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Zusammenfassung

Mit der Weiterentwicklung von Hochdurchsatztechniken steigt die Anzahl verfüg-
barer Daten im Bereich der Molekularbiologie rapide an. Es ist heute möglich,
genomweite Aspekte eines ganzen biologischen Systems komplett zu erfassen. Kor-
relationen, die aufgrund der internen Abhängigkeits-Strukturen dieser Systeme en-
stehen, führen zu charakteristischen Mustern in gemessenen Daten. Die Extraktion
dieser Muster ist zum integralen Bestandteil der Bioinformatik geworden. Durch
geplante Eingriffe in das System ist es möglich Muster-Änderungen auszulösen, die
helfen, die Abhängigkeits-Strukturen des Systems abzuleiten. Speziell differentiel-
le Expressions-Experimente können Muster-Wechsel bedingen, die wir verwenden
können, um uns dem tatsächlichen Wechselspiel von regulatorischen Proteinen und
genetischen Elementen anzunähern, also dem regulatorischen Netzwerk einer Zelle.

In der vorliegenden Arbeit beschäftigen wir uns mit der Erkennung von Korrela-
tions-Mustern in molekularbiologischen Daten und schätzen ihre praktische Nutz-
barkeit ab, speziell im Kontext der Kontakt-Vorhersage von Proteinen, der Entfer-
nung von experimentellen Artefakten, der Aufdeckung unerwarteter Expressions-
Muster und der genomweiten Vorhersage regulatorischer Netzwerke.

Korrelations-Muster sind nicht auf Expressions-Daten beschränkt. Ihre Ana-
lyse im Kontext konservierter Schnittstellen zwischen Proteinen liefert nützliche
Hinweise auf deren Ko-Evolution. Muster die auf korrelierte Mutationen hinweisen,
würden in diesem Fall auch in den entsprechenden Proteinsequenzen auftauchen.
Wir nutzen eine einfache Sampling-Strategie, um zu entscheiden, ob zwei Elemen-
te eines Pathways eine gemeinsame Schnittstelle teilen, berechnen also die Wahr-
scheinlichkeit für deren physikalischen Kontakt. Wir wenden unsere Methode mit
Erfolg auf ein System von ABC-Transportern und Zwei-Komponenten-Systemen
aus dem Firmicutes Bakterien-Stamm an.

Für räumlich aufgelöste Expressions-Daten wie Microarrays enspricht die De-
tektion von Artefakten der Extraktion lokal begrenzter Muster. Im Gegensatz zur
Erkennung von Rauschen stellen diese innerhalb einer definierten Region Ausreißer
dar. Wir entwickeln eine Methodik, um mit Hilfe eines Sliding-Window-Verfahrens,
solche Artefakte zu erkennen und zu entfernen. Das Verfahren erkennt diese sehr
zuverlässig. Zudem kann es auf Daten diverser Plattformen, wie Custom-Arrays,
eingesetzt werden.

Als weitere Möglichkeit unerwartete Korrelations-Muster aufzudecken, entwickeln
wir Padesco. Wir extrahieren häufige und wiederkehrende Muster, die über Expe-
rimente hinweg konserviert sind. Für ein bestimmtes Experiment sagen wir vorher,
ob ein Gen von seinem erwarteten Verhalten abweicht. Wir zeigen, dass Padesco
ein effektives Vorgehen ist, um vielversprechende Kandidaten eines differentiellen
Expressions-Experiments auszuwählen.
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Wir konzentrieren uns in Kapitel 5 auf die Vorhersage genomweiter regulato-
rischer Netzwerke aus Expressions-Daten. Hierbei haben sich Korrelations-Muster
als nützlich für die datenbasierte Abschätzung regulatorischer Interaktionen erwie-
sen. Wir zeigen, dass für die Inferenz eukaryotischer Systeme eine Integration zuvor
bekannter Regulationen essentiell ist. Unsere Ergebnisse ergeben, dass diese Inte-
gration zur Überschätzung netzwerkübergreifender Qualitätsmaße führt und wir
schlagen eine Prozedur – CoRe – zur Verbesserung vor, um diesen Effekt auszuglei-
chen. CoRe verbessert die False Discovery Rate der ursprünglich vorhergesagten
Netzwerke drastisch. Weiterhin schlagen wir einen Konsensus-Ansatz in Kombi-
nation mit einem erweiterten Satz topologischer Features vor, um eine präzisere
Vorhersage für das eukaryotische Hefe-Netzwerk zu erhalten.

Im Rahmen dieser Arbeit zeigen wir, wie Korrelations-Muster erkannt und
wie sie auf verschiedene Problemstellungen der Bioinformatik angewandt werden
können. Wir entwickeln und diskutieren Ansätze zur Vorhersage von Proteinkon-
takten, Behebung von Artefakten, differentiellen Analyse von Expressionsdaten
und zur Vorhersage von Netzwerken und zeigen ihre Eignung im praktischen Ein-
satz.
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Abstract

With the advance of high-throughput techniques, the amount of available data in
the bio-molecular field is rapidly growing. It is now possible to measure genome-
wide aspects of an entire biological system as a whole. Correlations that emerge
due to internal dependency structures of these systems entail the formation of
characteristic patterns in the corresponding data. The extraction of these patterns
has become an integral part of computational biology. By triggering perturbations
and interventions it is possible to induce an alteration of patterns, which may
help to derive the dependency structures present in the system. In particular,
differential expression experiments may yield alternate patterns that we can use
to approximate the actual interplay of regulatory proteins and genetic elements,
namely, the regulatory network of a cell.

In this work, we examine the detection of correlation patterns from bio-mo-
lecular data and we evaluate their applicability in terms of protein contact predic-
tion, experimental artifact removal, the discovery of unexpected expression pat-
terns and genome-scale inference of regulatory networks.

Correlation patterns are not limited to expression data. Their analysis in the
context of conserved interfaces among proteins is useful to estimate whether these
may have co-evolved. Patterns that hint on correlated mutations would then
occur in the associated protein sequences as well. We employ a conceptually
simple sampling strategy to decide whether or not two pathway elements share a
conserved interface and are thus likely to be in physical contact. We successfully
apply our method to a system of ABC-transporters and two-component systems
from the phylum of Firmicute bacteria.

For spatially resolved gene expression data like microarrays, the detection of
artifacts, as opposed to noise, corresponds to the extraction of localized patterns
that resemble outliers in a given region. We develop a method to detect and remove
such artifacts using a sliding-window approach. Our method is very accurate and
it is shown to adapt to other platforms like custom arrays as well.

Further, we developed Padesco as a way to reveal unexpected expression pat-
terns. We extract frequent and recurring patterns that are conserved across many
experiments. For a specific experiment, we predict whether a gene deviates from
its expected behaviour. We show that Padesco is an effective approach for selecting
promising candidates from differential expression experiments.

In Chapter 5, we then focus on the inference of genome-scale regulatory net-
works from expression data. Here, correlation patterns have proven useful for the
data-driven estimation of regulatory interactions. We show that, for reliable eu-
karyotic network inference, the integration of prior networks is essential. We reveal
that this integration leads to an over-estimate of network-wide quality estimates



xxii Abstract

and suggest a corrective procedure, CoRe, to counterbalance this effect. CoRe
drastically improves the false discovery rate of the originally predicted networks.
We further suggest a consensus approach in combination with an extended set of
topological features to obtain a more accurate estimate of the eukaryotic regulatory
network for yeast.

In the course of this work we show how correlation patterns can be detected
and how they can be applied for various problem settings in computational molec-
ular biology. We develop and discuss competitive approaches for the prediction
of protein contacts, artifact repair, differential expression analysis, and network
inference and show their applicability in practical setups.
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Introduction



2 1. Introduction

1.1 From Complex Systems to Correlated Data

This work is concerned with the detection of correlation patterns in bio-molecular
data and their practical application in terms of contact prediction (Chapter 2),
artifact detection (Chapter 3), unexpected patterns (Chapter 4), and network
inference (Chapter 5). In the following we provide an overview of how correlation
patterns may arise from complex systems and discuss their usage in the course of
estimating the biological relevance of observations.

1.1.1 Indirect Observations

Throughout this work and in most areas of bioinformatics we examine biological
processes. These processes occur within organisms, usually on the molecular scale.
All data we currently collect provides snapshots of system read-outs. We cannot
observe the system connections directly, but we must infer them. This strongly
impacts the exploration of the underlying molecular mechanisms.

Of course, this problem is not new. The founder of one of the most important
theories of the past centuries, “the theory of evolution”, Charles Darwin [48],
could not provide a plausible mechanism for his observations. While he could
observe phenotypes, he was not aware of the rules of inheritance, let alone today’s
knowledge of the molecular level. Manifold discoveries since then supported the
theory’s validity and relatively recent technical developments like sequencing have
opened up a molecular point of view as well.

With the advance of systematic sequencing of full genomes (3,981 eukaryotes,
and 88,449 prokaryotes in January 2017, following NCBI statistics [177]) our un-
derstanding of the underlying processes has greatly improved. Similarities and
differences between organisms can be captured in detail.

Large-scale biochemical methods allow us to capture the regulation for not
only few but millions of molecules [14, 67, 107, 249]. Still, we do not observe the
mechanisms, but effects.

For instance, cancer is likely caused by an imbalance among gene products,
metabolites and a failure of DNA repair mechanisms. The phenotypical obser-
vations are typically limited to a tumor’s biochemical properties and the host’s
environment like the absence or presence of compounds, proteins, and genes. These
properties exhibit strong heterogeneity both intra- and inter-tumoral [2, 10]. This
may potentially imply diverse causes for tumor growth and thus, varying exper-
imental data across patients. Effectively, the detection of mechanisms remains
challenging despite more and more data being available.

The more data experiments capture on an increasingly detailed level, the more
experimental layers exists. The degree of indirection is increasing and the under-
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lying system is more difficult to control. For example, degradation processes may
skew the observed outputs before the read-out takes place [128, 183].

Given experimental data, We can extract and derive distinctive features. In
case of molecular processes, this is usually a characteristic change in the concen-
tration of a molecule. A collection of features is often referred to as a pattern or a
molecular fingerprint. Patterns are useful to summarize observations and provide
a snapshot of the analyzed system.

The discovery of characteristic patterns is a major challenge in molecular
biology and the comparison of patterns is crucial for a wide range of applica-
tions [131, 194, 199, 218, 221]. Chapter 4 and 5 discuss problems associated with
pattern extraction from expression data.

The more complex the observed system is, the more difficult it is to observe
direct effects. Most biological systems are robust and redundant, such that an en-
forced intervention may be buffered and spread into a variety of small changes [138].

In order to achieve reproducible and interpretable results, it is essential to
acquire sensible controls. A robust complex system is more difficult to control and
controlling entities of interest will likely affect linked outcomes or produce side
effects that may not be observed due to the indirect nature of our data. With
this in mind, it is extremely important to examine experimental data with great
care to reduce the chance of obtaining false positive results. In Chapter 5 we are
particularly concerned with bias emerging from complex network structures and
how to counteract it.

1.1.2 Regulatory Systems

A basic regulatory network is a dependency model of two basic molecular com-
ponents: genes and transcription factors (TFs). TFs are Deoxyribonucleic Acid
(DNA) or Ribonucleic Acid Polymerase (RNAP) binding gene products. They
may bind other TFs, gene products and small molecules as well. TFs trigger the
activity of genes by binding their associated regulatory regions, either promoter
regions (DNA-binding elements) or RNAP, and change their target gene’s expres-
sion level. The regulated gene products may themselves be TFs. The entirety of
all TFs and regulated or target genes can be represented as a network.

This network is very complex and any associated model is necessarily simplified.
Many other reactants like micro RNA (miRNA), co-factors, inorganic molecules
and chemical reaction environment are usually neglected. Yet, if there is a causal
relationship among two targets of the same TF these targets could exhibit a similar
measurable pattern. The two gene products share a common regulatory mecha-
nism. They are expected to be abundant simultaneously, at least in general. The
two signals are correlated. The inversion of this argument is that given two signals
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are correlated, they may interact or share a common regulator. This observation is
used to infer regulatory networks in practice [11, 12, 34, 41, 45, 51, 59, 50, 66, 105].

In this context, we have successfully applied regulatory network inference via
correlation pattens [144]. The key idea is to guess an initial executable model and
simulate its expected data. The emerging patterns can be compared to actual
observations and judged by their similarity. By iterative model refinement and
consecutive simulation, we approach the underlying circuitry of the network.

Unfortunately, this procedure breaks down for large networks. The number of
networks capable to generate the observed data is virtually unlimited. Addition-
ally, in complex networks large effect sizes may not exist at all. Buffering increases
the robustness of the system [138]. Disruptions are scattered across the network
and lead to numerous weak downstream effects. Furthermore, many unrelated
signals will also exhibit similar patterns simply by chance. They are correlated
but they neither share a common causal mechanism nor are they related other-
wise. Especially within complex systems, correlation can often be expected by
chance alone. Exploiting previous knowledge, the integration of more data, and
faster modes of computation become necessary. In fact, we could show that the
integration of experimental annotation into correlation approaches could improve
regulatory network prediction quality [143].

1.1.3 Formation of Correlation Patterns

In the following, we demonstrate why correlations occur in the context of molecular
systems. We simulate data emerging from a network and plot a time-course of the
observed data. We apply Petri nets [173] as a conceptually simple way to model
and simulate this prototypic regulatory system.

Petri nets consist of places and transitions. Each transition is linked to input
places via incoming arcs and is linked to output places via outgoing arcs. Firing
a transition resembles the process flow of the respective reaction. It consumes
tokens from its input places and produces tokens on its output places. Each token
may represent a single molecule, while for more realistic modeling, the tokens may
represent molecular concentrations [144].

We implemented a Petri net resembling a prototypic regulatory network shown
in Figure 1.1a and simulated the number of available entities in the network at a
given time. Each arc carried a weight of one, such that each firing of a transition
would consume one entity from each input place and produce one entity to each
output place. For Figure 1.1b the firing transition was chosen randomly among
the set of transitions ready to fire, while for Figure 1.1c we used the canonical
left-to-right (reading) order of Figure 1.1a. While this simplified model may not
be very realistic, the stochastic order of fired transitions mimics the simultaneous
nature of real biological systems given limited resources (gene copies, regulator
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(a) A Simple Regulatory Network
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(b) Simulation with Random Firing
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(c) Simulation with Ordered Firing

Figure 1.1: Petri net topology for a prototypic regulatory network. A single tran-
scriptional activator R mediates the production of proteins via intermediate com-
plexes. For simplicity, the transcription step is not modeled separately. The regu-
lator R is crucial to produce protein Pa from gene Ga and Pb from Gb. Further, R
and Pb mediate the production of Pc via binding Gc. The intermediate complexes
GaR, GbR and (Gc, Pb, R) model the physical binding of regulators to target genes.

molecules).

We observe that an ordered firing rule produces a predictable pattern of inter-
mediate complexes and a monotonously growing amount of proteins. The regulator
R exposes a cyclic pattern, after its release from the genomic regulatory site. The
same holds true for intermediate complexes. Pa, Pb, and Pc are correlated due to
their common regulator R. In the case of Pc this regulation is mediated via the
production of Pb.

For the stochastic firing order of transitions, the correlation is obfuscated. The
emerging pattern is quite complex. We can observe a temporary drop in Pb due
to its incorporation into the intermediate complex (Gc, Pb, R), as well as cyclic
patterns of R. These are far less obvious as the observed signals incorporate much
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more noise in general. Notably, our model does not include differences in protein
half lives, binding affinities, or other factors that may lead to the formation of
more complex patterns [159].

Additionally, in practice, the actual experimental setup is unlikely to capture
200 incremental measurements. Technical limitations, time restrictions, and bud-
get restrictions lead to lower-resolution patterns captured at few specific time
points only. Furthermore, measurements are commonly taken from distinct sam-
ples that may differ in terms of their initial molecular concentrations or even the
circuitry of the underlying system. Awareness of these limitations is essential for
the analysis of correlation patterns.

We analyzed the inference of regulatory networks from correlation patterns on
multiple scales, ranging from small artificial regulatory systems to real-word sys-
tems on the genome scale. We developed various approaches to overcome existing
limitations in this regard [143, 144, 192] (see Chapter 5).

1.1.4 Detection of Correlation Patterns

We will now take a closer look at how correlation patterns can be detected and
give a short overview of applications in the fields of expression data analysis and
network inference.

Numerous definitions exist to describe the correlation among measurements,
outcomes or control values [79]. Still, the most widely used correlation is Pearson’s
Correlation [79, 251]:

ρXY = Corr[XY ] =
Cov[XY ]

σ[X]σ[Y ]
(1.1)

Here, Cov denotes the covariance of the random variables X and Y and σ is their
respective variance. Pearson’s ρ is relatively easy to apply, implement and its
properties are well-understood. The coefficient ρ(X, Y ) is zero if the two random
variables X and Y are stochastically independent. If Y is the result of a linear
function of X, then ρ(X, Y ) equals 1, which is suggesting a perfect linear depen-
dency of both variables. Since ρ is considering linear dependencies only, one can
construct complex non-linear patterns that will effectively result in a correlation
of zero, the most prominent of which being Anscombe’s dataset [6].

Often a slope is shown for a scatter plot of X and Y . This slope integrates
noise in Y only, as the linear fit follows the linear relation X = Y + ǫ. Yet,
in most biological setups both reference values X and experiment values Y are
prone to noise. The use of Deming’s Regression [52] as a special case of total least
squares [95] may be more appropriate for the estimation of a linear fit, and more
intuitive in cases where symmetrical slopes for (X, Y ) and (Y,X) are expected.
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The applications of correlation analysis in bioinformatics are manifold. In the
context of expression data analysis the applications range from clustering [64, 110,
142, 261], network inference [51, 61, 73, 144], tissue classification [43, 242], module
detection [12, 129] to function prediction [21, 156], to name a few.

The covariance is closely related to the correlation, as it can be seen as an
unscaled version of the correlation (see Equation 1.1). The co-variance matrix
derived from all pairwise covariances of variables (like regulators and targets) in a
system is of particular interest for network inference, as its inverse corresponds to
the conditional independence among random variables [75, 163, 213]. A more de-
tailed discussion on how network inference approaches exploit correlation patterns
can be found in Chapter 5, Section 5.4.

Throughout this work we apply inference methods that heavily rely on either
correlation estimates or measures of similarity. In particular, kernel functions are
an integral part of Support Vector Regression (SVR) and Support Vector Machines
(SVM) in general [182, 229] (see Chapters 4 and 5). Notably, kernel functions have
an interpretation as covariance functions [205]. Thus, their application is a way to
detect non-trivial correlation patterns in the input data. When non-linear kernels
are employed, this enables the detection of non-linear correlation patterns as well.
We discuss further advantages of kernel-based pattern detection and the sensitivity
of correlation estimates to outliers in Section 1.3.

In Chapter 2, we discuss how correlated mutations can be used to distinguish
physically contacting proteins from other members of the same pathway. In this
context, the correlation definition is modified to estimate sequence mutations [94].

1.2 Assessment of Biological Relevance

In both expression data analysis and network inference, we are dealing with sci-
entific hypotheses that describe traceable changes or behaviour. Results obtained
under reproducible conditions and from standardized experiments help to verify
the validity of a hypothesis. A key question that arises in this context is whether
some observed outcome is also biologically relevant. In the following, we will pro-
vide several problem descriptions and approaches for the estimation of biological
relevance.

1.2.1 Statistical Testing

Proving relevance requires sensible reasoning and embedding of novel evidence into
existing knowledge. An important tool in this regard is the testing of statistical
hypotheses (see Gravetter and Wallnau [99], p.223ff.). Aspects of a scientific hy-
pothesis can be contrasted by a corresponding null-hypothesis. The null-hypothesis
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represents the assumption that, for given a perturbation or treatment, no effect
can be observed in the system or the population, respectively. If it is unlikely
that the data obtained by an experimental perturbation is observed given the
null-hypothesis is true, we may reject it. We would instead opt for the alternative
hypothesis, a hypothesis in accordance with the scientific hypothesis, stating that
the induced system changes lead to an observable effect. The statistical test-result
could then serve as additional evidence and underpin biological relevance.

If the specific pre-conditions of a statistical hypothesis test are met, its out-
come is a test-statistic. From the statistic together with knowledge on how it is
distributed, an associated p-value can be obtained. It reflects how likely a statistic
of this or higher magnitude is observed. A p-value is deemed significant if an α-
level of significance is met. Defining α before the actual test is necessary to achieve
a valid significance test. This experiment-specific threshold is commonly chosen
as 0.05, and a significant p-value leads to the rejection of the null-hypothesis.
Insignificant values are often erroneously seen as counter evidence to biological
relevance [181]. p-values have been controversially discussed, mostly in terms of
their misinterpretation and an increase in publishing bias [102, 178, 181].

The achievable statistical significance in a test is dependent on the underlying
sample size. As an example, we assume 144 individual entities (say organisms or
cell cultures) that share some observable feature. We modify some of these entities
and observe whether the modification leads to a certain effect. A 2×2 contingency
table is then compiled (see Table 1.1). The scientific hypothesis here is that the
modification leads to the observed effect.

system state normal modified
no effect 83 30
effect 17 14

Table 1.1: An example system encompassing 144 individuals. 44 individuals are
modified. All individuals are scattered by some measurable effect. We are inter-
ested in whether the modification is linked to the observable phenotype.

A null hypothesis associated with this 2-variable (effect, modification) setup is:
the observable effect is independent of the applied modification. A statistical test
suited for this analysis is the Chi-squared test (see Gravetter and Wallnau [99],
p.559ff.). We choose an α-level of 0.05 and obtain a p-value of 0.08. The null-
hypothesis is not rejected, and we consequently gain no evidence that the modifi-
cation influences the phenotypic effect. Yet, we cannot reject the initial scientific
hypothesis. Half of all modified entities show an effect while only some 20% do in
the normal state. The observation is not significant, but it is in agreement with
our hypothesis. Relying on p-values alone for the testing of scientific hypotheses
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is not sufficient.
In general, a reduction of statistical testing to p-values is problematic. It

may lead to a premature rejection of scientific hypotheses, such that insignificant
p-values are interpreted as an estimate for the probability that the underlying
scientific hypothesis is wrong. Censoring of experiments by statistical significance
alone would eventually lead to the reporting of artificially inflated effect sizes, as
for equal sample sizes more extreme observations are necessary to obtain significant
results [178]. In the course of the detection and modelling of correlation patterns
multiple testing issues may arise, which are discussed in Section 1.3.3.

Statistical significance tests are an integral part of scientific hypothesis testing.
Carefully applied and in combination with contextual knowledge they provide a
well-defined tool to back empirical observations and help to evaluate the biological
significance of our results.

1.2.2 Sources of Variation and Noise

Robustness against Perturbation. Most biological systems are robust enough
to work under changing conditions and maintain homeostatic conditions. Even ma-
jor fluctuations may often be buffered, both on the organism level and the molec-
ular level. In particular, regulatory systems have established robust mechanisms
to overcome changes [138].

The robustness of complex systems limits our ability to to control them dur-
ing experiments. We may thus modify a system, but cannot obtain measurable
differences when compared to a given control state. Similarly, a perturbation
that is strong enough to result in a signal would likely entail side-effects on other
parts of the system. Therefore, experiments like gene-knockdowns and knockout
are not expected to yield simple cause-effect chains, in particular for eukaryotic
and higher organisms. For regulatory networks, we have shown that this lack of
traceable signaling results in the breakdown of correlation-based inference [143].

Technical Variation. Technical variation refers to the observed variation of ex-
periments that occurs when the same biological entity is measured several times
as a technical replicate. Commonly, this variation is treated as noise, as no causal
biological explanation should exists. In fact, bio-molecular analysis must reliably
control cellular mechanisms. Unintended, yet systematic side-effects can arise and
lead to biases. Nonetheless, for many modern techniques the magnitude of tech-
nical variation is small and biases are well-documented [164, 253, 264].

Biological Variation. Biological variation is the observable difference among
individuals measured by biological replication. Given that both sufficient techni-
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cal replicates and biological replicates are available, we can use hypothesis testing
(see Section 1.2.1) to detect significant changes across different experimental condi-
tions. Biological replicates are usually more costly than technical replicates as they
require the complete experiment to be repeated. The magnitude of noise across
biological re-sampling is typically much larger than that expected from technical
replication [22]. For complex systems in particular, a system’s initial state during
an experiment is difficult to both estimate and control. As the source of varia-
tion is on the level of individuals (cell-lines, samples, organisms), many observed
entities are expected to be de-regulated by naturally occurring processes.

Repeated sample collection may be imprecise, in particular when analyzing
mammals or living organisms. Tissue samples likely contain impurities from dif-
ferent tissues. Even carefully selected tissues contain multiple cell types that have
distinct functions and thus, biochemical properties. In-silico dissection methods
have been applied to tackle these problems [1, 96, 221, 243]. Commonly, we would
treat biological variation as noise, similar to experimental variation, unless we have
a mechanistic explanation for observed deviations.

Experimental Limitations. The experimental techniques available determine
the degree of observation that is possible. Current experimental techniques of-
ten rely on copy numbers as a proxy for the activity of molecules or proteins,
often complemented by data on methylation, phosphorylation or binding affini-
ties [15, 67, 107]. Yet, the actual biological activity is not directly coupled to
the copy number. A well-studied example is the correlation of protein-level and
expression-level, where large discrepancies have been reported and attributed to
numerous factors like protein half-life and translation efficiency [100, 106, 159].
When estimating copy numbers, we must further be aware that the dynamic range
of experiments is narrower than the actual molecular abundance in a cell. Exper-
imental outcome at the extreme ends of a method’s dynamic range cannot be
reliably observed.

Reliability of Published Data. Published data may contain undocumented
errors and biases [87, 145, 152]. The ENCODE Consortium [67] provided the sci-
entific community with a complex, large-scale data collection for numerous tissues.
A recent re-analysis by Gilad et al. [87] revealed that part of the data seems to
suffer from a flawed experiment design and batch-effects following an initial dis-
cussion by Lin et al. [152]. Tissues usually feature highly conserved structures,
in particular within the class of mammals. In terms of gene expression data, tis-
sues from mouse and human are expected to be more similar than different tissues
of the same organism. Surprisingly, Lin et al. [152] reported that the ENCODE
data indicates that species samples would in fact form more similar clusters. For
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publicly available data, an appropriate analysis for undocumented effects must be
undertaken to prevent avoidable downstream effects. In Chapter 3 we discuss the
presence of artifacts in GEO [14], their detection and their removal.

1.3 Modelling Correlation Patterns

1.3.1 Model Regularization

Bioinformatics has established a strong system’s viewpoint within the field of
molecular biology [138]. In principle, it is possible to design a highly complex
model of gene regulation capturing all known regulatory factors and targets. Un-
fortunately, an unambiguous parameter fitting of this model would require more
than the available data. To overcome this problem it is necessary to introduce sim-
pler models with fewer parameters or implicit coefficient shrinkage [63, 93, 236].
Often model smoothness or a restriction of model complexity is achieved via pe-
nalizing model complexity [266]. This is also referred to as regularization (see
Tsuda et al. [215], p.42ff. and Hastie et al. [113], p.34/144ff.). This may lead to
fewer parameters and thus, more general models. Memorizing individual patterns
(rote learning) is prevented and the prediction of previously unobserved events
may be improved. Simplified models likely interpret some true signals as noise.
Yet, the general trade-off among erroneously removing true positive results and
over-fitting a model cannot be bypassed. In Chapter 4 and Chapter 5 we discuss
the application of regularized SVR models for the detection of robust patterns.

1.3.2 Coping with Outliers

Outliers are extreme values in the data. They can have an explanation on the
molecular level, and a process of generation we have not yet described. In general,
they are generated by a different mechanism than the rest of the data [265]. Thus,
the perception of whether a data-point is treated as an outlier depends on the
underlying model. The outlier degree can be expressed numerically [26, 141].

Under linear model assumptions, any non-linear effect may be interpreted as
an outlier. Simultaneously, linear correlation estimates are highly sensitive when
a dataset contains outliers (see Gravetter and Wallnau [99], p.499ff.), leading to
wrong conclusions about the degree of correlation present in the data. Robust
estimation techniques (Press et al. [198], p.818ff.) and modeling via support vectors
(like the epsilon-insensitive tube or the maximum-margin property) would help to
discard outlier data-points from the model [215, 229] and detect robust correlation
patterns in the presence of outliers. The interpretation of model residuals as local
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outliers and subsequent filtering may lead to robust estimates of co-expression
patterns by suppressing false positive correlations [81].

For general and molecular biology applications, the definition, the detection and
the treatment of outliers has been studied intensively, in particular with regard to
high-dimensional problems [26, 70, 141, 265]. Simulations have shown, that the
expected value range of correlation-like measures as the cosine similarity narrows
with growing dimensionality, affecting the capability to distinguish data-points
via their similarity or via their respective distance [202, 265]. In Chapters 4, we
implement an empirical novelty detection strategy reporting unexpected patterns
of individual genes. The artifact detection approach described in Chapter 2 can
be interpreted as a local outlier detection strategy.

