheet.
Thus, its action is the natural extension of (2.1) to a 1+1-dimensional world-
sheet X, which is given by the Nambu-Goto action

Sya = —Tr | Pz\/X.G, (2.2)
)

where x denote the coordinates on the worldsheet and T is the string ten-
sion, which naturally replaces the mass of the point particle in (2.1). The

In this thesis, we will often write /7 if we refer to /| det(7)|.
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independent variable of this action is given by the embedding X : ¥ < T of
the worldsheet into a D-dimensional target space T with metric G, which is
left arbitrary at this point. Moreover, the dimensionality of the target space
T will be derived later on due to consistency conditions on the quantised
theory.

Although (2.2) is the natural extension to the point particle action, it is
unclear how to quantise it as there is no way to normalise the degrees of free-
dom, given by the embedding’s components, in a canonical way. Therefore,
one uses a mathematical trick and introduces the induced metric v = X*G
as an auxiliary degree of freedom. We can subsequently rewrite the action
as

1 i
SP:47TO/ /;deﬁGMN")/]aiXManN, (23)

where the auxiliary variable denotes the induced metric on the worldsheet. In
addition, we replaced the string tension by Tp = (27 /)", where I, = Vo'
denotes the string length. This is called the Polyakov action, in which it
becomes apparent that the coordinates X of the string’s embedding are
the dynamical variables of the theory. It essentially is an action of several
scalar fields on the worldsheet X, which is therefore called a non-linear sigma-
model. Upon computing the variation of Sp w.r.t. the auxiliary variable ~y
in order to find its equation of motion, we do not find an evolution equation
for v but rather a constraint equation for the X™. This is not surprising
as v appears with no derivatives in the action. The constraint is given by
T = 0, where T denotes the energy-stress tensor of the field content on the
worldsheet. This is a first hint, that string theory really is a two dimensional
conformal field theory on the worldsheet X.

Moreover, the theory is invariant with respect to Weyl transformations,
~v — €277, where ¢ is an arbitrary function of the coordinates. There are two
more symmetries, given by diffeomorphism invariance and D-dimensional
Poincaré invariance if G is the D-dimensional Minkowski metric.

Having said that, how many degrees of freedom are we actually dealing
with? As the number of embedding coordinates correspond to the dimension
D of the target space, this is the question at hand. There are several ways to
obtain the target space dimension, for which we will refer to the literature,
see e.g. [71-73]. The most common constraint is that the theory is supposed
to have a local Weyl invariance also after quantisation, that is there should
not be a Weyl anomaly. For bosonic string theory, as represented by the

action (2.3), the number of dimensions of the target space turns out to be
D = 26.
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Superstring theory

Bosonic string theory, however, cannot be the final answer. It has a severe
issue, which is that after quantising the X™ on the worldsheet, its ground
state has negative energy and is, hence, tachyonic. This yields that bosonic
string theory is inherently unstable. A solution to fix this issue is to intro-
ducing fermionic superpartners U for all bosonic coordinates X on the
worldsheet. In 141-dimensions, it is possible to have Majorana fermions,
whose spinor components are given by

M = (%) : (2.4)

and which satisfy a reality condition
v =, (2.5)

where C' denotes charge conjugation. Choosing this constraint makes sense
in the light of the U™ being superpartners of coordinates which are supposed
to be real.

Supersymmetry on the worldsheet is then introduced by adding an action
for the UM to the Polyakov action and imposing a supersymmetry generator
Q) to act on both fields as

XM XM 4 euM M s UM N XM ¢ (2.6)

where we omitted spinor indices and ¢ is a Majorana spinor parametrising
the supersymmetry transformation. Indeed, if we add

47 o

! L*(@MJMN)QMN (2.7)

to the bosonic action (2.3), we find that the total action is invariant under
(2.6).

The equations of motion are in terms of light-cone coordinates o
given by

t=140

oM =0, oY =0, (2.8)

which is why the ¢, (¢_) component is naturally identified with left- (right-)
moving degrees of freedom. As for the boundary conditions, the best ap-
proach is to divide the discussion into the open and closed string sectors.
For open strings, theirs are localised on D-branes, just as for the bosonic
string. At 0 = 0, we can always redefine the fermionic coordinates such
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that Y} (7,0 = 0) = (7,0 = 0). However, at 0 = 7, we have to choose
between two boundary conditions,

¢+M(T, o=n)=y"(r,0 =7) Ramond (R), (2.9)
Y (r,o=m)=—yM(r,0 =) Neveu-Schwarz (NS),  (2.10)

which introduces two different sectors in the open string spectrum. The
ground state of the NS sector is tachyonic like the ground state in bosonic
string theory. In the case of superstring theory, however, we can project the
spectrum to physical states by the GSO projection [75]. After applying it,
no more tachyonic states are present in the spectrum.

For closed strings, we use periodic boundary conditions. Then, we can
either choose (2.9) or (2.10) for both left- and right-movers, which decou-
ple. This yields four sectors, labelled by the NS/NS, R/R, NS/R and R/NS
boundary conditions. All of those are included in the spectrum. The ho-
mogeneous boundary conditions (R/R and NS/NS) give rise to states which
transform as bosons under target space transformations, while the mixed
boundary conditions (NS/R and R/NS) give rise to fermionic states. Again,
we find a tachyonic mode in the NS/NS-sector, which can be projected out
consistently by the GSO projection.

There are four consistent choices of the GSO projection for the closed
string, either of which defines a valid superstring theory in the end. Two of
those are called type IIA and type IIB superstring theory. For the subject
of gauge/gravity duality, these are the interesting ones so we restrict our
attention to them in the following.

Before we turn our attention to D-branes, which are additional dynamical
objects in string theory, we state that type IIA and type IIB superstring
theory are defined in D = 10 dimensions. Once more, like for the bosonic
string, this can be derived by requiring the Weyl anomaly to cancel.

D-branes

At the massless level, the R/R-sector of type IIA includes a 1-form field
Cqy and a three-form field C3). Type IIB, on the other hand, supports a
scalar field C|), a two-form field C(y), and a four-form field C4). In general,
(p+1)-form fields can couple to p+ 1-dimensional hypersurfaces, so especially
to Dp-branes, just by adding their integral

[ oy
Dp

where the integration is over the worldvolume of the Dp-brane. We can
also turn it around and state that Dp-branes carry charges of the respective
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p + 1-form fields defined in the theory. These charges are conserved, so the
charged Dp-branes cannot decay. Thus, the stable D-branes in type ITA
have odd dimensions (D0, D2, D4, etc.), whereas the ones in type IIB have
even dimensions (i.e. D1, D3, D5, and D7-branes). D-branes of different
dimensions are possible in either theory, but they eventually decay into the
ones which can be stabilised by the R/R-charges [76]. This renders D-branes
to be dynamical intrinsic objects of superstring theory.

On the other hand, the NS/NS-sector includes the dilaton field ¢, a sym-
metric tensor g,,, and an antisymmetric Kalb-Ramond field B,,,, at the mass-
less level. The tensor g,,, provides a candidate for the spacetime metric and

D-branes couple naturally to the coherent background of massless fields in
the NS/NS-sector by the DBI action, which reads

Som = —7, / PHget et (Xog + X.B+ 20/ )], (2.12)
Dp

where 7, = [(27)? (0/)(7’“)/2}_1 is the tension, and X,g and X,B are the
pullbacks of the metric g and Kalb-Ramond field B due to the embedding
X : Dp — M of the p + 1-dimensional Dp-brane into the 10-dimensional
ambient spacetime M. The additional object in the DBI action, F', finds its
origin in the fact that D-branes provide Dirichlet boundary conditions for
the open string. At the massless level, the open string has a gauge field A,
whose field strength F' couples to D-branes.

In perturbative string theory, the string coupling is given by g, = (e?),
so the DBI action scales inversely with the string coupling. This shows that
Dp-branes are inherently non-perturbative objects in string theory.

A web of dualities

Up to this point, we considered string theory as a framework to derive several
consistent versions for the quantisation of strings. It turns out that there are
five of these theories, which are labelled type I, type ITA, type IIB, heterotic
S0O(32), and heterotic Fg X Fg. Here, we will introduce an essential point of
superstring theory, which is the fact that all of these distinct string theories
can be identified.

This idea, first suggested by Edward Witten in 1995, ignited the so-
called second superstring revolution. The different versions of string theory
are nodes in a web of dualities, in which they are related by T- and S-duality.
This is sketched in figure 2.1. Each of these nodes are conjectured to be
limiting cases of M-theory, which is supposed to be the UV completion of
the unique eleven dimensional theory of supergravity. Although a complete
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heterotic SO(32) type I

heterotic Eg x Fjg M-theory type IIBQ

~ Ped
. .
. .

N
supergravity in d = 11 t}pe ITA

Figure 2.1: The web of dualities between different versions of string theory.
Continuous lines denote T-duality, dashed lines denote S-duality, and the
dash-dotted line denotes dimensional reduction. All of these theories are
conjectured to emerge as limiting cases of M-theory.

understanding of M-theory is lacking so far, it presumably contains an ana-
logue to D-branes. Those are called M-branes, coming in two versions, M2-
and Mb-branes, which are magnetically dual. We will not go into more detail
about M-theory, but only state that M2-branes are the starting point for a
holographic duality between ABJM theory and M-theory on AdS, x ST [77].

T-duality

The best way to introduce T-duality is to investigate what happens if one
of the 10 dimensions of the theory, say the X-direction, is compactified on
a circle. Looking at the embedding coordinate X* for a single closed string,
we need to identify

X1 04 2m) = X (1,0) + 2rm R, (2.13)

where R denotes the radius of the circle and m € N, denotes the winding
number of the string, that is, how often it winds around the compactified
dimension. We can still quantise this string, although it will be subject to
several constraints arising from the compactification. For example, its total
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momentum in the X°-direction is quantised to p° = n/R, where n € Z. In
the end, the formula for its mass will read

M? = (mR)2+(%>2+§(N+N’—2), (2.14)

where V and N’ denote the number of excitations. Looking at this equation,
we see that the spectrum is invariant under the transformation

R— d'/R, n—m and m—n. (2.15)

This is remarkable, as it means we interchange a string of total momentum
n/R wrapping a circle of radius R m-times with one of momentum mR/o/
that wraps a circle of radius o/ R n-times. This symmetry holds exactly for
the whole theory and very “stringy”, in the sense that point particles cannot
wrap a compactified dimension and, hence, cannot obey a symmetry of this
kind.

For open strings, it seems impossible that a similar symmetry holds true.
However, we recall that open strings’ endpoints can be constrained to D-
branes. Say, we compactify the X? direction as above on a circle of radius R.
If we have a D8-brane, that does not wrap the compactified dimension, open
strings can start on it, wrap m times around the compactified dimension, and
end on it. In this way, they can also wind around the X°-direction without
being able to unwind, as their ends are fixed to an object, the D-brane. These
winding states contribute to the mass by m?/R? There is no contribution
from the momentum in the X°-direction, as the string is attached to the
D8-brane.

On the other side, if we compactify the X°-direction on a circle of radius
o//R and have no D-brane as considered before, the open string can have a
momentum along the compactified direction. However, just like for the closed
string above, it needs to be quantised and its the contribution to the mass
formula is similarly given by n? R?/a/2. Once more, contribution is exactly
the contribution of the string ending on an D8-brane under the T-duality
transformation (2.15).

To obtain the same mass spectrum, we saw that we need D-branes of
different dimensions in the theories we consider as dual. This holds in general.
That is, D-branes of even dimension are replaced by such of odd dimension,
and vice versa. However, this is just what is happening in type IIA and IIB
string theory: One supports only even dimensional D-branes, the one one
just odd dimensional D-branes.

Hence, we see a hint that type IIA and type IIB superstring theory are
related by T-duality. In fact, it turns out that T-duality is an exact duality
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transformation mapping type ITA to type IIB and vice versa, see figure 2.1.
For open strings, Dirichlet conditions and Neumann conditions interchange
on the compactified dimension subject to the T-duality transformation. If
they had quantised momenta of p° = n/R in the compactified direction,
after the transformation they will have no momenta in this direction as there
appears an additional D-brane setting Dirichlet conditions in this direction.
However, they are winding n-times around the circle with new radius R =

o'/R.

S-duality

Another symmetry relating different superstring theories is S-duality, which
is a duality between strongly-coupled and weakly-coupled theories. In super-
string theory, the coupling constant g; is related to the vacuum expectation
value of the dilaton by

g9s = (%) (2.16)

which also appears in the type IIB supergravity action (2.18). In type I1IB
string theory, we have two massless scalars, the dilaton ¢ and a 0-form field
C(p). Combining them into a complex scalar field 7 = C(g) + ie”?, there is an
SL(2,R)-symmetry in the equations of motion, which maps

T

at+0b a b
where ad — bc = 1. The group reduces to SL(2,Z) when the theory is
quantised, as the fluxes become quantised. If Cy) = 0, the above symmetry
can be used to transform (e?®) = g, — 1/g,, which exchanges strongly coupled
type IIB with weakly coupled type IIB string theory and vice versa. In this
sense, type IIB string theory is self-dual under S-duality, which is also shown
in figure 2.1.

Low-energy limit of Type IIB string theory

In the low-energy limit, the spectra of type IIA and type IIB superstring
theory reduce to their massless states. They always contain a symmetric
rank two tensor field, which can be identified with the graviton, hinting
that the low-energy limits are given by type IIA and IIB supergravity. In
the context of this thesis, especially the action of type IIB supergravity is
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interesting. Its bosonic part is given by

Sirp = 12 </ "X V@ (e—% (R+48M¢>8M¢— : \H<3>}2)

2 K1

1
—5 [Fo[* -

11~ 2 .
5 || - F5))) (2.18)

—/C(4> N Hs) AF(3>) 7

where k2, = (2m)7o/* is the gravitational coupling in 10 dimensions. The
fields correspond to the coherent background of the massless excitations in
the NS/NS- and R/R-sector of type IIB string theory. Moreover, F{,1) and
Hs)y are the field strength tensors of the C(,) and By form fields, and the
tilded version of F{3) and F(s) are defined by

14

Fis) = Fz) = Coy N He) » (2.19)
1 1
Fsy = F5) — 5 Coy Ny + 5B A Fig - (2:20)

A particular minimiser of this action is given by stacking N Dp-branes on
top of each other. The ansatz for this solitonic solution reads

1 . .
A= \/ﬁm‘@v AXMAXY + \/H(y) 6;; dY" dY7 (2.21)
v
— g, H(y)®/ (2.22)
C(p+1 (H(y) " =1) AXO A AdX?, (2.23)
By = 0. (2.24)

where 7 is the Minkowski metric, M, N € {0...p} denote dimensions which
span the D-brane worldvolume, 4,5 € {p + 1...9} those of the ambient
spacetime and y = /y; y* with summations over ¢ is the ambient distance to
the stack of D-branes. The function H is defined by

H(y) = (1 - G)M) : (2.25)

which is similar to the blackening factor in black hole spacetimes. The length
scale L defines the radius in both components in (2.21) and can be derived
in terms of the Reggae slope to be

T—p

L = (4m)"2" g, NT[(7 - p)/2] (/) =", (2.26)
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where N denotes the number of Dp-branes. It is encoded in the total flux of
the C,41) gauge field through the branes, which is given by

1

== . #(dCpt1) + Clpry A Cipt1)) (2.27)

where the terms in the brackets yield the field strength of C(,41) and the
integral is over any S8~ sphere which includes the Dp-branes in its interior.

2.2 AdS/CFT correspondence

2.2.1 Maldacena limit in type IIB string theory

In 1997, Juan Maldacena published a seminal paper on “The Large N limit of
superconformal field theories and supergravity” [15], in which he conjectured
a duality between a superstring theory and a quantum field theory without
gravitational degrees of freedom, in the sense that the background geometry
is fixed. The physical content of both theories turns out to be the same.
This is very remarkable, as the superstring theory is defined in a higher
dimensions than the quantum field theory, to which it is conjectured to be
dual. Moreover, it was the first realisation of the holographic principle which
was coined by Susskind [14] and 't Hooft [13], who were proposing it as a
guiding principles for the formulation of quantum gravity.

As was mentioned in the previous section, type IIB string theory supports
D-branes of even dimensionality. Maldacena investigated the large-/N limit
of type IIB superstring theory with a stack of NV coincident D3-branes whose
embedding into the ten dimensional spacetime of type IIB string theory is
given in table 2.1. The dots denote the dimensions in which the branes are
extended, whereas the dashes denote those in which they are fixed. They
span four dimensions, including the temporal one.

coordinates‘o 1 2 3‘4 5 6 7 8 9
NDB—branes‘o e o o‘— -

Table 2.1: Embedding of D3-branes as used by Maldacena to derive the
original AdS/CFT correspondence [15]

In superstring theory, there are two points of view when it comes to D-
branes: On the one hand, they supply Dirichlet boundary conditions for open
strings picture and on the other hand, they act as sources to supergravity, so
they generically couple to closed strings. In the following, we will describe
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superstring theory with a fixed stack of N D3-branes from both perspectives
and see, how two different theories emerge in the low energy limit. Then,
by applying a combined strong coupling and large-N limit, the theories fur-
ther reduce to classical supergravity (replacing the superstring theory) and
a strongly coupled N = 4 super-Yang-Mills (SYM) theory.

Open string picture

From the point of view of open strings, D-branes can be regarded as objects
on which strings can end. That is, they set Dirichlet boundary conditions
on the world area theory of the strings, which after all is also where the
D-branes got their name from. In this case, the strings are defined in terms
of perturbation theory and we need a small string coupling g; < 1 in order
for this to be reliable.

At low energies, the theory is described by the worldvolume theory on the
branes, which is given by a supersymmetric gauge theory with gauge group
U(N) and effective coupling N g for N D-branes. For D3-branes, the de-
composition of the perturbative open string excitations yields six scalar fields
¢" (encoding the position of the D3-brane in the six dimensions transversal
to it) and a U(N) gauge field A, (for the four parallel dimensions to the
D3-branes) in the bosonic sector of the worldvolume theory.

At leading order in o, we can decompose the bosonic full action into

S = Sopen + Sclosed + Sint 5 (228>

where the closed string action reads
1
&de:Efi/dmxv@eﬁ¢0%+4aM¢aM¢)+.”, (2.29)
K

where 2 k2 = (27)" ' g2, ¢ is the dilaton and R the curvature scalar of the
metric g. The open string part finds its origins in the DBI action (2.12) for
D3-branes,

-1
Spel = ( /d4x e /—det (X,g + 2na/F), (2.30)

271-)3 a'? Js
where X, g denotes the pullback of the metric w.r.t. the embedding X : Dp —
M. Here, we take M to be 10 dimensional Minkowski space. Expanding
this action for small fluctuations around the background embedding yields

1 1 , .
/d% (Tr (ZLFWFW> + 577“” 0ux" (%:E’) +... (2.31)

open —

27 gs
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where we defined six scalars z° = X*3/27a’ on the worldvolume which
describe the fluctuations of the embedding in the directions transverse to the
D3-branes. The leading order interaction term between the dilaton and the
gauge field is given by

Sint = 1 /d4xTr (p Fu F*™) + ... (2.32)

8T gs

In the limit o/ — 0, the action (2.31) turns out to be identical to the bosonic
part of the action of N' = 4 Super-Yang-Mills theory in 3 + 1 dimensions
at a coupling ¢g2,, = 27 g,. In the same limit, the action (2.29) yields free
type IIB supergravity since the gravitational coupling k% ~ o/* — 0 vanishes.
The interaction term (2.32) vanishes, too, which is due to the action (2.32)
not being canonically normalised. Upon rescaling the dilaton, we find that
Sint ~ Kk, which vanishes in the same limit.

Hence, we can summarise that D3-branes from the point of view of open
strings yield two decoupled theories as we take the limit o/ — 0: On the one
hand, the open string action yields N’ =4 SU(N) Super-Yang-Mills theory
on the worldvolume of the stack of N D3-branes i.e. in 3+1 dimensions. On
the other hand, we find free type IIB supergravity in ten dimensions.

Closed string picture

The starting point for the closed string point of view is that D3-branes are
also massive extended objects in type IIB supergravity, which is the point-like
limit of type IIB superstring theory. As already mentioned around (2.18),
D-branes can be regarded as solitonic solutions of that theory, sourcing the
gravitational field. Such solutions feature a curvature radius L which needs
to be large in order for perturbation theory to be reliable in supergravity.
In the described case, due to (2.26), this means that N g > 1, which is the
exact opposite of what is required for perturbation theory on the worldvolume
theory, as N g, = g3, describes the coupling of the Super-Yang Mills theory.

If we evaluate the discussion in section 2.1 for D3-branes, a solution ansatz
for the type IIB supergravity action is given by

ds? = H(r)"Y%n,, dz"dz” + H(r)"/?6;dz'da? | (2.33)
e’ =g2, (2.34)
Cuy=(1—H(r) ") da® Adz' Ada® Ada® + da?, (2.35)

where u,v € {0,1,2,3},4,5 € {4,...,9}, and H is given by H(r) = 1+ L*/r*
with the curvature radius L* = 47 g; N o’2. There are two important limits
for H, given by its two summands. If » < L, which is called the near-horizon
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limit, it is given by H ~ L*/r, while for r > L it approximately 1. If we
consider the metric in the near-horizon limit, we find

2 L2 ) )
ds? = % N datdz” + — 0;; da'*da’
" (2.36)

L2
=— (77,“, dxtda” + sz) + L*(ds?)gs
2z

where in the second equality, we mapped z = L?/r and (ds?®)gs is the metric
on the S®-sphere. The approximation in the near-horizon limit is the metric
for AdS; x S°. If we take the second limit » > L, the metric reduces to
ten-dimensional Minkowski space

ds? = nyn dXMdx? (2.37)

where M, N € {0,...,9}.

Combining those two limits, we find closed strings of two kinds: Those
close to the stack of N D3-branes (r < L) and those far away (r > L). Of
course, there is also an intermediate regime where » ~ L. However, if we
assume 7 /o’ to be fixed while we send o/ — 0, we find that the closed strings
near the D3-branes and those far away decouple. This particular limit is
called the Maldacena limit, due to its origin in [15].

To summarise, the closed strings far away from the branes yield free
type IIB supergravity and those close to the branes are perturbations of the
AdS5 x S? solution to type IIB supergravity. A valid UV-completion to the
latter is known to be type IIB superstring theory, so we regard it as type I1IB
superstring theory in the perturbative regime.

The whole picture

Combining both points of view we have for the stack of N D3-branes, we saw
two different theories emerge in the decoupling limit, both of which contained
two decoupled theories on their own. In the open string perspective, we
find N' = 4 SU(N) Super-Yang-Mills theory in 3 + 1 dimensions plus an
additional free type IIB supergravity theory in ten dimension. The closed
string perspective gave us type IIB string theory on AdSs x S® close to the
branes and, once more, free type IIB supergravity theory in ten dimensions.

Both theories contain free type IIB supergravity in ten dimensions as a
factor, which obviously is equivalent. The non-trivial part is to conjecture
that the other factors, given by N' = 4 SU(N) Super-Yang-Mills theory in
3 + 1 dimensions on one hand and type IIB string theory on AdSs x S° on
the other, are also equivalent.
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This is the AdS/CFT conjecture, first suggested in [15]. In order for the
conjecture to work, we find that the parameters of both theories need to be
related to each other by

gym = /27 gs and L*=2g2,, Na?, (2.38)

where the first identity comes from identifying the action (2.31) with the
bosonic part of A/ = 4 Super Yang-Mills and the second one is given by
(2.26) for a stack of N D3-branes.

There are several versions of the conjecture on the market. What we
stated above is known as the strong form of the conjecture, which is highly
non-trivial. However, probably the best understood version of the statement
is the weak form of the conjecture. It takes two more limits into account.

Firstly, we can take the large-N limit, N — oo. On the field theory
side, this is physically sensible only if we additionally require A := ¢g2,, N to
stay finite, which is called the 't Hooft-limit with A the 't Hooft-coupling [78].
Looking at the parameter relations (2.38), this yields finite L?/a’ but g, < 1.
So the string coupling and, hence, loop amplitudes are suppressed and we
end up with string theory at tree level, which is classical string theory on
AdSs x S% on the gravity side of the duality. The field theory side will
be a SU(oc0) gauge theory, however with N ¢%,, finite, which is called the
planar limit.. This reflects the fact that only Feynman diagrams with planar
topology are non-vanishing.

Secondly, we can send the 't Hooft coupling to infinity, A = g%,, N — cc.
So on the field theory side, we not only have an SU(c0) gauge theory, but it is
moreover strongly coupled. Looking at the relations (2.38) again, we see that
the gravity side reduces to a much more tractable one: A\ — oo corresponds
to o/ /L? — 0, i.e. the string length I, = v/’ is vanishing compared to the
curvature radius of AdSs x S%. This is great if we want to compute anything,
as the classical type IIB string theory can be well approximated by type 1B
supergravity in this pointlike limit.

It is this last version, the weak form of the duality, which is mostly used in
the literature. We have a weakly coupled classical gravity theory dynamically
dual to a strongly coupled quantum gauge theory. Usually, faced with the
latter, we cannot compute any correlators analytically anymore and need to
resort to numerical techniques such as lattice theory, which are restricted
in their usage, especially in this case. The AdS/CFT conjecture, however,
equipped us with a mighty tool to elaborate such theories even in the worst
case scenario of infinite coupling.
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2.2.2 Field-operator map

Apart from its conceptual beauty, the whole point of AdS/CFT duality is to
be able to compute physically sensible results. In physics, this means we need
to compute correlators. A part of the prescription for doing this by applying
the AdS/CFT duality is known as the field-operator map. It maps fields on
the gravity side of the duality to corresponding gauge-invariant operators on
the field theory side, and vice versa. This can be done for various sorts of
operators like scalars, conserved currents, fermions, etc. The scope of this
thesis will be about scalar operators, so we will restrict this section to an
overview on how to deal with them. At the end, we will see the duality at
its computational level, i.e. as an equivalence of the generating functionals
of both theories.

Considering all gauge-invariant scalar operators in N’ = 4 SU(N) Super-
Yang-Mills theory, an involved decomposition of the type IIB supergravity
action yields that there are scalar fields for every one of them on the gravity
side of the correspondence. They contribute to the action in a similar fashion
as

5= [[dd: V5 (4 900,60+ V(0)). (2.39)

where n ~ N? is a normalisation factor, V = m?¢? + O(¢?') is the scalar
potential. To get here, we already performed a Kaluza-Klein decomposition
of the form

O(z,2,y) = Z ¢'(z,2) V'(y), (2.40)

where the ) are spherical harmonics on S°, 2 is the radial coordinates intro-
duced in (2.36), and = and y denote the rest of the coordinates in the AdS-
and S°-factor of the same metric, respectively. We then suppressed the index
1 for the scalar fields to keep the notation simple.

By varying (2.39) w.r.t. ¢, we obtain the equation of motion for the scalar
field which is of course just the Klein-Gordon equation in AdSs,

gV, V,0=0,V(¢). (2.41)

A great deal of computations in gauge/gravity duality involves boundary
analysis of the fields at asymptotic infinity, i.e. around z — 0. This can
easily be done here by inserting a power-law ansatz ¢ ~ c(x)z2 into its
equation of motion, which after Fourier transforming the x-coordinates to
their corresponding momenta k* yields

(A? —d A+ LPm?) 22 — k22512 = 0. (2.42)
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At asymptotic infinity, z — 0, this equation is satisfied if and only if A is
equivalent to one of the Ay given by

1
Av=3 <d:|: Bt 4L? m2> , (2.43)

which gives us two independent modes for a second order differential equation
in z as expected. Note, that one of these modes, A, is normalisable, while
the other one, A_, is non-normalisable in the sense that the action (2.39)
is finite or diverging, respectively, if we substitute the asymptotic modes for
the scalar field.

Once the two independent asymptotic modes are found, we can expand
(2.42) order by order in the radial coordinate z. The coeflicients of higher-
order terms can generically be solved in terms of the two coefficients of the
asymptotic modes.

Some fanciness of AdS-space enters the game at this point. Due to its
negative scalar curvature, it supplies a positive contribution d* ¢?/4 to the
scalar potential. Hence, even a negative mass square m? < 0 can result in a
stable scalar theory in AdS-space, if it satisfies

m* > —d*/4 L?, (2.44)

which is called the Breitenlohner-Freedman bound [79]. As we can see in
equation (2.43), this simply corresponds to the point at which the square root
vanishes. Lower masses would imprint themselves in imaginary asymptotic
boundary expansions, which do not make sense anymore. If the Breitenlohner-
Freedman bound is saturated, it seems like there is only one valid asymptotic
solution to the scalar equation of motion available. This, however, cannot
be true for a second order differential equation. The solution to this puzzle
is that there is another mode of the same power in z, but with a loga-
rithmic factor log(z) entering the expansion at leading order, i.e. ¢(z,z) ~
z2+(a + blog(z)), where A, = d/2. At higher order in the asymptotic ex-
pansions, the order of logarithmic terms will increase with each order in z,
which makes computing the expansions considerably harder. This is the case
we will encounter in the main part of this thesis, due to fixing the conformal
dimension of the scalar operator to d/2 which saturates the Breitenlohner-
Freedman bound.

It turns out, that the (non-)normalisable modes have a precise physical
meaning in the context of AdS/CFT correspondence. In [16,80], it was
suggested that they encode the vacuum expectation value and the source of
the dual scalar operator on the field theory side of the duality. Moreover, the
leading powers in the expansion (2.43) encode the conformal dimension of this
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operator. By applying dimensional analysis, we find that the normalisable
mode yields the vacuum expectation value (O), while the scalar operator’s
source J is equivalent to the non-normalisable mode. The expansion of the
scalar field around z — 0 thus begins with

Pz, x) ~ J(x) 25 +(O(2)) 2%+ + ... . (2.45)

Usually, we add classical sources to a quantum field theory by adding a source
term to the partition function, which then is called the generating functional,
and depends on the source field by

2[J(x)] = Zio / D[] e~S5— [ 42 1@)0G) (2.46)

where Sg is the Euclidean action of the quantum theory and Zj is the par-
tition function without the source term. By taking variational derivatives
w.r.t. the source J(x), and require it to vanish afterwards, we can compute
arbitrary correlation function of the system. Unfortunately, correlators com-
puted in this fashion contain unconnected diagrams. We can factor them out
by defining the generating functional for connected Green’s functions as

Wi (@)] = —log (Z[J(@)]) = (e/ 07 (2.47)
which is closely related to the free energy, the thermodynamic potential in
the canonical ensemble.

