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Zusammenfassung

Die Analyse des komplexen Zusammenhangs zwischen längsschnittlich erfassten Biomarkern und der

Zeit bis zum Eintreten eines (Krankheits-)Ereignisses ist für viele biomedizinische Anwendungen

von Interesse. Joint Models zur Modellierung von Längsschnitt- und Überlebenszeitdaten finden in

diesem Bereich zunehmend Verbreitung und können potentiell neue Erkenntnisse in der Erforschung

des Typ 1 Diabetes (T1D) liefern, dem Ausgangspunkt der vorliegenden Methodenentwicklung.

T1D, eine der häufigsten chronischen Erkrankungen im Kindesalter, geht mit einer lebenslangen

Abhängigkeit von künstlichem Insulin einher. Schon vor dem Einsetzen klinischer Symptome ist eine

Diagnose der Krankheit durch T1D-spezifische Autoantikörper möglich. Die hohe Variabilität in der

Dauer dieser präklinischen Phase kann potentiell durch Autoantikörper als längsschnittliche Biomar-

ker erklärt werden.

Die Analyse längsschnittlicher Biomarker ist statistisch herausfordernd, da die Biomarker nur an

diskreten Messzeitpunkten bis zum Eintreten des Ereignisses mit einem gewissen Messfehler be-

obachtet werden. Um diese fehlerbehafteten, informativ zensierten Daten ohne Verzerrung mit der

Überlebenszeit in Verbindung zu setzen, schätzen Joint Models ein längsschnittliches Modell und ein

Überlebenszeitmodell in einer gemeinsamen Likelihoodfunktion. In bestehenden Joint Models fehlt

allerdings die für den Anwendungsfall T1D nötige Flexiblität in der Modellierung von personenspezi-

fischen nichtlinearen Biomarkertrajektorien sowie in der zeitabhängigen Modellierung der Assoziation

zwischen Marker und Überlebenszeit.

Um komplexe Zusammenhänge zwischen longitudinalen Biomarkern und dem Eintreten eines

Ereignisses abbilden zu können, wird ein flexibles Bayesianisches Joint Model entwickelt. Das Joint

Model ist hierbei als struktiertes additives Regressionsmodell formuliert, wodurch eine Vielzahl von

verschiedenen Effekten wie glatte nichtlineare, zeitvariierende oder zufällige Effekte integriert werden

können. Durch einen Bayesianischen Ansatz wird eine stabile Schätzung dieses komplexen Modells,

insbesondere hochdimensionaler zufälliger Effekte, erreicht. Diese Flexibilität geht über bisherige

Entwicklungen hinaus und ermöglicht einen detaillierten Einblick in den Zusammenhang zwischen

personenspezifischen nichtlinearen Antikörperverläufen und dem Einsetzen klinischer Symptome am

Beispiel zweier T1D-Risikokohorten. Darüber hinaus wird dieses Rahmenmodell weiter generalisiert

um auch nichtlineare Zusammenhänge zwischen Biomarkern und der Überlebenszeit abbilden zu

können. Diese Erweiterung erlaubt die Überprüfung einer üblicherweise nicht getesteten Linea-

ritätsannahme zwischen Biomarker und logarithmiertem Hazard, wie in der Analyse eines weiteren

biomedizinischen Datensatzes über eine seltene Lebererkrankung veranschaulicht. Um Anwendern

die Nutzung dieses flexiblen Modells zu ermöglichen wird die Implementation im R Paket bamlss in

der vorliegenden Arbeit vorgestellt.



Das neu entwickelte Bayesianische additive Joint Model erlaubt eine flexible Modellierung

längsschnittlicher Biomarker und deren potentiell komplexen Zusammenhang mit der Überlebenszeit,

weit über bisherige Joint Model Ansätze hinaus. Damit können neue Einblicke in den zeitabhängigen

Zusammenhang zwischen T1D-spezifischen Biomarkern und dem Einsetzen klinischer Symptome ge-

wonnen werden.



Summary

The potentially complex association between a longitudinal biomarker and a time-to-event process,

often called survival process, is of large interest in various biomedical domains. Joint models of

longitudinal and survival data are a tool of growing popularity for this analysis and can potentially

enable new insights into the disease progression of type 1 diabetes (T1D), the motivating application

of the presented work.

T1D, one of the most common chronic diseases in childhood, is marked by the lifelong need of

insulin substitution. A preclinical period of the disease can be diagnosed by the emergence of the

T1D-specific autoantibodies which can potentially also serve as longitudinal biomarkers to explain

the high variability in the time to clinical T1D.

The analysis of longitudinal biomarkers and survival processes is complicated by observing the longi-

tudinal marker at discrete time points, subject to measurement error, and informatively censored at

the occurrence of an event. Joint models allow an unbiased analysis of this data by estimating a longi-

tudinal and a survival submodel within a joint likelihood function. Previously developed joint models,

however, lack the flexibility to capture the highly nonlinear individual T1D-biomarker trajectories and

a potentially time-varying association between the marker and the onset of clinical symptoms of T1D.

In order to provide additional insights into the complex relationship between longitudinal

biomarkers and survival processes a flexible Bayesian joint model framework is developed. By

formulating the model using structured additive predictors, a variety of effects can be incorporated,

such as smooth nonlinear, time-varying and random effects, thereby allowing flexibility beyond

established joint model implementations. The adoption of a Bayesian framework enables a stable

estimation of this complex model, especially regarding potentially high-dimensional random effect

structures. The resulting flexibility is used to explore the association between highly heterogeneous

autoantibody profiles and the progression to T1D in two different diabetes risk cohorts. This

framework is further generalized by incorporating nonlinear association structures between the

longitudinal and the survival process. The extension allows to assess the usually unchecked

assumption of linearity between the marker and the log-hazard of a survival process as illustrated in

the analysis of biomedical data on a rare fatal liver disease. To facilitate its application the flexible

Bayesian joint model is implemented in the R package bamlss and an introduction to its usage is given.

The newly developed additive joint model offers flexibility in modeling longitudinal biomarkers

and complex associations structures beyond established joint model approaches, thereby allowing

new insights into the time-varying association between T1D-specific autoantibodies and the onset of

clinical symptoms.
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Chapter 1

Introduction

1.1 Modeling longitudinal biomarkers and time-to-event processes

The potentially complex association between a longitudinal biomarker and a time-to-event process,

often also called survival process, is of large interest in various biomedical domains, not only with

regard to better understanding disease processes but also in the growing field of personalized medicine

(Rizopoulos et al., 2014). The usual data structure in this context, which is, the observed longitudinal

marker measurements at discrete time points, potentially subject to measurement error, and infor-

matively censored at the occurrence of an event, poses challenges to the analysis of this association.

Joint models of longitudinal and survival data, which allow for unbiased estimations of the longitu-

dinal and time-to-event processes in this data structure, gained larger popularity in the last decade

and continue to be an active area of research (Gould et al., 2015). By estimating the longitudinal

model and the survival model within a joint likelihood function, this model class can account for the

informative censoring in the longitudinal model and incorporate the longitudinal information as a

continuous-time covariate without measurement error in the survival model. This approach also has

the potential to offer new insights into the disease progression of type 1 diabetes (T1D).

1.2 Applied research question and data sources

T1D is one of the most common chronic diseases in childhood, with worldwide increasing incidence

(Patterson et al., 2009). Disease progression starts before the onset of clinical symptoms, i.e. the

lifelong need of insulin substitution, when insulin-producing β-cells in the pancreas are gradually

destroyed by the body’s own immune system. This preclinical period can be diagnosed by the emer-

gence of the T1D-specific autoantibodies to insulin (IAA), glutamic acid decarboxylase (GADA), and

insulinoma-associated protein 2 (IA2A). The time from the first emergence of autoantibodies, called

seroconversion, to the onset of clinical symptoms varies considerably between individuals, ranging

from weeks to decades (Ziegler et al., 2013). It is known that the combination of different autoan-

tibodies as well as the autoantibody levels, especially of IAA, are associated with progression time

(Achenbach et al., 2004; Parikka et al., 2012; Steck et al., 2011, 2015). However, it remains an open
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question how the longitudinal patterns of the autoantibodies are associated with the progression to

T1D.

In order to gain insights into this research question two different data sets from T1D risk cohorts

were analyzed. The first data set as presented in Chapter 3 is the combined data set of two ongoing

German T1D risk cohorts, the BABYDIAB and the BABYDIET study. The goal of these prospective

birth cohorts is to investigate the natural history of T1D development. For this, 2441 children with

familial increased risk of T1D were followed from birth to the development of T1D or loss to follow-up

for up to 21 years (Ziegler et al., 1993, 1999; Hummel et al., 2004, 2011). Autoantibody measurements

were taken from the children at age 9 months and 2, 5, 8, 11, 14 and 17 years and additionally every 6

months after islet autoantibodies had emerged. In Chapter 3 the data of 127 children who developed

IAA during follow-up is analyzed of which 69 (54%) progressed to T1D.

The second data set is from the multinational study named The Environmental Determinants of

Diabetes in the Young (TEDDY) study (The TEDDY Study Group, 2007; Krischer et al., 2015), an

ongoing prospective cohort study funded by the National Institutes of Health with the primary goal

to identify environmental causes of T1D. In six clinical research centers located in the USA, Finland,

Germany, and Sweden the TEDDY study enrolled 8,676 children with increased genetic risk for T1D

between 2004 and 2010 and autoantibody measurements were taken every 3 months. In Chapter 4

we present analyses of all 613 children who had developed one or more islet autoantibodies in the

course of follow-up of which 175 (29%) progressed to T1D.

In order to exemplify the different approaches to longitudinal and survival analysis, data from a mouse

model are presented and further analyzed in Chapter 2. Here 71 mice who are highly susceptible to

diabetes (NOD mice) and 40 mice without an increased susceptibility (NOR mice) were followed from

4 weeks until 36 weeks of age or the onset of diabetes. Blood measurements were drawn biweekly

to assess autoantibodies and different cell populations in order to gain insights into the immunologic

characteristics of these mice at risk.

To further illustrate the development of our method and its implementation in the R package bamlss

(Umlauf et al., 2017) a further biomedical data set is analyzed in Chapter 5, which is widely studied

in the context of joint models, a data set on patients of the rare fatal liver disease primary biliary

cirrhosis (PBC). In a study conducted between 1974 and 1984 by the Mayo clinic (Murtaugh et al.,

1994), patients were followed to study the influence of the drug D-penicillamine on the survival of the

patients. Visits were scheduled at six months, 12 months and annually thereafter. We analyze data

of 312 patients of which 140 (45 %) died during follow-up.

1.3 Scope of this work

The focus of this dissertation lies on the development of a flexible Bayesian joint model framework in

order to allow for additional insights into the complex relationships between longitudinal biomarkers

and event processes. By formulating the joint model using structured additive predictors this

framework allows to incorporate a variety of effects, such as smooth nonlinear, time-varying and

random effects. The Bayesian framework thereby enables a stable estimation of these complex
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structures, especially regarding potentially high-dimensional random effects. This flexibility is used

to explore the association between highly heterogeneous autoantibody profiles and the progression

to T1D. The presented framework is further enlarged by the incorporation of nonlinear association

structures between longitudinal and event processes, thereby allowing the exploration of highly

complex relationships beyond the initially motivating research question.

The outline of this dissertation is as follows. Chapter 2 gives a brief overview of modeling ap-

proaches for longitudinal data and time-to-event data, both separately and within joint models with

illustrations using the data on the T1D mouse model. Special attention is paid to extensions beyond

linear, parametric models and on the Bayesian estimation of these approaches in order to lay the

groundwork for the methods development presented in Chapter 3. In this chapter, the developed

model is tested in simulations and used to tackle the motivating research question by analyzing data

of the BABYDIAB/BABYDIET study. The study of disease progression to clinical T1D by means of

our flexible Bayesian joint model is further extended in Chapter 4 when data of the TEDDY study are

analyzed in detail. While the presented framework allows for high flexibility in all parts of the joint

model, the special emphasis in these two chapters lies on the flexible modeling of nonlinear, individual

trajectories of T1D-specific biomarkers and a time-varying association between the biomarker and the

onset of the disease. The presented framework is further generalized in Chapter 5 to also allow for

nonlinear associations between the longitudinal biomarkers and the log-hazard of an event. This ex-

tension is tested in a simulation study and illustrated in modeling the PBC data. In order to facilitate

the application of the presented flexible framework the model is implemented within the R package

bamlss. Chapter 6 presents the central concepts and functionalities of this software implementation.

After a summary, this dissertation closes with a discussion of the achievements within this work and

an outlook to future research directions in Chapter 7. Technical details of the presented framework

can be found in Appendix A and further modeling results from the applied analyses in Appendix B.

1.4 Contributing manuscripts

This dissertation is based on the manuscripts:

Tanja Telieps*, Meike Köhler*, Irina Treise, Katharina Foertsch, Thure Adler, Dirk H.

Busch, Martin Hrabě de Angelis, Admar Verschoor, Kerstin Adler, Ezio Bonifacio, and

Anette-Gabriele Ziegler (2016). Longitudinal frequencies of blood leukocyte subpopula-
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Chapter 2

From heuristic approaches to joint

models

The analysis of longitudinal biomarkers in combination with time-to-event data connects two branches

of statistics that are usually treated separately: longitudinal data analysis and survival analysis. Over

the last two decades a variety of models have been proposed to analyze these outcomes and their asso-

ciations, ranging from naive, heuristic models via sophisticated correction methods to the growing field

of joint models. These approaches differ with regard to the focus of the analysis which can be placed

on the longitudinal outcome, the survival outcome, their association or more complex combinations

(Rizopoulos & Lesaffre, 2014). Joint models allow the unbiased estimation of all these components

within one model. In the following a simple approach for the analysis of longitudinal biomarkers in the

context of a T1D mouse model will be presented. This example will be further extended to illustrate

central challenges and approaches in the separate and joint analysis of longitudinal biomarkers and

time-to-event processes.

2.1 Example: Finding biomarkers in a type 1 diabetes mouse model

The research of complex human diseases often utilizes model organisms in which, by means of

breeding or gene alteration, human diseases are mimicked and can therefore be studied in more detail.

The NOD mouse is an important model of spontaneous autoimmune diabetes that has been used to

understand T1D pathogenesis and develop therapeutics to prevent β-cell destruction (Anderson and

Bluestone, 2005). Similar to humans who have genetic susceptibility to type 1 diabetes and islet

autoimmunity, not all NOD mice progress to overt diabetes, and progression to diabetes occurs at a

variable time point after the start of autoimmunity (Atkinson and Leiter, 1999; Pozzilli et al., 1993).

NOD mice have alterations in certain immune-related cell populations as compared to other mouse

The example is based on Telieps et al. (2016). The original version of the manuscript is published in the Journal of
Diabetes Research, Volume 2016. Copyright c©2016 Telieps et al. Reproduced with permission of the copyright holders.
For more information on the contributions of the authors and on textual matches, see Section 1.4.
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strains (Mariño et al., 2008; Marrero et al., 2012). It is therefore possible that the extent of change

may associate with the likelihood and rate of diabetes development in individual mice and that this

may reveal markers that may help stratify the rate of progression to diabetes in man. In order to

potentially find further biomarkers for T1D progression, certain cell populations in the blood from

NOD and NOR mice, a control group without T1D susceptibility, were quantified in biweekly intervals

from 4 weeks to 36 weeks of age or until diabetes onset. We compared trajectories of different immune

cell subpopulations as well as the autoantibody IAA between NOD and NOR mice and within NOD

mice that progressed and did not progress to diabetes within 36 weeks. In total 71 NOD mice and

40 NOR mice were studied of which 41 NOD mice (59%) developed diabetes within the follow-up of

36 weeks. In the experimental group, that is analyzed in the following, of 58 NOD mice and 22 NOR

mice blood was drawn biweekly to assess IAA, cell subpopulations as well as further physiological

measures.

Although all cell populations were of interest in the study, we focus in the following on the

analysis of the longitudinal trajectories of IAA. These were modeled using first-, second-, and third-

order polynomial growth models for each measure (Singer and Willett, 2003) with random intercepts

for each mouse to account for the longitudinal correlation structure. Model selection was based on

the Akaike information criterion (Akaike, 1974). Trajectories were compared between (a) NOD and

NOR mice as well as (b) NOD mice that developed overt diabetes and NOD mice that did not develop

diabetes. For the comparisons only data until the age of 30 weeks was used in order to ensure sufficient

data in all groups. For the group comparisons of the 14 cell subpopulations we accounted for multiple

testing resulting in the Bonferroni corrected significance level of 0.004. Longitudinal trajectories were

visualized by time pointwise means and confidence intervals (CI) and smoothed locally via LOESS

(Cleveland et al., 1992).
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Figure 2.1: Trajectories of IAA in (a) NOD mice versus NOR mice and (b) NOD mice that developed diabetes
(diab) versus NOD mice that were diabetes-free at age of 36 weeks (nondiab).1
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In these analyses trajectories of IAA were higher in NOD mice than in NOR mice with a mean

difference between the groups of 0.92 [95% confidence interval: 0.39, 1.44] and higher in NOD mice

that developed diabetes as compared to NOD mice that did not develop diabetes with mean difference

of 1.05 [95% confidence interval: 0.43, 1.67] (Figure 2.1). By means of this straightforward modeling

approach differences between the experimental mice and the control subjects as well as between

progressors and non-progressors were observed. Potential issues with and refinements of this analysis

are further explored in the subsequent sections.

2.2 A Bayesian primer

The flexible joint model that is developed and presented in this dissertation is estimated in a Bayesian

framework. In the following, basic concepts of the Bayesian view on statistical data analysis are

presented. These concepts are the groundwork to understand not only the Bayesian view on modeling

approaches in the remainder of this chapter but also for the setup and estimation of the flexible

additive joint model, which is the core of this work. The following section is meant as a brief overview

of relevant concepts, based on Gelman et al. (2013). We refer to this and further literature for more

detailed insights into Bayesian statistics (Robert, 2007; Carlin and Louis, 2008).

As Gelman et al. (2013, p. 3) states, the ”essential characteristic of Bayesian methods is their

explicit use of probability for quantifying uncertainty in inferences based on statistical data analysis”,

thereby pointing out key features of Bayesian statistics. In statistical data analysis observed data

y = [y1, · · · , yn]> ∈ Rn is seen as a random sample from an underlying probability distribution p(y|θ)

depending on some unknown parameter (vector) θ ∈ Θ. The main goal lies in deriving inferential

conclusions for θ, i.e. in providing parameter estimates θ̂ and information on the uncertainty of

the parameter estimation. In contrast to a frequentist view, where the parameters of interest are

assumed to have a fixed true value in the population, in the Bayesian view all parameters of interest

are random variables with a certain prior distribution p(θ). The aim of the Bayesian analysis is to

obtain information of the probability distribution of these parameters based on the observed data,

p(θ|y), which can be derived by making use of the Bayes theorem.

In line with Gelman et al. (2013) we denote in the following conditional probability densities with

p(·|·), marginal distributions with p(·) and use the terms distribution and density interchangeably.

2.2.1 Bayes theorem

The first step for obtaining probability statements about p(θ|y) is to develop the joint probability

distribution

p(θ,y) = p(y|θ)p(θ)

1Figure modfied from Telieps et al. (2016).
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from the prior distribution p(θ), representing knowledge on θ, and the sampling distribution p(y|θ),

which is the distributional assumption on the data or the statistical model, also called the likelihood.

Bayes theorem allows then to derive the quantity of interest, the posterior distribution

p(θ|y) =
p(θ,y)

p(y)

with the marginal distribution p(y) =
∫
Θ p(θ)p(y|θ)dθ for continuous y. The posterior density is at

the center of Bayesian inference and represents the probability distribution of the parameter of interest

after observing the data. Whereas p(y) is the normalizing constant that turns p(θ|y) into a proper

distribution, it is a constant with respect to θ and for computational ease usually the unnormalized

posterior density

p(θ|y) ∝ p(y|θ)p(θ)

is used. Statistics of interest can be derived from the posterior density such as the posterior mean

θ̂ =
∫
Θ θp(θ|y)dθ or the posterior mode θ̂ = arg maxθ∈Θ p(θ|y). Furthermore, regions of confidence

can be derived such as the (1− α)-credibility interval [θl,θu] for which it holds that
∫ θu
θl
p(θ|y)dθ =

1 − α. Credibility intervals are not unique and different intervals of interest can be computed. We

use the 2.5th and 97.5th percentiles of the empirical posterior distribution (see following subsection)

in the upcoming chapters.

2.2.2 Bayesian estimation approaches

For simple models closed-form solutions for the posterior distribution can be found, often using

conjugate priors. These are priors that, multiplied with the sampling distribution, result in closed-

form posterior distributions of the same distribution family as the prior distribution. However, this is

usually not possible for statistical models with more complicated distributional assumptions such as

the flexible additive joint model, that is presented in the subsequent chapters. For models to which no

closed-form solution for the posterior exists, the target posterior distribution p(θ|y) is approximated

by an empirical distribution of samples from the posterior. In some cases direct sampling from p(θ|y)

is possible, however, more often elaborate sampling techniques, so called Markov Chain Monte Carlo

Methods (MCMC) are used. The main idea behind MCMC methods is to create a Markov process

with stationary distribution p(θ|y).

Two widely used MCMC samplers are the Gibbs sampler (or short Gibbs) and the Metropolis-

Hastings algorithm. Gibbs sampling is a popular approach for applications in which the full parameter

vector θ can be divided into subvectors θ = [θ1, · · · ,θs, · · · ,θS ] and the conditional distributions

p(θs|θ−s,y) are known or samples can be drawn from them. Here θ−s denotes all components of

θ except of θs. In every iteration l = 1, . . . , L this sampler cycles through all S subvectors and

draws subsets θ
[l]
s conditional on the most recent sample of θ̃−s. The Gibbs sampler is a special case

of the Metropolis-Hastings algorithm (see Gelman et al., 2013, p.281). In the Metropolis-Hastings

algorithm, a random walk is generated to draw a new sample θ∗ based on the previous sample such

that θ∗ = θ[l−1] + ε where ε is drawn from a specific distribution. In more detail, in every iteration l a
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sample is drawn from the proposal distribution q(θ∗|θ[l−1]) and accepted as a sample of the posterior

θ[l] = θ∗ with probability

min

(
1,

p(θ∗|y)/q(θ∗|θ[l−1])

p(θ[l−1]|y)/q(θ[l−1]|θ∗)

)
.

Otherwise the previous sample is kept as θ[l] = θ[l−1]. In order for the algorithm to work, the Markov

chain must have a stationary distribution and this stationary distribution has to equal the target

distribution.

Different diagnostic measures allow to judge the convergence to a stationary distribution, e.g.

the graphical inspection of traceplots or starting multiple chains from different starting values and

assessing the posterior distributions from the different chains. In order to reduce the influence of the

starting values, a certain amount of samples, called burnin, is discarded in the beginning. For most

statistics of interest that are derived from the empirical posterior distribution, a moderate amount of

independent samples usually suffices. However, often samples exhibit a certain amount of autocorre-

lation which increases the needed amount of samples for the same precision in the statistics. Thinning

the chain by keeping only every kth sample (k ∈ N, k > 1) can alleviate the issue of autocorrelation.

For the Metropolis-Hastings algorithm it holds that the closer the proposal distribution approximates

the posterior distribution, the higher the acceptance rate, i.e., the more new samples are kept and

consequently a shorter chain suffices to estimate quantities of interest. For this reason, the flexible

additive joint model uses a derivative-based approximation of the posterior based on a second-order

Taylor approximation as proposal distribution, which results in faster convergence and good mixing

(see Chapter 3).

A further sampling method that is also used for certain model parameters in the flexible additive

joint model is slice sampling (Neal, 2003). In slice sampling the empirical posterior distribution is

obtained by sampling from the area under the target distribution. In more detail, a starting value h

is drawn from U(0, p(θ
[l−1]
j |·). From this starting value a horizontal ”slice” S = {θj : h < p(θj |·)} of

the target distribution is obtained and a sample θ
[l]
j ∼ U(S) is drawn (see also the implementation in

bamlss in Umlauf et al., 2017).

In practice, different sampling approaches are often combined in order to estimate posterior dis-

tributions of complex models. For the combination of Gibbs and Metropolis-Hastings, for example,

subvectors with given closed-form conditional posterior distributions are sampled using Gibbs and

other subvectors of θ are sampled using the Metropolis-Hastings algorithm. Examples of the Bayesian

estimation of longitudinal, survival and joint models can be found in the following subsections.

2.3 Longitudinal models

In order to gain insights into the natural history of diseases and to derive causal conclusions on treat-

ments, cohort studies with potential case-control grouping are a central instrument. Usually subjects

are followed over time and measurements are taken at fixed or subject-specific time points. This lon-

gitudinal design induces a temporal correlation structure in the data, as multiple measurements are
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observed for every subject, which has to be accounted for in further investigations. In the following

a standard approach for longitudinal data analysis, linear mixed effects models, and its extension

to structured additive regression models is briefly presented. This general framework represents the

basis for the flexible additive joint model developed in later chapters. Additionally, different missing

data mechanisms are briefly explored with the focus on the special data structure in our context,

which is longitudinal markers that are observed until the occurrence of an event. This missing data

mechanism motivates the use of joint models and generic modeling approaches for this scenario are

presented.

2.3.1 Linear mixed effects models

Linear mixed effects models are a standard approach for modeling correlated data with a grouping

structure and thus also suitable when ni longitudinal measurements yi = [yi1, · · · , yij , · · · , yini ]> are

observed on the same subject i = 1, . . . , n at potentially subject-specific time points tij = ti1, . . . , tini .

The linear mixed effects model (Verbeke and Molenberghs, 2000) is

yi = Xiβ + Zibi + εi (2.1)

where Xi and Zi are the design matrices of observed covariates, β is a vector of length p of population-

specific fixed parameters, bi is a vector of length q of subject-specific random effects and εi is a vector

of residuals. The random effects and the errors are assumed to be independent and bi ∼ N(0, D̃) and

εi ∼ N(0,Ri) with D̃ being the covariance matrix of random effects and Ri = σ2Ini as the covariance

matrix of the residuals. The conditional representation of this model in eq. (2.1) may be also written

as

yi|bi ∼ N(Xiβ + Zibi,Ri)

and allows for a subject-specific interpretation in which the expected value is the sum of the population

average and subject-specific deviations from it. The marginal representation of the model can be

derived from the above as

yi ∼ N(Xiβ,Ri + ZiDZ>i ). (2.2)

The representation in eq. (2.2) illustrates how the random effects induce an additional correlation

structure in the data. Furthermore, the marginal model is the basis for the estimation of the linear

mixed effects model. For a quick overview of this estimation we consider the full design matrices X =

[X>1 , · · · ,X>n ]> and Z = blockdiag(Z1, . . . ,Zn), the random effects b = [b>1 , · · · , b>n ]> as well as the

covariance matrix for the random effects D = blockdiag(D̃, . . . , D̃) and the covariance matrix for the

residuals R = blockdiag(R1, . . . ,Rn) where D =: D(ϑ) and R =: R(ϑ) depend on the unknown co-

variance parameters ϑ. The covariance of the response is then V := Cov(y) = R+ZDZ>. For given ϑ,

estimates of the fixed effects can be obtained via least squares as β̂ = (X>V(ϑ)−1X)−1X>V(ϑ)−1y.

It can be shown that β̂ is the best linear unbiased estimator of β. The best linear unbiased predictor

(BLUP) for the random effects b can be obtained from b̂ = D(ϑ)Z>V(ϑ)−1(y −Xβ̂). Estimates for
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ϑ are also based on the log-likelihood of the marginal model which is, omitting additive constants,

(Fahrmeir et al., 2013)

`(β,ϑ) = −1

2

[
log(det(ϑ) + (y −Xβ)>V(ϑ)−1(y −Xβ)

]
. (2.3)

Maximizing this likelihood with respect to β and inserting this estimate β̂(ϑ) into eq. (2.3) results in

the profile likelihood `P (ϑ). When maximizing this profile likelihood for ϑ the maximum likelihood

(ML) estimator ϑ̂ML is obtained. As this estimate is biased downwards, often the estimation is based

on the restricted likelihood `R(ϑ) = log
(∫
L(β,ϑ)dβ

)
by integrating out β (Fahrmeir et al., 2013).

By maximizing `R(ϑ) for ϑ the restricted ML estimator ϑ̂REML is obtained. As these likelihoods have

no closed-form solutions the estimators are computed numerically for example using the computa-

tionally more demanding Newton-Raphson algorithm or Expectation-Maximization (EM) algorithms

(Pinheiro and Bates, 2000). A combination of both was also used in the analysis of the longitudinal

antibody trajectories in mice, as presented in the previous section.

From a Bayesian view not only the random effects bi but also the population effects β are consid-

ered random variables with a prior distribution p(β). For the population effects noninformative priors

p(β) ∝ const or weakly informative priors p(β) ∝ N(m,M) can be used where the expectation m

and the covariance M are assumed to be known. The normal random effects distribution is now seen

as the respective prior of b. In an empirical Bayes approach the covariance parameters ϑ are consid-

ered unknown but fixed whereas in a fully Bayesian approach they are considered random variables

with a suitable prior p(ϑ), also called hyperprior. In the latter usually MCMC based approaches are

used for obtaining the posterior such as block-wise Gibbs sampling (see, e.g., Fahrmeir et al., 2013).

2.3.2 Nonparametric regression

While the presented mixed effects model allows to accurately analyze correlated longitudinal data,

linear relationships are assumed between covariates and the response analogous to a simple linear

regression where

E(y) = xβ (2.4)

with the observed response y = [y1, · · · , yn]>, the observed covariate x = [x1, · · · , xn]> and the

unknown regression coefficient β. Note that in eq. (2.4) and in the following presentations the condi-

tional expectation E(y|x) is implied.

To relax the linearity assumption covariates can be transformed, as for example the polynomial trans-

formation in the described mouse example. However such a polynomial modeling lacks flexibility and

can lead to stability issues. Instead, the necessary flexibility, as in the given cohort data, can be

achieved by nonparametric regression which allows estimating

E(y) = f(x) (2.5)
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where few restrictions are placed on the functional form of f(·), but often it is of interest to achieve

a smooth function. Many approaches have been developed to estimate such smooth unspecified

functions, such as LOESS smoothing (Cleveland et al., 1992), kernel smoothers (Wand and Jones,

1994), fractional polynomials (Royston and Altman, 1994) and several spline approaches (Fahrmeir

et al., 2013; Wood, 2006).

We focus on penalized B-spline representations, P-splines (Eilers and Marx, 1996), in the following

due to their excellent properties, which are also used in the flexible additive joint model. B-splines

(d. Boor, 1978) are piecewise polynomials functions of degree l which are fused smoothly at knots

κ1 < · · · < κm, the borders of the intervals, over which the piece-wise functions are defined. B-splines

can be represented as linear combination (Fahrmeir et al., 2013)

f(xi) =

D∑
d=1

γdBd(xi)

where γd represents the coefficient for the respective polynomial spline basis function Bd(xi) at the

respective covariate value xi. The B-spline basis of degree l is given by D = m+ l− 1 basis functions

which are defined recursively as

Bl
d(z) =

z − κd−l
κd − κd−l

Bl−1
d−1(z) +

κd+l − z
κd+1 − κd+1−l

Bl−1
d (z).

B-splines have certain advantages (Fahrmeir et al., 2013) such as their local definition, i.e. the basis

functions are positive only on the interval over l+ 2 knots thereby avoiding numerical problems, they

have a straightforward derivative that makes use of the same basis coefficients γd (see eq. (A.1) in

the Appendix) and for every z it holds
∑D

d=1Bd(z) = 1. Despite the possibility to model smooth

nonlinear functions f(·), B-splines can be represented within the linear model making use of the

design matrix

B =

 B1(x1) · · · BD(x1)
...

...

B1(xn) · · · BD(xn)


and the least squares criterion can be used to estimate the coefficients γ = [γ1, · · · , γD]>. One

disadvantage of B-splines is their dependency on the number of knots m determining the amount of

flexibility in the estimation.