1.3.3 Multiple Hypothesis Testing under Dependency

When coping with whole genome data the testing of hypotheses usually involves
repeated evaluations of a model on the same data. In this case significant out-
comes are expected by chance. Under the null-hypothesis p-values are expected
to be equally distributed [20] and by the definition of the α significance value,
we expect n ∗ α significant results after n tests. Multiple testing correction has
been suggested to overcome this problem [92, 121]. In particular, methods con-
trolling the False Discovery Rate (FDR, the number of false positives among all
significant tests) have gained popularity [17, 232], by restricting the view on sig-
nificant tests rather than a family-wise error-rate (FWER, probability of at least
one false positive). These approaches assume independent test statistics. Yet,
bio-molecular data is characterized by strong functional associations [91]. The
resulting test statistics are likely dependent. As a consequence, multiple strate-
gies to test and cope with multiple hypotheses from correlated data have been
developed [18, 92, 108, 133, 150, 210]. Following the classification used by Goe-
man and Solari [92], we can distinguish three major classes of dependency mod-
elling. The first class allows for arbitrary dependencies by conservative corrections,
e.g., the Bonferroni correction. The second class relies on the positive dependence
through stochastic ordering (PDS) condition, resulting in less conservative results
for some test distributions. The third class estimates the dependency structure
via permutation tests. While the latter case allows for adaption of the observed
dependency structure of p-values, we have to pay particular attention to the setup
to avoid invalid interpretations [91].

In Chapter 5 we develop the so-called κ-transformation, which is motivated by
controlling the FDR in a network inference setting by repeated randomization of
the original gold-standard network.
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1.3.4 Influence of Subgroups on Model Evaluation

In the following we will describe a particular aspect of evaluation of these models
via global measures like the Receiver Operator Characteristic (ROC, see Chapter 5,
Section 5.5.4). This analysis resembles the problems discussed in Chapter 5.

For the evaluation of predictive methods, it is common to relate predictions
and observed labels via measures of correlation. These are often closely related
to statistical dependency tests. For example, a re-scaled Area Under the Receiver
Operator Characteristic Curve (AUC/AUROC) would follow a Mann-Whitney U-
distribution as used by a Wilcoxon Rank Sum Test [162]. An ROC plot therefore
closely relates to a rank-based evaluation, as it is based on a set of sortable pre-
dictions (a ranking criterion or confidence) together with a known binary labeling.
It provides a both visual and, in case of the AUC, numeric way to judge how well
the predictions match the dichotomy given by the labels.

The computation of an ROC involves the incremental shifting of an inter-
nal threshold, plotting the sensitivity (True Positive Rate, TPR) versus 1 minus
specificity (False Positive Rate, FPR). This curve provides a visual measure of the
correlation among the predictions and the actual labeling. The visual inspection
provides a powerful tool to compare predictive algorithms.

The analysis of ROCs can be misleading though [49, 89, 109]. Further, predic-
tions may be clustered into sub-groups with specific features. A procedure that
integrates these features, intended or unintended, via some correlated property
(availability of data, measurement magnitude or scale) can become unspecific on
the group level. The training data may be divided into sub-groups of distinct
label distributions (see Chapter 5). Predictive models that neglect these groups
focus on an increased overall performance. Yet, if the group-wise label distribu-
tions differ, some groups are more likely to increase the overall performance and
training algorithms may detect and reward such groups. Effectively, an algorithm
could rank groups by their label distribution. An ROC analysis will then correctly
report reasonable performance, despite the ranking within each group may be ran-
dom (see Figure 1.2). From a biological perspective, the prediction must be seen
critical, in particular if conclusions for individual groups are drawn. This setup
resembles the key problems discussed in Chapter 5 on the prediction of regulatory
targets using topology information.

The analysis in Figure 1.2 is concerned with how strongly the ROC analysis is
affected from the presence of sub-groups, given that the training algorithm may
access this piece of information. In practice, this may occur by combining group-
wise predictions in retrospect (see Chapter 5).

As shown in Figure 1.2, the predictions within each group may be random.
For balanced label-distributions the area under the ROC is 0.5. Yet, reducing the
number of positive instances per sub-group by 1% each (decrease by 5, 10, 15, . . . )
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Figure 1.2: We analysed a set of 150 groups of 5,000 predictions each. The pre-
dictions within each group cannot be distinguished and receive equal confidence
values. We show how a ranking of groups would affect an ROC analysis. The
predictions in each subgroup all receive a score proportional to the number of
positive labels in this group. Three different label distributions are shown: in
the ’balanced’ case all subgroups contain 500 positive instances. As all scores are
equal, the ROC resembles a random predictor. In the ’linear decrease by k’ case,
the n-th subgroup contains 500 − n ∗ k positive instances. The Area Under the
Curve is 0.64 for a linear decrease by k = 3 and 0.79 for a linear decrease by k = 5.

yields an ROC of 0.78. Still, for each individual sub-group, the prediction is
random. The effect of unbalanced groups may be strongly misleading for the
interpretation of results on the sub-group level.

For problems that contain relatively few positive labels (like network inference)
the FPR axis of ROCs is governed by the amount of true negatives (TN). When
group-ordering occurs as discussed above, this means that the FPR is damped by
the large amount of negatives and most positive labels can be discovered (TPR)
for relatively low FPR values (in Figure 1.2 this occurs for around 30% of all
negatives). This may imply seemingly accurate predictions. Yet, when comparing
several algorithms, the subgroup order may be a confounder that needs to be
corrected.

The ROC correctly states that the overall prediction is superior to random
guessing. While this is correct, the prediction may not be useful in practice.
The most confident predictions are randomly ordered in their respective groups -
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starting with the first one.
This result is somewhat counter-intuitive and highlights the importance of

multiple, orthogonal, evaluation measures. Complex systems would likely lead to
correlated patterns and thus the formation of subgroups in the data. In these cases
specific aspects of model building must be considered during evaluation. We dis-
cuss this problem in the context of pattern-based network inference in Chapter 5.

1.4 This Work

This work is concerned with the detection of correlation patterns in bio-molecular
data and their practical application in terms of contact prediction (Chapter 2),
artifact detection (Chapter 3), pattern discovery (Chapter 4) and network inference
(Chapter 5).

In the course of this thesis we successfully took part in two rounds of DREAM
challenges [160] for the inference of both dynamic small-scale [144] and static large-
scale [143] network inference challenges on real-world data. Therefore, some of the
most important results of this work are centered around the reconstruction of
regulatory networks as well [192]. A conceptual overview of all chapters is given
in Figure 1.3.

In Chapter 2 we focus on the protein level rather than the expression level and
focus on a definition of correlation anchored in evolutionary biology that quantifies
the coupled evolution of proteins via their alignments. Here, we seek to predict
contacting protein families among two-component-systems in a bactitracin resis-
tance context. We combine an established set of methods in combination with a
bootstrapping strategy to screen protein families for potential mutually conserved
regions. Randomly occurring mutations are contrasted with those caused by phys-
ical constraints. A potential source of bias is the prevalence of certain organisms,
as was recently discussed [126], where bacteria are considered the most diverse
branch in the tree of life by far.

In Chapter 3 we examine noise stemming from technical artifacts on microar-
rays and provide means to visually inspect and filter or replace them. The noise
type discussed here can be observed directly. Visual inspection of data should
be an integrated part of any analysis. Visual artifacts and features may hint to
biases, sources of noise or hidden correlations that might skew black-box analysis
and derived statistics.

In Chapter 4 we use predictive models to decide whether the gene fold-changes
in an experimental context are predictable from the changes in other genes, i.e., ex-
pected. We use Support Vector Regression (SVR) to train gene-wise models ca-
pable to predict fold-changes for a particular gene. This model can be seen as a
weighted neighborhood of a gene – a functional network. Notably, at the core of the
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Figure 1.3: In this work, we examine correlation structures throughout four spe-
cific bioinformatics problem settings (chapter numbers in red). We analyze corre-
lated sequence mutations at pairwise sequence positions in Chapter 2. A spatial
definition of correlation is applied in Chapter 3 to detect and correct for techni-
cal artifacts. Chapter 4 deals with predictable fold-change patterns of individual
genes, yet network dependencies are not modeled. In Chapter 5 correlations among
regulators and their targets are used to predict novel targets and rectify some key
problems of eukaryotic network inference. The major sources of noise range from
silent mutations (1), measurement noise (2), which is virtually present across all
experiments, unpredicted system behaviour (3) and topological variability (4),
i.e., dependencies that are not consistently present in a biological system.

SVR we apply a linear kernel as a measure of similarity among experiments that
is closely related to the correlation measures discussed above. We apply robust
techniques to overcome the phenotypic noise in these experiments.

In Chapter 5 we examine state-of-the-art approaches to data-driven regulatory
network inference. Our analysis revealed that existing evaluation methods rely
on assumptions that are critical for a sensible estimation of network-quality and
completeness. First, we confirm that a related problem described for functional
prediction [89] is present in our setting as well: the prevalence of highly connected
nodes (hubs). We show that the topology of the network directly affects supervised
measures of network-quality like ROC curves.



1.4 This Work 17

In most cases the confidence values predicted for a regulation are regulator-
specific and are not directly suited for a network-wide candidate selection or as
an estimate of method performance. The regulator’s degree correlates with the
location parameters of its confidence value distribution. This simple connection
impacts both evaluation and network composition. Regulators with few known
interactions would not receive any novel prediction at all while novel predictions
would cluster for larger regulators, increasing false positives levels. We developed
a strategy, Confidence Recalibration (CoRe [192]), to achieve a balanced prediction
across regulators and a network-wide decrease in false discoveries. The selection
of newly predicted interactions is driven by method-specific confidence values.
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Chapter 2

Correlated Mutations of
Protein Contacts

Background

This chapter is based on Dintner et al. [55]. The results have been achieved in
joint work with colleagues from the Department of Microbiology at the Ludwig-
Maximilians-Universität, München. At this time Evi Berchtold was my student
assistant. This chapter provides a bioinformatics point of view. For mechanistic
and microbiological details of the two-component systems and ABC transporters
we confer to the original publication [55]. We point out that all wet-lab experi-
ments as well as the manual curation of input alignments specific to the Firmicute
bacterial strains was performed by our colleagues from microbiology (see below).
For this work we designed and implemented a bootstrapping framework for align-
ments, mapping of protein contact regions and data visualization and we provided
statistical routines.

Contributions

The research setup was designed by Susanne Gehard (SG) and Thorsten Mascher
(TM) with bioinformatics support from Tobias Petri (TP) and Ralf Zimmer (RZ).
Experiments, selection of ortholog families and manual alignment curation was
carried out by Sebastian Dintner (SD), Anna Staroń (AS) and SG. Bioinformatics
routines have been conceived and implemented by TP. Additional bioinformatics
experiments have been performed by Evi Berchtold (EB).
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2.1 Overview

In the following we will describe a way to use evolutionary conservation as a mea-
sure of correlation that can be used to distinguish contacting from non-contacting
proteins. This chapter is a singleton in the context of this work in terms of the un-
derlying data, as we rely on sequences rater than expression measurements. Yet,
in terms of spatial correlations and the computation of sensible backgrounds it
resembles key ideas applied throughout this work (see Figure 1.3)

We rely on a seminal method [94] to quantify contacts co-evolving across bacte-
rial strains and estimate the degree of co-evolution among two proteins. A simple
method is then described to distinguish contacting from non-contacting proteins
with only incomplete data on ortholog genes. The method is successfully applied
to confirm a direct regulatory interaction for two-component systems and ABC
transporters in Firmicute bacteria.

2.2 Contact Promotes Conservation

2.2.1 A Co-evolution Anecdote

The notion of protein co-evolution is borrowed from the classical notion of co-
evolution on the species level. Both animal behavior and features are often coupled
across species. A well-known example is the symbiosis of the clown-fish subfamily
Amphiprioninae with certain anemones. The poisonous host serves as shelter for
the clown-fish whereas the anemone inflicts serious wounds for other fish. Similarly,
the clown-fish would reduce parasites and predator threats for the host.

Obviously high-level adaption has taken place and a beneficial interface has
developed. In case that a change in one of the two organisms would break this
interface the consequences could be drastic: the fish may loose its immunity or
the anemone would be prone to parasites. The same holds true for external influ-
ences, say, an increased acidification of oceans that affects the composition of the
protective mucous layer of the clown-fish skin. To adopt to these external forces
a simultaneous change among the symbiotic partners is necessary to counteract
negative effects. This is referred to as co-adaption.

Evolution is usually a smooth process of continuous adaption in a heterogeneous
environment that requests for a robust balance among variation and selection. Its
consequences are hidden to individuals and must be observed across generations
and on the population level. No individual fish can adapt to environmental con-
sequences. Two populations with sufficient variation may be capable to buffer
disruptions and maintain the beneficial interface.

Features that are not crucial for the interaction stability may change though.
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Clown-fish and anemones differ in both poison and resistance type and actually
many sub-families do. There exists a strong host-specificity. Yet, while the key
interface remains coupled, other features like size or color may change without
affecting the mutual co-operation.

2.2.2 Co-Evolution among Proteins

Protein families are usually characterized by the conservation of some functional
domain or characteristic binding sites. Similar to clown-fish and anemones, co-
evolution of distinct families may also occur on the molecular level and in fact,
several concepts that hold on the macroscopic level can be transfered to the pro-
teins level.

A proteins environment is determined by its host. Related bacteria can there-
fore host similar but not identical proteins referred to as protein families. Two
proteins that enable some specific function may interact physically. Although these
pairs may not be identical across families it is important to note that the essential
functional regions are often conserved. A change to the interface of one interaction
partner would require a co-adaption of the second protein.

Commonly, interfaces are located on the surface of the protein. Their structure
is necessary to maintain the function of an interaction and is crucial to the un-
derlying system. Most functional contacts are transient. Any malfunction would
seriously hamper signal transduction and thereby the metabolism of the host.

Two contacting regions with a joint function are likely subject to simultaneous
or co-evolution. Whenever an amino acid is altered by a non-silent mutation in
protein A then the ability to bind protein B may be disrupted leading to delete-
rious effects for the host. On the population level, there may exists an additional
alteration of B such that a functional interaction among the altered proteins A’
and B’ is maintained. On the sequence level, a simultaneous protein exchange is
observed when the pairs A-B and A’-B’ are compared. The function is maintained
despite of differences in the interface of the contacting protein regions. We refer
to such systems as ortholog.

The multiple alignment of ortholog amino acid sequences can be used to visu-
alize and characterize the conserved regions of coupled sequence changes. Given
two protein families, a degree of conservation has been suggested to estimate their
mutual dependency [94].

2.2.3 Co-Evolution within Individual Proteins

The simultaneous change of residues that are in contact can as well be observed
within a protein. Intra-protein contacts are crucial for the tertiary structure and
the adaption of contacting residues provides a mechanism to maintain protein
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function. Obviously, intra-molecular changes may affect surface interfaces and
thus, promote co-evolution among families as well. In practice, both types of co-
evolution exist simultaneously. Co-adaption promotes co-evolution, yet there is a
chance that co-evolution would happen by chance. A causation can therefore not
be concluded from the information encoded in protein families.

2.2.4 A Real-World Problem of Antibiotic Resistance

More than twenty years ago, in 1992, Harold Neu (†1998) discussed mechanisms
and the impact of antibiotics resistance in pathogens [180]. He concludes:

The need for new antibiotics will continue because bacteria have a
remarkable ability to overcome each new agent synthesized.

He describes that selection of mutants due to inappropriate (or even necessary)
application of antibiotics would lead to further crisis in the future. Today, we know
that this prediction was perfectly true and still, the problem is even more pressing
than it was twenty years ago [187].

Therefore, the understanding of the underlying mechanisms of antibiotic resis-
tance remains a crucial topic. The complex interactions among cell-wall proteins
like transporters, signaling proteins and small molecules allow a rapid adaption of
resistance types and require for detailed models capturing the respective binding
sites and their mutual influence. While the amino acid sequence of most key play-
ers can be determined, even for larger families of orthologs, their 3D-structures
remain unknown. Here, computational predictions of proteins that interact would
lead to a deeper understanding of the underlying pathways.

ATP-binding cassette (ABC) transporters define a membrane-bound superfam-
ily of proteins that feature both trans-membrane domains and a specific nucleotide-
binding domain. They are crucial for the active transport of substrates across
membranes and constitute an important building block in the detection of an-
timicrobial peptides in Firmicutes bacteria. Their gene expression is regulated
by so-called two-component systems (TCS) with kinase functionality. For these
systems, no sensor domain is known. The ABC transporter permease however,
features a large extracellular region. Therefore, we suggest a direct regulatory in-
teraction between the ABC transporters and the TCS [55]. We point out that for
example in Bacillits subtilis there is an “absolute requirement” for the presence
of both units to detect antimicrobial peptides. In particular, the extracellular do-
main of the ABC could constitute the detection domain, and hypothesize that a
regulatory interaction among both subunits is in fact common in Firmicutes.

In this chapter, we describe how correlation measures capturing co-evolutionary
evidence may help to support this hypothesis. We follow the approach of Goh et
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al. [94] (see Section 2.3) to distinguish functional, potentially direct interactions
from non-interactions and provide some additional ways to visualize and guide
further experiments.

2.3 Related Work

In this section we provide a brief overview of the field of protein co-evolution. For
the problem of bacterial ABC transporters we found that a modified variant of the
seminal method of Goh et al. [94] provided the fastest and most practical way to
come up with a sensible estimate of co-evolution.

Co-evolution on the protein level is motivated by the observation of mutual
influence among species as described above. Pazos and Valencia [190] provide
a detailed historical outline and also discuss the critical difference between co-
adaption and co-evolution. One of the earliest theoretical discussions on the matter
can be found in Lapedes et al. [146].

Goh et al. [94] introduced a way to quantify the distance among two phyloge-
netic trees in terms of their co-evolution. First, for two protein or protein domains
sequences are collected from related organisms or bacterial strains. These proteins
are usually subject to divergent evolution. Their sequences may differ strongly,
except for regions that are crucial to the protein function or an interaction. A
multiple alignment is constructed for each protein family and a matrix of all in-
duced pairwise alignment distances is compiled. A linear correlation coefficient is
computed among these matrices, referred to as matrix correlation (CC, see Sec-
tion 2.4.2).

Pazos and Valencia [189] extend the approach of Goh et al. and applied the
basic method on a larger and more heterogeneous dataset. Basically, the approach
termed mirror tree resembles that of Goh et al.. The name is following the idea
of measuring the similarity of family-wise phylogenetic trees. The actual method
does not rely on the deviation of a phylogenetic tree though but relies on the
comparison of the matrices derived from the respective family (see Section 2.4.2).
In principle, as for Goh et al. all information of a phylogenetic tree is present in
the matrices.

Ramani and Marcotte [204] applied the basic idea to identify interacting pro-
teins among two sets of homologous sequences. While for ortholog sequences the
interacting pairs are given by the species, this piece of information is missing for
general homology. Ramani and Marcote provide an iterative optimization algo-
rithm that swaps the pairwise protein-protein interaction assignments until the
best possible overall assignment is found.

On the residue level, contacts are often modeled as weighted bipartite graph.
Each node represents a single residue (the corresponding aligned position). The
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edge weight is proportional to the distance of the two positions in contact. The
problem of contact prediction can then be seen as the reconstruction of a residue
contact graph. Gloor et al. [90] use mutual information of multiple alignment
positions to decide on single contacting positions. Similar approaches introduce
row and column weighting [97], use specific substitution correlation [60] or ap-
ply molecular dynamics simulations to refine the initial mutual information based
results [216].

Jones et al. [132] discuss that consideration of indirect effects is necessary to
overcome low accuracies in residue contact prediction (typically 20-40% correctly
assigned contacts). They argue that this is caused by the introduction of many
false positives due to so-called “chains of covariance”. The effect can be observed
due to two reasons: (1) phylogenetic bias and (2) indirect coupling effects.

Two non-contacting residues may seemingly co-evolve although two direct co-
evolution events exist in-between. This problem has been addressed via the anal-
ysis of higher-order contacts using triplets [111], by message passing algorithms
in a Bayesian context [30, 250, 31] or by matrix decomposition approaches [75].
Ekeberg et al. [65] show that the main setting is equivalent to the general problem
of inverse statistical mechanics.

2.4 Methods

2.4.1 Data Acquisition

We obtained six distinct sequence families as described in Dintner et al. [55]: BceR,
BceS, BceA, BceB, YycG and OppB. The membrane-bound BceS and intracellular
BceR constitute the two-component systems. They were derived by querying and
filtering homologs of the TCS in B. subtilis. The membrane-bound BceB and BceA
constitute the transporter and ATPase system. YycG and OppB were obtained
to serve as negative controls known not to interact with any of the other families.
The so-called ’core’ set of othologs contained 26 sequences with proteins available
for all six families. It spans highly related bacterial strains. The Bce homologs
could be obtained across 180 distinct organisms, yielding the ’extended’ set.

For each data set, a multiple sequence alignment of all sequences (’complete’)
was generated using ClustalW2, using a Gonnet280 substitution matrix, gap open
10, gap extension 0.2 and gap distance penalty 5. Additionally, 50 randomly chosen
subsets of size 20 were sampled from each core and extended set and realigned using
aboves parameters.

For some of the family pairs known physical interactions had been previously
reported, namely BceA/BceB and BceR/BceS. Similarly, all pairwise interactions
among YycG and OppB do not feature physical interaction.
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2.4.2 Alignment Correlation

The method of Goh et al. takes two sets of orthologous multiple sequence align-
ments as an input. For each set of orthologs a global multiple alignment of n
sequences is computed.

We then transform each alignment comprising the n sequences of a familiy k to a
matrix of n2 sequence-pair similarities Mk := (mk

ij) ∈ Rn×n, where i, j ∈ {1, . . . , n}
is a sequence pair of the respective multiple alignment. Since we are dealing with
highly related sequences, we rely on the induced pairwise average sequence identity
(number of identical positions in the alignment divided by the average length of
both sequences) rather than a distance measure. For the purpose of computing a
correlation these measures yield very similar results.

For two sequence families, we obtain two matrices M1,M2 ∈ Rn×n that express
all pairwise sequence identities. Following Goh et al. [94] a linear correlation
coefficient CC is then computed as

CC(M1,M2) =
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(2.1)

where mk is the mean of all matrix entries in Mk.
Goh et al. suggest to compute a p-value by re-assignment of ligands to other

receptors an repeatedly compute the random of this novel mapping. In practice,
the rows of M1 are shuffled. This should reflect the probability that a correlation
coefficient is obtained by chance, yet the original work does not discuss the nature
of this p-value in more detail. The permutation determines the nature of this
p-value. The procedure relies on a permutation of the pairwise association of
orthologs. Thus, the resulting p-value can be interpreted as the probability that
a new phylogenetic assignment would yield the observed correlation or above.
This p-value is therefore not a measure of the likelihood that the two protein are
functionally related or not. Instead, we obtain a set of non-interacting proteins
from the same set of organisms and compute a negative background CC.

While the negative background is an effective tool to judge the magnitude of
an observed CC, the effects of less conserved strains remain. Outliers to the family
in terms of sequence conservation may disrupt measures of co-evolution. Family
members that are less related to the majority of sequences in the family may
enforce non-characteristic shifts within the corresponding alignments. These may
have a strong impact on measures of coupled mutations as they promote alignment
entropy. Consequently, estimates of co-evolution are likely influenced by these
outlier sequences. We tackle this problem by a simple sub-sampling approach.
From n sequences we randomly select 2 ∗ n subsets containing 75% of organisms
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and construct novel multiple alignments for each such subset. A sampled variant of
the CC is computed. This results in a distribution of CCs that reflects the impact
of individual sequences for two protein families. To obtain comparable results, we
restrict the sampling size of larger families to that of the smaller family.

2.5 Results

Our aim is to apply a measure of phylogenetic co-evolution to gather evidence for a
functional interplay of the two protein families BceS and BceB, a membrane-bound
histidine kinase and a ABC transporter with an extracellular sensor for antimicro-
bial peptides. We applied a measure of co-evolution based on multiple alignments
of protein families to each pair of sequence sets (BceS, BceR, BceB, BceA, OppB
and YycG). The resulting correlation coefficients are shown in Table 2.1.

As discussed above the CC (see Equation 2.1) has no direct interpretation. We
cannot judge from its magnitude whether it provides any evidence on co-evolution
among the two protein families. In fact, the topology of the selected sequences
could lead to a strong correlation, even for unrelated proteins.

Family OppB YycG BceB BceA BceS
BceR 0.37 0.52 0.94 (0.78) 0.91 (0.91) 0.92 (0.84)
BceS 0.41 0.51 0.97 (0.82) 0.9 (0.72)
BceA 0.43 0.62 0.93 (0.79)
BceB 0.44 0.55
YycG 0.64

Table 2.1: Matrix correlations among all six families of proteins of Firmicutes an-
alyzed. The values are CC values (see Equation 2.1) for the core set of 26 proteins.
The bracketed values reflect the extended set of 180 sequences, where available.
BceA-BceB and BceR-BceS (italic) constitute known control interactions. BceS-
BceB (bold) is the hypothetical interaction among the two-component system and
the transporter permease. All correlations with OppB and YycG serve as negative
controls.

Therefore we have introduced positive and negative controls as a frame of ref-
erence. We observe that the negative controls are far less conserved than the
positive controls, i.e., the known interactions. Strikingly, the postulated inter-
action of the two membrane-bound components BceS and BceB exposes an even
higher co-evolution coefficient than the positive controls.

Furthermore, we computed a simple contact graph among all families (see Fig-
ure 2.1). This graph features two major components. The first component entails
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highly correlated and interacting families that show correlated mutations exceeding
a threshold of 0.7 in their co-evolution coefficient. The second component consists
of non-interacting entities that are on par with the background correlation. A
clear distinction can be made between the contacting families of the Bce-homologs
and the known negatives of OppB and YycG.

Figure 2.1: A contact graph among protein families based on a correlation measure
among pairwise sequence identities. Coefficients are calculated from the complete
datasets of 26 sequences, using all combinations of protein family pairs. The
graph visualizes the correlation among all six analyzed protein families. Grey
dotted lines encode lower correlation levels (CC < 0.7) whereas solid lines encode
higher correlation levels above (CC ≥ 0.7). The components of Bce-like modules
are grouped by a box. A clear-cut pattern of intra-family co-evolution is obtained
suggesting a potentially direct regulatory interaction of the ABC transporter and
two-component systems.

To estimate the influence of outlier sequences we sampled 50 subsamples of
size 20 (2 ∗ n, 75% of sequences) from the collected families and re-computed the
multiple alignments for each subset. We then computed the CC for each sampling.
The distribution of CCs for all pairs is shown in Figure 2.2).

We observe that the BceR-BceS distribution clearly exceeds the negative con-
trols on average. Few samples exist where a sub-sample would actually obtain
a worse correlation coefficient than the highest observed negative controls. By
contrast, the observed correlation is on par with positive the positive controls.

2.6 Discussion

In this chapter we have provided an overview of the field of co-evolution that can
be used to discover protein interactions. We focussed on the application of an
approach by Goh et al. [94] to a real-world problem with a direct connection to
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Figure 2.2: Correlation coefficients from random sub-samples of 20 sequences
(among 26) were chosen for negatives and 180 sequences among all other pairs.
Each box shows the 25%, 50% and 75% quantiles; the whiskers encode the 1.5-fold
Inter-Quartile-Range; green diamonds are outliers exceeding this range. The set
of “Negatives” consists of all pairs involving at least one YycG- or OppB-homolog,
known not to directly interact with the other families.

antibiotics resistance in Firmicute bacteria. Therefore, we designed and imple-
mented a prediction pipeline to determine the functional dependency among two
families of ortholog proteins from their multiple alignments. Since in our case,
both families are membrane-bound, they provide an inherently difficult target for
protein structure prediction, such that structural evidence for a contact is dif-
ficult. A sequence-only method was therefore promising. With the advance of
high-throughput sequencing these methods will gain further importance.

We used a measure of co-evolution in combination with carefully selected pos-
itive and negative controls to gather supporting evidence for the contacting and
simultaneous conservation of both proteins. We extended the original method by a
conceptually simple sub-sampling and obtained sensible contrasts between known
negative and positive regulations well-suited for further visualisation.

Together with the results presented in the paper by Dintner et al. [55], the
alignment correlation could successfully provide evidence for a completely new
mechanism of regulation that is widely conserved among Firmicutes.
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Detection of Spatial Artifacts

Background

This chapter is based on Petri et al. [193]. We present the results of joint work of
Tobias Petri (TP), Evi Berchtold (EB) and Caroline Friedel (TP). We analyzed a
novel type of exon arrays that was capable to distinguish newly synthesized RNA.
During the initial analysis we detected strong artifacts on the analyzed exon ar-
rays. The best practice then was to repeat the affected (if not all) experiments.
Yet, for reasons like limited funding or time restrictions, repetition is often im-
practicable. Due to missing sensible off-the-shelves solutions for the replacement
of probe level data, we decided to further investigate on the subject. We came up
with a conceptually simple and generally applicable outlier detection and probe
replacement approach. In contrast to existing multi-step algorithms that provided
an overwhelming amount of parameters, we focussed on a simple visually guided
selection.