In [16,80], the foundations were set to identify this generating functional
with the on-shell action Sgu of the dual supergravity theory in order to
compute correlation functions in the respective dual theory. In order to do
this, we need to require the sources J; to match the leading order coefficients
in their corresponding fields on the gravity side, where the indices ¢ now
denote the whole set of operators and sources appearing in the theory. The
identification of generating functionals is then given by

!
W[‘]@j)] = SSG’hmZ_)O bi(z,z)z Nim=Ji(z) (2.48)

where the ¢; now denote all fields appearing in the dual gravity theory with
leading order expansion powers A; . Why does the Euclidean action Sgsg
appear instead of the whole generating functional of the supergravity action?
This is due to the fact, that we work with the weak form the the correspon-
dence, in which we have classical supergravity instead of quantum type IIB
superstring theory on the gravity side of the duality. The Euclidean action
is simply the leading order saddle point approximation to the string theory
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partition function for connected diagrams, which is why it is the object of
interest in this context.

In order to obtain physically meaningful, i.e. finite, results, we will need to
renormalise both sides of the duality as both sides of the duality. One way to
see why, is that we already coined the non-normalisable mode to correspond
to the source term in the gravity dual, and mentioning that non-normalisable
means that the on-shell action, which appears also in (2.48), diverges in the
presence of such a mode. The prescription to do this on the gravity side of
the duality is called holographic renormalisation [26,27]. Essentially, it is
done by taking an IR cutoff in the gravity theory by imposing a lower bound
to the radial coordinate z = zy > 0, and only integrating up to zy for defining
the on-shell action.? Having introduced an additional boundary, we need to
include boundary terms. The field content in these boundary terms is then
chosen such that in the limit zy — 0 the on-shell action is rendered finite
and leaves a maximal symmetry group unbroken. We will not go into more
details regarding the prescription of holographic renormalisation, because it
will not be needed in the context of this thesis.

2.2.3 Summary

In this section, we described the derivation of the original AdS/CFT duality
by Maldacena [15]. In its weak form, it describes a highly non-trivial duality
between a strongly coupled quantum field theory on the on hand and a higher
dimensional classical theory of supergravity at low curvatures on the other.

The sources and vacuum expectation values of the strongly coupled field
theory are mapped to expansion coefficients in the dual gravity theory. To
compute correlators of the strongly coupled field theory, we need to evaluate
the on-shell action of the supergravity theory and take variational derivatives
with respect to the sources.

We will now go on and consider generalisations to the original AdS/CFT
correspondence, like the incorporation of temperature, final chemical density
and entanglement entropy. Before we do this, however, we summarise the
strongest form of the duality in the following box, which it deserves:

2 Remember that z = L?/r — 0 at asymptotic infinity, so imposing a cutoff near z = 0
really is a IR cutoff in the gravity theory. It is interesting to note at this point that the
IR divergencies of the gravity side correspond to UV divergencies of the field theory side.
This is one of the reasons why the radial coordinate r can be identified with the energy
scale p of the renormalisation group flow on the field theory side. So, the AdS/CFT
correspondence is often thought of as geometrising the renormalisation group flow of the
field theory.
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— The AdS/CFT conjecture - strongest form —

N =4 SU(N) Super Yang-Mills theory with coupling constant gy s
18 dynamically equivalent to
type IIB superstring theory with string length I, = v/o/ and string

coupling gs on AdSs x S° with radius L and N units of Fs)-flux
through S°

where

Gy = 270 2¢%, N =L"/a?.
\_ J

2.3 Generalisations of AdS/CFT

The original AdS/CFT correspondence provides a powerful method to under-
stand N' = 4 SU(N) Super-Yang-Mills theory in the large-N and strongly
coupled limit from a new point of view. However, so far it is defined at
zero temperature and without classical sources like chemical potentials. The
correspondence is promising to shed light on universal features e.g. in con-
densed matter theory or heavy-ion collisions. In such setups, however, we
need to incorporate different circumstances, which include the coupling of
the system to a reservoir at finite temperature and finite chemical potential.
A generalised version of AdS/CFT including such features is often referred
to as gauge/gravity duality.

Apart from that, a promising “observable” which gained more and more
attention among the quantum gravity community recently is entanglement
entropy. This is a measure for the entanglement between two subspaces of
the Hilbert space, where typically one chooses spatial subregions. There are
suggestions how to compute entanglement entropy using holography. In this
section we will first explain how to model environments at finite temperature
and finite density holographically. Finally, the holographic dual to entangle-
ment entropy on the gravity side of the duality is introduced.

2.3.1 Digression: Statistical ensembles and potentials

We want to model strongly coupled quantum systems at finite temperature
and density. Thereby, we automatically enter the regime of thermodynamics.
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This section is devoted to remind us of the fundamental concepts of statistical
mechanics, so that we are able to generalise these to holographic dualities. To
begin with, we recapitulate the most important thermodynamic potentials
which follow from the microcanonical, the canonical, and the grand canonical
ensemble on a classical level. Then we proceed by explaining how to deal
with quantum systems in the same manner. This will be useful to explain the
notion of entanglement entropy and the related topic of why event horizons
are always associated with a temperature.

In the microcanonical ensemble we consider the total energy of the system
fixed. The microcanonical partition function is then defined as the number
of all microstates of total energy E by

Zmicro = TI'(l) s (249)

where Tr defines the sum over all accessible states. The crucial assumption
in the microcanonical ensemble is that we assign the same probability p =
1/ Zmiero to all states accessible at the fixed energy E. Now, we are able to
define the entropy of the system as

S = (10g(Zmiero)) = (log(1/p)) = — (log(p)) = =Tr (p log(p)) .~ (2.50)

Consider the configuration of the classical system to be a random variable
over the probability distribution set by the uniform probability p = 1/Zicro-
The entropy then defines the average surprise per sampling®, if we draw a
random state from the set of possible states of total energy E, and is indeed
maximised if we use the uniform probability. The entropy of the system is the
thermodynamic potential of the microcanonical ensemble, meaning that we
can use it to derive macroscopic information about the system. For example,
the statistical definition of the inverse temperature [ of the system is given
by deriving the entropy with respect to the energy,

_ 03
=55

Likewise, the pressure p is defined by deriving w.r.t. the volume V', and
chemical potentials p; are defined by deriving w.r.t. fixed particle numbers
N, where k labels different sorts of particles. To summarise, the entropy
S(E,V, Ni) is the thermodynamic potential of the microcanonical ensemble,
in which the independent variables are the energy F, the volume V' and the

(2.51)

3 To obtain the connection between expected surprise and entropy, we can think about
a system in which one of the states has probability po = 1 and, due to normalisation, all
other states obey p; = 0. Then, the entropy is zero due to (2.50), which is intuitive, since
we know the outcome of making observations in advance.
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particle numbers N;. Other ensembles are defined by performing Legendre
transformations on one or more of the conjugated variables (E, 3), (V,p) and
(N ire)-

The canonical ensemble follows from the microcanonical ensemble by a
Legendre transformation of (F, ), i.e. instead of the energy F, we use the
temperature T or, equivalently, its inverse [ as independent variable. The
new thermodynamic potential is the (Helmholtz) free energy F' which is de-
fined by

BE(B,V,Ny) = BE(B) — S(E(S),V, Ni) - (2.52)

Physically, this requires us to couple the system of interest to an infinite heat
bath. Under the assumption that changes in our system are negligible for
the temperature in the heat bath, one can derive that the partition function
of the system becomes

Zean = Trexp (—0F) . (2.53)

Hence, the contribution of states to the partition function is weighted by
exp(—pFF). Unlike fixing the energy, fixing the temperature in an experi-
mental environment is much more convenient, which is why the canonical
ensemble is more useful for applications.

For the same reason and especially in condensed matter applications, it
is unfeasible to keep the particle number fixed. The intrinsic quantity asso-
ciated to the particle number is the chemical potential. The grand canon-
ical ensemble follows from the Legendre transformation of (N, ug), which
exchanges the particle numbers and chemical potentials as independent vari-
ables. Once again, this need us to couple our system to an infinite particle
reservoir for each particle sort labelled by k. The thermodynamic potential
is given by the Landau free energy €2, which is defined as

QB,V, ux) = F(B,V, N(pr)) — pur N () - (2.54)

In order to fix the associated chemical potentials p; instead of the particle
numbers, we change to the grand canonical ensemble by defining its partition
function Zgana as

Zgrand = Trexp <—ﬁ (E — Z,uka>> ) (2.55)
k

If we want to proceed to quantum systems, we need to initialise some
notation. First of all, quantum mechanics deals with states |V) € H which
are vectors in some Hilbert space H. A state is said to be pure if it is a vector
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in H. We can compute expectation values of observables O in the state |¥)
by

(O)e = (¥|O|¥) (2.56)
where (W[ is the co-vector to |¥) w.r.t. the scalar product defined over H.
Given a state |¥), we can define a projection operator py = |¥) (¥|,

which is also called the state/density matriz/operator, where all four possible
notations appear equivalently in the literature. Any expectation values can
now be rewritten in the form

where the trace Tr sums over an arbitrary normalised orthogonal set of basis
vectors of the Hilbert space, e.g. eigenstates of the Hamilton operator. We
can define a mixed state by

pP= Z pi |@i) (D4l (2.58)

where |¢;) € ‘H and the probabilities of each state p; are normalised, ), p; =
1. A mixed state is a genuine statistical mixture of pure states and, in general,
there is no way to define a pure state |¥) whose state operator matches the
one of the mixed state. The state operator always satisfies Trp = 1. If and
only if the density matrix is the projection operator of a pure state, it also
satisfies p? = p or, equivalently, Tr(p?) = 1.

In the context of thermodynamics, the state matrix p replaces any oc-
currences of the probability distribution p in the discussion about classical
statistical mechanics. We always have a Hamilton operator H defining the
dynamics of the quantum theory. In equilibrium, any operators and states
are supposed to be stationary. This means that, in particular, the state
operator p commutes with the Hamilton operator,

A

O = [p, H =0, (2.59)

which means that both operators can be diagonalised simultaneously in terms
of energy eigenstates H |i) = F; |i).

The microcanonical ensemble is then given by defining the partition func-
tion as in (2.49), but the trace being over all energy eigenstates |i) with
eigenvalues F; = E. The microcanonical partition function 2., then just
turns out to be the multiplicity of the energy level E.* The von Neumann

4 Obviously, there are problems in this definition, because the energy levels of a quan-
tum system are typically discrete and hence the derivatives w.r.t. the energy are probably
not well-defined. The technical solution to this is to define an energy width AE in which
the states may be, which also explains the terminology for the density operator.
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entropy associated with a given the state operator reads

S(p) = =Tr(plogp) , (2.60)

where log p is well-defined due to the state matrix being diagonalisable.
In the canonical ensemble, similar to the probability of a configuration of
energy F in the classical context, the state matrix is now given by

1 N
p=z e PH (2.61)

where Z,, is the canonical partition function
Zo =Tt (e—ﬂ H ) , (2.62)

which normalises the state operator such that Trp = 1.
Finally, in the same fashion, the grand canonical ensemble is defined by
its partition function

Zgrand =Tr €xp <_5 (ﬁ - ZMka)) ) (263>
k

where we promoted the particle numbers Nj to conserved charge operators
Q1.> The state operator is then likewise given by

po L BA-Thmn) (2.64)
Zgrand

which concludes our recapitulation of both classical and quantum statistical
mechanics.

2.3.2 Finite temperature
Field theory side

It is well-known how to incorporate finite temperature on the field theory
side, for comprehensive reviews see e.g. [81-83]. To wrap it up, the tem-
poral integration in the partition sum is exchanged by an integration over

5 In quantum mechanics, particle numbers are only defined if there are global symme-
tries protecting them. Labelling any distinct global symmetries by k, we can derive an
associated conserved charge operator Q;€7 which could be a number operator, for example.
If there is no particle conservation, e.g. for photons which are not charged, we have to set

n=0.
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imaginary time over a compact region of size 5, which turns out to be the in-
verse temperature, 8 = 1/kgT, with kp the Boltzmann constant. Depending
on the nature of the fields involved, we need to set periodic or antiperiodic
boundary conditions for bosons and fermions, respectively. For zero temper-
ature systems, a generic partition function is given by

Z = /D[cb] etisIel (2.65)

where ® denotes the entity of field and S denotes the action of the system,
given by

S[®] = / dt / dz L(®), (2.66)

with £ some Lagrangian defining the theory. By exchanging ¢t — —it, we
end up with the Euclidean path integral

Z5 = / D[®] e 57 (2.67)

which we already encountered in (2.46) and Sg is the Euclidean action. So
far, we did nothing but a Wick rotation, which is always possible for time
independent boundary conditions. However, if we compactify the integra-
tion regime of imaginary time to 7 € [0,5) by identifying 7 ~ 7 4+ 3, we
need to determine boundary conditions for the fields involved. It turns out
that bosonic fields need periodic boundary conditions ®(0) = +®(3), while
fermionic fields require anti-periodic boundary conditions ®(0) = —®(3) for
this compactification to make sense. The path integral becomes

Z5 = / D[®] e #l®], (2.68)

2(0)=%2(8)

and compactifying the integration regime to 7 € [0, 5], where we imposed
(anti-)periodic boundary conditions in the path integral as discussed above.
Sk denotes the euclidean action, given by

Sp[®] :/06 dr /ddm L(D). (2.69)

It’s called Euclidean, because in the process of exchanging real time for
imaginary time, we effectively also changed the signature of the metric from
{—,+,+,...} to {+,+,+,...}. The Euclidean action still contains tempo-
ral derivatives of the fields. If we require the fields and operators to be
stationary, as they should be in thermal equilibrium, we see can trivially
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integrate over the temporal direction, which yields a factor of 5. The other
factor reduces to an integration of the Hamiltonian density over all spatial
dimensions, which yields the Hamiltonian H of the system. Hence, we see
that (2.67) defines the canonical partition function in the sense of statistical
mechanics,

z /p —5H<1>1—Tr< el (2.70)
®(0)=

With the state operator deﬁned in the usual way

1 N
p=z— e PHI®] (2.71)

the free energy of the system is given by
F =Tlog(Zam) =~ Tlog(SE), (2.72)

where we performed a saddle point approximation for the second equality.
The latter, of course, is only possible for weakly coupled systems, which will
not be the case in the weak form of the gauge/gravity duality.

Gravity side

On the gravity side of the duality, the incorporation of temperature appear
both naturally and astonishing. Since the seminal paper by Hawking [10],
it is known that we can assign a temperature to black holes in the semiclas-
sical regime. More precisely, it was shown that black holes emit particles
with an emission spectrum matching that of a perfect black body at a cer-
tain temperature, called Hawking temperature Ty. In an asymptotically flat
Schwarzschild geometry, the Hawking temperature is given in terms of the
mass of the black hole by

he?

Ty = Y (2.73)
where we used SI units to show the equation in its full glory, combining
constants from quantum mechanics, gravitation and thermodynamics alto-
gether. Most remarkable, the temperature of the black hole decreases with
its mass, imprinting itself in negative heat capacity leading to instability of
the black hole. While evaporating due to the mentioned Hawking radiation,
black holes in asymptotically flat geometries are getting hotter and hotter.
Their ultimate faith is subject to speculation. Only a full theory of quan-
tum gravity will be able to solve the dynamics as the curvature at the event
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horizon enters the regime in which Hawking’s semiclassical analysis is not
reliable anymore.

For asymptotically curved backgrounds, the situation is different. Espe-
cially in asymptotically AdS spaces, the temperature of black holes grows
with their mass, so that for negative cosmological constants, black holes can
be thermodynamically stable. For the finite temperature generalisation of
the AdS/CFT conjecture, the objects responsible for the temperature on the
gravity side are actually near-extremal Dp-branes, which can be used in the
same fashion as the Dp-branes for the derivation of the original conjecture.
These are non-BPS solutions to type IIB supergravity with metric

2

ds* = H(r)™1/? (—=f(r)dt* +dz?) + H(r)'? (% + 72 (ds2)55) (2.74)
with H(r) = 1+L*/r* and f(r) = 1—r};/r*. The solution looks familiar from
equation (2.33), but has the additional blackening factor f(r) in its ¢t and rr-
components. This yields an event horizon at r = rg, where gu(rgy) = 0. In
the same near horizon limit 7 < L and by changing coordinates to z = L?/r
as in the BPS case, the background metric on which perturbative superstring
theory is defined is now given by

L2

d 2
d32 = ? (—h<2) dt2 + dl'Q + i) + L2 (d82)55 Y (275)

h(z)

where we defined h(z) = f(L?/z). This is a black hole or black brane in
asymptotically AdS space, respectively, depending on whether or not we
compactify the z-directions.

One way to see why black holes are thermal objects is by performing the
same mathematical procedure as for quantum field theories at finite tem-
perature: We perform a Wick rotation ¢ — —i7 and, in addition, have a
closer look at what happens near the event horizon at z = zy by introducing

another radial variable p? = L? <1 — i) The metric becomes

2
ds? = dp* + p? (iz d72) + L—2 da? + L? (d32)55 . (2.76)
“H “H
If we neglect the last two summands of this metric, it looks similar to a
flat metric around p = 0, which is the location of the event horizon. Event
horizons are non-local concepts of (super)gravity, meaning that in general
we can only find their positions if we know the metric globally. Hence, it
should not display any special local behaviour like curvature singularities or
topological kinks. However, for a metric of the form ds? = dp? + p? d¢?,
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there exists the possibility of a conical singularity, at p = 0, if the angular
coordinate is not 2m-periodic. Requiring that the metric at hand is really
flat at p = 0, we find that 7 needs to be periodic, 7 ~ 7 + 3 and its period
is determined by

(35)2 = (2m)2, (2.77)

ZH

which yields 8 = mzy. Like in thermal field theory, we identify § = 1/T},
where Ty is now the Hawking temperature associated with the black hole or
brane, and obtain
1
Ty =——. (2.78)

TZH

We remember that z = L?/r, so zy really is a length scale, where, however,
larger zy means smaller black holes/branes due to its definition. Due to the
relation we just derived, we see that in asymptotic AdS-space, larger black
holes have higher temperature. This renders them thermodynamically stable,
as their heat capacity, unlike in asymptotically flat spacetimes, is positive.

The conclusion of this section is, that the original AdS/CFT conjecture
can be generalised to N’ =4 SU(N) Super Yang-Mills theory at finite tem-
perature T if the gravity side of the duality has a black brane with Hawk-
ing temperature Ty, which we identify with the field theory temperature,
T = Ty. Just like the original AdS/CFT correspondence is really an equiv-
alence of the microcanonical partition functions by (2.48), in the canonical
ensemble we have to identify the free energies of both theories [16,84]. Ther-
mal correlators can then be derived by functional derivatives on both sides.

2.3.3 Finite chemical potential

As we already discussed in section 2.3.1, especially for applications in con-
densed matter theory it is beneficial to apply the grand canonical ensemble,
in which we fix the chemical potentials pu; instead of the conserved charges.
To be able to apply this to the AdS/CFT conjecture, first of all we need con-
served charge operators Q. on the field theory side which arise from global
symmetries labelled by the index k. Here, we want to show how this is done
in the simplest case, where we consider a complex scalar operator O on the
field theory side which is charged under a U(1)-symmetry.
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Field theory side

In this case, a generic toy model for the scalar action on the field theory side
could look like

S:—/&MW@@@O+WO@L (2.79)

which is invariant under the global U(1)-transformation O — ¢, with
constant ¢ € R. The conserved current associated to this global symmetry
is then readily derived to read

Jt=n" (019,0 — 09,07) , (2.80)

which satisfies the continuity equation d,J* = 0. Upon integrating over the
spatial directions, we can define a conserved charge operator () given by

Qz/&mﬂ, (2.81)
which is conserved in time in the sense that atQ = (. This is the charge oper-
ator appearing in the grand canonical ensemble in the discussion of quantum
statistical mechanics in section 2.3.1. We can now change to the grand canon-
ical ensemble by fixing the conjugated chemical potential p to this conserved
operator.

In field theory, conserved currents can couple to gauge fields and we can
impose the chemical potential by promoting the global U(1)-symmetry to a
local U(1) gauge symmetry. For this, we introduce a gauge field A, and re-
quire that its temporal component has a vacuum expectation value (Ag) = p
around which we may further quantise the gauge field fluctuations. Be-
cause in a gauge invariant Lagrangian, the covariant derivative of the charged
scalar operator O is given by D, 0 = 0,0 + i A,O, the scalar field obtains
an additional term to its potential, which is given by V(OT0) = p2 00.
So, essentially, changing the chemical potential will shift the probabilities of
generating charged particles, like the scalar operator in our example.

Due to this shift in creation and annihilation probabilities, the conserved
charge operator for particles charged under the respective symmetry will have
an average value (O), which shifts if we change the chemical potential but
is free to fluctuate around that expectation value. This is exactly what we
expect in the grand canonical potential.

Gravity side

On the gravity side of the duality, we need to incorporate a gauge field
A, m € {0,...,4} which is the holographic dual to the conserved (global)
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current J* on the field theory side. It will have an additional component due
to the emerging radial direction. However, this already tell us how to perform
gauge fixing in a canonical fashion in the AdS/CFT correspondence: We fix
the radial component to vanish, A, = 0, which is done almost exclusively in
the literature. A generic toy gravity model dual to the discussion on the field
theory side could then look like

1
S = / &P /g <gm"Dm<I>T Dy® 4 7 F F™" + V(<I>T<I>)> . (2.82)

where the potential V' has, a priori, nothing to do with the potential on the
field theory side. Asymptotically, a solution for the gauge field equations of
motion is given by

Ay=p+pz+... (2.83)

where g is just the chemical potential we want to fix. Obviously, on the
gravity side, this can now be performed by fixing the boundary conditions
of the gauge field to read lim, ,o = p. The other leading order expansion
coefficient will in the spirit of what was already discussed in section 2.2.2
be mapped to the vacuum expectation value of the dual operator. This is
the conserved current given in (2.80), or actually its temporal component,
the charge density p. The vacuum expectation value of the conserved charge
operator on the field theory side is then given by integrating over the spatial
components. By this, we see that g really denotes the charge density. This
makes sense, since in this model, the chemical potential u(x) is a function
over the spatial components, so it could vary along the spatial directions.
To obtain the vacuum expectation value of the conserved charge <Q) right
ahead, we could also compute the electric flux of the dual gauge field at the
asymptotical boundary directly via

A _ 1. . rt
Q)=C= ili% g *xF = lli% g VAFE™. (2.84)
This is something we will encounter again in the main part of this thesis,
although the electric flux will have a different interpretation in the context
of the holographic model of [60].

To close this section, we mention that if we additional impose a fixed
background temperature, which is usually the case in the grand canonical
ensemble, according to the discussion in section 2.3.2 we will have a black hole
in the interior of the dual gravity model. This black hole will now be charged
under the gauge field A,,, and the metric is given by the Reissner-Nordstrom
metric. The event horizon of this black hole will add an interior boundary
to the system and imposes regularity conditions on the gauge field. In the



2.3. GENERALISATIONS OF ADS/CFT 43

static case, by following the same compactification procedure as in section
2.3.2 on the gravity side, we eventually see that regularity of the gauge field
at the event horizon requires its norm to be finite, ¢"" A, A,|.—., < oo.
In Schwarzschild-like coordinates ¢* is diverging close to the event horizon,

z — zp, so the condition on the gauge field simplifies to A;(zg) 0.

2.3.4 Entanglement entropy

Apart from introducing finite temperature and density to the AdS/CFT
correspondence, there is one element of the holographic dictionary which
was added some time after Maldacena’s original paper [15] but was actually
present the whole time. This is about a genuine feature of quantum theories,
which is quantum entanglement.

Field theory side

The “Hello World!”-example to quantum entanglement is given by a Hilbert
space H = H, ® Hp which is the tensor product of two single spin Hilbert
spaces a.k.a. qubits. Either spin is in a superposition of up (|1)) or down
(l4)) eigenstates to the angular momentum operator S, in some preferred
direction. A specific example of a pure state in this Hilbert space is one of
the Bell states [85] given by

!
V2

which is said to be entangled for the following reason: Consider the respective
spins to be located far away where we have two distinct observers, A and B,
for simplicity. We prepare the state of both spins to be given by (2.85) and
let A measure the spin of his qubit. If the result of the measurement is [1) ,
(or [{) 4), he knows instantaneously, that B will measure |]) 5 (or [1) ) on his
qubit, and vice versa. In this way, both qubits can be prepared such that one
can perfectly well predict the measurement of an arbitrary far away observer
from local information. This was coined as “spooky action at a distance” by
Einstein. However, after the dust settles, it turns out that causality is not
violated in the sense of faster-than-light information transmission.

One measure of quantum entanglement is given by the entanglement en-
tropy. If we have a Hilbert space H = H 4 ®H g and we prepared a pure state,
represented by a state matrix p = |¥) (U|% we can restrict our knowledge

[¥) Ma@ s+ a® s, (2.85)

6 Note, that the p could, of course, equally well define a mixed state. In this case
however, the entanglement entropy will not be a genuine measure of quantum entanglement
anymore, as it also includes the statistical entropy.
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to either subsystem A or B by tracing over the other Hilbert space. In this
way, we define the reduced state matriz ps by

pa=Trgp, (2.86)

where the partial trace Trp : T(Ha ® Hp) — T(H ) maps trace-class oper-
ators on the composite Hilbert space to trace-class operators on H, and is
uniquely determined by

TI'B(OA®03) :OA'TI'B(OB), (287)

for any trace-class operators O4 € T(Ha), Op € T(Hp) and the right-hand
side is scalar multiplication of O4 with a number given by the trace. The
entanglement entropy is then defined by

Sa = —Tra (pa log(pa)) , (2.88)

which is just the von Neumann entropy of p4. It is a measure for the quantum
entanglement between the Hilbert spaces H 4 and Hpg. The point is that the
initial state matrix p is pure and, thus, has vanishing von Neumann entropy.
However, by neglecting information from a subspace, we find the reduced
state pa to be in a statistical mixture of energy eigenstates, which resembles
a thermal state. This way, entanglement entropy really measures our lack of
knowledge. We will see at the end of this section that this is likely to be true
for any occurrence of entropy in a thermal system.

Coming back to our example (2.85) with the Bell state, we can compute
the entanglement entropy between both qubits and find

S = log(2), (2.89)

which is the maximal possible entanglement entropy between two qubits.

Gravity side

From the field theory side, the computation of entanglement entropy seems
straightforward. On the gravity side of the duality, Ryu and Takayanagi
proposed in [19] a way to add entanglement entropy to the holographic dic-
tionary. They started from the long known equation for the entropy of a
black hole, which is given by the Bekenstein-Hawking formula

_ Apn
4Gy’

Spu (2.90)

where Apy is the area spanned by the event horizon of the black hole and
G n is Newton’s constant. In the aftermath of our discussion about the Bell
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state above, it is not surprising to find that a black hole carries entropy:
Suppose the quantum state of the universe is pure, but part of it collapses to
a black hole. Here, we will assume that there exists a quantum description
in which the total state stays pure during the entire evolution. According to
general relativity, no information inside the event horizon is accessible from
the outside. Hence, the event horizon forces an outside observer to neglect
this information, and the reduced state outside of it must be in a mixed state.

The Bekenstein-Hawking proposal (2.90) can thus be seen as the entan-
glement entropy between the outside and inside region of a black hole which
stems from tracing over the inside states. That this entropy is proportional
to the horizon area, however, is not straightforward at first sight, but makes
sense as this is just the boundary between the inside and outside. Moreover,
it is known that quantum field theories generically satisfy an area law for
entanglement entropy, which is discussed e.g. in [33,34].

Another inside comes from the fact that the event horizon is a minimal
surface in the spacetime and its Bekenstein-Hawking entropy actually sat-
urates the Bekenstein entropy bound, which gives an upper bound on the
possible amount of entropy in a volume of spacetime. All of this led Ryu
and Takayanagi to the conjecture that the entanglement entropy is encodes
by specific minimal surfaces on the gravity side. In more detail, if we regard
the Hamiltonian of the field theory side as a bipartite system H = H, @ Hp,
where A and its complement B denote spatial regions of the field theory,
they suggested in [19] that the entanglement entropy can be computed holo-
graphically by

ming (area(S))
4Gy ’

Sp= 0S|.y0 = OA, (2.91)

where S is an extremal codimension two surface”, which ends at asymptotic
infinity z = 0 such that its restriction to the hypersurface z = 0 is the
boundary between A and its complement on the field theory side. The hy-
persurface S extends into the bulk, z # 0, where the bulk extension can a
priori be chosen freely. According to (2.91), we have to minimise the area of
S over all possibilities for such a surface, which will then be proportional to
the entanglement entropy by the same equation. Due to the minimisation

7 On the field theory side, for applying the Hamiltonian formalism, we must choose a
foliation M = R x M of the field theory spacetime into temporal and spatial directions.
Further dividing the spatial manifold M into A and B introduces a codimension two
surface A = 0B. The same is true on the gravity side: We choose a foliation matching
the one on the field theory side and consider spatial slides, which are further divided into
two parts by the minimal surface S. So, as an embedding in the whole spacetime, S is
codimension two.
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problem and the fact that the AdS metric (2.36) diverges at asymptotic in-
finity, it is easily seen that S really must extend into the bulk and cannot
simply stay at z = 0. The same idea yields that S generically diverges and
must be regularised in some way to yield a finite result. The same is true,
however, for entanglement entropies in conformal field theories to which Ryu
and Takayanagi compared their proposal and found analytic agreement [19].

A first check is to apply this actually to the whole spacetime, i.e. A = M
where M is the manifold on which the field theory side is defined. If the
field theory side is at T = 0, the entanglement entropy reduces to the von
Neumann entropy of a pure state, which vanishes. On the gravity side, the
surface extending the boundary of some A # M in a minimal way into the
bulk of the gravity theory will contract further and further as A — M until
it vanishes along with its area. So, (2.91) gives the right answer.

What happens if we consider the duality at finite temperature? In that
case, according to section 2.3.2, we will a have black hole in the bulk of the
gravity spacetime. If we start from a finite A # M, the minimal surface S
in the bulk will wrap the black hole in the bulk as A — M. As we take
the limit, S eventually disconnects from the asymptotic boundary and is just
given by the event horizon. The proposal (2.91) then gives us the entropy of
the whole event horizon, which is (2.90).

