
APC/C Independent Function of the
Spindle Assembly Checkpoint

Dissertation
zur Erlangung des

Doktorgrades der Naturwissenschaften (Dr. rer. Nat)

an der Fakultät für Biologie

der Ludwig-Maximilians-Universität München

Von

He Li
Geboren am 17.04.1986 in Anyang, China

München 2017



1

Eidesstattliche Erklärung

Ich versichere hiermit an Eides statt, dass die vorgelegte Dissertation von mir

selbständig und ohne unerlaubte Hilfe angefertigt ist.

München, den 13.10.2017 .............................................

(Unterschrift) He Li

Erklärung

Hiermit erkläre ich,

-dass die Dissertation nicht ganz oder in wesentlichen Teilen einer anderen

Prüfungskommission vorgelegt worden ist.

-dass ich mich anderweitig einer Doktorprüfung ohne Erfolg nicht unterzogen

habe.

München, den . 13.10.2017 .............................................

(Unterschrift) He Li

Erstgutachter: Prof. Dr. Heinrich Leonhardt

Zweitgutachter: Prof. Dr. Charles N. David

Tag der Abgabe: 18.04.2017

Tag der mündlichen Prüfung: 12.10.2017



2

This work is dedicated to my family



3

Table of Contents
Abstract…………………………………………………………………………...........4
1. Introduction………………………………………………………………………....5

1.1. Understanding cell division..……………………………………………………..5

1.2. The cell cycle is driven by the cyclin-dependent kinase 1 (Cdk1) and

the anaphase-promoting complex/cyclosome (APC/C) ……….…….............6

1.3. The CLB2-cluster gene…..………………………………………..…………......8

1.4. Transcriptional activation of CLB2-cluster genes at G2/M.…………............10

1.5. Transcriptional repression of CLB2-cluster genes at G1, S and M/G1…….11

1.6. The spindle assembly checkpoint…………………………………….….…....13

1.7. The mitotic checkpoint complex (MCC)…………..……………………...…...16

1.8. MCC assembly at unattached kinetochores………………..………….….....17

1.9. Conformational switch of Mad2 and the template model……………….…..18

1.10. SAC silencing……………...………............................................................18

1.11. Functions of SAC proteins beyond the spindle checkpoint……….....……19

1.12. Meiosis and the entry into meiosis I…………………………………....……21

1.13. Aim of this study…………………………………………………………….....24

1.14. Contributions……………….…………………………………………….….....24

2.Results………………………………………………………………………...……25

2.1. The SAC is required for accumulation of CLB2-cluster proteins in

ndt80∆ ama1∆ cells………………………………………………………...…..25

2.2. Down-regulation of CLB2-cluster proteins in cells lacking MAD2 is

not due to APC/C-dependent protein degradation………………...………..32

2.3. Down-regulation of CLB2-cluster proteins in cells lacking MAD2

is not due to impaired Clb-Cdk1 activity..…………………………………….42

2.4. The SAC is required for transcription of CLB2-cluster genes

independent of APC/C activity…………………………………………………51

3. Discussions………………………………………….........................................59



4

3.1. The SAC regulates transcription of key M phase genes……………….……59

3.2. The SAC is a master regulator of M phase……………………………..…….61

3.3. Cross-talk between the SAC and Cdk1……………………..…………………63

3.4. The HORMA domain acts as a protein interaction module………………….64

3.5. Functions of the SAC beyond inhibiting APC/CCdc20 activity.……….…….66

3.6. The SAC, aneuploidy, and tumorigenesis……………………………..….......67

3.7. Why do meiotic cells lacking AMA1 and NDT80 fail to initiate

anaphase?.................................................................................................... 68

4. Material and Methods……………………………………………………..……..70

4.1. Yeast strains……………………………………………………………….……70

4.2. Construction of yeast strains…………………………………………….……..70

4.3. Time course experiment of synchronous meiosis…………………….……...70

4.4. Gene expression analysis by real-time PCR………………………………….71

4.5. Preparation and separation of protein samples by SDS-PAGE………........72

4.6. Western blotting and immunodetection of proteins…………………….........73

4.7. Analysis of protein interaction by immunoprecipitation……………….……..74

4.8. Histone H1 kinase assay…………………………………………….….….…..74

4.9. Indirect immunofluorescence………………………………………………......75

4.10. Abbreviations…………………………………………………………….…......77

Table 4. List of Saccharomyces cerevisiae SK1 strains used in this work….......78

Table 5. List of qPCR primers……………………………………………………….81

5. References....................................................................................................82

6. Curriculum Vitae.........................................................................................104

7. Acknowledgment........................................................................................105



5

Abstract

The spindle assembly checkpoint (SAC) maintains genomic stability by delaying

cell division until conditions for accurate chromosome segregation are

established. The SAC delays anaphase onset by inhibiting APC/CCdc20 activity

until all sister kinetochores acquire bipolar microtubule attachment. We found

that the SAC is required for the timely accumulation of key M-phase proteins in

meiotic ndt80∆ ama1∆ cells. Specifically, deleting SAC genes or inhibiting the

SAC kinase Mps1 dramatically reduces protein levels of CLB2-cluster proteins.

The phenotype is not due to elevated APC/C activity since it is not rescued in

various loss-of-function APC/C mutants. We found that the SAC is required for

the activation of transcription of CLB2-cluster genes. Deleting SAC genes

prevents the transcriptional up-regulation of CLB2-cluster genes in M-phase that

usually occurs in wild-type strains. We observed that the SAC proteins Mad1 and

Mad2 interact with histone H3 and that the interaction depends on the

conformation of Mad2. The mad2-∆C mutation that locks Mad2 in open

conformation reduces Mad2 binding to histones. Moreover, expression of

CLB2-cluster genes is reduced in the mad2-∆C mutant, which suggests that

Mad2 needs to bind histones to regulate transcriptional activation. Taken together,

our results show that we have uncovered a noncanonical function of the SAC,

which is required for the timely expression of key M-phase genes. Therefore, the

SAC regulates both the entry and the exit from M-phase via modulating both

gene expression and protein degradation of M-phase proteins. The molecular

mechanism of transcriptional regulation by the SAC remains to be investigated in

more details.
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1. Introduction

Understanding cell division is one of the central topics of biological research.

Inheritance of complete copies of genomic information by daughter cells is

central to the process of cell division. How sister genomes are segregated with

high fidelity is also of a great concern for medical research. Defects in genome

segregation are hallmarks of human cancer and a major cause of birth defects.

Therefore, understanding how genome transmission is regulated could form the

basis for therapeutic intervention of human diseases.

1.1. Understanding cell division

The cell cycle is the series of events that take place in a dividing cell leading to

duplication and segregation of the genome and cell division, which give rise to

two genetically identical daughter cells. The cell cycle has four discrete stages

that are G1, S, G2, and M phase (or mitosis). The cell cycle starts with the G1

phase when cells make a decision whether to divide or not, depending on

nutrients, temperature, and other environmental cues. If cells are committed to

division, they will synthesize nucleic acids and proteins required for DNA

replication. After all conditions are met, cells enter S phase synthesizing DNA

and duplicating chromosomes. Chromosomes are not separated immediately

after duplication, but they are held together by a large protein complex, known as

cohesin, for an extended period of time until conditions for chromosome

segregation are met (Nasmyth, 2002). The S phase is usually followed by a long

gap, called G2, when cells continue to grow and synthesize proteins to prepare

for mitosis. Afterwards, cells enter M phase and undergo a dramatic and

coordinated change in cellular architecture to segregate sister chromatids. M

phase can be further separated into prophase, metaphase, and anaphase. In

prophase, chromosomes condense and a multisubunit protein complex known as

the kinetochore is assembled around the centromere region of chromosomes.
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The kinetochore is the platform that mediates microtubule attachment in

metaphase and a signal-processing center that couples microtubule attachment

to anaphase onset. In metaphase, microtubules growing from microtubule

organizing centers (centrosome in animal cells and spindle pole body in yeast

cells) attach and pull sister kinetochores towards opposite spindle poles. When

all sister chromatids have acquired bipolar attachment, the cohesin complexes

are destroyed and sister chromatids are segregated towards opposite poles,

which allows two daughter cells to inherit exactly the same copy of the genetic

information. This marks the beginning of anaphase. After chromosome

segregation, cells undergo cytokinesis to physically divide the cytoplasm into two

daughter cells.

1.2. The cell cycle is driven by the cyclin-dependent kinase 1 (Cdk1) and

the anaphase-promoting complex/cyclosome (APC/C)

It is generally accepted that the cell cycle oscillation is driven by the

negative-feedback loop of Cdk1-APC/C: Cdk1 activates APC/C, which leads to

cyclin destruction and Cdk1 inactivation (King et al., 1996; Novak et al., 2007;

Rahi et al., 2016; Yang and Ferrell, 2013). While high kinase activity is required

for DNA replication and chromosome segregation, low kinase activity is required

for exit from mitosis and maintenance of the G1 phase. Therefore, the cell cycle

could be viewed as a series of transitions between high and low kinase states.

Cdk1 controls diverse cell cycle events by phosphorylating a variety of protein

substrates. Cdk1 becomes active only when it is bound by a cyclin activator.

Therefore, Cdk1 activity is mainly regulated by the availability of different cyclins

(Andrews and Measday, 1998; Morgan, 1997). For example, in Saccharomyces

cerevisiae, there is only one Cdk homologous to Cdk1 in animals and Cdc2 in S.

pombe, which is Cdc28 (Surana et al., 1991). When bound with S-phase cyclins

Clb5 and Clb6 (Epstein and Cross, 1992), Cdc28 triggers DNA replication, and

when bound with M-phase cyclins Clb1, Clb2, Clb3, and Clb4, Cdc28 triggers

entry into metaphase and activation of APC/CCdc20 (Rudner and Murray, 2000;
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Surana et al., 1991), which leads to chromosome segregation. APC/CCdc20 lowers

Cdk1 activity by initiating the destruction of cyclins. Cyclins degradation is

completed by activation of APC/CCdh1 (Peters, 2006; Zachariae and Nasmyth,

1999). Low Cdk1 activity also activates the Cdk1 inhibitor Sic1, which further

inhibits Cdk1 activity. The protein phosphatase Cdc14 plays an important role in

the mitotic exit at least in budding yeast by reversing Cdk1 phosphorylation and

activating Sic1 and Cdh1 (Queralt and Uhlmann, 2008; Visintin et al., 1998).

Figure 1. Overview of key events of chromosome segregation in the cell cycle. When the
decision to proliferate is made, cells start to grow and prepare for DNA replication by synthesizing
proteins during G1. Cells replicate DNA and duplicate all chromosomes during S phase. Sister
chromatids are held together by the cohesin complex to prevent premature separation. During
G2/prophase, kinetochore complexes are assembled around the centromere region on each
sister chromatid, which later in metaphase mediate microtubule attachment. When all sister
chromatids are attached to microtubules from opposite spindle poles, cohesin complexes are
cleaved to allow chromosomes segregation in anaphase. Finally, cells physically divide in a
process called cytokinesis, which produces two daughter cells with identical chromosome set.
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1.3. The CLB2-cluster genes

Almost two decades ago, the sequencing of the S. cerevisiae genome and the

invention of DNA microarray technology have enabled the genome-wide

identification of cell-cycle regulated genes (Cho et al., 1998; Spellman et al.,

1998). Particularly, Spellman et al., identified about 800 transcripts showing

expression periodicity within the cell cycle, by combining three different

synchronization methods (alpha factor arrest, elutriation and a cdc15

temperature-sensitive mutant) with mathematical algorithms. They classified

these fluctuating genes by phasing and clustering. Phasing refers to classifying

genes according to when they reach peak expression with respect to cell cycle

stages (G1, S, G2, M, and M/G1 phases). For example, G1 cyclin CLN2 and M

cyclin CLB2 reach peak expression in G1 phase and M phase, respectively. This

method is useful to correlate the timing of expression of a gene to its cellular

function. Another way to group genes is using a clustering algorithm to identify

co-regulated genes. Common promoter elements can be identified by analyzing

the 5’ regions of genes in the same cluster, which provides an important

mechanism of how these genes can be regulated transcriptionally. In this way the

CLB2-cluster was discovered. The CLB2-cluster contains 35 genes that peak in

M phase and show strong co-regulation. The transcription of CLB2-cluster genes

can be strongly induced by CLB2 overexpression from the GAL promoter. Most

CLB2-cluster genes encode important mitotic proteins. Clb2 and Clb1 are B-type

cyclins that activate Cdk1 activity promoting entry into M-phase. Cdc20 is an

activator of APC/C that triggers the metaphase to anaphase transition. The

polo-like kinase Cdc5 has multiple roles in regulating mitotic progression, ranging

from mitotic entry, to cohesion cleavage and mitotic exit. Swi5 and Ace2 are two

closely related transcription factors that activate expression of genes in M/G1

and G1 phases.
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Gene name Main function in the cell cycle APC/C

substrate

CLB2 CDK regulatory subunit, G2/M phase

transition

Yes

CLB1 CDK regulatory subunit, G2/M phase

transition

Yes

CDC20 APC/C activator, anaphase transition Yes

CDC5 Polo-like kinase, exit from mitosis Yes

SWI5 Transcription factor of genes expressed at the

M/G1 phase boundary and in G1 phase

No

ACE2 Transcription factor of genes expressed at the

M/G1phase boundary and in G1 phase

No

ASE1 Microtubule-associated protein, spindle

elongation and stabilization

Yes

SPO12 Mitotic exit, activation of Cdc14 phosphatase Yes

BUD4 GTP-binding protein involved in septin ring

organization and axial bud site selection

No

HOF1 Mitotic cytokinesis No

RAX2 Maintenance of bud site selection during

budding

No

Table 1. A list of representative CLB2-cluster genes, their essential functions and whether
or not they are APC/C substrates.
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1.4. Transcriptional activation of CLB2-cluster genes at G2/M

Analysis of the promoter sequences reveals that most of CLB2-cluster genes

have a consensus binding motif for the transcription factors Mcm1 and Fkh2

(Althoefer et al., 1995; Lydall et al., 1991; Maher et al., 1995). The MADS box

transcriptional factor Mcm1 is required for the cell cycle-regulated periodicity of

these genes and forms a ternary complex with Fkh2 on the upstream activating

sequence (UAS) of CLB2-cluster genes. It was also shown that Fkh2 assembles

into a ternary complex with Mcm1 and was required for the transcriptional

periodicity (Kumar et al., 2000; Pic et al., 2000). Intriguingly, the Mcm1-Fkh2

complex occupies the promoter region of CLB2-cluster genes throughout the cell

cycle indicating that its binding to the promoter cannot explain the periodic

expression of these genes. Therefore, an additional transcriptional activator

should be involved and its own activity is subject to cell cycle regulation. Ndd1

was shown to be such a transcriptional activator for CLB2-cluster genes. NDD1

gene was discovered as a high-dosage suppressor of the cdc28-1N mutation,

which progresses through G1 and S phases normally but fails to undergo nuclear

division (Loy et al., 1999). As an essential gene, NDD1 is required for the normal

expression of CLB2, CLB1, and SWI5 (Loy et al., 1999). Although Ndd1 has no

DNA binding activity, it can associate with the promoter region of CLB2-cluster

genes in a Mcm1- and Fkh2-dependent manner, as determined by chromatin

immunoprecipitation (Koranda et al., 2000). Both mRNA and protein levels of

NDD1 are strictly regulated and fluctuate within the cell cycle. The transcriptional

factor Hcm1 activates NDD1 transcription during S phase (Pramila et al., 2006).