Contributions

The experimental setup was designed by TP and CF. Data preparation was done
by EB and TP. TP implemented the spatial smoothing filter. EB implemented
the probe replacement routines. TP and EB ran experiments and evaluation runs.
EB adapted the routines for interactive use. The interpretation and discussion of
results was done by TP and CF.
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3.1 Experimental Artifacts

Noise within experiments can be harmful for downstream analysis. Noise and
artifacts present within raw data are usually simple to detect. Unfortunately, they
will likely corrupt further analysis and therefore leading to biased results. In this
chapter, we discuss the presence of artifacts in microarray databases and their
impact on standard routines that are widely applied in the context of microarrays.

3.2 Existing Databases contain Artifacts

Hybridization-based DNA microarrays are a key technology for high-throughput
quantification of expression levels for thousands of genes [153, 220]. State-of-the-
art microarrays now allow the genome-wide analysis of transcript abundance not
only for entire genes but also for individual exons, for alternatively spliced tran-
scripts and even for a large fraction of non-coding genomic regions [19, 82]. Thus,
despite the increasing prevalence of alternative methods such as RNA-seq [249],
RNA microarrays remain important for the analysis of many biological processes
such as miRNA-based regulation [74], alternative splicing patterns across human
tissues [98] or the role of alternative splicing in stem cell differentiation [212] and
cancer [147].

Recently, Langdon et al. [145] reported that all human Affymetrix microarrays
available in the Gene Expression Omnibus (GEO) [14] contain spatial defects to
some degree. Thus, quality control for microarrays remains a major issue.

Although many methods and software tools have been developed for quality
assessment of microarrays [24, 77, 134, 255], detection of spatial artifacts is not yet
routinely applied. Furthermore, it is usually not clear how to proceed once such
artifacts have been detected. The two alternatives are (1) to either completely
exclude or (2) to include the corresponding arrays for any subsequent analysis. In
the first case, the corresponding measurements are not available for gene expression
profiling and may even have to be repeated if they are crucial to the analysis. This
can be cost-intensive, for instance if corresponding samples have been used up. In
the second case, one has to assume that normalization and summarization methods
can correct for the measurement errors.

The latter assumption is based on the construction of microarrays where probes
of the same probeset are not contiguous on the array. Thus, smaller artifacts due
to uneven hybridization or other experimental problems may only affect a subset
of probes for a probeset. The general assumption is that summarization methods
– which combine the values for individual probes to a probeset value, such as RMA
[130] – can estimate the probeset value correctly despite measurement errors for
some probes.
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We illustrate that this assumption is often invalid by showing that even small
artifacts on the array can have a significant effect on the overall expression values
of many probesets, not only the ones affected by the artifact. Furthermore, we
introduce two simple but effective approaches for the identification of corrupted
probes: (1) a threshold-based approach and (2) an extension of this approach that
takes into account the neighborhood of a probe, i.e., spatial information of the
array. We show that the use of spatial information improves the identification of
defective probes as well as the reproducibility of probeset intensities after summa-
rization. Finally, we propose two strategies to either correct probe values using
probeset information or to filter corrupted probes, both of which improve sum-
marization accuracy as well as reproducibility between replicates. In this way, we
can recover even arrays with large artifacts for downstream analysis that otherwise
would have to be discarded.

3.3 Noise Detection on Probe Level Data

As outlined above, the GEO exhibits spatial defects in a substantial fraction of
microarrays. Nevertheless, in contrast to quality assessment, artifact detection
is not widely used in standard gene expression analysis pipelines. Furthermore,
although approaches have been proposed to detect diverse types of spatial noise
on arrays, the correction of these artifacts is mostly left to either summarization
methods or the corresponding arrays are completely discarded.

We show that state-of-the-art robust summarization procedures are vulnerable
to artifacts on arrays and cannot appropriately correct for these. To address this
problem, we present a simple approach to detect artifacts with high recall and
precision, which we further improve by taking into account the spatial layout
of arrays. Finally, we propose two correction methods for these artifacts that
either substitute values of defective probes using probeset information or filter
corrupted probes. We show that our approach can identify and correct defective
probe measurements appropriately and outperforms existing tools.

While summarization is insufficient to correct for defective probes, this prob-
lem can be addressed in a straightforward way by the methods we present for
identification and correction of defective probes. As these methods output CEL
files with corrected probe values that serve as input to standard normalization and
summarization procedures, they can be easily integrated into existing microarray
analysis pipelines as an additional pre-processing step.
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3.4 Related Work

Although not commonly included in standard microarray analysis pipelines, a
number of methods have been previously proposed for visualization of microarray
artifacts as well as identification and/or correction of corrupted probe measure-
ments (see also Arteaga-Salas et al. [8] for an overview of methods published before
2008). One of the most frequently used approach is Harshlight [233], which iden-
tifies and masks local artifacts based on statistical and image processing methods.
Artifacts are grouped into three classes based on the variation from the median
array: compact defects affecting only a few probes, diffuse defects affecting larger
areas and extended defects that are even larger and may thus invalidate the whole
array. Probes within defects can either be excluded from the analysis or be re-
placed by the median intensity across replicates.

An alternative method for identifying artifacts from raw intensity values is
Microarray blob remover (MBR) [230], which operates in two steps. First, broad
areas are determined in which more than half of the probes are above the kth
percentile of probe intensities, where k may be in the range of 60 to 100. These
candidate areas are then further refined and probes flagged to be within artifacts
are added to the ‘outlier entries’ section in CEL files.

In addition, several other methods have been proposed based on comparisons
to reference arrays [9, 127, 167, 206]. Reimers and Weinstein [206] calculate the log
fold-change of the probe value compared to the trimmed median of reference arrays
to visualize spatial artifacts but do not aim to identify individual defective probes.
Arteaga-Salas et al. [9] use a modification of Upton and Lloyd’s approach [239]
to identify areas in which the largest fold-changes compared to the median of all
arrays all stem from the same array. Having identified arrays with defects, they
then try to correct the original values using the values for the probe on the other
arrays. A similar approach is also pursued by Hulsman et al. [127] as part of their
normalization pipeline.

The most recent approach, caCORRECT2 [167], uses a z-score-like statistic
(h-score) to estimate whether a probe value on a given array is consistent with
the observed distribution for all other arrays. Corrupted probes are then flagged
if they have high h-scores and are contained in regions of high h-scores. Corrected
values for these probes are then estimated both from the other probes in the same
probeset as well as the other arrays using singular value decomposition.

3.5 Outline and Experimental Setup

Our analysis is structured into two parts. First, we illustrate that state-of-the-art
robust methods for summarization of probeset values from the individual probe
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Figure 3.1: Measurement artifacts observed on different arrays of our dataset:
total RNA for replicates 1 (A) and 3 (B) in DG75-10/12 cells; total RNA for
replicate 2 (C) in DG75-eGFP cells; newly transcribed RNA for replicate 1 (D) in
DG75-eGFP cells.

values cannot appropriately correct for measurement artifacts. Second, we present
methods for the identification of probes affected by measurement artifacts and
the correction of artifacts by replacing the values of affected probes or modifying
probeset definitions.

To evaluate the performance in correcting for artifacts, we used 18 exon array
measurements of DG75 and DG75-10/12 B-cell lines (see Section 3.6) for which
distinctive measurement artifacts were observed in some samples (see Figure 3.1).
These measurements included three replicates each of total RNA, newly tran-
scribed RNA labeled for 60 min with 4-thiouridine [57, 135] and the complementary
unlabeled pre-existing RNA. As newly transcribed and pre-existing RNA should
sum up to total RNA, these experiments provide a true biological control for the
assessment of quality problems and their correction.

In this study, we focused mostly on the measurements of the DG75-10/12
cells. In this case, 2 out of 3 total RNA measurements showed substantial spatial
artifacts in the images of the arrays but the corresponding measurements of newly
transcribed and pre-existing RNA were free of defects or showed only very small
or weak artifacts allowing us to use these as biological control (see Figure 7.3).
The largest artifact affecting a sizable amount of probes was observed in replicate
3 and a smaller one in replicate 1. Replicate 2 was artifact-free in total RNA,
although slight defects were observed in pre-existing and newly transcribed RNA.
As we only required the total RNA sample of replicate 2 as a control for the other
two replicates, this was not a problem.
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3.6 Microarray Measurements

3.6.1 Data

We used RNA measurements for two cell lines using both Affymetrix GeneChip
Human Gene 1.0 ST and Exon 1.0 ST arrays: 1) the B-cell line DG75 transduced
to express 10 out of 12 miRNAs encoded by the Kaposi’s sarcoma-associated her-
pesvirus (KSHV) (DG75-10/12) and 2) DG75 transduced to express eGFP (DG75-
eGFP) as control [247]. For each cell line and array type, total RNA was quantified.
In addition, RNA synthesis and decay was measured using a recently developed
method for labeling of newly transcribed RNA using 4-thiouridine (4sU) [135, 57].
This allows the separation of total cellular RNA (T ) into the labeled newly tran-
scribed RNA (N) and the unlabeled pre-existing RNA (P ) as well as quantification
of de novo transcription and decay in a single experimental setting.

For each cell line and each RNA fraction three replicates were measured re-
sulting in a total of 18 arrays for each microarray platform. The Gene 1.0 ST
measurements were recently published [56]. Exon 1.0 ST measurements were per-
formed in the same way. However, in this case considerable experimental artifacts
were observed for several of the 18 arrays resulting in distinctive stains visible in
the array images (see Figure 3.1, 7.1 and 7.2). These artifacts were probably a con-
sequence of a drying out of the central part of the array during the hybridization
step resulting in artificially high values for the corresponding probes.

3.6.2 Summarization and Normalization

Two steps that are generally performed first in a microarray experiment are nor-
malization and summarization. Normalization is applied to allow the comparison
of results from different replicates and conditions. Summarization estimates overall
expression values for each probeset from the individual probe measurements.

Normalization. In this study, we used quantile normalization, which is com-
monly used in combination with RMA summarization. If newly transcribed (N)
as well as pre-existing (P ) RNA have been quantified in addition to total cellular
RNA (T ), an additional normalization step has to be applied to account for the
different amounts of RNA between the fractions [57]. Since T = N+P has to hold
approximately for all probes, the linear model T = λ1N + λ2P minimizes the sum
of residuals for λi ∈ R+, i ∈ {1, 2}. The corresponding λi can be found by linear
regression [57], which can be applied both on the summarized probeset values as
well as the individual probe values themselves. If the fold-change between repli-
cates is used to calculate the probe noise score a loess normalization is additionally
applied before fold-change calculation.
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Summarization. One of the most widely used summarization techniques is Ro-
bust Microarray Averaging RMA, which estimates both an overall expression value
for each probeset and the probe-specific measurement error by fitting a linear
model to the probe values [130]. Thus, this method implicitly estimates the
noise level for each probe and effectively subtracts the estimated noise from the
probe when calculating the overall probeset values. This explains why it is com-
monly assumed that this method can correct for measurement artifacts [154]. For
our purposes, the Affymetrix Power Tools (APT) were used for summarization
(http://www.affymetrix.com). An alternative implementation is provided by
the affyPLM [24] library, which also provides access to the estimated residuals.
However, due to its considerable memory usage when working on exon arrays the
affyPLM library could not be applied to all exon array measurements together.

3.7 Quality Assessment

3.7.1 Probe Noise Score

To assess the level of noise for individual probes, different criteria can be applied.
If measurement errors are explicitly modeled as in the RMA approach, residuals
can be used to assess reliability of the corresponding approach [24]. The higher the
absolute values of the residuals, the stronger the effect of measurement errors on
this probe. The global residual level (calculated by the APT subroutine qcc [154])
can be used to indicate which arrays are suited as control and which are likely to
contain artifacts.

A general probe-level noise score for probe j can be calculated as the fold-
change compared to a control:

sj =

∣∣∣∣log2
vj + c

v′j + c

∣∣∣∣ (3.1)

Here, vj is the intensity for the probe on the corrupted array and v′j is their
value on the control. The pseudocount c corresponds to the estimated detection
limit (in our case c = 16). Both vj and v′j can be measured directly or can be
derived values, e.g., using measurements of newly transcribed and pre-existing
RNA as described in the normalization section. In the latter case, the normalized
sum of N and P serves as a control for the measurement of T , i.e., vj = T and
v′j = λ1N + λ2P . Alternatively, replicates may serve as a control. If it is not
possible to determine a suitable control, the fold-change against the median probe
intensities of all replicates can be used. This corresponds to the error image used
by Harshlight [233].

http://www.affymetrix.com


36 3. Artifact Detection

3.7.2 Probe Noise Plot

As each probe has a defined location on the array, the noise level of individual
probes can be visualized by plotting the noise score of the probe against this
location. For a more intuitive visualization, the noise score is color-coded and the
location represented by the x- and y-axis. If residuals from the RMA model are
plotted, this corresponds to the residual plot proposed by Bolstad et al. [24]. To
calculate residuals for noise plots, we used the affyPLM implementation of RMA
which provides access to these residuals. In this case, residual estimation for a
specific array was based on the three replicates for the corresponding condition.

3.7.3 Replicate Scatter Plot

To evaluate correction of artifacts, probeset values for the affected arrays are plot-
ted against the control values. If no artifacts are observed, summarized probeset
values should be highly reproducible between the replicates. Instead of replicates
for the same condition and RNA fraction, the complementarity of the total, newly
transcribed and pre-existing RNA fractions can be exploited.

3.7.4 Introducing Artificial Noise

Measurement errors were introduced artificially (spiked) in exon array measure-
ments by selecting a noise level δ and spiking each probe according to this proba-
bility. The raw measured values of spiked probes were then replaced by an artificial
level drawn from a log-normal distribution with mean µ and standard deviation σ
(in our case µ = log2(850) and σ = 1 were inferred from the intensities within the
real artifacts). Only probes corresponding to core probesets defined by Affymetrix
were spiked and included in the summarization. Simulations for each selected
value of δ were repeated 100 times.

Furthermore, real-life stains were projected onto the Gene ST arrays to cre-
ate realistically shaped artifact patterns. For this purpose, our artifact detection
approach (see Section 3.8) was applied to the exon array measurements with ar-
tifacts to detect the location of the corrupted probes. The exon array artifacts
were then scaled down to the dimensions of the gene arrays and transferred to the
artifact-free gene arrays. For this purpose, 2× 2 rectangles of probes on the exon
arrays were mapped to one probe on the gene arrays and the maximum value of
any of the probes in this rectangle was used for the spiked probe. To account for
the overall larger intensities on the gene arrays, the resulting value was multiplied
by the ratio of the 75 percentile of the intensity distribution on the gene arrays
relative to the corresponding 75 percentile for the exon arrays.
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3.8 Artifact Detection

We propose two alternative approaches to identify probes which are affected by
significant measurement errors. The first method is based on a simple threshold
criterion, the second approach extends this method by including the neighborhood
information on the array.

3.8.1 ǫ-criterion

The ǫ-criterion is based on the noise score defined in equation 3.1 and simply
applies a threshold t on this score. Thus,

ǫ(sj) =

{
true sj > t

false otherwise
(3.2)

If ǫ(sj) is true, probe j is flagged as corrupted. Thresholds can be adjusted man-
ually by analyzing both probe noise and replicate scatter plots.

3.8.2 Window Criterion

As measurement artifacts usually affect a specific region on the array and, ac-
cordingly, a set of probes closely located to each other, we propose a method
which takes into account the neighborhood information. Note that noisy regions,
i.e., artifacts on the chip do not necessarily yield a higher mean intensity. An
experimenter looking at a defective chip will spatially group noisy spots. Our win-
dow criterion follows this intuition, in terms of a spatial correlation among spots.
Thus, for estimating the reliability of a specific probe we take into account the
values of the probes in a window around this probe. For our purposes, we used
a 2D window of dimension (2k + 1) × (2k + 1) with the probe considered in the
center of the window (here k = 25 was used).

We calculate a weighted average of the probe noise scores in this window:

swj =

∑
p∈P sp · w(p, j)∑

p∈P w(p, j)
(3.3)

where P is the set of probes in the window, sj the noise score of the probe p and
w(p, j) is the weight of probe p in the window for j. The weight is calculated as
1/d(p, j) if p 6= j where d is the distance between probes. In this study, we used
the euclidean distance on the probe coordinates but alternative distances can be
used. If p = j, the weight is set to 2. If residuals from RMA-like methods are
used as noise scores, sp is set to the absolute value of the residuals. For probes
close to the borders of the array, the window will be cut off at the respective sides.
Subsequently, the ǫ-criterion is applied to the window-based noise scores.



38 3. Artifact Detection

3.9 Correction of Corrupted Probes

For correction of corrupted probe values we use two alternative approaches. In
the first case, we replace the intensities of the corrupted probes by the mean
intensity of the remaining probes of the corresponding probeset in the CEL file.
This correction only takes into account probe values measured with the same
array, thus, differences in intensity distributions between arrays do not have to be
considered. If all probes of a probeset are corrupted it is not possible to infer a
meaningful probeset intensity. Thus, we set all probe intensities to 0 resulting in a
probeset intensity of 0. These probesets should be excluded from further analysis.

The alternative method consists in removing corrupted probes from the probe-
set definition by modifying the PGF annotation file provided by Affymetrix. It
should be noted that it is also possible to completely exclude affected probes from
the summarization procedure using the “--kill-list” option of the Affymetrix Power
Tools. Yet, downstream tools may request for the filtered probe values, thus, direct
probe value correction is far more robust than complete removal.

3.10 Evaluation of Artifact Detection

To evaluate the performance of artifact detection, Gene ST arrays were spiked
as described above. For each threshold applied, we then calculated true positives
(spiked probes that are filtered, TP ), false positives (probes not spiked but filtered,
FP ) as well as true negatives (probes neither spiked nor filtered, TN) and false
negatives (spiked probes not filtered, FN). To evaluate different approaches over
all possible thresholds, we used Precision-Recall curves for which

precision = TP/(TP + FP ) (3.4)

is plotted on the y-axis against

recall = TP/(TP + FN) (3.5)

on the x-axis for all possible thresholds.

3.11 Probe Noise Plots

Although the array images already gave a first clue to the artifacts observed in
our example, this was only due to the high intensity values of the affected probes
and not all defects can be identified so easily. Thus, instead of intensities, we
visualize probe noise scores that quantify the deviation from a control or a linear
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model as used by RMA for example. As a control, we use additional replicates that
are artifact-free in the relevant region or the biological control from RNA labeling
experiments (see Section 3.7). If residuals from the RMA models are used, the
probe noise plots correspond to the residual plot proposed by Bolstad et al. [24].

Probe noise plots and residual plots for the arrays analyzed are shown in Figure
7.3. Here, we used as controls for total RNA either the artifact-free replicate 2 or
the normalized sum of newly transcribed and pre-existing RNA of the correspond-
ing sample. While different noise scores pick up the artifacts similarly well for the
defective replicates 1 and 3, a striking observation was made for replicate 2 in the
RMA residual plots. Here, an additional stain showed up in the center of the array,
which is not observed in the original image. Most likely, the RMA model, which is
based on several replicates (in this case all three total RNA measurements), was
biased by the stains on the other two arrays at this location leading to large resid-
uals for replicate 2. This provides a first indication that summarization suffers
from these artifacts.

3.12 Insufficient Correction by Summarization

To evaluate whether the final probeset values can nevertheless be estimated cor-
rectly by summarization, we used replicate scatter plots that compare probeset
levels between the affected array and a control (see Figure 3.2 A,B and Figure
7.4). Here, the same controls as for the probe noise plots were used and probesets
were colored according to the fraction of probes that were flagged as corrupted by
our simple thresholding approach on the probe noise scores (the ǫ-criterion, see
Section 3.8.1).

As expected, the deviation to the control is substantial for probesets with all
probes affected as no reasonable estimation is possible. In contrast, if only 75%
or less (0-3 probes for most probesets) probes were affected, we did not see a
correlation between the number of defective probes and the deviation from the
diagonal. Instead, all probeset levels were affected to some degree. Strikingly, the
deviation for replicate 1 with the small stain was stronger than for replicate 3 with
the largest stain. Furthermore, this deviation was most pronounced for probesets
with high expression values, which were not even affected by the stain.

One possible explanation is that this is an effect of the normalization – in this
case quantile normalization – that has to be performed before summarization. It
might compensate for the extremely high values for some of the probes by reducing
the levels of the remaining probes. When omitting quantile normalization, the
strong deviation for highly expressed genes in replicate 1 is reduced (Figure 3.2
C,D). For replicate 1 there is a bias even for the uncorrupted probesets (A) that can
be reduced by omitting quantile normalization (C). If probe correction is applied
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Figure 3.2: Replicate scatter plots comparing total RNA for replicates 1 (A, C, E)
and 3 (B, D, F) against the artifact-free replicate 2 for the exon array measurement
in DG75-10/12 cells. The subfigures A and B show the results using both RMA
and quantile normalization, C and D using only RMA without quantile normal-
ization and E and F after probe correction. Probesets are colored according to the
percentage of their probes that are flagged as corrupted by the ǫ-criterion (noise
scores using newly transcribed and pre-existing RNA as control).
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prior to normalization and summarization (E,F), this bias is removed. The results
are shown for the correction method which replaces the probe value by the mean
of the unaffected probes in the same probe set. In this case, the intensity of
probesets for which all probes are corrupted are set to zero. Results for the filtering
approach in which affected probes are removed from the probeset definition are
very similar. Nevertheless, even without normalization, the nonlinear behavior for
both replicates in comparison to replicate 2 is still observed.

Figure 3.3: A boxplot of the log2 fold changes for probesets with 0, 1, 2, 3 or 4
spiked probes in the simulation in which 5% of all probes were spiked in total (δ =
0.05). Here, probesets with the same number of spiked probes were pooled across
all simulation results. For the case of 0 spiked probes, probesets were selected
randomly from the pooled set as there were too many probesets for loading into R.
In this case, each probeset was selected with a probability of 0.01. The more probes
of a probeset are spiked, the higher is the fold-change between replicates. We
observe a very strong correlation between the number of affected probes and fold-
change biases on probeset level, which may seriously harm downstream analyses.

Exon arrays also offer the possibility to summarize probe values to meta-
probesets that correspond to genes. As there are more probes per meta-probeset
the effect of the artifacts should be smaller. Nevertheless, we still observed a
systematic shift from the diagonal in the corresponding replicate scatter plot, al-
though for replicate 3 the deviation was much smaller (see Figure 7.5). In contrast
to probeset level summarization, however, omitting quantile normalization did not
reduce this deviation.
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3.13 Sensitivity of Summarization to Noise

To systematically analyze the influence of measurement artifacts on summariza-
tion, we performed the following experiment using three replicates of total RNA
measured with exon arrays for the DG75-eGFP cell lines. These measurements
were basically artifact-free with only a very small stain in one replicate, which
could be easily corrected using our ǫ-criterion (see Figure 7.7). Here, only 6380
probes (out of >5.5 million features on the array) were identified as corrupted and
6335 probesets had 1 corrupted probe, 21 had 2 and only one had 3. This is a
much smaller number than observed for the substantial artifacts on the DG75-1012
arrays.

We then introduced artificial measurement artifacts into the corrected DG75-
eGFP arrays (spiking, see Section 3.6). Depending on a noise level δ, probes to
be spiked were chosen randomly with probability δ and their intensity values were
drawn randomly from a log-normal distribution (with parameters µ = log2(850)
and σ = 1). Mean intensity values were taken from corrupted probes identified
by the ǫ-criterion on the DG75-10/12 total RNA measurements (mean intensity
values ∼850) to provide a realistic level of noise. Spiking was performed for only
one of the arrays and the remaining arrays were used as control. After spiking
the raw values on the array, we performed summarization and normalization. To
assess the effect on the resulting probeset levels, we evaluated the average log2
fold-changes in probeset levels between each pair of spiked array and spike-less
control for noise levels in the range of 0.01 to 0.1. For each noise level, random
spiking was repeated 100 times.

Comparing the log2 fold-change against the number of spiked probes for each
probeset (Figure 3.3), we found a very clear trend: if only one probe is affected, the
median fold-change is slightly higher than for probesets not affected by spiking.
However, if more than one probe is spiked, the fold-changes increase substantially.
Thus, variance of the probeset levels are increased considerably even if only few
probes are affected. This larger variance can lead to low or no statistical signifi-
cance for differentially expressed genes and as a consequence reduce the sensitivity
of gene expression profiling.

3.14 Identification and Correction of Corrupted

Probes

To address the problem of measurement artifacts for summarization, we propose a
two-step approach in which we first identify corrupted probes and then correct for
these corrupted probes in one of two ways. The first correction method consists
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A B C

Figure 3.4: Illustration of the results on the spiked Gene ST arrays. Both shape of
the artifact and intensities of the spiked probes were transfered from exon arrays
containing artifacts. A) shows the spiked probes in red and B) and C) the probe
scores based on fold changes between replicates using only the probe information
itself (B) or also its neighborhood (C). For both B and C the overall shape of the
spiked stain can easily be identified, but only when using the window-criterion (C)
all probes within this area are identified. Furthermore, in B there are more probes
with high noise scores that were not spiked (false positives).

in replacing the probe value by the mean of the remaining unaffected probes for
the given probeset. The second alternative consists in removing the probe from
the analysis, for instance by re-defining probeset definitions to exclude the affected
probes. As several analysis tools including the APT suite cannot handle missing
values appropriately and even the de facto standard of present and absent flags
is often ignored by downstream tools, the first method is more robust than the
second.

To identify the corrupted probes we use a simple threshold criterion based on
probe noise scores calculated either from fold-changes to a control or RMA-derived
residuals. Here, we developed two approaches that calculate the probe noise score
either for each probe alone (ǫ-criterion) or as a distance-weighted mean of the
noise scores within a 2D-window around the probe (window-criterion, see Section
3.8.2). The latter approach is based on the observation that measurement artifacts,
e.g., due to uneven hybridization, usually affect several closely located probes and
not only individual probes. Probes with a noise score above a certain threshold
are then flagged as corrupted.

To correct the DGF75-10/12 measurements and to evaluate the performance of
correction appropriately, we pursued the following procedure to avoid over-fitting.
If we compared the corrected and summarized probeset values between replicates
(Figure 3.2 E-F), detection of corrupted probes was based on the ratio of total
RNA and the normalized sum of newly transcribed and pre-existing RNA and
vice versa (see Figure 7.6).
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These results show a significant improvement after probe value correction. Both
with and without quantile normalization, the distinctive deviation for large ex-
pression values seen before in replicate 1 is no longer observed. Instead, for both
defective replicates 1 and 3, variance is symmetrical on both sides of the diago-
nal. This was true both for the correction using mean values of unaffected probes
of the same probeset (Figure 3.2 E-F, Figure 7.6) as well as for the filtering ap-
proach in which the affected probes were removed from the probeset definition
(not shown). Here, the mean absolute deviation from the diagonal decreased from
12.2 in the original data to 7.34 and 4.7 for the first and second correction method,
respectively. Thus, even the simple ǫ-criterion could successfully identify the de-
fective probes and probeset values could be corrected appropriately, with slightly
better results obtained by removing affected probes instead of using values from
unaffected probes.

3.15 Accuracy of Artifact Identification

To perform a systematic analysis of the performance in detecting measurement
artifacts, we used Gene ST array measurements of the same samples that were
measured with the exon arrays. The Gene ST measurements were free of artifacts
and have been published recently [56]. Artificial stains were spiked into these
artifact-free Gene ST measurements by projecting the artifact observed in total
RNA of replicate 3 for the DG75-10/12 cells from the exon arrays to one sample of
total RNA measured with gene arrays as described in the methods section (Figure
3.4 A). We used the pattern of the stain on a real-life example instead of random
selection or some other spatial pattern to perform a realistic simulation of noise
and fair comparison of the approaches.

3.16 Compared Methods

We compared the ǫ-criterion and window-criterion using probe noise scores based
on

1. fold-changes between replicates, calculated from all 3 replicates of total RNA
for the DG75-eGFP cells including the spiked replicate.

2. fold-changes between total RNA and normalized sum of newly transcribed
and pre-existing RNA corresponding to the spiked replicate.

3. RMA residuals calculated based on all 18 replicates using the affyPLM li-
brary.
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These approaches were additionally compared against Harshlight [233] and
MBR [230], which were applied to the 6 array measurements of total RNA. Harsh-
light does not provide noise scores per se but relies on downstream algorithms to
decide on affected probes. To compute precision and recall values, probes were
ranked by their fold-change to the corresponding median probe value across all
arrays. This score is used by Harshlight in its initial step. For our purposes, it
was additionally incremented by a constant value for probes flagged as defects by
Harshlight such that all flagged probes ranked higher than any other probe. As
MBR is only available as a GUI, we investigated only a small number of values
for the parameter k (60-80 in increments of 5; values larger than 80 were found to
have only very small recall).