How does this make sense on the field theory side? At this point, it is
worthwhile to notice again that the von Neumann entropy of a state operator
p in a pure state always vanishes identically. This means that by neglecting
our knowledge about either subsystem, i.e. by applying Tr g, the reduced state
matrix pa of the other system resembles a mixed state and thermodynamic
properties like temperature emerge. This, in particular, must always be
the case if a pure state in a gravitational theory evolves such that event
horizons form. An event horizon, by definition, defines a natural border
to our knowledge about a system and after this section, it should not be
surprising anymore that one can always associate a temperature with event
horizons, be it event horizons of black holes or cosmological event horizons.

It is conversely always possible to purify a mixed quantum state by adding
another, auxiliary Hilbert space of at least the same size. If we relabel
the original Hilbert space to Ha, we can (due to guaranteed properties of
density matrices) diagonalise the state matrix of any mixed state in a basis
of orthogonal states {|i) };,cy and obtain

p= Z pi i) (i , (2.92)

for some probabilities p;, which are normalised such that ), p; = 1. Next,
we add the same Hilbert space, Hp ~ Ha, with a similar basis {|i') }|sen



2.3. GENERALISATIONS OF ADS/CFT 47

such that the full Hilbert space is the tensor product H = Ha ® Hp. One
possible purification of the mixed state is then given by

W) = Z Vpili) @1i') (2.93)

which is a pure state in ‘H with its density matrix being the projection op-
erator

pu = 0 (V] . (2.94)

We say one possible purification, because it is not unique and depending on
our choice of Hp, there can be infinitely many. This is unique to quantum
statistics, because classical system cannot have quantum entanglement or
reduced state matrices.

Coming back to the question of how (2.91) makes sense for the AdS/CFT
duality at finite temperature, we must notice that the field theory side is now
in a mixed state. In equilibrium, the gravity dual is defined on a static black
hole metric, which is sometimes called an eternal black hole. In figure 2.2
we show the conformal diagram of an eternal black hole in asymptotic Anti
de-Sitter space. In analogy with the Kruskal extension for asymptotically flat
black hole spacetimes, an eternal black hole in asymptotically AdS features
‘another’ side, labelled as region II, of the black hole which can be regarded
as a wormhole in this context.® If we vary the codimension two surface S in
the gravity bulk to minimise its area as A — M, it will eventually wrap the
wormhole throat in the sense that it settles at the minimum circumference of
the wormhole. If we consider the purification of the thermal field theory, we
can now see which subspaces are entangled: It’s the spacetime M on which
the conformal field theory (CFT 1) on the field theory side of the duality is
defined, and its complement due to purification, M, which is the asymptotic
boundary on the other side of the wormhole. The minimal area obtained is
also called the bifurcation surface, B, due to its special role in the conformal
diagram.

An analysis of this kind in the context of gauge/gravity duality was elab-
orated in [28,86]. Here, the combined Hilbert space H = H @ H i is in the
thermofield double state

W) = Z e PEZ ) @ i) | (2.95)

which is just (2.93) for a special choice of the p;. Upon building the projection
operator py = |V) (V| and tracing over H ;, we recover the state matrix
(2.61) of the field theory side.

8 There are no time-like paths through the wormhole for reasonable energy conditions.
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Figure 2.2: A conformal diagram of an eternal black hole in asymptotic AdS
spacetime. CFT 1 denotes the conformal field theory in an equilibrium state
pa at finite temperature, to which the gravity dual is given by this geometry.
CFT 2 lives in a Hilbert space Hp which is needed to purify p4.



Chapter

Holographic Kondo model

“Maybe that pattern is like the pattern in the stock market,
the Torah, this 216 number...”

Max — 7 [6]

The previous chapter gave an overview on various elements of the dictio-
nary of gauge/gravity duality. From this chapter onward, we will focus on a
specific application of the correspondence. More precisely, we will consider
a magnetic impurity coupled to a strongly interacting bath of electrons and
generalisations. To do so, we first introduce the original Kondo model by Jun
Kondo [61], its extensions and solution strategies on the field theory side. Af-
terwards, the holographic Kondo model suggested by Erdmenger et al. [60]
will be explained. At the end, we will have a look at possible generalisations,
some of which have been worked out in this thesis.

3.1 Kondo model in condensed matter theory

In 1964, Jun Kondo published a seminal paper about a simple model for
isolated magnetic impurities coupled to host metals [61], which is called the
Kondo model. The motivation for this model was to answer the question of
why certain metallic alloys with traces of impurities (typically iron) feature
a minimum in their electric resistivity at low temperatures [62]. Indeed, the
major result of his paper is that impurities with antiferromagnetic coupling
to the conduction band actually give rise to a minimum in the electric re-
sistivity due to a logarithmic contribution whose origin is in perturbation
theory up to second order in the coupling constant. For this reason, the min-
imum is synonymously called the Kondo effect in the context of the Kondo

49
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model. This section is devoted to explaining the original Kondo model, its
implications, different solution strategies and generalisations.

3.1.1 Kondo model and solution techniques

The Hamiltonian of the original Kondo model is given by

H:H0+HK:Z€E ¢£U¢E70+Z ij'§>
Eo kK (3.1)
J=(vhTw),  §=(XTx).

where 1) denotes the annihilation operators of the conduction band electrons,
]2, k' the electron momenta, ¢ their spins and T the generators of the SU(2)
spin symmetry. Spin indices have been suppressed. J;, is the coupling
between impurity and conduction band. Because the impurity is supposed
to be point-like, we can approximate its Fourier transpose by a constant and
set Jpp ~ J for all lg, K. Depending on its sign, the coupling is ferromagnetic
(J < 0) or antiferromagnetic (J > 0), respectively.

By applying perturbation analysis at second order in J, Kondo showed
[61] that the interaction with the impurity adds a logarithmic term to the
resistivity. Incorporating this in 3 + 1 dimensions, the resistivity is given by

p(T)=aT’+cpy+cp log(T/Tr), (3.2)
where T% is the Fermi temperature. The resistivity has a minimum at
Toin = (cpl/f)a)l/5 ) (3.3)

This minimum in the resistivity is called the Kondo effect and is experimen-
tally observed [62]. However, the logarithmic term indicates a divergence of
the resistivity as T" — 0. Comparison with experiments shows that this is
false, the resistivity settles at a finite value. The quest of understanding in
which way this happens was coined the Kondo problem.

The solution emerges by looking in more detail at the Kondo coupling J.
Upon changing the energy scale of the problem, the coupling constant is sub-
ject to renormalisation. The temperature of the system provides a natural
cutoff in momentum integrals and hence it provides a physical renormalisa-
tion scale. Hence, the Kondo coupling J is renormalised if the temperature
is shifted, where its running is given to leading order by

J

I =177 log(T/Ty)

(3.4)
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Here, J is the coupling constant at the Fermi temperature T and Ny denotes
the electron density at the Fermi surface. For J > 0, i.e. in the antiferromag-
netic case, the coupling diverges at a finite temperature. This temperature
is called the Kondo temperature, Ty, and is given by

Ty = Tpe/MoJ (3.5)

Apparently, the Kondo system becomes strongly coupled around the Kondo
temperature, such that perturbation theory ceases to be reliable.

Following the renormalisation group flow in the opposite direction, the
effective coupling defined by (3.4) vanishes as T — oco. So, the impurity
decouples from the otherwise free electron gas in the bulk of the field theory.
This asymptotic freedom is, along with strong coupling at low energies, the
reason why the Kondo model is often regarded as a toy model for quantum
chromodynamics (QQCD). It was hoped that a solution to the Kondo problem
might shed some light on how to deal with strongly coupled QCD.

What happens for T < Tx? Since perturbation theory is not reliable any-
more, we must resort to different techniques, some of which will be presented
in the following.

Wilson’s numerical renormalisation group

To begin with, we should state that the full resolution of the Kondo prob-
lem as 7" — 0 was performed first by Kenneth Wilson [63] with this nu-
merical renormalisation group approach. He numerically computed the full
non-perturbative RG flow of the coupling down to zero temperature which
actually shows that the divergence of J(T') appears not at the finite Kondo
temperature Tk but only at 7' = 0. The divergence at Tk in 3.4 is an artefact
of cutting off perturbation theory at finite order in J. Going to higher orders
changes the critical temperature at which the coupling diverges. Neverthe-
less, we will go on to refer to (3.5) as the definition of Tk.

Conformal field theory approach

In [87,88], Affleck and Ludwig proposed an elegant alternative way of deriv-
ing the endpoints of the Kondo model’s RG flow by applying methods from
conformal field theory. Essentially, they performed a partial wave decom-
position centred around the impurity and retained only its s-wave. In this
way, the system reduces to a 141-dimensional conformal field theory. The
excitations of the host are given by left- and right-movers ¢ (t+7r), Yg(t —7)
away from the impurity at » = 0, where r is a non-negative radial coordinate
measuring the distance from the defect. By enhancing the range of the radial
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coordinate to (—oo,00) and mirroring the right-movers defined on r > 0 to
left-movers v, defined on r < 0, they mapped the Kondo model to and chiral
model given by the Hamiltonian density

H:;—;z/;}z’arwﬂmé(r)s“-wﬁwh (3.6)

where vr denotes the Fermi velocity which we set to vp = ¢ = 1 in our setup.
At the impurity, matching conditions for the v -field must be provided and
it turns out that at the RG fixed points, i.e. in the UV and the IR of the
theory, the only difference is due to these matching conditions which imprints
itself in a phase shift. It is important to keep this approach in the back of
our heads, as the holographic model presented in the next section will have
similar properties.

Large-N ansatz

There are several ways to represent the impurity S in the Kondo Hamiltonian
(3.1). Above, we chose the totally antisymmetric representation®, but there
are also others. In this case, as written down in equation (3.1), the impurity
spin is modelled by Abrikosov pseudo-fermions, whose annihilation operator
is given by x. They are auxiliary degrees of freedom constrained to the
impurity. In order to project our model back to physical degrees of freedom,
the Abrikosov pseudo-fermions must obey a constraint, which is given by the
quantisation condition
X'x=4q. (3.7)

Here, ¢ denotes the number of Abrikosov pseudo-fermions in any state which
is also the number of boxes in the Young tableaux of the representation.

The vector symbol on S indicates that the original model was intended
for a SU(2)-symmetry in three dimensions. However, it can obviously be
extended to SU(N) by using symmetry generators 7%, a € {1,... N> — 1} of
the fundamental representation of SU(N) instead. The completeness relation
of the SU(N) generators is given by

1 1
T T = 3 <5a5 Oy = 5 a8 575> : (3.8)

If we insert this into the CFT model (3.6), we find that the coupling to the
impurity becomes

~

A

HK:§

(00" = L) . (3.9)

9 This means that due to its composition, S = ! T x forms an antisymmetric repre-
sentation of SU(2) when acting on states.
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where we defined A = vp A and the scalar operator O = wzx, which has
conformal dimension A = 1/2. The ‘double trace-term ~ OO is the addi-
tional marginally relevant term which is added in a localised fashion to the
free chiral current in the holographic model of [60] and is therefore of central
interest here.

Most interestingly, upon taking the large-N limit, N — oo, it was shown
that this variation of the Kondo model features a proper phase transition
at a critical temperature T, which is of the same order of magnitude as the
Kondo temperature Tk [89-94]. Below the critical temperature, 7' < T, the
scalar operator O condenses in terms of mean-field theory, where close to the
phase transition its behaviour is given by

on ~ (% T)W ,

which is characteristic for order parameters in mean-field transitions. Due
to its definition, @ = 1"y, the condensation of the scalar operator indicates
the formation of a singlet state involving the impurity and the degrees of
freedom in the host metal. This singlet state is often referred to as the
Kondo screening cloud, as the effects of the impurity on the host metal are
screened at large distances due to the singlet formation.

This phase transition is a relict of the large-/N limit and is not present
in the original model. The transition at finite N is rather a cross-over than
a phase transition, which is also consistent with the fact that there are no
proper phase transitions possible in field theories of dimensionality d < 3
[95,96]. Taking N to infinity is, however, a loop-hole to this theorem. On
a computational level, the reason for the phase transition to occur at finite
T ~ Tk is given by equation (3.4). This is the one-loop approximation to
the running, but as N — oo, the higher order contributions actually vanish
and the coupling diverges at a finite temperature [97].

We cannot expect that the large- N approach to the Kondo model captures
all of its phenomenology. One of the most important features of the original
Kondo model, namely the logarithmic contribution to the resistivity along
with its associated minimum at finite 7', is absent in the large-N limit. How-
ever, it is a very convenient starting point for holographic model building,
which always utilises a large- N limit if we want to have a classical theory of
gravity on the gravity side of the duality. Moreover, the gauge/gravity conjec-
ture only works for conformal field theories, which may include (marginally)
relevant operators, varying only the low energy behaviour of the theory. This
is the case in the model at hand and in the next section, we will show how
the authors of [60] used those features as a guideline in order to build a
holographic model which shows strikingly similar phenomenology.

(3.10)
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3.1.2 Summary

In this section, we laid the foundations to understand the holographic Kondo
model of [60], which will be described in the following section. We encoun-
tered the various phenomenological features of the original Kondo model
(3.1) and its variations in the CFT and large-N approaches. Essentially, we
found that

e The original Kondo model leads to a logarithmic contribution to the
resistivity, captured in (3.2), from which the minimum in the resistivity
at finite temperature (3.3) follows.

e We can simplify the model to a 14-1-dimensional conformal field theory
described by (3.6) by applying an s-wave reduction. The Kondo inter-
action is a marginally relevant deformation of the CFT in this ansatz
and the UV and IR fixed points can be found analytically.

e Additionally taking the large- N limit reveals itself in a phase transition
at T, ~ Tk instead of a cross-over. The composite scalar operator
0= wz x condenses at low temperatures, indicating the formation of
a singlet state between the host metal excitations and the auxiliary
degrees of freedom localised at the impurity.

3.2 The holographic model

After the review of the Kondo model in field theory in the previous section,
we will now introduce the main framework for the holographic approach to
the Kondo model in this thesis. It is given by the holographic Kondo model of
Erdmenger, Hoyos, O’'Bannon and Wu [60]. This work describes one possible
way of incorporating Kondo-like impurities in holography, starting from type
IIB string theory. The latter admits several distinct sorts of D-branes, among
which there are D3-, D5-, and D7-branes. All of those are used in order to
find a tractable holographic model resembling the mixed large-/N' conformal
field theory ansatz described at the end of the previous section.

The D3-branes are used in the same manner as in the original AdS/CFT-
correspondence. It is their number, N, of coincident D3-branes which will
be sent to infinity in the large-N limit. The D7-branes intersect the D3-
branes in two dimensions, and mainly set the stage for a 141-dimensional
worldvolume theory, to which we can restrict our attention and which, in
a way, is an analogy to the s-wave reduction in the conformal field theory
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Table 3.1: Embedding of N3 D3-, N5 D5-, and N; D7-branes as used by the
authors of [60] in order to derive a holographic model of the Kondo effect
from type IIB string theory.

ansatz for the Kondo model. By intersecting with the D7-branes, the D5-
branes introduce an impurity in this lower-dimensional world, which will turn
out to represent the Kondo impurity.

In the following, we will describe this interplay of D-branes in more detail,
before we follow the authors of [60] and restrict our attention to a holographic
bottom-up model, which captures the essential ingredients of the top-down
model, but is more tractable. We focus on the most important features of
this model and prepare the reader to understand the generalisations of the
holographic Kondo model of [60], which will be presented in the following
chapter.

3.2.1 From type IIB string theory to the Kondo model

In their top-down approach, the authors of [60] consider type IIB superstring
theory with several D-branes in the setup. The configuration of D-branes in
this model is summarised in table 3.1. In the open string picture to this set
of D-branes, we have to consider the world-volume theories of all of these
D-branes. There are open string stretching from any Dp- to any Dg-brane,
which are labelled (p, q)-strings, where ¢,p € {3,5,7}. We will apply a low-
energy limit like in the original AdS/CFT correspondence, so we can restrict
our attention to strings confined to the intersections of the D-branes, as those
of finite length are massive and can be integrated out.

Here, the weak form of the correspondence will be used, so we have to send
the number of D3-branes to infinity, N3 — co. Apart from the presence of the
other D-branes, this gives us the original AdS/CFT model of Maldacena [15].
The intersection between the D3- and D7-branes introduces another sector
of strings, whose worldvolume theory is given by chiral Weyl fermions vy,
governed by

1
5= [Erviio, A, (3.11)

where A_ is a component of the N' = 4 SU(N3) gauge field restricted to
the intersection. As is apparent from the notation, the ¢, will be modelling
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the left-movers in the conformal field theory approach to the Kondo model in
(3.6). A conserved current is formed out of the Weyl fermions, J* = IT;T “r,
where the T are the generators of the spin symmetry SU(N3). A conserved
chiral current is holographically dual to a Chern-Simons field of equal rank
and level, whose action is to leading order given by

ch———/Tl“(A/\dA—l—zA/\A/\A), (312)
4 3

where the integration is over AdSs.

The D5-branes intersect with the D3-branes in the temporal dimension
xo. In the 1+1-dimensional D3/D7-brane intersection, they introduce an
additional defect, whose worldvolume action supports fermions which are
charged under SU(N3) x U(N5). The action is given by

S = /dl’o XT(iao — A() — qbg)x, (313)

where the scalar ¢g encodes fluctuations of the embedding of the D5-branes
in the xo-direction, in which they are not fixed, see table 3.1. There is a
conserved U(Ns)-current S* = yT T .

On the gravity side, this current is dual to a U(Ns5) gauge field a with
field strength f = da + a A a. Its action is given by

S, = —N; T (/de\/m—/(XgC(4)/\f)+...) (314

where the C(4)-form field is one of the form fields appearing in type IIB string
theory, X5 is the embedding of the D5-brane and X} denotes the pullback
with respect to this embedding. It sources the gauge field, which produces
some quantised electric flux in the AdSs-subspace spanned by the D5-brane
embedding.

Finally, the intersection of the D5- and D7-branes introduces a tachyonic
scalar operator, which transforms bifundamental under U (N5) x U(N7), but is
a singlet under the SU(N3)-symmetry of the D3-branes’ worldvolume theory.
This is the scalar which corresponds to the operator O = Z/JEX discussed in
the large-IN approach to the Kondo model in section 3.1. On the gravity
side, it is dual to a complex scalar field ® on the AdS, hypersurface.

3.2.2 Holographic bottom-up Kondo model

After explaining its origins in type IIB string theory, the authors of [60]
restrict their attention to a holographic bottom-up model which is built upon
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the same essential ingredients: A 2 + 1-dimensional gravity theory with a
defect hypersurface dual to a 1 + 1-dimensional field theory which has a
0 + 1-dimensional defect, represented by the hypersurface in the holographic
model. We will often refer to this hypersurface as the defect hypersurface in
the following. The numbers of D-branes are fixed to be given by N5 = 1 = N7
and the large-N3 limit is imposed, N3 — oo. Note, that according to the
discussion in the previous section, this sends the rank of the spin symmetry,
SU(N3), of the impurity to infinity. As there will be no confusion by doing
so, we will relabel the number of D3-branes by /N in the following.

From the top-down model, we find that the essential field content on the
gravity side is given by a Chern-Simons field A in the 2+ 1-dimensional bulk,
which is dual to the chiral current in the conduction band of the field theory
model. A complex scalar field ¢ as well as an additional U(1)-gauge field a
are constrained to the hypersurface. The electric flux C of the gauge field
encodes the representation of the impurity. The complex scalar is suggested
to be dual to the composite operator @ = 9Ty and is hence charged under
both the gauge field a and the Chern-Simons field A.

This already concludes the field content of the holographic model. Its
action in the probe limit is then given by

Siot = Scs + Sa4 s (3.15)
N 2
SCS:——/TY(AAdA+—AAAAA>, (316)
41 3
1
Sog = —N / d*z/y (7“”DM<I>TDV<I> + S "+ V(cb)) : (3.17)

where v is the induced metric on the 1 + 1-dimensional hypersurface, f =
da + a A a is the field strength tensor of a, V is the potential of the scalar,
to be defined below, and D, = 0,, — ia, + 1A, is the covariant derivative of
the complex scalar.

In principle, the action also includes the Einstein-Hilbert action

Spi = L /d3x V(R —2A), (3.18)
2/€N

where g denotes the metric in the 2 4+ 1-dimensional bulk. For now, we will
assume that the matter content does not backreact to the metric, i.e. we
are in the probe limit with respect to the metric. This is also consistent
with the fact that N5/N — 0 in the large-N limit if we keep N5 = 1 fixed.
Accordingly, the defect hypersurface is fixed at a certain position, which we
can choose to be z = 0 throughout the bulk due to translational symmetry.
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Later on, especially in chapter 4, we will describe how backreaction of the
impurity to the metric can be incorporated in this bottom-up model. The
upshot is that the embedding profile becomes non-trivial.

If we want to mimic the Kondo model on the field theory side of this
bottom-up model, we must incorporate a finite temperature into the model.
According to the holographic dictionary, we hence need to impose a static
background metric at a finite temperature, which in 2+1 dimensions is given
by the BTZ spacetime [98] with metric

2 2
ds* = % (—f(z)dt2 + ;1(22) + d:c2> , (3.19)
where f(z) = 1—22/2%, t,x € (—00,+00) and 0 < z < z. The temperature
is then given by the Hawking temperature, which for this metric reads T =
(27 25) . The scalar potential,

V(®)=M*O'D, (3.20)

is chosen to consist of a mass term only, although we will discuss the necessity
of extensions in the following sections, too.

As we can see, the bottom-up model (3.15) - (3.17) closely resembles
holographic models of superconductors, see e.g. [56,57]. Indeed, we will ob-
serve a very similar phenomenology: The model features a phase transition
at low temperatures, below which a scalar condensate will form. So, in a
way, the bottom-up model described above is a holographic superconductor
on a AdS; submanifold. The interpretation, of course, will be different as
this holographic model is dual to a strongly coupled version of the Kondo
model. Nevertheless, we will refer to the phases by this analogy with super-
conductors. That is, we say that we are in the normal phase if T' > T, and
in the condensed phase if T' < T..

From the action, the equations of motion are readily derived. They read

€ Fu = 6(x)\/gJ", (3.21)

I (VYA A fpo) = =77, (3.22)
V=0, (3.23)

¥ D, D, ® = 05V (D), (3.24)

where the conserved current reads
JH = —ig" (&' (D, ®) — @ (D, ®)") . (3.25)

The boundary expansions of the scalar can be derived from the probe limit.
That is, we set the scalar to zero and solve the gauge field’s equation of
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motion. The solution is given by

U= — + . (3.26)
Here, 1 denotes the chemical potential and @ is equal to the asymptotic
electric charge of the hypersurface, which encodes the representation of the
impurity. Inserting this solution in the equation of motion of the scalar, 3.24,
we can derive its asymptotic solution by assuming the ansatz ® ~ 2P, where
p is to be derived. At leading order in z, this yields

iy = % (d + /&AM Q2)) , (3.27)

where d = 1 in this case. We already encountered this formula in (2.43). In
contrast to higher dimensional holographic models, the charge of the gauge
field alters the asymptotics of the scalar field, which is why the combination
M? — (Q? appears.

In the conformal field theory approach to the Kondo model, we saw that
the conformal dimension of the scalar operator is given by A = 1/2. Hence,
we need to set M2—Q? = —1/4 if we want to draw an analogy. Unfortunately,
this means we need to set the scalar mass exactly to the stability bound given
by the Breitenlohner-Freedman bound [79]. In general, this yields additional
logarithmic terms in the boundary expansion of the scalar field which will
follow us throughout the rest of the thesis. To leading order, the expansion
is given by

® = /2 (Alog(Az) + B) + O(z*?), (3.28)

where A and B are complex expansion coefficients and we had to introduce
an arbitrary energy scale A for dimensional reasons in the logarithmic term.
Up to this point, we introduced a scalar degree of freedom with the ap-
propriate conformal dimension. Now, we have to choose boundary conditions
on the gravity side. In order to model the Kondo impurity on the field the-
ory side, we need to introduce the Kondo interaction in our model. This
is done by adding a double-trace boundary term A [dtO@)O(t) to the ac-
tion, which resembles the term appearing in (3.9) in the large-N approach.
As shown in [68,97], the vacuum expectation value of the scalar operator is

given by
(O)y = —N B'. (3.29)

Hence, the boundary term reads Spg = A [, dt Bi(t) B(t), and following [97],
the scalar field needs to satisfy special boundary conditions given by

A=)\B. (3.30)
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For convenience, we will define the absolute values, as well as the real and
imaginary parts, of the scalar expansion coefficients as

A= +ias, |A] = a, (3.31)
B = p1 +ifs, |B| = 8, (3.32)
A = Ky + ko, Al = &, (3.33)

which will become important for different decompositions of the scalar field.
Especially, we want the coupling, A, to be real, so k; = 0 and (3.30) becomes

o = K11, ay = K. (3.34)

Phenomenology in equilibrium

In equilibrium, we can choose the phase of the scalar to vanish which sets
by = 0 = s, and the real parts of the different expansion coefficients are
given by their absolute values o, 8 and k.

First, we consider what happens if we rescale the arbitrary energy scale
A introduced in (3.28). As the scalar field cannot change, we can look at the
expansion at another energy scale, say A, and compare coefficients:

6= 1/z (Bmog(]\z) + B) +O(3?) (3.35)
=z <5’/% <log(Az) + log %) + B) +0(2*?) (3.36)
= V(7 log(A2) + B (Rlog(A/A+1))) +O(=*"%). (3.37)

—rf ~ ~ -

The running of the coupling « is hence described by

A— A, (3.38)
B=5 (1 + mog(A/A)) , (3.39)

Br = Bk, (3.40)

N ; (3.41)

" T Rlog(A/A)

which is precisely the running of the Kondo coupling in the original model,
given by (3.4). As mentioned, this is the exact renormalisation of the coupling
in the large-N limit [97] which justifies its appearance here.
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Figure 3.1: Running of the holographic Kondo coupling xr as a function of
T/Tk.

To define the renormalisation group flow of x as a function of A, we
necessarily have to define a starting point & = x(A). There are two choices,
k either being positive or negative. The latter, antiferromagnetic, case is the
phenomenologically interesting one, as it provides asymptotic freedom when
A — oo and a strong coupling regime for small values of A, which mimics

the Kondo model. Actually, the coupling diverges as
A = Ayi = Aexp (1/F). (3.42)

Although the critical energy scale A.,;; directly depends on the starting point
of the RG flow, it is invariant under the rescalings (3.38) and (3.41). We want
to look at the system at finite temperature, so we define a characteristic tem-
perature scale T by A = 27T. The coupling now diverges at a temperature
given by

Ty = % exp(1/R) (3.43)

which we call the Kondo temperature, due to the analogy with eq. (3.4). In
this analysis, Tk is the only dimensional quantity aside from the chemical
potential p, which will be considered later on. Hence, every instance of
(A, &) leading to the same Tk by means of eq. (3.43) is equivalent in the
sense that they are different starting points for the same trajectory of the
renormalisation group flow. Keeping that in mind, we can choose Tk to start
with. We then replace the energy scale at which we define the coupling by
A = 27T, which sets a temperature scale at which the system is observed.
To keep in mind that the coupling is now referred to at a temperature scale,
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we relabel it to Kk = Kk and end up at

i =exp(—1/kr). (3.44)
Tk

In this way, we found an easy relationship between the holographic Kondo

coupling, k7, the temperature of the system, 7', and the characteristic energy

scale, T.

In the original Kondo model, there is a cross-over transition approxi-
mately located around the Kondo temperature T,.. In the large-N Kondo
model, however, this smooth cross-over becomes a proper second order phase
transition, taking place at a critical temperature T, ~ T, which is approxi-
mately the Kondo temperature.

Indeed, the holographic Kondo model of [60] features such a second or-
der phase transition, too. It can be found analytically by looking at the
quasinormal modes of the scalar field in the normal phase. If we regard the
coupling parameter k1 as the independent variable, setting the state of the
system, we find that there exists a critical value k., below which the scalar
field has an unstable quasinormal mode in the normal phase.

In order to find this unstable mode, the authors of [60] employed a per-
turbation analysis of the equation of motion for the absolute value of the
scalar field around the trivial solution. In [68], this analysis was refined in a
way to correctly derive all two-point functions of the system. Without going
into the details, we simply state the most important result for this thesis.
One can perturb the scalar field around its trivial solution and require (3.30)
to be satisfied. By going to momentum space, the coefficients in (3.30) de-
pend on the complex frequency rather than time. If we want the equations
of motions for the perturbations to be satisfied, we find a constraint, given

by
1 1 w
LS G P
Kr(w) ( 2 +iQ "o T

) L H <—% _ i@) Flog(2).  (3.45)

Here, the H are the Harmonic numbers, the w denote quasinormal modes
of the scalar operator, @ is the electric flux of the gauge field, and rr(w) is
the parameter showing up in the boundary conditions of the scalar field. In
order to find the quasinormal modes in the normal phase, we need to find
all w’s for which (3.45) is satisfied if we set kr(w) to a fixed value, which
is restricted to be real, so that the Kondo coupling is real. For each choice,
there will be infinitely many values of w solving the equation. These are the
quasinormal modes of the system at a temperature 7', set by k7 using (3.44).

For temperatures above a critical temperature T, all of these modes will
have a negative imaginary part. However, at T' = T,, one of them vanishes. If
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we go below T, this mode goes into the upper halfplane and hence indicates
an instability of the trivial solution. By setting w = 0 in (3.45), we are able
to find the critical value of kr, which is given by

o — (H (—% _ i@) v H (—% 4 iQ) + log(Z))_l ~898  (3.46)

The critical temperature 7, is now easily found by applying (3.44) to the
critical value of Kk, and we find

T
— =exp(—1/k.) ~ 0.895. (3.47)
Tk

In the condensed phase, we cannot solve the perturbation equation analyti-
cally anymore, and need to resort to numerical methods. The output in the
static analysis will be a list of lists of parameter values for o, § and . Each
of its entries will be of the form («a, 8, K1), denoting solution values for the
parameters. We use (3.44) to obtain temperatures from the respective value
of k7, and normalise the dependent coefficients to T..