Ndd1 is an unstable protein, targeted for degradation by APC/CCdh1 and SCF in

mitosis (Edenberg et al., 2015; Sajman et al., 2015) and by APC/CAma1 in meiosis

(Okaz et al., 2012). Ndd1 is also regulated by post-translational modification.

Ndd1 is phosphorylated by Cdk1-Clb in a cell cycle-dependent manner and the

phosphorylation triggers interaction of Ndd1 with Fkh2 through its FHA domain

(Darieva et al., 2003; Reynolds et al., 2003). Either mutating the Cdk1

phosphorylation sites or the FHA domain abolishes the cell cycle-regulated
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transcription of CLB2-cluster genes. Additionally, Ndd1 can be phosphorylated by

Cdc5 and protein kinase C (Darieva et al., 2006; Darieva et al., 2012). Therefore,

the phosphorylation-dependent interaction of Ndd1 and Fkh2 is thought to be the

main mechanism regulating G2/M transcription of CLB2-cluster genes.

1.5. Transcriptional repression of CLB2-cluster genes at G1, S and M/G1

As discussed previously, the molecular mechanism of the positive regulation of

CLB2-cluster genes in M phase has been studied extensively. However, less is

known about how exactly the transcription of these genes is repressed in G1, S,

and M/G1. A hint was provided by Zhu et al. who assayed SWI5 transcript levels

in mitotic time course in both wild-type and fkh2∆ fkh1∆ double deletion strains

(Zhu et al., 2000). They found that SWI5 mRNA transcripts were undetectable in

G1 and S phase, increased markedly in G2/M phase, and then dropped in M/G1

phase in wild-type cells. In fkh2∆ fkh1∆ double deletion cells, however, the SWI5

transcripts remained at basal levels throughout the cell cycle. Interestingly, the

SWI5 mRNA levels at G1 and S phase were higher in fkh2∆ fkh1∆ cells than in

wild-type cells. Therefore, this indicates that Fkh2 and its redundant paralog

Fkh1 have a negative effect on SWI5 transcription. It seems they repress

expression of SWI5 gene at G1 and S phases. Another hint is that the inviability

of ndd1∆ mutants can be rescued by deletion of FKH2, which implies that the

sole essential function of Ndd1 is to antagonize the repressive activity of Fkh2.

Recently, it was proposed that Fkh2 acts as a scaffolding factor and dictates the

transcriptional timing of CLB2-cluster genes by recruiting transcriptional

activators and repressors. It was shown that Fkh2 recruits the chromatin

remodeling factor Isw2 (Sherriff et al., 2007), the histone deacetylase complex

Sin3-Rpd3 (Veis et al., 2007), and the histone deacetylase Sir2 (Linke et al.,

2013) to CLB2-cluster gene promoters to repress transcription. Additionally,

CLB2-cluster genes are repressed at G1, S, and M/G1 by modulating Ndd1

expression and activity. Firstly, NDD1 is an S phase gene (Pramila et al., 2006).

Secondly, Ndd1 protein is not active until Cdk1-Clb activity rises at G2/M
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(Darieva et al., 2003; Reynolds et al., 2003). Thirdly, Ndd1 is an unstable protein.

It is targeted for degradation by APC/CCdh1 at G1 (Sajman et al., 2015) and by

SCFGrr1 at M phase (Edenberg et al., 2015). Lastly, Rad53 restricts the activity of

Ndd1 in response to DNA damage (Edenberg et al., 2014; Yelamanchi et al.,

2014).

Figure 2. Regulation of CLB2-cluster gene expression. The transcription factors Mcm1 and
Fkh2 bind to the promoters of CLB2-cluster genes cooperatively throughout the cell cycle. During
G1, Fkh2 recruits the histone deacetylase Sin3 and the chromatin remodeler Isw2 to promoters
of CLB2-cluster genes, which makes the chromatin environment transcriptionally repressive.
During S phase, rising Cdk1 activity releases Sin3 and Isw2 from the chromatin, and the
transcription activator Ndd1 starts to be expressed. When phosphorylated by Clb-Cdk1, Ndd1
interacts with Fkh2 and activates transcription of CLB2-cluster genes including CLB2, CLB1, and
CDC5, which further increase phosphorylation of Ndd1 and thereby augment their own
expression.



14

1.6. The spindle assembly checkpoint

The major goal of the mitotic cell cycle is to distribute duplicated chromosomes

equally to daughter cells so that each cell inherits exactly the same copy of the

genetic information. Missegregation of chromosomes generates aneuploidy, a

major cause of birth defects and miscarriages and a hallmark of human cancers

(Fang and Zhang, 2011). Eukaryotic cells have developed two strategies to

protect the fidelity of chromosome segregation (Nasmyth, 2002). The first tool is

sister chromatids cohesion. Instead of being separated immediately after DNA

replication, sister chromatids are held together by the cohesin complex until all

sister kinetochores are attached to microtubules from opposite spindle poles,

which is also called bipolar attachment. Since the microtubule-kinetochore

attachment is not always correct, a second tool is in place to monitor the

attachment status. The spindle assembly checkpoint (SAC) monitors the

microtubule-kinetochore attachments and delays chromosome segregation in the

presence of erroneous attachments earning enough time for Ipl1/Aurora

kinase-dependent error correction (Foley and Kapoor, 2013; Musacchio, 2015).

The essential SAC components were initially identified in budding yeast S.

cerevisiae including Mad1, Mad2, Mad3 (BubR1), Bub1, Bub3, Mps1, Ipl1/Aurora

B, and Glc7/PP1.
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Proteins Essential features Main role in the SAC Binding partners
Aurara B
/Ipl1

S/T protein kinase Recruitment of Mps1, inhibition of
recruitmen of PP1

Other CPC subunits

Bub1 S/T protein kinase Kinetochore recruitment of BubR1:Bub3
and Cdc20

Bub3, Cdc20, P-MELT

Mad3/
BubR1

Pseudokinase Component of MCC Bub3, Mad2, Cdc20,
Bub1:Bub3 complex

Bub3 Phosphoaminoacid
adaptor

Component of MCC Bub1R1, Bub3,
P-MELT

Cdc20 -propeller, adaptor for
degrons

APC/C activator, component of MCC APC/C, BubR1, Mad2,
Bub1, Cyclin B,
Securin

Mad1 Coiled-coil rich Component of Mad1:C-Mad2 complex Mad2
Mad2 HORMA domain Component of Mad1:C-Mad2 complex Mad1 and Cdc20
Mps1 S/T protein kinase Phosphorylation of MELT repeats of Knl1 Ndc80 for kinetochore

recruitment
p31comet HORMA domain Dissociation of MCC by binding to C-Mad2,

capping of Mad1:C-Mad2 template
C-Mad2, Trip13

PP1/Glc7 S/T phosphatase SAC silencing, counteracting Mps1 and
Aurora B

Knl1

Table 2. List of SAC proteins and their essential functions (adapted from Musacchio, 2015).
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Figure 3. How the SAC couples chromosome segregation with kinetochore-microtubule
attachment. Chromosome segregation in anaphase is triggered by activation of APC/CCdc20.
APC/CCdc20 targets securin/Pds1 for degradation, which allows separase-dependent cleavage of
cohesin complexes and separation of sister chromatids. However, microtubule attachment is an
error prone process. The presence of unattached kinetochores activates the SAC by triggering
assembly of the mitotic checkpoint complex (MCC), which inhibits APC/C activity and
chromosome segregation until all kinetochores are attached to microtubule.
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1.7. The mitotic checkpoint complex (MCC)

The initiation of anaphase is triggered by the E3 ubiquitin ligase APC/C, which

targets cyclins and securin/Pds1 for proteasome-dependent degradation

(Cohen-Fix et al., 1996; Irniger et al., 1995; King et al., 1995; Sudakin et al., 1995;

Zachariae et al., 1998; Zachariae et al., 1996). The role of the SAC is to inhibit

APC/C activity as long as incorrectly attached chromosomes persist. To do this, a

diffusible inhibitor of APC/C is assembled on the unattached kinetochores, which

is known as the mitotic checkpoint complex or the MCC (Musacchio, 2015). The

MCC is a heterotetramer of Cdc20, Mad2, Mad3/BubR1, and Bub3 (Fraschini et

al., 2001; Hardwick et al., 2000; Sudakin et al., 2001). Mad3/BubR1 has an

N-terminal KEN box, a motif that is normally recognized by APC/CCdc20 as a

degron. Acting as a pseudo-substrate inhibitor, however, the KEN box of

Mad3/BubR1 competes with other substrates for Cdc20 binding (Burton and

Solomon, 2007; Sczaniecka et al., 2008). Structural analysis of the MCC

complex revealed that the MCC obstructs substrate recognition by Cdc20 and

displaces Cdc20 away from the APC/C subunit Apc10 to disrupt the formation of

a substrate-recognition site (Chao et al., 2012). Mad2 stabilizes the complex by

optimally positioning the KEN box of Mad3/BubR1 to bind Cdc20, while P31comet

competes with Mad3/BubR1 for Mad2 binding, thereby antagonizing the MCC

formation (Chao et al., 2012). Mad2 also directly interacts with and inhibits

Cdc20. Mad2 binds to Cdc20 at a site that also binds APC/C. Therefore, Mad2

competes with APC/C for Cdc20 binding. Accordingly, a Cdc20 mutant that

cannot bind to Mad2 abrogates SAC signaling (Hwang et al., 1998). Consistent

with the notion that Mad2 directly inhibits Cdc20, artificially tethering Mad2 to

Cdc20 arrests budding yeast cells in metaphase independently of other

checkpoint proteins (Lau and Murray, 2012). Additionally, APC/C- and

MCC-dependent ubiquitination drives the high turnover of Cdc20 during SAC

activation, which is required for the maintenance and high responsiveness of the

SAC (Foster and Morgan, 2012; Ge et al., 2009; Mansfeld et al., 2011; Nilsson et

al., 2008; Pan and Chen, 2004).
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1.8. MCC assembly at unattached kinetochores

The presence of unattached kinetochores leads to a hierarchical recruitment of

SAC proteins to the kinetochore, which assemble a catalysis platform generating

APC/CCdc20 inhibitors (Foley and Kapoor, 2013). The upstream event in the

signaling cascade is the recruitment of Mps1, resulting in phosphorylation of the

kinetochore protein Spc105/Knl1 on its conserved MELT repeats, which serve as

kinetochore receptors for Bub1 and Bub3 (London et al., 2012; Primorac et al.,

2013; Shepperd et al., 2012; Yamagishi et al., 2012). The kinetochore-localized

Bub1-Bub3 complexes, in turn, recruit Mad2/Mad1 (Moyle et al., 2014).

Additionally, Mps1 can also phosphorylate Bub1, which is required for the

Bub1-Mad1 interaction (London and Biggins, 2014).

Figure 4. SAC activation at the kinetochore. The SAC signaling is established and amplified
through the hierarchical recruitment of various SAC proteins. Unattached kinetochores recruit the
SAC kinase Mps1, which phosphorylates the kinetochore protein Knl1 (Spc105 in budding yeast)
on the conserved MELT domains. Multiple Phospho-MELT repeats further recruit SAC proteins
Bub3 and Bub1 to the kinetochore. Recruitment of Mad1-Mad2 dimers depends on Bub1 in
budding yeast and C. elegans. Kinetochore-bound Mad1-C-Mad2 dimers catalyze the switch of
O-Mad2 to C-Mad2. As the active form of Mad2 protein, C-Mad2 binds Cdc20 and triggers the
formation of the MCC complexes, which finally inhibit APC/C activity (Figure adapted from Foley
and Kapoor, 2013).
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1.9. Conformational switch of Mad2, and the template model

The most striking event of downstream SAC signaling is the conformational

switch of the Mad2 protein. The Mad2 protein adopts two distinct conformational

states (Luo et al., 2002; Luo et al., 2004). When unbound, Mad2 forms an open

conformation (O-Mad2) and when bound with Mad1 or Cdc20, it forms the active

closed conformation (C-Mad2). Only C-Mad2 can bind and inhibit Cdc20. Most

Mad2 molecules adopt an open conformation. The conformational change of

Mad2 entails large activation energy and is therefore extremely slow to the point

of being rate-limiting for SAC activation (Simonetta et al., 2009). The question is

how unattached kinetochore allows a fast conformational switch of Mad2. The

template model is proposed to solve this problem. Mad1 recruits C-Mad2 to

kinetochores lacking microtubule attachment. Acting as a template, kinetochore

Mad1:C-Mad2 binds cytosolic free O-Mad2, and catalyzes the conformational

switch of O-Mad2 to C-Mad2 (De Antoni et al., 2005; Simonetta et al., 2009).

Indeed, artificial targeting of Mad1 to kinetochore can recruit Mad2 to the

kinetochores and sustain a robust SAC response in cells with normal microtubule

attachments (Kuijt et al., 2014). Additionally, FRAP experiments identified two

distinctive pools of Mad2 on the kinetochores. One pool of Mad2 stably

associates with the kinetochores (Mad1:C-Mad2) while the other pool constantly

recycles on the kinetochores (cytosolic O-Mad2 converted to C-Mad2) (Howell et

al., 2004; Shah et al., 2004).

1.10. SAC silencing

When all sister chromatids have acquired bipolar attachment, the SAC has to be

completely silenced to allow activation of APC/CCdc20 and chromosome

segregation. As discussed earlier, the Mps1 kinase plays a pivotal role in SAC

signaling via phosphorylation-dependent recruitment of SAC proteins to the

kinetochore. Therefore, Mps1 activity has to be down-regulated to silence the

SAC. Ji et al., and Hiruma et al., showed that the Ndc80 complex is a kinetochore

receptor of Mps1, and microtubules compete with Mps1 for Ndc80 binding
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(Hiruma et al., 2015; Ji et al., 2015). Therefore, the microtubule-kinetochore

interaction weakens Mps1 activity. An alternative mechanism of Mps1 silencing is

provided by Aravamudhan et al., who proposed that end-on microtubule

attachments to the kinetochores physically separate Mps1 from its kinetochore

substrate Spc105/Knl1, hereby weakening downstream SAC signaling

(Aravamudhan et al., 2015). Glc7/PP1 plays a significant role in SAC silencing

(Pinsky et al., 2009; Rosenberg et al., 2011; Vanoosthuyse and Hardwick, 2009),

presumably by counteracting Mps1-dependent phosphorylation of Spc105/Knl1

(London et al., 2012). Proteins that already localize on the kinetochores when

microtubule attachment occurs have to be removed to prevent further generation

of the MCC complexes. In higher eukaryotes, the microtubule motor protein

dynein is responsible for stripping SAC proteins Mad1, Mad2, and Mps1 from the

kinetochores (Howell et al., 2001). MCC has to be disassembled to re-activate

APC/CCdc20. It was shown that checkpoint inactivation is an energy consuming

event involving APC/C dependent multi-ubiquitination of Cdc20, which leads to

disassembly of the MCC complex in human cells (Foster and Morgan, 2012;

Reddy et al., 2007; Uzunova et al., 2012). Additionally, p31comet antagonizes the

ability of Mad2 to inhibit APC/CCdc20 by structurally mimicking O-Mad2 and

blocking Mad1 assisted Mad2 conformational switch (Xia et al., 2004) (Yang et

al., 2007). In addition to blocking Cdc20-C-Mad2 interaction, p31comet also

disassociates Mad2 from MCC in an ATP-dependent manner (Eytan et al., 2014;

Teichner et al., 2011; Westhorpe et al., 2011). It has been shown that Cdk1-Clb

activity is required for SAC function (Kamenz and Hauf, 2014; Rattani et al., 2014;

Vazquez-Novelle et al., 2014). Therefore, the drop of Cdk1-Clb activity during

anaphase silences the SAC.