Depending on the number of knots, the function f(·) can become to wiggly, resulting in overfitting

or too flat. To overcome this problem regularization techniques are used, such as for example shrinking

the coefficients γ towards 0. In the framework of P-Splines (Eilers and Marx, 1996) an r-th order

difference penalty is used, which penalizes differences in adjacent spline coefficients. The smoothing

parameter λ controls the trade-off between flexibility and smoothness while typically many knots are

used. For the equidistant knots a 2nd order penalty also corresponds to a roughness penalty on the

second derivative of the spline
∫

(f(z))2dz, which penalizes a strong curvature of a function, thereby



2.3 Longitudinal models 13

inducing smoothness. The penalization of adjacent spline coefficients, results in the penalized least

squares (PLS) criterion

PLS(λ) =
n∑
i=1

(
yi −

D∑
d=1

γdBd(xi)

)2

+ λ
D∑

d=r+1

(∆rγd)
2.

with recursively defined difference penalties ∆rγd = ∆rγd −∆r−1γd−1 (Fahrmeir et al., 2013). This

penalty can also be expressed in matrix notation by making use of difference matrices Dr. Consider

for example the first order difference matrix and the second order difference matrix, of which the

latter is widely used

D1 =


1 −1

1 −1
. . .

. . .

1 −1

 D2 =


1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1


which induce the penalty above as

λ
D∑

d=r+1

(∆rγj)
2 = λγ>D>r Drγ = λγ>Krγ.

This penalty ensures smoothness across the spline with the amount of smoothness determined by the

parameter λ, which can be found, for example, by minimizing the AIC criterion or cross-validation.

Note that for a penalty of order r a large value of the smoothing parameter, i.e. λ→∞, results in a

polynomial of degree k − 1 (Eilers and Marx, 1996) such that a large penalty on the commonly used

second order differences results in a straight line under strong penalization.

P-splines can also be estimated in a Bayesian framework as Bayesian P-splines (Lang and Brezger,

2004) where the coefficients γd also considered random variables and smoothness is induced by the

choice of a corresponding prior. In more detail the difference penalties are replaced by their stochastic

analogues, i.e. Gaussian random walk priors of the respective order as for example first and second

order random walks:

γdp = γd,p−1 + udp or γdp = 2γd,p−1 − γd,p−2 + udp

where udp ∼ N(0, τ2
d ) are Gaussian errors and usually γd1 ∝ const is used as a prior for the starting

value γd1 for first order random walks or for γd1 and γd2 for second order walks. When looking at

the conditional distribution of γd in a first order random walk γd|γd−1, · · · , γ1 ∼ N(γd−1, τ
2) we see

that the conditional expectation for γd is γd−1 and that deviations from this conditional expectation

are larger for larger τ2 (Fahrmeir et al., 2013). By this relationship τ2 determines the amount of

smoothness and corresponds to the inverse of the smoothing parameter λ in the previously presented
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approach. An equivalent representation of the smoothness prior using random walks is therefore

(Lang and Brezger, 2004)

γ|τ2 ∝ exp−1

2
γ>Kγ (2.6)

where K is the appropriate penalty matrix as previously defined. As K is not of full rank, this prior

is partially improper. For detail on the Bayesian inference of Bayesian P-splines we refer to chapters

3 and 5

2.3.3 Structured additive regression

In cohort data, as in our given applications, it is often necessary to account not only for multiple

measurements per subject using random effects but also to model influences of covariates in a nonlinear

way as presented in the previous subsection. Structured additive models allow to incorporate random

and nonlinear effects, as well as other effects such as spatial effects or time-varying coefficients, in a

unified framework. We briefly illustrate this general framework for modeling longitudinal data and

revisit it in generalized form in the context of time-to-event models.

In general we model the conditional expectation E(yi) = η(xi) with the potentially time-varying

covariate xi and the structured additive predictor η(xi) as

η(xi) =

Mk∑
k=1

fk(xi)

where the functions f(·) can represent linear parametric terms as in eq. (2.4), smooth effects as in

eq. (2.5) or random effects. Random effects can be incorporated into the framework by an appropriate

specification of the design matrix and a penalized estimation of the respective coefficients. We have

already illustrated the penalized least squares view on smoothing splines. Linear mixed effects models

can also be seen from this angle as the joint likelihood

`(β, b) = −1

2
(y −Xβ − Zb)>R(ϑ)−1(y −Xβ − Zb)− 1

2
b>D−1b (2.7)

can be maximized using PLS with b>D−1b penalizing deviations from E(b) = 0:

PLS(β, b) = (y −Xβ − Zb)>R(ϑ)−1(y −Xβ − Zb) + b>D−1b.

resulting in coefficient estimates which are shrinked towards 0 due to the penalty.

As an illustration consider random intercepts b0 = [b01, · · · , b0n]> with b0i ∼ N(0, τ2
0 ) and εij ∼

N(0, σ2) in which the shrinkage of the random intercept coefficients can be expressed as

PLS(β, b) =
n∑
i=1

ni∑
j=1

(yij − x>ijβ − b0i)2 + λ
n∑
i=1

b20i
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with y = [y>1 , · · · ,y>n ]> and, importantly, λ = σ2/τ2
0 (Fahrmeir et al., 2013). Here the amount of

shrinkage λ is determined by the trade-off between the between-subject variance σ2 and the within-

subject variance τ2
0 . As previously explained smoothing and random effects structures can also be seen

from a Bayesian viewpoint. In the given example of random intercepts the distributional assumption

for the random effects b0i ∼ N(0, τ2
0 ) translates to a prior distribution such that the posterior of the

model in eq. (2.1) is

p(β, b|y) ∝ L(β, b)

n∏
i=1

1√
τ2

0

exp(− 1

2τ2
0

b20i) (2.8)

with L(β, b) as the Gaussian likelihood of the conditional model (see Fahrmeir et al., 2013).

This similarity in structure, i.e. the modeling of random effects and smoothing splines by penalized

least squares or respective prior distributions, can be exploited for fitting penalized smooth terms

within the mixed effects model framework. From a Bayesian perspective, however, the priors in

eq. (2.6) are improper as rk(K) < dim(γ) and consequently the inverse K−1 does not always exist.

A reparameterization of the models such that the penalized smooth term is split into an unpenalized

term and a penalized term with i.i.d random effects solves this problem (Kneib, 2005) and allows

to use mixed effects model estimation and inference procedures. Consider for example the function

fk(x) = Bγ which is a B-spline for a function of x to be smoothed as a Bayesian P-spline as in

eq. (2.6) where rk(K) = h and h < dim(γ). The vector γ can be decomposed into an unpenalized

and a penalized part as

γ = X̃β + Z̃b

so that KX̃ = 0, meaning this part of the decomposition remains unpenalized with β̃ as fixed effects,

and Z̃>KZ̃ = I, resulting in b ∼ N(0, τ2Ih). For technical details on this reparameterization we refer

for example to Wand (2003) and Kneib (2005).

Besides smooth and random effects terms this framework also allows the straightforward inclusion

of varying coefficients terms which are an interaction between a continuous variable and a categorical

variable xi. In our model development especially time-varying coefficient terms f(t) ·xi are of interest,

where the nonlinear effect of time t is allowed to vary for different levels of xi. This effect term can

be easily included in the basis function approach by modeling the term as

f(t) · xi =

D∑
d=1

γdBd(t)xi

and setting up the spline basis design matrix of the interaction Bint to contain the product, that is

Bint[i, d] = Bd(t) · xi (see Fahrmeir et al., 2013).

The structured additive regression framework can be further generalized for responses which are

not normally distributed by introducing the response function h(·) such that E(yi) = h(η(xi)) and

adjusting the joint likelihood in eq. (2.7) and eq. (2.8) accordingly. These generalized structured

additive regression models are the basic framework for the flexible survival models in Section 2.4.4

and the additive joint model that is developed in the subsequent chapters.
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2.3.4 Missing data structure in longitudinal cohorts

Besides the necessity of appropriately modeling the correlated data structure and nonlinear effects

in the longitudinal cohort data, a special missing data structure is the main complication in mod-

eling longitudinal biomarkers. First, despite a rigid measurement schedule, subjects skip, miss or

delay study visits and thus intermittent missing values occur as well as subject-specific observation

times. Second, measurements of a subject are only observed until the event takes place and not

afterwards. For example in modeling the autoantibody markers until the onset of T1D, autoantibody

measurements are not sensible after the onset of the disease as the body’s immune system reacts

to the externally given insulin. Through this, the number of measurements and the length of the

observations is systematically related to the disease onset.

In order to assess potential issues with missing data in cohort studies some notation is helpful to

describe the missing data mechanism. Reconsider our observed longitudinal response y, where we

now acknowledge that only some measurements yobs can be observed and others are missing ymis
such that the full data vector y = [yobs,ymis]. The missing data pattern is described by the response

indicator r for which rij = 0 if the random variable yij is observed and 1 if it is missing. The missing

data mechanism is then characterized by the conditional distribution f(r|y,φ), where φ denotes

relevant model parameters, with three different missing data mechanisms (Rubin, 1976; Little and

Rubin, 2002).

• Missing completely at random (MCAR) where the missingness does not depend on any missing

or observed data of y such that f(r|y,φ) = f(r|φ) for all y,φ,

• Missing at random (MAR) where the missingness depends only on the observed components

yobs of the response such that f(r|y,φ) = f(r|yobs,φ) for all ymis,φ,

• Missing Not at Random (MNAR) where the missingness depends on the missing values ymis of

the response such that f(r|y,φ) = f(r|yobs,ymis,φ)

Under MCAR the observed data yobs can be regarded as random subsample of the full data and

thus statistical procedures on the observed data are valid (Little and Rubin, 2002; Rizopoulos, 2012).

Under MAR likelihood inference and Bayes inference is valid even if only the observed data yobs is

used (and the missingness is ignored) if the subvectors in φ = [φr,φy], namely the parameter vector of

the missingness model, φr, and the parameter vector of the measurement model, φy, are independent

(see Little and Rubin, 2002, chapter 6). Ignoring MNAR, however, can distort the model estimations.

In the given longitudinal cohort data the presence of intermittent missingness can be seen as

MCAR, if no systematic reasons for skipping or delaying visits is present, and as MAR, if for example

the previous measurement determines if subjects will go to the next visit on time. As the mixed

effects model approach does not require balanced data but can handle subject-specific measurement

times this missingness mechanism does not further complicate the model estimation. In contrast,

the informative censoring of longitudinal observations, i.e., that observations are only made until the

event occurs, is a MNAR missing mechanism which has to be accounted for in the statistical analysis.
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In order to derive valid inference statements from this data the joint distribution of measurement and

the missingness process has to be used for an analysis. Different model-based approaches have been

developed to make use of this joint distribution such as pattern mixture models, selection models and

shared parameter models which factorize the joint distribution of the response and the missingness

mechanism (Little and Rubin, 2002; Rizopoulos, 2012). For a closer look consider the probability

distribution of the response f(y|φy) and the conditional probability distribution of the missingness

f(r|y,φr) for models where the observations are modeled as independent such that f(r,y|φ) =∏n
i=1 f(ri,yi|φ). Selection models (Diggle and Kenward, 1994) factorize the joint distribution of

response and missingness as

f(ri,yi|φ) = f(yi|φy)f(ri|yi,φr)

into a marginal distribution of yi in the population and the incidence of missing data conditional on

the data. Pattern-mixture models (Little, 1993, 1994) alternatively factorize the joint distribution as

f(ri,yi|φ) = f(yi|ri,φy)f(ri|φr),

where the first factor represents the distribution of yi conditioned on the missingness and a marginal

model of the missingness process. These models allow for a mixture of missingness patterns and

different distributions of the response for each pattern. Shared parameter models (Wu and Carroll,

1988; Wu and Bailey, 1989) factorize and introduce a random effect to account for the association

between the measurement and the missingness process

f(ri,yi|φ) =

∫
f(yi|bi,φy)f(ri|bi,φr)f(bi|φb)dbi. (2.9)

This approach is the basis of the shared parameter joint model of longitudinal and survival data that

is explored in the remainder of this work. In these models a joint likelihood of a longitudinal model,

here the measurement process, and a survival model, here the missingness process, with conditional

independence given latent parameters, here b, is used for estimation. These shared parameters are in

most developments shared random effects (Rizopoulos, 2012) but can also be other latent parameters

(see Section 2.5).

Mouse example. When reviewing the aforementioned mouse data example, a potential issue with

the analysis is the informative censoring in the longitudinal trajectories. We therefore reanalyze

the longitudinal model and corrected the estimation by means of a shared parameter joint model

approach. In this alternative analysis the group difference between progressors and non-progressors

is estimated as 1.29 (95% credibility interval: 0.74, 1.89), and is therefore slightly higher than in

the previous analysis. However the results do not vary strongly, potentially due to the censoring of

observations at 30 weeks which may alleviate the issue of informative missingness with the price of

discarding some of the observed data.
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2.4 Survival models

Often, a major focus in the analysis of cohort data is the modeling and/or prediction of an event of

interest, such as disease onset or death. Within the field of survival analysis a variety of different

models and estimations exist. In the following we will briefly present important concepts and models

for estimating the time to a single, potentially right censored event. We present both simple models

to include time-varying predictors in survival models and a structured additive regression approach

to survival analysis.

2.4.1 Basic concepts

Survival analysis is concerned with the modeling and estimation of survival or, more precisely, the

time until a certain event of interest occurs. In cohort studies sample units can be humans under

treatment, but also mechanical units, as in the survival analysis in engineering. For every subject i the

nonnegative time-to-event Ti is observed as response. The analysis of survival is often complicated by

potential right-censoring, i.e., the dropout of a subject before the event occurred, which is indicated

by the censoring indicator δi. This indicator is 1 if a subject experienced an event and 0 if it is

right-censored. We denote the true uncensored event time as T ∗i , which is only observed if δi = 1 and

assume independence between the censoring and the event times. Important concepts that describe

the distribution of this type of response are the probability density f(t) of T ∗i , the distribution function

F (t) with

F (t) = Pr(T ∗ ≤ t) =

∫ t

0
f(u)du,

and the survival (also called survivor) function S(t), which is

S(t) = Pr(T ∗ > t) = 1− F (t).

The survivor function is usually assumed to be continuous and differentiable. Furthermore, the hazard

h(t) with

h(t) = lim
∆t→0

1

∆t
Pr(t ≤ T ∗ < t+ ∆t|T ∗ ≥ t)

describes the instantaneous risk of an event given that a subject survived until time t. From this the

cumulative hazard

Λ(t) =

∫ t

0
h(u)du

can be computed which is closely related to the survival function as

S(t) = exp(−Λ(t)). (2.10)
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2.4.2 Proportional hazards model

The Cox proportional hazards (PH) model (Cox, 1972) is a popular model to fit survival data due to

its simplicity in setup and estimation. The hazard in the Cox PH model is specified as

hi(t) = h0(t) exp(x>i β)

where h0(t) is the baseline hazard rate, identical for all subjects, and β is a vector of regression

coefficients linearly relating the subject-specific covariates xi to the log-hazard. In consequence,

individual risk differences are completely determined by the predictor x>i β, which is linked through

the exponential function to ensure a nonnegative hazard. In more detail, the hazard ratio of two

individuals with covariates xi and xj and i 6= j

hi(t)

hj(t)
=
h0(t) exp(x>i β)

h0(t) exp(x>j β)
=

exp(x>i β)

exp(x>j β)
= exp((xi − xj)>β)

is constant over time and independent from the mutual baseline hazard which results in proportional

hazard rates. This property facilitates the use of a partial likelihood for estimation and inference

pl(β) =
n∏
i=1

(
exp(x>i β)∑
j∈Ri exp(x>j β)

)δi
leaving the baseline hazard completely unspecified with Ri = {j : Tj ≥ Ti} denoting the respective

risk set for individual i. Coefficients can then be estimated using ML. As Andersen and Gill (1982)

show, the partial likelihood estimates β̂ are asymptotically normal with mean β and covariance matrix

given by the inverse observed Fisher information.

2.4.3 Time-varying covariates in survival models

Using the counting process notation (see Therneau and Grambsch, 2000, for an in-depth introduction)

the Cox PH model was extended by Andersen and Gill (1982) to also include time-varying covariates

xi(t) in the hazard function of the extended Cox PH model

hi(t) = h0(t) exp(x>i (t)β)

within the partial likelihood setting. This model can be used as a simple approach to incorpo-

rate a longitudinal biomarker into a survival model. However, all observed marker values that

enter the model are assumed to be measured without error and time-constant between measurements.

Mouse example. Reconsidering the mouse study, the association between the longitudinal marker

and the disease process was modeled as a marker level difference between mice progressing to the

disease and those remaining event free. This question can, however, also be tackled by focusing
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on the risk of progression in a survival analysis. Instead of dichotomizing subjects into progressors

and non-progressors at a certain time point, the influence of the longitudinal biomarker on the

progression risk over time can be assessed. Using this approach the full information of subjects,

also after 30 weeks, can be taken into account. When using this simple approach and fitting the

time-dependent Cox PH model on the full data, the hazard ratio of progression to diabetes between

two subjects with one unit difference in the log-transformed IAA is 1.20 [95% confidence interval:

1.02, 1.41].

This approach, however, may contain severe bias as the special data structure of biomarkers as

time-varying covariates is not taken into account. To look at this more closely the concepts of external

and internal time-varying covariates have to be explored. Consider a single covariate x(t) which is

time-varying and can be observed at time t. As Kalbfleisch and Prentice (2002, Chapter 6) explain,

external time-varying covariates are variables for which it holds that

f(x(t)|x(u), T ∗ ≥ u) = f(x(t)|x(u), T ∗ = u) (2.11)

for all u, t with 0 < u ≤ t, where f(·) denotes the density of the value of the longitudinal process

at a certain time point. This means that the path of the covariate from u to t is independent of an

event occurrence at time u. Examples of covariates which fulfill this equation are the medication in a

case-control study of which the dose is planned in advance or air pollution measurements in a study

of health. An equivalent expression of the previous formula is

Pr(T ∗ ∈ [u, t)|x(u), T ∗ > u) = Pr(T ∗ ∈ [u, t)|x(t), T ∗ > u) (2.12)

meaning the probability of an event in the interval [u, t) should be independent of a marker observation

in the same interval. The two equivalent expressions eq. (2.11) and eq. (2.12) illustrate the two views

on external covariates, namely a marker measurement has to be obtainable at time t despite an

occurred event at time u and the presence of a marker measurement at time t should not allow

statements on the probability of an event at this time. Internal time-varying covariates are those, for

which the conditions eq. (2.11) and eq. (2.12) are not fulfilled.

In many cohort studies longitudinal biomarkers are only measured until an event occurs as de-

scribed in Section 2.3.4. As the mere presence of a biomarker measurement is informative for the

disease, i.e.

Pr(T ∗ > t|x(t)) = 1, (2.13)

the above conditions are not fulfilled and the respective biomarkers are therefore internal time-varying

covariates. As a result, the direct relationship between the hazard and the survivor function as stated

in eq. (2.10) does not hold for internal covariates (see also Rizopoulos, 2012, Chapter 3).

In addition, internal covariates are often measured with error due to biological variation (Rizopou-

los, 2012). Ignoring this and fitting an extended Cox PH model using time-dependent covariates may

result in estimates of the association which are biased towards 0 (Prentice, 1982). Furthermore, in-
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ternal covariates are only observed at discrete time points and fitted as if they were constant between

study visits (”last observation carried forward”) while their true latent process is continuous in time.

To alleviate the last two issues, two-stage models have been used prior to the development of joint

models. In these, a mixed effects model is estimated first for the longitudinal biomarker and its

predictions are then inserted as a time-varying covariate in a survival model. While being compu-

tationally less demanding than the subsequently presented joint model, this approach is still biased

(see for example Dafni and Tsiatis, 1998; Tsiatis and Davidian, 2001; Ye et al., 2008; Sweeting and

Thompson, 2011).

2.4.4 Survival modeling using structured additive regression

Similar to the extensions to linear regression models in Section 2.3.3 also in the context of survival

modeling further methods have been developed to allow relaxing certain assumptions. In the following

we focus on developments allowing for relaxing the proportionality assumption by including time-

varying effects and the inclusion of nonlinear effects of covariates (Kauermann, 2005; Kauermann et al.,

2008; Kneib and Fahrmeir, 2007). Generalized structured additive regression provides a powerful

framework to extend beyond the presented Cox-type models. The linear predictor of the Cox PH

model is replaced by a flexible structured additive predictor (Kneib and Fahrmeir, 2007)

hi(t) = exp(ηi(t)) with ηi(t) = v>i γ +

Lg∑
l=1

gl(t)uil +

Lf∑
l=1

fl(xil)

with linear effects γ of covariates vi, time-varying effects gl(t) of covariates uil, also including the

baseline hazard and non-linear effects fl(xil) of continuous covariates xil. All these effects can be

reformulated using a basis function representation such that all covariate values or spline represen-

tations of nonlinear effects can be represented as linear terms with design matrix Xl and coefficient

vector β̃l in the generic notation

η = X1β̃1 + · · ·+ Xpβ̃p

Furthermore, a respective model mixed effects model formulation can be exploited to estimate the

model. As demonstrated in 2.3.3 every coefficient β̃l for the nonlinear and time-varying effects, can

be decomposed into an unpenalized part βl and a penalized part bl by a reparameterization of the

respective penalty matrix and design matrix.

As the proportionality assumption does not hold anymore under existence of time-varying effects

the full likelihood is used for estimating this model instead of the partial likelihood. Under the

assumption of non-informative censoring the likelihood of this model is

L(β, b) =
n∏
i=1

hi(Ti)
δi exp

(
−
∫ Ti

0
hi(t)dt

)
,
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where β = [β>1 , · · · ,β>p ]> and b = [b>1 , · · · , b>q ]>. After reparameterization of the predictor into

an unpenalized and a penalized part both a frequentist penalized likelihood approach for fitting the

model

lpen(β, b) = l(β, b)−
p∑
l=1

1

2τ2
l

b>l Klbl,

with penalty matrix K, and a Bayesian estimation by specifying appropriate priors and hyperpriors

as presented in 2.3.3 is feasible. Model selection is not easy in such a complex and flexible model and

we refer to Hofner et al. (2011) for a model building strategy in this setup.

2.5 Joint models and beyond

The analysis of longitudinal covariates and time-to-event outcomes has been of considerate interest in

many biomedical fields in the past 30 years. Early work on joint models and their precursors was mo-

tivated, for example, by the study of HIV progression where it was of interest to model the association

between CD4 and the clinical outcome AIDS (Wulfsohn and Tsiatis, 1997; Dafni and Tsiatis, 1998;

Tsiatis and Davidian, 2001). The challenges to correctly estimate informatively censored longitudinal

data and to appropriately include this internal covariate, measured intermittently with error, in a

survival model led to the development of joint models for longitudinal and survival data. Since then

joint models have been developed to allow detailed insights in various biomedical research areas such

as for example prostate cancer and PSA values (Taylor et al., 2013), breast cancer (Chi and Ibrahim,

2006), aneurysms (Sweeting and Thompson, 2011) or cardiovascular problems (Andrinopoulou et al.,

2014). Currently, they increasingly find entry into applied research (see for an overview Sudell et al.,

2016).

Joint models provide unbiased estimations by using the shared parameter approach eq. (2.9) in

which a joint likelihood for the survival and longitudinal submodels is built under the assumption of

conditional independence given the latent parameter that links the two models. Different approaches

exist on how to specify this latent structure and the association between the submodels. One possible

specification of a shared parameter model is the joint latent class model (see Proust-Lima et al., 2014,

for a review) in which a heterogeneous population of different classes is assumed. The classes have

different, class-specific marker trajectories and different risks, with the latent class membership linking

the two submodels. Whereas this models allows for heterogeneous subpopulations and nonlinear

association structures it is of limited value in assessing the detailed nature of the association between

the longitudinal marker and the hazard. In the remainder of this work we therefore focus on shared

random effects models, where random effects link the survival and longitudinal submodels.

In the following the standard joint model setup and frequentist estimation approaches are pre-

sented, followed by a brief overview of Bayesian joint model approaches. Finally, some light is shed

on important areas of research in joint models before our newly developed structured additive joint

model is presented in the subsequent chapters.
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2.5.1 Joint model setup and estimation

The basic joint model using shared random effects, closely following Rizopoulos (2012), consists of a

survival submodel where the hazard

hi(t) = h0(t) exp(x>i β + αmi(t))

is modeled by the baseline survival covariates xi and the ”true” longitudinal marker mi(t) where

α denotes the association between the longitudinal and the time-to-event process. This marker is

derived from the observations yij as

yij = mi(tij) + εij

using a linear mixed effects model as in eq. (2.1) with mi(tij) = xijβ + zijbi and εij ∼ N(0, σ2). In

consequence, the marker enters the survival model as a covariate defined continuously in time without

measurement error thereby alleviating some of the previously mentioned issues. The baseline hazard

h0(t) is fully modeled as a positive function in time using, for example, parametric distributions such

as a Weibull or exponential, piece-wise constant functions or spline-based approaches to avoid stability

issues and bias in the estimation of standard errors (as illustrated in more detail in Rizopoulos, 2012,

Chapter 4).

Adequate modeling of the MNAR missing mechanism in the longitudinal submodel and appropri-

ate incorporation of the longitudinal information in the survival model is achieved by estimating the

submodels in a shared parameter framework with the joint likelihood

p(T , δ,y|θ) =
n∏
i=1

∫
p(Ti, δi|bi,θt)

 ni∏
j=1

p(yij)|bi;θy)

 p(bi,θb)dbi
where θ = [θt,θy,θb] is the full parameter vector of the parameters from the survival model θt, the

longitudinal model θy, and the random effects θb. This likelihood is based on assuming conditional

independence of both, the two submodels and the multiple observations per subject, given the random

effects. Furthermore, independent censoring and visiting times are assumed. The likelihood function

for the survival model is

p(T , δ|θt, bi) = hi(Ti|θt, bi)δi · exp

[
−
∫ Ti

0
hi(s|θt, bi)ds

]
and for the longitudinal model

p(y|θy, bi) =

ni∏
j=1

(2πσ2)−
1
2 exp

(
−(yij −mi(tij))

2

2σ2

)

and a multivariate normal density for p(bi,θb).
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In the frequentist setting estimation is based on maximizing this likelihood function. The initial

estimation approach using EM algorithms as in Wulfsohn and Tsiatis (1997) and Henderson et al.

(2000) continues to be used (Elashoff et al., 2007; Ding and Wang, 2008). As the algorithm shows slow

convergence especially near the maximum Rizopoulos (2012) uses a hybrid approache in combination

with Newton-Raphson to achieve faster convergence. A direct maximization using a Newton-Raphson-

like algorithm, a modified Marquardt algorithm, is employed for estimating latent class joint models

(Proust-Lima et al., 2007, 2009).

The estimation of the maximum likelihood is challenged by the necessary numerical integration

for both the integral with respect to time in the survival likelihood and the integral with respect

to the random effects in the score vector of the likelihood of which no analytical expressions exist.

Especially the integration over the random effects becomes problematic when highly flexible subject-

specific structures and therefore many random effects are necessary. This can lead to unstable or

even unfeasible estimations in a frequentist setting (Gould et al., 2015). In this context Gaussian

quadrature has received attention for approximating the integrals (Crowther et al., 2016).

Different software implementations have been developed for fitting joint models in a frequentist

setting such as the R packages JM (Rizopoulos, 2010) and joineR (Philipson et al., 2017), as well

as the stata module stjm (Crowther, 2012) and the SAS macro JMFit (Zhang et al., 2016). The

packages differ largely in the flexibility that is allowed for specifying the baseline hazard, often only

a piece-wise constant or simple parametric terms, the flexibility in the longitudinal trajectories, often

only random slope random intercept specifications, and the association structures that are allowed.

2.5.2 Bayesian analysis for joint models

Many developments of joint models are made in a Bayesian framework, as Bayesian joint model

approaches allow a straightforward model assessment, no need for asymptotic approximations for

inference and the potential integration of prior knowledge or historical data (Gould et al., 2015).

Importantly also, this approach allows for more flexibility when complex random effects structures

are used. A look at the posterior of the joint model (Rizopoulos, 2016b)

p(θ, b|y,T , δ) ∝
n∏
i=1

p(Ti, δi|bi,θt)

 ni∏
j=1

p(yij)|bi;θy)

 p(bi,θb)p(θ)

illustrates this where now also the parameters θt and θy are assumed random variables with the

prior distribution p(θ). By omitting the normalization constant, no integration over potentially high-

dimensional random effects is necessary. This can easily be shown using Bayes theorem
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p(θ, b|y,T , δ) =
p(θ, b,y,T , δ)

p(y,T , δ)

=
p(y,T , δ|θ, b)p(θ|b)p(b)∫

θ

∫
b p(y,T , δ|θ, b)p(θ|b)p(b)dbdθ

∝ p(y,T , δ|θ, b)p(θ|b)p(b)

Note that the differentiation between random parameters θ and random effects b is used only for

illustration of the differences in the frequentist and Bayesian approach.

For this posterior, however, no closed-form solution exists especially for the marginal model so

that MCMC sampling approaches are employed. Starting from early work (Faucett and Thomas,

1996) up to current approaches (Jiang et al., 2015), Gibbs sampling has been a central approach in

the Bayesian estimation of joint models. Often Gibbs sampling is combined with adaptive rejection

sampling for parameters without closed-form but with log-concave full conditional distributions

(Chi and Ibrahim, 2006; Brown et al., 2005), additional Metropolis-Hastings steps (Tang and Tang,

2015; Huang et al., 2010) or slice sampling (Rizopoulos, 2016b). Much work utilizes WinBUGS or

OpenBUGS software (Gilks et al., 1994) to estimate newly developed approaches with code examples

obtainable from authors (see, for example, Guo and Carlin, 2004; Sweeting and Thompson, 2011;

He and Luo, 2016) thereby limiting, however, the transfer of the these developments into applied

research. So far only one software implementation is available for the Bayesian estimation, the

R package JMbayes (Rizopoulos, 2016b) which allows much flexibility in the specification of the

baseline hazard, the individual longitudinal trajectories and the association. However, the package

has some limitations with regard to the flexible specification of subject-specific trajectories and

nonlinear effects. Further information on existing and newly developed software for the estimation

of joint models can be found in Chapter 6.

Mouse example. Reviewing the mouse example again, we now model the association between

longitudinal IAA and the progression to diabetes in a Bayesian joint model. In this joint model the

estimated hazard ratio of progression to diabetes between two subjects with one unit difference in the

log-transformed IAA is 2.43 [95% credibility interval: 1.74, 3.62] per transformed unit of IAA. This

estimated effect is clearly larger than in the naive approach using a time-dependent Cox PH model.

This result illustrates the aforementioned bias towards 0 that can occur by not accounting for the

potential measurement error in the longitudinal biomarker and using the marker in a last observation

carried forward approach.

2.5.3 Areas of research in shared random effects models

In the past two decades shared random effects joint models have been an area of intensive research

and methods development. For detailed overviews on the topic we refer to the work of Tsiatis and

Davidian (2004), Diggle et al. (2008), Rizopoulos (2012) and Gould et al. (2015) and present in the

following a short overview of interesting areas of research.
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Firstly, the above presented model where the current value of the modeled marker trajectory

is associated linearly with the log-hazard is only one possibility for the parameterization of the

association. Many different structures are possible such as, for example, the association with

• the current slope of the marker as h0(t) exp(x>i β + αmi(t)
′)

• the marker with a time lag ∆t as h0(t) exp(x>i β + αmi(t−∆t))

• cumulative effects of the marker as h0(t) exp(x>i β + α
∫ tu
tl
mi(t)

′) with tl and tu as lower and

upper limits of the integration over time

• a marker and its interaction with baseline covariates h0(t) exp(x>1iβ + α(x2i ·mi(t))

• random effects only h0(t) exp(x>i β +α>bi).