Thus, we can find the dependence of o, 8 or combinations on the temper-
ature. For xp 3/+/T., the result is shown in 3.2, where we identified 3 ~ (O)
by equation (3.30). There is a second order phase transition at a critical
temperature T" = T,, below which the scalar field condenses. This is mod-
elled by fitting a function of the form a(1 — T'/T,)® to the points close to
T/T. =1, which is shown as a dashed line. The fitted parameters are given
by a ~ 0.296 and b ~ 0.501. At low temperatures, ry (O)/\/T. deviates
slightly from the fitted curve. Note that this is a recomputation of the same
result in [60]. It is worthwhile to notice that a = k7 as shown in figure 3.2
appears to stay finite as 7" — 0.

However, the vacuum expectation value of the scalar operator is given
by [(O)| ~ B [68]. Its behaviour in the condensed phase is shown in figure
3.3. Again, we fit a(1 — T/T.)® to the points close to T'/T, = 1. The fitted
parameters are given by a ~ 0.0134 and b ~ 0.503 &~ 1/2. This is not obvious
from the linear plot, but is revealed in the double logarithmic subplot close
to T,. The exponent, b, is the critical exponent!'® of the order parameter,
|(O)], of the phase transition and b = 1/2 indicates mean-field behaviour
of the scalar field near the phase transition. This is expected for the phase
transition in the large- N Kondo model.

10 Usually, one denotes the critical exponent of the order parameter by 3. Here, how-
ever, this notation would obviously be confusing due to our naming conventions in the
holographic Kondo model, i.e. 5 = |(O)].
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Figure 3.2: Shown is k7 (O)/+/T. vs. the temperature of the system.

In contrast to the combination k7 (O), the vacuum expectation value
itself clearly diverges as T — 0. This is physically meaningful and reflects
the fact that the potential used in [60] does not provide a bound for the
scalar condensation. To be reliable at low temperatures, we would need to
stabilise the scalar potential, e.g. by introducing a ¢* term. This is beyond
the scope of this thesis. The reason to mention it already at this point is
that it will turn up later both in section 4 and 5.

Apart from the phase transition, the holographic Kondo model of [60]
also features a phase shift of the Chern-Simons field across the defect. This
is in accordance with what is expected from the field theory side.

3.2.3 Generalisations of the holographic model

Having an overview of the holographic Kondo model of [60], certain possible
generalisations immediately follow. First of all, so far we only described the
static limit. However, it is perfectly reasonable to consider a time dependent
coupling as this could model tuning, or quenching, the coupling parameter.
This is feasible to realise in experimental settings [99], which was one of
the main motivations to investigate it. We report on this generalisation in
chapter 5.

Moreover, defects in a quantum field theory yield a possibly interesting
behaviour of the entanglement around the impurity. Especially, we are able to
define the notion of impurity entropy, which is the difference of entanglement
entropy of symmetric patches around the defect with the defect present or
not, respectively. It gives a measure on how much the defect influences the
environment around it. Since the Kondo problem is is essentially solved by
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Figure 3.3: Shown is 8/v/27 T, ~ (O)/+/27 T, vs. the temperature T'/T, of
the system.

a cloud of conduction electrons forming a singlet state with the impurity, we
expect the defect to have a large influence on the entanglement entropy of
the surrounding band.

We know from section 2.3.4 that the entanglement entropy is encoded
in the geometry of the holographic dual. More precisely, it is dual to the
area of minimal surfaces in the bulk by equation 2.91. So, if we want to
compute entanglement entropy, we need to compute the backreaction of the
impurity to the geometry in the bulk for different condensates. It turns out
that there is a well-known way to compute it, which goes by the name Israel
junction conditions. Those give rise to additional equations of motions for
the embedding of the defect hypersurface, in which its extrinsic curvature is
coupled with the singular energy-stress constrained to the hypersurface. In
chapter 4, we will describe in detail, how to set up the system in order to
incorporate backreaction. Then we compute the impurity entropy at different
temperatures and compare to the literature.

Ultimately, we would like to merge time dependence and backreaction in
order to holographically model the spatio-temporal evolution of the Kondo
screening cloud. This could be compared to [100], and we will outline an
ansatz of how to achieve this in a linearised fashion in the end of chapter 5.

There are other possible generalisations, which we do not try to solve in
this thesis. One of them is to introduce another defect and couple the two de-
fects by RKKY interactions, which has been performed in [101]. Essentially,
the U(1) gauge symmetry of the gauge field on the defect hypersurface is pro-
moted to a U(2) symmetry which captures the relevant effect. In the phase
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diagram, the relative strength of the Kondo coupling between the impuri-
ties and the conduction band, and the coupling between the two impurities
compete and determine the phase in which the model settles in equilibrium.
Although first steps were taken, the challenge of finding a tractable holo-
graphic model of a Kondo lattice is left for future research.

3.2.4 Summary

The holographic Kondo model of [60] establishes a gauge/gravity duality
between a mixture of the large- N and conformal field theory approach to the
Kondo problem as described in section 3.1. Starting from a D-brane model in
type IIB string theory, a more tractable bottom-up model is developed which
retains only the essential ingredients. The impurity is mapped to a defect
hypersurface embedded into a 2+1-dimensional bulk manifold on which the
gravity dual is defined. The chiral current wz T4y, finds its dual in a Chern-
Simons field defined throughout the bulk. It decouples from the brane and
can in principle be integrated after solving the equations of motion on the
hypersurface, which sources the Chern-Simons field. The field content on
the hypersurface features a gauge field a as well as a complex scalar ® which
are dual to the impurity representation and the scalar operator O = WLX on
the field theory side. The scalar condenses via a mean-field transition at a
critical temperature T, ~ Tx in the large- N ansatz for the Kondo model. The
logarithmic behaviour of the resistivity at high temperatures is absent, which
is an artefact of the large-N ansatz, and could likely be restored by 1/N-
corrections. In this case, it is also expected that the mean-field transitions
smoothens to a cross-over. Generalisations dealt with in the next chapters
4 and 5 are given by considering backreaction of the field content on the
hypersurface to the bulk geometry as well as time dependence in the form of
quenching the Kondo coupling .
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Static backreaction

“This is insanity, Max!”
Sol — 7 [6]

This section describes the first generalisation of [60], which considers
backreaction of the defect hypersurface to the geometry and was published
n [1,2]. Although this formalism was developed for the holographic Kondo
model, it is possible to extend it to similar systems in gauge/gravity duality
with boundaries on the field theory side, as we are free to choose the field
content on the hypersurface. Similar approaches have already been worked
out [65], however most of the time the authors deal with constant tensions on
the hypersurface. Such setups go by the name of boundary conformal field
theories (BCFT) and defect conformal field theories (DFCT), depending on
whether the singular point is being regarded as a proper boundary to the
system of a defect, i.e. the bulk manifold is extending to both sides. Due to
our symmetry assumptions, this will only change the equations of motion by
a factor of 2.

In the context of the holographic Kondo model, we find that for a van-
ishing scalar field, the gauge field on the defect hypersurface is yielding such
a constant tension. This is expected for temperatures above the critical tem-
perature, T' > T,, see section 3.2.2. Here, we will motivate the usage of
geodesic normal flows, described in more detail in appendix A, with which
we can construct constant tension solutions in our setting for arbitrary ten-
sions. The tensions can be translated into the asymptotic electric flux C of
the gauge field and hence only depend on the representation of the defect
spin on the field theory side. These analytic solutions will be the starting
point for our numerical analysis and represent the normal phase in which the
scalar condensate vanishes.

67



68 CHAPTER 4. STATIC BACKREACTION

4.1 A framework for backreaction

In this section, we will introduce the general framework for static backreac-
tion in the bottom-up version of the holographic Kondo model. We begin by
taking the same action as in (3.15), and add the Einstein-Hilbert action in
order to incorporate backreaction to the geometry. This yields

S = Sgu + Scs + Sop = Sgr + Su (4.1)
1
2/43]\/
2
SCS:—N/(A/\dAJrgA/\A/\A), (4.3)

Sop = —N / d*z/y (w (D,@'D,®+ D,®'D,®) /2 (4.4)
1
+ wa“"‘famﬁ” + V@*fb)) ; (4.5)

where ky = 87 Gy is the gravitational coupling and we have rewritten the
action of the scalar such that the symmetry of the indices becomes appar-
ent. The scalar curvature R is defined in the usual way from the metric g,
whereas v denotes the induced metric on the hypersurface. It depends on the
embedding of the hypersurface and we will come back to it further below.
The equations of motion for the scalar and gauge field on the hypersurface
are readily derived for a generic embedding. They read

D,D"® = 91V, (4.6)
1
— QA =T (4.7)
Vol

where the covariant derivative D is defined by
D®=V,®+iA,®—1a,?, (4.8)

with V the Levi-Cevita connection with respect to the induced metric v, and
J denotes the conserved current due to global phase rotations of the scalar,
given by

J,=—i ('(D,®) — ®(D,P)") . (4.9)

Note that in the definition of the covariant derivative (4.8), we already made
a choice of the charges of the scalar w.r.t. the gauge field a and the Chern-
Simons field A.
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In the bottom-up holographic Kondo model, the magnetic defect on the
field theory side was chosen to be represented as a codimension one hyper-
surface on the gravity side of the duality. Here, we will stick with this form
of representing the impurity. Upon varying the action w.r.t. the bulk metric
g, we recover the field equations of general relativity

1

where T,,, is the energy-stress tensor in the bulk manifold, and is given by

_ —248u

(4.11)

Apart from the hypersurface, the only possible source of energy-stress in
the bulk is the Chern-Simons field A. This field, however, is topological,
which means that the variation of its action w.r.t. the bulk metric g vanishes
identically. This becomes apparent by the fact that the CS action does
not involve the metric g at all. Moreover, gravity in 2+1 dimensions has no
propagating degrees of freedom. So the metric in the bulk must be given by a
vacuum solution. To stay compatible with the original model, we will choose
a BTZ black brane as the background. Its metric in Poincare coordinates is
still given by equation (3.19). Hence, the temperature of the environment
surrounding the defect is given by T'=1/2mzy.

The Chern-Simons field is flat in the bulk manifold and can be neglected
for the backreaction as was shown in the appendix of [1]. After determining
the field configurations of the other fields, one can use its equation of motion
to integrate it.

Next, we turn our attention to the hypersurface. The Einstein field equa-
tions (4.10) are still applicable in the vicinity of defects in spacetime, that
is codimension one hypersurfaces carrying localised non-vanishing energy-
stress. In this case, the Einstein equations have to be satisfied in the smooth
geometry away from the hypersurface, and are replaced by the so-called Israel
Junction conditions for the metric and its normal derivative at the hypersur-
face. We need to split our bulk manifold into two parts: The manifolds N_
and N, located to the “left-” and the “right-hand side” of the defect hy-
persurface D, which they share as a common boundary. This is sketched in
figure 4.1. The position of the hypersurface D is given by a priori independent
embeddings

Xy:D— Nyt (t,z) = (t 2z, Xe(t, 2)), (4.12)

where we assumed the coordinate frame on the defect to be induces from
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Figure 4.1: Visualisation of the manifold splitting for applying the Israel
junction conditions (4.17). Above: The geometry without backreaction fol-
lows from the trivial, totally geodesic embedding X = 0. Below: In order
to apply the junction conditions, we need to make the defect hypersurface
a boundary of two distinct manifolds N, and N_, respectively. We iden-
tify points on the different boundaries, and require the induced metric to be
unique on the hypersurface. Furthermore, the normal vectors on the defect
are defined such that N_ points out of N, and N, points into N,
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the ambient geometry.!! That is, we choose the hypersurface coordinates t

and z to be inherited from the bulk manifold, which works as long as the
embedding functions X4 are differentiable with respect to ¢t and z everywhere
in the bulk. This assumption holds true for the energy-stress content in our
model, see [1].

With the defect hypersurface D embedded into Ni by regular embed-
dings X, we can compute both the induced metrics and extrinsic curvatures
w.r.t. either embedding. The induced metrics are given by pulling back g
with respect to XL and read

— it + (atXi)2 Gzx (atXi> (ain> gxm)
The extrinsic curvatures of the embeddings X, are defined by
KL(UV)=¢g(VyU Ny)=—-g(U,VyNy), YUV e€TD, (4.14)

where Ny € TN, is a normed vector field normal to the hypersurface and
U,V are vector fields which are normed and tangential to the hypersurface D
in the vicinity of D. Their extension to the bulk of Ny is arbitrary and has
no impact on the exterior curvatures at D. Our sign convention is that N_
(Ny) is pointing out of (into) N_ (N,), see figure 4.1. Defined via (4.14),
the extrinsic curvatures K. are tensors in the ambient geometry. Their in-
formation content remains equivalent upon projection onto the hypersurface
D by pulling them back via (X.),. The projected extrinsic curvatures are
given by

O(XL)™ O(Xy)"
Jen oY

_ P(X)™ -, O(Xe)" I(AXL)"

~= e (G + TG o)

(X:t)*lczl: = (K:I:>,u,1/ - vm(nzl:)n

(4.15)

where ¢* are the coordinates on the hypersurface, I} are the Christoffel
symbols w.r.t. the ambient metrics g+ and ny are the normalised 1-forms
dual to the normal vectors Ny. The similarity of the expression in the last
pair of brackets to the geodesic equation is notable and no coincidence. In
fact, if the extrinsic curvature vanishes, i.e. K, = 0, the embedding is called
“totally geodesic”. The name comes from any geodesic w.r.t. the induced

' In general, the coordinates on the hypersurface can be independent from the ones in
the ambient geometry. With the choice of induced coordinates, however, the identification
of the points on the hypersurface with their location on the boundary of the ambient
geometry simplifies.
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metric v on the hypersurface being also a geodesic w.r.t. the ambient metric
g in this case. Likewise, any geodesic w.r.t. g in AN starting on D C N4
tangential to D stays in D.

Having defined the extrinsic curvatures K4, we can look at the junction
conditions at D implied by the Einstein field equations (4.10). The original
approach by Israel [102] is to split the content of the entire energy stress
tensor 7' in N\ into three components by defining

T=0(-s)T_40(s)S+0O(s) T, (4.16)

where © is the Heaviside step distribution, § the Dirac distribution and s
is defined such that the hypersurface is located at s = 0. The energy-stress
tensor splits into the parts T4 defined in the smooth geometries g4 away from
the defect and surface energy-stress tensor S localised on D. We require the
induced metric v to be the same with respect to both embeddings X, that
is, the metic g = ©(—s) g_ + O(s) g4 is imposed to be continuous. Inserting
this decomposition into (4.10), and decomposing the Ricci curvature R,
w.r.t. to the local foliation given by the coordinate s, we can compare the
coefficients in front of the ©- and J-distributions. The coefficients of the
©-distributions yield that Einstein’s equation must still be satisfied in Ny,
as expected. The components of the Dirac distribution, however, vanish if
and only if

Ky = Vv K] = =N Sy (4.17)

where for any tensor Ay defined via the embeddings X, the bracket [A] =
A, — A_ defines its jump across the hypersurface. Hence, (4.17) tells us that
the jump between the extrinsic curvatures K. is given by the amount of
singular energy-stress S localised on the defect hypersurface D. In appendix
A, we emphasise that in a particular coordinate system normal to the hy-
persurface, the extrinsic curvature is given by K, = —0s7,,,/2, with s being
the same parameter used in the splitting above.

Thus, while requiring the metric g to be continuous around D, codimen-
sion one sources of energy-stress introduce a jump in its derivative normal to
D. So, the metric itself is in the differentiability class C° around D.

The junction conditions (4.17) were first shown in coordinate independent
manners by Werner Israel [102], and are thus often called Israel junction
conditions, a terminology to which we will refer throughout this thesis. They
provide the equations of motions for the a priori unknown embeddings X
and depend on the localised field content on D. If the ambient manifold is
vacuum, these equations are supplemented by constraints in the form of

V.8 =0, (4.18)
{K,,} 5" =0, (4.19)
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where { A} = (A- + A;)/2 is the mean of quantities defined w.r.t. the em-
beddings X.. The first equation (4.18) imposes the divergence of the surface
energy-stress tensor to vanish. Although vanishing divergence is natural for
a field theory on its own, this form of the divergence does not necessarily
hold true if the theory is constrained to a boundary of an ambient theory.
Due to the coupling of the defect energy-stress tensor S, to the one in the
bulk, T;,,, the surface energy-stress tensor can actually feature a divergence,
which originates in energy-stress flowing from the hypersurface into the bulk
and vice versa. In this case, the right-hand side of equation (4.18) would
not vanish. In the case at hand, however, both the Chern-Simons field and
gravity in 241 dimensions contain no local energy-stress. Both theories are
purely topological, so there is no possibility of energy-stress flowing from the
defect to the bulk geometry in the holographic Kondo model of [60].

Equipped with the proper equations of motion for the embedding, the
missing piece is the surface energy-stress tensor itself. It is defined in the
same way as a stress-tensor in a smooth manifold by variation of the action
with respect to the induced metric v by

_ —205p
ny — \/76’}/!“/ )

where S,p is the action of the defect surface as defined in 4.5. By applying
the product rule, along with d,/7 = —/7 7., 07", we find

-2 552D a£2D
N e

which is more convenient for actual computations. The defect Lagrangian is
split into Lop = Lo + L, + Ly with the parts given by

(4.20)

(4.21)

SV‘CL =0, (4.22)
gfi = % (D,®'D,®+ D,®'D,®) , (4.23)
oL o (1 ‘ .
a _ I S 7o' B
8’}/’“’ _( N) 87’“’ <4f217 fa,87 )
N ,
T (fuj 'Y]ﬁ (—fﬂu)) . (4.24)

In total, the surface energy-stress tensor is computed to read

1
Suy = — N (D(X@T D@ + 2 fag faﬁ)

+ N (D,®'D,®+ D,®'D,®) + Nf,” fa, (4.25)
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where we emphasised the symmetry in its indices.

As we investigate static backreaction in this chapter, we will drop the time
dependence in the embedding from now on. Then, we can further simplify
the geometric framework by taking into account an apparent symmetry. It
comes along with the fact that the Chern-Simons field A is the only field
which carries a handedness into the splitting of the whole manifold into N..
However, as written above, the Chern-Simons field decouples from the defect.
Hence, it is safe to assume that the embeddings X} obey a mirror symmetry
around the defect. In other words, if we choose the coordinate system and
embedding functions Xy as in (4.12), the embedding functions X satisfy

X (2)=-X_(2), (4.26)

where we dropped time dependence. This symmetry prolongs to the exterior
curvatures K. via (4.14) and yields

Ko = =Ky, (4.27)
(K — Y K] =2 (K(-ir)m/ - VWK(-F)) ) (4.28)

Especially, the last symmetry implies that one of the constraints, (4.19), is
always satisfied in a symmetric setup like this. Further more, (4.28) allows
us the restrict our attention to one side of the defect, e.g. N, by plugging
it into (4.17). The resulting equations of motion for the embedding are then
given by

Ko =k = =% Sy (4.30)
where we already dropped the (+4)-sign indicating the origin of the extrinsic
curvature. Due to the symmetry (4.28), this should not cause any confusion
anymore and we will stick to this notation for the rest of the thesis. Af-
ter solving (4.30), we can easily obtain the embedding on the (—)-side by
applying (4.26).

Note that equation (4.30) is just the Neumann boundary condition for
general relativity on a manifold with boundary that carries boundary degrees
of freedom. Actually, this can be seen more directly by deriving the Israel
junction conditions from an action approach, see e.g. [103]. If we want to
write down an action for gravity on a divided geometry with boundaries as
shown in figure 4.1, we must add the Gibbons-Hawking-York boundary term
to the action in order to render the variational problem meaningful. In [103],
this was done and the junction conditions are then derived by varying this
action with respect to the embedding. The same von Neumann condition was
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used e.g. by [64,65] which considered BCFTs without additional degrees of
freedom, but with a constant boundary tension S,, = —Av,,. We will come
back to a similar model in section 4.3, where we will find that the normal
phase is perfectly well described by a constant tension on the hypersurface.

Due to the similarity with Neumann boundary conditions in the symmet-
ric case, our model can be regarded as a holographic gravity dual both to a
defect conformal field theory (DCFT), as well as to a boundary conformal
field theory (BCFT) as emphasised in [1]. In fact, this simplification reminds
us of the mathematical trick deployed by Affleck and Ludwig [87,88]. They
started with dropping any interactions between the Kondo impurity and the
host degrees of freedom but the s-wave after a partial wave decomposition.
For the latter, we need to define a centre of the geometry by r = 0, where
r € [0,00) is some radial coordinate. In the s-wave decomposition, the cur-
rent in the host metal decouples into its left- and right-moving components,
which are chiral. The mathematical trick is then to enhance the range of r to
—00 < r < 400 and map the right-moving current to a left-moving current
inr e (—o0,0].

The top-down model of [60], however, starts already at this point: The D-
brane construction shown in table 3.1 leads to left-moving chiral currents on
the field theory, defined throughout = € (—o0, +00), which is the boundary
radial coordinate similar to r above. In our framework for backreaction,
we just showed that we may restrict our attention again to z € [0, +00)
due to symmetry reasons. During this process we considered only to the
field content on the hypersurface, which is symmetric under this mapping,
as the Chern-Simons field in the bulk of the gravity dual decouples from
the hypersurface. To complete the reduction to N, however, we certainly
would need to map the Chern-Simons field A in N_ to some equivalent object
in NV,. Although the full analysis is not performed in this thesis, we may
speculate that this object would be a Chern-Simons field of opposite chirality
in V., which completes the analogy with the conformal field theory approach
of [87,88] to the Kondo model.

4.2 Holographic defect entropy

If we succeed in computing the embeddings of the defect surface described
by eq. (4.17), how do we extract the corresponding defect entropy? In sec-
tion 2.3.4, we reviewed a well-known proposal how to compute entanglement
entropy holographically. Here, we’ll use this proposal to define a holographic
way of computing defect entropies for models similar to what we described
above in the sense that the impurity is extending on a defect hypersurface
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into the bulk of the gravity dual.

The defect entropy Sp is defined in the following way: We assume that
the field theory side of a holographic duality contains a defect and define an
area. A symmetrically around the defect, where ¢ denotes the radius of the
boundary 0A to the impurity. We can compute the entanglement entropy
S(¢) of A using the holographic description, i.e. (2.91).

Afterwards, we subtract the holographic entanglement entropy So(¢) of A
in the same theory, but without any defect. In our approach to holographic
models of impurities, this is simply the same as using the trivial embedding
X = 0. Hence, the geometry without any defect is given by the BTZ black
hole at the same temperature and the entanglement entropy of A is given
by [65]

3

€T

So(l) = Spu(l) = ° log ( 1T sinh(27rT€)) : (4.31)
where € denotes a cutoff in the form of a grid constant, which is necessary to
render the result finite, ¢ denotes the distance from the impurity, and ¢ is the
central charge of the conformal field theory. The difference between S(¢) and
So(€) can only be affected by the presence of the defect and its entanglement
with the environment. We denote this difference as the defect or impurity
entropy, which is given by

Sp(A) = S(A) — Sy(A). (4.32)

The nontriviality in our case comes from the holographic description of the
defect. Instead of smearing out the defect in the bulk, i.e. having a smooth
holographic dual?, we follow the authors of [60] and choose a singular rep-
resentation in the sense that the defect on the field theory side maps to a
defect hypersurface in the bulk of its gravity dual. Although the dual metric
is required to be continuous, its derivative normal to the hypersurface (which,
by definition, is the extrinsic curvature) will have a jump, determined by the
Israel junction conditions [102], as discussed in section 4.1.

This can be dealt with by taking equation (2.91) serious: We solve an
optimisation problem for minimal surfaces across a hypersurface connecting
two manifolds subject to gluing conditions. Luckily, for the 24+1-dimensional
case, the minimal surfaces are given by geodesics and the restriction of this
optimisation problem to geodesics was already solved in [107].

12 For approaches in which the defect smears out into a smooth geometry in the bulk, see
e.g. [104-106] for Janus solutions. It should be noted at this point that Janus solutions are
more compatible with proper top-down approaches to impurities which can be embedded
in string theory.
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So, in our case the formula for holographic entanglement entropy (2.91)
reduces to refraction conditions for the geodesics at the defect hypersurface.
Let the geodesics in the spatial submanifolds of N (see figure 4.1) be given
by

12(7) = (Vi(), 7 (7)) (4.33)
where 7 is some affine parameter. Assuming v_(0) = ~v4(0) being located
on the defect hypersurface D and applying variational methods, the authors
of [107] found that at the hypersurface the geodesics need to satisfy

g (7-(0),1) = g1 (34(0),8), VteTD, (4.34)

in order to minimise their total length for any starting points in N_ and
ending points in N,. Of course, apart from the hypersurface, the geodesics
need to solve the geodesic equation as the metrics g+ are smooth.

We assume a static geometry in d+1 dimensions, so the geodesics will have
d components. The refraction conditions (4.34) are d— 1 matching conditions
for a codimension two defect hypersurface D. Adding the normalisation of the
geodesic tangents ||+ || = 1, we find a total of d constraints for d components.
Hence, starting with a geodesic v_ in N_, which eventually hits D at ~v_(0)
with velocity 4_(0), we are guaranteed to find the outgoing geodesic starting
at v, (0) = v_(0) and velocity 7, (0) by solving (4.34).13

For the case of symmetric ambient manifolds NV in the sense of equations
(4.26)-(4.29), it was shown in [108] that the geodesics need to approach D
orthogonally in order to satisfy the refraction conditions, i.e.

9- (7-(0),t) = 0 = g4 (4+.(0), 1), V¢t €TD. (4.35)

Hence, together with the normalisation constraint, we find that we need
to solve for the geodesics whose initial velocity is given by the normal of
the defect hypersurface. Note, that this only holds for minimal surfaces
associated with the entanglement entropy of regions A symmetric around
the defect, which, however, is the scope of this thesis.

So, by requiring symmetric embeddings in the sense of (4.26), we can
compute the entanglement entropy of a symmetric patch A as follows: We
restrict ourselves to the (+)-side of the divided manifold as discussed at the
end of section 4.1 and solve for the respective embedding via (4.30) and the
equations of motion for the field content on the hypersurface. Afterwards, for
each point on D, we compute the geodesic starting normal to the hypersur-
face at that point and moving into the bulk. Due to (4.26), the corresponding

13 Here, we neglect the possibility that there could be phenomena like total reflection
at some critical angle, which will not relevant for our discussion.
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geodesic in the other half of the manifold, N_, is simply given by changing
the sign of the z-component of the geodesic we just solved for. The impor-
tant part, its proper length, is the same as for the computed geodesic, so
essentially we just need to take that twice in order to find the entanglement
entropy via (2.91).

Note, that we do not need to renormalise the proper length of the geodesics
as we subtract the divergent parts at asymptotic infinity automatically via
the definition of the defect entropy (4.32). The divergence appears as the
leading order term close to z = 0 in the proper length, which is both inde-
pendent of the temperature and the asymptotic position £ = 7% (z = 0).

There is one more observation, that simplifies the analysis of the defect
entropy dramatically. It is the fact, that while our embeddings Xy are in
principal arbitrary (numerical) solutions to (4.17), the background metrics
in the ambient geometries, g4, are constant by construction and still given
by the BTZ metric (3.19). This is due to having no propagating degrees
of freedom in our 2+1-dimensional model with only topological fields in the
2+1-dimensional bulk.

Moreover, the geodesics in this metric are known analytically, see e.g. [109].
So instead of computing numerical solutions to the geodesic equation for each
starting point on the defect D, we just need to fit the point and its normal
with the known solutions, which is faster and exact. This way, the only source
of numerical uncertainty entering our results of the defect entropy (4.32) is
given by numerical errors in the embeddings themselves. To suppress those
as much as feasible, we apply pseudospectral methods by computing the em-
beddings and its derivatives on a Chebyshev-Gauss-Lobatto grid. For the
details of the numerical approach, we refer the reader to appendix B.

4.3 Background solution: The normal phase

Solving the coupled equations for the scalar and gauge field seems intractable.
Hence, we need to resort to numerical methods. In order to do so, we typi-
cally need an initial guess to seed the solution algorithm. In this section we
will describe how to find an analytic solution in case of a vanishing scalar
field, which luckily is also the case for temperatures at or above the critical
temperature, T' > T,. Of course, we need to assume that the system still has
a phase transition, which will turn out to be true.

In the normal phase, the scalar field is trivial, ® = 0, and the only energy-
stress on the hypersurface originates in the gauge field a. The electric flux
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of a d-form in D dimensions is in general defined by

C == *fd+1 5 (436)

gD—d—1

where * denotes the Hodge star. According to the dictionary discussed in
chapter 3, its asymptotic limit as z — 0 is dual to the representation of the
defect, which is hence given by

C= 7., - (4.37)

If the scalar field vanishes and we are interested in static solutions, the equa-
tion of motion for the gauge field reduces to

9. (VAf*) =0, (4.38)
N——

=C

which already tells us that the electric flux is constant along the hypersurface,
i.e. \/7f* = C everywhere. This is intuitive, since there is no charged field
which could screen the flux. We have found a background solution for the
gauge field, which still depends on on the induced metric and hence the
embedding. In order to find out what this implies for the junction conditions,
which are the equations of motion of the embedding, let’s have a look at the
energy-stress due to the background solution of the gauge field. Following
our analysis above, the energy-stress tensor for vanishing scalar is given by

S =~ s 8 o+ N £ =N g (a30)
where in the last equality we used that fuﬂ fus = Vv fap F*°/2 which holds
in our case of a 141-dimensional, diagonal metric v. Applying \/7f* = C
then yields

N

S;u/ == _? 627;11/ . (440)

This is, remarkably, setting a constant tension on the hypersurface, since the
energy-stress tensor is proportional to the induced metric, S,, ~ vu,. In
appendix A, we show that in such cases, there is a construction to generate
solutions of the Israel junction conditions if we have a valid initial solution
of constant tension.

