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Hintergrund 

Micro-RNAs (miRNAs) sind kleine, nicht-kodierende RNA-Sequenzen. Lee und 

Kollegen beschrieben in den 90er Jahren erstmals, dass das für die larvale Entwicklung 

notwendige Gen lin-4 nicht in ein Protein translatiert wird, sondern dessen Transkript 

über basenkomplementäre Interaktion mit dem 3´-Ende des Transkripts des Gens lin-14 

dessen Translation epigenetisch negativ regulieren kann (R. C. Lee, Feinbaum, & 

Ambros, 1993). Die Entdeckung war revolutionär, da bis zu diesem Zeitpunkt davon 

ausgegangen wurde, dass nicht-translatierte RNA lediglich ein Abfallprodukt ohne 

relevante biologische Funktion sei. Erst einige Zeit später, im Jahr 2001, zeigten Lagos-

Quintana und seine Kollegen, dass miRNAs in einer Vielzahl von Organismen 

nachweisbar sind, unter anderem in menschlichen Zellen. Außerdem beschrieben sie, 

dass miRNAs nicht nur organismus-, sondern auch gewebespezifisch exprimiert werden 

(Lagos-Quintana, Rauhut, Lendeckel, & Tuschl, 2001). Daraufhin stieg die Anzahl der 

Arbeiten, die sich mit der Rolle von miRNAs in der Pathogenese verschiedenster 

Erkrankungen beschäftigten, exponentiell an (Chan, Krichevsky, & Kosik, 2005; 

Hammond, 2006; Xie et al., 2005). Heutzutage ist man sich der zentralen Rolle von 

miRNAs als Regulatoren physiologischer Signalkaskaden bewusst (Ledderose et al., 

2012; Martin et al., 2011; Tranter et al., 2011; Yan, Hao, Elton, Liu, & Ou, 2011). 

Trotz intensiver Forschungsbemühungen sind allerdings viele Fragen im Bereich der 

miRNA-Forschung nicht ausreichend beantwortet. Bereits anhand der genomischen 

Lokalisation müssen drei Arten von miRNAs unterschieden werden. Erstens gibt es 

miRNAs, wie beispielsweise miR-21, die wie protein-kodierende Gene als solitäre 
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transkriptionelle Einheit vorliegen und somit eigenständig reguliert werden (Long et al., 

2011). Weiterhin gibt es miRNAs, die als Polycistron vorliegen. Polycistrone sind 

Gencluster, die als ein Primärtranskript abgelesen werden. Dies ist insbesondere 

interessant, da Polycistrone im menschlichen Organismus untypisch sind (Baskerville & 

Bartel, 2005). Und als dritte Gruppe existieren intragenische miRNAs, d.h. miRNA-

Gene, die innerhalb von proteinkodierenden, sogenannten Host-Genen, gelegen sind. 

Diese miRNA-Gene können zwar eigene regulatorische Elemente besitzen, wie 

beispielsweise miR-107 oder miR-126 (Monteys et al., 2010), sind aber häufig 

funktionell an die Expression ihrer Host-Gene gekoppelt (Rodriguez, Griffiths-Jones, 

Ashurst, & Bradley, 2004). Dieses Phänomen eröffnet einige wichtige Fragen: Ist diese 

Kopplung biologisch relevant? Wenn ja, wie kann diese untersucht und charakterisiert 

werden? Welche Rolle spielt eine solche Beziehung für mögliche pathogenetische 

Prozesse? Einige Arbeiten zeigen bereits, dass eine aufgehobene Kopplung 

intragenischer miRNAs und ihrer Host-Gene ein entscheidender Schritt in der 

Tumorpathogenese sein könnte (Mayr & Bartel, 2009; Singh et al., 2009). 

Das hier vorgestellte Habilitationsverfahren befasst sich deshalb mit der Untersuchung 

der funktionellen Beziehung intragenischer miRNAs zu ihren Host-Genen. Zur 

Bearbeitung dieser Thematik wurde ein breites Spektrum an bioinformatischen und 

molekularbiologischen Methoden etabliert und eingesetzt. Die Thematik wurde in drei 

Schritten bearbeitet: 
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1. Bioinformatische Grundlagen: Erstellung einer Datenbank und 

Evaluation bioinformatischer Methoden zur Untersuchung von 

Fragestellungen in Bezug auf intragenische miRNAs. 

MiRNAs sind circa 20 Nukleotide kurze, einzelsträngige Nukleinsäuremoleküle. Sie 

binden an die nicht übersetzte 3´-RNA Region (3´-UTR) proteinkodierender Gene und 

reduzieren in Folge dessen deren Translation, entweder via translationaler Inhibition 

oder via mRNA Degradation (Baek et al., 2008; Lagos-Quintana et al., 2001; Lau, Lim, 

Weinstein, & Bartel, 2001; R. C. Lee & Ambros, 2001). Letzteres scheint dabei das 

dominierende Prinzip zu sein (Guo, Ingolia, Weissman, & Bartel, 2010). Der 

Mechanismus der Zielerkennung ist bis heute nicht vollständig verstanden und es 

existieren keine molekularbiologischen Methoden zur Large-Scale Detektion und 

Validierung von miRNA-Zielgen-Interaktionen. Dies ist nicht zuletzt dem Umstand 

geschuldet, dass eine miRNA mehrere hundert Zielgene haben und ein Gen von vielen 

miRNAs reguliert werden kann. Daher wurden diverse miRNA Zielvorhersage-

Algorithmen entwickelt, die auf verschiedenen Prinzipien der Zielvorhersage beruhen. 

Einer der ältesten und am meisten benutzten Algorithmen ist TargetScan (Lewis, Burge, 

& Bartel, 2005; Lewis, Shih, Jones-Rhoades, Bartel, & Burge, 2003). TargetScan 

basiert auf dem Prinzip der sogenannten “Seed-Komplementarität”. Als “Seed” einer 

miRNA bezeichnet man die Basen 2 - 8 (vom 5´-Ende der miRNA gezählt). Er ist der 

stärkste Prädiktor für die Zielgenerkennung einer miRNA (Brennecke, Stark, Russell, & 

Cohen, 2005). Andere Zielvorhersagealgorithmen nutzen die freie Bindungsenergie 

(Kertesz, Iovino, Unnerstall, Gaul, & Segal, 2007), Methoden der Mustererkennung 
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(Miranda et al., 2006) oder prädiktive Modelle basierend auf Transfektionsexperimenten 

(Krek et al., 2005; Wang & El Naqa, 2008), die jeweils in Sensitivität und Spezifität 

deutliche Unterschiede zeigen. Intragenische miRNAs können des Weiteren je nach 

Lokalisation in intronisch und exonisch untergliedert werden. Dabei muss allerdings die 

Strangspezifität, die Existenz möglicher alternativer Transkripte und das Vorhandensein 

möglicher miRNA-Promotoren berücksichtigt werden (Monteys et al., 2010). In einer 

ersten Arbeit entwickelten wir daher ein Datenbankmodell, in dem die verschiedenen 

Informationen aus unterschiedlichsten Quellen integriert wurden (L. C. Hinske, Heyn, 

Galante, Ohno-Machado, & Kreth, 2013). In diesem Modell werden die Informationen 

für proteinkodierende Gene des National Center for Biotechnology Information (NCBI) 

mit Transkript-Informationen aus der Reference Sequence Collection (RefSeq) 

verbunden (Pruitt, Tatusova, & Maglott, 2007). RefSeq ist eine kurierte, nicht-

redundante Sammlung von Gentranskripten, die unter anderem durch den Genome 

Browser der University of California Santa Cruz zum Download bereitsteht. Das 

Mapping dieser Sequenzen auf das jeweils aktuelle menschliche Referenzgenom 

erlaubt insbesondere die Extraktion der 3´-UTR-Sequenz der jeweiligen Transkripte. Die 

jeweils aktuell registrierten miRNA-Gen-Koordinaten können von miRBase extrahiert 

werden (Griffiths-Jones, 2006; Griffiths-Jones, Grocock, van Dongen, Bateman, & 

Enright, 2006; Griffiths-Jones, Saini, van Dongen, & Enright, 2008). Dann müssen die 

miRNA-Gen-Koordinaten mit den RefSeq-Koordinaten verglichen werden, um miRNAs 

in intragenisch, und spezifischer in intronisch und exonisch klassifizieren zu können. 

Dabei definieren wir intragenische miRNAs als miRNAs, deren Genkoordinaten 

vollständig zwischen der Transkriptionsstartseite und dem Transkriptionsende liegen. 
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Exonisch sind miRNAs dann, wenn ein Teil des miRNA-Gens mit einem kodierenden 

Sequenzbereich überlappt. Zudem wurden Zielvorhersagealgorithmen integriert. Nach 

der entsprechenden Klassifikation der miRNAs wurden miRNA-Zielvorhersagen 

implementiert. Weiterhin wurden Vorhersagealgorithmen, Gen- und miRNA-

Expressionsdaten und Protein-Interaktionsdaten integriert (L. C. Hinske et al., 2014; L. 

C. G. Hinske, Galante, Kuo, & Ohno-Machado, 2010). Abbildung 1 gibt eine grafische 

Übersicht über die verarbeiteten Datenquellen. 

 

 

Abbildung 1. Übersicht über die verschiedenen Datenquellen, die in der von uns entwickelten Datenbank miRIAD 

integriert wurden (aus L.C. Hinske et al., 2014). 

 

Zur besseren Benutzbarkeit dieser Datenbank haben wir in einer weiteren Studie eine 

Web-Applikation entwickelt (L. C. Hinske et al., 2014).  
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Abbildung 2. Übersicht über die Funktionalität der Web-Applikation zur effektiven Nutzung der miRIAD-Datenbank 

(aus L.C. Hinske et al., 2017). 

 

Diese Software dient gezielt der Untersuchung der Rolle intronischer miRNAs und ihrer 

Host-Gene und erlaubte verschiedenste Analysen (Abbildung 2). Die Oberfläche ist 
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einfach aufgebaut und besteht vornehmlich aus einem Suchfeld. Dort kann sowohl nach 

Genen als auch nach miRNAs gesucht werden, einzeln oder als Liste. In dem 

resultierenden Suchergebnis werden übersichtlich alle proteinkodierenden Gene 

und/oder miRNAs dargestellt. Diejenigen Gene, die eine intragenische miRNA 

beinhalten beziehungsweise die miRNAs, die intragenisch gelegen sind, sind 

gekennzeichnet. Zudem kann auch die Liste aller intragenischen miRNAs oder aller 

Host-Gene aufgerufen werden. 

 

 

Abbildung 3. Visualisierung des Genmodells. Die Leserichtung ist durch die Pfeilrichtung gekennzeichnet, exonische 

Bereiche entsprechen den roten Kästchen, intronische Sequenzen den blauen und UTR-Sequenzen den grünen 

Bereichen (aus L.C. Hinske et al., 2017). 
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In der darauf folgenden Einzelansicht werden detaillierte Informationen über das Gen 

und die entsprechende miRNA angezeigt (Abbildung 3). Die Gen-Ansicht beginnt mit 

einer kurzen Beschreibung. Darunter befindet sich die Visualisierung des Genmodells, 

in der die Leserichtung, exonische, intronische und nicht-translatierte Bereiche 

gekennzeichnet sind. Auch mögliche intronische miRNAs werden mit Leserichtung 

dargestellt. Oben in der Grafik befindet sich die summative Darstellung, die die 

Informationen aus den darunter dargestellten Einzeltranskripten zusammenfasst. Diese 

Übersicht erlaubt die schnelle Erfassung von Informationen, wie der Distanz der 

intronischen miRNA zum nächsten Exon, des Vorhandenseins der miRNA in 

verschiedenen Isoformen des Gens sowie der Leserichtung der miRNA verglichen mit 

ihrem Host-Gen. MiRNAs, die laut Prädiktionsmodell ihr eigenes Host-Gen regulieren, 

werden blau dargestellt.  

 

 

Abbildung 4. Visualisierung der 3´-UTR Region. Alternative Polyadenylierungsisoformen sind durch alternierende 

Grünbereiche gekennzeichnet, die mögliche miRNA-Bindungsstelle durch ein gelbes Kästchen, Informationen über 

die gewebeabhängige Verteilung der APA-Isoformen durch die Kreise (aus L.C. Hinske et al., 2017). 
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Der Genmodellgrafik folgt die gesonderte Darstellung des für die Genregulation durch 

miRNAs wichtigen 3´-UTRs (Abbildung 4). Diese für das Transkript besondere Region 

kann ebenfalls in verschiedenen Isoformen vorkommen, was man als alternative 

Polyadenylierung (APA) bezeichnet (Di Giammartino, Nishida, & Manley, 2011). Dieser 

Mechanismus ist mitunter für gewebespezifische miRNA-Regulation verantwortlich und 

scheint insbesondere bei der Aktivierung von Tumorgenen eine zentrale Rolle zu 

spielen (Mayr & Bartel, 2009; Zhang, Lee, & Tian, 2005). 

Visuell werden diese alternativen Polyadenylierungsformen durch alternierende Farben 

gekennzeichnet. Um alternative Polyadenylierungsmuster darstellen zu können, haben 

wir einerseits die Daten von Derti et al. prozessiert und integriert, die für mehrere 

Spezies und Gewebe speziell poly(A)-Sequenzen isoliert und mithilfe von Next-

Generation Sequencing sequenziert haben (Derti et al., 2012). Zum anderen haben wir 

einen Algorithmus entwickelt, um potentielle alternative poly(A) Varianten aus regulären 

RNA-Sequencing Daten zu extrahieren. Basierend auf dem Next-Generation 

Sequencing Datensatz von Brawand und Kollegen (Brawand et al., 2011) haben wir 

nach entsprechendem Mapping der Read-Sequenzen auf das jeweilige Referenzgenom 

nach Sequenzen gesucht, die mindestens vier aufeinander folgende Adenosin-

Nukleotide ohne Korrelat im Referenzgenom aufweisen. Die entsprechende Stelle 

wurde nur dann als alternative Polyadenylierungsstelle in unsere Datenbank eingefügt, 

wenn sie von mindestens zwei nicht identischen Reads gestützt wurde. APA-Stellen, für 

die die Expression in verschiedenen Geweben quantifizierbar war, erscheinen in der 

Visualisierung als kleine Kreise. Durch Anklicken erscheint das Expressions-

Balkendiagramm für diese Stelle. Zudem können vorhergesagte miRNA-
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Bindungsstellen angezeigt werden, zusammen mit der dazugehörigen UTR-Sequenz 

und der relativen Position innerhalb des UTRs. 

 

 



13 

Abbildung 5. Darstellung der Genexpression in verschiedenen Geweben, sowie die Korrelation zwischen Host-Gen 

und den intronisch gelegenen miRNAs (aus L.C. Hinske et al., 2017). 

 

 

Für einen Großteil der aktuell zehn in unserer Datenbank implementierten Spezies sind 

Expressionsdaten sowohl von miRNAs als auch von mRNA für die verschiedenen 

Gewebe enthalten. Insbesondere für die Beurteilung einer möglichen transkriptionellen 

Koregulation ist die Korrelation der einzelnen intragenischen miRNAs und ihrer Host-

Gene relevant. Expressions- und Korrelationsdaten werden in unserer Applikation 

sowohl grafisch als auch tabellarisch dargestellt (Abbildung 5). 

Da eine miRNA nicht nur ein einzelnes Gen reguliert, haben wir zudem einen 

Algorithmus entwickelt, um den Effekt einer miRNA auf ein Netzwerk von Genen zu 

quantifizieren. Dieses Netzwerk kann entweder vom Benutzer selbst definiert werden, 

beispielsweise als beobachtete Gen-Signatur für einen bestimmten Krankheitszustand. 

Da in unsere Datenbank aber auch Protein-Protein-Interaktionsdatenbanken 

eingebunden wurden, können miRNAs gesucht werden, die nicht nur das Zielgen 

selbst, sondern das mit dem Zielgen interagierende Netzwerk regulieren können. Für 

jede miRNA wird ein Score zu dem entsprechenden Netzwerk erstellt. 
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Zuerst wird die Wahrscheinlichkeit eines zufälligen Auftretens der Seed-Sequenz einer 

miRNA berechnet: 

 p(S) = ,  wobei  

S = Seed-Sequence 

n = Länge(S) 

Ni = i-tes Nukleotid of S 

D = Nukleotid-Verteilung. 

 

Die Wahrscheinlichkeit, dass diese Sequenz mindestens r mal innerhalb einer zufälligen 

Sequenz der Länge N (UTR-Sequenz eines jeden Gens innerhalb eines 

Interaktionsnetzwerks) auftritt, ist gegeben durch: 

, wobei  

Lx = (Länge des 3´-UTRs von Element xt) - (Länge der Seed-Sequenz n) + 1 

r = erwartetes Auftreten der Sequenz (in unserer Anwendung wurde r=1 gesetzt) 

 

Somit kann die zufällig erwartete Anzahl an Genen mit Seed-Site komplementärer 

Sequenz E(Xt) innerhalb des Netzwerks X durch die Summe der 

Einzelwahrscheinlichkeiten x errechnet werden: 
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Die erwartete Anzahl kann dann mit der beobachteten Anzahl verglichen und statistisch 

mit der Log-Odds Ratio quantifiziert werden: 

 

. 

 

Zusammengefasst haben wir ein Webtool entwickelt, das eine Plattform zur 

Untersuchung miRNA-bezogener Fragestellungen bietet und die Visualisierung 

komplexer Zusammenhänge zwischen den verschiedenen Datensätzen erlaubt. 