Additionally, we planned to evaluate performance of caCORRECT2 [167] as
well as the method by Reimers and Weinstein [206], which both are available as
web-servers. However, as none of the two programs had yielded a result 24 hours
after uploading the data to the web-servers, we aborted the evaluation. Thus, it
appears that these methods did not scale well to the size of the Gene ST arrays
used in this study, which are substantially larger than older Affymetrix arrays
but still much smaller than the exon arrays. Alternatively, in particular for the
Reimers and Weinstein method, the web-servers might no longer be maintained.
The method by Hulsman et al. for identifying location artifacts is only available as
an intermediate step within their normalization pipeline and could not be evaluated
on its own.

3.17 Evaluation Results

Figure 3.4 illustrates the spiked artifact as well as the probe noise scores calculated
using either only the probe information alone or including also the probe neigh-
borhood using the window-based approach. Here, the probe scores were calculated
from the fold-changes between replicates. The window approach results in a much
smoother change of scores and high noise scores within the complete spiked area.
If scores are calculated on each probe alone, we observe large variations in the
spiked area with not all probes having high scores. Similar results are observed
for the other types of noise scores (see Figure 7.8), indicating that the window
approach results in higher sensitivity in identifying defective probes.

To compare the different approaches, Precision-Recall curves were calculated
(Figure 3.5). For this purpose, precision in identifying defective probes is plotted
on the y-axis against recall on the x-axis for decreasing thresholds for flagging
a probe corrupted. Here, several interesting observations can be made. First,
the noise scores based on fold-changes to either replicate or newly transcribed
plus pre-existing RNA samples perform almost identically using the ǫ-criterion.
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A B

Figure 3.5: Precision-Recall curves for spiked Gene ST measurements. Here, ar-
tifacts were projected from the exon array measurements onto the gene arrays
to produce realistic noise patterns. Three different scoring approaches were com-
pared both for the simple threshold approach, the ǫ-criterion (A), and its cu-
mulative variant, the window-criterion (B), which takes into account the probe
neighborhood information. The scoring approaches compared are: (i) absolute
log fold change between total RNA and normalized sum of newly transcribed and
pre-existing RNA (fold change (T/N + P ), see Section 3.7.1); (ii) absolute log
fold change between replicates (fold change replicates); (iii) residuals determined
with the RMA summarization approach using the affyPLM model (affyPLM ).
These results show that the window-based approach improves the performance of
all used methods, resulting in almost identical performance for all of them, which
is superior to the performance of both Harshlight and MBR.

In contrast, the scores based on the RMA residuals show a higher precision for
low recall values but this precision deteriorates more rapidly for increasing recall
values.

Second, performance of all probe scores improves considerably when we apply
the window-criterion. By taking the local information of a probe’s neighborhood
into account, recall can be increased significantly while the number of probes
mistakenly flagged as corrupted is reduced. Furthermore, when using the window-
criterion the differences between the scoring approaches disappear and all scoring
methods show a very similar performance. Here, the reason for the poor perfor-
mance of the ǫ-criterion at low recall are a few isolated probes with high noise
scores on the arrays that were not spiked and thus, are counted as false positives.
While these outliers might also be interesting, they do not indicate a systematic ar-
tifact. Accordingly, smoothing over the scores in the neighborhood of these probes
reduces their noise level. This enables us to find an appropriate threshold between
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spiked and spike-less probes independent of the scoring method used.
Finally, the performance of the different window-criterion variants was com-

pared to Harshlight and MBR. While Harshlight performs similarly well for inter-
mediate recall values, precision is very low when trying to reach full recall. At a
recall of 85% of spiked probes, the fraction of correctly flagged probes is only less
than 50%, whereas for the window-criterion more than 90% of the flagged probes
had been spiked. Thus, it appears that Harshlight uses too strict requirements on
probe quality and, accordingly, tends to flag too many probes as defective. Ad-
ditionally, modern platforms like gene and exon arrays appear to cause problems
to Harshlight due to either calibration or technical issues. Using default settings
large diffuse defects are detected even for artifact-free arrays and spike-in probes
used for calibration are detected as compact defects.

MBR also performed worse than all window-criterion variants at all recall
values but outperformed Harshlight in a small range. It should be noted that
the parameter k used by MBR allowed only very little tuning of performance.
For k=80 (the largest value investigated), recall was as low as 0.1, then increased
dramatically to 0.81 for k=75 and then only increased moderately up to 0.83 for the
smallest allowed value of k=60. At the same time, precision varied only between
0.90 for k=80 and 0.77 for k=60.

3.18 Conclusions

In this chapter, we discussed that frequently applied normalization and summariza-
tion procedures may be vulnerable even to small spatial defects. We illustrated
the necessity of integrating artifact detection and correction into standard gene
expression analysis pipelines.

We proposed a general and simple approach for the identification and correction
of these artifacts that relies on control measurements, and technical or biological
replicates. Furthermore, we have shown that, if available, newly synthesized, total
and pre-existing RNA fractions may guide this process. By additionally taking
the probe neighborhood into account, we can furthermore improve the detection
accuracy compared to more complex multi-step approaches. Thus, even if a sub-
stantial amount of probes is defective on an array, the remaining measurements
can still be sensibly analyzed.

In a later project we could successfully apply our corrective procedure to the
analysis and correction of custom arrays in a veterinary medicine context [140].
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Chapter 4

Scoring the Deviation of
Expression Patterns from Known
Behavior

Contributions

This chapter is based on Petri et al. [195]. The experiments described in this chap-
ter were carried out in collaboration with Robert Küffner (RK). The experimental
setup was discussed and designed by RK and Tobias Petri (TP). Machine learn-
ing routines have been implemented by TP. Leave-one-out experiments have been
designed and run by TP. Additional predictive routines have been implemented
by RK. The evaluation was implemented by TP and RK. The interpretation of
results was done by TP and RK. Ralf Zimmer (RZ) critically reviewed results and
provided substantial feedback in the course of this work.
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4.1 Differential Analysis

In the last chapter we discussed the problem of microarray artifacts as an example
of experimental noise that is relatively easy to detect. In this chapter, we focus on
a specific interplay of correlation and noise in differential analysis. To understand
this, we first need to sketch the problem setting and the way it is commonly
approached.

To pin down the key differences between a diseased and a healthy condition,
we usually apply some kind of differential analysis, i.e., both conditions are mea-
sured, compared and screened for the most striking differences. We would usually
like to detect genes that are differentially regulated and show a statistically sig-
nificant change in terms of their mRNA abundance level as measured by chips or
next-generation sequencing. By comparing the variance within replicates and the
inter-condition changes, a list of significant and strongly regulated genes can be
compiled. Figure 4.1 shows a prototypic setup that is commonly used.

In this setup candidate genes may be significant and regulated but less inter-
esting in the context of the conditions analyzed. In particular, genes that follow
an expected behaviour given the state of other genes. Among the processes that
are frequently regulated are inflammatory responses – often involving members of
the interleukin family. The underlying mechanisms must maintain their function
across a wide range of diseases. They may constitute large fractions of the observed
differential behaviour. Similarly, multi-functional genes likely show up in several
experiments as well. For the well-known tumor-suppressor gene P53 for example
it is nearly impossible to name a single context that would best describe its mode
of action: according to the GeneCards resource (http://www.genecards.org/ ) the
gene is associated with some 30 Gene Ontology molecular function terms and more
than a hundred pathways.

4.2 Experiment Specificity

As described above, the differential analysis of genes comparing several experimen-
tal conditions or treatments routinely estimates which genes change significantly.
Multi-functionality and context-free behaviour therefore lead to false positive can-
didates. Few genes are regulated individually and the commonly observed behavior
may thus be a consequence of changes in other genes. Existing approaches like
co-expression analysis aim at resolving such patterns. The knowledge of such a
background set of experiments can be used to compute expected gene behavior
based on known links. It is particularly interesting to detect previously unseen
specific effects in other experiments.
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Figure 4.1: A common experimental setup for differential expression analysis.
Two conditions are monitored using the same measurement technique and the
resulting raw values (possibly with replicated experiments) are used to compute
differentially expressed (DE) genes. These are then fed into a candidate evaluation
which usually integrates further resources like networks or ontologies. Commonly,
this results in the detection of gene modules that are jointly regulated as well
as top candidates suited to discriminate the input conditions. Processes that are
enriched for differential genes may hint at novel modes of action.
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In this chapter we describe a novel method to spot genes deviating from ex-
pected behavior (PAttern DEviation SCOring – Padesco). It uses linear regression
models learned from a background set of differential experiments to arrive at gene
specific prediction accuracy distributions. We use these distributions to decide
whether a gene is predicted worse (or better) than expected. This provides a novel
way to estimate the experiment specificity of each gene.

There is no generic procedure to assess whether a candidate classified as specific
is correctly identified. To provide a useful estimate of our procedure we therefore
resort to a simulation that introduces specific genes into existing experiments. The
resulting validation procedure provides an estimate of the detection rate for these
candidates. We show that Padesco can identify the experiment specific behaviour
of a gene with an average accuracy of about 85 percent.

4.3 Overview of Padesco

Candidate gene lists in a differential setting may contain several hundreds of genes.
Detailed biological downstream studies are usually not feasible for all of these
genes. Further filtering towards more promising candidates is therefore necessary.
Moreover, most candidates are likely indirect targets of initially affected genes or,
more generally, they follow a pattern which can be observed similarly in other
experiments. Such genes may not be of immediate interest. In return, striking
differences to known behavior indicate specificity for a certain experiment and such
genes are suited for further analysis. We will now introduce how Padesco models
common patterns and in which way differences to known patterns are obtained.

4.3.1 Patterns

Hirsch et al. [119] noted that disease specific effects eventually trigger core biolog-
ical pathways and frequently lead to “a transcriptional signature that is common
to a diverse set of human diseases”. Such signatures can be learned and used
for experiment specific predictions. Padesco detects how well the behavior of a
gene can be derived from other genes. It allows to detect genes which show both
differential and unexpected – and thereby interesting – behavior. The target gene
patterns we learn are derived through Support Vector Regression (SVR) and basi-
cally constitute linear models describing its dependencies to other genes. Since we
aim at unexpected changes rather than states we use fold-changes, not expression
values to describe gene behavior.
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4.3.2 Deviations

Not all differential genes detected by differential expression analysis are specific.
A background set of experiments must be heterogeneous to assess this. Padesco’s
key idea is that we can decide whether the behavior of a gene can be predicted
worse than expected and is a specific gene. It is important to note that there may
well be genes which are difficult or easy to predict in general. Our scoring scheme
is designed to account for this individual prediction complexity by estimating an
empirical distribution of deviations in a cross-validation (CV) setting.

4.3.3 Evaluation

Evaluation of differential expression results is difficult. Simulations may show
methodological strengths and weaknesses, but biological evaluation is only possi-
ble through comparison to published knowledge or downstream experiments. We
discuss Padesco’s performance both by means of an exhaustive simulation exper-
iment and a detailed discussion of literature supporting genes found to be inter-
esting by our approach. The simulation shows that genes deviating from their
common behavior would be neglected due to differential expression analysis alone,
since they often show only moderate differential expression.

4.3.4 Scoring

Padesco is trained on a background set of experiments consisting of 1,437 microar-
rays from 25 experiments sharing 4,117 genes. A leave-one-out cross-validation
(LOOCV) across all experiments is done yielding predictions for a genes fold-
change for all pairs of arrays within the omitted experiment. We estimate how
well a gene can be predicted by deriving the empirical distribution of its devia-
tions from the measured fold-changes. We then devise a score based on the median
absolute deviation to score a gene in an unseen experiment. We assume that a
gene in a differential setting is interesting if it exhibits a change in its gene expres-
sion. We therefore use differentially expressed genes. Furthermore, a gene may
be predicted better than expected, which points at stronger presence of a trained
gene-gene dependency within this experiment. Although the problem is related
we do not focus it in this work. If a gene is predicted worse than expected this
suggests changes in a known dependency structure.

4.4 Related Work

Padesco is a natural extension to co-expression approaches [64, 149, 208, 238]
as well as residual scoring schemes [139, 199]. Co-expression aims to construct
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gene sets by clustering or the construction of co-regulated gene sets across many
samples. Our trained patterns are similar, yet not identical to these previously
derived co-expression patterns. Mentionable differences are the use of fold-changes
rather than raw measurements and our predictability criterion. Predicting a gene’s
expression from other genes has been previously applied to estimate condition-
specific deviations, referred to as residual scoring [139, 199]. These approaches
do not derive predictive models in terms of the prediction of novel experiments.
To achieve meaningful residual scores they are applied on homogeneous training
data like certain disease subtypes. These scoring schemes fail on heterogeneous
experiment data. Instead, Padesco omits complete experiments from training
and captures actual predictability rather than model residuals. It therefore aims
to bridge the gap between the detection of predicted co-regulations and residual
scoring. For heterogeneous training sets a background sensitive view on differential
experiment results is provided.

In general, identified sets of differentially expressed genes should maximize sam-
ple discrimination. The markers, or gene signatures, would then provide promising
targets for further analysis. Previously, gene expression profiling was used to iden-
tify transcription signatures for breast cancer prognosis classification [241] and
gene expression profiles have been used to reveal pathway deregulation in prostate
cancer [208]. We rely on comprehensive resources like GEO [62]) that enable the
analysis of co-expression across many experiments. The comparison can for in-
stance be quantified by measures of reproducibility in-between experiments [83].

Padesco’s linear models are related to those used for imputation of missing
values (IMV). Here, either data from single [114] or multiple experiments [123] is
used. SVRs have been used to tackle the problem of IMV as well [137], yet to our
knowledge neither fold-change predictions nor the imputation of known values has
been examined in detail.

4.5 Data Sets

Padesco is trained on a set of experiments compiled by Lee et al. [149]. It con-
sists of 3,924 microarrays from 60 human data sets. These sets comprise 62.2
million expression measurements. They consist of 10 to 255 samples. Genes are
filtered for a minimum amount of variance across samples. We restrict the data
set to Affymetrix array platforms (HG-U95A, HG-U95Av2, HU6800, HuGeneFl,
HG-U133A and HG-U133comb). Although absolute expression levels of single ex-
periments and platforms are usually not comparable, the fold-changes used by
Padesco are suited for further analysis spanning multiple experiments.

We restrict our analysis to a subset G of 4,117 genes that occur in more than
50% of all experiments and contain at least 75% non-missing measurements. 25
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experiments with a total of p = 1437 microarrays fulfill this constraint. We ob-
tain a matrix of fold-changes F by sampling p pairs of arrays (Figure 4.2 and
Section 4.6.3) from the space of all possible pairs within experiments.

For 13 selected experiments we combine arrays into sample groups, e.g., tumor
vs. normal samples. This is analogous to usual differential expression analysis (see
Section 4.1) to compare the expression of genes between different sample groups.
Overall, 62 sample groups have been analyzed. Comparisons are performed as one
sample group versus the others from the same experiment, i.e., one comparison is
performed for experiments with n = 2 sample groups and n comparisons otherwise.
We conducted 59 comparisons in total.

4.6 Basic Protocol

Padesco uses a two step approach for the selection of candidate genes from expres-
sion measurements. Prior to its application, expression patterns must be trained
on a background set of experiments (Section 4.5). We apply Support Vector Re-
gression (see Sections 4.6.2 and 4.6.3) to train one model for each gene given this
set. The predicted labels are within-experiment fold-changes of this gene. Train-
ing features are the fold-changes of all other genes. For a new experiment (not
contained in bs), Padesco selects genes by two consecutive filter steps. First, the
measured genes are analyzed for differential expression (see Section 4.1) based on
Wilcoxon’s rank sum test [254]. In general, any differential expression approach
can be applied as Padesco does not rely on a particular method.

The novel second filter step is based on an analysis of the trained regres-
sion models. We discard genes that conform to the patterns learned from the
background experiments. We analyze the gene prediction errors using residual
scoring (see Section 4.6.6) by comparing its predicted against the observed fold-
changes. We then assess its pattern conformance in terms of the distribution of
its residuals across the LOOCV as described below. Our basic work flow is shown
in Figure 4.3.

To arrive at a background distribution of errors for each gene, we perform a
leave-one-out cross-validation omitting each experiment once. Each fold induces
|G| models. The prediction performance can therefore be evaluated independently
for each gene in each experiment. The background-training set for an (experiment
e, gene g)-pair contains all but this experiment using the gene as dependent vari-
able. Once trained, the application of Padesco involves only one prediction per
gene using the model trained on all known experiments.
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4.6.1 Differential Analysis

We apply a differential microarray analysis setup as primary filter step (see Sec-
tion 4.6.3). Within the compendium of experiments (see Section 4.5) sample groups
can be defined.

Each experimental sample groups is compared using the Wilcoxon rank sum
statistic [254]. For a given gene, a p-value is computed for each sample group
comparison as measure of significance of differential expression. All p-values are
corrected for multiple testing using the procedure of Benjamini-Hochberg [17]. We
assume genes as being differentially expressed if they exhibit a significance α equal
or below 0.01.

4.6.2 Support Vector Regression

Padesco is based on the training of predictive regression models using ν-Support
Vector Regression (SVR [228, 240], see Section 4.6.3). Support Vector Machines
(SVMs) have acquired general acceptance for microarray applications and have
been used for a wide range of tasks including experiment and tissue classifica-
tion [40, 80]. They have been shown to yield very competitive results for applica-
tions in molecular biology [215]. In the following we borrow notations from Smola
and Schölkopf, 2003 [229] to provide an overview of SVR training.

SVMs have originally been designed for classification tasks. They build upon
the idea that two distinct classes of instances can be discriminated by a separat-
ing hyperplane. To achieve an unique and optimal solution the hyperplane spans
a maximal margin between the classes. Modifications to the maximum margin
hyperplane requirement allow for the adoption to other problems like outlier de-
tection, clustering and regression.

To represent missing data throughout this chapter we define the set of real-
valued numbers together with a missing value µ as

Rµ = R ∪ {µ}. (4.1)

All (predictive) SVM and SVR formulations can handle data of the form

D = {(xi, yi) | i = 1 . . . l} ⊆ X × L. (4.2)

X is a user-defined input space of instance data xi and L is the set of associated
labels yi. In our case, X = Rd

µ, i.e., a d-dimensional real-valued vector and L = Rµ.
A canonical labeling function λ is given by

λ : X 7→ L, λ(xi) = yi

i = 1 . . . l (4.3)
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For the evaluation of model accuracy, it is common to partitionD into a training
set T and an induced test-set P .

Given a dot-product defined in T the training of an SVR searches for w ∈ Rd

parameterizing the linear function

f(x) = 〈w, x〉+ b x ∈ T , b ∈ R. (4.4)

Two observations about f are crucial to enable sensible predictions of the instances
in P . First, the norm of w should be minimal and secondly, the function f may
not exist for all possible pairs (xi, yi) ∈ T . By introducing slack variables ξi, ξ

⋆
i ,

these pairs may enter a feasible solution and the following convex optimization
problem can be constructed [229]

minimize
1

2
‖w‖+ C

l∑

i=1

(ξi + ξ⋆i )

subject to

{
yi − 〈w, xi〉 − b ≤ ǫ+ ξi

−yi + 〈w, xi〉+ b ≤ ǫ+ ξ⋆i
∀i = 1 . . . l (4.5)

We speak of an ǫ-insensitive loss function |.|ǫ that penalizes the prediction of labels
f(x) deviating from the actual label y as

|y − f(x)|ǫ = max{0, |y − f(x)| − ǫ}. (4.6)

No penalty is applied for instances that have less than ǫ deviation from their label.
By comparing the model predictions of P with the actually observed labels more
accurate estimates of model performance are possible. We exploit this fact for
scoring of deviations in Padesco.

Equation (4.5) may be reformulated into a dual objective function that avoids
a direct estimation of w. Instead, the solution relies solely on dot-products among
input instances, whereas only some of the instances, the so-called support vectors,
enter the model. The algorithm is expressible in terms of dot-products and allows
for the application of kernel functions. Depending on the kernel chosen, the regres-
sion model then resembles non-linear solutions as well. The discussion by Smola
and Schölkopf [229] provides in-depth details on the use of kernels and solutions
to the dual formulation.

An extension to the ǫ-SVR is the so-called ν-SVR, which embeds ǫ itself as
variable during training. Instead, the ν parameter controls the number of support
vectors and the expected fraction of errors by allowing the ǫ-insensitive tube to
have a flexible width. The parameter C controls how strongly deviations from the
optimal model are penalized. In our experiments we apply the libSVM implemen-
tation of ν-SVR [36].
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4.6.3 Model Building

Raw Data. We derive SVR models to predict gene expression fold-changes. A
model that predicts a gene’s fold-change is trained on fold-changes of the other
(n−1) genes. Additionally, to obtain experiment-specificity we skip one experiment
at a time. Below, we introduce some notation to clarify our approach.

The raw data matrix R contains data from p individual arrays A = {a1, . . . , ap}.
Each array captures expression values for n genes G = {g1, . . . , gn}. For p arrays
that capture n genes each we obtain a matrix of expression values (rij) = R ∈ Rp×n

µ .
Let E = {e1, . . . em} the set of m experiments and Se = {s1e, . . . , s

me
e } the induced

sample groups of an experiment e ∈ E. For convenience of notation the experiment
that subsumes a ∈ A is referred to as ea and its corresponding sample group as sae .

Missing Values. Missing values are frequently encountered in micro-array ex-
periments. Throughout this chapter, missing values are treated implicitly by the
application of a linear kernel. Dimensions that contain missing values are conse-
quently skipped and do not contribute to the scalar product. In addition we exam-
ined an orthogonal coding scheme [248], zero-imputation and average-imputation.
We found that neither did increase the average performance of Padesco. Miss-
ing data that is encountered as an instance’s label is not considered sensible and
skipped during further analysis (both training and prediction).

4.6.4 Fold-change Matrix

Fold-changes capture relative effects within an experiment and are less prone to
experiment specific bias than raw values. We therefore transform the initial matrix
R to a matrix of fold-changes F . Fold-changes are computed among array pairs
a, b ∈ A, a 6= b that share the same experiment ea = eb but belong to different
conditions sae 6= sbe. We refer to these pairs as sensible. The fold-change of a gene
g contrasting array a and b is computed as

f g
ab =

{
µ if (rag = µ) or (rbg = µ)

log2(
rag+c

rbg+c
) otherwise.

(4.7)

By adding a constant c ∈ R fold-changes derived from very low gene expression is
buffered and prevents artificially high values. From the space of all sensible array
pairs we randomly sample p pairs and obtain (fij) = F ∈ Rp×n

µ for each array pair
i and gene j (see Figure 4.2).

Training Experiment Specific Models. Each SVR model is trained to predict
fold-changes of a gene g in an experiment e. Next, we illustrate how the training of
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Figure 4.2: Schematic view of the fold-change (fc) matrix F . rows: fc vec-
tors of array pairs; columns: genes; for an experiment e, we sample |e| pairs of
arrays that belong to this experiment but differ in their condition or sample group.
Training: an SVR models is build to predict a gene l in experiment e (yellow).
Training data is given by the fold-changes of other experiments (gray), whereas
training labels are the fold-changes of l (red). Prediction: fcs in the test-set
(blue) are used as features to predict the test labels of gene l (yellow). They result
in predicted fcs that are compared to measured fcs (residual scoring). Deviation:
based on a leave-one-out validation each gene is assigned a background distribu-
tion of known deviations. A median absolute deviation based score (padscore) is
derived to estimate whether a prediction is better or worse than expected.

a single (g, e)-specific model relates to the general SVR training setup as discussed
in Section 4.6.2.

Each row of F corresponds to a single instance. Let ft = (ftk), k ∈ G \ {g} the
fold-changes of an array pair t ∈ A×A. Then (ft, ftg) ∈ X represents an instance
with its associated label. The training data T ⊂ X encompasses all array pairs
(rows) of F that are not associated with experiment e. The fold-changes for g in all
other experiments E \ {e} are the training labels for T (see Figure 4.2, red). Note
that T depends on the gene and experiment that are examined. The measured
labels for experiment e and gene g are f ge (see Figure 4.2, yellow). We emphasize
that the target experiment e is omitted completely during training, i.e., all its
sample group comparisons. This setting avoids over-fitting to similar conditions
and enables the estimation of an actual prediction performance. Repeating the
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hold-out for each experiment results in |E| models for each gene thus, |G| ∗ |E|
models are trained overall. The factor |E| is relevant for the initial training only.
The prediction step is reduced to the evaluation of labels for a single experiment of
interest, i.e., the trained models are used to predict experiment-specific fold-change
pairs (see Figure 4.3).

Figure 4.3: Outline of Padesco. A matrix F (see Figure 4.2) of gene expression
fold-changes (fc) is computed. A LOOCV is performed for each gene and omitting
each experiment once resulting in |G| ∗ |E| models. For a new experiment e,
the fcs of g are predicted using the model for (g,e) and are then compared to the
measured fcs (residual scoring). Based on the LOOCV a deviation score (padscore)
is derived. It enables deviation filtering of significant genes.
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4.6.5 Selection of Parameters during Training

We examined a linear kernel as well as the radial basis kernel. The final parame-
ters have been chosen as (C, ν) = (100, 0.2) using an exhaustive grid search com-
bined with leave-one-experiment out (LOO) for hyper-parameters C ∈ {10i|i =
−2,−1, . . . , 4} and ν ∈ {0.2, . . . , 0.8}. On average the linear kernel provides simi-
lar performance to the radial basis kernel (screening γ ∈ {10i|i = −4,−3, . . . , 1})
and a stable prediction performance across a wide range of parameters.

4.6.6 Scoring Performance Deviation

We now assume that the experiment e has not been observed beforehand. We
like to predict a gene of interest g. First, we calculate the fold-changes for array
pairs in this experiment. This corresponds to a sub-matrix of F (see Figure 4.2;
sub-matrix: blue, corresponding labels: yellow). We are especially interested in
the actual fold-change values f ge and use the (g, e)-specific model (unaware of e) to
obtain f ′ge , the predicted vector of an experiment’s fold-changes.

To obtain a measure of correspondence between f ge and f ′ge , we compute an
un-centered Pearson correlation ρg,e. Given the two n-dimensional vectors f ge =
(f g

e,i), i = 1 . . . n and f ′ge = (f ′g
e,i), i = 1 . . . n it is calculated as

ρg,e =
f ge · f ′ge

‖f ge ‖ · ‖f
′g
e ‖

=

=
(
∑n

i=1 f
g
e,i · f

′g
e,i)√∑n

i=1 (f
g
e,i)

2 ∑n
i=1 (f

′g
e,i)

2
. (4.8)

We also compute a discretized version of f ge . We set all fold-changes above a
threshold tf to 1 and all below to 0. We compute an Area Under Curve (AUC)
value by varying tf for f ′ge . The threshold for fg is fixed at 2.

4.6.7 Measure of Expectation

Given and AUC and a measure of correlation we have an estimate to tell how well
a gene performs in a single experiment. Yet, we cannot say whether this is more
or less than we expected. To arrive at a deviation of known patterns we compute
the empirical distribution Dg from (ρg,x), x ∈ E. The deviation for an experiment
e is expressed in units of median absolute deviations (padscore) with respect to
this distribution. Given the median medg of Dg and the corresponding median
absolute deviation madg the padscore is given by:

(medg − ρg,e)/madg (4.9)
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In order to be retained by Padesco genes must simultaneously satisfy the signifi-
cance level of differential expression in a specific sample group given by a certain
α-level as well as a minimum padscore. These genes are referred to as specific.
Remaining unspecific genes are significantly regulated, but could be predicted by
the SVR models.

4.6.8 Permutation Test for the Evaluation of Padesco

Gold standards on the experiment-specific expression of genes are not available.
We use a permutation test to simulate genes deviating from their common be-
havior. By copying (spiking) the expression values from a significant gene g+ to
an insignificant gene g− within an experiment e we force genes to violate their
common behavior and trivially become significant. We have two choices in param-
eters here. First, we can choose a z-score level tz for significance. Second, we can
choose a padscore level tp to select interesting genes. The following permutation
test selects these thresholds and estimates the associated performance for spike-in
controls. We sample from the significant genes, and spike into the insignificant
genes. We then recompute the padscore for the previously insignificant gene. This
process is repeated s times where s is the number of significant genes. SPIKE
denotes the set of spiked genes. After all repeats have been computed we obtain
sensitivity=tp/(tp + fn) and precision=tp/(tp + fp) and repeat the evaluation
for all possible thresholds tz and tp in the experiment. A gene g’s recomputed
padscore p determines whether it is tp, fn or fp based on these thresholds (see
Table 4.1).

Type Abbreviation Condition
true positive tp g ∈ SPIKE ∧ p ≥ tp
false positive fp g 6∈ SPIKE ∧ p ≥ tp
false negative fn g ∈ SPIKE ∧ p < tp

Table 4.1: Classification assignment for the evaluation. A threshold on z-
score (tz) and padscore (tp) is chosen. After spiking (see Section 4.6.8) a gene g’s
recomputed padscore p determines its type.