To wrap it up, it works by following the geodesic normal flow of the
hypersurface. To begin with, we can find a valid solution to the equations of
motion of the field content on the hypersurface by imposing the gauge field
to vanish, too. A possible solution for the embedding consistent with our
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boundary conditions, X (z = 0) = 0, is then given by setting X(®(2) = 0 in
(4.12). In this case, all of our assumptions in appendix A hold true and we can
apply the flow construction. To do this, we have to define a vector field which
is normal to the hypersurface, normed, and for each starting point on the
hypersurface, the integral curve of that point along the vector field satisfies
the geodesic equation. We define new embeddings X®) : D < N as the set
of points which we obtain by following the normal geodesic at each point
on the initial hypersurface X© for a proper length s. After following the
geodesic normal flow for an arc length s, the embedding function X, = X
is given by

sinh(s/L)
\/(z/zH)2 + sinh?(s/L)

Upon integrating the equation of motion (4.7) for the gauge field with van-
ishing scalar field and an embedding given by (4.41), we find the analytic
solution

X©)(2) = —zpy artanh (4.41)

2

al? = L cosh(s/L) (cosh(s/L) — \/(Z/ZH)2 + sinh2(5/L)> . (4.42)

ZH

In order to eliminate the auxiliary variable s, we can plug equations (4.41)
and (4.42) into the Israel junction conditions and find

s L 9
tanh <L> = Ky N C. (4.43)
At this point, we should keep in mind that s can have either sign. According
to our convention, the normal vector field is pointing out of the bulk manifold
N, such that its volume grows if s > 0, which is indeed the case as can
be seen from (4.43). A sketch of the geodesic normal flow construction is
shown in figure 4.2, where we see how the embedding changes as we increase
the parameter s > 0, initially starting at the trivial and totally geodesic
embedding with s = 0.

The extrinsic curvature K and the induced metric 74 as functions of the
parameter s are readily derived to read

o= (PR (s a4 £ )0 (1.44)
K. — —Lsinh(s/L) cosh(s/L) (= f(z) e + f (=) d22) | (4.45)

2
2y
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where z, denotes the point on the trivial embedding X = 0, from which we
start following the normal geodesic for an arc length s to find the embedding
X,. The induced metric and extrinsic curvature obviously satisfy

K, = —tanh(s/L)~s/L, (4.46)

which is shown in appendix A to hold in more generality than in the context
presented here.

From (4.43), we can already tell our first analytic result regarding the
defect entropy. We remember from section 4.2, that the minimal surfaces
whose area give us the defect entropy have to start normal to the defect
hypersurface. As we just have seen, the embeddings for vanishing scalar
fields are generated by using the same geodesics. Hence, the defect entropy
Sp as defined by (4.32) will simply be proportional to the arc length s =
L artanh (L ky N C?/4) used in our construction above. This will describe
the overall offset of Sp for any choice of C, kx, and N.

Moreover, equation (4.43) puts a constraint on the matter content on
the defect hypersurface. As the tanh function takes its values between —1
and +1, the allowed range of values for the parameters N, C, £, and rky is
restricted to

0< Ly NC*<4, (4.47)

where we already took into account that the appearing product of parameters
is always positive. To the best of the authors knowledge, there is no such
constraint on the Kondo model on the field theory side. Investigating its
physical reason would be very interesting, but is left for future research.

This concludes the analysis of the normal phase in the static backreaction
of the holographic Kondo model. In the next section, we will start from this
background solution and describe the system’s behaviour in terms of the
temperature 71" as it drops below the critical temperature T,, at which point
the scalar field becomes non-trivial.

4.4 The condensed phase

So far, we could track the equations analytically as the scalar field was van-
ishing. However, our model features similar phenomenology as the original
holographic Kondo model [60]. Especially, we have a phase transition be-
tween the normal and the condensed phase at a critical temperature T, ~ T
below which the scalar field becomes non-trivial. Via the duality, this means
the scalar operator O on the field theory side condenses. We are not able to
discuss this case analytically anymore and need to apply numerical methods.
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Figure 4.2: Geodesic normal flow of the embedding D in the (4)-part of the
geometry. More volume is added to N, as the parameter s is increased.

In the end, this will mean that for temperatures T" < T, in the condensed
region, we can only provide numerical embeddings and defect entropies. In
this section, we will give an overview on the computational approach and
refer to appendix B for further details.

4.4.1 Reduction of the equations of motion

Solving the equations of motion for the field content on the brane and the
embedding means solving equations (4.6), (4.7) and, after imposing the mir-
ror symmetry, (4.30). However, the Israel junction conditions (4.30) is a
tensor equation, so it provides (d + 1)? equations for a d + 1-dimensional de-
fect. In our case, these are three independent equations for one independent
function X, so there is some redundancy. Usually, we would try to solve the
equation of motion with highest derivatives of X. The surface energy-stress
tensor S is built from intrinsic objects on the hypersurface only and the only
occurrence of the embedding is in the induced metric. It is shown in (4.13)
and carries only first derivatives of X. Indeed, for our static setup, only
the zz-component features derivatives of the embedding function. Looking
at (4.15), we find that the component of K carrying second derivatives in
X is the zz-component, whereas in the tt-component only first derivatives
appear. However, the combination K, — v, K inverses this behaviour and
the second derivatives appear in the tt-component. So we would solve the
equations of motions of the scalar and gauge field, and the tt-component of
the junction conditions. The left-over zz-component is a constraint equation,
including only the first derivative of X.
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Fortunately, we find that this constraint is exactly solvable for X'(z).
There are four solutions, but we can sort out three of them by requiring the
solution to be real and having X’(0) < 0 in order to match our analytic
background solution (4.42). The left-over solution is given by equation (B.4)
in appendix B.

In the equations of motion for the scalar and gauge field, the embedding
only appears via the induced metric and, hence, only in the form of its
first derivative. So, an alternative approach is to solve the Israel junction
conditions for X’(z) and plug the solution into the rest of the equations.
This way, we can reduce the set of equations of motion from three ODEs
for ®, a; and X to two ODEs for ® and a;, only. After solving this set of
equations, we can obtain X by applying the numerical solutions for ® and a,
in the solution of the constraint, which yields X’(z), and integrate it starting
from z = 0 to the horizon. The integration constant yields X (z = 0), which
we set to zero to match the defect being located at x = 0 on the field theory
side.

4.4.2 Boundary analysis

We need to get away from the asymptotic boundaries in order to solve the
equations numerically, as they present singular points of the set of differential
equations. Hence, we expand the equations order by order in the radial
coordinate at asymptotic infinity and at the event horizon, and solve for
the coefficients. The respective leading and next-to-leading order coefficients
cannot be determined by this procedure. For each field, one of them will
represent a boundary condition to be chosen. The other one will only be
revealed after integrating the equations of motion numerically in the whole
domain. However, any remaining coefficient can be solved in terms of the
leading and next-to-leading order coefficients.

After the reduction mentioned in the previous section, we are left with
only two fields, ® and a;. The boundary expansions of those fields to leading
order at asymptotic infinity (z = 0) are, like in [60], given by

D(z) ~ ay/zlogz + Bz + 0(23/2)7 (4.48)
a; ~ % + 4 c1 log(2) + calog(2)? + c3log(z2)?, (4.49)

where the ¢; are next-to-next-to-leading order coefficients, and can be solved
in terms of «, £, @ and p. @ itself is already determined by the normal
phase solution (4.42) of the gauge field. Its value is given by

Q = —CL? cosh(s/L), (4.50)
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which is completely constrained by choosing the electric flux C and applying
(4.43). The mass of the scalar field needs to be fixed such that the scalar
field is right at the Breitenlohner-Freedman stability bound [79]. Only then,
the conformal dimension of the scalar operator maps to A = 1/2 via the
holographic dictionary. This is accomplished by setting

A2 — 4Q? cosh®(s/L) — 1
412 cosh®(s/L)

(4.51)

which, again, is fixed by applying (4.50) and (4.43). This concludes the
expansions at asymptotic infinity.

At the event horizon, the fields need to satisfy regularity conditions.
These essentially come from the fact that the event horizon is a tautolog-
ical construct and cannot be determined locally. Subsequently, a local field
theory ought not behave in any weird way around an event horizon and es-
pecially the fields involved cannot diverge. However, in a time dependent
analysis we find that there are irregular modes for the fields.

In a static setup, the event horizon falls together with the apparent hori-
zon, which is locally detectable. In this case, we can define boundary condi-
tions on the event horizon. Essentially, they follow from applying a boundary
analysis of the fields around the location of the horizon. Unlike in the case of
the asymptotic boundary, only one coefficient per field is left undetermined.

So in contrast to the asymptotic boundary, the boundary conditions at
the event horizon need not to be imposed by hand, but follow from the special
nature of this boundary. For each field, one of the leading order coefficients
is constrained and, in the case at hand, given by

L2M*®
(o) = — LM P Cm) (4.52)
2 ZH
ai(z) =0, (4.53)
2L4 M2 P 2 4 7 2
X'(zi) = kin <ZZ)L3 2y (2)” (4.54)

Thus, we can arbitrarily choose ®(zy), a}(zy) and X(zy) to integrate all
fields from the horizon and obtain valid solutions throughout the bulk. How-
ever, the fields eventually need to satisfy the imposed boundary conditions
at asymptotic infinity, which reduces the solution space. Of course, we need
not to impose the condition (4.54) for the embedding if we eliminated it from
the set of independent fields by reducing the set of equations of motion, as
explained in section 4.4.1.
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4.4.3 Computational strategy

We are left to solve the equations of motion for the field content on the hy-
persurface given by (4.6) and (4.7), which only depend on ® and a; after
replacing any occurrence of X’ and X" by the solution from the constraint.
The further procedure is the same as it would be without embedding. We
compute the asymptotic and horizon expansions of the fields, which due to
having the scalar field exactly at the Breitenlohner-Freedman bound, con-
tains logarithmic terms at asymptotic infinity. The order of the highest log-
arithmic term is increasing with the order of the expansion variable, which
is z. For computational convenience, we need to define numerical values for
the parameters C, @), k, L and zy. Otherwise, the doing the expansions at
asymptotic infinity takes too long. For the plots in the next section 4.5 we
choose

ky=1, L=1, zg=1 and C=1/2. (4.55)

Note that the values for L and zy can always be achieved due to scale in-
variance of the equations of motion. The value for the electric flux C was
chosen to be consistent with the computations in [60]. As we will see below,
the results are surprisingly close.

After computing the expansions to a convenient order, we define cutoffs
€bna and €y, near the asymptotic boundary and the event horizon. We choose

€ma = 1072 and € =1—1071, (4.56)

which resembles the appearance of logarithmic terms near asymptotic infinity,
which makes the approximation error grow faster as we go away from the
singular point. At the horizon, the expansions are analytic and there is not
much precision lost by going away from the horizon.

Between the cutoffs and the boundaries, we know the solutions of the
equations of motion approximately due the expansions. Between the cut-
offs, we solve the equations numerically by applying the shooting method.
That is, for each field we choose the two leading order coefficients and use
the expansions to obtain the field values and their derivatives at €p,,q. For
each field, we have one asymptotic boundary condition. For the gauge field
component, this is fixing @) via (4.50). The scalar field still has the same
boundary conditions as in the original model of [60], which are given by
(3.30). Hence, one of the leading order coefficient can be chosen freely.

Of course, we need to fix those in order to obtain e.g. the vacuum expec-
tation value of the scalar operator, given by 5 ~ (O). To do this, we numer-
ically integrate the equations of motions in the numerical domain, given one
fixed coefficient and one variable coefficient for each field. As we reach the
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horizon cutoff €,,., we are able to obtain the coefficients of the horizon ex-
pansion for each field. We check how much the horizon conditions (4.54) are
violated and correct the variable boundary coefficients in a direction which
improves the misalignment. This is done by infinitesimally varying them,
repeating the above steps, and looking at the mismatch for each variation.
From this we can compute a numerical gradient which tells us the optimal
direction of the next choice for the boundary coefficients. We change the
boundary coefficients accordingly and reiterate until the mismatch drops be-
low a numerical threshold. The final set of boundary coefficients corresponds
to the numerical solution for the choices of the fixed boundary coefficients
we made. Afterwards, we choose another set of fixed coefficients and start
from the beginning.

In our computations, we used @) and p as fixed boundary coefficients. Al-
though they both appear in the expansion of the gauge field a;, the discussed
procedure works just as fine. We start from the normal phase in which p is
given by

C L? cosh®(s/L)

c — s 4.57
0 - (4.57)

which is obtained by expanding (4.42) as a series in z and comparing with
(4.49). Then, we take a range of values for p > p. which will correspond to
solutions in the condensed phase, i.e. T" < T, and compute the numerical
solutions for each of them. As we want to obtain the embedding profiles of
the solutions in order to compute the entanglement entropy, we need to store
the whole solution profiles of ® and a;.

Having found numerical solutions for ® and a;, we can use them in equa-
tion (B.4) to numerically integrate X'(z) and find X (z). Its value at the
asymptotic boundary is fixed to X(0) = 0, which is the only integration
constant we need to provide and is physically sensible. With these embed-
ding profiles, we can apply the discussion of section 4.2 and find the defect
entropies for any symmetric regions A around the defect by following the
respective geodesics starting normal to the hypersurface.

At this point, we are done with the computations and can investigate
the results. Further details about the actual implementation of what was
discussed in this section are provided in appendix B.

4.5 Analysis of the results

In the previous sections, we discussed the framework for static backreaction
in a holographic Kondo model, along with the computational approach to
solve for the field content, the embeddings and eventually the defect entropy.
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In this section, we will analyse the numerical results and compare them to
the literature.

As the final result, we obtain is the defect entropy Sp as a function of
the region A which lies symmetrically around the defect located at = = 0.
More specifically, the parameter entering the defect entropy is the radius
¢ at which the boundary 0A of the region A is located. Sp(¢) will turn
out to be a monotonically decreasing function, which will be interpreted in
terms of a g-theorem, stating that the defect entropy decreases as we follow
a renormalisation group (RG) flow from higher to lower energies. The RG
flow comes along with the fact that as we increase the radius ¢ of 0A, we
effectively measure the defect entropy at growing length scales i.e. at lower
energies.

Another kind of RG flow is provided by fixing the interval radius around
the impurity and changing the temperature T of the system. As the tempera-
ture sets a typical scale at which the impurity interacts with its environment,
higher temperatures mean higher energy scales in the RG flow. This is also
done in the literature about Kondo physics, see eg. [110], to provide a cutoff
in the momentum integration. Hence, it corresponds to a physical renormal-
isation scale.

As anticipated from the behaviour of the model in the probe limit (see [60]
and chapter 3), the system features a phase transition at a critical temper-
ature T, ~ Tx. For T < T, the scalar field and hence the scalar operator
condenses, i.e. (O) # 0. Remarkably, the dependence of this condensate
on the temperature is almost exactly the same as for the system without
backreaction, which is shown in figure 4.3. When looking at this figure, we
should keep in mind that the numerical values of the boundary expansions
and fields actually did change. However, the final result does not seem to be
affected after reducing the numbers to meaningful quantities, i.e. normalising
e.g. with respect to the critical temperature 7,.. To show this, we have a look
at the critical value of xr, which is decreases by around 10% to

ke ~ 8.161 (4.58)

if we include backreaction. This differs from the result without backreaction,
Ke &~ 8.98 in (3.46), much more than the results shown in figure 4.3, for
example. Unfortunately, an explanation for this invariance is lacking so far.

Coming back to the discussion in section 3.2.2, we see in figure 4.4 that the

condensate (O) ~ ( itself is still diverging as 7" — 0. This is not surprising,
as we did not stabilise the scalar potential, which is left for future research.
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Figure 4.3: Shown is the combination k7 (O)+/T. as a function of the tem-
perature 1" of the system. The dots denote numerical data including backre-
action while the line is an interpolation from the data without backreaction,
c.f. section 3.2.2.
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Figure 4.4: Shown is the condensate (O) as a function of the temperature 7'
of the system. Like in [60], the condensate divergences as T" — 0, which is
due to the potential being unbound from below.
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4.5.1 Embeddings at different temperatures

As outlined in section 4.4.3, once we found the numerical solutions of ® and
a; throughout the hypersurface for various temperatures, we use equation
(B.4) to integrate the embedding profiles. More details about the numerical
approach are found in appendix B. The embeddings are shown in figure 4.5,
where each embedding is drawn in a colour indicating the temperature. Red
is for temperatures close to T' = T,, while blue graphs are closer to T' = 0.

We can lower the temperature until 7'/T, ~ 0.04 where our numerics
become unstable. This, once more, is most likely due to the fact that we did
not stabilise the scalar potential, which results in stiff equations of motions
at low temperatures that are hard to integrate.

From their graphs, we see that the embeddings never cross each other.
Moreover, although not shown in figure 4.5, the geodesics starting at different
values of z on each embedding never cross each other, too. This puts a
non-trivial constraint on the shape of the embeddings and can probably be
derived from energy conditions on the brane, which, however, is left for future
research. The implications of this are two-fold: Firstly, if the geodesics would
cross each other, there would at least be two geodesics where one starts lower
in the bulk, at a larger value of z, but asymptotically ends up at a value of
x which is closer to the impurity at x = 0 then the other geodesic. This
would imply a cusp in the entanglement entropy, and thus in the impurity
entropy, as a function of the distance ¢ from the impurity. Secondly, one
result of this computation, that the impurity entropy satisfies a g-theorem,
would probably be spoiled. We will describe the g-theorem further below in
section 4.5.3. Finally, a follow-up result about a holographic g-theorem for
complexity, published in [111], would likely be spoiled by this, too.

4.5.2 Defect entropy

As described in section 4.2, the entanglement and impurity entropies are
holographically dual to the renormalised lengths of geodesics starting normal
at an embedding for a specific temperature. Those geodesics starting deeper
in the bulk, i.e. at larger values of the radial coordinate z will asymptotically
end up at a larger distance ¢ from the impurity. For a given starting position
and a starting velocity, the desired geodesics are known analytically, see
e.g. the appendix of [109]. We use their formulae to compute the distances
¢ to the defect at x = 0 at which all the geodesics on the Chebyshev-Gauss-
Lobatto grid in z on the respective embedding end up, as well as their arc
lengths. From their lengths, we subtract the geodesic which ends up at the
same distance ¢ but starts perpendicular to the trivial embedding X = 0.
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Figure 4.5: Shown are various embeddings of the defect hypersurface, where
the temperature is encoded in the embeddings’ colours. Red graphs denote
temperatures close to the critical temperature T' = T, while blue graphs are
those closer to zero temperature 7' = 0. The embedding at lowest temper-
ature is at T//T. ~ 0.04. Embeddings at different temperatures never cross
each other and they all end up at x = 0 with the same slope.

This serves two purposes: Firstly, we automatically renormalise the geodesic
lengths to finite values. The diverging parts near the asymptotic boundary
at z = 0 are the same for any geodesic and thus the divergent parts cancel
exactly if we subtract the proper length of any two geodesics ending up at
z = 0. Secondly, this is just the definition of the impurity entropy (4.32)
if we normalise the resulting difference by the factor 1/4Gy in (2.91). The
resulting function Sp(¢) = S(¢) — Sp(¢) is an interpolation from the discrete
set {{l;, Sp(l;)}|i = 0...n} where n corresponds to our choice of the number
of starting points, i.e. the size of the Chebyshev-Gauss-Lobatto grid on the
embeddings.

The defect entropies Sp(¢) are shown in figure 4.6 as functions of the
distance ¢ for various temperatures. Here, we replaced the factor of Gy
appearing in the Ryu-Takayanagi formula by the central charge ¢ of the
field theory away from the defect by using the Brown-Henneaux formula
¢ = 3L/2GN. As we can see, the defect entropies all start at the same
constant value as ¢ — 0, which we denote by S}, = Sp(0). Furthermore,
those close to the critical temperature 7., denoted by red graphs, essentially
stay close to S7,. This constant is just given by the constant arc length s
used for the construction of the background embedding with the scalar field
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vanishing as described in section 4.3. It is given by
7 = Lartanh (L ky C* N'/4) = artanh(1/16) ~ 0.0626, (4.59)

for our choices of L =1, ky =1, C = 1/2 and N = 1 for the numerics.

If we subtract the impurity entropy at asymptotically large distances,
Sp(00), from the respective graphs, they all vanish for large ¢ by construc-
tion. In a logarithmic plot of the resulting curves, shown in figure 4.7, two
distinct features are revealed. On the one hand, the impurity entropy decays
exponentially to its asymptotic value at large ¢, which imprints itself in the
linear behaviour at large ¢ in the logarithmic plot. On the other hand, the
decay constant is always given by

0, =1/xT. (4.60)

The black line, which is also shown in figure 4.7, represents this falloff of
the form Sp(f) ~ e*/* where the constant factor is chosen arbitrarily for
representational purpose.

The interpretation is straightforward: On the one hand, if we keep the
temperature fixed, the impurity entropy decreases as we investigate the im-
purity at larger and larger distances ¢. This is known as the screening of
the impurity, which is why the singlet state forming below 7. is also referred
to as the Kondo screening cloud. On the other hand, keeping the distance
¢ fixed and lowering the temperatures, the impurity entropy also decreases
more and more. Again, the interpretation is that at the impurity is screened
more at lower temperatures. In both cases, the impurity entropy decreases
as the energy scale € at which the system is probed becomes smaller, where
either e ~ T or e ~ 1/0.

4.5.3 Zero temperature and a holographic g-theorem

Although it is impossible to tell exactly what happens at T" = 0 from our
numerics, it could be extrapolated that, eventually, the impurity entropy
decreases to
lim Sp(¢ — o0) =0. (4.61)
T—0

This is probably a little ambitious to see in figure 4.6, but is more digestive
if one looks at the values of Sp(¢ — o0) as a function of 7'/T, in figure 4.8.
This is known as critical screening and is in fact the case for the original
Kondo model as was shown in the conformal field theory approach in [87].
Here, the ground state of the Kondo model differs from the UV only by a
change from Ramond to Neveu-Schwarz boundary conditions. In both cases,
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Figure 4.6: Shown is the impurity entropy 3 Sp(¢)/c vs. radius 2n T - ¢ of
symmetric patches around the defect for various temperatures. The red
graphs denote the embeddings close to T' = T, while the blue ones are
close to T'= 0. We see that for fixed radius 27 T - ¢, the impurity entropy is
a monotonically decreasing function of 7'
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Figure 4.7: A logarithmic plot the impurity entropy 3 .Sp(¢)/c vs. radius
2nT - ¢ of the patch around the defect after subtracting the ¢ — oo limit
of the impurity entropy for each temperature separately. The temperature
is encoded in the colour of the graphs, red is closer to T' = T, and blue is
closer to T' = 0. The slope of the thick black line represents results from field
theory, which match quite well for large ¢.
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the impurity is absent at the fixed point, in the sense that it is critically
screened in the IR (7' = 0) and that the Kondo coupling features asymptotic
freedom in the UV.

In our setup, this limit cannot be achieved due to the following considera-
tions: The impurity entropy is defined by (4.32), Sp(¢) = S(¢)—Sp(¥), so it is
zero if and only if at 7' = 0, we find S(¢ — o0) = Sp(¢ — o0). This, however,
cannot be true. The ¢ — oo limit of Sp(¢) is readily seen to be propor-
tional to the proper geodesic length from the horizon limit of the embedding,
X(zg), to the trivial embedding X(zx) = 0. So to obtain Sp({ — c0) =0
at zero temperature, the embedding needs to end at X (zg) = 0.

Our embeddings all start X (0) = 0 with negative slope X’(0) < 0 de-
termined by the boundary conditions (4.54) of the gauge field, only. Thus,
the embedding function must be negative close to the asymptotic boundary.
In order to reach X(zy) = 0, it would need to turn around and have pos-
itive slope X'(z) > 0 afterwards. This, however, is excluded due to energy
conditions on the brane, which was shown in [1].

The lesson is, once more, that we cannot reach the 7" — 0 limit in this
model. If possible at all, we would certainly need to stabilise the scalar
potential by at least a ®*-term. This will certainly have effects at low tem-
peratures, which can be seen from the fact that the derivative of the potential
w.r.t. the scalar field, 0V (®) appears in the horizon conditions (4.52) and
(4.54).

Apart from this, our results show a behaviour of the impurity entropy
which is known as the g-theorem in field theory. It states that the boundary
entropy log(g) monotonically decreases as one drags the system from the UV
to the IR. The boundary entropy is proportional to the number of boundary
degrees of freedom, so the take-home message is that those degrees of freedom
are screened as the system is cooled down. It was proven for 14 1-dimensional
setups in [112], where the renormalisation group flow took the temperature
of the system as the energy scale. In this case, the theorem states that

(T 102 7 5ol = 00) > 0, (4.62)

which is obviously the case if looking at figure 4.8. As we already men-
tioned, the same result holds true in our system if we identify 1/¢ with the
renormalisation group energy scale.

The holographic g-theorem was already considered in [64,65], in which
an ad hoc identification of g was given by

log(g) ~ — arsinth (Xiz)> . (4.63)
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If the null energy condition is satisfied, an assumption of this form guarantees
the validity of the g-theorem. In our case, the null energy condition is of
course also satisfied, so the formula would equally well work in our setup.
However, our numerics show that it also holds true without an identification
of this kind.

To end this section, we should mention that a closely related result was
presented in [111], in which a similar theorem was considered for a conjec-
tured holographic dual of computational complexity €. The computational
complexity of a quantum state is, roughly stated, given by the minimal
amount of simple gate operations needed to prepare the quantum state'4,
which is represented by the dual geometry. It was conjectured in [113,114]
and [115] that this complexity finds a holographic dual which is either pro-
portional to the volume of a codimension one region or the integrated action
of certain codimension zero patches in the bulk of the gravity dual. The
result of [111] is that along the renormalisation group flow from the UV
(high temperatures) to the IR (low temperatures), the holographic complex-
ity monotonically decreases.

This can be seen in figure 4.5 as follows: At T" = T, the embedding is
given by the analytic expression (4.41), which is the most left curve in figure
4.5. In the condensed phase, T' < T, the scalar field on the hypersurface is
non-trivial and the hypersurface starts bending to the right. The ambient
geometry, g, is fixed throughout this process whereas the boundary to the
geometry, given by the hypersurface, changes. So, more and more of the
geometry is cut away at lower temperatures, effectively taking away volume
of the spacetime. On the other side of the hypersurface, the same happens
due to the symmetry established in (4.26). Hence, the volume loss of both
sides does not cancel, but is rather doubled. As was mentioned earlier, the
embeddings shown in figure 4.5 never cross each other, so the volume loss is
monotonic. Assuming that the on-shell action is semi-positive, the computa-
tional complexity € decreases monotonically in either case as the temperature
is lowered, thus proving the claim. The discussion in [111] investigates this
behaviour in much more detail by considering energy conditions of the field
content constrained to the hypersurface, too.

14 Tn more detail, one defines a priori a minimal but universal set of linear operators,
called quantum gates. They act on the Hilbert space H, which is the tensor product of
some n qubits. Universality means in this context that any quantum operator can be
approximated arbitrarily well with a circuit composed of these gates, only. One possibility
for such a universal set is given by the Toffoli, Hadamard, phase-shift, ancillary, and erasure
gates, where the latter two are only needed for non-unitary operations. The complexity
€(]T)) of any quantum state |¥) € H is then defined as the minimum number of such
operations to prepare the state starting from |0>®” up to some predefined precision.
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Figure 4.8: Shown are the asymptotic values of the impurity entropy
Sp({ — o) vs. the temperature T'/T,, hinting towards the possibility of
a zero temperature limit limy_,o Sp(¢ — o0) = 0.

4.6 Summary

In this chapter, we described a framework to incorporate backreaction of
the defect to the geometry of the gravity dual in the holographic Kondo
model of [60]. This framework is readily generalisable to different holographic
models of field theories with impurities. The essential assumption is that the
defect is represented by a codimension one hypersurface in the bulk. The
basic idea is to split the geometry in two halves at the defect and impose the
Israel junction conditions in order to glue them back together. The junction
conditions match the amount of energy-stress localised on the hypersurface
to the jump of the exterior curvatures of its embeddings on either side.

We applied this framework to the holographic Kondo model of [60] to
compute the embeddings along with the configurations of the field content
on the hypersurface at various temperatures. This allowed us to compute the
impurity entropy due to the holographic correspondence of certain minimal
surfaces and entanglement entropy. The impurity entropy is screened away
from the defect and converges to an asymptotic value at large radii. This
asymptotic value depends on the temperature, but the impurity entropy
always approaches it exponentially fast, where the damping scale is given
by ¢. = 1/7T. Furthermore, the impurity entropy satisfies a g-theorem,
which states that the impurity entropy decreases as the temperature of the
system is lowered.






Chapter

Quenches in the probe limit

“Or maybe it’s genius! I have to get that number.”
Max — 7 [6]

In this chapter, we will deal with a completely different extension of the
holographic Kondo model [60], which is time dependence. Unlike in the
previous chapter about back-reaction, we will go back to the probe limit, but
look at time dependent boundary conditions for the Kondo coupling x. This
will allow us to quench the system from the condensed phase to the normal
phase, vice versa, and within each phase almost arbitrarily. We extract
the behaviour of boundary coefficients of the gauge field and the scalar field
numerically, and extract the time scales with which the system thermalises to
equilibrium. Although this chapter does not include proper renormalisation
and analysis of the 1-point functions, we are able to compare with results from
Erdmenger et al. [68]. The authors of this paper compute the quasinormal
modes of the system in a semi-analytic way by solving perturbations around
the equilibrium in both phases. In contrast to that, our numerical analysis
allows the investigation of the model far from equilibrium. The late-time
behaviour is determined by the quasinormal modes, which coincide with the
ones derived in [68].

Moreover, we can quench the Kondo coupling onto the critical value at
which the phase transition takes place. This way, are able to analyse the
critical dynamics of the holographic Kondo model.

The original results presented in this chapter were published in [4]. Many
details about the numerical approach have already been published by M. Stry-
dom in [67], who wrote most of the Mathematica code used for this analysis.
A main difference to [67] is that we changed the gauge in order to compare
with the results in [68]. Although it appears that another gauge choice should
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make no difference, the involved gauge transformation appears to be a large
gauge transformation, altering the fields at asymptotic infinity.

