
Injecting Continuous Time Execution
into Service-Oriented Computing

Ning Yu

München 2016

Injecting Continuous Time Execution
into Service-Oriented Computing

Ning Yu

Dissertation
an der Fakultät für Mathematik, Informatik und Statistik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Ning Yu

aus Changchun, China

München, den 23. August 2016

Erstgutachter: Prof. Dr. Martin Wirsing
Zweitgutachter: Prof. Dr. Hubert Baumeister
Tag der mündlichen Prüfung: 08.12.2016

Formular 3.2

Name, Vorname

Eidesstattliche Versicherung
(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. .5.)

Hiermit erkläre ich an Eidesstatt, dass die Dissertation von mir
selbstständig, ohne unerlaubte Beihilfe angefertigt ist.

Ort, Datum Unterschrift Doktorand/in

Yu Ning

München, 23.08.2016

vi

Contents

Abstract xiii

Zusammenfassung xiv

Danksagung xvii

1 Introduction 1
1.1 Service-Oriented Computing and SENSORIA Reference Modeling Language . . 1
1.2 Hybrid System and its formal models . 3
1.3 Thesis Overview . 4

2 Background knowledge 7
2.1 Differential Equations . 7
2.2 Hybrid Automata . 8

2.2.1 Safe Semantics of Hybrid Automata . 9
2.2.2 Live Semantics of Hybrid Automata . 10

2.3 Computational Tree Logic . 10
2.4 First-Order Dynamic Logic . 12

2.4.1 Syntax of b-DL . 12
2.4.2 Semantical domain and semantics of b-DL 14

3 An overview of SRML 17
3.1 Introduction to SRML service module . 17
3.2 Semantic domain of SRML . 21

3.2.1 Service-Oriented Configurations . 21
3.2.2 Service-Oriented Doubly Labeled Transition System 23

4 Hybrid extension of SRML and its semantic domain 29
4.1 The extension of SRML semantic domain . 30
4.2 Interaction signatures . 33
4.3 Extension of Business Roles . 36

4.3.1 Language of states . 39
4.3.2 Language of effects . 41

viii Inhaltsverzeichnis

4.3.3 Transition specifications . 44
4.3.4 Formalization of business roles . 45

4.4 Extension of Business Protocols . 45
4.4.1 State predicates . 47
4.4.2 Hybrid programs and dTL formulas . 48
4.4.3 Behavior constraints . 51
4.4.4 Formalization of business protocol . 52

4.5 Extension of Interaction Protocols . 53
4.5.1 Coordinations . 55
4.5.2 Interaction protocols and connectors . 57

4.6 Formalization of service module . 59

5 A method for verifying the extended SRML behavior constraints 63
5.1 SRML based finite automata and regular expressions for transitions 63
5.2 Verification of behavior constraints . 70
5.3 Case study of European Train Control System 70

5.3.1 An overview of the Train Control System 70
5.3.2 The specification and verification of service module Train-Control 73

6 Mapping from SRML to implementation environment 81
6.1 Introduction to WebSphere Process Server . 81
6.2 Mapping from SRML module to WPS module 84
6.3 Transformation and implementation of SRML module Train-Control 91

7 Conclusion and future prospects 99
7.1 Summary and conclusions . 99
7.2 Future prospects . 101

7.2.1 Formal specifications in SOA . 101
7.2.2 Methods and techniques for validation 101

A SRML specification of Train-control 103

B Implementation of Train-Control module 107

C Publication of Ning Yu 113

List of Figures

3.1 A SRML service module where every SC is a service component, every EX-P
is a provides-interface, every EX-R is a requires-interface and every IW is an
internal wire. 18

3.2 SRML service module Train-Control . 20

4.1 The set of interactions of Business Role ETCSC 34
4.2 Business Role: ETCSC . 37
4.3 Business Protocol: MonitoringCenter . 46
4.4 The behavior constraint of business protocol MOC 52
4.5 An interaction protocol of service module Train-Control 54
4.6 The connectors that bind the business protocol RBC to the business roleTR 58
4.7 The composition of a connector . 59

5.1 Transition diagrams for DTrain−Control . 66
5.2 Network architecture of a control system . 72
5.3 Model of ETCS Level 3 . 72
5.4 SRML service module Train-Control . 73
5.5 All the paths of SO-HL2TS m that are selected by service module Train-Control . 76

6.1 A WPS component with all types of implementation 84
6.2 The correspondence between SRML service module and WPS service module . . 86
6.3 Automaton for SRML service module Train-Control 92
6.4 WPS state machine for module Train-Control 93
6.5 WPS interface for module Train-Control interaction 96
6.6 Key features of WebSphere Integration Developer 98

B.1 Assembly Diagram of WPS service module TrainControl 111

x Abbildungsverzeichnis

List of Tables

4.1 Informal and formal interpretation of behavior constraints: e?,e!,e¿ ∈ Act and
s,w ∈ SP where Act is the set of actions in the SO-HL2TS m and SP is the set of
state predicates. 51

5.1 Rule schemata of the temporal dynamic dTL verification calculus 71
5.2 Terms declared in service module Train-Control 77

6.1 Operations of TrainControlInterface . 85
6.2 Data type variables of TrainControl module . 87
6.3 Correspondence between elements in SRML service module domain and ele-

ments in WPS service module domain (implementation type of WPS service
components: state machine) . 89

xii Tabellenverzeichnis

Abstract

Service-Oriented Computing is a computing paradigm that utilizes services as fundamental el-
ements to support rapid, low-cost development of distributed applications in heterogeneous en-
vironments. In Service-Oriented Computing, a service is defined as an independent and au-
tonomous piece of functionality which can be described, published, discovered and used in a
uniform way. SENSORIA Reference Modeling Language is developed in the IST-FET inte-
grated project. It provides a formal abstraction for services at the business level.

Hybrid systems arise in embedded control when components that perform discrete changes
are coupled with components that perform continuous processes. Normally, the discrete changes
can be modeled by finite-state machines and the continuous processes can be modeled by dif-
ferential equations. In an abstract point of view, hybrid systems are mixtures of continuous
dynamics and discrete events. Hybrid systems are studied in different research areas. In the
computer science area, a hybrid system is modeled as a discrete computer program interacting
with an analog environment.

In this thesis, we inject continuous time execution into Service-Oriented Computing by giv-
ing a formal abstraction for hybrid systems at the business level in a Service-Oriented point of
view, and develop a method for formal verifications. In order to achieve the first part of this goal,
we make a hybrid extension of Service-Oriented Doubly Labeled Transition Systems, named
with Service-Oriented Hybrid Doubly Labeled Transition Systems, make an extension of the
SENSORIA Reference Modeling Language and interpret it over Service-Oriented Hybrid Dou-
bly Labeled Transition Systems. To achieve the second part of this goal, we adopt Temporal
Dynamic Logic formulas and a set of sequent calculus rules for verifying the formulas, and de-
velop a method for transforming the SENSORIA Reference Modeling Language specification
of a certain service module into the respective Temporal Dynamic Logic formulas that could be
verified. Moreover, we provide a case study of a simplified small part of the European Train
Control System which is specified and verified with the approach introduced above.

We also provide an approach of implementing the case study model with the IBM Websphere
Process Server, which is a comprehensive Service-Oriented Architecture integration platform
and provides support for the Service Component Architecture programming model. In order to
realize this approach, we also provide functions that map models specified with the SENSORIA
Reference Modeling Language to Websphere Process Server applications.

xiv Zusammenfassung

Zusammenfassung

"Service-Oriented Computing" (SOC) ist ein Berechnungsparadigma, das Services als elementare
Elemente verwendet, um so die schnelle und kostengünstige Entwicklung von verteilten Anwen-
dungen in heterogenen Umgebungen zu unterstützen. Im Kontext von SOC wird ein Service
als eine unabhängige, autonome Funktionalität definiert, die auf einheitliche Weise beschrieben,
veröffentlicht, dargestellt und verwendet werden kann. Die "SENSORIA Reference Modeling
Language" wurde im Rahmen des IST-FET Projekts SENSORIA entwickelt. Sie stellt eine for-
male Abstraktion für Services auf Geschäftsebene zur Verfügung.

Hybride Systeme entstehen in eingebetteten Steuerungssystemen, wenn Komponenten, die
diskrete Änderungen vornehmen, mit Komponenten, die stetig fortlaufende Prozesse ausführen,
kombiniert werden. Im Normalfall können diskrete Änderungen durch endliche Zustandsmaschi-
nen und fortlaufende Prozesse durch Differentialgleichungen modelliert werden. Abstrakt betra-
chtet sind hybride Systeme eine Mischung aus fortlaufenden Prozessen und diskreten Ereignis-
sen. Hybride Systeme werden in unterschiedlichen wissenschaftlichen Bereichen betrachtet. In
der Informatik wird ein hybrides System als ein diskretes Computerprogramm, das mit der analo-
gen Umwelt interagiert, modelliert.

In dieser Arbeit wird kontinuierliche Ausführung in SOC eingebunden. Dazu wird von einem
Service-orientierten Standpunkt aus eine formale Abstraktion für hybride Systeme auf Geschäft-
sebene gegeben und eine Methode für formale Verifikationen entwickelt. Um den ersten Teil
dieses Ziels zu erreichen, erstellen wir eine hybride Erweiterung von "Service-Oriented Dou-
bly Labeled Transition Systems", die wir "Service-Oriented Hybrid Doubly Labeled Transition
Systems" nennen, und eine Erweiterung der "SENSORIA Reference Modeling Language" und
interpretieren diese durch "Service-Oriented Hybrid Doubly Labeled Transition Systems". Um
den zweiten Teil unseres Ziels zu erreichen, verwenden wir "Temporal Dynamic Logic" Formeln
und eine Menge von Regeln im Stile eines Sequenzenkalküls zur Verifikation der Formeln und
wir entwickeln eine Methode zur Überführung der "SENSORIA Reference Modeling Language"
Spezifikation eines bestimmten Service-Moduls in die Formeln der "Temporal Dynamic Logic",
welche verifiziert werden können. Wir illustrieren den Ansatz anhand einer Fallstudie des "European
Train Control System", die mit dem in dieser Arbeit entwickelten Ansatz spezifiziert und veri-
fiziert wird.

Außerdem implementieren wir das Modell der Fallstudie mit dem IBM Websphere Process
Server, einer integrierten Plattform für Service-orientierte Architekturen, die das Programmier-
modell der "Service Component Architecture" unterstützt. Zur Realisierung dieses Ansatzes
stellen wir Funktionen bereit, die Modelle, die mit der "SENSORIA Reference Modeling Lan-

xvi Zusammenfassung

guage" spezifiziert wurden, auf Websphere Process Server Applikationen abbilden.

Acknowledgements

First of all, I would like to express my sincere appreciation to my supervisor, Prof. Martin Wirs-
ing, who helped me greatly during the whole period of my PhD study. In the academic aspect,
he supervised me a lot by offering me uncountable times of discussions, from which I learned
much knowledge and experience in my research area. As a foreign student, in the administrative
aspect I received much support from Prof. Wirsing on the necessary documentations and facility,
which enable me to concentrate on my thesis but not to be disturbed too much by other affairs.
Moreover, many valuable personalities of Prof. Wirsing, such as rigorousness, the dedication
to work, open-mindedness, patience and so on, give me deep impression and I think that I will
always benefit from them.

Secondly, I greatly appreciate the support provided by Prof. Rolf Hennicker. He did not only
give me good suggestions for my work, but also helped me to get used to the life in Munich by
introducing to me a lot of interesting things and places around from time to time. His kindness
and humor made me feel at home.

Moreover, I wish to express many thanks to Prof. Hubert Baumeister, the second reviewer
of my PhD thesis. He gave me many valuable feedbacks to my thesis, and also traveled from
Denmark to Munich for my thesis disputation. He really helped much in the finishing of my
thesis.

Additionally, I profusely thank Ms. Marianne Diem and Mr. Anton Fasching. They provided
me strong support on my personal affairs in the PST group, from making appointments to ar-
ranging a computer for work. They handled these affairs always in time such that I was never
delayed.

Also, I am grateful to the crew of the PST group, such as Nora Koch and Joschka Rinke,
who shared the same office with me and were always willing to give me a hand; Marianne Bush,
Annabelle Klarl and Lenz Belzner, who helped me in the group activities and shared with me the
experience in doing a PhD work.

At last but not least, I thank my parents deeply. For so long time, they never stopped encour-
aging me and bringing me confidence. Without their support, I would never be able to finish my
thesis.

xviii

Chapter 1

Introduction

In computer science, the term "service" refers to a software functionality or a set of software
functionalities that can be reused by different clients for different purposes, together with the
policies that should control its usage. Service-Oriented Computing aims at solving the problems
arose in the construction and application of services. As services with various functionalities
are required, different types of execution need to be injected into Service-Oriented Computing.
Continuous time execution is one of the most important and needed types since it appears in
various systems that call for services to accomplish certain tasks.

To inject continuous time execution into Service-Oriented Computing, we choose hybrid sys-
tems which could yield continuous time execution and study their features in a Service-Oriented
context. Thus in this chapter, we introduce Service-Oriented Computing and hybrid systems
respectively. Moreover, we give an overview of this thesis.

1.1 Service-Oriented Computing and SENSORIA Reference
Modeling Language

Service-Oriented Computing (SOC) is a computing paradigm that utilizes services as fundamen-
tal elements to support rapid, low-cost development of distributed applications in heterogeneous
environments [1]. In SOC, a service is defined as an independent and autonomous piece of func-
tionality which can be described, published, discovered and used in a uniform way. Services
upon a SOC-based infrastructure are loosely coupled and can flexibly crete dynamic business
processes and agile applications that may span organizations and computing platforms. These
business processes and agile applications, or so called orchestrations, rebuild the services to
form new, higher-level functionality. Thus a SOC-based infrastructure can adapt quickly and
autonomously to changing mission requirements and environment.

Realizing SOC requires the development of Service-Oriented Architectures (SOAs)[2], which
is an architectural paradigm describing the fundamental design of service-oriented software.
SOA prescribes that all functions of a SOA-based application are provided as services and is
designed independent of any specific technology. In particular, SOA requires services to be self-
contained, platform-independent and dynamically discoverable, invocable and composable. The

2 1. Introduction

services in a SOA-based application can be new functions, or functions that already exist and are
wrapped by the service implementation. Therefore, SOA permits composing new business func-
tions and processes by creating, deploying and integrating multiple and heterogeneous imple-
mented services. SOAs can be implemented using different technologies such as Web Services
[3], Grid Computing [4], the OSGi framework [5], the Microsoft Distributed Component Object
Model (DCOM) [6] and the OMG Common Object Request Broker Architecture (CORBA) [7].
Among these technologies, Web Services are the most preferred implementation, since they sup-
port distributed and loosely coupled applications on existing and ubiquitous infrastructure such
as HTTP, SOAP and XML. In Web Services, requested operations are implemented using one
or more Web Service components. Web Service components [8] are normally hosted within a
Web Services container [9] which serves as an interface between business services and low-level
infrastructure services.

To implement SOA, there yields solutions in which different patterns of organization of ser-
vice roles are designed. We introduce three such patterns by explaining how the respective
service roles are organized as follows:

1. The service requester-provider pattern
Service requester and service provider communicate via service request, which are messages
formatted according to the Simple Object Access Protocol (SOAP) [10]. SOAP entails a
light-weight protocol allowing RPC-like calls over the Internet using a variety of transport
protocols including HTTP, HTTP/S and SMTP. Web Services is a solution which adopts the
service requester-provider pattern. In a Web Service, SOAP request is received by a runtime
service provider that accepts the SOAP message, extracts the XML message body, transforms
the XML message into a HTTP protocol that is native to the requested service and delegates
the request to the actual function or business process within an enterprise.

2. The service aggregator pattern
When interactions between service requesters and service providers involve discovering/publishing,
negotiating, reserving and utilizing services from potentially different service providers, they
can be complex. The service aggregator pattern is brought forward to reduce such complexity.
A service aggregator [11] is a role in which the service provider and requester functionality
is combined. A service aggreator acts both as an application service provider which offers a
complete solution by creating composite, higher-level services using specialized composition
languages such as BPEL [12] and BPML [13], and as a service requester by requesting and
reserving services from other service providers.

3. The service broker pattern
The service broker pattern is brought forward when a service requester needs to select a spe-
cific application service provider. Service brokers [14] are trusted parties that force service
providers to adhere to information practices that comply with privacy laws and regulations
or industry best practices. Within such a pattern, service providers are registered to a ser-
vice broker. When a service requester needs to call services with specific functionalities, it
looks up the registry information of service providers in the service broker and finds the most

1.2 Hybrid System and its formal models 3

suitable one, then sets up communication with the selected service provider. UDDI [15] and
SAML [16] are different solutions of service brokers.

SENSORIA is a IST-FET integrated project which develops methodologies and tools for
dealing with SOC. Its main goal is to produce new knowledge for systematic and scientifically
well-founded methods of service-oriented software development. The SENSORIA Reference
Modeling Language (SRML [17]) has been developed in SENSORIA, and it is a prototype
domain-specific language for modeling service-oriented systems at the business level [18] ab-
straction. SRML adopts a set of primitives which are used specifically for modeling the business
conversations that occur in SOC, and services in SRML are characterized by the conversations
that they support and the properties of those conversations. These properties of conversations,
also known as conversation protocols, do not need to be modeled explicitly — they are assumed
to be provided by the underlying SOA. In this thesis, we consider the following aspects of SRML:

• The semantic domain: In SRML, the execution of services are modeled with transition
systems in which the transitions represent the exchange and processing of events of each
component involved in the delivery of that service. Thus, the semantic domain of SRML
includes configurations which specify the interactions and events that are involved in the
communication between service roles, and paths of transition systems over which the exe-
cutions of services are interpreted.

• The formal specifications: In SRML, each component of a service is specified by declar-
ing the interactions in which the component can be involved and the properties that can
be observed as the result of performing these interactions. Each wire linking any two
components is specified by declaring the interactions between the two components locally.

• Service assembly: Since the composition of services in SRML adopts the SCA [19] as-
sembly model, services in SRML can be created by interconnecting a set of elementary
components to external services. The business logic of such a service is given by its for-
mal specifications and is independent of the business logic of the external services. The
external services are discovered and linked to the service at run time.

A detailed introduction to SRML is given in Chapter 3.

1.2 Hybrid System and its formal models
Hybrid systems arise in embedded control when discrete components are coupled with continu-
ous components. Discrete components are for example digital controllers, computers and subsys-
tems that can be modeled by finite-state machines. And continuous components are controllers
and plants modeled by partial or ordinary differential equations or difference equations[20]. Au-
tomated highway systems [21], flight control and management systems [22, 23] and constrained
robotic systems [24] are examples of hybrid systems. In general, hybrid systems are mixtures of
real-time (continuous) dynamics and discrete events. Setting out from different purposes, people
study hybrid systems mainly in the following three types: i) In the computer science area, hybrid

4 1. Introduction

system is modeled as a discrete (computer) program interacting with an analog environment. A
leading objective is to extend standard program analysis techniques to systems which incorpo-
rate some kind of continuous dynamics. ii) In the modeling and simulation area, hybrid systems
can often operate in different modes, and the transition from one mode to another sometimes
can be idealized as an instantaneous, discrete transition. iii) In the systems and control area,
hybrid systems are modeled as hierarchical systems with a discrete decision layer and a contin-
uous implementation layer, or switching control schemes and relay control. The hybrid systems
discussed in this thesis are of the second type, since in our approach we model hybrid systems in
a higher level of abstraction than the level of computer programs.

From a general system-theoretic point of view, hybrid systems can be seen as systems with
communication ports and physical ports, the former associate with variables that are symbolic in
nature and the latter associate with continuous variables that are related to physical measurement.
Thus a hybrid system can be regarded as a combination of discrete or symbolic dynamics and
continuous dynamics. The main difficulty for modeling hybrid systems is the specification of
interactions between symbolic and continuous dynamics, since this involves a variety of math-
ematical and engineering disciplines such as differential geometry, differential and difference
equations, optimal control, automata (programs) theory, discrete event systems, data structures
and computation. There are three main frameworks for modeling hybrid systems: hybrid au-
tomata [25], hybrid time evolutions and hybrid behavior, and event-flow formulas [26]. Different
frameworks of the same hybrid system have different properties, depending on the purpose one
wants to use it for. Hybrid automata are graph-related and provide workable representations
of hybrid systems; further more, the semantics of hybrid automata is very explicit: all the lo-
cations and all the transitions from one location to another, together with all their guards and
jumps are included in the semantics. Hybrid time evolutions and hybrid behavior of a hybrid
system project the hybrid behavior on the behavior of the continuous variables and thus define
a continuous-time behavior; they are useful from a conceptual point of view and for theoretical
purposes. Event-flow formulas are equation-based and describe the various activities or modes of
hybrid systems; the setting of event-flow formulas is close to that of some simulation languages
such as ModelicaTM [27], thus could easily be implemented with these languages. In this thesis,
hybrid automata is related and will be introduced in Chapter 2. Also in this thesis, we aim at the
formal verification of safety and guarantee properties of hybrid systems using theorem proving
method.

1.3 Thesis Overview
In order to inject continuous time execution into SOC, in this thesis, we aim at providing a
formal specification for hybrid systems in a Service-Oriented point of view and developing a
method of verifying such hybrid systems formally. Specifically, we make a hybrid extension of
SRML (introduced in Section 1.1). The syntax of SRML is extended by adding notations of the
first-order derivatives of variables to time, which can be then used to form first-order ordinary
differential equations that are used to describe the continuous evolutions of hybrid systems. The
semantics of SRML is extended by giving a hybrid extension of the "Service-Oriented Doubly

1.3 Thesis Overview 5

Labeled Transition System", named as "Service-Oriented Hybrid Doubly Labeled Transition
System" (see Section 4.1), over which SRML is interpreted.

We also provide a method for formally verifying the properties of hybrid systems specified
with the SRML extension. This method includes the transformation from SRML specifications
to the respective hybrid programs that could be verified (see Section 5.1), and verification using
a set of sequent calculus rules for the logic dTL (see Section 5.2). To show how this method
works, we present a case study of the European Train Control System.

Furthermore, to implement hybrid systems specified with SRML extension, we develop a
set of mappings from the SRML specification to the implementation environment: IBM Web-
Sphere Integration Developer and WebSphere Process Server. We also implement the model of
a small part European Train Control System using the set of mappings and test the result in the
implementation environment.

The rest of the thesis is arranged as follows:
In Chapter 2, we introduce the background knowledge of our approach. It includes: differ-

ential equations, which are used to describe the continuous evolutions of hybrid systems; hybrid
automata, by which the transformation from the properties of the hybrid system specified with
SRML extension to the Temporal Dynamic Logic formulas that could be verified is inspired;
Computational Tree Logic and First-Order Dynamic Logic, the combination of which yields
Temporal Dynamic Logic.

In Chapter 3, we review the basic concepts and the semantic domain of SRML. In SRML,
services are specified as service modules and are the basic units to perform the business logic.
We review the basic concepts of SRML by introducing the basic compositions of a SRML ser-
vice module, which includes service components (moedeled by business roles), service inter-
faces (modeled by business protocols) and wires (modeled by interaction protocols and connec-
tors). Interactions and the associated events which model the communications between different
service components or between service components and service interfaces are also introduced.
We review the semantic domain of SRML by introducing Service-Oriented Configurations and
Service-Oriented Doubly Labeled Transition Systems, which composite the semantic domain of
SRML.

In Chapter 4, we provide the hybrid extension of SRML. We first extend the semantic do-
main of SRML by defining the "Service-Oriented Hybrid Doubly Labeled Transition System",
which is a hybrid extension of the Service-Oriented Doubly Labeled Transition Systems. Then
we extend the syntax of each SRML compositions and interpreted the extended syntax over
Service-Oriented Hybrid Doubly Labeled Transition Systems. Finally we formalize SRML ser-
vice modules based on these definitions. The main part of Chapter 4 is similar to that in [28]
(also see Appendix 3).

In Chapter 5, we provide the method for formally verifying the properties of hybrid sys-
tems that are specified with SRML extension. We first transform these properties to Temporal
Dynamic Logic formulas by defining the SRML based finite automata, from which the hybrid
programs that are needed to construct these formulas can be obtained by applying Brzozowski’s
method. Then we define a set of sequent calculus that are adapted from [29] for verifying Tem-
poral Dynamic Logic formulas. Finally we show a case study about part of the European Train
Control System. The verification of the model in the case study is similar to that in [28] (also see

6 1. Introduction

Appendix 3).
In Chpater 6, we focus on the implementation of service modules that are specified with

SRML extension. We choose IBM WebSphere Process Server and IBM WebSphere Integration
Developer as the implementing tools. We use IBM WebSphere Integration Developer to code
and assemble a service module, and use IBM WebSphere Process Server to deploy and test
the module that is developed with IBM WebSphere Integration Developer. In order to make the
implementation automatic, we provide a set of mappings form the SRML extension domain to the
implementation domain. These mappings are defined as functions that assign SRML notations
to notations in the implementing domain. Finally we show the implementation of the model in
our case study that is presented in Chapter 5.

In Chapter 7, we make a summery of this thesis and look ahead to the future prospects.

Chapter 2

Background knowledge

In this chapter, we review the background knowledge that is related to our work. The background
knowledge includes: differential equations which are used to describe the time-continuous pro-
cesses of the behaviors of hybrid transition systems, hybrid automata which provide a basic
framework for modeling hybrid transition systems and the logic basis with which properties of
hybrid transition systems can be verified.

2.1 Differential Equations
A differential equation is a mathematical equation for an unknown function of one or several
variables. The equation relates the values of the function itself and derivatives of that function
with various orders. Differential equations play a basic and important role in many fields such as
engineering, physics, and economics. In these fields, when the relationship of some continuously
varying quantities and their changing rate is known, differential equations about the functions that
modeled the quantities and the derivatives that model the rates can be applied to formally express
this relationship. E.g., Newton’s laws in classical mechanics can be expressed by a differential
equation, in which the position of a moving body is modeled by a function of time, and the
velocity and acceleration of the body are modeled by the first order and second order derivatives
to time of that function.

Mathematically, a differential equation is a relationship between an independent variable x
and a dependent variable y, and one or more derivatives of y with respect to x, and the order
of a differential equation is given by the highest derivative involved in the equation [30]. The
following equation is the differential equation of Newton’s second law:

m
∂ 2y
∂ t2 =−ky (2.1)

In function 2.1, m denotes the mass of a moving body, y denotes the displacement of the body, t
denotes time, and k denotes the force constant. This is a differential equation about the displace-
ment of the body and the second derivative of the displacement to time (the acceleration of the

8 2. Background knowledge

body) and is of second order. Usually, this second-order differential equation is used when the
function y(t) is unknown.

The solutions of a differential equation are functions that make the differential equation true.
There are two kinds of solutions of a differential equation: a general solution which is a function
including one or several arbitrary constants (the number of the constants in a general solution is
the same as the order of that differential equation), and infinitely many exact solutions which are
functions without any arbitrary constants. Function 2.2 is the general solution of Function 2.1.

y =−1
2

kt2 +C1t +C2 (2.2)

where C1 and C2 are the arbitrary constants. An exact solution of Function 2.1 can be obtained
when the initial values of speed and displacement of the moving body are given.

Among differential equations, only the simplest ones have solutions that can be expressed
with explicit functions and can be obtained with mathematical methods (such as direct integra-
tion method and variable separation method). Most of the differential equations can only be
solved numerically to get approximated solutions. Normally this can be done computer pro-
grams.

2.2 Hybrid Automata
A hybrid automaton is a formal model of a hybrid system, which is a dynamical system with
both discrete and continuous components. In a hybrid automaton, the discrete states are modeled
by the vertices of a graph, the discrete dynamics is modeled by the edges of the graph, the
continuous states are modeled by points in Rn, and the continuous dynamics is modeled by flow
conditions such as differential equations. The definition of hybrid automaton is from [25] is
shown as follows:

Definition 2.2.1 (Hybrid automata). A hybrid automaton H consists of the following compo-
nents.

Variable. A finite set X = {x1, . . . xn} of real-numbered variables. The number n is called the
dimension of H. We write Ẋ for the set {ẋ1, . . . ẋn} of dotted variables (which represent first
derivatives during continuous change), and we write X

′
for the set {x1

′
, . . . xn

′} of primed
variables (which represent values at the conclusion of discrete change).

Control graph. A finite directed multigraph (V,E). The vertices in are called control modes.
The edges in E are called control switches.

Initial, invariant, and flow conditions. Three vertex labeling functions init, inv, and flow that
assign to each control mode v ∈ V three predicates. Each initial condition init(v) is a
predicate whose free variables are from X . Each invariant condition inv(v) is a predicate
whose free variables are from X . Each flow condition f low(v) is a predicate whose free
variables are from X ∪ Ẋ .