4.7 Results

4.7.1 Evaluation of Expression Fold-Change Predictions

We use the uncentered correlation to measure how well the regression models
can predict expression fold-changes of gene g in experiment e. The prediction
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Figure 4.4: Scatter plot of predicted vs. measured fold-changes. Microar-
ray studies frequently derive gene signatures, i.e., sets of differentially expressed
genes discriminating between experimental conditions. Gene signatures can be
predicted well by our SVR models, as shown here for a gene signature distin-
guishing ALL and MLL leukemic genotypes published along with the data set of
armstrong-mll [7]. For every gene, our SVR models predict expression changes be-
tween Acute Lymphocytic Leukemia (ALL) and Mixed Lineage Leukemia (MLL)
correctly, although the precise values of the measured fold-changes are not repro-
duced exactly. A gene is depicted as a single point that corresponds to the average
of all fold-changes of this gene across array-pairs comparing the conditions ALL
and MLL (see Section 4.6.3).
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performance is significantly better than random for the majority of genes: the
uncentered correlation achieved an average value of ρu = 0.7 in our experiment.
91% of the predictions exhibit a ρu > 0. After discretization we achieve an AUC
of 81% on 15.7% cases with a fold-change of more than two. We argue that
the remaining specific candidates that cannot be predicted well are particularly
interesting because they exhibit an experiment-specific expression that could not
be learned from the training data.

4.7.2 Prediction of Fold-changes for Individual Genes

Gene signatures, i.e., sets of genes that are differentially regulated between dif-
ferent cellular states are frequently published along with microarray experiments.
Such signatures are expected to yield diagnostic markers that could help to differ-
entiate between healthy and sick individuals. Here, we examine a gene signature
that has been compiled by [7] to distinguish a particular chromosomal transloca-
tion involving the MLL (mixed-lineage leukemia) gene from the regular ALL (acute
lymphoblastic leukemia) genotype. The MLL translocation is significant as it fre-
quently leads to an early relapse after chemotherapy. In Figure 4.4 we compare
our predictions against the experimentally determined expression fold-changes for
this gene signature. For all genes, the direction of differential expression can be
correctly derived from our predictions, although the values of the measured fold-
changes are not reproduced exactly. Similar results have been obtained for other
published signatures.

4.7.3 Permutation Test Based Evaluation

Padesco filters genes based on a standard differential expression z-score (Wilcoxon
test, see Section 4.6.1), and a novel padscore (see Equation 4.1) indicating expe-
riment-specific expression. This second score indicates whether genes can be pre-
dicted less well than expected from the training (background) set of experiments.
They are selected due to their padscore since they do not conform to their trained
patterns. Cutoffs on the two scores are required for the selection of specific candi-
date genes that exhibit differential as well as experiment specific expression. The
permutation test introduced in Section 4.6.8 generates artificial pattern deviations
through spiked genes. As shown in figure 4.5 at a padscore cutoff of 2.0 specific
candidates are accurately detected (85% precision). The precision increases for
differentially expressed genes (z > 3). Based on the evaluation we picked a pad-
score threshold of 2.0 and a z-score threshold of 3.0 to receive a moderate number
of candidates exhibiting a high precision. Thereby we selected some 250 specific
candidates.
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Figure 4.5: Precision (percent, colormap) and the number of detected genes (log
base 2, contour) as a function of padscore padscore and z-score. As gold stan-
dards are not available, we estimate the performance of specific candidate gene
detection by a permutation test. This test evaluates how well known spike-in
controls can be recovered by Padesco for arbitrary z-score (differential expres-
sion) and padscore (experiment specific expression) thresholds. Specific candidate
genes can be reliably identified (85% precision) using a padscore above 1.5 even
if they exhibit only moderate levels of differential expression (z-score < 4). By
combined z-score and padscore thresholds candidate gene lists can efficiently be
reduced for follow-up studies. Analyzed here are 59 condition comparisons from
13 experiments. At the chosen padscore (2.0) and z-score (3.0) thresholds, some
250 specific candidates (contour) are detected by Padesco.
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4.7.4 Specific Candidates

In this section we discuss sample results in two experiments that examine prostate
cancer [225, 252] and one study on leukemia [7]. As a further example we provide
results from a Toxoplasma gondii infection study by Chaussabel et al. [38]. Pade-
sco does not aim to whole relevant pathways but allows to focus on a small subset
of interesting genes for further analysis. Vogelstein and Kinzler [246] discuss key
pathways which are likely to be disturbed to promote cancer in almost any cell
type. Development of cancer is strongly coupled to the perturbation of one or more
such pathways. The interleukin 2 pathway has been shown to be deregulated in
many cancer types and was also described to be involved in prostate cancer. IL2RB
dimerization with the α-subunit leads to a higher affinity towards interleukin-2.
IL-2 treatment was previously shown to lead to reduced prostate tumor growth in
rats [115, 169]. Another cancer therapy using IL-2 has been developed by Otter et
al. [185].
Eicosanoids are known to interact with immune messengers like interleukins. In the
first experiment by Welsh et al. [252] tumor samples were compared against normal
and HUVEC (Human Umbilical Vein Endothelial Cells) samples, where 27 genes
have been detected as differentially expressed. For an initial screening of func-
tional significance we apply a gene ontology over-representation analysis (DAVID,
[53, 125]) on the differentially expressed genes, i.e., without padscore filter. As for
[252] a screening for significance (Benjamini-Hochberg corrected scores, α = 0.01)
shows no significant enrichment, yet 3 genes (IPR, EPR3R and CYT450J) are
found to belong to the eicosanoid metabolism (p=0.08). With padscore filter In-
terleukin 2 receptor β (IL2RB) is the only gene found to be interesting in this
experiment. Padesco reported an unusual expression of IL2RB in the tumor sam-
ples, which could explain the decoupling of eicosanoid pathway members from
IL2RB regulation.

The second examined experiment on prostate cancer is described in Singh et
al. [225]. Here, 60 differentially expressed genes were identified. DAVID analysis
shows no significant over-representation. After Padesco-filtering, 4 genes remain
that we discuss in the following. HCK (padscore = 7.2), an src related tyrosin
kinase is most interesting in terms of the padscore. Smith et al. [227] describe its
association with gpl130 and the formation of a complex with IL-6R which promotes
high affinity binding of IL-6. In prostate cancer, IL-6 is a key protein. It has
been suggested to contribute to prostate cancer progression towards an androgen-
independent state. We observe MGC17330 (PIK3IP1, padscore = 2.6) to be the
second padscore relevant gene. It is a negative regulator of PI3K. Src kinases
are upstream mediators for the PI3K signaling pathway with important roles in
proliferation, migration and survival. It is described to be a tumor suppressor
in heptacellular carcinomas [71]. It shows only a weak positive fold-change in
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this experiment which may explain why it fails as a suppressor here. Mutations
within the PI3K pathway have been described by Vogelstein and Kinzler [246]
to be involved in a number of tumor types. The third gene found is ATP2B1
(PMCA1, padscore = 2.6). It is a Ca2+ ATPase subunit. An unusual reduction
in gene expression can be observed in our data. This reduction is also discussed
by Roderick and Cook [209]. Ca2+ pumps are likely to provide good therapeutic
targets for anticancer drug development as suggested by Monteith et al. [168] and
Roderick and Cook [209]. They emphasize the role of Ca2+ (intracellular calcium)
in the life-and-death decisions of the cell such that disturbed control of Ca2+ may
lead to an inappropriate cell fate. The fourth candidate – C2orf3 (padscore = 2.03)
– has also been identified by an approach by Hong et al. [122]. They analysed three
prostate cancer sets but since more than a hundred genes are identified and C2orf3
is no top-ranking gene this candidate has not been subject to further discussion.
The transcription repressor binds GC-rich sequences of the epidermal growth factor
receptor, beta-actin and calcium-dependent protease promoters.

Slightly below the padscore threshold STK38 (padscore = 1.84) has been de-
scribed to exhibit cancer specific alternative splicing variants [148]. In Rozanov et
al. [211] it is suggested as a part of the downstream network of MT1-MMP, a key
regulator linked to tumorgenesis and metastasis. Similar, CPD (padscore = 1.47)
is a metallo carboxypeptidase family enzyme. It is described to have shown lower
levels of gene expression in colon carcinomas. We observe a similar downregula-
tion in our data. The well-known PSMA (or PSA) also exposes carboxypeptidase
activity associated with increased invasiveness of prostate cancer [86]. Similarily,
GTF2B/TFIIB (padscore = 1.46), the general transcription factor 2B plays a ma-
jor role in the transcription of eukaryotic genes. Minucci and Pelicci [166] suggested
Histone deacetylases (HDACs) as promising targets in cancer therapy, partly due
to their DNA binding capabilities. GTF2B/TFIIB exhibits auto-acetyltransferase
function regulated by acetylation while acetylation also impairs activities of en-
zymes involved in DNA metabolism and repair. DNA repair is a key mechanism
which has to be bypassed to allow for tumor development due to Vogelstein and
Kinzler [246]. With padscore of 1.11 KLF6 is predicted only slightly worse than
usually, yet with a much smaller offset than HCK. The Krueppel-like factor 6 is
a well known tumor suppressor gene. On the other end it is necessary to track
for the negative end of the results i.e., the genes which are predicted better than
usual. As an example branched amino acid transferase BCAT2 (padscore = −3.30)
is among the differentially expressed genes yet could be predicted better than ex-
pected in this experiment. To our knowledge the enzyme has not been described in
the context of prostate cancer. The third data set [7] compares Acute Lymphoblas-
tic Leukemia (ALL) to Myeloid Lineage Leukemia (MLL). We can recover most
specific genes originally published (some are filtered due to our criteria among all
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integrated experiments). An interesting exeption is LGALS1 which shows consid-
erable expression in both the MLL and the AML samples, but not in ALL. Using
a clustering procedure Armstrong et al. [7] describe it to be MLL specific.

Our top candidate here does not meet the padscore = 2 requirement yet
RhoA (padscore = 1.99) is involved in cytokinesis and has been described as
both pathogen target as well as regulator of oncogenensis [32]. Ordonez-Moran et
al. [184] associates RhoA with colon carcinoma (which is not part of our back-
ground set). A second gene, ETS1 (padscore = 1.86) belongs to the familiy of
ETS transcription factors and has been shown to regulate telomerase activity at
gene transcription level. It constitutes a well known oncogene with potential effects
on telomer stability. In Yeoh et al. [260] BCR-ABL samples 2 genes exhibit an ex-
treme padscore of 4.8 and 5.9: PHLDA2 and PSMA6. While PSMA6 has recently
been suggested as a new prognostic marker in acute monocytic leukemia [39],
PHLDA2 (pleckstrin homolog-like domain family member 2) is located in a re-
gion considered to be an important tumor supressor gene region. The top gene
among the identified candidates in the prostate cancer subtype of the Butte et
al.dataset [33] is SLC30A3 (padscore = 6.81), a zinc transfer transporter from the
solute carrier family (Prostate tissue in general shows an increased zinc content -
around 10-fold higher than other tissues). SLC30A3 has been suggested to be a
member of the apoptotic pathway by Ackland et al. [4].

Commonly SLC30A3 lowers intracellular zinc concentrations by mediating zinc
efflux. Mouse TRAMP models suggest that both too high and too low zinc up-
take have drastic effects on prostate tumor sizes, consequentially this candidate’s
dysregulation could be crucial for tumor tissue. Prasad et al. [197] argue that an
optimal zinc level is crucial as a protective instance against cancer development.

DOOST (padscore = 8.53) is involved in the metabolism of glycoproteins and
has been suggested to mediate processes associated with cell-adhesion or inva-
sion [112] and has been frequently described in the context of gastric cancer which
was not yet included in our background set of experiments.

Chaussabel et al. [38] analyze diverse parasite infections on human macrophages
and dendritic cells. We find CCR1 to be the most prominent gene (padscore = 9.29)
in the Toxoplasma infection subgroup. Mice lacking this chemokine receptor
CCR1 have shown dramatically increased mortality after Toxomplasma gondii
infection [136].

4.8 Discussion

Genes are not regulated individually [149, 238]. Frequently, patterns of co- or
anti-regulation can be observed such that the up-regulation of a gene A is a
good hint that another gene B will also be up-regulated while a third gene C
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Figure 4.6: Common Regulation and Experiment Deviation. The heat map
shows a cluster of genes which are usually correlated (pairwise Pearson’s Correla-
tion above 0.8, ’yoon-p53 (Yoon)’ [262] is given as reference). Here, AUH with a
padscore of 5.09 is detected as interesting in ’chaussabel-parasite (Cha)’ [38].

will rather be down-regulated. The disruption of such patterns pinpoints genes
with experiment-specific expressions. We call such genes specific candidates in
contrast to the remaining unspecific candidates that exhibit only generic expres-
sion patterns. Padesco detects specific candidates by analyzing fold-change based
co-expression patterns with Support Vector Regression models trained on a back-
ground set of microarray experiments. After training, we select specific candidate
genes via a two stage filter. The first filter step is a routine analysis of differential
expression (significant genes). A novel second filter selects genes that show devi-
ations from generic expression patterns predictable by linear models (interesting
genes).
In order to avoid the predictions of false specific candidates Padesco depends on
a good prediction performance of the underlying SVR models. The prediction
performance can be evaluated rigorously as the prediction target experiment is
excluded from training in a leave one out cross-validation setting where all con-
ditions of particular experiments are left out. This not only excludes condition
specific but also experiment specific biases. We examined 4,117 genes across 25
experiments consisting of 1,437 individual microarrays. Predictions by Padesco
are better than expected by chance in 91% of the cases. Segal et al. criticized
that gene signatures rarely help to identify the involved biological processes or the
causal regulatory mechanisms. Hirsch et al. [119] further argued that a gene sig-
natures frequently do not represent specific attributes of the measured biological
conditions. We analyzed gene signatures published together with the correspond-
ing microarray experiments. These signatures were selected by the authors of the
corresponding studies to discriminate between experimental conditions (sample
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groups). We found that expression changes for genes in signatures are predicted
well by our SVR models trained on other, unrelated experiments. An example is
the signature distinguishing ALL and MLL [7]. Although the ALL/AML signa-
ture certainly provides discriminating marker genes, it does not capture experiment
specific expression patterns according to Padesco.

The extent of differential expression alone does not indicate experiment spe-
cific involvement of genes. Based on the prediction performance we identified
specific candidates genes that exhibit experiment specific expression, i.e., expres-
sion changes that cannot be explained (predicted) by our models. This analysis
is related to co-expression studies and complements differential expression analy-
sis. It enables to focus on concise candidate lists for follow-up studies that con-
sist of experiment-specific candidates only. We screened for filter thresholds and
estimated Padesco’s performance from permutation tests as comprehensive gold
standards for the experiment specific expression of genes are not available. This
newly devised simulation approach suggests that specific candidates are identified
reliably by Padesco (> 85% precision at padscore > 1.5) even if they show only
marginal levels of differential expression. On the other hand, more than 90% of
the genes selected by differential expression alone exhibit only generic expression
patterns and could be excluded from further studies. Specific candidates are likely
to represent characteristic features of the corresponding experimental conditions.

We evaluated Padesco selected genes for two data sets on prostate cancer.
Besides interesting new candidates, we found several genes with a known involve-
ment in the disease. Some of them, such as IL-2RB, have already been reported as
promising drug targets. We demonstrated that such examples are more difficult
to detect by differential expression analysis alone. Instead, differential expression
tends to pick up genes that act similarly in other, biologically unrelated experi-
ments. Thus, in combination with differential expression analysis, Padesco is a
promising protocol for the detection and analysis of particularly distinctive fea-
tures of microarray experiments.



Chapter 5

Reduction of Network Bias via
Confidence Recalibration

Background

This chapter is based on Petri et al. [192]. Supervised network reconstruction
has been around for a couple of years. When we successfully participated in the
DREAM3 and DREAM4 challenges [144, 143], we observed that the results for a
prediction of eukaryotic networks were not satisfactory. Tackling these problems
would eventually boost the existing network inference performance [192]. Valuable
input came from Ludwig Geistlinger, who by then had annotated the regulatory
network of the diauxic shift in yeast and provided us with more detailed annota-
tions to our result clusters and further valuable input data.

Contributions

Tobias Petri (TP), Stefan Altmann (SA), Ludwig Geistlinger (LG) and Robert
Küffner (RK) compiled the data and conducted experiments. TP and RK devel-
oped the correction method, evaluation routines, functional coherence scoring and
the modular visualization of the yeast network. Result network properties were
analyzed and evaluated by RK and TP. LG provided a functional interpretation
and analysis of the network. TP, RK and LG wrote the Bioinformatics paper with
suggestions from Ralf Zimmer (RZ). RK and RZ supervised the project.
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5.1 Genome-scale Models

Gene Regulatory Networks (GRN) provide an important means to capture the
interplay among regulatory factors like proteins and their genetic target regions.
Currently, our knowledge of these networks is limited. In particular, large-scale
models are restricted to topological features. Neither the change of reactions over
time nor reaction contexts are modeled. These features would be tremendously
useful to obtain a more accurate representation of the interplay among proteins,
genes, and other factors. Yet, even large-scale data cannot provide these models
with the necessary level of detail to obtain a sensible parameterization. Notably,
the amount of data required to accurately capture as few as 10 entities is demand-
ing [144] from both data availability and computational aspects. For larger sys-
tems, detailed modeling in terms of simulations grows infeasible. Most approaches
would then resort to measures of correlation to estimate interactions [143].

Similarly, the experimental setup may restrict the set of observable interactions.
Other limitations, such as the availability of specific antibodies, affect context
specificity as well. The timing of an experiment is crucial, as the majority of
regulations is transient rather than constitutively active. For these reasons, most
large-scale models capture key aspects of a regulatory system, simplified, and
independent of specific contexts. Nonetheless they provide helpful abstractions
and provide elemental building blocks for further, more detailed modeling and
prediction tasks.

In-silico predictions may complement existing GRNs and integrate a wider
range of experimental conditions. The use of large-scale expression compendia may
enable accurate predictions of novel regulations and complement other sources of
information.

However, expression data alone is often not sufficient to infer interactions in eu-
karyotes such as yeast [143, 160]. Supervised inference methods have been proposed
to support the inference process by known interactions in addition to expression
data. We find that methods exploiting known targets show an unexpectedly high
rate of false discoveries. Many interactions suggested with a high confidence are
random.

In terms of network-wide prediction quality, näıve baseline methods (see Sec-
tion 5.5.3, random target assignments) seem to be on par even with recent, so-
phisticated methods. This result may come as a surprise, but it can be explained
by a key property of GRNs: their topology.

We show that the origin of the observed discrepancy is the assumption that
individual regulator predictions can be integrated to obtain a complete network.
Yet, network topology strongly impacts the regulator-wise properties of predicted
confidences and it must be accounted for. Otherwise, these networks suffer from
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what we term High Degree Preference (HDP).
Larger regulators or hubs acquire more predicted interactions and they can

be predicted with higher confidences in general. Unfortunately, these issues are
hidden from the most frequently used evaluation and cross-validation setups. This
leads to overly optimistic performance estimates for existing approaches. In this
regard, supervised network inference resembles the well-known Simpson’s Paradox
as explained in Section 5.6.2.

To tackle this problem, we devise a corrective procedure (Confidence Score
Recalibration, CoRe, Section 5.5.6) to obtain globally consistent results. We then
benchmark supervised and other reference approaches and at the example of yeast
we show that a reliable inference of interactions in eukaryotes is feasible. Af-
ter recalibration, the detected interactions exhibit a better functional consistency
and are capable of explaining the formation of expression patterns across many
biological processes.

As similar inference techniques are also employed for function prediction, know-
ledge transfer or hypothesis generation, our recalibration is likely extensible to
other predictions that feature network-based predictions as well.

CoRe considerably improves the results of network inference methods that
exploit known targets. Predictions then display the biological process specificity
of regulators more accurately and enable the inference of genome-wide regulatory
networks in eukaryotes. For yeast, we propose a network with more than 22,000
confident interactions.

5.2 The Need for Computational Approaches

Regulators such as transcription factors physically bind to specific nucleotide se-
quences to regulate the expression of target genes. The binding sites of regula-
tors have been determined by experimental protocols such as Chromatin Immuno-
Precipitation (ChIP [263]) or deoxyribonuclease (DNase) footprinting [179]. Sim-
ilarly, binding studies helped elucidating network architecture in the ENCODE
project [84], but they also report interactions that are not associated with changes
in target expression [258]. By contrast, the expression profiling of TF knockout
mutants [42] detects interactions that exhibit changes in target expression, but
this technique is prone to indirect or spurious effects [124]. Therefore, binding
studies and expression data should be analyzed in combination as both types of
experiments complement each other.

Although the number of conducted TF-binding and TF-knockout studies is
growing [196] the discovery of novel regulations detected with each additional study
decreases. A combination of experimental results and computational inference
approaches is likely to provide more comprehensive networks.
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The Yeastract database [3] compiles yeast interactions from two types of ex-
periments. The first type detects physical binding of TFs to promoter regions of
target genes. The second one tests whether a perturbation (knockout, silencing,
activation) of a TF leads to changes in the expression of putative targets. We
speak of active interactions if they are observed in both types of studies, i.e., if
the TF both binds to and effects transcriptional changes in a corresponding tar-
get gene. Just 9% of all interactions detected by binding studies are confirmed
(Figure 5.1a). It is important to note that interactions are unevenly distributed
among the TFs (TF out-degrees = number of known targets per TF, Figure 5.1b).

To demonstrate that network inference is necessary, we estimated the size of
the complete yeast regulatory network (see Section 5.5.2). We treated the number
of interactions as a function of the available binding studies and found that a hy-
pothetically complete network would contain 3.5 times the number of interactions
in Yeastract (3.5 ∗ 29398 ≈ 105000 interactions) given an estimated limit value of
binding studies (Figure 5.1c).

Based on this estimation, we reason that 2.5 times the number of currently
available binding studies would be required to obtain half of the completed net-
work (2.5 ∗ 356 ≈ 900 studies). Furthermore, our results suggest that 50% of all
“active” interactions are currently known. However, the low confirmation rate of
9% impedes their identification and separation from the inactive ones. Inference
methods are potentially able to close that gap.

5.3 Integration of Known Topologies

Many inference methods use expression data exclusively. An interaction is pre-
dicted if a TF and its putative target are coexpressed. Such expression-based ap-
proaches were successfully applied to infer prokaryotic networks [161, 73, 165, 101].
For eukaryotes, useful results have been achieved for restricted gene sets like res-
piratory genes, yet, they perform hardly better than random in general [124, 165,
257, 143, 160, 231, 176]. Interactions in eukaryotes are difficult to infer as observ-
able dependencies between the expression of regulator and target are weaker and
context-dependent [257, 143, 160]. One reason is the increased level of complexity
and the combinatorial nature of the eukaryotic regulation of transcription [179].

In this context, a priori known interactions are referred to as topological pri-
ors. The integration of such prior information yielded promising results previ-
ously [171, 101]. For the prediction of novel targets of a specific TF the restriction
to a local context for this factor is crucial. Otherwise the resulting model may
be too unspecific, resulting in a performance drop. TF specific signals detected
within the expression patterns of known targets may enable more reliable predic-
tions. Such supervised methods are now widely employed. Their use is not limited
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Figure 5.1: Properties of yeast interactions. (a) The Venn diagram depicts
the number of interactions (italics) in Yeastract obtained from 536 mRNA ex-
pression studies (yellow), 356 promoter binding studies (blue), or both (green).
(b) shows the distribution of TF out-degrees in Yeastract binding studies. (c)
plots the fraction of interactions contained in random subsets of binding studies
as a function of subset size (x = 1.0 =̂ 356 studies). Fractions are plotted for
interactions from binding studies (blue circles, ordinate: 1.0 =̂ 29398 interactions)
and for interactions detected in both study types (green squares, 1.0 =̂ 2636 in-
teractions). We fit first order Hill functions θ(x), shown as lines, to estimate the
ratio of expected to known interactions m. Thus, an infinite number of promoter
binding studies (blue line) would detect m = 3.5 times the currently known 29,398
interactions. The second parameter k indicates that k = 2.5 times the currently
available 356 studies are required for detecting half the expected interactions.
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to the detection of gene regulatory interactions [200, 171, 51], but they are used
for the prediction of protein-protein interactions [259, 245], drug-target interac-
tions [23], and gene functions [21] as well. Furthermore, subsets of active TFs
may be determined by the expression of known targets [175, 44], and increase the
reliability of predicted targets [200, 171, 51]. Integrative methods incorporate fur-
ther types of information such as TF binding sites (SEREND, [68]) or chromatin
profiles [69]. Here, we investigate whether eukaryotic networks are accurately in-
ferred by methods exploiting topology priors. We find that the composition of
most inferred networks is skewed towards hubs and that most existing network
evaluations cannot detect this effect.

They do not adequately integrate (local) topology aspects and, thereby, over-
estimate the overall network quality substantially. This effect resembles Simpson’s
Paradox, well-known in statistics, and causal theory in particular [224, 191]. We
develop a conceptually simple recalibration strategy and demonstrate how it can
be applied for the inference of a confident genome-scale regulatory network in
yeast.

5.4 Network Inference Schemes

In this section we provide a schematic overview and classification of existing ap-
proaches to network inference and introduce necessary terminology.

5.4.1 Basic setup

A regulatory network is modeled as a directed graph N = (G, I), where the vertice
set G is the set of all genes, and the set of edges I represents regulator-gene
interactions. The set of genes that regulate other genes is R ⊆ G. The set of
target genes is T ⊆ G. In general, regulators may be targeted by regulators as
well, leading to more complex network patterns, i.e., motifs (see Section 5.5.7).
We denote known targets of r within the network N as TN(r) ⊆ G. The vertex
out-degree of r in a network N is |r|outN , the in-degree is |r|inN .

A pair (r, t) ∈ R × G is called an experimentally supported regulation if there
exist TF-binding studies that detected it. Otherwise (r, t) is a potential regulation.
To express the degree of experimental support (r, t) is associated to a weight
wrt ∈ N. It is chosen as the number of TF-binding studies that confirm (r, t). The
matrix of all weights is W ∈ R|R|×|G|. Some algorithms require an induced binary
label, which is given by:

lrt = min(wrt, 1) (5.1)
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The majority of approaches relies on expression data. We define an experiment
as an array of fold-changes for all genes. Thus, the set of experiments E consists
of p array pairs. Each experiment provides fold-changes for a specific experimental
condition or replicate. For p experiments and n genes we obtain a matrix of fold-
changes:

M = (meg) ∈ Rp×n (5.2)

Submatrices of M are written as MG′

E′ , with experiment rows E ′ ⊆ E and gene
columns G′ ⊆ G, respectively. We denote the row vector that corresponds to e by
me and the column vector associated to g by mg.

Most approaches estimate real-valued confidences for both supported and po-
tential regulations. For all pairs (r, t) ∈ R×G this results in a matrix of confidences

Ĉ = (ĉrt) ∈ R|R|×|G| (5.3)

Ranking the pairwise confidences may then reveal promising candidates for novel
regulations or identify regulations that are not sufficiently supported by expression
data.

5.4.2 Expression-Based Approaches

The class of expression-based approaches relies on expression data omitting net-
work topology. Most of them are unsupervised and often resemble lazy learners.
The majority of expression-based approaches either relies on some predefined in-
formation theoretic measure of dependency or the extraction of estimates from
linear model fits.

Apart from topology information, additional annotation A may be available.
For an experiment e ∈ E the corresponding annotation ae represents a com-
plex annotation type that may include information on knocked out genes, the
particular siRNA applied, or genes being over-expressed. This may help to re-
duce otherwise unexplained variation. If these pieces of information are used, we
speak of approaches that are annotation-aware. They have shown promising re-
sults [143, 101, 116]. These models assume that experiment perturbations can be
traced within the data and attributed to network structures. In practice though,
and for expression data in particular, observable effects of individual perturbations
may be weak and dispersed across the network. Furthermore, the annotation of
perturbations and conditions must be available for all experiments and structured
uniformly. Despite of standards like MIAME [25], few existing resources like the
Many Microbe Microarray database [72] provide the necessary level of detail. Yet,
without substantial and ongoing effort such resources quickly become obsolete.
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Information-theoretic dependency. The branch of information-theoretic ap-
proaches estimates regulator-target confidences ĉrt by comparing the expression
data of a regulator r and a potential target t across experiments. These methods
rely on some predefined dependency function:

d : Rp × Rp → R,

d
(
mr,mt

)
= ĉrt

(5.4)

Common choices for d are correlation and mutual information based mea-
sures [5, 73, 161]. The result matrix Ĉ is post-processed and analyzed to obtain
the most likely candidates for regulations.

A well-known problem affecting these approaches is that the estimated confi-
dences are symmetrical. Several extensions have been introduced to estimate the
network of immediate effects effects [16, 75, 50].