1.11. Functions of SAC proteins beyond APC/CCdc20 inhibition

1) Regulation of nuclear transport by the SAC protein Mad1

Nuclear pore complexes (NPC) provide selective barriers for the trafficking of

macromolecules between the nucleus and the cytoplasm (Wente and Rout,
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2010). It is thought that SAC proteins only localize to kinetochore during SAC

activation. However, the SAC proteins Mad1 and Mad2 were shown to associate

with NPCs during interphase (Campbell et al., 2001; Iouk et al., 2002).

Additionally, NPCs in interphase cells function as scaffolds for generating APC/C

inhibiting Mad1/Mad2 complexes (Lee et al., 2008; Rodriguez-Bravo et al., 2014).

Therefore, both kinetochores and NPCs emit “wait anaphase” signals that

preserve genomic integrity. Interestingly, the SAC protein Mad1 can also regulate

nuclear transport (Cairo et al., 2013b). Cairo et al. showed that

kinetochore-microtubule detachment arrests nuclear import mediated by the

transport factor Kap121 through a mechanism that requires Mad1 cycling

between unattched metaphase kinetochores and binding sites at the NPC (Cairo

et al., 2013a).

2) Cross-talk between the SAC and the DNA Damage Response (DDR)

DNA damage and chromosome missegragation pose continuous threats to

genomic integrity. In the eukaryotic cell cycle, genotoxic insults and

chromosome-microtubule attachment errors lead to activation of the DDR and

the SAC, respectively, which prevent cell-cycle progression. The two checkpoints

are thought to function independently. However, accumulating evidence suggests

that there are cross-talks between the SAC and the DDR. It was shown that the

important DDR regulators Chk1 kinase and the Fanconi anemia proteins are

required for optimal SAC signalling (Eliezer et al., 2014; Nalepa et al., 2013;

Zachos et al., 2007). DNA damaging agents even induce SAC activation in a

ATM and ATR kinases-dependent machanism (Kim and Burke, 2008). SAC

proteins are also required for proper DDR. A single double strand break (DSB)

not only trigers the DDR but also the SAC signalling, and Mad2 is required for the

prolonged arrest induced by DSB (Dotiwala et al., 2010). In mammalian oocytes,

DNA damage also induces meiotic arrest by activating the SAC (Collins et al.,

2015; Marangos et al., 2015). In summary, the DDR and the SAC function in

synergy to protect genomic integrity.
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1.12. Meiosis and the entry into meiosis I

Sexually reproducing organisms undergo meiosis to produce haploid gametes,

which include sperms and eggs in multi-cellular organisms and spores in the

unicellular yeast. In higher eukaryotes, meiosis is triggered by a hormonal signal

(Bowles and Koopman, 2010). In yeast, however, meiosis is triggered in the

absence of a fermentable carbon source and nitrogen (van Werven and Amon,

2011). Meiosis begins with one round of DNA replication, thus producing two

sister chromatids for the maternal and two sister chromatids for the paternal copy

of each chromosome. These four chromatids are then distributed into four

different nuclei through two consecutive nuclear divisions, called meiosis I and

meiosis II (Figure 5). Homologous maternal and paternal chromosomes must

segregate in opposite directions at meiosis I. Sister chromatids are then

segregated at meiosis II, which leads to the formation of haploid nuclei

(Petronczki et al., 2003). The initiation of DNA replication in meiosis requires not

only Cdk1 but also the meiosis-specific kinase Ime2 (Dirick et al., 1998). Ime2

activity leads to the degradation of Cdk1-inhibitor Sic1, which allows Cdk1 bound

with Clb5 and Clb6 to activate DNA replication (Benjamin et al., 2003). At the end

of the meiotic S-phase, sister chromatids are held together by cohesin. The

meiotic form of the complex contains the Rec8 subunit, instead of the mitotic

subunit Scc1.

Although entry into M phase is universally driven by Cdk1 bound to cyclin B

(Cdk1-Clb), the timing of this event differs dramatically in mitosis and meiosis.

Mitotic cells activate Cdk1-Clb shortly after S phase, whereas meiotic cells

activate Cdk1-Clb after a long prophase during which homologous chromosomes

undergo recombination. Mitotic and meiotic M phases in yeast are initiated by

two different transcription factors. Mitotic cells enter M phase by activating the

transcriptional factor Ndd1 (Loy et al., 1999), whereas meiotic cells enter M

phase by activating Ndt80, a meiosis-specific transcription factor that triggers

spindle formation by promoting the accumulation of M-phase cyclins Clb1 and

Clb4 and the polo kinase Cdc5 (Chu and Herskowitz, 1998; Sourirajan and
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Lichten, 2008). Abrupt accumulation of Ndt80 at exit from prophase I is regulated

by two positive feedback loops; the NDT80 gene is activated by itself and is

repressed by Sum1, which is inhibited, in turn, by the Cdk1 activity that results

from Ndt80’s appearance (Pak and Segall, 2002; Shin et al., 2010). In the

presence of double strand breaks, however, accumulation of Ndt80 is blocked by

the meiotic recombination checkpoint (RC) (Tung et al., 2000). Since mitotic and

meiotic factors can both trigger entry into M phase, how activation of mitotic

factor Ndd1 is prevented in meiosis has been elusive. Recently, Okaz et al.

showed that APC/CAma1 suppresses mitotic cell-cycle controls during prophase I

by triggering the degradation of Ndd1, M phase cyclins, and Cdc5 (Okaz et al.,

2012). This is essential for an extended prophase I that is controlled by the RC

and for proper homolog segregation at meiosis I. Mathematical modeling in that

study also supports a crucial role for APC/CAma1 in the irreversible transition from

prophase I to metaphase I.
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Figure 5. Chromosome segregation in meiosis
During pre-meiotic DNA replication, cohesin containing the meiosis-specific Rec8 subunit is
loaded on chromatin, which is followed by the segregation of homologous chromosomes in
meiosis I and the disjunction of sister chromatids in meiosis II. In prophase I, reciprocal
recombination between homologous non-sister chromatids creates crossovers (also called
chiasmata), which link maternal and paternal chromosomes through sister chromatid cohesion on
chromosomal arms. In metaphase I, monopolar attachment of sister kintetochores ensures that
maternal and paternal centromeres are pulled to opposite spindle poles. Cleavage of Rec8 on
chromosome arms at the onset of anaphase I triggers segregation of homologs. Cohesion
around centromeres is protected from cleavage in meiosis I, which is required for bipolar
attachment of sister kinetochores in metaphase II. Cleavage of centromeric cohesion finally
triggers segregation of sister chormatids and the generation of haploid gametes (Okaz, 2010).
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1.13. Aim of this study

Spindle formation and accumulation of M-phase proteins in meiotic ndt80∆

ama1∆ cells are triggered by the mitotic transcriptional activator Ndd1 (Okaz et

al., 2012). Moreover, these cells accumulate B-type cyclins Clb4, Clb1, and

Clb2 in two waves, which resembles mitotic cells (Fitch et al., 1992; Richardson

et al., 1992). Interestingly, however, although meiotic ndt80∆ ama1∆ cells enter a

high-kinase state, these cells fail to disassemble spindles, to degrade Pds1 and

M-phase proteins and to undergo nuclear divisions (Okaz et al., 2012). Since the

high-kinase state normally activates APC/CCdc20, the metaphase I arrest of these

cells suggests that APC/CCdc20 is somehow inhibited. This thesis work began with

exploring strategies to activate APC/CCdc20 and anaphase of meiotic ndt80∆

ama1∆ cells. We tried to initiate anaphase of ndt80∆ ama1∆ cells by deleting

MAD2, SWE1 and RAD9, which are capable of inducing an arrest at metaphase.

However, none of these strategies worked. Nevertheless, we discovered a

surprising phenotype of ndt80∆ ama1∆ cells lacking MAD2. These cells failed to

accumulate key M-phase proteins. The SAC protects genomic stability by

inducing a mitotic arrest in the presence of chromosome attachment errors by

inhibiting APC/C-dependent degradation. However, it is not clear whether the

SAC also regulates the expression of these M-phase proteins. If it is the case,

the SAC would be a master regulator of M-phase, regulating both gene

expression and degradation of key M-phase proteins. Considering the significant

conceptual importance of this possibility, we decided to investigate how the SAC

regulates M-phase gene expression. Therefore, this thesis presents results

testing this hypothesis by using meiotic ndt80∆ ama1∆ cells as an experimental

system.

1.14. Contribution

I carried out all the experiments described in this thesis.
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2. Results

2.1. SAC genes are required for accumulation of CLB2-cluster proteins in

ndt80∆ ama1∆ cells

Spindle formation and accumulation of M-phase proteins in meiotic ndt80∆

ama1∆ cells are triggered by the mitotic transcriptional activator Ndd1 (Okaz et

al., 2012). Moreover, these cells accumulate B-type cyclins Clb4, Clb1, and Clb2

in two waves, which resembles mitotic cells (Fitch et al., 1992; Richardson et al.,

1992). Interestingly, however, although meiotic ndt80∆ ama1∆ cells enter high

kinase state, they fail to disassemble spindles, degrade Pds1 and M phase

proteins and fail to undergo nuclear division (Okaz et al., 2012). Since the high

kinase state normally activates APC/CCdc20, the metaphase I arrest of these cells

suggests that APC/CCdc20 is somehow inhibited. The SAC is an established

inhibitor of APC/CCdc20 (Musacchio, 2015). Therefore, we investigated whether

silencing the SAC would allow ndt80 ama1 cells to activate APC/CCdc20 and to

enter anaphase. MAD2, MAD1, MAD3, BUB1, BUB3, and MPS1 are all essential

genes for SAC activity in S. cerevisiae (Musacchio, 2015). We observed that

deletion of the MAD2 gene did not lead to degradation of Pds1 or nuclear division

in ndt80 ama1 cells (Figures 6A and 6B). Deleting the other essential SAC

genes MAD1, MAD3, and BUB1 or inhibiting the Mps1 kinase activity did not

allow Pds1 degradation or nuclear division in ndt80 ama1 cells either (Figures

7A, 7B, 8A, 8B, 9A, 9B and 10A, 10B,). Taken together, these results showed

that the SAC was not responsible for inhibiting APC/CCdc20 activity in ndt80 

ama1 cells. Unexpectedly, however, whereas CLB2-cluster proteins Clb1, Clb2,

Cdc20, Cdc5, and Swi5 accumulated at a high level after 6 hours into meiosis in

ndt80 ama1 cells, they accumulated at a much lower level in cells lacking

MAD2 (Figure 6A). This effect was specific as the S-phase protein Dbf4 and the

M-phase proteins Clb4, Cin8, Kip1, which are not CLB2-cluster proteins,

accumulated normally in cells either having or lacking MAD2 (Figure 6A).
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Additionally, the meiotic specific proteins Rec8, Ime2, and Spo13 also

accumulated normally (Figure 6A), showing that the phenotype was not due to

poor induction of meiosis in mad2 ndt80 ama1 cells. A similar phenotype was

observed in ndt80 ama1 cells lacking MAD1 or BUB1 gene or upon Mps1

inhibition. In these cells, CLB2-cluster proteins were significantly down regulated

while other proteins were largely unaffected (Figures 7A, 8A, 9A). Interestingly, a

milder phenotype was observed in mad3 cells, in which Clb1, Clb2, Swi5, and

Cdc5 but not Cdc20 were strongly down regulated (Figure 10A). The slightly

different phenotype of mad3 and mad2 was consistent with the fact that Mad2

and Mad3 inhibited APC/C activity either cooperatively or independently (Burton

and Solomon, 2007; Izawa and Pines, 2012; Lau and Murray, 2012). Taken

together, these results suggested that the SAC was required for accumulation of

CLB2-cluster proteins in meiotic ndt80 ama1 cells.
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Figure 6. Deletion of MAD2 reduces the accumulation of CLB2-cluster proteins and
spindle formation in ndt80∆ ama1∆ cells. Meiosis was induced in synchronized cultures
of ndt80∆ ama1∆ (Z20094) and ndt80∆ ama1∆ mad2∆ (Z20225) cells. After transfer to
sporulation medium (SPM), samples for immunofluorescence and TCA protein extraction
were collected every 2 hours. (A) Immunoblotting of protein levels. C means samples from
proliferating cells. (B) Quantification of meiotic progression by immunofluorescence
detection of Pds1-myc18, spindles (α-tubulin), and divided nuclei (DAPI) in fixed cells.
Percentage of cells per time point is shown. (C) Representative immunostained cells of
selected time points. Percentages of cells represented by the image. Scale bar, 5 μm.
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Figure 7. Deletion of MAD1 reduces the accumulation of CLB2-cluster proteins and
spindle formation in ndt80∆ ama1∆ cells. Meiosis was induced in synchronized cultures of
ndt80∆ ama1∆ (Z20094) and ndt80∆ ama1∆ mad1∆ (Z20488) cells. After transfer to sporulation
medium (SPM), samples for immunofluorescence and TCA protein extraction were collected
every 2 hours. (A) Immunoblot detection of protein levels during the time course. Cc means
samples from proliferating cells. (B) Quantification of meiotic progression by immunofluorescence
detection of Pds1-myc18, spindles (α-tubulin), and divided nuclei (DAPI) in fixed cells.
Percentages of cells per time point is shown.
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Figure 8. Inhibition of Mps1 kinase activity reduces the accumulation of CLB2-cluster
proteins and spindle formation in ndt80∆ ama1∆ cells. Meiosis was induced in synchronized
cultures of ndt80∆ ama1∆ (Z19545) and ndt80∆ ama1∆ mps1-as1 (Z20948) cells. After transfer
to SPM, 10 M 1NM-PP1 was added to the culture at 1 hour, 6 hours or 8 hours after induction of
meiosis as indicated, Samples for immunofluorescence and TCA protein extraction were
collected every 2 hours. (A) Immunoblot detection of protein levels during the time course. Cc
means samples from proliferating cells. (B) Quantification of meiotic progression by
immunofluorescence detection of spindles (α-tubulin), and divided nuclei (DAPI) in fixed cells.
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Figure 9. Deletion of BUB1 reduces the accumulation of CLB2-cluster proteins in ndt80∆
ama1∆ cells. Meiosis was induced in synchronized cultures of ndt80∆ ama1∆ (Z20094) and
ndt80∆ ama1∆ bub1∆ (Z21546) cells. After transfer to SPM, samples for immunofluorescence
and TCA protein extraction were collected every 2 hours. (A) Immunoblot detection of protein
levels during the time course. Cc means samples from proliferating cells. (B) Quantification of
meiotic progression by immunofluorescence detection of Pds1-myc18, spindles (α-tubulin), and
divided nuclei (DAPI) in fixed cells. Percentages of cells per time point is shown.
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Figure 10. Deletion of MAD3 reduces the accumulation of CLB2-cluster proteins in ndt80∆
ama1∆ cells. Meiosis was induced in synchronized cultures of ndt80∆ ama1∆ (Z20094) and
ndt80∆ ama1∆ mad3∆ (Z20818) cells. After transfer to SPM, samples for immunofluorescence
microscopy and TCA protein extraction were collected every 2 hours. (A) Immunoblot detection of
protein levels during the time course. Cc means sample from proliferating cells. (B) Quantification
of meiotic progression by immunofluorescence detection of Pds1-myc18, spindles (α-tubulin),
and divided nuclei (DAPI) in fixed cells. Percentages of cells per time point is shown.
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2.2. Down-regulation of CLB2-cluster proteins in cells lacking MAD2 is not

due to APC/C dependent protein degradation in the absence of the SAC.