2.2 Hybrid Automata 9

Jump conditions. An edge labeling function jump that assigns to each control switch e ∈ E a
predicate. Each jump condition jump(e) is a predicate whose free variables are from X∪X

′
.

Events. A finite set Σ of events, and an edge labeling function event : E −→ Σ that assigns to
each control switch an event.

2.2.1 Safe Semantics of Hybrid Automata
The execution of a hybrid system results in continuous change and discrete change. The mixed
discrete-continuous dynamics is abstracted by a fully discrete transition system: the labeled tran-
sition system. The definition of labeled transition systems is from [25], and is shown as follows:

Definition 2.2.2 (Labeled transition systems). A labeled transition system S consists of the fol-
lowing components.

Variable. A (possibly infinite) set Q of states, and a subset Q0 ⊆ Q of initial states.

Control graph. A (possibly infinite) set A of labels, and for each label a ∈ A, a binary relation
a−→ on the state space Q. Each triple q a−→ q′ is called a transition.

The finite behaviors of a hybrid system are called the safe assumptions, thus the finite se-
quences of transitions of a labeled transition system yield the safe semantics of hybrid automata.
For a given hybrid automaton, there are two labeled transition systems defined: the time tran-
sition system and the time-abstract transition system. The former abstracts continuous flows by
transitions, retaining only information about the source, the target and the duration of each flow;
the latter abstracts also the duration of flows. Both transition systems represent discrete jumps by
transitions. The definitions of the two transition systems are from [25], and are shown as follows:

Definition 2.2.3 (Transition semantics of hybrid automata). The timed transition system St
H of

the hybrid automaton H is the labeled transition system with the components Q,Q0,A and a−→
for each a ∈ A, defined as follows:

• Define Q,Q0 ⊆ V ×Rn such that (v,x) ∈ Q iff the closed predicate inv(v)[X := x] is true,
and (v,x) ∈ Q0 iff both init(v)[X := x] and inv(v)[X := x] are true;

• A = Σ∪R≥0;

• For each event σ ∈Σ, define (v,x) σ−→ (v′,x′) iff there is a control switch e∈E such that (1)
the source of e is v and the target of e is v′, (2) the closed predicate jump(e)[X ,X ′ := x,x′]
is true, and (3) event(e) = σ ;

• For each nonnegative real δ ∈ R≥0, define (v,x) δ−→ (v′,x′) iff v = v′ and there is a dif-
ferentiable function f : [0,δ]→ Rn, with the first derivative ḟ : (0,δ)→ Rn, such that
(1) f (0) = x and f (δ) = x′, and (2) for all reals ε ∈ (0,δ), both inv(v)[X := f (ε)] and
f low(v)[X , Ẋ := f (ε), ḟ (ε)] are true.

10 2. Background knowledge

The timed transition system Sa
H of the hybrid automaton H is the labeled transition system with

the components Q,Q0,B and b−→ for each b ∈ B, defined as follows:

• Q and Q0 are defined as above;

• B = Σ∪{τ}, for some event τ 6∈ Σ;

• For each event σ ∈ Σ, define σ−→ as above;

• Define (v,x) τ−→ (v′,x′) iff there is a nonnegative real δ ∈R≥0 such that (v,x) δ−→ (v′,x′).

2.2.2 Live Semantics of Hybrid Automata
When considering the infinite behavior of a hybrid automaton, the infinite sequences of tran-
sitions which do not converge in time need to be defined. The divergence of time is a liveness
assumption. A hybrid automaton is nonzeno if it is live. The definitions of live transition systems
and the trace semantics are from [25] and are shown as follows:

Definition 2.2.4 (Live transition systems). Consider a labeled transition system S and a state q0
of S. A q0−rooted trajectory of S is a finite or infinite sequence of pairs 〈ai,qi〉i≥1 of labels ai ∈A
and states qi ∈Q such that qi−1

ai−→ qi for all i≥ 1. If q0 is an initial state of S, then 〈ai,qi〉i≥1 is
an initialized trajectory of S. The set L of infinite initialized trajectories is machine-closed for S if
every finite initialized trajectory of S is a prefix of some trajectory in L (with the assumption that
every initial state of S has a successor state). If (S,L) is a live transition system, and 〈ai,qi〉i≥1
is either a finite initialized trajectory os S or a trajectory in L, then the corresponding sequence
〈ai〉i≥1 of labels is called a (finite or infinite) trace of (S,L).

Definition 2.2.5 (Trace semantics of hybrid automata). We associate with each transition of the
timed transition system St

H a duration in R≥0. For events σ ∈ Σ, the duration of q σ−→ q′ is 0.

For reals δ ∈ R≥0, the duration of q δ−→ q′ is δ . An infinite trajectory 〈ai,qi〉i≥1 of the timed
transition system St

H diverges if the infinite sum ∑i≥1 δi diverges, where each δi is the duration
of the corresponding transition qi−1

ai−→ qi. An infinite trajectory 〈bi,qi〉i≥1 of the time-abstract
transition system Sa

H diverges if there is a divergent trajectory 〈ai,qi〉i≥1 of St
H such that for all

i≥ 1, either ai = bi or ai,bi 6∈ Σ. Let Lt
H be the set of divergent initialized trajectories of the timed

transition system St
H , and let La

H be set of divergent initialized trajectories of the time-abstract
transition system Sa

H . The hybrid automaton H is nonzeno if Lt
H is machine-closed for St

H (or
equivalently, La

H is machine-closed for Sa
H). Each trace of the live transition system (St

H ,L
t
H)

is called a timed trace of H, and each trace of the live transition system (Sa
H ,L

a
H) is called a

time-abstract trace of H.

2.3 Computational Tree Logic
Computational Tree Logic (CTL) is a type of propositional branching-time temporal logic. It
was proposed in [31, 32] and is closely related to branching-time logics proposed in [33, 34, 35].

2.3 Computational Tree Logic 11

CTL allows basic temporal operators of the form of a path quantifier—either A ("for all futures")
or E ("for some future")—followed by a single one of the usual linear temporal operators G
("always"), F("sometime"), X ("nexttime"), or U ("until"). The definition of CTL formulas is
from [32] and is defined as follows:

Definition 2.3.1 (CTL Formulas). The set of CTL state formulas SF and path formulas PF are
inductively defined as the smallest set such that:

• If p ∈ AP, then p ∈ SF ;

• If p,q ∈ SF , then p∧q,¬p ∈ SF ;

• If p ∈ PF , then Ep,Ap ∈ SF ;

• If p,q ∈ SF , then Xp, pUq ∈ PF .

CTL is interpreted over the temporal structure M = (S,R,L)where

• S is the set of states;

• R is a total binary relation ⊆ S×S such that: ∀s ∈ S,∃s′ ∈ S, there is (s,s′) ∈ R;

• L:S→PowerSet(AP) is a labeling which associates with each state s an interpretation L(s)
of all atomic proposition symbols that are true at state s, where AP is the underlying set of
atomic proposition symbols.

A fullpath of M is an infinite sequence s0,s1,s2, . . . of states such that for ∀i,(si,si+1) ∈ R.
x = (s0,s1,s2, . . .) denotes a fullpath and xi = (si,si+1,si+2, . . .) denotes the suffix path of x. The
interpretation of CTL formulas is from [32] and is shown as follows:

Definition 2.3.2 (Interpretation of CTL Formulas). Given a temporal structure M, the interpre-
tation of CTL formulas |= is inductively defined as follows:

• M,s0 |= p iff p ∈ L(s0);

• M,s0 |= p∧q iff M,s0 |= p and M,s0 |= q;

• M,s0 |= ¬p iff not(M,s0 |= p);

• M,s0 |= Ep iff ∃ fullpath x = (s0,s1,s2, . . .) in M,M,x |= p;

• M,s0 |= Ap iff ∀ fullpath x = (s0,s1,s2, . . .) in M,M,x |= p;

• M,x |= p iff M,s0 |= p;

• M,x |= p∧q iff M,x |= p and M,x |= q;

• M,x |= ¬p iff not(M,x |= p);

• M,x |= p∪q iff ∃i[M,xi |= q and ∀ j(j < i implies M,x j |= p)];

12 2. Background knowledge

• M,x |= Xp iff M,x1 |= p.

UCTL [36, 37] is a UML-oriented branching-time temporal logic which adopts the tempo-
ral and boolean operators of CTL and is interpreted over Doubly Labeling Transition Systems
(introduced in Chapter 3).

2.4 First-Order Dynamic Logic
Dynamic Logic [38] is an extension of modal logic originally intended for reasoning about com-
puter programs and later applied to more general complex behaviors arising in linguistics, phi-
losophy, AI, and other fields. It is a successful approach for deductively verifying(infinite-state)
systems. The temporal dynamic logic dTL is a combination of First-Order Dynamic Logic and
CTL. It provides modalities for quantifying over traces of hybrid systems and will be introduced
in Chapter 4.

To show the syntax and semantics of Dynamic Logic, we first introduce the concept of pro-
gram. A program is a recipe written in a formal language for computing desires output data from
given input data. Programs normally use variables to hold input and output values and interme-
diate results. Each variable can assume values from a specific domain of computation, which
is a structure consisting of a set of data values along with certain distinguished constants, basic
operations, and tests that can be performed on those values. A state of a program is a function
that assigns a value to each program variable. The value of variable x must belong to the domain
associated with x. In logic, such a function is called a valuation. Since our work only related
with the basic version of First-Order Dynamic Logic (here denoted as b-DL for simplicity), we
only introduce the syntax and semantics of this part, but not versions of R.E. Programs, Arrays,
Stacks and Wildcard (see [38]).

2.4.1 Syntax of b-DL
Let Θ = { f ,g, . . . , p,r, . . .} be a finite first-order vocabulary. Here f and g denote typical func-
tion symbols of Θ, and p and r denotes typical relation symbols. Associated with each function
and relation symbol of Θ is a fixed arity (number of arguments). Functions and relations of arity
0, 1, 2, 3 and n are called nullary, unary, binary, ternary, and n-ary, respectively. The equality
symbol = is assumed to be always included in Θ and has the arity 2. Nullary functions are also
called constants. A countable set of individual variables is denoted by V = {x0,x1, . . .}. The
atomic formulas and programs of b-DL (basic version of DL) are from [38] and are shown as
follows:

Definition 2.4.1 (Atomic formulas of b-DL). In all versions of DL (including b-DL), an atomic
formula is the atomic formula of the first-order vocabulary Θ, and is defined as:

r(t1, . . . , tn)

where r is an n-ary relation symbol of Σ and t1, . . . , tn are terms of Θ.

2.4 First-Order Dynamic Logic 13

Definition 2.4.2 (Atomic programs of b-DL). In b-DL, an atomic program is a simple assignment
and is defined as:

x := t

where x ∈V and t is a term of Θ. This program assigns the value of t to the variable x.

The set of all atomic formulas is denoted by Φ0, and the set of all atomic programs is de-
noted by Π0. b-DL formulas and programs are built inductively from the atomic ones using the
following operators:

• Propositional operators:
→ implication
0 falsity

• Program operators:
; composition
∪ choice
* iteration

• Mixed operators:
[] necessity
? test

Based on the definitions of atomic formulas and programs of b-DL, the b-DL formulas Φ and
programs Π are defined as follows:

Definition 2.4.3 (b-DL formulas and programs). The set Φ of b-DL formulas and the set Π of
b-DL programs are defined to be the smallest sets such that:

• Φ0 ⊆Φ;

• 0 ∈Φ;

• If ϕ,ψ ∈Φ, then ϕ → ψ ∈Φ

• If ϕ ∈Φ and x ∈V , then ∀xϕ ∈Φ;

• If α ∈Π and ϕ ∈Φ, then [α]ϕ ∈Φ;

• Π0 ⊆Π;

• If ϕ ∈Φ then ϕ? ∈Π;

• If α,β ∈Π, then α;β ∈Π;

• If α,β ∈Π, then α ∪β ∈Π;

• If α ∈Π, thenα∗ ∈Π.

The possibility operator < > is the modal dual of the necessity operator []:

<α>ϕ
def
= ¬[α]¬ϕ.

14 2. Background knowledge

2.4.2 Semantical domain and semantics of b-DL
b-DL formulas and programs are interpreted over a first-order structure A for the vocabulary Θ,
where:

A = (A,mA),

A is called the domain of computation; A is a set that is called the carrier of A; mA is a
meaning function such that mA(f) : An→ A is an n-ary function that interprets the n-ary function
symbol f of Θ, and mA(r) is an n-ary relation such that mA(r)⊆ An, which interprets the n-ary
relation symbol r of Θ. The equality symbol = is always interpreted as the identity relation. For
n≥ 0, let An → A denote the set of all n-ary functions in A. By convention. we take A0 → A=A.
Let A∗ denote the set of all finite-length strings over A.

An instantaneous snapshot of all relevant information at any moment during the computation
is determined by the values of the program variables. Thus states can be denoted by valuations
u,v, . . . of the set of variables V over the carrier of the structure mA. The valuations over mA are
from [38] and are shown as follows:

Definition 2.4.4 (Valuations over structure mA). A valuation over mA is a function u assigning
an n-ary function over A to each n-ary array variable, where:

• u(x) ∈ A if x ∈V ;

• For an n-ary function symbol f and terms t1, . . . , tn of Θ,

u(f (t1, . . . , tn))
def
= mA(f)(u(t1), . . . ,u(tn));

• For an n-ary array variable F and terms t1, . . . , tn of Θ,

u(F(t1, . . . , tn))
def
= u(F)(u(t1), . . . ,u(tn)).

A function-patching operator is also needed for interpreting b-DL formulas and programs.
The definition of function-patching operator is from [38] and is shown as follows:

Definition 2.4.5 (function-patching operator). If X and D are sets, f : X → D is any function,
x ∈ X and d ∈ D, then f [x/d] : X → D is the function defined by

f [x/d](y) def
=

{
d, if x = y
f (y), otherwise.

The set of states of mA is denoted by SA. Thus every b-DL formula ϕis associated with a set

mA(ϕ)⊆ SA;

and every b-DL program α is associated with a binary relation

mA(α)⊆ SA×SA.

The semantics of b-DL formulas and programs are defined based on the definitions above.
The definition of the semantics is from [38] and is shown as follows:

2.4 First-Order Dynamic Logic 15

Definition 2.4.6 (Semantics of b-DL formulas and programs). The semantics of b-DL formulas
and programs are defined over the structure A of Θ with t, t1, . . . , tn being terms of Θ, F(t1, . . . , tn)
being an n-ary array variable, r being a relation symbol of Θ and x ∈V :

• mA(r(t1, . . . , tn))
def
= {u| if u ∈mA(r(t1, . . . , tn))};

• mA(0)
def
= /0;

• mA(ϕ → ψ)
def
= {u| if u ∈mA(ϕ) then u ∈mA(ψ)};

• mA(∀x ϕ)
def
= {u|∀a ∈ A u[x/a] ∈mA(ϕ)};

• mA(x := t) def
= {(u,u[x/u(t)])|u ∈ SA};

• mA(F(t1, . . . , tn) := t) def
= {(u,u[F/u(F)[u(t1), . . . ,u(tn)/u(t)]])|u ∈ SA};

• mA([α]ϕ)
def
= {u|∀v if (u,v) ∈mA(α) then v ∈mA(ϕ)};

• mA(α;β)
def
= {(u,v)|∃w(u,w) ∈mA(α) and (w,v) ∈mA(β)};

• mA(α ∪β)
def
= mA(α)∪mA(β);

• mA(α
∗)

def
= mA(α)∗ =

⋃
n≥0mA(α)n;

• mA(ϕ?) def
= {(u,u)|u ∈mA(ϕ)}.

16 2. Background knowledge

Chapter 3

An overview of SRML

In this chapter, we give an overview of SRML [17] in two aspects:

1. The basic compositions of SRML service assembly module;

2. The semantics domain of SRML.

The first aspect includes the introduction to the compositions of SRML (such as business
role, business protocol and etc.) and in general how these compositions are defined. The sec-
ond aspect includes the semantic domain for interactions such as configurations and interaction
signatures, and the semantic domain for transitions such as Service-Oriented doubly labeling
transition systems.

3.1 Introduction to SRML service module
SRML is a language for modeling composite services, whose business logic involves a number
of interactions among more elementary components that composite a service, the invocations
from external clients to this service, and the invocations of services provided by external ser-
vices. In SRML such a service is specified by a service module. A service module defines
how the composition of a service can be specified using a graph that is labeled by the SRML
specifications of service components, service interfaces and internal wires. In general it defines
a wired interconnection of service components and service interfaces. It also defines which of
these interfaces connect to clients of this service, and to services invoked by this service directly.
A service module provides a specification for each service component (specified with a business
role), service interface (specified with a business protocol) and internal wires (specified with an
interaction protocol). In this thesis, we don’t consider external wires. The service interfaces in
every service module are distinguished as a provides-interface and several requires-interfaces. A
provides-interface exposes the service to outside parties (known as service requirers or clients)
that need to call this service module; a requires-interface call an outside party (known as service
providers) to use the service provided by that party. Figure 3.1 shows the composition of a SRML
service module:

18 3. An overview of SRML

Figure 3.1: A SRML service module where every SC is a service component, every EX-P is a
provides-interface, every EX-R is a requires-interface and every IW is an internal wire.

The central compositions of a service module are service components. A service component
is a computational unit that in SRML is modeled with a business role, which consists of a set
of interactions and an orchestration. The interactions model the communications between the
components which contain these interactions and other service components or interfaces in the
same service module. The orchestration includes the declaration of variables local to this com-
ponent, and a set of transitions which model the activities performed by the component. These
transitions are independent of the language in which the component is programmed and the plat-
form in which it is deployed. For example, they can be implemented with a BPEL process, a
Java program or a wrapped-up legacy system. In addition, an orchestration is independent of the
clients or other services to which this module are connected at run-time. In general, a service
component is totally independent in the sense that it does not invoke any specific service from
the outside nor provide service to outside clients, it just perform computations by involving in a
set of interactions.

Service interfaces do not provide any business logic. They only specify the way that a certain
service component interacts with an outside party (a client or an other service) according to
a given business protocol. A service interface in SRML is modeled with a business protocol,
which consists of a set of interactions in which the service component and the outside party
engage and a set of behaviors that the outside party can expect this service module to perform.

Service components and service interfaces within a service module are connected to each
other through internal wires. These wires specify bindings of the interactions that are declared
in both sides, and coordinate them according to a given interaction protocol. A wire in SRML is
modeled with a interaction protocol and a connector.

As mentioned above, the different types of entities involved in a service module – service
components, service interfaces, and wires – are specified in SRML using three different but
related languages: business role, business protocol and interaction protocol which are introduced

3.1 Introduction to SRML service module 19

as follows:

• Business roles are instantiated with service components. A business role is a modeling
language that consists of a set of interactions and an orchestration, which specifies the
way these interactions are orchestrated. The orchestration is specified by declaring a set
of variables which provides an abstract view of the current state of the component, and
a set of transitions that model the activities performed by the component. A transition
may have a trigger, which is an event or a state condition specifying the condition of the
occurrence of the transition; a guard, which is a condition that identifies the state in which
the transition can take place; and a set of effects which are propositions that are true in the
local state and specify the effects of the transition in that state.

• Business protocols are instantiated with service interfaces. Like business roles, business
protocols declare the interactions in which the external parties (services and clients) can be
involved. The difference is that, instead of an orchestration, a business protocol provides
a set of properties that the external parties can expect the service module in which this
business protocol is declared to adhere to.

• Interaction protocols are instantiated with wires. In a service module, a number of ser-
vice components and service interfaces are connected to one another by wires. Interaction
protocols are labeled with connectors that coordinate the interactions in which the service
components or service interfaces linked by the wire are involved.

Figure 3.2 shows an example of a service module Train-Control from Appendix A. Train-
Control models a small part of the European train Control System. It includes a service compo-
nent ETCSC, which is modeled by business role ETCSCenter; a service interface MOC, which
is modeled by business protocol MonitoringCenter; a service interface RBC, which is modeled
by business protocol RadioBlockCenter; a wire 〈MOC,ETCSC〉, which is modeled by connector
ME; and a wire 〈ETCSC,RBC〉, which is modeled by connector ER.

In SRML, each interaction involves two parties (each party can be either a service component
or a service interface), and can be in both directions. An interaction is described from the point
of view of the party in which it is declared. If an interaction is declared in one party, the other
party involved in this interaction is called a co-party of this party. As that is defined in [17], the
types of interactions are distinguished as follows:

• r&s: The interaction is initiated by the co-party, which expects a reply. The co-party does
not block while waiting for the reply;

• s&r: The interaction is initiated by the party and expects a reply from its co-party. While
waiting for the reply, the party does not block;

• rcv: The co-party initiates the interaction and does not expect a reply;

• snd: The party initiates the interaction and does not expect a reply;

20 3. An overview of SRML

Figure 3.2: SRML service module Train-Control

• ask: The party synchronies with the co-party to obtain data;

• rpl: The party synchronies with the co-party to transmit data;

• tll: The party requests the co-party to perform an operation and blocks;

• prf: The party performs an operation and frees the co-party that requested it.

Among the interaction types above, r&s and s&r are two-way interactions, which can take
place in two directions, and the others are one-way interactions, which can take place only in one
direction.

In SRML, an interaction is associated with one or several events, which occur during state
transitions in both parties involved in the interaction. For a given interaction named a, the events
that associate with this interaction are distinguished as follows:

• a�: The event of initiating a;

• a: The reply-event of a;

• a9: The commit-event of a;

• a8: The cancel-event of a;

• a<: The revoke-event of a.

An event can be associated with one or several parameters. For example, if an event a�has
an associating parameter cost, the parameter in SRML is denoted by a�.cost. Especially, every
reply-event a has a distinguished Boolean parameter Reply that indicates whether the reply is
positive or not.

3.2 Semantic domain of SRML 21

3.2 Semantic domain of SRML
The semantic domain of SRML is the domain over which SRML is interpreted. It consists of an
abstract data signature, a service-oriented configurations and a service-oriented doubly labeling
transition system.

SRML focuses on the patterns of message exchange in the service-oriented frame work. In
order to model this, we first abstract the data and operation domain with a fixed data signature

Ω = 〈D,F〉

where D is a set of data types (such as int, double and so on) and F is a D∗×D-indexed family
of sets of operations over the types (such as addition, conjunction, derivative and so on). The
definition of Ω is adapted from [17]. In this thesis we assume that time, boolean ∈D are data
types that represent the usual concepts of time and true/false values, and the derivative operator
· is in F. We further assume that a fixed algebra U interprets Ω.

Based on the abstract data signature Ω, service-oriented configurations and service-oriented
doubly labeling transition systems can be defined. They are the compositions of the semantic
domain of SRML. A service-oriented configuration is an extension of configuration [17] which
defines a simple graph with nodes and wires. A service-oriented doubly labeling transition sys-
tem is a combination of service-oriented transition system [17] and doubly labeling transition
system [36]. We introduce them separately in the following sub-sections.

3.2.1 Service-Oriented Configurations
The semantic domain of interactions in SRML is defined by Service-Oriented Configurations.
Service-Oriented Configurations are extensions of configurations, which is defined in [17].

A service-oriented configuration (SO-configuration) is a graph in which each node represents
a party (a service component or a service interface) that is capable of performing computations
in a service module, and each edge represents a wire that connects the parties. The graph is a
simple graph, which means it has no multiple edges and no loops, and is undirected. Interactions
performed by each party are also contained in the SO-configuration, and interactions that can take
place between each pair of the parties are fixed. Each interaction has a direction, denoting that the
message is sent by which party and is received by which party. In SO-configurations, interactions
are classified into one-way interactions (interactions which have only one direction) and two-way
interactions (interactions which have two directions). Associated with each wire, there is a time
delay, which denote the delay of time when messages are propagated asynchronously.

The following definition of SO-configuration is a combination of Definition 3.2.1 and 3.2.2
from [17]:

Definition 3.2.1 (Service-Oriented Configuration). A Service-Oriented Configuration is a tuple

〈N,WIRE,PLL,Ψ,2WAY,1WAY 〉

where

22 3. An overview of SRML

• 〈N,WIRE〉 is a simple graph, in which N denotes the nodes and WIRE denotes the wires
connecting the nodes.

• PLL⊆ N are distributed nodes.

• Ψ assigns to every w ∈WIRE an element w.delayΨ ∈ timeU that denotes the delay asso-
ciated with wire w.

• 2WAY and 1WAY are N×N-indexed families of mutually disjoint sets of "two-way" and
"one-way" interactions, respectively; we use INT to refer to 2WAY ∪1WAY ;

• For every n,n′ ∈N if 〈n,n′〉 6∈WIRE then INT〈n,n′〉= /0, i.e. there is no interaction between
nodes that is connected by a wire.

In every two-way interaction, a party sends a request to its co-party and receives either a
positive or a negative reply from the co-party. There is always a pledge associates with the
positive reply, which is a time duration within which the next message is guaranteed to be deliver
by that party.

Based on the definition of SO-configurations, the events that associate with interactions in
SRML can be defined. Each event has the same direction as the interaction with which it as-
sociates. If interaction a ∈ 1WAY〈n,n′〉, which means the direction of a is from party n to party
n’, it is obvious that only the initiation-event is sent from n to n’. If interaction a ∈ 2WAY〈n,n′〉,
which means the directions of a are both from party n to party n’ and from party n’ to party n,
the initiation-event, the commit-event, the cancel-event and the revoke-event can be sent from n
to n’, and the reply-event is sent from n’ to n. In short, among the five types of events introduced
in section 3.1, if interaction a is a one-way interaction, there is only one event, a�, associates
with it; if interaction a is a two-way interaction, the set of events associates with it is a subset of
{a�, a, a9, a8, a<}.

The formal definition of the events that associate with interactions is the same as Definition
3.3.1 from [17], and is shown as follows:

Definition 3.2.2 (Relating interactions with events). For every interaction a ∈ INT and node
n ∈ N, the function En that maps from the interaction a to events associated with a that can be
received by n′ is defined as follows:

If a ∈ 2WAY〈n,n′〉 then

En(a) = {a�,a9,a8,a<}
En′(a) = {a}
En′′ (a) = /0 for any other n

′′
∈ N

If a ∈ 1WAY〈n,n′〉 then

En(a) = {a�}
En′(a) = /0

En′′ (a) = /0 for any other n
′′
∈ N

3.2 Semantic domain of SRML 23

We also define the following sets:

• E〈n〉 =
⋃
{En(a) : a ∈ INT〈n,n′〉} is the set of all events that can be received by node n;

• Ea = En(a)∪En′(a) where is the set of events associated with interaction a;

• E〈n,n′〉=
⋃
{E(a) : a∈〈n,n′〉 ∨a∈〈n′,n〉} is the set of all events that are carried by wire 〈n,n′〉;

• E =
⋃
{E(a) : a ∈ INT} is the set of all events that can occur.

Based on the definition of SO-configurations and the relationships between interactions and
events, parameters can be defined. In the definition of parameters, to avoid ambiguity, all the
parameters associating with the same interaction are assumed to have different names. In addi-
tion, every reply-event that associates with a two-way interaction has at least two parameters:
Reply and useBy. Reply is a parameter of type boolean, which indicates if the reply is positive
or negative. useBy is a parameter of type time, which stores the expiration time until when the
pledge holds.

The formal definition of semantic domain of parameters is the same as Definition 3.3.2 from
[17] and is shown as follows:

Definition 3.2.3 (Parameters). A parameter-assigning function PP assigns a D-indexed family
of disjoint sets of parameters to each event in E such that:

• For every a ∈ INT,e,e′ ∈ E(a), P ∈ PP(e) and P′ ∈ PP(e′), P and P′ are disjoint.

• For every a ∈ 2WAY,Reply ∈ PP(a)boolean and useBy ∈ PP(a)time.

3.2.2 Service-Oriented Doubly Labeled Transition System
Except interactions, other parts of SRML are interpreted over Service-Oriented Doubly La-
beled Transition systems (SO-L2TSs). SO-L2TSs is a discrete model of computation for SO-
configurations, and it is a combination of Service-Oriented Transition System (SO-TSs) [17] and
Doubly Labeled Transition Systems (L2TSs) [37]. In this section, we first introduce computation
state [17] and computation step [17], on the basis of which SO-TSs are defined.