Linear models. Unlike information-theoretic approaches linear modeling ap-
proaches [101, 104, 116, 222] do not rely on a given dependency function. Instead,
they model the expression levels mt of a potential target as a (linear) function dt
of other fold-changes using an influence vector βt:

dt : R
p×(n−1) → Rp,

dt
(
MG\{t}

)
= MG\{t}βt = mt

(5.5)

Equation 5.5 represents a general structure of the equation system associated
with target-centric approaches. Individual approaches strongly differ in the way
the parameter vector βt is estimated. Some approaches transform the input data
to reflect changes in concentration over time resembling an ordinary differential
equation system (ODE [101]). Due to the number of experiments available Equa-
tion 5.5 has no unique solution. Thus, the computation of βt resorts to regular-
ization strategies to obtain unique solutions [101, 158, 160]. A crucial step is then
to extract regulator-target confidences ĉt from the influence vector βt. Even if the
underlying system may not exhibit linear behaviour regularized linear regression
models [235, 266] seem to provide reasonable approximations.

By using the network knowledge W as an initial parameter estimate, βt can be
used to integrate prior knowledge, effectively resulting in supervised variants [101]
(see Section 5.4.3).

5.4.3 Supervised Approaches with Topology Prior

The class of supervised approaches integrates prior network knowledge (see Figure
5.2). This is also referred to as topological prior. We speak of pattern-centric
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approaches, as their underlying models are designed to detect expression patterns
with predictive power for the inference of novel regulations. Depending on the way
these models are build, pattern-centric approaches are classified as global or local.

Global pattern-centric. These models analyze simultaneous changes that occur
in both regulator and target, also referred to as covariance patterns. To distinguish
patterns of regulator-target interplay and independent pairs they rely on topol-
ogy information and thus, resemble a supervised variant of information-theoretic
approaches. The underlying models are not regulator-specific and referred to as
global. Unlike unsupervised approaches the dependency function is parameter-
ized in an eager way in a separate training step that incorporates the topology
information W .

This results in a W -specific global model dW :

dW : Rp × Rp → R,

dW
(
mr,mt

)
= ĉrt

(5.6)

These algorithms are trained using the training labels lrt for the binary case or
wrt in a regression setup (see Section 5.4.1). The key idea is to train a model
dW capable to distinguish patterns of regulatory interactions from independent
patterns given experiment fold-changes and thus, infer novel regulations [28, 200].

Notably, as the topology information enters the training of these models, mea-
sures have to be taken to avoid over-fitting. Commonly, regularization or restricted
training by cross-validation is applied (see Section 5.4.4).

Local regulator-centric. These methods [171, 244, 172] are closely related to
global approaches. Yet, the trained models are bound to specific regulators (see
Figure 5.2). They distinguish targets from non-targets for one regulator. These
models predict a regulator-specific confidence via the dependency function dW,r

(see Equation 5.7, Section 5.4.4 provides a näıve baseline approach). During the
training all available expression data is analyzed for each regulator, exploiting
available information on targets and non-targets. The resulting model predicts
the confidence ĉrt using the target’s expression pattern across experiments:

dW,r : R
p → R,

dW,r

(
mt

)
= ĉrt

(5.7)

One-class. It has been argued that false negative interactions may mislead super-
vised methods. Consequently, approaches using only confirmed interactions have
been developed to separate real regulations from false positive ones [37, 35, 85, 172].
We refer to this class of approaches as one-class, resembling the idea of wrong re-
gulations being outliers to the single true class of regulations.
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Figure 5.2: Supervised regulator specifc inference. Supervised inference
methods can utilize (a) known interactions as well as (b) an expression data ma-
trix. (c) Known interactions are transformed into regulator-specific label vectors
of length 5,042: each gene is labeled 1 if it is targeted by the regulator and 0
otherwise. (d) A model Mi is trained for regulator i. Each model consists of
n sub-models, where n cross-validation splits are used to avoid over-fitting (not
shown). The model incorporates the structure prior (a+c) and target expression
(b) to distinguish known from non-target genes. (e) All potential regulations are
predicted by each model and the respective targets are ranked by the predicted
confidence scores. A simplified example is shown whereas known targets (sat-
urated) are indistinguishable from non-targets (pastel). Yet, even if all models
produce random confidences common evaluation routines would assess the union
of all models’ predictions as accurate. This effect can be attributed to the fact that
large regulators (red, high out-degree) systematically achieve higher confidences
than smaller ones (green/blue, low out-degree).
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Integrative methods. The explicit use of additional data sources has been ana-
lyzed, ranging from sequence binding motifs [68] to the semi-automated integration
of experimental outcomes in an iterative fashion [44]. SEREND [68] is a state-
of-the-art integrative method for GRN prediction. It utilizes TF binding site
information and expression data. Three logistic regression classifiers are trained:
(i) using expression data, (ii) using binding sites and (iii) using the two initial
predictions via a meta classifier. The approach is local as classifiers are trained
separately for each TF.

Table 5.1 provides an overview of the most important dichotomies that arise
in the context of network inference.

Table 5.1: Characteristics and types of inference approaches by algorithmic aspect

inference aspect type characteristics

network utilization expression-based no topology integration
supervised with topology integration

handling of interactions one-class missing regulations
considered unknown

two-class missing regulations
considered negative

model building lazy no trained model
eager predictive model

data handling integrative further data
sources integrated

non-integrative expression and topology data
modeling strategy global one model

for all regulations
local one model

for each regulator

5.4.4 Applied Inference Approaches

In this section, we provide details on the approaches that are compared in this
chapter, in particular the supervised prediction schemes (see Section 5.4.3) that
are essential to the so-called supervised inference of regulatory networks (SIRENE)
protocol [172].

Predictive Correlation. A simple way to come up with a predictive supervised
dependency function dr for a potential target x ∈ G is to compare mx (the exper-
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iment fold-change values for gene x) to all known targets t ∈ TN(r). We use an
average of all Pearson’s correlations of each mt, t ∈ TN(r) and mx:

dr(x) :=

∑
t∈TN (r) ρ(m

x,mt)

|TN(r)|
(5.8)

This dependency only uses previously known regulations. It provides a baseline
comparative approach in [85] as well (see Figure 5.7, page 106, method 3).

Decision Trees. Decision trees are decision structures which classify genes with
regard to the values of mx. We applied decision trees to train local models. In par-
ticular, a TF-specific decision tree imposes an order for experiment examination.
Nodes in a tree represent the expression measurements (columns of M) and the
corresponding threshold to optimally distinguish between targets and non-targets
of the given TF. For each putative target, the prediction procedure starts at the
root node and decides for each level which of the possible decision branches is
chosen. The choice is based on the node-specific threshold and expression level
of the examined target. Leaves assign predictions on whether or not the tested
target is regulated by the given TF. For training and prediction of decision trees
we rely on C4.5 [256] via probabilistic thresholds.

A single decision tree is error-prone wherefore usually many trees on subsets
of data are build and integrated via meta-learning techniques like boosting or
bagging. Here, we employ bagging [201] to arrive at a dependency function by
computing the empirical confidence values for each prediction. In each cross-
validation fold (see Section 5.5.5), we trained 20 trees each using 80% of the positive
and 20% of the negative examples in the training fold. Each possible interaction
therefore received a confidence score averaged from 20 trees.

Random Forests. An extension to decision trees are random forests, which sac-
rifice the ability of model interpretation in favor of predictive power. This tree
learner builds a set of predictive decision trees on experimental subsets and uses a
majority voting procedure across all trees to arrive at a decision. Decision values
returned are a matrix of class probabilities (one column for each class and one row
for each input). Probabilities are calculated from the votes of each generated tree.
For random forests (R-package randomForest [151]) we used default parameters as
selected by the corresponding cited software packages.

Two-class SVM classification. Support vector classification (SVC [46]) pro-
vides a robust learning technique based on the optimal separation of two-class high-
dimensional input vectors. SVMs solve two- or multi-label classification problems
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with high accuracy and enforce a regularized solution [214]. In practice, SVMs are
expected to generalize well to previously unseen regulatory predictions.

The use of SVM models for regulator-centric pattern detection has been sug-
gested following global [28, 200] and local [171] prediction schemes, whereas the
latter have shown superior performance. In all cases the separation of regulatory
from non-regulatory interactions is enforced.

All pairwise similarities of potential regulator target measurements mi and
mj for i, j ∈ T are used to derive a maximum-margin hyper-plane separating
targets from non-targets. Training set members that lie on this margin are called
support vectors. The similarity measure is a positive semi-definite kernel function
k : Rp×Rp → R, e.g., a linear kernel or a radial basis function (RBF). A parameter
C controls the amount of misclassification allowed during model building. In case
of the RBF kernel the bandwidth γ controls how far two instances may be apart
to be considered similar. The all-against-all pairwise kernel evaluations are then
transformed into a convex optimization problem.

For network inference, we define a regulator-specific dependency function dW,r

as the distance of a potential target to the hyperplane. We used the implementa-
tion of libSVM [37] either directly or via R-wrappers [54].

Supervised one-class SVM. It has been argued that information on non-
targets may be unreliable and thus, merely known positive targets should be used
to derive regulatory interactions. One-class SVMs build predictive local models
based on only positive examples and provide a statistical outlier-detection for tar-
gets to be predicted [37].

Graphical Lasso and Penalized Regression. The graphical LASSO (Least
Absolute Shrinkage and Selection Operator) method has been proposed by Tib-
shirani for the estimation of linear models [235]. Lasso fits a generalized linear
model via penalized maximum likelihood. This method uses L1 penalties and
hence provides automatic feature selection. The L1 penalty causes a subset of the
solution coefficients to become zero [113]. This corresponds to a feature selection
and results in a sparse model with regard to gene coefficients. The approach has
been adapted using the R package glmnet [78, 223].

Elastic Net. The Elastic Net combines Lasso and ridge regression by a simulta-
neous optimization of both L1 and L2 penalties. The ridge penalty (L2) shrinks
the coefficients of correlated variables towards each other. The elastic net penalty
can be used for regression or classification [113]. The elastic net algorithm has
first been proposed by Zou and Hastie [266] for the analysis of microarray data
and construction of classification rules. It has been used for various studies with
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different extensions and settings: the inference of expression values of yeast genes
during the DREAM3 challenges where it performed best [104]. The elastic net is
used for gene selection in the gene expression analysis framework [13]. Previous
work by Shimura et al. [222] applied the elastic net with an extension of the vector
autoregressive (VAR) model to infer gene networks from microarray experiments.
As in the case of Lasso, the R package glmnet [78, 223] is used.

Direct Integration of Network Topology. Methods that integrate prior know-
ledge of topology usually rely on the data induced by known regulator-target inter-
actions. They do not explicitly integrate the adjacency matrix of the underlying
graph.

Say we derive a model for r ∈ R. Then, in order to integrate the knowledge
of known targets in a training set, we could extend the vector of expression data
of each potential target t ∈ G by the information on other known regulators.
In particular, the (fold-change) column vector mt is concatenated to the vector
wt := (wtj), j ∈ {R\{r}}. For the predictive model dW,r the regulator information
for r is excluded to avoid over-fitting. In a cross-validation setting all interactions
in the current test are treated as non-existing with zero weight.

Consensus predictions across methods. To compute a consensus across mul-
tiple methods we apply a rank merging procedure [160]. For regulators r ∈ R and
targets t ∈ T each method m provides a confidence value ĉmrt . We use the average
rank across all m as a simple consensus score.

5.4.5 Supervised Function Prediction

Many types of relationships including gene regulatory interactions are subsumed
using the generic term functional associations. Different kinds of functional asso-
ciations between proteins or other biological entities further encompass protein-
protein interactions, drug-target interactions as well as protein annotations. The
latter are associations that link proteins to biological processes or protein func-
tions.

A related important concept is that of a gene set. In case of interactions, a TF
is associated with all genes contained in a corresponding gene set that comprises
all target genes of this TF. A biological process is assumed to be described by a
gene set containing all genes known to be relevant for that process. Essentially, a
gene set is specific to a given entity such as a TF or a biological process and covers
a given type of functional association. Supervised inference can thus be applied
to infer functional associations of interest if (i) suitable datasets are available and
can be structured as a data matrix and (ii) prior knowledge can be provided as a
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(partial) set of genes in the form of a label vector. Again, in case of interaction
inference, (i) could be large scale gene expression data and (ii) would be (part of)
the genes regulated by a given TF.

In this context, the prediction of functional associations or simply function
prediction and the prediction of regulatory interactions may be viewed as special
cases where function is a common property among a set of genes such as the targets
of a single transcription factor. Function prediction is of interest in many biological
use cases as predictive models complement prior knowledge and thereby enable a
deeper understanding of both novel and existing associations. In the process of
prediction, associations across different TFs or biological processes are prioritized
based on prediction confidence to enable the selection, evaluation or experimental
follow-up of promising candidates.

5.4.6 Shared Issues

The prediction of different kinds of functional associations shares important prop-
erties and issues. For instance, Myers et al. [174] focus on predicting gene functions,
i.e., pathway-gene associations that are predicted separately for each pathway of
interest, and thus, on predictions derived via local models. They argue that the
evaluation of functional annotation may be influenced by the uneven size and
different properties of certain biological processes. Inclusion or exclusion of the ri-
bosome pathway (among 98 other KEGG pathways) makes the difference between
co-expression data being the most or least, respectively, informative dataset. My-
ers et al. conclude that each process should be evaluated in isolation to overcome
HDP. However, this might not be a practical solution if functional associations
must be obtained across biological processes or if transcriptional networks must
be obtained across TFs.

It is further important to note that, vice versa, proteins spanning a broad
range of functions are much more likely to be confirmed as correct members of an
arbitrary functional class in comparison to specific proteins with a narrow range of
functions. For protein-protein interaction networks, Gillis and Pavlidis [88] discuss
that the number of functions a protein exposes is coupled to its node degree. For an
arbitrary functional category being predicted a ranking based on the network node
degree will perform better than expected by chance and it can unintentionally skew
quality estimates. This is referred to as multi-functionality bias. They conclude
that there are no suitable techniques available that substantially reduce it without
undesired side-effects. In particular, Gillis and Pavlidis argue that an entirely
different problem structure may arise, such that it is often unclear whether a fix
is preferred or not.

Preferences in the selection of predicted interactions have been observed [51,
5]. They describe that TFs with many known targets receive disproportionately
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many predictions while hardly any predictions are assigned to TFs with few known
targets. De Smet and Marchal [51] conclude that this is due to the fact that less
information is available for the TFs with few known targets and that, based on
this observation, supervised approaches should not be applied to infer interactions
for TFs with few known interactions. While we can confirm this observation, we
find that the problem’s origin is different (see Section 5.5.6) and we argue that
it is linked to the algorithmic approach. In this chapter, we provide evidence
that independent confidence distributions lead to a skewed overall integration. We
demonstrate that HDP can be tackled by an appropriate recalibration (CoRe, see
Section 5.5.6).

While for larger regulators some sensitivity in detecting true novel regulations
may be lost, the amount of false predictions is drastically reduced. For most smaller
regulators CoRe boosts sensitivity and the true positive rate and enables the pre-
diction of novel targets, even in case of low-degree TFs. For network inference,
supervised inference in combination with a recalibration like CoRe is preferred to
introduces a regulator-wise empirical false discovery estimate and compute sensible
overall networks.
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5.5 Material and Methods

Network inference methods score all pairs of regulators and putative target genes to
quantify the confidence that a given pair represents a true interaction. For the two
main types of inference methods discussed here, namely expression-based methods
and local topology methods, confident predictions are selected by applying a unified
cutoff. Expression-based methods are based exclusively on expression data and
ignore known interactions. Local topology methods use expression data and known
interactions (topology priors) to train a so-called local model per regulator (Figure
5.3).

5.5.1 Overview of Training Data

We obtained five yeast expression compendia from:

1. The DREAM5 Network 4 (DN4) expression data set [160] comprises 536 ex-
pression measurements of 5950 yeast genes compiled from 59 publications.
We computed 369 log2 fold change vectors from this expression compendium.
A wide range of experimental conditions, including gene, drug and environ-
mental perturbations, partially conducted in time courses is covered.

2. The compendium containing 904 chips of 6777 yeast genes was obtained from
the Many Microbe Microarray Database (M3D [72]). The data set was built
from 62 experiments. After conversion to fold change values the data set
contained 727 vectors of length 6777.

3. Hue et al. [124] performed a comprehensive study of TF knockout experi-
ments. The GEO accession is number is GSE4654. It contains expression
measurements of 263 transcription factor knockout strains under different
experimental conditions. The data set was transformed into 269 log2 fold
change values each measuring 6429 genes. This and the following two com-
pendia focus on steady-state TF deletion and over-expression measurements
that we obtained as log2 fold change values from the GEO database.

4. The study of Chua et al. [42]: in contrast to the previous compendium,
the data set with GEO accession number GSE5499 consists of knockout but
also over-expression experiments for 55 TFs. The data set contains 270
log2 experiment fold change values for 6307 yeast genes.

5. From various manually selected GEO data sets [14], we obtained additional
194 independent gene knockout measurements for 6307 genes.
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Case-control pairs were selected from 2,442 yeast microarrays as described by
Küffner et al. [143] to compute log2 fold-changes. Thereby, we obtained a matrix
M ∈ Rp×n with p = 1829 microarray pairs and n = 5402 genes. We normalize M
by two successive z-score transformations of rows and columns, respectively.

We then collected experimentally supported interactions from the Yeastract
database [3], augmented by a study of MacIsaac et al. [157] featuring combined
genome-wide chromatin immunoprecipitation (ChIP) data in combination with
two conservation-based motif discovery algorithms, PhyloCon and Converge [157].

We filtered genes that were not contained in the expression data. We excluded
TFs regulating less than 6 known targets to enable sensible training and cross-
validation. The resulting reference standard contains 153 TFs, 4,870 target genes
and 24,462 interactions derived from 356 TF-target binding assays.

5.5.2 Estimating the Size of the Yeast Regulatory Network

We aim to estimate what fraction of regulatory interaction are currently known
in yeast. In summary, we compiled 29,398 interactions from 356 TF-to-promoter
binding studies as well as 21,847 interactions from 536 gene expression studies. In
the latter case, interactions are assumed between a regulator and a target if the
target expression changes in regulator deletion or over-expression mutants. Since
expression studies would introduce potentially indirect interactions we restrict the
gold standard to interactions determined by binding studies. However, these ex-
pression studies play an important role in the estimation of the yeast network as
described in the following.

Each published study would contribute a small fraction of regulations to the
complete network. Measurement bias and study overlap likely introduce satura-
tion effects in the discovery of novel interactions. Thus, we like to estimate the
completeness of the yeast regulatory network by empirical limit analysis. An im-
portant assumption here is that increasing the number of studies would converge
towards a hypothetically completed gold standard (GGS).

We repeatedly sample (10,000 times) a fraction of x from the set of all studies
that make up the gold standard. This subset induces a partial regulatory inter-
action network. The (average) fraction of regulatory interactions detected for x
parts of all studies is denoted by Θ(x). Θ(x) is not expected to depend linearly on
x, but should follow a saturation curve and be convergent towards the CGS. We
therefore decided to model the expected dependency in terms of a Hill coefficient
[117]:

Θ(x) =
m ∗ x

k + x
(5.9)

The two parameters of this equation have a direct interpretation in terms of
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the network completeness. First, the parameter m is the fraction of interactions
in the CGS relative to all currently known regulations, i.e., m = 1.0 would imply
the currently known gold standard is complete.

Secondly, k is the fraction of available studies when half of all completed gold
standard interactions are detected. The coefficients have been estimated using
the sample mean of the interaction count for a given x such that the root mean
squared deviation was minimized.

Assuming that not all possible interactions are yet known, m will be greater
than 1. Thus, scaling the number of currently known interactions by m would
approximate the total number of interactions in the CGS.

We use the approach to contrast the convergence of regulations derived from
(i) binding studies (ii) the intersection of binding studies and regulator perturba-
tion-based expression profiling. We sampled from all binding studies in both cases,
but in (ii) the population of sampled interactions was limited to the intersected
set. As a consequence, m = 1 corresponds to the number of interactions supported
by both promoter binding as well as TF perturbation studies. The tuple (k,m)
was estimated separately for both scenarios.

5.5.3 A Network-Only Model

It has been shown previously that the node degree can seriously impact predictive
performance estimates [88]. To estimate the predictive power of a network N ’s
topology we define a näıve regulator-specific confidence mapping

dW,r(t) = |r|outN (5.10)

where |r|outN is simply the number of known targets of a regulator in network N ,
i.e., its out-degree. Consequently, all targets t of r receive the same score, namely
the out-degree of r. Obviously, this dependency function cannot distinguish real
from random targets: larger regulators affect more targets and trivially obtain
higher scores (see Figure 5.2, page 80). The calculation of the predictive quality
then reflects the baseline expected by random guessing.

We assume that the likelihood for any novel target to be regulated by a larger
factor is higher as well. Any evaluation that computes a factor-wise performance
measure would observe that the predictions are indeed random and no real target
can be distinguished from random targets.

Any compilation of all individual predictions into a single list will hide this ef-
fect. In fact, ranking regulations among large regulators and their possible targets
higher than smaller regulator’s interactions is likely superior to any random pre-
diction. Arguably, the result network predicting all possible interactions for say,
the 5% largest regulators and nothing else is superior to a complete random solu-
tion. It is important to observe that common measures like ROC and PR curves
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share this global viewpoint and would score degree-sorting better than random
predictions.

5.5.4 Evaluation Metrics for Network Prediction

In general, we compared predicted interactions to experimentally confirmed in-
teractions, i.e., the gold-standard. True positives (TP) are predicted interactions
that can be confirmed by the gold standard. True negatives (TN) are neither
predicted nor in the gold standard. False negatives (FN) are not predicted but
present in the gold-standard while false positives (FP) are regulatory interactions
that are predicted but are not confirmed. Canonical measures are the precision
pr = TP/(TP + FP ), the sensitivity sn = TP/(TP + FN) as well as specificity
sp = TN/(TN + FP ).

Each predictive method results in a list of confidence values ĉrt covering all
potential regulatory interactions (r, t) among regulator r ∈ R and target t ∈ G. A
ranked list of regulations is obtained via sorting by confidence. All methods below
inherently deal with ties present in these lists by averaging results in intervals of
equal confidence.

We computed three performance metrics commonly used to estimate the quality
of predictive methods:

1. The Precision-50 (P50) is the maximal number of predictions that exceed
or equal a precision of 50% when lowering a confidence threshold on the
predicted scores. The higher the number, the more interactions may be
actually predicted with sufficient reliability in practice.

2. The precision recall curve (PR) is the precision pr as a function of sensitiv-
ity sn. To vary sensitivity all possible thresholds for predictions within the
ranked list are screened. The AUPR is the area under the PR.

3. By contrast, the AUC is the area under the receiver operator characteris-
tics curve (ROC). The ROC is the sensitivity sn as a function of (inverse)
specificity 1 − sp. Similar to the PR all possible confidence thresholds are
screened and plotted accordingly.

Random predictions are expected to receive an AUC of 0.5. Vice versa, an
AUC of above 0.5 would imply a non-random covariance of the prediction scores
and the gold-standard. The best possible AUC value is 1.0 if predictions and gold-
standard perfectly agree. We point out that no perfect, complete gold-standard
exists. Therefore further assessment and quality estimates are mandatory.
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5.5.5 Prediction Setup and Validation

The trained models (Figure 5.2d and Figure 5.3d) assign a confidence score to each
possible regulation (r, t). Ranking all putative interactions results in a list of |G|
confidence scores for each regulator. This list is compared to a gold standard Ngold

that contains known or experimentally confirmed interactions (see Section 5.5.1).
For each r ∈ R we set up a 3-fold cross-validation (3-CV). The set of all network
nodesG ofNgold is split into n stratified sets. For local models, a scoring model dW,r

is built on the n−1 splits and the n-th set is predicted. Additionally, a single global
model dW is trained (see Equation 5.6) for all regulators using combined feature
vectors, i.e., feature vectors of regulator and target represent an interaction. For
global models we split the set of nodes G into k stratified folds (w.r.t. the number
of regulations). Overall, we train |R| local models dW,r using the network topology
W . Each model is capable to predict |G| confidence estimates ĉrt specific to a
regulator r (see Equation 5.7 and Figure 5.3b+c). For each split the CV is repeated
k times. A corresponding stratified n-fold split is set up across all regulators to
train global models.

To estimate the quality of local or global methods we combine all predictions
across all regulators (which is not necessary for global methods) and sort them
by their confidences. As previously suggested [171], we apply so-called micro-
averaging, i.e., the complete list of interactions ranked by their confidences is
compared to the corresponding gold-standard annotation. By contrast, macro-
averaging would combine regulator-wise performance metrics instead. Macro-
averaging is relatively complex to interpret and far less frequently applied. The
assessment compares the predictions to a reference standard of a priori known
interactions, for instance by the area under the receiver operator characteristics
curve (AUC). Such a cross-validated AUC analysis is a standard approach for
the assessment of inference methods [171]. We calculate several quality estimates
for each method. For a detailed definition of all applied evaluation metrics see
Section 5.5.4.

To estimate the functional consistency of a prediction we compute the expected
biological function overlap of novel predicted targets to known targets. A detailed
description of this approach is given in the Section 5.5.8.

5.5.6 Confidence Recalibration (CoRe)

Randomized topologies are generated to share key statistics with the reference
standard of known interactions (Figure 5.3a+d). We remove all regulations from
the network and randomly introduce new regulations until each node k has regained
its original in- and out-degree (compare [58], p.12). Further, the association of
expression data and genes is shuffled by gene label permutation. For each of
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the q randomized networks N (1), . . . , N (q) we perform a CV prediction to obtain
confidence values ĉ

(i)
rt as described above (Figure 5.3). Let D

(i)
r be the distribution

of confidence values specific to a regulator r computed using the random prior
N (i). We then compute a joint distribution D′

r that encompasses all confidence
values derived from random networks that are associated to regulators of the same
out-degree (Figure 5.3f).

Figure 5.3: Outline of the recalibration approach. Based on the known net-
work (a), a regulator-specific model (b) is trained to predict potential targets for
this regulator. This results in a confidence score distribution for each regulator (c).
Additionally, we generate random networks (d) maintaining in- and out-degrees
from the original network and train models (e) for each random topology in the
same way as for the original network. For each TF out-degree, we combine result-
ing random confidence scores into a joint distribution (f). Finally, we compare
the two distributions c and f based on their respective medians (med) and maxima
(max). We minimize false discoveries by selecting regulations (green area in (g))
that exceed values observed for random networks.

D′
r denotes the randomized complement of Dr. By comparing these two dis-

tributions we select interactions with scores higher than those observed in the
randomized case. Each regulation’s confidence ĉrt is replaced by its complement
κrt (Figure 5.3c+g):

κrt =
ĉrt −med(D′

r)

max(D′
r)−med(D′

r)
. (5.11)
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Scores are recalibrated based on the median confidence med(D′
r) and the dis-

tribution scale (max(D′
r)−med(D′

r)). A κ value above 1.0 corresponds to a false
discovery rate (FDR) of 0, i.e., to confidence estimates not achieved in random
topologies.

5.5.7 Analysis of Interactions in Network Motifs

It is desirable to estimate the predictive power of an approach in the context of
known motif contexts. In the following we describe how we measure motif depen-
dency in the context of these motifs as present in a gold-standard. In particular, we
contrast two motif types at a time to obtain sensible positive and negative classes
to classify each prediction (a regulation exists or not) as true positive (TP), false
positive (FP), true negative (TN) or false negative (FN). Given this definition
common performance values like AUROC can be computed.

Table 5.2: Assignment of True Positives (TP), False Positives (FP), False Nega-
tives (FN) and True Negatives (TN) in a gold standard motif context. The regu-
latory interaction (r, t) between a regulator r ∈ R and its target t ∈ T is predicted
if the regulatory interaction confidence ĉrt exceeds a given cutoff h. The in- and
out-degree of gene g ∈ G in the network N is |g|inN and |g|outN , respectively. Screen-
ing the cutoff allows the computation of ROC and PR curves. Each motif-contrast
(the comparison of two distinct motif classes) is separated by a horizontal line
and evaluated individually. All interactions that match neither class are discarded
for this contrast. Some motifs require the presence or absence of an additional
regulator r′ ∈ R. This table resembles the classes in Figure 5.4.