To investigate why the SAC was required for the timely accumulation of

CLB2-cluster proteins in ndt80  ama1  cells, we hypothesized that APC/C

became hyperactive and thus prevented the accumulation of CLB2-cluster

proteins by targeting them to proteasome-dependent degradation when

individual SAC genes were deleted. To test this hypothesis, we sought to test

whether inactivating APC/C activity would allow accumulation of CLB2-cluster

proteins in mad2 ndt80 ama1 cells. APC/C is an essential ubiquitin E3 ligase

containing over a dozen of subunits, which assemble as a 1.5 MDa complex

(Peters, 2006). The activity of APC/C strictly relies on its essential co-activators,

Cdc20 and Cdh1 in mitotic cells and Ama1 in meiotic cells, which are required for

substrate recognition. Therefore, one can use conditional mutants of either

APC/C subunits or co-activators to study the loss of function phenotype of

APC/C.

Firstly we utilized a mutant that expressed CDC20 from a mitosis specific

promoter (PHSL1-CDC20). The Cdc20 protein was depleted so that APC/CCdc20

was presumably not active. However, the accumulation of CLB2-cluster proteins

was not restored in PHSL1-CDC20 mad2 ndt80 ama1 cells (Figure 11A). One

possibility was that although the level of Cdc20 was below the detection limit of

western blotting technique in PHSL1-CDC20 cells, trace level of Cdc20 were still

active enough to prevent the accumulation of CLB2-cluster proteins. To address

this possibility, we took advantage of cdc20-3 (Shirayama et al., 1998), a

temperature-sensitive allele of CDC20 that offered temperature-dependent

conditional regulation of Cdc20 activity. cdc20-3 mad2 ndt80 ama1 cells

were maintained at 25°C to allow normal growth. 2 hours after induction of

meiosis, the temperature was shifted to 34°C to inactivate Cdc20 activity.

However, CLB2-cluster proteins were still significantly downregulated in cdc20-3

mad2 ndt80 ama1 cells (Figure 12A). Together, the PHSL1-CDC20 and the

cdc20-3 experiments suggested that APC/CCdc20 activity was not responsible for
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the low level of CLB2-cluster proteins in mad2 ndt80 ama1 cells.

Figure 11. Depletion of CDC20 does not restore accumulation of CLB2-cluster proteins in
ndt80 ama1 mad2 cells. Meiosis was induced in synchronized cultures of ndt80∆ ama1∆
(Z20094), ndt80∆ ama1∆ mad2∆ (Z20225) and PHSL1-CDC20 ndt80∆ ama1∆ mad2∆ cells
(Z21076). After transfer to SPM, samples for immunofluorescence and TCA protein extraction
were collected every 2 hours. (A) Immunoblot detection of protein levels during the time course.
Cc means samples from proliferating cells. (B) Quantification of meiotic progression by
immunofluorescence detection of Pds1-myc18, spindles (α-tubulin), and divided nuclei (DAPI) in
fixed cells. Percentages of cells per time point is shown.



35

Figure 12. Inhibition of Cdc20 activity does not restore accumulation of CLB2-cluster
proteins in ndt80 ama1 mad2 cells. Meiosis was induced in synchronized cultures of
ndt80∆ ama1∆ (Z20094), ndt80∆ ama1∆ mad2∆ (Z20225) and cdc20-3 ndt80∆ ama1∆ mad2∆
cells (Z21979) at 25°C. Temperature of the culture was shifted to 34°C 1 hour after transfer to
SPM, and samples for immunofluorescence and TCA protein extraction were collected every 2
hours. (A) Immunoblot detection of protein levels during the time course. Cc means samples from
proliferating cells. (B) Quantification of meiotic progression by immunofluorescence detection of
Pds1-myc18, spindles (α-tubulin), and divided nuclei (DAPI) in fixed cells. Percentage of cells per
time point is shown.
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One might argue that depletion and temperature-sensitive mutants both have

limitations in studying protein function in meiotic yeast cells. Depletion might not

completely make the target protein disappear and the meiotic process is

temperature sensitive itself, and thus might be influenced by temperature shift.

Therefore, we sought to use other methods to confirm our results. APC/CCdh1 is

active when Cdk1 activity is low. Therefore, although APC/CCdh1 is not the primary

target of the SAC, it is possible that APC/CCdch1 becomes hyperactive and

degrades CLB2-cluster proteins in mad2 ndt80 ama1 cells. It has been

difficult to study the function of Cdh1 in meiosis because of slow growth of cdh1

cells and lack of conditional mutants. To address these two problems, we

decided to inactivate activity of APC core enzyme using the newly developed

anchor away (AA) technique (Haruki et al., 2008). The AA technique takes

advantage of rapamycin-dependent dimerization of FKBP12 and FRB domain of

mTOR. The protein of interest tagged with FRB domain would interact with the

ribosome subunit Rpl13a tagged with FKBP12 and move from the nucleus to the

cytoplasm and thus fail to exert its nuclear function in the presence of rapamycin.

To inactivate APC/C enzyme activity, we added a FRB tag to Apc2, which forms

the catalytic core together with Apc11. We asked whether the apc2-AA mutant

would stabilize APC/C substrates upon adding rapamycin in normal meiosis. In

control strains having wild-type APC2 and RPL13A, APC/C substrates Pds1,

Dbf4, Cdc5, Clb4, Ndt80, and Cdc20 accumulated in meiosis I and then became

degraded and finally disappeared at the end of meiosis II because of activation of

APC/C (Figures 13A, B). By contrast, in cells lacking two of the APC/C

co-activator Ama1 and Cdc20, all APC/C substrates accumulated at much higher

level in meiosis I and remained stable in meiosis II suggesting that APC/C activity

was completely inhibited. In apc2-AA strain (APC2-FRB, RPL13A-FKBP12), all

APC/C substrates accumulated at a much higher level in meiosis I than WT

strain after we added rapamycin to the culture at 1 hour into meiosis. Although

APC/C substrates persisted longer in apc2-AA strain, they appeared to be

degraded from time point 10, 2 hours later than in wild-type cells. The activation
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of APC in the end of the time course might be due to high accumulation of Cdc20

in apc2-AA strain, which was consistent with other observations that APC/C

targets Cdc20 for degradation (Foster and Morgan, 2012; Ge et al., 2009;

Mansfeld et al., 2011; Nilsson et al., 2008; Pan and Chen, 2004). Moreover, the

effect indeed depended on dimerization of Apc2-FRB with Rpl13a-FKBP12

because strain having APC2-FRB and wild-type RPL13A did not stabilize APC/C

substrates when rapamycin was added (Figures 13A, B). Our results showed

that anchoring away Apc2 was an effective and fast way to inhibit APC/C activity

in meiosis I.

Having the tool in hand, we asked whether inhibiting APC/C activity would allow

the accumulation of CLB2-cluster proteins in mad2 cells. Meiotic ndt80 cells

are known to arrest in prophase (Xu et al., 1995). Deleting AMA1 or inhibiting

APC/C activity would allow ndt80  cells to produce M-phase proteins, to

assemble bipolar spindles and eventually to arrest in a metaphase I-like state

(Okaz et al., 2012). ndt80 cells accumulated Pds1 but failed to accumulate

CLB2-cluster proteins and to assemble spindles showing that APC/C was active

in these cells. In the apc2-AA strain, however, cells accumulated CLB2-cluster

proteins and formed spindles from time-point 10 onward showing APC/C activity

was inhibited. And deleting MAD2 in APC2-AA cells downregulated CLB2-cluster

proteins even in the absence of APC/C activity. This suggested that Mad2 was

required for accumulation of CLB2-cluster proteins independent of APC/C activity

(Figures 14A, B).
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Figure 13. Anchoring-away the APC/C subunit Apc2 inhibits the APC/C-dependent
degradation in meiosis. Meiosis was induced in synchronized cultures of WT (Z23831),
APC2-FRB (Z23832), APC2-FRB RPL13A-FKBP12 (Z23829) and PSCC1-CDC20 ama1∆ (Z27793)
cells. 1 hour after transfer to SPM, 10g/ml rapamycin was added to the culture and samples for
immunofluorescence and TCA protein extraction were collected every 2 hours. (A) Immunoblot
detection of protein levels during the time course. Cc means samples from proliferating cells. (B)
Quantification of meiotic progression by immunofluorescence detection of Pds1-myc18, spindles
(α-tubulin), and divided nuclei (DAPI) in fixed cells. Percentages of cells per time point are shown.
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Figure 14. Anchoring-away the APC/C subunit Apc2 does not restore the accumulation of
CLB2-cluster proteins in ndt80 mad2 cells. Meiosis was induced in synchronized cultures of
APC2-FRB ndt80∆ (Z25473), RPL13A-FKBP12 APC2-FRB ndt80∆ (Z25475), mad2∆ APC2-FRB
ndt80∆ (Z25474) and APC2-FRB RPL13A-FKBP12 mad2∆ ndt80∆ (Z25476) cells. 1 hour after
transfer to SPM, 10g/ml rapamycin was added to the culture and samples for
immunofluorescence and TCA protein extraction were collected every 2 hours. (A) Immunoblot
detection of protein levels during the time course. Cc means samples from proliferating cells. (B)
Quantification of meiotic progression by immunofluorescence detection of Pds1-myc18, spindles
(α-tubulin), and divided nuclei (DAPI) in fixed cells. Percentages of cells per time point are shown.
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If CLB2-cluster proteins were degraded as a result of hyperactive APC/C in

mad2 ndt80 ama1 cells, the stability of these proteins should be significantly

reduced. To measure the half-life of CLB2-cluster proteins, we added

cycloheximide to meiotic cultures 8 hours after induction of meiosis. To make

sure the starting amounts of proteins in MAD2 and mad2 cells are equal, we

expressed either CLB1 or CLB2 from the DMC1 promoter. The stability of the

Clb1 proteins in MAD2 ndt80 ama1 strain was roughly 20 minutes (Figure

15A). Mutating the D-box and the KEN-box of Clb1 (Clb1-ND) completely

stabilized the proteins, showing that the degradation was APC/C dependent.

Unexpectedly, however, Clb1 in mad2 ndt80 ama1 cells was even more

stable with a half-life of more than 80 minutes. Different from Clb1, Clb2 was

relatively stable in both MAD2 and mad2 strain (Figure 15B). Both experiments

suggested that protein stability of CLB2-cluster proteins was not reduced in the

mad2 ndt80 ama1 strain. Therefore, downregulation of these proteins was

not due to protein degradation.

The steady state level of a protein is determined by protein degradation and gene

expression. Our data show that the low levels of CLB2-cluster proteins in mad2

is not due to protein degradation. This prompted us to ask whether it was due to

reduced level of gene expression. If it was true that Mad2 was required for the

expression of CLB2-cluster genes, we would expect that expressing these genes

from a promoter that is not regulated by Mad2 would bypass the requirement of

Mad2 for the expression. To test this hypothesis, we expressed CLB1, CLB2 and

CDC5 from the DMC1 promoter, which is a meiosis specific promoter. Clb1 was

expressed at 2 hours into meiosis, when the DMC1 promoter is known to be

active. Clb1 was expressed at the same time and at the same level in mad2 as

in MAD2 cells (Figure 16A). Similarly, Clb2 and Cdc5 expressed from DMC1

promoter accumulated equally well in MAD2 and mad2 strains (Figures 16B, C).

These observations supported our hypothesis that downregulation of

CLB2-cluster proteins in mad2 cells was due to reduced expression rather than

degradation.
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Figure 15. Stability of Clb1 and Clb2 expressed from DMC1 promoter is not significantly
reduced in ndt80 ama1 cells lacking MAD2. Meiosis was induced in synchronized cultures.
8 hours after transfer to sporulation medium, 0.5mg/ml of cycloheximide was added to the culture
and samples for TCA protein extraction were collected 5 mins, 10 mins, 20 mins, 40 mins, and 80
mins after addition of cycloheximide. Immunoblot detection of protein levels during the time
course. ND is short for non-degradable version of the protein. (A) PDMC1-CLB1 ndt80∆ ama1∆
(Z21099), PDMC1-CLB1 ndt80∆ ama1∆ mad2∆ (Z21100), PDMC1-CLB1-ND ndt80∆ ama1∆ (Z21548)
and PDMC1-CLB1-ND ndt80∆ ama1∆ mad2∆ (Z21549) cells. (B) PDMC1-CLB2 ndt80∆ ama1∆
(Z21101), PDMC1-CLB2 ndt80∆ ama1∆ mad2∆ (Z21102), PDMC1-CLB2-ND ndt80∆ ama1∆ (Z21331)
and PDMC1-CLB2-ND ndt80∆ ama1∆ mad2∆ (Z21330) cells.
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Figure 16. Expression from the DMC1 promoter restores the level of CLB2-cluster proteins
in ndt80 ama1 cells lacking MAD2. Meiosis was induced in synchronized cultures. After
transfer to sporulation medium (SPM), samples for immunofluorescence and TCA protein
extraction were collected every 2 hours. Immunoblot detection of protein levels during the time
course. Cc means sample from proliferating cells. (A) PDMC1-CLB1 ndt80∆ ama1∆ (Z21099) and
PDMC1-CLB1 ndt80∆ ama1∆ mad2∆ (Z21100) cells. (B) PDMC1-CLB2 ndt80∆ ama1∆ (Z21101) and
PDMC1-CLB2 ndt80∆ ama1∆ mad2∆ (Z21102) cells. (C) PDMC1-CDC5 ndt80∆ ama1∆ (Z27605) and
PDMC1-CDC5 ndt80∆ ama1∆ mad2∆ (Z27608) cells.
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2.3. Loss of CLB2-cluster proteins in SAC mutants is not due to impaired

Clb-Cdk1 activity.

The transcription coactivator Ndd1 tightly regulates expression of CLB2-cluster

genes. Their expression is inhibited in the absence of Ndd1 at G1 and S phase.

When Ndd1 is produced and subsequently phosphorylated by Cdk1-Clb at G2/M

phase, it binds to Fkh2 and Mcm1 to form an active transcriptional activator

complex that activates expression of CLB2-cluster genes. We thought that the

activity of Ndd1 might be affected by deletion of the MAD2 gene. Therefore, we

investigated the level, the modification, and the nuclear localization of Ndd1 by

western blotting and immunofluorescence microscopy. We observed that in

MAD2 cells, Ndd1 was strongly induced and highly phosphorylated at 4 hours

when cells entered M-phase, and concomitantly all CLB2-cluster proteins started

to accumulate (Figure 17A). Surprisingly, although Ndd1 level was upregulated, it

was not phosphorylated at all in mad2  cells and, as a result, CLB2-cluster

proteins failed to accumulate (Figure 17A). However, nuclear localization of Ndd1

was not affected in mad2  cells. We observed around 60% of cells having

nuclear localization of Ndd1 at 4 hours in both strains (Figures 17B, C).