When a configuration computes, it goes through a sequence of states. These states are char-
acterized by events that are pending in wires and are buffered in the nodes of the configuration,
and also by pledges that hold in that state and the history and parameters of events. The formal
definition of computation state is the same as Definition 3.4.1 from [17] and is shown as follows:

Definition 3.2.4 (Computation state). A computation state is a tuple

〈PND, INV,T IME,PLG,HST,Π〉

where:

• PND ⊆ E is the set of events pending in that state, i.e. the events that are waiting to be
delivered by the corresponding wire;

24 3. An overview of SRML

• INV ⊆ E is the set of events invoked in that state, i.e. the events that have been delivered
and are waiting to be processed;

• T IME ∈ timeU is the time in that state;

• PLG⊆ {a.pledge : a ∈ 2WAY}is the set of pledges that hold in that state;

• HST consists of four subsets of E, HST!,HST¡,HST? and HST¿ that keep the history of
event propagation; they contain the events that have been published, delivered, executed
and discarded, respectively;

• Π assigns to each parameter p∈PP(e)d of datatype d ∈D, with e∈E(a) and a∈ INT, a value a.pΠ ∈
dU , i.e. Π keeps the value of each parameter.

If s = 〈PND, INV,T IME,PLG,HST,Π〉 is a computation state we use PNDs,
INV s,T IMEs,PLGs,HST s and Πs to refer to the components in that state.

Computation states evolve through computation steps. Given a sequence of computation
states, a computation step specifies the evolution from one state (called a source state) to its
successor (called a target state), and time moves forward from a source state to its target state.
In each computation step, events can be published, delivered or processed. Among the events
that are processed, some are executed and the others are simply discarded. Nodes that do not
perform parallel computation can only process one event during each computation step. The
formal definition of computation step is the same as Definition 3.4.2 from [17] and is shown as
follows:

Definition 3.2.5 (Computation step). A computation step is a tuple

〈SRC,T RG,DLV,PRC,EXC,Θ〉

where:

• SRC and TRG are the source and target states;

• DLV ⊆ PNDSRC is the set of events that are selected for delivery during that step;

• PRC is a partial function that selects for each node n such that INV SRC
n is non-empty, a

subset of INV SRC
n , such that if |PRC(n)| > 1 then n ∈ PLL, i.e. PRC selects which events

will be processed during that step such that only one event can be processed by each
sequential node;

• EXC ⊆ PRC is the set of events that are executed during that step; DSC = PRC\EXC is
the set of events that are discarded, i.e. the events that are processed but are not executed;

• PNDT RG = (PNDSRC\DLV)]PUB where PUB⊆ E, i.e. the events that were selected for
delivery will no longer be pending in the target state; the new events that become pending
in the target state are those that are published during the computation step;

3.2 Semantic domain of SRML 25

• There is a set of actually-delivered events ADLV ⊆ DLV such that for every n ∈ N;

– If PRC(n) is defined then INV T RG
n = (INV SRC

n \{PRC(n)})∪ADLVn

– If PRC(n) is undefined then INV T RG
n = INV SRC

n ∪ADLVn

i.e. the events that were processed will no longer be waiting in the target state; the events
that are actually delivered to a component will have to wait until they are processed;

• Θ assigns to each parameter in PP(e)d such that e ∈ PUB and d ∈ D (is the datatype of
the parameter), an element in dU , i.e. the value of the parameter;

• T IMESRC < T IMET RG, i.e. time moves forward;

• SRC and TRG are such that:

– HST !T RG = HST !SRC∪PUB

– HST ¡T RG = HST ¡SRC∪ADLV

– HST ?T RG = HST ?SRC∪EXC

– HST ¿T RG = HST ¿SRC∪DSC

– Π(e)T RG = Θ(e) for each e ∈ PUB

– Π(e)T RG = Π(e) for each e 6∈ PUB

A SO-TS defines the different possibilities that its configuration can have when computing.
In a SO-TS, every state is labeled with a computation state, and every transition is labeled with
a computation step. A path of a SO-TS consists of a sequence of computation states and the
computation steps between each two adjacent states, and represents a possible computation that
the SO-TS can perform. The formal definition of SO-TS is the same as Definition 3.4.4 from
[17] and is shown as follows:

Definition 3.2.6 (Service-Oriented Transition System). A Service-Oriented Transition System
(SO-TS) is a tuple

〈S,→,s0,G〉

where:

• 〈S,→〉 is a directed acyclic graph, where S is the set of vertices (the transitions between
states);

• s0 ∈ S is the initial state;

• G is a labeling function that assigns a computation state to every state s ∈ S and a compu-
tation step to every transition s→ s′, such that G(s→ s′) = 〈G(s),G(s′),_,_,_,_〉, i.e. the
source and target computation states associated with a transition are the ones that label
the states of that transition.

26 3. An overview of SRML

We use the following notation to refer to the components of the labels:

• If s is a state such that (s ∈ S) we use PNDs, INV s,T IMEs,PLGs,HST s and Πs to refer to
the components of computation state G(s).

• If r is a transition (r ∈ R) we use SRCr,T RGr,DLV r,PRCr,EXCr,DSCr and PUBr to refer
to the components of the computation step G(r).

• If s and s’ are states such that (s,s′ ∈ S), s and s’ are similar up to time, denoted by s∼ s′, iff
G(s) and G(s′) are the same except for the TIME components, i.e, PNDs = PNDs′, INV s =
INV s′,PLGs = PLGs′ ,HST s = HST s′ .

Note that two states s and s’ of a SO-TS are different, if any of the components of their
computation states G(s) and G(s’) are different, e.g. if s and s’ occur at different time instants
then they are different.

Doubly Labeled Transition Systems (L2TSs) [37] extend Labeled Transition Systems (LTSs)
[39]. The same as in LTSs, in L2TSs a transition from one state to another is labeled with
input that are expected, conditions that must be true to trigger the transition, or events that are
performed during the transition. The difference is that: in L2TSs transitions can be labeled by
sets of events rather than single events, and states are labeled with atomic propositions. The
formal definition of Doubly Labeled Transition System is the same as Definition 4.1.1 from [17],
and is shown as follows:

Definition 3.2.7 (Doubly Labeled Transition System). A Doubly Labeled Transition System
(L2TS) is a tuple

〈S,s0,Act,R,AP,L〉

where:

• S is a set of states;

• s0 ∈ S is the initial state;

• Act is a finite set of observable actions;

• R⊆ S×2Act×S is the transition relation. A transition s α−→ s′ is denoted by (s,α,s′) ∈ R;

• AP is a set of atomic propositions;

• L : S→ 2AP is a labeling function such that L(s) is the subset of all atomic propositions
that are true in state s.

A Service-Oriented Doubly Labeled Transition System (SO-L2TS) is a L2TS-based refine-
ment of a SO-TS. The actions labeling transitions in a SO-L2TS denote different stages of event
propagation: publication, delivery, execution and discard. In addition, every state in a SO-L2TS
is also labeled with information about the actions that have happened before that state is reached.
The formal definition of SO-L2TS is the same as Definition 4.2.1 from [17] and is shown as
follows:

3.2 Semantic domain of SRML 27

Definition 3.2.8 (Service-Oriented L2T S). A Service-Oriented L2TS (SO-L2TS) is a tuple

〈S,s0,Act,R,AP,L,T IME,Π〉

where:

• The SO-L2TS refines a SO-TS 〈S,→,s0,G〉;

• Act = {e! : e ∈ E}∪{e¡ : e ∈ E}∪{e? : e ∈ E}∪{e¿ : e ∈ E};

• R⊆ S×2Act×S is such that:

– s→ s′ iff (s,α,s′) ∈ R for some α ∈ 2Act;

– For every (s,α,s′) ∈ R:

α ={e! : e ∈ PUBs→s′}∪{e¡ : e ∈ ADLV s→s′}∪
{e? : e ∈ EXCs→s′}∪{e¿ : e ∈ DSCs→s′}

• AP = {e! : e ∈ E}∪{e¡ : e ∈ E}∪{e? : e ∈ E}∪
{e¿ : e ∈ E}∪{a.pledge : a ∈ 2WAY};

• L : S→ 2AP is such that:

L(s) ={e! : e ∈ HST !s}∪{e¡ : e ∈ HST ¡s}∪
{e? : e ∈ HST ?s}∪{e¿ : e ∈ HST ¿s}
∪PLGs

• T IME : S→{r ∈R|r≥ 0} is a function that assigns to each state s∈ S the instant T IMEs;

• Π assigns to each state s ∈ S the parameter interpretation Πs.

28 3. An overview of SRML

Chapter 4

Hybrid extension of SRML and its
semantic domain

SRML is an orchestration-oriented modeling language that formally specifies the discrete be-
haviors of services. In order to be able to also formally specify the hybrid behaviors (behaviors
that include both time-continuous processes and discrete events) of services, in this chapter we
provide a hybrid extension of SRML and an extension of SRML semantic domain over which
the hybrid extension of SRML can be interpreted. More specifically, we define the "Service-
Oriented Hybrid Doubly Labeled Transition System" as the semantic domain of hybrid exten-
sion of SRML, make hybrid extension for each composition of SRML service module and finally
define the whole service module over the definitions of theses compositions. This Chapter is ar-
ranged as follows:

• In Section 4.1 we extend the semantic domain of SRML by defining the Service-Oriented
Hybrid Doubly Labeled Transition System and its paths over which the hybrid extension
of SRML is interpreted;

• In Section 4.2 we review the definitions on interaction signature and interaction inter-
pretation which are defined in [17]. Interactions declared in business roles and business
protocols are interpreted over interaction signatures;

• In Section 4.3 we define the syntax and semantics of the hybrid extension of business roles,
which are orchestration-oriented languages for specifying the computations performed by
the internal components of service modules;

• In Section 4.4 we define the syntax and semantics of the hybrid extension of business
protocols, which are temporal dynamic logic (dTL) based languages for specifying service
interfaces;

• In Section 4.5 we define the syntax and semantics of the hybrid extension of interaction
protocols, which are interaction based languages for specifying internal wires between
components in service modules;

30 4. Hybrid extension of SRML and its semantic domain

• In Section 4.6 we formalize service module by defining it over the hybrid extensions of
business roles, business protocols and interaction protocols.

The main contents of this chapter are published in [28], but are more sound than that in [28].

4.1 The extension of SRML semantic domain
In order to interpret hybrid systems that are specified by SRML, we first define the Hybrid Doubly
Labeled Transition System (HL2TS), which is an extension of the L2TS. An HL2TS extends the
L2TS in that it defines a set of functions Σ. These functions map from the real number domain
to the state domain of the HL2TS and can be used to interpret the evolutions of hybrid systems
specified by certain modeling languages. HL2TS is defined as follows:

Definition 4.1.1 (Hybrid Doubly Labeled Transition System). A Hybrid Doubly Labeled Tran-
sition System (HL2TS) is a tuple

〈S,s0,Σ,Act,R,AP,L〉

where:

• S is a set of states;

• s0 ∈ S is the initial state;

• Σ is a set of functions and for every function σ ∈ Σ there is σ : [0,rσ]→ S with rσ ∈R and
rσ ≥ 0;

• Act is a finite set of observable actions;

• R ⊆ {σ(rσ) : σ ∈ Σ} × 2Act × {σ(0) : σ ∈ Σ} is the transition relation. A transition
σ(rσ)

α−→ σ ′(0) is denoted by (σ(rσ),α,σ ′(0)) ∈ R where α ⊂ Act;

• AP is a set of atomic propositions;

• L : S→ 2AP is a labeling function such that L(s) is the subset of all atomic propositions
that are true in state s.

In Definition 4.1.1, the set of state S can be finite or infinite; for every σ ∈ Σ, the real number
rσ is unique, and σ on the interval [0,rσ] represents the prolongation of states in the duration
whose length is rσ ; function L is a state labeling function that defines which propositions are true
in each state, and these propositions are from the fixed set of atomic propositions AP.

As introduced in Chapter 3, the models of computation that are used for configurations are
the transition system labeled with sets of events — what is defined as SO-TSs. In order to add the
service-oriented feature to HL2TSs, we need to define a HL2TS-based refinement of a SO-TS,
which is named as Service-Oriented HL2TS (SO-HL2T S) and can be also seen as an extension of
the HL2TS. The SO-HL2T S is defined as follows:

4.1 The extension of SRML semantic domain 31

Definition 4.1.2 (Service-Oriented Hybrid L2T S). A Service-Oriented Hybrid L2TS(SO-HL2TS)
that refines a SO-TS 〈S,→,s0,G〉 is a tuple

〈S,s0,Σ,Act,R,AP,L,T IME,Π〉

where:

• Act = {e! : e ∈ E}∪{e¡ : e ∈ E}∪{e? : e ∈ E}∪{e¿ : e ∈ E};

• R⊆ {σ(rσ) : σ ∈ Σ}×2Act×{σ(0) : σ ∈ Σ} is such that:

– σ(rσ)→ σ ′(0) iff (σ(rσ),α,σ ′(0)) ∈ R for some α ∈ 2Act;

– For every (σ(rσ),α,σ ′(0)) ∈ R:

α ={e! : e ∈ PUBσ(rσ)→σ ′(0)}∪{e¡ : e ∈ ADLV σ(rσ)→σ ′(0)}∪
{e? : e ∈ EXCσ(rσ)→σ ′(0)}∪{e¿ : e ∈ DSCσ(rσ)→σ ′(0)}

• AP = {e! : e ∈ E}∪{e¡ : e ∈ E}∪{e? : e ∈ E}∪
{e¿ : e ∈ E}∪{a.pledge : a ∈ 2WAY};

• For every σ ∈ Σ and every ζ ∈ [0,rσ], L : S→ 2AP is such that:

L(σ(ζ)) ={e! : e ∈ HST !σ(ζ)}∪{e¡ : e ∈ HST ¡σ(ζ)}∪
{e? : e ∈ HST ?σ(ζ)}∪{e¿ : e ∈ HST ¿σ(ζ)}
∪PLGσ(ζ)

• For every σ ∈ Σ and every ζ ∈ [0,rσ], T IME assigns to state σ(ζ) the instant T IMEσ(ζ);

• For every σ ∈ Σ and every ζ ∈ [0,rσ], Π assigns to each state σ(ζ) ∈ S the parameter
interpretation Πσ(ζ).

SO-HL2TSs have the same structure as HL2TSs. An SO-HL2TS extends the associated
HL2TS in that: the transitions in an SO-HL2TS are labeled with actions which correspond to
the propagation of events (such as published, delivered, executed and discarded); each state of
an SO-HL2TS is labeled with the history of events propagation before this state is reached by
the system and the pledge of that state (L(σ(ζ))), and is also labeled with the time of that state
(T IMEσ(ζ)) and the values of the parameters in that state (Πσ(ζ)).

The definition of SO-HL2TSs is adapted from the definition of SO-L2TSs in [17]. SO-
HL2TSs differ from SO-L2TSs in that: because in every SO-HL2TS the set of functions Σ is
defined, every function σ ∈ Σ maps to infinitely many states in S, and transitions only take place
at state σ(0) and σ(rσ), no transition take place at the intermediate states, e.g. for a function
σ0 : [0,3]→ S, there is a transition to state σ0(0) and a transition from σ0(3) to other states, and
there is no transition to state σ0(1) or from state σ0(1) to other states. While in SO-L2TSs there

32 4. Hybrid extension of SRML and its semantic domain

is no such restriction, a transition can take place at any state. In addition, functions L, TIME and
Π assign labels to the infinitely many states that are obtained by applying the functions in Σ.

When executing a SO-HL2TS, several paths can be generated. A path of a SO-HL2TSs con-
sists of a finite sequence of traces of states which are obtained by applying the functions defined
in the SO-HL2TS to their intervals of real numbers (i.e. to apply σ ∈ Σ on the interval [0,rσ]) and
are ordered lexicographically. Moreover, in a path of a SO-HL2TS, there is a transition relation
between the last state of one trace of states and the first state of the consequent trace of states.
Paths of SO-HL2TSs are defined as follows:

Definition 4.1.3 (Paths of SO-HL2TSs). Given a SO-HL2TS m= 〈S,s0,Σ,Act,R,AP,L,T IME,Π〉,
paths of m are defined as follows:

• For every σ ∈ Σ, σ(0) . . .σ(rσ) denotes the trace of states of σ where σ(0) is the first state
of the trace and σ(rσ) is the last state of the trace. σ(0) . . .σ(rσ) includes all the states in
the set {σ(ξ)|0≤ ξ ≤ rσ}, which can be finite or infinite.

• ρ = (σ1(0) . . .σ1(rσ1),σ2(0) . . .σ2(rσ2), . . .) is a path of m if there exists an α ∈ 2Act

such that for every σi(rσi) and σi+1(0) with i ∈ N, there exists an α ∈ 2Act such that
(σi(rσi),α,σi+1(0)) ∈ R;

• We use [σ(0) . . .σ(rσ)] to denote the equivalence class of traces of states, such that each el-
ement is similar up to time with σ(0) . . .σ(rσ). [σ(0) . . .σ(rσ)] is defined as: [σ(0) . . .σ(rσ)]=
{σ ′(0) . . .σ ′(rσ ′)|σ(0)∼ σ ′(0), . . . ,σ(rσ)∼ σ ′(rσ ′)};

• The states in a path are ordered lexicographically such that, for every i, j = 1,2, . . . and
ζ ∈ [0,rσi],ξ ∈ [0,rσ j], there is σi(ζ)≺ σ j(ξ) iff either i < j, or i = j and ζ < ξ ;

• For the states in a path, there is:

– for every i, j = 1,2, . . . and ζ ∈ [0,rσi],ξ ∈ [0,rσ j], there is T IMEσi(ζ) ≤ T IMEσ j(ξ)

if i < j, and T IMEσi(ζ) < T IMEσ j(ξ) if i = j and ζ < ξ ;

In particular, if T IMEσi(rσi) < T IMEσi+1(0) then the transition (σi(rσi),α,σi+1(0)) takes
time, otherwise if T IMEσi(rσi) = T IMEσi+1(0) the transition is executed in zero time;

• A path ρ terminates if it is a finite sequence σ1(0) . . .σ1(rσ1), . . . ,σn(0) . . .σn(rσn). In
such case the first state of the trace σ1(0) is denoted by f irstρ and the last state σn(rσn) is
denoted by lastρ;

• The concatenation of traces ρ1 = (σ1(0) . . .σ1(rσ1),σ2(0) . . .σ2(rσ2), . . .) and
ρ2 = (ς1(0) . . .ς1(rς1),ς2(0) . . .ς2(rς2), . . .), denoted by ρ1 ◦ρ2, is defined as follows:

– ρ1◦ρ2 =(σ1(0) . . .σ1(rσ1), . . . ,σn(0) . . .σn(rσn),ς1(0) . . .ς1(rς1) . . .) iff ρ1 terminates
at σn(rσn) and (σn(rσn),α,ς0(0)) ∈ R;

– ρ1 ◦ρ2 = ρ1 iff ρ1 does not terminate;
– ρ1 ◦ρ2 is not defined in other cases;

• λ is an empty hybrid trace such that for any arbitrary hybrid trace ρ , ρ ◦λ = λ ◦ρ = ρ .

4.2 Interaction signatures 33

4.2 Interaction signatures
As introduced in Chapter 3, service components and service interfaces are modeled by business
roles and business protocols, both of which contain a set of interactions. The semantic do-
main of the interactions is defined by Service-Oriented Configurations. In this section, we show
the syntax of interactions, which can be interpreted over the Service-Oriented Configurations.
Throughout this section we consider a fixed configuration

Ξ = 〈N,WIRE,PLL,Ψ,2WAY,1WAY 〉

over which all definitions are given.
A set of interactions declared in SRML is named as an interaction signature. An interaction

signature consists of a set of interaction names and set of functions that assign each interaction
name with the associated parameters. The interaction names are local to the party that is spec-
ified, and are coordinated with the corresponding interaction names of the co-party by the wire
that connects the two parties. In addition, there is a type associated with each interaction name.
This type is essential to derive the events and actions that associate with the interaction.

To define the interaction signature, we first define interaction types. For simplicity, in this
thesis we only consider the unsynchronized types (s&r,r&s,snd,rcv). The formal definitions of
interaction types and interaction signature are the same as Definition 5.1.1 and Definition 5.1.2
from [17], and are defined as follows:

Definition 4.2.1 (Interaction Types). Interactions can be of one of the following types TY PE =
{s&r,r&s,snd,rcv}.

Definition 4.2.2 (Interaction Signature). An interaction signature is a pair

〈NAME,PARAM〉

where:

• NAME is a TY PE− indexed family of sets of interaction names;

• PARAM consists of five functions PARAM�,PARAM,PARAM
9
,

PARAM< and PARAM8 such that:

– PARAM� assigns to each name in NAME a D-indexed family of sets of�-parameters;

– PARAM,PARAM
9
,PARAM< and PARAM8 assign to each name a∈NAMEs&r∪

NAMEr&s a D-indexed family of sets of-parameters,9-parameters,<-parameters,
and 8-parameters, respectively, such that Return ∈ PARAM�(a)d, Reply ∈
PARAM(a)boolean and useBy ∈ PARAM(a)time;

– For every a ∈ NAME and P,P′ ∈ PARAM�(a)∪PARAM(a)∪PARAM
9
(a)∪

PARAM<(a)∪PARAM8(a),P and P′ are disjoint.

34 4. Hybrid extension of SRML and its semantic domain

In Figure 4.1 we show the set of interactions declared in business role ETCSC, which is part
of the Train-Control module in Appendix A. Business role ETCSC can be involved in the interac-
tions MAControl, Dec, moveOn and end, which have types rcv, rcv, rcv and r&s correspondingly.
moveOn is a one-way interaction which has parameter newMA associating with its request-event;
end is a two-way interaction which has parameter currPos and currTime associating with its
request-event.

Figure 4.1: The set of interactions of Business Role ETCSC

In the rest of this section we consider a fixed signature

s = 〈NAME,PARAM〉

over which all definitions will be given.
As introduced in Chapter 3, in an SO-configuration there are several events and actions as-

sociating with every interaction. And in an interaction signature, the type of each interaction
determines the role of the party being specified —- which events are published by the party,
which events are received by the party. In SRML, these two types of events are distinguished so
that certain features of service modules are able to be specified. The syntax of events are defined
as event names and is the same as Definition 5.1.3 from [17].

Definition 4.2.3 (Event names). The NAME-indexed families of sets EnPUB and EnRCV of names
of events that can be initialized and received, respectively, is defined as follows:

If a ∈ NAMEs&r then EnPUB
a = {a�,a9,a<,a8} and EnRCV

a = {a};
If a ∈ NAMEr&s then EnPUB

a = {a} and EnRCV
a = {a�,a9,a<,a8};

If a ∈ NAMEsnd then EnPUB
a = {a�} and EnRCV

a = /0;

If a ∈ NAMErcv then EnPUB
a = /0 and EnRCV

a = {a�};

4.2 Interaction signatures 35

We Define En = EnPUB∪EnRCV as the NAME-indexed family of sets of all event names. Every
parameter p ∈ PARAM#(a) where # ∈ {�,,9,<,8} is said to be a parameter of event a#.

The type of each interaction also determines the actions that can be performed during the
interaction by the party being specified: which actions can be published by the party, which
actions can be executed by the party, and etc. In order to be sufficient to specify certain features
of service modules, actions are distinguished into four types. The syntax of actions are defined
as action names and is the same as Definition 5.1.5 from [17]:

Definition 4.2.4 (Action Names). The NAME-indexed families of sets of publication, delivery,
execution and discard action names are defined as follows, where a ∈ NAME:

ActPUB
a = {e! : e ∈ EnPUB

a }
ActDLV

a = {e¡ : e ∈ EnRCV
a }

ActEXC
a = {e? : e ∈ EnRCV

a }
ActDSC

a = {e¿ : e ∈ EnRCV
a }

We define Act = ActPUB∪ActDLV ∪ActEXC ∪ActDSC as the NAME-indexed family of sets of all
action names associated with signature s.

As introduced in Chapter 3, in an SO-configuration when a two-way interaction has a positive
reply, there is a pledge that associates with the reply-event. In SRML, the syntax of pledge is
defined as pledge names and is the same as Definition 5.1.4 from [17]:

Definition 4.2.5 (Pledge names). The set PLNames of pledge names associated with interaction
signature s is {a.pledge : a ∈ NAMEr&s}

In Definition 4.2.5, the reason why a pledge is linked to an interaction name but not an
event name is that: a pledge always associate with an reply-event, so linking to the name of the
interaction with which the reply-event associates would not cause ambiguity.

The syntax of interactions, including interaction signatures, event names, actions names and
pledge names, are interpreted over SO-configurations, and this is called interaction interpreta-
tions over SO-configurations, events, and parameters. The interaction interpretation of a SRML
interaction specification over its semantic domain is a function, which assigns every interaction
name with an interaction, assigns every parameter name with a parameter, assigns every event
name with an event, and assigns every action name with an action. The definition of interaction
interpretation is the same as Definition 5.1.6 from [17] and is shown as follows:

Definition 4.2.6 (Interaction Interpretation). An Interaction Interpretation II for s over a config-
uration 〈N,W,PLL,Ψ,2WAY,1WAY 〉 is an injective function that:

• assigns an interaction in 2WAY ∪1WAY to each name in NAME such that:

– for every a ∈ NAMEs&r ∪NAMEr&s, II(a) ∈ 2WAY , i.e. interaction names with type
s&r or r&s denote two-way interactions;

36 4. Hybrid extension of SRML and its semantic domain

– for every a ∈ NAMEsnd ∪NAMErcv, II(a) ∈ 1WAY , i.e. interaction names with type
snd or rcv denote one-way interactions;

• assigns an event in E to each event name in En such that for every a ∈ NAME and event
name with form a# for some # ∈ {�,,9,<,8};

II(a#) = II(a)#

• assigns an action to each action name in Act such that for every aNAME and action name
with form a#%, for some # ∈ {�,,9,<,8} and % ∈ {!, ¡,?,¿}

II(a#%) = II(a)#%

• assigns a pair 〈p′,view〉 to each parameter name p in PARAM, where:

– p′ is a parameter in PP such that:

∗ if p ∈ PARAM�(a)d then p′ ∈ PP(II(a�))d

∗ if p ∈ PARAM(a)d then p′ ∈ PP(II(a))d, and II(Reply) =
Reply, II(useBy) = useBy
∗ if p ∈ PARAM

9
(a)d then p′ ∈ PP(II(a9))d

∗ if p ∈ PARAM<(a)d then p′ ∈ PP(II(a<))d

∗ if p ∈ PARAM8(a)d then p′ ∈ PP(II(a8))d

– view : dU −→ dU is the function that defines how the parameter is observed, where
p ∈ PARAMd , is such that if p = Reply, or p = useBy then view = id,

4.3 Extension of Business Roles
In the hybrid extension of SRML, a business role specifies the interactions performed by the
service component that is modeled by the business role, and the orchestration of changing of
states caused by these interactions. As introduced in Chapter 3, a business role contains the
declaration of a set of interactions performed by the service component, a set of variables that
model the state of the service component and a set of transitions that model the changing of
states. Figure 4.2 shows an example of a business role which is part of the Train-Control module
in Appendix A.

In a business role, the set of variables that model the states of the corresponding service
component are defined by an attribute declaration. The definition of attribute declaration is the
same as Definition 5.2.1 from [17] and is shown as follows:

Definition 4.3.1 (Attribute declaration). An attribute declaration VAR is a D-indexed family of
disjoint sets (where D is the set of data types).

4.3 Extension of Business Roles 37

Figure 4.2: Business Role: ETCSC

38 4. Hybrid extension of SRML and its semantic domain

An example of an attribute declaration is the "var" part in Figure 4.2. The data type of each
variable is assumed to be included in the set of data types D, and is used for storing data that is
needed at different stages in the system evolution.

An attribute declaration is interpreted over a SO-HL2TS, and is defined as an attribute in-
terpretation. The attribute interpretation assigns a value to each variable in each state of the
SO-HL2TS. Since these variables are local to the service component being modeled, they can
be used to model the internal changes of the service component in the computation. The formal
definition of attribute interpretation extends Definition 5.2.2 from [17] in that, attribute declara-
tions are interpreted over SO-HL2TSs instead of over SO-TSs, thus each state in which a value
is assigned to each variable is represented by function mapping but not a simple state.

Definition 4.3.2 (Attribute interpretation). An attribute interpretation ∆ for an attribute decla-
ration VAR over a SO-HL2TS 〈S,s0,Σ,Act,R,AP,L,T IME,Π〉 assigns to every state σ(ζ) ∈ S
and every variable v ∈ VARd an element v∆(σ(ζ)) ∈ dU (the value of the variable in that state).
Where d ∈ D is the data type, dU is the interpretation of d over the fixed algebra U , σ ∈ Σ and
ζ ∈ [0,rσ].