 

2. Die Beziehung zwischen Host-Gen und miRNA: Bioinformatische 

Evidenz für eine funktionelle Beziehung zwischen intronischen 

miRNAs und ihren Host-Genen 

Intronische miRNAs werden zusammen mit ihrem Host-Gen als Primärtranskript 

exprimiert und vor der Splicing-Reaktion aus dem Transkript extrahiert (Kim & Kim, 

2007). Danach erfolgt in mehreren Prozessierungsschritten die Reifung zur aktiven 

miRNA (Denli, Tops, Plasterk, Ketting, & Hannon, 2004; Han et al., 2004; Y. Lee et al., 

2003). So reizvoll die Annahme einer funktionellen Beziehung zwischen Host-Gen und 

miRNA auch sein mag, könnte die Kolokalisation ebenso ein stochastisches Phänomen 

oder lediglich eine Informationskompression auf der DNA sein. Daher haben wir 

untersucht, ob es Evidenz für eine funktionelle Beziehung zwischen miRNAs und ihren 



16 

 

Host-Genen gibt (L. C. G. Hinske et al., 2010). Dazu haben wir die oben beschriebene 

Datenbank benutzt, um zuerst im Rahmen einer strukturellen Analyse genomische 

Charakteristika intronischer miRNAs zu extrahieren. Es zeigte sich, dass Host-Gene mit 

intronischen miRNAs insgesamt ca. dreimal länger als protein-kodierende Gene ohne 

miRNAs sind. Aber nicht nur die Gene an sich, sondern auch die entsprechenden 3´-

UTR Sequenzen sind länger und enthalten mehr AU-reiche Regionen. AU-reiche 

Regionen wiederum sind maßgeblich für die Transkriptstabilität verantwortlich und eine 

Häufung in der UTR-Sequenz mit schnellerem Abbau und engmaschiger epigenetischer 

Kontrolle assoziiert (Jing et al., 2005). Danach untersuchten wir die Position intronischer 

miRNAs innerhalb der Gene. Unsere Hypothese war, dass im Falle eines funktionellen 

Zusammenhangs ein Positionsbias intronischer miRNAs zugunsten des 5´-Endes der 

Gene existieren müsste, damit möglichst viele alternative Transkripte mit der miRNA 

koexprimiert würden. Tatsächlich befinden sich ca. 60% aller intronischen miRNAs in 

den ersten fünf Introns und zeigen einen starken Leserichtungsbias: Die Leserichtung 

der intronischen miRNA und des Host-Gens ist deutlich häufiger dieselbe, als es durch 

Zufall erklärbar wäre. Im nächsten Schritt führten wir eine funktionelle Analyse durch, 

um die Hypothese eines funktionellen Zusammenhangs näher zu beleuchten. Zuerst 

zeigten wir, dass die Anzahl von Host-Genen, die laut Vorhersage von ihrer 

intragenischen miRNA reguliert werden, signifikant höher ist, als durch Zufall erklärbar 

(negative Regulation erster Ordnung). Dieses Ergebnis war konstant für alle in der 

Analyse benutzten Zielvorhersage-Algorithmen. Zur Beurteilung der Wahrscheinlichkeit 

einer Regulation auf höherer Ebene nutzten wir die Genkarten der Kyoto Encyclopedia 

of Genes and Genomes (KEGG), in der die Interaktionen zwischen Genen bezogen auf 
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bekannte Signalkaskaden kodiert sind (Kanehisa & Goto, 2000). Dann ermittelten wir 

für jedes Host-Gen, die intragenische miRNA und den dazugehörigen Signalweg die 

Anzahl der in der entsprechenden Signalkaskade vohergesagten Ziel-Gene. Um die so 

ermittelte Anzahl statistisch bewerten zu können, führten wir pro Host-Gen 1000 

Simulationen durch, in dem die Gene innerhalb der Kaskade durch zufällig ausgewählte 

Gene ersetzt wurden und erneut die Anzahl möglicher Ziel-Gene ermittelt wurde. Wir 

fanden eine hoch-signifikante Anreicherung von Zielgenen innerhalb der Host-Gen 

Signalkaskade. Basierend auf diesen Ergebnissen haben wir die Hypothese aufgestellt, 

dass ein möglicher Aspekt der Beziehung zwischen intronischen miRNAs und ihren 

Host-Genen die Verhinderung überschießender Expression im Sinne einer negativen 

Rückkopplung ist. Dabei haben wir ein mögliches Feedback erster Ordnung, das heißt 

die miRNA reguliert direkt ihr eigenes Host-Gen, von einem Feedback höherer 

Ordnung, bei dem die miRNA die Transkription (beispielsweise via Regulation eines 

Transkriptionsfaktors) oder den funktionellen Zustand (beispielsweise via Regulation 

einer Kinase) ihres Host-Gens beeinflusst, unterschieden (Abbildung 6). 
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Abbildung 6. Modell der negativen Rückkopplung intronischer miRNAs auf die Signalkaskade der Host-Gene (aus 

L.C.G. Hinske et al., 2010). 

3. Direkte und funktionelle negative Rückkopplung: Alternative 

Polyadenylierung als Mechanismus zur Rückkopplungsadjustierung 

Eine Variante einer negativen Rückkopplung einer miRNA auf ihr Host-Gen ist die 

direkte Regulation (L. C. G. Hinske et al., 2010). Diese Form der Rückkopplung ist 

allerdings nur dann sinnvoll, wenn es Mechanismen gibt, mit Hilfe derer diese 

Beziehung an- und abgeschaltet werden kann. Dill und Kollegen haben erstmals 

anhand von miR-26b ein Beispiel einer intronischen miRNA zeigen können, die erst im 

Verlauf des zellulären Differenzierungsprozesses überhaupt in die biologisch aktive 

Form übersetzt wird und somit ihr Host-Gen reguliert (Dill, Linder, Fehr, & Fischer, 

2012). Während die differenzielle Prozessierung intronischer miRNAs einen möglichen 

Weg der Regulation einer direkten Rückkopplung darstellt, wäre ein dynamischerer 

Prozess die Modifikation der Länge des 3´-UTR via alternativer Polyadenylierung. 
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Erreicht wird dies durch das Vorhandensein alternativer Polyadenylierungssignale. 

Diese wiederum werden unterteilt in “starke” und “schwache” Signale, die von einem 

Komplex verschiedener Proteine erkannt werden (Beaudoing, Freier, Wyatt, Claverie, & 

Gautheret, 2000; Di Giammartino et al., 2011). Wir haben daher die 3´-UTR-Sequenzen 

von Host-Genen mit Seed-komplementärer Sequenz für die eigene intronische miRNA 

mit denen ohne Seed-komplementäre Sequenz verglichen (L. C. Hinske et al., 2015). 

Dabei zeigt sich, dass erstere längere 3´-UTR Sequenzen mit mehr alternativen 

Polyadenylierungssignalen besitzen. Während sich bei Genen ohne intronische miRNA 

und Host-Genen ohne Seed-komplementäre Sequenz die “starken” 

Polyadenylierungssignale AAUAAA und AUUAAA zumeist am 3´-Ende des 3´-UTRs 

befanden, lagen diese bei Host-Genen mit Seed-komplementärer Sequenz präferenziell 

vor dieser Sequenz. Zudem zeigte sich, dass miRNAs, die potentiell ihr eigenes Host-

Gen regulieren, auch vermehrt Transkripte von Genen regulieren, die für den 

Polyadenylierungsapparat wichtige Proteine kodieren, insbesondere CPSF2 (Cleavage 

and Polyadenylation Specific Factor 2). CPSF2 wiederum ist bereits mit der 

Veränderung der Signalerkennung in Verbindung gebracht worden (Herr, Molnàr, 

Jones, & Baulcombe, 2006; Kolev, Yario, Benson, & Steitz, 2008). Wir haben daher 

U87-Zellen nach Transfektion mit siCPSF2 sequenziert.  Bei 97%-iger Reduktion von 

CPSF2-RNA zeigten sich, wie vorbeschrieben, grundsätzlich verlängerte UTR-

Sequenzen, außer bei Host-Genen mit Seed-komplementärer Sequenz. Diese wurden 

tendenziell kürzer. Mittels Motiv-Detektionsanalyse konnten wir zudem zeigen, dass in 

den 3´-UTR Sequenzblöcken, die eine besonders starke Expressionszunahme 

verzeichneten, die “starken” Polyadenylierungssignale angereichert waren. 
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Zusammengefasst bedeutet dies, dass intronische miRNAs, die ihren eigenen Host 

regulieren, mitunter die eigene Wirkung auf das Host-Gen begrenzen.  

 

 

Abbildung 7. Die 3´-UTR von ZFR. Die Bindungsstelle für miR-579 ist als gelbes Kästchen dargestellt, die 

Bindungssequenz im unteren Bildbereich (aus L.C. Hinske et al., 2017). 

 

Wir haben diese Hypothese an einem Beispiel evaluiert. Das Gen ZFR (Zinc Finger 

Recombinase) besitzt eine intronische miRNA, hsa-miR-579, sowie in der 3´-UTR 

Region eine Seed-komplementäre Sequenz für diese miRNA (Abbildung 7). Mittels 

Luciferase-Assay und im Western-Blot konnten wir zeigen, dass hsa-miR-579 sowohl 

ZFR, als auch CPSF2 direkt reguliert. Des Weiteren entdeckten wir mehrere potentielle 

Polyadenylierungsstellen in der 3´-UTR, die wir mittels 3´-RACE (Rapid Amplification of 

cDNA Ends) validierten. Wir konnten zeigen, dass von der Regulation lediglich die 

längste Transkriptvariante betroffen ist. Zusammenfassend konnten wir zeigen, dass 

eine direkte negative Rückkopplung durch intronische miRNAs nicht nur existiert, 

sondern durch alternative Polyadenylierung reguliert werden kann (Abbildung 8). 
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Abbildung 8. Modell der differenziellen Regulierung der direkten Regulation von Host-Genen durch ihre intronischen 

miRNAs (aus L.C. Hinske et al., 2015). 

 

Ein Großteil der Host-Gene besitzt keine seed-komplementäre Sequenz in der 3´-UTR, 

was eine mögliche indirekte Regulation nahe legen könnte. Diese Beziehung 

intragenischer miRNAs zu ihren Host-Genen scheint mitunter sogar von größerer 

klinischer Relevanz zu sein. Bereits im Jahr 2010 publizierten Tie und Kollegen, dass 
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die intronische miRNA hsa-miR-218, die im menschlichen Genom sowohl in SLIT2 als 

auch in SLIT3 intronisch vorkommt, mit ihrem Host-Gen SLIT3 koexprimiert wird (Tie et 

al., 2010). Die Bindung von SLIT an den ROBO1-Rezeptor ist wiederum wichtig für die 

Invasion und Metastasierung kolorektaler Karzinome. Die Autoren zeigten, dass die 

ROBO1-expression von miR-218 reprimiert wird und dass in einer hochinvasiven 

Tumorzelllinie diese Regulation durch Silencing von SLIT3 und miR-218 entfällt. Die 

Autoren konnten zudem zeigen, dass eine erniedrigte miR-218-Expression mit 

fortgeschrittenem Tumorstadium, lymphatischer Metastasierung, sowie schlechter 

Prognose korreliert (Tie et al., 2010). Kürzlich erst konnten Schmitt et al. zeigen, dass 

die miR-4728, die intronisch in dem insbesondere für das Mamma-Karzinom wichtigen 

Rezeptor ERBB2/HER2 des MAPK-Signalwegs gelegen ist, ein negativer Regulator 

dieser Signalkaskade ist (Schmitt et al., 2015). Die Autoren fanden auch hier einen 

ausgeprägten Zusammenhang zwischen der Expression der miRNA und der 

Überlebensraten der Patienten. 

Ein weiteres, für viele Tumoren sehr zentrales Gen, ist AKT2 (AKT Serine/Threonine 

Kinase 2) (Agarwal, Brattain, & Chowdhury, 2013; Chautard, Ouédraogo, Biau, & 

Verrelle, 2014; Emdad, Hu, Das, Sarkar, & Fisher, 2015). AKT wird durch 

Phosphorylierung aktiviert, vermittelt Zellwachstum und -überleben und inhibiert 

Apoptose (Chautard et al., 2014; Cui et al., 2015; Emdad et al., 2015; Hu et al., 2014). 

Interessanterweise ist die intronisch gelegene miRNA hsa-miR-641 kaum untersucht. 

Wir haben die Hypothese aufgestellt, dass miR-641 ein negativer Regulator des 

PI3K/AKT-Signalweges ist und dass diese Beziehung im Rahmen der 

Glioblastompathogenese gestört sein könnte.  
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In einem ersten Schritt untersuchten wir daher die Expression von miR-641 in 

Geweproben von Glioblastom-Patienten und verglichen diese mit Normalhirn-Gewebe. 

Tatsächlich zeigte sich eine deutlich erniedrigte miR-641-Expression. Danach 

überprüften wir, ob miR-641 möglicherweise AKT2 direkt reguliert. Allerdings enthält die 

AKT2 3´-UTR keine Seed-komplementäre Sequenz für miR-641 und die AKT2-mRNA 

änderte sich nicht signifikant nach Transfektion dieser miRNA. Trotz unveränderter 

AKT2-Expression beobachteten wir aber eine deutliche Zunahme der Apoptoserate der 

transfizierten Zelllinie, vereinbar mit einer indirekten Regulation des PI3K/AKT-

Signalwegs. Daher untersuchten wir den AKT2-Aktivierungszustand in diesen Zellen 

und fanden eine signifikant reduzierte AKT2-Phosphoryllierung. Basierend auf unserer 

Interaktionsdatenbank identifizierten wir drei Kinasen, die AKT2 aktivieren (Frias et al., 

2006; Jacinto et al., 2006; Laplante & Sabatini, 2012; Scheid, Marignani, & Woodgett, 

2002) und deren Expressionslevel durch miR-641-Transfektion deutlich reduziert 

wurden: PIK3R3, PDK2 und MAPKAP1. Für zwei der drei Kinasen (PIK3R3 und 

MAPKAP1) wiesen wir eine direkte Regulation durch miR-641 nach, die allerdings die 

ausgeprägten Expressionsänderungen insbesondere von PIK3R3 nicht erklären konnte. 

Daraufhin suchten wir nach Transkriptionsfaktoren, die möglicherweise durch miR-641 

reguliert werden und sowohl mit PIK3R3 als auch PDK2 interagieren. NFAT5 wurde als 

wahrscheinlicher Kandidat identifiziert und in der Folge von uns validiert. 

Zusammenfassend konnten wir am Beispiel von AKT2 und miR-641 zeigen, dass 

intronische miRNAs zentral für die Regulation ihrer Host-Gen Signalwege sein können 

und dass ein Wegfall der Regulation mit direkten Implikationen für die 

Tumorpathogenese verbunden sein kann. 
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Das Verständnis der Beziehung intronischer miRNAs zu deren Host-Genen ist aber 

nicht nur von pathogenetischer Bedeutung, sondern könnte auch klinische Anwendung 

finden. Eine kürzlich veröffentlichte Arbeit befasst sich beispielsweise mit der intronisch 

gelegenen miR-4722, die spezifisch für den menschlichen Organismus ist. Das Gen 

dieser miRNA liegt in Intron 5 von IL-18RAP. Sowohl intronische miRNA als auch Host-

Gen sind koreguliert und in der Sepsis verstärkt exprimiert. Die Autoren konnten zeigen, 

dass die Bestimmung der Expression von miR-4722 eine Unterscheidung von Patienten 

mit Systemic Inflammatory Response Syndrome von Patienten mit Sepsis erlaubt (Ma 

et al., 2013). 

 

In dieser Habilitationsarbeit wurden die nötigen Methoden entwickelt, um die Beziehung 

intragenischer miRNAs zu ihren Host-Genen und die Bedeutung für die Klinik zu 

bearbeiten. Diese Methoden wurden erfolgreich eingesetzt, um die zentrale Hypothese 

einer negativen Rückkopplung der miRNAs innerhalb der Signalwege ihrer Host-Gene 

zu etablieren sowie Beispiele sowohl für direkte als auch indirekte Rückkopplung zu 

validieren und regulative Mechanismen zu identifizieren. Abschließend konnte die 

klinische Relevanz dieser Mechanismen am Beispiel der Glioblastompathogenese 

gezeigt werden. Es ist davon auszugehen, dass die Beziehung intronischer miRNAs 

und ihrer Host-Gene eine zunehmend zentrale Rolle in vielen klinischen Bereichen 

einnehmen wird und möglicherweise interessante und neue diagnostische wie 

therapeutische Optionen bietet. 
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Abstract

Background: miRNAs are small, non-coding RNA molecules that mainly act as negative regulators of target gene
messages. Due to their regulatory functions, they have lately been implicated in several diseases, including
malignancies. Roughly half of known miRNA genes are located within previously annotated protein-coding regions
("intragenic miRNAs”). Although a role of intragenic miRNAs as negative feedback regulators has been speculated,
to the best of our knowledge there have been no conclusive large-scale studies investigating the relationship
between intragenic miRNAs and host genes and their pathways.

Results: miRNA-containing host genes were three times longer, contained more introns and had longer 5’ introns
compared to a randomly sampled gene cohort. These results are consistent with the observation that more than
60% of intronic miRNAs are found within the first five 5’ introns. Host gene 3’-untranslated regions (3’-UTRs) were
40% longer and contained significantly more adenylate/uridylate-rich elements (AREs) compared to a randomly
sampled gene cohort. Coincidentally, recent literature suggests that several components of the miRNA biogenesis
pathway are required for the rapid decay of mRNAs containing AREs. A high-confidence set of predicted mRNA
targets of intragenic miRNAs also shared many of these features with the host genes. Approximately 20% of
intragenic miRNAs were predicted to target their host mRNA transcript. Further, KEGG pathway analysis
demonstrated that 22 of the 74 pathways in which host genes were associated showed significant
overrepresentation of proteins encoded by the mRNA targets of associated intragenic miRNAs.

Conclusions: Our findings suggest that both host genes and intragenic miRNA targets may potentially be subject
to multiple layers of regulation. Tight regulatory control of these genes is likely critical for cellular homeostasis and
absence of disease. To this end, we examined the potential for negative feedback loops between intragenic
miRNAs, host genes, and miRNA target genes. We describe, how higher-order miRNA feedback on hosts’
interactomes may at least in part explain correlation patterns observed between expression of host genes and
intragenic miRNA targets in healthy and tumor tissue.

Background
microRNAs (miRNAs) are small (~22-nt) functional
RNA species that provide a newly appreciated layer of
gene regulation with an important role in development,
cellular homeostasis and pathophysiology. miRNAs are
encoded in the genome and transcribed primarily in a
Pol II-dependent manner [1], although Pol III-depen-
dent transcription has also been reported [2,3]. Roughly
half of the known human microRNAs are found in
intergenic regions of the genome, suggesting production

of unique primary transcripts (pri-miRNAs) containing
one or more miRNA hairpins under the control of inde-
pendent promoter elements. The overwhelming majority
of the other ~50% map to previously annotated intronic
regions of protein coding genes, while a small number
are even found within exons. The relationship between
intragenic miRNAs and their host genes presents many
unique questions regarding genomic organization, tran-
scriptional regulation, processing and function.
The genomic organization of intragenic miRNAs exhi-

bits a strong directional bias, such that these species are
predominantly oriented on the same strand of the DNA
as that of the host gene. The directional bias may pre-
vent steric interference between RNA polymerases
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transcribing the host gene and the miRNA gene(s) [4];
however, the existence of individual antisense miRNA
genes and miRNA gene clusters argues that the primary
evolutionary pressure for the positional bias is co-
regulation of the intronic miRNA and the host gene.
Indeed, microarray analyses supports the hypothesis that
intronic miRNAs are usually expressed in coordination
with the host gene mRNA in human tissues [4,5],
strongly suggesting that co-transcription from the host
gene promoter is the most common transcriptional
mechanism under normal conditions. This assumption
has lately successfully been employed to identify new
miRNA targets [6]. However, recent findings demon-
strate that transcription of a subset of intronic miRNAs
in H. sapiens can be initiated from internal promoters
within operons independently from the host gene [3],
suggesting that utilization of internal promoters must
also be considered a viable alternative strategy for intro-
nic miRNA gene transcription.
Large portions of miRNA processing are understood

(for review see [7]). In brief, a ~70 nucleotide stem-loop
precursor pre-miRNA is excised from a relatively long
primary miRNA transcript, followed by export from the
nucleus via Exportin-5 in a Ran-GTP-dependent man-
ner. In the cytoplasm, pre-miRNAs are further pro-
cessed into a ~22-nt miRNA/miRNA* duplex. In the
case of intronic miRNAs, early steps in the miRNA bio-
genesis pathway are complicated by the requirement for
proper pre-mRNA splicing and mature mRNA assembly
of the host message. Recent bioinformatics and experi-
mental work demonstrates that intronic miRNAs can be
processed from intronic regions co-transcriptionally [8]
prior to the splicing reaction [9]. Interestingly, recent
work suggests that several intragenic miRNAs undergo
post-transcriptional regulation [10], and defects in this
process have been associated with tumor development
[10-14]. The nature of the differences in miRNA proces-
sing and associated defects between intergenic and
intragenic miRNA species is not currently elucidated.
miRNA target recognition in mammals is mainly

mediated via imperfect Watson-Crick base-pairing to
cognate sites primarily located in the 3’-UTR of mRNA
targets. Predicted and validated miRNA targets include a
functionally diverse suite of genes that include many
transcription factors and cell signaling proteins, suggest-
ing a role for miRNAs in regulatory feedback loops
[15-17]. Intragenic miRNAs present unique regulatory
possibilities based on functional relationships with their
host genes. It has been speculated that intronic miRNAs
may directly target their host message or regulate tran-
scription factors, in what is commonly designated “first-
order” or “second-order” negative feedback, respectively
[18]. Recently published work [19] demonstrates that
miR-338, encoded in an intron of the apoptosis-

associated tyrosine kinase (AATK) gene, targets several
genes that are functionally antagonistic to the AATK
protein. Therefore, miR-338 serves the functional inter-
est of the host in this case via a higher-order positive
feedback system that downregulates expression of
AATK repressors and enforces neuronal differentiation
downstream of the kinase.
In the current manuscript, large-scale bioinformatics

analyses of human intronic miRNAs related to genomic
organization and characterization of miRNA host and
target genes are presented. We identify characteristics of
host genes and predicted targets, and present evidence
that intragenic miRNAs may act as negative feedback
regulatory elements of their hosts’ interactome (i.e., they
can regulate host gene neighbours in addition to host
genes).