Phosphorylation of Ndd1 by Cdk1 plays an essential role in activating

CLB2-cluster gene transcription. The lack of Ndd1 phosphorylation in mad2 

strains therefore suggested that Cdk1 activity was low in these cells (Figures 17A,

B).
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Figure 17. Deletion of MAD2 reduces Ndd1 phosphorylation in ndt80 ama1 cells.
Meiosis was induced in synchronized cultures of ndt80∆ ama1∆ NDD1-HA3 FKH2-myc9
(Z21470) and ndt80∆ ama1∆ mad2∆ NDD1-HA3 FKH2-myc9 (Z21471) cells. After transfer
to sporulation medium (SPM), samples for immunofluorescence and TCA protein
extraction were collected every 2 hours. (A) Immunoblot detection of protein levels during
the time course. Cc means samples from proliferating cells. (B) Quantification of meiotic
progression by immunofluorescence detection of Ndd1-ha3, spindles (α-tubulin), and
divided nuclei (DAPI) in fixed cells. Percentage of cells per time point is shown. (C)
Representative immunostained cells of selected time point. Scale bar, 5 μm.
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Next, we asked why Clb-Cdk1 was not active in the absence of Mad2. The

activity of Cdk1 is tightly regulated to make sure it is active at the right time and

the right place. Cdk1 is phosphorylated and activated by Cdk1-activating kinase

1 (Cak1) (Espinoza et al., 1996; Kaldis et al., 1996). Binding to one of the cyclin

activators further activates Cdk1. The activity of Cdk1 during M-phase also

requires Cks1 (Tang and Reed, 1993). Cdk1 is inhibited by phosphorylation on its

tyrosine residue by Wee1/Swe1 (Lim et al., 1996; Sia et al., 1996). Sic1 binding

further inhibits Cdk1 (Schwob et al., 1994). We asked whether Mad2 was

required for any of these events. First, we investigated whether Mad2 was

required for interaction of Cdk1 with its M-phase activators Clb4 and Cks1 by

immunoprecipitation (IP) (Figure 18A). Clb4 or Cks1 was tagged with HA3

epitope to enable the IP process. Clb4-ha3 was immunoprecipitated by anti-HA

antibody with an equal efficiency in MAD2 and mad2 strains. Cdc28 (budding

yeast Cdk1) started to interact weakly with Clb4-ha3 from 2 hours, and the

interaction increased significantly from 4 hours, which was consistent with its role

in M-phase. Surprisingly, the level of Cdc28-Clb4 interaction was even higher in

mad2 strain, which might be due to less competition for Cdc28 binding from

other cyclins. We investigated the role of Mad2 on the interaction of Cdc28 and

Cks1 using the same strategy (Figure 18B). Both Cdc28 and Cks1 were

expressed from the beginning of the time course and the levels remained

constant in MAD2 strains. The level of Cks1 and Cdc28 proteins were equally

constant in mad2 although the level of CLB2-cluster proteins Clb1 and Cdc5

were significantly reduced. Cks1-ha3 was immunoprecipitated with equal

efficiency in both MAD2 and mad2  strains. Cdc28 interacted with Cks1

constitutively in MAD2 cells suggesting they were able to bind to each other

efficiently. However, the interaction was not affected by deleting MAD2. Cdc28

interacted with Cks1 strongly from the beginning until the end of the time course

in mad2, as robustly as in the MAD2 cells. Therefore, our results showed that

Mad2 was not required for assembly of the active Cdc28-Cks1-Clb4 complex.
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Figure 18. Deletion of MAD2 does not disrupt Clb4-Cks1-Cdc28 complex formation.
Meiosis was induced in synchronized cultures. After transfer to sporulation medium (SPM),
samples for immunoprecipitation were collected every 2 hours. Immunoblot detection of proteins
from anti-HA immunoprecipitates and whole cell extract. (A) ndt80∆ ama1∆ CLB4-HA3 (Z21872),
ndt80∆ ama1∆ mad2∆ CLB4-HA3 (Z21873) and ndt80∆ ama1∆ (Z20094) cells. (B) ndt80∆
ama1∆ CKS1-HA3 (Z26627), ndt80∆ ama1∆ mad2∆ CKS1-HA3 (Z26628) and ndt80∆ ama1∆
(Z20094) cells.
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Next, we asked whether Mad2 was required for the activating or inhibitory

phosphorylation of Cdc28. We detected Cdc28-pT and Cdc28-pY by western

blotting using monoclonal antibodies raised against these modifications (Figure

19). In MAD2 cells, we observed that the Cdc28-pT signal was constant

throughout the time course, which was consistent with the notion that the

responsible kinase Cak1 is constitutively active. The signal of Cdc28-pY only

became obvious from 4 hours into meiosis in MAD2 cells, likely due to the fact

the responsible kinase Swe1 was upregulated from 4 hours. The modifications of

Cdc28 in mad2 cells appeared similar compared with MAD2 cells as Cdc28-pT

being constant and Cdc28-pY being induced from 4 hours. Therefore, Mad2 was

not required for Cdc28 phosphorylation.

Sic1 is a cyclin-dependent kinase inhibitor (CKI) that regulates G1 to S phase

transition by inhibiting Cdk1 (Schwob et al., 1994). Upon entry into S-phase, Sic1

is degraded in a Cdk1 dependent manner to allow DNA replication (Verma et al.,

1997). We reasoned that if Mad2 was required for the degradation of Sic1, Sic1

should become stable and continually inhibit Cdk1 activity and prevent M-phase

entry of mad2 ndt80 ama1 cells. To investigate the requirement of Mad2 for

Sic1 stability, we blotted Sic1 protein level to check its stability. However, we

found that Sic1 appears to be degraded completely after 4 hours into meiosis

that corresponds to S-phase in both wild-type and mad2 strains (Figure 20).

Therefore, we concluded that Mad2 did not regulate Sic1 stability.
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Figure 19. Deletion of MAD2 does not affect phosphorylation of Cdc28. Meiosis was induced
in synchronized cultures of ndt80∆ ama1∆ (Z20094) and ndt80∆ ama1∆ mad2∆ (Z20225) cells.
After transfer to sporulation medium (SPM), samples for TCA protein extraction were collected
every 2 hours. Immunoblot detection of protein levels during the time course. Cc means samples
from proliferating cells.

Figure 20. Deletion of MAD2 does not stabilize Sic1. Meiosis was induced in synchronized
cultures of ndt80∆ ama1∆ SIC1-HA3 (Z22414) and ndt80∆ ama1∆ mad2∆ SIC1-HA3 (Z22416)
cells. After transfer to sporulation medium, samples for TCA protein extraction were collected
every 2 hours. Immunoblot detection of protein levels during the time course. Cc means samples
from proliferating cells.
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To further interrogate the hypothesis that Mad2 was required for Cdk1 activation,

we measured Clb4-Cdc28 activity in an in-vitro kinase assay using recombinant

histone H1 as a substrate. The reason we chose Clb4-Cdc28 instead of other

M-phase Cdk1 complexes was that Clb4 was the only M-phase cyclin that was

not downregulated in mad2 strains (Figure 6A). In MAD2 cells, we observed

that the intensity of histone H1 phosphorylation was low at 0 and 2 hours and

then suddenly increased by 7-fold at 4 hours (Figure 21). The change of

phosphorylation level was consistent with the protein level of Clb4. Meanwhile,

we did not observe any signal in the control experiment, in which Clb4 was not

purified, showing the assay was specific. Histone H1 phosphorylation was

initially low but increased significantly from 4 hours onward in mad2  cells,

reaching a level that was comparable to that of the MAD2 cells. In summary,

in-vitro kinase assays showed that Mad2 was not required for activation of Clb4

associated Cdk1 activity.

Taken together, both in-vivo and in-vitro evidence did not support the hypothesis

that the SAC protein Mad2 regulates Cdk1 activity. Phosphorylation of Cdk1

substrates is balanced by Cdk1 activity and counteracting phosphatase activity

(Wurzenberger and Gerlich, 2011) The phosphatase Cdc14 plays a pivotal role in

mitotic exit by reversing phosphorylation of Cdk1 substrates (Visintin et al., 1998).

Cdc14 activity is tightly regulated by its cellular localization. Before anaphase,

inactive Cdc14 is sequestered in the nucleolar RENT (regulator of nucleolar

silencing and telophase) complex. At the metaphase-to-anaphase transition,

Cdc14 becomes released and active by the FEAR and MEN networks

(Stegmeier and Amon, 2004). It might be possible that Cdc14 was prematurely

active so that Ndd1 phosphorylation level was low in mad2 strain. Therefore, we

checked the localization of Cdc14 as an indicator of its activity by

immunofluorescence microscopy. In ndt80 ama1 strain, we observed around

98 % of cells had nuclear staining of Cdc14, which showed that in the majority of

cells Cdc14 was inactive (Figure 22A, B). This was consistent with the fact that

ndt80 ama1 cells arrest in metaphase and Cdc14 is not active until metaphase
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to anaphase transition. Similarly, in mad2  strain around 98% of cells had

nuclear staining of Cdc14 throughout the time course arguing against the

possibility that Cdc14 was active (Figure 22A, B). Therefore, deletion of MAD2

did not affect activation of either Cdk1 kinase or Cdc14 phosphatase.

Figure 21. Deletion of MAD2 does not reduce Clb4-Cdk1 kinase activity. Meiosis was
induced in synchronized cultures of ndt80∆ ama1∆ CLB4-HA3 (Z21872), ndt80∆ ama1∆ mad2∆
CLB4-HA3 (Z21873) and ndt80∆ ama1∆ (Z20094) cells. After transfer to sporulation medium,
samples for immunoprecipitation were collected every 2 hours. Immunoprecipitation was
performed using an anti-HA antibody. Immunoprecipitates were then subject to radioactive kinase
assay using recombinant histone H1 as substrate. Kinase activity was measured by
autoradiography. Coomassie staining of histone protein and immunoblot detection of the whole
cell extract are also shown.
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Figure 22. Deletion of MAD2 does not affect Cdc14 localization in the nucleus. Meiosis was
induced in synchronized cultures of ndt80∆ ama1∆ (Z20094) and ndt80∆ ama1∆ mad2∆ (Z20225)
cells. After transfer to sporulation medium (SPM), samples for immunofluorescence were
collected every 2 hours. (A) Quantification of meiotic progression by immunofluorescence
detection of Cdc14, spindles (α-tubulin), and divided nuclei (DAPI) in fixed cells. Percentage of
cells per time point is shown. (B) Representative immunostained cells of selected time point.
Percentages of cells having nucleolar Cdc14 signal is shown. Scale bar, 5 μm.
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2.4. The SAC is required for transcription of CLB2-cluster genes

independent of APC/C activity

Steady state protein levels are determined by both proteolysis and gene

expression. Our data showed that the SAC inactivation prevented the

accumulation of CLB2-cluster proteins independent of APC/C-mediated

proteolysis. Moreover, the defect was not due to reduced Cdk1-Clb activity.

Therefore, we reasoned that Mad2 might directly regulate the Ndd1-dependent

transcription of CLB2-cluster genes. To test this possibility, we took advantage of

a mutant strain (ama1 PSCC1-cdc20), in which AMA1 was deleted and CDC20

was depleted. These cells entered meiotic M phase by producing both Ndd1 and

Ndt80 (Figures 23A and 24A). Because they have different target genes, one can

distinguish the differential regulation of their activity. Consistent with our previous

observation (Figures 18-21), deletion of MAD2 or MAD1 gene did not reduce

Cdk1-Clb activity judged by spindle formation or Ndd1 phosphorylation (Figures

23 and 24). Therefore, the defects of spindle formation and Ndd1

phosphorylation in ndt80 ama1 cells were most likely indirect effects of SAC

silencing. Strikingly, deleting MAD2 gene or MAD1 gene prevented the

accumulation of Ndd1 target proteins Ace2-myc18, Swi5 and Clb2, whereas

accumulation of Ndt80 target proteins Cdc5 and Clb1 and meiotic specific

proteins Rec8 were not affected (Figures 23A and 24A). This suggests that SAC

proteins Mad1 and Mad2 are specifically required for Ndd1 dependent

expression of CLB2-cluster genes.

To confirm our hypothesis, we determined transcription level of CLB2-cluster

genes by RT-qPCR (Figures 25 and 26). We observed that from 4 hours

(metaphase), RNA level of CLB2-cluster genes CDC5, CLB2, and SWI5

increased by 3 to 6 fold compared to the level in 0 hour (G1). On the contrary,

RNA level of these metaphase genes remained low throughout the whole time

course in mad2∆ cells (Figure 25). However, PDS1 and CLB4, which are not

CLB2-cluster genes, accumulated to comparable levels in both MAD2 and

mad2∆ cells. This showed Mad2 was indeed required for transcription of
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CLB2-cluster genes. To confirm this observation, we checked transcription of

CLB2-cluster genes in cells lacking another essential SAC gene MAD1 (Figure

26). Although transcription of CLB2-cluster genes was strongly induced in MAD1

cells, transcriptional up-regulation of these genes was completely lost in mad1∆

cells. This effect was specific for CLB2-cluster genes as transcription of the

S-phase gene PDS1 and the M-phase gene CLB4 were comparable between

MAD1 and mad1∆ cells (Figure 26). Then we asked whether the down-regulation

of gene expression of CLB2-cluster genes in SAC mutants was due to elevated

APC/C activity. We checked whether transcription was still reduced in SAC

mutant when APC/C activity was inhibited using the anchor-away technology as

described previously (Figure 14). Inhibiting APC/C activity by anchoring away

Apc2 (apc2-AA) allowed transcription of CLB2-cluster genes in

prophase-arrested ndt80∆ cells (Figure 27). However, deletion of MAD2

prevented the expression of these genes even when APC/C was inactivated in

apc2-AA strain. Therefore, down-regulation of gene expression in mad2∆ cells

was not due to APC/C activity. In summary, SAC is involved in regulating

CLB2-cluster gene expression independent of its canonical function, which is to

inhibit APC/C activity.

Mad2 was recently reported to directly associate with methylated H3K4 in in-vitro

GST pull-down assay (Schibler et al., 2016). Since H3K4me is a marker of active

gene transcription in all eukaryotes (Bernstein et al., 2002; Santos-Rosa et al.,

2002; Schneider et al., 2004; Schubeler et al., 2004), it suggests that Mad2 could

regulate gene expression by “reading” H3K4me marks on the histone. Therefore,

we sought to investigate whether Mad2 associated with histone H3 in vivo in

budding yeast cells. Indeed, we observed an interaction between H3 histone and

Mad2 although the interaction was weak (Figure 28A). The interaction was

regulated because histone H3 and Mad2 started to associate only from 3 hours

onward although their protein levels were already high at the starting point of the

experiment. Additionally, we observed that the SAC protein Mad1 also interacted

with histone H3 and the interaction only appeared strongly from 6 hours (Figure
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28B). After we showed that SAC proteins Mad2 and Mad1 associated with

histone H3 in vivo, we asked whether binding to histone H3 was required for SAC

proteins to regulate gene expression. Mad2 was reported to binds to histone H3

in a conformation-dependent manner. Specifically, C-Mad2 binds to histone H3

much better than O-Mad2 in in-vitro GST pull-down assay (Schibler et al., 2016).