The variable v can be seen as a function of time as follows: Let ρ = (σ1(0) . . .σ0(rσ0),
σ1(0) . . .σ1(rσ2), . . .) be a path of the SO-HL2TS over which v is interpreted, then the interpreta-
tion of vρ : T IME→ dU is defined as:

vρ(t) = v∆(σi(ζ)) iff t = T IMEσi(ζ), for ∀σi in path ρ and ζ ∈ [0,rσi]

Note that vρ may not be well-defined, and may be a partial function. vρ is not well-defined if
there exist a j ≥ 0 such that T IMEσ j(rσ j) = T IMEσ j+1(0) and v∆(σ j(rσ j)) 6= v∆(σ j+1(0)). A well-
defined vρ is partial if at least one action between the states in ρ takes time, i.e., there exists a
j ≥ 0 such that T IMEσ j(rσ j) < T IMEσ j+1(0).

Besides an attribute declaration, an orchestration also includes a set of transitions. As intro-
duced in Chapter 3, a transition consists of a trigger, a guard and a set of effects. In the language
specification, triggers and guards are defined over the language of states, and effects are defined
over the language of effects, then transitions are defined over triggers, guards, and effects. We in-
troduce them separately in the following sub-sections. Throughout the remaining of this section
we consider the following fixed structures:

• sig = 〈NAME,PARAM〉 to be an interaction signature where Act is the set of actions asso-
ciated with sig;

• VAR to be an attribute declaration.

over which all the definitions will be given.
To interpret each part of a business role, we also consider:

• Ξ = 〈N,W,PLL,Ψ,2WAY,1WAY 〉 to be a configuration;

• II to be an interaction interpretation for sig over 2WAY ∪1WAY local to some node n ∈ N;

4.3 Extension of Business Roles 39

• TR to be a set of transition names;

• m = 〈S,s0,Σ,Act,R,AP,L,T IME,Π〉 to be a SO-HL2TS for Ξ;

• ∆ to be an attribute interpretation over m.

4.3.1 Language of states
The language of states (LS) is defined over state terms. State terms denote the values of the
variables and parameters that associate with events in certain states. The types of state terms
include constant, function mapping, variables and parameters. The formal definition of state
terms extends Definition 5.2.3 from [17] in that, we define a new type of state term of the form
vdot , which is the derivative of a certain variable v to time. This enables us to specify the variables
that change with time.

Definition 4.3.3 (State Terms). The D− indexed family of sets ST ERM of state terms is defined
as follows:

• If c ∈ Fd then

c ∈ ST ERMd

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and −→p ∈ ST ERM<d1,...,dn>, then

f (−→p) ∈ ST ERMdn+1

for every d1, . . . ,dn,dn+1 ∈ D

• If v ∈VARd and vdot ∈VARd′ , then

vdot ∈ ST ERMd′

for every d,d′ ∈ D

• If a ∈ NAME and param ∈ PARAM(a)d , then

a.param ∈ ST ERMd

for every d ∈ D

• t ∈ ST ERMtime

• If v ∈VARd , then

v ∈ ST ERMd

for every d ∈ D

40 4. Hybrid extension of SRML and its semantic domain

In Definition 4.3.3, t ∈ ST ERMtime is the variable that stores the time of a certain state.
Variable vdot ∈ ST ERM is the derivative of a variable v ∈ ST ERM to time. By defining the
derivative of variables to time in state terms, differential equations which represent the evolutions
of SO-HL2TSs in which time-continuous variables involve can be specified with the language of
states (see Definition 4.3.5 and Definition 4.3.6).

The interpretation of state terms is adapted from Definition 5.2.4 from [17]. In our definition,
state terms are interpreted over the states of SO-HL2TSs, thus they are denoted in the form σ(ζ)
(σ ∈ Σ in m and ζ ∈ [0,rσ]). We also interpret the state term vdot in the same way of state term v.

Definition 4.3.4 (Interpretation of State Terms). The interpretation of a state term T ∈ ST ERM in
a state σ(ζ) with σ ∈Σ and 0≤ ζ ≤ rσ , written JT Kσ(ζ), is defined as follows, where II(param)=
〈param′,view〉:

• JcKσ(ζ) = cU

• J f (T1, . . . ,Tn)Kσ(ζ) = fU (JT1Kσ(ζ), . . . ,JTnKσ(ζ))

• JvdotKσ(ζ) = (vdot)
∆(σ(ζ))

• Ja.paramKσ(ζ) = view(II(a).param′Π
σ(0)

)

• JtKσ(ζ) = T IMEσ(ζ)

• JvKσ(ζ) = v∆(σ(ζ))

In Definition 4.3.4, U is the fixed algebra for interpreting the data signature 〈D,F〉 as defined
in Chapter 3, ∆ is the attribute interpretation over the SO-HL2TS m and ∆(σ(ζ)) denotes the
attribute interpretation at state σ(ζ), view is the function that maps a parameter name to the
value of that parameter, T IMEσ(ζ) is the time at state σ(ζ).

The language of states specifies the possible states a service component can be in with propo-
sitions of state terms. It is defined as a set of formulas and extends Definition 5.2.5 from [17].
In our definition, we define more formulas than that in [17], and this makes the language more
expressive and thus sufficient for our applications.

Definition 4.3.5 (Language of States). The language of states LS is defined as follows:

• φ ::= true | T1 = T2 | T1 < T2 | φ ∧φ | ¬φ

with T1,T2 ∈ ST ERMd for some d ∈ D

Since state terms are interpreted over states of SO-HL2TSs, LS is satisfied by states. The
satisfaction of state terms is adapted from Definition 5.2.6 from [17]. In our definition, instead
of simple states, LS is satisfied by states obtained by function mapping. The satisfaction relation
of LS is defined as follows:

4.3 Extension of Business Roles 41

Definition 4.3.6 (Satisfaction of the language of states). The satisfaction relation between a
state σ(ζ) and an LS formula φ ∈ LS, denoted with σ(ζ) |= φ , is defined as follows, where
σ ∈ Σ and ζ ∈ [0,rσ]:

• σ(ζ) |= true

• σ(ζ) |= T1 = T2 iff JT1Kσ(ζ) = JT2Kσ(ζ)

• σ(ζ) |= T1 < T2 iff JT1Kσ(ζ) < JT2Kσ(ζ)

• σ(ζ) |= ¬φ iff not σ(ζ) |= φ

• σ(ζ) |= φ ∧φ ′ iff σ(ζ) |= φ and σ(ζ) |= φ ′

In LS, a differential equation can be specified in the form vdot = T , where vdot is the derivative
of state term v (v ∈ VARd) to time, and T is an arbitrary state term. The semantic of vdot =
T in an arbitrary state σ(ζ) is: JvdotKσ(ζ) = JT Kσ(ζ). For example in Figure 4.2, the guard
condition Cdot = v0 in transition Nego is a differential equation of variable C, and is interpreted
as JCdotKσ1(rσ1)

= Jv0Kσ1(rσ1)
.

4.3.2 Language of effects
The language of effects (LE) is defined over effect terms. Effect terms denote the values of the
variables and parameters that associate with events during certain transitions. The values of the
variables in the source state of a transition may be different from that in the target state of the
transition, that is, the values may change during a transition. In order to capture this feature, we
define effect terms by extending state terms with two new terms v′ and t ′. Term v′ relates to term
v in that: term v denotes the value of variable v in the source state of the transition while term v′

denotes the value of variable v in the target state of the transition. Term t ′ relates to term t in that:
term t denotes the time instance of the source state while term t ′ denotes the the time instance of
the target state.

The formal definition of effect terms is is adapted from Definition 5.2.7 from [17]. Similar
to state terms, in our definition we also have to define a new type of effect term which is the
derivative of a certain variable to time .

Definition 4.3.7 (Effect Terms). The D-indexed family of sets ET ERM of effect terms is defined
inductively as follows:

• If c ∈ Fd then

c ∈ ET ERMd

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and −→p ∈ ET ERM<d1,...,dn>, then

f (−→p) ∈ ET ERMdn+1

for every d1, . . . ,dn,dn+1 ∈ D

42 4. Hybrid extension of SRML and its semantic domain

• If v ∈VARd and vdot ∈VARd′ , then

vdot ∈ ET ERMd′

for every d,d′ ∈ D

• If a ∈ NAME and param ∈ PARAM(a)d , then

a.param ∈ ET ERMd

for every d ∈ D

• t, t ′ ∈ ET ERMtime

• If v ∈VARd , then

v,v′ ∈ ET ERMd

for every d ∈ D

Similar to that defined in Definition 4.3.3, effect term vdot is the derivative of variable v to
time. In Figure 4.2, terms in effect of transition Nego, Corr, Cont, and Stop (such as Cdot , V and
b) are effect terms.

The interpretation of effect terms is adapted from Definition 5.2.8 from [17]. In our defini-
tion, effect terms are interpreted over the transitions of SO-HL2TSs. In the SO-HL2TSs m, these
transitions are denoted in the form σ(rσ)→ σ ′(0), where σ(rσ) is the source state of the transi-
tion and σ ′(0) is the target state of the transition. The interpretation of state terms is defined as
follows:

Definition 4.3.8 (Interpretation of effect terms). The interpretation of an effect term T ∈ET ERM
over a transition σ(rσ)→σ ′(0), written JT Kσ(rσ)→σ ′(0), is defined as follows, where II(param)=
〈param′,view〉:

• JcKσ(rσ)→σ ′(0) = cU

• J f (T1, . . . ,Tn)Kσ(rσ)→σ ′(0) = fU (JT1Kσ ′(0), . . . ,JTnKσ ′(0))

• JvdotKσ(rσ)→σ ′(0) = (vdot)
∆(σ ′(0))

• Ja.paramKσ(rσ)→σ ′(0) = view(II(a).param′Π
σ ′(0)

)

• JvKσ(rσ)→σ ′(0) = vσ(rσ)

• Jv′Kσ(rσ)→σ ′(0) = v∆(σ ′(0))

• JtKσ(rσ)→σ ′(0) = T IMEσ(rσ)

4.3 Extension of Business Roles 43

• Jt ′Kσ(rσ)→σ ′(0) = T IMEσ ′(0)

The subscript of the interpretation of effect terms in definition 4.3.8 means that the terms are
interpreted over transition σ(rσ)→ σ ′(0), whose target state is the first state of the trace of states
σ ′(0) . . .σ ′(rσ ′).

The language of effects (LE) specifies the results of transitions with propositions of effect
terms. It is defined as a set of formulas and adapted from Definition 5.2.5 from [17]. Since in our
case the publication of events as the result of transition is not studied, we exclude such events
from the definition of LE.

Definition 4.3.9 (Language of Effects). The Language of effects LE is defined inductively as
follows:

• φ ::= true | T1 = T2 | φ ∧φ ′ | ¬φ

where T1,T2 ∈ ET ERMd for some d ∈ D.

Since effect terms are interpreted over transitions of SO-HL2TSs, LE is satisfied by transi-
tions. The satisfaction is adapted from Definition 5.2.10 from [17]. In our definition, instead
of transitions between simple states, LE is satisfied by transitions between states obtained by
function mapping. The satisfaction relation of LE is defined as follows:

Definition 4.3.10 (Satisfaction for the language of effects). The satisfaction relation between
a transition σ(rσ)→ σ ′(0) and an LE formula φ ∈ LE, denoted with σ(rσ)→ σ ′(0) |= φ , is
defined as follows, where σ ∈ Σ:

• σ(rσ)→ σ ′(0) |= true

• σ(rσ)→ σ ′(0) |= T1 = T2 iff JT1Kσ(rσ)→σ ′(0) = JT2Kσ(rσ)→σ ′(0)

• σ(rσ)→ σ ′(0) |= φ ∧φ ′ iff σ(rσ)→ σ ′(0) |= φ and σ(rσ)→ σ ′(0) |= φ ′

• σ(rσ)→ σ ′(0) |= ¬φ iff not σ(rσ)→ σ ′(0) |= φ

Like in LS, a differential equation in LE can be specified in the form vdot = T , where vdot
is the derivative of variable v (v ∈ ET ERMd) to time, and T is an arbitrary effect term. The
satisfaction of vdot = T by a transition σ(rσ)→ σ ′(0) is: JvdotKσ(rσ)→σ ′(0) = JT Kσ(rσ)→σ ′(0),
which means after transition σ(rσ)→ σ ′(0), differential equation vdot = T holds along the trace
of states σ ′(0) . . .σ ′(rσ ′). For example in Figure 4.2, the effect Cdot = v1 of transition Nego is
a differential equation of variable C, and is satisfied as JCdotKσ0(rσ0)→σ1(0) = Jv1Kσ0(rσ0)→σ1(0),
which means after transition σ0(rσ0)→ σ1(0), differential equation Cdot = v1 holds along the
trace of states σ1(0) . . .σ1(rσ1).

44 4. Hybrid extension of SRML and its semantic domain

4.3.3 Transition specifications
Transitions of SRML are defined on the basis of LS and LE. As introduced in Chapter 3, a
transition of SRML includes a trigger, which specifies the events that cause the transition; a
guard, which specifies the condition in which the transition can take place; an effect, which
specifies the new values of variables and parameters as the result of the transition. For example in
Figure 4.2, transition Nego takes place when trigger MAControl�? happens and guard Cdot = v0
is satisfied, as a result effect Cdot = v1 holds in each state of the trace of states whose first state
is the target state of this transition.

A transition specification includes three functions: tri, gua and eff, which maps a transition
name in TR to trigger, guard, effect of that transition correspondingly.

Definition 4.3.11 (Transition specification). Given a transition name tr ∈ T R, a transition speci-
fication is a tuple

〈tri(tr),gua(tr),e f f (tr)〉

where:

• tri is a function such that: tri(tr) ∈ ActEXC (see Definition 4.2.4 for the definition of
ActEXC) specifies the events that triggers the transition,respectively;

• gua is a function such that: gua(tr) ∈ LS specifies the conditions that must be satisfied for
the transition to take place;

• eff is a function such that: e f f (tr) ∈ LE specifies the results of the transition.

In Definition 4.3.11, ActEXC is the set of actions that are executed during transitions. Only
when the trigger conditions are from the set of actions that are being executed, they could be the
possible actions that trigger the transitions.

In a transition specification, since guard condition is specified by LS and effect condition
is specified by LE, LS is satisfied by states of SO-HL2TSs and LE is satisfied by transitions of
SO-HL2TSs, transition specifications are satisfied by SO-HL2TSs. A SO-HL2TS m satisfies a
transition specification if, when the events of trigger are executed and processed, and the condi-
tions of guard are satisfied by the current state, then the results of effect can be observed. This is
defined formally as follows:

Definition 4.3.12 (Transition satisfaction). The SO-HL2TS m satisfies a transition specification

〈tri(tr),gua(tr),e f f (tr)〉

iff : for every transition σ(rσ)→ σ ′(0) the following properties hold:

If tri(tr) ∈ ActEXC, II(tri(tr)) ∈ PRCσ(rσ)→σ ′(0), and σ(rσ) |= gua(tr), then

II(tri(tr)) ∈ EXCσ(rσ)→σ ′(0) and
σ(rσ)→ σ

′(0) |= e f f (tr);

4.4 Extension of Business Protocols 45

4.3.4 Formalization of business roles
As introduced in the beginning of this section, a business role models a service component by
declaring a set of interactions in which the service component is involved and an orchestration.
In detail, the orchestration include an attribute declaration and a set of transitions. Based on the
definition of interactions, attribute declarations and transition specification, a business role can
be formalized as follows:

Definition 4.3.13 (Business role). A business role is a triple

〈sig,VAR,ORCH〉

where:

• sig is an interaction signature;

• VAR is an attribute declaration;

• ORCH is a set of transition specifications for sig and VAR.

The form of Definition 4.3.4 is the same as Definition 5.2.13 from [17]. But in this thesis, VAR
(the attribute declaration) and ORCH (the set of transition specifications) are defined differently
from that in [17].

In a business role, the orchestration specifies the computation performed by the service com-
ponent which is modeled by the business role, thus the satisfaction of a business role can be seen
equal to the satisfaction of the transitions declared in its orchestration. Since transitions of or-
chestrations are satisfied by SO-HL2TSs, business roles should also be satisfied by SO-HL2TSs.
A SO-HL2TS satisfies a business role if and only if it satisfies every transition specification in
that business role.

Definition 4.3.14 (Satisfaction of business role). The SO-HL2TS m is said to satisfy a business
role 〈sig,VAR,ORCH〉 iff m |= 〈tri(tr),gua(tr),e f f (tr)〉 for every
〈tri(tr),gua(tr),e f f (tr)〉 ∈ ORCH (tr ∈ T R is a transition name).

Take business role ETCSC in Figure 4.2 for example, tri(Nego) ≡MAControl�?, gua(Nego)
≡ Cdot = V0, eff(Nego) ≡ Cdot = V1. The SO-HL2TS m satisfies transition specification of
Nego: m |= 〈tri(Nego),gua(Nego),e f f (Nego)〉. The same as transition Nego, there is m |=
〈tri(Corr),gua(Corr),e f f (Corr)〉, m |= 〈tri(Cont),gua(Cont),e f f (Cont)〉, and m |= 〈tri(Stop),
gua(Stop),e f f (Stop)〉. Thus m satisfies business role ETCSC.

4.4 Extension of Business Protocols
In a service module, a business protocol consists of a set of interactions and a set of behav-
iors. These interactions are involved in by the service interface (requires-interface or provides-
interface) that is modeled by the business protocol. The behaviors specifies the way the service

46 4. Hybrid extension of SRML and its semantic domain

that is modeled by the service module engages in the interactions, that is, they specify the features
that the outside party can expect the service to hold.

Figure 4.3 shows an example of the business protocol MonitoringCenter which is part of the
Train-Control module in Appendix A. In the example, receivePos is an interaction and always
receivePos�.T<L→ receivePos�.Pos<N is a behavior constraint.

Figure 4.3: Business Protocol: MonitoringCenter

In this section, we define a hybrid behavior constraint with which the behaviors that specify
the time-continuous evolution of services (also can be seen as hybrid systems) can be declared.
In order to do this, we have to define state predicates, hybrid programs and dTL formulas, based
on which the hybrid behavior constraint is defined. Particularly, hybrid programs and dTL for-
mulas are essential in the verification of behaviors declared with the hybrid behavior constraint.
We introduce these in the following sub-sections. Throughout the remaining of this section we
consider the following fixed structures:

• Ξ = 〈N,WIRE,PLL,Ψ,2WAY,1WAY 〉 to be a configuration;

• sig = 〈NAME,PARAM〉 to be an interaction signature, where Act is the set of actions
associated with sig;

• II to be an interaction interpretation for sig over 2WAY ∪1WAY local to some node n ∈ N;

• m = 〈S,s,Act ′,R,Σ,L,AP,T IME,Π〉 to be the SO-HL2TS that abstracts some model of
computation for Ξ; II[Act] ⊆ Act ′ by definition. (Act ′ are superset of the actions that can
be performed by node n).

over which all the definitions are given.

4.4 Extension of Business Protocols 47

4.4.1 State predicates
State predicates are the predicates that holds in certain states of SO-HL2TSs. They are defined
on the basis of terms. A term can be a constant, an operation, the value of some parameter or
the time associated with a state. Different from state terms, terms doesn’t include variables. This
is because business protocols model service interfaces which perform no business process. The
formal definition of terms is the same as Definition 5.3.1 from [17], and is shown as follows:

Definition 4.4.1 (Terms). The D-indexed family of sets TERM is defined inductively as follows:

• If c ∈ Fd then

c ∈ T ERMd

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and −→p ∈ T ERM<d1,...,dn> then

f (−→p) ∈ T ERMdn+1

for every d1, . . . ,dn,dn+1 ∈ D

• If a ∈ NAME and p ∈ PARAM(a)d , then

a.p ∈ T ERMd

for every d ∈ D

• t ∈ T ERMtime

The interpretation of terms is adapted from Definition 5.3.2 from [17]. In our definition,
terms are interpreted over the states of SO-HL2TSs, thus they are denoted in the form σ(ζ)
(σ ∈ Σ in m and ζ ∈ [0,rσ]). The interpretation of terms is shown as follows:

Definition 4.4.2 (Interpretation of terms). The interpretation of a term T ∈ T ERM in a state
σ(ζ) with σ ∈ Σ and 0 ≤ ζ ≤ rσ , written JT Kσ(ζ), is defined as follows, where II(param) =
〈param′,view〉

• JcKσ(ζ) = cU

• J f (T1, . . . ,Tn)Kσ(ζ) = fU (JT1Kσ(ζ), . . . ,JTnKσ(ζ))

• Ja.pKσ(ζ) = view(II(a).p′Π
σ(ζ)

)

• JtimeKσ(ζ) = T IMEσ(ζ)

State predicates specify the possible states a service interface can be in with the atomic pred-
icates of the corresponding SO-HL2TSs and propositions of terms. State predicates are defined
as a set of formulas and extend Definition 4.2.6 from [17]. In our definition, we define more
formulas than that in [17], and this makes the language more expressive and thus sufficient for
our applications. State predicates are defined as follows:

48 4. Hybrid extension of SRML and its semantic domain

Definition 4.4.3 (State predicates). The language SP of state predicates is defined as follows:

SP ::= ap | T1 = T2 | T1 < T2 | φ → φ
′

with ap ∈ AP, and T1,T2 ∈ T ERMd for some d ∈ D.

Since terms are interpreted over states of SO-HL2TSs, state predicates are satisfied by states.
The satisfaction of state predicates is adapted from Definition 5.3.6 from [17]. In our definition,
we interpreted also the extended formulas of state predicates. And instead of simple state, state
predicates are satisfied by states obtained by function mapping.

Definition 4.4.4 (Satisfaction of state predicates). The satisfaction relation between a state σ(ζ)
in SO-HL2TS m and a state predicate sp, written σ(ζ) |= sp, where σ ∈ Σ and 0 ≤ ζ ≤ rσ is
defined as follows:

• σ(ζ) |= ap iff ap ∈ L(σ(ζ));

• σ(ζ) |= T1 = T2 iff JT1Kσ(ζ) = JT2Kσ(ζ)

• σ(ζ) |= T1 < T2 iff JT1Kσ(ζ) = JT2Kσ(ζ)

• σ(ζ) |= φ → φ ′ iff σ(ζ) |= φ → σ(ζ) |= φ ′

Take Figure 4.3 for example, receivePos�.T < L→ receivePos�.Pos < M is a state predi-
cate. And in the SO-HL2TS m, there is σ3(0) |= receivePos�.T < L→ receivePos�.Pos < M.

4.4.2 Hybrid programs and dTL formulas
Hybrid programs are extensions of the Dynamic Logic programs. They generalize real-time pro-
grams [40] to hybrid changes and can be used to describe the hybrid behaviors of SO-HL2TSs.
Hybrid programs are defined over language of effects (LE, see Definition 4.3.9) and are inter-
preted over paths of SO-HL2TSs.

Definition 4.4.5 (Hybrid Program). The set HP of hybrid programs is inductively defined as
follows:

• If β ∈ LE, then β ∈ HP;

• χ ∈ HP is an empty hybrid program;

• If β ,γ ∈ HP, then β ∪ γ ∈ HP;

• If β ,γ ∈ HP, then β ;γ ∈ HP;

• If β ∈ HP, then β ∗ ∈ HP.

4.4 Extension of Business Protocols 49

In definition 4.4.5, ;, ∪ and ∗ are Dynamic Logic propositional operators which have the
meanings composition, choice and iteration respectively. (Cdot = v0)

∗ and Cdot = v1;Cdot =V ∧
Vdot = b;end.currPos =C−C0∧ end.currTime = t ′− t) are examples of hybrid programs
that are constructed from business role ETCSC.

A hybrid program is interpreted as a set of paths of a SO-HL2TS, each transition in which
satisfies the corresponding LE formula that composites the hybrid program. In particular, the
composition and iteration operators in the hybrid program are interpreted as the concatenation
of paths of the SO-HL2TS, and the choice operator is interpreted as the union of paths of the
SO-HL2TS. The interpretation of hybrid programs is defined as follows:

Definition 4.4.6 (Interpretation of hybrid programs). The interpretation of a hybrid program β

which is a set of paths of the SO-HL2TS m, written Jβ K, is defined as follows,:

• If β ∈ LE, then Jβ K = {σ(0) . . .σ(rσ)|σ ∈ Σ and ∃σ ′ ∈ Σ such that σ ′(rσ ′)→ σ(0) |= β}
(the satisfaction of LE over transitions, |=, can be found in Definition 4.3.10);

• JχK = {λ};

• Jβ ∪ γK = Jβ K∪ JγK;

• Jβ ;γK = {σ ◦ ς : σ ∈ Jβ K,ς ∈ JγK when σ ◦ ς is defined };

• Jβ ∗K =
⋃

n∈NJβ nK, where Jβ 0K = {λ} and Jβ nK = Jβ n−1;β K.

Jβ K is also called the trace semantics of hybrid program β .

dTL formulas are defined on the basis of state predicates and hybrid programs. The definition
of dTL formulas is adapted from [41]. The difference from that in [41] is that, in our definition
the atomic predicate is replaced by state predicate and the hybrid programs are defined differently
(see Definition 4.4.5 and Definition 4.4.6). The definition of dTL formulas is shown as follows:

Definition 4.4.7 (dTL formulas). the dTL state formula φ and dTL trace formula φ are induc-
tively defined as follows:

φ ::= true | sp | ¬φ ,φ ∧φ
′,φ ∨φ

′,φ → φ
′,∀t ′φ ,∃t ′φ | [β]π,〈β 〉π

π ::= φ |�φ ,♦φ

with sp ∈ SP and β ∈ HP.

The t ′ in Definition 4.4.7 is the effect term that is defined in Definition 4.3.7. In Definition
4.4.7, t ′ works as a free variable.

In dynamic logic as introduced in Chapter 2, modality "[]" in the dTL formula [β]π represents
all possible behaviors of a system β , modality "〈〉" in the dTL formula 〈β 〉π represents the
existence of some behavior of β , both of which satisfy condition π . And in our definition, β is a
hybrid program and π is a dTL trace formula which is allowed to refer to all states along a path of
a SO-HL2TS using temporal operators � and ♦. The temporal trace formula �φ expresses that

50 4. Hybrid extension of SRML and its semantic domain

the formula φ holds at all the states along a path selected by [β] or 〈β 〉. Dually, the trace formula
♦φ expresses that φ holds at some state in such a path. e.g. state formula 〈β 〉�φ expresses that
the state formula φ holds in every state along at least one path in Jβ K, and state formula [β]♦φ

expresses that the state formula φ holds in at least one state along every path in Jβ K. Similarly are
[β]�φ and 〈β 〉♦φ . Formulas without � and ♦ operators are called non-temporal dynamic logic
formulas [42, 29, 43]. If they follow some paths of a SO-HL2TS selected by a hybrid program,
then they should hold for the last states of these paths. e.g. [β]φ expresses that φ is true at the
end of each path in Jβ K. In contrast, [β]�φ expresses that φ is true along all states of every path
in Jβ K.

dTL state formulas are satisfied by states of SO-HL2TSs and dTL trace formulas are satisfied
by paths of SO-HL2TSs. The satisfaction of dTL formulas is adapted from [41]. In our definition,
the states and paths that satisfy the formulas are that of the SO-HL2TSs m. The satisfaction of
dTL formulas is defined as follows:

Definition 4.4.8 (Satisfaction of dTL formulas). The satisfaction relation between a state σ(ζ)
in SO-HL2TS m and a dTL state formula φ , written σ(ζ) |= φ , where σ ∈ Σ and 0 ≤ ζ ≤ rσ is
defined as follows:

• σ(ζ) |= true;

• σ(ζ) |= sp as defined in Def. 4.4.4;

• σ(ζ) |= ¬φ iff not σ(ζ) |= φ ;

• σ(ζ) |= φ ∧φ ′ iff σ(ζ) |= φ and σ(ζ) |= φ ′;

• σ(ζ) |= φ ∨φ ′ iff σ(ζ) |= φ or σ(ζ) |= φ ′;

• σ(ζ) |= φ → φ ′ iff σ(ζ) |= φ → σ(ζ) |= φ ′;

• σ(ζ) |= ∀t ′φ iff σ(ζ) |= φ for all Jt ′Kσ ′(ξ) where σ ′ is an arbitrary function in Σ and ξ is
an arbitrary real number in [0,rσ ′] ;

• σ(ζ) |= ∃t ′φ iff σ(ζ) |= φ for some Jt ′Kσ ′(ξ) where σ ′ is some function in Σ and ξ is some
real number in [0,rσ ′] ;

• σ(ζ) |= [β]π iff for each trace ρ ∈ β with f irstρ = σ(ζ), if the satisfaction relation be-
tween ρ and π is defined then ρ |= π;

• σ(ζ) |= 〈β 〉π iff there is a trace ρ ∈ β with f irstρ = σ(ζ), if the satisfaction relation
between ρ and π is defined then ρ |= π .