Further potential association structures are presented in Hickey et al. (2016). The last parame-

terization, including only the random effects, results in a time-constant survival model, except for

the baseline hazard, and is therefore often used to facilitate the estimation (for example in Barrett

et al., 2015; Martins et al., 2016; Waldmann et al., 2017). This paramterization, however, only has

straightforward interpretations for random intercept and slope models. If spline representations of

the subject-specific trajectories are used, the interpretation of the association is problematic. This

renders this parameterization approach unfavorable in our case, when flexibility in the individual

trajectories is needed. The choice of an appropriate association structure can be based on prior

knowledge or based on model choice criteria such as AIC and BIC (Zhang et al., 2014), but also more

elaborate approaches have been developed such as Bayesian model averaging to include combinations

of different associations (Rizopoulos et al., 2014) and a Bayesian shrinkage approach (Andrinopoulou

and Rizopoulos, 2016) in which different association structures are included in a model and shrinkage

priors are placed on the association parameters to achieve a more parsimonious model.

With regard to the random effects structure many model developments focus on random inter-

cept/random slope models (e.g. Sweeting and Thompson, 2011; Gueorguieva et al., 2012; Philipson

et al., 2017) or parametric trajectories based on prior knowledge (Ibrahim et al., 2004; Taylor et al.,

2013) while only some more recent approaches also allow more flexibility in the longitudinal model.

For an overview of joint models which allow for subject-specific nonlinear trajectories we refer to

the following chapter. Additionally, other approaches were developed to include further longitudinal

response distributions in the joint model such as mixtures of distributions, e.g. for zero-inflated lon-

gitudinal data (Rizopoulos et al., 2008; Liu, 2009; Hatfield et al., 2012), or relaxing the normality

assumption of the random effects (Tang and Tang, 2015; Tang et al., 2017). Furthermore, quantile

regression joint models are developed to assess the association between quantiles of interest of the

longitudinal model with the hazard (Farcomeni and Viviani, 2015). Many extensions have also been

developed to account for competing risks (Huang et al., 2010), multiple events per subject (Henderson

et al., 2000) or interval-censored outcomes (Gueorguieva et al., 2012). However, in our biomedical

research setting the focus lies on a single right-censored event.
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Along with current trends towards personalized medicine, joint models can gain insights beyond

the unbiased and efficient estimation of longitudinal and survival models by allowing (potentially

dynamic) prediction of the event of interest. In different joint model specifications, tools for dy-

namic predictions of patient outcomes have been developed which can be updated as soon as new

longitudinal information is obtained. Examples of these approaches are from a frequentist shared

random effects perspective Rizopoulos (2011) and Rizopoulos (2012), from the respective Bayesian

perspective Rizopoulos et al. (2014) and for the latent class joint model developments by Proust-Lima

and Taylor (2009). The online risk calculator on prostate cancer basing on PSA measurements is an

interesting example how joint model developments can find entry into clinical practice and be used

to communicate risk for patients (Taylor et al., 2013). While dynamic predictions are an interesting

topic of ongoing research, focus in the present development of the flexible additive joint model lies

in the exploration of association structures between T1D-specific autoantibodies and T1D onset to

obtain more detailed insights into the mechanisms of disease progression. The prediction of T1D

onset, however, might be an interesting field of future research.

2.6 Challenges and demands in modeling type 1 diabetes progres-

sion

Whereas the trajectories of autoantibodies have been studied (Parikka et al., 2012; Steck et al., 2011),

no clear consensus exists regarding a parametric description of autoantibody trajectories over time.

Instead, subjects’ trajectories show highly nonlinear patterns over time and differ strongly between

individuals as shown in Figure 2.2. For the adequate modeling of autoantibodies and their association

with the onset of T1D consequently a highly flexible specification of the subject-specific trajectories

is necessary.

Besides the flexibility in the longitudinal model also a generalization of the association is necessary

to include a time-varying relationship between the biomarker and the time-to-event. T1D-specific

autoantibodies are indicators for an ongoing immune process in which insulin-producing beta cells

are gradually destroyed. It is plausible that the association between the autoantibodies and the

hazard of T1D varies over time, as the immune system is constantly being regulated.

These necessary extensions for the detailed modeling of autoantibodies in the context of T1D have

not been appropriately addressed in previous joint model developments and were therefore the main

drivers for developing the joint modeling framework that is presented in the following chapters.
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Figure 2.2: Observed linearly interpolated trajectories of the longitudinal marker values of log(IAA+ 1) in the
BABYDIAB/BABYDIET study of subjects developing clinical T1D (progressor) and those remaining event
free during follow-up (non-progressor) with a random selection of subjects highlighted.



Chapter 3

A general framework: Flexible

Bayesian additive joint models

The joint modeling of longitudinal biomarkers and the time to disease onset or death offers unique

insights into disease progression in various medical domains (Taylor et al., 2013; Gras et al., 2013;

Daher Abdi et al., 2013). Depending on the disease and the respective biomarker different challenges

have to be faced in joint modeling. In the following, a general framework for the flexible joint modeling

of longitudinal data and time-to-event is presented, which was motivated by unique cohort data from

studies exploring the development of T1D. The research on T1D underwent a paradigm shift in the

past decade, when disease-specific autoantibodies were shown to be diagnostic for the disease before

the onset of clinical symptoms and thus paving the way for a preclinical diagnosis of T1D (Ziegler

et al., 2013; Bonifacio, 2015; Insel et al., 2015). Prior to the onset of clinical symptoms, i.e. the

need of insulin substitution, the disease is already progressing and insulin-producing beta-cells in the

pancreas are gradually destroyed by the body’s own immune system. This immune process, leading

to an onset of clinical symptoms within months up to more than a decade, can be diagnosed by

the emergence of T1D-specific autoantibodies. However, it remains an open question whether the

longitudinal patterns of these autoantibodies might be associated with the rate of progression to

T1D.

In recent years joint models gained larger popularity in the modeling of associations between

time-varying biomarkers and time-to-event. By estimating a submodel for a longitudinal biomarker,

usually a mixed effects model, jointly with the survival submodel of a time-to-event process, one can

account for the informative censoring and the within-subject errors in the longitudinal model and can

incorporate the longitudinal information, observed only at person-specific discrete time points, as a

continuous-time covariate in the survival model. Comprehensive overviews on the topic are given in

Tsiatis and Davidian (2004), Rizopoulos (2012) and Gould et al. (2015). In our work we focus on

This chapter is based on Köhler et al. (2017b) published in the Biometrical Journal. Copyright c©Wiley-VCH Verlag
GmbH & Co. KGaA. Reproduced with permission of the copyright holders. For more information on the contributions
of the authors see Section 1.4. Modifications to the original version are indexed with footnotes.
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extensions of so-called shared parameter models. These assume that a set of parameters influences

both the longitudinal and the survival model, and that there is conditional independence given those

parameters.

In T1D research little is known concerning typical trajectories of autoantibodies as biomarkers. At

the same time the observed trajectories show highly nonlinear patterns over time and differ strongly

between subjects, see Figure 3.1a. In consequence, a flexible specification of individual trajectories

in the longitudinal model is needed in our application.
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Figure 3.1: Longitudinal marker values of log(IAA + 1) for five randomly selected subjects in the BABY-
DIAB/BABYDIET study. (a) Observed values (points) and linear interpolation (lines); (b) Observed values
(points) and estimated trajectories (lines).

Much work on joint models has focused on simple parametric longitudinal trajectories, while only

few approaches allow for more flexible, potentially non-parametric longitudinal models. Ding and

Wang (2008) model mean trajectories by B-splines and allow for one multiplicative random effect per

subject. For our application however it remains questionable if such a model is flexible enough to

capture the highly different trajectories. Spline based approaches, that allow also the random effects

to be non-linear functions in time, are mentioned by Song and Wang (2008) and were employed by

Rizopoulos and Ghosh (2011) and Rizopoulos et al. (2014) as well as Brown et al. (2005) and Brown

(2009). While allowing for flexibility, a disadvantage of all these approaches is finding an optimal

number of knots to specify the flexible longitudinal model, e.g. by AIC or DIC. As the number of

random effects increases with the number of knots, this number is limited in practice. We aim to

avoid the explicit choice of knots and number of basis functions by using a penalized spline approach,

where a larger number of knots is specified and smoothness penalties are employed (Lang and Brezger,
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2004). Tang and Tang (2015) also make use of P-Splines in modeling longitudinal trajectories, but do

so only in estimating the mean function, whereas we model also the individual trajectories as smooth

functions of time. This is similar in spirit to the specification of individual trajectories in Jiang et al.

(2015), however we do not assume an underlying class membership for the random effects.

The estimation of joint models with complex subject-specific trajectories poses a challenge to

frequentist estimation approaches due to the necessary integration over potentially high-dimensional

random effects distributions. Due to this drawback and further advantages of the Bayesian approach

in joint modeling, such as straightforward model assessment and the potential integration of previous

knowledge via priors (Gould et al., 2015), many complex joint models, like e.g. the aforementioned

models, are specified within a Bayesian framework. The most widely used sampling approach for

the parameter distributions in Bayesian joint models is Gibbs sampling, e.g. Faucett and Thomas

(1996); Guo and Carlin (2004); Brown and Ibrahim (2003), also in conjunction with Metropolis-

Hastings algorithms (Tang and Tang, 2015). In addition, the well-established R package JMbayes

(Rizopoulos, 2016a,b) implementing Rizopoulos et al. (2014) employs a random walk Metropolis-

Hastings algorithm. Our Bayesian estimation approach is different as we employ a derivative-based

Metropolis-Hastings algorithm, where we draw samples from approximations of the full conditionals

using score vectors and Hessians of the parameters. Despite being computationally demanding this

algorithm shows a high stability in the model estimation, as we also show in our simulations.

In addition to the need for a flexible longitudinal model, a further generalization of existing joint

models seems necessary in our application, namely a time-varying association between the biomarker

and the time-to-event. Here, the biomarker indicates an ongoing immune process eventually leading to

the destruction of the insulin-producing beta cells. As the activity of the immune system is constantly

regulated, it is plausible that the association between a biomarker and the hazard of T1D varies over

time. For example a recent paper by Meyer et al. (2016) indicated that patients with an autoimmune

disease can also present unique disease-ameliorating autoantibodies. Such a time-varying association

has rarely been studied in the context of joint models. Using a discretized time-scale and a probit

model for the discrete hazard function, Barrett et al. (2015) allow for the association to vary over

the discrete time points in their model. However, this flexible specification is not considered in their

simulations, the applied examples or the code provided to fit the models. A time-varying coefficient to

associate the marker and the event process is the focus of the conditional score estimation approach in

Song and Wang (2008). This approach can be seen as a weighted local partial likelihood without any

assumptions on the distribution of the random effects. While this approach accounts for measurement

error and short-term biological fluctuations in the longitudinal marker when modeling the hazard, it

only permits inference on the survival parameters and not on the longitudinal model.

In order to allow for these two extensions, the flexible longitudinal trajectories and a potentially

nonlinear time-varying association, both modeled by penalized splines, we develop and implement a

highly flexible framework for joint models available within the R package bamlss. As we represent all

parts of this flexible joint model as structured additive predictors, which can include linear, parametric

but also nonparametric penalized terms, we are able to allow potentially nonlinear, smooth, random,

and time-varying effects in both submodels. In consequence the possibilities of this implementation
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go way beyond the two extensions that originally triggered the development. By applying this flexible

model to the combined data set from two German high-risk T1D birth cohorts we aim to shed further

light on the complex relationship between T1D-associated autoantibodies and the onset of clinical

disease.

The remainder of this paper is structured as follows: The general model structure and potential

extensions are outlined in Section 3.1. In Section 3.2, details on the Bayesian estimation procedure

are given. A thorough testing of the model estimation through simulations is presented in Section

3.3 and the application to our T1D research question in Section 3.4. Concluding remarks are given

in Section 3.5 and technical details can be found in the Appendix A.1. The presented model is

implemented in the R package bamlss (Umlauf et al., 2017). Source code to reproduce the simulation

results is available as Supporting Information of the published manuscript.

3.1 Model

In the following, the general setup for additive joint models is presented with a special focus on two

extensions of existing approaches: the flexible specification of longitudinal trajectories as well as the

time-varying association between the longitudinal marker and the event. An overview of potential

further model specifications illustrates the flexibility of the presented model family.

3.1.1 General setup

For every subject i = 1, . . . , n we observe a potentially right-censored follow-up time Ti and the event

indicator δi (1 if subject i experiences the event, 0 if it is censored). We model the hazard of an event

at time t as

hi(t) = exp {ηi(t)} = exp {ηλi(t) + ηγi + ηαi(t) · ηµi(t)} (3.1)

including in the full predictor η a predictor ηλ for all survival covariates that are time-varying

or have a time-varying coefficient including the log baseline hazard, a predictor for baseline survival

covariates ηγ as well as a predictor ηα representing the potentially time-varying association between

the longitudinal marker ηµ and the hazard.

We also observe a longitudinal response yi = [yi1, · · · , yini ]> at the potentially subject-specific ordered

time points ti = [ti1, · · · , tini ]> with ti1 ≤ · · · ≤ tini ≤ Ti. t = [t>1 , · · · , t>n ]> denotes the vector of the

N =
∑n

i=1 ni longitudinal measurement time points of all subjects. The longitudinal response at tij
with j = 1, . . . , ni is modeled as

yij = ηµi(tij) + εij (3.2)

with independent errors εij ∼ N(0, exp[ησi(tij)]
2) allowing to also model the error variance. Thus,

ηµi(tij) represents the longitudinally observed marker value without error at time point tij . This

“true” marker value serves as a continuous-time covariate in the hazard in eq. (3.1) and links the
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two model equations.

Each predictor ηki with k ∈ {λ, γ, α, µ, σ} is a structured additive predictor, i.e. a sum of Mk

functions of covariates x̃i,
2

ηki =

Mk∑
m=1

fkm(x̃ki).

Different subsets x̃ki of x̃i can serve as covariates for the different predictors, with each fkm typically

depending on one or two covariates. For time-varying predictors the functions can also depend on

time ηki(t) =
∑Mk

m=1 fkm(x̃ki(t), t) with a potentially time-varying covariate vector x̃ki(t). We express

the vector of predictors for all subjects as ηk = [ηk1, · · · , ηkn]>. In the survival part of the model, see

eq. (3.1), the vectors are of length n and potentially time-varying where ηk(t) denotes the evaluation at

time t. In the longitudinal part of the model, see eq. (3.2), the vector ηk(t) is of length N , containing

entries ηki(tij) for all i and j, i.e. evaluations at all observed time points t for the corresponding

subjects. A general overview and details on the setup of the predictor vectors in the submodels can

be found in table 3.1.

Table 3.1: Overview of the predictor vectors, function evaluations and design matrices in the survival and
longitudinal submodel.

predictor vector function evaluation design matrix

survival model
k ∈ {γ} ηk = [ηki]

> fk = [fk(x̃ki)]
> Xk

n× 1 n× 1 n× pk
k ∈ {λ, α, µ} ηk(t) = [ηki(t)]

> fk(t) = [fk(x̃ki(t), t)]
> Xk(t)

n× 1 n× 1 n× pk
longitudinal model
k ∈ {µ, σ} ηk(t) = [ηki(ti)

>]> fk(t) = [fk(x̃ki(ti), ti)
>]> Xk(t)

N × 1 N × 1 N × pk
For ease of notation we denote the vector a> = [a1, · · · , an] as [ai] for i = 1, . . . , n and drop the subscript m
for the different terms per predictor in this illustration.

The functions fkm(x̃ki) can model a variety of effects, such as smooth, spatial, time-varying

or random effects terms which can be expressed in a straightforward notation for every term m of

predictor k by using suitable basis function expansions and corresponding penalties Pkm. In a generic

setup we let

fkm = Xkmβkm and Pkm =
1

τ2
km

β>kmKkmβkm, (3.3)

with the vector of function evaluations fkm stacked over subjects, the design matrix Xkm, the coeffi-

cient vector βkm, the penalty matrix Kkm and the variance parameter τ2
km that controls the amount

2Note that in contrast to the original publication and in line with notation in subsequent chapters we denote the
observed covariate vectors as x̃i and the resulting design vectors as xi. The vectors can coincide for parametric terms.
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of penalization of the respective term. In the Bayesian setting a penalization is imposed by specifying

an appropriate prior distribution for the parameters, βkm ∼ N(0, [ 1
τ2km

Kkm]−) with A− denoting the

generalized inverse of A, as presented in more detail in section 3.2.3. Note that these basic penalties

can be extended further as shown in more detail in the next subsection. In analogy to the differences

in form in the generic vector of predictors, i.e. ηk, ηk(t) and ηk(t), the form of the generic vectors

of function evaluations fkm and the generic design matrices Xkm also differs between predictors and

submodels. We refer to Table 3.1 for further details.

We illustrate this setup by two important examples and the exemplary specification of a standard

shared parameter joint model. First, smooth functions in time can be modeled using P-splines

with a B-spline basis, fkm(t) =
∑D

d=1 βdBd(t) =: x>km(t)βkm, and corresponding penalty matrix

Kkm = D>r Dr with the r-th difference matrix Dr of appropriate dimension (Eilers and Marx, 1996).

For Bayesian P-Splines, smoothing is induced by appropriate prior specification, where the difference

penalties are replaced by their stochastic analogues, i.e. random walks (Lang and Brezger, 2004).

Second, random intercepts in the longitudinal part are incorporated by specifying Xkm as an N × n
indicator matrix, where the ith column indicates which longitudinal measurements belong to subject

i, βkm = [βkm1, · · · , βkmn] denotes the coefficient vector and an n × n identity matrix as penalty

Kkm = In ensures βkmi ∼ N(0, τ2
km) independently. Further, although the model allows for highly

flexible joint models, a simple shared parameter joint model is contained as a special case with

• P-spline log-baseline hazard ηλ(t) = fλ(t) = Xλ(t)βλ with Kλ = D>r Dr: Xλ(t) contains n

stacked replications of xλ(t), the vector of D B-spline basis functions Bd(t) at t

• parametric effects of baseline survival covariates ηγ = fγ = Xγβγ with Kγ = 0: Xγ contains

the stacked subject-specific covariate vectors xγi

• time-constant association between longitudinal and survival model ηα = fα = 1nβα with Kα =

0

• longitudinal model with a random intercept ηµ(t) = fµ1(t) + fµ2(t) = Xµ1(t)βµ1 + Xµ2(t)βµ2

with Kµ1 = 0, Kµ1 = In: Xµ1(t) is the fixed effects design matrix potentially including a

parametric effect of time and Xµ2(t) the indicator matrix for a random intercept

• constant error variance ησ(t) = fσ(t) = 1Nβσ with Kσ = 0

where 1n and 1N are vectors of ones of length n and N , respectively, and 0 is a zero matrix. Note

that we drop the index m for predictors which consist of only one term.
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3.1.2 Important extensions of current models

A special focus in our joint model approach lies on the flexibility of the longitudinal predictor ηµ.

We model the trajectory for every subject as the sum of fixed covariate effects, a smooth function of

time, a random intercept as well as smooth subject-specific deviations from this function over time,

ηµi(t) = fµ1 (t) + fµ2 (i) + fµ3 (t, i) +

Mµ∑
m=4

fµm (x̃µm) . (3.4)

In this parameterization fµ1(t) is a smooth effect of time and fµ2(i) is a random intercept. The

term fµ3(t, i) denotes the smooth subject-specific deviations from the global time effect using func-

tional random intercepts (Scheipl et al., 2015). Additionally, linear or parametric effects, including a

global intercept, as well as further smooth effects of covariates can be represented by an extra term

in
∑Mµ

m=4 fµm(x̃µm). The basis for the functional random intercepts can be specified within the basis

function approach as row tensor products of the marginal basis of a random intercept, marked by the

subscript s, and the marginal basis for a smooth effect of time, marked by the subscript t. We denote

the vector of function evaluations at every observed longitudinal time point in t for the corresponding

subjects in i = [1, · · · , n]> as

fµ3 (t, i) = (Xµ3s �Xµ3t)βµ3 = Xµ3βµ3,

where Xµ3s is an N × n indicator matrix as the basis for a random intercept as specified for Xµ2 in

the previous sub-section, Xµ3t is an N ×D matrix of evaluations of a marginal spline basis at t and

Xµ3 is the N ×nD basis matrix resulting from the row tensor product. The row tensor product � of

a p× a matrix A and a p× b matrix B is defined as the p× ab matrix A�B = (A⊗ 1>b ) · (1>a ⊗B)

with · denoting element-wise multiplication and ⊗ denoting the Kronecker product.

The corresponding penalty term is constructed from the marginal penalty matrices:

Pµ3 = β>µ3

(
1

τ2
µ3s

Kµ3s ⊗ It +
1

τ2
µ3t

Is ⊗Kµ3t

)
βµ3 = β>µ3

(
1

τ2
µ3s

K̃µ3s +
1

τ2
µ3t

K̃µ3t

)
βµ3, (3.5)

where Kµ3s = In is the penalty matrix for the random effect and Kµ3t is an appropriate penalty

matrix for the smooth effect of time such as a difference penalty for B-splines. The enlarged penalty

matrices K̃µ3s and K̃µ3t yield a penalization for every subject, resulting in a random effects structure

and a smoothness penalization across time for each subject. Note that by specifying two variance

parameters, τ2
µ3s and τ2

µ3t, the amount of penalization can differ in the direction of time and across

subjects, resulting in an anisotropic penalty. This specification allows for a highly flexible modeling

of individual trajectories over time.

Given the specification of a separate global intercept and subject-specific random intercepts, the

constraints
∫
fµ1(t)dt = 0 and

∫
fµ3(t, i)dt = 0 for every i are set in order to ensure identifiability.

The necessary linear constraint
∫
fµ1(t)dt = 0 is implemented for B-splines by transforming the



36 3. A general framework: Flexible Bayesian additive joint models

marginal basis Xµ3t into an N × (D − 1) matrix Ẋµ3t for which it holds that Ẋµ3t1D−1 = 0 as

shown in Wood (2006, chapter 1.8), and adjusting the penalty accordingly. Constructing the row

tensor product Xµ3 using the transformed marginal basis matrix Ẋµ3t with correspondingly adjusted

marginal penalty ensures that the identification constraint
∫
fµ3(t, i)dt = 0 for every i is also fulfilled.

As a second extension to existing shared-parameter models we also specify the association between

the longitudinal and the survival model as a structured additive predictor ηα. In consequence, this

predictor can be modeled as a function of time and/or other covariates. Motivated by our applied

research questions we model ηα(t) = fα(t) as a smooth function of time by using penalized splines,

as specified for the baseline hazard. This allows us to find patterns beyond the standard joint model

specification to explain the relationship between the longitudinal marker and the survival process.

These patterns could for example be critical time windows in which a non-zero effect of ηα is present

or a potential change in the direction of the association ηα over time.

3.1.3 Further potential specifications

The presented general framework of structured additive joint models allows for a variety of different

effect specifications by making use of the flexibility of Bayesian structured additive regression models

as well as adding functional extensions. Besides the presented smooth, time-varying, random effects

and functional random intercept terms, a variety of further effects can be incorporated. Table 3.2

gives an overview of possible terms. All these terms can be specified by formulating the desired effect

in a basis function representation with an appropriate penalty term. For details on the specification

of such effects please refer to Fahrmeir et al. (2004); Scheipl et al. (2015); Wood (2006). Further

details on the practical aspects within our implementation are given in section 3.2.4.

Table 3.2: Effects fkm(x̃ki) that can be specified within a predictor ηk in structured additive joint models;
modified from a similar table in Scheipl et al. (2015).

covariate (subset of x̃) fkm(x̃k) constant over t fkm(x̃k) varying over t

no covariate scalar intercept 1 · β smooth effect of time f(t)
scalar covariate z linear effect z · β linear effect varying over time z · f(t)

smooth effect f(z) smooth effect over time f(z, t)
spatial covariate(s) s spatial effect f(s) spatial effect over time f(s, t)
grouping variable g random intercept βg functional random intercept fg(t)
scalar and grouping
variable

random slope z · βg functional random slope z · fg(t)

vector of scalars [z1, z2] linear interaction z1 · z2 · β linear interaction over time z1 · z2 · f(t)
varying coefficient z1 · f(z2)
smooth effect f(z1, z2)
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3.2 Estimation

We estimate the model in a Bayesian framework using Newton-Raphson and MCMC algorithms.

3.2.1 Likelihood

Under the assumption of conditional independence of the survival outcomes [Ti, δi] and the longitu-

dinal outcome yi, given the random effects, the likelihood of the specified joint model is the product

of the two submodel likelihoods Lsurv and Llong for the survival and the longitudinal model.

The log-likelihood of the survival part is

`surv [ηλ(T),ηγ ,ηα (T) ,ηµ (T) |T, δ] = δ>η(T)− 1>nΛ (T) , (3.6)

where T = [T1, · · · , Tn]> and δ = [δ1, · · · , δn]>. Here Λ(T) = [Λ1(T1), . . . ,Λn(Tn)]> is the vector

of the cumulative hazard rates Λi(Ti) = exp(ηγi)
∫ Ti

0 exp[ηλi(u) + ηαi(u) · ηµi(u)]du and η(T) =

[η1(T1), · · · , ηn(Tn)] denotes the vector of the full predictors evaluated at the subject-specific survival

times. The additive predictors implicitely also depend on covariates and model parameters. The

log-likelihood of the longitudinal part of the model is

`long [ηµ (t) ,ησ (t) |y] = −N
2

log(2π)− 1>Nησ (t)− 1

2
(y − ηµ (t))>R−1(y − ηµ (t)). (3.7)

ηµ(t) and ησ(t) are the predictor vectors of length N corresponding to the longitudinal response

y = [y>1 , · · · ,y>n ]> and R = blockdiag(R1, · · · ,Rn), where Ri can reflect the error structure of

interest. In our case, we assume Ri = diag(exp[ησi(ti1)]2, · · · , exp[ησi(tini)]
2) so that R reduces to a

diagonal matrix.

3.2.2 Priors and posterior

In this general framework above, a variety of terms (cf. Table 3.2) can be specified using corresponding

priors. For linear or parametric terms we use vague normal priors on the vectors of the regression

coefficients, e.g. βkm ∼ N(0, 10002), approximately corresponding to the precision matrices Kkm = 0

as presented above. Smooth and random effect terms are regularized by placing suitable multivariate

normal priors on the coefficients

p(βkm|τ2
km) ∝

(
1

τ2
km

) rank(Kkm)
2

exp

(
− 1

2τ2
km

β>kmKkmβkm

)
with precision matrix Kkm as specified in the penalty eq. (3.3). We use independent inverse Gamma

hyperpriors τ2
km ∼ IG(0.001, 0.001) to obtain an inverse Gamma full conditional for the variance

parameters. In addition to the inverse gamma distribution, different priors are possible for the

variance parameters in our implementation, such as half-Cauchy and half-normal distributions. The

variance parameters τ2
km control the trade-off between flexibility and smoothness in the nonlinear
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modeling of effects. As such they can be interpreted analogous to inverse smoothing parameters in a

frequentist approach.

For anisotropic smooths, when multiple variance parameters τ 2
km = (τ2

kms, τ
2
kmt) are involved as

in eq. (3.5), we use the prior

p(βkm|τ 2
km) ∝

∣∣∣∣ 1

τ2
kms

K̃kms +
1

τ2
kmt

K̃kmt

∣∣∣∣ 12 exp

(
−1

2
β>km

[
1

τ2
kms

K̃kms +
1

τ2
kmt

K̃kmt

]
βkm

)
. (3.8)

The resulting posterior of the model is

p(θ|T, δ,y) ∝ Lsurv [ηλ(T),ηγ ,ηα(T),ηµ(T)|T, δ] · Llong [ηµ(t),ησ(t)|y]

·
∏

k∈{λ,γ,α,µ,σ}

Mk∏
m=1

[
p(βkm|τ 2

km)p(τ 2
km)
]
,

where θ is the vector of all parameters in the model and p(βkm|τ 2
km) and p(τ 2

km) are the priors

for the regression coefficients and variance parameters for each term m and predictor k, respectively.

3.2.3 Bayesian estimation

Point estimates of θ can be obtained by posterior mode and posterior mean estimation. We estimate

the posterior mode by maximizing the log-posterior of the model using a Newton-Raphson procedure,

the posterior mean is obtained via derivative-based Metropolis-Hastings sampling and thus compu-

tationally demanding. We therefore recommend to use posterior mode estimates for a first quick

assessment of the model and in order to obtain starting values for the posterior mean sampling.

In the maximization of the log-posterior to obtain the posterior mode, we update blockwise each

term m of predictor k in each iteration l as

β
[l+1]
km = β

[l]
km − ν

[l]
kmH

(
β

[l]
km

)−1
s
(
β

[l]
km

)
with potentially varying steplength ν

[l]
km and with the score vector s(βkm) and the Hessian H(βkm),

which can be found in the Appendix. We optimize the variance parameters in each updating step to

minimize the corrected AIC (AICc, Hurvich et al., 1998), which showed good performance in smooth-

ing parameter estimation in Belitz and Lang (2008). Additionally, we optimize the steplength ν
[l]
km

over (0, 1] in each step to maximize the log-posterior. We assume the coefficients to have an approxi-

mately normal posterior distribution and derive credibility intervals from N(β̂km, [−H(β̂km)]−1) for

quick approximate inference.

For the posterior mean sampling we construct approximate full conditionals π(βkm|·) based on a

second order Taylor expansion of the log-posterior centered at the last state β
[l]
km, similar to Fahrmeir

et al. (2004), Klein et al. (2015a) and Klein et al. (2015b) and as shown in more detail in Umlauf et al.

(2017). The proposal density from this approximate full conditional is proportional to a multivariate

normal distribution with the precision matrix (Σ
[l]
km)−1 = −H(β

[l]
km) and the mean µ

[l]
km = β

[l]
km −
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H(β
[l]
km)−1s(β

[l]
km). In each iteration l of the Metropolis-Hastings sampler and for updating block

km a candidate β∗km is drawn from the proposal density q(β∗km|β
[l]
km) = N(µ

[l]
km,Σ

[l]
km). By drawing

candidates from a close approximation of the full conditional, we approximate a Gibbs sampler and

achieve high acceptance rates and good mixing.

For the sampling of the variance parameters τ2
km Gibbs sampling is employed, as the full condi-

tionals π(τ2
km|·) follow an inverse Gamma distribution, if inverse Gamma hyperpriors are used. Slice

sampling is employed when no simple closed-form full conditional can be obtained as for example in

the sampling of variance parameters for anisotropic smooths, see eq. (3.8), or for other hyperpriors.

Model selection can be conducted via DIC which is readily available within our implementation.

3.2.4 Implementation details

The model estimation is implemented within R (R Core Team, 2016) in the package bamlss (Umlauf

et al., 2016, 2017) that allows the Bayesian estimation of a variety of models within the frame-

work of Bayesian Additive Models for Location, Scale and Shape. The specification of appropriate

design matrices and penalties for the desired effects is conducted internally via the R package mgcv

(Wood, 2011). In consequence the full range of implemented smoothing approaches, such as P-splines,

thin-plate regression splines, random effects, and Markov Random Fields, can be used within our im-

plementation. We refer to Wood (2006) and Wood et al. (2016) for further information on model

terms, bases and penalties. In our model specification in the simulations and the application we make

use of Bayesian P-splines (Lang and Brezger, 2004) to model smooth effects. As the integrals in the

survival likelihood as well as in the respective scores and Hessians have no analytical solution, they

are approximated numerically using the trapezoidal rule and a fixed number of 25 integration points.

Starting values for the posterior mean sampling are obtained by estimating the posterior mode of

the joint model. For estimating the highly flexible functional random intercepts, the implementation

makes use of the block diagonal structure of the design matrices to increase computation speed. The

posterior mean sampling is implemented to potentially run in parallel on a number of specified cores

on Linux systems. More details can be found in the documentation of the bamlss R package.

3.3 Simulation

We assess the estimation of our model by means of a simulation study with focus on two aspects:

First, comparing our results with the established joint model implementation in JMbayes (Rizopoulos,

2016a) for models with time-constant ηα. Second, we want to assess the ability to model highly

complex longitudinal trajectories as well as a time-varying effect of ηα(t), the two important new

extensions within our framework. With this simulation we also aim to gain insights into the estimation

quality of the model when applied to real data sets of T1D cohorts that motivated our methods

development. Therefore, we simulate two differing data situations, mimicking real cohort data. The

first simulated data setting, corresponding to the German cohort data presented in the Application

Section, has fewer subjects, at more variably spaced time points but with a longer follow-up, than the
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other. Finally, we aim to assess how well the posterior mode estimation can approximate the effects

in comparison with the posterior mean estimates.