5.1 Time dependent boundary analysis

The model investigated in this chapter stays the same as in the original
holographic Kondo model discussed in chapter 3. Once more, the Chern-
Simons field decouples from the defect, such that the relevant part of the
action is simply given by

SQd _ _N/deﬁ <,YHVDu(I)TDV(I) + if‘#yfﬂl’ + V((I))) , (51)

which is just (3.17). Due to the probe limit, the background metric 7 is fixed

to the induced metric of the BTZ black brane

L? dz?

ds®> = = [ —f(2) d#? 5.2

2= 5 (~rear s 55, (5.2

with f the blackening factor, given by f(z) = 1 — (2/2zx)?. The temperature

of the black brane Hawking radiation, and thereby the temperature of the

system on the field theory side, is related to the black brane radius by T =
(27 zg)~!. The equations of motions are just given by (3.22) and (3.24),

1

NG WA =Y, (5.3)
D,D*® = 91V | (5.4)

However, since in the time dependent setup we cannot expect the phase of
the scalar to be vanishing anymore, we apply another splitting of the scalar
into its real and imaginary parts,

O(t,2) = p1(t, 2) +ipa(t, 2). (5.5)

Introducing the double trace operator A OO on the field theory side induces
new boundary conditions for the scalar field, as described in chapter 3 and
pioneered in [97]. The Kondo coupling ) is related to the expansion coef-
ficients of the scalar field. The first order expansion (3.28) is still valid in
the time dependent setup, however we show its explicit form for our scalar
splitting by

§b1(t, Z) = \/Z (al(t) log Az + Bl(t)) + 0(23/2) )

Balt, 2) = V7 (aalt) log Az + Bo(t)) + O(72). >0
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For our splitting and coupling constant A\ = k; +i 2, the relationship (3.34)
remains the same,

a1 (t) = ki(t) Bi(?), ay(t) = ri(t) Ba(t) (5.7)

although the coefficients now explicitly carry time dependence, and we set
ko = 0 due to reality of the coupling. Then, we define x7 from x; by following
the exact same procedure as in section 3.2. The higher order expansions of
the fields are more involved than the static analysis. They were carried out
by a program published by Strydom in [67], which we needed to adapt for
our purposes.

The reason for adapting the code lies within the gauge fixing in this
model. In holography, we commonly choose the radial gauge for the gauge
field,

a,=0, (5.8)

as this is a natural choice due to the radial direction being the emergent
holographic direction. Thus, we are left with the temporal component a,
and its equation of motion, which is the ¢-component of (5.3). This fixes the
gauge only up to a function of ¢, as explained in more detail in appendix C.

In this thesis, we do not utilise this residual gauge freedom to fix the
phase of the scalar asymptotically, as was done in [67]. There, the phase of
the scalar was chosen to vanish asymptotically, which yields gy = 0. It was
found that, due to the asymptotics of the gauge field in AdS,, obtaining this
result requires a large gauge transformation which alters the physics. Since
we want to compare e.g. with the results of [68], in which such a large gauge
transformation was not applied, we leave the scalar’s phase free throughout
the bulk.

The model as described above can easily be reduced to the static model of
[60], described in section 3.2, by setting any occurring temporal derivatives to
zero. Especially, the model still features a phase transition at a critical tem-
perature T, ~ Ty which transfers to a critical coupling k. = 1/log(Tx /T:),
where Tk denotes the Kondo temperature. For our choice of the representa-
tion, C = 1/2, the numerical value for the critical coupling is given by

Ke ~ 8.9796 , (5.9)

which, of course, is the same number as in (3.46).

5.2 Computational strategy

At first sight, solving the equations of motion (5.3) and (5.4) seems straight-
forward. The overall approach is:
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(i) Compute the boundary expansions of the fields at the event horizon
and asymptotic infinity up to some convenient order,

(i) restrict the computational domain to the region Ruum = [Ebnd; Ehor)
between two cutoff parameters at the event horizon and asymptotic
infinity, and

(iii) compute the fields in Ry, numerically by providing boundary con-
ditions at ep,q and ey, which originate from an approximation of the
fields by applying the respective boundary expansions up to the cutoffs.

In the case at hand, however, the procedure is surprisingly involved. The rea-
son is that we need to fix the scalar field’s mass to saturate the Breitenlohner-
Freedman bound in order to obtain the correct scaling dimension for the dual
operator as discussed in 3.2.2. This induces many logarithmic terms in the
boundary expansion, as we already encountered in the static backreaction
in chapter 4. In the time dependent setting presented in this chapter, even
more logarithmic terms can be turned on and solving for all the coefficients
becomes tedious.

So, especially step (i) becomes much harder. Fortunately, the algorithm
introduced in [67] is capable to find the coefficients order by order in an
expansion around the asymptotic boundary. However, finding the right cutoff
values in (ii) and evolving the fields by supplying approximate boundary
values from the expansions in (iii) is tricky, because it is numerically hard to
distinguish between terms which only differ in their logarithmic power.

In order to address these issues, we replace the dependent variables ay
and ¢;, where k denotes the left-over component of the gauge field after fixing
the gauge, by substituted fields a; and ¢;. Those are built by subtracting
the boundary terms of the respective fields up to a convenient order:

ar = ag — Sq (5.10)
&1 = di — S (5.11)
where the subtracted terms s, and s,; are given by
Sq = % +u(t)+0 (2" , (5.12)
Spi = V7 (a;(t) log(2) + Bi(t)) + O (2*?) | (5.13)

and the O symbols denote higher order terms. The substituted fields a; and
¢; are replacing the original fields in the equations of motion. This way, we
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transfer the dependency of the system on the involved boundary coefficients
p(t), a;(t) and f;(t) from the fields themselves to the equations of motion.

Moreover, with a static event horizon due to the probe limit, there is no
need to use the cutoff at the horizon and appropriate horizon conditions.
Instead, we choose our discretisation scheme in the radial direction as an
expansion of the fields in Chebyshev polynomials and choose a point inside
the event horizon as the boundary of the computational domain Ru,. As
Chebyshev polynomials build a complete set of regular functions and the
computational domain includes the event horizon, we implicitly require reg-
ularity at the horizon. The metric has the feature that the future lightcone
tilts into the event horizon once we cross it. This way, points in the event
horizon cannot affect points outside and ingoing boundary conditions are
satisfied automatically.

The temporal direction is discretised on an evenly distributed grid, which
sets bounds on the temporal resolution. Especially, as we did not implement
an adaptive temporal grid, we need to know which frequencies have to be
resolved before we start the run. Without a semi-analytic analysis of the
quasinormal modes, this can only be done by trial and error. We perform
perturbative Gaussian quenches over a fixed background value for the Kondo
coupling kg, given by

kr(t) = ko (1+aexp (—s* (t —to)?)) , (5.14)

where vy is the time around which the quench is centred, the parameter s
is describing the steepness of the quench, and a is the ratio of maximal am-
plitude to background amplitude of the coupling. Quenches like this kick
the system slightly out of equilibrium and we can find the respective quasi-
normal mode at kg by fitting the ring-down of the fields to a quasinormal
behaviour. In addition to that, quenches starting in the normal phase feature
another quasinormal-like behaviour at early times. Here, the perturbation is
exponentially growing in time, with a time constant which can be read off an-
alytically from performing perturbation theory around the normal phase, in
which the scalar vanishes. Finally, the steepness parameter s of the quench
itself is setting a temporal scale. In order to set the temporal resolution
properly, we must ensure that the smallest time scale from above is resolved
by the temporal grid.

The time evolution scheme is chosen to be Crank-Nicolson-like, as al-
ready described in [67]. For some more details about the numerical evolution
scheme, we refer the reader to appendix C.
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5.3 Classification of quenches

Before we explain how to extract the quasinormal modes from the numerical
data in the next section, we will show the different classes of quenches which
have been investigated. This will be necessary in order to get a feeling about
the timescales involved and which quasinormal modes are important in which
region. We investigate two main types of quenches:

(a) Quenches, in which the asymptotic values of kr are equal, and
(b) quenches, in which the asymptotic values of kr differ.

For the sake of simplicity, we use differentiable functions in both cases, al-
though the algorithm explained in more detail in appendix C is actually ca-
pable of dealing with instantaneous quenches. For (a), we apply a Gaussian
shape for the coupling of the form

rr(t) = ko (1+aexp (—s* (t —t0)?)) , (5.15)

which we already encountered in (5.14). In the case of (b), we apply a tanh
form of the quench, given by

kr(t) = ki + (Kf — K;) (% tanh (s (t —to)) + %) ; (5.16)

which interpolates smoothly between the initial value, x;, and the final value,
kf, where the steepness and midpoint of the quench is determined by s and
to, respectively.

Of course, for numerical reasons, we need to start at a finite time ¢;, which
we always set to t; = 0, and end at another finite time, which we denote by
tr. Hence, we have rkp(0) # k; and wr(ty) # Ky in general. However,
due to the exponential convergence of the Gaussian and Tanh functions to
their asymptotic values, we do not run into numerical problems if we set
to > 0, such that these equalities are at least approximately satisfied. For
this purpose, we usually set tg ~ 5/s.

Before we go on to show how to extract the numerical quasinormal modes
from the computed evolution of the fields, we conclude this section with a
quick overview of the different quenches we can apply in general.

Quenches from the normal to the condensed phase

Here, we start with an initial value of k; = kp(—00) = k7(0) > k. and
end at rr(ty) =~ kr(+00) < K. Initially, the scalar field vanishes as we
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Figure 5.1: Quench profile for k; as given by eq. (5.16) with parameters
ki =11, Ky =9, s = 1/2, and 27T t, = 50.

start in the normal phase. After the quench, a vanishing scalar field is still
a metastable solution to the equations of motion. Due to this, the time
scale at which the scalar field responds to the quench is generically detached
from the time scale of the quench itself. Instead, it is given by the time
scale of the unstable quasinormal mode described by figure 5.10 for xky <
ke. Determining the unstable quasinormal modes of the normal phase was
the main reason to use this type of quench. The time scale at which the
scalar settles to its equilibrium configuration is, on the other hand, given by
the lowest lying quasinormal mode at the equilibrium value, x;. A generic
example of quenches of the type normal to condensed is shown in figure 5.1.

Quenches within the condensed phase

Here, k7 has its initial and final values within the condensed region, k; =
kr(—00) = kp(0) < k. and kr(ty) = kp(4+00) < k.. The initial response of
the scalar correlates with the time scale of the quench. Asymptotically, the
time scale at which the scalar settles to equilibrium is given by the lowest-
lying quasinormal mode around the equilibrium value. Examples for both
Gaussian and Tanh-like quenches of this type are shown in figure 5.2. This
type of quench was mainly used to determine the quasinormal modes in the
condensed phase.
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Figure 5.2: Gaussian and Tanh quench profiles within the condensed phase.
The Gaussian profile is given by eq. (5.15) with kg = 2, s = 1/100, and
21Tty = 150. The Tanh profile is given by eq. (5.16) with x; =4, Ky = 7,
s =1/2, and 27Tty = 150.

Quenches from the condensed to the normal phase

In this case, we start with x; = kp(—00) ~ k7 (0) < k. in the condensed
region and end up at kr(ty) = kp(4+00) > kK. in the normal phase. The
scalar field always vanishes asymptotically, but the time scale of the decay
depends on £y and can be given analytically, see figure 5.10. A generic quench
of this type is shown in figure 5.3. We used quenches like this to extract the
quasinormal modes of the normal phase and compared them to the analytic
results to evaluate the performance of the numerics.

Quenches onto the critical coupling

The last, and most special, case of quenches we investigate are those for which
the final value of k is right at the critical value k.. As we will see in section
5.6, the system features critical dynamics in this case. This means that the
thermalisation will no longer yield a time scale appearing in an exponential
falloff, but rather a polynomial falloff with the polynomial exponent to be
determined. The quench profile (5.16) is adapted to logarithmic space,

1 1
kr(t) = ki + (Kf — K;) <§ tanh (s log(t/to)) + 5) : (5.17)
and is shape-invariant in logarithmic space upon changing the midpoint .
Furthermore, and in contrast to the usual quenches of the type (5.15) and
(5.16), the steepness parameter s does not carry a dimension in this type of



5.4. EXTRACTION OF QUASINORMAL MODES 105

RT
14F
12F
10 — normal
el et e Ke —m = — — — — — —
8¢ condensed
6
4 L
2 L
L L L L L L L L L L L L L L L L L L L L L L L L L
0 20 40 60 80 100 120

2nT't

Figure 5.3: Generic quench profile for quenches from the condensed to the
normal phase. The coupling kr(t) is given by eq. (5.16) with parameters
ki =5, kf =12, s = 1/2, and 27T t; = 50.

quench. Hence, the time dependence of kp itself does not introduce a time
scale. A generic example for this type of quench is shown in figure 5.4. The
behaviour involved in this case will be investigated in section 5.6.

5.4 Extraction of quasinormal modes

The goal of the time dependent analysis is to extract the thermalisation time
Tin after various quenches in either phase. We can define 7, by different
conventions, but the most convenient one is to define them in terms of the
damping time scales of any fields in the setup, which are given by the inverse
of the imaginary part of the lowest-lying quasinormal mode @ of any observ-
ables in the system. Any quasinormal modes can be decomposed into their
real and imaginary parts,

Ww=wr+1iwr, (5.18)
so the thermalisation time 7y, will be given by

1

[éor]

(5.19)

Tth =

Let us derive this relation in more detail, as it is an essential assumption for
the time dependent analysis. The solutions of the evolution equations at late
time, i.e. near the equilibrium values of the respective fields, can always be
approximated by a coupled set of linear, second order, hyperbolic evolution
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Figure 5.4: Generic quench profile for quenches from the condensed to the
normal phase. The coupling kr(t) is given by eq. (5.17) with parameters
Ki =9, Kf = K¢, s = 5, and 27Tty = 100.

equations. The solutions to such differential equations are always given by a
sum over the quasinormal modes, which have the form

f(l) (t) — Z ay eiiw(i’k)t , (520)

k

where the f(® are not necessarily the original degrees of freedom, but might
be redefinitions. Expanding the w;’s into their real and imaginary parts, we
end up with

FOE) =3 apet ™t eien (5.21)
k

Each quasinormal mode with w; < 0 will decay at a time scale 1/ |w§k)|.
Assuming that all quasinormal modes have negative imaginary part, the
field is well-described by the quasinormal mode which is closest to the real
axis, i.e. which has the smallest imaginary amplitude. We will denote this
quasinormal mode with a hat, @. All other quasinormal modes will become
negligible at some point, as their imaginary part is larger in magnitude and,
hence, they are damped away exponentially faster.

If any of the quasinormal modes has a positive imaginary part, wl(,k) > 0,
the field will exponentially diverge from its equilibrium value. This can be
the case at phase transitions, for example, and we will encounter this kind
of unstable quasinormal mode below.

We will restrict our attention to the thermalisation time of the scalar
operator (O) ~ —f7 where both sides depend on time. As we split the
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scalar field into real and imaginary part, the coefficients we want to fit are
real and, hence, we take the real part of (5.21) as our model for the fitting
function,

f(t) = foe“rt cos(wpt+¢) , (5.22)

where we neglected any quasinormal mode with larger imaginary amplitude
than @. The fitting parameters are thus given by wg, wr, fo and ¢, where
the last two are not of interest and will be discarded.

Note, that we will take the same function to fit the behaviour in the case
of quenches from the normal to the condensed phase. In this case, we deal
with unstable quasinormal modes, i.e. w; > 0. In the linear regime, close to
the initial equilibrium values of the fields, the linearisation of the equations is
still sensible, so we expect quasinormal behaviour, although an exponentially
increasing one.

Numerically, we fit (5.22) to the data by discretising it on the same tem-
poral grid as the numerical data and minimising the square error. We do
this in logarithmic space, i.e. rather on the logarithmic absolute values of
the coefficients log(|f®(¢)|) than on the linear ones. The reason is simply
that otherwise the errors at late times become exponentially suppressed, and
the initial behaviour has larger weight in the optimisation problem. On the
other hand, we actually would like to extract the late time behaviour as de-
tailed as possible, and suppress the initial behaviour. We expect that other
quasinormal modes than @ are still turned on initially, which might affect
the goodness of fit. Actually, we will be able to see those higher quasinormal
modes in our analysis, although the accuracy of the fit is too poor in order to
extract those modes reliably. In the following, we will show some exemplary
quasinormal modes and the respective fits for different types of quenches.

Quenches from the normal to the condensed phase

The quenches from the normal to the condensed phase show two different
regimes of interest for our analysis. Firstly, at late times, they feature the
quasinormal modes of the condensed phase. Hence, we can use them to de-
termine those, although mainly this was done by using Gaussian quenches
within the condensed phase. However, they also show the unstable quasinor-
mal modes of the normal phase. Actually, this is our only way of numerically
determining the latter. Although we can perform quenches within the nor-
mal phase, we will not be able to fit the quasinormal modes, as the overall
amplitude of the scalar field does not change much.

In figures 5.5 and 5.6, we show an exemplary quench of this type and
the corresponding evolution of the scalar field. The coupling x7, shown in
figure 5.5a, starts at kK; = 9 > k. in the normal phase but close to the
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phase transition, and ends up at Ky = 1 deep in the condensed phase. The
steepness parameter is set to s = 1/10 and the midpoint of the quench is
located at tg = 50/27 T". As we can see in figure 5.5b, the scalar field rises to
macroscopic size only some time after the quench has reached its final value.
This indicates a separation of time scales: The time scale of the quench does
not govern the initial evolution of the scalar field.

This is due to the fact that the trivial static configuration ® = 0 is always
a possible solution to the equations of motion. However, it is not the global
minimum of the free energy, as is the case in the normal phase. In the
condensed phase, a non-trivial solution ® # 0 is the global minimiser of the
free energy.

In figure 5.5¢, we show the fitted quasinormal behaviour of the form
described by (5.22) with w; > 0 to the simulated real part of the scalar field.
In contrast to the linear plot, the logarithmic presentation reveals that the
scalar responds to the change in the coupling immediately, in terms of its
unstable mode being turned on. It then follows its exponentially increasing
quasinormal behaviour until the system is not in a linear regime around the
initial equilibrium anymore, and finally settles to the new equilibrium. In
order to fit the unstable mode numerically, the data to which (5.22) is fitted,
is cut to the region in which the approximation is valid.

Figure 5.6a shows the evolution of the absolute scalar expectation value.
A log plot of its deviation from the initial equilibrium is shown in figure
5.6b, and from the final equilibrium in figure 5.6c. As we can see, unlike the
real and imaginary parts of the scalar field, its absolute value does neither
in the normal phase, nor in the condensed phase feature a real part in the
quasinormal frequency @w. This imprints itself in a pure exponentially damped
behaviour, without real-time oscillations.

Quenches of this type have been performed for various values from the
normal into the condensed phase. The fit results of & = Wg + iw; for the
quasinormal behaviour of the real and imaginary parts in the initial, expo-
nentially increasing era are shown as red dots in figure 5.10b in the upper
half-plane. Those in the lower half-plane are given by w; < 0, and come
from fitting the asymptotic behaviour in quenches from the condensed to the
normal phase, described below.

It is crucial to remember that the quasinormal behaviour of the real and
imaginary parts of the scalar are giving us the lowest lying quasinormal mode
for the operator (O1), whereas the behaviour of the absolute values gives us
the one for (|O|), which are different. In particular, only the absolute value
of the vacuum expectation value is gauge-invariant, a topic to which we will
refer in the analysis of the critical behaviour, too.
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Figure 5.5: Exemplary numerical evolution of the real and imaginary parts
of the scalar operator (b) for a quench of the coupling xr from the normal to
the condensed phase (a). We can see that the scalar gains macroscopic size
only after the quench has finished, indicating a separation of time scales. In
(¢), we show the fitted quasinormal behaviour to the simulated data, which

fits very good during the exponential era after the quench.
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(b) Log plot of (a). The exponential rise of the scalar field is
determined by the unstable quasinormal mode of the scalar
in the normal phase. Unlike the real and imaginary parts,
see figure 5.5b, it does not feature real-time oscillations.
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(¢) Log plot for the deviation to the equilibrium value at
late times, determined by the quasinormal mode of the new
coupling k¢ = k7 (00).

Figure 5.6: Exemplary numerical evolution of the scalar operator (a) for
a quench from the normal to the condensed phase. Note the different time
scales involved due to the instability mode (b) and the quasinormal ringdown
to the final equilibrium (c).
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Quenches from the condensed to the normal phase

If we reverse the behaviour of the coupling xr in the previous subsection,
we obtain quenches from the condensed to the normal phase. These type
of quenches have mainly been performed in order to numerically extract the
quasinormal modes of the normal phase.

In figure 5.7, we show an example for the evolution of the fields after such
a quench, where we used a Tanh profile as described by equation (5.16) with
ki = 8, ky ~ 10.7 and to = 500. The scalar starts at macroscopic values in
the condensed phase and we require the phase to vanish initially, which is
shown in figure 5.7a. After the quench at ¢ty = 500, both fields are disturbed.

Remarkably, as shown in 5.7b, the scalar field follows its late time quasi-
normal behaviour almost immediately. There is no intermediate truly non-
linear behaviour, which justifies our identification of the thermalisation time
scale 7y, = (@wr)~! with the inverse of the imaginary part of the lowest lying
quasinormal omega. Apart from the damping by w;, the lowest lying quasi-
normal mode in the normal phase features an oscillation, i.e. Wg # 0. Similar
to the unstable mode shown in figure 5.6, the absolute value of the scalar
operator (|O|) lacks these real time oscillations, however.

Quenches within the condensed phase

As an example for quenches within the the condensed phase, we display the
evolution of the scalar field after a Gaussian quench in figure 5.8. The chosen
quench profile in shown in subfigure 5.8a, along with the parameters defining
the quench. The macroscopic response of both the imaginary and real part
is shown in subfigure 5.8b.

A very important results of the analysis of the quasinormal modes in the
condensed phase is depicted in subfigure 5.8c: Here, the deviation of the real
and imaginary parts from their asymptotic value at late times is plotted. In
contrast to its behaviour in the normal phase, the lowest lying quasinormal
mode in the condensed phase shows no oscillatory behaviour in the sense of
a non-vanishing real part. Indeed, this is true for all temperatures in the
condensed phase: @§d = 0.

According to [68,116], this hints towards the Kondo resonance in the
spectrum at low temperatures. In [68] it was analytically shown that this is to
be expected at least in the vicinity of the phase transition of the holographic
model of [60], which we use here, too. In our numerical analysis, we find that
it holds true for all temperatures 0 < T < T...
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(b) Time evolution of the deviations of the real and imaginary parts
of (O) from their late time equilibrium values shown in a log plot.
Apparently, there is no real part in the lowest lying quasinormal
mode w.
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(¢) Time evolution of the deviations of the real and imaginary
parts of (O) from their late time equilibrium values shown in
a log plot. Apparently, there is no real part in the lowest
lying quasinormal mode @.

Figure 5.7: Shown is an exemplary evolution of the scalar field after a Tanh
quench from the condensed into the normal phase. In subfigure 5.7b, we find
that the onset of the quasinormal mode behaviour is almost immediately
after the quench.
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(a) Quench profile for k7 as given by eq. (5.15) with param-
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(¢) Time evolution of the deviations of the real and imaginary parts
of (O) from their late time equilibrium values shown in a log plot.
Apparently, there is no real part in the lowest lying quasinormal mode
w.

Figure 5.8: Exemplary numerical evolution of the real and imaginary parts
of the scalar operator (b) for a Gaussian quench of the coupling k7 within
the condensed phase (a). In contrast to the quasinormal modes of the normal
phase, see 5.5¢, even the quasinormal modes of the real and imaginary parts
of the scalar have no real part in their frequency. We do not show the fits to
the data, as they are simply straight lines mimicking the behaviour at late
times.
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Extraction of next-to-leading order quasinormal modes

At this point, we would like to mention that our numerical analysis is in
principle capable of extracting higher order quasinormal modes, too. Instead
of fitting a single quasinormal mode as described by equation (5.22) to the
data, we can try to fit a mixture model of the type given by (5.21), including
several independent modes. Numerically, it is hard to do all of this at once,
because the algorithms usually need a good seed a.k.a. initial guess close
to the real solution in order to converge. This is due to the problem at
hand being non-convex. Moreover, a mixture as described by (5.21) of n
quasinormal modes involves 4n parameters, which are given by the modes’
amplitudes, real and imaginary parts of the frequencies, and their phases,
respectively. Searching numerically for the minimal residuum in a high-
dimensional search space suffers from the curse of dimensionality. So this
approach is unfeasible in general.

Here, however, we show that an iterative approach is tractable. Instead
of trying to fit all modes at once, we iteratively subtract the lowest-lying
quasinormal mode from the data. Let f(¢) be the data we obtained from our

evolution algorithm. We subtract its lowest-lying quasinormal mode fc(goji, u ()
and label the resulting curve as 6(!) f(¢). Doing this iteratively, we define

SO F(t) = 00V F (1) — foum (D), (5.23)

where 0©) f(t) = f(t). In figure 5.9, we show 5 3 (¢), which is the resulting
data after performing this operation for two steps on the data shown in figure
5.5c. Remarkably, we find oscillating quasinormal modes at next-to-next-
to leading order although the lowest-lying quasinormal modes’ frequencies
always have vanishing real parts in the condensed phase. We can fit this
behaviour by either one or two quasinormal modes, which gives reasonable
results as shown in figures 5.9a and 5.9b.

The approach described here remains a proof-of-concept, as the fitting
needed to be carefully initialised by hand in order for the algorithm to find a
minimiser. This, however, is not feasible to perform on a larger dataset with
several time dependent field coefficients to be fitted.

5.5 Quasinormal mode analysis

The previous sections gave an overview about the different types of quenches
we use, the typical evolution of the scalar operator after such quenches, and
how to extract the quasinormal modes by fitting. In this section, we go on
and present the numerical values of the quasinormal modes which have been
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Figure 5.9: Shown is the behaviour of §® 3, (dots), after subtracting the two
lowest-lying quasinormal modes. Apparently the next lowest lying quasinor-
mal mode has a non-vanishing real part. We can fit the late time behaviour by
one additional (a), or two additional (b) quasinormal modes (dashed lines).

obtained by performing many of such quenches and fitting the respective
behaviour. First, we justify our numerics by a comparison of the numerical
results with known analytic results in the normal phase. Then, we analyse
the behaviour of the lowest lying quasinormal mode in the condensed phase
as a function of the temperature of the system.

5.5.1 Quasinormal modes in the normal phase

In section 3.2.2 we saw that the quasinormal modes in the normal phase are
implicitly given by equation (3.45). In order to obtain their values, we have
to solve (3.45) for w, where we obtain multiple solutions. Those semi-analytic
results can be extracted up to arbitrarily high precision. The lowest lying
quasinormal mode w, i.e. the one with smallest absolute imaginary value,
will be the one which describes the behaviour of the scalar operator at late
times.

We can extract w numerically by considering both the late time behaviour
after quenches from the condensed phase into the normal phase as well as
the early time behaviour after quenches from the normal to the condensed
phase, as explained in section 5.4. Having found @ both semi-analytically
due to solving (3.45) and numerically due to the temporal evolution of the
fields, we are able to compare. This way, we would immediately see if the
algorithm fails to reproduce the normal phase.

However, as can be seen in figure 5.10b, the numerics match the analytic
formula perfectly well. This confirms that our numerical approach is working
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fine and we can proceed to the analysis of the condensed phase.
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(a) Contour plot of |kp| in  (b) Blowup of the red square in (a). Red dots indi-
the complex frequency plane.  cate QNMs extracted from numerical fitting at different
White space denotes cropping  temperatures. White space denotes cropping for values
for values |kr| > 2. |kr| > 100.

Figure 5.10: Contour plot of |kr(w)| over the complex w-plane. A blow-up
around the origin is shown in (b). Along the dashed curve, kp(w) is real. The
contours denote constant values of |kr|, with the colour scale indicating the
value. The contour kr(w) = k. intersects the dashed line at the origin in (b).
The red dots are lowest lying QNM found from fitting the time evolution
of the scalar operator after the quench to the QNM behaviour defined in
eq. (5.22).

5.5.2 Quasinormal modes in the condensed phase

As described in section 5.4, for the analysis of the dynamics in the condensed
phase, we can apply either Gaussian or tanh-like quenches which end up at
values of k7 in the condensed phase. For our numerics, we actually chose both
approaches in different regimes. This is due to the fact that the numerics
used to solve the static behaviour were not accurate enough at very low values
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of k7, i.e. deep in the condensed phase near T' = 0. However, equipped with
our fully numerical evolution scheme, we could push the system even a bit
closer to T' = 0 by considering quenches starting at higher temperatures, for
which we had the static solution needed to initialise the system, and ending
up at lower k.

As can be seen in figure 5.8c, unlike in the normal phase, the temporal
behaviour of the scalar field does not show real oscillations. Rather, the field
get just damped exponentially to its late time equilibrium. This is the case
for both of the leading order quasinormal modes. The next to leading order
modes display a real frequency, as is shown in figure 5.9 after subtracting
both leading order modes from the data.

Because it is an intricate task to find good fits for the higher order modes,
this was only performed as a proof of concept for this particular quench. In
the following, we will only show the results for the lowest lying quasinormal
mode, w. Since they do not feature a real part, we show in figure 5.11 its
dependence on the temperature T'/T, rather than in the complex plane as in
figure 5.10. We choose to normalise the mode w.r.t. T, since normalisation
w.r.t. T leads to a divergence as T" — 0.

Once more, this divergence is likely related to the fact, that we did not
stabilise the potential. In the Kondo model, as T" — 0, the Kondo temper-
ature Tk is the only available scale to the system, so we would expect that
w ~ Tk at very low temperatures.

We can compare our results with the literature in two distinct ways.
Firstly, just before the results presented in this section were written up in
[4], the authors of [68] gave us access to their numerical data. In [68], an
elaborate holographic renormalisation procedure is applied to the exact same
bottom-up model we consider in this chapter. This allows to extract the
quasinormal modes in a different way, by considering perturbation analysis
around numerical background solutions. Essentially, the linearised versions
of the equations of motion have the form

Df(t) =0, (5.24)

where f stands for any appearing fields and D is the respective differen-
tial operator, which involves second order derivatives in time. Finding the
quasinormal modes then reduces to finding the eigenfunctions of D. In the
condensed phase, this can be numerically involved because D also depends on
the background configuration, so it is only given numerically. Nevertheless,
the authors of [68] achieved to find the quasinormal modes. Comparing with
their results, shown as diamonds ¢ in figure 5.11, displays excellent agree-
ment with our results obtained by fitting the evolution at late time directly.
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At this point, it should be stressed that no holographic renormalisation is
needed in our approach.

Secondly, we may compare the behaviour of the lowest lying quasinormal
mode with what is expected from the Kondo model in condensed matter
theory. According to [68,116], the large-N Kondo resonance features a dis-
tinct behaviour close to the critical temperature, which imprints itself in a
quadratic relationship between the imaginary value of the lowest lying quasi-
normal mode and the vacuum expectation value of the scalar operator, given
by

1| ~ K3 (O)2. (5.25)

To find out about this relationship, we can visualise our numerical results
on a double logarithmic plot as shown in figure 5.12a. This reveals that the
advertised relationship holds true close to T'=T..