Results
We integrated genomic and transcriptomic information
to analyze properties of intragenic miRNAs themselves,
their host genes, as well as their targets. We used all
known miRNAs (based on miRBase), all known human
transcripts (based on RefSeq), six different and highly
established miRNA target prediction algorithms, as well
as the gene and pathway annotation ontologies GO and
KEGG.

Classification of miRNAs
Based on mapping miRNA genomic coordinates to
genomic position of all known genes and their exons
and introns (based on RefSeq sequences [20]), we could
classify miRNAs into three classes: intergenic, exonic,
and intronic (Table 1). For H. sapiens, 296 miRNAs
were located within intronic regions, and 37 within exo-
nic regions of known genes. We also classified miRNAs
from other species (Table 1). Interestingly, organisms
that have a well-annotated set of protein-coding genes
present distributions that resemble that of the miRNA
distribution in humans, showing 33-48% of intronic
miRNAs and 0.6-6% of exonic miRNAs (Table 1, organ-
isms M. musculus, D. melanogaster and C. elegans). On
the other hand, organisms containing a smaller number
of annotated genes presented a higher number of inter-
genic miRNAs (Table 1, organisms C. familiaris, G. gal-
lus and D. rerio), some of which however may become
intragenic as more genes will be identified in these
organisms. Additional file 1 contains details of miRNAs
classification, their genomic position and host genes.

Positional Bias of Intragenic miRNAs
The orientation of the gene for an intronic miRNA
depends significantly on the transcription direction of
its host gene (p-value = 1.3 × 10-36 in c2 test) as shown
in Table 1. We found that 65.5% of host genes had
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miRNAs in the first five introns. Also, we confirmed
that the observed distribution differs significantly from
the expected distribution within the first five introns
(p = 0.030 in c2 test, additional file 2).

Characterization of Host Genes
Assuming, as is widely accepted, that intragenic miRNAs
share a common regulatory control with their host
genes, we can infer functional aspects of this class of
miRNAs by characterizing features of those host genes.
To confirm that the position of miRNAs has a particular
bias, and is not the result of chance, we randomly
sampled genes that matched the set of miRNA host
genes (in terms of chromosome and strand distribution)
and compared the positions of host, target, and ran-
domly sampled genes. The findings are summarized in
Table 2. Host genes are almost three times longer than
the randomly sampled cohort and have more introns.

When comparing the intron size in different positions
(Figure 1a), we found that the first five 5’ introns are
significantly longer, consistent with our previous finding
that most host genes’ intronic miRNAs are found in the
5’ introns (Figure 1b).
Gene expression can be pre- and post-transcriptionally

controlled through regulatory motifs in their 3’-UTRs.
Even though regulatory mechanisms are not well under-
stood, two important concepts include regulation
through miRNAs, and the role of adenylate/uridylate-
rich elements (AREs) in mediating mRNA decay, which
plays a significant role in cancer development [21-23].
We first compared the length of the 3’-UTRs of host
genes to the length of 3’-UTRs of the random sample.
Host genes have 40% longer 3’-UTRs (p-value < 0.01).
In a second step, we counted occurrences of the penta-
mer AUUUA in these regions, normalized by the length
of the 3’-UTRs. We found significantly more ARE units

Table 1 Classification of miRNAs in the Genome of Different Species

Organism Intragenic miRNAs Intergenic miRNAs Intragenic miRNAs

Intronic Exonic miRNAs on Host Gene
Strand

miRNAs on Opposite
Host Strand

Homo sapiens 296 (42.6%) 37 (5.3%) 362 (52.1%) 282 (84.7%) 51 (15.3%)

Mus musculus 171 (35.4%) 30 (6.2%) 282 (58.4%) 163 (78.2%) 38 (21.8%)

Canis familiaris 3 (1.5%) 0 (0%) 201 (98.5%) 2 (66.7%) 1 (33.3%)

Gallus gallus 50 (10.7%) 1 (0.2%) 418 (89.1%) 46 (90.2%) 5 (9.8%)

Danio rerio 48 (15.0%) 1 (0.3%) 271 (84.7%) 39 (79.6%) 10 (20.4%)

Drosophila melanogaster 65 (42.8%) 2 (1.3%) 85 (55.9%) 53 (79.1%) 14 (20.9%)

Caenorhabditis elegans 51 (33.1%) 1 (0.6%) 102 (66.2%) 33 (63.6%) 19 (36.5%)

Intragenic miRNAs are found in many different species. However, the distribution of intra- and intergenic miRNAs differs. These numbers are obtained by
crossing miRNA genomic coordinates with known transcript coordinates (based on RefSeq sequences).

Table 2 Properties of Host and Target Genes

Property Gene Set Median[Range] Host/Target Median[Range] Control Ratio p-Value

Total length (basepairs) Host Genes 84871.0 [2792-2220381] 29324.5 [599-2304633] 2.89 < 2.2e-16

Target genes 83747.5 [2366-2220381] 30232.5 [218-2220381] 2.77 < 2.2e-16

Introns Host Genes 13[1-88] 8[1-105] 1.62 4.3e-13

Target genes 10.5[0-78] 8[0-311] 1.31 9.77e-07

Length 5’UTR (basepairs) Host Genes 279.5[0-385608] 298.5[0-1098107] 0.94 0.25

Target genes 439.5[0-460277] 282.5[0-1098107] 1.56 2.32e-08

Length 3’UTR (basepairs) Host Genes 1218.5[0-535884] 872[0-321862] 1.4 4.71e-05

Target genes 1764[171-11799] 872[0-72058] 2.2 < 2.2e-16

ARE (absolute) Host Genes 2.0[0-1794] 1.0[0-592] 2.0 3.89e-04

Target genes 5.0[0-47] 2.0[0-187] 2.5 < 2.2e-16

ARE (per kb) Host Genes 1.9[0-2.74] 1.49[0-0.045] 1.26 0.012

Target genes 2.69[0-14.22] 1.63[0-76.92] 1.65 < 2.2e-16

5’ UTR GC content Host Genes 0.6[0.31-0.95] 0.59[0-1] 1.06 0.015

Target genes 0.59[0.26-1] 0.58[0-1] 1.01 0.71

Host and target genes display similar properties, compared to a set of control genes, including increased length, higher number of total introns, longer 3’UTRs
and higher frequency of “AU-rich elements” (AREs).
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Figure 1 Intragenic miRNA Properties. (a) The sizes of host gene introns closest to the TSS are significantly larger than those of respective
controls. (b) Intronic miRNAs appear to be unevenly distributed across the intronic regions of their host genes. More then half of intronic
miRNAs are located within the first five 5’ introns of their hosts. (c) The observed target coverage (diamond) is at the upper end of the random
distribution of target coverages for different signaling pathways, indicating that intragenic miRNAs have more targets within the pathway than
would be expected by chance. (d) Intragenic miRNAs may control their host in the setting of a negative feedback circuitry not only through
direct regulation of the host’s transcription, but also on the order of the interactome, by controlling other genes in the host’s pathway.
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in host genes than in the random sample (p-value <
0.01). Since recently miRNA target genes have been
shown to be larger than non-target genes [24], we ana-
lyzed total lengths and lengths of 3’-UTRs [25] for host
genes predicted to be targeted by their intragenic
miRNA and the remaining host genes separately. No
significant difference in lengths between the two groups
of host genes was observed (p-value = 0.3939), but
genes in both groups were longer than genes in the con-
trol group (p-value = 1.552e-07 and p-value < 2.2e-
16).3’-UTRs were longer in host genes predicted to be
targets of their intronic miRNA than in host genes not
predicted to be targets (p-value = 0.001) and control
genes (p-value = 5.012e-07). In contrast, the 5’-UTRs of
host genes were not significantly longer than the ones in
the control group (p-value > 0.05).
The GO Biological Process (GOBP) and KEGG are

ontologies that associate genes with, cellular processes
and biochemical pathways, respectively, including dis-
ease pathways. When surveying GOBP for overrepresen-
tation of miRNA host genes in certain categories, we
found significant enrichment in gene regulatory, meta-
bolic, neurogenic, and cytoskeletal processes, which
reflects the broad range of diseases with which miRNAs
have been associated [12,26-34]. Additionally, we found
that host genes were overrepresented in several signaling
pathways, such as the MAPK, ErbB, VEGF, and the cal-
cium signaling pathway.

Genomic Properties of Target Genes
We looked at genomic properties of a high-confidence
set of targets for hosts of intronic miRNAs (prediction
agreement ≥ 6) that would give us a set of similar size
as the host genes. We then randomly sampled RefSeq
transcripts to match chromosome and strand distribu-
tion as a control set and performed the analysis analo-
gously to the analysis of genomic properties of the host
genes themselves. Table 2 summarizes the results,
revealing that the predicted targets have properties that
are highly similar to those of host genes.

Relationship Between Intragenic miRNAs and Host Genes
We found that approximatelly 20% of intragenic miRNAs
(56 of them, hosted in 49 distinct genes) are predicted to
target their own host by at least two methods. This num-
ber is significantly higher than would be expected by
chance alone (p-value < 0.001, obtained by random sam-
pling). Furthermore, we assessed the robustness of our
approach by following the above procedure while apply-
ing a voting method as the gold standard. We assigned
each of the target prediction methods to one of two
groups of equal size (n = 3) and required at least one
vote from each group to consider that a prediction of a
miRNA-host interaction. TarBase did not contain a single

instance of miRNA-host interaction, so it was excluded
from the analysis. Although the numbers of miRNAs pre-
dicted to target their own host varied (12 - 55), depend-
ing on which group they had been assigned to, in each
case the observed number was significantly higher than
would be expected by chance (p-value < 0.05, see also
additional file 3). Given that host genes that were pre-
dicted to be targets of their intragenic miRNA have
longer 3’-UTR regions, statistical significance of the num-
ber of hosts being targeted by their intronic miRNAs was
assessed by repeated creation of sets of non-host control
genes with similar 3’-UTR distribution (see Materials and
Methods). In line with our previous observations, the
number of hosts predicted to be targeted by their intra-
genic miRNAs (49) was significantly higher than
expected by chance (p-value = 0.032).
In order to test the hypothesis that intronic miRNAs

might act as regulators even in the global functional
context of a negative feedback loop circuitry, the
KEGG pathway analysis was extended to identify tar-
gets within the respective biomolecular pathway. We
defined the target coverage as the number of genes
within a pathway that were predicted targets (predic-
tion agreement ≥ 2) of miRNAs residing in host genes
within that pathway, over the total number of genes in
the pathway. To check whether the observed target
coverage could be expected by chance, the original
genes contained in the pathway were replaced by a set
of randomly sampled genes and the expected target
coverage of intronic miRNAs with host genes in a par-
ticular pathway was calculated. The distributions of
expected target coverage for three signaling pathways
are visualized in Figure 1c. At a false discovery rate
(FDR) of 10%, 22 out of 74 pathways with which host
genes were associated showed a significant overrepre-
sentation of targets in the hosts’ pathways (Table 3,
Additional File 5). Interestingly, many signalling and
malignancy-related pathways ranked high.

Implications for Cancer Pathogenesis
Integration of major KEGG pathway information with
expression data from two publicly available datasets
[35,36] helped us investigate the idea of loss of negative
feedback circuitry.
KEGG ID “05215 - Prostate Cancer” contains a single

known miRNA host (AKT2), and it is not predicted to be
targeted by its intronic miRNA (hsa-miR-641). The corre-
lation between the expressions of host and predicted tar-
gets involved in the pathway were calculated. Figure 2
shows a simplified representation based on the KEGG
pathway information. Host and corresponding targets are
color-coded, where the green oval indicates the host,
AKT2, and yellow, orange, and red indicate whether two,
three or four methods agreed on the target prediction.
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In line with the hypothesis of an interactome feedback
circuitry, predicted targets of hsa-miR-641 appear to be
in close proximity and in functional synergy with its host.
A similar target pattern is displayed by both miRNAs,
hsa-miR-641 and hsa-mir-634, in the non-small-cell lung
cancer pathway (additional file 4).
The correlation between host and target expression

levels is shown in a two-bar plot. The first bar, labeled
“N”, represents the correlation between host and target
in normal tissue. The second bar, labeled “T”, represents
the correlation between host and target in cancerous tis-
sue. In the prostate cancer dataset, seven of the fifteen
targets are more negatively correlated in healthy tissue
than in cancer. In four cases (AKT3, AR, MAPK1, and
CTNNB1), we could observe a significant negative corre-
lation in normal tissue, which was either non-significant
or was significantly positive in cancer. A similar pattern
could be observed in the non small cell lung cancer
pathway.

Discussion and Conclusions
Since the first discovery of miRNAs, our understanding
of biogenesis and regulation has exponentially grown. In

the recent past, it has been estimated that miRNAs that
reside in intronic or exonic regions of other genes may
be the dominating class [9]. However, functional aspects
of intragenic miRNAs are still largely unknown.
It is generally believed that both host and miRNA

share regulatory control [4-6], although a recent study
found that transcription of roughly 30% of intragenic
miRNAs may be initiated independently [3]. After map-
ping miRNAs to known genes, we found that most
intronic miRNAs are oriented in the same direction as
their host gene, significantly more than would be
expected by chance. Several hypotheses related to this
preferential orientation have been suggested. First, most
of intragenic miRNAs may not present their own pro-
moter and be dependent to the transcription of their
host gene. Second, miRNAs may present their own pro-
moter, and directional bias may prevent physical inter-
ference between RNA polymerases transcribing the host
gene and RNA polymerases transcribing the miRNA
gene [4].
Baskerville and Bartel identified significant correlation

between the expression levels of intronic miRNAs and
their host genes, suggesting co-regulation [4]. We

Table 3 Pathways with Overrepresentation of Genes Targeted by an Intronic miRNA

Pathway Host Genes in Pathway Target Coverage p-Value q-Value

MAPK Signaling ATF2; DDIT3; AKT2; FGF13; ARRB1; PPP3CA; PRKCA; CACNG8; RPS6KA2;
MAP2K4; RPS6KA4

61.4% < 0.001 < 0.001

Axon Guidance PPP3CA; PTK2; SEMA4G; SEMA3F; SLIT3; ABLIM2; SLIT2 70.3% < 0.001 < 0.001

Ubiquitin Mediated Proteolysis HUWE1; WWP2; BIRC6; ITCH 53.8% < 0.001 < 0.001

Focal Adhesion COL3A1; AKT2; PRKCA; PTK2; TLN2 49.5% < 0.001 < 0.001

Glioma AKT2; PRKCA 52.3% < 0.001 < 0.001

Melanoma AKT2; FGF13 50.7% < 0.001 < 0.001

Regulation of Actin Cytoskeleton CHRM2; FGF13; SSH1; PTK2 41.0% < 0.001 < 0.001

Chronic Myloid Leukemia AKT2 38.2% < 0.001 < 0.001

Colorectal Cancer AKT2 35.7% < 0.001 < 0.001

Prostate Cancer AKT2 34.8% 0.001 0.007

Melanogenesis PRKCA 21.6% 0.001 0.007

Pancreatic Cancer AKT2 35.6% 0.002 0.01

ErbB Signaling ERBB4; AKT2; PRKCA; PTK2; MAP2K4 51.7% 0.003 0.02

Glycan Structures Biosynthesis MGAT4B; FUT8; CSGLCA-T; GALNT10; HS3ST3A1 50.8% 0.003 0.02

Gap Junction HTR2C; PRKCA; PRKG1 47.9% 0.005 0.02

Non-Small Cell Lung Cancer AKT2; PRKCA 42.6% 0.007 0.03

Small Cell Lung Cancer AKT2; PTK2 35.6% 0.013 0.05

Long-Term Depression PRKCA; PRKG1 33.3% 0.014 0.05

Insulin Signaling AKT2; SREBF1 36.0% 0.014 0.05

Long-Term Potentiation PPP3CA; PRKCA; RPS6KA2 27.1% 0.005 0.06

T-Cell Receptor Signaling AKT2; PPP3CA 32.3% 0.016 0.09

Wnt Signaling PPP3CA; PRKCA 21.6% 0.020 0.09

22 out of 74 pathways containing host genes show a significant overrepresentation of targets within the pathway at a FDR of 10%. Host genes that were
predicted targets of their own miRNA were removed from the count. Interestingly, the list of pathways contains many pathways crucial for development and
signal transduction, or associated with neoplastic transformation.
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furthermore found that more than half of intronic
miRNAs are found in the 5’ regions of their host genes,
where introns are firstly excised. It is well known that
transcriptional activity is higher towards the 5’ region of
a gene [37] and also that regulatory motifs tend to
reside in these regions [38]. From a functional perspec-
tive, these findings may suggest dependency between
host and miRNA transciption. In order to characterize
the relationship between intronic miRNAs and their
hosts, we identified properties of the set of host genes,
as well as a set of high confidence targets. Whereas
Golan et al. [39] showed in a recent work that intronic
miRNA density is lower in large host genes, we provided
evidence that the class of host genes in general is signifi-
cantly longer and contains more and larger introns. This
increases transcriptional efforts for the cell and is con-
sidered a characteristic of tightly regulated genes [40].
Interestingly, these features can also be found in a high-
confidence set of targets (i.e. prediction agreement ≥ 6
methods), which may support the idea of miRNAs as
regulators of their own host genes. Additionally, the 3’-
UTRs of host genes predicted to be targeted by their

own miRNA are significantly longer, exposing the mes-
sage to more regulatory control mechanisms, such as
targeting by miRNAs or ARE mediated mRNA decay.
Interestingly, host genes contain significantly more
AREs. Many of these properties have been shown to be
features of proto-oncogenes and the sum of these find-
ings may suggest tight regulatory control of these genes
[21,23,41]. Surveying GOBP and KEGG pathways, we
found host genes to be associated with metabolic, bio-
synthetic, gene regulative processes, and signaling path-
ways. These categories capture major functional aspects
of miRNAs in general, as is reflected by miRNA involve-
ment in diseases such as cancer [32], muscle disorders
[27], or neurodegenerative diseases [42]. We then
assessed predicted targets, using agreement between six
distinct prediction algorithms and a database of vali-
dated miRNA targets as a measure of confidence. First,
we identified 56 miRNAs predicted to target their own
host. Interestingly, more of these miRNA-host gene
pairs are conserved than of the remaining miRNA-host
gene pairs (Table 4). Recently, Sun et al. validated the
predicted interaction between hsa-miR-126 and its host