3.3.1 Simulation design

For every setting we generate longitudinal measurements for n subjects at a fixed grid of time points

P based on a true longitudinal model ηµ(t) as specified in eq. (3.4) with the time effect fµ1 (t) =

0.1(t + 2) exp(−0.075t), the random intercepts fµ2 (i) = ri where ri ∼ N(0, 0.25), the functional

random intercepts fµ3 (t, i) = Xµ3βµ3, and the global intercept and covariate effect fµ4(x̃µi) = 0.5

and fµ5(x̃µi) = 0.6 sin(x̃2i) with x̃2i ∼ unif(−3, 3). We simulate the functional random intercepts

flexibly by P-Splines where we draw the true vector of spline-coefficients for all subjects from βµ3 ∼
N(0, [(1/τ2

s )K̃s + (1/τ2
t )K̃t]

−1) as in eq. (3.5) with Kt = D>2 D2, τ2
s = 1 and τ2

t = 0.2. The hazard

hi(t) for every subject is calculated according to eq. (3.1) using the true survival predictor functions

ηλ(t) = 1.4 log((t + 10)/1000), ηγi = 0.5 sin(x̃1i), with x̃1i ∼ unif(−3, 3) and ηα(t) varying for the

two simulation settings. Based on hi(t), survival times are generated for every subject as described

in Bender et al. (2005) and Crowther and Lambert (2013). Every subject is censored after max(P)

and we additionally apply uniform censoring U(0, 1.5 · max(P)) to the survival times. In order to

mimic missing measurements in the real data, p% of the remaining longitudinal data are randomly

set to missing. Longitudinal observations are obtained from ηµi(t) by adding independent errors

εij ∼ N(0, 0.32) for each tij in t. The influence of different data structures on the estimation is

assessed by simulating two different data settings in each of the two simulations settings. In the

smaller data setting, a, observations for na = 150 subjects are generated at the measurements points

Pa = [0, 1, . . . , 120] where pa = 75% of the longitudinal measurements are missing and on average

108 (72 %) events occur, compared to nb = 300 subjects at the time points Pb = [0, 3, . . . , 72] with

pb = 10% missings and 165 (55 %) events in the larger data setting, b.

In each data and simulation setting we draw Q = 200 samples. To ensure convergence, we run

the model estimation with 23000 samples, a burn-in of 3000 and a thinning of 20, yielding 1000

samples, as assessed in preliminary simulations. For each estimated model q within a simulation

setting we assess bias, mean-squared error (MSE) and frequentist coverage of the 95% credibility

intervals, defined by the 2.5th and the 97.5th percentiles of the MCMC samples for the posterior mean

and the approximate normal intervals for the posterior mode. We evaluate bias, MSE and coverage

both averaged over all time points and averaged per time point. For the predictors in the longitudinal

model, i.e. k ∈ {µ, σ}, the average bias in each sample q is Bq
k = 1

N

∑n
i=1

∑ni
j=1[η̂qki(tij)−η

q
ki(tij)] where

η̂ki denotes the estimate. To assess the model fit over time we also evaluate the bias per time point

Bq
k(t) = 1

n

∑n
i=1[η̂qki(t)−η

q
ki(t)] for all t in P. The computations for MSE and coverage are analogous.

For the survival predictors, i.e. k ∈ {γ, λ, α}, the average bias is Bq
k = 1

n

∑n
i=1[η̂qki(Ti)− η

q
ki(Ti)] using

evaluations at the subject’s event times. The bias of the time-varying survival predictor ηλ, and for

setting 2 also ηα, is additionally evaluated at the fixed grid of time points t in P as above with MSE

and coverage computed accordingly. These error measures are then averaged over all Q samples per

setting.
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For the comparison with the joint model implementation in JMbayes in settings 1a and 1b,

data is generated with ηα(t) = 1 as time-constant. In our implementation we model the longitudinal

submodel by P-splines with cubic B-splines, a second order difference penalty and 12 knots (4 internal

knots), for both the overall mean and the individual trajectories. After application of the constraints

this yields 7 · n basis functions. For the time-varying effect of the baseline hazard, ηλ, as well as

the nonlinear effect in ηγ we use 10 knots (2 internal knots) resulting in 5 basis functions per effect

after application of the constraints. In order to achieve a comparable model in the package JMbayes

we model nonlinear effects in the longitudinal submodel and survival covariate effects by B-splines

and determine the number of knots to minimize the DIC in preliminary simulations. Details on the

inclusion of nonlinear effects in both submodels can be found in the source code of the Supporting

Information of the published manuscript. As a result we model the longitudinal part by cubic B-

splines for both the fixed and random effects with 1 internal knot for the larger data setting and

without internal knots for the smaller data setting, resulting in 4 and 3 basis functions for both the

fixed and random effects of time, respectively. As prior simulations had shown convergence issues

using an unrestricted covariance matrix of the random effects, we restrict it to be diagonal, resulting

in independent random effects. Also based on DIC from preliminary simulations we specify the effect

in ηγ in the survival part with cubic B-splines with 3 internal knots using 5 basis functions. We model

the baseline hazard with P-splines using the default settings from JMbayes, i.e. a cubic B-spline basis

with 17 basis functions and a second order difference penalty. For the MCMC procedure we also use

the default settings of 20000 iterations, including a burn-in of 3000 and a thinning such that 2000

samples are kept.

In our second simulation, i.e. settings 2a and 2b, we specify the longitudinal trajectories as before

but generate data using a time-varying association predictor ηα(t) = cos((t − 33)/33) for data in a

and ηα(t) = cos((t−20)/20) for b in order to achieve a similar shape despite a differing time scale. We

fit the model using the same specification as in setting 1. Additionally, ηα is modeled as a P-spline

with 10 knots (2 internal knots) resulting in 5 basis functions after application of the constraints.

3.3.2 Simulation results

The focus of the first simulation is the comparison with the package JMbayes regarding the accuracy

of the modeling of the longitudinal trajectories and the time-constant association parameter ηα in

settings 1a and 1b. Table 3.3 shows the MSE, bias and coverage for the estimation of ηα.

For both methods ηα is estimated more precisely and with a higher coverage in the larger data

setting b compared to a. In both data settings bamlss achieves lower MSE, less bias and a higher

coverage in the estimation of the association compared to JMbayes. For JMbayes the coverage for

ηα is not satisfactory in both settings (0.840 and 0.890). As the further survival predictors, ηγ and

ηλ, are parameterized differently in the two estimation methods with regard to the intercept term

and sum-to-zero constraints, we assess only the prediction quality of ηλ + ηγ . We observe that

JMbayes shows a higher bias in the estimation of the sum of these two predictors. Regarding the

longitudinal submodel for ηµ both methods are fairly equal regarding the average MSE over the

larger data setting (bamlss: 0.028 vs. JMbayes: 0.029), but our approach seems to be more precise
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Table 3.3: Posterior mean simulation results from bamlss and results from JMbayes
from setting 1 (time-constant ηα) for small (a) and large (b) data sets.

MSE bias coverage
a b a b a b

ηα bamlss 0.032 0.016 0.003 −0.009 0.925 0.970
JMbayes 0.049 0.021 0.100 0.048 0.840 0.890

ηγ + ηλ bamlss 0.127 0.077 −0.007 0.011 0.935 0.946
JMbayes 0.155 0.101 −0.095 −0.048 0.743 0.742

ηµ bamlss 0.022 0.028 0.001 0.000 0.944 0.942
JMbayes 0.031 0.029 −0.001 0.008 ∗ ∗

ησ bamlss 0.001 0.001 0.009 0.014 0.940 0.875
JMbayes 0.007 0.002 0.080 0.039 ∗ ∗

∗ No credibility intervals and thus no coverage could be calculated for these predictors.

in the smaller data setting (bamlss: 0.022 vs. JMbayes: 0.031). To further understand the cause of

this difference we look at the bias in the estimation of ηµ over the whole observed time course for the

smaller data setting. As shown in Figure 3.2, JMbayes seems to underestimate some nonlinearity

of the true predictor. Both methods show higher uncertainty for later time points when, due to
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Figure 3.2: Comparison of the bias over time for ηµ(t) estimates from bamlss and JMbayes in setting 1a.

censoring and the occurrence of events, less information is available. For the longitudinal predictors

we were not able to calculate credibility intervals in JMbayes. Finally, the estimation of the error

variance is more precise in bamlss.

There are large runtime differences where JMbayes models took on average 9 minutes and 13 minutes

for data setting a and b, respectively, and the implementation bamlss, due to the more flexible
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functional random effects specification, took on average 2.5 hours and 5.1 hours to run on a single

core of a 2.60 GHz Intel Xeon Processor E5-2650.

The aim of the second simulation setting is to shed light on the precision of the estimation of

all predictors in the model with a special focus on the estimation of ηα, which is nonlinear in time.

Additionally, we also compare the precision of the posterior mode to the posterior mean estimation.

Table 3.4 gives an overview of the estimation precision of all predictors.

Similarly to setting 1 we observe an effect of sample size: All survival predictors (ηλ, ηγ , ηα) show

Table 3.4: Posterior mode and posterior mean simulation results for setting 2 (time-varying ηα(t)) for small
(a) and large (b) data sets.

MSE bias coverage
a b a b a b

ηα mean 0.171 0.078 0.007 0.002 0.940 0.961
mode 0.177 0.117 0.058 0.069 0.608 0.593

ηγ mean 0.097 0.062 −0.035 −0.032 0.931 0.948
mode 0.089 0.059 0.022 −0.001 0.804 0.795

ηλ mean 0.083 0.065 0.000 0.000 0.945 0.957
mode 0.101 0.082 0.000 0.000 0.592 0.549

ηµ mean 0.022 0.028 0.000 0.000 0.943 0.942
mode 0.025 0.031 0.000 0.000 0.882 0.865

ησ mean 0.001 0.001 0.009 0.015 0.905 0.855
mode 0.004 0.004 −0.057 −0.057 0.175 0.045

a smaller MSE for data setting b compared to a probably due to the higher number of events. In

contrast, the MSE is smaller for the estimation of ηµ in data setting a compared to b potentially

due to the longer follow-up and a slightly higher number of longitudinal observations per subject.

Whereas the precision of the point estimates is overall similar or only slightly worse for the posterior

mode compared to the posterior mean estimation, the coverage is not acceptable for the posterior

mode but close to 95% for the posterior mean. The only exception is the estimation of ησ, where

the coverage is somewhat lower for the posterior mean. As ησ is very precisely estimated and formal

inference is usually not of interest for this predictor, we do not rate this under-coverage as too

problematic. In order to illustrate the precision in the time-varying effect estimates and to assess the

cause of differences in MSE, Figure 3.3 displays the true and estimated predictors ηλ(t), ηα(t) and

their joint effect ηλ(t) + ηα(t) · 1
n

∑n
i=1 ηµi(t) evaluated at the mean of the estimated effect of ηµ(t)

for all time-points. Overall the estimated predictors match the true functions quite well. For the

smaller data sets there is more uncertainty in the estimation, especially at later time points, when

less subjects are still observed.For example in setting a at a late time point (t = 110) on average only

6 subjects remain in the risk set as compared to 37 subjects at a late time point (t = 65) in setting b.

Therefore, the estimates for later time points are highly dependent on the remaining subjects. This

uncertainty is not only visible in the single predictors but also in their combined effect, see the right
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Figure 3.3: True (black) and estimated (grey) predictors from posterior mean and posterior mode estimation
for small (a) and large (b) data sets in simulation setting 2. Left: ηλ(t); middle: ηα(t); right: ηλ(t) + ηα(t) ·
1
n

∑n
i=1 ηµi(t).

panel of Figure 3.3 (later time points in column a).

With on average only 10 and 18 minutes to run for data setting a and b respectively, the posterior

mode estimation has clear advantages in computation time over the more precise posterior mean

estimation with 2.6 and 5.2 hours on average in this setting.

In conclusion, our simulations show that the estimation of models with constant associations

between marker and event performs well, even outperforming the implementation in JMbayes in some

aspects. The estimation of more flexible models that are newly covered by our approach in contrast

to existing implementations, i.e. with a time-varying association parameter and the specification

of flexible trajectories, is equally satisfactory. While the more precise posterior mean estimation is

time-consuming, the posterior mode offers a computationally efficient way to quickly assess the point

estimates in a given model specification, even though credibility bands are only approximate.

3.4 Application

In order to gain insights into our motivating research question we apply the model to a combined

data set of two ongoing German T1D risk cohorts to investigate whether longitudinal trajectories of

insulin autoantibodies (IAA) are associated with the rate of progression to T1D. Whereas different

autoantibodies are diagnostic for a preclinical stage of the disease, our focus lies on the analysis

of the levels of IAA as a marker from the time when it first exceeded a specific threshold, called

seroconversion, to the onset of T1D or loss to follow-up. The marker IAA is most often the first

autoantibody to appear (Ziegler et al., 1993, 1999; Hummel et al., 2004). Both its initial value at

seroconversion and its mean over time have been shown to be positively associated with the emergence
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of T1D and negatively related to the age at T1D diagnosis (Steck et al., 2011, 2015). As seroconversion

defines the beginning of a preclinical, symptom-free stage of T1D (Insel et al., 2015) we chose this

time point as the starting point for our analysis instead of modeling the trajectories from birth and

accounting for zeros up to the time point of seroconversion (Liu, 2009; Hatfield et al., 2012; Rizopoulos

et al., 2008).

The BABYDIAB and BABYDIET studies, both prospective birth cohorts with a joint study

protocol, aim to investigate the natural history of T1D development, i.e. explore environmental and

genetic factors associated with the progression to T1D. In the BABYDIAB study 1650 offspring of

patients with T1D were followed from birth to the development of T1D or loss to follow-up for up to

21 years (median: 15.7 years) (Ziegler et al., 1993, 1999; Hummel et al., 2004). Using the BABYDIAB

study protocol, the BABYDIET study subsequently recruited 791 additional offspring or siblings of

patients with T1D (Hummel et al., 2011). In both studies, autoantibody measurements were taken

at age 9 months and 2, 5, 8, 11, 14 and 17 years and additionally every 6 months after positive

islet autoantibodies had emerged. The exact age at the emergence of clinical T1D was assessed also

between study visits.

In our joint model we use data of n = 127 children who developed IAA during follow-up, censored

at 15 years after seroconversion due to the extremely low sample size at later time points, of which

69 (54%) subjects progressed to T1D (see Figure B.1 in the Appendix). The median progression

time after seroconversion for IAA was 4.7 years (range: 0, 14.5 years; 25th and 75th percentile: 1.9,

6.7) with a median event-free follow-up of 5.9 years (range: 0, 15 years; 25th and 75th percentile:

3.4, 8.6). Subjects seroconverted for IAA at a median age of 2.1 years (range: 0.6, 18.1 years) with

86% of the subjects having IAA as the first autoantibody to appear. In total N = 894 longitudinal

measurements of IAA after seroconversion (median number of measurements per subject: 6, range: 1,

24) were used and log-transformed as log(IAA+ 1) for the analysis. We model subject’s transformed

autoantibody levels using functional random intercepts and two further covariates which were chosen

a priori based on medical knowledge to fully capture the pattern of autoantibody levels. First, the

age at seroconversion is included as a linear effect and second a binary variable indicates whether

the autoantibody was among the first autoantibodies to appear. We model the association between

marker and event, ηα(t), to be a non-linear function of time. Further we allow the covariates in the

longitudinal model to also influence the survival process directly and expect a positive association

between the age at seroconversion and the time to T1D (Steck et al., 2011; Ziegler et al., 2013). In

our Bayesian model estimation we sample for 33000 iterations with a burnin of 3000 and thinning of

15 to obtain 2000 samples, with starting values for the posterior mean estimation obtained from the

posterior mode estimates. Convergence is assessed by the inspection of traceplots, of which a subset is

presented in the Appendix B.1. In order to assess the sensitivity of the results to the number of knots

we specify three models with differing numbers of knots. We specify two models using either 12 (i.e. 4

internal) knots or 20 (i.e. 8 internal) knots for the overall mean and the individual trajectories in the

functional random intercepts and 10 (i.e. 2 internal) knots in the survival submodel. Additionally,

we specify a model with 20 (i.e. 8 internal) knots for nonlinear terms in both, the longitudinal and

the survival submodels.
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The results from the three specified models in our sensitivity analysis are highly similar for all

predictors with regard to mean estimates and the credibility intervals. However, we observe lower

DIC for the models with more knots in the functional random intercepts along with a closer fit of the

individual trajectories and more narrow credibility intervals for the estimated association ηα(t) (cf.

Figure B.2). Using more knots in the survival submodel results in a better mixing in the traceplots

and a slightly lower DIC. Hence, we assume the results to be robust regarding the exact number of

knots and present results of the model with the lowest DIC in the following.

As shown in Figure 3.1b for 5 randomly selected subjects, we are able to closely approximate the

individual non-linear trajectories of IAA. The association between the marker and the onset of clinical

T1D is estimated as stable over time with an average slope of -0.01 [95% credibility interval: -0.09,

0.07]. The average slope was defined as the mean over the first derivative of the association ηα(t)

evaluated at all observed event and follow-up times T, and its posterior distribution can be easily

obtained by numerically deriving η′α(t) in every sample. The credibility interval for the estimated

association is above 0 for the first 2 years after seroconversion and there is more uncertainty at later

time points, i.e. when less event and follow-up times are observed and when less subjects remain

in the risk set, as indicated by the credibility intervals (Figure 3.4). In the longitudinal submodel

we observe that trajectories have a lower level, if subjects seroconverted at an older age (in years,

βµ4 = −0.07; 95% credibility interval: [-0.14, -0.004]) and a higher level if IAA was amongst the first

markers to appear (βµ5 = 0.89; [0.23, 1.53]). In the survival submodel the log-hazard is decreased

if IAA was amongst the first markers to appear (βγ2 = −0.94; [-1.73, -0.12]). In sum if IAA is

amongst the first markers to appear the log-hazard is reduced by 0.7. This net effect can be derived

as the sum of the direct effect in ηγ and the indirect effect in ηα · ηµ with an average association

of 1
n

∑
i ηα(Ti) = 0.28 Additionally, we do not observe a direct effect of the age at seroconversion

(βγ3 = −0.09; [-0.19, 0.01]).

As the estimated association ηα(t) showed no clear time trend we further compared this main

model with a simpler model assuming a time-constant association using both our joint model imple-

mentation in bamlss and the implementation in JMbayes. In bamlss the same model was specified as

in our main analysis with the exception that only an intercept was allowed in the predictor ηα. In JM-

bayes individual trajectories were modeled by cubic B-splines (see section 3.3). The models resulted

in highly similar effect estimates for the covariate effects and the intercept of the association effect

(cf. Figure 3.4). The effects on the log-hazard of the association and the covariate indicating that

IAA was the first marker to appear were estimated slightly smaller in the JMbayes model. Despite

more flexibility in the modeling, our main model achieved a slightly lower DIC than the time-constant

bamlss fit (DIC: 2645.6 vs. 2648.9). As the DIC values are random and show small variations de-

pending on the posterior sample this small difference in DIC should not be over interpreted. The DIC

of the JMbayes estimation was not directly comparable due to a different likelihood formulation. We

further conducted a sensitivity analysis regarding the prior specification of the variance parameters

as well as the parametric terms. Basing on our main model we estimated 3 additional models (a)

using τ2
km ∼ IG(0.001, 1), i.e. a distribution closer to a uniform for the variance parameters, (b) a
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Figure 3.4: Estimated effects in the BABYDIAB/BABYDIET data. (a) Estimated posterior mean of ηα(t)
with 95% pointwise credibility bands (shaded area), observed event times (rugs bottom), and censoring times
(rugs top). (b) linear effect estimates from the survival and longitudinal submodel from model fits based on
(i) bamlss with time-varying ηα(t), (ii) bamlss with time-constant ηα and (iii) JMbayes. association stands for
effects in ηα, long for the longitudinal submodel, sc indicates seroconversion.

half-Cauchy distribution for the variance parameters, and (c) using a slightly more informative prior

βkm ∼ N(0, 502) for all linear terms. Again all estimated effects were highly similar (cf. Figure B.6).

In line with previous findings (Steck et al., 2011, 2015) these results indicate that the quantitative

levels of the marker IAA are informative for the rate of progression to T1D in the first years after

seroconversion with higher levels increasing the hazard of T1D. The direct relationship between the

hazard and age at seroconversion is not supported by the model, suggesting that the previously

established influence of this baseline covariate on T1D progression may be mediated by the marker

levels, i.e. the effect in the respective log-hazard is reduced if the marker levels over time are taken

into account as in our flexible parameterization. The association between IAA and the hazard of T1D

over time was not found to be strongly time-varying in this relatively small study despite a slightly

smaller DIC for the time-varying model. There is much uncertainty around the nonlinear time-

varying estimate of the association ηα(t). This uncertainty is potentially a result of the flexibility

in the estimation in combination with the amount of data in the survival part. Furthermore, the

precision in the assessment of the exact age at seroconversion and therefore the time point 0 per

subject is limited by the timing of the follow-up visits, potentially inducing further noise in the

assessment of the time-varying association between the biomarker and the time to clinical T1D. All

estimated effects were robust regarding different model specifications, i.e. varying number of knots,

differently specified associations, as well as different prior distributions.
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3.5 Discussion and outlook

We presented a flexible joint model that allows to fit a broad range of joint model specifications using

structured additive predictors for all model components. The approach is fully implemented in the

R package bamlss. While the framework is very flexible, as illustrated by Table 3.2, the focus in this

work lies on the flexible modeling of individual trajectories and the specification of a time-varying

association between marker and event. The proposed model shows satisfactory performance in vari-

ous simulation settings and has the potential to offer new insights into complex relationships between

biomarkers and time-to-event processes.

Our methods development was motivated by a specific research question from T1D studies and data

from two cohorts, the presented combined German BABYDIAB/BABYDIET cohort as well as a

multinational cohort. We aimed at assessing the potentially nonlinear time-varying association be-

tween a highly variable disease-specific marker and the time to T1D onset. We saw that even by

using the combined BABYDIAB/BABYDIET cohort, the sample size of the data set considered in

the application in Section 3.4 is at the lower limit for the complexity of our model, as indicated by our

simulation study and by the width of the credibility intervals in the applied results. Nevertheless we

found a positive association between a disease-related biomarker and the occurrence of clinical T1D.

Although our model allows for a time-varying association between the biomarker and the event pro-

cess, at least in this small data set it was estimated to be roughly constant with a DIC comparable to

that of a simpler constant model and a slight larger effect early after seroconversion. In consequence

our flexible model can also be used to check the modeling assumptions of simpler models that are

commonly used. We aim to further explore the relationship between T1D-specific autoantibodies and

the progression to T1D in the larger data set from the multinational T1D cohort (with sample size

exceeding data setting b in our simulations) as in Steck et al. (2015). We note that these results, as

the majority of findings on preclinical T1D, can only be generalized to subjects with increased risk

of T1D and not to the general population.

Due to the complexity of the model and its estimation, the computation speed is still a drawback

in our implementation. Hence, we are constantly working on speeding up the computations further.

As shown in simulation 2, the posterior mode estimation offers a computationally efficient way to

obtain point estimates from a flexible joint model before starting the full MCMC sampling. These

posterior mode estimates show a precision similar to that of the posterior mean estimates. However,

the credibility intervals obtained from posterior modes are not wide enough, potentially due to the fact

that the uncertainty around the variance parameters τ2
km is not included in the credibility intervals.

In consequence, only the credibility intervals of the posterior mean estimates should be used for

inference.

As is well-known in the survival context, the number of potential parameters in the model is limited

by the number of observed events (Harrell et al., 1996). This also holds in our approach for the

predictors in the survival part of the model, ηλ, ηγ , and ηα. We achieve to alleviate this issue to some

extent by the penalized approach, which decreases the effective number of degrees of freedom and thus
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allows for a richer model than would be possible without a penalty. Still, we recommend modeling

only those effects as non-linear functions, where a strong indication for non-linearity is given.

Within the framework of the presented additive joint model several further extensions are possible.

So far model selection is conducted via DIC. We note that more advanced model selection techniques

such as Bayesian Lasso selection (Tang et al., 2017) or boosting (Waldmann et al., 2017) have been

developed. Including these techniques into the presented framework are topics for future work. Re-

garding potential effects to be specified we aim to extend the model by including the derivative of

the longitudinal trajectories to model the event process similar to Ye et al. (2008), Brown (2009) and

Rizopoulos et al. (2014), allowing to model the potentially time-varying association between changes

in the marker and the hazard. Further, functional historical effects of the trajectories, including infor-

mation on the history of the marker (Malfait and Ramsay, 2003; Gellar et al., 2014), could potentially

offer additional insights into complex relationships between markers and event processes.
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Chapter 4

Joint modeling of longitudinal

autoantibody patterns and progression

to type 1 diabetes

T1D is one of the most common chronic diseases in childhood, with worldwide increasing incidence

(Patterson et al., 2009). The disease is preceded by a preclinical period of islet autoimmunity, which

most commonly develops in early infancy (Parikka et al., 2012; Ziegler et al., 2012). The presence

of islet autoantibodies is associated with the progression to clinical diabetes (Ziegler et al., 2013).

However, the time from the first emergence of autoantibodies, called seroconversion, to the onset of

clinical symptoms varies considerably between individuals, ranging from weeks to decades (Ziegler

et al., 2013). It is also known that the combination of different autoantibodies as well as the autoan-

tibody titer is associated with progression time (Achenbach et al., 2004). For insulin autoantibodies

(IAA), both their titers around seroconversion and their mean levels over time have been found to be

associated with progression to T1D (Parikka et al., 2012; Steck et al., 2011), and similar findings have

been recently reported for other islet autoantibodies (Steck et al., 2015, 2016; Endesfelder et al., 2016).

Nevertheless, detailed analyses of autoantibody titers over time are lacking. Here, we investigated

data of more than 600 islet-autoantibody positive children followed up within the prospective The

Environmental Determinants of Diabetes in the Young (TEDDY) study (The TEDDY Study Group,

2007; Krischer et al., 2015). In contrast to previous analyses, we used joint models of longitudinal and

survival data. This class of models has the advantage to avoid potential bias due to characteristics of

the longitudinal markers (here autoantibodies), such as random biological fluctuations, informative

censoring and discrete measurement time points (Asar et al., 2015). By applying a novel approach

of joint modeling, we gained further insights into the potentially complex relationship between lon-

This chapter is based on Köhler et al. (2017a) published in Acta Diabetologica. Copyright c©Springer-Verlag Italia
S.r.l.. Reproduced with permission of the copyright holders. For more information on the contributions of the authors
see Section 1.4. Modifications to the original version are indexed with footnotes.
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gitudinal islet autoantibody measures and the time to T1D progression, particularly with respect to

time-varying associations of both.

4.1 Methods

TEDDY is an ongoing prospective cohort study funded by the National Institutes of Health with the

primary goal to identify environmental causes of T1D. The TEDDY study enrolled 8,676 children

with increased genetic risk for T1D who were recruited in six clinical research centers located in the

USA, Finland, Germany, and Sweden between 2004 and 2010 shortly after birth. Detailed information

on study design, eligibility and methods has been previously published (The TEDDY Study Group,

2007, 2008; Hagopian et al., 2011). Written informed consents were obtained for all participants from

a parent or primary caretaker, separately, for genetic screening and for participation in prospective

follow-up before inclusion in the study. The study was approved by local Institutional Review or

Ethics Boards and is monitored by the External Advisory Board formed by the National Institutes

of Health. All procedures followed were in accordance with the ethical standards of the responsible

committee on human experimentation (institutional and national) and with the Helsinki Declaration

of 1975, as revised in 2008 (5). For this analysis, we used the data of all children who had developed

one or more persistent islet autoantibodies by the time of our data access (31 December 2014). At

that time point the median age of the children analyzed at their last visit was 6.5 years with a range

from 0.75 to 10.2 years.

4.1.1 Definition of islet autoimmunity

Development of persistent islet autoimmunity was assessed every 3 months and defined by the presence

of at least one islet autoantibody among autoantibodies to insulin (IAA), glutamic acid decarboxylase

(GADA), and insulinoma-associated protein 2 (IA2A) on two or more consecutive visits confirmed by

two laboratories. Date of persistent autoimmunity to an autoantibody was defined as the draw date of

the first sample of the two consecutive samples which deemed the child persistent confirmed positive

for this autoantibody. As described in more detail elsewhere (Steck et al., 2011), the respective

autoantibody titers were standardized to be comparable across study laboratories (University of

Bristol, UK; and University of Colorado, Denver, US) by subtracting the laboratory- and antibody-

specific threshold and dividing by the laboratory- and autoantibody-specific standard deviation, and

were log-transformed afterwards.

4.1.2 Study outcome

The main outcome of this analysis was the time to development of T1D after seroconversion in months.

T1D diagnosis was based on American Diabetes Association criteria (American Diabetes Association,

2011).
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4.1.3 Statistical analyses

Of the 8,676 children enrolled, 613 had developed one or more autoantibodies at the time of our

data access. We created three subsets of the data where we restricted the data to children who had

seroconverted to IAA (n = 442), GADA (n = 466) or IA2A (n = 288), respectively. These subsets

were not mutually exclusive, as children had potentially seroconverted to multiple autoantibodies.

Children were assigned to each subset irrespectively of whether the specific autoantibody was amongst

the first islet autoantibodies to appear or appeared at a later time during follow-up. For example, if

a child developed autoantibodies to IAA first and autoantibodies to GADA later, the child would be

assigned to both the IAA and GADA subset.

We used a novel shared parameter joint model approach to assess the association between the

longitudinal autoantibody titers from seroconversion with the time to T1D. Joint models allow the

incorporation of longitudinal titers as time-varying covariates into the survival model of progression

to T1D by estimating a longitudinal model and a proportional hazards model, using a joint likelihood

for both submodels (Rizopoulos, 2012). We further extended this model to a more flexible joint

model, where we were able to assess heterogeneous and nonlinear individual biomarker trajectories

and to explore complex associations between the biomarkers and the time-to-event (Köhler et al.,

2017b). We refer to the previous chapter for further details.3

Using this novel approach we specified the autoantibody titers over time as smooth, nonlinear,

subject-specific trajectories in the longitudinal model. Furthermore, we allowed the association be-

tween the modeled trajectories and the time to T1D to be time-varying in our main analysis. In

additional explorative analyses we allowed the association to differ between subjects with different

characteristics, and to differ over time between subjects with different characteristics. We fitted

these models for each of the three autoantibodies IAA, GADA and IA2A, separately, within each

autoantibody-specific subset. In the longitudinal submodels, we assessed the associations of each

autoantibody titer with a) age at seroconversion of the respective autoantibody, b) a binary vari-

able indicating whether the autoantibody was among the first autoantibodies to appear, and c) two

time-varying binary variables indicating which of the other two autoantibodies were present at each

observed time point. In each proportional hazards submodel, we assessed the associations of the

smooth subject-specific autoantibody trajectories from the longitudinal model with progression time

from seroconversion of the respective autoantibody to T1D. Baseline covariates were a) the age at

seroconversion of the respective autoantibody and b) whether the autoantibody was among the first

autoantibodies to appear. We further assessed whether the association between the autoantibody

trajectories and the time to T1D differed over time between subjects with and without a first-degree

relative with T1D or between girls and boys. Additionally, we checked for differences in the associ-

ation between HLA genotypes. Due to the limited size of certain HLA subgroups we modeled this

association as time-constant.

3The published manuscript encompasses model details in an Appendix which is omitted here as the respective flexible
additive joint model is described in detail in the previous chapter.
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All models were estimated within a Bayesian framework using the R package bamlss (Umlauf et al.,

2017). Weakly informative normal priors were used for all coefficients. We report the posterior mean

estimates / hazard ratios (HR) and 95% credibility intervals (CI) for all modeled parameters. Bayesian

CIs can be interpreted as the interval in which the population parameter lies with a given probability

(here 95%). We assessed convergence of the Markov chains by visual inspection of traceplots and

conducted sensitivity analyses with regard to prior specification. All calculations were carried out

with R version 3.2.5 (R Core Team, 2016).