Motif Class Gold-Standard Context ĉrt ≤ h ĉrt > h
regulation (r, t) ∈ Ngold FN TP
no regulation (r, t) /∈ Ngold TN FP

regulation, low t in-degree (r, t) ∈ Ngold, |t|
in
gold

< dt FN TP

no regulation, low t in-degree (r, t) /∈ Ngold, |t|
in
gold

< dt TN FP

regulation, high t in-degree (r, t) ∈ Ngold, |t|
in
gold

≥ dt FN TP

no regulation, high t in-degree (r, t) /∈ Ngold, |t|
in
gold

≥ dt TN FP

regulation, low r out-degree (r, t) ∈ Ngold, |r|
out
gold

< dr FN TP

no regulation, low r out-degree (r, t) /∈ Ngold, |r|
out
gold

< dr TN FP

regulation, high r out-degree (r, t) ∈ Ngold, |r|
out
gold

≥ dr FN TP

no regulation, high r out-degree (r, t) /∈ Ngold, |r|
out
gold

≥ dr TN FP

auto-regulation (r, t) ∈ Ngold, (r = t) FN TP
no auto-regulation (r, t) /∈ Ngold, (r = t) TN FP
directed regulation (r, t) ∈ Ngold, (t, r) /∈ Ngold FN TP
reverse regulation (r, t) /∈ Ngold, (t, r) ∈ Ngold TN FP
feed-forward (r, t) ∈ Ngold, ∃r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold FN TP
cascade (r, t) /∈ Ngold, ∃r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold TN FP
direct regulation (r, t) ∈ Ngold, ∄r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold FN TP
cascade (r, t) /∈ Ngold, ∃r

′ ∈ R : (r′, t), (r, r′) ∈ Ngold TN FP
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Simple regulations. In principle, simple regulations are no motifs. Thus, it is
straightforward to decide whether a predicted regulation is present in the gold-
standard (TP) or not (FP). Similarly, a gold-standard regulation that is missed
by the prediction is FN while a TN is reported by neither prediction nor gold-
standard. To get a more specific idea of the influence of node degree we restrict
the set of regulations that are considered for AUROC analysis (see Figure 5.4).

Auto-regulation. It is useful to decide how well predictions can resolve auto-
regulatory loops. Then two classes do exist in the gold standard: (1) auto-
regulation and (2) non-auto-regulation. For each regulator-target pair we check
whether a predicted regulation exists in the gold-standard (TP) or not (FP). It
is also correct to predict no regulation if no regulation is present in the gold-
standard (TN), yet would imply a FN otherwise.

Directed interactions. The simplest motif involving two distinct entities of
the network is a directed interaction. If no reverse regulation is present in the
gold-standard, then a predicted regulation is considered TP and FP if the gold-
standard features a reverse regulation. By contrast, it is considered FN not to
predict a regulation if the reverse regulation is present in the gold-standard and
TN if is not.

Feed-forward loops and cascades. In case of regulations embedded within
feed-forward loops the definition of classes is slightly more complicated for the
set of non-feed-forward loops is too general. Instead, we restrict the analysis to
feed-forward-loops and cascades in this case. All other motifs are neglected. For
each regulator-target pair we check whether a regulation is predicted and if that is
the case if the gold-standard context of the regulation is a feed-forward loop (TP)
or a cascade (FP). The prediction of no regulation is considered a FN if a gold-
standard feed-forward context is present. In case of a cascade motif it is correct
not to predict any regulation (TN).

Direct regulation and cascades. Similarly, for cascade motifs, the contrasting
classes are regulations without existing bypass on the one hand and on the other
hand cascades. Thus, the prediction of a direct regulation while only a bypass is
actually present in the gold standard is considered FN. Consequently, it is correct
not to predict an interaction (TN). For the positive class, the prediction of a
direct regulation is correct (TP) since no cascade is present. If we miss the direct
regulation despite there is no existing bypass in the data we consider the missing
regulation a FP.
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In general, we classify different types of regulatory interactions according to the
network patterns surrounding them. Each interaction defined in the gold-standard
Ngold is assigned to one or more types (see Figure 5.4) and predicted confidences are
evaluated in this context (see Table 5.2). Given a prediction method we evaluate
the specific advantages or disadvantages for each interaction type.

For a given method we analyze the list of confidences for all possible |R| ∗ |T |
regulatory interactions. The types are defined by the gold-standard network. The
list of confidence values is restricted to include only one type of interaction at
a time (see Figure 5.4). Then, for the remaining interactions, AUC values are
computed as guided following the assignments defined in Table 5.2. The resulting
AUC values are motif-specific and may be compared across several methods.

For a given threshold h an interaction (r, t) is predicted if ĉrt > h. The in-
teraction is considered correct in the motif context if it is supported by the gold
standard. Each type induces a subset of both gold-standard regulations and non-
regulations. This is necessary to arrive at sensible contexts, e.g., the restriction to
high out-degree regulators.

The filtered set of interactions is then relevant for the motif of interest. Reg-
ulations that do not match any class are discarded for this type. Motifs of up to
three nodes (r, r′, t) ∈ (R×R× T ) are analyzed. We define degree cutoffs dr and
dt to distinguish low from high node degrees.

5.5.8 Functional Coherence

Network inference methods suggest additional interactions that are not yet con-
tained in the gold standard of experimentally supported interactions. We defined
a functional coherence score to determine whether biological functions [234] – an-
notated by gene ontology (GO) processes to the known, experimentally supported
targets of a given regulator r – match the functions of newly predicted target genes
(see Figure 5.5).

A functional profile for r was defined based on the known targets t in the gold
standard network. The profile is represented by a vector ontR(r) ∈ RK , where
K is the number of functional categories, such that functions associated to many
targets of the given TF receive higher weights. The functional coherence of newly
predicted targets was then evaluated by comparing the profile vector to according
profiles ontG(t) of each predicted target. The d-th component of ontG(t) is 1 if t
is associated to the d-th functional category, and 0 otherwise. It reflects how well
novel target predictions correspond to the functional annotations of targets in the
gold standard.

The functional coherence measure depends on the functional representation
of r as a vector of K GO biological processes ontR(r) ∈ RK . Each dimension
d = 1 . . . K is the statistical significance of an intersection set, i.e., of genes that
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class 1 class 0 Methods -speci�c preference for network motifs

All interactions (i.e. no restriction), restriction with 

respect to TF out-degree, or TG in-degree (5 motifs, 

see text).

Auto-regulatory loops.

Direction of interactions.

Feed-forward loops, i.e. prediction of interactions in the 

presence of additional indirect paths.

Cascade motifs, i.e. prediction of interactions in the 

absence of additional indirect paths vs. the incorrect 

prediction in the presence of indirection.

Figure 5.4: Motif prediction preferences. We analyzed method-specific prefer-
ences that depend on whether predicted interactions (orange=transcription factor
or TF, grey=target gene or TG) take part in 9 different network motifs. Our anal-
ysis evaluated, in terms of AUC, how well correct and incorrect predictions (black
interaction = class 1 and black crossed-out interaction = class 0, respectively) can
be distinguished. The motif context was defined by the presence or absence of
further edges in the gold standard (gray interactions). The first row yielded 5
motifs based on additional restrictions on the black interactions: (i) no restriction,
(ii) low target in-degree (≤ 2 TFs), (iii) high target in-degree (> 2 TFs), (iv) low
TF out-degree (≤ 25 targets) and (v) high TF out-degree (> 25 targets).
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are both known targets of a given regulator r as well as associated with the d-th
biological process. The significance of the overlap was calculated as functional
enrichment score of the targets TNgold

(r). For a given functional category, it was
computed as a hypergeometric z-score hz(x,N, n, k) given the number of genes k
in the category, the number of genes n known to be regulated by r, the number
N of all possible targets in the gold standard and the number of genes x in the
intersection (see Figure 5.5). Similarly, each t ∈ TNpred

(r) was then assigned to
a vector ontG(t) ∈ {0, 1}K encoding the membership of t in each process. For
a regulatory interaction (r, t), we then computed the functional coherence as the
normalized scalar product consrt := 〈ontR(r), ontG(t)〉.

We then selected a set of regulatory interactions {(r, t) | clow ≤ sr(r, t) < chigh}
for each interval of prediction scores c = 〈clow, chigh〉. Each interval is associated
with a row in a two-dimensional density map that displays a histogram across
equally sized bins of coherence scores.

5.5.9 Derivation of Modules from the Predicted Network

We applied a k-means clustering approach using an euclidean distance metric on
the predicted network Npred. We represent each TF as a binary vector of all
targets t ∈ G (the set of all genes, see above). An interaction was encoded as 1,
non-interactions as 0. The representation resulted in a matrix MN with 153 rows
(TFs) and 3,747 columns (targets). Clustering was performed in two dimensions:
(1) clustering of TFs and (2) clustering of targets. For both clusterings, k is
screened randomly 100 times in the range of 8 to 15. Overall, 10,000 bi-clusterings
were prepared. We filtered the result to retain only biclusters with a minimum
density of 40% predicted interactions. Subsequently, bi-clusterings were ranked
based on the retained bi-clusters using

• the number of bi-clusters in the bi-clustering nb

• the number of interactions ni covered by the bi-clustering

• the number of TF clusters nt and

• the number of target clusters ng

by the empirical ranking criterion

ni − (nb ∗ nt ∗ ng). (5.12)

The criterion is designed to cover as many interactions as possible within a mini-
mal number of clusters. The key result of this procedure, the set of highest scoring
bi-clusters, is Figure 5.8. Here, TF clusters are connected to target clusters they
regulate. Interaction clusters then represent the bi-clusters derived by this proce-
dure. A detailed discussion of TF and target clusters is given in Section 5.6.6.
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Figure 5.5: Functional Coherence Measure. For each TF (top), a measure of
functional coherence is derived by assessing the overlap of functional annotations of
(1) its experimentally supported targets and (2) newly predicted putative targets
among G. In a first step (left side), we apply the hypergeometric test to analyze the
enrichment of functional annotations among the experimentally supported targets.
The enrichment score is computed with respect to observing an overlap of x or more
genes among targets of TF1 and those genes annotated with the hypothetical GO
category GO4. The table ‘enrichment among targets’ denotes this enrichment as
z-scores for all 1..K GO processes in the second row. Positive or negative z-scores
denote process annotations that are enriched or depleted, respectively, among the
targets of TF1. Each table of newly predicted targets of TF1 (right side) refers
to a single gene, which might either be part of GO4 or not, hence assigning 0
or 1, respectively (column 4 of the second row). Finally, functional coherence is
computed as a scalar product among an enrichment vector (left table) and a gene-
specific vector (right table). Note that if the coherence for a known TF1-target
such as GN is calculated, it is removed from the calculation of the enrichment
vector in a leave-one-out setup.
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5.6 Results

5.6.1 Network Predictions without Expression Data

Expression data is the principal source of information exploited to infer interac-
tions. However, by disregarding expression data in a network-only approach, basic
issues of regulator-specific methods can be illustrated. An analogous approach was
suggested previously for function prediction [88]. For the network-only approach,
we assigned confidence scores based on the out-degree of regulators such that scores
for targets of a regulator A are always higher than scores for targets of a regulator
B if A has the higher out-degree. In contrast, scores among the candidate targets
of a single regulator are distributed uniformly so that true and false targets of a
given regulator are indistinguishable (Figure 5.2e and Section 5.5.3).

Accordingly, we calculated a cross-validated AUC for a single network combin-
ing all regulator-specific confidences as suggested [171]. In addition, we determined
the AUC for all regulators separately. The latter indeed resulted for each regulator
in an AUC of 0.5 expected for random predictions. However, the integration of
the same predictions across regulators into a joint confidence score distribution re-
sulted in an AUC of 0.798, seemingly indicating a substantial performance. Thus,
despite the fact that individual predictions were random, an integrated network can
exhibit a substantial enrichment of true TF targets at higher scores (Figure 5.2e).

5.6.2 Simpson’s Paradox

A working example. We described that taking a regulator-wise or network-
wide viewpoint for the evaluation of inference approaches may result in strikingly
divergent outcomes. We therefore start with an example of Simpson’s Paradox
to clarify the conditions that lead to the (seemingly) paradox situation. For the
evaluation of network inference we aim to compare two methods A and B. Each
methods provides us with a confidence for each potential regulatory interaction.
There are two common approaches to evaluate the result network. (1) We sort all
predicted regulations based on their assigned confidence values and compute some
canonical network-wide quality measure (like an AUC). This is known as micro-
evaluation. (2) We sort the predicted regulations per regulator and compute local
quality measures. This is often referred to as macro-evaluation. In practice, a
situation may occur where micro-evaluation suggests that B is superior to or on
par with A and, simultaneously, most or all macro-evaluations would prefer A.
This seems to be paradox, because we intuitively think that a method that is
better for all sub-problems (or subsets) should perform better for the complete
set as well. This reversal given two points of view (complete and subsets) is often
referred to as Simpson’s Paradox [191, 224].



100 5. Confidence Recalibration

Observations on real-world inference. Mapped to our setting, method A is a
regulator-specific machine learning model that can be used to predict novel targets
from known regulator target patterns, e.g., a random forest approach. Method
B randomly re-assigns the known regulations to random targets and then uses
method A on the shuffled network and data. Method C is a baseline method that
works free of data would predict the number of known targets for each regulator
as a confidence value for all its targets (see Section 5.5.3).

For a network-wide estimate of quality (like an AUROC) both A and B seem to
be on par. For example a random forest model achieves a micro-evaluation AUC
of 79.6. The same model being trained on a shuffled topology achieves 72.9 (see
Table 5.7, page 118).

In practice, both models would be considered to yield useful results given their
overall performance. Yet, for an averaged macro-evaluation we observe 63.1 for
standard random forests and 49.4 using randomized topologies. Notably, a model
that provides random predictions for almost all regulators obtains a global quality
of more than 70 percent. The model quality is also evident in the Precision-50:
for shuffled random forest predictions the P50 is 0, whereas 6,996 regulations can
be predicted at 50% precision otherwise.

While both networks are of similar overall quality with respect to the micro-
evaluation AUC, the regulator performance is crucial. It seems inconsistent that
the AUC fails to recognize this shortcoming as it provides a network-wide point-
of-view.

Simpson’s Paradox motivates confidence recalibration. The Simpson’s
Paradox refers to the counter-intuitive interpretation of observed results. In fact,
both the micro-evaluation AUC and the average macro-evaluation are correct. The
common perception is that a network cannot be correct globally, but random for
each regulator. This view neglects an important aspect: both methods A and
B have access to the degree of a regulator. This prior information may override
the predictions that individual, regulator-specific models provide. In fact, we ob-
served a strong degree-dependency for predicted confidences in all models, and the
micro-evaluation AUC would benefit from ranking larger regulators first, while
macro-evaluations do not rely on this ranking.

We can by now tell that the Simpson’s Paradox is induced by the integration
of topology information. Strikingly, method C yields an AUC of 79.8, a score that
is superior to methods that integrate data. Since the AUC itself is a reasonable
quality measure one may argue to choose this globally best model. This argument
is easily disproved: The regulator-wise quality is essential for almost any kind of
application, and method C cannot rank the predictions for individual regulators –
neither can method B.
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To resolve the Simpson’s Paradox would then mean to select a network-wide set
of regulations with reasonable performance whereas individual regulators should
maintain the quality that state-of-the-art predictive methods can provide. To
tackle this problem, and bridge the gap that leads to Simpson’s Paradox, we
suggest to capture the regulator-specific nature of B as a random background and
use it to contrast the results of the corresponding method A. We refer to this as
confidence calibration (CoRe). This is the motivation behind the κ-transformation
procedure (see Section 5.5.6) as key element of CoRe.

Obviously, while we aim to uncover regulator-wise information, the topology
information should not be cancelled out completely: it is implicitly reflected by an
increased κ-value, i.e., the degree-specific contrast among random and non-random
confidence values.

As expected the Simpson’s Paradox and the HDP disappears upon recalibra-
tion. While the macro-evaluation AUC stays the same, the semi-global P50 esti-
mate for these networks slightly drops. Yet, by design, the estimated network-wide
false discovery rate is drastically reduced.

5.6.3 Implications of Simpson’s Paradox

We followed the SIRENE approach [171] and trained local models based on Support
Vector Machines to predict confidence values for potential regulations. On a large
expression data set of 2,442 yeast microarrays and a regulatory network of 24,462
interactions (Section 5.5.1) the cross-validated predictions achieved a network-wide
AUC of 0.784.

However, we found this standard, cross-validated AUC analysis misleading in
case of methods integrating topology priors. We demonstrated this by training the
methods on randomized networks (random re-assignment of targets to regulators).
The confidence scores for individual regulators are random, resulting in regulator-
specific AUC values of 0.5 (Section 5.5.3). Strikingly, an evaluation across all
regulators yielded an AUC of 0.798, a score above the AUC achieved by SIRENE.

As discussed, these two results seem to be in conflict: a method that performs
randomly for each regulator induced subnetwork should yield random overall per-
formance as well. This effect resembles the Simpson’s or “amalgamation” paradox
[224, 191]: each of the regulator-specific distributions achieves an AUC of 0.5,
while the AUC of the joint distribution suggests non-random performance (see
Section 5.6.2).

This results from the fact that predicted confidence score distributions are het-
erogeneous across regulators and are characterized by different scale and location
parameters (Figure 5.6a, gray boxes, 104). In particular, score distributions for
regulators with many known targets (high out-degree) such as ste12 are wider
and systematically above average following the HDP. These regulators contribute
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many true positives, i.e., after the integration higher scores become enriched for
true positives. This in turn leads to non-random AUC values. Selected high-
scoring predictions remain unspecific while biologically more specific signals are
likely being missed [188]. Following this line of argument, the regulator out-degree
confounds the integration of confidence values. This is consistent with results
demonstrated for the prediction of genes involved in biological processes [88].

To examine whether the paradox is an artifact of SVMs we trained further
model classes (among others decision trees and logistic regression). We observed
similar effects across all examined techniques, suggesting that regulator-specific
methods using topology priors are generally affected by HDP.

Besides the confounding of network quality measures, the composition of pre-
dicted networks is also affected. We predicted networks by selecting high-scoring
interactions using a threshold determined from the estimated size of the complete
yeast network (see Section 5.5.2), which should be twice as large as the known
network. A score threshold was chosen so that selected regulations contain 50%
previously confirmed ones (the Precision-50, or P50 network).

For a regulator with out-degree d we obtained two types of score distributions:
(i) from the model trained on its known targets and (ii) from models trained
on the targets of randomized regulators with out-degree d (Figure 5.6a, red and
gray boxes). A unified cutoff selects an excessive number of predictions for high-
degree TFs that overlap with random scores. To quantify this, we computed the
false-discovery rate (FDR) based on the number of interactions scored above the
P50 threshold in distribution (ii) divided by the total number of interactions above
that threshold in (i) and (ii). For example, the FDR is 44.4% for high-degree ste12
and 22% across all TFs (Figure 5.6f), which is unacceptably high. In contrast to
ste12, all predictions are rejected in case of low-degree TFs such as cat8, even if
they substantially exceed random scores (Figure 5.6a). Only 81 of 153 TFs (53%)
receive predictions. We concluded that neither cross-validation nor AUC analysis
are sufficient to ensure the overall quality of networks inferred using structural
priors.

We also assessed whether TFs frequently regulate the expression of targets
that share similar biological functions [219]. We therefore tested whether known
and predicted targets of the same TF exhibit substantial functional overlaps (Sec-
tion 5.5.8). We observed that the high proportion of random scores (like ste12 )
concealed most of the signal as interactions with higher scores hardly showed an
increased functional coherence (Figure 5.6b).

5.6.4 Correction through Score Recalibration

We introduce a confidence recalibration (CoRe) as a wrapper for existing methods
(Section 5.5.6). Based on the random networks, we derived expected location
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(median score) and scale (maximum score) properties for each out-degree d and
used them to transform the predicted confidences into topology-corrected scores.
Scores for each regulator are recalibrated by scaling the median and maximum
scores to 0 and 1, respectively (Figure 5.6c). This renders score distributions
comparable so that they can be integrated across TFs. The FDR is then 0 for
predictions with scores above 1 as they appear only for the true but not for the
randomized networks. Thus, interactions for each regulator selected after CoRe
are scored above the random level.

To obtain a P50 network, we select interactions that achieve a corrected score
of above 0.92. The FDR for this network was reduced to 1.4% (as compared
to 22.0% without recalibration). We observed that predictions are now balanced
across TF degrees (Figure 5.6g), predicting interactions for 138 TFs vs.81 without
recalibration.

To gain further insight in the nature of the corrected network, we estimated the
functional relationship between known and novel predicted targets (Section 5.5.8).
Regulatory patterns were more coherent for the corrected network (Figure 5.6e).
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Figure 5.6: Score recalibration in network predictions. (a) We trained sup-
port vector machines (SVMs) for each TF (see Figure 5.2). Putative target genes
were selected by a threshold (red line) on the resulting TF-specific scores (red
boxplots). Additional SVMs were trained on random networks (gray boxplots)
and false discovery rates (FDRs) were computed for all regulators but those such
as xbp1 where no predictions were made. (b) The density map displays whether
predicted and known targets of the same TF overlap in their biological function.
Positive z-scores (abscissa) indicate significant function overlaps for corresponding
scores (ordinate). (c) Score distributions (red) were recalibrated via randomized
distributions (gray): for each TF, the median med (dotted line) and maximum
max (dashed line) are mapped to 0.0 and 1.0, respectively. (d+e) show boxplots,
prediction threshold (green line), and a density map of function overlap after recal-
ibration. (f) plots the FDR as a function of the number of predicted interactions.
Arrows indicate the number of interactions achieving a precision of at least 50%
(P50).
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5.6.5 Application of CoRe to Network Inference

For all subsequent methods and analyses we report corrected results. To evaluate
the yeast regulatory network obtained, we conducted a comparative assessment of
frequently used inference approaches and a consensus approach (see Section 5.4.4).

SIRENE [171] is a supervised, two-class, parameterized, non-integrative, local
approach. For all methods, we predicted confidence scores in a 3-CV scheme and
recalibrated them as described above. Subsequently, we analyzed network motifs
(Section 5.5.7) to capture method- and topology-specific preferences (Figure 5.7b).
Unsupervised, expression-based approaches do not use topology priors but infer
interactions if expression profiles of TFs and putative targets are mutually depen-
dent. An example is CLR [73]. These methods are unable to detect auto-regulation
as in this case both expression profiles would be identical. Confirming previous
findings [160], expression-based approaches could hardly detect feed-forward motifs
or the correct direction of interactions. In contrast, regulator-specific approaches
were less affected by such difficult cases and exhibited a consistently higher perfor-
mance. For cascades and low in-degree targets, a slight decrease in performance
was observed. Potentially, the latter indicated the prediction of novel regulators
for genes that were less well studied previously.

Next, we evaluated the performance of approaches across all interactions. Ex-
pression-based, one-class, and lazy learners performed substantially worse than
the remaining methods (Figure 5.7c). We observed that integrative methods like
SEREND [68] suffered from false positive predictions. This is likely due to the low
specificity of positional weight matrices (PWMs [120]) predicting targets only for
6.5% of all regulators (see Section 5.6.8). These methods were not further analyzed.
Of the remaining five methods (methods 5-12 in Figure 5.7), the best results were
obtained from regulator-specific SVMs and decision trees trained on bootstrap
samples (bagging). In Section 5.6.13 we discuss methodological extensions such as
the integration of multiple predictors to perform a consensus prediction.
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Figure 5.7: We analyzed the predictions of 11 different inference methods across
five yeast gene expression compendia. (a) The dendrogram groups methods ac-
cording to the similarity of their predictions. Properties that discriminate between
different classes of methods are indicated by the check boxes. (b) shows if inter-
actions in particular network motifs are easier (blue) or harder (white) to detect
in comparison to all interactions. (c) assesses method performance (AUC) and
the number of interactions predicted at a precision of 50% or better (P50) (green).
Furthermore, we encoded experimentally determined targets of TFs into additional
features (yellow, see Section 5.4.4 and 5.6.13) and integrated methods 6-10 into
a consensus approach (method 11). (d) illustrates mean results from integrating
all subsets of c = 1..5 compendia and m = 1..5 methods. All results are based on
recalibrated scores.
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5.6.6 A Comprehensive Yeast Network

Our final yeast network includes 22,231 interactions with 153 TFs and 3,747 target
genes. Of all predicted regulations, 12,869 are contained in the reference standard
while 9,362 are novel predictions. The remaining 11,593 (24462− 12869) reference
standard interactions (see Figure 5.1a) lacked an observable effect on expression
and were not included.

The visualization and interpretation of organism-wide networks is challeng-
ing due to their size and complexity. Instead of fully depicting each regulator,
target and their interactions, we employed a modular visualization. We derived
regulatory modules by grouping TFs with overlapping target sets and, vice versa,
target modules by grouping genes regulated by overlapping sets of TFs. We con-
nected regulator and target modules via meta-interactions if more than 40% of
all induced regulator-target pairs were connected. This reduced representation
featured 13 meta-interactions among 9 target and 9 regulatory modules, captur-
ing half of the final interactions (11,232 interactions, 50.5% of all predicted; see
Figure 5.8 and Section 5.5.9).

This modular view enables an integrated display of the network as well as
module-associated expression profiles. Given current data and knowledge, the re-
spective TF-modules likely control the forming of transcriptional response patterns
in the regulated target modules. Some key aspects of module-associated expres-
sion profiles are summarized below. Representative genes were selected manually
for each module.

The hxt2 module features the most versatile regulation in our network, regu-
lated by three different TF clusters comprising the highest total number of TFs
(Figure 5.8). According to GO [234], most of the 190 genes of the hxt2 cluster
belong either to sugar transport (hxt genes) or glycogen metabolic process (gac1 ).
Consequently, we observe differential expression of these genes under low vs.high-
glucose growth conditions. When glucose is available, the sugar transporters are
abundantly expressed [186], whereas under glucose starvation glycogen storage is
catabolized to produce glucose preferably for fermentation [76].

The pdr1 (pleiotropic drug response) cluster comprised the largest number
of hxt2 regulators. It consisted of 16 TFs, all tightly connected to the cellular
response to drug and nutrition stress such as differing glucose concentrations. De-
spite this general response mediated by the pdr TFs (stb5 and msn1 ), much of the
regulation was performed by pseudohyphal growth TFs (nrg1, mga1, and ash1 )
in conditions of nitrogen limitation and abundant fermentable carbon sources like
glucose [155].

Interestingly, a strong regulatory impact on the hxt2 module was also observed
for regulators of the oxidative stress response – on the one hand from the cad1
cluster (5 TFs, also responding to resulting DNA damage), and, on the other hand,
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from the tec1 cluster (11 TFs, also driving pseudohyphal growth). Oxidative stress
results in cellular protection mechanisms, e.g., DNA repair and targeted protein
degradation, which is associated with increased energy consumption [170], initiated
by the hxt2 cluster via increased glucose uptake.

5.6.7 Novel predictions

In the following, we briefly describe examples (i) for novel predictions missing in
current gold standards (the activation of cat2 and tes1 by pip2/oaf1 and adr1 )
as well as (ii) for an interaction contained in the gold standard not supported by
our predictions (the regulation of hap4 by cat8 ). This latter interaction may be
an example for a ‘quiet’ interaction not associated with expression changes of the
target.

Genes involved in peroxisomal beta-oxidation in S. cerevisiae are repressed in
the presence of glucose, de-repressed on non-fermentable carbon sources such as
ethanol, and further induced by more than ten-fold in the presence of oleate [103].
Examples of gene products involved in the breakdown of fatty acids include pot1,
pox1, fox2, sps19, and cta1. The transcriptional up-regulation of these genes is
driven by the pip2/oaf1 transcription factor, binding to the oleate response el-
ement (ORE), and by adr1, binding to another upstream activating site, UAS1
[118]. Cat2, a carnitine O-acetyltransferase, and tes1, an acyl-CoA thioesterase
are also enzymes involved in fatty acid breakdown, currently postulated to be reg-
ulated by pip2/oaf1 [118]. We predicted that the transcription of cat2 and tes1 is
also activated by adr1, which has not been reported before (or only indirectly as
for tes1 [226]) but seems plausible given the known regulation of beta-oxidation
genes by pip2/oaf1 and adr1.

Cat8 and hap4 are major transcriptional regulators of the diauxic shift [217].
cat8 especially activates the transcription of gluconeogenic genes via binding to
a carbon source responsive element (CSRE) in their promoter. Cat8 itself is
transcriptionally regulated in dependence on the carbon source, where positive
regulation on non-fermentable carbon sources is carried out by the hap2/3/4/5
complex [237]. Hap4 is the activator subunit of the hap2/3/4/5 complex, especially
driving the expression of genes involved in respiration and the TCA-cycle. hap4
is also the regulatory subunit of the complex, as it is the only one whose level
is regulated by the carbon source itself. Interestingly, it seems that hap4 and
cat8 are mutually activating each other, as hap4 transcription has been shown
to be cat8 -dependent [27]. In our network, the regulation of hap4 by cat8 was
not predicted. This is in agreement with current studies, which assign the carbon
source dependent regulation of hap4 rather to rds2 [237].
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Figure 5.8: Interactions and expression profiles. We partitioned our network
of 22,231 gene regulatory interactions for visualization and identification of net-
work modules. We derived (a) 9 clusters of 61 TFs that, via (b) 13 interactions
between clusters (arrows), regulate (c) 9 clusters of 1758 target genes. A rep-
resentative gene is displayed for each TF and target cluster. Cluster interaction
maps (black=interaction, white=no interaction) comprise a total of 11232 (50.5%)
interactions. (d) Thus, depicted TF modules are likely to trigger expression re-
sponses (heatmaps: red=up-, blue=down-regulation) in respective target modules
and associated biological processes (green annotation). The heatmaps display the
differential expression of these target modules under the indicated knockout (KO)
and other experimental conditions (blue annotation).
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5.6.8 Performance based on Binding Sites

SEREND trains classifiers for each TF individually and is based on local models
for prediction. For the application to yeast, we used positional weight matrices
(PWMs) obtained from the JASPAR database [29] and derived PWM promoter
matching scores via CUREOS [203]. As detailed in Section 5.4.3, SEREND sep-
arately trains two logistic regression classifiers to predict GRIs from expression
data and TF promoter binding sites, respectively. A third classifier is employed
to combine the predictions from the other two classifiers.