Figure 2 Correlation of Predicted miRNA Targets with Hosts. The PI3K - PKB/AKT pathway is believed to be a key component in cancer
development. We compared correlation of miRNA predicted targets (prediction agreement ≥ 2) to the respective host in normal (N) and tumor
(T) tissue. Several of the hypothesized targets display features predicted by our model, such as AR, PDGFB, PDGFRB, AKT3 and MAPK1.
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EGFL7 [43,44]. By integrating KEGG pathways with
these predictions, we observed for 22 of the 74 pathways
that host genes were associated with a higher number of
targets within the pathway than would be expected by
chance alone. A visual representation of the targets of
AKT2’s intronic miRNA hsa-miR-641, for example,
showed how components of many protein complexes
involved in the signal transduction of growth factor sig-
nalling may be potential targets of hsa-miR-641 (Figure
2). The combination of these findings indicates that
intragenic miRNAs may play a role in interactome feed-
back circuitries, as visualized in Figure 1d, as an addi-
tional security switch for genes requiring narrow
control. A subset of up to 20% of intragenic miRNAs
may directly regulate the host expression (we referred to
this phenomenon as “first-order feedback”). Moreover,
intragenic miRNAs display targeting patterns that
appear not only to influence their hosts’ expression
levels, but also their functional environment. The obser-
vation that structural properties of a set of high-confi-
dence-prediction target genes, such as long 3’-UTRs,
length, and number of AREs, resemble those of host
genes emphasize the concept of regulation of interacting
gene products in highly restricted settings.
Loss of negative feedback control systems is a well-

known mechanism by which cancer develops. Blenkiron
and coworkers [11] recently suggested that miRNA pro-
cessing might be disturbed in cancer. If expression levels
of intragenic miRNAs are reduced, as observed by some
authors [13,45], subsequently important signalling path-
ways may lose inhibition and this may facilitate uncon-
trolled cell growth. In a recent study, Tavazoie et al.
analyzed six miRNAs that were significantly under-
expressed in breast cancer LM2 cells, as compared to
normal breast tissue. Four of these miRNAs were intra-
genic [46]. The authors reported that loss of the intronic
miRNA hsa-miR-335, which resides in intron 2 of its
host gene MEST, led to increased migration and inva-
sion rates and hence increased metastatic capacity.
Additionally, they could show that hsa-miR-126 (intron
7, host EGFL7) significantly reduced proliferation of
breast cancer cells. Likewise, hsa-miR-151 has been
shown to be downregulated in chronic myloid leukemia

through BCR/ABL [47], and silencing its host gene
PTK2 inhibits leukemogenesis [48]. A similar pattern
can for example be found for hsa-miR-504 and FGF13
[49,50].
Changes in miRNA biosynthesis such as those found in

cancer can interfere with the coordination of expression
of miRNA and host. Thus, a negative correlation between
expression levels of host and genes targeted by its intra-
genic miRNA in normal tissue (given that the host is not
targeted by the miRNA it contains) and a less negative or
even positive correlation in cancerous tissue might be
expected. This phenomenon was observed in two distinct
datasets in different malignancies (Figure 2, additional file
4 and additional file 6). A key to pathogenesis of both
entities is the phosphatidylinositol 3-kinase(PIK3)/AKT
signaling pathway, deregulation of which has been
reported in several cancers, including prostate cancer
[51], lung cancer [52], ovarian cancer [53,54], breast can-
cer [53,55], and colon tumors [54]. Whereas Noske et al.
discovered that silencing AKT2 through RNA interfer-
ence leads to reduction in ovarian cancer cell prolifera-
tion [56], Maroulakou and coworkers reported
accelerated development of polyoma middle T and
ErbB2/Neu-driven mammary adenocarcinomas in mice
after AKT2 ablation [57]. Although these findings would
appear to be contradictory at first, they can be explained
by an intragenic miRNA-driven negative regulatory loop
that is disturbed in cancer. Whereas in the first experi-
ment AKT2 was targeted on mRNA level (and therefore
mimicking the role of the corresponding intronic
miRNA), in the second experiment both host mRNA and
miRNA (if it exists in mouse) were downregulated, and
therefore may have disabled a potential negative feedback
regulation by hsa-miR-641.
One must remember, however, that regulatory net-

works are far more complex in reality than what we are
currently able to model. Transcription factors, enhancers,
silencers, and epigenetic modifications play major roles in
cancer development and may influence correlation
among expression levels of hosts and targets. Also, target
prediction methods are error prone, and at this point we
can only speculate about the true nature of events and
therefore plan to conduct further experiments in which

Table 4 Conservation of miRNA-Host Pairs

Organism miRNA-Host Pairs Predicted to Target own
Host

miRNA-Host Pairs Not Predicted to Target own
Host

p-Value

Conserved Total Conserved Total

Homo sapiens - Mus musculus 18 (35.2%) 51 41 (24.5%) 167 0.18

Homo sapiens - Canis familiaris 1 (2.12%) 47 0 142 0.56

Homo sapiens - Gallus gallus 5 (12.5%) 40 1 (0.71%) 139 0.001

The subset of intragenic miRNA host pairs where the miRNA is predicted to target its own host shows a tendency to be more conserved. However, statistical
significance can only be shown for conservation between human and chicken (2-sample test for equality of proportions with continuity correction).
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the hypotheses presented can be tested. For example, by
integrating different target prediction methods, roughly
20% of intragenic miRNAs were predicted to target their
own host. Though this number is significantly higher
than expected by chance, it still does not cover the
majority of miRNAs. For one, this number may underes-
timate the true number of miRNAs targeting their own
host due to limitations of target prediction methods.
Additionally, it has lately been shown that transcription
of one third of intronic miRNAs can be initiated inde-
pendently of the host’s transcription [3], in which case
direct feedback cannot be claimed. Also, we only investi-
gated feedback on the level of direct miRNA-host interac-
tion and on the order of the interactome based on the
KEGG database. However, knowledge about interaction
of proteins is still limited and cotranscription of host and
miRNA may enable more complex mechanisms. Limita-
tions to current knowledge may also justify, why a signifi-
cant fraction of predicted targets in do not show the
expected behaviour. Indeed, Cyclin E and E2F in Figure 2
show opposite behavior than what we would expect.
Neither of these genes might actually be a target of hsa-
miR-641; there may also exist stronger regulating ele-
ments that control their expression, or the primary mode
of silencing in that specific situation may be through
translational repression. Nevertheless, it is interesting
how key molecules in two different datasets displayed
predicted correlation patterns.
Further experiments and biological validation of com-

putational evidence presented here may have great impli-
cations, especially in cancer therapy. Modern therapies
usually target central molecules, such as AKT and PI3K
with some success. However, these techniques control
only single elements in a cascade of complex signalling
events. In summary, our findings encourage more focused
research on intragenic miRNAs and their targets.

Methods
Classification of miRNAs
miRNA genomic coordinates from miRBase release 11
(April 2008) [58-60] were crossed to genomic coordi-
nates of RNA Reference Sequences (http://www.ncbi.
nlm.nih.gov/RefSeq; Release 31) [20] downloaded from
UCSC Genome Browser http://genome.ucsc.edu. To
each genomic mapped RefSeq sequence, a single gene
was assigned. The subset of miRNAs whose coordinates
mapped to an annotated gene was defined as intragenic.
Intragenic miRNAs were classified as exonic when their
coordinates overlapped with any observed exonic region,
and intronic otherwise.

Host Genes’ Intronic miRNA Distribution
Introns were sequentially enumerated based on gene
orientation. For each intron number, host genes

containing miRNAs in this intron were counted. We cal-
culated the expected number of genes containing an intro-
nic miRNAs in a given intron number by adding all intron
lengths of introns with the respective intron number and
dividing it by the summed length of all host genes’ introns,
thus accounting for intron frequency and length.

Gene Ontology
The Gene Ontology [61] classifications of all 246 host
genes of intragenic miRNA genes that were located on
the same strand as their host gene were surveyed using
Cytoscape 2.6.0 [62] and BiNGO 2.3 [63]. We focused
our attention on those categories that were dispropor-
tionately overrepresented. The setting “Hypergeometric
test” was chosen to calculate the probability of observing
an equal or greater number of genes in a given func-
tional category than in the test set. The False Discovery
Rate (FDR), which is the standard setting in BiNGO 2.3
[63], was controlled.

Pathways identification
The statistical programming software R 2.7.1 was used in
combination with Bioconductor [64,65] packages
AnnBuilder 1.18.0, KEGG.db version 2.2.0, and GOStats
version 1.7.4 to acquire a list of pathways that were asso-
ciated with one or more of the 246 host gene proteins.

Target Predictions
Strategies to perform high-throughput miRNA target
validation are still very limited. Therefore, target predic-
tion algorithms are employed to allow large-scale assess-
ment of miRNA-target interaction. However, usage of
target prediction methods raises two difficulties. First,
target prediction methods are known to suffer from a sig-
nificant number of false positive predictions. We rea-
soned that a possible way to address this problem would
be to estimate statistical significance by generating back-
ground distributions by the very same methods. Hence, if
target predictions were too close to random, the mean of
the generated background distribution should be close to
the observed number, whereas a significant finding
should not be affected by the absolute number of false
positives. Second, different target prediction algorithms
incorporate different types of information about miRNA
target interactions. To overcome individual biases that
may be introduced by one specific method and use the
wide range of experimental knowledge gained, we inte-
grated predictions from six current algorithms. Precalcu-
lated target predictions for TargetScan release 4.2 [66]
(April 2008), PITA [67] catalog version 6 (August 2008),
MirTarget2 (mirDB) version 2.0 [68,69] (December
2007), miRanda [70] (September 2008), RNA22 [71]
(November 2006) and PicTar 5-way [72] were down-
loaded. We also included TarBase version 5.0c [73] (June
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2008) as a reference database for miRNA target interac-
tions with published evidence; only targets with a “Sup-
port Type” value of either “True” or “Microarray” were
selected. Some miRNA symbols did not exactly match
entries in the database for various reasons, including use
of non-official names or older miRBase releases. When-
ever a miRNA symbol could not be found, matching was
attempted to an extension such as “-1” or “a” (for exam-
ple, hsa-mir-511 in mirTarget2 was matched to hsa-mir-
511-1 and hsa-mir-511-2). If the miRNA symbol ended
with a letter, it was removed to check for other matches
(from the PicTar prediction list hsa-mir-128a matched to
hsa-mir-128-1, hsa-mir-128-2, and hsa-mir-128-3 for
example). Predictions for a miRNA symbol were ignored
if no matches could be found. Due to the diversity of
underlying principles, assumptions, and scoring systems,
we defined the prediction agreement, i.e. the number of
methods that agree on a certain miRNA target predic-
tion, as a measure of confidence in the target prediction.
In recent work, Selbach et al. measured changes in pro-
tein and mRNA expression after transfection and overex-
pression of five different miRNAs (hsa-miR-1, hsa-miR-
16, hsa-miR-30a, hsa-miR-255, hsa-let-7b) in HeLa cells
[74]. We evaluated the different target prediction meth-
ods used in this study by measuring the abundance of
predicted products (mRNA or the proteins encoded by
these mRNAs, a continuous value) and assessing discri-
mination by areas under the ROC curve using the pre-
dicted targets as the binary outcome. All five miRNA
datasets were pooled (see additional file 3 for details).
The AUC (Area under Receiver Operator Characteristic
(ROC) Curve) measures how well predictions and non-
predictions can be discriminated at all possible thresh-
olds, with a value of 0.5 indicating no discrimination and
a value of 1 indicating perfect discrimination. Target pre-
diction methods varied greatly in AUCs, ranging from
0.55 to 0.92 in protein measurements. With increasing
prediction agreement, an almost linear increase in AUC
can be observed, indicating that prediction agreement
may be used as a proxy for the confidence of a predicted
miRNA target interaction (Figure 3).

Gene Expression Datasets
Two publicly available mRNA expression datasets
(GSE6956, GSE7670) were downloaded from the Gene
Expression Omnibus http://www.ncbi.nlm.nih.gov/geo.
We included 87 prostate samples (69 tumor and 18
healthy tissue samples) [35] and 60 lung samples (31
non-small-cell lung cancer and 29 healthy lung tissue
samples) [36]. Preprocessing was carried out using Bio-
Conductor packages [64,65]. Data from protein and
mRNA expression change after miRNA transfection
experiments were downloaded from http://psilac.mdc-
berlin.de[74].

Genomic Host and Target Gene Properties
In order to assess genomic properties of host genes
(n = 246), we constructed a set of control genes (n =
2460) that would match chromosome and strand dis-
tribution of host genes in order to exclude structural
differences due to chromosomal specificities. We
defined miRNA target interactions predicted by at least
6 methods as “high confidence targets” (n = 326).
These predictions cover 33 host genes and 43 miRNAs
when at least six methods are required and 239 hosts
and 272 miRNAs when at least 2 methods are
required. Statistical testing was done using Mann-
Whitney-U test. For the analysis of total length and 3’-
UTR length of host genes, hosts were additionally split
into two groups, dependent on whether they were pre-
dicted to be targets of their intragenic miRNA. We
combined the Kruskal-Wallis rank sum test with post-
hoc pairwise Mann-Whitney-U test with Bonferroni
correction (p < 0.016 defined as significance cut-off for
three pairwise comparisons). Assessment of host genes
predicted to be targeted by their intragenic miRNAs
was carried out as follows: Out of the 2460 control
genes, we sampled 1000 sets of genes of size 246 that
would match the host gene 3’-UTR length distribution
(no significant difference in Mann-Whitney-U test).
Intragenic miRNAs were assigned to genes in the sets
and the number of genes predicted to be targeted by
that miRNA was calculated. Similarly, the observed
number of miRNAs predicted to target their own host
was assessed by exchanging host genes for randomly
chosen genes from predicted targets and recalculation
of the number of miRNAs predicted to target their
host. Robustness of this approach was tested by addi-
tionally requiring a vote from each of two groups of
three prediction methods each.

Figure 3 Prediction Agreement as a Measure of Confidence.
When constructing an ROCs on protein measurements, there is an
almost linear relationship of the resulting AUCs and prediction
agreement. This is also true for mRNA measurements, though the
slope is less steep.
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Host-miRNA Conservation
HomoloGene database NCBI release 61 http://www.ncbi.
nlm.nih.gov/homologene and mirBase release 11 (April
2008) [58-60] were used to identify homologous host
genes in Homo sapiens, Canis familiaris, and Gallus gal-
lus. Proportions of conserved miRNA-host gene pairs
for miRNAs predicted and miRNAs not predicted to
target their own host were calculated. Similarly, we used
information on target site conservation from TargetScan
to calculate the proportion of conserved targetsites of
predicted target host interactions in the hosts’ pathway
and of those not in the hosts’ pathway. Statistical signifi-
cance was assessed using the 2-sample test for equality
of proportions with continuity correction.

Target Coverage
The union of predicted targets included more than 90%
of all known human genes. Since target prediction
methods are very different, they are difficult to compare.
In this work, only targets that were predicted by at least
two different methods were considered in the calcula-
tion of target coverage. This reduced the total number
of predictions by almost 70%.
We defined the set Sp as the set of genes linked to a

pathway and St as the set of predicted targets of the miR-
NAs associated with the pathway through their host genes.
The target coverage (C) for a pathway was defined as

C
Sp St

Sp
=

∩| |

| |
.

Statistical significance of target enrichment within a
pathway was tested by randomly sampling |Sp| genes
from a universe of all known genes, replacing the genes
within the pathway with the set of genes in the random
sample (Si), and subsequently calculating a new “ran-
dom” target coverage Ci’. This procedure was repeated
1000 times, allowing estimation of the probability as the
number of times a target coverage Ci’ greater or equal
to C was observed. We defined the indicator function I
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Analogously, the enrichment statistics for miRNAs
targeting their own hosts were calculated, where Sp was
defined as the set of host genes, St as the set of targets
of the intragenic miRNAs of these host genes, and Si as
the set of |Sp| randomly sampled genes (out of the non-
redundant set of predicted targets for these miRNAs).
The R-package ‘q-value’ was used to account for multi-
ple hypothesis testing by controlling the False Discovery
Rate (FDR) to be < 10%.

Additional material

Additional file 1: Additional Information on Intragenic miRNAs. The
table in additional file 1 contains information on intragenic miRNAs, such
as genomic position, name and RefSeq ID of the host gene, and
orientation.

Additional file 2: Distribution of intragenic miRNAs. Additional file 2
contains an additional barplot showing the distribution of intronic
miRNAs across their hosts’ introns, as well as a theoretically expected
distribution taking intron frequency and size into consideration. The first
figure on page 1 shows a barplot of expected and observed distribution
of intragenic miRNAs across their hosts’ interactome. The second figure is
a repetition of Figure 1b, for better comparison. The second page
contains the underlying data in table format.

Additional file 3: Evaluation of Target Prediction Methods. Based on
protein and mRNA expression measurements in miRNA transfection
experiments, we evaluated the target prediction methods used in this
study, as well as prediction agreement as a method of its own. We
estimated sensitivity, specificity, and AUC for target prediction methods
used and prediction agreement based on the Selbach data [74] for
changes in mRNA and protein expression after miRNA overexpression.

Additional file 4: Non Small Cell Lung Cancer. The figure is analogous
to Figure 2, for a non small cell lung cancer mRNA expression microarray
dataset.

Additional file 5: Full Pathway Information. The table provides all 74
KEGG pathways associated with one or more host genes. For each KEGG
pathway KEGG ID, pathway name, p-value and odds ratio for the
observed number of host genes, total number of expected genes, total
number of observed genes, total number of genes in that pathway,
pathway url, host gene names and Entrez-IDs, target coverage and p-
value, proportion of targets with conserved target sites within the hosts’
pathway, proportion of targets with conserved target sites not within the
hosts’ pathway, q-value of the difference of these two proportions, and
Entrez gene IDs for all predicted targets are provided. The asterisk
behind a gene ID indicates a conserved target site for that target. It is
important to note, however, that a proportion calculated from these
gene IDs may differ from the proportion given, as the gene IDs are
based on agreement of two prediction methods, whereas the proportion
of conserved targets was calculated on predictions made by targetscan
only.

Additional file 6: Additional file 6 contains correlation data from
which Figure 2 and additional file 4 have been generated. For both
pathways, hosts and their predicted targets as well as correlation and p-
value are provided.
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Abstract

MicroRNAs (miRNAs) are a class of small (�22 nucleotides) non-coding RNAs that post-

transcriptionally regulate gene expression by interacting with target mRNAs. A majority of

miRNAs is located within intronic or exonic regions of protein-coding genes (host genes),

and increasing evidence suggests a functional relationship between these miRNAs and

their host genes. Here, we introduce miRIAD, a web-service to facilitate the analysis of gen-

omic and structural features of intragenic miRNAs and their host genes for five species

(human, rhesus monkey, mouse, chicken and opossum). miRIAD contains the genomic

classification of all miRNAs (inter- and intragenic), as well as classification of all protein-

coding genes into host or non-host genes (depending on whether they contain an intra-

genic miRNA or not). We collected and processed public data from several sources to pro-

vide a clear visualization of relevant knowledge related to intragenic miRNAs, such as host

gene function, genomic context, names of and references to intragenic miRNAs, miRNA

binding sites, clusters of intragenic miRNAs, miRNA and host gene expression across dif-

ferent tissues and expression correlation for intragenic miRNAs and their host genes.

Protein–protein interaction data are also presented for functional network analysis of host

genes. In summary, miRIAD was designed to help the research community to explore, in a

user-friendly environment, intragenic miRNAs, their host genes and functional annotations

with minimal effort, facilitating hypothesis generation and in-silico validations.

VC The Author(s) 2014. Published by Oxford University Press. Page 1 of 9
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Introduction

Amongst regulatory mechanisms of gene expression in eu-

karyotes, microRNAs (miRNAs) have established a central

role in the past two decades (1). These 22-nt short single-

stranded RNA molecules guide the RNA-induced silencing

complex to modulate the expression of target mRNAs (2).

MicroRNA binding sites are most likely recognized by nu-

cleotide sequences in the 3’-untranslated regions (30-UTR)

of target mRNAs. Binding of the miRNA–protein com-

plexes to their targets results in either degradation or trans-

lational inhibition of the mRNA transcripts (2).

For humans, �1900 miRNA genes have been identified

(3), and more than half are located within genomic regions

containing protein-coding genes (4–6). Hence, miRNA

genes can be classified as either inter- or intragenic,

and the latter sub-classified as intronic or exonic (4, 5).

A substantial number of these intragenic miRNAs are

co-transcribed, and consequently co-regulated with their

host genes (4, 5, 7). Recent evidence suggests a functional

linkage between intragenic miRNAs and their hosts on

multiple levels, including direct and indirect interaction

(8–10).