4.2 Results

Table B.14 shows the study characteristics in each subset, i.e. the subsets of children who developed

IAA, GADA or IA2A autoantibodies, respectively, at any time during follow-up. In most cases, either

IAA, GADA, or both, were present at the time of the first seroconversion, whereas IA2A occurred

at a later time point. The children seroconverted to the different autoantibodies at different median

ages (p < 0.001, Kruskal-Wallis Test) with IAA seroconversion taking place at a lower median age.

Apart from that, children with different autoantibodies were similar regarding the progression time to

T1D and other variables. The individual autoantibody patterns over time after seroconversion were

heterogeneous, but on average IAA titers declined after an initial increase, and GADA and IA2A

titers increased shortly after seroconversion and remained relatively stable thereafter (Figure B.7 in

the Appendix).
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Figure 4.1: Posterior mean estimates (lines) and 95% credibility intervals (shaded areas) of ηα(t), the time-
varying log hazard ratio (HR) of the association between longitudinal autoantibody trajectories and T1D.

In the joint modeling of autoantibody titers over time and the time to T1D, we observed for all

autoantibodies a positive association between the titer and the risk of progression to T1D. Titers over

time were lower for subjects who seroconverted at an older age for the respective autoantibody, and

higher if the respective autoantibody appeared at the initial seroconversion, and if other autoanti-

bodies were present (Table 4.1). For each autoantibody, a higher age at the respective seroconversion

4To enhance readability the table was moved to the Appendix in contrast to the published manuscript.
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Table 4.1: Posterior mean estimates of coefficients (β) and hazard ratios with corresponding 95% credibility
intervals from joint models of autoantibody trajectories (IAA, GADA and IA2A, as estimated in longitudinal
submodels) and progression to T1D (survival submodels).

Autoantibodies Covariate Longitudinal models Survival models
β 95% CI HR 95% CI

IAA IAA present at first sc 0.35 0.20, 0.51 0.66 0.42, 1.02
IAA sc age (years) -0.10 -0.13, -0.07 0.84 0.72, 0.98
GADA positive (time-varying) 0.31 0.24, 0.37 a a

IA2A positive (time-varying) 0.17 0.12, 0.22 a a

GADA GADA present at first sc 0.34 0.19, 0.47 0.72 0.51, 1.03
GADA sc age (years) -0.06 -0.09, -0.03 0.61 0.52, 0.72
IAA positive (time-varying) 0.25 0.20, 0.32 a a

IA2A positive (time-varying) 0.06 0.02, 0.11 a a

IA2A IA2A present at first sc 0.31 0.11, 0.50 1.07 0.61, 1.80
IA2A sc age (years) -0.05 -0.08, -0.01 0.66 0.56, 0.78
IAA positive (time-varying) 0.22 0.09, 0.36 a a

GADA positive (time-varying) 0.29 0.18, 0.41 a a

a Covariate only included in the longitudinal submodel.
Bold font indicates that the 95% CI does not include 0 (for β) or 1 (for HR).
seroconversion (sc).

was also associated with lower risk of progression to clinical T1D. For example, children had a hazard

ratio [95% CI] of 0.84 [0.72, 0.98] if they seroconverted one year later for IAA. We further investigated

whether the association between the estimated trajectories of autoantibodies and the progression to

T1D was time-varying or constant.

By using our approach, we observed that the association was time-varying for IAA and GADA

with the association being highest early after seroconversion and decreasing over time (Figure 4.1)

and stronger for IAA than GADA: The hazard ratio for IAA (per transformed unit) was 3.38 [2.66;

4.38] at 6 months after seroconversion, 3.02 [2.44, 3.81] at 12 months after seroconversion, and 2.02

[1.55, 2.68] at 36 months after seroconversion (Table 3) with an average decrease in the hazard ratio

of 10% [95% CI; 2%, 18%] every 6 months. The hazard ratio for GADA (per transformed unit) was

1.63 [1.20, 2.30] at 6 months after seroconversion, 1.40 [1.07, 1.85] at 12 months after seroconversion,

and 0.85 [0.61, 1.17] at 36 months after seroconversion with an average decrease of 9% [1%, 15%]

every 6 months. For IA2A, the positive association between autoantibody titer and T1D progression

was estimated as time-constant: The hazard ratios for IA2A (per transformed unit) were 1.56 [1.04,

2.42] at 6 months after seroconversion, 1.53 [1.10, 2.16] at 12 months after seroconversion, and 1.44

[1.005, 2.16] at 36 months after seroconversion with a negligible average decrease of 2% [-8%, 13%]

every 6 months.
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Table 4.2: Posterior mean hazard ratios with corresponding 95% credibility intervals at different time-points
after seroconversion of each autoantibody for the association between autoantibody trajectories from the lon-
gitudinal model and progression time to T1D.

Time point IAA GADA IA2A
HR 95% CI HR 95% CI HR 95% CI

0 months 3.78 2.78, 5.28 1.94 1.28, 3.25 1.62 0.96, 2.81
6 months 3.38 2.66, 4.38 1.63 1.20, 2.30 1.56 1.04, 2.42
12 months 3.02 2.44, 3.81 1.40 1.07, 1.85 1.53 1.10, 2.16
24 months 2.43 1.94, 3.02 1.07 0.80, 1.41 1.49 1.08, 2.13
36 months 2.02 1.55, 2.68 0.85 0.61, 1.17 1.44 1.005, 2.16
48 months 1.69 1.17, 2.50 0.73 0.50, 1.04 1.37 0.82, 2.33
60 months 1.39 0.77, 2.42 0.69 0.43, 1.14 1.28 0.58, 2.74

Bold font indicates that the 95% CI does not include 0 (for β) or 1 (for HR).

As indicated by the credibility intervals in Figure 4.1, positive associations with T1D progression

were observed for IAA up to 54 months after seroconversion, for GADA up to 18 months after

seroconversion and for IA2A between 6 and 36 months after seroconversion. The traceplots indicated

satisfactory convergence of the Markov chains (Figure B.8, B.9, and B.10) and sensitivity analyses

showed robustness against different prior specifications (Figure B.11).

We further observed differences in the time-varying association of autoantibodies with progression

to T1D between children with and without a first-degree relative with T1D. For all autoantibodies

the associations were higher amongst children with a first degree relative at early time points and

decreased more strongly within this group (Figure 4.2, upper panel). For IAA, the associations

between the two groups differed from seroconversion until about 12 months thereafter, as indicated

by the credibility bands of the differences (Figure 4.2, lower panel), but only from 4 to 6 months after

seroconversion for GADA and from 1 to 16 months after seroconversion for IA2A.

For all autoantibodies HLA subgroups were similar in the association between autoantibody tra-

jectories and the time to T1D (Figure 4.3). An exception was a higher association for subjects with

IAA autoantibodies and the DR3/3 genotype, a genotype which is less prevalent among IAA positive

children (n = 30, 7%). In accordance with the difference in the hazard, the mean titer levels between

progressors and non-progressors differed more strongly within the small subgroup of DR3/3 than

within other HLA genotypes with non-progressors showing an especially low level (Figure B.12). We

did not observe consistent differences in the association over time between girls and boys (Figure

B.13).
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Figure 4.2: Posterior mean estimates (lines / dots) and 95% credibility intervals (shaded areas) of ηα(t,FDR),
the time-varying log hazard ratio (HR) of the association between longitudinal autoantibody trajectories and
T1D progression stratified for children that had a first-degree relative (FDR) with T1D or not (upper panel)
and of the difference of the association between the groups over time, ηα(t,FDR = 1)− ηα(t,FDR = 0) (lower
panel).
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Figure 4.3: Posterior mean estimates and 95% credibility intervals of , the time-constant log hazard ratio (HR)
of ηα(t,HLA), the association between longitudinal autoantibody trajectories and T1D progression, per HLA
genotype. The dashed line represents the estimated log hazard ratio of the reference group.
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4.3 Discussion

In the present study the complex relationship between longitudinally measured autoantibodies and

the risk of progression to T1D diabetes was explored using a novel joint modeling approach. We

observed potentially time-varying positive associations between the autoantibody titers of IAA and

GADA, and the risk of T1D progression, indicating that the T1D progression risk associated with

autoantibody titers was highest shortly after seroconversion of the respective autoantibody. The

hazard ratio was highest for IAA, especially at early time points. Additionally, we observed that

the associations of the autoantibody titer and the T1D risk early after seroconversion were more

pronounced in children with first-degree relatives with T1D.

These results were in line with earlier results from other cohorts, where initial and mean IAA and

IA2A titers were shown to be associated with the risk of progression (Mrena et al., 2006; Parikka

et al., 2012; Steck et al., 2011) as well as from a more recent and methodologically advanced study

based on the TEDDY data. In this study the relationship between titers of the same autoantibodies

over time and the risk of progression to T1D was modeled assuming a time constant association

(Steck et al., 2015). By using mean levels of the respective autoantibodies as time-varying predictors

in a Cox model, the authors could show a positive association between autoantibody titers and the

time to T1D progression for IAA and IA2A in their analyses. Potential limitations of this previous

approach are however that (a) only subjects’ mean titers until a certain time point are taken into

account and not all observed values over time, (b) in a time-varying Cox model the time-varying

predictor is assumed constant between observations, and (c) the association between autoantibodies

and the risk of progression is assumed to be time-constant.

These limitations were addressed by our joint modeling approach. Here, we flexibly modeled the

trajectories of all three autoantibodies in each subject as a smooth function of time, i.e. obtaining

predictions for the autoantibody titers between the measurements at discrete time points, and could

use all this information as a time-varying covariate in the survival model. Additionally, we allowed

their association with the risk of T1D progression to vary over time and between groups of subjects

(children with and without first degree relatives with T1D as well as boys and girls). In consequence,

we were able to explore the association between autoantibodies and the risk of T1D beyond the

previous results. For example, we observed that increased GADA titers may predict T1D progression

within the first 1.5 years after seroconversion, but not thereafter. As this association averages to 0 over

the whole time range this association was potentially not captured in the simpler modeling from the

previous analysis. Furthermore, our modeling approach revealed that the time-varying associations

appear to be more pronounced in children with first degree relatives with T1D compared to children

without.

The modeling of autoantibodies as longitudinal biomarkers and the time to clinical T1D poses a

challenge due to the nature of the data beyond the aspects mentioned above. Longitudinal biomarkers

usually contain potential random variation both due to the laboratory measurement process as well
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as short and long term biological fluctuations, and are only observed until an event occurs. Whereas

not accounting for the random fluctuations in a time-varying Cox model might result in an underes-

timation of the hazard ratio (Asar et al., 2015), ignoring the latter might distort the estimation of

covariate effects in the longitudinal model. By jointly analyzing the longitudinal and survival model

we could address these issues and gained further insights as to how covariates affected both the au-

toantibody titers over time, and the risk of T1D progression. We found that earlier seroconversion for

the respective autoantibody, if the respective seroconversion was the initial one, as well as the presence

of other autoantibodies was associated with higher autoantibody titers. The age at the respective

seroconversion was also inversely related to the risk of T1D progression for every autoantibody.

While joint modeling approaches allow for detailed and unbiased estimations, they demand a high

number of subjects, especially when complex associations are modeled in the survival part. TEDDY

is the largest prospective study on the determinants of T1D worldwide and thus offers a unique op-

portunity to explore the application of joint modeling techniques on these complex relationships due

to the high number of subjects and the detailed measurement schedule. Currently, the presented

flexible joint model only allows the assessment of one longitudinal biomarker at a time. In conse-

quence, one limitation is that we were not able to combine all three markers into one joint model. We

partly addressed this issue by including information on the presence of other autoantibodies and the

order of their occurrence in our model. While they provide insights into the mechanisms of disease

progression, a drawback of our results is that they cannot easily be translated from a cohort setting

with frequent measurements into clinical practice, as the age at the respective seroconversion plays a

crucial role in the prediction of T1D progression risk, but is not readily available in practice.

In conclusion, by using state of the art joint modeling techniques we were able to give insights

into the complex relationship between longitudinal autoantibody titers and the risk of progression to

clinical T1D. Risk stratification basing on autoantibody titers should focus on time points early after

seroconversion.
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Chapter 5

Nonlinear associations in the flexible

additive joint model

The joint modeling of longitudinal and survival processes has gained large attention in the last

decade and has seen a broad range of developments. In this work we present a flexible framework

for Bayesian additive joint models that allows for a highly flexible specification of the association

between longitudinal biomarkers and a survival process to gain further insights into complex diseases.

A special focus is placed on potentially nonlinear associations between a longitudinal biomarker and

the log-hazard of an event.

The research into joint models has largely been motivated by biomedical applications such as

modeling of CD4 counts and HIV progression (Wulfsohn and Tsiatis, 1997; Tsiatis and Davidian,

2001), PSA values and prostate cancer (Taylor et al., 2013) or breast cancer (Chi and Ibrahim, 2006)

and receives growing attention in applied research (Sudell et al., 2016). In all these applications there

is a need for unbiased modeling of a longitudinal covariate, often a biomarker, and its association to

the hazard of an event. This situation demands a special treatment as the longitudinal covariate is

potentially subject to measurement error, measured at individual-specific time points and observed

only until the occurrence of the event. Joint models take all these complications into account by

formulating a joint likelihood for the longitudinal and the survival submodel and thereby achieve an

unbiased modeling of both. As a detailed overview of the field of joint models for longitudinal and

time-to-event data is beyond the scope of this work, we refer to the excellent reviews on the topic

from Tsiatis and Davidian (2004), Rizopoulos (2012) and Gould et al. (2015). The main idea of this

modeling framework is that a set of parameters is assumed to influence both the longitudinal and the

survival submodel with conditional independence between the two models, given those parameters.

This shared parameter linking the two submodels can be a latent class structure, as in joint latent

class models (Proust-Lima et al., 2014), or random effects, as is the case in most developments in joint

modeling. The associations between longitudinal marker and log-hazard in this class of shared random

This chapter is based on Köhler et al. (2017c) published as an arXiv e-print [stat.ME]. For more information on the
contributions of the authors see Section 1.4. Modifications to the original version are indexed with footnotes.
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effects models can be parameterized differently such that only the random effects are associated, the

current value of the marker at a certain time point or further transformations of this current value

(see Hickey et al. (2016) for an overview of associations structures in multivariate joint modeling).

Focus in this work is placed on the current value association.

Existing shared random effects models include the linearity assumption that the effect of the

modeled marker trajectories on the logarithm of the hazard is linear. In the context of survival analysis

checking the linearity assumption as well as the modeling of an appropriate functional form has been

under study (Buchholz and Sauerbrei, 2011; Holländer and Schumacher, 2006). In different biomedical

applications it was shown that appropriate modeling of the functional form of continuous covariate

effects reduces bias and allows for additional insights into prognostic factors, for example in the study

of breast cancer (Gray, 1992; Sauerbrei et al., 1999), lung cancer (Gagnon et al., 2010) and leukemia

(Inaba et al., 2012). For the accurate specification of nonlinear effects of continuous covariates in the

time-to-event model different strategies have been applied, such as fractional polynomials (Royston

and Altman, 1994; Sauerbrei et al., 2007) as well as unpenalized (Sleeper and Harrington, 1990;

Wynant and Abrahamowicz, 2016) and penalized spline approaches (Hastie and Tibshirani, 1995;

Hofner et al., 2011).

The results from survival modeling suggest that the linearity assumption may also not always be

met when modeling the effects of a longitudinal marker in a joint model. To our knowledge, to date

no shared random effects joint model approach extends or even tests this assumption. The user of

a joint model can only assume that, given an appropriate transformation of the raw marker values

such as a log-transformation, the association is indeed linear. The present work aims to fill this gap

by allowing greater flexibility in the specification of the association between marker and event. Note

that joint latent class models (Proust-Lima et al., 2014), where the latent class is associated with the

log-hazard and the association between marker and event is only implicit, also allow for a nonlinear

relationship between marker and hazard. However, our interest lies in gaining insights in the detailed

nature of this association, and therefore an explicit modeling of this association is necessary.

In Chapter 3 a general framework for flexible structured additive joint models was presented

with the focus on modeling highly subject-specific nonlinear individual longitudinal trajectories as

well as a time-varying association. This flexibility is achieved by formulating the joint model as a

structured additive regression (Fahrmeir et al., 2004) in which all model parts, which are the baseline

hazard, baseline covariates effects, mean and variance of the modeled longitudinal marker as well

as the association are structured additive predictors. These predictors can encompass nonlinear,

smooth and time-varying effects by making use of P-splines (Eilers and Marx, 1996) and capture

highly flexible nonlinear individual trajectories by modeling them as functional random intercepts

(Scheipl et al., 2015). The model is estimated in a Bayesian framework with smoothness and random

effects structures induced by appropriate prior specifications. In the present work this framework is

generalized further to allow for nonlinear associations between a marker and the event process as well

as to allow this nonlinear association to vary with covariates.

In order to facilitate the application of this flexible joint model it is fully implemented in the R

package bamlss, thereby adding to the available range of joint model packages. Software packages in
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the shared random effects approach are JM (Rizopoulos, 2010) and its Bayesian counterpart JMbayes

(Rizopoulos, 2016a), joineR (Philipson et al., 2017), frailtypack (Rondeau et al., 2012) as well as the

stata package stjm (Crowther, 2012) and the SAS macro JMFit (Zhang et al., 2016) of which many are

rather restricted in the amount of flexibility they allow in modeling nonlinear individual trajectories

and the association itself. Out of these packages up to date the R package JMbayes offers the most

flexibility in modeling individual trajectories and different association structures while, however, also

assuming linearity in the association between the marker and the log-hazard. We therefore compare

our implementation with this established package in our simulation study.

The paper is structured as follows: In Section 5.1 the general framework is presented with details

on the Bayesian estimation in Section 5.2. An extensive simulation study in Section 5.3 and a practical

application of the model on the well-known data on primary biliary cirrhosis (PBC) (Murtaugh et al.,

1994), which is included in the R package JMbayes, in Section 5.4 aim to give further insights into the

performance of this flexible model. Finally, concluding remarks are given in Section 5.5 and further

technical details can be found in the Appendix B.3. The presented model is implemented in the R

package bamlss and source code to fully reproduce the results of the simulations and the application

is given in the Supporting Information of the original contribution.

5.1 Methods

In the following we further generalize the previously formulated flexible additive joint model (see

Chapter 3) to allow for complex nonlinear association structures between a longitudinal marker and

the time-to-event process.

5.1.1 General model

For each subject i = 1, . . . , n we observe the longitudinal response yi = [yi1, · · · , yini ]> at the poten-

tially subject-specific time points ti = [ti1, · · · , tini ]> with ti1 ≤ · · · ≤ tini ≤ Ti, modeled by

yij = ηµi(tij) + εij with εij ∼ N(0, exp[ησi(tij)]
2). (5.1)

The predictor ηµ denotes the ”true” longitudinal marker that serves as a time-varying covariate in

the time-to-event model. Additionally we observe for every subject i = 1, . . . , n a potentially right-

censored follow-up time Ti and the event indicator δi, which is 1 if subject i experiences the event

and 0 if it is censored. The hazard of an event at time t is modeled by structured additive predictors

ηk, k ∈ {λ, γ, α, µ} as

hi(t) = exp {ηi(t)} = exp {ηλi(t) + ηγi + ηαi (ηµi(t), t)} (5.2)

with ηλ the predictor for all time-varying survival covariates and effects including the log baseline

hazard, ηγ representing all baseline survival covariates, the longitudinal marker ηµ and the potentially

nonlinear association between the longitudinal marker and the hazard ηα. Note that by modeling the
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latter as a function of ηµ and time t, a variety of association structures can be specified.

In general, the vector of predictors for all subjects is expressed as ηk = [ηk1, · · · , ηkn]>, k ∈
{λ, γ, α, µ, σ}. In the longitudinal part of the model, the predictor vector is ηµ(t) of length N =

∑
i ni

containing entries ηµi(tij) for all j = 1, . . . , ni per subject i, i.e. corresponding evaluations at all ob-

served time points t = [t>1 , · · · , t>n ]>. In the survival part of the model, the predictor vector ηµ(t)

is of length n containing one observation per subject at time t. This setup in the survival part is

analogous to the setup for the other predictors in the survival submodel and additionally, ηk(T)

denotes the evaluation of the respective predictor at the vector of follow-up times for all subjects

T = [Ti, · · · , Tn]>.

Each predictor ηki with k ∈ {λ, γ, µ, σ} is a structured additive predictor ηki =
∑Mk

m=1 fkm(x̃kmi)

of Mk functions of covariates x̃i. Each function fkm depends on one or two covariates, i.e. different

subsets x̃kmi of x̃i. For time-varying predictors the functions can also depend on time ηki(t) =∑Mk
m=1 fkm(x̃kmi(t), t). By using suitable (e.g. spline) basis matrices Xkm for every termm of predictor

k and corresponding penalty Pkm a variety of effects such as nonlinear, spatial, time-varying or random

effects can be modeled under the generic structure

fkm = Xkmβkm and Pkm =
1

τ2
km

β>kmKkmβkm. (5.3)

Here, fkm denotes the vector of function evaluations stacked over subjects, Xkm are the design

matrices of size n × pkm or N × pkm for the survival and longitudinal submodel, respectively, and

βkm = [βk1, · · · , βkpkm ]> denotes the coefficient vector of length pkm. Note that for the survival part

xkmi denotes the i-th row of the design matrix Xkm whereas x̃kmi denotes the respective covariate

vector. For parametric terms these two often coincide, whereas for spline representations of smooth

covariate effects or random effects terms xkmi represents the respective basis evaluation vector of x̃kmi.

For example, random intercepts are modeled using the design matrix Xkm, an N×n indicator matrix

with the ith column indicating which longitudinal measurements belong to subject i, the coefficient

vector βkm = [βkm1, · · · , βkmn] and the penalty matrix Kkm = In, which is an n× n identity matrix.

This penalty ensures βkmi ∼ N(0, τ2
km) independently. For the setup of smooth effects using P-splines

we refer to the next subsection and details on the setup of the predictors, function evaluations and

design matrices for the submodels can be found in Table 3.1.

All effects are modeled within a Bayesian framework by specifying appropriate prior distributions

for the coefficient vectors, as presented in more detail in Section 5.2.

5.1.2 Flexible associations

The special focus in the generalization of the hazard in eq. (5.2) lies on the flexible specification of the

predictor ηα to incorporate not only time-varying and covariate-dependent associations as presented

in Chapter 3, but also nonlinear associations between the predicted longitudinal marker and the

time-to-event process.

The general predictor is formulated as ηαi(ηµi(t), t) = fα (ηµi(t), x̃αi, t), that is a function of the

potentially smooth time-varying predicted marker trajectories ηµi(t) from eq. (5.1), further covariates
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x̃αi as well as time t. Note that we drop the subscript m whenever this is simpler. We make use of a

suitable basis representation to incorporate this flexible specification into our framework as

fα (ηµi(t), x̃αi, t) = [g1(ηµi(t))� g2(x̃αi, t)]βα = x>αiβα (5.4)

with � denoting the row tensor product. The row tensor product of a p × a matrix A and a p × b
matrix B is defined as the p× ab matrix A�B = (A⊗ 1>b ) · (1>a ⊗B) with · denoting element-wise

multiplication and ⊗ the Kronecker product. In this notation g1(ηµi(t)) represents the basis vector of

the potentially nonlinear effect of the longitudinal predictor ηµi(t) and g2(x̃αi, t) represents the basis

vector for the effects of relevant covariates and/or a smooth function of time t. The resulting design

vector xαi and parameter vector βα are of length pα = pα1 · pα2.

The standard linear association between the longitudinal predictor and the log-hazard can be

formulated as g1(ηµi(t)) = I(ηµi(t)) = ηµi(t), where I(·) denotes the identity, and g2 ≡ 1. For

nonlinear associations we use P-splines (Eilers and Marx, 1996) by specifying a B-spline representation

of the longitudinal predictor effect g1(ηµi(t)) = B (ηµi(t)) = [B1 (ηµi(t)) , · · · , Bpα1 (ηµi(t))]. Here,

Bm denotes the m-th basis function over the observed range of ηµi(t), with g1(ηµi(t)) being the

corresponding design vector of length pα1 of the spline evaluations at ηµi(t). The corresponding

penalty matrix of the effect of ηµ(t) is a zero matrix Kα1 = 0 for g1(ηµi(t)) = I(ηµi(t)) and a P-spline

penalty matrix Kα1 = D>r Dr with the r-th difference matrix Dr for g1(ηµi(t)) = B(ηµi(t)). For

simplicity, we denote the function transforming any covariate values z into a matrix of evaluations

of a spline basis generally as B(z). This function returns the matrix of respective basis evaluations

with pα1 columns and length(z) rows.

In order to model simple parametric, nonlinear or time-varying effects, g2(x̃αi, t) can be specified

accordingly as a constant, a spline representation of a continuous covariate or as spline representation

of an effect of time t with appropriate penalty matrix Kα2. To further illustrate the notation, consider

the following effect specifications

• time-constant, linear association fα (ηµi(t)) = [I (ηµi(t))� 1]βα where pα = 1 · 1,

• (linearly) covariate-dependent, linear association fα (ηµi(t), x̃αi) =
[
I (ηµi(t))� x̃>αi

]
βα where

pα = 1 · pα2 with pα2 the length of x̃αi,

• time-varying, linear association fα (ηµi(t), t) = [I (ηµi(t))�B(t)]βα where pα = 1 ·pα2 with pα2

the number of spline basis functions in B(t),

• time-constant, nonlinear association fα (ηµi(t)) =
[
B (ηµi(t))

> � 1
]
βα where pα = pα1 · 1 with

pα1 the number of spline basis functions in B (ηµi(t)),

• covariate-dependent, nonlinear association fα (ηµi(t), x̃αi) =
[
B (ηµi(t))

> � x̃>αi
]
βα where pα =

pα1 · pα2 with pα1 the number of spline basis functions in B (ηµi(t)) and pα2 the length of x̃αi,

• time-varying, nonlinear association fα (ηµi(t), t) =
[
B (ηµi(t))

> �B(t)
]
βα where pα = pα1 · pα2

with pα1 and pα2 the number of spline basis functions in B (ηµi(t)) and B(t), respectively.



66 5. Nonlinear associations in the flexible additive joint model

For both, time-varying effects and nonlinear associations, Bayesian P-Splines (Lang and Brezger,

2004) are employed where smoothing is induced by appropriate prior specification. In more detail the

difference penalties are replaced by their stochastic analogues, i.e. random walks. The full penalty

Pα allows for different amounts of smoothing across both ηµi(t) and the covariate or time effects by

using an anisotropic smooth with

Pα = β>α

(
1

τ2
α1

Kα1 ⊗ Ipα2 +
1

τ2
α2

Ipα1 ⊗Kα2

)
βα = β>α

(
1

τ2
α1

K̃α1 +
1

τ2
α2

K̃α2

)
βα, (5.5)

where Ia is an a×a identity matrix. Within the R package bamlss currently all above mentioned linear

associations as well as constant and group-specific nonlinear associations are implemented. Further

nonlinear associations are under construction.

5.1.3 Identifiability

Given the additive structure of the model and the fact that all model parts always contain an intercept

in our construction, constraints on certain predictors are necessary to obtain an identifiable model.

The general constraint for all nonlinear terms in the model is a sum-to-zero constraint over all n or N

observations for predictors in the survival and longitudinal submodel, respectively, e.g.
∑

i fλm(Ti) =

0 or
∑

i fγm(x̃γmi) = 0. These constraints are implemented for B-splines by transforming the n×pkm
basis matrix Xkm into an n× (pkm−1) matrix Ẋkm for which it holds that Ẋkm1pkm−1 = 0 as shown

in Wood (2006, chapter 1.8), and adjusting the penalty accordingly. For tensor product smooth terms

the constraint is achieved by transforming the marginal basis matrix of the continuous covariate and

the corresponding marginal penalty.

In the case of a nonlinear specification of ηαi(ηµi(t)), the predictor also needs to be constrained.

As the predictor ηµi(t) and therefore also its spline basis evaluation is estimated within the model,

we choose a constraint based on the observed marker. In more detail, we constrain the term to sum

to zero on a fixed grid y∗ from the 2.5th to the 97.5th quantile of the observed longitudinal response,

i.e. 1>ηα(y∗) = 0 with 1 a vector of ones. For nonlinear effects per factor level g the same constraint

is enforced for every level g and one intercept per factor level except the reference level is included in

the model.

5.2 Estimation

We estimate the model in a Bayesian framework using a Newton-Raphson procedure and a derivative-

based MCMC algorithm to estimate the mode and the mean of the posterior distribution of the vector

θ of all parameters, respectively.

Assuming conditional independence of the survival outcomes [Ti, δi] and the longitudinal outcomes

yi, given the parameters θ, the posterior of the full model is



5.2 Estimation 67

p(θ|T, δ,y) ∝ Llong [θ|y] · Lsurv [θ|T, δ]
∏

k∈{λ,γ,α,µ,σ}

Mk∏
m=1

[
p(βkm|τ 2

km)p(τ 2
km)
]
,

with the likelihood of the longitudinal submodel Llong (cf. eq. (5.1)) and the survival submodel

Lsurv (cf. eq. (5.2)), and the response vectors y = [y>1 , · · · ,y>n ]> and δ = [δ1, · · · , δn]>. Further,

p(βkm|τ 2
km) and p(τ 2

km) denote the priors of the vectors of regression parameters and variance pa-

rameters for each term m and predictor k. Note that for anisotropic smooths, multiple variance

parameters are used resulting in the vector τ 2
km.

5.2.1 Likelihood

The log-likelihood of the longitudinal part is

`long [θ|y] = −N
2

log(2π)− 1>Nησ (t)− 1

2
(y − ηµ (t))>R−1(y − ηµ (t))

where R = blockdiag(R1, · · · ,Rn). R simplifies to a diagonal matrix, as we assume Ri =

diag(exp[ησi(ti1)]2, · · · , exp[ησi(tini)]
2).

The log-likelihood of the survival part of the model is

`surv [θ|T, δ] = δ>η(T)− 1>nΛ (T)

where Λ(T) = [Λ1(T1), · · · ,Λn(Tn)]> denotes the vector of cumulative hazard rates with Λi(Ti) =

exp(ηγi)
∫ Ti

0 exp[ηλi(u) + ηαi(ηµi(u), u)]du.

5.2.2 Priors

In our setup different terms, such as smooth, time-varying or random effects, are specified by the

choice of corresponding design matrices and priors. For linear or parametric terms we use vague

normal priors on the vectors of the regression coefficients, e.g. βkm ∼ N(0, 10002I), to approximate

a precision matrix Kkm = 0. Multivariate normal priors

p(βkm|τ2
km) ∝

(
1

τ2
km

) rank(Kkm)
2

exp

(
− 1

2τ2
km

β>kmKkmβkm

)
are used to regularize smooth and random effect terms with precision matrix Kkm as specified in the

penalty eq. (5.3). For anisotropic smooths as in the flexible association ηα in eq. (5.5), when multiple

variance parameters are involved, e.g. τ 2
α = (τ2

α1, τ
2
α2), we use the prior

p(βkm|τ 2
km) ∝

∣∣∣∣ 1

τ2
km1

K̃km1 +
1

τ2
km2

K̃km2

∣∣∣∣ 12 exp

(
−1

2
β>km

[
1

τ2
km1

K̃km1 +
1

τ2
km2

K̃km2

]
βkm

)
.
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As priors for the variance parameters τ2
km, which control the trade-off between flexibility and

smoothness in the nonlinear modeling of effects, we use independent inverse Gamma hyperpriors

τ2
km ∼ IG(0.001, 0.001) to obtain an inverse Gamma full conditional (component-wise in the case of

variance vectors). Further priors for the variance parameters, such as half-Cauchy, are possible.