The satisfaction relation between a path ρ of the SO-HL2TS m and a dTL trace formula π ,
written ρ |= π , is defined as follows:

• ρ |= φ iff ρ terminates and lastρ |= φ , whereas the satisfaction relation between ρ and φ

is not defined if ρ does not terminate;

4.4 Extension of Business Protocols 51

• ρ |=�φ iff σi(ζ) |= φ for all positions (i,ζ) of ρ;

• ρ |= ♦φ iff σi(ζ) |= φ for some position (i,ζ) of ρ .

4.4.3 Behavior constraints
In order to be able to specify the behaviors in business protocols, four behavior constraints are
defined in [17]. Theses behavior constraints "capture the conditions under which events are
executed or discarded and the conditions under which events are published" [17]. They are
named with initiallyEnabled, enables, enables...until and ensures. In Table 4.1 we list the
informal and formal interpretations of the behavior constraints.

Behavior constraints Informal interpretation Formal interpretation
initiallyEnabled e? The event e will never be discarded. A[true{¬e¿}We?true]

s enables e?
Once s becomes true, e can not be A[¬s{¬e?}
discarded ever again. And before s W (s∧¬EF < e¿ > true)]

becomes true, e can not be executed.

s enables e? until w

e can only be executed and can not be (¬E[¬w{true}
discarded, after s becomes true but only U(s∧E[¬w{true}U{e¿}true])])

while w has never been true. Once w ∧(AG(w⇒¬EF < e? > true))
becomes true, e can not be executed anymore. ∧(A[true{¬e?}Ws])

s ensures e!
After s becomes true e will be A[¬s{¬e!}W (s∧AF [e!]true)]

published, but not before.

Table 4.1: Informal and formal interpretation of behavior constraints: e?,e!,e¿ ∈ Act and s,w ∈
SP where Act is the set of actions in the SO-HL2TS m and SP is the set of state predicates.

Since the evolutions of hybrid systems involve both discrete changes and time-continuous
changes, it is needed to specify such hybrid changes in business protocols that are interpreted
over SO-HL2TSs. In order to do this, we define a new behavior constraint always sp, which
can specify the behaviors that are caused by hybrid changes of services that are abstracted by
SO-HL2TSs. In the behavior constraint, sp is a state predicate. always sp is called the hybrid
behavior constraint, and it is informally interpreted as "sp holds at each state of all the paths of
a certain hybrid program β . β is defined in the interpretation of hybrid behavior constraint that
is shown as follows:

Definition 4.4.9 (Interpretation of hybrid behavior constraint).
For the service module M in which "always sp" is declared, let β be a hybrid program which

represents a hybrid behavior of M, i.e. Jβ K is the set of all the paths of SO-HL2TS m starting
from σ0(0) . . .σ0(rσ0) selected by M. Then "always sp" is interpreted as:

[β]�sp

where sp ∈ SP

52 4. Hybrid extension of SRML and its semantic domain

In Definition 4.4.9, the hybrid program β for a certain service module only exists under some
conditions, i.e. there exists an SO-HL2TS that satisfies all the business roles of that service
module. In Chapter 5 we will show how to construct such a hybrid program β .

The set of behavior constraints declared in a business protocol extends Definition 5.3.7 from
[17] with the hybrid behavior constraint "always sp" and is shown as follows:

Definition 4.4.10 (Behavior constraints). The set ABRV of behavior constraints that can be spec-
ified for sig in a business protocol is defined as follows:

ABRV ::=initiallyEnabled e? | s enables e? | s enables e? until w |
s ensures e!|always s

where e?,e! ∈ Act of m and s,w ∈ SP.

As shown in Table 4.1 and Definition 4.4.9, "always sp" is interpreted over all the states
along some paths of the SO-HL2TS m, which include both the continuous parts and the discrete
parts of the paths; and other behavior constraints are only interpreted over certain states in some
paths of m, which include only the discrete parts of paths. So we call always s hybrid behavior
constraint and the rest of the behavior constraints normal behavior constraints.

The normal behavior constraints are interpreted as UCTL formulas that can be found in [17],
and the hybrid behavior constraint is interpreted in Definition 4.4.9. Figure 4.4 shows the behav-
ior specified with the hybrid behavior constraint of business protocol MOC. In Figure 4.4, L and
N are constants. L is the maximum time and N is the maximum displacement for the movement
of a train.

Figure 4.4: The behavior constraint of business protocol MOC

4.4.4 Formalization of business protocol
As introduced in the beginning of this section, a business protocol is a formal specification of
a service provides-interface or requires-interface. In the business protocol, a set of interactions
in which the service interface involves and a set of behaviors that the service module in which
the service interface is included can expect to hold are declared. According to this, we give the
formal definition of business protocol which is the same as Definition 5.3.9 from [17] and is
shown as follows:

Definition 4.4.11 (Business Protocol). A business protocol is a pair

〈sig,BEHAV IOR〉

where:

4.5 Extension of Interaction Protocols 53

• sig is an interaction signature;

• BEHAVIOR⊂ ABRV is a set of behavior constraints defined over sig.

Take the business protocol MonitoringCenter in Figure 4.3 for example. Suppose it is formal-
ized as MonitoringCenter = 〈sig,BEHAV IOR〉. Then sig includes the name and parameters of
interaction receivePos, and BEHAV IOR = {always receivePos�.T < L→ receivePosΦ.Pos <
N}

As introduced in the beginning of this section, the behaviors declared in a business protocol
of a service module specify the features that the outside parties can expect the service which
is modeled by the service module to hold. Thus the satisfaction of a business protocol can be
seen equal to the satisfaction of the dTL formulas that are declared as behaviors of that business
protocol. Since dTL formulas are satisfied by states and paths of SO-HL2TSs, we define that
an SO-HL2TS satisfies a business protocol if and only if it satisfies the behaviors specified in
the business protocol. The formal definition of satisfaction of business protocol is adapted from
Definition 5.3.10 from [17]. In our definition, we simplify the definition by discarding provides-
interfaces and requires-interfaces which are not distinguished in this thesis. The definition is
shown as follows:

Definition 4.4.12 (Satisfaction of Business Protocol). The SO-HL2TS m satisfies a business pro-
tocol 〈sig,BEHAV IOR〉 iff:

• For each normal behavior constraint n ∈ BEHAV IOR, s0 |= n where the satisfaction rela-
tion between a state and n which is interpreted as a UCTL formula is defined in [36, 37];

• For each hybrid behavior constraint h ∈ BEHAV IOR, s0 |= h where the satisfaction rela-
tion between a state and h which is interpreted as a dTL formula is defined in Definition
4.4.8;

4.5 Extension of Interaction Protocols
As introduced in Chapter 3, wires in service modules are modeled by interaction protocols. An
interaction protocol correlates a pair of interactions, each of which is declared in a business role
or a business protocol. Figure 4.5 shows an example of a business protocol.

Since in SRML, interaction protocols are designed as separate, reusable entities, they are
labeled with connectors that coordinates the interactions in which service components or service
interfaces are involved. A business protocol can be labeled with different connectors, and thus
can model different wires in a service module.

In this section, we first introduce coordinations over which interaction protocols are defined;
and then introduce interaction protocols and connectors, by which the wires of service mod-
ules can be modeled. Throughout the remaining of this section we consider the following fixed
structures:

• Ξ = 〈N,W,PLL,Ψ,2WAY,1WAY 〉 be a configuration;

54 4. Hybrid extension of SRML and its semantic domain

Figure 4.5: An interaction protocol of service module Train-Control

4.5 Extension of Interaction Protocols 55

• partyA and partyB be two interaction signatures;

• II1 and II2 be an interaction interpretation over 2WAY ∪ 1WAY for partyA and partyB,
respectively. We will use II to denote II1∪ II2;

• m = 〈S,s0,Σ,Act,R,AP,L,T IME,Π〉 be the SO-HL2TS for Ξ;

over which all the definitions will be given.

4.5.1 Coordinations

As introduced in the beginning of this Chapter, an interaction protocol correlates two interactions.
Since interaction protocols are reusable, they are defined independently of the names of the
interactions, and a wire of a service module can be modeled by one interaction protocol or several
interaction protocols. Therefore, when interaction protocols are used to model a wire, we need
functions that map form the interactions declared in the interaction protocols to the interactions
declared in the business roles or business protocols that model the service components or service
interfaces connected by the wire. Such functions are called signature morphisms.

A signature morphism maps each interaction name and each parameter that associate with the
interaction in one interaction signature with an interaction name and a parameter that associate
with the interaction in another interaction signature, and not every interaction in the target sig-
nature needs to be in the mapping of the signature morphism. The formal definition of signature
morphism is the same as Definition 5.4.4 from [17], and is shown as follows:

Definition 4.5.1 (Signature morphism). A signature morphism, map, from an interaction signa-
ture 〈NAME,PARAM〉 to another interaction signature 〈NAME ′,PARAM′〉 is a function that:

• assigns to each interaction name a ∈ NAMEt with t ∈ TY PE an interaction name a′ ∈
NMAE ′t ;

• assigns to each parameter p ∈ PARAM#(a)d , where # ∈ {�,,9,<,8}, a parameter p′ ∈
PARAM′#(a

′)d such that map(a) = a′.

A coordination correlates the interaction names and parameters of two interactions. In order
to be able to specify the interaction names and parameters, we have to first define coordination
terms, over which coordinations are defined.

A coordination term can be a constant, the result of some operations and a parameter that
associated with some interaction. Since coordinations only correlate interaction names and pa-
rameters, variables are not included in coordination terms. The formal definition of terms is the
same as Definition 5.4.1 from [17], and is shown as follows:

Definition 4.5.2 (Coordination term). The D-indexed family of sets CTERM of Coordination
Terms is defined as follows:

56 4. Hybrid extension of SRML and its semantic domain

• If c ∈ Fd then

c ∈CT ERMd

for every d ∈ D

• If f ∈ F<d1,...,dn,dn+1> and −→p ∈CT ERM<d1,...,dn> then

f (−→p) ∈CT ERMdn+1

for every d1, . . . ,dn,dn+1 ∈ D

• If a ∈ NAME and p ∈ PARAM(a)d , then

a.p ∈CT ERMd

for every d ∈ D

For example, in figure 4.5 S.i1 and R.i1 are coordination terms.
The interpretation of coordination terms is adapted from Definition 5.4.6 from [17]. In our

definition, coordination terms are interpreted over the states of SO-HL2TSs, thus they are denoted
in the form σ(ζ) (σ ∈ Σ in m and ζ ∈ [0,rσ]). The interpretation of terms is shown as follows:

Definition 4.5.3 (Interpretation of coordination terms). The interpretation of a coordination term
T ∈CT ERM in a state σ(ζ) with σ ∈ Σ and 0≤ ζ ≤ rσ , written JT Kσ(ζ), is defined as follows,
where II(param) = 〈param′,view〉 :

• JcKσ(ζ) = cU

• J f (T1, . . . ,Tn)Kσ(ζ) = fU (JT1Kσ(ζ), . . . ,JTnKσ(ζ))

• Ja.pKσ(ζ) = view(II(map(a)).p′Π
σ(ζ)

)

A coordination is defined as the equivalence of two interaction names, and a set of formulas of
parameters that associate with the interactions. In particular, the operator≡ is used for specifying
the equivalence of two interaction names, this is to say that a coordination defines a one-to-
one relationship between two interaction names. The formal definition of terms is the same as
Definition 5.4.2 from [17], and is shown as follows:

Definition 4.5.4 (Coordination). A coordination COORD is a set of elements of φ , where:

• φ ::= t1 = t2 | a≡ b

with t1, t2 ∈CT ERMd for some d ∈ D and a ∈ NAME and b ∈ NAME ′, such that:

• For every a ∈ NAME and b,c ∈ NAME ′ if a≡ b ∈COORD then a≡ c 6∈COORD;

• For every a ∈ NAME ′ and b,c ∈ NAME if a≡ b ∈COORD then a≡ c 6∈COORD.

4.5 Extension of Interaction Protocols 57

For example, in figure 4.5 S.i1 = R.i1 is a formula of the coordination of interaction protocol
straight O(d1,d2).

A coordination need to be satisfied by a SO-HL2TS, since it correlates two interactions, each
of which can be mapped to an interaction declared in a role (a role can be a business role or a
business protocol) by a signature morphism, and these two roles should be interpreted over the
same SO-HL2TS; and because of the correlation of two interactions, the coordination also needs
to be satisfied by the interaction interpretations of the two interactions.

The satisfaction of coordinations is adapted from Definition 5.4.7 from [17]. In our definition,
coordinations are satisfied by SO-HL2TSs. The definition is shown as follows:

Definition 4.5.5 (Satisfaction of Coordinations). The satisfaction relation for coordinations by
the pair 〈m, II〉 is defined as follows, where Σ is defined in m:

• 〈m, II〉 |= t1 = t2 iff Jt1Kσ(ζ) = Jt2Kσ(ζ) for every σ ∈ Σ and ζ ∈ [0,rσ];

• 〈m, II〉 |= a≡ b iff II(map(a)) = II(map(b)).

4.5.2 Interaction protocols and connectors
An interaction protocol consists of a a pair of interactions and an coordination that correlates
the names of the interactions and the parameters that associate with the interactions. The pair of
interactions in a business protocol are labeled with Role A and Role B. The formal definition of
interaction protocols is the same as Definition 5.4.3 from [17], and is shown as follows:

Definition 4.5.6 (Interaction Protocol). An Interaction Protocol is a triple

〈sig1,sig2,coord〉

where coord is a coordination for the interaction signatures sig1 and sig2. We refer to sig1 and sig2
as the roles of the interaction protocol — Role A and Role B, respectively.

In Figure 4.5, the interaction protocol straight O(d1,d2) correlates an interaction of type
snd with an interactions of type rcv, and the associating event of each interactions has two
parameter. S and R are the names of the interactions, and d1 and d2 are the data types of the
parameters. They are left undefined until the interaction protocol is applied. The equivalence of
the two interactions is specified in coord. An interaction protocol is satisfied by the tuple 〈m, II〉
if and only if the coordination of it is satisfied by 〈m, II〉.

Interaction protocols and signature morphisms are used to compose connectors. In SRML,
connectors model wires. A connector links each pair of the interactions specified in a set of inter-
action protocols to the interaction signatures of a pair of roles with a pair of signature morphisms.
The pair of roles model two components (a component can be a service component or a service
interface) that are connected by the wire modeled by the connector in a service module. In this
way, interaction protocols are linked to the actual interactions. A connector can contain one or
several interaction protocols, depending on the number of the interactions it connects. The The
formal definition of connectors is shown as follows:

58 4. Hybrid extension of SRML and its semantic domain

Definition 4.5.7 (Connector). A connector for two interaction signatures 〈NAME,PARAM〉 and
〈NAME ′,PARAM′〉 is a triple

〈map1, ip,map2〉

where:

• ip is a set of interaction protocols;

• map1 is a signature morphism that maps the interactions labeled with Role A in ip to
〈NAME,PARAM〉;

• map2 is a signature morphism that maps the interactions labeled with Role B in ip to
〈NAME ′,PARAM′〉.

Figure 4.6 shows the connector from Appendix A, that binds interactions in business proto-
col RadioBlockCenter to interactions in business role Train using three interaction protocols.
Among these interaction protocols, we take Straight.I (position) for example. Interaction name
S and variable S.i1 of Straight.I (position) are mapped to interaction name move and parameter
move�.MA respectively by the interaction morphism from Role A of Straight.I (position) to the
interaction signature of RadioBlockCenter; interaction name R and variable R.i1 of Straight.I (po-
sition) are mapped to interaction name moveOn and parameter moveOn�.newMA respectively
by the interaction morphism from Role B of Straight.I (position) to the interaction signature of
Train.

Figure 4.6: The connectors that bind the business protocol RBC to the business roleTR

Let partyA and partyB be two components in a service module, Figure 4.7 shows the structure
of a connector binding the interaction signature of the SRML specification of partyA to the
interaction signature of the SRML specification of partyB. The SRML specification of PartyA
and the SRML specification of partyB are denoted by spec(partyA) and spec(partyB).

4.6 Formalization of service module 59

Figure 4.7: The composition of a connector

4.6 Formalization of service module
Based on the formal definition of business roles, business protocols, interaction protocols and
connectors, service modules can be defined. In SRML, a service module models a service by
formally specifying the compositions of a service. In this section, we formalize service modules
and define the satisfaction of service modules.

As introduced in Chpater 3, a service module defines the service components, service inter-
faces and the wires connecting them in a service, it also defines how these compositions of the
service are connected. In Figure 3.2 we showed the service module Train-Control from Appendix
A.

A service module includes a graph that consists of the compositions of the service modeled
by that service module, and a set of functions that assign these compositions with SRML spec-
ification. i.e. each service component is assigned with a business role, each service interface is
assigned with a business protocol and each wire is assigned with an interaction protocol that is
labeled by a connector. The formalization of service module is the same as Definition 5.5.1 from
[17], and is shown as follows:

Definition 4.6.1 (Service module). A service module is a tuple

〈N,W,C,client,spec, prov〉

where:

• 〈N,W 〉 is a simple graph (undirected, without self-loops or multiple edges), where N is a
set of nodes (the parties that compose the service and the client of the service) and the
symmetric relation W ⊆ N×N is the set of edges (the wires that interconnect the parties
and the client);

• We distinguish between different types of nodes:

– client ∈ N is the client of the service;

– P = N\{client} are the nodes whose composition provides the service — called par-
ties — and consists of:

∗ C ⊆ P, the components; and

60 4. Hybrid extension of SRML and its semantic domain

∗ R = P\C, the (external) required services;

• spec assigns:

– a business role to each component c ∈C;

– a business protocol to each required service r ∈ R; We use sign(p) to refer to the
interaction signature (indirectly) assigned by spec to a party p ∈ P;

– a connector for sign(p) and sign(p’) to each internal wire 〈p, p′〉 ∈WW such that
every interaction name coordinated by that connector is not coordinated by any other
connector in spec(w);

• prov = 〈〈NAME,PARAM〉,BEHAV IOR〉 is a business protocol — the provides-interface
of the module — such that:

– NAME ⊆
⋃

NAMEsign(p) with p ∈ P and 〈client, p〉 ∈W;

– PARAM#(a)=PARAMsign(p)
(a) for each p∈P, a∈NAME∩NAMEsign(p) and #∈{�,

, 9,0, <};

We use wire(a) to denote a wire w ∈W such that a is in the coordination of spec(w).

Take service module Train-Control= 〈N,W,C,client,spec, prov〉 for example, N = 〈ETCSC,
MOC,RBC〉, C = 〈ETCSC〉, W = 〈〈MOC,ETCSC〉,〈ETCSC,RBC〉〉, client =MOC, and spec(MOC),
spec(RBC), spec(ETCSC), spec(〈MOC,ETCSC〉) and spec(〈ETCSC,RBC〉) are specified as
that in Appendix A.

Since the SRML specifications assigned by a service module are satisfied by different struc-
tures (such as interaction interpretations and SO-HL2TSs), a service module is satisfied by a
tuple of those structures. Such a tuple is called an interpretation structure. An interpretation
structure of a service module consists of a configuration and an SO-HL2TS for the whole SRML
specifications of the service module, and an interaction interpretation and an attribute interpreta-
tion for the SRML specifications for each party (a service component or a service interface) of
that service module.

The formal definition of interpretation structures is adapted from Definition 5.5.2 from [17].
In our definition, we use SO-HL2TS instead of SO-TS. The definition is shown as follows:

Definition 4.6.2 (Interpretation structure). An interpretation structure for a service module M =
〈N,W,C,client,spec, prov〉 is a tuple

〈Ξ, II,m,∆〉

such that:

• Ξ = 〈N′,W ′,PLL,2WAY,1WAY 〉 is a configuration;

• m is a SO-HL2TS for Ξ;

4.6 Formalization of service module 61

• II is a P-indexed family of interaction interpretations over 2WAY ∪ 1WAY such that IIp,
with p ∈ P, interprets the signature in spec(p), i.e. it interprets the interactions of party p;

• ∆ is a C-indexed family of attribute interpretations over m, such that ∆c interprets the
attribute declaration in spec(c), i.e. it interprets the attributes of component c.

Let prov = 〈〈NAME,PARAM〉,BEHAV IOR〉. We use IIprov to denote II|NAME∪PARAM, i.e. the
interpretation of the interactions in the provides-interface.

A service module can be satisfied by an interpretation structure. An interpretation structure
satisfies a service module if and only if it satisfies the configuration of the service module and the
SRML specification of each party of the service module. The formal definition of satisfaction
of a service module is adapted from Definition 5.5.3 from [17]. In our definition, we use the
interaction structure defined in Definition 4.6.2. The definition is shown as follows:

Definition 4.6.3 (Satisfaction of a service module). Given a service module specification M =
〈N,W,C,client,spec, prov〉 and a configuration Ξ = 〈N′,W ′,PLL,2WAY,1WAY 〉, an interpreta-
tion structure sem = 〈Ξ, II,m,∆〉 is said to satisfy the composition of M, written sem |= M iff:

• N = N′, W =W ′ and PLL = R∪{client};

• For each party p ∈ P, IIp is local to p;

• For each party p ∈ P and interaction name a ∈ NAMEsign(p) ∩NAMEsign(prov), II(a) ∈
INT〈p,client〉∪ INT〈client,p〉;

• 〈m,∆〉 satisfies spec(p), for each party p ∈ P;

• 〈m, II〉 satisfies spec(w), for each wire w ∈W.

e.g. given a service module M, Ξ is the configuration of M, sig is an interaction signature
of M, II is an interaction interpretation for sig, m is a SO-HL2TS for Ξ and m satisfies all the
business roles and business protocols specified by M, ∆ is an attribute interpretation over m; then
there is 〈Ξ, II,m,∆〉 |= M.

62 4. Hybrid extension of SRML and its semantic domain

Chapter 5

A method for verifying the extended SRML
behavior constraints

In this chapter, we provide a method for verifying hybrid behaviors that are business protocols
(as that defined in Section 4.4.3). This method includes the transformation from SRML hybrid
behavior constraints to dTL formulas and the verification of those dTL formulas. The transfor-
mation is realized by translating SRML based finite automata of a given service module to the
corresponding regular expression for transitions using Brzozowski’s method [44], and mapping
the resulted regular expression to the hybrid program which is a composition of the dTL formulas
to be verified. This approach and the related definitions are illustrated in Section 5.1. The ver-
ification of SRML hybrid behaviors is done by verifying the corresponding dTL formulas with
a set of sequent calculus adopted from [41]. The sequent calculus and explanation for operators
and terms of the calculus are presented in Section 5.2. In Section 5.3, we make a case study of
a small part of the European Train Control System by modeling it with a SRML service module
and verifying a hybrid behavior constraint of the service module using the method introduced in
Section 5.1 and Section 5.2. Part of the case study and verification can also be found in [28].

5.1 SRML based finite automata and regular expressions for
transitions

Given a SRML service module M with the hybrid behavior "always sp" as that defined in Section
4.4.3, in order to be able to verify [β]�sp formally (here β is an unknown hybrid program), we
need to obtain the hybrid program β which represents the behaviors of M. This approach can be
done in the following steps:

1. Construct a SRML based finite automaton for the SRML service module M (in this step,
when given a SO-HL2TS m and a SRML service module M which is interpreted over m, the
SRML based finite automaton for M could be constructed according to Definition 5.1.1 over
paths of m and the SRML specifications of M);

64 5. A method for verifying the extended SRML behavior constraints

2. Transform the SRML based finite automaton to regular expressions for transition using Br-
zozowski’s method;

3. Map the regular expression for transitions to hybrid program.

The hybrid program obtained from the steps above is the hybrid program β in the hybrid be-
havior constraint [β]�s. In order to show the validity of this approach, we give some definitions,
mapping rules and theorems which are essential to the approach.

Definition 5.1.1 (SRML based automata). Given a service module M, a set of transition names
T R and an interpretation structure sem= 〈Ξ, II,m,∆,T R〉 such that sem |=M, where m= 〈S,s0,Σ,
σ0,Act,R,AP,L,T IME,Π〉. A SRML based automaton of M, written DM, is a tuple

〈Q,Q,σ0(0) . . .σ0(rσ0),T R,δ ,F〉

where:

• Q is the set of all the traces of states in the paths of m, such that for every σ ∈ Σ,
σ(0) . . .σ(rσ) ∈ Q;

• Q = {σ(0) . . .σ(rσ)|σ(0) . . .σ(rσ) ∈Q, and ∀σ ′(0) . . .σ ′(rσ ′) ∈ [σ(0) . . .σ(rσ)] there is
T IMEσ(0) ≤ T IMEσ ′(0), . . . ,T IMEσ(rσ) ≤ T IMEσ ′(r

σ ′)};

• σ0(0) . . .σ0(rσ0) is the initial sequence of states;

• T R is the set of transition names;

• δ is a transition function that takes any σ(0) . . .σ(rσ) ∈ Q and a tr ∈ T R as arguments,
and returns a σ ′(0) . . .σ ′(rσ ′) ∈ Q such that: δ (σ(0) . . .σ(rσ), tr) = σ ′(0) . . .σ ′(rσ ′) iff
there exists an α ∈ 2Act and a σ ′′(0) . . .σ ′′(rσ ′′) ∈ Q such that (σ(rσ),α,σ ′′(0)) ∈ R,
σ ′′(0) . . .σ ′′(rσ ′′) ∈ [σ ′(0) . . .σ ′(rσ)], II(trigger(tr)) ∈ α and σ(rσ) |= guard(tr);

• F ⊆ Q is the set of accepting traces of states such that:

– If there exist a trace of states σ(0) . . .σ(rσ) ∈Q and an α ∈ 2Act such that (σ(rσ),α,
σ0(0)) ∈ R, then σ0(0) . . .σ0(rσ0) ∈ F ;

– For every σ(0) . . .σ(rσ)∈Q, if there doesn’t exist an α ∈ 2Act and a σ ′(0) . . .σ ′(rσ ′)∈
Q such that (σ(rσ),α,σ ′(0)) ∈ R, then σ(0) . . .σ(rσ0) ∈ F .

If Q is finite, the SRML based automaton is called SRML based finite automaton.

In Definition 5.1.1, Q is a different set from Σ. Σ is the set of functions that are specified in
the HL2TS m, while Q is the set of traces of states that are obtained by applying the functions
in Σ. Definition 5.1.1 is adapted from the definition of Deterministic Finite Automata (DFA)
[45, 46, 47], this is because in our example a transition from a source state can only result in one
target state. For a more general case, the definition can be adapted from Nondeterministic Finite
Automata (NFA) [48].

5.1 SRML based finite automata and regular expressions for transitions 65

Definition 5.1.2 (Transition Diagrams for SRML based finite automata). A transition diagram
for a SRML based finite automaton DM = 〈Q,Q,σ0(0) . . .σ0(rσ0),T R,δ ,F〉, which is defined
over the SO-HL2TS m is a graph defined as follows:

• There is a node for each σ(0) . . .σ(rσ) ∈ Q;

• For every tr ∈ T R, if δ (σ(0) . . .σ(rσ), tr) = σ ′(0) . . .σ ′(rσ), then there is an arc from
node σ(0) . . .σ(rσ) to node σ ′(0) . . .σ ′(rσ), labeled tr;

• Nodes corresponding to the elements in set F are marked with double circles, the rest of
the nodes are marked with single circles.

For example, the SRML based finite automaton DTrain−Control for service module Train-
Control (specified in Appendix A) is defined as follows:

DTrain−Control = 〈Q,Qσ0(0) . . .σ0(3),T R,δ ,F〉 (5.1)

where:

• Q = {σ0(0) . . .σ0(3),σ1(0) . . .σ1(5),σ2(0) . . .σ2(4),σ3(0) . . .σ3(2)};

• T R = {Cont,Nego,Corr,Stop}

• δ (σ0(0) . . .σ0(3),Cont) = σ0(0) . . .σ0(3);

• δ (σ0(0) . . .σ0(3),Nego) = σ1(0) . . .σ1(5);

• δ (σ1(0) . . .σ1(5),Corr) = σ2(0) . . .σ2(4);

• δ (σ2(0) . . .σ2(4),Stop) = σ3(0) . . .σ3(2);

• F = {σ0(0) . . .σ0(3),σ3(0) . . .σ3(2)}.