To confirm this observation in vivo, we took advantage of a Mad2 mutant that the

c-terminal tail (6 residues in the c-terminus) was deleted. Since the C-terminal

tail is required for Mad2 switching from open to closed form, mad2-∆C proteins

only adopt open conformation. Consistent with Schibler et. al, we observed that

histone H3 interacted better with wild type Mad2 proteins, which adopt both

closed and open conformations, than with mad2-∆C proteins (Figure 29A).

Additionally, the transcription of CLB2-cluster genes was completely blocked in

the mad2-∆C mutants (Figure 29B), suggesting that transcriptional regulation of

Mad2 depended on its interaction with histone proteins. In summary, our

experiments raise the possibility that the SAC regulates expression of

Clb2-cluster genes by associating with histones.
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Figure 23. Mad2 is required for optimal expression of Ndd1 target genes in ama1 
PSCC1-CDC20 cells. Meiosis was induced in synchronized cultures of ama1  PSCC1-CDC20
(Z28032) and mad2 ama1 PSCC1-CDC20 (Z27796) cells. After transfer to SPM, samples for
immunofluorescence and TCA protein extraction were collected every 2 hours. (A) Immunoblot
detection of protein levels during the time course. Cc means samples from proliferating cells. (B)
Quantification of meiotic progression by immunofluorescence detection of Pds1-myc18, spindles
(α-tubulin), and divided nuclei (DAPI) in fixed cells. Percentage of cells per time point is shown.
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Figure 24. Mad1 is required for optimal expression of Ndd1 target genes in ama1 
PSCC1-CDC20 cells. Meiosis was induced in synchronized cultures of ama1  PSCC1-CDC20
(Z29446) and mad1 ama1 PSCC1-CDC20 (Z29447) cells. After transfer to SPM, samples for
immunofluorescence and TCA protein extraction were collected every 2 hours. (A) Immunoblot
detection of protein levels during the time course. Cc means samples from proliferating cells. (B)
Quantification of meiotic progression by immunofluorescence detection of Pds1-myc18, spindles
(α-tubulin), and divided nuclei (DAPI) in fixed cells. Percentage of cells per time point is shown.
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Figure 25. Deletion of MAD2 reduces transcription of CLB2-cluster genes. Meiosis was
induced in synchronized cultures of ndt80∆ ama1∆ (Z20094) and ndt80∆ ama1∆ mad2∆ (Z20225)
cells. After transfer to SPM, samples for RNA extraction were collected every two hours. Total
RNA was converted to cDNA by reverse transcription. Transcription levels of selected genes were
measured by real-time PCR.

Figure 26. Deletion of MAD1 reduces transcription of CLB2-cluster genes. Meiosis was
induced in synchronized cultures of ndt80∆ ama1∆ (Z20094) and ndt80∆ ama1∆ mad1∆ (Z20488)
cells. After transfer to sporulation medium (SPM), samples for RNA extraction were collected
every two hours. Total RNA was converted to cDNA by reverse transcription. Transcription levels
of selected genes were measured by real-time PCR.
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Figure 27. Deletion of MAD2 reduces transcription of CLB2-cluster genes independent of
APC/C activity. Meiosis was induced in synchronized cultures of ndt80∆ (Z25473), ndt80∆
APC2-AA (Z25475) mad2∆ ndt80∆ (Z25474) and mad2∆ ndt80∆ APC2-AA (Z25476) cells. After
transfer to SPM, samples for RNA extraction were collected every two hours. 10 M of rapamycin
was added to each cell culture to inhibit APC/C nuclear activity after 1 hour into meiosis. Total
RNA was converted to cDNA by reverse transcription. Transcription levels of selected genes were
measured by real-time PCR.

Figure 28. SAC proteins interact with histone H3. Meiosis was induced in synchronized
cultures. After transfer to SPM, samples for immunoprecipitation were collected at indicated time
points. Immunoblot detection of proteins from anti-HA immunoprecipites and whole cell extract
are shown. (A) ndt80∆ ama1∆ HHT1-HA3 MAD2-myc9 (Z29955) and ndt80∆ ama1∆
MAD2-myc9 (Z29956) cells (B) ndt80∆ ama1∆ HHT1-HA3 (Z29955) and ndt80∆ ama1∆ (Z29956)
cells.
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Figure 29. Deletion of Mad2 C-terminal tail reduces histone binding and transcription of
CLB2-cluster genes. Meiosis was induced in synchronized cultures of ndt80∆ ama1∆
HHT1-HA3 MAD2-myc9 (Z29955), ndt80∆ ama1∆ HHT1-HA3 mad2-∆C-myc9 (Z30438) and
ndt80∆ ama1∆ MAD2-myc9 (Z29956) cells. After transfer to SPM, samples for
immunoprecipitation and RNA extraction were collected every two hours. (A) Immunoblot
detection of proteins from anti-HA immunoprecipites and whole cell extracts were shown. (B)
Total RNA was converted to cDNA by reverse transcription. Transcription levels of selected genes
were measured by real-time PCR.
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3. Discussion

3.1. The SAC regulates transcription of key M phase genes

The CLB2-cluster is a group of important M phase genes including B-type cyclins

(CLB1 and CLB2), polo kinase CDC5, APC/C co-activator CDC20, and

transcriptional factors SWI5, ACE2 among others (Spellman et al., 1998). The

transcription of CLB2-cluster is regulated by the transcriptional activator complex

containing the MADS box protein Mcm1, the Forkhead box protein Fkh2 and the

transcription coactivator Ndd1 (Haase and Wittenberg, 2014). The precise

mechanism regulating the periodicity of CLB2-cluster genes in the cell cycle has

been elusive. Recently, it has been shown that Cdk1-Clb- and Cdc5-dependent

phosphorylation of Ndd1 is a critical step in the activation of the transcriptional

activator complex during entry into M phase (Darieva et al., 2006; Darieva et al.,

2003; Reynolds et al., 2003). The requirement for Ndd1 phosphorylation

generates a positive feedback loop, wherein Clb2 and Cdc5, when expressed by

Ndd1, feedback and activate their own gene expression by increasing Ndd1

phosphorylation. However, this poses a problem: if these two kinases are

required to activate their own expression, it is unclear how this feedback loop is

initiated. Epigenetic regulation might provide a clue. Sin3 transcriptional

repressive complex and the chromatin remodeler Isw2 are shown to bind and

repress CLB2-cluster promoters during interphase (Sherriff et al., 2007; Veis et

al., 2007). S phase Cdk1 removes the Sin3 complex and Isw2 from CLB2-cluster

genes during S phase, thus allowing basal transcription of CLB2 and CDC5

genes, which then might initiate the positive feedback loop. Our results provided

another potential answer to this question. We showed that SAC proteins were

required for the timely accumulation of CLB2-cluster proteins in M-phase.

Deletion of individual SAC genes MAD2, MAD1, MAD3, BUB1 or inhibiting the

SAC kinase Mps1 reduced the accumulation of CLB2-cluster proteins at

M-phase entry (Figures 6, 7, 8, 9, and 10). Surprisingly, however, the effect was
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not due to elevated APC/CCdc20 activity since inhibiting Cdc20 or APC/C activity

did not allow re-accumulation of CLB2-cluster proteins in the absence of MAD2

(Figures 11, 12, and 14). Our data showed that the SAC was required for

transcription of CLB2-cluster genes, which has not been reported to date.

Deletion of MAD2 or MAD1 completely prevented the accumulation of RNA

transcripts of CLB2-cluster genes as determined by RT-qPCR (Figures 25, 26

and 27). Additionally, deleting the C-terminal tail of Mad2 (mad2-∆C) also

reduced CLB2-cluster gene transcription (Figures 29). Since C-terminal

truncation locks Mad2 in its closed conformation (Luo et al., 2000; Luo et al.,

2004; Sironi et al., 2001), this suggested that only the closed form of Mad2 was

required for transcription. We also showed that Mad2 and Mad1 both interacted

with histone H3 in vivo (Figures 28), consistent with previous in vitro studies

(Schibler et al., 2016). We observed that the ability of Mad2 to interact with

histone H3 was compromised by C-terminal truncation (Figure 29A), suggesting

that the Mad2 conformational change was required for interaction with histone

proteins. Expression of CLB2-cluster genes was reduced in the mad-2∆C mutant,

which suggested that the ability of Mad2 to regulate gene expression might

depend on its association with histone H3. However, our data cannot yet answer

how Mad2 specifically regulates CLB2-cluster genes given that histone proteins

are ubiquitous on the genome. Without a DNA binding motif, Mad2 might need a

sequence-specific DNA binding protein to execute its transcriptional function. It is

known that the transcriptional factors Mcm1, Fkh2, and the transcriptional

co-activator Ndd1 bind specifically to promoters of CLB2-cluster genes.

Therefore, it is possible that Mad2 is recruited via interaction with one of these

factors. However, so far we have not been able to detect interactions between

Mad2 and Ndd1, Fkh2 or Mcm1 by immunoprecipitation (data not shown). It is

possible that the immunoprecipitation method we have used is not optimal for

capturing the transient interactions or another yet to be identified factor recruits

Mad2 to CLB2-cluster gene promoters.
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3.2. The SAC is a master regulator of M phase

The fidelity of chromosome segregation relies on stable

chromosome-microtubule attachment, which allows all sister chromatids to align

perfectly on the metaphase plate and coupling anaphase to kinetochore bipolar

attachment, which ensures that chromosome segregation occurs only when all

sister chromatids are attached to microtubules from the opposite spindle poles.

Activated by unattached kinetochores, the spindle assembly checkpoint delays

sister chromatids separation by inhibiting APC/CCdc20 activity, which couples

anaphase initiation to kinetochore attachment. Therefore, it is thought that SAC

protects genomic integrity mainly by delaying chromosome segregation in the

presence of unattached kinetochores. However, it is increasingly clear that SAC

proteins also actively regulate microtubule-kinetochore attachment. For example,

Mad2 regulates kinetochore-microtubule attachment by regulating Aurora B

kinase localization (Kabeche and Compton, 2012; Shandilya et al., 2016). Mad2

depletion reduces kinetochore-microtubule attachment, conversely MAD2

overexpression hyperstabilizes it independent of checkpoint function in human

cells. Spindle formation is triggered by Clb-Cdk1 activity. Our results show that

SAC is required for transcriptional upregulation of CLB1 and CLB2, which

encode M-phase cyclins that activate M-Cdk1 activity leading to spindle

formation. Since SAC is known to stabilize Clb1 and Clb2 proteins by inhibiting

APC/C -dependent degradation, our data and others show that the SAC

regulates microtubule-kinetochore attachment by modulating expression and

protein stability of M-phase cyclins.
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Figure 30. The SAC regulates metaphase to anaphase transition. When the SAC is on, SAC
promotes accumulation of CLB2-cluster proteins by augmenting their transcription and shutting
down the APC/C dependent protein degradation. Therefore, high level of B-type cyclins Clb1 and
Clb2 induce cells in high kinase state, in which anaphase is delayed until all sister chromatids
acquire bi-polar attachment. When the SAC is off, low level of CLB2-cluster proteins are produced to
allow cells to enter metaphase. APC/C is subsequently activated to degrade CLB2-cluster proteins,
which drives faithful chromosome segregation.
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3.3. Cross-talk between the SAC and Cdk1

In response to chromosome-microtubule attachment errors, SAC stabilizes M

phase cyclins by inhibiting APC/C dependent proteolysis. Consequently, cells are

arrested in metaphase by reaching high kinase state. Now, our results provide

another mechanism on how high kinase state is maintained during SAC

activation. SAC activity is required for optimal gene expression of CLB2-cluster

including M phase cyclins CLB2 and CLB1. SAC silencing by deleting individual

SAC genes or inhibiting the Mps1 kinase reduces the transcription levels of

CLB2-cluster genes and spindle formation, which depends on Cdk1 activity.

Therefore, the SAC maintains high kinase state not only by inhibiting protein

degradation of M phase cyclins but also by promoting transcriptional activation of

these genes. Recently, it is shown that the SAC and the Cdk1 are interdependent

(Kamenz and Hauf, 2014; Rattani et al., 2014; Vazquez-Novelle et al., 2014). The

dependence of the SAC on Cdk1 activity is required to solve the “anaphase

problem”, which suggests when sister chromatids are splitted during anaphase,

why the SAC is not re-activated despite the lack of chromosome-microtubule

attachment (Kops, 2014). These studies show that inactivation of the Cdk1 is a

critical step in taming the mitotic checkpoint in anaphase (Kamenz and Hauf,

2014; Rattani et al., 2014; Vazquez-Novelle et al., 2014). By using a

non-degradable variant of the cyclin B in human cell, mouse oocyte and the

fission yeast, they show that persistant Cdk1 activity results in unstable

kinetochore-microtubule attachment and SAC re-engagement, as evidenced by

the production of the SAC effector MCC complexes and APC/C inhibition. In

summary, our data and others show that the SAC and Cdk1 are interdependent.
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3.4. The HORMA domain acts as a versatile protein-protein interaction

module.

The HORMA domain was identified through sequence comparison of three yeast

proteins: Hop1, Rev7, and Mad2 (Aravind and Koonin, 1998). Hop1 is a protein

involved in meiotic synaptonemal complex assembly (Hollingsworth et al., 1990).

Rev7 is a subunit of DNA polymerase zeta (Nelson et al., 1996), which is

involved in double-strand break repair. Mad2 is a SAC protein capable of

inhibiting APC/CCdc20 activity in the presence of unattached kinetochores. All of

these three HORMA domain-containing proteins are involved in protein-protein

interactions. Hop1 forms a complex with Red1 and Mek1, which is the

component of the axial element protein cores in synaptonemal complexes. Rev7

interacts with Rev1 and Rev3 as a part of the repair-polymerase-zeta complex.

Mad2 interacts with Mad1 and Cdc20 when SAC is activated. Moreover, Mad2

binds the insulin receptor to regulate metabolism homeostasis. Recently, it is

reported that Mad2 interacts with histone H3 in an in vitro binding assay.