5.2.3 Posterior mode and posterior mean

To obtain starting values for the posterior mean estimation and to gain a quick model assessment we

estimate the mode of the posterior using a Newton-Raphson procedure. In more detail, we maximize

the log-posterior by updating blockwise each term m of predictor k in each iteration l as

β
[l+1]
km = β

[l]
km − ν

[l]
kmH

(
β

[l]
km

)−1
s
(
β

[l]
km

)
with steplength ν

[l]
km, the score vector s(βkm) and the Hessian H(βkm). In each updating step we

optimize the steplength ν
[l]
km over (0, 1] to maximize the log-posterior and the variance parameters to

minimize the corrected AIC (AICc, Hurvich et al., 1998). The block-wise score vectors and Hessians

can be found in Appendix A. For quick approximate inference we derive credibility intervals from

N(β̂km, [−H(β̂km)]−1) assuming an approximately normal posterior distribution for the coefficients

βkm. Note, however, that as these credibility intervals do not take into account the optimization

of the variance parameters, they tend to underestimate the variability and posterior mean sampling

should be used for exact inference.

The focus of our model estimation lies on the derivative-based Metropolis-Hastings posterior mean

sampling. We construct approximate full conditionals π(βkm|·) based on a second order Taylor ex-

pansion of the log-posterior centered at the last state β
[l]
km as shown in Umlauf et al. (2017). This

approximate full conditional results in a multivariate normal proposal density with the precision ma-

trix (Σ
[l]
km)−1 = −H(β

[l]
km) and the mean µ

[l]
km = β

[l]
km−H(β

[l]
km)−1s(β

[l]
km). We draw a candidate β∗km

from the proposal density q(β∗km|β
[l]
km) = N(µ

[l]
km,Σ

[l]
km) in each iteration l of the Metropolis-Hastings

sampler for updating block km. Despite being computationally demanding, drawing candidates from

a close derivative-based approximation of the full conditional results in high acceptance rates and

good mixing as we approximate a Gibbs sampler. Samples for the variance parameters τ2
km are ei-

ther obtained via Gibbs sampling, if inverse Gamma hyperpriors are used and the full conditionals

π(τ2
km|·) in consequence follow an inverse Gamma distribution, or via slice sampling when no simple

closed-form full conditional can be obtained. This is the case in the sampling of variance parameters

for anisotropic smooths or when other hyperpriors than the inverse Gamma are used. We suggest to

use DIC for model selection.

5.3 Simulation

The performance of the presented framework is tested in extensive simulations of which a subset is

shown in the following. Three main questions motivated the simulations: First, we aim to assess how
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well the flexible joint model can estimate truly linear associations, also in comparison to established

implementations as in the R package JMbayes. Second, we explore how well the model can capture

truly nonlinear associations and assess if any bias occurs if the nonlinear association is falsely modeled

as linear in the log-hazard in JMbayes. Third, the performance of fitting a nonlinear effect per

subgroup is assessed. As previous work has shown a strong dependence of the estimation precision

on the number of subjects, we test data sets of two different sizes in all three simulation settings.

5.3.1 Simulation design

We simulate data according to eq. (5.1) and eq. (5.2) where we use in setting 1 the linear association

ηαi(ηµi(t)) = 1 · ηµi(t) between the longitudinal marker and the log-hazard, in setting 2 the nonlinear

association ηαi(ηµi(t)) = −0.1(ηµi(t) + 3)2 + ηµi(t) + 1.8 and in setting 3 a group-specific nonlinear

association ηαi(ηµi(t), gi = 1) = −0.1(ηµi(t) + 3)2 + ηµi(t) + 1.8 and ηαi(ηµi(t), gi = 0) = 0.1(ηµi(t)−
3)2 + 0.75ηµi(t)− 0.8. In all settings we generate Q = 200 data sets with n = 300, 600, respectively,

to assess the influence of sample size on the precision of the estimates.

In more detail we generate longitudinal marker values ηµi(t) =
∑5

m=1 fµm(x̃µmi, t) at a fixed

grid of time points t∗ = 1, . . . , 120 with the time effect fµ1 (t) = 0.1(t + 2) exp(−0.075t), random

intercepts fµ2 (i) = ri where ri ∼ N(0, 0.25), functional random intercepts (i.e. smooth subject-

specific trajectories) fµ3 (t, i) = Xµ3βµ3 = (Xµ3s � Xµ3t)βµ3 where Xµ3s and Xµ3t are the basis

representations of a random intercept and a spline over t, respectively, as well as a global intercept

fµ4(x̃µi) = 0.5 and covariate effect fµ5(x̃µi) = 0.6 sin(x̃2i) with x̃2i ∼ unif(−3, 3). The functional

random intercepts are simulated using P-Splines based on cubic B-splines where the true vector

of spline-coefficients with 4 basis functions per subject is drawn from βµ3 ∼ N(0, [(1/τ2
µ3s)K̃µ3s +

(1/τ2
µ3t)K̃µ3t]

−1) where K̃µ3s = Kµ3s ⊗ I4 with Kµ3s = In as the penalty matrix for the random

effect and K̃t = In ⊗Kµ3t with Kµ3t as an appropriate penalty matrix for the smooth effect of time

with Kt = D>2 D2, τ2
s = 1 and τ2

t = 0.2. Similar to eq. (3.5) the two marginal penalties are extended

by the Kronecker product ⊗ with suitable identity matrices.

We calculate the hazard hi(t) for every subject using ηλ(t) = 1.4 log((t+ 10)/1000), ηγi = 0.3x̃1i,

with x̃1i ∼ U(−3, 3) and ηα as described above. Survival times for every subject are derived using

survival probabilities obtained by numerical integration as described in Bender et al. (2005) and

Crowther and Lambert (2013) and censored at t = 120. We additionally censor all survival times

uniformly using U(0, 1.5·120). In order to mimic the irregular measurement times we randomly delete

90% of the generated longitudinal measurements resulting in a median of 6 measurements per subject

(interquartile range (IQR): 3, 10) for every setting. Finally we obtain longitudinal observations yij
from ηµi(t) by adding independent errors εij ∼ N(0, 0.32) for each tij in t. As the estimation showed

stability issues in the most complex model in setting 3 for small samples we fit setting 3 also leaving

more longitudinal observations by deleting only 80% of the simulated observations resulting in a

median of 12 measurements per subject (IQR: 6, 18).

We fit the 1600 generated data sets ((3+1) settings × 2 sample sizes × 200 replications) with our

model implementation in bamlss. Additionally we compare our results in setting 1 and 2 with the

linear estimation in JMbayes. For bamlss we estimate the longitudinal trajectories using P-splines
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(Eilers and Marx, 1996) with cubic B-Splines, a second order difference penalty and 10 knots (2

internal knots) for the overall mean and the individual trajectories resulting in 5 · n basis functions.

The association ηαi(ηµi(t)) is also modeled using P-Splines with 5 basis functions after imposing the

constraint in setting 1 and 2, and for each of both groups in setting 3. In a few cases the posterior

mode estimation led to extreme predictions in ηµi(t) for single subjects. In these cases we reduced

the number of coefficients for ηαi(ηµi(t)) by 2 to stabilize the estimation. This occurred 2 and 4

times in setting 1, for small and large data sets, respectively, 3 and 2 times in setting 2, and 5 and 1

time in setting 3 with a median of 6 observations per person as well as 2 times each with a median

of 12 observations per person. Further, the baseline hazard ηλ is estimated using P-Splines with 9

resulting basis functions. For setting 3 we allow the nonlinear association to vary between the two

subgroups ηαi(ηµi(t), gi). For comparison we also fit the data sets assuming a linear association with

the log-hazard using JMbayes in setting 1 and 2 and try to achieve otherwise comparable models by

modeling the nonlinear effects in the longitudinal submodel by unpenalized B-splines and the baseline

hazard by P-splines. The number of knots were assessed in preliminary simulations to minimize the

AIC resulting in 3 basis functions per subject with diagonal covariance matrix of the random effects

for n = 300 and 4 basis functions per subject for n = 600. For the posterior mean estimation we

sample for 13000 iterations, discard 3000 samples as burnin and keep 5000 samples per model after

thinning.

In every estimated model we calculate mean-squared error (MSE), bias, and frequentist coverage

of the 95% credibility interval both averaged over all time points and averaged per time point. For

the predictors in the longitudinal model, i.e. k ∈ {µ, σ}, the average MSE in each sample q is

MSEqk = 1
N

∑n
i=1

∑ni
j=1[η̂qki(tij) − ηqki(tij)]

2 with the estimate η̂ki, and the MSE per time point is

MSEqk(t) = 1
n

∑n
i=1[η̂qki(t)− η

q
ki(t)]

2 for all t in t∗. For the survival predictors ηγ and ηλ, the average

MSE is MSEqk = 1
n

∑n
i=1[η̂qki(Ti)− η

q
ki(Ti)]

2 using evaluations at the subject’s event times for ηλ and

for the time-constant ηγ . For ηλ the error is additionally evaluated at the fixed grid of time points

t∗ as above. For the potentially nonlinear association ηαi(ηµi(t)) a variety of different evaluations

are possible. As the association is a survival predictor we compute the average error as MSEqα =
1
n

∑n
i=1[η̂qαi(ηµi(Ti)) − ηqαi(ηµi(Ti))]

2. To assess the performance over the full range of the marker

values and to assess deviations from a linear fit we also compute MSEqα(η∗µ) = [η̂qα(η∗µ) − ηqα(η∗µ)]2

where η∗µ is from a fixed grid from -0.5 to 2 in 120 steps. This fixed grid was chosen as the maximum

range of true values ηµ that were simulated in all settings. For setting 3, this measure is computed per

group and then averaged over groups. All these error measures are then averaged over all Q samples

per setting. Additionally we compute a point estimate of the average slope of the association as the

averaged first derivative 1
n

∑n
i=1 η

′
αi(ηµi(Ti)) of the estimated association in setting 1.

5.3.2 Simulation results

In setting 1 bamlss allows for an unbiased modeling of the linear association with satisfactory fre-

quentist coverage of the credibility bands. All survival predictors show systematically less error when

more information is available as for n = 600 (cf. Table 5.1). Only the predictor ησ has a coverage
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clearly below 0.95. However, as inference for this predictor is rarely of interest, this deviation is not

deemed problematic. JMbayes achieves similar performance in setting 1 for most predictors, however

the coverage for ηλ and also for ηα in the smaller data sets is below the nominal 0.95.

Table 5.1: Posterior mean estimation results from bamlss and JMbayes from setting 1
(linear ηα) for small and large data sets.

MSE bias coverage
n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

ηα bamlss 0.025 0.016 −0.005 −0.006 0.976 0.958
JMbayes 0.016 0.007 0.002 0.000 0.930 0.944

ηγ bamlss 0.020 0.010 −0.003 0.018 0.953 0.951
JMbayes 0.021 0.010 −0.016 0.015 0.950 0.954

ηλ bamlss 0.042 0.024 −0.000 0.000 0.948 0.951
JMbayes 0.043 0.024 0.000 0.000 0.915 0.933

ηµ bamlss 0.031 0.031 −0.001 0.000 0.946 0.946
JMbayes 0.039 0.030 −0.000 0.010 ∗ ∗

ησ bamlss 0.001 0.001 0.013 0.014 0.898 0.859
JMbayes 0.009 0.000 0.093 0.008 ∗ ∗

∗ No credibility intervals and thus no coverage could be calculated for these predictors.
Results are based on 186 estimates for n = 300 and 198 estimates for n = 600.

Despite a flexible nonlinear specification, our model captures the linearity well with a mean over

all calculated average slopes of 0.99 [average 2.5% and 97.5% quantile of the posterior: 0.68; 1.32]

for n = 300 and 0.96 [0.75; 1.19] for n = 600. The estimates of different iterations show less

variability when more data is available, both when more subjects are observed and in areas where

more observations of ηµ are made (see left panel of Figure 5.1). These results are highly similar to

the respective linear estimates of JMbayes of 1.02 [0.74; 1.31] and 0.99 [0.79; 1.19], respectively. Note

also that the difference of the average quantiles is not noticeably larger for bamlss despite a more

flexible model formulation.

The estimation of the nonlinear model in bamlss shows some stability issues when less data is available

such that initially 10% of the estimations for n = 300 and 4% of the estimations for n = 600 failed

as they got stuck in areas of the parameter space where the Hessian for βµ was no longer negative

definite. When restarting the algorithm is such cases with a different seed, these error rates decreased

to 7% and 1%, respectively. Due to the flexibility in the model, especially in the random functional

intercepts, the estimation of bamlss takes on average 3.6 and 7.3 hours for n = 300 and n = 600,

respectively, compared to 4 and 7 minutes for JMbayes on a single core of a 2.6GHz Intel Xeon

Processor E5-2650. This computation time can be reduced by using more than one core in the

MCMC sampling in bamlss as implemented in the package for Linux systems.

A similar overall pattern is seen in setting 2 (cf. Table 5.2) for the estimation of bamlss: All

estimates of the survival submodel are better with more data, and the coverage is satisfactory except

for ησ. The nonlinearity is captured in the estimation, as shown in Figure 5.1, although there is more

uncertainty for very high and very low values of ηµ, where few observations are available. For the
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Figure 5.1: True (grey) and estimated (black) predictors from posterior mean estimation of setting 1 (true
linear) and setting 2 (true nonlinear) for n = 300 and n = 600 as well as respective densities of the simulated
ηµ. Displayed effects are subject to centering constraints as explained in 5.1.3

estimation in JMbayes, assuming linearity, the point estimates for the association are good, at least

in this setting with small curvature of the association, however the coverage is very low under this

misspecification with 0.70 and 0.66 for n = 300 and n = 600.

Again some stability issues emerge for bamlss in the smaller data setting where initially 15.5% of the

estimations fail which was reduced to 7.5% by restarting the estimation with a different seed. For

n = 600 initially 5% of the estimations produced an error which was reduced to 3%. Similarly to

setting 1 the estimation takes on average 3.9 and 7.2 hours for n = 300 and n = 600, respectively.

In the most complex model in setting 3 where the association is nonlinear and group-specific,

ηαi(ηµi(t), gi), the estimation of this association is less precise than in setting 2 (cf. Table 5.3 as well

as Figure 5.2). The estimates are mainly unbiased with only ηγ showing a slightly stronger negative

bias for n = 300 and show a satisfactory coverage, except for ησ. The estimates of the association

ηα(ηµi(t), gi) show higher amounts of variability as seen in Table 5.3 and Figure 5.2. The precision of

the association estimate is generally higher for more subjects, with more longitudinal observations per

subject and especially in the areas where ηµ is more densely observed. As in the previous simulations,

less information about ηµ was available for the lower and higher values.

The most complex estimation of a nonlinear association also suffers most from stability issues such

that 43.5% of the estimations in setting 3 for n = 300 as well as 18.5% of those for n = 600 fail for

a median of 6 longitudinal observations per subject. These numbers reduced to 30% and 13% after
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Table 5.2: Posterior mean simulation results from bamlss and results from JMbayes
from setting 2 (nonlinear ηα) for small and large data sets.

MSE bias coverage
n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

ηα bamlss 0.018 0.011 0.004 0.001 0.963 0.963
JMbayes 0.016 0.010 0.008 0.007 0.702 0.656

ηγ bamlss 0.017 0.009 −0.022 −0.017 0.941 0.955
JMbayes 0.014 0.007 −0.006 −0.002 0.949 0.955

ηλ bamlss 0.037 0.037 0.000 0.000 0.943 0.944
JMbayes 0.031 0.020 0.000 0.000 0.914 0.922

ηµ bamlss 0.032 0.032 −0.001 0.000 0.947 0.947
JMbayes 0.039 0.031 −0.006 0.003 ∗ ∗

ησ bamlss 0.002 0.001 0.014 0.012 0.914 0.897
JMbayes 0.008 0.000 0.085 0.007 ∗ ∗

∗ No credibility intervals and thus no coverage could be calculated for these predictors.
Results are based on 185 estimates for n = 300 and 194 estimates for n = 600.

restarting the algorithm with a different seed. Included in these problematic estimations are also

2 and 1 estimation, respectively, in which a low acceptance rate (< 30%) in ηµ indicated sampling

issues. In comparison, using more observations per subject results in error rates of only 13% and

4.5% which reduced to 5% and 1% after restarting with a different seed. Simulations took on average

4.4 and 8.4 hours for n = 300 and n = 600, respectively, for a median of 6 observations per subject

and 4.6 and 9 hours for a median of 12 observations.

In conclusion, the simulations show that both truly linear associations and truly nonlinear associ-

ations can be modeled precisely and unbiasedly with the flexible additive joint model. Estimates are

comparable between bamlss and JMbayes, however, the latter shows coverage issues, especially when

truly nonlinear associations are present. The model is further able to distinguish between nonlinear

associations of different subgroups. This estimation is however only feasible with enough data, both

regarding the total number of subjects and the number of observations per subject and is more stable

in areas where much longitudinal information is available. Stability issues in the estimation can be

alleviated by restarting the algorithm with a different seed.
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Figure 5.2: True (grey) and estimated (black) predictors from posterior mean estimates of ηαi(ηµi(t), gi) in
setting 3 for gi = 0 and gi = 1, n = 300 and n = 600 as well as for a median of 6 longitudinal observations
per subject (less obs) and 12 observations per subject (more obs); displayed effects are subject to centering
constraints as explained in Section 5.1.3

Table 5.3: Posterior mean simulation results from bamlss from setting 3 (nonlinear, group-specific
ηα) using a median of 6 observations per subject or 12 observations per subject for small and
large data sets.

MSE bias coverage
n = 300 n = 600 n = 300 n = 600 n = 300 n = 600

ηα less observations 0.082 0.062 0.013 −0.005 0.960 0.946
more observations 0.058 0.028 0.018 0.004 0.953 0.945

ηγ less observations 0.034 0.017 −0.072 −0.020 0.963 0.933
more observations 0.030 0.017 −0.053 −0.023 0.969 0.938

ηλ less observations 0.057 0.028 −0.000 0.000 0.942 0.937
more observations 0.038 0.023 −0.000 0.000 0.955 0.946

ηµ less observations 0.042 0.032 −0.002 0.000 0.946 0.944
more observations 0.021 0.020 −0.000 0.000 0.945 0.945

ησ less observations 0.003 0.012 0.018 0.022 0.914 0.892
more observations 0.002 0.004 0.010 0.020 0.921 0.817

Results are based on 140 and 176 estimates using a median of 6 observations per subject for
n = 300 and n = 600, respectively, and 190 and 197 estimates using more observations per
subject.
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5.4 Application

We illustrate the flexible modeling approach on the widely used PBC biomedical data (Murtaugh et al.,

1994), included in the R package JMbayes, which is concerned with the study of survival in subjects

with a rare fatal liver disease. By reanalyzing this data set with the flexible additive joint model,

assumptions and modeling alternatives can be tested. In more detail we aim to assess the adequacy of

the linearity assumption of the association between marker and log-hazard and are interested in the

best transformation of the marker. Our framework allows us to check several transformations and base

a decision on the DIC and/or residual diagnostics without having worry about a potentially resulting

nonlinear association between the transformed marker and the log-hazard. Lastly, the analysis of

subgroups regarding their association between marker and log-hazard is of interest.

In this study 312 subjects were followed in the Mayo Clinic from 1974 to 1984 to study the influence

of the drug D-penicillamine on the survival of the patients. Visits were scheduled at six months, 12

months and annually thereafter. In the dataset 140 subjects died during follow-up with a median

survival time of 3.72 years (IQR: 2.08, 6.66) and 172 survived of which 29 received a transplant with

a median censoring time of 7.77 (IQR: 5.73, 9.91). In total there are 1945 longitudinal observations

with a median number of visits per subject of 5 (IQR: 3, 9).

To illustrate the general framework we model the survival of PBC-patients as a function of the

baseline covariates medication (drug vs. placebo), age at study entry in years and the presence of an

enlarged liver at baseline. We chose these baseline covariates based on previous joint model analyses

of the data (Rizopoulos, 2012, 2016a). The focus of the analysis is the association between the levels

of serum bilirubin, a biomarker expected to be a strong indicator of disease progression, and the

log-hazard of death. To account for individual nonlinear marker trajectories we model the levels of

serum bilirubin using functional random intercepts with 5 basis functions per subject.

To further explore the influence of the marker parameterization on the association we fit three

models, differing in their association between serum bilirubin and survival. First, we model serum

bilirubin using the log-transformed marker log(Bilirubin), as previously used in (Rizopoulos, 2012,

2016a) and allow the association to be nonlinear. Second, we use a square-root transformation of the

raw marker values
√
Bilirubin and again allow the association to be nonlinear. Third, we allow the

non-linear association between log(Bilirubin) and the log-hazard to also vary between the patients

with an enlarged liver at baseline and those without. This predictor ηα is parameterized as potentially

nonlinear effect for both groups, subject to the sum-to-zero constraint as explained in Section 5.1.3,

with an additional intercept for the group of subjects with an enlarged liver to allow not only for

differences in the nonlinearity of the biomarker effect but also in the overall level. As the group

difference for the hazard is already included in ηα, the baseline effect of an enlarged liver not included

ηγ in model 3 to avoid redundancy. As our focus lies primarily on the association between the

biomarker and survival, and to avoid instabilities in the estimation, we censor subjects 1 year after

their last longitudinal measurement.
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In all three models, and in line with previous analyses, the treatment is not associated with

survival (log-hazard effect estimate [95% credibility interval]: model 1: -0.03 [-0.42; 0.34]; model 2:

-0.02 [-0.42; 0.36]; model 3: -0.01 [-0.39; 0.39]) whereas age at baseline is positively associated with

the hazard of death (model 1: 0.05 [0.03; 0.07]; model 2: 0.05 [0.04; 0.07]; model 3: 0.05 [0.03;

0.07]). Additionally subjects with an enlarged liver at baseline have a higher risk of dying in model

1 (0.76 [0.29; 1.21]) as well as in model 2 (0.77 [0.32; 1.21]). In model 3 this effect is included in

the group-specific intercept for the association with the marker. Irrespective of their marker value,

subjects with an enlarged liver at baseline have a higher log-hazard for the event (0.49 [-0.36; 1.45])

though this effect has a wider credibility band in model 3.

The focus of interest is the nonlinearly modeled association predictor ηα. As Figure 5.3 shows, the

association between marker and the log-hazard for the event is linear when using the log-transformed

marker log(Bilirubin) and nonlinear when transformed differently as
√
Bilirubin. In model 3 the

groups differ in their overall level, although the credibility interval of the intercept coefficient covers

0. Additionally the slope of the association is highly similar in both groups. When comparing the

models via DIC, model 1 achieves the lowest DIC (1876.76) followed by model 3 (1889.67) and 2

(2194.58).
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Figure 5.3: Estimated posterior mean of the association ηα(ηµ(t)) in the PBC data. (a) model 1: nonlinear

estimation of log(Bilirubin) (b) model 2: nonlinear estimation of
√
Bilirubin (c) model 3: nonlinear estimation

of log(Bilirubin) of patients with and without enlarged liver at baseline.

Traceplots of the estimated coefficients βα as well as results from sensitivity analyses for the

variance parameters of these results using different priors (differently specified IG and Half-Cauchy

hyperpriors), showing robustness of the results, can be found in the Appendix B.3.

Our flexible joint model thus allowed us to check previously made model assumptions for this data

set and to conclude that in this particular case, a linear association that is not covariate-dependent

is sufficient to model the relationship between the log-marker and the log-hazard. Additionally,

nonlinear associations can also be captured in real data if necessary, as shown for the square-root

transformation in model 2. The model potentially further allows to observe group-specific nonlinear
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association structures for subgroups of subjects, even though no strong group structure was present

in this data set.

5.5 Discussion and outlook

In this work a highly flexible additive joint model is presented, which allows for nonlinear, potentially

covariate-dependent association structures between marker values and the log-hazard of an event.

The benefits and challenges of this flexibility were shown based not only on simulated data but also

on the well-known PBC data set.

Using this new model the generally unchecked linearity assumption as well as the appropriateness

of transformations of marker values can be assessed in the context of joint models. This is particularly

important if marker values need to be transformed to better fulfill the normality assumption in the

longitudinal submodel and different transformations are compared. It is clear that several transforma-

tions cannot fulfill the linearity and normality assumption simultaneously and relaxing the linearity

assumption allows to choose the most appropriate model in terms of residual normality and/or DIC.

The modeling of nonlinear associations between a longitudinal marker and the log-hazard does not

only avoid bias but also allows further insights into underlying disease mechanisms. Additionally,

subgroups of subjects with different marker associations can be identified.

The simulation results show that our model can identify truly linear as well as truly nonlinear as-

sociations. We used the model to check the linearity assumption when using transformed Bilirubin

values in the PBC data set and could confirm that the association is linear if log(Bilirubin) is used,

while using
√
Bilirubin would necessitate estimating a nonlinear association structure.

This flexible modeling, however, also comes at a price. When modeling longitudinal trajectories

using flexible functional random intercepts and allowing for nonlinear association structures, many

subjects and a dense grid of measurements until the event time are necessary in order to achieve a sta-

ble estimation. Further there should not be large gaps between the latest longitudinal measurements

and the event time to allow for a stable estimation. If these gaps are present in real data, censoring

as in Section 5.4 can alleviate the stability issue. Additionally the estimation takes more time than

standard joint models but can be parallelized if corresponding computing facilities are available.

As a next step we aim at stabilizing the estimations further. One potential approach is the

joint updating and sampling of coefficients in ηα and ηµ instead of the current separate block-wise

procedure. Besides, the updating and sampling algorithm could be modified by using a transformed

Hessian matrix to ensure that an inverse exists, similar to the modified Marquardt algorithm used

by Proust-Lima et al. (2007). In addition, we plan to implement additional nonlinear association

structures within the R package bamlss and to speed up the computations further in order to allow

for a broader usage of this flexible additive joint model framework.
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Chapter 6

Model implementation in the R

package bamlss

Joint models of longitudinal and survival data are important tools for the unbiased analysis of longi-

tudinal cohort data. In order for joint models to find entry into the tool set of applied researchers,

the availability of ready-to-use software is crucial (Gould et al., 2015; Yuen and Mackinnon, 2016).

For this reason the presented flexible Bayesian additive joint model was incorporated in the R bamlss

(Bayesian Additive Models for Location Scale and Shape, Umlauf et al., 2017). In the following the

main functionalities for fitting joint models in bamlss are presented.

Joint models allow the unbiased analysis of longitudinal covariates, measured at discrete subject-

specific time points, potentially subject to measurement error and their association with a time-to-

event process. The main idea behind this modeling approach is to formulate a joint likelihood of a

longitudinal submodel, usually a mixed effects model, and a survival model. The two submodels are

assumed to be independent given latent parameters which influence both, the longitudinal and the

survival model. In many recent joint model developments these shared latent parameters are random

effects, as is the case in bamlss.

Multiple software packages have been developed for estimating joint models with shared random

effects structure in the frequentist setting such as the R package JM (Rizopoulos, 2010) and joineR

(Philipson et al., 2017), as well as the stata module stjm (Crowther, 2012) and the SAS macro JMFit

(Zhang et al., 2016). All implementations differ in their specification of the association between the

longitudinal marker and the time-to-event process and in the flexibility for modeling the observed

marker trajectories. For example, JMfit and joineR only allow a random effects association and

restrict the random effects in the longitudinal model to a random intercept, slope and a possible

quadratic random effects term while the baseline hazard is unspecified or modeled piece-wise constant,

respectively, for the two implementations. The packages JM and stjm allow more flexibility in the

longitudinal trajectories, which can be modeled also using splines (both) or fractional polynomials

(stjm), by allowing parametric (both) and nonparametric (JM) baseline hazard functions and different

association structures such as current value, current slope and random effects only. However, as

presented in Section 2.5, the frequentist estimation can become unstable or unfeasible when flexible
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random effects structures are necessary. Many flexible joint models are therefore developed in a

Bayesian framework with estimation procedures making use of the BUGS language (WinBUGS and

OpenBUGS, Gilks et al., 1994) or JAGS (Plummer et al., 2003) and respective code available from

authors (see for example overviews in Sudell et al., 2016; Hickey et al., 2016). To our knowledge

the R package JMbayes (Rizopoulos, 2016b) is the only ready-to-use software implementation besides

bamlss to allow the fitting of joint models in a Bayesian framework. Notably, JMbayes allows for

much flexibility in the modeling of parametric and nonparametric baseline hazards, spline-based

nonlinear longitudinal trajectories, different association parameterizations such as current value, slope

or cumulative effects and dynamic predictions.

The implementation of the flexible additive joint model in bamlss contributes to the existing software

as it offers even greater flexibility in the specification of subject-specific longitudinal trajectories,

different association structures as well as a variety of possible effect specifications in the baseline

survival and time-varying survival effects.

In the remainder of this chapter central aspects of the flexible additive joint model are presented

and the core structure of the package bamlss is explained. The main functionalities for fitting the

joint model are then illustrated using three different applications. The chapter closes with an outlook

of planned future developments. The models were fitted using bamlss version 0.1-2 which makes

strong use of mgcv version 1.18 (Wood, 2011). Examples are based on analysis of simulated data and

the PBC data set (Murtaugh et al., 1994) which is included in the R package JMbayes (Rizopoulos,

2016b).

6.1 Theoretical background

As the framework for the flexible additive joint models was presented extensively in the previous

chapters, we restrict ourselves to a quick overview of central concepts of the framework.

6.1.1 Model

We observe for each subject i = 1, . . . , n a longitudinal response yi = [yi1, · · · , yini ]> at potentially

subject-specific time points ti = [ti1, · · · , tini ]> where ti1 ≤ · · · ≤ tini ≤ Ti. This observed longitudinal

response is modeled by

yij = ηµi(tij) + εij with εij ∼ N(0, exp[ησi(tij)]
2), (6.1)

where ηµ denotes the ”true” longitudinal marker linking the longitudinal and the survival submodel.

We further observe for every subject i a potentially right-censored follow-up time Ti and the event

indicator δi, with 1 indicating an event. We use structured additive predictors ηk, k ∈ {λ, γ, α, µ} to

model the hazard of an event at time t as

hi(t) = exp {ηi(t)} = exp {ηλi(t) + ηγi + ηαi (ηµi(t), t)} . (6.2)
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These structured additive predictors are the building blocks of the implementation in bamlss and are

in more detail

• ηλ denoting the predictor for all time-varying survival covariates and effects including the log

baseline hazard.

• ηγ representing all baseline survival covariates, potentially including smooth or spatial effects.

• ηµ as the potentially nonlinear, subject-specific modeled marker.

• ησ representing the variance of the longitudinal marker with an exponential link function.

• ηα denoting the association function between longitudinal marker and time-to-event which can

be linear, nonlinear, covariate- or time-dependent.

Each of these predictors ηki with k ∈ {λ, γ, µ, σ} has an additive structure ηki =
∑Mk

m=1 fkm(x̃kmi)

of Mk functions of observed covariates x̃i. Each function fkm typically depends on one or two

covariates x̃kmi and can further be time-dependent such that ηki(t) =
∑Mk

m=1 fkm(x̃kmi(t), t). By

using suitable (e.g. spline) basis matrices Xkm and corresponding penalties Pkm every term m of

predictor k is set up as a linear predictor

Xkmβkm with penalty Pkm =
1

τ2
km

β>kmKkmβkm,

where βkm is the coefficient vector of length pkm that is estimated. The association between the

longitudinal marker and the log-hazard is also a structured additive predictor, however with the

special structure ηαi(ηµi(t), t) = fα (ηµi(t), x̃αi, t) with

fα (ηµi(t), x̃αi, t) = [g1(ηµi(t))� g2(x̃αi, t)]βα = x>αiβα. (6.3)

This predictor, where we drop the subscript m for simplicity, is the row tensor product of a function

of ηµ and further covariates or time. We refer to Chapter 5 for details on the specification of this

association but stress at this point the distinction between linear and nonlinear associations which is

relevant for the model setup in bamlss. Whereas for nonlinear associations the full row-tensor product

in eq. (6.3) is used, the association simplifies to ηαi(ηµi(t), t) = ηαi(t)ηµi(t) with ηαi(t) having the

same structure as the other predictors for linear associations.