Service module Train-Control is defined over the SO-HL2TS m= 〈S,s0,Σ,Act,R,AP,L,T IME,
Π〉,where Σ = {σ0,σ1,σ2,σ3,σ

′
0,σ

′
1,σ

′
2,σ

′
3,σ

′′
0 ,σ

′′
1 ,σ

′′
2 ,σ

′′
3 , . . .} with σ0 : [0,3]→ S, σ1 : [0,5]→

S, σ2 : [0,4]→ S, σ3 : [0,2]→ S. The number 3, 5, 4, and 2 are chosen arbitrarily for the possible
durations of σ0, σ1, σ2 and σ3. The transition diagram of DTrain−Control is shown in Figure 5.1.
Notice that in Figure 5.1, each node represents a trace of states but not a single state, this is
because we wish to use finite automata to represent the evolutions of hybrid systems. In such
transition diagrams for SRML based finite automata, if there is an arch from a source node to
a target node, it means that a transition occurs from the last state of the source node to the first
state of the target node.

Next we define regular expressions for transitions which is a bridge for transforming SRML
based finite automata to hybrid programs.

66 5. A method for verifying the extended SRML behavior constraints

Figure 5.1: Transition diagrams for DTrain−Control

5.1 SRML based finite automata and regular expressions for transitions 67

Definition 5.1.3 (Sequence of transition names). If T R is a set of transition names, n ∈ N and
tri ∈ T R for every 1≤ i≤ n, then w = tr1; . . . ; trn is a sequence of transition names. The length
of w is denoted by |w|, and |w|= n. An empty sequence of transition names is denoted by ε , and
|ε|= 0.

For example, given the set of transition names T R= {Cont,Nego,Corr,Stop}, w=Nego;Corr;
Stop is a sequence of transition names and |w|= 3.

Definition 5.1.4 (Regular expressions for transitions). Given a set of transition names T R, the
set of regular expressions for transitions of T R, denoted by RET R, is defined as follows:

• If tr ∈ T R, then RET R;

• ε ∈ RET R;

• /0 ∈ RET R, where /0 is the empty set;

• If E ∈ RET R and F ∈ RET R, then E +F ∈ RET R;

• If E ∈ RET R and F ∈ RET R, then E;F ∈ RET R;

• If E ∈ RET R, then E∗ ∈ RET R.

For example, given the set of transition names T R= {Cont,Nego,Corr,Stop}, Cont∗;(Cont+
Nego;Corr;Stop) is a regular expression for transitions of T R.

In order to show the equivalence of SRML based finite automata and regular expressions for
transitions on the input symbols, we need to define the language for SRML based finite automata
and the language for regular expressions for transitions:

Definition 5.1.5 (The extension of transition functions). For a SRML based finite automaton
DM = 〈Q,Q,σ0(0) . . .σ0(rσ0),T R,δ ,F〉, the extension of transition function δ , denoted by δ̂ , is
defined inductively as follows:

• δ̂ (σ(0) . . .σ(rσ),ε) = {σ(0) . . .σ(rσ)} for every σ(0) . . .σ(rσ) ∈ Q;

• If w = tr1; . . . ; trn is a sequence of transition names where n ∈ N and tri ∈ T R for every
1≤ i≤ n, then for every σ(0) . . .σ(rσ0) ∈ Q, there is:

δ̂ (σ(0) . . .σ(rσ),w) = δ (σ ′(0) . . .σ ′(rσ ′), trn)

where σ
′(0) . . .σ ′(rσ ′) = δ̂ (σ(0) . . .σ(rσ),w′),w′ = tr1; . . . ; trn−1,

δ (σ ′(0) . . .σ ′(rσ ′), trn) exists and δ̂ (σ(0) . . .σ(rσ),w′) exists .

Take the SRML based finite automaton DTrain−Control defined in Formula 5.1 for example, δ̂

is the extension for transition function δ and δ̂ (σ0(0) . . .σ0(3),Nego;Corr;Stop)=σ3(0) . . .σ3(2).

68 5. A method for verifying the extended SRML behavior constraints

Definition 5.1.6 (The language of SRML based finite automata). If DM = 〈Q,Q,σ0(0) . . .σ0(rσ0),T R,δ ,F〉
, then the language of DM, denoted by L(DM), is defined as:

L(DM) = {w|δ̂ (σ0(0) . . .σ0(rσ0),w) ∈ F}

For example, L(DTrain−Control) = {Cont,Cont;Cont,Cont;Cont;Cont, . . . ,Nego;Corr;Stop,
Cont;Nego;Corr;Stop,Cont;Cont;Nego;Corr;Stop, . . .}.

Definition 5.1.7 (The language of regular expressions for transitions). Given a set of regular
expressions for transitions RE, the language of a regular expression E ∈ RE, denoted by L(E), is
defined inductively defined as follows:

• If tr is a transition name, L(tr) = {tr};

• L(ε) = {ε};

• L(/0) = /0;

• L(E +F) = L(E)∪L(F);

• L(E;F) = {tr1; . . . ; trm; tr′1; . . . ; tr′n|tr1; . . . ; trm ∈ L(E),
tr′1; . . . ; tr′n ∈ L(F) and m,n ∈ N};

• L(E∗) = (L(E))∗ =
⋃

n∈NL(E)n, where L(E)0 = {ε} and L(E)n = L(En−1;E).

For example, L(Cont∗;(Cont+Nego;Corr;Stop))= {Cont,Cont;Cont,Cont;Cont;Cont, . . . ,
Nego;Corr;Stop,Cont;Nego;Corr;Stop,Cont;Cont;Nego;Corr;Stop, . . .}.

Then we show the equivalence between the language of SRML based finite automata and the
language of regular expression for transitions:

Theorem 5.1.1. If DM is a SRML based finite automaton , then there exists a regular expression
for transitions E such that L(DM) = L(E).

Proof. The equivalence between the language of DFA and the language of regular expressions is
proved in [49] by constructing regular expression for some given DFA inductively. Since SRML
based finite automata can be seen as a type of DFA and regular expression for transitions can be
seen as a type of regular expression, Theorem 5.1.1 can be proved in the same way as that in
[49].

Moreover, E can be obtained using Brzozowski’s method.
Given a SRML based finite automaton DM, we denote the regular expression for transitions

with EM if L(DM) equals to the language of that regular expression for transitions. In order
to obtain the hybrid program which then composites the hybrid behavior constraint of SRML
service module M, we need to convert EM to hybrid programs. The function for converting is
defined as follows:

5.1 SRML based finite automata and regular expressions for transitions 69

Definition 5.1.8 (Hybrid programs for regular expressions for transitions). Given a set of transi-
tion names T R and a SRML service module M which is defined over T R, the hybrid program for
a regular expression for transitions E ∈ RET R is defined inductively as follows:

• If E ∈ T R, then hp(E) = e f f (E) (eff is the function of effect specified in M);

• If E = ε , then hp(E) = χ;

• If E = /0, then hp(E) = β where β is an arbitrary hybrid program whose trace semantics
Jβ K = /0 ;

• If E,F ∈ RET R, then hp(E +F) = hp(E)∪hp(F);

• If E,F ∈ RET R, then hp(E;F) = hp(E);hp(F);

• If E ∈ RET R, then hp(E∗) = (hp(E))∗.

Note that a hybrid program with empty trace semantics can arise if M is inconsistent and thus
not satisfied by any transition system.

For example, given the set of transition names T R= {Cont,Nego,Corr,Stop} and SRML ser-
vice module Train−Control whose specification is in Appendix A, Cont∗;(Cont+Nego;Corr;Stop)
is a regular expression for transitions of T R, the hybrid program for Cont∗;(Cont+Nego;Corr;Stop),
obtained by hp(Cont∗;(Cont +Nego;Corr;Stop)), is:

(Cdot = v0)
∗;(Cdot = v0∪

Cdot = v1;Cdot =V ∧Vdot = b;
end.currPos =C−C0∧ end.currTime = t ′− t).

(5.2)

Given a SRML service module M defined over a set of transition names T R, and a SO-HL2TS
m over which the business roles of M are interpreted, DM is the SRML based finite automaton for
M. We then show that Jhp(EM)K is the set of all the paths of m selected by M (EM is the regular
expression for transitions such that L(DM) = L(EM)):

Theorem 5.1.2. If M is a SRML service module which is defined over a set of transition names
T R, and the business roles of M are interpreted over a SO-HL2TS m, DM is the SRML based finite
automaton for M and EM is the regular expression for transitions such that L(DM) = L(EM). Then
Jhp(EM)K is the set of all the paths of m selected by M.

Proof. From Definition 4.4.6 and Definition 5.1.7 we can obtain Jhp(EM)K= {hp(E)|E ∈L(EM)}.
Since L(DM) = L(EM) (the existence of EM is proved in Theorem 5.1.1), we have Jhp(EM)K =
{hp(E)|E ∈ L(DM)}. From Definition 5.1.6, it is obvious that {hp(E)|E ∈ L(DM)} is the set of
all the paths of m selected by M. Thus Jhp(EM)K is the set of all the paths of m selected by M.

70 5. A method for verifying the extended SRML behavior constraints

5.2 Verification of behavior constraints
Given a service module M = 〈N,W,C,client,spec, prov〉 where prov = 〈〈NAME,PARAM〉,
BEHAV IOR〉, for every behavior x ∈ BEHAV IOR, the verification can be divided into two parts:

• If x is a behavior specified by a normal behavior constraint, it can be verified by UMC
model-checker [50] following the procedure provided in [17];

• If x is a behavior specified by the hybrid behavior constraint, it can be verified manually
with a set of rule schemata of dTL verification calculus adapted from [41].

Since in this thesis we mainly focus on the continuous behavior of a transition system, only
the rule schemata of dTL verification calculus shown in table 5.1 is introduced here.

A sequent calculus is of the form Γ ` ∆ , where Γ and ∆ are finite sets of formulas. Its
semantics is

∧
φ∈Γ φ →

∨
ψ∈∆ ψ . In these rules, φ and ψ are state formulas and π is a trace

formula; β and γ are hybrid programs; T,T1, . . . ,Tn,T ′,T ′1, . . . ,T
′

n are state terms, v, v̇ ∈ VAR are
also state terms and t ∈ ET ERMtime. Particularly rules P1–P9 are standard rules for propositional
logic. P10 is a special case of formula Cl∀(F0→ G0)→Cl∀(F → G), which is an instance of a
first-order tautology of real arithmetic. In this formula, F and G are first order formulas, F0 is the
result of substituting some variables in F with certain constants and G0 is the result of substituting
some variables in G with certain constants, and Cl∀ is the universal closure. Rules D1–D8 deals
with dTL state formulas, which have no temporal operator and are similar to dynamic logic
formulas in [38]. In rule D3, F is a first-order formula and the semantics of FT ′1,...,T

′
n

T1,...,Tn
is to replace

T1, . . . ,Tn with T ′1, . . . ,T
′

n in F . In rules D7 and D8, v = fv0(t) is the solution of differential
equation v̇ = T with initial condition f (t0) = v0. Rules T1–T8 deal with dTL trace formulas,
which have the temporal operators � and ♦.

5.3 Case study of European Train Control System
Our case study is a small part of the European Train Control System (ETCS), whose scenario is
based on a model of the ETCS presented in [51, 41]. In this section, we show the structure of
our ETCS model, assign a SRML module to it and verify a behavior specified with the hybrid
behavior constraint with rule schemata of dTL calculus introduced in Section 5.2.

5.3.1 An overview of the Train Control System
Figure 5.2 shows a network architecture of a control system which is proposed in [52]. The
regulatory control area contains many sensors which send real-time data of certain objects to op-
erator workstations in the supervisory control area. Operator workstations control the movement
of the objects according to the messages that are received by them, and also send feedbacks.
Corporation workplace in the scheduling control area decides the order of the objects’ move-
ment according to the messages received from the operator workstations. For example it issues
moving authority to the objects by sending messages to operator workstations.

5.3 Case study of European Train Control System 71

(P1)
` φ

¬φ ` (P2)
φ `
` ¬φ

(P3)
φ ` ψ

` φ → ψ

(P4)
φ ,ψ `

φ ∧ψ ` (P5)
` φ ` ψ

` φ ∧ψ
(P6)

` φ ψ `
φ → ψ `

(P7)
φ ` ψ `

φ ∨ψ ` (P8)
` φ ,ψ
` φ ∨ψ

(P9)
φ ` φ

(P10)
F0 ` G0
F ` G

(D1)
[β]π ∧ [γ]π
[β ∪ γ]π

(D2)
〈β 〉π ∨〈γ〉π
〈β ∪ γ〉π

(D3)
FT ′1,...,T

′
n

T1,...,Tn

〈[T1 = T ′1 ∧ . . .∧Tn = T ′n]〉F
(D4)

〈[β]〉〈[γ]〉φ
〈[β ;γ]〉φ

(D5)
φ ∧ [β ;β ∗]φ

[β ∗]φ
(D6)

φ ∨〈β ;β ∗〉φ
〈β ∗〉φ

(D7)
∀t ≥ t0[v = fv0(t)]

[v̇ = T]φ
(D8)

∃t ≥ t0〈v = fv0(t)〉φ
〈v̇ = T 〉φ

(T1)
[β]�φ ∧ [β][γ]�φ

[β ;γ]�φ
(T2)

〈β 〉♦φ ∨〈β 〉〈γ〉♦φ

〈β ;γ〉♦φ

(T3)
φ ∨ [T = T ′]φ
[T = T ′]�φ

(T4)
φ ∧〈T = T ′〉φ
〈T = T ′〉♦φ

(T5)
[v̇ = T]φ
[v̇ = T]�φ

(T6)
〈v̇ = T 〉φ
〈v̇ = T 〉♦φ

(T7)
[β]�φ

[β ∗]�φ
(T8)

〈β 〉♦φ

〈β ∗〉♦φ

Table 5.1: Rule schemata of the temporal dynamic dTL verification calculus

72 5. A method for verifying the extended SRML behavior constraints

Figure 5.2: Network architecture of a control system

ETCS is part of the European Rail Traffic Management System (ERTMS) that controls each
train within the network. It is an instance of the control system shown in Figure 5.2. Our model
is of ETCS level 3. The object being observed and controlled is a moving train. The Balises
on the railway work as sensors; the operator workstation which include a ETCS computer and a
Monitoring Center, is installed inside the train; the corporation workplace which include a Radio
Block Center(RBC), is in a remote control center and communicates with the train via radio
networks; see Figure 5.3. The Global System for Mobile Communications-Railway (GSM-R) is
a closed mobile phone network for the railways. It is the bearer system for messages between
the ETCS computer and the Radio Block Center(RBC). The RBC is a centralized safety unit that
receives train position information and sends movement authorities to trains via GSM-R.

Figure 5.3: Model of ETCS Level 3

5.3 Case study of European Train Control System 73

5.3.2 The specification and verification of service module Train-Control

Figure 5.3 shows a simple model of ETCS Level 3 that is adapted form the models of ETCS in
Wiki. As that shown in Figure 5.3, when observing the movement of the train from the operator
workstation inside the cabin, the integration of ETCSCenter, RadioBlockCenter and Monitor-
ingCenter can be seen as a hybrid system, in which RadioBlockCenter and MonitoringCenter
only perform discrete changes, and ETCSCenter performs both discrete changes and continuous
processes. In the SRML service module Train-Control which abstracts this hybrid system in a
service-oriented style (shown in Figure 5.4), ETCSCenter is abstracted as a service component,
RadioBlockCenter and MonitoringCenter are abstracted as service interfaces.

Figure 5.4: SRML service module Train-Control

Trains controlled by ETCSCenters are coordinated by decentralized RadioBlockCenter, which
grants or denies moving authorities (MA) to each individual train by the GSM-R. In emergencies,
trains always have to stop within the MA issued by the RadioBlockCenter. Each train negoti-
ates with the RadioBlockCenter to extend its MA when approaching to the end of the MA. This
process can be divided into several stages: a) a Far stage in which the train is far enough form
the end of its current MA and is moving with a normal constant speed; b) a Negotiation stage in
which the train has a certain distance to the end of its current MA, and is moving with a constant
speed lower than the normal speed; c) a Correction stage in which the train has a certain distance
which is near enough to the end of its current MA, and decelerates with a certain rates; d) a
Stop stage in which the train breaks to stillness and have no further movement. The ETCSCenter
changes the movement of the train in different stages on receiving different messages from the
RadioBlockCenter. When the train enters the Stop stage, the ETCSCenter send the time duration
of the train’s movement and its current displacement to the MonitoringCenter, where one can
check whether the displacement of the train is within its current MA.

74 5. A method for verifying the extended SRML behavior constraints

According to the scenario introduced above, we assign a SRML specification to the service
module Train-Control that is shown in Figure 5.4 such that Train-Control= 〈N,W,client,spec,
prov〉, where:

• N = {MOC,ETCSC,RBC};

• W = {〈MOC,ETCSC〉,〈ETCSC,RBC〉};

• Node ETCSC is the service component that coordinates the movement process of the train,
assigned with business role ETCSCenter;

• Node RBC is the service interface that requires service provided for knowing the current
position of the train and issuing movement authority, assigned with business protocol Ra-
dioBlockCentre;

• Node MOC is the service interface that provides service to client of the service. The
client gets the current positioning signal from the service, assigned with business protocol
MonitoringCernter;

• ME, ER represent wires 〈MOC,ETCSC〉 and 〈ETCSC,RBC〉 that make the partner rela-
tionship between MOC and ETCSC, ETCSC and RBC explicitly.

• prov(MOC), spec(RBC), spec(ETCSC), spec(〈MOC,ETCSC〉) and spec(〈ETCSC,RBC〉)
are specified as that in Appendix A.

Suppose Ξ = 〈N,W,PLL,Ψ,2WAY,1WAY 〉 to be a configuration, T R = {Nego,Corr,Cont}
to be a set of transition names defined over Ξ, sig = 〈NAME,PARAM〉 to be an interaction
signature, II to be an interaction interpretation for sig over 2WAY ∪ 1WAY local to some node
n∈N, ∆ to be an attribute interpretation over m, m= 〈S,s0,Σ,Act,R,AP,L,T IME,Π〉 to be a SO-
HL2TS for Ξ. sem = 〈Ξ, II,m,∆〉 is an interpretation structure for service module Train-Control
such that sem |=Train-Control and:

• Σ = {σ0,σ1,σ2,σ3,σ
′
0,σ

′
1,σ

′
2,σ

′
3,σ

′′
0 ,σ

′′
1 ,σ

′′
2 ,σ

′′
3 , . . .} with

– σ0 : [0,3]→ S, σ ′0 : [0,3]→ S, . . ., σ1 : [0,5]→ S, σ ′1 : [0,5]→ S, . . ., σ2 : [0,4]→ S,
σ ′2 : [0,4]→ S, . . ., σ3 : [0,2]→ S, σ ′3 : [0,2]→ S, . . .;

– [σ0(0) . . .σ0(3)] = {σ0(0) . . .σ0(3),σ ′0(0) . . .σ
′
0(3),σ

′′
0 (0) . . .σ

′′
0 (3), . . .};

– [σ1(0) . . .σ1(5)] = {σ1(0) . . .σ1(5),σ ′1(0) . . .σ
′
1(5),σ

′′
1 (0) . . .σ

′′
1 (5), . . .};

– [σ2(0) . . .σ2(4)] = {σ2(0) . . .σ2(4),σ ′2(0) . . .σ
′
2(4),σ

′′
2 (0) . . .σ

′′
2 (4), . . .};

– [σ3(0) . . .σ3(2)] = {σ3(0) . . .σ3(2),σ ′3(0) . . .σ
′
3(2),σ

′′
3 (0) . . .σ

′′
3 (2), . . .};

• (σ0(3),α1,σ1(0)) ∈ R and α1 ∈ Act;

• (σ0(3),α2,σ
′
0(0)) ∈ R and α2 ∈ Act;

5.3 Case study of European Train Control System 75

• (σ1(5),α3,σ2(0)) ∈ R and α3 ∈ Act;

• (σ2(4),α4,σ3(0)) ∈ R and α4 ∈ Act;

• MAControl�?∈ Act, II(MAControl�?)∈ PRCσ0(3)→σ1(0); we assume the initial speed of
the train is v0, thus we have the guard condition σ0(3) |=Cdot = v0;

• Dec�?∈Act, II(Dec�?)∈PRCσ1(5)→σ2(0); since MAControl�?∈Act, II(MAControl�?)∈
PRCσ0(3)→σ1(0), σ0(3) |=Cdot = v0 and sem |=Train-Control, according to Definition 4.3.12
there is σ1(0) . . .σ1(5) |=Cdot = v1, thus we have the guard condition σ1(5) |=Cdot = v1;

• end�?∈Act, II(end�?)∈PRCσ2(4)→σ3(0); since Dec�?∈Act, II(Dec�?)∈PRCσ1(5)→σ2(0),
σ1(5) |=Cdot = v1 and sem |=Train-Control, according to Definition 4.3.12 there is σ2(0) . . .σ2(4) |=
Vdot = b,thus we have the guard condition σ2(4) |=Vdot = b;

• moveOn�? ∈ Act, II(moveOn�?) ∈ PRCσ0(3)→σ ′0(0); since the initial speed of the train is
v0, thus we have the guard condition σ0(3) |=Cdot = v0;

The SRML based finite automaton for Train-Control, DTrain−Control , is presented in Formula
5.1 and the corresponding transition diagram for DTrain−Control is shown in Figure 5.1. To make
it more explicate, we provide all the paths of m selected by Train-Control shown in Figure 5.5. In
this figure, the part in the dashed box can be seen to be repeated several times (might be infinite)
if not considering the time instance in each state.

With the Brzozowski’s method that is introduced in Section 5.1 , we construct the charac-
teristic equations of each node in Figure 5.1 and show these equations in Formula 5.3. We also
show the solutions for these characteristic equations in Formula 5.4.

Eσ0 =Cont;(Eσ0 + ε)+Nego;Eσ1

Eσ1 =Corr;Eσ2

Eσ2 = Stop;(Eσ3 + ε)

Eσ3 = ε

(5.3)

Eσ0 =Cont∗;(Cont +Nego;Corr;Stop)
Eσ1 =Corr;Stop
Eσ2 = Stop
Eσ3 = ε

(5.4)

Thus ETrain−Control =Eσ0 =Cont∗;(Cont+Nego;Corr;Stop). According to the SRML spec-
ification for service module Train-Control in Appendix A and Definition 5.1.8, the hybrid pro-
gram for Train-Control is:

hp(ETrain−Control) = hp(Cont∗;(Cont +Nego;Corr;Stop)) = Formula 5.2 (5.5)

76 5. A method for verifying the extended SRML behavior constraints

Figure 5.5: All the paths of SO-HL2TS m that are selected by service module Train-Control

5.3 Case study of European Train Control System 77

Thus the behavior constraint that needs to be verified in business protocol MOC can be written
as:

[Formula 5.2]receivePos.T < L→ receivePos.Pos < N (5.6)

and it expresses that within a certain time duration L, the position of the train will not exceed the
position of movement authority N.

In order to make the verification more easily to be understood, we list the types and physical
meanings of the terms (variables and constants) that are declared in service module Train-Control
in Table 5.2:

Name Type Data type Physical meaning
C local variable position displacement of the train
C0 constant position initial displacement of the train
M local variable position Moving authority of the train
Cdot local variable speed the derivative of the displacement of the train to real numbers
v0 constant speed speed of the train at the free-moving stage
v1 constant speed speed of the train at the negotiation stage
V local variable speed speed of the train at the correction stage

Vdot local variable acc
the derivative of the displacement of the speed of the train
at the correction stage to real numbers

b constant acc acceleration of the train at the correction stage

Table 5.2: Terms declared in service module Train-Control

From the wire T B, we have receivePos.T ≡ end.currTime and receivePos.Pos ≡
end.currPos, thus instead of verifying Formula 5.6, we only need to verify Formula 5.7:

[β ∗1 ∪β1;β2;β3;β4]end.currTime < L→ end.currPos < N (5.7)

where:

β1 ≡Cdot = v0

β2 ≡Cdot = v1

β3 ≡Cdot =V ∧Vdot = b
β4 ≡ end.currPos =C−C0∧ end.currTime = t ′− t0

We suppose that the default values of end.currPos and end.currTime are all zero. Thus
it is obvious that if [β ∗1 ∪β1;β2;β3]t ′− t0 < L→C−C0 < N holds, then Formula 5.7 holds. So
we only have to verify:

[β ∗1 ∪β1;β2;β3]t ′− t0 < L→C−C0 < N (5.8)

78 5. A method for verifying the extended SRML behavior constraints

To simplify the verification of Formula 5.8, besides β1, β2, β3 and β4 that are given above,
we also use the following abbreviations:

ψ ≡C0 < M∧ v0 > 0∧L≥ 0
φ ≡ t ′− t0 < L→C−C0 < N

where ψ is a sanity condition for Formula 5.8, and Formula 5.8 is true only under some
certain invariant conditions. Since v0 is the speed of the train at free moving stage and v1 is the
speed of the train at the negotiation stage in which normally the speed of the train must slow
down, we can assume that v0 > v1. Thus we take Lv0 +C0 < N as the invariant condition for
[β1]�φ to be true and take ψ, t ′ ≥ t ` v2

1 < 2b(m− Lv0−C0)∧ Lv0 +C0 < N as the invariant
condition for [β1][β2][β3]�φ and [β1][β2]�φ to be true. Then we have to prove that

If ψ ` Lv0 +C0 < N holds ,
then ψ ` [β1]�φ holds;

(5.9)

and

If ψ, t ′ ≥ t ` Lv0 +C0 < N holds ,
then ψ ` [β1][β2]�φ holds;

(5.10)

and

If ψ, t ′ ≥ t ` v2
1 < 2b(m−Lv0−C0)∧Lv0 +C0 < N holds ,

then ψ ` [β1][β2][β3]�φ holds.
(5.11)

The proof of 5.9 is shown as:

ψ ` Lv0 +C0 < N
P10 ψ ` ∀t ′ ≥ t(t ′− t ≤ L→ (t ′− t)v0 +C0 < N)
D3 ψ ` ∀t ′ ≥ t〈[C = (t ′− t)v0 +C0]〉φ
D7 ψ ` [β1]φ
T5 ψ ` [β1]�φ

The proof of 5.10 is shown as:

ψ, t ′ ≥ t ` Lv0 +C0 < N
D3 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉v1(L− t1)+C < N
P10 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉∀t ′ ≥ t(t ′− t < L− t1→C1 + v0(t ′− t)< N)
D3 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉∀t ′ ≥ t〈[C =C1 + v1(t ′− t)]〉φ
D7 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉[β2]φ
T5 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉[β2]�φ
P3 ψ ` t ′ ≥ t→ 〈[C =C0 + v0(t ′− t)]〉[β2]�φ
P10 ψ ` ∀t ′ ≥ t〈[C =C0 + v0(t ′− t)]〉[β2]�φ
D7 ψ ` [β1][β2]�φ

5.3 Case study of European Train Control System 79

The proof of 5.11 is shown as:

ψ, t ′ ≥ t ` v2
1 < 2b(N−Lv0−C0)∧Lv0 +C0 < N

D3 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉v2
1 < 2b(N− v0(L− t1)−C)∧ (L− t1)v0 +C < N

D3 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉〈[C =C1 + v1(t ′− t)]〉
v2

1 < 2b(N− v0(L− t1− t2)−C)∧ (L− t1− t2)v0 +C < N
P10 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉〈[C =C1 + v1(t ′− t)]〉

∀t ′ ≥ t(t ′− t < L− t1− t2→ b
2(t
′− t)2 + v1(t ′− t)+C2 < N)

D3 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉〈[C =C1 + v1(t ′− t)]〉
∀t ′ ≥ t〈[C = b

2(t
′− t)2 + v1(t ′− t)+C2]〉φ

D7 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉〈[C =C1 + v1(t ′− t)]〉[β3]φ
T5 ψ, t ′ ≥ t ` 〈[C =C0 + v0(t ′− t)]〉〈[C =C1 + v1(t ′− t)]〉[β3]�φ
p3 ψ ` t ′ ≥ t→ 〈[C =C0 + v0(t ′− t)]〉〈[C =C1 + v1(t ′− t)]〉[β3]�φ

p10 ψ ` ∀t ′ ≥ t〈[C =C0 + v0(t ′− t)]〉∀t ′ ≥ t〈[C =C1 + v1(t ′− t)]〉[β3]�φ
D7 ψ ` [β1][β2][β3]�φ

From the proof of Formula 5.11 we have:

ψ ` [β1]�φ
T7 ψ ` [β ∗1]�φ

and from the proof of Formula 5.9, Formula 5.10, and Formula 5.11 we have

ψ ` [β1][β2][β3]�φ
T1 ψ ` [β1][β2;β3]�φ
T1 ψ ` [β1;β2;β3]�φ

Thus we finally obtain:

ψ ` [β ∗1]�φ ∧ψ ` [β1;β2;β3]�φ
D1 ψ ` [β ∗1 ∪β1;β2;β3]�φ

80 5. A method for verifying the extended SRML behavior constraints

Chapter 6

Mapping from SRML to implementation
environment

In this chapter, we provide a method for mapping SRML service modules to service modules
supported by IBM WebSphere Process Server (WPS), with which SRML service modules could
be modeled and tested. Section 6.1 gives a general introduction to WebSphere products that
support the development and deployment of SCA models. Section 6.2 shows the correspondence
between declarations of SRML service modules and WID service modules. In particular, a set of
mapping rules that represent the correspondence are provided in this section. Section 6.3 shows
the result of implementation and testing of Train-Control module using WebSphere products.