Despite the importance of these intragenic miRNAs,

their exploration can be daunting, as much of the necessary

information is not readily available and requires manual

integration from multiple data sources (6, 11, 12).

Although other databases exist that provide information

related to intra- and intergenic miRNAs (12–15), some

tools don’t appear to be frequently updated (14), contain

only an elementary set of information related to intragenic

miRNAs and their host genes (13, 15) and/or their usage is

complex and requires in-depth bioinformatics skills (12).

In the current manuscript, we present miRIAD, a web-

service designed to examine intragenic miRNAs, their host

genes and their functional annotations with a streamlined

graphical data representation and an efficient information

query system. miRIAD provides information regarding

genomic context, gene function, gene interaction, miRNA

targets and gene expression for five species, including

human and mouse. miRIAD is publicly available at http://

www.miriad-database.org.

Materials and Methods

Database architecture and raw data

Because miRIAD integrates a large set of data, processed

information is stored in a MySQL relational database.

Supplementary Figure S1 provides an overview of the

miRIAD database schema, its tables and their relations.

To date, miRIAD consists of 60 tables in total, comprising

12 tables for each of the five species (human, rhesus mon-

key, mouse, opossum and chicken), containing �10 million

records of integrated information.

To construct miRIAD, we used several sets of publicly

available data. The reference genomes (human genome

sequence—GRCh37/hg19; rhesus genome—rheMac3;

mouse genome—mm10/GRCm38; opossum genome—

MonDom5; chicken genome—galGal4) were downloaded

from UCSC Genome Browser (http://genome.ucsc.edu).

The transcriptome sets were downloaded from the RefSeq

project (http://www.ncbi.nih.gov/refseq) for all species.

MicroRNA genomic coordinates, seed sequences and fam-

ily information were retrieved from miRBase (http://www.

mirbase.org/, release #20). Protein–protein interaction

data were acquired from the Human Protein Reference

Database (HPRD, downloaded from NCBI http://www.

ncbi.nih.gov) and from EMBL’s STRING database (http://

string-db.org/). Gene expression data were obtained from

Brawand et al. (16) (coding genes) and Meunier et al. (17)

(miRNAs).

Host gene and miRNA information

All known genes were classified either as host or non-host

based on the presence of overlapping miRNAs for each

species. This classification and additional information

regarding known genes were stored in three tables

(GeneInformation, GeneRegions and GeneSynonyms), as

shown in Supplementary Figure S1.

All miRNA genes were classified either as intra-

or intergenic, based on their genomic localization. The

‘MirnaInformation’ table contains the official name, gen-

omic coordinates of the stem loop sequence and, if applic-

able, the host gene to which the miRNA is related. In case

of multiple genes, the host gene assigned was the one on

the same strand as the miRNA. If intronic, the intron num-

ber and the region length between the miRNA coordinates

and the next exon upstream were calculated and stored.

miRNA target prediction

miRIAD contains all conserved target sites within 3’UTRs

from TargetScan (http://www.targetscan.org/, release

#6.2) for human and mouse. In brief, TargetScan defines
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miRNA targets by searching, within 3’ UTR regions, for

8mer (exact match) and 7mer sites that match the seed re-

gion (position 2–7) of mature miRNAs. Information re-

garding interspecies conservation and match/mismatch

profile are also used to define the final set of conserved tar-

gets (for further information, see http://www.targetscan.

org/). miRIAD contains a total of 1141 miRNAs binding

to 466569 mRNA targets from 14867 known protein cod-

ing genes for human. Target prediction information for

human and mouse were directly downloaded from the

TargetScan homepage (file Conserved_Site_Context_

Scores.txt, release #62) and calculated for rhesus monkey,

opossum and chicken miRNAs using the TargetScan tool

kit, applied to all miRNAs and the 3’UTRs from these

organisms.

Gene and miRNA expression

To obtain expression for protein-coding genes, data from

Brawand et al. (16) were downloaded from GEO

(GSE30352) and aligned to the genome of each species

using TopHat (version 2.0.8b) with default parameters

(18). Normalized gene expression values for six tissues

(brain, cerebellum, heart, liver, kidney and testis) from all

species were computed by means of FPKM (19) with

Cufflinks [version 2.2.1; (20)] using transcript annotations

from Ensembl (version 71). To determine miRNA expres-

sion available for five tissues (brain, cerebellum, heart, kid-

ney and testis) from all species, data from Meunier et al.

(17) were downloaded from GEO (GSE40499) and reads

were aligned to each genome with Bowtie version 1.0.0

using the following parameters: -m 5 -v 0 -a –best –strata.

Only exact matches were considered, and reads aligned to

>5 different loci were discarded. The 3’ adaptors were

removed using a sequential trimming strategy (21). Reads

totally overlapping to mature miRNA coordinates anno-

tated from miRBase (release 20) were counted and normal-

ized for each species with EdgeR package version 2.6.12

(22). Host gene and intragenic miRNA expression correl-

ations were calculated by Spearman’s rank correlation

using the normalized values (FPKM and CPM (counts per

million) for coding genes and miRNAs, respectively).

Results

Database overview

Figure 1 summarizes the main features, data sets and how

information is presented in the miRIAD web tool. Most of

miRIAD data related to intragenic miRNAs and their host

genes is summarized in Table 1. To provide a useful plat-

form, miRIAD integrates all known protein-coding genes

(�22k genes on average, for all five species), all known

miRNAs (�900 on average, for all five species), miRNAs

targets, validated and predicted protein–protein inter-

actions and expression data for miRNAs and coding genes

across five and six tissues, respectively. miRIAD classifies

all miRNAs as intragenic or intergenic. It contains a total

of 1072 (57%) for human; 167 (29%) for rhesus; 745

(63%) for mouse; 179 (40%) for opossum; 299 (52%) for

chicken, additionally specifying whether or not they are

transcribed in the same orientation as that of their host

genes (84, 54, 87, 92 and 76% of intragenic miRNAs

for human, rhesus, mouse, opossum and chicken, respect-

ively). It is worth mentioning that some of the discrepan-

cies between these percentages are likely due to the

incompleteness of miRNA and gene annotation for individ-

ual species. As we can observe for human and mouse,

which have the most complete annotated sets of coding

genes and miRNAs, the values are quite similar. Additional

complex information is also provided, such as the visual-

ization of intragenic miRNAs within their host genes

and positioning along the isoforms, expression correlation

between intragenic miRNAs and their host genes, intra-

genic miRNAs binding to their own host genes and

intragenic miRNAs binding to genes that are directly inter-

acting with their host genes. These data are necessary in

the identification and evaluation of putative negative or

positive feedback mechanisms between miRNAs and host

genes, (5, 23–25) and can offer a starting point for future

analyses to reveal novel regulatory pathways.

miRIAD query system

The miRIAD query system was developed and optimized

to be fast, intuitive and functional. It lets the user search

for several terms, such as miRNA symbol, gene name

(Official Symbol, Ensembl ID, Entrez ID, HGNC ID or

Gene Synonyms) and gene annotation keywords (e.g.

‘oncogene’, ‘kinase’, etc.). Searching for miRNAs follows

the same principles as those used for coding genes, allow-

ing for non-exact inputs (according to miRNA official

nomenclature). It is also possible to query for multiple

genes or miRNAs at once. The query system works in the

same way for all five species.

The output for each searched term is a list of query

matches organized by relevance, containing basic gene

information for rapid inspection and selection. Names of

host genes and intragenic miRNAs are readily identified

by a particular tag (see web page for details). Moreover,

non-host genes and intergenic miRNAs are also shown, be-

cause they may have indirect associations to intragenic

miRNAs or host genes and are therefore also important.

By clicking on a gene name, the user can access more
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detailed information about any known coding or miRNA

gene.

Exploring host genes

In the recent past, it has become clear that functional

aspects of intragenic miRNAs have to be viewed in the

context of their host genes (5, 7, 23, 24, 26). Therefore, in-

formation about all known protein-coding genes has been

integrated into miRIAD to allow contextual search. For

each protein-coding gene, miRIAD provides a ‘Summary’

section showing annotation data, such as official gene sym-

bol, full gene name and gene name aliases, gene type

and a gene function summary when publicly available.

Figure 1. Overview of the miRIAD platform. Schematic representation of the main data presented in the web tool and how they are integrated and dis-

played. Blue arrows denote data related to protein-coding genes and orange arrows indicate data related to miRNAs. PPI: protein–protein interaction.
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Moreover, information regarding the genomic context,

including the genomic position, transcription ‘start’ and

‘end’ and transcription orientation, is provided, as well as

a graphical representation of the exon–intron structure of

transcripts (Figure 2). If applicable, miRIAD presents

miRNA name, genomic region (intronic/exonic), the in-

tron/exon number where they are inserted, the distance

to the closest upstream exon and transcriptional orienta-

tion, sense (miRNA and host in the same transcriptional

orientation), or antisense (in opposite orientation). To

facilitate the generation and evaluation of research

hypotheses, expression data (based on RNA-Seq) of

mRNAs across six tissues (brain, cerebellum, heart, kid-

ney, liver and testis) as well as expression correlation be-

tween host genes and their intragenic miRNAs were

included. All miRNAs potentially binding to a target

gene are displayed under ‘miRNA binding sites’. Finally,

the last section shows all known protein–protein inter-

action data for each gene. Cases in which interaction

partners of a given host gene are targeted by its intragenic

miRNA are explicitly shown. This kind of information is

noteworthy because it can reveal unusual regulatory loops

and may support findings or suggest future investigations.

All these information are exemplified for the oncogene

ERBB2 containing mir-4728 (Figure 2).

The gene section also provides links to external data-

bases, such as NCBI Gene (http://www.ncbi.nlm.nih.gov/

gene), UCSC Genome Browser (http://genome.ucsc.edu/),

Ensembl (http://www.ensembl.org/), KEGG (http://www.

genome.jp/kegg/) and Targetscan (http://www.targetscan.

org/). Most of these links are context-sensitive, easily redir-

ecting the user to the gene of interest on the web page

containing complementary data.

Intragenic miRNAs

Intragenic miRNAs are the main focus of our web tool,

even though we present information for all known

miRNAs and protein-coding genes. For each pre-miRNA,

miRIAD provides a ‘Summary’ section with the official

miRNA symbol, its full name, miRBase ID, target genes

and the genomic context where each miRNA is mapped

(Figure 3). For intragenic miRNAs, information about

their intragenic position and location along the host genes

are depicted by a graphical representation (Figure 3). Cases

where an intragenic miRNA potentially targets its own

host are highlighted for fast identification. Similar to the

presentation of information about protein-coding genes,

there are also expression data (based on RNAseq) for six

tissues (brain, cerebellum, heart, kidney, liver and testis)

and an expression correlation between intragenic miRNAs

and their host genes. A set of context-sensitive links to

external databases in the top right corner to access comple-

mentary information (miRBase, miRDB, Targetscan, mir-

gen, Magia, miRWalk and miRò) are also presented.

Figure 3 exemplifies the use of this information for mir-

483 and its host IGF2. IGF2 produces the insulin-like

growth factor 2, an essencial protein for growth and devel-

opment of the fetus and it is upregulated in several malig-

nancies (27). According to our data, the expression of

IGF2 and miR-483-5p are highly correlated (rho¼ 0.7).

Accordingly, a recent report has uncovered a positive feed-

back between IGF2 and its intragenic mir-483, where the

mature miR-483-5p molecule binds to the 5’UTR of IGF2

mRNA, promoting IGF2 transcription by facilitating the

association of the helicase DHX9 (24).

Using miRIAD to explore a set of genes

In the following paragraph, we briefly illustrate how

miRIAD can be used to explore a gene or a set of genes.

Recently, da Cunha et al. (28) defined the set of all human

genes coding for cell surface proteins (called surfaceome

genes). These genes can be considered as potential targets

for diagnostic and therapeutic interventions (28, 29).

The set of 3702 human surfaceome genes was retrieved

from (28, 29) and submitted to miRIAD to initially be clas-

sified as host or non-host genes. In total, 119 surfaceome

Table 1. Summary of main miRIAD data

Data class Human Rhesus Mouse Opossum Chicken

Known protein-coding genes 20 530 22 553 29 664 20 550 16 953

Known miRNA precursors 1871 582 1181 443 573

Intragenic miRNAs 1072 167 745 179 299

Intergenic miRNAs 799 415 435 264 272

Host genes 930 141 613 143 273

Sense miRNAs in respect to host orientation 902 90 645 145 90

Antisense miRNAs in respect to host orientation 170 77 95 12 28

Expressed coding genes 18 442 8112 19 029 12 079 11 278

Expressed miRNAs 1111 475 784 405 465
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genes are host genes for 150 intragenic miRNAs.

Interestingly, most of these miRNAs (87.3%) are tran-

scribed on the same orientation of their host genes,

suggesting possible co-transcription (5). 140 of these intra-

genic miRNAs are actually inserted within intronic regions

of surfaceome genes.

Next, we examined two genes in more detail. We se-

lected the genes containing the largest number of intronic

miRNAs, CLCN5 and HTR2C. In respect to CLCN5, mu-

tations in its sequence have been proven to be associated

with diseases of renal tubules, resulting in chronic renal

failure (30). This gene has eight intronic miRNAs, and sur-

prisingly, some of their transcripts may be targeted by their

intronic miR-502 (see miRIAD).

It is also striking that this host gene has isoforms start-

ing transcription upstream of the miRNAs, which possibly

could prevent co-expression between a CLCN5 transcript

and those intronic miRNAs in some tissues or pathologies.

Analysis of the expression data suggests co-expression or

at least co-regulation between CLCN5 and its intronic

Figure 2. A summary of the main information presented in miRIAD for the coding gene ERBB2 and its intragenic mir-4728.
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miRNAs. CLCN5, as well as its intronic miRNAs are

highly expressed in kidney. The expression correlations

are high (rho> 0.7, Spearman’s rank correlation) for most

of the intragenic miRNAs. The functional relationships

between CLCN5 and its intronic miRNAs have not been

explored yet, though, and deserve further exploration.

Suggesting a conserved regulation, a similar pattern is

found for Clcn5 gene in mouse, which has five annotated

intragenic miRNAs and also a high expression correlation

between miRNAs and the host gene.

The second gene, HTR2C, encodes the 2C subtype

of serotonin receptor and contains six intronic miRNAs

(Figure 4). Similar to CLCN5, host and miRNAs have the

same transcriptional orientation (see miRIAD web page

for details). As reported by (10), up-regulation of HTR2C

is involved in adipocyte differentiation by repressing

the KLF5 gene through the expression of miR-448,

a miRNA located in the fourth intron of HTR2C.

Interestingly, our expression data show a highly positive

(rho> 8.5, Spearman’s rank correlation) correlation be-

tween miRNAs and host gene, being expressed specifically

in cerebellum and brain (Figure 4). The patterns of co-

expression are also conserved in opossum and mouse.

Moreover, HTR2C is tightly involved in important neuro-

psychiatric disorders (31); thus, the functional conse-

quences of the concomitant expression of HTR2C and its

intragenic miRNAs is tempting to investigate.

miRIAD helped us to identify two interesting gene

loci involved in complex human diseases with this quick

and unpretentious gene survey. We speculate that many

other crucial host/miRNA regulatory mechanisms could be

revealed by taking advantage of using miRIAD for initial

and/or advanced exploration.

Discussion and conclusion

As the number of newly discovered miRNAs is constantly

increasing, our understanding of the importance and the

Figure 3. A summary of the main information presented in miRIAD for the intragenic mir-483 and its host gene IGF2.
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frequency of intragenic miRNAs has also been expanding

(5, 10, 13, 15). For example, the past miRBase release 11

(April 2008) had around 47% of intragenic miRNAs (3),

and this proportion increased to 53% in the miRBase 19

(August 2012) and to 57% in the miRBase (20). miRIAD

was created to help dealing with the challenges of unravel-

ing the functional relationships between miRNAs and their

host genes.

miRIAD data are organized in five layers of information.

The first layer contains annotation for protein-coding and

miRNA genes, including the official gene name, gene aliases

and annotation. The second layer provides genomic infor-

mation for host and miRNAs. The third layer contains gene

expression for miRNAs and coding genes and expression

correlation between intragenic miRNAs and their host

genes. The fourth layer includes miRNA target prediction

information (providing binding sites as well). The fifth layer

contains additional information, which extends to protein–-

protein interaction data for host genes as well as interaction

partners that are targeted by host’s intragenic miRNA.

Additionally, a set of useful external links to other databases

is given. All these information are organized in a streamlined

graphical web tool and full integrated into a MySQL rela-

tional database. For users who want to manipulate miRIAD

information in a local environment, we provide links to

download raw data and python code. Specific information

not found in those files can be obtained upon request.

Therefore, miRIAD can be used to investigate miRNAs in a

very integrative context, with special attention to functional

features, such as protein–protein interaction, miRNAs tar-

geting host mRNAs or their partners in a functional net-

work. We believe that our web tool can be used as a starting

point for developing and testing new hypotheses related to

miRNA gene regulation, for one gene or for large-scale

data. Importantly, scripts have been developed and pipe-

lined to deal with forthcoming updates.

miRIAD improvements, updates and further develop-

ment will be ongoing. For example, we envision including

additional species and other useful data, such as expression

from unhealthy samples. Information on the last and up-

coming updates can be found on the miRIAD website.

In conclusion, miRIAD provides a systematic, integra-

tive, user-friendly, and easy-to-use platform to investigate

inter- and intragenic miRNAs, host genes and their rela-

tionships for five species, including human and mouse.

Users can query for and clearly retrieve miRNA and host

gene information. Therefore, we believe that miRIAD can

substantially improve the way in which we investigate

intragenic miRNA and host genes.

Supplementary Data

Supplementary data are available at Database Online.
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Abstract

MicroRNAs have established their role as potent regulators of the epigenome.

Interestingly, most miRNAs are located within protein-coding genes with functional con-

sequences that have yet to be fully investigated. MiRIAD is a database with an interactive

and user-friendly online interface that has been facilitating research on intragenic

miRNAs. In this article, we present a major update. First, data for five additional species

(chimpanzee, rat, dog, cow and frog) were added to support the exploration of evolution-

ary aspects of the relationship between host genes and intragenic miRNAs. Moreover,

we integrated data from two different sources to generate a comprehensive alternative

polyadenylation dataset. The miRIAD interface was therefore redesigned and provides a

completely new gene model representation, including an interactive visualization of the

30 untranslated region (UTR) with alternative polyadenylation sites, corresponding sig-

nals and potential miRNA binding sites. Furthermore, we expanded on functional host

gene network analysis. Although the previous version solely reported protein inter-

actions, the update features a separate network analysis view that can either be accessed
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through the submission of a list of genes of interest or directly from a gene’s list of pro-

tein interactions. In addition to statistical properties of the submitted gene set, the inter-

action network graph is presented and miRNAs with seed site over- and underrepresen-

tation are identified. In summary, the update of miRIAD provides novel datasets and

bioinformatics resources with a significant increase in functionality to facilitate intragenic

miRNA research in a user-friendly and interactive way.

Database URL: http://www.miriad-database.org

Introduction

MiRNAs are well-known as small molecules that are

involved in controlling regulatory networks of the gene ex-

pression (1). Interestingly, most (e.g. 61.5% for human

and 66.2% for mouse) miRNA genes are positioned within

protein-coding genes in vertebrates (2, 3). These miRNAs

are called intragenic miRNAs and their enclosing genes

‘host genes’. Accumulating evidence suggests that this spe-

cial relationship of genomic colocalization between an

intragenic miRNA and its host gene is of biological rele-

vance. Negative feedback loops of intragenic miRNAs reg-

ulating their host genes have recently been described,

ranging from first-order (i.e. direct) negative feedback (4–

6) to indirect feedback loops (2, 7, 8).