As all of these predictors initially contain an intercept, constraints are implemented to obtain an

identifiable model as explained in more detail in the Sections 3.1.2 and 5.1.3. These force the predictors

to sum to zero over all n or N observations for predictors in the survival and longitudinal submodel,

respectively, and for a fixed grid of observed marker values for a nonlinearly specified association

ηαi(ηµi(t)). The global intercept of the survival model in eq. (6.2) is included in ηγ .
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6.1.2 Estimation

Assuming conditional independence of the survival outcomes [Ti, δi] and the longitudinal outcomes

yi, given the vector of all parameters θ, the log-likelihood of this joint model is the sum of the

log-likelihoods of the two submodels, i.e.,

` [θ|y,T, δ] =− N

2
log(2π)− 1>Nησ (t)− 1

2
(y − ηµ (t))>R−1(y − ηµ (t))

+ δ>η(T)− 1>nΛ (T) .

Here R = blockdiag(R1, · · · ,Rn) is assumed diagonal, y = [y>1 , · · · ,y>n ]>, T = [T1, · · · , Tn]> and

δ = [δ1, · · · , δn]> are the response vectors and Λ(T) = [Λ1(T1), . . . ,Λn(Tn)]> denotes the vector of

cumulative hazard rates with Λi(Ti) = exp(ηγi)
∫ Ti

0 exp[ηλi(u) + ηαi(ηµi(u), u)]du.

In this general setup different effects, such as random effects per subject or smooth nonlinear

effects of time and/or covariates are induced by the specification of appropriate design matrices and

respective priors. For linear or parametric terms a precision matrix Kkm = 0 is approximated by

using vague normal priors βkm ∼ N(0, 10002I) on the vectors of the regression coefficients. Smooth

and random effect terms with precision matrix Kkm are regularized with multivariate normal priors

p(βkm|τ2
km) ∝

(
1

τ2
km

) rank(Kkm)
2

exp

(
− 1

2τ2
km

β>kmKkmβkm

)
with variance parameter τ2

km which control the trade-off between flexibility and smoothness in the

nonlinear modeling of effects. For anisotropic smooths, which induce a different amount of smoothness

across different dimensions by using different variance priors τ 2
km for the different precision matrices,

as in the nonlinear association ηα or in fitting flexible longitudinal trajectories as in Section 6.4.2, we

use the prior

p(βkm|τ 2
km) ∝

∣∣∣∣ 1

τ2
km1

K̃km1 +
1

τ2
km2

K̃km2

∣∣∣∣ 12 exp

(
−1

2
β>km

[
1

τ2
km1

K̃km1 +
1

τ2
km2

K̃km2

]
βkm

)
,

where K̃km1 = Kkm1 ⊗ Ipkm2
and K̃km2 = Kkm2 ⊗ Ipkm1

. For the variance parameters independent

inverse Gamma hyperpriors τ2
km ∼ IG(0.001, 0.001) are used, resulting in an inverse Gamma full

conditional. Further priors for the variance parameters, such as half-Cauchy, are possible.

The resulting posterior of the full model is

p(θ|T, δ,y) ∝ Llong [θ|y] · Lsurv [θ|T, δ]
∏

k∈{λ,γ,α,µ,σ}

Mk∏
m=1

[
p(βkm|τ 2

km)p(τ 2
km)
]
,

with the likelihood of the longitudinal submodel Llong and the survival submodel Lsurv and the priors

of the vectors of regression parameters and variance parameters, p(βkm|τ 2
km) and p(τ 2

km), respectively.
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Estimates of this posterior distribution are the posterior mode and the posterior mean, where the

posterior mode is mainly used for a quick model assessment and to obtain starting values for the

MCMC posterior mean sampling. The posterior mode estimate is obtained by maximizing the log-

posterior using a Newton-Raphson algorithm. Every term m in each predictor k is updated block-wise

in each iteration l as

β
[l+1]
km = β

[l]
km − ν

[l]
kmH

(
β

[l]
km

)−1
s
(
β

[l]
km

)
with steplength ν

[l]
km, the score vector s(βkm) and the Hessian H(βkm). For detailed expressions of

the block-wise score and the Hessian we refer to the Appendix A. The steplength ν
[l]
km is optimized

in each step to maximize the log-posterior. Furthermore, the variance parameters are optimized to

minimize the corrected AIC (AICc, Hurvich et al., 1998). Approximate credibility intervals for the

coefficients are derived from N(β̂km, [−H(β̂km)]−1) assuming an approximately normal posterior dis-

tribution. These credibility intervals, however, tend to underestimate the variability as they do not

take into account the optimization of the variance parameters. To obtain posterior mean estimates

and derive exact inference a derivative-based Metropolis-Hastings algorithm is used. Here the full

conditional π(βkm|·) is approximated by a second order Taylor expansion of the log-posterior centered

at the last state β
[l]
km (see Umlauf et al., 2017) resulting in a multivariate normal proposal density

with the precision matrix (Σ
[l]
km)−1 = −H(β

[l]
km) and the mean µ

[l]
km = β

[l]
km − H(β

[l]
km)−1s(β

[l]
km).

Candidates β∗km from the proposal density q(β∗km|β
[l]
km) = N(µ

[l]
km,Σ

[l]
km) are drawn in each itera-

tion l of the Metropolis-Hastings sampler for updating block km. By drawing candidates from a

close derivative-based approximation of the full conditional we achieve high acceptance rates and

good mixing. Samples for the variance parameters τ2
km are obtained via Gibbs sampling, if inverse

Gamma hyperpriors are used and consequently the full conditionals π(τ2
km|·) follow an inverse Gamma

distribution. Slice sampling (Neal, 2003) is used if no simple closed-form full conditional can be ob-

tained, when sampling variance parameters for anisotropic smooths or when other hyperpriors than

the inverse Gamma are used.

6.1.3 Diagnostics

We suggest to use DIC for model choice which can be directly computed from the MCMC output

β[1], . . . ,β[l], . . . ,β[L] of the full parameter vector β as

DIC = D(β) + pd = 2D(β)−D(β)

where D(β) = 1
L

∑L
l=1D(β[l]) with D(β) = −2` [θ|y,T, δ], D(β) = D

(
1
L

∑L
l=1 β

[l]
)

and with the

effective number of parameters pd = D(β) − D(β). Note that this computation is similar in spirit

to Brown et al. (2005) but differs from the computation in JMbayes. DICs of similar models from

bamlss and JMbayes are therefore not directly comparable.
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Furthermore, conditional survival probabilities can be derived from the posterior samples. As

shown in eq. (2.10) the probability of survival at time u is

Si(u) = exp

{
−
∫ u

0
exp(ηi(s))ds

}
.

As the observed marker yi is an internal time-varying covariate only observed until the occurrence of

an event, the measurement of a marker value yi(t) at time u, 0 < t < u implies Pr(T ∗i ≥ t|yi(t)) = 1,

see also eq. (2.13). Therefore, a survival probability ρi(u|t) conditioned on the survival up to a

certain time point t, e.g. the time point where a marker was last observed, is more relevant in the

joint model context (Rizopoulos, 2012). Following Taylor et al. (2013) this conditional probability

can be described as

ρi(u|t) = Pr(T ∗i ≥ u|T ∗i > t,θ, x̃i) = exp

{
−
∫ u

t
exp(ηi(s))ds

}
.

Estimates of this conditional survival probability can be derived from the posterior distribution, as

for example the mean estimate

ρ̂i(u|t) =
1

L

L∑
l=1

exp

{
−
∫ u

t
exp

(
ηi(s)

[l]
)
ds

}
(6.4)

where ηi(s)
[l] is the estimated predictor of sample l and the integral is approximated numerically.

Credibility intervals can be derived analogously.

6.2 The R package bamlss

The R package bamlss (Umlauf et al., 2017) is a highly flexible package to fit complex distributional

regression models (Klein et al., 2015a). Different model families can be fitted within that framework

using the following basic building blocks:

• structured additive predictors using a basis function representation

• priors to induce the effects structures such as smooth, random effects and time-varying

• likelihood functions, scores and Hessians for the estimation of the posterior

In order to fit joint models using the family "jm" the corresponding predictors, priors, likelihood

function and derivatives were implemented in the package. The main fitting function is

bamlss(formula, family = "jm", data, timevar, idvar)

in which the predictors can be specified in formula and necessary covariates timevar for the

longitudinally observed time variable and idvar for the subject identifier have to be supplied.

For every predictor, a variety of effects can be specified using the functionalities of the R package
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mgcv. With a simple formula interface, mgcv sets up the design matrices and corresponding penalty

matrices for every term m of predictor k allowing for high flexibility in the estimation.

While the general model setup is implemented in the joint model in bamlss many aspects of the

estimation can be user-specified. Though we mainly use Bayesian P-splines in the model estimation

due to their favorable properties, all spline options that are available in mgcv can be used within

bamlss. Additionally, different prior specifications for the variance parameters can be given as input

(see Umlauf et al., 2017, Table 1).

Even with the fast convergence and good mixing performance of the algorithm, allowing this flex-

ibility and using the derivative-based Metropolis-Hastings algorithm is a high computational burden.

Hence, much effort was placed in speeding up computations. A special challenge in the fitting of joint

models is the setup of time-varying predictors and the necessary integration over the subject-specific

hazard function to obtain the cumulative hazard Λi(Ti). We calculate this by numerical integration

using the trapezoidal rule over a subject-specific grid of integration points and migrated this com-

putation to C. Furthermore, the computation of the highly flexible functional random intercepts is

computationally challenging as many parameters per subject have to be estimated. The design matrix

of this term, however, has a sparse block-structure and the Hessian of this term is a block diagonal.

We achieved large gains in computational speed by taking advantage of this structure in the posterior

mean sampling.

6.3 Simulating joint model data

The package includes an elaborate simulation setup to generate user-specified data in the joint model

framework. The function simJM() is a wrapper, specifying all predictors ηk for k ∈ {λ, γ, α, µ, σ} for

the function rJM(), which simulates survival times Ti based on Bender et al. (2005).

The starting point for this approach for simulating survival times is the distribution function

F (t) = 1−exp(−Λ(t)) (see Section 2.4.1). If we let Y be a random variable with distribution function

F , then the random variable R := F (Y ) follows a uniform distribution on [0, 1], i.e., R ∼ U(0, 1) and

the same holds for (1−R). In consequence, for the survival time T it holds that

R = exp(−Λ(T )) ∼ U(0, 1) and T = Λ−1[− log(R)],

assuming h(t) > 0 for all t. Whereas closed-form distributions for this inverse function exist for

time-constant survival models with parametric baseline hazard (see Bender et al., 2005), this is not

the case in our setup. Here survival times are generated by numerical integration of Λ(t) and solving

the equation Λ(t) = − log(R) where R is simulated using a random number generator over [0, 1]. The

numerical integration and the solving of this equation by finding the root of Λ(t) + log(R) = 0 is the

core functionality of rJM().

The wrapper simJM() sets up all true predictors k. Certain specifications to model true predictors

are predefined, but writing a specific wrapper for simulating other settings is straightforward. The
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function rJM() merely needs to be supplied with the hazard function hazard(), functions defining

the predictors (lambda(), gamma(), alpha(), mu(), sigma()) as well as relevant simulated covariates

(x for fixed covariates and r for random effects). For most situations, however, it should suffice to use

the default predictor functions of simJM() for the simulations. The baseline hazard lambda, ηλ(t) =

1.4 log((t + 10)/1000), is fixed for all settings whereas the baseline survival predictor gamma differs

between linear and nonlinear association settings with ηγi = sin(x̃γi) and ηγi = 0.3x̃γ1, respectively,

and x̃γ1 ∼ U(−3, 3) for both. The error variance of the longitudinal marker sigma can be supplied

in the function call of simJM() and defaults to exp(ησ)2 = 0.32. For the further predictors different

parameterizations can be supplied in the function call. For ηµ three different settings are possible

and supplied via the argument long setting from

• linear, for a random slope random intercept model with

ηµi(t) = 1.25 + b0i − 0.01t+ 0.02t · b1i + 0.6 sin(x̃µi),

• nonlinear, for a model with nonlinear population effect and random intercept with

ηµi(t) = 0.55 + b0i − 0.1(t+ 2) · exp(−0.075t) + 0.6 sin(x̃µi),

• functional, for subject-specific nonlinear trajectories with

ηµi(t) = 0.55 + b0i − 0.1(t+ 2) · exp(−0.075t) + 0.6 sin(x̃µi) + fi(t),

where fi(t) denotes subject-specific P-splines for which the number of knots can be supplied via

long df. Similarly, ηα is also pre-specified in different settings via alpha setting and further differs

for the specification of linear and nonlinear associations between ηµ and the log-hazard, respectively.

Table 6.1 gives an overview of the different possible settings for ηα where x̃αi ∼ binom(0.5). Note

that the settings for ηα and ηµ are modular and can be combined freely.

Table 6.1: Possible effect specifications for ηαi(ηµi(t), t, x̃αi) in the simulation function simJM() as specified in
alpha setting

linear association nonlinear association
ηαi(t) · ηµi(t) ηαi(ηµi(t), x̃αi)

zero 0 0
constant 1 1
linear (1− 0.015t) · ηµi(t) 1 · ηµi(t)

nonlinear (cos((t− 60)/20) + 1) · ηµi(t) −0.1(ηµi(t) + 3)2 + ηµi(t) + 1.8
nonlinear2 (cos((t− 33)/33) + 1) · ηµi(t) x̃αi · [−0.1(ηµi(t) + 3)2 + ηµi(t) + 1.8]+

(1− x̃αi) · [0.1(ηµi(t)− 3)2 + 0.75ηµi(t)− 0.7]

To illustrate the usage of this simulation function, data for a simple joint model with fixed and

random intercepts and slopes in the longitudinal model and a time-constant linear association between

current marker values and the time-to-event is simulated for 150 subjects.

library("bamlss")

d <- simJM(nsub = 150, times = seq(0, 120, 1), probmiss = 0.75,
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long_setting = "linear", alpha_setting = "constant",

dalpha_setting = "zero", full = FALSE, seed = 5)

This call generates the covariates, random effects and true predictors on a fixed grid of time points

(times) based on the hazard as given in eq. (6.2) for 150 subjects. After the simulation of survival

times, the longitudinal observations are censored at the event times and additional uniform censoring

is induced. In order to generate subject-specific observation times probmiss percent of the generated

longitudinal information are discarded randomly. The generated data contains for every subject in id

the longitudinal marker y, observed at a grid of measurement time points (obstime), and the survival

time survtime, generated with an according event indicator (event). Additionally, the baseline

survival covariate x̃γi (x1), the longitudinal covariate x̃µi (x2) and the grouping indicator x̃αi (x3)

are observed for every subject.

’data.frame’: 1393 obs. of 23 variables:

$ id : Factor w/ 150 levels "1","2","3","4",..: 1 1 1 1 1 2 2 2 2 2 ...

$ survtime: num 30.6 30.6 30.6 30.6 30.6 ...

$ event : num 1 1 1 1 1 1 1 1 1 1 ...

$ x1 : num 2.32 2.32 2.32 2.32 2.32 ...

$ x2 : num 2.32 2.32 2.32 2.32 2.32 ...

$ r1 : num -0.21 -0.21 -0.21 -0.21 -0.21 ...

$ r2 : num 0.378 0.378 0.378 0.378 0.378 ...

$ b1 : num 0.412 0.412 0.412 0.412 0.412 ...

$ b2 : num -0.278 -0.278 -0.278 -0.278 -0.278 ...

$ b3 : num 0.48 0.48 0.48 0.48 0.48 ...

$ b4 : num 0.0901 0.0901 0.0901 0.0901 0.0901 ...

$ b5 : num -0.293 -0.293 -0.293 -0.293 -0.293 ...

$ b6 : num 0.166 0.166 0.166 0.166 0.166 ...

$ cumhaz : num 1.6 1.6 1.6 1.6 1.6 ...

$ obstime : num 0 5 10 11 19 0 2 7 8 12 ...

$ alpha : num 1 1 1 1 1 1 1 1 1 1 ...

$ dalpha : num 0 0 0 0 0 0 0 0 0 0 ...

$ lambda : num 0.207 0.207 0.207 0.207 0.207 ...

$ gamma : num -3.96 -3.96 -3.96 -3.96 -3.96 ...

$ mu : num 1.48 1.47 1.45 1.45 1.43 ...

$ dmu : num -0.00243 -0.00243 -0.00243 -0.00243 -0.00243 ...

$ sigma : num -1.2 -1.2 -1.2 -1.2 -1.2 ...

$ y : num 1.78 1.15 1.8 1.48 2 ...

The sum-to-zero constraints which are set for identifiability in the structured additive model are

applied to the generated data to ensure a direct comparability between true and estimated predictors.

Hence,
∑n

i=1 ηλi(Ti) = 0,
∑n

i=1 ηγi = c with c as the global intercept, and for nonlinear associations

also 1>ηα(y∗) = 0 where y∗ is a fixed grid from the 2.5th to the 97.5th percentiles of the observed
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values of y. The simulated nonlinear effects of ηλ(t), ηγ and the nonlinear covariate effect sin(x̃µi) in

ηµ are shown in Figure 6.1.
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Figure 6.1: Exemplary simulated effects from simJM() for terms in ηλ(t), ηγ and ηµ.

6.4 Practical use

In the following, we introduce the most important functionalities of the joint model fit in bamlss using

examples of increasing complexity.

6.4.1 Basic functionalities (Example: standard joint model)

We start the illustration by fitting a simple joint model using random slopes and random intercepts in

the longitudinal model and a time-constant linear association between current marker values and the

time-to-event. Data for 150 subjects is generated accordingly as shown in the previous subsection.

In order to fit the joint model according to the structured additive setup as shown in eq. (6.1) and

eq. (6.2) all predictors are given to bamlss in a list of formulas specified using the utilities of s() for

smooth terms in mgcv.

f <- list(Surv2(survtime, event, obs = y) ~ s(survtime, bs = "ps"),

gamma ~ s(x1, bs = "ps"),

mu ~ obstime + s(id, bs = "re") +

s(id, obstime, bs = "re") + s(x2, bs = "ps"),

sigma ~ 1,

alpha ~ 1,

dalpha ~ -1)

The time-varying survival predictor ηλ is specified using a modified survival formula interface. In this

model fit in the predictor ηλ only the baseline hazard is specified using a P-spline over the survival

times with the mgcv P-spline smoothing basis bs = "ps". The baseline covariate x1 is also formulated
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as a smooth spline in the predictor ηγ . Furthermore, the longitudinal marker ηµ is modeled using

a global intercept, a fixed slope for time, a random intercept s(id, bs = "re"), a random slope

s(id, obstime, bs = "re") as well as a smooth nonlinear effect of the covariate x2. The variance

of the longitudinal marker is modeled as constant over all subjects and so is the association ηα. The

predictor dalpha represents a predictor relating the slope of the modeled marker to the log-hazard.

As this predictor is currently under construction, it is specified as -1 in order to be omitted from the

estimation. If the number of basis functions is left unspecified in a smooth term s() it defaults to k

= 10 which results, due to the sum-to-zero constraints, in 9 spline basis functions and coefficients to

be estimated.

As explained in the previous section both posterior mode and posterior mean estimates can be

obtained. In practice, posterior mode estimates are used as starting values for the posterior mean,

which is computationally more demanding but allows for correct inference. The sequence of posterior

mode and mean estimation is started by specifying

b <- bamlss(f, data = d, family = "jm",

timevar = "obstime", idvar = "id")

where the list of formulas f, the data d, the joint model family "jm", the names of the longitudinal

time variable as well as the subject identifier variable are given to the wrapper function. Note that

the subject identifier must be a factor. This function calls internally the function jm.transform()

to set up all design matrices for the joint model and the mode estimation function jm.mode() using

the resulting estimates as starting values for the subsequent mean estimation in jm.mcmc() which

returns the posterior mean estimates. In order to obtain also posterior mode estimates this sequence

of model estimations can also be called manually by first estimating the posterior mode.

b_mode <- bamlss(f, data = d, family = "jm",

timevar = "obstime", idvar = "id",

sampler = MVNORM)

By specifying sampler = MVNORM samples are drawn to get approximate credibility intervals assuming

a normal posterior distribution for all coefficients. Note however, that these estimates tend to un-

derestimate the variability. If only point estimates are of interest, the sampling can also be switched

off with sampler = FALSE. The posterior mode estimates can then serve as starting values for the

posterior mean estimation.

set.seed(55)

b_mean <- bamlss(f, data = d, family = "jm",

timevar = "obstime", idvar = "id",

optimizer = FALSE, start = parameters(b_mode),

n.iter = 12000, burnin = 2000, thin = 5)

By switching off the optimizer, no posterior mode estimation is started and instead the parameters

supplied are used as starting values for the MCMC. In this example 12000 sampling iterations are
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specified in n.iter of which the first 2000 are discarded as burnin (burnin) and every 5th resulting

sample is kept after thinning (thin = 5). We run the posterior mode and the posterior mean estima-

tion and have a look at the results. Calling summary(b mean) allows inspecting effect estimates for

the parametric terms and the smoothing parameters. For illustration, we show the summary output

of ηγ .

---

Formula gamma:

---

gamma ~ s(x1, bs = "ps")

-

Parametric coefficients:

Mean 2.5% 50% 97.5%

(Intercept) -4.678 -5.106 -4.672 -4.27

-

Smooth terms:

Mean 2.5% 50% 97.5%

s(x1).tau21 0.0388032 0.0002914 0.0174951 0.211

s(x1).edf 3.2277031 1.3206949 3.2481793 5.198

s(x1).alpha 0.8540236 0.1004269 0.9733803 1.000

The predictor gamma is modeled using an intercept and a smooth effect of x1. Note that this is

the joint intercept for ηγ and ηλ (and in the case of a nonlinear modeling of the association also of

the predictor ηα(ηµ)) and hence should not be interpreted from a substantial point of view. For the

smooth term we see the posterior mean as well as quantiles of the sampled posterior distribution for

the variance parameter τ2
km, the estimated degrees of freedom, computed as trace(H∗(βkm)H(βkm)−1)

with H∗(βkm) as the Hessian of the log-likelihood, as well as the acceptance rate (.alpha) of this

term.

As a second example we assess the summary output for the parametric terms in ηµ.

---

Formula mu:

---

mu ~ obstime + s(id, bs = "re") + s(id, obstime, bs = "re") +

s(x2, bs = "ps")

-

Parametric coefficients:

Mean 2.5% 50% 97.5%

(Intercept) 1.234798 1.180911 1.234339 1.291

obstime -0.009679 -0.011554 -0.009718 -0.007
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The global intercept of the modeled marker is 1.23 with a fixed slope of -0.01 which matches the

simulated true intercept of 1.25 and the true fixed slope of -0.01 very well. Additionally, the DIC for

model comparison can be obtained from the summary.

Sampler summary:

-

DIC = 1821.97 logLik = -819.6845 logPost = -810.2169

pd = 182.6014

---

Regarding the nonlinear terms in the different predictors the inbuilt plot-function can give a first

overview of the estimated effects. We call plot(b mean) to obtain the effect estimates for all smooth

terms from this model fit.
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Figure 6.2: Point estimates and credibility bands for all predictors using smooth terms from 150 simulated
subjects from posterior mean (upper panel) and posterior mode (lower panel).

As the upper panel of Figure 6.2 shows, the nonlinear effects for the baseline hazard, the survival

covariates and the longitudinal covariates are well captured in comparison with the true simulated

effects in Figure 6.1. Furthermore, the random intercept and slope estimations of the subjects are

displayed. Note that the credibility bands of the nonlinear effects in the survival submodel are much

wider compared to the effects in the longitudinal submodel, as in the survival part only n response

values are given compared to N response values in the longitudinal submodel. We can further compare

these effect estimates to the posterior mode estimation (cf. lower panel of Figure 6.2) and see that

the estimates are highly similar, but have more narrow credibility bands, for example for s(x1) and

s(x2).
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6.4.2 Model diagnostics (Example: flexible additive joint model)

The major motivation for the development of the additive joint model was achieving more flexibility

in modeling subject-specific nonlinear trajectories using functional random intercepts and a time-

varying association between the longitudinal marker and the time-to-event as developed in Chapter

3 and applied in Chapter 4. The specification of such a model is presented in the following and

important functionalities for the model assessment are shown. For this example we fit the biomedical

data of the previous chapter, the PBC data that are included in the R package JMbayes (Rizopoulos,

2016b). We first load the data and inspect the trajectories of the longitudinal marker log(Bilirubin)

(cf. Figure 6.3) suggesting a nonlinear modeling of the trajectories).
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Figure 6.3: Trajectories of the log(Bilirubin) per status.

We fit the respective model in bamlss using as baseline covariates in the survival the drug treatment

(D-penicillamine vs. placebo), the age in years at baseline and hepatomegaly, an enlarged liver, at

the baseline measurement. We allow the association and the baseline hazard to be nonlinearly time-

varying using P-splines with 9 basis functions after implementation of the sum-to-zero constraint and

model the functional random intercepts with 7 resulting basis functions per subject.

library(JMbayes)

pbc2$logserBilir <- log(pbc2$serBilir)

pbc2$base_hepatomegaly <- pbc2.id$hepatomegaly[pbc2$id]

nsub <- nrow(pbc2.id)

long_df <- 8

f <- list(Surv2(years, status2, obs = logserBilir) ~ s(years, k = 10, bs = "ps"),

gamma ~ drug + age + base_hepatomegaly,

mu ~ ti(id, bs = "re") + ti(year, bs = "ps", k = long_df) +
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ti(id, year, bs=c("re", "ps"), k=c(nsub, long_df)),

sigma ~ 1,

alpha ~ s(years, k=10, bs="ps"),

dalpha ~ -1)

b_mode <- bamlss(f, data = pbc2, family = "jm", timevar = "year", idvar = "id",

sampler = MVNORM, maxit = 200)

b_mean <- bamlss(f, data = pbc2, family = "jm", timevar = "year", idvar = "id",

sampler = jm.mcmc, start = parameters(b_mode), optimizer = FALSE,

n.iter = 4000, burnin = 2000, thin = 5, cores = 10)

For the specification of functional random intercepts we use the tensor product smooth setup of mgcv

to induce different amounts of penalization across time and per subject. As suggested by mgcv we

supply ”main” and ”interaction” effects separately using ti(). In this model fit we make use of

the multi-core setup of bamlss for Linux machines, allowing us to start multiple chains on different

cores to reduce computation time. Note that the specification of the number of iterations, the burnin

and the thinning applies to each chain, for example in this model (4000 − 2000)/5 = 400 samples

are obtained from every chain resulting in 4000 samples of the posterior. We have a look at the

summary of the effects of the baseline survival covariates, which are similar to the effect estimates

in the previous chapter and inspect convergence and mixing of the sampler using traceplots. For the

sake of space only the first 4 coefficients of βα are presented (see Figure 6.4).

# Formula gamma:

# ---

# gamma ~ drug + age + base_hepatomegaly

# -

# Parametric coefficients:

# Mean 2.5% 50% 97.5%

# (Intercept) -7.94350 -9.13449 -7.92430 -6.839

# drugD-penicil -0.00748 -0.37032 -0.01105 0.350

# age 0.06172 0.04462 0.06154 0.079

# base_hepatomegalyYes 0.47743 0.07960 0.47386 0.900

plot(b_mean, model = "alpha", which = "samples")

This plot method displays the traceplot for each estimated coefficient as well as the autocorrelation

function.



94 6. Model implementation in the R package bamlss

0 1000 2000 3000 4000

−
0.

5
0.

5

Trace of alpha.s.s(years).b1

iter

0 5 10 15 20 25 30 35

0.
0

0.
6

Lag

A
C

F

ACF of alpha.s.s(years).b1

0 1000 2000 3000 4000

−
0.

5
1.

0

Trace of alpha.s.s(years).b2

iter

0 5 10 15 20 25 30 35

0.
0

0.
6

Lag

A
C

F

ACF of alpha.s.s(years).b2

0 1000 2000 3000 4000

−
1.

0
0.

5

Trace of alpha.s.s(years).b3

iter

0 5 10 15 20 25 30 35

0.
0

0.
6

Lag

A
C

F

ACF of alpha.s.s(years).b3

0 1000 2000 3000 4000

−
1.

5
0.

5

Trace of alpha.s.s(years).b4

iter

0 5 10 15 20 25 30 35

0.
0

0.
6

Lag

A
C

F

ACF of alpha.s.s(years).b4

Figure 6.4: Traceplot and autocorrelation function for βα1, . . . , βα4.

For a more detailed view on the estimated model we can make use of the predict function to

obtain a variety of predictions from a fitted joint model object, such as

• mean estimates of the fitted predictors of the model (default)

• mean estimates of the predictors fitted on a subset of the data by specifying newdata
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• quantiles of interest or other summaries from the posterior, e.g., credibility bands by giving the

respective summary function to FUN

• the cumulative hazard up to the survival time or for a time window after the last longitudinal

measurement by specifying type = "cumhaz"

• survival probabilities conditional on survival up to the last longitudinal measurement by speci-

fying type = "probabilities"

We have a closer look at two of these possible specifications in the following. If we want to get a

detailed view on the estimated association over the whole time range we can do so by predicting

values and plotting them.

ND <- pbc2.id[order(pbc2.id[["years"]]),]

pred <- predict(b_mean, model="alpha", newdata=ND, FUN=c95)

# c95 obtains the 2.5th percentile, the mean and the 97.5th percentile

# from the respective posterior samples

pdata <- data.frame(time = ND[,"years"],

status = ND[,"status2"],

effect = pred[,2],

effect_l = pred[,1],

effect_h = pred[,3])

palpha <- ggplot(data=pdata) +

theme_bw() +

geom_line(aes(x = time, y = effect), size = 1.5) +

geom_ribbon(aes(x = time, ymin = effect_l, ymax = effect_h), alpha = 0.2) +

geom_hline(yintercept = 0, linetype = 2) +

labs(y = expression(eta[alpha]*"(t)")) +

scale_x_continuous("Time (years)", limits=c(0, 15),

breaks=seq(0, 15, 2), labels=seq(0, 15, 2))

We see in Figure 6.5 that there is a positive association between the log-transformed biomarker

Bilirubin and the hazard which is slightly decreasing over time. We can further obtain conditional sur-

vival predictions, see eq. (6.4), for the subjects basing on this model fit. For example, the conditional

survival probability of subject 20 two years after the last measurement can be obtained with

predict(b_mean, type = "probabilities", dt = 2, FUN = c95, id = 25)

jm.survplot(bb.pbc, id = 25)

The conditional survival probabilities as well as the predicted longitudinal trajectories for a range of

time points after the last longitudinal observation can be displayed using jm.survplot(), as shown

in Figure 6.6.



96 6. Model implementation in the R package bamlss

0

1

2

0 2 4 6 8 10 12 14

Time (years)

η α
(t

)

Figure 6.5: Posterior mean estimation and credibility bands of ηα(t) from the PBC fit.

0.
0

0.
4

0.
8

P
ro

b(
T

 >
 t 

+
 d

t |
T

 >
 t)

●
●

●
●

●

●
●

●
●

●
●

●

0 2 4 6 8 10 12 14

−
1.

5
0.

0
1.

5

E
ffe

ct
 o

f t
im

e

Time

Figure 6.6: Observed and fitted longitudinal trajectory as well as predicted longitudinal trajectory and condi-
tional survival probability for one subject.
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6.4.3 Important structures (Example: nonlinear associations in the joint model)

In a last example important structures of bamlss joint model fits and the setup of nonlinear models

are illustrated. We generate data for a joint model with functional random intercepts, a nonlinear

association between marker and the log-hazard and a parametric baseline covariate by the respective

call to simJM(). The following code illustrates the data generation for n = 300 and the model fit of

this nonlinear association ηα(ηµ), which is modeled internally as a P-spline.

set.seed(123)

d <- simJM(nsub=300, long_setting="functional", alpha_setting="nonlinear",

interaction=TRUE,full=FALSE)

long_df <- 7

f_start <- y ~ ti(id, bs="re") + ti(obstime, bs="ps", k=long_df) +

ti(id, obstime, bs=c("re", "ps"), k=c(nlevels(d$id), long_df)) +

s(x2, bs="ps")

b_start <- bamlss(f_start, data=d, sampler=FALSE)

mu <- predict(b_start)$mu

In this case we fit a separate longitudinal model before starting the joint model estimation. The

results from the longitudinal model are used as starting parameters for the posterior mode estimation

leading to a faster convergence. More importantly, however, they provide a good starting estimation

for the predictor ηµ(t) to base the placement of the knots for the spline representation of ηα(ηµ(t))

on. These knots are set up initially and have to remain fixed in the course of the model estimation.