6.1 Introduction to WebSphere Process Server

WebSphere Process Server (WPS) is one of the key products in the IBM WebSphere Business
Process Management suite. It is a comprehensive SOA integration platform, which is based on
WebSphere Application Server, and provides support for SCA programming model. As a pro-
cess engine, WPS provides a hosting environment for business processes (a business process is a
series of tasks executed in a specific order that is followed by an organization to achieve a larger
business goal). It also provides several Web-based applications such as Business Process Chore-
ographer Explorer and Business Process Choreographer Observer, which manage the various
aspects of business processes.

SCA describes all integration artifacts as service components with well defined interfaces,
and organizes business application code based on service components that implement business
logic. These business applications provide their capabilities as services through interfaces, and
require services offered by other components through references. To support such architecture,
the construction of service-oriented applications for WebSphere Process Server includes the fol-
lowing aspects:

• Implementing service components that provide services to outside parties and require ser-
vices provided by outside parties;

82 6. Mapping from SRML to implementation environment

• Assembling service components to build service module by wiring service references;

• Generating bindings that use transport and protocol to connect to external clients and ser-
vices;

• Assigning quality to attributes of service components.

In this section, we introduce the implementation of service components; the assembly of
service components and the generation of bindings are introduced in the next section; the assign-
ment of quality of service attributes is not discussed in this thesis.

In Websphere, a service component consists of an implementation, some interfaces that de-
fines the inputs, outputs and faults of the service component, and zero or some references that
identifies the interface of another service or component. The implementation is associated with
the component and performs the logic of it. Based on WebSphere Application Server, WPS offers
a variety types of service components implementation on top of a SOA core. The implementation
types available for service components are listed as follows:

• Interface maps
An interface map is a bridge component linking two SCA components that have different
implementations. Since having different implementations, the interfaces of the compo-
nents are labeled with different method signatures. The interface map enables them to
communicate by mapping the operations and parameters of these interfaces. In this way
the differences of the implementations are resolved and the two components can interact.
An interface map maps two interfaces in two levels:

– Operation mappings, by which operations of one interface are mapped to operations
of another interface.

– Parameter mappings, by which parameters of the business object in one method sig-
nature are mapped to parameters of the business object in another method signature.
In this way, parameter mappings correlate the parameters associate with different op-
erations. There are four different types of parameter mappings: map, which correlate
parameters of two business objects that have different fields; extract, which correlate
a complex parameter of one business object to the output parameters of another busi-
ness object by extracting pertinent information of the complex parameter; custom,
which performs the mappings by calling Java codes; and assign, which assigns a
value directly to an output parameter. Parameter mappings are one level deeper than
operation mappings and operation mappings can include parameter mappings.

• Business state machines
A business state machine is an event-driven service component in which external opera-
tions trigger the changes from one discrete state to another. Each state is implemented
with a mode, which determines which activities and operations can happen in that state.
Business state machines enable the representation of business processes using states and
events, which are useful for modeling real-time and event-driven systems. Business state

6.1 Introduction to WebSphere Process Server 83

machines are normally used during business modeling and analysis design. In the first
case, they are used to model use case scenarios; in the second case, they are used to model
event-driven objects or model the different aspects of the same state machine.

• Java objects
A Java object is a service component that is implemented with Java codes, and it is also
called a plain old Java object (POJO). A java object consists of the Java codes that repre-
sent the business logic of the component, and a WSDL interface or a Java interface that is
bounded to the component. Java objects are common implementations of service compo-
nents.

• Processes
A WPS process component, also called a business process component, implements a WS-
BPEL compliant process engine. A business process consists of a series of activities, rules,
conditions or individual tasks, which are executed sequentially or in parallel to achieve
an integral business goal. These compositions of a business process are connected with
connectors, which specify the logical order according to which the business process is ex-
ecuted. A business process can be declared as the transaction behaviors for invoke, human
task and snippet activities, and can run in microflows mode or long-running business pro-
cess mode. Microflows run in a single transaction which lasts for a short period of time,
and long-running business processes run in a series of chained transitions which last for
days or months.

• Human tasks
A human task in WPS is a stand-alone component that can assign work to human users or
to invoke other service components. It performs an activity that needs the interaction of
a human user, and it provides a common interface for humans to deal with human centric
and automatic tasks in a uniform way. Human task components include built-in support
for role-based task assignment, scheduling and escalation policies in case a task is not
processed within a predefined time limit. The properties of a task type represent the meta
information specific for that task. There are four main types of human tasks:

– To-do task, which is invoked by a service component that assigns a task to a human
to do something.

– Invocation task, which is triggered by a human who assigns a task to a service com-
ponent.

– Collaboration task, which is triggered by a human who assigns a task to another
human.

– Administration task, which is created by components to offer an interface for a human
administrator.

• Selectors
A selector is a routing component that selects the service component to invoke dynamically

84 6. Mapping from SRML to implementation environment

at run time. It consists of a set of date range entries, a set of selection criteria and a default
destination. A selector selects the component to invoke using the date range entries and
selection criteria that are declared in it. In detail, the selector changes the component
chosen to be invoked according to certain selection criteria, and this criteria evaluates to a
specific date range entries. The component chosen to be invoked can be any SCA service
component.

• Rule groups (business rules)
Business rules are service components which declare the policies or conditions that must
hold in a business process. These policies or conditions specify how business policies
or practices are executed in a business activity. In business rules, the business policies,
conditions and values that changes over time are not included. Thus, business process ap-
plications are more flexible by using business rules. Business rules can be implemented in
two types: a rule set that consists of a set of if-then rules, and a decision table that formal-
izes simple rule logics in the format of a table. These two types are not used separately but
always combined to form what are called rule groups.

Figure 6.1 from [53] shows the implementation of a WPS component and its interface and
reference.

Figure 6.1: A WPS component with all types of implementation

6.2 Mapping from SRML module to WPS module
When having a service module well specified in SRML, we can transform it to WPS service
module. In order to realize the transformation, a set of functions that map from SRML speci-

6.2 Mapping from SRML module to WPS module 85

fication domain to WPS implementation domain are needed. We first give a brief introduction
to the WPS domain, which includes building blocks of WPS service module that are used for
implementing SRML service module, then show the definitions of the functions.

In WPS, a service module of SRML can be represented in a standard block diagram referred
to as a module assembly, or an assembly diagram. As introduced in Section 6.1, in WPS there
are seven different implementation types of SCA components. Among these types, we choose
state machine as the implementation of WPS component as it could be easily obtained form
SRML based finite automata defined in Chapter 5. In the assembly diagram the components are
wired together and each component has its own interface to publish and receive messages. In the
implementation of a SRML service module, we map variables and transitions of all the business
roles into a single WPS component which is implemented by state machine (in such a WPS
state machine, differential equations specified in the SRML service module are implemented as
their respective solutions, since WPS state machine requires the exact value of each variable
in the computation approach, and these solutions are written in Java codes), map interactions
into WPS interface and reference, map business protocol which links to a service requirer into
WPS export, map business protocol which links to a service provider into WPS import and map
interaction protocols into WPS wires. Figure 6.2 shows the correspondence between a SRML
service module and a WPS service module in an assembly diagram.

We introduce each part of the WPS service module shown in Figure 6.2 as follows:
Interface: An interface declares a set of operations that are accepted and responded by the state
machine. It provides the input and output of a service component by applying the operations and
is independent of the implementation type of that component. One service component can only
have one interface.
E.g.,create an interface named TrainControlInterface for the module, with five operations as shown in
Table 6.1. Each operation triggers the corresponding transition from source state to target state.

Operation type Operation name Input name Input type Output name Output type

One Way Start
id string

- -
MA float

One Way Continue
id string

- -
MA float

One Way MAControl id string - -
One Way MAControlConfirm id string - -

Request Response End id string
dis float

time float

Table 6.1: Operations of TrainControlInterface

Reference:A reference specifies the operations that can be invoked by the state machine by
pointing to the interface that includes these operations in another service component. A service
component can include zero or more references to other service components or imports that are
included in the current module.
Variables: Variables store the data used in a state machine. There are two types of variables that

86 6. Mapping from SRML to implementation environment

Figure 6.2: The correspondence between SRML service module and WPS service module

6.2 Mapping from SRML module to WPS module 87

can be used in a state machine:

• Data type variable: Can be either a business object or a simple type, such as string or
integer.
E.g., the variable names and types for WPS module TrainControl shown in Table 6.2.

• Interface variables: Uses either an input or output parameter as defined within an inter-
face.
E.g., inputs and outputs of the operations shown in Table 6.1.

A variable can be either global (created for the global state machine scope) or local (created
for nested scopes and only visible to objects within the scopes).

Variable name C M t V dotC dotV v0 v1 b
Variable type float float int double double int double double int

Table 6.2: Data type variables of TrainControl module

Import An import identifies service provider outside a service module and can be called
from the inside of the module. An import component has an associated binding that specifies the
way of transporting the data to and from the external service.
Export An export exposes the interface of the state machine to external service require. It has
an associated binding that describes the physical communication mechanism to be used.
Wires Wires are used to link pairs of components in an assembly diagram.
Correlation properties: Correlation properties are specific variables that are used to distinguish
different instances of a state machine at runtime.
E.g., for each operation (event) that the state machine responds to, the interface variable "id" with data
type "string" is used as the correlation property.
State: A state is a discrete stage in which a business transaction can take place. In this thesis, we
use three types of states to construct state machines:

• Initial state: Is the first state in which a state machine is started by an operation of the
outbound transition of it.

• Simple state: Is a general state that can have an entry action and an exit action. The entry
action occurs when the state is entered and the exit action occurs when the state is exited.
When the entry action occurs, all the outbound transitions of the state are triggered.

• Final state: Is the last state in which a state machine terminates in a normal or expected
completion. Since in a state machine, the finial state is the last state, it has not exit action.

E.g., the state machine ETCSC in Figure 6.4 includes five states: InitialState1 is the initial state; State1,
State2, State3 are simple states, FinalState1 is a finial state.

88 6. Mapping from SRML to implementation environment

Transition: A transition represents the movement from one state to the next by recognizing an
appropriate triggering event. The execution of the movement is controlled by the evaluation of
the conditions that associate with it. When a transition is enabled, the set of actions that associate
with it are executed. A transition can include an event, a condition and a set of actions and they
are introduced respectively as follows:

• Event: An event triggers a transition with which it associates when it is evoked. There are
three types of events that can trigger a transition:

– Call event: The transition is triggered when the correct operation is called.

– Timer event: The transition is triggered when the timer expires.

– Completion event: The transition is triggered when the source state is entered and its
entry action, if any, is executed.

In the state machine ETCSC, only call events are included. The call events are actually
operations defined in the interface, and the attributes of the events are the input parameters
of the operation. If the transition has an action, these attributes are available to the action.

• Condition: A condition is a guard of the transition with which it associates. When the
evaluation of the condition is true, the state machine can move to the next state, otherwise
the state machine must remain in the current state.
E.g., in Figure 6.4, Condition0 is a condition on the self transition to state State1.

• Action: Actions associate with a transition are the activities that are executed when the
state in which the transition takes place is entered or exited, or when the transition is
triggered.
E.g., in Figure 6.4, ActCon is an action which assigns some variables with certain values and is
executed when event Continue is triggered; Entry1 is an action which prints out a message when
some condition is satisfied and is executed when state State1 is entered.

The correspondence between elements in SRML service module domain and elements in
WPS service module domain with state machine being the implementation type for service com-
ponents is shown in Table 6.3

In the implementation of SRML service module, some elements in SRML service module
domain such as wire, variable and service requirer/provider are directly realized by elements in
WPS service module domain; and others such as trigger, guard and effect need functions that map
formally from SRML expressions to WPS codings. We provide functions for mapping SRML
interactions and transitions to WPS interface and transitions as follows:

Definition 6.2.1 (Parameter sequence). Given an interaction signature 〈NAME,PARAM〉 and an
interaction name opName ∈ NAME, the input parameter sequence inParSeqopName and output
parameter sequence outParSeqopName of opName is defined as follows:

• inParSeqopName = empty|�inPar1 : inParType1, . . . , inParn : inParTypen, where inPari ∈
PARAM�(opName)inParTypei and inParTypei ∈ D for every 1≤ i≤ n;

6.2 Mapping from SRML module to WPS module 89

SRML service module WPS service module
implementation type for components: state machine

transition transition
trigger call event(operation)
guard condition
effect entry action

variable data type variable
parameter interface variable

wire wire
interaction interface-reference

service provider interface import
service requirer interface export

node of the SRML based finite automaton state

Table 6.3: Correspondence between elements in SRML service module domain and elements in
WPS service module domain (implementation type of WPS service components: state machine)

• outParSeqopName = empty|outPar1 : outParType1, . . . ,outParm : outParTypem, with outPari ∈
PARAM(opName)outParTypei and outParTypei ∈ D for every 1≤ i≤ m.

Definition 6.2.2 (Interaction sequence). Given a interaction signature 〈NAME,PARAM〉, a SRML
interaction OP is defined as OP = opType opName inParSeqopName outParSeqopName where
opType ∈ {rcv,r&s} and opName ∈ NAME. Thus a interaction and the concatenation of in-
teraction sequences are defined as follows:

• interSeq = empty|OP1 OP2 . . .OPn is an interaction sequence iff OPi is a SRML interaction
for every 1≤ i≤ n;

• If interSeq=OP1 OP2 . . .OPn and interSeq′=OP′1 OP′2 . . .OP′m, then interSeq◦OP′1 OP′2 . . .OP′m =
OP1 OP2 . . .OPn OP′1 OP′2 . . .OP′m;

• If interSeq is an interaction sequence, then empty◦interSeq= interSeq◦empty= interSeq.

Definition 6.2.3 (Mappings of interaction types and parameters from SRML to WPS). finterType :
SRML-TYPE→WID-operation type, finputPar : SRML-input parameter sequence→WID-input
name and input type, fout putPar : SRML-output parameter sequence→WID-output
name and output type are three functions which map from SRML domain to WPS domain, where:

• finterType(r&s) = Request Response;

• finterType(snd) = One Way;

• finputPar(empty) =−,−;

• finputPar(�inPar1 : inParType1, . . . , inParn : inParTypen) =
inPar1 . . . inparn, inParType1 . . . inParTypen;

90 6. Mapping from SRML to implementation environment

• fout putPar(empty) =−,−;

• fout putPar(outPar1 : outParType1, . . . ,outParn : outParTypen) =
outPar1 . . .out parn,outParType1 . . .outParTypen.

Definition 6.2.4 (Mapping from SRML interaction to WPS interface). finter f ace : SRML-
interaction sequence→WPS-interface table is a function which maps form SRML interaction
domain to WPS interface domain, and is inductively defined as follows:

finter f ace(opType opName inParSeqopName outParSeqopName ◦ interSeq) =
finterType(opType),opName, finputPar(inParSeqopName),

fout putPar(outParSeqopName) finter f ace(interSeq)

where opType opName inParSeqopName outParSeqopName is a SRML interaction and interSeq
is a SRML interaction sequence. In particular, when interSeq= /0, i.e. there is no interaction in-
cluded in the SRML interaction sequence interSeq, there is:

finter f ace(opType opName inParSeqopName outParSeqopName ◦ interSeq) =
finterType(opType),opName, finputPar(inParSeqopName), fout putPar(outParSeqopName)

Definition 6.2.5 (Function of WPS expressions). fexp is a function which assign SRML terms
and formulas with WPS expressions, where fexp : SRML-terms and expressions→WID-codes.
The WPS expressions are written in Java. Function fexp is defined as follows:

• fexp(opName#) = opName, where opName ∈ NAME and # ∈ {�,,9,<,8};

• fexp(T) = TWID where, T ∈ ST ERM∪ET ERM and TWID is the WID expression of T ;

• fexp(true) = true;

• fexp(T = T ′) = fexp(T) == fexp(T ′), where T,T ′ ∈ ST ERM or T,T ′ ∈ ET ERM;

• fexp(¬φ) = fexp(φ)!, where φ ∈ LS∪LE;

• fexp(φ ∧φ ′) = fexp(φ)&& fexp(φ
′), where φ ,φ ′ ∈ LS or φ ,φ ′ ∈ LE.

Based on function of WID expressions, we can define three functions: ftrigger, fguard and
fe f f ect which map trigger, guard and effect in SRML into WID.

Definition 6.2.6 (Functions of trigger, guard and effect). ftrigger, fguard and fe f f ect are functions
which map trigger, guard and effect of SRML transitions into WID, and are defined as follows:

• ftrigger(a#) = fexp(a#), where a ∈ NAME, # ∈ {�,,9,<,8};

• fguard(φ) = if fexp(φ) return true; return false;, where φ ∈ LS;

• fe f f ect(φ)= if fexp(φ) system.out.println "true"; system.out.println "false";, where φ ∈LE;

6.3 Transformation and implementation of SRML module Train-Control 91

6.3 Transformation and implementation of SRML module Train-
Control

The transformation from SRML service module Train-Control to WPS module TrainControl
includes constructing an automaton of SRML service module and implementing WPS state ma-
chine and interface. The automaton of SRML service module M is constructed based on the
SRML based finite automaton of M. The implementation of WPS state machine and interface is
based on the mapping functions defined in Section 6.2. As a whole, the transformation can be
done in the following steps:

1. Draw an automaton of Train-Control module

The automaton of Train-Control module is obtained from the diagram of the SRML based
finite automaton DTrain−Control shown in Figure 5.1 and the business role ETCSC shown in
Appendix A:

a. Adapt all the nodes and edges from Figure 5.1 for a new diagram;

b. Label all the nodes in the new diagram as that in Figure 5.1;

c. If an edge in Figure 5.1 is labeled with tr (tr ∈ T RANSName), then label the same edge
in the new diagram with tri(tr) and gua(tr), and add eff(tr) to the label of target node of
the edge.

we have the automaton of SRML service module Train-Control shown in Figure 6.3.

where:

• tri(Nego)≡MAControl�?, gua(Nego)≡ Ċ = v0, eff(Nego)≡ Ċ = v1;

• tri(Corr)≡Dec�?, gua(Corr)≡ Ċ = v1, eff(Corr)≡ Ċ =V ∧V̇ = b;

• tri(Cont)≡moveOn�?, gua(Cont)≡ Ċ = v0, eff(Cont)≡ Ċ = v0;

• tri(Stop)≡end�?, gua(Stop)≡ V̇ = b,
eff(Stop)≡ reportPos�!.currPos=C+M∧reportPos�!.time=t.

2. Implement the automaton of Train-Control module with WPS business logic — state machine

Figure 6.4 shows the state machine of WPS business logic which implements the Train-
Control module.

The mappings from SRML specifications of Train-Control module to expressions in WPS,
according to the mapping rules presented in Section 6.2, are listed as follows:

• fexp(MAControl�?) = MAControl

• fexp(Dec�?) = MAControlCon f irm

• fexp(moveOn�?) =Continue

• fexp(end�?) = End

92 6. Mapping from SRML to implementation environment

Figure 6.3: Automaton for SRML service module Train-Control

6.3 Transformation and implementation of SRML module Train-Control 93

Figure 6.4: WPS state machine for module Train-Control

94 6. Mapping from SRML to implementation environment

• fexp(Ċ = v0) = dotC == v0

• fexp(Ċ = v1) = dotC == v1

• fexp(V̇ = b) = dotV == b

• fexp(Ċ =V ∧V̇ = b) = dotC ==V &&dotV == b

• fexp(end!.currPos =C+M∧ end!.time=t) =
Pos ==C+MA&&time == t

In Figure 6.4, node labeled with State1 corresponds to node labeled with σ0 in Figure 6.3;
respectively, node labeled with State2 corresponds to node labeled with σ1; node labeled
with State3 corresponds to node labeled with σ2; node labeled with FinalState1 corresponds
to node labeled with σ3. To initialize the SRML automaton in Figure 6.3, we add node
InitialState1 in the WPS implementation as the initial state (see Figure 6.4).

In Figure 6.4, Continue, MAControl, MAControlConfirm and End match to tri(Cont), tri(Nego),
tri(Corr) and tri(Stop) in Figure 6.3, and are implemented as:

• Continue : ftrigger(tri(Cont))

• MAControl : ftrigger(tri(Nego))

• MAControlCon f irm : ftrigger(tri(Corr))

• End : ftrigger(tri(Stop))

Condition1, Condition2 and Condition3 mach to gua(Cont), gua(Nego), gua(Corr) and gua(Stop),
and are implemented as:

• Condition0 : fguard(gua(Cont))

• Condition1 : fguard(gua(Nego))

• Condition2 : fguard(gua(Corr))

• Condition3 : fguard(gua(Stop))

Entry1, Entry2, Entry3 and Entry4 mach to eff(Cont), eff(Nego), eff(Corr) and eff(Stop), and
are implemented as:

• Entry1 : fe f f ect(e f f (Cont))

• Entry2 : fe f f ect(e f f (Nego))

• Entry3 : fe f f ect(e f f (Corr))

• Entry4 : fe f f ect(e f f (Stop))

ActSta, ActCon, ActMAC and ActMACC in Figure 6.4 are assignments of variables, ActEnd
returns the displacement and the moving time of the train. They are implemented as (in JAVA
code):

• ActSta: v0=(float)100; C=(float)0; t=(float)0; M=Start_Input_MA; dotC=(float)100;

6.3 Transformation and implementation of SRML module Train-Control 95

• ActCon: t=t+(float)3; C=C+3*v0; M=C+M+Continue_Input_MA;

• ActMAC: v1=(float)50; t=t+(float)5; C=C+5*v0; dotC=v1;

• ActMACC: b=(float)10; C=C+v1*(float)4-(float)0.5*b*(float)16; V=v1-b*(float)4; dotC=v1-
b*(float)4; dotV=(float)10;

• ActEnd: End_Output_dis=C; End_Output_time=t;

Notice that in an automaton of SRML service module, if a node marked with double circle
is linked to an edge with outgoing arrow, this node in the corresponding WPS state machine
is implemented with a normal state, otherwise this node would be implemented with a finial
state. This is because in WPS state machine, a finial state has no outgoing transition to other
states. And for such normal states, we should control it manually at run time when they act
as finial state. That’s why in Figure 6.4 State1 is a normal state but not a finial state.

3. Implement interactions with WPS interfaces

The interactions of business role ETCSC (specified in Appendix A) are mapped to WPS
interface using the mapping rules in Section 6.2. The mappings are presented as follows:

• The parameter sequences of ETCSC are obtained according to Definition 6.2.1:

– inParSeqMAControl = empty, outParSeqMAControl = empty;
– inParSeqDec = empty, outParSeqDec = empty;
– inParSeqmoveOn =�newMA : position, outParSeqmoveOn = empty;
– inParSeqend = empty, outParSeqend =currPos : position,currTime : time.

• The interaction sequence interSeqETCSC of business role ETCSC is obtained according
to Definition 6.2.2:

– OP1 = rcv MAControl inParSeqMAControl outParSeqMAControl;
– OP2 = rcv Dec inParSeqDec outParSeqDec;
– OP3 = rcv moveOn inParSeqmoveOn outParSeqmoveOn;
– OP4 = r&s end inParSeqend outParSeqend;
– interSeqETCSC = OP1,OP2,OP3,OP4

• The mapping from interactions of Train-Control module to the interface of WPS mod-
ule TrainControl is obtained inductively according to Definition 6.2.4:

finter f ace(rcv MAControl inParSeqMAControl outParSeqMAControl ◦OP2,OP3,OP4) =
finterType(rcv), fexp(MAControl), finputPar(inParSeqMAControl),
fout putPar(outParSeqMAControl), finter f ace(OP2,OP3,OP4)

The result of the mapping can be seen in Table 6.1, the input variable "id" is a correlation
property used to distinguish one instance of the state machine of TrainControl module
from another within a runtime environment, thus is not specified in SRML. And the
WPS implementation can be seen in Figure 6.5

96 6. Mapping from SRML to implementation environment

Figure 6.5: WPS interface for module Train-Control interaction

6.3 Transformation and implementation of SRML module Train-Control 97

We adopt WebSphere Integration Developer (WID) to build WPS service module. WID
provides a development environment for building integrated applications. It enables integration
developers to create, manage and test services for IBM WPS and WESB. The features in WID
separate business logic from implementation details.

WID is built on the Rational Software Development V7.0.0.5 Platform, which is based on
Eclipse 3.2 technology. Each IBM product that is built on the Rational Software Development
Platform coexists and shares plug-ins and features with other products that are based upon this
platform. There are two primary user roles that are associated with WID:

• Integration developer: Integrates existing and new services and users into the business
process defining the service composition components. The specialist typically uses visual
composition tools and service-bus configuration tools to wire abstract service components
that comprise the business processes.

• Application developer: Implements the design for services that are provided by the soft-
ware architect. This includes using an appropriate language and technology in which to
implement the services, and following the design for those components provided by the
software architect.

A typical development flow for the development process of business integration and media-
tion modules in WID is as follows:

1. Start WID and open a workspace.

2. Switch to the Business Integration perspective for development.

3. Create a library to store artifacts, such as business objects and interfaces, that are shared
among multiple modules.

4. Create a new module or mediation module.

5. Create the business objects to contain the application data.

6. Create the interface and define the interface operations for each component.

7. Create and implement the service components.

8. Build the module assembly by adding the service components, imports and exports to the
assembly diagram. Bind the imports and exports to a protocol.

9. Test the module in the integrated test environment.

10. Deploy the module to WPS.

11. Share the tested module with others on the team by putting it in a repository.

98 6. Mapping from SRML to implementation environment

WID provides an assembly editor where the developer groups service components into mod-
ules and specifies which service interfaces are exposed by the module to a service requirer. It
also provides a runtime environment including WPS and WESB. When deploying a module well
developed in WID to WPS, it is connected to services such as Java beans, Web services or ser-
vice components that WPS and WESB provide at runtime to form complete integration solutions.
Figure 6.6 from [53] shows different levels in which the WPS components are developed in WID.

Figure 6.6: Key features of WebSphere Integration Developer

A work flow for implementing WPS module TrainControl in WID is provided in Appendix
B.

Chapter 7

Conclusion and future prospects

In this thesis, our main goal is to give a formal specification for hybrid systems in a Service-
Oriented point of view and to develop a method of formal verification. In order to achieve the
first part of this goal, we make a hybrid extension of the SO-L2TSs, named as SO-HL2TSs, make
an extension of the modeling language SRML and interpret it over SO-HL2TSs. To achieve the
second part of this goal, we adopt dTL formulas and a set of sequent calculus for verifying the
formulas, and develop a method for transforming the SRML specification of a certain service
module into the respective dTL formulas that could be verified. In the end, we provide a case
study of a small part of the European Train Control System, show the SRML specification and
the procedure of the verification for some property of the system, and provide a set of rules
which map the SRML specification into a WID service module, by which part of the features of
the hybrid system specified by SRML can be implemented.

In this chapter, a summary and some conclusions of the whole thesis are presented and the
future prospects are provided by comparing the achievement of this thesis with other related
works.

7.1 Summary and conclusions
This thesis succeeded in providing a SOC-based formal specification and a method of formal
verification for hybrid systems, it also found out a way of implementing and testing part of the
features of hybrid systems with SCA based integrated platforms – WID and WPS. The main
contribution of this thesis is stated as follows:

• The definitions of SO-HL2TS and its paths.
SO-HL2TS is a hybrid extension of SO-L2TS. It defines a set of functions which map
from certain real number intervals to sequences of states, and defines a set of transitions
relations between these sequences of states. This makes the specification and interpretation
of continuous time execution in a hybrid transition system possible. Paths of a SO-HL2TS
differs from paths of an SO-L2TS in that a path of a SO-HL2TS consists of finite or infinite
traces of states, which are mapped form real numbers with functions declared in that SO-
HL2TS. These traces of states can represent the continuous behavior of the SO-HL2TS.