Using a myriad of data from different sources and

databases focused on the analysis of intragenic miRNAs

(3, 9–13), we and others have found further functional impli-

cations of intragenic miRNAs and their host genes. Recent

research suggests evolutionary implications of intragenic

miRNA development (14, 15), yielding that novel miRNAs

seem to benefit from intragenic colocalization by utilizing

existing regulatory circuitries of their host genes (14).

Furthermore, increasing evidence highlights the importance

of the role of alternative polyadenylation (APA) to character-

ize the relationship between intragenic miRNAs and their

host genes (5, 6). These novel discoveries prompted us to de-

velop a major update of the miRIAD database and interface

to account for these new aspects of intragenic miRNA–host

gene relationship.

In this article, we provide a detailed description of the

updated version of miRIAD. In its first version, miRIAD

integrated genomic data for five species to classify

miRNAs into intergenic, intronic and exonic, allowing

easy identification of intragenic miRNAs and host genes

(3). In the updated version, miRIAD contains five add-

itional species (chimpanzee, rat, dog, cow and frog).

Among other changes, it was redesigned to include APA in-

formation from two different sources (16, 17) for 8 of 10

included species (human, rhesus, chimpanzee, mouse, rat,

dog, opossum and chicken). To maximize utility of these

new data, the gene model visualization was completely

redesigned to implement interactive vector graphics.

Interaction network analysis functionality was added to

allow evaluation of a set of genes (e.g. gene signatures)

with respect to host gene over- or underrepresentation,

visualization of protein interactions with respect to intra-

genic miRNA targeting and identification of over- or

underrepresented miRNA target sites in a network. We

also show, how to use the new functionality to derive

hypotheses about the relationship between a host gene

(AKT2) and its intragenic miRNA (hsa-miR-641). To the

best of our knowledge, miRIAD is the first public resource

to allow these analyses to investigate the role of intragenic

miRNAs.

Materials and methods

MiRIAD construction and integration of additional

species

Selection of species to be integrated in miRIAD was based

on several factors. First, we required the availability of

high quality genome assemblies and a good RefSeq cover-

age. Second, we searched for available polyadenylation,

gene and miRNA expression data. Construction of the

miRIAD database was performed with the newest genome

assemblies (human: hg38/GRCh38, rhesus: rheMac8,

chimp: panTro5, frog: xenTro7, cow: bosTau8, opossum:

monDom5, rat: rn6, chicken: galGal5, dog: canFam3 and

mouse: mm10; Figure 1A) and mirBase version 21 (12),

as described in (3). Coding gene and miRNA expression

was calculated from RNA-Seq data from Brawand et al.

(17), Gene Expression Omnibus (GSE30352). RNA-Seq

data processing was carried out as previously

described (3).

APA information for eight species

We combined APA data from a previously published data-

set from (16) (human, rhesus, dog, mouse and rat) with

APA information that we derived from processing the

dataset obtained by Brawand et al. (17). Poly(A) coordin-

ates from Derti et al. were mapped to the respective current
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genome assemblies using the liftOver tool provided by the

Genome Browser from the University of California Santa

Cruz (UCSC) (18). Identification of APA sites from RNA-

Seq data from Brawand et al. was carried out as follows.

After data preprocessing [for details see (3)], reads were fil-

tered for those starting or ending with at least four untem-

plated ‘A’s or ‘T’s. Reads with an extremely high A/T/N-

content were ignored (cut off ratio was set to 0.8).

Potential APA sites were considered, if they (i) mapped to a

untranslated region (UTR)-annotated region based on

RefSeq and (ii) were supported by at least two independent

reads. APA sites within 40 nucleotides were considered to

be a single APA site. For benchmarking, expressed se-

quence tags based alternative poly(A) site information

from APADB (19) were downloaded for human and

mouse. For human, APA site information was converted to

hg38 using the liftOver tool (18). Only APA sites mapping

to RefSeq UTR models were considered.

Target predictions and protein interaction network

The protein interaction network feature visualizes relation-

ships between gene products as an interactive scalable

vector graphics (SVG) image. Using an enrichment–calcula-

tion-based target prediction network score, it may also help

to identify miRNAs relevant for regulation of this network,

which yet lacks experimental support. Target predictions

are based on canonical seed matching used by Targetscan

on the 30-UTR sequences of protein-coding RefSeq tran-

scripts (10). In brief, 30-UTRs are scanned for base comple-

mentarity to Bases 2–7 of the mature miRNA sequences

(seed region). Hybridization energy between miRNA and

UTR sequence was calculated using the Vienna RNA library

(20). The impact of a miRNA on a set of genes is quantified

as follows: First, the probability of random occurrence of a

given seed sequence is calculated by PðSÞ ¼
Qn

i¼1 PðNijDÞ,
where S¼ seed sequence, n¼ length(S), Ni¼ ith nucleotide

of S, D¼ nucleotide distribution.

The probability that this sequence occurs at least r times

in a random sequence of length N (UTR sequences for each

gene in the network) is given by:

P xtð Þ ¼ 1�
Xr�1

i¼0

Lx

i

� �
� P Sð Þi � 1� P Sð Þð ÞLx�i

� � !
;

where Lx¼ (length of 30-UTR of element xt) � (length of

seed sequence n)þ 1, r¼ desired minimum number of oc-

currences, miRIAD is using r¼ 1.

The expected number of genes containing seed-

matching sites E(Xt) in the network X can then be esti-

mated by the sum of probabilities for each gene x.

E Xtð Þ ¼
X
xt2X

P xtð Þ

This number of expected random target genes in the net-

work can be compared with the observed number of genes

with seed matches. Statistical evaluation is possible using

Fisher’s exact test. The score reported in miRIAD equals

the log-odds ratio, given by:

Score X j Sð Þ ¼ log

E Xtð ÞþO Xtð Þ
E Xtð Þ � E Xnð ÞþO Xnð Þ

E Xnð Þ
jXj

E nð Þ

0
@

1
A:

Results

Database statistics

The current version of miRIAD contains 10 species, with a

total of 284 374 protein-coding genes and 7369 miRNAs.

Figure 1. Summary of species in the miRIAD and host genes expres-

sion. (A) Species present in the miRIAD. (B) Host genes expression in

six tissues.
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In total, 61.5% of human and 66.2% of mouse miRNAs

are intragenic. Expression data for miRNAs as well as for

mRNAs are available for six organs (brain, cerebellum,

heart, kidney, liver and testis) from human, mouse, rhesus,

opossum and chicken (Figure 1A). Investigating the distri-

bution across tissues in human, we found that host genes

of intragenic miRNAs are predominantly expressed in

neuronal tissue and testis across all organisms (Figure 1B).

We were able to extract APA information for 8 of 10 spe-

cies in miRIAD (Figure 1A). According to our database,

94.6% of human host genes have annotated APA sites,

which is more than expected compared with 83% of all

human genes (P value¼ 4.6e-38, Fisher exact test).

Similarly, 92.3% of murine host genes and have annotated

APA sites (72% of all murine genes). This relationship is

true with varying degrees for chicken (18% of host

genes, expected 11%, P value¼ 3.5e-4), rat (78 vs 59%,

P value¼5e-06), rhesus (80 vs 65%, P value¼ 2e-06) and

chimpanzee (45 vs 28%, P value¼ 3e-09). We did not find

significant differences in dog (71 vs 69%, P value¼ 0.68)

and opossum (11 vs 8%, P value¼ 0.26). Summarized stat-

istics are available in Table 1. We used the previously pub-

lished database APADB to benchmark APA sites for mouse

and human included in miRIAD (19). APA site informa-

tion for a total of 14 143 human and 13 472 murine genes

was compared. miRIAD includes 29 349 of the 34 753

events registered in APADB mappable to our UTR models

(84.5%). Similarly, 82% of murine APA sites were covered

by miRIAD (20 826 of 25 323).

Interactive structural representation of UTR,

miRNA and host gene relationship

The representation of structural properties of a host gene

and its intragenic miRNA is of great importance when inves-

tigating their relationship (2, 14). In the new miRIAD-

version, we developed a representation based on interactive

SVG to visualize the gene structure, highlighting exonic, in-

tronic and UTRs (Figure 2A). It contains a summarized rep-

resentation, in which region information is merged, followed

by individual RefSeq transcripts of the gene of interest. The

positions of intragenic miRNAs are shown in the summar-

ized transcript and relative to individual transcripts. This

allows the researcher to check for transcripts devoid of the

intronic miRNA, proximity to upstream exons as an indica-

tor of cotranscription or organization of miRNA genes in

mirtrons. Figure 2A shows the gene model representation of

SREBF1 with its intronic miRNAs miR-6777 and miR-33b.

The latter is highlighted in blue to indicate that the host gene

has at least one seed-matching site within its 30-UTR.

In addition to structural properties of the gene, the or-

ganization of the 30-UTR further characterizes theT
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relationship between an intragenic miRNA and its host

gene. We therefore included a novel representation of 30-

UTR variants based on published and self-constructed

APA information. Segmentation of the UTR by APA sites

is symbolized by alternating shades of green. If the user

moves the mouse cursor over an intragenic miRNA high-

lighted in blue, the position of the seed within the UTR

will show up. In the case of SREBF1 and hsa-miR-33b, the

seed site is located on the 30 extremity of the transcript

with at least one isoform without this seed-matching site.

A click on the button ‘show poly(A) signals’ reveals canon-

ical polyadenylation signals, in this case indicating that

there might actually be another APA site that has not yet

been described. To support investigation of differential

miRNA targeting, APA site utilization across tissues can be

visualized where available. A click on a gray circle in the

30-UTR will open utilization information for this site.

Additionally, the ‘show seeds’ option allows the identi-

fication of seed-matching sites for any miRNA. If no seed

matches are found, the user can choose ‘miRNA align-

ment’ to search for regions of high similarity to the mature

miRNA sequence, helping to identify non-canonical

miRNA binding sites. Clicking on a potential miRNA

binding site in the UTR (either yellow for seed sites or gray

for non-canonical sites) will show the sequence of the

miRNA and the sequence of the region of interest in the

30-UTR (Figure 2A).

Each of the 30-UTR model representation displays a but-

ton on the right top corner that will open the UCSC

Genome Browser (18, 21) for the specific UTR region or the

full gene model. In this way, a plethora of additional infor-

mation can be gained, such as evolutionary conservation,

without sacrificing simplicity of miRIAD interface usage.

The interactive, visual representation of the gene model

is followed by expression information of the gene across the

tissues cerebellum, brain, heart, liver, kidney and testis, as

well as a figure correlating the expression of the intragenic

miRNA with the host gene across these tissues,

providing Spearman’s rank correlation coefficient and a

P value. These figures help to rapidly identify tissue specifi-

city, as well as coregulation (indicated by high correlation of

expression). An interesting example is that of MAP2K4 and

intragenic miRNA ‘hsa-miR-744’, in which both miRNA

transcripts (hsa-miR-744-3p and hsa-miR-744-5p) correlate

extremely well with their host gene’s expression. Similar to

the gene view, the miRNA view yields the structural repre-

sentation of the miRNA gene, expression across tissues and

correlation graphics with their host genes.

Figure 2. miRIAD representation for a host gene, its intragenic miRNAs, protein–protein interaction (PPI) data and an intragenic miRNA target.

(A) Genomic representation (including polyadenylation information) for a host gene (SREBF1) and its intragenic miRNAs (hsa-mir-6777 and hsa-

mir-33b). (B) PPI network for AKT2; (C) gene targets for hsa-miR-641, which is an intragenic miRNA for AKT2.
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Filtering of targeting miRNAs and protein

interactions

Although some decades ago, research was focusing on the

exploration of single genes only, evaluation of protein

interactions and regulation through miRNAs has become

increasingly important. Although both protein interaction

and target prediction information were already available in

the first version of miRIAD, it now includes more data and

supports filtering of these. Targeting miRNAs for example

can be filtered by score or by name, in case the user wants

to check a specific location for a miRNA target interaction

or just wants to find miRNAs with a high binding prob-

ability. Differential miRNA targeting can be assessed by

identifying miRNAs that bind only to a specific APA iso-

form through filtering for a specific poly(A) index. A click

on the miRNA symbol will highlight the seed match(es)

within the UTR of the gene (Figure 2A). Also, the list of

miRNAs can be significantly reduced by filtering for the

tissue of maximum expression. This is especially useful,

when looking for potential regulators of a gene that shows

strong tissue specificity.

Similarly, genes whose products interact with the gene

of interest can be filtered by gene name, score and type of

interaction (for STRING), evidence of binding (e.g. two

hybrid system or direct interaction for BIND) and by data

source [Bind (22), STRING (23), HPRD (24) and

BioGRID (25)].

If the gene of interest contains intragenic miRNAs, in-

formation on interacting proteins that are potentially tar-

geted by this miRNA will appear. This allows the user to

estimate the impact of the intragenic miRNA on the host

gene better. The filtered selection of interacting genes can

then be submitted to the newly introduced network ana-

lysis view for extended evaluation.

Network view: analysis of complex interactions

It is known that intragenic miRNAs have a special impact

on their host genes’ surrounding network (2, 14). We

therefore implemented an algorithm that helps identify

miRNAs relevant for networks of genes. If a researcher

identifies a set of interesting genes, e.g. a cancer gene signa-

ture, it might be of great interest, whether host genes are

over- or underrepresented in this gene signature, how these

genes interact with one another and if there are miRNAs

relevant to this gene signature as a whole. A miRIAD query

with a preceding colon followed by the gene symbols of the

signature (separated by spaces) will load the network view

to help answer these biologically relevant questions. First,

statistics on the number of host genes in the submitted

gene list (including an estimative of the significance of

over-/underrepresentation), their intragenic miRNAs (if

any) and the most relevant properties of each relationship

(same strand, seed site within host UTR) are shown. The

most central part is the network representation (Figure 2B

and C), which visualizes regular genes (blue), host genes

(red) and protein interactions between them. Network

nodes can be rearranged by the user for better visualiza-

tion, and mouseover will highlight all nodes with direct

interactions, which makes it easy to identify hubs in large

networks. Interactions can be filtered by score or data ori-

gin. Also, if the network contains host genes, interaction

arrows can be replaced by predicted target interactions of

the intragenic miRNA(s) (Figure 2C).

Exploring the relationship between AKT2 and its

intronic miRNA miR-641

AKT2 hosts intragenic miRNA hsa-miR-641 but the rela-

tionship between these two being largely unknown. The

gene structure representation shows that miR-641 is located

on the same strand as its host gene, and that it is positioned

in the first intron. Although this fact per se might suggest

coregulation, there are four (predicted) RefSeq transcripts

that don’t include miR-641. Correlation between miRNA

and host gene cannot be well-characterized, since miR-641

seems to be only expressed in neuronal tissue. Filtering

AKT2’s interaction partners for STRING-reported inter-

actions with a minimum score of 900 reveals the network in

Figure 2B. MiRNA hsa-miR-637 ranks high in the list of

miRNAs that potentially impact the network (score 1.34;

targeted genes are dark-blue/dark-red). It is known to con-

trol the AKT-pathway (26). Interestingly, targets are very

similar to hsa-miR-641 (Figure 2C), indicating a similar

function for these two miRNAs. Moreover, miR-641 is only

also found in chimp in our dataset, suggesting a relatively

new evolutionary role. This example shows how miRIAD

can be used to derive hypotheses about the relationship be-

tween a miRNA and its host gene.

Discussion

Nowadays, in the era of large scale data generation in gen-

omics and transcriptomics, it is essential to have powerful

and user-friendly tools to mine the right information, to pro-

pose and to test hypotheses regarding the studied model. The

special genomic colocalization of most vertebrate miRNAs

intragenically is of great relevance and current studies have

been revealing that the functional implications of this cou-

pling extend beyond simple feedback regulatory mechanisms

but seems to support miRNA evolution (2, 5, 14). This reve-

lation expands the focus of research requiring tools to study

intragenic miRNAs and genes in an evolutionary context.
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The new version of miRIAD was therefore extended to a

total of 10 species, covering major phylogenetic branches.

Statistics on APA show that significantly more host genes

contain APA sites than would be expected. This is even

true for chicken, the most distant specie investigated.

Interestingly, dog and opossum, both being closer to human,

don’t display this phenomenon. This discovery might be

biased by the fact that genome annotation of dog and opos-

sum is not as complete as other genomes but it may also be a

starting point for the investigation of a potentially underlying

biological principle.

These analyses are complemented by newly imple-

mented data and functionality to accommodate complex

data investigation, such as miRNA-host gene centered net-

work analysis and visualization of APA with respect to

miRNA binding sites. MiRIAD can now be used to derive

interesting hypotheses about the relationship between a

miRNA and its host gene. As it was illustrated for AKT2

and its intragenic miRNA miR-641, e.g. miRIAD allowed

us to generate the hypothesis that miR-641 might control

the AKT pathway in neuronal tissue in human and chimp.

It also allows rapid identification of miRNAs that may

bind to specific UTR regions or target only specific alterna-

tively polyadenylated isoforms.

At this point, complete gene and miRNA expression

and APA information is available only for 8 of 10 species.

This is owed to fact that currently only Brawand et al. (17)

provide a dataset that contains RNA sequencing informa-

tion on miRNAs and mRNAs from the same individuals,

across multiple species and tissues. However, we expect to

be able to include additional datasets in future versions.

We hope to provide additional poly(A) site information for

frog and cow, as well as miRNA and mRNA expression

data. Furthermore, miRIAD currently implements target

predictions only through seed site matching, ignoring non-

canonical sites. This strategy is necessary for the implemen-

tation of our model that quantifies the probability of a

miRNA-network effect. However, miRIAD is an ongoing

project and we are planning to present an extended model

that includes non-canonical sites, tissue specificity and

APA information in upcoming releases.

In summary, the new version of miRIAD adds import-

ant new data and functionality to enhance the exploration

of the role of intragenic miRNAs through providing

APA information and network analysis in the light of

phylogeny.
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Abstract
About half of the known miRNA genes are located within protein-coding host genes, and

are thus subject to co-transcription. Accumulating data indicate that this coupling may be an

intrinsic mechanism to directly regulate the host gene’s expression, constituting a negative

feedback loop. Inevitably, the cell requires a yet largely unknown repertoire of methods to

regulate this control mechanism. We propose APA as one possible mechanism by which

negative feedback of intronic miRNA on their host genes might be regulated. Using in-silico

analyses, we found that host genes that contain seed matching sites for their intronic miR-

NAs yield longer 32UTRs with more polyadenylation sites. Additionally, the distribution of

polyadenylation signals differed significantly between these host genes and host genes of

miRNAs that do not contain potential miRNA binding sites. We then transferred these in-sil-

ico results to a biological example and investigated the relationship between ZFR and its

intronic miRNA miR-579 in a U87 cell line model. We found that ZFR is targeted by its intro-

nic miRNA miR-579 and that alternative polyadenylation allows differential targeting. We

additionally used bioinformatics analyses and RNA-Seq to evaluate a potential cross-talk

between intronic miRNAs and alternative polyadenylation. CPSF2, a gene previously asso-

ciated with alternative polyadenylation signal recognition, might be linked to intronic miRNA

negative feedback by altering polyadenylation signal utilization.

Introduction
In the recent past, miRNAs have gained significant attention as regulators of the transcriptome.
MiRNA genes are found throughout the genome, and about half of them are located in genomic
regions that contain protein-coding information. They can be classified as either intergenic or in-
tragenic, and the latter can be subclassified as exonic or intronic [1]. While some intronic miR-
NAs may be regulated by their own promoter sequences [2], the expression of the majority of
intronic miRNAs depends on transcriptional activation of the host gene: When a protein-coding
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gene is transcribed into mRNA, this primary transcript also contains the miRNA sequence that
may subsequently be processed into a mature miRNA [3]. Consequently, the expression of a
miRNA can be coupled to the expression of its host gene. Increasing evidence suggests that this
miRNA—host gene relationship is of functional importance: Intronic miRNAs may affect their
hosts’ expression or the expression of host-interacting proteins [1]. In both cases, intronic miR-
NAs were shown to influence the molecular activities of their hosts. Recently, Dill et al. experi-
mentally validated an example of an intronic miRNA targeting its host gene, hence uncovering a
direct negative feedback mechanism [4]. Interestingly, the miRNAwas processed only after dif-
ferentiation of the cell, showing that this mechanism was time-dependent. This clearly proved
the existence of functional relationships between intronic miRNAs and their host genes. Further-
more, this work identified a first example for regulation of this coupling. However, the described
model was limited to cell differentiation processes. So far it remains unclear whether there exist
more general mechanisms that may enable control of host gene expression by intronic miRNAs.