Consistently, we observed that Mad2 indeed interacts with histone H3 in vivo

(Figure 27A). Since Mad2 protein is almost entirely made up of HORMA domain,

it is likely that HORMA domain mediates Mad2-histone interaction. Recently,

several chromatin-associated proteins that contain HORMA domain in mammals

including HORMAD1, HORMAD2, and Rev7 have been discovered (Rosenberg

and Corbett, 2015). Therefore, the HORMA domain represents a new class of

histone-binding domain. It not only mediates histone interaction, but also

mediates other protein-protein interactions. For example, two

autophagy-signaling proteins Atg13 and Atg101 also possess HORMA domains,

which mediate interaction with PI3K kinase and Atg13, respectively (Jao et al.,

2013; Suzuki et al., 2015). In all of these signaling pathways, the function of

HORMA domain is highly conserved, which acts as a signal responsive adaptor

protein mediating protein-protein interactions.
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Table 3. HORMA-domain containing proteins

Genes Species Essential Functions Refs

ScHop1 S. cerevisiae Meiotic recombination (Hollingsworth et al., 1990)

ScMad2 S. cerevisiae SAC (Li and Murray, 1991)

ScRev7 S. cerevisiae DNA damage repair (Nelson et al., 1996)

hMad2A Homo sapiens SAC (Luo et al., 2000)

hMad2B Homo sapiens SAC (Chen and Fang, 2001;

Pfleger et al., 2001)

ScAtg13 S. cerevisiae Autophagy kinase (Reggiori et al., 2004)

hHORMAD1 Homo sapiens Homologue alignment and
synaptonemal-complex

formation

(Daniel et al., 2011)

hHORMAD2 Homo sapiens Meiotic DSBs repair (Wojtasz et al., 2012)



67

3.5. The function of the SAC beyond inhibiting APC/CCdc20 activity

It’s becoming increasingly clear that the SAC regulates a variety of cell functions

in addition to inhibiting APC/CCdc20 activity. It has been shwon that the SAC can

regulate nuclear transport and DNA damage response (DDR). For example, the

SAC and the DDR have intensive cross talks. It was shown that the important

DDR regulators Chk1 kinase and the Fanconi anemia protein FANCA are

required for optimal SAC signalling (Eliezer et al., 2014; Nalepa et al., 2013;

Zachos et al., 2007). DNA damaging agents even induce SAC activation in a

ATM and ATR kinases-dependent machanism (Kim and Burke, 2008). SAC

proteins are also required for proper DDR. A single double strand break (DSB)

not only trigers DDR but also SAC signalling, and Mad2 is required for the

prolonged arrest induced by DSB (Dotiwala et al., 2010). In mammalian oocytes,

DNA damage also induces meiotic arrest by activating the SAC (Collins et al.,

2015; Marangos et al., 2015). Therefore, the DDR and the SAC function in

synergy to protect genomic integrity. Nuclear pore complexes (NPC) provide

selective barriers for the trafficking of macromolecules between the nucleus and

the cytoplasm (Wente and Rout, 2010). It is thought that SAC proteins only

localize to kinetochore during SAC activation. However, the SAC proteins Mad1

and Mad2 were shown to associate with NPC during interphase (Campbell et al.,

2001; Iouk et al., 2002). Additionally, NPCs in interphase cells also function as

scaffolds for generating APC/C inhibiting Mad1/Mad2 complexes (Lee et al.,

2008; Rodriguez-Bravo et al., 2014). Therefore, both kinetochores and NPC emit

“wait anaphase” signals that preserve genomic integrity. Interestingly, the SAC

protein Mad1 can also regulate nuclear transport (Cairo et al., 2013b). Cairo et al.

showed that kinetochore-microtubule detachment arrests nuclear import

mediated by the transport factor Kap121 through a mechanism that requires

Mad1 cycling between unattched metaphase kinetochores and binding sites at

the NPC (Cairo et al., 2013a). Results described in this thesis have discovered,

for the first time, that the SAC also regulates transcription of a group of key

mitotic genes, the CLB2-cluster. In summary, the SAC regulates diverse cell
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functions, ranging from transcriptional regulation to DNA damage response and

nuclear transport, in addition to its APC/C inhibiting function.

3.6. The SAC, aneuploidy, and tumorigenesis

Aneuploidy, a condition characterized by gain or loss of chromosomes, is a

hallmark of human cancer (Fang and Zhang, 2011). Aneuploidy can arise from

missegregation of sister chromatids during mitosis. In normal cells, the SAC

prevents chromosomal instability. Complete abrogation of the SAC function is

lethal to normal cells due to massive chromosome mis-segregations. It is

postulated that a weakened SAC function may underlie many human cancers

(Silva et al., 2011). Indeed, mutations of certain SAC genes have been identified

in many types of cancer (Cahill et al., 1998; Ohshima et al., 2000; Ru et al.,

2002). Consistently, haploinsufficiency of the SAC genes MAD2, MAD1, BUBR1,

or BUB1 leads to a high incidence of aneuploidy and tumors in mice (Baker et al.,

2009; Dai et al., 2004; Iwanaga et al., 2007; Michel et al., 2001). Interestingly, not

only reduced expression of SAC genes leads to cancer, but also elevated level of

MAD2 gene expression promotes tumorigenesis in a p53 mutant mouse model

(Schvartzman et al., 2011; Sotillo et al., 2007), highlighting the intricate

requirement of SAC activity in genetic stability and carcinogenesis. Constitutive

activation and deregulation of CDK activity has been associated with human

cancer (Malumbres and Barbacid, 2009). Our finding that the SAC positively

regulate transcription of M phase cyclin genes CLB1 and CLB2 thus provides a

potential explanation for tumorigenesis induced by SAC deregulation. When

expression of SAC genes increases, Cdk1 is more active than normal due to high

expression of M phase cyclins, which leads to unrestrained growth of tumor cells.

To the contrary, when SAC is not functional, CDK activity is low due to low

expression of M phase cyclins, which leads to premature chromosome

segregation, aneuploidy and cancer.
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3.7. Why do meiotic cells lacking AMA1 and NDT80 fail to initiate

anaphase?

Although entry into M phase is universally driven by cyclin-dependent kinase 1

bound to cyclin B (Cdk1-Clb), the timing of this event differs dramatically in

mitosis and meiosis. Mitotic cells activate Cdk1-Clb shortly after S phase,

whereas meiotic cells activate Cdk1-Clb after a long prophase during which

homologous chromosomes undergo recombination. Actually, mitotic and meiotic

M phase in yeast are initiated by different transcription factors. Mitotic cells enter

M phase by activating the transcriptional factor Ndd1 (Loy et al., 1999), whereas

meiotic cells enter M phase by activating Ndt80, a meiosis specific transcriptional

factor that triggers spindle formation by promoting the accumulation of M phase

cyclins Clb1 and Clb4 and the polo kinase Cdc5 (Chu and Herskowitz, 1998;

Sourirajan and Lichten, 2008). Abrupt accumulation of Ndt80 at exit from

prophase I is regulated by two positive feedback loops; the NDT80 gene is

activated by itself and is repressed by Sum1, which is inhibited, in turn, by the

Cdk1 activity that results from Ndt80’s appearance (Pak and Segall, 2002; Shin

et al., 2010). In the presence of double strand breaks, however, accumulation of

Ndt80 is blocked by the meiotic recombination checkpoint (RC) (Tung et al.,

2000). Since mitotic and meiotic factor can both trigger entry into M phase, how

activation of mitotic factor Ndd1 is prevented in meiosis has been elusive.

Recently, Okaz at al., show that APC/CAma1 suppresses mitotic cell-cycle controls

during prophase I by triggering the degradation of Ndd1, M phase cyclins, and

Cdc5 (Okaz et al., 2012). This is essential for an extended prophase I that is

controlled by the RC and for proper homolog segregation at meiosis I.

Mathematical modeling also supports a crucial role for APC/CAma1 in the

irreversible transition from prophase I to metaphase I (Okaz et al., 2012).

Interestingly, meiotic cells lacking both AMA1 and NDT80 enter meiosis I by

triggering the mitotic factor Ndd1. ndt80 ama1 cells produce Clb4, Clb1 and

Clb2 in two waves, which resembles mitotic cells (Fitch et al., 1992; Okaz et al.,

2012; Richardson et al., 1992). Interestingly, however, although meiotic ndt80∆
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ama1∆ cells enter high kinase state, these cells fail to disassemble spindles,

degrade Pds1 and M phase proteins and fail to undergo nuclear division (Okaz et

al., 2012). We show that the failure to initiate anaphase is not because of the

SAC. Inactivation of the SAC by deleting the individual SAC genes or inhibiting

the SAC kinase Mps1 does not allow ndt80∆ ama1∆ cells to enter anaphase

(Figures 6, 7, 8, 9, and 10). It has been shown that the kinase Swe1 regulates

metaphase-anaphase transition by inhibiting Cdk1 dependent phosphorylation

and activation of APC/CCdc20 (Lianga et al., 2013). Future work should address

whether deleting SWE1 allows anaphase in ndt80∆ ama1∆ cells.
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4. Material and methods

4.1. Yeast strains

All experiments were performed with diploid cells of the fast-sporulating SK1

background of Saccharomyces cerevisiae strains (ho::LYS2 lys2 ade2Δ::hisG

trp1::hisG leu2::hisG his3Δ::hisG ura3)(Kane and Roth, 1974). Table 1 describes

in detail the genotypes of strains used in this work. Diploid strains were made by

mating of the corresponding haploid cells. Mutations in diploid strains are

homozygous unless stated otherwise. The following mutations have been

described previously: CDC20 under the control of the mitotic SCC1 promoter,

ndt80Δ::HIS3 (Okaz et al., 2012), the mutations PDS1myc18::KlTRP1 and

ama1Δ::NatMX4 (Oelschlaegel et al., 2005), cdc14-3 (Visintin et al., 1998),

cdc20-3 (Shirayama et al. 1998), mps1-as1 (Jones et al., 2005), tor1-1 fpr1Δ

RPL13A-FKBP12 (Haruki et al., 2008).

4.2. Construction of yeast strains

Strains that contain C-terminal HA3, HA6, MYC9, MYC18 or FRB tagged

proteins were produced by one-step PCR mediated epitope tagging (Haruki et al.,

2008; Knop et al., 1999). The deletions of genes MAD2, MAD1, MAD3, and

BUB1 were obtained by one-step gene replacement by amplifying by PCR the

appropriate antibiotic resistance cassette conferring resistance to the kanamycin

derivative G418, nourseothricin, or hygromycin B (Goldstein and McCusker,

1999).

4.3. Time course experiment of synchronous meiosis

Meiotic time courses were prepared and carried out at 30 °C unless stated

otherwise (Oelschlaegel et al., 2005). Healthy zygotes obtained with the

appropriate haploid strains were streaked to single colonies on glycerol plates

(YPG). Single colonies were picked after 30 hours and transferred to yeast

http://www.sciencedirect.com/science/article/pii/S0092867400812118
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extract peptone dextrose (YPD) plates, making a patch of 2 cm2. After a period of

no longer than 23 hours, the resulting patch was plated to an approximately

one-cell thick homogeneous lawn on YPD plates with a dry, smooth surface.

Simultaneously, a loop-full of the patch was transferred to solid sporulation

medium (SPM, 2% K-acetate). After a period of no longer than 23 hours, the

meiotic proficiency of the diploids on the sporulation plate was evaluated by

looking at the cells under a phase-contrast microscope. The best diploids were

then inoculated into 250 ml of YEPA medium (YP plus 2% K-acetate) in 2.8 L

flasks to an OD600 ~0.3. The cultures were shaken at 200 rpm for 11-12 hours at

30 °C in an orbital shaker. At the end of this period, the OD600 reached 1.5-1.7

and cells arrested in G1, with less than 15% of budded cells. The cultures were

then concentrated by centrifugation at 3500 rpm for 3 min, washed once with 150

ml of sporulation medium, centrifugated one more time, and finally resuspended

in 100 ml of SPM, resulting in a final OD600 of 3.0 - 3.5.

In time courses, including mps1-as1 strains, the inhibitor 1NM-PP1 (Jones et al.,

2005), Cayman Chemicals) was added to a final concentration of 10 µM from a

stock solution of 5 mM in DMSO, stored at -20°C until use. For measuring the

half-life of proteins, cycloheximide was added to meiotic cultures to a final

concentration of 500 µg/ml from a stock solution of 10 mg/ml in DMSO.

4.4. Gene expression analysis by real-time PCR

1ml of meiotic cell culture was used for isolation of total RNA with Qiagen

RNeasy kit according to the protocol of the manufacturer. RNA was eluted from

column with 70 μl of RNase-free water. The typical yield was 5-20 μg of total

RNA. RNA concentration was measured on a ThermoFisher nanodrop

instrument. RNA quality was determined on Agilent Bioanalyzer 2100 with RNA

6000 Nano kit. 1 μg of total RNA was reverse transcribed into cDNA (SuperScript

III first strand synthesis SuperMix) as described by the protocol. cDNA product

(20 μl) was diluted 5 fold with PCR grade water to be compatible with real-time

PCR. Real-time PCR was carried out with 4 μl of diluted cDNA in 20 μl reaction
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on Applied Biosystem StepOne instrument using SYBR green dye as detection

method (Applied Biosystem Power SYBR green master mix). For amplification of

TFC1 and ACT1, primers were used at 0.2 μM, whereas for other genes, primers

were used at 0.5 μM. Negative control (NC) reactions lacking cDNA template

were included to monitor non-specific amplification by primers. Melting curve

analysis was always included to monitor amplicon size. Gene expression was

quantified by comparative 2-ΔCт method using TFC1 or ACT1 as internal

reference gene. Table 2 lists all primer sequences used for RT-qPCR.

4.5. Preparation and separation of protein sample by SDS-PAGE

9 ml of meiotic culture were centrifugated at 4000 rpm for 2 min, resuspended in

1 ml of 10% TCA, and transferred to a 1.5 ml safe-lock Eppendorf tube and

centrifuged again at 8000 rpm for 2 min at 4 °C. The pellets were snap-frozen in

liquid nitrogen and then stored at -80 °C. For breakage, pellets were thawed on

ice, inside a 4 °C cold room. 200 µl of glass beads (diameter = 0.5 mm) and 400

µl of 10 % TCA were added, and the samples were mechanically disrupted by

shaking them on a bead beater set at maximal speed for 30 min. The resulting

supernatant was transferred to a fresh safelock Eppendorf tube and spun at

3000 rpm at 4 °C for 10 min. The acidic pellets were thoroughly resuspended in

200 µl of 2X concentrated Laemmli buffer with freshly added β–mercaptoethanol

(62.5 mM Tris-HCl pH 6.8, 10 % glycerol, 2 % SDS, 0.01 % bromophenol blue,

0.4 M β–mercaptoethanol) and then neutralized with 100 µl of 1M Tris Base.

Samples were mixed thoroughly, boiled for 10 min at 95 °C, and finally spun for

10 min at 13000 rpm. Protein concentration in the extracts was measured with

the Bradford protein assay (BioRad) and 60 µg of total protein were loaded on

SDS-8% polyacrylamide gels.