In figure 5.11, we see that w;/27 T, also approaches zero as T' — 0. In
fact, a log-linear plot shown in 5.12b shows that there is a similar relationship
at very low temperatures, given by

wr ~ log (kr(0)) , (5.26)

which displays strong deviation from mean-field theory. This is not unex-
pected, as we discussed earlier: At very low temperatures, the system ap-
proaches its ground state. Due to the fact that the scalar potential is not
stabilised, the expectation value of the dual operator, O, is diverging. So,
the behaviour (5.26) as shown in figure 5.12b is actually an artefact of our
model and most likely would change if we stabilise the scalar potential.

5.6 Critical dynamics

So far, we investigated the quasinormal modes of the holographic Kondo
model of [60] in both the normal and the condensed phase. We showed,
that our results match those obtained in [68] to high accuracy, although the
methods applied in [68] have been very different. Especially, the behaviour
close to the critical temperature 7T, has been interesting and matches with
expectations from condensed matter theory, i.e. the scaling of the lowest lying
quasinormal mode with the condensate reveals the emergence of the Kondo
resonance in the spectrum of the theory.

We can choose the quench profile k7 (t) at will, so we have the opportunity
to have a closer look at the critical dynamics. This is done by imposing
a Tanh profile for kp(t) which initially starts in the condensed phase and
asymptotes to the critical value of the effective Kondo coupling, kr(00) = k.,
which is explicitly given by (3.46).
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In figure 5.11, we saw that in this case w; — 0. Due to its definition
(5.19), the thermalisation time scale diverges, 7, = 1/w; — oo. So, does
the system thermalise at all? The answer is yes, but without any time scale.
This is to be expected as at critical temperatures, field theories are usually
well described by conformal field theories, which do not feature any scales.

Indeed, if we let the system evolve long enough, we eventually capture
this conformally invariant behaviour by plotting the solution in dependence
of logarithmic time. This is shown in figure 5.13. Note, that although the
behaviour of (O) mimics a quasinormal mode by (O) ~ e®e®) it is not
a quasinormal mode in the sense of the previous discussion in section 5.5.
Upon replacing t — log(t), we actually obtain polynomial decay of the form

(O) ~ 1, E=iw, (5.27)

where £ is a dimensionless complex number. This clearly distinguishes this
‘frequency’ in logarithmic time from proper quasinormal modes as seen in
section 5.5, which carry units of energy. The time coordinate ¢ obviously
should carry units of length and we must find a scale to compare it to in
order to render the logarithm log ¢ meaningful. In the numerics, we used the
radius of the event horizon zy = (27 T)~! for this purpose, so t is actually
normalised w.r.t. the temperature which is T" = T, at the phase transition.
The overall polynomial form of the decay is, however, invariant under this
rescaling.

It seems quite interesting to find a complex exponent, which might indi-
cate the emergence a discrete scale invariance of the theory [117,118], i.e. the
conformal invariance only remains intact for discrete time dilations t — At,
where \ takes discrete values, only. From figures 5.13a and 5.13b, we can fit
the complex exponent & to be given by

£ =—0.502 + 1.5017 ~ —% + gi, (5.28)
which seems reasonable. We will come back to the real part of this falloff
below.

As for the imaginary part, we need to investigate the topic of discrete
scale invariance with caution: As we can see in figures 5.13c and 5.13d, the
gauge-invariant quantities |(O)| and p ~ A, do not feature oscillations in real
time. These are the observables of the system, however, and thus it remains
unclear, whether the imaginary part in (5.28) really has an implication like
discrete scale invariance.

For holographic superconductors, it was found e.g. in [119-121] that z = 2
and v = 1/2, independent of the dimensionality of the theory. This fits to
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our analysis, since the holographic Kondo model of [60] essentially mimics
a holographic superconductor in the AdSs subspace of the defect hypersur-
face. At this point, we need to be careful with the dimensions: The critical
exponent v is not well-defined in our context, as is describes the spatial de-
cay of correlation functions at criticality, which are obviously not present
in the 0+1 dimensions of the dual defect to which the scalar operator O is
constrained. Moreover, phase transitions as such are not possible at finite
N in any theory for d < 2 spatial dimensions due to the Mermin-Wagner-
Coleman theorem [95,96]. However, the large- /N limit presents a loophole to
this theorem as long-range fluctuations are suppressed. Thus, we take the
results of [119-121] as strong hints that we can analytically continue v = 1/2
to lower dimensions in the large-N limit.

The dynamical critical exponent of a theory close to criticality is defined
via the scaling of its thermalisation time 7}, by

1 (5.19) T.—T\ *"
~ = Tth f ( TC ) ) ( )

where ¢ denotes the correlation length of the system. So, we can extract
the dynamical critical exponent z from the behaviour of the lowest lying
quasinormal mode w; close to the critical temperature 7T,. Its limit from the
normal phase and the condensed phase need not be identical a priori.
Approaching T, from the normal phase, we can extract the behaviour of
wy analytically if we linearise (3.45) around k.. Indeed, as shown in [4], if we

linearise kK ~ K. + K(Tl)w + O(w?) and using T/T, = exp(1/k. — 1/k7), we

find " )
11 T-T\"
T = — — 2T ( ) , (5.30)

wr Re Tc

so we deduce zv =1 or z = 2, as expected from [119-121].

On the other side, in figure 5.11 we see the linear behaviour of w; as we get
close to the phase transition in the condensed phase. More quantitatively,
a double logarithmic plot of |w;| vs. 1 — T/T. close to T" = T, reveals a
polynomial dependence of the form

. T-T.\"
1] = a 7 : (5.31)

and we can fit b ~ 0.992, which is close enough to z v = 1 so that we conclude
z = 2 from both sides.

To conclude this discussion about critical dynamics in the holographic
model of [60], we come back to figure 5.13 and the fitted decay constants
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in equation (5.28). If we take [(O)| as the definite order parameter we can
neglect the imaginary part in (5.28). If we can relate its power law falloff
at criticality directly to the dynamical critical exponent z, this would yield
another powerful test for our numerics.

Indeed, the scaling behaviour of the order parameter can be generalised
to the time dependent case and reads

N
Oy ~ (TTCTC) F(t ). (5.32)

with 3 = 1/2 the critical exponent! of the order parameter in equilibrium,
see figure 3.3 and the corresponding discussion. From this, we can derive the
limit for T — T, which is given by [122]

(O |z, ~ =7/, (5.33)

where we used the relation 7y, ~ £* introduced above. Comparing the ex-
ponent, —f/zv, to what we found numerically in (5.28) and using f = 1/2
from the phenomenology in equilibrium, we once more find zv =1, or z = 2
if we assume v = 1/2 in low dimensions.

5.7 Far away from equilibrium

The quasinormal modes analysed in section 5.5 and even the critical dynam-
ics discovered in section 5.6 do not globally depend on the quench shape,
i.e. the overall dependence of the Kondo coupling k7(t) as a function of
time. Only its asymptotics, which describe the initial and final temperatures
via the relationship (3.44) completely, imprint themselves in the quasinormal
modes.'0

In a setup involving backreaction to the geometry, this would be different:
The shape of k7(t) encodes the amount of energy-stress thrown into the
system. If we would quench an operator whose dual is defined throughout
the bulk of the gravity dual, this certainly would increase the mass of the
black hole and, for Anti de-Sitter asymptotics, the temperature of the black
hole and thereby the dual quantum field theory. This is physically expected,

15Here, we denote the critical exponent of the order parameter by 3, which is common in
statistical mechanics. This exponent must not be confused with the expansion parameters
of the dual scalar field, 51 and (5.

16 Although not presented in this thesis and expected in any sensible physical theory,
this fact was cross checked. The quasinormal modes are shape independent w.r.t. £r(t)
and depend only on its asymptotics.
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as insertion of energy into an thermal environment results in thermalisation of
the system, which potentially changes the overall temperature. An example
of such behaviour in the context of holography is considered in [123].

However, in our setup we quench the scalar operator @ = vy which
is constrained to the impurity and finds its dual in the scalar operator on
the defect hypersurface. Even if we considered backreaction to the 241
dimensional geometry, it is unclear whether or not the energy-stress inserted
on the 141 dimensional hypersurface is measurable in the ambient space and
can change the temperature.

Here, nevertheless, we search for truly non-linear behaviour of the system
far away from equilibrium, which means everything that cannot be described
by fluctuation analysis around thermal equilibrium. We chose the radial
gauge a, = 0 for the gauge field, and fixed the phase of the complex scalar
field to vanish initially, Im ®(¢y) = ¢2(ty) = 0. However, this does not
constrain the evolution of the phase after quenching the system. As can be
seen e.g. in figures 5.5b for a quench from the normal to the condensed phase,
asymptotically both components ¢; and ¢, are generically non-vanishing.
Hence, we are able to compute the phase shift At resulting from this quench.

The asymptotic expansion of the scalar components is given by 5.6. We
can relate their expansion coefficients to those of the scalar field’s amplitude
¢ and phase v, defined by ® = ¢ ¢™. They are given by

o(t,2) = vz (a(t) log(z) + B(1)) + O(=*?), (5.34)
U(t, ) = vo(t) + 21 (t) + O(2%), (5.35)

where the relation for a and § was already given in (3.33). The expansion
coefficient of the phase can be derived by inserting the expansions of ¢; and
gbg into

1) = arctan (%) : (5.36)

1

which is an equivalent definition of the phase. At leading order, the coeffi-
cients satisfy the exact same formula, i.e.

(651 1

o(t) = arctan <%> = arctan (%) , (5.37)

where used the fact that the proportionality between oy, and 3/, is the
same due to the Kondo coupling being real as given by equation (5.7).

We then evolved the system after several Gaussian quenches, given by
(5.15), with different values of the steepness parameter s. In the meantime,
we kept the rest of the parameters fixed. With the numerical results, we
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Figure 5.14: Shown is the phase shift A vs. the steepness 27 T s of various
Gaussian quenches in the condensed phase.

define the phase shift Ay by

Ay = tho(ty) = 1o(0), (5.38)

where ¢y denotes the last time slice on the numerical grid and we always
started the computations at ¢t = 0.

Results for Ay as a function of the steepness 27T s, normalised to the
temperature, are shown in figure 5.14. Clearly, the phase shifts seem to
follow some smooth behaviour as we change s. Although a proper analysis of
this behaviour is left for future research, we state an obvious: The steepness
parameter s is a time scale indicating the abruptness of the quench. Taking
the limit s — 0 yields an instantaneous quench, while the opposite limit,
s — 00, corresponds to adiabatic changes of the coupling xr.

With this in mind, figure 5.14 shows that adiabatic changes of the cou-
pling yields a small phase shift, while steeper quenches increase the phase
shift. To conclude this brief section, we should state that these are truly
non-linear results, which require knowledge of the full evolution of the system
far away from equilibrium and cannot be obtained by perturbation analysis
around the equilibrium.

5.8 Beyond the probe limit

So far, we encountered both backreaction at equilibrium and time dependence
in the probe limit, i.e. without backreaction. We gained insights in the falloff
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of the impurity entropy and the evolution of the system after quenches in
both phases and its critical dynamics close to the phase transition. It would
be interesting to combine both approaches in order to obtain the spatio-
temporal evolution of the Kondo screening cloud after quenches. On the
field theory side, this was worked out e.g. in [100] for a free electron gas
around the impurity. In our setup, however, the host degrees of freedom are
strongly coupled, so we could in principle find something new.

In principle, we derived already everything we need to start actual com-
putations: The equations of motion for all fields, X, a, and @, on the defect
hypersurface are given by

YD, D, ® = 051V (O1®) (5.39)

% W= (5.40)

K — v TrK| = —kn Sy - (5.41)

However, this system of equations yields some conceptual problems.

First of all, in both the static backreaction as well as the time dependence
in the probe limit, the Chern-Simons field A decoupled from the impurity. It
is not clear, whether this will still be the case if we consider time dependent
backreaction. Then, in chapter 4 we utilised the constraint equation of the
embedding X to reduce the system of equations on the defect hypersurface.
In the numerics for the evolution of the system in the probe limit, we relied
on a static event horizon. Moreover, the embedding was fixed and we did
not change the computational grid dynamically.

All of these methods will likely not work in the computation of time
dependent backreaction in our setup. However, we can choose yet another
simplification to be able to tackle the problem: We can linearise the backre-
action in the gravitational coupling parameter, xy. This way, as we will see,
we can actually reuse the numerics developed in chapter 5.

At this point, we will once more neglect the Chern-Simons field A for
convenience. Furthermore, we assume that a mirror symmetry of the kind
X _(t,2) = =X, (t, 2) is given, so we can reduce our attention to the (+)-side
of the entire manifold, as in chapter 4.7

We want to compute time dependent backreaction to the geometry in the
bulk. In the static case, we chose the bulk geometry to be the BTZ metric,
which is the unique finite temperature metric in asymptotic Anti de-Sitter

17 In chapter 4 this assumption is valid generically as the Chern-Simons field was shown
in [2] to decouple. If, however, the Chern-Simons field does not decouple in the case of
time dependent backreaction, it will likely break this symmetry due to its chirality. So in
this section, symmetry of the embedding functions really is an assumption.
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space if we do not compactify the x-direction. Here, we will need to relax the
bulk geometry to the general case. Although in 2+1 dimensions, gravity is
not a dynamical theory, the metric components could change in dependence
of the energy-stress density. Luckily, there exists a closed-form solution to the
metric in asymptotic Anti de-Sitter space. In Fefferman-Graham coordinates
{T,r, X}, it reads [124]

1
dslpg = — (dr® + gu dX*dXY) | (5.42)
T

where
2

o (1 L frX =)+ fu(X - T>>)2

L2
# (U 1) - pux - 1)) (5.43
Jrx = o (fn(X = T) = fu(X = T)) (5.4)

dx = (14 (X =T+ fu(X 1))

9 2
- (Ul -1 - filx - 1)) (5.45)
Here, fr and fr are generic functions and depend only on the lightcone
coordinates X £T of the asymptotic boundary. They encode the topological
nature of 2+1 dimensional gravity: Its degrees of freedom are not local but
can be mapped uniquely to boundary conditions.
We can derive the static black brane at a temperature Ty by setting
fr = fr =7*T%/2 and obtain

1
dsig = = (Ar* — (1= 7T dT* + (L + r* 7* T5)*dX?) . (5.46)
With AdS-Schwarzschild coordinates {¢, z, x}, the same solution is given by
1
ds3s = = (—f(2)dt* + d2*/f(z) + da?) , (5.47)

where f(z) = 1 — 22/z% and Ty = 1/272y. Comparing with the AdS-
Schwarzschild solution, we find the coordinate transformation

¢1:88 = FG, {t,z,x} — {t, (5.48)

2z 7}
1+\/f(z)7 ’

-1 .
Ot PG = SS AT X} o (T 1 X (5.49)
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where ry = 22y.

The Chern-Simons field A is topological and does not contribute to the
energy-stress tensor away from the defect hypersurface. However, the hy-
persurface carries the localised surface energy-stress tensor S, which does
source the geometry in the bulk. In fact, as mentioned earlier, the only way
in which S, can couple to the gravitational field g, in the bulk is by setting
boundary conditions on the fr/g.

Let X, = X, ar and ® denote all our dynamical fields on the hypersurface
after gauge fixing a,, = 0. In order to linearise the equations of motion in
KN, we assume that they can be expanded as

O(T,r) = (T, r) + ky PV(T,7) + O(k2), (5.50)
ar(T,r) = o (T, 7) + kn (T, 1) + O(k3) (5.51)
X(T,r) = XNT,r) + oy XO(T,7) + O(k}), (5.52)

for small ky. We want to expand the equations of motion (5.39) - (5.41)
order by order in K.

At zeroth order, only the zeroth order components ®(© agpo) and X©
contribute. Due to the occurrence of kx on the right hand side of (5.41) the
solution of X(® is given by the trivial background solution X © (T r) = 0.
The field equations for ®© and ag) ) hence yield just the equations of motion
(5.3) and (5.4) which we already solved numerically.

At linear order in ky, this is not true anymore. The zeroth and first order
coefficients of the fields mix in general so we must solve (5.39) and (5.40) on
this background. However, the right hand side of (5.41) still carries the factor
of k. Hence, only the zeroth order components ®© and agpo ) may appear in
the energy-stress tensor and we already computed their evolution.

If we restrict our attention to linearised backreaction, this means we have
already solved the hard part of this project. By inserting the numerical
solutions of ®© and a(TO ) in the probe limit into the Israel junction conditions
(5.41), we can integrate X (T,r) to find the backreaction at linear order
in ky. This will couple to the boundary conditions fr/r of the exact bulk
gravity solution (5.42), which we will thereby receive easily.

Once we found the linearised backreaction of the geometry, we can derive
the entanglement entropy or impurity entropy in terms of minimal surfaces
in the bulk. In contrast to the case with static backreaction, the covariant
formalism to obtain these extremal surfaces is more involved [20]. Therefore,
the computations of this linearised approach to gain the spatio-temporal
evolution of the Kondo screening cloud is left for future research [5].
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5.9 Summary

To summarise, we considered time dependence in the holographic bottom-
up model of [60] in the probe limit. The effective Kondo coupling rr was
promoted to depend on time, which imposes time dependent boundary con-
ditions for the scalar field ® constrained to the defect hypersurface. The
numerics were developed starting from the results of [67]. Especially, we
changed the boundary conditions of the gauge field to be able to compare to
the results of [68], which considers the same model. The shape of kr(t) can
be chosen almost arbitrary, so we can quench the system from the condensed
phase and vice versa. This way, we extracted the lowest lying quasinormal
mode @; numerically in both phases, with excellent agreement with [68].
Furthermore, the critical dynamics of the model were explored. Close to the
critical temperature T, we found a relationship @w; ~ k% (O)?, which finds its
origin in the Kondo resonance. The critical dynamic exponent z was shown
to be z = 2 in accordance with the literature on dynamical mean-field be-
haviour both in condensed matter and holographic superconductors. We can
compute the evolution of the system far away from equilibrium, which allows
to access truly non-linear features like the phase shift of the scalar operator.
A road map to develop linearised time dependent backreaction was listed,
but working it out is left for future research.






Chapter

Conclusion and outlook

“Hold on! You have to slow down, you’re losing it. You have
to take a breath. Listen to yourself: You’re connecting a computer
bug I had, with you a computer bug you might have had, and some
religious hogwash. You want to find the number 216 in the world?
You will be able to find it everywhere: 216 steps from your street
corner to your front door, 216 seconds you spend riding on the
elevator... When your mind becomes obsessed with anything, you
will filter everything else out and find that thing everywhere. [...]
But Max! As soon as you discard scientific rigour, you are no
longer a mathematician. You’re a numerologist!”

Sol — 7 [6]

Gauge/gravity duality is a powerful tool to study strongly coupled quan-
tum field theories. This thesis dealt with the treatment of backreaction and
time dependence in holographic models which include impurities.

After an introduction to the topic in chapter 1, we reviewed the essen-
tial basics of superstring theory, especially type IIB superstring theory, in
chapter 2. Type IIB string theory was the starting point for the original
AdS/CFT correspondence by Juan Maldacena [15], which we explained af-
terwards. Generalisations of the original conjecture allow us to consider field
theories at finite temperature and chemical density. Moreover, a focus was
laid on entanglement entropy and the minimal surfaces to which it is related
holographically by the Bekenstein-Hawking formula as proposed by Ryu and
Takayanagi [19].

We then went on to a special application of the duality in chapter 3,
in which we described the Kondo model in condensed matter theory and a
holographic model thereof as suggested by [60]. We explained the origin of
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this holographic duality as a specific D-brane setup in type 1IB string theory.
A reduced bottom-up model carries the most important fields to find the
results which allow us identify the bottom-up model as a holographic toy
model for the Kondo problem. It shows strikingly similar phenomenology
as the large-N model in a 1+1-dimensional conformal field theory approach.
However, important features cannot be explained by the original model, as
it is defined in a static probe limit.

In order to compute holographic entanglement entropy, we need to con-
sider minimal surfaces in the bulk of the gravity dual. Therefore, we gen-
eralised the bottom-up model to allow backreaction to the geometry, which
was explained in chapter 4. This was achieved by splitting the bulk geom-
etry into two halves, which share a common boundary hypersurface. This
hypersurface is holographically dual to the impurity on the field theory side.
There are fields constrained to this surface and therefore a localised energy-
momentum tensor, too. For gluing both halves back together, we imposed
the Israel junction conditions. These force the hypersurface to bend accord-
ing to its energy-momentum content. We found the impurity entropy by
computing specifically engineered proper lengths of geodesics perpendicular
to the hypersurface.

In addition to backreaction, we also considered time dependence as a
further generalisation to the holographic Kondo model of [60]. By adapting
the numerical evolution scheme presented in [67], we found the evolution
of the fields in the entire bulk of the dual gravity theory after quenching
the effective Kondo coupling. We explained the different quench categories,
from the normal to the condensed phase, vice versa, and right onto the crit-
ical coupling. We extracted quasinormal modes in both the normal and the
condensed phase. In the normal phase, those match precisely the analytic ex-
pectations. In the condensed phase, we compared with the results of [68,125]
which matched to high precision. It should be kept in mind that the authors
of [68,125] used perturbation theory around numerical backgrounds to ex-
tract the quasinormal modes, whereas our approach shows them directly in
the temporal behaviour of the fields. In accordance with the literature about
generic time dependent holographic, we found that the temporal evolution of
the fields is given very quickly by the quasinormal modes, only. There is no
intermediate fully non-linear behaviour emerging, which is characteristic for
the relaxation of strongly coupled systems. Due to our full evolution scheme,
we were moreover able to extract dynamical critical behaviour of the model at
the phase transition. Under these circumstances, the fields decay according
to a power-law instead of exponentially, as expected. The dynamical critical
exponent z was found to be z = 2, which matches results from dynamical
mean-field theory. Considering that the cross-over transition of the Kondo
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model becomes a mean-field phase transition in the large-N limit, this result
is physically meaningful.

It is also interesting to consider the spatio-temporal behaviour of the
Kondo cloud after quenches of the Kondo coupling in the holographic dual.
In order to do so, we need to go beyond the probe limit in the time dependent
setup and consider backreaction. The gravitational coupling xy can in prin-
ciple be finite, which, however, renders the evolution equations non-linear.
So, we would need compute the evolution of the fields on the hypersurface
from scratch, because the geometry also backreacts to the fields due to the
appearance of the embedding function X in the field equations of motion.
This can be avoided by linearising the system around xy = 0. The Israel
junction conditions carry a factor of ky in front of the surface energy-stress
tensor. This implies that at zeroth order, the junction conditions are triv-
ially satisfied, and the solution to the equations of motion of the fields on
the hypersurface is just given by the time evolution without backreaction,
as explained in chapter 5. At linear order in sy, the evolution of the ge-
ometry is then given by integrating it from the zeroth order solution for the
energy-stress tensor, directly given by the field content on the brane. We
outlined the foundations of this approach in chapter 5.8, the actual calcula-
tions are left for future research. Part of the reason for this is that in order
to identify the temporal evolution of the entanglement or impurity entropy,
we need to apply the covariant proposal suggested in [20] for the holographic
computation of entanglement entropy.

Outlook

We end this thesis with an outlook for possible future research apart from
time dependent backreaction. First of all, we should keep in mind that the
original Kondo model, which involves free electrons instead of strongly cou-
pled ones as in the holographic case, has been solved in quite some detail
over the years. Wilson’s renormalisation group approach [63] already gave
the numerical behaviour of the model throughout the entire renormalisation
group flow. The point of the holographic model of [60] and its generalisations
considered in this thesis was to consider the case of strongly coupled elec-
trons. Moreover, it serves to prepare a general framework that is adaptable
to generalisations of the original Kondo model. These include, among oth-
ers, considering multiple channels, multiple impurities and the Kondo lattice,
especially in strongly coupled hosts. The latter is an unsolved problem of
condensed matter physics. It is conceivable that gauge/gravity duality might
provide a new approach towards addressing these problems.

Before we turn to further generalisations, we need to recall the cases in
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which the model of [60] and the generalisations in this thesis are not reliable
any more. This includes most importantly the zero temperature limit 7" = 0,
for which we need to stabilise the scalar potential V' (®). We always restricted
it, as shown in equation (3.20), to include a mass term, only. This mass alters
the boundary expansions of the scalar field and defines the scaling dimension
of the dual operator @. To match the dimension A = 1/2 expected from
the conformal field theory approach to the Kondo model [87], we always set
the mass such that the Breitenlohner-Freedman bound is saturated. In the
probe limit, this means M = 0, while for the backreaction we set the mass
according to (4.51) to a non-vanishing value. In all cases, the potential of
the scalar is unbounded from below, which becomes apparent e.g. in the fact
that the scalar expectation value diverges as T' — 0. This behaviour is shown
in figures 3.3 and 4.4 for the probe limit and with backreaction, respectively.
A first approach to stabilise the potential from below is by inserting a ®*
term with different sign, implying a Mexican hat potential with a minimum
JsV (®,) = 0 at a value ®,. Regularity at the horizon involves both the
potential as well as its derivative as constraints for the boundary expansions
of the fields, as is shown in equations (4.52) - (4.54). From this we see that
the fields’ behaviour will be special at the minimum of the potential.

Let us conclude this thesis with thoughts about generalisations beyond the
single-impurity Kondo model. In the presence of another impurity, generi-
cally there is an additional coupling between the impurities themselves, which
is called the Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling. An effec-
tive Hamiltonian for this system is of the general form [126]

H=Hy+ Jg §1 . 8(771) + Ji §2 . S(FQ) + JrRKKY §1 . gg, (61)

where Hj is the kinetic term for the host fermions, r; are the positions of
the impurities, S; are the impurities’ effective spins, s(7) is the spin moment
of the host metal, Jg denotes the Kondo coupling and Jrx iy the RKKY
coupling between the impurities. Depending on the relative strengths of the
RKKY coupling and the Kondo coupling, another phase emerges and the
phase diagram becomes two-dimensional.

In our framework for backreaction, a description of another impurity
could be to add an additional defect hypersurface at a finite spatial dis-
tance L to the one considered in this thesis, where L should not be confused
with the AdS radius. Then, we would have two impurities, one anchored
at © = —L/2, the other one at x = +L/2, and we need to figure out the
backreaction of both hypersurfaces to the environment. Applying the Israel
junction conditions similar to the case considered in chapter 4, the manifold
would need to be split into three parts. However, the RKKY interaction be-
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tween the impurities in (6.1) is non-local and it is unclear how to incorporate
this in the gravity dual, which is a theory allowing local interactions, only.

There are approaches employing methods from conformal field theory in
the case of vanishing separation of the impurities [127,128], which circum-
vents the issue of non-locality. In a string theoretic top-down approach, an
extension of the brane setup of [60] with two coinciding D5-branes, N5 = 2,
seems be a possible way to find a holographic model of this kind. Coinciding
D-branes in string theory usually come along with enhanced gauge symmetry
in their DBI action.

Indeed, an approach to generalise the holographic model of [60] to the
two-impurity problem in this way was suggested in [101]. In that setup, the
U(1)-gauge field a on the defect hypersurface is enhanced to a U(2)-gauge
field, which was argued to be the dualisation of adding another impurity to
the setup. Apart from elevating the symmetry group of the gauge field a, the
action is the same as in the holographic single-impurity Kondo model of [60]
as given by (3.15). Hence, our approach to backreaction and time dependence
should be applicable to this model, too. Obviously, there is plenty of room to
discover dynamical critical behaviour along the phase boundary. Moreover,
the behaviour of the holographic entanglement entropy in this setup seems
promising.

From these insights, how could an extension to a whole lattice of impu-
rities in the framework of the holographic Kondo model of [60] look like?
It does not seem appropriate to take a large-N5 limit in the models above,
because the CF'T description is reliable only when the distance between the
impurities becomes negligible. With an entire lattice of Kondo impurities,
however, we would need to consider more and more impurities as we zoom
out to make their separations vanish.

Perhaps, a way to find a dual bottom-up model is to pick up our sug-
gestion from above: Place two defect hypersurfaces at a finite distance and
consider only the patch of the geometry between those. By virtue of the
imposed lattice symmetry, the complement of the geometry must be given
by copies of this patch. This setup could in principle reveal two phases with
an appropriate field content on the hypersurfaces: In one phase, the hyper-
surfaces go from asymptotic infinity into the event horizon separately, just
like in our framework discussed in chapter 4. In the other phase, both hy-
persurfaces might join in the bulk of the gravity dual, thus cutting off the
black hole.

It might be difficult to find an appropriate field content on the brane al-
lowing this kind of behaviour due to energy conditions as was already pointed
out in [1]. Nevertheless, this approach may provide a mass gap for the theory
which does not depend on the temperature but most likely only on a combi-
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nation of the spatial distance L between the impurities and the strength of
the Kondo coupling J. Whether or not one has to introduce a RKKY-like
coupling between the distinct impurities and how this can be incorporated
into the holographic model is, among various other unresolved questions, left

for future research.
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Appendix

(Geodesic normal flows

In section 4.3, we motivated the derivation of exact solutions for a static em-
bedding X of a codimension one hypersurface D carrying a constant tension
from a gauge field a. It was shown that in this case the energy stress tensor
yields a constant tension on the hypersurface, i.e.

S = AV - (A.1)

So, it is of interest to study constant tension solutions to the Israel junction
conditions, given by (4.17), for general dimensions. We will proceed in the
same way as we did for the holographic Kondo model: We split the bulk
manifold into three parts by N'=N_UDUN,, where Ny are the parts to
the “left-” and to the “right-hand side” of the hypersurface D, respectively.
This can be made explicit by defining a normal vector on D, so that N, is
the part in which direction the normal vector points. For some coordinate
system (¢, ¥, x), the embedding is given by

X:l: :D — N:I:u (t7g> = (tagwr = Xﬂ:<t7f)) ’ (AQ)

where ¢t and i are coordinates tangential to the hypersurface and the x-
position of the embeddings are given by the functions X,. We will assume
mirror symmetry around the hypersurface, that is

Xt g) = —X_(1.3). (A.3)
In this case, the extrinsic curvatures K+ of the embeddings Xy satisfy
Ky = =Ky (A4)
so that the junction conditions simplify to
/QN)\ 1 o
Ky = -5 (ﬁ) Y = €Yo - (A.5)
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We introduced a proportionality constant ¢y, which is completely determined
by d, ky and A. Since we are only interested in the case with mirror symme-
try, we will drop the signs (4) on any object from now on and only consider
the embedding on the (+)-side.