Table 5.3: Performance (AUC) of SEREND across TFs

Data Micro Macro Corrected
Motif 79.6 56.9 59.7
Expression 79.3 66.2 61.1
Combined 80.4 61.2 65.5

SEREND’s confidence scores for putative GRIs are reported for each of the
three classifiers, which enabled us to separately evaluate the performance. Large
difference in performance between regulator-wise and network-wide quality mea-
sures (Table 5.6) suggest that SEREND would preferentially attach novel regula-
tions to larger regulators. Table 5.3 indicates that each of the individual scores is
susceptible, as shown by inflated micro-averaged AUC values.

We next analyzed the TF-specific performance achieved using only the infor-
mation on binding sites. Table 5.4 demonstrates the strong shift towards new
targets for high-degree TFs. The two TFs (ste12, rap1) with the highest out-
degrees exhibit the lowest AUC performance but account for 80% of the predic-
tions. This shows that the networks estimated by SEREND may profit from a
reduction in False Discoveries by score recalibration. Table 5.5 depicts the results
after recalibrating SEREND’s sequence binding scores using CoRe. After the re-
calibration, the predictions are balanced with respect to TF out-degree (compare
Figure 5.11). No significant predictions were obtained for ste12, indicating that
predictions achieved before were independent of the regulator-specific model and
entirely due to HDP. However, even after recalibration, suitable numbers of targets
were predicted (empirically, we required that the number of targets predicted for
a given TF should be > 10% of its out-degree ) for only 10 out of 153 (6.5%) TFs
while no or very few (as in case of fkh1) targets were predicted for the majority
of TFs.
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Table 5.4: Examples for some regulator-specific performance using only promoter
binding information

TF orf Gene Outdegree Predicted AUC
YHR084w ste12 1770 1609 53.4
YNL216w rap1 1159 736 67.7
YJR060w cbf1 313 157 86.7
YBR049c reb1 502 151 87.7
YKL112w abf1 459 94 86.0
YDR207c ume6 166 70 83.3
YEL009c gcn4 284 46 79.9
YOL028c yap7 174 18 84.8

Table 5.5: TF-specific performance of promoter binding after recalibration

TF orf Gene Out-degree Predicted AUC
YKL112w abf1 459 532 86.0
YJR060w cbf1 313 361 86.7
YEL009c gcn4 284 237 79.9
YBR049c reb1 502 198 87.7
YOL028c yap7 174 129 84.8
YGL131c snt2 23 79 93.2
YDR207c ume6 166 75 88.3
YMR043w mcm1 238 60 69.8
YBL005w pdr3 107 24 75.5
YKL109w hap4 159 15 65.8
YIL131c fkh1 207 13 71.8

5.6.9 Robustness of CoRe

As described in Section 5.5.6, the proposed recalibration, CoRe, is based on ran-
dom transcriptional networks. Figure 5.9 shows how the number of used random
networks influences the resulting evaluation metrics. Shown are the results ob-
tained from all possible subsets of the ten generated random networks used in this
study. Using a larger number of random networks boosts the scores and decreases
their variance. The differences in averaged performance estimates decrease as more
random networks are used, indicating ten networks enable a sufficiently accurate
recalibration. In addition, the results from evaluation metrics without recalibra-
tion are shown, demonstrating the substantial over-estimation of performance.
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Figure 5.9: Robustness of score recalibration The boxplots depict how the
number of random transcriptional networks (abscissa) used for the recalibration in-
fluences the results from various evaluation metrics (ordinate) including the AUC,
the AUPR and the P50 measures. For comparison, we also show the results ob-
tained without score recalibration (red bar, based on no, i.e., 0, random networks).

5.6.10 Dependency of Distribution Parameters on TF Out-
Degree

In this section we further examine the properties of score distributions and their
dependence on the TF out-degree. Figure 5.10 depicts the dependency of dis-
tribution parameters on the TF out-degree. Both median and maximum of the
score distributions exhibit a strong positive correlation with respect to the TF out-
degree. Across the range of TF out-degrees, the maximum shows a higher slope
than the median. This indicates that the score distribution is not only shifted
but also scaled in dependence on the out-degree. As shown in the next section, a
threshold on the non-recalibrated scores will therefore select more targets for TFs
for which many targets are assigned by the gold standard.

5.6.11 Relationship between TF Out-Degree and the Num-
ber of Predicted Targets

GRIs are typically selected by applying a precision-based threshold (P50 for a
precision of 50%) on a global list of predictions ranked by confidence scores [171].
In case of non-recalibrated scores, Figure 5.11 shows that thereby, an excessive
number of predictions are selected for high-degree TFs while all predictions may
be rejected in case of low-degree TFs. The P50 threshold can also be applied
to each TF individually (corresponding to a macro-evaluation), but this leads to
similar results. In contrast, a global P50 criterion applied to calibrated confidence
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Figure 5.10: Degree dependency of location parameters. For each TF,
simple location parameters are estimated such as the median (left panel) and
maximum (right panel) from score distributions derived from random gold stan-
dards. The plot depicts the dependencies of these parameters (ordinate) on the
TF out-degree (abscissa). Shown as red crosses are the parameters as estimated
from individual TFs and their approximation via Bezier curves (green line). Score
distributions were derived from local SVM models obtained from the Sirene ap-
proach.
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Figure 5.11: Influence of TF out-degree on the number of predictions.
The ratio of predicted to gold-standard targets (ordinate) is depicted across the
range of TF out-degrees (=number of gold-standard targets, abscissa) before (red)
and after (green) recalibration with CoRe. Using raw confidence scores, TFs with
many targets in the gold standard would receive an overly large number of newly
predicted targets. Here, we select the highest scoring targets across all TFs such
that a precision of 50% (P50 criterion) is obtained. As an alternative that corre-
sponds to macro-evaluation, the P50 criterion is applied to each TF individually
(local P50, blue).

scores results in a balanced ratio of predicted to known TF targets, i.e., data points
in Figure 5.11 are parallel to the abscissa.

5.6.12 Score Distributions Based on Probability Estimates

As an alternative to the raw confidence scores employed by methods such as
SIRENE [171], Platt scores have been proposed [120]. Platt scores transform the
raw confidence scores into probability estimates that scale between 0 and 1. As
shown in Figure 5.12, Platt scores derived from randomized gold standards exhibit
similar degree dependencies as the raw confidence scores depicted in Figure 5.6a
(page 104). Thus, the transformation into Platt scores alone is not sufficient to
correct for the HDP effect.
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Figure 5.12: Degree dependency of probability estimates. Support vector
machines were trained and applied as described, but resulting confidence scores
were transformed to probability estimates (also referred to as Platt scores) via the
libsvm SVM library [37]. The probability estimates exhibit increased means and
variances in case of confidence score distributions derived for high out-degree TFs.
For each TF, the distribution of confidence scores is displayed in a left boxplot for
true targets (red) and in a right boxplot for random targets (grey, not visible due
to small variance).

5.6.13 Improving Regulator-Specific Predictions

In order to increase the number of correctly predicted interactions, we implemented
three improvements. First, we integrated the five methods selected in the previous
section into a consensus to obtain a single network (see Section 5.4.4). This inte-
gration is potentially beneficial to exploit complementary advantages of different
methods [160]. We re-ranked interactions according to the average calibrated score
across all methods and selected the top-ranking interactions with a precision of
50% or better. This consensus spanned a network of 8,726 predicted interactions
(see Figure 5.7c, page 106). To examine compendia-specific effects, we built con-
sensus networks from predictions derived from subsets of expression compendia
and subsets of methods (see Figure 5.7d). The integration of further methods or
further compendia generally led to an increased performance.
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The second improvement is motivated by the fact that genes are frequently
regulated by more than one TF and that several (often functionally related) TFs
regulate overlapping sets of targets [207]. Local methods predict targets for a
single TF at a time and cannot take such combinatorial regulation into account.
We therefore encoded the set of known regulators of a gene as additional training
data (see Section 5.4.4). The true targets of each modeled regulator are excluded
from the training to avoid over-fitting. We observed that the explicit encoding
of known regulations roughly doubled the number of P50 interactions, yielding
18,724 interactions (see Figure 5.7c). This corresponded to a threshold on the κ
confidences of 0.92.

Finally, we aimed to include gold-standard interactions predicted with mod-
erate confidence. We therefore extended the predicted network by gold-standard
regulations that met a relaxed confidence threshold of 0.46 (compare P50=0.92,
see Figure 5.6c). The fact that gold standard interactions have been determined
experimentally provides an increased confidence, justifying the relaxation of the
threshold. This further increased the size of our final yeast network to 22,231
interactions containing 153 TFs and 3,747 target genes. Of all predicted regula-
tions, 12,869 are contained in the gold standard while 9,362 are novel predictions.
Among the 29,398 gold standard interactions (Figure 5.1a), even by the already
relaxed threshold, more than half (56.2%) were not confirmed by our approach.
These ‘quiet’ interactions apparently have no regulatory effect visible in our data.

5.6.14 Numerical Values of Performance Estimates

As a reference, the Tables 5.6 (gold standard, recalibrated) and 5.7 (randomized
networks, recalibrated) provide exact values of the recalibrated network perfor-
mance measures as depicted by the green bars in Figure 5.7c. When topology
features are included explicitly we obtain the values shown in Tables 5.8 and 5.9,
respectively. The associated values shown are:

• auc := ’area under the receiver operator characteristics curve’

• aupr := ’area under the precision recall curve’

• fmb := ’optimal f-measure for variable threshold’

• p50 := ’number of predictions for a precision of 50%’

In addition, these tables summarize various evaluation approaches and con-
tain further performance estimates such as the F-measure. We compare several
evaluation setups, including micro- vs.macro-averaging, the influence of additional
training features encoding known regulators, raw vs.recalibrated confidence scores
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as well as experimentally derived gold standard vs.random networks. See Sec-
tion 5.5.4 for details on the scores and their computation.

Due to the long run-time, the random networks were not processed via CLR
and thus, calibrated scores were not computed. Note that the consensus is con-
structed from the five approaches employing local models, namely Random forest,
Decision tree, Lasso, Elastic net and local SVM, which corresponds to the SIRENE
approach.

Even without recalibration, macro-evaluation takes a regulator-wise viewpoint
and enables sensible local performance estimation that may complement the net-
work-wide point of view. Detailed results are shown in Tables 5.6 and 5.8. How-
ever, macro-evaluation does not provide a mechanism to select interactions from
a wide range of degrees. Due to the degree dependency of confidence scores the
resulting networks will preferentially consist of larger regulators (compare Sec-
tion 5.6.11).
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Table 5.6: Evaluation for fold-change expression features (measure definition, see 5.6.14).

Micro Macro Micro, calibrated Macro, calibrated
Method auc aupr fmb p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

CLR 47.9 2.8 5.7 14 52.0 3.7 7.8 - - - - - - -
One-class SVM 50.3 6.5 12.5 0 50.9 4.0 8.3 51.4 3.6 6.4 0 50.9 4.0 8.3
Correlation 54.5 5.1 7.0 514 54.9 5.6 10.4 54.5 5.1 7.1 456 54.9 5.6 10.4
SEREND 81.5 22.4 28.6 3684 60.8 12.5 18.6 70.4 21.1 28.5 3332 61.2 12.9 19.2
Global SVM 81.8 21.2 29.1 2692 67.6 11.4 17.3 71.6 15.8 21.3 3054 67.6 11.4 17.3
Random forest 79.6 24.0 28.2 6996 63.1 11.4 17.8 62.9 17.9 23.1 5554 63.1 11.4 17.8
Decision tree 79.3 19.5 23.8 4110 66.1 13.3 20.1 65.3 17.0 23.1 4426 66.1 13.3 20.1
Lasso 81.4 25.7 29.9 8000 67.5 13.5 20.0 65.0 19.7 26.5 6490 67.4 13.5 20.1
Elastic net 81.6 25.9 29.9 8090 67.8 13.7 20.3 65.5 20.1 26.7 6576 67.8 13.7 20.3
Local SVM 78.4 28.2 33.5 10466 68.3 16.2 23.2 70.9 23.6 29.8 9130 68.3 16.2 23.2

Consensus 82.2 28.7 32.3 9918 68.5 15.2 21.8 69.3 23.5 29.3 8726 68.5 15.8 22.8

Table 5.7: Evaluation for random networks on fold-change features.

Micro Macro Micro, calibrated Macro, calibrated
Method auc aupr fmb p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

Random forest 72.9 9.9 16.1 0 49.4 3.1 6.4 47.8 3.5 7.5 0 49.4 3.1 6.4
Decision tree 69.9 5.2 10.1 0 49.6 3.1 6.3 48.4 3.2 6.4 0 49.6 3.1 6.3
Lasso 71.4 7.8 14.2 0 49.1 3.1 6.4 47.7 3.9 8.9 0 49.1 3.1 6.4
Elastic net 71.6 7.9 14.5 0 49.0 3.0 6.2 48.0 4.1 9.4 0 49.0 3.0 6.2
Local SVM 67.2 9.4 16.0 20 49.8 3.1 6.4 50.2 3.1 5.8 0 49.8 3.1 6.4
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Table 5.8: Evaluation results for features extended by topology information.

Micro Macro Micro, calibrated Macro, calibrated
Method auc aupr fmb p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

CLR 46.9 2.8 5.7 6 38.0 3.2 6.7 - - - - - - -
One-class SVM 51.0 6.8 12.9 14 52.2 4.4 9.0 52.5 3.8 6.8 8 52.2 4.4 9.0
Correlation 56.7 5.5 7.7 504 59.4 9.3 14.6 56.7 5.5 7.7 480 59.4 9.3 10.4
SEREND 81.5 22.4 28.6 3684 60.8 12.5 18.6 78.5 24.3 31.6 5364 67.3 18.5 25.6
Global SVM 87.7 27.4 36.3 2630 79.1 17.8 23.3 82.7 20.5 26.2 2692 79.1 17.8 23.3
Random forest 85.4 34.3 37.8 13374 74.2 20.3 27.4 74.2 30.5 36.2 12990 74.2 20.3 27.4
Decision tree 86.1 36.4 39.3 15188 76.2 26.4 33.0 75.7 34.3 39.3 15586 76.2 26.4 33.0
Lasso 86.8 37.1 39.5 15030 77.6 23.2 30.5 73.7 30.6 37.1 13382 77.6 23.2 30.5
Elastic net 86.8 37.0 39.4 15046 77.8 23.5 30.9 73.8 30.6 37.1 13160 77.8 23.5 30.9
Local SVM 85.0 38.8 42.4 17520 77.9 28.3 35.5 80.3 36.8 41.6 17194 77.9 28.3 35.5

Consensus 88.1 42.0 43.3 18472 79.5 27.6 34.1 79.3 39.9 43.5 18724 79.5 29.8 36.5

Table 5.9: Evaluation results for features on random networks extended by topology information.

Micro Macro Micro, calibrated Macro, calibrated
Method auc aupr fmf p50 auc aupr fmb auc aupr fmb p50 auc aupr fmb

Random forest 73.0 9.9 16.1 0 49.6 3.1 6.4 48.2 3.6 7.7 0 49.6 3.1 6.4
Decision tree 70.4 5.3 10.3 0 49.9 3.1 6.3 48.7 3.3 6.6 0 49.9 3.1 6.3
Lasso 71.6 8.0 14.5 2 49.1 3.0 6.2 47.9 4.0 9.0 0 49.1 3.0 6.2
Elastic net 71.8 8.1 14.8 0 49.1 3.1 6.2 48.1 4.1 9.3 0 49.1 3.1 6.2
Local SVM 67.8 9.5 16.2 26 50.0 3.1 6.4 49.8 3.1 5.8 0 50.0 3.1 6.4
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5.7 Discussion

Gene regulatory networks are crucial to understand how regulators like transcrip-
tion factors affect their target genes on the expression level. Experimentally de-
rived networks are typically incomplete as the number of available experiments is
limited. To complement them, computational inference of networks has been in-
troduced. We revealed critical aspects of these approaches, but also demonstrated
that data-driven inference is both necessary and feasible in eukaryotes.

Even in well-studied eukaryotes such as yeast, where roughly 900 publications
on experimental TF-binding studies are available, current networks are far from
complete and they benefit from computational predictions. We found that only
about half of all regulations that induce detectable expression changes (“active”
interactions) are currently known. In addition, experimental techniques are prone
to discover regulations without effect on the expression level. We applied computa-
tional inference for both the detection of novel active regulations and the pruning
of inactive regulations.

We reported three crucial findings based on the analysis of a wide spectrum
of data-driven inference methods [51, 174]. First, we demonstrated that methods
incorporating experimentally derived interactions as topology priors possess suf-
ficient predictive power for the inference of eukaryotic networks. Methods using
expression data alone fail here [160, 176]. We also showed that topology priors
lead to Simpson’s paradox [191, 224] distorting the prediction and assessment of
regulatory interactions. Finally, we showed how to avoid the occurrence of the
paradox.

Generally, network inference methods that exploit the local topology assign an
excessive number of predictions to TFs with many known targets [51, 5], and it
has been doubted whether a correction is possible or sensible [174, 88]. Our anal-
ysis revealed that the number of known targets for a regulator is a confounder
of regulator-target predictions. This effect is not detected by common cross-
validation routines: surprisingly, the same performance reported for published
network inference approaches can be achieved by guessing random regulations. We
developed a confidence recalibration approach (CoRe) wrapping existing methods
and showed that it corrected for both the over-estimation of performance and the
distortion of the topology towards TFs with many known targets (High Degree
Preference, HDP).

We conducted a comprehensive assessment of methods integrating topology
priors and we identified methods suitable to derive a corrected, accurate yeast
regulatory network of active regulations. We describe disadvantages of several
methods, which were omitted in downstream experiments due to their poor pre-
diction performance, or the inadequate scale-up for large expression datasets. Our
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evaluation suggested that the selected methods detect several types of interactions
successfully that are difficult to predict. For instance, auto-regulatory interac-
tions and the assignment of directions are handled accurately, and immediate and
indirect interactions could be distinguished. We then integrated the predictions
from the selected methods to construct a network consisting of half novel and half
experimentally-determined regulations. This choice was based on our extrapola-
tion of the size of the complete yeast network.

Our final yeast network contains 153 TFs that regulate 3,747 target genes
via 22,231 interactions. These include many novel and confident hypotheses of
regulatory relationships, while we expect less than 150 false positives in total.
At the same time, we reject more than half of the experimentally-determined
interactions as they appear to be without any observable regulatory effect.

To gain an overview of the network, we derived modules of target genes that
were jointly regulated by sets of TFs. The resulting modular structure was strik-
ingly simple featuring 13 meta-regulations that represent an index for inspecting
the expression effects of interactions. A thorough literature review confirmed that
the modules and their expression patterns correspond well to biological processes
such as respiration, sulfate/energy metabolism, transport, stress response and cell
division.

We conclude that methods integrating local topology can extend known net-
works substantially and at a high reliability, even in well-studied model organisms.
These methods, in contrast to those using expression data alone, are well-suited
for the prediction of interactions in yeast and presumably other eukaryotes. Due
to Simpson’s paradox however, their application was more difficult than previously
acknowledged and required a correction approach. We emphasize that topology,
structural priors and parameterized models are widely applied beyond network
inference and encourage a review of fields that may benefit from confidence recal-
ibration strategies such as CoRe.

In this chapter we discussed the use of target correlations by means of pattern
detection and supervised inference to predict novel regulations from expression
data. Existing topological primers are inherently uncertain, due to a lack of context
specificity and experimental noise. CoRe in combination with local models allows
to adapt a given network to specific data. This is achieved either via filtering
regulations that are not supported by the data at hand or by augmentation of
missing regulations, leading to highly specific and noise-reduced networks.



122 5. Confidence Recalibration



Chapter 6

Conclusion and Outlook



124 6. Conclusion

6.1 Complex Systems

In this work, we developed and applied several methods to detect and to make use
of complex correlation patterns in complex systems. We discuss their formation
from complex bio-molecular systems and procedural setups that lead to potential
biases. Our particular focus was to overcome the degree of false positive discoveries
in these contexts and provide sensible evaluation routines. Finally, we have devel-
oped and discussed competitive approaches for the prediction of protein contacts,
artifact repair, differential expression analysis, and network inference and show
their applicability in practical setups.reliable predictions in a real-world setting.

6.1.1 Co-Evolution and Correlated Mutations

Knowledge of protein contacts is essential to analyze signal transduction pathways.
Within pathways, important interfaces among two proteins are often conserved
and thus, subject to correlated mutations that maintain them. In Chapter 2,
we used an alignment-based similarity definition to compute pairwise correlations
from multiple-sequence alignments covering signal-transduction entities of bacte-
rial strains. Coupled mutations can be exploited if they are conserved across these
strains or if they happen simultaneously. Other mutations are treated as noise.
They are unexplained in this context and counteract directed evolution. We found
that our approach could successfully separate contacting from non-contacting pro-
teins and provide evidence for an important bio-molecuar pathway of bacitracin
resistance [55].

6.1.2 Deviation Patterns

The detection of genes that are differential across two or more conditions is an
important step to identify the key players of diseases. Yet, many candidate genes
are unspecific to the condition that is examined. Their regulation may correlate
with inflammatory responses, cell maintenance or the experimentally induced syn-
chronization of specimen. Therefore, the resulting gene lists may be diluted by
false positive candidates and subsequent analyses like gene set enrichment may be
misleading. We developed Padesco to detect frequent correlations and to select
candidate genes that are specific for an experiment (see Chapter 4). The method
is capable of predicting deviations from expected behaviour for individual candi-
date genes. The expected measurements are used to obtain experiment-specific
deviation scores via a robust score transformation. A key feature of Padesco is
the possibility to encode correlation patterns as predictive models. We applied ro-
bust regression models to deal with the noise inherent to expression data. Overall,
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Padesco provides effective means to reduce false positive candidates when dealing
with differential experiments.

6.1.3 Removal of Noise and Artifacts

Microarrays have become a standard and integral part of any wet lab. They are
cheap and therefore often complement other experimental setups. Yet, recent
studies have shown that a large amount of published microarrays contains errors
like stains or blotches (see Chapter 3, [193]). This may lead to false positive results.
Many artifacts affect distinct array regions. Affected measurement values would
therefore correlate in the affected array region. In Chapter 3, we exploited this
observation and developed an approach to detect artifacts using a sliding-window
approach. We provided an effective imputation procedure to replace corrupted
probes. The replacement is promising for setups where otherwise the experiment
design would become invalid, in particular if few specimen are available and they
cannot be replaced. We could show the practical use of our method in a veterinary
medicine context studying the impact of conjugated trans-fatty acid nutrition in
dairy cattle [47, 140]. Slaughtering experiments of live stock are time-consuming
and difficult to repeat, wherefore our imputation approach enabled an integral
analysis of all available arrays [140].

6.1.4 Network Evaluation

As part on the work on this thesis, we successfully took part in two rounds of
DREAM challenges [160] for the inference of both dynamic small-scale [144] and
static large-scale networks on real-world data [143]. Actually, some of the most
important results in this work are centered around the reconstruction of regula-
tory networks [192]. Chapter 5 summarizes the most essential lessons we learned
from our earlier work and highlights important pitfalls of network inference in the
presence of correlation structures.

In Chapter 5 we discussed how sub-group effects influence and confound net-
work inference. We showed that combining individual sub-network predictions is
non-trivial and may lead to false positives if the specific properties of predicted
regions are neglected. We further discuss that the evaluation of combined net-
works results in over-estimates of network quality (see Section 1.3.4). We used
numerous independent evaluation schemes and appropriate visualizations to high-
light these problems. We therefore devised CoRe, a conceptually simple method
to reduce false positive predictions for the sensible combination of predicted sub-
networks. To aid the biological interpretation of networks in inference contexts, we
introduced a measure of functional coherence based on pre-defined ontologies (see
Section 5.5.8) and a novel way of modular network visualization (see Section 5.6.6).
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It is clear that there exists neither a single model that is correct nor a per-
fect network that is suitable for all contexts. Yet, we could improve the quality
of previous predictions via the removal of hidden correlations and by employing
evaluation metrics sensitive to False Negatives. CoRe can be used to sensibly inte-
grate sub-network predictions that provide a confidence score for each regulation.
This holds true for most current predictive models. As CoRe wraps these mod-
els the prediction algorithm remains interchangeable. Regardless of the applied
model, we could show a strong positive effect on both the True Positive Rate and
the False Negative Rate. We further improved the result network by computing
a consensus network. Here, regulators with few targets known beforehand could
achieve remarkably more and accurate target predictions.

6.2 Outlook

In the future, it seems promising to use CoRe as a network filter as well. Through
targeted training experiment sets – similar to those used for Padesco (see Chap-
ter 4) – regulations that are unexpected for a trained network context could be
removed. This may lead to context-specific networks that are semi-automatically
derived by the selection of certain ontologies and their associated experiments.

In this work, we have developed promising ways to reduce False Positive results
for expression data analysis and network inference. We showed that correlation
patterns provide powerful contexts and that they may help to reduce mislead-
ing outcomes. With the advance of ever more automated analysis pipelines, the
thorough evaluation of intermediate and final results is more essential than ever
to prevent error propagation from becoming virtually intractable. The reduction
of error, noise and bias will still demand for tailored solutions and the sensible
contextualization of experimental data.
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total RNA newly transcribed RNA pre-existing RNA

DG75-eGFP replicate 1

DG75-eGFP replicate 2

DG75-eGFP replicate 3

Figure 7.1: GFP-labeled replicates.Three fractions are measures, wheras the
sum of pre-existing and newly transcribed RNA should sum to the total amount
of RNA.
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total RNA newly transcribed RNA pre-existing RNA

DG75-10/12 replicate 1

DG75-10/12 replicate 2

DG75-10/12 replicate 3

Figure 7.2: 10/12 replicates. Three fractions are measures, wheras the sum of
pre-existing and newly transcribed RNA should sum to the total amount of RNA.
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raw intensity complementarity score affyPLM residuals replicate fold change

DG-75 10/12 replicate 1

DG-75 10/12 replicate 2

DG-75 10/12 replicate 3

Figure 7.3: Probe noise scores for the three replicates of total RNA in DG75-
10/12 cells measured with exon arrays. From left to right the columns are (1)
raw intensities, (2) the noise score based on the fold-changes of total RNA to the
sum of newly transcribed and pre-existing RNA (complementary score), (3) the
affyPLM residuals and (4) noise scores based on the fold-change between replicates.
Replicate 2 was used as control for case (4), therefore no probe noise plot could
be created based on its replicate noise scores.
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A B

C D

E F

Figure 7.4: Replicate scatter plots comparing total RNA against normalized sum
of newly-transcribed and pre-existing RNA for replicates 1 (A, D), 2 (B, E) and
3 (C,F) for the DG75-10/12 exon array measurements. Subfigures A-C show the
results using both RMA and quantile normalization, D-F using only RMA without
quantile normalization. Here, the y-axis shows the control for the total RNA
measurements. Deviations are observed for the two replicates 1 and 3 containing
artifacts.
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replicate 1 replicate 3

A B

C D

Figure 7.5: Replicate scatter plots for the DG75-10/12 cells summarized to meta-
probesets before (A,B) and after probe correction (C,D) with the ǫ-criterion using
probe noise scores calculated based on the complementarity of RNA fractions.
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A B C

Figure 7.6: Replicate scatter plots for the DG75-10/12 total RNA measurements
after probe correction using the ǫ-criterion with probe noise scores based on repli-
cate fold-changes (A: replicate 1, B: replicate 2 and C: replicate 3). To avoid
overfitting effects, the total RNA is scattered against the normalized sum of newly-
synthesized and pre-existing RNA.
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A B C

D E F

Figure 7.7: Replicate scatter plots for the DG75-eGFP cells before (A-C) and
after (D-F) probe correction with the ǫ-criterion with noise scores based on the
complementarity of RNA fractions. Here, replicates 1 and 3 were free of artifacts
and replicate 2 showed a small stain which results in deviations for this replicate.
Here, replicate scatter plots for each pair of replicates are shown. Accordingly,
deviations are observed in all replicate scatter plots for which replicate 2 has been
used (A,C) but not in the comparison of the artifact-free replicates 1 and 3 (B).
After probe correction no such deviation is observed even for replicate 2.
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ǫ-criterion window-criterion

Replicate fold
change

A B

Complementarity
score

C D

afffyPLM
residuals

E F

Figure 7.8: Probe noise plots for the spiked Gene ST arrays using the the probe
scores based on the comparison of replicates (A-B), the comparison of total RNA
against the normalized sum of newly transcribed and pre-existing RNA (Comple-
mentarity score) (C-D) and the affyPLM residuals (E-F).
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