If no starting values for start mu are supplied, knots are based on the observed longitudinal marker

values.

f <- list(

Surv2(survtime, event, obs = y) ~ s(survtime, bs="ps"),

gamma ~ x1,

mu ~ ti(id, bs="re") + ti(obstime, bs="ps", k=long_df) +

ti(id, obstime, bs=c("re", "ps"), k=c(nlevels(d$id), long_df)) +

s(x2, bs="ps"),

sigma ~ 1,

alpha ~ 1,

dalpha ~ -1

)

b <- bamlss(f, data=d, family="jm", timevar="obstime", idvar="id",

interaction=TRUE, start_mu=mu,

n.iter=12000, burnin=2000, thin=5)
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Note that for the nonlinear estimation of the model the user supplies only the setup for g2(x̃αi, t).

By specifying interaction=TRUE in the call the spline representation g1(ηµi(t)) and the respective

row-tensor product from eq. (6.3) is set up. Whereas for a simple nonlinear effect g2(x̃αi, t) is reduced

to an intercept, as in the code above, a covariate dependent nonlinear association can be modeled by

specifying the respective covariate in the predictor, e.g. alpha ~ x3 for the group-specific nonlinear

association. Currently only simple nonlinear, as shown here, and group-specific nonlinear interactions

are implemented in the package.

Two structures of the model fit are especially interesting for diving further into the setup of the

model. First, samples from the MCMC estimation are kept in the fitted bamlss object and can be

used for further inference. If the combined predictor of ηγ + ηλ is needed, as for example for the

comparison with JMbayes in Chapter 3, this can be obtained easily from the respective samples. This

can be either done using the predict function which can return all samples

mcmc.lambda <- predict(b_mean, model="lambda", FUN=function(x) {x})

mcmc.gamma <- predict(b_mean, model="gamma", FUN=function(x) {x})

mcmc.gamma_lambda <- mcmc.gamma + mcmc.lambda

gamma_lambda <- apply(mcmc.gamma_lambda, 1, c95)

or using the list of all posterior mean samples in b mean$samples from which samples of single

parameters can be obtained by call to the respective column name.

Second, the setup of all smooth terms in the model can be obtained from the model fit if needed,

for example, to visualize the spline or obtain the knots. The list b mean$x contains the smooth setup

from mgcv of every predictor k and for every fitted term m. For example the setup of the smooth

effect of fµ4(x̃µi) can be found in

b_mean$x$mu$smooth.construct$‘s(x2)‘

The presented model setup, utility functions and further information provide the starting point

to fit a variety of joint models within the package bamlss. We refer to the respective help pages and

the code supplements of the published manuscripts for further details.

6.5 Future plans

The implementation of the structured additive joint model in bamlss allows users to fit the presented

flexible joint model within R. While the main functionalities are set up and tested, the implementation

can be extended in various ways. Firstly, as also mentioned in the previous chapter, more nonlinear

association structures can be included such as a nonlinear time-varying association between marker

and time-to-event process fα(ηµi(t), t) or a nonlinear covariate-dependent association fα(ηµi(t), x̃αi)

beyond the implemented dummy covariate. Basing on previous experience, however, this extension

is only sensible with a high number of subjects observed longitudinally on a dense grid. Second,

in certain situations it could be of interest to associate not only the current value of the modeled
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marker ηµi(t) but also the current slope of this trajectory η′µi(t) with the hazard. By adding a further

predictor in the hazard as

hi(t) = exp
{
ηλi(t) + ηγi + ηαi (ηµi(t), t) + ηα′i

(
η′µi(t), t

)}
all flexibility in the association with the current value such as nonlinear, time-varying and covariate-

dependent associations, could also be extended to the association with the current slope. This addi-

tional association structure, which makes use of the straightforward analytical derivative of B-splines

(see Appendix A.2), is already under development but still needs thorough testing.

Besides these additional structures and associations further utility functions regarding model di-

agnostics should be implemented. For assessing the accuracy of survival models calibration measures,

indicating how well the model can predict observed event rates, as well as discrimination measures,

assessing the model’s ability to differentiate between subjects with high and low risk, are crucial.

There are different adaptations of calibration (Henderson et al., 2002) and discrimination (Rizopou-

los, 2012) measures in the context of joint models which, incorporated into the joint model family in

bamlss could enhance the assessment of estimated flexible additive joint models.

The usability of the present model and all of its extensions is crucially dependent on the computa-

tional ease and speed. Although we have made large gains in computation speed by transferring the

numerical integration into C and by exploiting the block-structure of the design matrix and Hessian

of the functional random intercepts, we are continuously working on speeding up the computations

further.
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Chapter 7

Discussion

In this concluding chapter a main summary with a special focus on the contributions to T1D research

and, in particular, to the field of joint modeling is given. Modeling aspects discussed in the outlook

of the previous Chapters 3, 4 and 5 are summarized and extended in order to achieve the main

conclusions for the whole research project. An outlook on potential future steps concludes this work.

7.1 Concluding summary

Joint models of longitudinal and survival data are an important tool for the analysis of longitudinal

biomarkers and their association with an event of interest. They increasingly find entry into applied

analyses of longitudinal cohort data (Sudell et al., 2016), in which longitudinal markers are usually

observed at subject-specific discrete measurement times, subject to measurement error and informa-

tively censored at event occurrence. By the joint estimation of a longitudinal and survival submodel

within one likelihood, joint models allow the unbiased estimation of this data. Aim of this work is the

extension of established joint model approaches to provide more flexibility, as needed in the research

on disease progression of T1D.

In order to achieve this aim, a general Bayesian joint model framework is developed in Chapter 3,

which allows the flexible incorporation of smooth nonlinear, time-varying and random effects terms

into shared random effects joint models beyond previous approaches. The developed model is applied

to two different T1D risk cohorts in Chapters 3 and 4, allowing deeper insights into the time-varying

nature of the association between disease-specific biomarkers and the onset of clinical symptoms of

T1D.

Existing joint model approaches further assume linearity between the longitudinal marker and

the log-hazard. This assumption has not been tested and might lead to biased results if strong

nonlinearity is present. The developed framework is therefore further extended in Chapter 5 to test

and relax this assumption. The ability to capture truly linear and truly nonlinear associations is

shown not only in simulations but also in modeling further biomedical data.

Notably the developed framework allows for a more complex specification of the association be-

tween longitudinal markers and a time-to-event process such as nonlinear, subgroup-specific or time-



102 7. Discussion

varying specifications and thereby has the potential to help to understand complex relationships

between longitudinal biomarkers and disease progression. To facilitate applications of the developed

framework, the model is readily available within the R package bamlss (Umlauf et al., 2017), and an

introduction to fitting flexible additive joint models is given in Chapter 6.

7.1.1 Contributions to type 1 diabetes research

We analyzed the associations between T1D-specific autoantibody markers and the progression to T1D

in a mouse model and two data sets from unique T1D birth cohorts. In line with previous results

higher autoantibody levels of IAA were associated with a higher progression risk in the BABY-

DIAB/BABYDIET data. The association was estimated as roughly constant with a slightly higher

association at earlier time points but also with wide credibility bands around the effect estimate. This

uncertainty is likely due to the complexity of the specified nonlinear time-varying association, given

the limited sample size of this data set.

By modeling the larger, densely measured data set from the large multinational TEDDY cohort

the detailed analysis of associations was feasible, such as potentially time-varying or subgroup-specific

association structures. As a result the association between autoantibody markers and the time to

T1D progression was estimated as declining over time for IAA and GADA and as time-constant

positive for IA2A. These more detailed results refine previous findings from TEDDY data and other

cohorts. For the first time, the time-varying nature of the estimated associations could be quantified

using our flexible joint model. The findings indicate that risk stratification based on autoantibody

measurements is most informative early after seroconversion for the respective autoantibody. This

trend was even more pronounced in children with first-degree relatives with T1D.

7.1.2 Contributions to the field of joint modeling

Research on joint models is a fast growing field with developments in many areas such as the analysis

of multivariate longitudinal measurements, relaxing distributional assumptions and also the flexible

modeling of all model parts and their associations. The focus of our contribution lies in the latter

where we greatly extended the flexibility of shared random effect models by incorporating the joint

model in a structured additive framework. Whereas many developments in this area use a random

effects link to incorporate the marker in the hazard for computational ease, we include the full,

flexibly modeled trajectory, thereby allowing for a straightforward assessment and interpretation of

the association also under the specification of complex random effects structures.

The special focus in the previous chapters lies on extending given models to enable a flexible

modeling of subject-specific trajectories and to allow the associations between marker and hazard to

be potentially covariate-dependent, time-varying and nonlinear. By modeling the longitudinal marker

to closely describe the subject-specific nonlinear trajectories using functional random intercepts, the

association between the marker and the hazard can be estimated more precisely. This is of special

importance if the exploration of potentially complex association structures is of interest.

Although many different parameterizations for the association between the marker and the event exist,
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modeled associations were previously restricted to be time-constant in the log-hazard. By resolving

this restriction and allowing associations to differ covariate-dependently, further insights into disease

mechanisms are possible as shown in Chapter 4. Simultaneously with the development of the flexible

additive joint model also Andrinopoulou et al. (2016) extended an existing joint model to allow for a

time-varying association in the modeling of the heart valve function after a cardio-thoracic surgery.

While also making use of Bayesian P-splines their model allows to specify a time-varying association

of both a current marker and its current slope and to derive improved dynamic predictions from the

model. However, it offers less flexibility in the specification of individual trajectories and further

nonlinear covariate effects than the presented additive joint model. Still, this similar extension and

the biomedical research question motivating this development stresses the importance of including

time-varying associations in joint models.

Furthermore, most models assume a linear association between marker and log-hazard. Often para-

metric transformations are used to achieve normally distributed markers, which are at the same time

(hopefully) linear in the log-hazard. Our model extension allows, for the first time, to check this

assumption in joint models and to relax it in modeling the influence of longitudinal markers.

An important prerequisite for joint models to find broader entry into applied research in various

biomedical fields is the availability of ready-to-use software implementations. Therefore, the developed

framework is implemented in the R package bamlss to facilitate the usage for researchers interested in

flexibly modeling this kind of data. The package thereby enlarges the options of estimating flexible

joint models beyond previous implementations.

Although these extensions are the focus of the present work, far more modeling options are pos-

sible in this framework and have already been implemented in bamlss. Such further effects are, for

example, time-varying covariates in the survival part in predictor ηλ or spatial effects in the time-

constant survival part in predictor ηγ as in Martins et al. (2016). Also other error structures, such as

autocorrelated errors or group-specific error structures are already available within our implementa-

tion.

7.2 Outlook

Areas of further development were already mentioned in the previous chapters and are therefore

summarized and extended in the following. We first consider useful extensions of the software before

discussing further model developments.

As discussed in the previous chapter the current implementation in the software could be extended

by adding further utility functions and model diagnostics such as residuals for the survival part of

the model as well as further statistics to assess the calibration and discrimination of a fitted model.

Furthermore, only a subset of the presented nonlinear association structures is currently implemented

and could be extended further. Finally, it is of great interest to speed up computations of the current

implementation.

Besides these straightforward implementation options, the developed general framework allows

for many extensions. Before presenting potential further developments, however, a note of caution is
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necessary. In applying the flexible additive joint model to different biomedical data sets and simulated

data we observed that a certain amount of information is necessary to achieve a stable and precise

estimation. For modeling flexible linear associations the number of subjects and events times is the

limiting factor, e.g. in Chapter 3 modeling n = 127 subjects with 69 event times was the lower limit

to achieve tolerable credibility intervals. For modeling flexible nonlinear associations also the number

and spacing of longitudinal observations is important to achieve stable estimations, e.g. in Chapter

5 for group-specific nonlinear associations a median of 6 observations per subject was a lower limit.

Basing on this experience the implementation within R to achieve (a) a stable estimation procedure,

(b) basing on a realistic amount of data, i.e. 150 to 500 subjects and (c) with tolerable computation

times are major challenges in all further developments and should be kept in mind in the following.

One area of possible extensions is the inclusion of further association structures such as the

influence of the current slope of a marker which could also be nonlinear and time-varying. In addition,

elaborate cumulative effects, similar to historical functional effects as discussed in Chapter 3, could be

included within the given framework. Similar to the incorporation of functional random intercepts in

the longitudinal trajectories this could be another approach originating from functional data analysis

to be incorporated in the joint modeling framework. It has to be noted, however, that due to the

informatively censored observations in the longitudinal model which are observed at subject-specific

time points and not on a fixed grid, functional data approaches cannot directly be incorporated in the

joint model framework but have to be modified. Furthermore, as historical functional effects would

model the association even more flexibly than previous extensions, a high amount of data, observed

on a dense grid, would be necessary to achieve stable estimations.

Further possible extensions concern the distributional assumptions for the longitudinal response. For

example, the assumption of normal errors can be too strict in the presence of heavy-tail distributed

errors and could be relaxed to t-distributed errors (Huang et al., 2010; Baghfalaki et al., 2014).

Besides, mixtures of distributions could be allowed (Rizopoulos, 2016b) to account for censoring

of longitudinal measurements at certain thresholds. The longitudinal model part could further be

allowed to model binary or count data by making full use of the generalized additive regression

framework.

Currently, many approaches are being developed to include multiple longitudinal marker trajectories

in the joint model (see Hickey et al. (2016) for an extensive overview) and also the flexible additive

joint model could be extended in this direction. Challenges of multivariate longitudinal approaches

are, however, the appropriate modeling of the correlation structure between multiple markers and

their joint or separate association with the hazard.

Dynamic prediction, which is the risk prediction for a subject that can be dynamically updated

when additional longitudinal information is given, is an area of great interest in current joint model

developments (see, for example, Andrinopoulou et al., 2016; Ferrer et al., 2017; Barrett and Su, 2017).

Developing dynamic predictions in our flexible additive joint model could improve the precision in

the prediction compared to existing approaches, as, for example, Andrinopoulou et al. (2016) could

show an improved prediction based on the inclusion of a time-varying association and Barrett and
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Su (2017), using a discretized time-scale and a random effects association, showed improvements by

including highly flexible individual trajectories in the predictions.

Model selection within joint models is another potential direction of future research. Many de-

veloped joint models, as also our model, use model based statistics to compare models such as DIC,

conditional predictive ordinate (CPO) or Bayes Factors (see, for example, Brown, 2009; Tang and

Tang, 2015). Recently, first approaches for more elaborate model selection techniques in the joint

model framework have been developed. For example, Waldmann et al. (2017) use gradient-based

boosting to select covariates in the survival and the longitudinal model, so far restricting the longitu-

dinal trajectories to random intercept and slope models and a random effects association. Different

Bayesian shrinkage priors are tested by Andrinopoulou and Rizopoulos (2016) to determine appro-

priate association structures and a Bayesian LASSO approach is used by Tang et al. (2017) to select

variables in the longitudinal and survival submodel as well as their association. Both approaches,

boosting and shrinkage, could be interesting developments for the flexible additive joint model to

enable an automatic variable selection in the different predictors.

Finally, although joint models were developed for and are mainly used in biomedical research

to associate a longitudinal biomarker and the time-to-event, the application of joint models is not

restricted to this research field. Also in another applied areas of survival analysis, such as engineering,

joint models could be used. For example, joint models could help to improve explaining mechanical

failures based on internal longitudinal covariates such as sensor information. This generalizes to

statistical analyses in all applied fields in which longitudinal, informatively censored information is

potentially associated with an event of interest.

In conclusion the developed model framework is a valuable contribution to more flexible joint

models that can be extended in various ways to meet the further demands of applied researchers.
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Appendix A

Technical details

A.1 Technical details of Chapter 3

We derive score vectors and Hessians for the regression coefficients of every predictor. We introduce

some further notation to formulate these derivatives. For the time-varying predictors of the survival

part k ∈ {λ, α, µ} the design matrix Xk(T) denotes the n × pk matrix of evaluations at the vector

of survival times T. For the time-varying predictors of the longitudinal part k ∈ {µ, σ} the N × pk
design matrix Xk(t) contains the evaluations at all observed subject-specific time points t. The

column vector xki is the i-th row of the respective design matrix Xk for k ∈ {γ, λ, α, µ, σ} and

βk = [βk1, · · · , βkMk
]>. Let ` denote the log-likelihood, i.e. the sum of the contributions of the

longitudinal and survival submodels defined in eq. (3.6) and eq. (3.7). In more detail, the full log-

likelihood is

` [θ|T, δ,y] =δ> [Xλ(T)βλ + Xγβγ + Xα(T)βα ·Xµ(T)βµ]

−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
exp

[
x>λi (u)βλ + x>αi (u)βα

(
x>µi (u)βµ

)]
du

− N

2
log(2π)− 1>NXσ (t)βσ −

1

2
(y −Xµ (t)βµ)>R−1(y −Xµ (t)βµ)

resulting in the log-posterior

log p(θ|T, δ,y) ∝ ` [θ|T, δ,y] +
∑

k∈{λ,γ,α,µ,σ}

Mk∑
m=1

[
log p(βkm|τ 2

km) + log p(τ 2
km)
]
.

The full score vectors s(βk) and Hessians H(βk) of the respective predictors are computed as the

sum of the score s∗(βk) and Hessians H∗(βk) based on the log-likelihood function and the score and

Hessian of the respective log-prior densities. For the multivariate normal prior as specified in 3.2.2

these are − 1
τ2km

Kkmβkm and − 1
τ2km

Kkm, respectively.
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Score Vectors

s∗(βµ) =
∂`

∂βµ
=Xµ (t)>R−1 (y −Xµ (t)βµ) + X>µ (T) diag(δ) [Xα (T)βα]

−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ωi(u) x>αi (u)βαxµi (u) du

s∗(βγ) =
∂`

∂βγ
=δ>Xγ −

n∑
i=1

exp
(
x>γiβγ

)
xγi

∫ Ti

0
ωi(u) du

s∗(βα) =
∂`

∂βα
=X>α (T) diag(δ) [Xµ (T)βµ]−

n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ωi(u) xαi (u)

(
x>µi (u)βµ

)
du

s∗(βλ) =
∂`

∂βλ
=δ>Xλ (T)−

n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ωi(u) xλi (u) du

s∗(βσ) =
∂`

∂βσ
=−Xσ (t)> 1N + [Xσ (t)� (y −Xµ (t)βµ)]>R−1 (y −Xµ (t)βµ)

Hessian

H∗(βµ) =
∂2`

∂βµ∂βµ>
=−Xµ (t)>R−1Xµ (t)

−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ωi(u)

[
x>αi (u)βα

]2
xµi (u)x>µi (u) du

H∗(βγ) =
∂2`

∂βγ∂β>γ
=−

n∑
i=1

exp
(
x>γiβγ

)
xγix

>
γi

∫ Ti

0
ωi(u) du

H∗(βα) =
∂2`

∂βα∂β>α
=−

n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ωi(u)

[
x>µi (u)βµ

]2
xαi (u)x>αi (u) du

H∗(βλ) =
∂2`i

∂βλ∂β
>
λ

=−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ωi(u) xλi (u)x>λi (u) du

H∗(βσ) =
∂2`

∂βσ∂β>σ
=− 2 [Xσ (t)� (y −Xµ (t)βµ)]>R−1 [Xσ (t)� (y −Xµ (t)βµ)]

where ωi(u) = exp
[
x>λi (u)βλ + x>αi (u)βα

(
x>µi (u)βµ

)]
and R = diag

(
exp [Xσ (t)βσ]2

)
.
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A.2 Technical details of Chapter 5

In the following score vectors and Hessians for the regression coefficients of every predictor are pre-

sented. For their computation the predictors are also necessary at the survival times T. Here, Xk(T)

denotes the respective n×pk design matrix of evaluations of the time-varying predictors of the survival

part k ∈ {λ, α, µ} at time points T. Please note that in comparison with the previously presented

flexible additive joint model in Chapter 3 and in (Köhler et al., 2017b) only the score and Hessians

for the predictors ηα and ηµ have changed relevantly for the nonlinear specification and are presented

in the following. For all other predictors we refer to Section A.1

The full log-likelihood is

` [θ|T, δ,y] =δ>
[
Xλ(T)βλ + Xγβγ +

[
g1 (Xµ(T)βµ)� g2(X̃α(T))

]
βα

]
−

n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
exp

[
x>λi (u)βλ +

[
g1

(
x>µi (u)βµ

)
� g2(x̃>αi(u))

]
βα

]
du

− N

2
log(2π)− 1>NXσ (t)βσ −

1

2
(y −Xµ (t)βµ)>R−1(y −Xµ (t)βµ)

For the flexible association in eq. (5.4) the term g1 (Xµ(T)βµ) reduces to Xµ(T)βµ for a linear

association and is B (Xµ(T)βµ) for a nonlinear association. Likewise, the term g2(X̃α(T)) reduces to

1n for a simple constant association, is the covariate vector or design matrix of the parametric input

for covariate-dependent associations and is the evaluation of a spline basis matrix for a time-varying

association. We denote this term in the following as Xα2 to represent all three possible forms.

The resulting log-posterior is

log p(θ|T, δ,y) ∝ ` [θ|T, δ,y] +
∑

k∈{λ,γ,α,µ,σ}

Mk∑
m=1

[
log p(βkm|τ 2

km) + log p(τ 2
km)
]
.

The scores s(βk) and Hessians H(βk) are computed as the sum of the respective derivatives of the

log-likelihood and of the log-prior densities. The latter are for example − 1
τ2km

Kkmβkm and − 1
τ2km

Kkm

for the multivariate normal prior as specified in Section ??. The score vectors s∗(βk) and Hessians

H∗(βk) of the log-likelihood function are presented in the following.

Score Vectors

s∗(βµ) =
∂`

∂βµ
=Xµ (t)>R−1 (y −Xµ (t)βµ) + X>µ (T) diag(δ)

[
g′1 (Xµ(T)βµ)�Xα2(T)

]
βα

−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ψi(u)

[
g′1

(
x>µi (u)βµ

)
� x>α2i(u)

]
βαxµi(u)du
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s∗(βα) =
∂`

∂βα
=δ> [g1 (Xµ (T)βµ)�Xα2(T)]

−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ψi(u)

[
g1

(
x>µi (u)βµ

)
� x>α2i(u)

]>
du

with ψi(u) = exp

[
x>λi (u)βλ +

[
g1

(
x>µi (u)βµ

)>
� x>α2i(u)

]
βα

]
and the diagonal matrix R =

diag
(

exp [Xσ (t)βσ]2
)

. For the score vector s∗(βµ) the derivative of g1

(
x>µi(u)βµ

)
with respect

to βµ is needed which can be derived by chain rule

∂g1(x>µi(u)βµ)

∂βµ
=
∂g1(ηµ(u))

∂ηµ(u)
· ∂ηµ(u)

∂βµ
.

The derivative of g1 (Xµ(T)βµ) follows analogously. Whereas the inner derivative
∂ηµ(u)
∂βµ

= x(u)

is the same for both linear and nonlinear associations, the outer derivative, which we denote

by g′1

(
x>µi(u)βµ

)
, differs between the parameterizations. For linear associations it holds that

g′1

(
x>µi(u)βµ

)
= 1 and g′1 (Xµ(T)βµ) = 1>n . Nonlinear associations are implemented as penal-

ized B-splines in bamlss, g′1

(
x>µi(u)βµ

)
= B′(x>µi(u)βµ) and g′1 (Xµ(T)βµ) = B′(Xµ(T)βµ), which

have a straightforward analytical solution for the derivative (Fahrmeir et al., 2013)

∂

∂z

∑
d

Bl
d(z) = l

(
1

κd − κd−1
Bl−1
d−1(z)− 1

κd+1 − κd+1−l
Bl−1
d (z)

)
. (A.1)

where l denotes the degree of the spline, d is the index for the basis functions and κ denotes the knots

with the interior knots κ1, . . . , κm and 2l outer knots.

Hessian

H∗(βµ) =
∂2`

∂βµ∂βµ>
=−Xµ (t)>R−1Xµ (t) + X>µ (T) diag(δ)

[
g′′1 (Xµ(T)βµ)�Xα2(T)

]
βαXµ (T)

−
n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ψi(u)·[([

g′1

(
x>µi (u)βµ

)
� x>α2i(u)

]
βα

)2
+
[
g′′1

(
x>µi (u)βµ

)
� x>α2i(u)

]
βα

]
·

xµi(u)x>µi(u)du
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H∗(βα) =
∂2`

∂βα∂β>α
=−

n∑
i=1

exp
(
x>γiβγ

)∫ Ti

0
ψi(u)

[
g1

(
x>µi (u)βµ

)
� x>α2i(u)

]
·

[
g1

(
x>µi (u)βµ

)
� x>α2i(u)

]>
du

Here g′′1 (Xµ(T)βµ) denote the second derivatives with respect to ηµ(T), i.e. the second outer deriva-

tive which is 0n for a linear association and B′′(Xµ(T)βµ) for a nonlinear association, for which again

an analytical formula exists. The same setup holds for g′′1

(
x>µi(u)βµ

)
.
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Appendix B

Additional modeling results

B.1 Additional modeling results from Chapter 3
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Figure B.1: Kaplan-Meier diabetes free probability estimates for the BABYDIAB/BABYDIET data and num-
ber of subjects at risk per time point.
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Figure B.2: Results from the sensitivity analysis for the T1D data using 12 (i.e. 4 internal) knots for both the
overall mean and the functional random intercepts in the longitudinal submodel; (a) Observed values (points)
and estimated trajectories (lines) of the longitudinal marker values of log(IAA+ 1) for five randomly selected
subjects; (b) Estimated posterior mean of ηα(t) with 95% pointwise credibility bands (shaded area), observed
event times (rugs bottom) and censoring times (rugs top).
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Figure B.3: Results from the sensitivity analysis for the T1D data using 20 (i.e. 8 internal) knots for both the
overall mean and the functional random intercepts in the longitudinal submodel and 10 (i.e.2 internal knots)
in the survival submodel; (a) Observed values (points) and estimated trajectories (lines) of the longitudinal
marker values of log(IAA+ 1) for five randomly selected subjects; (b) Estimated posterior mean of ηα(t) with
95% pointwise credibility bands (shaded area), observed event times (rugs bottom) and censoring times (rugs
top), and number of subjects at risk per time point (bottom).
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Figure B.4: Traceplots of the posterior samples for the intercept βα1 and the coefficient vector βα1 in ηα(t)
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Figure B.5: Traceplots of the posterior samples for (left) the random intercepts βµ2(i) of subjects i = 1, . . . , 5,
and (right) the coefficient vector βµ3(t, i) for subject i = 1 in ηµ(t)
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Figure B.6: Results from the sensitivity analysis for the T1D data. Estimated effects from model fits based
on (i) the main model as presented in the Application section, (ii) IG(0.001, 1) as prior distribution for the
variance parameters, (iii) a Half-Cauchy distribution for the variance parameters and (iv) N(0, 502) as prior
for the parametric terms; (a) Estimated posterior mean of ηα(t) with 95% pointwise credibility bands (shaded
area), observed event times (rugs bottom) and censoring times (rugs top); (b) linear effect estimates from the
survival and longitudinal submodel; association stands for effects in ηα, long for the longitudinal submodel and
sc indicates seroconversion.
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Table B.1: Description of the study population by type of persistent autoantibody. Values are reported as n (%
of non-missing observations) for categorical variables and median (interquartile range) for continuous variables.

Type of persistent autoantibody
Variable Total IAA GADA IA2A

Total number of children 613 442 466 288
Age at respective
seroconversion (years) 2.2 (1.2, 3.8) 2.0 (1.1, 3.5) 2.7 (1.6, 4.2) 2.8 (1.9, 4.5)

Girls 268 (44%) 200 (45%) 212 (45%) 112 (39%)
Country
US 206 (34%) 136 (31%) 166 (36%) 94 (33%)
Finland 153 (25%) 125 (28%) 109 (23%) 85 (30%)
Germany 47 (8%) 40 (9%) 32 (7%) 22 (8%)
Sweden 207 (34%) 141 (32%) 159 (34%) 87 (30%)

Child having a first
degree relative with T1D 128 (21%) 105 (24%) 97 (21%) 71 (25%)

HLA-DR genotype
DR3/4 311 (51%) 241 (55%) 251 (54%) 148 (51%)
DR4/4 106 (17%) 74 (17%) 81 (17%) 64 (22%)
DR4/8 92 (15%) 71 (16%) 51 (11%) 46 (16%)
DR3/3 76 (12%) 30 (7%) 64 (14%) 16 (6%)
other 28 (5%) 26 (6%) 19 (4%) 14 (5%)

Additionally autoantibody
positive for
IAA 302 (65%) 252 (88%)
GADA 302 (68%) 237 (83%)
IA2A 252 (57%) 237 (51%)

Autoantibody present
at first seroconversion 353 (80%) 344 (74%) 40 (14%)
Number of children
who developed T1D 175 (29%) 162 (37%) 134 (29%) 127 (44%)
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Figure B.7: Individual and mean transformed titers of IAA, GADA and IA2A autoantibodies after serocon-
version to the respective autoantibody.
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Figure B.8: Convergence plots for exemplary coefficients from the joint model of IAA trajectories and progres-
sion to T1D. Coefficients with index µ represent the longitudinal submodel and γ the survival submodel.
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Figure B.9: Convergence plots for exemplary coefficients from the joint model of GADA trajectories and
progression to T1D. Coefficients with index µ represent the longitudinal submodel and γ the survival submodel
(see also Appendix).
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Figure B.10: Convergence plots for exemplary coefficients from the joint model of IA2A trajectories and
progression to T1D. Coefficients with index µ represent the longitudinal submodel and γ the survival submodel
(see also Appendix).
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Figure B.11: Results from the sensitivity analysis for the joint models of autoantibody trajectories (IAA,
GADA and IA2A) and progression to T1D data. Estimated coefficients from model fits based on (i) the main
model as presented in the Application section with IG(0.0001, 0.0001) as prior distribution for the variance
parameters and N(0, 10002) as weakly informative prior for the parametric terms, (ii) with IG(0.001, 1) as
prior distribution for the variance parameters, and (iii) N(0, 502) as prior for the parametric terms. Left
panel: Posterior mean estimates (lines) and 95% pointwise credibility intervals (shaded areas) of ηα(t). Right
panel: Posterior mean estimates of coefficients and hazard ratios with corresponding 95% credibility intervals.
Association denotes the intercept of ηα(t), long the coefficients of the longitudinal submodel and survival the
coefficients (i.e. the log hazard ratio) of the survival model.
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Figure B.12: Individual and mean transformed titers of IAA autoantibodies after seroconversion per HLA
genotype, stratified for progression to T1D.
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Figure B.13: Posterior mean estimates (lines / dots) and 95% credibility intervals (shaded areas) of ηα(t, sex),
the time-varying log hazard ratio (HR) of the association between longitudinal autoantibody trajectories and
T1D progression stratified for girls and boys (upper panel) and of the difference of the association between the
groups over time, ηα(t, sex = boys)− ηα(t, sex = girls) (lower panel).
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Figure B.14: Traceplots of the posterior samples for βα in ηα(ηµ(t)) from model 1 (left) and model 2 (right).
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Figure B.15: Traceplots of the posterior samples of model 3 for βα in ηα(ηµ(t), g) from subjects without an
enlarged liver at baseline (left) and with this condition (right). For the latter also a group-specific intercept
βα3 is estimated.
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Figure B.16: Results from the sensitivity analysis for the PBC data. Estimated posterior mean of the asso-
ciation ηα(ηµ(t)) of (a) model 1 (nonlinear estimation of log(Bilirubin)), (b)model 2 (nonlinear estimation of√
Bilirubin) and (c) model 3 (nonlinear estimation of log(Bilirubin) of patients with and without enlarged

liver at baseline) using as prior distribution for the variance parameters (i) IG(0.001, 0.001), (ii) IG(0.001, 1),
and (iii) a half-Cauchy distribution for the variance parameters.
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