Whereas differential processing of the intronic miRNA constitutes one way to control activity
of a negative feedback mechanism, modulation of miRNA target-site accessibility may be another
option. Many protein-coding genes bear multiple polyadenylation sites in their 32UTRs, enabling
the transcription of variable size mRNAs that may or may not contain specific miRNA target sites
[5]. Poly(A)-site selection is determined by context and type of polyadenylation signals. In general,
canonical polyadenylation signals (“AAUAAA”, “AUUAAA”) are distinguished from non-canoni-
cal polyadenylation signals. Several enzymes have been identified that are linked to 3´UTR pro-
cessing and are commonly referred to as 3´-processing factors, the stoichiometry of which seems
to be very influential (for a detailed summary of alternative polyadenylation see [6]). We hypothe-
sized that miRNA target-site accessibility could be modulated by alternative polyadenylation
(APA) processes as an additional mechanism of intronic miRNA-driven negative feedback loops.
First, we used a bioinformatics approach to investigate, whether APA-motif distribution differs in
the 32UTRs of host genes with and without an intronic miRNA seed matching site. We then chose
ZFR and its intronic miRNAmiR-579 as an example and could show that ZFR is in fact targeted
by miR-579. Moreover, we show that there are at least two 32UTR isoforms, one of which contains
the miRNA target site while the other doesn’t, proving that alternative polyadenylation is a way for
the cell to scale the degree of immediate negative feedback. We also investigated, whether intronic
miRNAs targeting their own host gene may interfere with polyadenylation machinery. Using bio-
informatics screening for overrepresented potential miRNA targets within the APAmachinery, we
identified CPSF2 as a potential intronic miRNA target. We show that ZFR targets CPSF2, and that
silencing of CPSF2 lead to an increased utilization of canonical polyadenylation signals. These data
indicate an interesting link between intronic miRNA feedback and alternative polyadenylation.

Results and Discussion

APA regulates the impact of intronic miRNAs on the expression of their
host genes
To investigate the hypothesis that APA regulates a negative feedback mechanism imposed by
miRNAs targeting their own hosts, we first classified intronic miRNAs into host-targeting
(HT) miRNAs or non-host-targeting (NT) miRNAs by searching for seed site matches within
the respective 32UTR sequences of the host genes. A total of 203 HT miRNAs were located in
168 host genes, with 583 seed site matches. 601 NT miRNAs were located within 351 host
genes (see also S1 Fig.). We found that HT miRNA host genes possess longer 32UTR sequences
(median = 2553 nt vs median = 1198 nt, P< 2.2E-16) and contain significantly more poly(A)
sites than NT miRNA host genes (median = 5 vs median = 3, P = 6.7E-9) (Fig. 1A). Of 583
total seed site matches, 435 HT miRNA-matching seed sites are potentially influenced by APA,

APA and Differential Negative Feedback

PLOS ONE | DOI:10.1371/journal.pone.0121507 March 23, 2015 2 / 15

Competing Interests: The authors have declared
that no competing interests exist.



Fig 1. Bioinformatics and biomolecular analyses indicate a role for APA in regulation of negative feedback. A) Comparison of APA-sites for HT
miRNA host genes and NT miRNA host genes. B) After CPSF2 silencing HT miRNA host gene UTRs display a different poly(A)-site usage pattern compared
to NT miRNA host gene UTRs and regular protein-coding genes’ UTRs. C) The motif discovered in upregulated APA regions after CPSF2 silencing
resembles the two canonical polyadenylation sites. D) Distribution of canonical poly(A) signals across the 32UTR of HT miRNA host genes and E) NT miRNA
host genes.

doi:10.1371/journal.pone.0121507.g001
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affecting 124 of the 168 HT host genes. In summary, our results illustrate that 32UTRs of HT
miRNA host genes are longer and contain more APA sites. Long 32UTRs have been shown to
preferably occur in genes in which slight expression changes can be detrimental to the cell,
thus requiring tight regulation [6]. We then mapped the here analyzed host genes to KEGG
(Kyoto Encyclopedia of Genes and Genomes), a database of known biological pathways. We
found that many of the here analyzed host genes are linked to signal transduction pathways
(S1 Table), thus representing a group of genes in which tight expression control is vital. Fur-
thermore it has been shown that shortening of 32UTRs by APA is a highly effective method to
escape regulatory control [7, 8]. Thus, our findings point to a potential regulation of HT
miRNA host genes by APA. Based on previous publications [4,7], it is tempting to speculate
that differential miRNA maturation, as described by Dill and colleagues, could be primarily
used for developmental regulation, while APA might be a primary mechanism in short-term
processes, such as immunoactivation [7].

ZFR is targeted and differentially regulated by its intronic miRNA hsa-
miR-579
After evaluation of binding probabilities and UTR-lengths of potential candidate host genes
harboring intronic miRNAs with a seed-matching motif in their 32UTR, ZFR (Zink-finger
recombinase) was chosen as the example molecule for further evaluation.

ZFR encodes a three zinc-finger protein [9] with a total length of 90,389 base pairs, 19 intro-
nic regions and a 32UTR length of 1,409 nucleotides (Fig. 2A). It hosts the human-specific
miRNA gene hsa-mir-579 in intron 11 (intron length: 4,722 bp, distance to the upstream exon:
684 bp), which appears to be co-expressed with its host gene, as there is no bioinformatic evi-
dence of an individual promoter region for this miRNA. Even though not well characterized,
recent literature suggests an important role for ZFR in neuron development [10]. It contains a
seed site for hsa-miR-579 at position-chr5:32,354,558–32,354,564 and, according to our data-
base, APA sites at positions chr5:32,354,730, chr5:32,355,524, and chr5:32,355,823 (Fig. 2B).
Importantly, only the longest UTR isoform harbors the binding site for hsa-miR-579 at nucleo-
tide position 1301 after the CDS. Canonical polyadenylation signal motifs appear at 135, 314
(AUUAAA), and 738 (AAUAAA) nucleotides. These isoforms were validated using 32RACE
with subsequent sequencing (S2 Fig.).

To experimentally validate the direct binding and targeting of hsa-miR-579 to its host ZFR,
we subcloned its 32UTR into the MCS of the psiCheck-2 vector. This vector contains both
Renilla reniformis luciferase (Rluc) and Photinus pyralis (Firefly) luciferase (Fluc) on a single
plasmid with the MCS located downstream of the Renilla encoding region. The reporter vectors
were co-transfected with pre-miR-579 (or with scrambled control) and Rluc/Fluc ratios were
calculated. Luciferase activity was significantly repressed (inhibition by 21.3 ± 11.9%); this ef-
fect could be counteracted by introducing a single-nucleotide mutation in the seed matching
sequence (Fig. 2C). After pre-miR-579 transfection of U87 cells, a decrease of mRNA levels of
ZFR (29%) was observed (Fig. 2D). Western blotting confirmed a significant protein reduction
(Fig. 2E). These data show that miR-579 not only targets its host ZFR, but due to the position
of the polyadenylation sites, this interaction might be differentially controlled. To investigate
this assumption, we transfected pre-miR-579 into U87 cells and measured the expression of
both the short and the long, miR-579-seed site match-containing UTR of the ZFR transcript
during a time period extending from 24 h to 72 h after transfection. As shown in Fig. 2F, the
abundance of the long UTR decreases over time (median expression after 72h was decreased
by 38% [range 32%–52% decrease] compared to normal control), while the short variant is not
affected (median decrease 16% [range 26% decrease—13% increase]).

APA and Differential Negative Feedback
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Fig 2. miR-579 targets its host, ZFR, and the APA associated gene CPSF2. A) Schematic diagram of the ZFR gene. B) Schematic diagram of the ZFR
32UTR including polyadenylation sites and the seed matching site for miR-579. C) U87 cells were co-transfected with reporter constructs containing wildtype
ZFR-32UTR or ZFR-32UTR lacking the miR-579 binding site (mut 32UTR) along with pre-miR-579 or negative control (NC). Results are expressed as Rluc/
Fluc ratio relative to NC (mean ± 95%CI; n = 6; *, p< 0.05). D) In U87 cells transiently transfected with scrambled control or pre-miR-579, ZFR and CPSF2

APA and Differential Negative Feedback
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APA may thus be a mechanism for the cell to selectively enable and disable direct negative
feedback of host genes by their intronic miRNAs.

HTmiRNAs influence the host gene’s accessibility by targeting the APA
machinery
Given the potential influence of APA on miRNA targeting we hypothesized that some miRNAs
themselves might actually influence the decision of which polyadenylation site is chosen. One
such mechanism would be the targeting of components of the APA machinery, which, via a
change of stoichiometry of APA components, might influence the target accessibility of their
host genes. We thus analyzed a set of 11 genes that have recently been associated with polyade-
nylation signal recognition (Table 1) [11]. 32UTR regions were searched in-silico for miRNA
seed site matches. Generally, all investigated genes exhibited seed site matches for a larger frac-
tion of HT miRNAs when compared to NT miRNAs or to intergenic miRNAs. Among these
genes, CPSF2, a gene linked to the recognition of polyadenylation signals [12, 13], yielded the
most significant difference in potential binding sites. Since CPSF2’s 32UTR contains a seed-
matching motif for miR-579 at 168 bp after the CDS, we first investigated, if CPSF2 is a target
of miR-579. Using the aforementioned reporter vector assay, luciferase activity was significant-
ly repressed (inhibition of 33.0 ± 8.5%) and recovered by introduction of a single-point muta-
tion (Fig. 2C). While CPSF2 mRNA levels were unaffected after miR-579 transfection
(Fig. 2D), western blotting revealed a significant reduction in CPSF2 protein abundance
(Fig. 2E). These results could be interpreted that either miR-579 regulates CPSF2 expression
via translational repression or that mRNA changes may occur outside of the analyzed time
window. To further elucidate the role of CPSF2 in the context of alternative polyadenylation,
U87 cells were transfected with specific siRNAs against CPSF2 resulting in a reduction of
CPSF2 mRNA of more than 90%. Subsequently, cells’ transcriptome was sequenced using an
AB-SOLiD platform. First, potential polyadenylation sites were identified and the reads were
mapped to the respective polyadenylation areas. Genes were then filtered for sequencing depth

mRNA expression was analyzed by quantitative RT-PCR. Values are mean ± 95%CI; n = 5; *, p< 0.05. E) Western blot analysis of the same samples using
specific antibodies as indicated (β-Actin served as loading control; one representative experiment of three is shown). F) In U87 cells, expression changes of
the long (miRNA binding site containing; red) and short (without miRNA binding site; blue) alternatively polyadenylated UTRs after transfection with pre-miR-
579 or with scrambled control was determined by quantitative RT-PCR. Values are shown as miR-579 transfection relative to scrambled control (n = 5; *,
p< 0.05).

doi:10.1371/journal.pone.0121507.g002

Table 1. Identification of APA genes preferentially targeted by HTmiRNAs.

Gene Symbol HT versus NT miRNAs q-value HT versus intergenic miRNAs q-value

CSTF1 28 (14%) vs 61 (10%) 0.371 28 (14%) vs 100 (10%) 0.333

CSTF2 76 (37%) vs 172 (29%) 0.171 76 (37%) vs 288 (29%) 0.171

CSTF3 23 (11%) vs 63 (11%) 0.827 23 (11%) vs 135 (13%) 0.495

CPSF1 7 (3%) vs 6 (1%) 0.171 7 (3%) vs 31 (3%) 0.827

CPSF2 79 (38%) vs 158 (27%) 0.021 79 (38%) vs 258 (26%) 0.01

CPSF3 6 (3%) vs 9 (2%) 0.371 6 (3%) vs 14 (1%) 0.333

CPSF4 28 (14%) vs 62 (10%) 0.371 28 (14%) vs 105 (10%) 0.371

NUDT21 81 (39%) vs 201 (34%) 0.371 81 (39%) vs 353 (35%) 0.371

CPSF6 136 (66%) vs 365 (61%) 0.371 136 (66%) vs 618 (61%) 0.371

CPSF7 138 (67%) vs 380 (64%) 0.55 138 (67%) vs 631 (63%) 0.371

FIP1L1 19 (9%) vs 30 (5%) 0.171 19 (9%) vs 55 (5%) 0.171

doi:10.1371/journal.pone.0121507.t001
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and significant changes in 32UTR poly(A) region usage (at least one significant increased and
at least one significant decreased poly(A) region per 32UTR), a total of 6313 genes were subject
to further analysis (36 HT miRNA host genes, 191 NT miRNA host genes, 6086 regular protein
coding genes). On average, the mapped reads-count for poly(A)-regions that were more distant
from the CDS increased, whereas the mapped reads-count for closer regions decreased after
CPSF2-silencing, suggesting an elongation of the 32UTR. Surprisingly, the majority of HT
miRNA host genes displayed a significant opposite effect: 32UTRs were shortened (Fig. 1B,
Table 2). To find an explanation for these observations, we analyzed the sequence-blocks that
most significantly gained read counts using the MEME web tool for overrepresented motifs
[14]. The most significant motif found resembles the consensus sequence of the two known ca-
nonical polyadenylation signals (Fig. 1C), strongly suggesting a role of CPSF2 in utilization of
non-canonical polyadenylation signals. As it is known, that canonical polyadenylation signals
tend to be located near the outmost 32 region of a UTR [15], the supposed general tendency to-
wards longer 32UTRs could be well explained by a model where CPSF2 is responsible for the
recognition of non-canonical poly(A)-signals. As HT miRNA host genes did not follow that
general rule, we compared distributions of the relative position of canonical polyadenylation
signals within HT host gene UTRs and NT host gene UTRs. Indeed, distribution patterns for
canonical poly(A)-signals in HT miRNA host genes significantly differed from NT miRNA
host genes (median = 0.55 vs median = 0.73, p< 2.2E-16): While poly(A)-signals in NT
miRNA host genes accumulate at the 32 end of the UTR, thus resembling the distribution of
the majority of protein-coding genes, they tend to be more evenly distributed in HT miRNA
host genes (Fig. 1D and1E). In fact, 473 of the 583 HT seed matching motifs were preceded by
a canonical poly(A) signal, offering an explanation why more than half of the significantly af-
fected HT host gene UTRs showed a pattern of utilization of more proximal poly(A)-sites.

We thus identified CPSF2 as a molecule that is potentially targeted by several intronic miR-
NAs. When silenced, polyadenylation seemed to be biased towards recognition of canonical
poly(A)-signals, suggesting 32UTR elongation for the majority of genes, and 32UTR shorten-
ing in a significant fraction of HT host genes.

These findings may point to a new model for regulation of miRNA host gene expression via
alternative polyadenylation (Figs. 3 and 4): After co-expression of host gene and its intronic
miRNA, the miRNA is able to regulate its host gene by binding to the 32UTR. Simultaneously,
the miRNA targets CPSF2, thereby changing the stoichiometry of polyadenylation factors. Sub-
sequently, canonical poly(A)-signals are preferred over non-canonical signals leading to a
shortening of the host gene UTR with consecutive loss of the seed site match. This leads to a
decoupling of the negative feedback circuitry.

Conclusions
The persistent transcriptional coupling of a miRNA with its host that is also its target would
per se not be very useful. Thus, mechanisms allowing a differential regulation need to exist.
While previous authors described differential intronic miRNA processing as one mechanism
[4], we investigated the relationship between ZFR and its intronic miRNA hsa-mir-579 and
found another possibility of regulation. We could show that miR-579 targets its host ZFR, and
that via APA two ZFR transcripts exist, one that is targeted by its intronic miRNA, and another
one that is not. As an addition, we provide evidence that APA in turn might be influenced by
intronic miRNAs through interfering with the expression of CPSF2, suggesting that at least
some intronic miRNAs might even be able to turn negative feedback off themselves.

It is tempting to speculate that differential miRNA processing is a technique primarily em-
ployed during organism development and cell differentiation, while alternative

APA and Differential Negative Feedback
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Table 2. HTmiRNA host genes with significant 3´UTR changes after CPSF2-silencing.

host gene symbol miRNA symbol HT miRNA 3´UTR change

CHM hsa-miR-361-5p yes shorter UTR

CHM hsa-miR-361-3p no shorter UTR

DKC1 hsa-miR-644b-5p no shorter UTR

DKC1 hsa-miR-644b-3p yes shorter UTR

GPC1 hsa-miR-149-5p yes shorter UTR

GPC1 hsa-miR-149-3p yes shorter UTR

HNRNPK hsa-miR-7-5p no shorter UTR

HNRNPK hsa-miR-7-1-3p yes shorter UTR

TNPO1 hsa-miR-4804-5p no shorter UTR

TNPO1 hsa-miR-4804-3p yes shorter UTR

LPP hsa-miR-28-5p no shorter UTR

LPP hsa-miR-28-3p yes shorter UTR

MLLT6 hsa-miR-4726-5p yes shorter UTR

MLLT6 hsa-miR-4726-3p no shorter UTR

NHS hsa-miR-4768-3p no shorter UTR

NHS hsa-miR-4768-5p yes shorter UTR

SREBF1 hsa-miR-33b-5p yes shorter UTR

SREBF1 hsa-miR-33b-3p no shorter UTR

PPFIA1 hsa-miR-548k yes shorter UTR

ALDH4A1 hsa-miR-4695-5p yes shorter UTR

ALDH4A1 hsa-miR-1290 no shorter UTR

ALDH4A1 hsa-miR-4695-3p yes shorter UTR

CTDSP2 hsa-miR-26a-5p yes shorter UTR

CTDSP2 hsa-miR-26a-2-3p no shorter UTR

COPZ1 hsa-miR-148b-3p yes shorter UTR

COPZ1 hsa-miR-148b-5p yes shorter UTR

DPY19L1 hsa-miR-548n yes shorter UTR

ZFR hsa-miR-579 yes shorter UTR

GALNT7 hsa-miR-548t-5p yes shorter UTR

GALNT7 hsa-miR-548t-3p no shorter UTR

RBM47 hsa-miR-4802-3p yes shorter UTR

RBM47 hsa-miR-4802-5p no shorter UTR

GALNT10 hsa-miR-1294 yes shorter UTR

C9orf3 hsa-miR-23b-3p no shorter UTR

C9orf3 hsa-miR-24-3p no shorter UTR

C9orf3 hsa-miR-24-1-5p yes shorter UTR

C9orf3 hsa-miR-27b-5p no shorter UTR

C9orf3 hsa-miR-2278 yes shorter UTR

C9orf3 hsa-miR-23b-5p no shorter UTR

C9orf3 hsa-miR-27b-3p no shorter UTR

LASS6 hsa-miR-4774-3p yes shorter UTR

LASS6 hsa-miR-4774-5p no shorter UTR

ADCY6 hsa-miR-4701-3p yes longer UTR

ADCY6 hsa-miR-4701-5p no longer UTR

CD58 hsa-miR-548ac yes longer UTR

NFYC hsa-miR-30c-5p no longer UTR

NFYC hsa-miR-30c-1-3p yes longer UTR

(Continued)
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polyadenylation appears to be a mechanism for responding to environmental factors, such as
described by Sandberg and colleagues.