In [60], the case without backreaction to the geometry was considered.
This maps to setting xy = 0 and hence ¢ = 0 in equation (A.5). The em-
bedding chosen was totally geodesic, K, = 0, so the junction conditions are
trivially satisfied. In the following we will show an explicit construction of so-
lutions to (A.5) for non-vanishing ¢ # 0 in case we have such a trivial solution
with ¢ = 0 as a starting point. In brief, the construction is given by following
at each point on the hypersurface the geodesic starting perpendicular to the
hypersurface for a specific arc length s, which is linearly proportional to c.

We start with a totally geodesic, timelike embedding X, : D — N of
a codimension one hypersurface D into a D-dimensional manifold A'. This
embedding can be equipped with a normal vector N of unit norm pointing
into M. At each point on D, this normal is the starting point for a unique
geodesic. By following the entity of geodesics starting on D for a proper
length s, we generate new embeddings denoted by A;. These embeddings
are regular at least up to some finite s due to Gauss’ lemma. Moreover, the
geodesics are always orthogonal to any such hypersurface defined by X, such
that this construction does not break down unless we face conjugate points at
which the embeddings stop being regular. Hence, we denote the vector field
generated by the normal flow also by N, which should not cause confusion
in this context.

If the embeddings defined via X still satisfy (A.5), they are solutions of
the Israel junction conditions for nonvanishing ¢ # 0 and we succeeded to find
analytic constant tension solutions. In order to show whether this holds, we
need to calculate the Lie derivatives of the induced metric and the extrinsic
curvature w.r.t. the geodesic normal flow. To make the computation more
easy, we define both quantities as tensors in the exterior manifold, which
does not enhance the amount of information they carry.

Instead of defining the induced metric as the pullback of the ambient
metric g with respect to X, it is equivalent to project out its components
normal to the embedding by

Y=g-nan, (A.6)

where n = g(N,:) = N,dz® is the normalised dual 1-form to the normal
vector field N and index-lowering is due to the ambient metric, N, = gosN”.
While following the induced metric along the normal flow generated by N,
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its Lie derivative is given by
Lyy=LNng—Lp(n®n)=Lyg—Ly(n)@n—n® L,(n)=LNng, (A.T)

where we applied the Leibniz rule for the Lie derivative, and exploited that
Ln(n) =0 if N generates a geodesic flow. The Lie derivative of g is given by

(Luvg)(V,W) = g(VyU W) +g(V,VwU), (A.8)
or, in components,
(LY = (Lng)uw = VuNy + VN, (A.9)

The extrinsic curvature of the embedding can be defined as a tensor in N
by splitting the covariant derivative in the ambient space into tangential and
normal parts

VoV = (Vo) + (VuV): = V|V + K(U,V)N . (A.10)

Here, U, V are sections of TN tangential to D and VIl denotes the induced
connection on D such that V|[|]V 1 N. Equipped with this splitting, the
extrinsic curvature K is defined as

K(U, V) = g(N, VUV) = —g(VUN, V), (All)

or, in components,
1
K;w = _V;ANV = _VVNM = _V(NNV) - _5 (VMNV + VVNH) : (A12)

It satisfies K(N,V) =0 for all V'€ TN. Hence we recover a standard result
of differential geometry,

(LxY) o = —2K . (A.13)

The interesting question is: What happens with the extrinsic curvature of
the embedding along the same flow? Acting with the Lie derivative on a
general contraction of K

Ly(K(U,V))=(LyK)U,V)+ K(LyU, V) + K(U,L§V), (A.14)
and solving for Ly K, we obtain
(LNvK)(U,V) = Ln(K(U,V)) = K(LnU,V) = K(U,LNV)
:gV(KE,,V))\—K([ ;U],V) K(U, [N, V]Z (A.15)

N

-~

a) (0) (©)

—
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The individual parts are given by
(a) = N(K(U,V))
= Vn(9(N,VyV)) = g(N,VNViV),
(b) - _K([N7 U]? V) = _g(N7 V[N,U]‘/)

(A.16)
= g(N,RnvV) — g(N, VNV V) + g(N,VyVaV),
(C) = _K(U7 [N7 V]) = _g(Na VU[Nv V])
= —g(N, VUVNV> + g(N, VUVVN) .
For the computation of (b) we used
nyZ = VX(VyZ) - Vy(VX)Z - V[ny]Z, (Al?)

and for that of (¢) that the Levi-Civita connection has vanishing torsion,
ie. [X,Y] =VxY — VyX. In summary, we obtain

(LNE)(U, V) =(a) + (b) + (c)
=g(N,VnVuV) +g(N, RyyV) — g(N, VNV V)
+9(N,VuVNV) = g(N,VyVnV) + g(N,VyVyN)
=9(N,RyuV) + g(N,VyVyN)
= g(N, RyuV) — g(VuN, Vy N) .

-~

(d) (e)

(A.18)
Although not obvious, Ly K is symmetric in its arguments and vanishes if
either of those is proportional to V.
We would like to have the above expression more explicitly in terms of
the Ricci scalar and Ricci tensor, so we apply the Ricci decomposition

R=A+B+C. (A.19)

Here, A is the trace part and B the pseudo-trace part of the Riemann tensor,
both of which are functions of the Ricci curvature and metric only. The Weyl
tensor C' vanishes in three dimensions. In components, the decomposition
reads
Rapea = ki C
abed — (D — ].)(D _ 2) (gac 9bd — Yad gbc> + abed

1

+ D_9 (Rac goa + Rod Gac — Rad 9oe — Ric Gad)

(A.20)

with the definitions for the Ricci and scalar curvature

Rab =R

ach

R :=g¢® R, . (A.21)
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Staying in components, we find

R
d V:NaNﬁ apfy — v
()M Rllﬂ (D_1>(D_2)’7H
1

+ 53 (N*N°Ropgu + Ry — N*Roy N, — N°Rg,N,) + N*N°Cl s,

(e)uv = - g(vMNa VVN)
(A.12)

=~ gap(VuN)(VuN?) = =" (V.No)(VuNp) "= —g" KoK, -
(A.22)
Summing up, the Lie derivative of the extrinsic curvature along the geodesic
normal flow is in coordinates given by

R
K v v NaNﬁa v aBKa Ku
1
+ 55— (N*N°Raggu + Ry = N*Ray N, = N°Rg,N,)

(A.23)
We will now further specify the ambient manifold AV, and restrict ourselves
to Einstein manifolds for which

R
R/W = 5 Guv - (A24)

Furthermore, we assume vanishing Weyl curvature, C' = 0, which is always
true in three dimensions and for conformally flat manifolds in higher dimen-
sions. In this case, (A.23) reduces to

R

(ﬁNK)W = m%u

— ¢ Ko Kp, . (A.25)

If the normal geodesic flow starts with an embedding X, : D < N such that
the extrinsic curvature initially satisfies

KMV = CVuw s (A26)
5=0 s=0
the Lie derivative (A.25) simplifies to
(LyK) = R (A.27)
N " s=0 a D(D - 1) 7”” s=0 .
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at the initial surface. Intuitively, there is no reason why the proportionality
between induced metric and extrinsic curvature could be destroyed. The Lie
derivatives only involve terms allowed by the proportionality.

To make this statement manifest, we utilise a coordinate system in which
the normal vector is always given by N* = {1,0,...}. The equations now
read

887uu = _2Kuy7 (A28)
asK;w == RV}W - gaﬁKauKﬁu7 (A29>
where we defined R = R/D(D — 1). This is a coupled system of first or-

der ODEs in s, admitting a unique solution depending only on the initial
conditions y(0) and K(0). We can make an ansatz for this solution by

KN,/(S) = C(S) 'Y/LV(S) (A'30>

which is supposed to be satisfied at some s = sq initially. Differentiating
(A.30) with respect to s and applying (A.29), we find

D « (A.29) (A.30)
Ry — 0 Koy Kp, = 0K, = (8) Y +¢(5) Oy - (A31)
N———— ——
:CQ(S) Yuv :_2K/,w
After reshuffling, this yields
(¢(5) = (R+@(5)) 3 = 0, (A.32)

which is an ODE for ¢(s) since 7, cannot vanish. If the scalar curvature,
R = R/D(D-1), is constant in NV, it can be solved by separation of variables
with its solution given by

—\/IR| tanh (\/ﬁ(s — o) — artanh (co/ |fz|)> it 2 <0

c(s) = co/ (1 —co(s — s0)) it R=0>
VR tan (\/}T?J(s — Sp) + arctan (qﬁ\/ﬁ)) if R >0
(A.33)

where we defined ¢(sg) = ¢q. Before elaborating the distinct cases, it might
be a good idea to review our assumptions: We have a codimension one hy-
persurface D embedded in NV, which

e satisfies the proportionality given in (A.5) initially,

e whose ambient manifold (N, ¢g) has vanishing Weyl curvature, and
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e has constant scalar curvature everywhere.

If these assumptions are satisfied, we showed that the proportionality (A.5)
continues to hold as we change the constant tension on the hypersurface.
We conclude this appendix with a discussion of the three cases of negative,
positive, and vanishing scalar curvature:

Negative scalar curvature, R <0, is the most important case for appli-
cations of the geodesic normal flow to backreaction in the holographic Kondo
model as described in chapter 4. Here, all assumptions are satisfied as the
ambient spacetime is given by a BTZ black brane, which due to its construc-
tion has a constant scalar curvature. If the constant tension is positive, which
possibly is the only reasonable case anyways, we find that the arc length of
the geodesics, s, needs to be positive due to (A.33). The amplitude of the
artanh function is bound by one, which implies a nontrivial bound for the
proportionality constant,

e(s)| < VR. (A.34)

Upon comparing to (A.5), this yields exactly the bound (4.47) found for the
backreaction of the field content in the holographic Kondo model discussed
in section 4.3.

Vanishing scalar curvature, R = 0, is given by a flat ambient spacetime
and is probably the most intuitive case. The construction works if and only
if ¢(sp) # 0 since otherwise, the function ¢(s) cannot be driven away from
zero due to (A.33). However, the construction works with negative feedback
for nonvanishing initial values. For ¢y > 0, this describes can for example
describe a static sphere in Minkowski space. As we follow the geodesic normal
flow of outwards directed geodesics, the radius of the sphere increases and
its extrinsic curvature decreases.

Positive scalar curvature, R > 0, is given by asymptotically de Sitter
spaces. As we increase the constant tension of the hypersurface, we find
from (A.33) that the arc length parameter s decreases. Thus, the volume of
the spacetime shrinks as we follow the flow. An extreme case similar to the
bound found for negative scalar curvature is that the proportionality constant
diverges at |s| = 7/(2R). Hence, is is not the amount of energy-stress on the
hypersurface which is bounded, but the movement of the hypersurface due
to backreaction.






Appendix B

Numerical approach to backreaction

In this appendix, we give some details on how we solved the static backreac-
tion for the holographic Kondo model of [60], as published in [2]. As men-
tioned in section 4.4, one trick which was applied was to solve the constraint
equation of the static Israel junction conditions w.r.t. the radial derivative of
the embedding. For convenience, we define

X2(2) =1+ h(2)X"?(2), (B.1)

along with its positive square root
X =Var. (B.2)

With this, the zz-component of the Israel junction conditions (4.30) is given
by
B 1
4122212
F2LB 2 X' X + 2Ky LY M2 h &2 X2 —4L3h2X’X> ,

0 (knz*haf = 26y L2 22 (af 02 X2 4 12 07)

(B.3)

where we omitted the arguments of the functions. Despite its complexity,
(B.3) is actually solvable for X’. There are four solutions: Two of them have
non-vanishing imaginary parts and can be neglected, as X and its derivative
are supposed to be real-valued. One of the remaining solutions can also be
rejected, as the asymptotic expansion near z = 0 yields X’(0) > 0. However,
due to our analysis of the analytic background solution (4.41), we know that
X'(0) < 0. The unique solution, which cannot be sorted out by considera-
tions like that is given by

X'(2)=—/— (B.4)
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where we defined
A=hmL* (40’ L* — C*K3 ®* + hL* 21/ (21 — 4h)) , (B.5)
B = h? k% 0?24 C
T LR Lz (2% 2207 (a22% — RI2M2) + LW (4h - 2 1))
+2hn§VLq>402+\/ﬁ—4h4L3] , (B.6)
D=h(zh —2h)’ [L‘* (4%@@%%’2 (a2 22 — h L? M?)
+ 4h3R3 A+ L2 (2 — 2h)2> + hk3 2Bt
+ K% L2 a” (92 C — 2h2z2®’2)] (B.7)
C = hL2M? — a222. (B.8)

This is an ordinary differential equation for X in the radial coordinate z
depending only on the field configurations of ® and a;. In the field equations
of & and a;, the embedding appears only via the induced metric on the
hypersurface, which is given by

ds? = % (—h(z)dt2 L1 héz();)(/(zy + dx2> , (B.9)

which tells us why the factor X? defined in (B.1) appears all over the place.
However, it also shows that the field equations of motion really just depend
on X'(z). Since we solved for it in (B.4), we can insert this solution into
the equations of motion for ® and a; and obtain two ordinary differential
equations which only depend on those fields and functions we know. They
become quite involved, which is why we do not write them here.

The computation of the field configurations of ® and a, is then performed
by a three-fold approach: Close to the boundary, we apply the boundary
expansions of the fields ® and a,, and insert them into (B.4). We compute
them up to fourth order by defining

3 1+34
<I>r—>\/§<ozlogz+ﬁ+z,zi (Zb log’ (2 )) (B.10)

3 2430

3
at|—>Q/z+,u+Zcilog +Z Zb log’ (2 (B.11)
i=1

where @) is already determined by (4.50), a and [ are supposed to satisfy
(3.30), and the rest of the coefficients czfj can be solved for @, i, a, and .
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Note that the number of logarithmic terms we need to include at every power
of z is linearly increasing in the power of z. The upper bound of the number of
logarithmic terms is an empiric formula, although one could probably derive
such a bound by a more sophisticated analysis of the equations.®

In principle, the expansion coefficients can be solved in full dependence
of arbitrary values of @), L, zy and k. It is, however, much more efficient to
fix their numerical values before computing the expansions. For the compu-
tations, we chose k =1, L =1, zy = 1, C = 1/2 and thus Q = —8/4/255 by
virtue of (4.50). The coefficients ¢; are then analytically given by

B 16972802a% — 16712702a.3 + 848640132

. , B.12
1 520200+/255 ( )
.Y a(83563510¢—-84864016)’ (B.13)
5202001/255
84864012
oy — —0a80401a” (B.14)
15606001255

and the higher order coefficients are also analytically solved for, but would
require several more pages to write them down.

Applying the boundary expansions yields the values of ® and a; close to
the asymptotic boundary at z = 0. We use this approximation until the
asymptotic cutoff €, = 1073 by inserting the values of «, 3 and p which we
solved for numerically by integrating the equations of motion of ® and ay.

Between the asymptotic cutoff €,,; and the horizon cutoff €,,, we inte-
grate (B.4) numerically by the shooting method for which we use MATHE-
MATICA’s PARAMETRICNDSOLVE function. Beyond the horizon cutoff €,
we use the horizon expansion in the same way as for the values close to the
asymptotic boundary. The horizon expansions are given by

N

Y K (1-2), (B.15)
=0
N

a ey bt (1—2), (B.16)
=0

which luckily do not contain logarithmic terms at any order due to regularity
at the event horizon. There are two parameters, equivalent to ®'(zy) and
ai(zpg), which cannot be chosen or solved for, but which need to satisfy the

18 The real issue is that taking derivatives of a logarithmic term of the form 2® logb(z)
lowers the order in z by one, but mixes the orders in logb(z). With complicated equations
of motion, tracking the appearances of the logarithmic terms is thus involved.
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regularity conditions given in (4.52) and (4.53). The rest of the expansion
coefficients can be solved in terms of ®(zy) and a}(zy). This can easily be
performed analytically up to high orders. We choose to expand the fields up
to tenth order at the horizon which allows us to choose the horizon cutoff as
€hor =— ZH * 9/10

At this point, we found the field configurations of ® and a; throughout
the hypersurface. In order to compute entanglement and impurity entropies
of symmetric patches around the defect, we need the embeddings and their
derivatives at excellent precision on a predefined set of points in the radial
direction. Hence, we chose to interpolate the embeddings by computing their
values X (z) on a Chebyshev-Gauss-Lobatto grid, z € CGL(0,1,101), after
setting zy = 1 by a coordinate transformation z +— z/zg. The grid is defined
by

CGL(zy, L,n) = {xo +§ (1 — cos (nﬂ_kl»'k €0...n— 1} . (B.17)

and spans a set of n points between (and including) =g and z¢ + L. The
interpolation is then given by summing up the Chebyshev-Gauss-Lobatto
polynomials up to order n with appropriate weights. In MATHEMATICA, this
is done automatically if we interpolate the field values on the grid by using the
built-in function Interpolate and setting the option InterpolationOrder
to A11. The derivatives at the nodes are given directly by (B.4). The field
values and derivatives should converge exponentially with the number of grid
points, which we choose to be n = 101.

Starting on these grid points, we can find the normal vectors from the
derivatives just by requiring

gunTVNY =0, (B.18)

where T'is a tangential to the embedding, and normalising N. With the em-
bedding values and those normal vectors determined on the Chebyshev grid,
the geodesics starting normal to the embedding are determined completely
and can be given analytically but subject to the numerical error from the
computation of the embeddings.

The expressions can be found in the appendix of [109]. Here, we sum-
marise the important ones we need in our case for a static embedding. Let
(2p, X (2p)) be the position on which a single geodesic starts normal to the
defect hypersurface. Due to X'(z,) < 0, it propagates further into the bulk
v* > z, and eventually turns around at some point (z,, X,). After that, it
propagates towards the asymptotic boundary, 7* < z, and asymptotes to
z = 0 at some finite value v*(z = 0) =: /.
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The value of the turning position is found to read

z(2, X' (%)) = 20/1 + X" (2)2 h(2) - (B.19)

A geodesic propagating in a BTZ background on an equal time slice from
some z; to some different 25 covers a distance in its z-coordinate given by

2 _ 2 2 _ .2
AX(Zl’ZQ, A ZH> = —ZH IOg <\/ZH °1 \/Z* Zl) . (BQO)

\/z?q—zg—\/zf—z%

Combining these results, we find ¢ as a function of z,, X (z), X'(2) and zgy
to read

Uz, X, X 2) = X + AX (24, 20, 24, 21) TAX (24,0, 24, 2H) (B.21)
X.
where we omitted function arguments, i.e. z, is a function of 2z, and X’ due

to (B.19) and ¢ is always positive, £ > 0, in our setup. The renormalised
proper length of this geodesic is given by!?

Eren(zb,X, X/,ZH) = log B22)

where, again, z, is a function of z, and X’ due to (B.19).

With all these definitions, we can map each set of (z, X (25), X'(23)) for
each value of z, in the Chebyshev-Gauss-Lobatto grid (B.17) to a table of
values (¢, L,e,). We do this for all embeddings at each temperature 0 <
T < T, we evaluated, which makes a set of 132 different embeddings, each
mapping to a set of 101 pairs (¢, L,¢,(¢)). The first and last of these pairs
are always trivially given by (0,0), for the geodesic starting at asymptotic
infinity 2z, = 0, and (00, 00), for the geodesic starting — and staying forever
— at the event horizon. The last remark readily follows from the facts, that
static event horizons are totally geodesic surfaces, that geodesics starting
tangential to such surfaces stay tangential, and that the normal vector to the
embedding at the event horizon is always tangential to the event horizon.

According to the Ryu-Takayanagi formula (2.91), the entanglement en-
tropy of a region A symmetrically around the defect, whose boundary 0A

19 Tn these computations, we chose to renormalise the geodesics with and without the
defect separately by subtracting the asymptotic divergence, although we advertised that
this is not needed for the defect entropy. In this way, we do not run into numerical issues
as we have to compute them both in order to build the difference. It makes no difference
for the result.
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has a distance ¢ to the impurity, is given by twice the proper length L, ()
of those geodesics. To find the impurity entropy, Sp(¢) = S(¢) — Sy(¢), we
need to subtract the entanglement entropy of the same patch but without
the impurity. This is done by removing twice the geodesic length Ly(¢) of the
geodesic which starts at * = ¢ and ends up perpendicular to the trivial em-
bedding X = 0, which corresponds via (2.91) to the entanglement entropy if
there is no impurity. The resulting quantity, AL(¢) = L(£) — Ly(¢), needs to
be normalised by the factor 1/4G y appearing in (2.91) and then corresponds
to the holographic dual of the impurity entropy as defined in (4.32).



Appendix

Numerical time evolution scheme

In chapter 5, we analysed the holographic Kondo model of [60] in the presence
of a time dependent Kondo coupling. Here, we will explain some details of
the numerical implementation. First of all, we need to notice that most
of the implementation of the numerical algorithm has been performed by
Strydom in [67]. For this thesis, we adapted this algorithm: Firstly, we
changed the gauge fixing, which actually caused a change in the behaviour of
the quasinormal modes. Moreover, the evolution algorithm was optimised by
using a small trick, which increased its performance by an order of magnitude.
Various other changes of the numerical code were performed, too, which
however were not as important, so we will focus on those in the following.

Gauge fixing

In [67], the author took the radial gauge, which was already chosen in [60] and
is a natural choice for holographic models. This fixes the gauge freedom up
to a function of time, A\(¢), since the transformation of the radial component
of the gauge field

a, — a, + 0,A(t, z), (C.1)

is invariant under A(t,z) — A(t,2) + A(t). On top of the radial gauge, this
residual gauge freedom has been utilised in [67] to fix the phase of the scalar
field by demanding (¢, z — 0) = 0, which is possible by choosing A(t) such
that the complex scalar field transforms as

B(t,2) = eVEDp(t, 2) — MOD(t, 2) = WEATMOD (¢ 2) (C.2)

where we must choose \.(t) = —(t,0) to obtain a vanish phase asymptoti-
cally.
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It might seem, that this should not have any effect on the physics. How-
ever, the gauge transformation we need to carry out in order to achieve the
demanded behaviour of the phase is a large gauge transformation in two
senses: Firstly, it doesn’t vanish at the asymptotic boundary and secondly,
it diverges. This was already noticed in [67]. The first fact implies that
there are issues in general, since gauge choices need to be taken carefully if
boundaries are involved. The second fact is specific to the AdS,-subspace to
which the gauge field in constrained.

This hints towards the fact, that a fixing the gauge in AdS, subspaces
without being careful can alter the physics. Actually, this could be seen in
the behaviour of the quasinormal modes. If we kept the phase fixed asymp-
totically, ae = 0 = [ as derived in [67]. The lowest lying quasinormal of
(|O]), determined by the temporal behaviour of 3, obtains a real part in
its frequency at low temperatures. Since [y = 0, it follows that 5, =
and we really describe the quasinormal mode of the modulus of the scalar
operator. Comparing with figure 5.11, in which the lowest lying quasinormal
mode is purely imaginary at all temperatures, this clearly displays a differ-
ent behaviour to our numerics, in which we released the constraint to the
phase. Due to this, we choose not to constrain the phase. In the algorithm
developed in [67], we therefore need to reintroduce s and 5 as dynamical
boundary coefficients, which is straightforward. They are solved for in the
time evolution scheme, and various plots are shown in chapter 5.

The time evolution scheme

We optimised the time evolution scheme of [67] by introducing analytic
derivatives for the computation of the Jacobian matrix. In order to under-
stand what this means, we first need to introduce the basics of the numerical
code itself, which is done in the following. Before we begin explaining the evo-
lution scheme, we need to mention that it does not operate on the coordinates
(t,z,2) as in the metric given in (5.2), but rather on Eddington-Finkelstein
coordinates (v,y,x). The coordinate map between those frames reads

y=vz,
v =t— 2z artanh (z/2p) (C.3)

r=ux,

such that the new metric is given by

1 /-
ds%, = i (f(y)d’u2 —2dvdy + d:r;2> , (C4)
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where f(y) = 1 — y*/y} and we defined yy = \/zg. There are some ad-
vantages in the adapted Eddington-Finkelstein frame: Firstly, the temporal
coordinate v is constant on characteristic slices, which means that pertur-
bations outside of the event horizon can approach it in finite Eddington-
Finkelstein time. In Schwarzschild time ¢, perturbations approach the hori-
zon only asymptotically. Since the computation domain is necessarily finite,
changing to a characteristic coordinate frame is a must in black hole physics
if we want to observe thermalisation. Moreover, the factors of \/z appearing
in the boundary expansions of the scalar field (5.6) change to y, which makes
boundary expansions easier to read and increases convergence close to the
asymptotic boundary. Finally, as y — 0, we can can identify ¢ = v, which
means that the time dependence of the asymptotic boundary coefficients re-
mains the same. Hence, we can directly read off the temporal evolution of
them once we solve the equations in the gravity bulk.

In the algorithm used to compute the numerical evolution of a; and ® =
@1 + 1¢o, the gravity bulk is discretised on a numerical grid. The nodes,
on which the fields are discretised, are distributed on a Chebyshev-Gauss-
Lobatto grid, given by (B.17), in the radial direction. The outermost node
is lying on the boundary cutoff e,,q = 1073, while the innermost point is
chosen to be located inside the event horizon at epo, = 1 + 1073.2° This
has the advantage, that we need not to worry about regularity conditions
being satisfied at the event horizon anymore: If we choose the initial values
at t = 0 to satisty the regularity conditions, they keep being regular due to
the fact that the Chebyshev polynomials are regular. Discretising field on a
Chebyshev-Gauss-Lobatto grid is the same as expanding them in Chebyshev
polynomials, so the irregular modes vanish automatically.

At the asymptotic boundary, y = 0, we need to compute time dependent
boundary expansions of all the fields involved. This is necessary, as y = 0 is a
singular point in the partial differential equations and hence we run into nu-
merical problems if we cannot get away form it. The algorithm which carries
out the expansions can be found in [67]. The only difference in this thesis is
that we need to reintroduce fs(t) and s (t) as advertised above. This changes
the boundary expansions, but the algorithm fortunately continues to work
just fine. Next, we impose the boundary condition a;(t) = k7 (t)5;(t) directly
on the boundary expansions. The boundary expansions of the fields are used
to map their asymptotic boundary coefficients (k7 (t), 81(t), fa2(t), p(t)) to the
respective field values at the boundary cutoff €,,4.

For the temporal direction, a regular grid was chosen. To evolve the sys-

20Here, we normalised the lengths to zy, the position of the event horizon, so that
zp +— 1, which is equivalent to z — z/zy, t — t/zp.
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tem numerically, we need to define initial values and derivatives. The initial
values are found by solving the static problem?! at ¢ = 0 for some value of
kr(t = 0) and the derivatives are always set to vanish initially. Equivalently,
the field values at several initial time slices are chosen to coincide, where the
number of initial time slices depends on the order of the evolution algorithm.
This approach is fine as long as we make sure that the time derivative of the
quench profile £ (t) initially vanishes, too. We are using Tanh- and Gauss-
like quenches, which are exponentially approaching their asymptotic limits
apart from their midpoint ¢y as defined in (5.15) and (5.16). Hence, this
is approximately the case, if we take the midpoint ¢y of the quenches to be
away far enough from ¢ = 0, for example by setting to = 5/s, where s is the
steepness parameter as defined in (5.15) and (5.16). Note that for quenches
onto the critical value k., we rather use ty = 5/log(s) due to (5.17).

Given a set of partial differential equations which are n'" order in time,
we typically define g*) = 9Fg for 1 < k < n — 1 and g any dynamical field
we want to solve for. We replace any occurrence of higher order derivatives
in the equations of motions, so the differential equations become first order
in time and are closed upon adding the definitions in the previous sentence.
The number of fields has increased due to the ones we just defined. If we
label all the fields by f¢, where a € {1 ...} indexes the different fields, the
equations of motion are now given by

FE™E {0 = 0. (C.5)

For the m'" field in this set, let us label its discretised field values at the
radial note 7 and temporal node j by f;. Given those field values on all
spatial nodes of all time slices indexed by {...,j — 2,7 — 1,5}, our task is to
find the field values on the next temporal node, j+ 1, and iterate the process
until we gained enough information about the evolution and decide to stop.

We can utilise several methods to do so, where two main categories are dis-
tinguished: Explicit and implicit methods. The algorithm developed in [67]
uses an implicit method similar to the Crank-Nicolson scheme. In principle,
any evolution scheme is an approximation for any derivatives in (C.5) for each
field f* in terms of the field values on the numerical grid. The discretised
equations of motion then read

an]<{flgl}) =0. (C.6)
The Crank-Nicolson scheme discretises the equations of motion is such a way
that we cannot directly solve (C.6) for the field values ff;,, on the next time

21 Reducing the equations of motion in dependence of the Eddington-Finkelstein coor-
dinate (v,y) to the static case by setting any derivatives 9,(-) = 0, we obtain the exact
same static problem as was already solved in [60].
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slice. Rather, we need to iteratively solve a set of algebraic equations which
are nonlinear in fi'; and ff;.,. This is basically done by the Newton-Raphson
algorithm, which is a root-finding algorithm for the discretised equations. To
find a root, we first evaluate the equations on some initial guess for the values
of the fields at time slice 7 + 1. Taking the ones on the previous time slice,
J, is always a good start. The equations will, in general, be non-vanishing in
this first step, so we need to adapt the guessed field values on the next time
slice. Doing this randomly is not a good idea, so to find the optimal direction
of the next guess, we compute the gradient of the equations of motion with

respect to each variable, i.e. the f? We define the Jacobian matrixz by

J+1
oOF2.
I (o) = 57 C.7
2, (fk:,l) af]gl ) ( )

which obviously is a fairly complicated object. Having found this gradient,
however, we can go into the opposite direction, which generically takes us
closer to the root. Iterating this process guarantees convergence to the solu-
tion of the algebraic equation at time step j + 1.

Computing the Jacobian matrix

The computation of the gradient can be done numerically by evaluating the
equations on infinitesimally perturbed values, which needs a lot of evaluations
of the equations in each time step. A more efficient approach is to compute
this gradient once and for all at the beginning of the evolution. This is done
by differentiating the discretised equations of motion (C.6) analytically with
respect to each field value. We obtain an analytic gradient and can reuse it
in each iteration, which speeds up the evolution scheme by approximately an
order of magnitude.
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