4.6. Western blotting and immunodetection of protein

Semidry western blotting (0.45 mA/cm2 for 1 hr) was used to transfer proteins to

a PVDF membrane (Immobilon P, Millipore). Membranes were then blocked for 1
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hour in PBS buffer containing 0.1% Tween 20 (PBS-T) and 4% non-fat milk

powder. Primary antibodies were incubated for 1 hour at room temperature. After

three washes with PBS-T, the membrane was incubated for 1 hour, or overnight

at 4°C, with secondary antibodies conjugated to horseradish peroxidase. After

three washes with PBS-T, the membranes were incubated for 20 s with ECL

solution (ECL detection system, GE Healthcare) and were developed on a Kodak

X-omat machine. Mouse monoclonal antibodies 12CA5 (1:500, Zachariae lab)

and 9E10 (1:200, Zachariae lab) were used for the detection of HA and Myc

tagged proteins,

respectively. Rabbit polyclonal antibodies were used for the detection of: Ama1

1:5000 (Oelschlaegel et al., 2005), Cdh1 (1:5000, Zachariae lab), Cdc5 1:5000

(Matos et al., 2008), Cdc20 1:2000 (Camasses et al., 2003), Clb2 1:2000 (Okaz

et al., 2012), Ndt80 1:10000 (Pierce et al., 2003), Rec8 1:5000 (Petronczki et al.,

2006), Tub2 1:20000 (a gift from Wolfgang Seufert, University of Regensburg,

Germany), Mad3 1:1000 (a gift from Kevin Hardwick), Sic1 1:600 (Santa Cruz

sc-50441), Cdc28 1:5000 (Zachariae lab), phospho-cdc2 Thr161 1:1000 (Novus

NB100-81837), phospho-cdc2 Tyr15 1:1000 (Cell signalling 4539), Spo13

1:5000 (Matos et al., 2008), mTOR (human FRB domain) 1:2000 (Enzo life

sciences ALX-215-065-1), Cin8 1:1000 (a gift from Tony Hyman), Kip1 1:2000 (a

gift from Tony Hyman), Mad1 1:200 (ACRIS BP4531) and Dbf4 1:5000 (Matos et

al., 2008), Goat polyclonal antibodies were used for the detection of: Clb1 1:300

(Santa Cruz sc-7647), Clb4 1:400 (Santa Cruz sc-6702), Clb5 1:100 (Santa Cruz

sc-6704), Ime2 1:100 (Santa Cruz sc-26444), Cdc14 1:1000 (sc-12045 Santa

Cruz), Mad2 1:200 (Santa Cruz sc-6331), Fkbp12 1:200 (Santa Cruz sc-6174),

Swi5 1:500 (Santa Cruz sc-15545), Swe1 1:500 (Santa Cruz sc-7171).

4.7. Analysis of protein interaction by immunoprecipitation

30 ml of meiotic cell culture were used for immunoprecipitation. Sample were

collected and washed with 20 ml cold water plus 2 mM PMSF/DMSO. Cell pellets

were resuspended with 0.4 ml of cold breakage buffer (50mM HEPES/KOH
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pH7.4, 70 mM KOAc, 5 mM MgOAC, 0.1% Triton X100, 10% glycerol, freshly

added 1mM DTT, 20 mM beta-glycerophosphate, Roche EDTA-free protease

inhibitor and PhoSTOP phosphatase inhibitor cocktail) and 0.4 ml of cold glass

beads. To break cells, samples were vibraxed for 4 min for 4 times on a

bead-beater with 4 min cooling on water-ice between vibrax runs. After lysis,

whole cell extracts were cleared by centrifugation for 30 min at maximum speed

(14000 rpm). After centrifugation, cell extracts were incubated with 150 l

protein-A agarose beads on a rotator for 30 min to eliminate non-specific

interaction. Then, equal amount of protein extracts (10 mg for example) from

each samples were incubated with 20 µl of concentrated 9E10 anti-myc or

12CA5 anti-HA on a rotator for 1 hour. 60 µl of BSA-blocked protein-A agarose

beads were then added to capture the immune complex for 1 hour. Beads were

washed sequentially with 1 ml of the following buffer for 5 min: twice of B70-BSA,

once of B150, once of B200, twice of B70. Immune complexes were separated

from the beads by boiling at 95 °C for 5 min. Immunoprecipitates were then

seperated on a 1 mm acrylamide gel.

4.8. Histone H1 kinase assay

Cdc28-Clb4-ha3 complexes were prepared by anti-HA immunoprecipitation from

meiotic cell culture as described in previous method. Kinase assay were carried

out in kinase reaction mix containing histone H1, “cold” ATP, γ-32P-ATP (Perkin

Elmer) and purified Cdk1 complexes for 10 mins at 30 °C. Reactions were

terminated by adding 25 μl of 3 X Laemmli sample buffer and heating for 5 min.

Samples were seperated on an acrylamide gel. After staining, fixation and drying,

protein gels were exposed to x-ray films, which were then developed on Kodak

film developer instrument. Kinase activity was quantified digitally by imageJ

software.

4.9. Indirect immunofluorescence

Indirect immunofluorescence was performed with cells fixed overnight at 4 °C in
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3.7% formaldehyde. Samples were then washed twice with 1 ml of 0.1 M

potassium phosphate buffer pH 6.4, one time with 1 ml spheroplasting buffer (0.1

M potassium phosphate buffer pH 7.4, 1.2 M sorbitol, 0.5 mM magnesium

chloride) and finally resuspended in 200 µl of spheroplasting buffer. 6 µl of a

freshly prepared 10 % solution of β–mercaptoethanol were added to each

sample. After incubation at 30 °C for 15 min, samples were incubated with 10 µl

of zymolyase solution (Zymolyase 100T from Amsbio, 1 mg/ml in spheroplasting

buffer) for around 10 min, and then, the refractivity of the cells was assessed at

the phase contrast microscope. When about 75% of the fixed cells looked as a

dark rounded mesh with fuzzy edges, adding 1 ml of cold spheroplasting buffer

stopped digestion. After gentle centrifugation, the spheroplasts were

resuspended in 200 µl of spheroplasting buffer. 5 µl of spheroplasts per time

point were loaded on a polylysine-covered 15-well slide. Spheroblasts were

allowed to adhere to the surface for 5 min, the excess volume was aspirated and

the cells were dehydrated by incubating the slides 3 min in methanol and 10 s in

acetone, both at -20 °C. The slides were rehydrated by incubating with 5 µl of

PBS per well, and then blocked with PBS containing 1 % bovine serum albumin

(PBS-BSA). Slides were incubated with primary antibodies for 1 hour. Slides

were washed four times with PBS-BSA for 5 min. Secondary antibodies were

incubated for one hour and after four washes with PBS-BSA, the wells were

covered with 4 µl of 4’,6-diamidino-2-phenylindole (DAPI) to stain DNA, and the

slides were sealed with coverslip.

The following primary antibodies were used: monoclonal mouse anti-Myc 9E10

(1:5, Zachariae lab), monoclonal rat anti-tubulin YOL 1/34 (1:300, Serotec),

polyclonal rabbit anti-Myc (1:300, Gramsch CM-100). Secondary

fluorophore-labeled antibodies were goat anti-mouse CY3 (1:400, Jackson

ImmunoResearch), goat anti-rat Alexa 488 (1:300, Jackson ImmunoResearch),

goat anti-rat CY3 (1:400, Jackson ImmunoResearch), goat anti-Rabbit Alexa 488

(1:200, Chemicon).

Cells were scored as Pds1myc18-positive when clear, bright nuclear staining
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was observed. The first nuclear division was counted when cells produced two

distinguishable masses of DNA. The second nuclear division was scored when

cells presented 4 masses of DNA. Cell counting was done on an Zeiss Axioskop

2 epifluorescence microscope. A 100x α-Plan-Fluar 1.40 NA oil immersion was

used as objective lens (Carl Zeiss). 100 cells per time point were counted. A

SPOT RT210 CCD camera (Diagnostic Instruments) controlled by Quick Capture

software was used to take the pictures and Adobe Photoshop was used to

process them into images.
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4.10. Abbreviations

as - analog-sensitive

APC/C - anaphase-promoting complex/cyclosome

BSA - bovine serum albumin

CDK1 - cyclin-dependent kinase 1

CHX - cycloheximide

DAPI - 4’,6-diamidino-2-phenylindole

DMSO - dimethyl sulfoxide

DNA - deoxyribonucleic acid

DSB - double-strand break

M – molar

MDa – Megadalton

NA - numerical aperture

NCO - non-crossover

OD - optical density

PAGE - polyacrylamide gel electrophoresis

PCR - polymerase chain reaction

MeiRC - meiotic recombination checkpoint

S – Svedberg

SAC - spindle assembly checkpoint

SC - synaptonemal complex

SCF - Skp1-cullin-F-box protein family of ubiquitin ligases

SDS - sodium dodecylsulfate

SPM - sporulation medium

TCA - trichloroacetic acid

YEPA - yeast peptone medium plus 2% K-acetate

YPD - yeast peptone dextrose medium
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Table 4. List of Saccharomyces cerevisiae SK1 strains used in this work

Strain1 Genotype2

Z19545 MATa/MATalpha ndt80Δ::HIS3 ama1Δ:: NatMX4

Z20094 MATa/MATalpha ndt80Δ::NatMX4 ama1Δ::KanMX4

PDS1myc18::KlTRP1

Z20225 MATa/MATalpha mad2Δ::KIURA3 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z20488 MATa/MATalpha mad1Δ::KIURA3 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z20818 MATa/MATalpha mad3Δ::KlTRP1 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z20948 MATa/MATalpha ndt80Δ::HIS3 ama1Δ::NatMX4

mps1::KanMX4::mps1-as1-myc10-TRP1

Z21076 MATa/MATalpha cdc20::hsl1p-CDC20-HphMX4 mad2Δ::KIURA3

ndt80Δ::NatMX4 ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z21099 MATa/MATalpha leu2::DMC1p-CLB1ha6-LEU2 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z21100 MATa/MATalpha mad2Δ::KIURA3 leu2::DMC1p-CLB1ha6-LEU2

ndt80Δ::NatMX4 ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z21101 MATa/MATalpha ura3::DMC1p-CLB2ha3-URA3 ndt80Δ::HIS3

ama1Δ::NatMX4 PDS1myc18::KlTRP1

Z21102 MATa/MATalpha mad2Δ::KIURA3 ura3::DMC1p-CLB2ha3-URA3

ndt80Δ::HIS3 ama1Δ::NatMX4 PDS1myc18::KlTRP1

Z21330 MATa/MATalpha mad2Δ::KIURA3

ura3::DMC1p-clb2-dkbm-ha3-URA3 ndt80Δ::HIS3 ama1Δ::NatMX4

PDS1myc18::KlTRP1

Z21331 MATa/MATalpha ura3::DMC1p-clb2-dkbm-ha3-URA3 ndt80Δ::HIS3

ama1Δ::NatMX4 PDS1myc18::KlTRP1
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Z21470 MATa/MATalpha ndt80Δ::NatMX4 ama1Δ::KanMX4

FKH2myc9::KlTRP1 NDD1-HA3::KlTRP1

Z21471 MATa/MATalpha mad2Δ::KIURA3 ndt80Δ::NatMX4

ama1Δ::KanMX4 FKH2myc9::KlTRP1 NDD1-HA3::KlTRP1

Z21546 MATa/MATalpha bub1Δ::KIURA3 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z21548 MATa/MATalpha mad2Δ::KIURA3

leu2::DMC1p-clb1mdb/mkb-ha6-LEU2 ndt80Δ::HIS3

ama1Δ::NatMX4 PDS1myc18::KlTRP1

Z21549 MATa/MATalpha leu2::DMC1p-clb1mdb/mkb-ha6-LEU2

ndt80Δ::HIS3 ama1Δ::NatMX4 PDS1myc18::KlTRP1

Z21872 MATa/MATalpha CLB4ha3-TRP1::clb4::KanMX4 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z21873 MATa/MATalpha mad2Δ::KIURA3 CLB4ha3-TRP1::clb4::KanMX4

ndt80Δ::NatMX4 ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z21979 MATa/MATalpha cdc20-3 mad2Δ::KIURA3 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z22414 MATa/MATalpha SIC1-ha3::HIS3MX6 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z22416 MATa/MATalpha mad2Δ::KIURA3 SIC1-ha3::HIS3MX6

ndt80Δ::NatMX4 ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z23829 MATa/MATalpha RPL13A-2xFKBP12::TRP1 APC2-FRB::NatMX6

tor1-1::HIS3 fpr1::KanMX4 PDS1myc18::KlTRP1

Z23831 MATa/MATalpha tor1-1::HIS3 fpr1::KanMX4 PDS1myc18::KlTRP1

Z23832 MATa/MATalpha APC2-FRB::NatMX6 tor1-1::HIS3 fpr1::KanMX4

PDS1myc18::KlTRP1

Z25473 MATa/MATalpha APC2-FRB::NatMX6 tor1-1::HIS3 fpr1::KanMX4

ndt80::NatMX4 PDS1myc18::KlTRP1
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Z25474 MATa/MATalpha mad2Δ::KIURA3 APC2-FRB::NatMX6 tor1-1::HIS3

fpr1::KanMX4 ndt80::NatMX4 PDS1myc18::KlTRP1

Z25475 MATa/MATalpha RPL13A-2xFKBP12::TRP1 APC2-FRB::NatMX6

tor1-1::HIS3 fpr1::KanMX4 ndt80::NatMX4 PDS1myc18::KlTRP1

Z25476 MATa/MATalpha mad2Δ::KIURA3 RPL13A-2xFKBP12::TRP1

APC2-FRB::NatMX6 tor1-1::HIS3 fpr1::KanMX4 ndt80::NatMX4

PDS1myc18::KlTRP1

Z26627 MATa/MATalpha CKS1-HA3::HIS3MX6 ndt80Δ::NatMX4

ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z26628 MATa/MATalpha mad2Δ::KIURA3 CKS1-HA3::HIS3MX6

ndt80Δ::NatMX4 ama1Δ::KanMX4 PDS1myc18::KlTRP1

Z27605 MATa/MATalpha trp1::DMC1p-CDC5-TRP1

cdc20::hsl1p-CDC20-HphMX4 ndt80Δ::NatMX4 ama1Δ::KanMX4

PDS1myc18::KlTRP1

Z27608 MATa/MATalpha mad2Δ::KIURA3 trp1::DMC1p-CDC5-TRP1

cdc20::hsl1p-CDC20-HphMX4 ndt80Δ::NatMX4 ama1Δ::KanMX4

PDS1myc18::KlTRP1

Z27793 MATa/MATalpha cdc20::SCC1p-CDC20-KanMX4 ama1Δ::MatMX4

PDS1myc18::KlTRP1 NDD1-ha3::KlTRP1

Z29955 MATa/MATalpha HHT1-HA3::KIURA3 MAD2-myc9::HIS3MX6

ndt80Δ::NatMX4 ama1Δ::KanMX4

Z29956 MATa/MATalpha MAD2-myc9::HIS3MX6 ndt80Δ::NatMX4

ama1Δ::KanMX4

Z30438 MATa/MATalpha mad2ΔC-myc9::HIS3MX6 HHT1-HA3::KIURA3

ndt80Δ::NatMX4 ama1Δ::KanMX4

1. The genetic background of S. cerevisiae SK1 is: ho::LYS2 ura3 leu2::hisG

trp1::hisG his3::hisG ura3 leu2::hisG trp1::hisG his3::hisG

2. Each mutation is homozygous unless stated otherwise.
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Table 5. List of qPCR primers

Gene Forward primer Reverse primer

ACT1 ATTATATGTTTAGAGGTTGCTGCTTTGG CAATTCGTTGTAGAAGGTATGATGCC

TFC1 GCTGGCACTCATATCTTATCGTTTCACAATGG GAACCTGCTGTCAATACCGCCTGGAG

PDS1 TGATATCGAAATAGCACCACAGA TGGGGAATAGCCTTCTGGTA

CLB4 TGCTGCCAAGTTTGAAGAGA TCCAGCATGTAAACTAGATCATCC

CLB2 GCTGAGCTGCCTGCAAATA CATGCTGGATTATCTCCTTCG

CDC5 AACAAAGAGACTAGATCCGAATAATGA AAGCTGATAACTTTTCCCTTTTCTT

SWI5 GGAAGATCTCTCCTGCTTCAGA GGGAAATCATTGGTGAAAGG
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