As an abstraction of our results, we depict a hypothetical model of intronic miRNA feedback
regulation in Fig. 4: After expression of the host gene and its intronic miRNA, the miRNA is
able to regulate its host gene by binding to the 3´UTR. Simultaneously, the miRNA targets the
3´UTR-processing factor CPSF2, thereby changing the stoichiometry of polyadenylation fac-
tors. Subsequently canonical poly(A)-signals are preferred over non-canonical signals, leading
to a shortening of host gene UTRs of these miRNAs with subsequent loss of the seed site
match. This leads to decoupling of the negative feedback circuitry.

Due to the nature of miRNAs as fine-tuners of gene expression, it is unlikely that expres-
sional changes of a single miRNA in vivo are enough to sufficiently change CPSF2 expression.
Additional miRNAs and further regulatory mechanisms are needed to exert the proposed
effect.

Even though reality is doubtless more complex than appreciated in the current work, our re-
sults may unveil an important piece in the understanding of miRNA based negative feedback
circuitries.

Table 2. (Continued)

host gene symbol miRNA symbol HT miRNA 3´UTR change

NFYC hsa-miR-30e-3p no longer UTR

NFYC hsa-miR-30e-5p no longer UTR

SCP2 hsa-miR-1273g-3p yes longer UTR

SCP2 hsa-miR-1273g-5p no longer UTR

SCP2 hsa-miR-5095 no longer UTR

SCP2 hsa-miR-1273f yes longer UTR

ZRANB2 hsa-miR-186-5p yes longer UTR

ZRANB2 hsa-miR-186-3p yes longer UTR

BRE hsa-miR-4263 yes longer UTR

ARHGEF11 hsa-miR-765 yes longer UTR

AP3S2 hsa-miR-5094 yes longer UTR

AP3S2 hsa-miR-5009-3p yes longer UTR

AP3S2 hsa-miR-5009-5p yes longer UTR

IGF2BP2 hsa-miR-548aq-3p yes longer UTR

IGF2BP2 hsa-miR-548aq-5p no longer UTR

HBS1L hsa-miR-3662 yes longer UTR

C9orf5 hsa-miR-32-3p yes longer UTR

C9orf5 hsa-miR-32-5p no longer UTR

PITPNC1 hsa-miR-548aa yes longer UTR

ATAD2 hsa-miR-548d-5p yes longer UTR

ATAD2 hsa-miR-548d-3p yes longer UTR

FBXW7 hsa-miR-3140-5p no longer UTR

FBXW7 hsa-miR-3140-3p yes longer UTR

NMNAT1 hsa-miR-5697 yes longer UTR

RASSF3 hsa-miR-548c-5p no longer UTR

RASSF3 hsa-miR-548c-3p yes longer UTR

doi:10.1371/journal.pone.0121507.t002
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Methods

Datasources
MySQL version 5.0 was used on a dual core server running Ubuntu Linux. The database was
accessed using Python 2.7 with the Pygr and MySQLdb libraries. MiRNA seed complementary
sites were identified by searching 32UTRs for a complete complementary match of nucleotides
2–8 of the mature miRNA sequence or a match of nucleotides 2–7 followed by an adenine
(‘A’). The human reference genome sequence (hg19/GRCh37), gene transcription annotation
information and human transcriptome data from the Reference Sequence Project (RefSeq; Re-
lease #49) [16], were downloaded from the UCSC Genome Browser [17, 18] and retrieved

Fig 3. Model of intronic negative feedback regulation. After coexpression of miRNA and host gene, the miRNA directly regulates its host gene as well as
CPSF2. After removal of CPSF2 the polyadenylation-complex is biased towards recognition of canonical sites. In the next transcription cycle, the canonical
site that precedes the miRNA binding site is utilized. Hence, regulation of the host gene by its intronic miRNA is disabled.

doi:10.1371/journal.pone.0121507.g003
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from the NCBI’s ftp-server. miRNA genomic coordinates, seed sequences, and family informa-
tion were derived from miRBase version 18 [19, 20]. The database was constructed as previous-
ly described [21].

Fig 4. Summary.

doi:10.1371/journal.pone.0121507.g004
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Identification of APA Sites
Three different datasources were integrated for the analysis. First, we mapped all expressed se-
quence tag (EST) sequences to the human reference genome using a previously described pro-
tocol [22, 23]. Only sequences with an adenine stretch of more than 10 untemplated
nucleotides in the 3´ extremity were selected. Internally primed ESTs were removed and chi-
meras and paralogs were controlled for. Second, APA site data across five human tissues de-
rived from PolyA-Seq were integrated into this data source [5]. Third, RNA-Seq data (see
below) were used to identify potential APA sites. Color code reads were required to contain at
least two untemplated “0”s as well as at least two reads for the same site of different mapping
length. APA sites within a distance of 40 nucleotides were subsumed into one site. Only sites
within the longest annotated RefSeq transcript were considered.

Poly(A)+ libraries construction and sequencing
To prepare Poly(A)+ libraries, we started with 500 ng Poly(A)+ RNA from each sample. The
RNA was fragmented using RNAse III, followed by ligation of SOLiD adaptors, reverse tran-
scription, and size selection for subsequent amplification, according to the manufacturers’ in-
structions (Life Technologies). After assessing the amplified DNA for yield and size
distribution on the Bioanalyzer instrument (Agilent), libraries were submitted to emulsion
PCR followed by sequencing on a SOLiD4 System.

Bioinformatics analysis of RNA-Seq data
A total of* 50 million color code reads for CPSF2-silenced cells (study data) and* 100 mil-
lion color code reads for cells transfected with a non-functional pre-miRNA (control data)
were analyzed. Data were deposited at [SRA-ACC:SRP053217]. All generated reads were
mapped against the human reference genome using the genome mapping pipeline from Bio-
scope (standard parameters). All alignments were converted to BAM format and only align-
ments with a quality score� 20 (guaranteeing an alignment error-rate of at most 1% and a
unique genome match per read) were selected. These mapped reads were crossed with gene an-
notation and APA information, and read counts for each poly(A) region were calculated. Sta-
tistical significance of read count changes was assessed using the binomial test. A gene’s
32UTR was considered prolonged in the study group when the median index of significantly
upregulated poly(A)-blocks was greater than the median index of significantly downregulated
poly(A)-blocks and shortened otherwise. Only genes that contained both significantly up- and
downregulated poly(A)-blocks were considered. The MEME tool was used with standard pa-
rameters (motif occurrences per sequence: 0 or 1, motif-width: 6–20, number of motifs: 0–5)
on the 292 most significantly upregulated poly(A)-region sequences as positive and 89 most
significantly downregulated poly(A)-region sequences as negative controls [12]. Of each of
these regions, 40 nucleotides upstream of the poly(A)-site were used.

Statistical analysis
We performed all statistical calculations using the statistical programming software R or the
Stats-library from the python scientific computing project SciPy [24]. The Mann-Whitney-U
test was used for the assessment of statistical significance of differences in 32UTR lengths and
number of APA sites between intronic host-targeting (HT) miRNAs and intronic non-host-
targeting (NT) miRNAs. We applied the Fisher’s exact test for identification of genes preferen-
tially targeted by HT miRNAs. Correction for multiple hypothesis testing done using the Ben-
jamini-Hochberg algorithm where appropriate. We followed the seed matching motif
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algorithm of popular target prediction tools and required either a base-complementary match
of nucleotides 2–8, or Mapping of HT miRNAs to the Kyoto Encyclopedia of Genes and Gene
Products (KEGG) and to the Gene Ontology biological function was carried out using R’s bio-
conductor packages GOstats, KEGG.db, GO.db, org.Hs.eg.db, and Cytoscape in combination
with the Bingo plugin [25–29]. qPCR and Luciferase measurements were normalized across
the three replicates of the normal control. Statistical significance was assessed using the Mann-
Whitney-U test. Throughout the whole manuscript a significance level of< 0.05 was used.

Cell culture
U87 cells (American Type Culture Collection) were grown at 37°C and 5% CO2 in Dulbecco’s
modified Eagle medium (Lonza) supplemented with 10% heat-inactivated FCS, 1% penicillin/
streptomycin/glutamine (v/v) and 1% NEAA.

Transfection and reporter gene assay
Cell transfection experiments were performed using the Neon Transfection System (Invitro-
gen). U87 cells were transiently transfected with ON-TARGETplus SMARTpool siRNA against
CPSF2 or negative control (Dharmacon) at final concentrations of 50 nM. Cells were harvested
96 hours later. The psiCheck-2 Dual-Luciferase Vector (Promega) was used for the generation
of reporter constructs (for details see S1 File). U87 cells were co-transfected with 1 μg psi-
Check-2 reporter vector containing ZFR or CPSF2 32UTR variants with pre-miR miRNA pre-
cursor molecules (Ambion) at final concentrations of 50 nM. After 40 hours, luciferase activity
was analyzed using the Dual-Glo Luciferase Assay System (Promega) and Renilla luciferase ac-
tivities were normalized to Firefly luciferase activities. All data resulted from five or more
independent experiments.

RNA isolation and synthesis of cDNA
Total RNA was isolated using the RNAqueos Kit (Ambion) with subsequent DNase treatment
(Turbo DNA-free Kit, Ambion). RNA quantity was determined using the NanoDrop ND-1000
spectrophotometer (Peqlab). cDNA was synthesized from 1 μg of total RNA using the Super-
ScriptIII First Strand Synthesis System (Invitrogen) and random hexamers. For quantification
of ZFR long and short UTRs, a primer-specific reverse transcription was performed using the
poly(A)-Linker listed in S1 File.

PCR experiments
Quantitative real-time PCR was performed on a Light Cycler 480 (Roche Diagnostics) using
Roche´s UPL probes. For quantification of ZFR long and short UTRs, a reverse primer specifi-
cally annealing on the poly(A)-linker in combination with specific forward primers was used
for qPCR together with Roche's SYBR Green. Cycling conditions were 45 cycles of 95°C for
10 s, 60°C for 10 s, and 72°C for 15 s. Specificity was verified by melting point analysis. In all
cases, reference gene normalization to SDHA and TBP as previously described [30]. All qPCR
primers are listed in S1 File. 32RLM-RACE was performed using the FirstChoice RLM-RACE
Kit (Ambion) and the primers listed in S1 File. PCR products were subcloned into the Strata-
Clone Blunt Vectoramp/kan (Stratagene) and sequenced.

Western blot analysis
Western blotting was performed with 30 μg of total protein extract and antibodies against ZFR
or CPSF2 (both: Abcam). Mouse monoclonal anti-β-actin antibody served as a loading control.
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Immunoreactive bands were detected using goat anti-rabbit or goat anti-mouse HRP conju-
gates (Cell Signaling Technologies).

Supporting Information
S1 Fig. Classification of miRNAs into intronic, exonic, and intergenic miRNAs.
(TIFF)

S2 Fig. 3´RACE.
(TIFF)

S1 File. Extended information on Luciferase vector construction and primer sequences.
(PDF)

S1 Table. Mapping of host-targeting intronic miRNA host genes to the KEGG ontology
pathways.
(XLS)

Acknowledgments
We would like to thank Jessica Rink for her great help with the miRNA target validation. We
would also like to thank Friedrich Kreth and Patricia Hinske for their helpful feedback during
manuscript preparation.

Author Contributions
Conceived and designed the experiments: LCH PAFG SK LOM AAC. Performed the experi-
ments: EL PM RBP. Analyzed the data: LCH PAFG. Wrote the paper: LCH PAFG SK LOM
AAC PM.

References
1. Hinske LCG, Galante PAF, KuoWP, Ohno-Machado L. A potential role for intragenic miRNAs on their

hosts’ interactome. BMC genomics 2010; 11:533. doi: 10.1186/1471-2164-11-533 PMID: 20920310

2. Monteys AM, Spengler RM, Wan J, Tecedor L, Lennox KA, Xing Y, et al. Structure and activity of puta-
tive intronic miRNA promoters. RNA (New York, NY) 2010; 16:495–505. doi: 10.1261/rna.1731910
PMID: 20075166

3. Kim Y-K, Kim VN. Processing of intronic microRNAs. The EMBO Journal 2007; 26:775–783. PMID:
17255951

4. Dill H, Linder B, Fehr A, Fischer U. Intronic miR-26b controls neuronal differentiation by repressing its
host transcript, ctdsp2. Genes & development 2012; 26:25–30.

5. Derti A, Garrett-Engele P, Macisaac KD, Stevens RC, Sriram S, Chen R, et al. A quantitative atlas of
polyadenylation in five mammals. Genome Research 2012.

6. Di Giammartino DC, Nishida K, Manley JL Mechanisms and consequences of alternative polyadenyla-
tion. Molecular cell 2011; 43:853–866. doi: 10.1016/j.molcel.2011.08.017 PMID: 21925375

7. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with short-
ened 3’ untranslated regions and fewer microRNA target sites. Science (New York, NY) 2008;
320:1643–1647. doi: 10.1126/science.1155390 PMID: 18566288

8. Mayr C, Bartel DP. Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation acti-
vates oncogenes in cancer cells. Cell 2009; 138:673–684. doi: 10.1016/j.cell.2009.06.016 PMID:
19703394

9. Elvira G, Massie B, DesGroseillers L. The zinc-finger protein ZFR is critical for Staufen 2 isoform specif-
ic nucleocytoplasmic shuttling in neurons. Journal of neurochemistry 2006; 96:105–117. PMID:
16277607

10. Barber JCK, Huang S, Bateman MS, Collins AL. Transmitted deletions of medial 5p and learning diffi-
culties; Does the cadherin cluster only become penetrant when flanking genes are deleted? American
journal of medical genetics Part A 2011.

APA and Differential Negative Feedback

PLOS ONE | DOI:10.1371/journal.pone.0121507 March 23, 2015 14 / 15

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121507.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121507.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121507.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0121507.s004
http://dx.doi.org/10.1186/1471-2164-11-533
http://www.ncbi.nlm.nih.gov/pubmed/20920310
http://dx.doi.org/10.1261/rna.1731910
http://www.ncbi.nlm.nih.gov/pubmed/20075166
http://www.ncbi.nlm.nih.gov/pubmed/17255951
http://dx.doi.org/10.1016/j.molcel.2011.08.017
http://www.ncbi.nlm.nih.gov/pubmed/21925375
http://dx.doi.org/10.1126/science.1155390
http://www.ncbi.nlm.nih.gov/pubmed/18566288
http://dx.doi.org/10.1016/j.cell.2009.06.016
http://www.ncbi.nlm.nih.gov/pubmed/19703394
http://www.ncbi.nlm.nih.gov/pubmed/16277607


11. Martin G, Gruber AR, Keller W, Zavolan M. Genome-wide Analysis of Pre-mRNA 3’End Processing Re-
veals a Decisive Role of Human Cleavage Factor I in the Regulation of 3&amp;prime; UTR Length.
CellReports 2012; 1:753–763.

12. Kolev NG, Yario TA, Benson E, Steitz JA. Conserved motifs in both CPSF73 and CPSF100 are re-
quired to assemble the active endonuclease for histone mRNA 3&apos;-end maturation. EMBO reports
2008; 9:1013–1018. doi: 10.1038/embor.2008.146 PMID: 18688255

13. Herr AJ, Molnàr A, Jones A, Baulcombe DC. Defective RNA processing enhances RNA silencing and
influences flowering of Arabidopsis. Proceedings of the National Academy of Sciences of the United
States of America 2006; 103:14994–15001. PMID: 17008405

14. Bailey TL, Williams N, Misleh C, Li WW. MEME: discovering and analyzing DNA and protein sequence
motifs. Nucleic Acids Research 2006; 34:W369–373. PMID: 16845028

15. Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D. Patterns of variant polyadenylation signal
usage in human genes. Genome Research 2000; 10:1001–1010. PMID: 10899149

16. Pruitt KD, Tatusova T, Maglott DR. NCBI Reference Sequence (RefSeq): a curated non-redundant se-
quence database of genomes, transcripts and proteins. Nucleic Acids Research 2005; 33:D501–504.
PMID: 15608248

17. Karolchik D, Hinrichs AS, Kent WJ. The UCSCGenome Browser. In: Current protocols in bioinformatics
2009, Edited by Andreas D Baxevanis [et al] Chapter 1:Unit1.4.

18. Mangan ME, Williams JM, Kuhn RM, LatheWC. The UCSC genome browser: what every molecular
biologist should know. In: Current protocols in molecular biology 2009, Edited by Frederick M Ausubel
[et al] Chapter 19:Unit19.19.

19. Griffiths-Jones S, Saini HK, Van Dongen S, Enright AJ. miRBase: tools for microRNA genomics. Nu-
cleic Acids Research 2008; 36:D154–158. PMID: 17991681

20. Griffiths-Jones S. The microRNA Registry. Nucleic Acids Research 2004; 32:D109–111. PMID:
14681370

21. Hinske LC, Heyn J, Galante PAF, Ohno-Machado L, Kreth S. Setting Up an Intronic miRNA Database.
Methods in molecular biology (Clifton, NJ) 2013; 936:69–76. PMID: 23007499

22. Galante PAF, Parmigiani RB, Zhao Q, Caballero OL, de Souza JE, Navarro FCP, et al. Distinct patterns
of somatic alterations in a lymphoblastoid and a tumor genome derived from the same individual. Nu-
cleic Acids Research 2011; 39:6056–6068. doi: 10.1093/nar/gkr221 PMID: 21493686

23. da Cunha JPC, Galante PAF, de Souza JE, de Souza RF, Carvalho PM, Ohara DT, et al. Bioinformatics
construction of the human cell surfaceome. Proceedings of the National Academy of Sciences of the
United States of America 2009; 106:16752–16757. doi: 10.1073/pnas.0907939106 PMID: 19805368

24. Oliphant TE. Python for Scientific Computing. Computing in Science & Engineering 2007; 9:10–20.

25. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research
2000; 28:27–30. PMID: 10592173

26. Falcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics (Ox-
ford, England) 2007; 23:257–258. PMID: 17098774

27. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene on-
tology categories in biological networks. Bioinformatics (Oxford, England) 2005; 21:3448–3449. PMID:
15972284

28. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unifi-
cation of biology. The Gene Ontology Consortium. Nature genetics 2000; 25:25–29. PMID: 10802651

29. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open soft-
ware development for computational biology and bioinformatics. Genome Biology 2004; 5:R80. PMID:
15461798

30. Kreth S, Heyn J, Grau S, Kretzschmar HA, Egensperger R, Kreth FW. Identification of valid endoge-
nous control genes for determining gene expression in human glioma. Neuro-oncology 2010; 12:570–
579. doi: 10.1093/neuonc/nop072 PMID: 20511187

APA and Differential Negative Feedback

PLOS ONE | DOI:10.1371/journal.pone.0121507 March 23, 2015 15 / 15

http://dx.doi.org/10.1038/embor.2008.146
http://www.ncbi.nlm.nih.gov/pubmed/18688255
http://www.ncbi.nlm.nih.gov/pubmed/17008405
http://www.ncbi.nlm.nih.gov/pubmed/16845028
http://www.ncbi.nlm.nih.gov/pubmed/10899149
http://www.ncbi.nlm.nih.gov/pubmed/15608248
http://www.ncbi.nlm.nih.gov/pubmed/17991681
http://www.ncbi.nlm.nih.gov/pubmed/14681370
http://www.ncbi.nlm.nih.gov/pubmed/23007499
http://dx.doi.org/10.1093/nar/gkr221
http://www.ncbi.nlm.nih.gov/pubmed/21493686
http://dx.doi.org/10.1073/pnas.0907939106
http://www.ncbi.nlm.nih.gov/pubmed/19805368
http://www.ncbi.nlm.nih.gov/pubmed/10592173
http://www.ncbi.nlm.nih.gov/pubmed/17098774
http://www.ncbi.nlm.nih.gov/pubmed/15972284
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://www.ncbi.nlm.nih.gov/pubmed/15461798
http://dx.doi.org/10.1093/neuonc/nop072
http://www.ncbi.nlm.nih.gov/pubmed/20511187