100 7. Conclusion and future prospects

• The extension of SRML.
SRML provides a formal framework for modeling business services and activities. In
detail, it defines syntax and semantics of components, interfaces and wires for service
modules. The syntax of SRML are extended by enriching notions defined in business
roles and notions defined in business protocols. The semantics of SRML are extended by
interpreting SRML over SO-HL2TS.

• The verification of SRML constraints.
One of the most important SRML extension is the hybrid behavior constraint of business
protocols. The behaviors specified with the hybrid behavior constraint are dTL formulas
that are constructed over hybrid programs and can be verified with dTL sequent calculus
adapted from [41]. To verify SRML behaviors specified with such behavior constraint, a
method is provided for transforming the SRML behaviors into dTL formulas that could
be verified. When given a path of the SO-HL2TS over which the SRML behaviors to be
verified are interpreted, this method finds out the SRML based finite automaton for the
SO-HL2TS, adopts Brzozowiski’s method to construct its regular expression, transforms
this regular expression into the respective hybrid programs and substitute them into the
original behaviors to obtain the dTL formulas that could be verified.

• The mapping from SRML service module to WPS service module.
IBM WebSphere Process Management suite provides a SOA integration platform for de-
veloping, deploying and testing the functional behaviors of services and the communica-
tions among services, over which business processes are constructed. Among the prod-
ucts in WebSphere Process Management suit, WebSphere Integration Developer and Web-
Sphere Process Server are adopted for implementing and testing SRML service modules.
SRML service modules are implemented with WPS state machines and the respective WPS
componenet interfaces and references. In our approach, a set of formal mapping rules from
SRML domain to WPS domain which include state machines, interfaces and references
are provided. Over these rules, part of the activities of a business process could be im-
plemented with WID, sequences of actions and values of variables of the business process
could be checked with WPS.

In this thesis, we extend SRML not only by adding new terms to its syntax and semantics,
but more important, we extended its semantic domain by defining SO-HL2TSs and interpreted
SRML terms over SO-HL2TSs paths which are continuous in different real number intervals,
while in [17] terms are only interpreted over single states. Such extension enables us to be able to
specify continuous evolutions which are controlled by differential equations with SRML exten-
sion. Moreover, SO-HL2TSs extend L2TSs, over which UCTL formulas are interpreted [36, 37];
and in our approach, dTL formulas are interpreted over SO-HL2TSs. Thus, SO-HL2TSs work as
the semantic domain for both UCTL and dTL formulas, and can support both the verification of
UCTL formulas with UMC model-checker [36] and the verification of dTL formulas with dTL
sequent calculus rules [41].

In the approach of transforming from SRML module to SRML based finite automata, we
adopt the basic form of DFA [45, 46, 47] such that SRML based finite automata can be seen

7.2 Future prospects 101

as an extension of DFA. But SRML based finite automata are more similar to hybrid automata
[25] in that they include values of continuous variables in each state and over each transitions.
In particular, a SRML based finite automaton is defined over the corresponding SRML service
module and the SO-HL2TS over which that service module is interpreted, and each node of the
SRML based finite automaton denotes a trace of state, but not a single state as that defined in
[25].

7.2 Future prospects
Our work mainly relates to two research domains: service-oriented architecture and hybrid sys-
tems. In the former we focus on the formal specification of hybrid transition systems, and in
the latter we focus on the method for verifying behaviors of hybrid transition systems. Thus the
future prospects of our work lie in the following sections:

7.2.1 Formal specifications in SOA
In SOC, besides the functional behaviors and interfaces of a single service, the discovery and
binding of services is another important content, which includes communications between ser-
vice requirer and service provider, composition of services, the timing problem of asynchronous
systems and so on. When coupling hybrid transition systems with these aspects, some interesting
ideas are brought about.

In [18], the definitions of requires-interfaces and provides-interfaces are refined and the
"reduct" operations over service provider and service requirer are defined, and in [54] a for-
mal model SRMLight for reconfiguration between service and client is presented. In order to
adapt the new framework, the languages in SRML (such as LS and LE) and the set of behavior
constraints of business protocol would need to be enlarged.

In [55, 56], an algebra of discrete timed input/output automata that execute in the context of
different clock granularities is introduced. This allows services and clients in the same network
reconfigure at run-time. If some elements in such a network act as hybrid transition systems, new
problems would possibly arise in the consistency and feasibility check. Moreover, a set of LTL-
based orchestration schemes for formalizing the discovery and binding of services is proposed
in [57, 58], while in this thesis, the static behaviors of services are expressed by dTL, which is a
combination of CTL and DL. When designing services under such schemes, how to fit features
based on LTL and features based on dTL together would be another problem.

7.2.2 Methods and techniques for validation
In our work, we adopt dTL as the logic basis for validating hybrid behaviors of SRML service
modules. dTL was first brought forward in [41], but different from that defined in [41], we
interpret dTL formulas over paths of SO-HL2TSs, over which UCTL formulas can also be inter-
preted. In such a way, the hybrid behaviors and normal behaviors of SRML service modules are
addressed into the same semantic domain.

102 7. Conclusion and future prospects

In [59], a new type of logic for validating hybrid systems, named dTL2, is brought forward.
It enlarges the dTL formulas by allowing nested temporalities and can be used for verifying
nontrivial temporal properties of hybrid systems. In our future work, to interpret dTL2 over
paths of SO-HL2TSs would be a possible aspect. This will enable us to check if some events
happen during the intermediate states along certain traces of states.

Another prospect of our future work would be enriching case studies on different types of
complex systems, such as the example of human body exposure to extreme heat studied in [60]
and cyber-physical systems studied in [61]. Especially in [62] , an approach of refactoring,
refinement and reasoning for cyber-physical systems is provided. When taking similar systems
for our case studies, this approach would likely to be adopted.

In this thesis we adopt formal verification to validate the behaviors specified with the hybrid
behavior constraint of SRML service modules. However model checking is a more realistic and
efficient way for validation. The model checking tools for verifying hybrid systems includes:
Kronos [63] and UPPAAL [64] which are used to verify CTL properties of timed automata [65],
PhaVer [66] and SpaceEX [67] which compute approximations of the reachable set of hybrid
automata with linear dynamics, HSOLVER [68] and Ariadne[69] that manage hybrid systems
with nonlinear dynamics, KeYmaera [70] which uses automated theorem proving techniques to
verify nonlinear hybrid systems symbolically. Moreover, in [71, 72, 73] differential dynamic
logic is brought forward to solve the model checking problems with KeYmaeral, and in [74]
the logic HyLTL is brought forward to solve the model checking problems with PhaVer. In our
future work, we would be interested in developing a model checking method that can use some
of these tools introduced above. Possibly differential dyanmic logic or HyLTL would be adopted
in this approach.

Appendix A

SRML specification of Train-control

MODULE TRAIN-CONTROL is

DATATYPES

sorts: speed, acc
 position, time

PROVIDES

 RBC: RadioBlockCentre

REQUIRES

 MOC: MonitoringCenter

COMPONENTS

 ETCSC: ETCSControl

WIRES

MOC

MonitoringCenter
 ME

ETCSC
ETCSControl

s&r receivePos
 Pos
 T

R

i
1

i
2

Straight.
O(position,time)

S
i

1

i
2

r&s end
currPos
currTime

ETCSC

ETCSControl
ER

RBC
RadioBlockCentre

rcv MAControl S Straight

R snd control

rcv Dec S Straight

R

snd reduce

rcv moveOn
 �newMA

S Straight.
I(position)

R snd move
 �MA

END MODULE

SPECIFICATIONS

BUSINESS ROLE ETCSC is

INTERACTIONS

 rcv MAControl

 rcv Dec

 rcv moveOn

� newMA:position

 r&s end

 currPos:position

 currTime:time

 ORCHESTRATION

var C:position, V:speed, M:position, Cdot:speed, v0:speed, Vdot:acc

initial v0=100, C=0, t=0, M=500

 transition Nego
trigger MAControl�?
guard Cdot=v0

effect Cdot=v1

 transition Corr
trigger Dec�?
guard Cdot=v1

effect Cdot=V
 ∧ Vdot=b

transition Cont

trigger moveOn�?
guard Cdot=v0

effect Cdot=v0

transition Stop

trigger end�?
guard Vdot=b

effect end.currPos=C+M
 ∧ end.currTime=t

BUSINESS PROTOCOL MonitoringCenter is

 INTERACTIONS

 s&r receivePos

 Pos:position

T:time

 BEHAVIOUR
 always receivePos�.T<L Æ receivePos�.Pos<N

BUSINESS PROTOCOL RadioBlockCentre is

 INTERACTIONS

 snd control

 snd reduce

 snd move

� MA:position

INTERACTION PROTOCOL straight is

 ROLE A

 snd S

 ROLE B

 rcv R

 COORDINATION

 S ≡ R

INTERACTION PROTOCOL straight I(d1) is

 ROLE A

 snd S

� i1:d1

 ROLE B

 rcv R

� i1:d1

 COORDINATION

 S ≡ R

 S.i1=R.i1

INTERACTION PROTOCOL straight O(d1, d2) is

 ROLE A

 s&r S

 i1:d1

 i2:d2

 ROLE B

 r&s R

 i1:d1

i2:d2

 COORDINATION

 S ≡ R

 S.i1=R.i1

S.i2=R.i2

END SPECIFICATIONS

Appendix B

Implementation of Train-Control module

The implementation of WPS module TrainControl with WebSphere Integration Developer (WID)
is done following the steps below:
Starting with WID

Start WebSphere Integration Developer and create a new workspace in the intended directory.
We will see the TrainControl module appears in the Business Integration perspective as showed
in Figure . The Business Integration view provides a logical view of the key resources in each
module, mediation module and library. Within each project, the resources are categorized by
type.
Creating the interface

Create an interface named TrainControlInterface for the module, with five operations. Each
operation has input or output parameters as shown in Table 6.1 and represents the event that will
cause the transition from one state to another in the state machine that is created in the next step.
Creating the state machine

1. Create a new state machine as a component of the TrainControl module and name it ETCSC.
Appoint TrainControlInterface as its interface and Start as its first operation.

2. Add the input parameter id to the correlation blank. As introduced in Section 6.2 correlation
defines properties that are used to distinguish one instance of a state machine from another
within a runtime environment. Since id is a input parameter of type string for every operation
in TrainControlInterface, it can work as a correlation by assigning it with the same value for
each operation of the same instance of state machine ETCSC at runtime.

3. In the variable blank, create variables as that listed in Table 6.2.

Configuring the state State1

1. Rename the automatically generated state to State1.

2. Add action ActSta to the transition that goes from InitialState1 to State1. In the property tab
of ActSta, choose details and add the following Java codes:
v0=(float)100;

108 B. Implementation of Train-Control module

C=(float)0;
t=(float)0;
M=Start_Input_MA;
dotC=(float)100;

3. Add entry action Entry1 (An entry action is an activity which is executed when entering a
state) to State1. In the properties tab of Entry1, choose details and add the following Java
codes:
if(dotC==v0)System.out.println("true");
System.out.println("false");

4. Create a self transition (the transition in which the source state and the target state are the
same) on State1. Choose operation Continue form interface TrainControlInterface and add
to the self transition as an event.

5. Add condition Condition0 to the self transition. In the properties tab of Condition0, choose
details and add the following Java codes:
if(v1==100)return true;
return false;

6. Add action ActCon to the self transition. In the properties tab of ActCon, choose details and
add the following Java codes:
t=t+(float)3;
C=C+3*v0;
M=C+M+Continue_Input_MA;

Configuring the state State2

1. Create a new state and name it with State2.

2. Create a new transition from State1 to State2 state. Choose operation MAControl form inter-
face TrainControlInterface and add to the transition as an event.

3. Add condition Condition1 to the transition. In the properties tab of Condition1, choose
details and add the following Java codes:
if(v1==100)return true;
return false;

4. Add action ActMAC to the self transition. In the properties tab of ActMAC, choose details
and add the following Java codes:
v1=(float)50;
t=t+(float)5;
C=C+5*v0;
dotC=v1;

5. Add entry action Entry2 to State2. In the properties tab of Entry2, choose details and add
the following Java codes:

109

if(dotC==v1)System.out.println("true");
System.out.println("false");

Configuring the state State3

1. Create a new state and name it with State3.

2. Create a new transition from State2 to State3 state. Choose operation MAControlConfirm
form interface TrainControlInterface and add to the transition as an event.

3. Add condition Condition2 to the transition. In the properties tab of Condition2, choose
details and add the following Java codes:
if(v1==50)return true;
return false;

4. Add action ActMACC to the self transition. In the properties tab of ActMACC, choose details
and add the following Java codes:
b=(float)10;
C=C+v1*(float)4-(float)0.5*b*(float)16;
V=v1-b*(float)4;
dotC=v1-b*(float)4;
dotV=(float)10;

5. Add entry action Entry3 to State3. In the properties tab of Entry3, choose details and add
the following Java codes:
if(dotC==V&&dotV==b)System.out.println("true");
System.out.println("false");

Configuring the state FinalState1

1. Rename the state FinalState with FinalState1.

2. Create a new transition from State3 to FinalState1 state. Choose operation End form interface
TrainControlInterface and add to the transition as an event.

3. Add condition Condition3 to the transition. In the properties tab of Condition3, choose
details and add the following Java codes:
if(b==10)return true;
return false;

4. Add action ActEnd to the self transition. In the properties tab of ActEnd, choose details and
add the following Java codes:
End_Output_dis=C;
End_Output_time=t;

110 B. Implementation of Train-Control module

5. Add entry action Entry4 to FinalState1. In the properties tab of Entry4, choose details and
add the following Java codes:
if(End_Output_dis==C&&End_Output_time==t)System.out.println("true");
System.out.println("false");

By finishing the steps above we obtain the state machine ETCSC as shown in Figure 6.3. B.1

Assembling the WPS module

1. Open the TrainControl assembly diagram and drag the state machine ETCSC to the canvas
of the assembly diagram.

2. Add import component RBC and export component MOC to the canvas of the assembly
diagram.

3. Link RBC with ETCSC and ETCSC with MOC. the result can be seen in Figure B.1

111

Figure B.1: Assembly Diagram of WPS service module TrainControl

112 B. Implementation of Train-Control module

Appendix C

Publication of Ning Yu

Ning Yu and Martin Wirsing. A SOC-Based Formal Specification and Verification of Hybrid
Systems. Lecture Notes in Computer Science (LNCS), 9463:151-169, 2016. (Own contribution:
main author. Supported by co-author mainly on notions in some of the definitions and some
explanations.) Cited as [28] in the bibliography. This paper provides the basis for the results of
Chapter 4 and Chapter 5.

114 C. Publication of Ning Yu

Bibliography

[1] D. Georgakopoulos and M. Papazoglou. Service-Oriented Computing. The MIT Press,
Cambridge, Massachusetts, 2009.

[2] D. Krafzig, K. Banke, and D. Slarma. Enterprise SOA: Service-Oriented Architecture Best
Practices. Prentice Hall, Professional Technical References, Indianapolis, Ind., 2005.

[3] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D.F. Ferguson. Web Services
Platform Architecture. Prentice Hall PTR, U.S.A., 2005.

[4] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.
Elsevier Series in Grid Computing, 2004.

[5] http://www.osgi.org. The OSGI Aliance.

[6] http://www.microsoft.com. Microsoft COM (Component Object Model) Technology.

[7] Object Management Group. Common Object Request Broker Architecture (CORBA).
http://www.omg.org.

[8] J. Yang. Web Service Componentization. Communications of the ACM, 46(10):35–40,
2003.

[9] A. Dhesiaseelan and V. Ragunathan. Web Services Container Reference Architecture
(WSCRA). IEEE, Proceedings of the International Conference on Web Services:805–806,
2004.

[10] D. Box et al. Simple Object Access Protocol (SOAP)1.1. W3C note, 2000.

[11] M.P. Papazoglou and D. Georgakopoulos. Introduction to a Special Issue on Service-
Oriented Computing. Communications of the ACM, 46(10):24–28, 2003.

[12] T. Andrews et al. Business Process Execution Language (BPEL), Version 1.1. BEA Systems,
IBM, Microsoft, SAP and Siebel Systems, Technical report, 2003.

[13] A. Arkin. Business Process Modeling Language (BPML). BPMI.org, Last call draft report,
2002.

116 BIBLIOGRAPHY

[14] M. Colan. Service-Oriented Architecture Expands the Vision of Web Services, Part 2. IBM
DeveloperWorks, 2004.

[15] Universal Description, Discovery, and Integration (UDDI). http://www.uddi.org, Technical
report, 2000.

[16] H. Ossher and P. Tarr. Multi-dimensional Separation of Concerns and the Hyperspace
Approach. Proceedings of the Symposium on Software Architectures and Component Tech-
nology, The State of the Art in Software Development, 2000.

[17] J. A. Abreu. Modelling Business Conversations in Service Component Architectures. PhD
thesis, University of Leicester, 2009.

[18] J. Fiadeiro, A. Lopes, and J. Abreu. A Formal Model for Service-Oriented Interactions.
Science of Computer Programming, 77(5):577–608, 5 2012. Copyright 2012 Elsevier B.V.,
All rights reserved.

[19] Service Component Architecture Assembly Model Specification Version 1.2, July
2011. [online] http://docs.oasis-open.org/opencsa/sca-assembly/
sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.
html.

[20] Michael S. Branicky. Introduction to Hybrid Dynamical Systems. Birkhäuser, Boston,
2005.

[21] P.P. Varaiya. Smart Cars on Smart Roads: Problems of Control. IEEE Trans. Automatic
Control, 38(2):195–207, 1993.

[22] G. Meyer. Design of Flight Vehicle Management Systems. IEEE Conf. Decision and
Control, page Plenary Lecture, 1994.

[23] C. Tomlin, G.J. Pappas, and S. Sastry. Conflict Resolution for Air Traffic Management:
A Study in Multi-Agent Hybrid Systems. IEEE Trans. Automatic Control, 43(4):509–521,
1998.

[24] A. Back, . Guckenheimer, and M. Myers. A Dynamical Simulation Facility for Hybrid
Systems. Hybrid Systems, pages 255–267, 1993.

[25] Thomas A. Henzinger. The Theory of Hybrid Automata. LNCS, 170:256–292, 2000. LICS
’96 Proceedings of the 11th Annual IEEE Symposium on Logic in Computer Science.

[26] Arjan van der Schaft and Hans Schumacher. An Introduction to Hybrid Dynamical Systems.
Springer-Verlag, Amsterdam, 2000.

[27] H. Elmqvist, F. Boudaud, J. Broenink, D. Bruck, T. Ernst, P. Fritzon, A. Jeandel, K. Juslin,
M. Klose, S.E. Mattsson, M. Otter, P. Sahlin, H. Tummescheit, and H. Vangheluwe.
ModelicaTM Version 1, September 1997. http://www.Dynasim.se/Modelica/
Modelica1.html.

 http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.html
 http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.html
 http://docs.oasis-open.org/opencsa/sca-assembly/sca-assembly-spec/v1.2/csd01/sca-assembly-spec-v1.2-csd01.html
 http://www.Dynasim.se/Modelica/Modelica1.html
 http://www.Dynasim.se/Modelica/Modelica1.html

BIBLIOGRAPHY 117

[28] N. Yu and M. Wirsing. A SOC-Based Formal Specification and Verification of Hybrid
Systems. LNCS, 9463:151–169, 2015.

[29] A. Platzer. Differential Logic For Reasoning About Hybrid Systems. LNCS, 4416:746–749,
2007.

[30] K.A. Stroud and Dexter Booth. Differential Equations. Industrial Press, Inc., New York,
2005.

[31] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization Skeletons Using
Branching Time Temporal Logic. LNCS, 131:52–71, 1981. Proceedings of Workshop on
Logics of Programs.

[32] E.A. Emerson. Temporal and Modal Logic. Handbook of Theoretical Computer Science,
pages 997–1067, 1990.

[33] A. Pnueli M. Ben-Ari and Z. Manna. The Temporal Logic of Branching Time. Principles
of Programming Languages, 20:207–226, 1983. Proceedings of the 8th Ann. Symp.

[34] E.A. Emerson and E.M. Clarke. Characterizing Correctness Properties of Parallel Programs
as Fixpoints. LNCS, 85:169–181, 1981. Proceedings of the 7th Internat. Coll. on Automata,
Languages and Programming.

[35] L. Lamport. Sometimes is Sometimes "Not never" —on the Temporal Logic of Programs.
Principles of Programming Languages, pages 174–185, 1980. Proceedings of the 7th Ann.
ACM Symp.

[36] Maurice H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. An Action/State-Based
Model-Checking Approach for the Analysis of an Asynchronous Protocol for Service-
Oriented Applications. FMICS 2007, LNCS, 4916:133–148, 2008.

[37] Maurice H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. A State/Event-Based Model-
Checking Approach for the Analysis of Abstract System Properties. Science of Computer
Programming, 76 Issue 2:119–135, 2011.

[38] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. Massachusetts Institute of
Technology, London, 2000.

[39] R. M. Keller. Formal Verification of Parallel Programs. Communications of the ACM,
19:371–384, 1976.

[40] T. Henzinger, X. Nicollin, and J. Sifakis. Symbolic Model Checking for Real-Time Sysems.
LICS, IEEE Computer Society:394–406, 1992.

[41] A. Platzer. A Temporal Dynamic Logic for Verifying Hybrid System Invariants. Technical
report, (12, AVACS), 2007.

118 BIBLIOGRAPHY

[42] A. Platzer. Towards a Hybrid Dynamic Logic for Hybrid Dynamic Systems. LICS Interna-
tional Workshop on Hybrid Logic, (Seattle, USA.), 2006.

[43] A. Platzer. Differential Dynamic Logic for Verifying Parametric Hybrid System. LNAI,
4548:216–232, 2007.

[44] Janusz A. Brzozowski. Derivatives of Regular Expressions. Journal of the Association for
Computing Machinery, 11:481–494, 1964.

[45] D. A. Huffman. The Synthesis of Sequential Switching Circuits. J. Franklin Inst., 257:3-
4:161–190 and 257–303, 1954.

[46] G. H. Mealy. A Method for Synthesizing Sequential Circuits. Bell System Technical Jour-
nal, 34:5:1045–1079, 1955.

[47] E. F. Moore. Gedanken experiments on sequential machines. Automata Studies, Ann. of
Math. Studies No.34:129–153, 1956.

[48] M. O. Rabin and D. Scott. Finite Automata and Their Decision Problems. IBM J. Research
and Development, 3:2:115–125, 1959.

[49] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata The-
ory, Languages, and Computation. Addison-Wesley, U.S.A., 2001.

[50] F. Mazzanti. Umc user guide v3.3. Technical Report 2006-TR-33, Istituto di Scienza e
Tecnologie dell’Informazione "A. Faedo", CNR., 2006.

[51] Johannes Faber. Verifying Real-Time Aspects of the European Train Control System. Pro-
ceedings of the 17th Nordic Workshop on Programming Theory, pages 67–70, 2005.

[52] Alvaro A. Cardenas, Saurabh Amin, and Shankar Sastry. Research Challenges for the
Security of Control Systems. 2008.

[53] Carla Sadtler, Srinivasa Rao Borusu, Sergly Fastovets, Thalia Hooker, Ernese Norelus,
Fabio Paone, and Dong Yu. Getting Started with IBM WebSphere Process Server and IBM
WebSphere Enterprise Service Bus, Part1: Development. IBM Corp., 2008.

[54] J. Fiadeiro and A. Lopes. A Model for Dynamic Reconfiguration in Service-Oriented Archi-
tecture. Software and Systems Modeling, 12(2):349–367, 5 2013. Copyright 2012 Elsevier
B.V., All rights reserved.

[55] B. Delahaye, J. Fiadeiro, A. Legay, and A. Lopes. A Timed Component Algebra for Service,
pages 242–257. Lecture Notes in Computer Science. Springer, 2013.

[56] B. Delahaye, J. Fiadeiro, Axel Legay, and A. Lopes. Heterogeneous Timed Machines,
volume 8687 of Lecture Notes in Computer Science, pages 115–132. Springer, 2014.

BIBLIOGRAPHY 119

[57] I. Tutu and J. Fiadeiro. A Logic-Programming Semantics of Services. pages 299–313,
2013.

[58] I. Tutu and J. Fiadeiro. Service-Oriented Logic Programming. Logical Methods in Com-
puter Science, 11(3):1–38, 8 2015.

[59] J. Jeannin and A. Platzer. dTL2: Differential Temporal Dynamic Logic with Nested Tem-
poralities for Hybrid Systems. LNAI, 8562:292–306, 2014.

[60] M. Fadlisyah, P. Olveczdy, and E. Abraham. Formal Modeling and Analysis of Human
Body Exposure to Extreme Heat in HI-Maude. LNCS, 7571:139–161, 2012.

[61] A. Rajhans, S.W. Cheng, B. Schmerl, B.H. Krogh, C. Aghi, and A. Bhave. An Architectural
Approach to the Design and Analysis of Cyber-Physical Systems. Electronic Communica-
tions of the EASST, 21, 2009.

[62] S. Mitsch, J.Quesel, and A. Platzer. Refactoring, Refinement, and Reasoning: A Logical
Characterization for Hybrid Systems. LNCS, 8442:481–496, 2014.

[63] S. Yovine. Kronos: a Verification Tool for Real-Time Systems. Int. J. on Software Tools
for Technology Transfer, 1(1-2):123–133, 1997.

[64] K.G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a Nutshell. Int. J. on Software Tools for
Technology Transfer, 1(1-2):134–152, 1997.

[65] R. Alur and D.L. Dill. A Theory of Timed Automata. Theoretical Computer Science,
126:183–235, 1994.

[66] G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech. Int. J. on
Software Tools for Technology Transfer, 10:263–279, 2008.

[67] G. Frehse, C. Le Guernic, A. Donze, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. SpaceEx: Scalable Verification of Hybrid Systems. LNCS,
6806:379–395, 2011.

[68] S. Ratschan and Z. She. Safety Verification of Hybrid Systems by Constraint Propagation
Based Abstraction Refinement. ACM Transactions in Embedded Computing Systems, 6(1),
2007.

[69] L. Benvenuti, D. Bresolin, P. Collins, A. Ferrari, L. Geretti, and T. Villa. Assume-Guarantee
Verification of Nonlinear Hybrid Systems with ARIADNE. Int. J. Robust. Nonlinear Con-
trol, 24:699–724, 2012.

[70] A. Platzer and J.-D. Quesel. KeYmaera: A Hybrid Theorem Prover for Hybrid Systems.
LNCS, 5195:171–178, 2008.

[71] A. Platzer. Differential Dynamic Logic for Hybrid Systems. J. Sutom. Reas, 41(2):143–189,
2008.

120 BIBLIOGRAPHY

[72] A. Platzer. The Complete Proof Theory of Hybrid Systems. LICS, IEEE:541–550, 2012.

[73] A. Platzer. A Uniform Substitution Calculus for Differential Dynamic Logic. LNAI,
9195:467–481, 2015.

[74] D. Bresolin. HyLTL: a Temporal Logic for Model Checking Hybrid Systems. EPTCS,
124:73–84, 2013.

	Abstract
	Zusammenfassung
	Danksagung
	Introduction
	Service-Oriented Computing and SENSORIA Reference Modeling Language
	Hybrid System and its formal models
	Thesis Overview

	Background knowledge
	Differential Equations
	Hybrid Automata
	Safe Semantics of Hybrid Automata
	Live Semantics of Hybrid Automata

	Computational Tree Logic
	First-Order Dynamic Logic
	Syntax of b-DL
	Semantical domain and semantics of b-DL

	An overview of SRML
	Introduction to SRML service module
	Semantic domain of SRML
	Service-Oriented Configurations
	Service-Oriented Doubly Labeled Transition System

	Hybrid extension of SRML and its semantic domain
	The extension of SRML semantic domain
	Interaction signatures
	Extension of Business Roles
	Language of states
	Language of effects
	Transition specifications
	Formalization of business roles

	Extension of Business Protocols
	State predicates
	Hybrid programs and dTL formulas
	Behavior constraints
	Formalization of business protocol

	Extension of Interaction Protocols
	Coordinations
	Interaction protocols and connectors

	Formalization of service module

	A method for verifying the extended SRML behavior constraints
	SRML based finite automata and regular expressions for transitions
	Verification of behavior constraints
	Case study of European Train Control System
	An overview of the Train Control System
	The specification and verification of service module Train-Control

	Mapping from SRML to implementation environment
	Introduction to WebSphere Process Server
	Mapping from SRML module to WPS module
	Transformation and implementation of SRML module Train-Control

	Conclusion and future prospects
	Summary and conclusions
	Future prospects
	Formal specifications in SOA
	Methods and techniques for validation

	SRML specification of Train-control
	Implementation of Train-Control module
	Publication of Ning Yu

